WorldWideScience

Sample records for air conditioning equipment

  1. Influence of different outdoor design conditions on design cooling load and design capacities of air conditioning equipments

    International Nuclear Information System (INIS)

    Aktacir, Mehmet Azmi; Bueyuekalaca, Orhan; Bulut, Huesamettin; Yilmaz, Tuncay

    2008-01-01

    Outdoor design conditions are important parameters for energy efficiency of buildings. The result of incorrect selection of outdoor design conditions can be dramatic in view of comfort and energy consumption. In this study, the influence of different outdoor design conditions on air conditioning systems is investigated. For this purpose, cooling loads and capacities of air conditioning equipments for a sample building located in Adana, Turkey are calculated using different outdoor design conditions recommended by ASHRAE, the current design data used in Turkey and the daily maximum dry and wet bulb temperatures of July 21st, which is generally accepted as the design day. The cooling coil capacities obtained from the different outdoor design conditions considered in this study are compared with each other. The cost analysis of air conditioning systems is also performed. It is seen that the selection of outdoor design conditions is a very critical step in calculation of the building cooling loads and design capacities of air conditioning equipments

  2. An Analysis of Price Determination and Markups in the Air-Conditioning and Heating Equipment Industry

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Larry; Millstein, Dev; Coughlin, Katie; Van Buskirk, Robert; Rosenquist, Gregory; Lekov, Alex; Bhuyan, Sanjib

    2004-01-30

    In this report we calculate the change in final consumer prices due to minimum efficiency standards, focusing on a standard economic model of the air-conditioning and heating equipment (ACHE) wholesale industry. The model examines the relationship between the marginal cost to distribute and sell equipment and the final consumer price in this industry. The model predicts that the impact of a standard on the final consumer price is conditioned by its impact on marginal distribution costs. For example, if a standard raises the marginal cost to distribute and sell equipment a small amount, the model predicts that the standard will raise the final consumer price a small amount as well. Statistical analysis suggest that standards do not increase the amount of labor needed to distribute equipment the same employees needed to sell lower efficiency equipment can sell high efficiency equipment. Labor is a large component of the total marginal cost to distribute and sell air-conditioning and heating equipment. We infer from this that standards have a relatively small impact on ACHE marginal distribution and sale costs. Thus, our model predicts that a standard will have a relatively small impact on final ACHE consumer prices. Our statistical analysis of U.S. Census Bureau wholesale revenue tends to confirm this model prediction. Generalizing, we find that the ratio of manufacturer price to final consumer price prior to a standard tends to exceed the ratio of the change in manufacturer price to the change in final consumer price resulting from a standard. The appendix expands our analysis through a typical distribution chain for commercial and residential air-conditioning and heating equipment.

  3. A multiple stage approach to mitigate the risks of telecommunication equipment under free air cooling conditions

    International Nuclear Information System (INIS)

    Dai Jun; Das, Diganta; Pecht, Michael

    2012-01-01

    Highlights: ► Analyze the challenges posed by free air cooling (FAC). ► Present a multi-stage process to mitigate the risks of FAC. ► Propose a prognostics-based method to mitigate risks in data centers in operation. ► Present a case study to show the prognostics-based method implementation. - Abstract: The telecommunication industry is concerned about the energy costs of its operating infrastructure and the associated greenhouse gas emissions. At present, more than half of the total energy consumption of data centers is devoted to the power and cooling infrastructure that supports electronic equipment. One method of reducing energy consumption is an approach called “free air cooling,” where ambient air is used to cool the equipment directly, thereby reducing the energy consumed in cooling and conditioning the air. For example, Intel demonstrated free air cooling in a 10-megawatt (MW) data center, showing a reduction in energy use and savings of US$2.87 million annually. However, the impacts of this approach on the performance and reliability of telecommunication equipment need to be identified. The implementation of free air cooling changes the operating environment, including temperature and humidity, which may have a significant impact on the performance and reliability of telecom equipment. This paper discusses the challenges posed by free air cooling and presents a multi-stage process for evaluating and mitigating the potential risks arising from this new operating environment.

  4. Proposal for energy saving in air conditioning equipment; Propuesta para ahorro energetico en acondicionadores de aire

    Energy Technology Data Exchange (ETDEWEB)

    Solis Recendez, Daniel H [Division de Ingenieria Electrica, Universidad Nacional Autonoma de Mexico (Mexico)

    2008-10-15

    In the last decades, the air conditioning systems have become a crucial part in the search from comfort in extreme climates. Nevertheless, they have also become one of the greatest energy consumers. In this article it is proposed that the final conditions that the air conditioning equipment looks for not to be fixed, but variable in respect to a certain comfort zone. This zone is a variation of the used one in the bio-climatic chart of Olgyay that considers the rapidity whereupon the reached conditions tend to leave the comfort zone. It is analyzed how to choose the point on the zone that costs less energy in arriving to it. [Spanish] En las ultimas decadas, los sistemas de aire acondicionado se han vuelto una parte crucial en la busqueda de confort en climas extremosos. Sin embargo, tambien se han vuelto de los mayores consumidores de energia. En este articulo se propone que las condiciones finales que busquen lograr los acondicionadores no sean fijas, si no variables respecto a una determinada zona de confort. Dicha zona es una variacion de la utilizada en la carta bioclimatica de Olgyay, que considera la rapidez con que las condiciones alcanzadas tienden a abandonar la zona de confort. Se discute como elegir el punto sobre la zona que cueste menos energia en llegara el.

  5. Development of a method for calculating steady-state equipment sensible heat ratio of direct expansion air conditioning units

    International Nuclear Information System (INIS)

    Xia Liang; Chan, M.Y.; Deng Shiming

    2008-01-01

    A complete set of calculation method for steady-state equipment sensible heat ratio (SHR) for a direct expansion (DX) cooling coil has been developed and reported. The method was based on the fundamentals of energy conservation and heat and mass transfer taking place in the DX cooling coil, and was experimentally validated using an experimental DX A/C rig. With the method developed, the effect of refrigerant evaporating temperature at fixed inlet air conditions on equipment SHR has been theoretically analyzed. The validated method can be useful in further studying the inherent operating characteristics of a DX air conditioning (A/C) unit and in developing suitable control strategies for achieving higher energy efficiency and better indoor thermal environment

  6. Rational use of energy in air conditioning equipment, through an appropriate selection of the main equipment; Uso racional de la energia en equipos de aire acondicionado, mediante la eleccion apropiada del equipo principal

    Energy Technology Data Exchange (ETDEWEB)

    Reyes Zuniga, Jose de Jesus; Herrera Ramos, Manuel [Instituto Mexicano del Petroleo (Mexico)

    1996-07-01

    This paper presents an analysis to diminish the consumption of energy in central air conditioning equipment through an appropriate selection of the equipment. The analysis shows the levels of security and toxicity of the refrigerant, the operational, constructive and economic advantages of the equipment, taking as reference the cooling demand and expenses of energy consumption, as well as the ecological impact derived from the use of the refrigerant. Finally, an economic analysis is presented, involving the expenses of the equipment, operation, maintenance, costs of the consumption of used fluids, et cetera. [Spanish] Uso racional de la energia en equipos de aire acondicionado, mediante la eleccion apropiada del equipo principal. Este trabajo presenta un analisis para disminuir el consumo de energia en los equipos centrales de aire acondicionado mediante la seleccion apropiada del equipo. El analisis muestra los niveles de seguridad y toxicidad del refrigerante, las ventajas operativas, constructivas y economicas del equipo, tomando como referencia la demanda de enfriamiento y gastos de consumo de energia, asi como el impacto ecologico derivado de su empleo del refrigerante. Finalmente, se presenta un analisis economico, involucrando los gastos del equipo, operacion, mantenimiento, costos de consumos de fluidos utilizados, etcetera.

  7. SESSA: Expert system for the selection of air conditioning equipment; SESEAA: Sistema experto para la seleccion de equipos de aire acondicionado

    Energy Technology Data Exchange (ETDEWEB)

    Kemper Valverde, Nicolas; Cardenas Perez, Edgar [Laboratorio de Sistemas Inteligentes, Centro de Instrumentos de la Universidad Nacional Autonoma de Mexico (UNAM), Mexico, D. F. (Mexico)

    1998-12-31

    The problem of selecting air conditioning and refrigeration equipment is quite wide and complex, since it encompasses from the application of the basic principles of physics and of thermodynamics up to the classic engineering design problems; these in turn can be numberless since they vary from place to place depending on multiple factors such as the region geographic and economic conditions. On the other hand, account most be taken of several elements such as windows, walls, and its specific geographical orientation, roofs, floors, partitions, equipment, lighting, etc., all this exerts influence in the complexity that represents the selection process. This paper describes a useful informatics tool to make it easy the selection process in air conditioning installations, taking into account multiple saving and efficient use of energy criteria, reflected in the operation process of these installations. [Espanol] El problema de seleccion de sistemas de aire acondicionado y de refrigeracion es bastante amplio y complejo, ya que abarca desde la aplicacion de los principios basicos de la fisica y la termodinamica hasta los problemas clasicos de diseno de ingenieria; estos a la vez pueden ser innumerables ya que varian de un lugar a otro y de un proyecto a otro, dependiendo de multiples factores tales como las condiciones geograficas y economicas de la region. Por otra parte se deben tomar en cuenta diversos elementos como son: ventanas, muros y sus orientaciones especificas, techos, pisos, particiones, equipos, iluminacion, etc., todo esto influye en la complejidad que representa el proceso de seleccion. En el presente trabajo se describe una herramienta informatica para facilitar el proceso de seleccion de instalaciones de aire acondicionado, tomando en cuenta multiples criterios de ahorro y uso eficiente de energia que se reflejan durante el proceso de operacion de estas instalaciones.

  8. SESSA: Expert system for the selection of air conditioning equipment; SESEAA: Sistema experto para la seleccion de equipos de aire acondicionado

    Energy Technology Data Exchange (ETDEWEB)

    Kemper Valverde, Nicolas; Cardenas Perez, Edgar [Laboratorio de Sistemas Inteligentes, Centro de Instrumentos de la Universidad Nacional Autonoma de Mexico (UNAM), Mexico, D. F. (Mexico)

    1999-12-31

    The problem of selecting air conditioning and refrigeration equipment is quite wide and complex, since it encompasses from the application of the basic principles of physics and of thermodynamics up to the classic engineering design problems; these in turn can be numberless since they vary from place to place depending on multiple factors such as the region geographic and economic conditions. On the other hand, account most be taken of several elements such as windows, walls, and its specific geographical orientation, roofs, floors, partitions, equipment, lighting, etc., all this exerts influence in the complexity that represents the selection process. This paper describes a useful informatics tool to make it easy the selection process in air conditioning installations, taking into account multiple saving and efficient use of energy criteria, reflected in the operation process of these installations. [Espanol] El problema de seleccion de sistemas de aire acondicionado y de refrigeracion es bastante amplio y complejo, ya que abarca desde la aplicacion de los principios basicos de la fisica y la termodinamica hasta los problemas clasicos de diseno de ingenieria; estos a la vez pueden ser innumerables ya que varian de un lugar a otro y de un proyecto a otro, dependiendo de multiples factores tales como las condiciones geograficas y economicas de la region. Por otra parte se deben tomar en cuenta diversos elementos como son: ventanas, muros y sus orientaciones especificas, techos, pisos, particiones, equipos, iluminacion, etc., todo esto influye en la complejidad que representa el proceso de seleccion. En el presente trabajo se describe una herramienta informatica para facilitar el proceso de seleccion de instalaciones de aire acondicionado, tomando en cuenta multiples criterios de ahorro y uso eficiente de energia que se reflejan durante el proceso de operacion de estas instalaciones.

  9. [Microbial air purity in hospitals. Operating theatres with air conditioning system].

    Science.gov (United States)

    Krogulski, Adam; Szczotko, Maciej

    2010-01-01

    The aim of this study was to show the influence of air conditioning control for microbial contamination of air inside the operating theatres equipped with correctly working air-conditioning system. This work was based on the results of bacteria and fungi concentration in hospital air obtained since 2001. Assays of microbial air purity conducted on atmospheric air in parallel with indoor air demonstrated that air filters applied in air-conditioning systems worked correctly in every case. To show the problem of fluctuation of bacteria concentration more precisely, every sequences of single results from successive measure series were examined independently.

  10. Evaluation of energy saving in pilot projects of window type air conditioning equipment in the domestic sector; Evaluacion del ahorro de energia en proyectos pilotos en equipos de aire acondicionado tipo ventana en el sector domestico

    Energy Technology Data Exchange (ETDEWEB)

    Duran Ramirez, Ricardo [Comision Nacional para el Ahorro de Energia, Mexico, D.F. (Mexico)

    2001-07-01

    The present work shows the energy saving when replacing low efficiency window type air conditioning equipment, for higher efficiency equipment, as well as the necessary parameters to identify the results obtained by the pilot projects of substitution of conventional equipment for other more efficient in the domestic sector. [Spanish] El presente trabajo muestra los ahorros de energia al sustituir equipos de aire acondicionado tipo ventana de baja eficiencia, por equipos de mayor eficiencia, asi como los parametros necesarios para identificar los resultados obtenidos, por los proyectos pilotos de sustitucion de equipos convencionales por otros mas eficientes en el sector domestico.

  11. Environmental impact of the programs of substitution of room type air conditioning equipment; Impacto ambiental de los programas de sustitucion de equipos de aire tipo cuarto

    Energy Technology Data Exchange (ETDEWEB)

    Alarcon Aleman, Jose Mauricio [OLADE, Quito (Ecuador)

    2002-09-01

    The present article approaches in a general way the relation that exists between the environment and the saving of electrical energy, especially in the Programs of Demand Side Management (DSM). In particular form the potential environmental impacts are described, derived of the use and the discard of the room type air conditioning equipment, goes deep into the characteristics of their cooling fluids, as well as in the relation that these keep with the protocols of Montreal and Kyoto. Finally, this article comments the incidence which have, the manufacturers as the institutions that implement DSM programs, on the environmental part of the programs of substitution of room type air conditioning equipment. In addition it is briefly described, the pilot program developed by Fideicomiso para el Ahorro de Energia Electrica (FIDE) as a successful case. [Spanish] En forma general, el presente articulo aborda la relacion que existe entre el medio ambiente y el ahorro de energia electrica, especialmente en los Programas de Administracion por el Lado de la Demanda (ALD). En forma particular se describen los impactos ambientales potenciales, derivados del uso y desecho de los equipos de aire acondicionado tipo cuarto, se ahonda en las caracteristicas de sus refrigerantes, asi como en la relacion que estos guardan con los protocolos de Montreal y Kioto. Finalmente, se comenta la incidencia que tienen, tanto los fabricantes como las instituciones que implementan programas de ALD, sobre la parte ambiental de los programas de sustitucion de equipos de aire acondicionado tipo cuarto. Ademas se describe brevemente, el programa piloto desarrollado por el Fideicomiso para el Ahorro de Energia Electrica (FIDE) como un caso exitoso.

  12. Energy saving by means of air conditioning equipment replacement and the household application of thermal insulation; Ahorro de energia electrica por reemplazo de equipos de aire acondicionado y aplicacion de aislamiento termico en viviendas

    Energy Technology Data Exchange (ETDEWEB)

    Peralta Solorio, Jose Luis [Fideicomiso para el Ahorro de la Energia (Mexico)

    2005-07-15

    An extension study of the Financing Program for Energy Saving looked for the evaluation of the electric energy saving potential obtained by the replacement of air conditioning equipment and the application of thermal insulation in 30 houses of two Mexican cities with warmth climate. In a joint effort with Comision Federal de Electricidad the consumption files of the users were analyzed and field measurements of electric demand and of refrigeration were made. As a following step the change of the refrigeration necessities derived from the application of thermal insulation were evaluated as well as the energy efficiency improvement obtained by the substitution of the air conditioning equipment and the favorable results obtained by the implementation of both measures - thermal insulation and change of air conditioning equipment in a joint form. This way, as a conclusion, the optimum sequence of application of these measures is revealed. [Spanish] Un estudio extension del Programa de Financiamiento para el Ahorro de Energia Electrica busco evaluar el potencial de ahorro de energia electrica alcanzado por el reemplazo de equipos de aire acondicionado y la aplicacion de aislamiento termico en 30 viviendas de dos ciudades mexicanas con clima calido. En un esfuerzo conjunto con la Comision Federal de Electricidad se analizaron los historiales de consumo de los usuarios y se efectuaron las mediciones de campo de demanda electrica y de refrigeracion. Como paso siguiente se valoro el cambio en las necesidades de refrigeracion derivado de la aplicacion de aislamiento termico al igual que la mejora en eficiencia energetica obtenida por la sustitucion de aire acondicionado y se identificaron los resultados favorecedores arrojados por la implementacion de ambas medidas -aislamiento termico y cambio de equipo de aire acondicionado- en forma conjunta. De esta manera, como conclusion, se devela la mas optima secuencia de aplicacion de estas medidas.

  13. Comparison of desiccant air conditioning systems with different indirect evaporative air coolers

    International Nuclear Information System (INIS)

    Pandelidis, Demis; Anisimov, Sergey; Worek, William M.; Drąg, Paweł

    2016-01-01

    Highlights: • A numerical study of desiccant air conditioning systems is presented. • The ε-NTU model is used for the analysis. • Different arrangements of the desiccant systems were compared. • The systems were compared under different operating conditions. - Abstract: This paper presents a numerical analysis of three desiccant air-conditioning systems equipped with different indirect evaporative air coolers: (1) the cross-flow Maisotsenko cycle heat and mass exchanger (HMX), (2) the regenerative counter-flow Maisotsenko cycle heat and mass exchanger and (3) the standard cross-flow evaporative air cooler. To analyze the desiccant wheel and the indirect evaporative air coolers, the modified ε-NTU-model was used. The simulations were performed under assumption that the desiccant wheel is regenerated with air heated to relatively low temperature values (50–60 °C), which can be produced with solar panels in typical moderate climatic conditions. It was established that the main advantage of the presented solutions is that they can provide comfort conditions even with less effective dehumidification. The different systems were compared under variable selected operational factors (i.e. inlet air temperature, humidity and regeneration air temperature). The analysis allowed establishing the advantages and disadvantages of presented solutions and allowed estimating their application potential.

  14. Air radiation conditions in the working zone and evaluation of dose loading for personnel of the equipment decontamination shop

    International Nuclear Information System (INIS)

    Bakin, R.I.

    1992-01-01

    The decontamination shop, its location in respect to the Chernobyl' NPP fourth unit, microclimatic conditions, as well as the volume of control measurements for evaluation of air radiation state in the shop are described. Aerosol maximum concentrations and radionuclide compositions for different object under control are given. The conclusion is made that the equipment decontamination shop is one of the most dangerous objects in the Chernobyl' NPP 30-km zone from the radiation sanitary vienpoint nowadays according to single measurements the aerosol activity amounts to 10-fold permissible concentration. 9 refs.; 1 fig.; 2 tabs

  15. 30 CFR 75.524 - Electric face equipment; electric equipment used in return air outby the last open crosscut...

    Science.gov (United States)

    2010-07-01

    ... used in return air outby the last open crosscut; maximum level of alternating or direct electric... other in return air outby the last open crosscut, shall not exceed one ampere as determined from the... Electrical Equipment-General § 75.524 Electric face equipment; electric equipment used in return air outby...

  16. Hot conditioning equipment conceptual design report

    International Nuclear Information System (INIS)

    Bradshaw, F.W.

    1996-01-01

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage

  17. Hot conditioning equipment conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, F.W., Westinghouse Hanford

    1996-08-06

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.

  18. 48 CFR 52.223-12 - Refrigeration Equipment and Air Conditioners.

    Science.gov (United States)

    2010-10-01

    ... and Air Conditioners. 52.223-12 Section 52.223-12 Federal Acquisition Regulations System FEDERAL... Provisions and Clauses 52.223-12 Refrigeration Equipment and Air Conditioners. As prescribed in 23.804(b), insert the following clause: Refrigeration Equipment and Air Conditioners (MAY 1995) The Contractor shall...

  19. Air conditioning system with supplemental ice storing and cooling capacity

    Science.gov (United States)

    Weng, Kuo-Lianq; Weng, Kuo-Liang

    1998-01-01

    The present air conditioning system with ice storing and cooling capacity can generate and store ice in its pipe assembly or in an ice storage tank particularly equipped for the system, depending on the type of the air conditioning system. The system is characterized in particular in that ice can be produced and stored in the air conditioning system whereby the time of supplying cooled air can be effectively extended with the merit that the operation cycle of the on and off of the compressor can be prolonged, extending the operation lifespan of the compressor in one aspect. In another aspect, ice production and storage in great amount can be performed in an off-peak period of the electrical power consumption and the stored ice can be utilized in the peak period of the power consumption so as to provide supplemental cooling capacity for the compressor of the air conditioning system whereby the shift of peak and off-peak power consumption can be effected with ease. The present air conditioning system can lower the installation expense for an ice-storing air conditioning system and can also be applied to an old conventional air conditioning system.

  20. Using PHM to measure equipment usable life on the Air Force's next generation reusable space booster

    Science.gov (United States)

    Blasdel, A.

    The U.S. Air Force procures many launch vehicles and launch vehicle services to place their satellites at their desired location in space. The equipment on-board these satellite and launch vehicle often suffer from premature failures that result in the total loss of the satellite or a shortened mission life sometimes requiring the purchase of a replacement satellite and launch vehicle. The Air Force uses its EELV to launch its high priority satellites. Due to a rise in the cost of purchasing a launch using the Air Force's EELV from 72M in 1997 to as high as 475M per launch today, the Air Force is working to replace the EELV with a reusable space booster (RSB). The RSB will be similar in design and operations to the recently cancelled NASA reusable space booster known as the Space Shuttle. If the Air Force uses the same process that procures the EELV and other launch vehicles and satellites, the RSB will also suffer from premature equipment failures thus putting the payloads at a similar high risk of mission failure. The RSB is expected to lower each launch cost by 50% compared to the EELV. The development of the RSB offers the Air Force an opportunity to use a new reliability paradigm that includes a prognostic and health management program and a condition-based maintenance program. These both require using intelligent, decision making self-prognostic equipment The prognostic and health management program and its condition-based maintenance program allows increases in RSB equipment usable life, lower logistics and maintenance costs, while increasing safety and mission assurance. The PHM removes many decisions from personnel that, in the past resulted in catastrophic failures and loss of life. Adding intelligent, decision-making self-prognostic equipment to the RSB will further decrease launch costs while decreasing risk and increasing safety and mission assurance.

  1. Air conditioning sector marketing. Situazione nel settore del condizionamento dell'aria

    Energy Technology Data Exchange (ETDEWEB)

    Wurm, J.; Biederman, R. (Institute of Gas Technology, Chicago, IL (United States))

    1993-03-01

    Predictions are that the space heating ventilation and air conditioning equipment sector will undergo significant expansion in the coming decade. Substantial technology inputs will be required to make new equipment conform to standards on energy efficiency and environmental compatibility, and strong competition in this sector will force equipment designers to seek low energy cost solutions. The European energy price situation is expected to favour the use of reversible gas heat pumps in space HVAC systems for buildings. New environmental regulations, especially those governing refrigerant typology, indoor air pollution and thermal comfort in office buildings, should also help to increase demand for new technologically advanced equipment conforming with international standards.

  2. Ventilation and air-conditioning system for PWR nuclear power plant

    International Nuclear Information System (INIS)

    Ohmoto, Kenji

    1987-01-01

    This report outlines the ventilation and air conditioning facilities for PWR nuclear power plant as well as design re-evaluation and optimization of ventilation and air-conditioning. The primary PWR installations are generally housed in the nuclear reactor building, auxiliary buildings and control building, which are equipped with their own ventilation and air-conditioning systems to serve for their specific purposes. A ventilation/air-conditioning system should be able to work effectively not only for maintaining the ordinary reactor operation but also for controlling the environmental temperature in the event of an accident. Designing of a ventilation/air-conditioning system relied on empirical data in the past, but currently it is performed based on information obtained from various analyses to optimize the system configuration and ventilation capacity. Design re-evaluation of ventilation/air-conditioning systems are conducted widely in various areas, aiming at the integration of safety systems, optimum combination of air-cooling and water-cooling systems, and optimization of the ventilation rate for controlling the concentrations of radioactive substances in the atmosphere in the facilities. It is pointed out that performance evaluation of ventilation/air-conditioning systems, which has been conducted rather macroscopically, should be carried out more in detal in the future to determine optimum air streams and temperature distribution. (Nogami, K.)

  3. The microbiological quality of air improves when using air conditioning systems in cars.

    Science.gov (United States)

    Vonberg, Ralf-Peter; Gastmeier, Petra; Kenneweg, Björn; Holdack-Janssen, Hinrich; Sohr, Dorit; Chaberny, Iris F

    2010-06-01

    Because of better comfort, air conditioning systems are a common feature in automobiles these days. However, its impact on the number of particles and microorganisms inside the vehicle--and by this its impact on the risk of an allergic reaction--is yet unknown. Over a time period of 30 months, the quality of air was investigated in three different types of cars (VW Passat, VW Polo FSI, Seat Alhambra) that were all equipped with a automatic air conditioning system. Operation modes using fresh air from outside the car as well as circulating air from inside the car were examined. The total number of microorganisms and the number of mold spores were measured by impaction in a high flow air sampler. Particles of 0.5 to 5.0 microm diameter were counted by a laser particle counter device. Overall 32 occasions of sampling were performed. The concentration of microorganisms outside the cars was always higher than it was inside the cars. Few minutes after starting the air conditioning system the total number of microorganisms was reduced by 81.7%, the number of mold spores was reduced by 83.3%, and the number of particles was reduced by 87.8%. There were no significant differences neither between the types of cars nor between the types of operation mode of the air conditioning system (fresh air vs. circulating air). All parameters that were looked for in this study improved during utilization of the car's air conditioning system. We believe that the risk of an allergic reaction will be reduced during use also. Nevertheless, we recommend regular maintenance of the system and replacement of older filters after defined changing intervals.

  4. International Energy Agency Building Energy Simulation Test and Diagnostic Method for Heating, Ventilating, and Air-Conditioning Equipment Models (HVAC BESTEST); Volume 1: Cases E100-E200

    Energy Technology Data Exchange (ETDEWEB)

    Neymark, J.; Judkoff, R.

    2002-01-01

    This report describes the Building Energy Simulation Test for Heating, Ventilating, and Air-Conditioning Equipment Models (HVAC BESTEST) project conducted by the Tool Evaluation and Improvement International Energy Agency (IEA) Experts Group. The group was composed of experts from the Solar Heating and Cooling (SHC) Programme, Task 22, Subtask A. The current test cases, E100-E200, represent the beginning of work on mechanical equipment test cases; additional cases that would expand the current test suite have been proposed for future development.

  5. Study of thermodynamic properties of HFC refrigerant mixtures for Loretz-cycled niew generation air-conditioning equipment; Lorentz cycle ka shinsedai kucho kikiyo HFC kei kongo reibai no netsu rikigaku seishitsu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, K; Sato, H [Keio University, Tokyo (Japan). Faculty of Science and Technology

    1997-02-01

    This paper describes thermodynamic properties of HFC refrigerant mixtures for Lorentz-cycled new generation air-conditioning equipment. Equipment has been completed for simultaneous measurement of density and vapor-liquid equilibrium property, accurate measurement of latent heat of vaporization, and accurate measurement of specific heat at constant pressure in liquid phase. Final adjustment and preliminary measurements are currently conducted. Through analytical investigation using actually measured data of thermodynamic properties of HFC refrigerant mixtures, five state equations were obtained, i.e., modified Peng-Robinson state equation which can reproduce the vapor-liquid equilibrium property of refrigerant mixtures, modified Patel-Teja state equation, Helmholtz function type state equation which is applicable in the whole fluid region of refrigerant mixtures, and so on. An evaluation test equipment has been fabricated as a trial for Lorentz-cycled air-conditioning equipments using HFC refrigerant mixtures, and demonstration test is conducted to confirm the validity. 9 refs., 5 figs.

  6. Data characteristic analysis of air conditioning load based on fast Fourier transform

    Science.gov (United States)

    Li, Min; Zhang, Yanchi; Xie, Da

    2018-04-01

    With the development of economy and the improvement of people's living standards, air conditioning equipment is more and more popular. The influence of air conditioning load for power grid is becoming more and more serious. In this context it is necessary to study the characteristics of air conditioning load. This paper analyzes the data of air conditioning power consumption in an office building. The data is used for Fast Fourier Transform by data analysis software. Then a series of maps are drawn for the transformed data. The characteristics of each map were analyzed separately. The hidden rules of these data are mined from the angle of frequency domain. And these rules are hard to find in the time domain.

  7. Effect of negative air ions on the potential for bacterial contamination of plastic medical equipment.

    Science.gov (United States)

    Shepherd, Simon J; Beggs, Clive B; Smith, Caroline F; Kerr, Kevin G; Noakes, Catherine J; Sleigh, P Andrew

    2010-04-12

    In recent years there has been renewed interest in the use of air ionizers to control the spread of infection in hospitals and a number of researchers have investigated the biocidal action of ions in both air and nitrogen. By comparison, the physical action of air ions on bacterial dissemination and deposition has largely been ignored. However, there is clinical evidence that air ions might play an important role in preventing the transmission of Acinetobacter infection. Although the reasons for this are unclear, it is hypothesized that a physical effect may be responsible: the production of air ions may negatively charge items of plastic medical equipment so that they repel, rather than attract, airborne bacteria. By negatively charging both particles in the air and items of plastic equipment, the ionizers minimize electrostatic deposition on these items. In so doing they may help to interrupt the transmission of Acinetobacter infection in certain healthcare settings such as intensive care units. A study was undertaken in a mechanically ventilated room under ambient conditions to accurately measure changes in surface potential exhibited by items of plastic medical equipment in the presence of negative air ions. Plastic items were suspended on nylon threads, either in free space or in contact with a table surface, and exposed to negative ions produced by an air ionizer. The charge build-up on the specimens was measured using an electric field mill while the ion concentration in the room air was recorded using a portable ion counter. The results of the study demonstrated that common items of equipment such as ventilator tubes rapidly developed a large negative charge (i.e. generally >-100V) in the presence of a negative air ionizer. While most items of equipment tested behaved in a similar manner to this, one item, a box from a urological collection and monitoring system (the only item made from styrene acrylonitrile), did however develop a positive charge in the

  8. Effect of negative air ions on the potential for bacterial contamination of plastic medical equipment

    Directory of Open Access Journals (Sweden)

    Kerr Kevin G

    2010-04-01

    Full Text Available Abstract Background In recent years there has been renewed interest in the use of air ionizers to control the spread of infection in hospitals and a number of researchers have investigated the biocidal action of ions in both air and nitrogen. By comparison, the physical action of air ions on bacterial dissemination and deposition has largely been ignored. However, there is clinical evidence that air ions might play an important role in preventing the transmission of Acinetobacter infection. Although the reasons for this are unclear, it is hypothesized that a physical effect may be responsible: the production of air ions may negatively charge items of plastic medical equipment so that they repel, rather than attract, airborne bacteria. By negatively charging both particles in the air and items of plastic equipment, the ionizers minimize electrostatic deposition on these items. In so doing they may help to interrupt the transmission of Acinetobacter infection in certain healthcare settings such as intensive care units. Methods A study was undertaken in a mechanically ventilated room under ambient conditions to accurately measure changes in surface potential exhibited by items of plastic medical equipment in the presence of negative air ions. Plastic items were suspended on nylon threads, either in free space or in contact with a table surface, and exposed to negative ions produced by an air ionizer. The charge build-up on the specimens was measured using an electric field mill while the ion concentration in the room air was recorded using a portable ion counter. Results The results of the study demonstrated that common items of equipment such as ventilator tubes rapidly developed a large negative charge (i.e. generally >-100V in the presence of a negative air ionizer. While most items of equipment tested behaved in a similar manner to this, one item, a box from a urological collection and monitoring system (the only item made from styrene

  9. Thermo economical evaluation of retrofitting strategies in air conditioning systems

    Energy Technology Data Exchange (ETDEWEB)

    Tribess, Arlindo; Fiorelli, Flavio Augusto Sanzogo; Hernandez Neto, Alberto [Sao Paulo Univ., SP (Brazil). Escola Politecnica. Dept. de Engenharia Mecanica]. E-mail: atribess@usp.br; fiorelli@usp.br; ahneto@usp.br

    2000-07-01

    In a building project, several subsystems are designed, among them the air conditioning system. Electrical energy consumption profiles show that this subsystem is responsible for 40 to 50% of total consumption in a commercial building. Besides the study of technical aspects that should be considered in order to assure the thermal comfort of the occupants as well the temperature and humidity conditions for an efficient equipment operation, an economical evaluation of this subsystem should be also made. In retrofit projects, the economical aspect is also critical for such projects in order to assure bigger efficiency in an economically attractive way. This paper analyses some strategies that might be adopted in retrofitting an air conditioning system installed in a commercial building with mixed occupation. By mixed we mean that some floors have a typical office occupation profile and other floors are mainly occupied by electronic equipment. This analysis includes both technical and economical evaluation. The proposed solutions performance are compared to the old system, which allows to verify the retrofitting impact in energy consumption reduction and its economical feasibility. (author)

  10. Evaluation of Rankine cycle air conditioning system hardware by computer simulation

    Science.gov (United States)

    Healey, H. M.; Clark, D.

    1978-01-01

    A computer program for simulating the performance of a variety of solar powered Rankine cycle air conditioning system components (RCACS) has been developed. The computer program models actual equipment by developing performance maps from manufacturers data and is capable of simulating off-design operation of the RCACS components. The program designed to be a subroutine of the Marshall Space Flight Center (MSFC) Solar Energy System Analysis Computer Program 'SOLRAD', is a complete package suitable for use by an occasional computer user in developing performance maps of heating, ventilation and air conditioning components.

  11. 77 FR 21834 - Airborne Radar Altimeter Equipment (For Air Carrier Aircraft)

    Science.gov (United States)

    2012-04-11

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Airborne Radar Altimeter Equipment... Technical Standard Order (TSO)-C67, Airborne Radar Altimeter Equipment (For Air Carrier Aircraft). SUMMARY: This is a confirmation notice of the cancellation of TSO-C67, Airborne Radar Altimeter Equipment (For...

  12. THE USE OF AIR LAYERS IN BUILDING ENVELOPES FOR ENERGY SAVING DURING AIR CONDITIONING

    Directory of Open Access Journals (Sweden)

    S. N. Osipov

    2017-01-01

    Full Text Available Since there are no large natural energy resources in Belarus, energy savings ought to be a point of the special attention. With this regard it is important to develop modern ways of savings during the process of air conditioning inside new buildings with an air layer in the enclosure, especially in translucent ones. The system of ventilation of air layers in the enclosure of a building has been introduced in which air movement is caused by the gravitational and aerodynamic forces. It makes it possible to arrange further ventilation – a natural, forced or a hybrid one. With the purpose of increasing and streamlining natural draught the partitions are used separating the different parts of air layers. For natural ventilation with the use of gravitational forces the holes in the upper and lower parts of the partitions between adjacent air layers are applied. Natural ventilation in the holes of the partitions is regulated by movable shutters, blinds or other adjusting devices. For combined or forced air exchange between adjacent zones of air layers fans are used pumping air from the air layer zones with a higher temperature to zones of air layers with lower temperature and vice versa. When air exchange is forced, in order to intensify the infiltration of air into zones of air layers jets are laid on a hard surface. In order to cool a multi-layered enclosure of a building, where the movement of air between the air layers (that have been formed by internal partitions is being fulfilled by a natural, forced or combined mode, a part of the air or the total air processed inside the building (i.e. conditioned or non-conditioned air cooler as compared with the outside one is being sent to these strata. Combined or forced flow of the air processed inside the building into the air layers is done through the ducts associated with the output channels of the air conditioners. The internal partitions are equipped with the air valve hole.

  13. Air conditioning device for pool facilities in nuclear power plant buildings

    International Nuclear Information System (INIS)

    Taruishi, Yoshiaki; Ishida, Seiji.

    1981-01-01

    Purpose: To improve the temperature and humidity conditions for the working circumstance, prevent condensations on the wall surface and enable the reduction in the irradiation exposure to workers. Constitution: Air intake ports are provided on the side wall of a fuel storage pool or an equipment installation pool above the water level and connected by way of their exhaust ducts to the exhaust ducts of an air ventilation system. While on the other hand, air feed ducts having horizontally opened blowing ports and air exhaust ducts having horizontally opened exhaust ports above and in adjacent to the air feed ducts are provided on the side walls of the pool buildings at the height near the floor level. With this structure, fresh outdoor airs blown out horizontally from the blowing ports provided near the floor level can improve the temperature and humidity conditions of the working circumstance for the workers working on the floor. Further, an air clean up device is provided to the feed and exhaust systems for clean up the feed and exhaust airs. (Furukawa, Y.)

  14. Thermal conditions and perceived air quality in an air-conditioned auditorium

    Science.gov (United States)

    Polednik, Bernard; Guz, Łukasz; Skwarczyński, Mariusz; Dudzińska, Marzenna R.

    2016-07-01

    The study reports measurements of indoor air temperature (T) and relative humidity (RH), perceived air quality (PAQ) and CO2, fine aerosol particle number (PN) and mass (PM1) concentrations in an air conditioned auditorium. The measurements of these air physical parameters have been carried out in the unoccupied auditorium with the air conditioning system switched off (AC off mode) and in the unoccupied and occupied auditorium with the air conditioning system switched off during the night and switched on during the day (AC on/off mode). The average indoor air thermal parameters, CO2 concentration and the PAQ value (in decipols) were elevated, while average PM1 concentration was lower in the AC on/off mode. A statistically significant (p PAQ values and CO2 concentrations (r = 0.66 and r = 0.59, respectively) in that AC mode. A significant negative correlation has been observed between T and PN and PM1 concentrations (r = -0.38 and r = -0.49, respectively). In the AC off mode the above relations between T and the particle concentrations were not that unequivocal. These findings may be of importance as they indicate that in certain AC operation modes the indoor air quality deteriorates along with the variation of the indoor air microclimate and room occupation. This, in turn, may adversely affect the comfort and productivity of the users of air conditioned premises.

  15. Effects of suspension of air-conditioning on airtight-type racks.

    Science.gov (United States)

    Kanzaki, M; Fujieda, M; Furukawa, T

    2001-10-01

    Although isolation racks are superior to open-type racks in terms of securing breeding conditions for laboratory animals, the contingency-proofing capability of the former has yet to be determined. Therefore, from the view of risk management, we studied the environmental change in isolation racks by forcibly suspending ventilation and air-conditioning and confirming the maximal time length for complete recovery to the original condition after restarting their operations. The isolation racks were placed in a room that was equipped with an independent air-conditioning system. When the inside condition of the racks reached 22-24 degrees C and 59-64% of relative humidity, the air-conditioning and ventilation were forcibly suspended and the subsequent temperature, relative humidity, ammonium and CO2 concentrations in the racks were measured over time. We found that after suspending the air-conditioning and ventilation, it took 40-60 min for temperature, and about 10 min for relative humidity to exceed the maximum values (temperature and relative humidity) referred to in the Showa 58 Nenban Guideline Jikken Doubutsu Shisetsu no Kenchiku oyobi Setsubi (Guidelines of buildings and facilities for experimental animals in Japan; Year 1983 edition). After 17 hr 25 min of the suspension of air-conditioning and ventilation, two rats were found dead. Then, the air-conditioning and ventilation were restarted. It took about 2 hr for temperature, and 50 min for relative humidity to regain the guideline values. The ammonium concentration stayed within the guideline value with a maximum concentration of 2 ppm in the experimental period, whereas the CO2 concentration was found to exceed 9% at the time of animal death.

  16. Decoupling dehumidification and cooling for energy saving and desirable space air conditions in hot and humid Hong Kong

    International Nuclear Information System (INIS)

    Lee, W.L.; Chen Hua; Leung, Y.C.; Zhang, Y.

    2012-01-01

    Highlights: ► The combined use of dedicated ventilation and dry cooling (DCDV) system was investigated. ► Investigations were based actual equipment performance data and realistic building and system characteristics. ► DCDV system could save 54% of the annual energy use for air-conditioning. ► DCDV system could better achieve the desired space air conditions. ► DCDV system could decouple dehumidification and cooling. - Abstract: The combined use of dedicated outdoor air ventilation (DV) and dry cooling (DC) air-conditioning system to decouple sensible and latent cooling for desirable space air conditions, better indoor air quality, and energy efficiency is proposed for hot and humid climates like Hong Kong. In this study, the performance and energy saving potential of DCDV system in comparison to conventional systems (constant air volume (CAV) system with and without reheat) for air conditioning of a typical office building in Hong Kong are evaluated. Through hour-by-hour simulations, using actual equipment performance data and realistic building and system characteristics, the cooling load profile, resultant indoor air conditions, condensation at the DC coil, and energy consumptions are calculated and analyzed. The results indicate that with the use of DCDV system, the desirable indoor conditions could be achieved and the annual energy use could be reduced by 54% over CAV system with reheat. The condensate-free characteristic at the DC coil to reduce risk of catching disease could also be realized.

  17. 40 CFR 82.36 - Approved refrigerant handling equipment.

    Science.gov (United States)

    2010-07-01

    ... equipment. 82.36 Section 82.36 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) PROTECTION OF STRATOSPHERIC OZONE Servicing of Motor Vehicle Air Conditioners § 82.36...-12, Extraction and Recycle Equipment for Mobile Automotive Air-Conditioning Systems, and Standard of...

  18. Air-conditioning and ventilation systems and components of nuclear facilities

    International Nuclear Information System (INIS)

    2006-01-01

    The Guide defines the requirements for the design, implementation and operation of the air-conditioning and ventilation systems of nuclear facilities belonging to safety classes 3 and 4, and for the related documents to be submitted to STUK (Radiation and Nuclear Safety Authority, Finland). Furthermore, the Guide describes the inspections of air-conditioning and ventilation systems to be conducted by STUK during construction and operation of the facilities. As far as systems and components belonging to safety class 2 are concerned, STUK sets additional requirements case by case. In general, air-conditioning systems refer to systems designed to manage the indoor air cleanness, temperature, humidity and movement. In some rooms of a nuclear power plant, ventilation systems are also used to prevent radioactive materials from spreading outside the rooms. Guide YVL1.0 defines the safety principles concerning the air-conditioning and ventilation of nuclear power plants. Guide YVL2.0 gives the requirements for the design of nuclear power plant systems. In addition, YVLGuide groups 3, 4, 5 and 7 deal with the requirements for air-conditioning and ventilation systems with regard to the mechanical equipment, fire prevention, electrical systems, instrumentation and control technology, and the restriction of releases. The rules and regulations issued by the Ministry of the Environment and the Ministry of the Interior (RakMK, the Finnish building code) concerning the design and operation of air-conditioning and ventilation systems and the related fire protection design bases also apply to nuclear facilities. Exhaust gas treatment systems, condenser vacuum systems of boiling water reactor plants and leak collection systems are excluded from the scope of this Guide

  19. 77 FR 41930 - Bleed Air Cleaning and Monitoring Equipment and Technology

    Science.gov (United States)

    2012-07-17

    .... Bill 658, requires the FAA to identify bleed air purification technology. Specifically, the FAA seeks... Administration 14 CFR Part 25 [Docket No. FAA-2012-0714] Bleed Air Cleaning and Monitoring Equipment and... developers, manufacturers, and the public related to effective air cleaning technology and sensor technology...

  20. Exergy analysis of heating, refrigerating and air conditioning methods and applications

    CERN Document Server

    Dincer, Ibrahim

    2015-01-01

    Improve and optimize efficiency of HVAC and related energy systems from an exergy perspective. From fundamentals to advanced applications, Exergy Analysis of Heating, Air Conditioning, and Refrigeration provides readers with a clear and concise description of exergy analysis and its many uses. Focusing on the application of exergy methods to the primary technologies for heating, refrigerating, and air conditioning, Ibrahim Dincer and Marc A. Rosen demonstrate exactly how exergy can help improve and optimize efficiency, environmental performance, and cost-effectiveness. The book also discusses the analysis tools available, and includes many comprehensive case studies on current and emerging systems and technologies for real-world examples. From introducing exergy and thermodynamic fundamentals to presenting the use of exergy methods for heating, refrigeration, and air conditioning systems, this book equips any researcher or practicing engineer with the tools needed to learn and master the application of exergy...

  1. Indoor air quality investigation at air-conditioned and non-air-conditioned markets in Hong Kong

    International Nuclear Information System (INIS)

    Guo, H.; Lee, S.C.; Chan, L.Y.

    2004-01-01

    To characterize indoor air quality at the markets in Hong Kong, three non-air-conditioned and two air-conditioned markets were selected for this study. The indoor air pollutants measured included PM 10 (particulate matters with aerodynamic diameter less than 10 μm), total bacteria count (TBC), carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO 2 ) and sulfur dioxide (SO 2 ). The indoor and outdoor concentrations of these target air pollutants at these markets were measured and compared. The effects of air conditioning, temperature/relative humidity variation and different stalls on the indoor air quality were also investigated. The results indicated that all of the average indoor concentrations of PM 10 , TBC, CO and NO 2 at the markets were below the Hong Kong Indoor Air Quality Objectives (HKIAQO) standards with a few exceptions for PM 10 and TBC. The elevated PM 10 concentrations at Hung Hom, Ngau Tau Kok and Wan Chai markets were probably due to the air filtration of outdoor airborne particulates emitted from vehicular exhaust, whereas high concentrations of airborne bacteria at Sai Ying Pun and Tin Shing markets were linked to the use of air conditioning. Correlation analysis demonstrated that indoor bacteria concentrations were correlated with temperature and relative humidity. The operation of air conditioning did not significantly reduce the levels of air pollutants at the markets. However, the higher indoor/outdoor ratios demonstrated that the operation of air conditioning had influence on the levels of bacteria at the markets. It was found that average PM 10 concentration at poultry stalls was higher than the HKIAQO standard of 180 μg/m 3 , and was over two times that measured at vegetable, fish and meat stalls. Furthermore, the concentration of airborne bacteria at the poultry stalls was as high as 1031 CFU/m 3 , which was above the HKIAQO standard of 1000 CFU/m 3 . The bacteria levels at other three stalls were all below the HKIAQO standard

  2. Performance evaluation of an integrated automotive air conditioning and heat pump system

    International Nuclear Information System (INIS)

    Hosoz, M.; Direk, M.

    2006-01-01

    This study deals with the performance characteristics of an R134a automotive air conditioning system capable of operating as an air-to-air heat pump using ambient air as a heat source. For this aim, an experimental analysis has been performed on a plant made up of original components from an automobile air conditioning system and some extra equipment employed to operate the system in the reverse direction. The system has been tested in the air conditioning and heat pump modes by varying the compressor speed and air temperatures at the inlets of the indoor and outdoor coils. Evaluation of the data gathered in steady state test runs has shown the effects of the operating conditions on the capacity, coefficient of performance, compressor discharge temperature and the rate of exergy destroyed by each component of the system for both operation modes. It has been observed that the heat pump operation provides adequate heating only in mild weather conditions, and the heating capacity drops sharply with decreasing outdoor temperature. However, compared with the air conditioning operation, the heat pump operation usually yields a higher coefficient of performance and a lower rate of exergy destruction per unit capacity. It is also possible to improve the heating mode performance of the system by redesigning the indoor coil, using another refrigerant with a higher heat rejection rate in the condenser and employing a better heat source such as the engine coolant or exhaust gases

  3. 77 FR 3323 - Airborne Radar Altimeter Equipment (For Air Carrier Aircraft)

    Science.gov (United States)

    2012-01-23

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Airborne Radar Altimeter Equipment... to cancel Technical Standard Order (TSO)-C67, Airborne Radar Altimeter Equipment (For Air Carrier Aircraft). SUMMARY: This notice announces the FAA's intent to cancel TSO-C67, Airborne Radar Altimeter...

  4. Capability of air filters to retain airborne bacteria and molds in heating, ventilating and air-conditioning (HVAC) systems.

    Science.gov (United States)

    Möritz, M; Peters, H; Nipko, B; Rüden, H

    2001-07-01

    The capability of air filters (filterclass: F6, F7) to retain airborne outdoor microorganisms was examined in field experiments in two heating, ventilating and air conditioning (HVAC) systems. At the beginning of the 15-month investigation period, the first filter stages of both HVAC systems were equipped with new unused air filters. The number of airborne bacteria and molds before and behind the filters were determined simultaneously in 14 days-intervals using 6-stage Andersen cascade impactors. Under relatively dry ( 12 degrees C) outdoor air conditions air filters led to a marked reduction of airborne microorganism concentrations (bacteria by approximately 70% and molds by > 80%). However, during long periods of high relative humidity (> 80% R. H.) a proliferation of bacteria on air filters with subsequent release into the filtered air occurred. These microorganisms were mainly smaller than 1.1 microns therefore being part of the respirable fraction. The results showed furthermore that one possibility to avoid microbial proliferation is to limit the relative humidity in the area of the air filters to 80% R. H. (mean of 3 days), e.g. by using preheaters in front of air filters in HVAC-systems.

  5. Production and exploitation of thermoelectric air conditioning systems for vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Dudnik, Vladimir [Conditioner Ltd, Gagarin (Russian Federation); Skipidarov, Sergey [SCTB NORD, Moskau (Russian Federation); Rapp, Axel [Quick-Ohm Kupper und Co. GmbH, Wuppertal-Cronenberg (Germany)

    2011-07-01

    In the paper more than 10-year experience of thermoelectric devices batch manufacturing is described for the field of their obvious advantages. This field of application includes thermoelectric air conditioning systems which have shown their competitive advantage when used in vehicles of elevated vibration where compressor equipment application is difficult because of leakage of refrigerant. Energy characteristics of air conditioners for tractors, excavators, tanks, locomotive driver's cabins and cranes are described. Thermoelectric (TE) air conditioners mechanical test data as well as operation experience in vehicles are presented. It is shown that consumption of tellurium, which is a strategic component for thermoelectric materials manufacturing, may be lowered to 40 grams per 1 kW of cooling. (orig.)

  6. Development of air conditioning system and labor saving technology for efficient hydroponic cultivation; Konoritsuna suiko saibai no tame no kucho to shoryokuka gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Okano, T.; Terazoe, H.; Shoji, K. [Central Research Institute of Electric Power Industry, Tokyo (Japan); Yonezawa, K.; Otani, F. [Chugoku Electric Power Co. Inc., Hiroshima (Japan); Sekiyama, T.; Kosakai, K.; Sato, H.

    1997-06-01

    Equipment which made experiments on air conditioning and hydroponic cultivation possible was set up at the technical research center of the Chugoku Electric Power Co., to study an air conditioning system using night power and energy saving technology for the cultivation. Vegetables suitable to the cultivation were selected. For air conditioning, adopted was a water heat storage air conditioning system using night power. The space between the shade curtain and the greenhouse roof was ventilated to prevent increase in cooling load caused by rise in curtain temperature. Moreover, the cultivation equipment was covered with transparent vinyl film to cool the inside of the equipment. The hydroponic cultivation equipment was trially manufactured which makes the continued production by one worker possible. The cultivation of spinach, leaf lettuce and chingensai throughout the year became possible. The yield of chingensai reached the target, but those of spinach and leaf lettuce were approximately 70% of the targets. Vegetables to be produced in the air-conditioned greenhouse by hydroponic cultivation are thought to be those that can have added values such non-pesticides and ingredients, young plants which were increased by cutting or tissue culturing, etc. 5 refs., 19 figs., 8 tabs.

  7. Design and construction of a air pollutant gases sampler equipment

    International Nuclear Information System (INIS)

    Gomez S, R.A.; Rodriguez, T.J.

    1996-01-01

    This thesis is about the sketch and construction of an equipment which samples contaminated gases in the air. The topic of this work, is to propose a solution for imported and national equipment. The solution consist on lower prices of imported and national equipment without loosing the accuracy and the precision of those now available. The investigation shows all process to sample gases and theirs measurement for which all the mechanical, electric and electronic equipment, and the necessary software for giving the results in a computerized way were outlined. With this work it was able to succeed in measurements with a national low price, accurate, reliable, programmable, completely automatic and easy to use. This equipment exceed in accuracy the Japanese and the american equipment

  8. Performance Analysis of Window Type Air Conditioning with Addition of Heat Exchanger Equipment

    Directory of Open Access Journals (Sweden)

    I Ketut Gede Wirawan

    2012-11-01

    Full Text Available One manner to be used to increase refregration effect is by flowing hot refrigerant out from condensor, it is then touched with the refrigerant out from evaporator on a heat exchanger of counterflow type. Experiment was done by taking samples of pressure at suction (p1 and discharge (p2 of compressor and box temperature (Tr1, Tr2, Tr3, Tr4. By knowing of pressure at suction (p1, the enthalpy into compressor is known. By assuming the process is isentropic (compressor, isobar (condenser and evaporator, and isenthalpy (expansion valve, the enthalpy into condensor, expansion valve and evaporator were known. In 60 minutes, compression work of air conditioning with heat exchanger is 31,588 kJ/kg, and without heat exchanger is 33,796 kJ/kg. Effect refrigeration average with modification is 155,55 kJ/kg and without modification was 153,40 kJ/kg so that coefficient of performance with modification more than without modification. Air conditioning with modification had initial refrigration rate was 67,193 J/s and 0,043 J/s at the end minute, meanwhile, refrigeration without modification had cooling rate at start 66,538 J/s and 0,935 J/s at the end.

  9. Integrated reliability condition monitoring and maintenance of equipment

    CERN Document Server

    Osarenren, John

    2015-01-01

    Consider a Viable and Cost-Effective Platform for the Industries of the Future (IOF) Benefit from improved safety, performance, and product deliveries to your customers. Achieve a higher rate of equipment availability, performance, product quality, and reliability. Integrated Reliability: Condition Monitoring and Maintenance of Equipment incorporates reliable engineering and mathematical modeling to help you move toward sustainable development in reliability condition monitoring and maintenance. This text introduces a cost-effective integrated reliability growth monitor, integrated reliability degradation monitor, technological inheritance coefficient sensors, and a maintenance tool that supplies real-time information for predicting and preventing potential failures of manufacturing processes and equipment. The author highlights five key elements that are essential to any improvement program: improving overall equipment and part effectiveness, quality, and reliability; improving process performance with maint...

  10. Energy impact of indoor environmental policy for air-conditioned offices of Hong Kong

    International Nuclear Information System (INIS)

    Wong, L.T.; Mui, K.W.; Shi, K.L.

    2008-01-01

    Air-conditioned office buildings are one of the biggest energy consumers of electricity in developed cities in the subtropical climate regions. A good energy policy for the indoor environment should respond to both the needs of energy conservation and the needs for a desirable indoor healthy environment with a reduction in carbon dioxide (CO 2 ) generation. This study evaluates energy implications and the corresponding CO 2 generation of some indoor environmental policies for air-conditioned office buildings in the subtropical climate. In particular, the thermal energy consumption in an air-conditioned office building was evaluated by the heat gains through the building fabric, the transport of outdoor fresh air for ventilation, and the heat generated by the occupant and equipment in the space. With the Monte-Carlo sampling technique and the parameters from the existing office building stocks of Hong Kong, the energy consumption profiles of air-conditioned office buildings in Hong Kong were evaluated. Energy consumption profiles were simulated for certain indoor environmental quality (IEQ) policies on indoor air temperature and CO 2 concentration settings in the offices, with other building parameters remaining unchanged. The impact assessment and the regression models described in this study may be useful for evaluation of energy performances of IEQ policies. They will also be useful for the promotion of energy-saving measures in air-conditioned office buildings in Hong Kong. This study presented a useful source of references for policymakers, building professionals and end users to quantify the energy and environmental impacts due to an IEQ policy for air-conditioned office buildings

  11. Installation of PMV Operation Program in DDC Controller and Air Conditioning Control Using PMV Directly as Set Point

    Science.gov (United States)

    Haramoto, Ken-Ichi

    In general, air conditioning control in a building is operated mainly by indoor air temperature control. Although the operators of the machine in the building accepted a claim for indoor air temperature presented by the building inhabitants, the indoor conditions have been often too cool or warm. Therefore, in an attempt to create better thermal environments, the author paid attention to the PMV that is a thermal comfort index. And then, the possibility of air conditioning control using the PMV directly as the set point was verified by employing actual equipment in an air conditioning testing room and an office building. Prior to the execution of this control, the operation program of the PMV was installed in a DDC controller for the air conditioning control. And information from indoor sensors and so on was inputted to the controller, and the computed PMV was used as the feedback variable.

  12. Geothermal as a heat sink application for raising air conditioning efficency

    Science.gov (United States)

    Ibrahim, Hesham Safwat Osman Mohamed

    2016-04-01

    Objective: Geothermal applications in heating, ventilation, air-conditioning is a US technology for more than 30 years old ,which saves more than 30% average energy cost than the traditional air-conditioning systems systems. Applying this technology in Middle East and African countries would be very feasible specially in Egypt specially as it suffers Electric crisis --The temperature of the condensers and the heat rejecting equipment is much higher than the Egyptian land at different depth which is a great advantages, and must be measured, recorded, and studied accurately -The Far goal of the proposal is to construct from soil analysis a temperature gradient map for Egypt and , African countries on different depth till 100 m which is still unclear nowadays and must be measured and recorded in databases through researches - The main model of the research is to study the heat transfer gradient through the ground earth borehole,grout,high density polyethylene pipes , and water inlet temperature which affect the electric efficiency of the ground source heat pump air conditioning unit Impact on the Region: Such research result will contribute widely in Energy saving sector specially the air conditioning sector in Egypt and the African countries which consumes more than 30% of the electric consumption of the total consumption . and encouraging Green systems such Geothermal to be applied

  13. Impact of surface disinfection and sterile draping of furniture on room air quality in a cardiac procedure room with a ventilation and air-conditioning system (extrusion airflow, cleanroom class 1b (DIN 1946-4)).

    Science.gov (United States)

    Below, Harald; Ryll, Sylvia; Empen, Klaus; Dornquast, Tina; Felix, Stefan; Rosenau, Heike; Kramer, Sebastian; Kramer, Axel

    2010-09-21

    In a cardiac procedure room, ventilated by a ventilation and air-conditioning system with turbulent mixed airflow, a protection zone in the operating area could be defined through visualization of airflows. Within this protection zone, no turbulence was detectable in the room air.Under the given conditions, disinfection of all surfaces including all furniture and equipment after the last operation and subsequent draping of furniture and all equipment that could not be removed from the room with sterile surgical drapes improved the indoor room air quality from cleanroom class C to cleanroom class B. This also allows procedures with elevated requirements to be performed in room class 1b.

  14. Off-gas and air cleaning systems for accident conditions in nuclear power plants

    International Nuclear Information System (INIS)

    1993-01-01

    This report surveys the design principles and strategies for mitigating the consequences of abnormal events in nuclear power plants by the use of air cleaning systems. Equipment intended for use in design basis accident and severe accident conditions is reviewed, with reference to designs used in IAEA Member States. 93 refs, 48 figs, 23 tabs

  15. [Investigation of microbial contamination of the air and equipment of a biological waste water purification station].

    Science.gov (United States)

    Alikbaeva, L A; Figurovskiĭ, A P; Vasil'ev, O D; Ermolaev-Makovskiĭ, M A; Merkur'eva, M A

    2010-01-01

    The paper describes the results of a study of ambient air microbiological pollution in the working premises and equipment surfaces in the main shops of the biological waste water purification station of a cardboard-polygraphic plant. The findings suggest that there is high microbial contamination of the working environment, which should be born in mind on developing measures to optimize working conditions and on studying morbidity rates among the workers.

  16. Customized lifting multiwavelet packet information entropy for equipment condition identification

    International Nuclear Information System (INIS)

    Chen, Jinglong; Zi, Yanyang; He, Zhengjia; Chen, Xuefeng; Zuo, Ming J; Yuan, Jing

    2013-01-01

    Condition identification of mechanical equipment from vibration measurement data is significant to avoid economic loss caused by unscheduled breakdowns and catastrophic accidents. However, this task still faces challenges due to the complexity of equipment and the harsh environment. This paper provides a possibility for equipment condition identification by proposing a method called customized lifting multiwavelet packet information entropy. Benefiting from the properties of multi-resolution analysis and multiple wavelet basis functions, the multiwavelet method has advantages in characterizing non-stationary vibration signals. In order to realize the accurate detection and identification of the condition features, a customized lifting multiwavelet packet is constructed via a multiwavelet lifting scheme. Then the vibration signal from the mechanical equipment is processed by the customized lifting multiwavelet packet transform. The relative energy in each frequency band of the multiwavelet packet transform coefficients that equals a percentage of the whole signal energy is taken as the probability. The normalized information entropy is obtained based on the relative energy to describe the condition of a mechanical system. The proposed method is applied to the condition identification of a rolling mill and a demountable disk–drum aero-engine. The results support the feasibility of the proposed method in equipment condition identification. (paper)

  17. The effect of environmental parameters to dust concentration in air-conditioned space

    Science.gov (United States)

    Ismail, A. M. M.; Manssor, N. A. S.; Nalisa, A.; Yahaya, N.

    2017-08-01

    Malaysia has a wet and hot climate, therefore most of the spaces are air conditioned. The environment might affect dust concentration inside a space and affect the indoor air quality (IAQ). The main objective of this study is to study the dust concentration collected inside enclosed air-conditioned space. The measurement was done physically at four selected offices and two classrooms using a number of equipment to measure the dust concentration and environmental parameters which are temperature and relative air humidity. It was found that the highest dust concentration produced in office (temperature of 24.7°C, relative humidity of 66.5%) is 0.075 mg/m3, as compared to classroom, the highest dust concentration produced is 0.060 mg/m3 office (temperature of 25.9°C, relative humidity of 64.0%). However, both measurements show that value still within the safety level set by DOSH Malaysia (2005-2010) and ASHRAE 62.2 2016. The office contained higher dust concentration compared to classroom because of frequent movement transpires daily due to the functional of the offices.

  18. Possible alternatives for diesel powered mobile equipment for the conditions of deep mines

    Energy Technology Data Exchange (ETDEWEB)

    Paraszczak, J.; Kotersi, O [Laval Univ., Quebec City, PQ (Canada). Dept. of Mining, Metallurgical and Materials Engineering

    2008-07-01

    The challenges associated with mining at considerable depths were discussed. Mines such as Kidd Creek, LaRonde and Creighton are deeper than 2500 m. High rock temperature is among the challenges that operators face in such conditions. Conventional diesel powered load-hauling equipment constitute an additional source of heat and noxious gases. As such, more intense ventilation is needed in order to keep ambient temperature and air quality at a level that is acceptable for human workers. This paper examined possible alternatives for diesel powered equipment, including those that are commercially available as well as those that are underdevelopment or in the prototype stage. The equipment was reviewed with reference to the required infrastructure, stage of technology development and progress. The flexibility, practicality and economic viability of the equipment was also investigated. The potential for its use in deep Canadian mines was discussed along with the most promising drive alternatives for vehicles designed for deep mine operations. Electric drives have proven to be effective in many mining applications since they have significant advantages over diesel drives. The characteristics of cable powered equipment, trolley-wire powered equipment, and battery powered equipment were described. The key advantages and disadvantages of hybrid diesel electric equipment were also reviewed along with the viability of power plants based on the use of hydrogen. The principle types of hydrogen power plants include hydrogen combustion engines; HY-Drive systems and fuel cells. It was concluded that although there is no viable alternative for diesel engines at present, Canadian mining companies operating at great depths have made significant progress in these fields and remain among the leaders in mining innovation. 17 refs.

  19. Assessment of microbiological indoor air quality in an Italian office building equipped with an HVAC system.

    Science.gov (United States)

    Bonetta, Sa; Bonetta, Si; Mosso, S; Sampò, S; Carraro, E

    2010-02-01

    The purpose of this study was to evaluate the level and composition of bacteria and fungi in the indoor air of an Italian office building equipped with a heating, ventilation and air conditioning (HVAC) system. Airborne bacteria and fungi were collected in three open-space offices during different seasons. The microbial levels in the outdoor air, supply air diffusers, fan coil air flow and air treatment unit humidification water tank were used to evaluate the influence of the HVAC system on indoor air quality (IAQ). A medium-low level of bacterial contamination (50-500 CFU/m(3)) was found in indoor air. Staphylococcus and Micrococcus were the most commonly found genera, probably due to human presence. A high fungal concentration was measured due to a flood that occurred during the winter. The indoor seasonal distribution of fungal genera was related to the fungal outdoor distribution. Significant seasonal and daily variation in airborne microorganisms was found, underlining a relationship with the frequency of HVAC system switching on/off. The results of this monitoring highlight the role of the HVAC system on IAQ and could be useful to better characterise bacterial and fungal population in the indoor air of office buildings.

  20. Relationship between Air Pollution and Weather Conditions under Complicated Geographical conditions

    Science.gov (United States)

    Cheng, Q.; Jiang, P.; Li, M.

    2017-12-01

    Air pollution is one of the most serious issues all over the world, especially in megacities with constrained geographical conditions for air pollution diffusion. However, the dynamic mechanism of air pollution diffusion under complicated geographical conditions is still be confused. Researches to explore relationship between air pollution and weather conditions from the perspective of local atmospheric circulations can contribute more to solve such problem. We selected three megacities (Beijing, Shanghai and Guangzhou) under different geographical condition (mountain-plain transition region, coastal alluvial plain and coastal hilly terrain) to explore the relationship between air pollution and weather conditions. RDA (Redundancy analysis) model was used to analyze how the local atmospheric circulation acts on the air pollutant diffusion. The results show that there was a positive correlation between the concentration of air pollutants and air pressure, while temperature, precipitation and wind speed have negative correlations with the concentration of air pollutants. Furthermore, geographical conditions, such as topographic relief, have significant effects on the direction, path and intensity of local atmospheric circulation. As a consequence, air pollutants diffusion modes in different cities under various geographical conditions are diverse from each other.

  1. FAULT TREE ANALYSIS FOR EXPOSURE TO REFRIGERANTS USED FOR AUTOMOTIVE AIR CONDITIONING IN THE U.S.

    Science.gov (United States)

    A fault tree analysis was used to estimate the number of refrigerant exposures of automotive service technicians and vehicle occupants in the United States. Exposures of service technicians can occur when service equipment or automotive air-conditioning systems leak during servic...

  2. Relevance of air conditioning for 222Radon concentration in shops of the Savona Province, Italy

    International Nuclear Information System (INIS)

    Panatto, Donatella; Ferrari, Paola; Lai, Piero; Gallelli, Giovanni

    2006-01-01

    Radon ( 222 Rn) concentration was evaluated in shops of the Savona Province, Italy, between summer 2002 and winter 2002-2003. The main characteristics of each shops were recorded through a questionnaire investigating the ventilation rate and factors related to 222 Rn precursors in the soil and the construction materials. The main variables that were related to radon concentration were the following: age of the building, level of the shop above ground, season of the year, wind exposure, active windows, and type of heating system. Shops equipped with individual air heating/conditioning systems exhibited radon concentrations that were three times higher than those of shops heated by centralized furnaces. Our data indicate that the level of pollution in the shops was of medium level, with an expected low impact on the salespersons' health. Only in wintertime, the action level of 200 Bq m -3 for the confined environment was reached in 10 shops equipped with individual air heating/conditioning systems

  3. The study of operating an air conditioning system using Maisotsenko-Cycle

    Science.gov (United States)

    Khan, Mohammad S.; Tahan, Sami; Toufic El-Achkar, Mohamad; Abou Jamus, Saleh

    2018-03-01

    The project aims to design and build an air conditioning system that runs on the Maisotsenko cycle. The system is required to condition and cool down ambient air for a small residential space with the reduction in the use of electricity and eliminating the use of commercial refrigerants. This project can operate at its optimum performance in remote areas like oil diggers and other projects that run in the desert or any site that would not have a very high relative humidity level. The Maisotsenko cycle is known as the thermodynamic concept that captures energy from the air by using the psychometric renewable energy available in the latent heat in water evaporating in air. The heat and mass exchanger design was based on choosing a material that would-be water resistant and breathable, which was found to be layers of cardboard placed on top of each other and thus creating channels for air to pass through. Aiming for this design eliminates any high power electrical equipment such as compressors, condensers and evaporators that would be used in an AC system with the exception of a 600 W blower and a 10 W fan, thus making it a more environmentally friendly project. Moreover, the project is limited by the ambient temperature and humidity, as the model operates at an optimum when the relative humidity is lower.

  4. Fungal colonization of air-conditioning systems

    Directory of Open Access Journals (Sweden)

    Ljaljević-Grbić Milica

    2008-01-01

    Full Text Available Fungi have been implicated as quantitatively the most important bioaerosol component of indoor air associated with contaminated air-conditioning systems. rarely, indoor fungi may cause human infections, but more commonly allergenic responses ranging from pneumonitis to asthma-like symptoms. From all air conditioner filters analyzed, 16 fungal taxa were isolated and identified. Aspergillus fumigatus causes more lethal infections worldwide than any other mold. Air-conditioning filters that adsorb moisture and volatile organics appear to provide suitable substrates for fungal colonization. It is important to stress that fungal colonization of air-conditioning systems should not be ignored, especially in hospital environments.

  5. Air conditioning systems to clean radioactive air

    International Nuclear Information System (INIS)

    Ganz, G.

    1987-01-01

    The author reports a study by the Institutes fuer Klimatechnik and Umweltschutz Giessen that shows that air conditioning systems not only make the atmosphere more comfortable, they also extract dust particles. This cleaning action is also valid for radioactively contaminated air. (G.T.H./Auth.)

  6. The application of condensate water as an additional cooling media intermittently in condenser of a split air conditioning

    Science.gov (United States)

    Ardita, I. N.; Subagia, I. W. A.

    2018-01-01

    The condensate water produced by indoor a split air conditioning is usually not utilized and thrown away into the environment. The result of measurement shows that the temperature of condensate water produced by split air conditioning is quite low, that is 19-22 °C at the rate of 16-20 mL / min and it has PH balance. Under such conditions, Air Condensate produced by split air conditioning should still be recovered as an additional cooling medium on the condenser. This research will re-investigate the use of condensate water as an intermittent additional cooling of the condenser to increase the cooling capacity and performance of the air conditioning system. This research is done by experimental method whose implementation includes; designing and manufacturing of experimental equipment, mounting measuring tools, experimental data retrieval, data processing and yield analysis. The experimental results show that the use of condensate water as an intermittent additional cooling medium on split air conditioning condenser can increase the refrigeration effect about 2%, cooling capacity about 4% and 7% of COP system. Experimental results also show a decrease in power consumption in the system compressor about 3%

  7. Fuel consumption in an air blower for agricultural use under different operating conditions

    OpenAIRE

    Silva, Robson L. da

    2017-01-01

    ABSTRACT Evaluation of fuel consumption in internal combustion engines (ICE) of agricultural machinery and equipment is important in determining the performance under various operating conditions, especially when using biofuels. This study consisted of experimental evaluation of the gasoline (petrol)/ethanol consumption in a two-stroke 1-cylinder ICE, Otto cycle, functioning as an air blower for agriculture and related applications. A methodology for tests of non-automotive ICE, based on ABNT...

  8. An on-line monitoring system for navigation equipment

    Science.gov (United States)

    Wang, Bo; Yang, Ping; Liu, Jing; Yang, Zhengbo; Liang, Fei

    2017-10-01

    Civil air navigation equipment is the most important infrastructure of Civil Aviation, which is closely related to flight safety. In addition to regular flight inspection, navigation equipment's patrol measuring, maintenance measuring, running measuring under special weather conditions are the important means of ensuring aviation flight safety. According to the safety maintenance requirements of Civil Aviation Air Traffic Control navigation equipment, this paper developed one on-line monitoring system with independent intellectual property rights for navigation equipment, the system breakthroughs the key technologies of measuring navigation equipment on-line including Instrument Landing System (ILS) and VHF Omni-directional Range (VOR), which also meets the requirements of navigation equipment ground measurement set by the ICAO DOC 8071, it provides technical means of the ground on-line measurement for navigation equipment, improves the safety of navigation equipment operation, and reduces the impact of measuring navigation equipment on airport operation.

  9. Assessment of Equipment Capability to Perform Reliably under Severe Accident Conditions

    International Nuclear Information System (INIS)

    2017-07-01

    The experience from the last 40 years has shown that severe accidents can subject electrical and instrumentation and control (I&C) equipment to environmental conditions exceeding the equipment’s original design basis assumptions. Severe accident conditions can then cause rapid degradation or damage to various degrees up to complete failure of such equipment. This publication provides the technical basis to consider when assessing the capability of electrical and I&C equipment to perform reliably during a severe accident. It provides examples of calculation tools to determine the environmental parameters as well as examples and methods that Member States can apply to assess equipment reliability.

  10. Optimal replacement of residential air conditioning equipment to minimize energy, greenhouse gas emissions, and consumer cost in the US

    International Nuclear Information System (INIS)

    De Kleine, Robert D.; Keoleian, Gregory A.; Kelly, Jarod C.

    2011-01-01

    A life cycle optimization of the replacement of residential central air conditioners (CACs) was conducted in order to identify replacement schedules that minimized three separate objectives: life cycle energy consumption, greenhouse gas (GHG) emissions, and consumer cost. The analysis was conducted for the time period of 1985-2025 for Ann Arbor, MI and San Antonio, TX. Using annual sales-weighted efficiencies of residential CAC equipment, the tradeoff between potential operational savings and the burdens of producing new, more efficient equipment was evaluated. The optimal replacement schedule for each objective was identified for each location and service scenario. In general, minimizing energy consumption required frequent replacement (4-12 replacements), minimizing GHG required fewer replacements (2-5 replacements), and minimizing cost required the fewest replacements (1-3 replacements) over the time horizon. Scenario analysis of different federal efficiency standards, regional standards, and Energy Star purchases were conducted to quantify each policy's impact. For example, a 16 SEER regional standard in Texas was shown to either reduce primary energy consumption 13%, GHGs emissions by 11%, or cost by 6-7% when performing optimal replacement of CACs from 2005 or before. The results also indicate that proper servicing should be a higher priority than optimal replacement to minimize environmental burdens. - Highlights: → Optimal replacement schedules for residential central air conditioners were found. → Minimizing energy required more frequent replacement than minimizing consumer cost. → Significant variation in optimal replacement was observed for Michigan and Texas. → Rebates for altering replacement patterns are not cost effective for GHG abatement. → Maintenance levels were significant in determining the energy and GHG impacts.

  11. Articulated, Performance-Based Instruction Objectives Guide for Air Conditioning, Refrigeration, and Heating. Volume II (Second Year).

    Science.gov (United States)

    Henderson, William Edward, Jr., Ed.

    This articulation guide contains 17 units of instruction for the second year of a two-year vocational program designed to prepare the high school graduate to install, maintain, and repair various types of residential and commercial heating, air conditioning, and refrigeration equipment. The units are designed to help the student to expand and…

  12. 40 CFR Appendix B to Subpart B of... - Standard for Recover Equipment

    Science.gov (United States)

    2010-07-01

    ... protects the earth against harmful ultraviolet radiation. To reduce the emissions of CFCs, the 1990 Clean Air Act requires recycle of CFC-12 (R-12) used in mobile air-conditioning systems to eliminate system... reuse of CFCs in mobile air-conditioning systems. Establishing extraction equipment specifications for...

  13. Acanthamoeba belonging to T3, T4, and T11: genotypes isolated from air-conditioning units in Santiago, Chile.

    Science.gov (United States)

    Astorga, Berbeli; Lorenzo-Morales, Jacob; Martín-Navarro, Carmen M; Alarcón, Verónica; Moreno, Johanna; González, Ana C; Navarrete, Elizabeth; Piñero, José E; Valladares, Basilio

    2011-01-01

    Free-living amoebae (FLA) of the genus Acanthamoeba are widely distributed in the environment, in the air, soil, and water, and have also been isolated from air-conditioning units. The objective of this work was to investigate the presence of this genus of FLA in the air-conditioning equipment at the Institute of Public Health of Chile in Santiago, Chile. Water and air samples were collected from air-conditioning systems and were checked for the presence of Acanthamoeba spp. Positive samples were further classified at the genotype level after sequencing the highly variable diagnostic fragment 3 (DF3) region of the 18S rRNA gene. This is the first report of the T3, T4, and T11 genotypes of Acanthamoeba in air-conditioning units from Chile. Overall, the widespread distribution of potentially pathogenic Acanthamoeba strains in the studied source demands more awareness within the public and health professionals in Chile as this pathogen is emerging as a risk for human health worldwide. © 2011 The Author(s) Journal of Eukaryotic Microbiology © 2011 International Society of Protistologists.

  14. Relationship between the merit factor of thermoelectric materials and the air conditioning unit of urban electric cars

    International Nuclear Information System (INIS)

    Buffet, J.

    1994-01-01

    The main benefit of electric cars is to reduce air pollution in cities that is thus desirable to equip them with non polluting air conditioning units and this rules out frigorific compressors operating with CFC. The planned replacement of CFC by HFC is at best an interim solution. The best solution is certainly to use thermoelectric air conditioning units, which are inherently pollution-free. However, these have a fairly low COPF when compared to traditional compressor units. We study the relationship between the cooling of the interior of urban electric cars and the merit factor of the thermoelectric material in their Peltier unit. This should help provide concrete target properties of future T E materials. copyright 1995 American Institute of Physics

  15. Greenhouse effect: effects on refrigerating and air conditioning industries; Effet de serre: impacts sur les professions du froid et de la climatisation

    Energy Technology Data Exchange (ETDEWEB)

    Le Boru, B. [Association Francaise de Froid, Alliance Froid Climatisation Environnement, 75 - Paris (France)

    1997-12-31

    The various factors (refrigerant characteristics, design and operating performance, insulation type, etc.) involved in greenhouse gas emission from refrigerating and air conditioning equipment are listed with the potential actions that may be taken at the different stages of equipment design, engineering, installation, operation, maintenance and dismantling, in order to reduce pollutant emissions

  16. ENERGY STAR Certified Non-AHRI Central Air Conditioner Equipment and Air Source Heat Pump

    Science.gov (United States)

    Certified models meet all ENERGY STAR requirements as listed in the Version 5.0 ENERGY STAR Program Requirements for Air Source Heat Pump and Central Air Conditioner Equipment that are effective as of September 15, 2015. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=airsrc_heat.pr_crit_as_heat_pumps Listed products have been submitted to EPA by ENERGY STAR partners that do not participate in the AHRI certification program. EPA will continue to update this list with products that are certified by EPA-recognized certification bodies other than AHRI. The majority of ENERGY STAR products, certified by AHRI, can be found on the CEE/AHRI Verified Directory at http://www.ceedirectory.org/

  17. CFD SIMULATION OF AIR ION REGIME IN WORK AREAS AT CONDITION OF ARTIFICIAL AIR IONIZATION

    Directory of Open Access Journals (Sweden)

    M. M. Biliaiev

    2016-02-01

    Full Text Available Purpose. The paper supposes creation of a CFD model for calculating the air ion regime in the premises and in work areas at artificial ionization of the air by the ionizer installation indoors with considering the most important physical factors that influence the formation of ions concentration field. Methodology. The proposed CFD model for calculation of the air ion regime in work areas at artificial ionization of the air by installing ionizer indoors is based on the application of aerodynamics, electrostatics and mass transfer equations. The mass transfer equation takes into account the interaction of different polarities of ions with each other and with the dust particles. The calculation of air flow rate in the room is realized on the basis of the potential flow model by using the Laplace equation for the stream function. Poisson equation for the electric potential is used for calculation of the charged particles drift in an electric field. At the simulation to take into account: 1 influence of the working area geometric characteristics; 2 location of the ventilation holes; 3 placement of furniture and equipment; 4 ventilation regime in the room; 5 presence of obstacles on the ions dispersion process; 6 specific location of dust particles emission and ions of different polarity, and their interaction in the room and in the working zones. Findings. The developed CFD model allows determining the concentration of negative ions in the room and in the area of the human respiratory organs. The distribution of the negative ions concentration is presented in the form of concentration field isolines. Originality. The 2D CFD model for calculating the air ion regime in working areas, providing the ability to determine the ions concentration in a given place in the room was created. The proposed model is developed taking into account: placement of furniture and equipment in the room; geometric characteristics of the room; location of dust emissions

  18. Infrasonic waves and air-conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Hoenmann, W.

    1986-08-01

    This article is a critical investigation of the recently-suggested possibility that the infrasound generated by an air conditioning system (up to 2o kHz) may adversely affect the well-being of human beings. After an introductory explanation of the infrasonic wave band and the dependency of the sound pressure level on the frequency for decibel values of 20 to 100 (diagram), the relevant results of studies by various experts are quoted. It became apparent that the influence of the inaudible infrasound has been greatly overestimated, whereas audibility was underestimated. Inaudible infrasound was shown to be completely harmless. A number of frequency variation analysis diagrams of various residences (old building, new building) with audibility thresholds marked in. The measurement results discussed in more detail indicate that it is possible not to raise the basic noise level of an air conditioning system in the low-frequency range. Therein lies the actual acoustic chance for air conditioning: In an air-conditioned building, there is no need to ventilate by means of open windows, thereby letting in traffic noise, the nuisance value of which is beyond dispute. (HWJ).

  19. Air Conditioning Compressor Air Leak Detection by Image Processing Techniques for Industrial Applications

    Directory of Open Access Journals (Sweden)

    Pookongchai Kritsada

    2015-01-01

    Full Text Available This paper presents method to detect air leakage of an air conditioning compressor using image processing techniques. Quality of air conditioning compressor should not have air leakage. To test an air conditioning compressor leak, air is pumped into a compressor and then submerged into the water tank. If air bubble occurs at surface of the air conditioning compressor, that leakage compressor must be returned for maintenance. In this work a new method to detect leakage and search leakage point with high accuracy, fast, and precise processes was proposed. In a preprocessing procedure to detect the air bubbles, threshold and median filter techniques have been used. Connected component labeling technique is used to detect the air bubbles while blob analysis is searching technique to analyze group of the air bubbles in sequential images. The experiments are tested with proposed algorithm to determine the leakage point of an air conditioning compressor. The location of the leakage point was presented as coordinated point. The results demonstrated that leakage point during process could be accurately detected. The estimation point had error less than 5% compared to the real leakage point.

  20. Air Conditioner Charging. Automotive Mechanics. Air Conditioning. Instructor's Guide [and] Student Guide.

    Science.gov (United States)

    Spignesi, B.

    This instructional package, one in a series of individualized instructional units on automobile air conditioning, consists of a student guide and an instructor guide dealing with air conditioning charging. Covered in the module are checking the air conditioning system for leaks, checking and adding refrigerant oil as needed, evacuating the system,…

  1. FY1999 Meeting of The Society of Heating, Air-Conditioning and Sanitary Engineering of Japan. Air flow analysis II; 1999 nendo gakujutsu koenkai gaiyo. Kiryu kaiseki 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-05

    B-4 reported the result on particle size distribution experiment and numerical calculation with FEM and {kappa}- {epsilon} model using a welding simulation equipment for generation and removal of welding fume in a narrow site. Discussion was held on the position of an exhaust hood. B-5 reported the study results on indoor air flow conditions derived from a movable nozzle air conditioning system by model experiment and numerical analysis. Disagreement of both results between the experiment and calculation in the case of two diffusing nozzles attached at 30 degrees toward the inside was improved by shortening a sampling time for calculation. B-6 reported the study results on some parameters such as wind velocity, flow rate and inlet position, and the energy saving effect of an air curtain (wall outlet, floor inlet) to control air conditioning areas for a part of large spaces by numerical analysis of air flow. Discussion was held on calculation of 2-D flow and layered flow. B-7 is the 5th research report on measurement of air flow conditions such as measurement of large space environment by video camera and balloon. Study on the camera for automatic measurement, and the identification technique of balloon positions was reported. (translated by NEDO)

  2. CHARACTERIZATION OF OZONE EMISSIONS FROM AIR CLEANERS EQUIPPED WITH OZONE GENERATORS AND SENSOR AND FEEDBACK CONTROL CIRCUITRY

    Science.gov (United States)

    The paper give results of a characterization of ozone emissions from air cleaners equipped with ozone generators and sensor and feedback control circuitry. Ozone emission rates of several consumer appliances, marketed as indoor air treatment or air purification systems, were det...

  3. Heating, ventilating, and air-conditioning applications

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This book covers: Comfort air conditioning and heating of residences: Space HVAC systems; Industrial and special air conditioning and ventilation for nuclear facilities, and for mines; Energy sources, such as Geothermal energy, solar utilization, and energy resources; Building operation and maintenance; energy management, and Thermal storage

  4. A RADIANT AIR-CONDITIONING SYSTEM USING SOLAR-DRIVEN

    Directory of Open Access Journals (Sweden)

    S. A. ABDALLA

    2006-12-01

    Full Text Available Every air-conditioning system needs some fresh air to provide adequate ventilation air required to remove moisture, gases like ammonia and hydrogen sulphide, disease organisms, and heat from occupied spaces. However, natural ventilation is difficult to control because urban areas outside air is often polluted and cannot be supplied to inner spaces before being filtered. Besides the high electrical demand of refrigerant compression units used by most air-conditioning systems, and fans used to transport the cool air through the thermal distribution system draw a significant amount of electrical energy in comparison with electrical energy used by the building thermal conditioning systems. Part of this electricity heats the cooled air; thereby add to the internal thermal cooling peak load. In addition, refrigerant compression has both direct and indirect negative effects on the environment on both local and global scales. In seeking for innovative air-conditioning systems that maintain and improve indoor air quality under potentially more demanding performance criteria without increasing environmental impact, this paper presents radiant air-conditioning system which uses a solar-driven liquid desiccant evaporative cooler. The paper describes the proposed solar-driven liquid desiccant evaporative cooling system and the method used for investigating its performance in providing cold water for a radiant air-conditioning system in Khartoum (Central Sudan. The results of the investigation show that the system can operate in humid as well as dry climates and that employing such a system reduces air-conditioning peak electrical demands as compared to vapour compression systems.

  5. Performance of desiccant air conditioning system with geothermal energy under different climatic conditions

    International Nuclear Information System (INIS)

    El-Agouz, S.A.; Kabeel, A.E.

    2014-01-01

    Highlights: • The performance of the hybrid air conditioning system is studied. • The influence of important operating parameters are estimated. • The ventilation, makeup and mix cycles are investigated at different climate. • The highest COP of the hybrid air conditioning system is 1.03. • The hybrid system provides a human thermal comfort at different climates. - Abstract: Energy saving still and continue a major seek in our life, due to the continuous increase in energy consumptions. So, a desiccant air conditioning system with geothermal energy is conducted in the current study. The thermal analysis of air conditioning system with its different components desiccant wheel, solar collector, heat exchanger, ground heat exchanger and water spray evaporative cooler is presented. Three different air conditioning cycles are simulated in the current study for different zones like: hot-dry zone, warm-dry zone, hot-humid zone and the warm-humid zone. The results show that the desiccant air conditioning system successfully provides a better thermal comfort condition in different climates. This hybrid system significantly decreases the supplied air temperature from 12.7 to 21.7 °C at different climate zones. When ω in , air and T Reg increasing, COP decreases and the ventilation cycle provides the better COP. The highest COP value of the desiccant air conditioning system is about 1.03 while the lowest value is about 0.15. The SHR of makeup cycle is higher than that ventilation cycle at warm and hot-humid zone and vice versa at warm and hot-dry zone. The highest SHR value of the desiccant air conditioning system is about 0.99 while the lowest value is about 0.2. The T sup,air , ω sup,air , COP and SHR isolines may easily be used for pre-evaluating of various cooling cycles in different climates. The hybrid system provides a human thermal comfort at different climates

  6. Measurement of Vehicle Air Conditioning Pull-Down Period

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, John F [ORNL; Huff, Shean P [ORNL; Moore, Larry G [ORNL; West, Brian H [ORNL

    2016-08-01

    Air conditioner usage was characterized for high heat-load summer conditions during short driving trips using a 2009 Ford Explorer and a 2009 Toyota Corolla. Vehicles were parked in the sun with windows closed to allow the cabin to become hot. Experiments were conducted by entering the instrumented vehicles in this heated condition and driving on-road with the windows up and the air conditioning set to maximum cooling, maximum fan speed and the air flow setting to recirculate cabin air rather than pull in outside humid air. The main purpose was to determine the length of time the air conditioner system would remain at or very near maximum cooling power under these severe-duty conditions. Because of the variable and somewhat uncontrolled nature of the experiments, they serve only to show that for short vehicle trips, air conditioning can remain near or at full cooling capacity for 10-minutes or significantly longer and the cabin may be uncomfortably warm during much of this time.

  7. Study of containment air cooler capacity in steam air environment during accident conditions

    International Nuclear Information System (INIS)

    Kansal, M.; Mohan, N.; Bhawal, R.N.; Bajaj, S.S.

    2002-01-01

    Full text: The air coolers are provided for controlling the temperature in the reactor building during normal operation. These air coolers also serve as the main heat sink for the removal of energy from high enthalpy air-steam mixture expected in reactor building under accident conditions. A subroutine COOLER has been developed to estimate the heat removal rate of the air coolers at high temperature and steam conditions. The subroutine COOLER has been attached with the code PACSR (post accident containment system response) used for containment pressure temperature calculation. The subroutine was validated using design parameters at normal operating condition. A study was done to estimate the heat removal rate for some postulated accident conditions. The study reveals that, under accident conditions, the heat removal rate of air coolers increases several times compared with normal operating conditions

  8. Comparative economic assessment of the energy performance of air-conditioning within the Mexican residential sector

    Directory of Open Access Journals (Sweden)

    Ivan Oropeza-Perez

    2016-11-01

    Full Text Available This work shows a sensitivity analysis of the economic impact of different energy performances of air-conditioning within the Mexican housing sector. For this purpose, a cooling-load calculator program in function of the indoor temperature is developed. The program also calculates the electricity consumption along with the expenditure with the different residential rates of the Mexican Federal Commission of Electricity (CFE, initials in Spanish set according to the season of the year and zone of the country. After the results onto the national-scale scenario are validated with the literature, a sensitivity analysis is carried out by changing three parameters that are considered as influential on the consumption and which can be considered as energy saving strategies. With these strategies, it is found that the indoor temperature decrease due to the use of a passive cooling system is the most important characteristic to take into account followed by the coefficient of performance (COP of the air-conditioning and the increase of the comfort temperature set-point, respectively. Thereby, an economic analysis is carried out, finding an annual saving up to 770 USD within a single air-conditioned dwelling having a payback period of 3 years for using a combination of passive cooling techniques and increasing the comfort temperature set-point; or a 2 years payback period if the air-conditioning is changed by a high-efficient equipment.

  9. Feasibility of a solar-assisted winter air-conditioning system using evaporative air-coolers

    Energy Technology Data Exchange (ETDEWEB)

    El-Awad, Mohamed M. [Mechanical Engineering Department, the University of Khartoum, P.O. Box 321 Khartoum (Sudan)

    2011-07-01

    The paper presents a winter air-conditioning system which is suitable for regions with mildly cold but dry winters. The system modifies the evaporative air-cooler that is commonly used for summer air-conditioning in such regions by adding a heating process after the humidification process. The paper describes a theoretical model that is used to estimate the system's water and energy consumption. It is shown that a 150-LPD solar heater is adequate for air-conditioning a 500 ft3/min (14.4 m3/min) air flow rate for four hours of operation. The maximum air-flow rate that can be heated by a single solar water-heater for four hours of operation is about 900-cfm, unless a solar water heater large than a 250-LPD heater is used. For the 500 ft3/min air flow rate the paper shows that the 150, 200, 250 and 300 LPD solar water-heaters can provide air-conditioning for 4, 6, 8 and 10 hours, respectively, while consuming less energy than the equivalent refrigerated-type air-conditioner.

  10. Ventilation-air conditioning system

    International Nuclear Information System (INIS)

    Kubokoya, Takashi.

    1991-01-01

    Heretofore, in ventilation-air conditioning systems in a nuclear power plant, exhaust gases from each of the ventilation-air conditioning systems of a reactor building, a turbine building, a waste processing building are joined and they are released into atmosphere from the top of a high main exhaustion stack. In order to build such a high main exhaustion stack, a considerable construction cost is required and, in addition, there is a worry of lacking balance with surrounding scenery. Then, in the present invention, exhaust gases are heated by waste heat in a turbine during their introduction from the ventilation-air conditioning facility in the building of a power plant to the main exhaust stack. With such a constitution, since the exhaust gases are heated and their temperature is elevated, they uprise by natural convection when they are released from the top of the main exhaustion stack to the atmosphere. Accordingly, they are released to a level higher than the conventional case in view of the volume of the blower which sends the exhaust gases under pressure, to diffuse them to the atmosphere more sufficiently compared with a conventional case. Further, the height of the main exhaustion stack can be reduced, enabling to minimize the cost for moving the blower. (T.M.)

  11. Evaluation of rotor-bearing system dynamic response to unbalance. [air conditioning equipment

    Science.gov (United States)

    Thaller, R. E.; Ozimek, D. W.

    1979-01-01

    The vibration environment within air conditioner rotating machinery referred to as an air cycle machine (ACM) was investigated to effectively increase ACM reliability. To assist in the selection of design changes which would result in improved ACM performance, various design modifications were incorporated into a baseline ACM configuration. For each design change, testing was conducted with the best balance achieveable (baseline) and with various degrees of unbalance. Relationships between unbalance (within the context of design changes) and the parameters associated with design goals were established. The results of rotor dynamics tests used to establish these relationships are presented.

  12. Condition Evaluation of Storage Equipment Based on Improved D-S Evidence Theory

    Directory of Open Access Journals (Sweden)

    Zhang Xiao-yu

    2017-01-01

    Full Text Available Assessment and prediction of the storage equipment’s condition is always a difficult aspect in PHM technology. The current Condition evaluation of equipment lacks of the state level, and a single test data can’t reflect the change of equipment’s state. To solve the problem, this paper proposes an evaluation method based on improved D-S evidence theory. Firstly, use analytic hierarchy process (AHP to establish a hierarchical structure model of equipment and divide the qualified state into 4 grades. Then respectively compare the test data with the last test value, historical test mean value and standard value. And the triangular fuzzy function to calculate the index membership degree, combined with D-S evidence theory to fuse information from multiple sources, to achieve such equipment real-time state assessment. Finally, the model is used to a servo mechanism. The result shows that this method has a good performance in condition evaluation for the storage equipment

  13. Air quality and passenger comfort in an air-conditioned bus micro-environment.

    Science.gov (United States)

    Zhu, Xiaoxuan; Lei, Li; Wang, Xingshen; Zhang, Yinghui

    2018-04-12

    In this study, passenger comfort and the air pollution status of the micro-environmental conditions in an air-conditioned bus were investigated through questionnaires, field measurements, and a numerical simulation. As a subjective analysis, passengers' perceptions of indoor environmental quality and comfort levels were determined from questionnaires. As an objective analysis, a numerical simulation was conducted using a discrete phase model to determine the diffusion and distribution of pollutants, including particulate matter with a diameter air quality and dissatisfactory thermal comfort conditions in Jinan's air-conditioned bus system. To solve these problems, three scenarios (schemes A, B, C) were designed to alter the ventilation parameters. According to the results of an improved simulation of these scenarios, reducing or adding air outputs would shorten the time taken to reach steady-state conditions and weaken the airflow or lower the temperature in the cabin. The airflow pathway was closely related to the layout of the air conditioning. Scheme B lowered the temperature by 0.4 K and reduced the airflow by 0.01 m/s, while scheme C reduced the volume concentration of PM 10 to 150 μg/m 3 . Changing the air supply angle could further improve the airflow and reduce the concentration of PM 10 . With regard to the perception of airflow and thermal comfort, the scheme with an airflow provided by a 60° nozzle was considered better, and the concentration of PM 10 was reduced to 130 μg/m 3 .

  14. An optimization strategy for the control of small capacity heat pump integrated air-conditioning system

    International Nuclear Information System (INIS)

    Gao, Jiajia; Huang, Gongsheng; Xu, Xinhua

    2016-01-01

    Highlights: • An optimization strategy for a small-scale air-conditioning system is developed. • The optimization strategy aims at optimizing the overall system energy consumption. • The strategy may guarantee the robust control of the space air temperature. • The performance of the optimization strategy was tested on a simulation platform. - Abstract: This paper studies the optimization of a small-scale central air-conditioning system, in which the cooling is provided by a ground source heat pump (GSHP) equipped with an on/off capacity control. The optimization strategy aims to optimize the overall system energy consumption and simultaneously guarantee the robustness of the space air temperature control without violating the allowed GSHP maximum start-ups number per hour specified by customers. The set-point of the chilled water return temperature and the width of the water temperature control band are used as the decision variables for the optimization. The performance of the proposed strategy was tested on a simulation platform. Results show that the optimization strategy can save the energy consumption by 9.59% in a typical spring day and 2.97% in a typical summer day. Meanwhile it is able to enhance the space air temperature control robustness when compared with a basic control strategy without optimization.

  15. Utilization of Solar Energy for Air Conditioning System

    Directory of Open Access Journals (Sweden)

    Sutikno Juwari Purwo

    2018-01-01

    Full Text Available The purposes of this research are to do a system simulation of air conditioning utilizing solar energy with single effect absorption refrigeration method, analyze the coefficient of performance (COP for each absorbent-refrigerant variable and compare the effectivity of every absorbent-refrigerant variable used. COP is a constant that denotes the effeciency of a refrigeration system, that is ratio of work or useful output to the amount of work or energy input. The higher the number of COP, the more efficient the system is. Absorbent-refrigerant (working fluids variables used in this research depend on its chemical and thermodynamics properties. Steps in this research are including data collection and tabulation from literature and do a simulation of air conditioning system both commercial air conditioning system (using electrical energy and solar energy air conditioning system with Aspen Plus software. Next, run the simulation for each working fluid variables used and calculate the COP for each variable. Subsequently, analyze and compare the effectivity of all variables used from COP value and economical point of view with commercial air conditioning system. From the result of the simulation, can be concluded that solar air conditioning can achieve 98,85 % of energy savings than commercial air conditioning. Furthermore, from the calculation of COP, the highest COP value is achieved by solar conditioning system with LiNO3-NH3 as working fluid where 55% of the composition is the refrigerant and 45% of absorbent.

  16. Air Kerma above environmental radiometric calibration facility for field equipment

    International Nuclear Information System (INIS)

    Conti, C.C.; Sachett, I.A.; Bertelli, L.; Lopes, R.T.

    2000-01-01

    The use of gamma ray spectrometers broadened the aims of gamma ray surveys, stead of measuring only the gross radiation, as was done with the GM tubes, it is now possible to be used for uranium exploration, geological mapping as an aid to the exploration of non radioactive ores like gold and tin, radiation background measurements to identify hot spots for radiation hazard evaluation and environmental monitoring of fallout from radiological and nuclear accidents. It became necessary to carefully and precisely calibrate the field equipment to be used to get all the information from such uses. There is an environmental radiometric calibration facility for field equipment, consisting of eight radioactive concrete sources, at the Institute of Radioprotection and Dosimetry - IRD (CNEN/Brazil). These sources are cylindrical with 3 m diameter, 0.5 m thick and weigh about 7.5 tons each. The amount and type of the radioactive material, 238 U and 232 Th and 40 K ores in secular radioactive equilibrium, added to the concrete to simulate rock outcrops, varies in order to obtain different gamma fields, varying in both energy and intensity. These different radiation fields were measured with a HPGe portable detector, specifically calibrated for spectrum stripping, and the air kerma energy distribution was determined for each concrete source and compared with the total air kerma calculated from the nuclide concentration and by others radiometric methods. (author)

  17. Air conditioning system and component therefore distributing air flow from opposite directions

    Science.gov (United States)

    Obler, H. D.; Bauer, H. B. (Inventor)

    1974-01-01

    The air conditioning system comprises a plurality of separate air conditioning units coupled to a common supply duct such that air may be introduced into the supply duct in two opposite flow directions. A plurality of outlets such as registers or auxiliary or branch ducts communicate with the supply duct and valve means are disposed in the supply duct at at least some of the outlets for automatically channelling a controllable amount of air from the supply duct to the associated outlet regardless of the direction of air flow within the supply duct. The valve means comprises an automatic air volume control apparatus for distribution within the air supply duct into which air may be introduced from two opposite directions. The apparatus incorporates a freely swinging movable vane in the supply duct to automatically channel into the associated outlet only the deflected air flow which has the higher relative pressure.

  18. Solar air-conditioning. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Within the 3rd International Conference on solar air-conditioning in Palermo (Italy) at 30th September to 2nd October, 2009 the following lectures were held: (1) Removal of non-technological barriers to solar cooling technology across Southern European islands (Stefano Rugginenti); (2) The added economic and environmental value of solar thermal systems in microgrids with combined heat and power (Chris Marney); (3) Australian solar cooling interest group (Paul Kohlenbach); (4) Designing of a technology roadmap for solar assisted air conditioning in Austria (Hilbert Focke); (5) Solar cooling in the new context of renewable policies at European level (Raffaele Piria); (6) Prototype of a solar driven steam jet ejector chiller (Clemens Pollerberg); (7) New integrated solar air conditioning system (Joan Carlos Bruno); (8) Primary energy optimised operation of solar driven desiccant evaporative cooling systems through innovative control strategies; (9) Green chiller association (Uli Jakob); (10) Climate Well {sup registered} (Olof Hallstrom); (11) Low capacity absorption chillers for solar cooling applications (Gregor Weidner); (12) Solar cooling in residential, small scale commercial and industrial applications with adsorption technology (Walter Mittelbach); (13) French solar heating and cooling development programme based on energy performance (Daniel Mugnier); (14) Mirrox fresnel process heat collectors for industrial applications and solar cooling (Christian Zahler); (15) Modelling and analyzing solar cooling systems in polysun (Seyen Hossein Rezaei); (16) Solar cooling application in Valle Susa Italy (Sufia Jung); (17) Virtual case study on small solar cooling systems within the SolarCombi+Project (Bjoern Nienborg); (18) Design of solar cooling plants under uncertainty (Fernando Dominguez-Munoz); (19) Fast pre-design of systems using solar thermally driven chillers (Hans-Martin Henning); (20) Design of a high fraction solar heating and cooling plant in southern

  19. The minimum work required for air conditioning process

    International Nuclear Information System (INIS)

    Alhazmy, Majed M.

    2006-01-01

    This paper presents a theoretical analysis based on the second law of thermodynamics to estimate the minimum work required for the air conditioning process. The air conditioning process for hot and humid climates involves reducing air temperature and humidity. In the present analysis the inlet state is the state of the environment which has also been chosen as the dead state. The final state is the human thermal comfort fixed at 20 o C dry bulb temperature and 60% relative humidity. The general air conditioning process is represented by an equivalent path consisting of an isothermal dehumidification followed by a sensible cooling. An exergy analysis is performed on each process separately. Dehumidification is analyzed as a separation process of an ideal mixture of air and water vapor. The variations of the minimum work required for the air conditioning process with the ambient conditions is estimated and the ratio of the work needed for dehumidification to the total work needed to perform the entire process is presented. The effect of small variations in the final conditions on the minimum required work is evaluated. Tolerating a warmer or more humid final condition can be an easy solution to reduce the energy consumptions during critical load periods

  20. Automobile air-conditioning its energy and environmental impact; La climatisation automobile impact energetique et environnemental

    Energy Technology Data Exchange (ETDEWEB)

    Barbusse, St.; Gagnepain, L.

    2003-05-01

    Over the last three decades, automobile manufacturers have made a lot of progress in specific fuel consumption and engine emissions of pollutants. Yet the impact of these improvements on vehicle consumption has been limited by increased dynamic performances (maxi-mum speed, torque), increased safety (power steering and power brakes) and increased comfort (noise and vibration reduction, electric windows and thermal comfort). Because of this, the real CO{sub 2}-emission levels in vehicles is still high in a context where road transport is a major factor in the balance sheet of greenhouse gas emissions, thus in complying with the inter-national climate convention. Although European, Japanese and Korean manufacturers signed an important agreement with the European Commission for voluntarily reducing CO{sub 2} emissions from their vehicles, with a weighted average emission goal by sales of 140 grams per km on the MVEG approval cycle by 2008, it has to be noted that the European procedures for measuring fuel consumption and CO{sub 2} emissions do not take accessories into account, especially air-condition ng (A/C). The big dissemination of this equipment recognized as a big energy consumer and as using a refrigerant with a high global warming potential ed ADEME to implement a set of assessments of A/C's energy and environmental impact. In particular these assessments include studies of vehicle equipment rates, analyses of impact on fuel consumption as well as regulated pollutant emissions in the exhaust, a characterization of the refrigerant leakage levels and an estimate of greenhouse gas emissions for all air-conditioned vehicles. This leaflet summarizes the results of these actions. All of these studies and additional data are presented in greater detail in the document,-'Automobile Air-conditioning' (ADEME reference no. 4985). (author)

  1. Flow in air conditioned rooms

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    1974-01-01

    Flow in air conditioned r ooms is examined by means of model experiments . The different gearnetries giving unsteady, steady three- dimensional and steady twodimensional flow are determined . Velacity profiles and temperature profiles are measured in some of the geometries. A numerical solution...... of the flow equations is demonstrated and the flow in air conditioned rooms in case of steady two dimensional flow is predi cted. Compari son with measured results is shown i n the case of small Archimedes numbers, and predictions are shown at high Archimedes numbers. A numerical prediction of f low and heat...

  2. Articulated, Performance-Based Instruction Objectives Guide for Air Conditioning, Refrigeration, and Heating (Environmental Control System Installer/Servicer). Edition I.

    Science.gov (United States)

    Henderson, William Edward, Jr., Ed.

    This articulation guide contains 17 units of instruction for the first year of a two-year vocational program designed to prepare the high school graduate to install, maintain, and repair various types of residential and commercial heating, air conditioning, and refrigeration equipment. The units are to introduce the student to fundamental theories…

  3. Computer Model to Estimate Reliability Engineering for Air Conditioning Systems

    International Nuclear Information System (INIS)

    Afrah Al-Bossly, A.; El-Berry, A.; El-Berry, A.

    2012-01-01

    Reliability engineering is used to predict the performance and optimize design and maintenance of air conditioning systems. Air conditioning systems are expose to a number of failures. The failures of an air conditioner such as turn on, loss of air conditioner cooling capacity, reduced air conditioning output temperatures, loss of cool air supply and loss of air flow entirely can be due to a variety of problems with one or more components of an air conditioner or air conditioning system. Forecasting for system failure rates are very important for maintenance. This paper focused on the reliability of the air conditioning systems. Statistical distributions that were commonly applied in reliability settings: the standard (2 parameter) Weibull and Gamma distributions. After distributions parameters had been estimated, reliability estimations and predictions were used for evaluations. To evaluate good operating condition in a building, the reliability of the air conditioning system that supplies conditioned air to the several The company's departments. This air conditioning system is divided into two, namely the main chilled water system and the ten air handling systems that serves the ten departments. In a chilled-water system the air conditioner cools water down to 40-45 degree F (4-7 degree C). The chilled water is distributed throughout the building in a piping system and connected to air condition cooling units wherever needed. Data analysis has been done with support a computer aided reliability software, this is due to the Weibull and Gamma distributions indicated that the reliability for the systems equal to 86.012% and 77.7% respectively. A comparison between the two important families of distribution functions, namely, the Weibull and Gamma families was studied. It was found that Weibull method performed for decision making.

  4. Hospital-acquired infections associated with poor air quality in air-conditioned environments

    Directory of Open Access Journals (Sweden)

    Daniela Pinheiro da Silva

    2013-10-01

    Full Text Available Backgound and Objectives: Individuals living in cities increasingly spend more time indoors in air-conditioned environments. Air conditioner contamination can be caused by the presence of aerosols from the external or internal environment, which may be associated with disease manifestations in patients present in this type of environment. Therefore, the aim of this review was to assess the air quality in air-conditioned hospital environments as a risk factor for hospital-acquired infections – HAI – as the air can be a potential source of infection, as well as assess the exposure of professionals and patients to different pollutants. Material and Methods: A literature review was performed in the LILACS, MEDLINE, SCIELO, SCIENCE DIRECT databases, CAPES thesis database and Ministry of Health – Brazil, including studies published between 1982 and 2008. The literature search was grouped according to the thematic focus, as follows: ventilation, maintenance and cleaning of systems that comprehend the environmental quality standard. Discussion and Conclusion: Outbreaks of hospital-acquired infections associated with Aspergillus, Acinetobacter, Legionella, and other genera such as Clostridium and Nocardia, which were found in air conditioners, were observed, thus indicating the need for air-conditioning quality control in these environments.

  5. Radon mitigation in schools utilising heating, ventilating and air conditioning systems

    International Nuclear Information System (INIS)

    Fisher, G.; Ligman, B.; Brennan, T.; Shaughnessy, R.; Turk, B.H.; Snead, B.

    1994-01-01

    As part of a continuing radon in schools technology development effort, EPA's School Evaluation Team has performed radon mitigation in schools by the method of ventilation/pressurisation control technology. Ventilation rates were increased, at a minimum, to meet the American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE) standard, Ventilation for Acceptable Indoor Air Quality (ASHRAE 62-1989). This paper presents the results and the preliminary evaluations which led to the team's decision to implement this technology. Factors considered include energy penalties, comfort, indoor air quality (IAQ), building shell tightness, and equipment costs. Cost benefit of heat recovery ventilation was also considered. Earlier results of the SEP team's efforts have indicated a severe ventilation problem within the schools of the United States. Two case studies are presented where HVAC technology was implemented for controlling radon concentrations. One involved the installation of a heat recovery ventilator to depressurise a crawl space and provide ventilation to the classrooms which previously had no mechanical ventilation. The other involved the restoration of a variable air volume system in a two-storey building. The HVAC system's controls were restored and modified to provide a constant building pressure differential to control the entry of radon. Pre-mitigation and post-mitigation indoor air pollutant measurements were taken, including radon, carbon dioxide (CO 2 ), particulates, and bio-aerosols. Long-term monitoring of radon, CO 2 , building pressure differentials, and indoor/outdoor temperature and relative humidity is presented. (author)

  6. Machine and lubricant condition monitoring for extended equipment lifetimes and predictive maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Lukas, M; Anderson, D P [Spectro Incorporated, Littleton, Massachusetts (United States)

    1998-12-31

    Predictive maintenance has gained wide acceptance as a cost cutting strategy in modern industry. Condition monitoring by lubricant analysis is one of the basic tools of a predictive maintenance program along with vibration monitoring, performance monitoring and thermography. In today`s modern power generation, manufacturing, refinery, transportation, mining, and military operations, the cost of equipment maintenance, service, and lubricants are ever increasing. Parts, labor, equipment downtime and lubricant prices and disposal costs are a primary concern in a well run maintenance management program. Machine condition monitoring based on oil analysis has become a prerequisite in most maintenance programs. Few operations can afford not to implement a program if they wish to remain competitive, and in some cases, profitable. This presentation describes a comprehensive Machine Condition Monitoring Program based on oil analysis. Actual operational condition monitoring programs will be used to review basic components and analytical requirements. Case histories will be cited as examples of cost savings, reduced equipment downtime and increased efficiencies of maintenance programs through a well managed oil analysis program. (orig.)

  7. Machine and lubricant condition monitoring for extended equipment lifetimes and predictive maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Lukas, M.; Anderson, D.P. [Spectro Incorporated, Littleton, Massachusetts (United States)

    1997-12-31

    Predictive maintenance has gained wide acceptance as a cost cutting strategy in modern industry. Condition monitoring by lubricant analysis is one of the basic tools of a predictive maintenance program along with vibration monitoring, performance monitoring and thermography. In today`s modern power generation, manufacturing, refinery, transportation, mining, and military operations, the cost of equipment maintenance, service, and lubricants are ever increasing. Parts, labor, equipment downtime and lubricant prices and disposal costs are a primary concern in a well run maintenance management program. Machine condition monitoring based on oil analysis has become a prerequisite in most maintenance programs. Few operations can afford not to implement a program if they wish to remain competitive, and in some cases, profitable. This presentation describes a comprehensive Machine Condition Monitoring Program based on oil analysis. Actual operational condition monitoring programs will be used to review basic components and analytical requirements. Case histories will be cited as examples of cost savings, reduced equipment downtime and increased efficiencies of maintenance programs through a well managed oil analysis program. (orig.)

  8. Optimization of recirculating laminar air flow in operating room air conditioning systems

    Directory of Open Access Journals (Sweden)

    Enver Yalcin

    2016-04-01

    Full Text Available The laminar flow air-conditioning system with 100% fresh air is used in almost all operating rooms without discrimination in Turkey. The laminar flow device which is working with 100% fresh air should be absolutely used in Type 1A operating rooms. However, there is not mandatory to use of 100% fresh air for Type 1B defined as places performed simpler operation. Compared with recirculating laminar flow, energy needs of the laminar flow with 100 % fresh air has been emerged about 40% more than re-circulated air flow. Therefore, when a recirculating laminar flow device is operated instead of laminar flow system with 100% fresh air in the Type 1B operating room, annual energy consumption will be reduced. In this study, in an operating room with recirculating laminar flow, optimal conditions have been investigated in order to obtain laminar flow form by analyzing velocity distributions at various supply velocities by using computational fluid dynamics method (CFD.

  9. Performance Analysis of Air-to-Water Heat Pump in Latvian Climate Conditions

    Science.gov (United States)

    Kazjonovs, Janis; Sipkevics, Andrejs; Jakovics, Andris; Dancigs, Andris; Bajare, Diana; Dancigs, Leonards

    2014-12-01

    Strategy of the European Union in efficient energy usage demands to have a higher proportion of renewable energy in the energy market. Since heat pumps are considered to be one of the most efficient heating and cooling systems, they will play an important role in the energy consumption reduction in buildings aimed to meet the target of nearly zero energy buildings set out in the EU Directive 2010/31/EU. Unfortunately, the declared heat pump Coefficient of Performance (COP) corresponds to a certain outdoor temperature (+7 °C), therefore different climate conditions, building characteristics and settings result in different COP values during the year. The aim of this research is to investigate the Seasonal Performance factor (SPF) values of air-to-water heat pump which better characterize the effectiveness of heat pump in a longer selected period of time, especially during the winter season, in different types of residential buildings in Latvian climate conditions. Latvia has four pronounced seasons of near-equal length. Winter starts in mid-December and lasts until mid-March. Latvia is characterized by cold, maritime climate (duration of the average heating period being 203 days, the average outdoor air temperature during the heating period being 0.0 °C, the coldest five-day average temperature being -20.7 °C, the average annual air temperature being +6.2 °C, the daily average relative humidity being 79 %). The first part of this research consists of operational air-towater heat pump energy performance monitoring in different residential buildings during the winter season. The second part of the research takes place under natural conditions in an experimental construction stand which is located in an urban environment in Riga, Latvia. The inner area of this test stand, where air-to-water heat pump performance is analyzed, is 9 m2. The ceiling height is 3 m, all external wall constructions (U = 0.16 W/(m2K)) have ventilated facades. To calculate SPF, the

  10. Reduced energy reqirement for air conditioning by using air diffusion with air flow from floor to ceiling

    Energy Technology Data Exchange (ETDEWEB)

    Bach, H; Dittes, W; Mangelsdorf, R; Detzer, R; Jungbaeck, E; Fitzner, K; Radtke, W; Soethout, F

    1982-02-01

    The condition of the air in the occupied zone in airconditioned rooms is influenced by the mixing of supply air with room air. When supplying air from the ceiling there is a mixing all over the room, when supplying from the floor or from desks there is a mixing region only in the lower area. Above this their is warm air from which the return air is drawn. For air supply from below the cooling load can be decreased. In combination with the possible enthalpy difference between room air and supply air this decrease of the cooling load influences the necessary air rate. The interdependence of various air conditioning systems and various air temperatures is shown with a computer program. The load factor for various air distribution system at various cooling loads have been measured in a room of (8 x 5)m/sup 2/ x 3m. Experiments in a smaller model room (scale 1:3) showed how the heat was transported from the mixing region to the stratification region. The theoretically gained influence of the supply air jets of the height of the mixing region and on the load rate could be verified by the experiments. For the design of the fresh air rate, experience has been gained by measurements with tracegas (N/sub 2/O) in a third room. In comparing calculations the annual energy consumption has been computed for a building assuming various air conditioning systems and typical operation data. From experience with the existing systems the conclusions have been drawn how air distribution from floor to ceiling can be installed and operated.

  11. Experimental and Numerical Study of the Radiant Induction-Unit and the Induction Radiant Air-Conditioning System

    Directory of Open Access Journals (Sweden)

    Qiang Si

    2016-12-01

    Full Text Available In this paper we proposed the novel air-conditioning system which combined induction ventilation and radiant air-conditioning. The indoor terminal device is the radiant induction-unit (RIDU. The RIDU is the induction unit combined with the pore radiant panel on which the copper pipes with rigid aluminum diffusion fins are installed. The two-stage evaporator chiller with the non-azeotropic mixture refrigerant is utilized in the system to reduce the initial investment in equipment. With the performance test and the steady state heat transfer model based on the theory of radiative heat transfer, the relationship between the induction ratio of the RIDU and the characteristic of the air supply was studied. Based on this, it is verified that the RIDU has a lower dew-point temperature and better anti-condensation performance than a traditional plate-type radiant panel. The characteristics of the radiation and convection heat transfer of the RIDU were studied. The total heat exchange of the RIDU can be 16.5% greater than that of the traditional plate-type radiant terminal.

  12. Solar air conditioning. Dresden colloquium; Solare Klimatisierung. Dresdner Kolloquium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    Subjects: R + D activities in solar air conditioning; dessicative and evaporative cooling (DEC) - systems and components; Chances of solar air conditioning in Europe; Practical experience with solar-assisted air conditioning; Performance of a solar system at Lissabon; DEC system in the Alsenblock building, Berlin; Does solar air conditioning require specially designed buildings; Performance of solar heated adsorption refrigerators; Low-capacity absacity absorption systems for solar air conditioning. [German] Die Kolloquiumsschrift beinhaltet Unterlagen ueber die abgehandelten Themen. Sie lauten: F and E-Aktivitaeten im Bereich Solare Klimatisierung; SGK(DEC-Technik) - ausgefuehrte Anlagen und deren Komponenten; Chancen der solaren Klimatisierung in Europa; Erfahrungen mit der solarunterstuetzten Klimatisierung; Energieverbrauch und Regelung von SGK-Anlagen; Betriebserfahrungen einer Solaranlage in Lissabon; Realisierung der SGK im Alsenblock Berlin; Erfordert die solare Klimatisierung besondere Gebaeude?; Betriebserfahrungen mit solar beheizten Adsorptionskaeltemaschinen; Absorptionsanlagen kleiner Leistung fuer solare Klimatisierung. (orig.)

  13. Safety for Compressed Gas and Air Equipment. Module SH-26. Safety and Health.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on safety for compressed gas and air equipment is one of 50 modules concerned with job safety and health. This module presents technical data about commonly used gases and stresses the procedures necessary for safe handling of compressed gases. Following the introduction, 14 objectives (each keyed to a page in the text) the…

  14. Controller recovery from equipment failures in air traffic control: A framework for the quantitative assessment of the recovery context

    International Nuclear Information System (INIS)

    Subotic, Branka; Schuster, Wolfgang; Majumdar, Arnab; Ochieng, Washington

    2014-01-01

    Air Traffic Control (ATC) involves a complex interaction of human operators (primarily air traffic controllers), equipment and procedures. On the rare occasions when equipment malfunctions, controllers play a crucial role in the recovery process of the ATC system for continued safe operation. Research on human performance in other safety critical industries using human reliability assessment techniques has shown that the context in which recovery from failures takes place has a significant influence on the outcome of the process. This paper investigates the importance of context in which air traffic controller recovery from equipment failures takes place, defining it in terms of 20 Recovery Influencing Factors (RIFs). The RIFs are used to develop a novel approach for the quantitative assessment of the recovery context based on a metric referred to as the Recovery Context Indicator (RCI). The method is validated by a series of simulation exercises conducted at a specific ATC Centre. The proposed method is useful to assess recovery enhancement approaches within ATC centres

  15. 2013 German refrigeration and air conditioning meeting. Proceedings

    International Nuclear Information System (INIS)

    2013-01-01

    These proceedings cover the following main topics: cryoengineering - superconduction / energy storage; cryoapplications in biology and medicine; metrology; adsorption processes; condensation/evaporation; working fluids / simulation; ice production; plants and compressors; expansion and ejectors or recooling; use of cooling (passenger car air conditioning, supermarket); refrigerants; plant efficiency; emissions and legislation; air conditioning and use of heat pumps; air quality and control; building technology and block-type thermal power stations. [de

  16. Modelling of air-conditioned and heated spaces

    Energy Technology Data Exchange (ETDEWEB)

    Moehl, U

    1987-01-01

    A space represents a complex system involving numerous components, manipulated variables and disturbances which need to be described if dynamic behaviour of space air is to be determined. A justifiable amount of simulation input is determined by the application of adjusted modelling of the individual components. The determination of natural air exchange in heated spaces and of space-air flow in air-conditioned space are a primary source of uncertainties. (orig.).

  17. 2014 German refrigeration and air conditioning meeting. Proceedings

    International Nuclear Information System (INIS)

    2014-01-01

    The proceedings of the 2014 German refrigeration and air conditioning meeting contain contributions on the following topics: cryotechnology, fundamentals and materials for the refrigeration and heat pump technology, devices and components for the refrigeration and heat pump technology, applications of refrigeration technologies, air conditioning technology and heat pump applications, cryotechnology in biology and medicine, heat transfer and ventilation, guidelines and legal topics, refrigerant fluid - oil mixtures, control and surveillance, simulation and control, ambient air.

  18. DISAIN SIMULATOR AUTOMOTIVE AIR CONDITIONING UNTUK MENINGKATKAN KOMPETENSI MAHASISWA

    Directory of Open Access Journals (Sweden)

    Kamin Sumardi

    2015-08-01

    Full Text Available Perkembangan teknologi automotive air conditioning dan aplikasinya sangat cepat, salah satunya dengan menerapkan green technology. Penerapan green technology pada teknologi air conditioning, karena masih menggunakan refrigeran yang mengandung unsur kimia yang merusak lapisan ozon dan pemanasan global. Alih teknologi bidang air conditioning yang ramah lingkungan, belum dibarengi dengan ketersediaan tenaga kerja pada tingkat SMK dan perguruan tinggi yang memadai, baik kuantitas maupun kompetensinya. Pada level SMK dan perguruan tinggi, kompetensi akademik dan vokasional bidang automotive air conditioning harus terus ditingkatkan dan diperbaharui sesuai dengan perkembangan teknologinya. Penelitian ini bertujuan untuk menghasilkan simulator automotive air conditioner dan model pembelajaran tata udara pada otomotif berwawasan teknologi ramah lingkungan. Penelitian menggunakan metode research and development dengan langkah-langkah: studi pendahuluan, perencanaan, pengembangan melalui uji coba simulator, validasi, dan produk akhir. Simulator dibuat sesuai dengan kondisi di dunia kerja agar tidak terjadi miskonsepsi dan mala-praktek automotive air conditioning. Simulator ini dibuat secara kompak dan mobile atau dapat dipindah dan dibawa. Model pembelajaran disesuaikan dengan kebutuhan kompetensi yang dipersyaratkan. Hasil penelitian menunjukkan bahwa dengan bantuan simulator automotive air conditioner dan model pembelajaran yang tepat mahasiswa mampu menyerap konsep dan praktek lebih cepat 85%. Hasil belajar pada ranah afektif, kognitif, psikomotor dan kompetensi meningkat secara signifikan.

  19. Performance assessment and transient optimization of air precooling in multi-stage solid desiccant air conditioning systems

    International Nuclear Information System (INIS)

    Gadalla, Mohamed; Saghafifar, Mohammad

    2016-01-01

    Highlights: • Studying three two-stage solid desiccant cooling systems using Maisotsenko cooler. • Proposing precooling to improve two-stage desiccant systems’ COP for humid climates. • Performing transient analysis for a two-stage solid desiccant cooler in UAE. • Optimizing daily performance of a two-stage solid desiccant cooler for UAE. - Abstract: Renewable energy is one of the most promising solutions to both energy and global warming crisis. Energy consumption can be minimized considerably by utilizing solar energy in air conditioning systems operation. One of the popular solar air conditioning technologies is desiccant air conditioning. Nonetheless, conventional desiccant air conditioning systems have a relatively low coefficient of performance (COP). In consequence, two-stage desiccant air-conditioning systems are proposed to improve desiccant air conditioning systems’ COP. Moreover, a recently commercialized cooling method named Maisotsenko cooling cycle which is capable of cooling air near to its dew point temperature is considered to be integrated within the proposed multi-stage desiccant cooling systems. In this paper, three new two-stage desiccant air conditioning systems incorporating Maisotsenko cooling cycle are proposed and investigated in details for hot and humid climates such as UAE. Furthermore, air precooling is considered to improve two stage desiccant air conditioning systems’ COP. Moreover, full transient analysis and optimization are carried out in UAE within June–October. The proposed system can minimize the required solar heating during noon time as the ambient air dry bulb temperature rises. Average COP of the system during electricity load peak hours (10:00–14:00) for all five considered and combined months is 1.77. Average rate of heat input required to operate the system and average building cooling load are determined to be 100.3 kW and 46.2 kW, respectively. Therefore, system average COP is computed to be 0.46.

  20. Air conditioning for data processing system areas

    Directory of Open Access Journals (Sweden)

    Hernando Camacho García

    1996-09-01

    Full Text Available The appropiate selection of air conditioners for data processing system areas requires the knowledge of the environmental desing conditions, the air conditioning systems succssfully used computer and the cooling loads to handle. This work contains information about a wide variety of systems designed for computer room applications. a complete example of calculation to determine the amount of heat to be removed for satisfactory operation, is also included.

  1. Experimental analysis of fuzzy controlled energy efficient demand controlled ventilation economizer cycle variable air volume air conditioning system

    Directory of Open Access Journals (Sweden)

    Rajagopalan Parameshwaran

    2008-01-01

    Full Text Available In the quest for energy conservative building design, there is now a great opportunity for a flexible and sophisticated air conditioning system capable of addressing better thermal comfort, indoor air quality, and energy efficiency, that are strongly desired. The variable refrigerant volume air conditioning system provides considerable energy savings, cost effectiveness and reduced space requirements. Applications of intelligent control like fuzzy logic controller, especially adapted to variable air volume air conditioning systems, have drawn more interest in recent years than classical control systems. An experimental analysis was performed to investigate the inherent operational characteristics of the combined variable refrigerant volume and variable air volume air conditioning systems under fixed ventilation, demand controlled ventilation, and combined demand controlled ventilation and economizer cycle techniques for two seasonal conditions. The test results of the variable refrigerant volume and variable air volume air conditioning system for each techniques are presented. The test results infer that the system controlled by fuzzy logic methodology and operated under the CO2 based mechanical ventilation scheme, effectively yields 37% and 56% per day of average energy-saving in summer and winter conditions, respectively. Based on the experimental results, the fuzzy based combined system can be considered to be an alternative energy efficient air conditioning scheme, having significant energy-saving potential compared to the conventional constant air volume air conditioning system.

  2. Modeling of Energy-saving System of Conditioning Mine Air for Shallow Underground Mines

    Science.gov (United States)

    Nikolaev, Alexandr; Miftakhov, Timur; Nikolaeva, Evgeniya

    2017-11-01

    Mines of Verkhnekamsk potassium-magnesium salt deposit in Perm Krai can be subsumed under shallow mines (depth less than 500 meters). At the present moment in shallow underground mines the are problem of condensate formation in large quantities, when ventilation warm seasons of the year. This problem is more actual for salt mine, where during contact between water and potassium-magnesium ore produced electrolyte, which give rise wear of equipment. For prevent/quantity reduction condensate formation in mine used system of conditioning (refrigerating and dehumidifying) mine air (ACS). However, application this system is limited by reason of tremendous costs of electric energy for their work.

  3. Ventilation and air conditioning systems in maritime productions units; Panorama dos sistemas de VAC em unidades maritimas de producao

    Energy Technology Data Exchange (ETDEWEB)

    Guedes, Fernando Pedrosa; Sztajnbok, Ernani Luis [PETROBRAS, Rio de Janeiro, RJ (Brazil); Padua, Carlos Eduardo Dantas de; Passos, Alfredo Silveira [DUOVAC Engenharia Ltda. (Brazil)

    2004-07-01

    In an Offshore Stationary Production Unit (SPU), the adequate project of the Ventilation and Air Conditioning (VAC) System is not only a thermal comfort requirement but part of the essential safety services of the installation and complement for area classification requirements associated with electrical equipment. The VAC installations are sometimes the object of complaints by onboard team. Problems such as unsatisfactory system performance, high noise levels in the accommodation quarters, offices and other areas and the discomfort caused by unbalanced ventilation and air conditioning systems, are some of the most frequent complaints. Air Conditioning systems are classified as Direct and Indirect Expansion. Decentralized systems with Indirect Expansion has been adopted in PETROBRAS projects. This conception is not used in VAC Systems for platforms installed in North Sea, where the use of Centralized Systems with Direct Expansion are more common. The objective of this work is to compare the VAC conception projects, analyzing their advantages and disadvantages . The evaluation of VAC System in PETROBRAS project, and their steps in SPU development, is also scope of this paper. (author)

  4. Airside HVAC BESTEST. Adaptation of ASHRAE RP 865 Airside HVAC Equipment Modeling Test Cases for ASHRAE Standard 140. Volume 1, Cases AE101-AE445

    Energy Technology Data Exchange (ETDEWEB)

    Neymark, J. [J. Neymark & Associates, Golden, CO (United States); Kennedy, M. [Mike D. Kennedy, Inc., Townsend, WA (United States); Judkoff, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gall, J. [AAON, Inc., Tulsa, OK (United States); Knebel, D. [AAON, Inc., Tulsa, OK (United States); Henninger, R. [GARD Analytics, Inc., Arlington Heights, IL (United States); Witte, M. [GARD Analytics, Inc., Arlington Heights, IL (United States); Hong, T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McDowell, T. [Thermal Energy System Specialists, Madison, WI (United States); Yan, D. [Tsinghua Univ., Beijing (China); Zhou, X. [Tsinghua Univ., Beijing (China)

    2016-03-01

    This report documents a set of diagnostic analytical verification cases for testing the ability of whole building simulation software to model the air distribution side of typical heating, ventilating and air conditioning (HVAC) equipment. These cases complement the unitary equipment cases included in American National Standards Institute (ANSI)/American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard 140, Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs, which test the ability to model the heat-transfer fluid side of HVAC equipment.

  5. Plate heat exchangers in air conditioning applications. Development of air-coolers, air-heaters and air-conditioning units with low pressure loss. Plattenwaermetauscher in raumlufttechnischen Anlagen. Entwicklung stroemungsoptimierter Luftkuehler, Lufterhitzer und Klimageraete

    Energy Technology Data Exchange (ETDEWEB)

    Bach, H; Diemer, R; Eisenmann, G; Goettling, D; Madjidi, M

    1989-08-01

    To prepare the development of a water to air plate heat exchanger the state of the art, i.e. the technological knowhow and the design basis are given. The concept and ideas are presented which lead to a slightly wavy plate. Furthermore an exemplary design of a plate heat exchanger and an air-conditioning unit is described and finally the application of plate heat exchangers as direct evaporators and the potential icing problems are investigated. Comparing measured and calculated data shows that the performance of plates with plane surfaces can be predicted fairly well by the presented design methods. The performance of plates with strongly wavy surface however has to be measured. Optimization calculations yield to an air gap of slightly over 4 mm. Comparison with an air-conditioning unit demonstrates that the strongest advantage is for the air cooler (one third of the pressure loss) that a new concept of an air-conditioning unit has lower losses in the fan unit and that it does not need an eliminator. This results in half the volume for the new unit, in a pressure drop of 88%, fan power of 90% and fan revolutions of 50%. (orig./GL).

  6. Preventive maintenance basis: Volume 21 -- HVAC, air handling equipment. Final report

    International Nuclear Information System (INIS)

    Worledge, D.; Hinchcliffe, G.

    1997-12-01

    US nuclear plants are implementing preventive maintenance (PM) tasks with little documented basis beyond fundamental vendor information to support the tasks or their intervals. The Preventive Maintenance Basis project provides utilities with the technical basis for PM tasks and task intervals associated with 40 specific components such as valves, electric motors, pumps, and HVAC equipment. This report provides an overview of the PM Basis project and describes use of the PM Basis database. Volume 21 of the report provides a program of PM tasks suitable for application to HVAC-Air Handling Equipment. The PM tasks that are recommended provide a cost-effective way to intercept the causes and mechanisms that lead to degradation and failure. They can be used, in conjunction with material from other sources, to develop a complete PM program or to improve an existing program. Users of this information will be utility managers, supervisors, craft technicians, and training instructors responsible for developing, optimizing, or fine-tuning PM programs

  7. Strategy Guideline: Compact Air Distribution Systems

    Energy Technology Data Exchange (ETDEWEB)

    Burdick, A.

    2013-06-01

    This Strategy Guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. Traditional systems sized by 'rule of thumb' (i.e., 1 ton of cooling per 400 ft2 of floor space) that 'wash' the exterior walls with conditioned air from floor registers cannot provide appropriate air mixing and moisture removal in low-load homes. A compact air distribution system locates the HVAC equipment centrally with shorter ducts run to interior walls, and ceiling supply outlets throw the air toward the exterior walls along the ceiling plane; alternatively, high sidewall supply outlets throw the air toward the exterior walls. Potential drawbacks include resistance from installing contractors or code officials who are unfamiliar with compact air distribution systems, as well as a lack of availability of low-cost high sidewall or ceiling supply outlets to meet the low air volumes with good throw characteristics. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  8. Development and Design of a User Interface for a Computer Automated Heating, Ventilation, and Air Conditioning System

    International Nuclear Information System (INIS)

    Anderson, B.

    1999-01-01

    A user interface is created to monitor and operate the heating, ventilation, and air conditioning system. The interface is networked to the system's programmable logic controller. The controller maintains automated control of the system. The user through the interface is able to see the status of the system and override or adjust the automatic control features. The interface is programmed to show digital readouts of system equipment as well as visual queues of system operational statuses. It also provides information for system design and component interaction. The interface is made easier to read by simple designs, color coordination, and graphics. Fermi National Accelerator Laboratory (Fermi lab) conducts high energy particle physics research. Part of this research involves collision experiments with protons, and anti-protons. These interactions are contained within one of two massive detectors along Fermilab's largest particle accelerator the Tevatron. The D-Zero Assembly Building houses one of these detectors. At this time detector systems are being upgraded for a second experiment run, titled Run II. Unlike the previous run, systems at D-Zero must be computer automated so operators do not have to continually monitor and adjust these systems during the run. Human intervention should only be necessary for system start up and shut down, and equipment failure. Part of this upgrade includes the heating, ventilation, and air conditioning system (HVAC system). The HVAC system is responsible for controlling two subsystems, the air temperatures of the D-Zero Assembly Building and associated collision hall, as well as six separate water systems used in the heating and cooling of the air and detector components. The BYAC system is automated by a programmable logic controller. In order to provide system monitoring and operator control a user interface is required. This paper will address methods and strategies used to design and implement an effective user interface

  9. 40 CFR 89.326 - Engine intake air humidity measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air humidity measurement... Test Equipment Provisions § 89.326 Engine intake air humidity measurement. (a) Humidity conditioned air... type of intake air supply, the humidity measurements must be made within the intake air supply system...

  10. Impact of pre-conditioning on the qualification of safety-related equipment

    International Nuclear Information System (INIS)

    Isgro, J.R.

    1982-01-01

    This paper shares some recent experiences on the effects of preconditioning on the qualification of safety-related equipment not located in a harsh environment. Environmental and seismic qualification testing programs were conducted following the guidelines of IEEE 323-1974, IEEE 344-1975 and appropriate IEEE daughter standards, where available. The examples that follow will illustrate the degree of pre-conditioning of safety-related equipment qualified to the requirements of IEEE-323-1974, and its effect on the outcome of the qualification program

  11. Benefits of Leapfrogging to Superefficiency and Low Global Warming Potential Refrigerants in Room Air Conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Nihar K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wei, Max [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Letschert, Virginie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Phadke, Amol A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-10-01

    Hydrofluorocarbons (HFCs) emitted from uses such as refrigerants and thermal insulating foam, are now the fastest growing greenhouse gases (GHGs), with global warming potentials (GWP) thousands of times higher than carbon dioxide (CO2). Because of the short lifetime of these molecules in the atmosphere,1 mitigating the amount of these short-lived climate pollutants (SLCPs) provides a faster path to climate change mitigation than control of CO2 alone. This has led to proposals from Africa, Europe, India, Island States, and North America to amend the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) to phase-down high-GWP HFCs. Simultaneously, energy efficiency market transformation programs such as standards, labeling and incentive programs are endeavoring to improve the energy efficiency for refrigeration and air conditioning equipment to provide life cycle cost, energy, GHG, and peak load savings. In this paper we provide an estimate of the magnitude of such GHG and peak electric load savings potential, for room air conditioning, if the refrigerant transition and energy efficiency improvement policies are implemented either separately or in parallel.

  12. Classified directory of the field of refrigeration and air conditioning technology 2006. Register of the expert companies in the field of refrigeration and air conditioning plants craft including a supply and service list - register of the suppliers in the field of refrigeration and air conditioning technology including the complete ranges of material groups offered - register of expert schools, technical experts, technical expert information and norms; Branchenbuch der Kaelte- und Klimatechnik 2006. Verzeichnis der Fachbetriebe des Kaelte- und Klimaanlagenbauerhandwerks mit Liefer- und Leistungsangebot - Verzeichnis der Lieferanten von Kaelte- und Klimatechnik mit vollstaendigem Warengruppenangebot - Verzeichnis von Fachschulen, Sachverstaendigen u.v.a. - Technische Fachinformationen und Normen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The present edition of the ''Classified directory of the field of refrigeration and air conditioning technology'' 2006 contains useful addresses, data and facts of the field: (a) approximately 1.500 addresses of expert companies in the field of refrigeration and air conditioning technology; (b) a register of suppliers and material groups in the field of refrigeration and air conditioning technology; (c) a technical part containing the most important norms of the field, laws and regulations in order to inform the reader for his daily work. The reference book is supposed to provide a good overview for the work in the field of technical building equipment. (orig./AKF)

  13. FY1995 study of thermodynamic properties of HFC refrigerant mixtures for Lorentz-cycled new generation air-conditioning equipments; 1995 nendo Lorentz cycle ka shinsedai kucho kikiyo HFC kei kongo reibai no netsurikigaku seishitsu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    A hydrochlorofluorocarbon (HCFC) refrigerant, R-22, is currently being used almost exclusively as a refrigerant for conventional air-conditioning equipments. Since HCFCs are expected to be banned shortly, it is considered a crucial issue to support R and D of the air-conditioning system Lorentz-cycled with hydrofluorocarbon (HFC) refrigerants mixtures. In the present research project, therefore, it is aimed to reveal some of the essential thermodynamic properties of HFC refrigerant mixtures systematically. On the basis of a series of achievements for the last several years by the present research coordinator and his group regarding thermodynamic properties of single-component and blended HFC refrigerants, we have conducted following three major research programs rather systematically on which no challenges have ever been reported worldwide. Throughout a series of experimental as well as analytical researches performed so as to meet the objectives mentioned above, some novel knowledge and valuable outcomes could be obtained in the present study. (1) Precise measurements of vapor-liquid equilibrium properties with simultaneous determination of densities, latent heats of vaporization, and isobaric specific heat capacities in liquid phase. (2) Analytical studies to establish thermodynamic property modeling. (3) Feasibility study of evaluating the Lorentz-cycled performance. (NEDO)

  14. Performance Analysis of a Solar Dryer Equipped with a Recycling Air System and Desiccant Chamber

    Directory of Open Access Journals (Sweden)

    M.H Aghkhani

    2013-09-01

    Full Text Available Drying is a high energy consuming process. Solar drying is one of the most popular methods for dehydration of agricultural products. In the present study, the performance of a forced convection solar dryer equipped with recycling air system and desiccant chamber was investigated. The solar dryer is comprised of solar collector, drying chamber, silica jell desiccant chamber, air ducts, fan and measuring and controlling system. Drying rate and energy consumption in three levels of air temperature (40, 45 and 50 oC and two modes of drying (with recycling air and no-recycling with open duct system were measured and compared. The results showed that increasing the drying air temperature decreased the drying time and increased the energy consumption in the mode of non-recycling air system. The dryer efficiency and drying rate were better in the mode of recycling air system than open duct system. The highest dryer efficiency was obtained from drying air temperature of 50 oC and the mode of recycling air system. In general, the efficiency of solar collector and the highest efficiency of the dryer were 0.34 and 0.41, respectively.

  15. Cache Management of Big Data in Equipment Condition Assessment

    Directory of Open Access Journals (Sweden)

    Ma Yan

    2016-01-01

    Full Text Available Big data platform for equipment condition assessment is built for comprehensive analysis. The platform has various application demands. According to its response time, its application can be divided into offline, interactive and real-time types. For real-time application, its data processing efficiency is important. In general, data cache is one of the most efficient ways to improve query time. However, big data caching is different from the traditional data caching. In the paper we propose a distributed cache management framework of big data for equipment condition assessment. It consists of three parts: cache structure, cache replacement algorithm and cache placement algorithm. Cache structure is the basis of the latter two algorithms. Based on the framework and algorithms, we make full use of the characteristics of just accessing some valuable data during a period of time, and put relevant data on the neighborhood nodes, which largely reduce network transmission cost. We also validate the performance of our proposed approaches through extensive experiments. It demonstrates that the proposed cache replacement algorithm and cache management framework has higher hit rate or lower query time than LRU algorithm and round-robin algorithm.

  16. A study of alternative refrigerants for the refrigeration and air conditioning sector in Mauritius

    Science.gov (United States)

    Dreepaul, R. K.

    2017-11-01

    The most frequently used refrigerants in the refrigeration and air conditioning (RAC) sector in Mauritius are currently hydrochlorofluorocarbons (HCFC) and hydrofluorocarbons (HFC). However, because of their strong influence on global warming and the impact of HCFCs on the ozone layer, refrigerants such as ammonia (NH3), carbon dioxide (CO2) and Hydrocarbons (HC), having minimal impact on the environment, are being considered. So far, HCs have only been safely used in domestic refrigeration. Ammonia has been used mainly for industrial refrigeration whereas CO2 is still under study. In this paper, a comparative study of the various feasible alternatives is presented in a survey that was undertaken with major stake holders in the field. The retrofitting possibility of existing equipment was assessed and safety issues associated with each refrigerant were analysed. The major setback of hydrocarbons as a widely accepted refrigerant is its flammability which was considered as a major safety hazard by the majority of respondents in the survey and the main advantages are the improved equipment coefficient of performance (COP) and better TEWI factor. This resulted in a 12 % drop in energy consumption. Despite the excellent thermodynamic properties of ammonia, its use has mainly been confined to industrial refrigeration due to its toxicity. In Mauritius, the performance of ammonia in air conditioning is being evaluated on a pilot basis. The major setback of carbon dioxide as a refrigerant is the high operating pressure which is considered a safety hazard. The high initial investment cost and the lack of qualified maintenance technician is also an issue. The use of CO2 is mainly being considered in the commercial refrigeration sector.

  17. Electrical equipment performance under severe accident conditions (BWR/Mark 1 plant analysis): Summary report

    International Nuclear Information System (INIS)

    Bennett, P.R.; Kolaczkowski, A.M.; Medford, G.T.

    1986-09-01

    The purpose of the Performance Evaluation of Electrical Equipment during Severe Accident States Program is to determine the performance of electrical equipment, important to safety, under severe accident conditions. In FY85, a method was devised to identify important electrical equipment and the severe accident environments in which the equipment was likely to fail. This method was used to evaluate the equipment and severe accident environments for Browns Ferry Unit 1, a BWR/Mark I. Following this work, a test plan was written in FY86 to experimentally determine the performance of one selected component to two severe accident environments

  18. Health effects of air conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Molina, C.; Caillaud, D.

    The air conditioning used in residential or commercial buildings (offices, hotels, sterile areas of hospitals, computer and electronics industries) is responsible for a certain number of well identified ailments which can be classified in three groups: infections (legionnaires'disease, ornithosis), allergies (mainly respiratory) eg. rhinitis, asthma, alveolitis but also Monday morning illness or humidifier fever, various functional disorders grouped under the name Sick Building Syndrome. To avoid these problems, a certain number of recommendations may be made. They concern: installation of air conditioning, humidification which is the cause of bacterial and fungal contamination, filtration, monitoring of the installation by qualitative and quantitative measurements, maintenance. The legal problems relating to these illnesses, the responsibility for which is ultimately laid at the door of the installers, should also be mentioned. Allergies are recognized to be of professional origin in Table 66 of allergic illnesses issued by the Social Security.

  19. [Air quality control systems: heating, ventilating, and air conditioning (HVAC)].

    Science.gov (United States)

    Bellucci Sessa, R; Riccio, G

    2004-01-01

    After a brief illustration of the principal layout schemes of Heating, Ventilating, and Air Conditioning (HVAC), the first part of this paper summarizes the standards, both voluntary and compulsory, regulating HVAC facilities design and installation with regard to the question of Indoor Air Quality (IAQ). The paper then examines the problem of ventilation systems maintenance and the essential hygienistic requirements in whose absence HVAC facilities may become a risk factor for people working or living in the building. Lastly, the paper deals with HVAC design strategies and methods, which aim not only to satisfy comfort and air quality requirements, but also to ensure easy and effective maintenance procedures.

  20. [Airborne Fungal Aerosol Concentration and Distribution Characteristics in Air- Conditioned Wards].

    Science.gov (United States)

    Zhang, Hua-ling; Feng, He-hua; Fang, Zi-liang; Wang, Ben-dong; Li, Dan

    2015-04-01

    The effects of airborne fungus on human health in the hospital environment are related to not only their genera and concentrations, but also their particle sizes and distribution characteristics. Moreover, the mechanisms of aerosols with different particle sizes on human health are different. Fungal samples were obtained in medicine wards of Chongqing using a six-stage sampler. The airborne fungal concentrations, genera and size distributions of all the sampling wards were investigated and identified in detail. Results showed that airborne fungal concentrations were not correlated to the diseases or personnel density, but were related to seasons, temperature, and relative humidity. The size distribution rule had roughly the same for testing wards in winter and summer. The size distributions were not related with diseases and seasons, the percentage of airborne fungal concentrations increased gradually from stage I to stage III, and then decreased dramatically from stage V to stage VI, in general, the size of airborne fungi was a normal distribution. There was no markedly difference for median diameter of airborne fungi which was less 3.19 μm in these wards. There were similar dominant genera in all wards. They were Aspergillus spp, Penicillium spp and Alternaria spp. Therefore, attention should be paid to improve the filtration efficiency of particle size of 1.1-4.7 μm for air conditioning system of wards. It also should be targeted to choose appropriate antibacterial methods and equipment for daily hygiene and air conditioning system operation management.

  1. Opportunities to Reduce Air-Conditioning Loads Through Lower Cabin Soak Temperatures

    International Nuclear Information System (INIS)

    Farrington, R.; Cuddy, M.; Keyser, M.; Rugh, J.

    1999-01-01

    Air-conditioning loads can significantly reduce electric vehicle (EV) range and hybrid electric vehicle (HEV) fuel economy. In addition, a new U. S. emissions procedure, called the Supplemental Federal Test Procedure (SFTP), has provided the motivation for reducing the size of vehicle air-conditioning systems in the United States. The SFTP will measure tailpipe emissions with the air-conditioning system operating. If the size of the air-conditioning system is reduced, the cabin soak temperature must also be reduced, with no penalty in terms of passenger thermal comfort. This paper presents the impact of air-conditioning on EV range and HEV fuel economy, and compares the effectiveness of advanced glazing and cabin ventilation. Experimental and modeled results are presented

  2. Exploitation of condition monitoring technology for equipment by infrared thermography use

    International Nuclear Information System (INIS)

    Shimada, H.

    2005-01-01

    Recently exploitation of condition monitoring technology for equipment by infrared thermography use has been established in US nuclear power plants (NPPs) because of its effectiveness for accidents prevention. Meanwhile, this technology has never been used in Japanese NPPs. In order to make use of it with ease at NPPs, measuring manuals were provided including the table of emissivity dependent on equipment painting specification and measuring positions kept out of background heat sources at measurement. At in-site application tests, temperature increase points at power cable connection parts were discovered, which showed its effectiveness. (T. Tanaka)

  3. Application of solar energy to air conditioning systems

    Science.gov (United States)

    Nash, J. M.; Harstad, A. J.

    1976-01-01

    The results of a survey of solar energy system applications of air conditioning are summarized. Techniques discussed are both solar powered (absorption cycle and the heat engine/Rankine cycle) and solar related (heat pump). Brief descriptions of the physical implications of various air conditioning techniques, discussions of status, proposed technological improvements, methods of utilization and simulation models are presented, along with an extensive bibliography of related literature.

  4. Performance advancement of solar air-conditioning through integrated system design for building

    International Nuclear Information System (INIS)

    Fong, K.F.; Lee, C.K.

    2014-01-01

    This study is to advance the energy performance of solar air-conditioning system through appropriate component integration from the absorption refrigeration cycle and proper high-temperature cooling. In the previous studies, the solar absorption air-conditioning using the working pair of water – lithium bromide (H 2 O–LiBr) is found to have prominent primary energy saving than the conventional compression air-conditioning for buildings in the hot-humid climate. In this study, three integration strategies have been generated for solar cooling, namely integrated absorption air-conditioning; integrated absorption-desiccant air-conditioning; and integrated absorption-desiccant air-conditioning for radiant cooling. To realize these ideas, the working pair of ammonia – water (NH 3 –H 2 O) was used in the absorption cycle, rather than H 2 O–LiBr. As such, the evaporator and the condenser can be separate from the absorption refrigeration cycle for the new configuration of various integrated design alternatives. Through dynamic simulation, the year-round primary energy saving of the proposed integration strategies for solar NH 3 –H 2 O absorption air-conditioning systems could be up to 50.6% and 25.5%, as compared to the conventional compression air-conditioning and the basic solar H 2 O–LiBr absorption air-conditioning respectively. Consequently, carbon reduction of building air-conditioning can be achieved more effectively through the integrated system design in the hot and humid cities. - Highlights: • Three integration strategies, IAAU, IADAU and IADAU-RC, are proposed to advance solar air-conditioning. • NH 3 –H 2 O is adopted for absorption refrigeration instead of H 2 O–LiBr. • Separate evaporator and condenser, desiccant cooling and radiant cooling are designed for IADAU-RC. • IADAU-RC can have 50.6% primary energy saving against the conventional air-conditioning

  5. Mountain Plains Learning Experience Guide: Heating, Refrigeration, & Air Conditioning.

    Science.gov (United States)

    Carey, John

    This Heating, Refrigeration, and Air Conditioning course is comprised of eleven individualized units: (1) Refrigeration Tools, Materials, and Refrigerant; (2) Basic Heating and Air Conditioning; (3) Sealed System Repairs; (4) Basic Refrigeration Systems; (5) Compression Systems and Compressors; (6) Refrigeration Controls; (7) Electric Circuit…

  6. Condition based monitoring, diagnosis and maintenance on operating equipments of a hydraulic generator unit

    International Nuclear Information System (INIS)

    Liu, X T; Feng, F Z; Si, A W

    2012-01-01

    According to performance characteristics of operating equipments in a hydraulic generator unit (HGU), the relative techniques on condition monitoring and fault diagnosis (CMFD) are introduced in this paper, especially the key technologies are emphasized, such as equipment monitoring, expert system (ES), intelligent diagnosis and condition based maintenance (CBM). Meanwhile, according to the instructor on CBM proposed by State electric power corporation, based on integrated mode, the main steps on implementation of CBM are discussed in this paper.

  7. Experimental analysis of an air-to-air heat recovery unit for balanced ventilation systems in residential buildings

    International Nuclear Information System (INIS)

    Fernandez-Seara, Jose; Diz, Ruben; Uhia, Francisco J.; Dopazo, Alberto; Ferro, Jose M.

    2011-01-01

    This paper deals with the experimental analysis of an air-to-air heat recovery unit equipped with a sensible polymer plate heat exchanger (PHE) for balanced ventilation systems in residential buildings. The PHE is arranged in parallel triangular ducts. An experimental facility was designed to reproduce the typical outdoor and exhaust air conditions with regard to temperature and humidity. The unit was tested under balanced operation conditions, as commonly used in practice. A set of tests was conducted under the reference operating conditions to evaluate the PHE performance. Afterwards, an experimental parametric analysis was conducted to investigate the influence of changing the operating conditions on the PHE performance. Experiments were carried out varying the inlet fresh air temperature, the exhaust air relative humidity and the air flow rate. The experimental results are shown and discussed in this paper.

  8. Next Generation Refrigeration Lubricants for Low Global Warming Potential/Low Ozone Depleting Refrigeration and Air Conditioning Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hessell, Edward

    2013-12-31

    The goal of this project is to develop and test new synthetic lubricants that possess high compatibility with new low ozone depleting (LOD) and low global warming potential (LGWP) refrigerants and offer improved lubricity and wear protection over current lubricant technologies. The improved compatibility of the lubricants with the refrigerants, along with improved lubricating properties, will resulted in lower energy consumption and longer service life of the refrigeration systems used in residential, commercial and industrial heating, ventilating and air-conditioning (HVAC) and refrigeration equipment.

  9. Saving 50% of energy in air conditioning and refrigeration; 50% de ahorro de energia en aire acondicionado y refrigeracion

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez De la Fuente, Rodolfo Javier [Instituto para la Proteccion Ambiental de Nuevo Leon-CAINTRA, Nuevo Leon (Mexico); Bolado Tamez, Jaime Antonio [Industrias AlEn S. A. de C. V., Monterrey (Mexico)

    1998-12-31

    Due to the fact that the air conditioning systems represent up to 70% of the energy consumption in our buildings, to the constant raise of the electric tariffs and to the increment of temperatures in Nuevo Leon State, as well as the restrictions on the use of some refrigerant fluids because of its potential damage to the ozone layer (Montreal Protocol) and the preferential use of refrigerants with low global heating potential (Kioto Protocol). The Camara de la Industria de la Transformacion de Nuevo Leon (Nuevo Leon`s Transformation Industry Chamber) through the Instituto para la Proteccion Ambiental de Nuevo Leon (Nuevo Leon`s Institute for Environmental Protection), create the program ECO-REFRIGERATION whose three missions are: Increase the efficiency of air conditioning and refrigeration equipment, promote the substitution of refrigerants and extend the benefits of these projects to the community in general. [Espanol] Debido a que los sistemas de climatizacion representan hasta el 70% de consumo energetico en nuestros inmuebles, al constante incremento de las tarifas electricas, el incremento de las temperaturas en Nuevo Leon, asi como la restriccion del uso de algunos refrigerantes por su potencial de dano de la capa de ozono (Protocolo de Montreal) y el uso preferente de refrigerantes con bajo potencial de calentamiento global (Protocolo de Kioto), la Camara de la Industria de la Transformacion de Nuevo Leon a traves del Instituto para la Proteccion Ambiental de Nuevo Leon crean el Programa ECO-REFRIGERACION cuyas tres misiones son: Incrementar la eficiencia de los equipos de aire acondicionado y refrigeracion, promover la sustitucion de refrigerantes y extender los beneficios de este proyecto a la comunidad en general.

  10. Saving 50% of energy in air conditioning and refrigeration; 50% de ahorro de energia en aire acondicionado y refrigeracion

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez De la Fuente, Rodolfo Javier [Instituto para la Proteccion Ambiental de Nuevo Leon-CAINTRA, Nuevo Leon (Mexico); Bolado Tamez, Jaime Antonio [Industrias AlEn S. A. de C. V., Monterrey (Mexico)

    1999-12-31

    Due to the fact that the air conditioning systems represent up to 70% of the energy consumption in our buildings, to the constant raise of the electric tariffs and to the increment of temperatures in Nuevo Leon State, as well as the restrictions on the use of some refrigerant fluids because of its potential damage to the ozone layer (Montreal Protocol) and the preferential use of refrigerants with low global heating potential (Kioto Protocol). The Camara de la Industria de la Transformacion de Nuevo Leon (Nuevo Leon`s Transformation Industry Chamber) through the Instituto para la Proteccion Ambiental de Nuevo Leon (Nuevo Leon`s Institute for Environmental Protection), create the program ECO-REFRIGERATION whose three missions are: Increase the efficiency of air conditioning and refrigeration equipment, promote the substitution of refrigerants and extend the benefits of these projects to the community in general. [Espanol] Debido a que los sistemas de climatizacion representan hasta el 70% de consumo energetico en nuestros inmuebles, al constante incremento de las tarifas electricas, el incremento de las temperaturas en Nuevo Leon, asi como la restriccion del uso de algunos refrigerantes por su potencial de dano de la capa de ozono (Protocolo de Montreal) y el uso preferente de refrigerantes con bajo potencial de calentamiento global (Protocolo de Kioto), la Camara de la Industria de la Transformacion de Nuevo Leon a traves del Instituto para la Proteccion Ambiental de Nuevo Leon crean el Programa ECO-REFRIGERACION cuyas tres misiones son: Incrementar la eficiencia de los equipos de aire acondicionado y refrigeracion, promover la sustitucion de refrigerantes y extender los beneficios de este proyecto a la comunidad en general.

  11. Air conditioning device for reactor buildings

    International Nuclear Information System (INIS)

    Kikuchi, Shiro.

    1982-01-01

    Purpose: To decrease the opening areas of pipe lines for an air conditioning device at the portions passing through the shielding walls of a reactor building for a FBR type reactor, as well as reduce the size of the building. Constitution: Airs in the building for containing reactor are liquefied in an air liquefying mechanism. The liquefied airs are sent by way of pipe lines to each of evaporators, wherein each of the chambers are cooled because of latent heat of evaporation and evaporated airs are released to each of the chambers. The airs released to each of the chambers are collected into an exhaust chamber and sent by way of a duct to the air liquefying mechanism and liquefied again. Since the volume of the liquefied airs may be smaller than the amount conventionally required for usual cooled airs, the pipe lines passing through the shielding walls of the building can be of smaller diameter. This can decrease the opening areas of the pipe lines at the portions passing through the walls of the shieldings and, since the opening areas are smaller, the structure of the radiation shieldings can be simplified in these portions. Further, since the space of the pipe lines in the building is reduced extremely, the size of the building can be reduced. (Moriyama, K.)

  12. Strategy Guideline. Compact Air Distribution Systems

    Energy Technology Data Exchange (ETDEWEB)

    Burdick, Arlan [IBACOS, Inc., Pittsburgh, PA (United States)

    2013-06-01

    This guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  13. Information technology equipment cooling method

    Science.gov (United States)

    Schultz, Mark D.

    2015-10-20

    According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools air utilized by the rack of information technology equipment to cool the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat generated by the rack of information technology equipment.

  14. CA Air Resource Board's Off-Road Diesel Equipment Regulation 2017 DOORS Reporting.

    Energy Technology Data Exchange (ETDEWEB)

    Jadhav, Pradnya [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-01

    Sandia National Laboratories/CA (SNL/CA) operates 14 diesel vehicles subject to the Off-Road Diesel Equipment Regulation; all the vehicles are classified as low-use vehicles. Annually, SNL/CA must report to the CA Air Resources Board (ARB) the hour-meter readings on our Off-Road Low-Use Diesel Equipment. This is to verify to the CA ARB that our equipment is being operated less than 200 hr/yr and therefore is considered “low-use” and not subject to the strict emissions standards for off-road diesel equipment. The reporting is done using DOORS, the CA ARB’s on-line reporting tool. The hour meter data for CY2017 has already been submitted using DOORS. The final step in the annual reporting process, which needs to be done by DOE, is to submit the Responsible Official Affirmation of Reporting (ROAR), which affirms that the information reported using DOORS is accurate. The ROAR is to be signed by a “Responsible Official” and can be submitted as a hardcopy ROAR or an electronic ROAR (e-ROAR) by March 1st, 2018. CA ARB’s preferred mechanism of ROAR submission is by using the e-ROAR.

  15. [Relationships between air conditioning, airborne microorganisms and health].

    Science.gov (United States)

    Parat, S; Perdrix, A; Baconnier, P

    1999-01-01

    Concurrently with the increase of air-conditioning, potentially severe or frequent new diseases have emerged, giving rise to social and economical consequences. The first part of this work is a state of the art review of the relationships between air-conditioning, airborne microorganisms and health, through a technical, metrological and medical approach. The second part presents four studies performed in this field. Two of them deal with the relationship between airborne microorganisms and technical features of air-conditioning. Measurements performed on actual sites demonstrated the benefit of using high efficiency filters and low risk components in air-conditioning systems. The third study was aimed to look for a relationship between airborne microorganisms and sick building syndrome symptoms. Statistical analyses of individual data revealed significant associations between airborne bacteria or fungi and symptoms. These results may be the first step in determining a dose-response relationship, in order to define threshold limit values in this field. In the fourth study, the contribution of particle counting in assessing exposure to airborne microorganisms was explored by monitoring simultaneous variations of microbial and particle concentrations. The results showed that associating particle counting may allow to detect microbial variations instantaneously, and therefore improve the assessment of exposure to airborne microorganisms.

  16. A computationally inexpensive CFD approach for small-scale biomass burners equipped with enhanced air staging

    International Nuclear Information System (INIS)

    Buchmayr, M.; Gruber, J.; Hargassner, M.; Hochenauer, C.

    2016-01-01

    Highlights: • Time efficient CFD model to predict biomass boiler performance. • Boundary conditions for numerical modeling are provided by measurements. • Tars in the product from primary combustion was considered. • Simulation results were validated by experiments on a real-scale reactor. • Very good accordance between experimental and simulation results. - Abstract: Computational Fluid Dynamics (CFD) is an upcoming technique for optimization and as a part of the design process of biomass combustion systems. An accurate simulation of biomass combustion can only be provided with high computational effort so far. This work presents an accurate, time efficient CFD approach for small-scale biomass combustion systems equipped with enhanced air staging. The model can handle the high amount of biomass tars in the primary combustion product at very low primary air ratios. Gas-phase combustion in the freeboard was performed by the Steady Flamelet Model (SFM) together with a detailed heptane combustion mechanism. The advantage of the SFM is that complex combustion chemistry can be taken into account at low computational effort because only two additional transport equations have to be solved to describe the chemistry in the reacting flow. Boundary conditions for primary combustion product composition were obtained from the fuel bed by experiments. The fuel bed data were used as fuel inlet boundary condition for the gas-phase combustion model. The numerical and experimental investigations were performed for different operating conditions and varying wood-chip moisture on a special designed real-scale reactor. The numerical predictions were validated with experimental results and a very good agreement was found. With the presented approach accurate results can be provided within 24 h using a standard Central Processing Unit (CPU) consisting of six cores. Case studies e.g. for combustion geometry improvement can be realized effectively due to the short calculation

  17. Impaired Air Conditioning within the Nasal Cavity in Flat-Faced Homo.

    Directory of Open Access Journals (Sweden)

    Takeshi Nishimura

    2016-03-01

    Full Text Available We are flat-faced hominins with an external nose that protrudes from the face. This feature was derived in the genus Homo, along with facial flattening and reorientation to form a high nasal cavity. The nasal passage conditions the inhaled air in terms of temperature and humidity to match the conditions required in the lung, and its anatomical variation is believed to be evolutionarily sensitive to the ambient atmospheric conditions of a given habitat. In this study, we used computational fluid dynamics (CFD with three-dimensional topology models of the nasal passage under the same simulation conditions, to investigate air-conditioning performance in humans, chimpanzees, and macaques. The CFD simulation showed a horizontal straight flow of inhaled air in chimpanzees and macaques, contrasting with the upward and curved flow in humans. The inhaled air is conditioned poorly in humans compared with nonhuman primates. Virtual modifications to the human external nose topology, in which the nasal vestibule and valve are modified to resemble those of chimpanzees, change the airflow to be horizontal, but have little influence on the air-conditioning performance in humans. These findings suggest that morphological variation of the nasal passage topology was only weakly sensitive to the ambient atmosphere conditions; rather, the high nasal cavity in humans was formed simply by evolutionary facial reorganization in the divergence of Homo from the other hominin lineages, impairing the air-conditioning performance. Even though the inhaled air is not adjusted well within the nasal cavity in humans, it can be fully conditioned subsequently in the pharyngeal cavity, which is lengthened in the flat-faced Homo. Thus, the air-conditioning faculty in the nasal passages was probably impaired in early Homo members, although they have survived successfully under the fluctuating climate of the Plio-Pleistocene, and then they moved "Out of Africa" to explore the more

  18. Benefits of Leapfrogging to Superefficiency and Low Global Warming Potential Refrigerants in Room Air Conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Nihar [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area; Wei, Max [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area; Letschert, Virginie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area; Phadke, Amol [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area

    2015-10-01

    Hydrofluorocarbons (HFCs) emitted from uses such as refrigerants and thermal insulating foam, are now the fastest growing greenhouse gases (GHGs), with global warming potentials (GWP) thousands of times higher than carbon dioxide (CO2). Because of the short lifetime of these molecules in the atmosphere, mitigating the amount of these short-lived climate pollutants (SLCPs) provides a faster path to climate change mitigation than control of CO2 alone. This has led to proposals from Africa, Europe, India, Island States, and North America to amend the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) to phase-down high-GWP HFCs. Simultaneously, energy efficiency market transformation programs such as standards, labeling and incentive programs are endeavoring to improve the energy efficiency for refrigeration and air conditioning equipment to provide life cycle cost, energy, GHG, and peak load savings. In this paper we provide an estimate of the magnitude of such GHG and peak electric load savings potential, for room air conditioning, if the refrigerant transition and energy efficiency improvement policies are implemented either separately or in parallel. We find that implementing HFC refrigerant transition and energy efficiency improvement policies in parallel for room air conditioning, roughly doubles the benefit of either policy implemented separately. We estimate that shifting the 2030 world stock of room air conditioners from the low efficiency technology using high-GWP refrigerants to higher efficiency technology and low-GWP refrigerants in parallel would save between 340-790 gigawatts (GW) of peak load globally, which is roughly equivalent to avoiding 680-1550 peak power plants of 500MW each. This would save 0.85 GT/year annually in China equivalent to over 8 Three Gorges dams and over 0.32 GT/year annually in India equivalent to roughly twice India’s 100GW solar mission target. While there is some uncertainty associated with

  19. PROSPECTS FOR THE DEVELOPMENT OF TECHNOLOGY AIR CONDITIONING

    Directory of Open Access Journals (Sweden)

    O. V. Chernyshova

    2008-03-01

    Full Text Available In the article the evaporation cooling and spray (aqueous and air-to-water types of the air-conditioning systems are considered, their merits and demerits are analyzed; the new scheme of a conditioner is offered.

  20. Capillary Tube and Thermostatic Expansion Valve Comparative Analysis in Water Chiller Air Conditioning

    Science.gov (United States)

    Wijaya Sunu, Putu; Made Rasta, I.; Anakottapary, Daud Simon; Made Suarta, I.; Cipta Santosa, I. D. M.

    2018-01-01

    The aims of this study to compares the performance characteristics of a water chiller air conditioning simulation equipped with thermostatic expansion valve (TEV) with those of a capillary tube. Water chiller system filled with the same charge of refrigerant. Comparative analyses were performed based on coefficient of performance (COP) and performance parameter of the refrigeration system, carried out at medium cooling load level with the ambient temperature of 29-31°C, constant compressor speed and fixed chilled water volume flowrate at 15 lpm. It was shown that the TEV system showed better energy consumption compared to that of capillary tube. From the coefficient of performance perspective, the thermostatic expansion valve system showed higher COP (± 21.4%) compared to that of capillary tube system.

  1. Regulating low-NOx and high-burnout deep-air-staging combustion under real-furnace conditions in a 600 MWe down-fired supercritical boiler by strengthening the staged-air effect.

    Science.gov (United States)

    Kuang, Min; Wang, Zhihua; Zhu, Yanqun; Ling, Zhongqian; Li, Zhengqi

    2014-10-21

    A 600 MW(e) down-fired pulverized-coal supercritical boiler, which was equipped with a deep-air-staging combustion system for reducing the particularly high NOx emissions, suffered from the well-accepted contradiction between low NOx emissions and high carbon in fly ash, in addition to excessively high gas temperatures in the hopper that jeopardized the boiler's safe operations. Previous results uncovered that under low-NOx conditions, strengthening the staged-air effect by decreasing the staged-air angle and simultaneously increasing the staged-air damper opening alleviated the aforementioned problems to some extent. To establish low-NOx and high-burnout circumstances and control the aforementioned hopper temperatures, a further staged-air retrofit with horizontally redirecting staged air through an enlarged staged-air slot area was performed to greatly strengthen the staged-air effect. Full-load industrial-size measurements were performed to confirm the availability of this retrofit. The present data were compared with those published results before the retrofit. High NOx emissions, low carbon in fly ah, and high hopper temperatures (i.e., levels of 1036 mg/m(3) at 6% O2, 3.72%, and about 1300 °C, respectively) appeared under the original conditions with the staged-air angle of 45° and without overfire air (OFA) application. Applying OFA and reducing the angle to 20° achieved an apparent NOx reduction and a moderate hopper temperature decrease while a sharp increase in carbon in fly ash (i.e., levels of 878 mg/m(3) at 6% O2, about 1200 °C, and 9.81%, respectively). Fortunately, the present staged-air retrofit was confirmed to be applicable in regulating low-NOx, high-burnout, and low hopper temperature circumstances (i.e., levels of 867 mg/m(3) at 6% O2, 5.40%, and about 1100 °C, respectively).

  2. Monitoring and analysis of an absorption air-conditioning system

    Energy Technology Data Exchange (ETDEWEB)

    Perez de Vinaspre, M.; Bourouis, M.; Coronas, A. [Centro de Innovacion Tecnologica en Revalorizacion Energetica y Refrigeracion, Tarragona (Spain); Garcia, A.; Soto, V.; Pinazo, J.M. [E.T.S. Ingenieros Industriales, Valencia (Spain)

    2004-09-01

    In the last few years, high-energy consumption due to air-conditioning has led to a growing interest in the efficient use of energy in buildings. Although simulation programs have always been the main tools for analyzing energy in buildings, the reliability of their results is often compromised by a lack of certainty to reflect real conditions. The aim of this work is to monitorize and analyze the thermal behavior of an absorption-based air-conditioning installation of a university building in Tarragona, Spain. The existing monitoring system of the installation has been improved by implementing additional sensors and flow meters. The data has been stored during summer 2002 and used to assess the energy balance of the air-conditioning installation and the operational regime of the absorption chiller. [Author].

  3. Modelling and hardware-in-the-loop simulation of the blowout tract components for passenger compartment air conditioning of motor vehicles; Modellierung und Hardware-in-the-Loop-Simulation der Komponenten des Ausblastraktes zur Kraftfahrzeuginnenraumklimatisierung

    Energy Technology Data Exchange (ETDEWEB)

    Michalek, David

    2009-07-01

    The author investigated the modelling and hardware-in-the-loop simulation of components of the blowout tract of motor car air conditioning systems. The control systems and air conditioning systems are gone into, from the air entering the car to the control systems and sensors for monitoring state variables. The function of the control equipment hardware and software was to be analyzed reproducibly in order to save time and cost. The models were verified using available data. Validation criteria were established for the hardware-in-the-loop simulator. On the basis of selected operating conditions, the performance of the air conditioning control unit inside the vehicle was compared with the simulation results and was evaluated on the basis of the established criteria. (orig.)

  4. Central Air-Conditioning Plant (CAP) extension

    International Nuclear Information System (INIS)

    Shetty, P.S.; Kaul, S.K.; Mishra, H.

    2017-01-01

    Central Air-Conditioning Plant (CAP) and its associated chilled water network of BARC is one among the largest central plants in India for such application. The plant was planned in 1960s to cater to the air-conditioning and process water requirements of laboratories, workshops and buildings spread over a distance of 1.5 Km in three directions from CAP through underground network of chilled water pipelines. The plant was designed for a total capacity of 6600 TR. The present installed capacity of the plant is 7250 TR. The connected load at present is 9800 TR. After the XII plan capacity will be augmented to 7650 TR. The connected load is expected to cross 11,000 TR after the commissioning of new Engg. Halls 9, 10 and 11

  5. Maintenance program guidelines for programmatic equipment

    International Nuclear Information System (INIS)

    1994-11-01

    The Division Directors at Lawrence Berkeley Laboratory are responsible for implementing a maintenance program for research equipment (also referred to as programmatic equipment) assigned to them. The program must allow maintenance to be accomplished in a manner that promotes operational safety, environmental protection and compliance, and cost effectiveness; that preserves the intended functions of the facilities and equipment; and that supports the programmatic mission of the Laboratory. Programmatic equipment -- such as accelerators, lasers, radiation detection equipment, and glove boxes -- is dedicated specifically to research. Installed equipment, by contrast, includes the mechanical and electrical systems installed as part of basic building construction, equipment essential to the normal functioning of the facility and its intended use. Examples of installed equipment are heating, ventilating, and air conditioning systems; elevators; and communications systems. The LBL Operating and Assurance Program Plan (PUB-3111, Revision 4) requires that a maintenance program be prepared for programmatic equipment and defines the basic maintenance program elements. Such a program of regular, documented maintenance is vital to the safety and quality of research activities. As a part of that support, this document offers guidance to Laboratory organizations for developing their maintenance programs. It clarifies the maintenance requirements of the Operating and Assurance Program (OAP) and presents an approach that, while not the only possibility, can be expected to produce an effective maintenance program for research equipment belonging to the Laboratory's organizations

  6. Information technology equipment cooling system

    Science.gov (United States)

    Schultz, Mark D.

    2014-06-10

    According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools warm air generated by the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat from the rack of information technology equipment.

  7. Air conditioning systems as non-infectious health hazards inducing acute respiratory symptoms.

    Science.gov (United States)

    Gerber, Alexander; Fischer, Axel; Willig, Karl-Heinz; Groneberg, David A

    2006-04-01

    Chronic and acute exposure to toxic aerosols belongs to frequent causes of airway diseases. However, asthma attacks due to long-distance inhalative exposure to organic solvents, transmitted via an air condition system, have not been reported so far. The present case illustrates the possibility of air conditioning systems as non-infectious health hazards in occupational medicine. So far, only infectious diseases such as legionella pneumophila pneumonia have commonly been associated to air-conditioning exposures but physicians should be alert to the potential of transmission of toxic volatile substances via air conditioning systems. In view of the events of the 11th of September 2001 with a growing danger of large building terrorism which may even use air conditioning systems to transmit toxins, facility management security staff should be alerted to possible non-infectious toxic health hazards arising from air-conditioning systems.

  8. Small photovoltaic setup for the air conditioning system

    Directory of Open Access Journals (Sweden)

    Masiukiewicz Maciej

    2017-01-01

    Full Text Available The increasing interest in air conditioning systems for residential applications in Poland will certainly increase the demand for electricity during the summer period. Due to this fact a growing interest in solutions that help to lower the electricity consumption in this sector is observed. The problem of increased energy demand for air conditioning purposes can be solved by transfer the consumption of electricity from the grid system to renewable energy sources (RES. The greatest demand for cooling occurs during the biggest sunlight. This is the basis for the analysis of technical power system based on photovoltaic cells (PV to power the split type air conditioner. The object of the study was the commercial residential airconditioning inverter units with a capacity of 2.5kW. A network electricity production system for their own use with the possibility of buffering energy in batteries (OFF-GRID system. Currently, on the Polish market, there are no developed complete solutions dedicated to air conditioning systems based on PV. In Poland, solar energy is mainly used for heat production in solar collectors. The proposed solution will help to increase the popularity of PV systems in the Polish market as an alternative to other RES. The basic conclusion is that the amount of PV energy generated was sufficient to cover the daily energy requirement of the air conditioner.

  9. Small photovoltaic setup for the air conditioning system

    Science.gov (United States)

    Masiukiewicz, Maciej

    2017-10-01

    The increasing interest in air conditioning systems for residential applications in Poland will certainly increase the demand for electricity during the summer period. Due to this fact a growing interest in solutions that help to lower the electricity consumption in this sector is observed. The problem of increased energy demand for air conditioning purposes can be solved by transfer the consumption of electricity from the grid system to renewable energy sources (RES). The greatest demand for cooling occurs during the biggest sunlight. This is the basis for the analysis of technical power system based on photovoltaic cells (PV) to power the split type air conditioner. The object of the study was the commercial residential airconditioning inverter units with a capacity of 2.5kW. A network electricity production system for their own use with the possibility of buffering energy in batteries (OFF-GRID system). Currently, on the Polish market, there are no developed complete solutions dedicated to air conditioning systems based on PV. In Poland, solar energy is mainly used for heat production in solar collectors. The proposed solution will help to increase the popularity of PV systems in the Polish market as an alternative to other RES. The basic conclusion is that the amount of PV energy generated was sufficient to cover the daily energy requirement of the air conditioner.

  10. Solar-Driven Air-Conditioning Cycles: A Review

    Directory of Open Access Journals (Sweden)

    A. M. Abu-Zour

    2007-12-01

    Full Text Available Most conventional cooling/refrigeration systems are driven by fossil fuel combustion, and therefore give rise to emission of environmentally damaging pollutants. In addition, many cooling systems employ refrigerants, which are also harmful to the environment in terms of their Global Warming Potential (GWP and Ozone Depletion Potential (ODP. Development of a passive or hybrid solar-driven air-conditioning system is therefore of interest as exploitation of such systems would reduce the demand for grid electricity particularly at times of peak load. This paper presents a review of various cooling cycles and summarises work carried out on solar-driven air-conditioning systems.

  11. Electricity savings ``soon come'' to Jamaica -- Assessing the potential for air conditioning and refrigeration end-use DSM

    Energy Technology Data Exchange (ETDEWEB)

    Conlon, T.; Hamzawi, E.; Campbell, V.

    1998-07-01

    With the support of the Inter-American Development Bank, the Global Environment Facility of the World Bank, and the Rockefeller Foundation, the national electric utility in Jamaica (Jamaica Public Service Company) has begun an assessment of the technical, economic, and financial opportunities for achieving demand-side management (DSM) energy savings in the air conditioning and refrigeration end uses. The feasibility and cost effectiveness of specific measures is being assessed for both the residential and commercials segments. While structures as a traditional load-research-based market assessment, the project uses ethnographic data collection and analysis techniques and involves collaboration with local contractors. The skills of local experts are being taped to identify and interview the key market players, and to develop an understanding of the barriers to and opportunities for energy efficiency present in the evolving equipment markets. The paper outlines methods and presents preliminary case study results for the air conditioning market. The authors identify major groups of market players and dominant types of equipment, and provide an overview of market dynamics. The volume of sales passing through both formal and informal distribution channels is estimated and market barriers are identified. Based on the findings of the study, recommendations will be made for future program and policy initiatives designed to mitigate selected barriers in each of the supply chains.

  12. Performance study of desiccant coated heat exchanger air conditioning system in winter

    International Nuclear Information System (INIS)

    Ge, T.S.; Dai, Y.J.; Wang, R.Z.

    2016-01-01

    Highlights: • Performance of desiccant coated heat exchanger AC system is predicted. • Effects of main operation parameters and climatic conditions are discussed. • Regeneration temperature of 30 °C is recommended under simulation condition. • Higher ambient humidity ratio results in increased humidity ratio of supply air. • Temperature of ambient air has neglectable effect on supply air. - Abstract: Conventional air source heat pump system faces several challenges when adopted in winter season. Solid desiccant air conditioning system can provide humidification and heating power simultaneously and can be driven by low grade thermal energy; it provides a good alternative for air source heat pump systems. However, conventional solid desiccant air conditioning system adopts desiccant wheel with high cost as core component, which hinders the development of such system. Recently, desiccant coated heat exchanger (DCHE) with low initial cost and high efficiency was developed and this paper aims to investigate performance of DCHE air conditioning system adopted in Shanghai winter season. Performance of the system is predicted by a developed mathematical model where supply air states, mass of humidification and coefficient of performance (COP) are adopted as performance indices to evaluate the feasibility and energy utilization ratio of the system. Effects of regeneration water temperature on system performance are analyzed. It is found that under the simulation condition, relatively low regeneration temperature (such as 20 °C) cannot meet the designed standard and relatively high regeneration temperature (such as 40 °C) provides too much extra heating power, thus moderate regeneration temperature around 30 °C is recommended. Meanwhile, switch time is a crucial operation parameter for the system to obtain satisfied supply air, switch time from 40 s to 80 s and from 70 s to 240 s are recommended for transient and average supply air states, respectively. Both

  13. Thermal Environment for Classrooms. Central System Approach to Air Conditioning.

    Science.gov (United States)

    Triechler, Walter W.

    This speech compares the air conditioning requirements of high-rise office buildings with those of large centralized school complexes. A description of one particular air conditioning system provides information about the system's arrangement, functions, performance efficiency, and cost effectiveness. (MLF)

  14. Air-cooled LiBr-water absorption chillers for solar air conditioning in extremely hot weathers

    International Nuclear Information System (INIS)

    Kim, D.S.; Infante Ferreira, C.A.

    2009-01-01

    A low temperature-driven absorption cycle is theoretically investigated for the development of an air-cooled LiBr-water absorption chiller to be combined with low-cost flat solar collectors for solar air conditioning in hot and dry regions. The cycle works with dilute LiBr-water solutions so that risk of LiBr crystallization is less than for commercially available water-cooled LiBr-water absorption chillers even in extremely hot ambient conditions. Two-phase heat exchangers in the system were modelled taking account of the heat and mass transfer resistances in falling film flows by applying the film theory in thermal and concentration boundary layers. Both directly and indirectly air-cooled chillers were modelled by properly combining component models and boundary conditions in a matrix system and solved with an algebraic equation solver. Simulation results predict that the chillers would deliver chilled water around 7.0 deg. C with a COP of 0.37 from 90 deg. C hot water under 35 deg. C ambient condition. At 50 deg. C ambient temperature, the chillers retained about 36% of their cooling power at 35 deg. C ambient. Compared with the directly air-cooled chiller, the indirectly air-cooled chiller presented a cooling power performance reduction of about 30%

  15. Thermodynamic analysis of the two-phase ejector air-conditioning system for buses

    International Nuclear Information System (INIS)

    Ünal, Şaban; Yilmaz, Tuncay

    2015-01-01

    Air-conditioning compressors of the buses are usually operated with the power taken from the engine of the buses. Therefore, an improvement in the air-conditioning system will reduce the fuel consumption of the buses. The improvement in the coefficient of performance (COP) of the air-conditioning system can be provided by using the two-phase ejector as an expansion valve in the air-conditioning system. In this study, the thermodynamic analysis of bus air-conditioning system enhanced with a two-phase ejector and two evaporators is performed. Thermodynamic analysis is made assuming that the mixing process in ejector occurs at constant cross-sectional area and constant pressure. The increase rate in the COP with respect to conventional system is analyzed in terms of the subcooling, condenser and evaporator temperatures. The analysis shows that COP improvement of the system by using the two phase ejector as an expansion device is 15% depending on design parameters of the existing bus air-conditioning system. - Highlights: • Thermodynamic analysis of the two-phase ejector refrigeration system. • Analysis of the COP increase rate of bus air-conditioning system. • Analysis of the entrainment ratio of the two-phase ejector refrigeration system

  16. Preventive maintenance plan of the air-conditioning duct using the ACM-sensor

    International Nuclear Information System (INIS)

    Fukuba, Kazushi; Ito, Takanobu; Kojima, Akiko; Tanji, Kazuhiro; Sato, Yuki

    2013-01-01

    Air-conditioning duct is difficult to predict the date to occur of corrosion such as affect the function. Therefore, the current conservation method is mostly corrective maintenance. Therefore, we used the test pieces of six types and ACM-sensor in order to solve the corrosion speed from corrosion environment and relationship of corrosion quantity of test pieces. In addition, was used the duct molded articles various in order to check the corrosion degree of when processed the duct. As a result, we were selected crust body constituting a duct and optimal combination of the flange by solve the corrosion speed of the test pieces various. Thus, it performs preventive disposal before to occur of corrosion such as affect the function by predicting the duct life from corrosion speed, and lead to stability and safe operating by appropriate maintenance of equipment. (author)

  17. In-car particles and cardiovascular health: an air conditioning-based intervention study.

    Science.gov (United States)

    Chuang, Hsiao-Chi; Lin, Lian-Yu; Hsu, Ya-Wen; Ma, Chih-Ming; Chuang, Kai-Jen

    2013-05-01

    Exposure to traffic-related particulate matter (PM) is considered a potential risk for cardiovascular events. Little is known about whether improving air quality in car can modify cardiovascular effects among human subjects during commuting. We recruited a panel of 60 healthy subjects to commute for 2 h by a car equipped with an air conditioning (AC) system during the morning rush hour in Taipei. Operation modes of AC system using outside air (OA-mode), circulating inside air (IA-mode) and turning off (Off-mode) were examined. Repeated measurements of heart rate variability (HRV) indices, PM≤2.5 μm in aerodynamic diameter (PM2.5) and noise level were conducted for each participant in different modes during the commute. We used linear mixed-effects models to associate HRV indices with in-car PM2.5. We found that decreases in HRV indices were associated with increased levels of in-car PM2.5. For Off-mode, an interquartile range (IQR) increase in in-car PM2.5 with 15-min moving average was associated with 2.7% and 4.1% decreases in standard deviation of NN intervals (SDNN) and the square root of the mean of the sum of the squares of differences between adjacent NN intervals (r-MSSD), respectively. During OA and IA modes, participants showed slight decreases in SDNN (OA mode: 0.1%; IA mode: 1.3%) and r-MSSD (OA mode: 1.1%; IA mode: 1.8%) by an IQR increase in in-car PM2.5 with 15-min moving average. We concluded that in-car PM2.5 is associated with autonomic alteration. Utilization of the car's AC system can improve air quality and modify the effects of in-car PM2.5 on HRV indices among human subjects during the commute. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. An energy impact assessment of indoor air quality acceptance for air-conditioned offices

    International Nuclear Information System (INIS)

    Wong, L.T.; Mui, K.W.; Shi, K.L.; Hui, P.S.

    2008-01-01

    Treatment of fresh air in ventilation systems for the air-conditioning consumes a considerable amount of energy and affects the indoor air quality (IAQ). The ventilation demand is primarily related to the occupant load. In this study, the ventilation demands due to occupant load variations and occupant acceptability were examined against certain IAQ objectives using the mass balance of carbon dioxide (CO 2 ) concentrations in an air-conditioned office. In particular, this study proposed a ventilation model for the consideration of the occupant load variations and occupant acceptability based on the regional survey of typical offices (422 samples) in Hong Kong. The model was applied to evaluate the relative energy performance of different IAQ objectives in ventilation systems for typical office buildings in Hong Kong. The results showed that the energy consumption of a ventilation system would be correlated with the occupant load and acceptability in the air-conditioned office. Indicative CO 2 levels of 800 ppmv, 1000 ppmv and 1200 ppmv corresponding to 83%, 97% and 99.7% survey samples were shown, corresponding to the thermal energy consumptions of 1500 MJ m -2 yr -1 , 960 MJ m -2 yr -1 and 670 MJ m -2 yr -1 , respectively. In regards to the monetary issue, an annual value of HK$ 762 million per year in electrical consumption could be saved in all office buildings in Hong Kong when the indoor target CO 2 concentration is increased from 1000 ppmv to 1200 ppmv. To achieve an excellent IAQ following the existing design standard, i.e. to decrease the CO 2 level from 1000 ppmv to 800 ppmv, 56% additional energy would be consumed, corresponding to an annual value of HK$ 1,419 million, even though the occupant acceptability is only improved from 81% to 86%. The development of the models in this study would be useful for the energy performance evaluation of ventilation systems in air-conditioned offices

  19. Air-tighten test for used glove boxes

    International Nuclear Information System (INIS)

    Itoh, Masanori; Kashiro, Kashio; Matsumoto, Masaki; Ogiya, Takashi; Nakata, Keiji; Gohda, Masahiko

    2000-05-01

    All of the glove boxes in Plutonium Fuel Fabrication facilities are operated after confirming their condition by conducting negative pressure maintenance test and air-tighten test. Although we check the negative pressure maintenance condition before operating glove boxes in a daily basis, we have not been conducted the air-tighten test. Hence, we have conduct air-tighten test using the glove box that will be dismantled in the near future. In order to compare the present data to the criteria of licensing and to the measurement data for new glove box, the test was conducted by leak tightness vessel which is used the competent authority's test for newly constructed equipments. We also have confirmed the leakage condition in case failure of keeping negative pressure. The main results are as follows: 1. No leakage was detected after leaving the glove box 21 days in case failure of keeping negative pressure condition. 2. The measurement result of the air-tighten test was 0.025 vol%/h, and it was confirmed that this result is within the range of licensing criteria (-0.04 - 0.06 vol%/h). 3. The measurement result was also within the error of leak tightness vessel, and it was confirmed that the air-tighten condition was in force within this past 10 years after installing this glove box (the corresponding value for used the competent authority test for newly constructed equipments was 0.019 vol%/h). (author)

  20. Uncertainty Evaluation of Residential Central Air-conditioning Test System

    Science.gov (United States)

    Li, Haoxue

    2018-04-01

    According to national standards, property tests of air-conditioning are required. However, test results could be influenced by the precision of apparatus or measure errors. Therefore, uncertainty evaluation of property tests should be conducted. In this paper, the uncertainties are calculated on the property tests of Xinfei13.6 kW residential central air-conditioning. The evaluation result shows that the property tests are credible.

  1. The application of gas ejector for road transport air conditioning system

    Science.gov (United States)

    Sumeru, Nasution, Henry; Ani, Farid Nasir

    2012-06-01

    The depletion of fossil fuel supply requires fuel and energy saving in energy utilization system. Therefore, these required the development of new and efficient technologies as to reduce fuel consumption especially in air conditioning of road vehicles. Currently, the air conditioning for road vehicles uses vapor compression system. Although the vapor compression system has high COP, the compressor is driven by vehicle engines, which take additional fuel consumption when the air conditioning system is in operation. In this study, the waste heat of radiator drives the ejector refrigeration for air conditioning. Although the ejector refrigeration system has low COP, the use of heat driven air conditioning will reduce the fuel consumption as compared with conventional system. This is because the systems do not use the mechanical engine load. The analysis of this study is based on the ejector refrigeration system using natural refrigerant (isobutene). The evaporation temperature is 10°C, condensation temperature is 35°C, generator temperature is 90°C with ejector isentropic efficiency of 0.7, and the COP system is 0.25. The heat released by the radiator of typical small road vehicles is between 60 to 100 kW and if the generator absorbs 20% of the heat, the heat contained in the generator is 12 to 20 kW. When the ejector air conditioning system has a COP 0.25, it will generate cooling capacity between 3 to 5 kW, compared with the conventional air conditioning of similar vehicles, which is approximately 2 to 4.4 kW.

  2. Energy saving: optimal use of air conditioning equipment by means of the solar control; Ahorro de energia: uso optimo de los acondicionadores de aire mediante el control solar

    Energy Technology Data Exchange (ETDEWEB)

    Mejia D, David; Morillon G, David; Rodriguez V, Luis [Universidad Nacional Autonoma de Mexico (Mexico)

    2001-09-01

    In this article the evaluation of the solar heat gains through the transparent parts of a building (houses of social interest) is presented; with the purpose of determining the heat gains through windows during summer time and under the following conditions: without solar protection, with the use of eaves, solar breakers and, finally, with the use of both elements. With the determined percentage of the diminution of heat gains, the considered potential of energy saving in air conditioning was obtained that would be available if the houses were constructed with solar control. [Spanish] En este articulo se presenta la evaluacion de las ganancias de calor solar a traves de las partes transparentes de un edificio (viviendas de interes social); con el objeto de determinar las ganancias de calor a traves de ventanas para la epoca de verano y bajo las siguientes condiciones: sin proteccion solar, con el empleo de aleros, con quiebrasoles y, finalmente, con el empleo de ambos elementos. Con el porcentaje determinado de la disminucion de ganancias de calor, se obtuvo el potencial estimado de ahorro de energia en aire acondicionado que se tendria si las viviendas se construyen con control solar.

  3. Online optimal control of variable refrigerant flow and variable air volume combined air conditioning system for energy saving

    International Nuclear Information System (INIS)

    Zhu, Yonghua; Jin, Xinqiao; Du, Zhimin; Fang, Xing

    2015-01-01

    The variable refrigerant flow (VRF) and variable air volume (VAV) combined air conditioning system can solve the problem of the VRF system in outdoor air ventilation while taking advantage of its high part load energy efficiency. Energy performance of the combined air conditioning system can also be optimized by joint control of both the VRF and the VAV parts. A model-based online optimal control strategy for the combined air conditioning system is presented. Simplified adaptive models of major components of the combined air conditioning system are firstly developed for predicting system performances. And a cost function in terms of energy consumption and thermal comfort is constructed. Genetic algorithm is used to search for the optimal control sets. The optimal control strategy is tested and evaluated through two case studies based on the simulation platform. Results show that the optimal strategy can effectively reduce energy consumption of the combined air conditioning system while maintaining acceptable thermal comfort. - Highlights: • A VRF and VAV combined system is proposed. • A model-based online optimal control strategy is proposed for the combined system. • The strategy can reduce energy consumption without sacrificing thermal comfort. • Novel simplified adaptive models are firstly developed for the VRF system

  4. Assessment of indoor air quality in comparison using air conditioning and fan system in printing premise

    Directory of Open Access Journals (Sweden)

    Ramlan Nazirah

    2017-01-01

    Full Text Available Printers contribute to various emissions consist with chemical contaminants. High concentration of the particulate matter can cause serious health problems. This study focuses on the indoor air quality in printing premise unit in Universiti Tun Hussein Onn, Malaysia. Field testing involving air sampling methods were taken from 900 hours to 1600 hours, for every 30 minutes using physical measurement which is Multi-Channel Air Quality Monitor (YESAIR, E-Sampler and Ozone Meter. Air sampling was recorded based on one sampling point and most suitable point for production. A comparison based on different ventilation using fan and air-conditioning were also taken and results is being compared based on OSHA and NIOSH standards. Besides that, the statistical analysis is being conducted in order to predict the effect on number of printers. From the result, the O3 concentrations show, 10% reduced for printing premise using fan ventilation compared to air-conditioning but remain the same value for PM2.5. The concentration of O3 increased when the number of printers decreased, while the concentration of PM2.5 increased the increase of printers number. Overall, the use of fan in printing premise is more suggested since the level is slightly lower than the printing premise using air-conditioning.

  5. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Residential Building Heating, Ventilation, and Air Conditioning Systems

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Inc., Burlington, MA (United States); Zogg, Robert [Navigant Consulting, Inc., Burlington, MA (United States); Young, Jim [Navigant Consulting, Inc., Burlington, MA (United States); Schmidt, Justin [Navigant Consulting, Inc., Burlington, MA (United States)

    2012-10-01

    This report is an assessment of 135 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. residential buildings to identify and provide analysis on 19 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, descriptions of technical maturity, descriptions of non-energy benefits, descriptions of current barriers for market adoption, and descriptions of the technology's applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  6. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Commercial Building Heating, Ventilation, and Air Conditioning Systems

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-09-01

    This report covers an assessment of 182 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. commercial buildings to identify and provide analysis on 17 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, description of technical maturity, description of non-energy benefits, description of current barriers for market adoption, and description of the technology’s applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  7. Radiation protection instrumentation. Monitoring equipment. Atmospheric radioactive iodine in the environment

    International Nuclear Information System (INIS)

    1995-01-01

    This international standard applies to portable or installed equipment for the monitoring of radioactive iodine (such as I-131 or I-125) in air in the environment of nuclear installations during normal operation, during design basis events, and in emergency situations. The monitoring involves continuous sample trapping and, where adequate, automatic start of sampling. The document deals with radioactive iodine monitor design, testing procedures, and documentation. Appended tables refer to the reference and normal testing conditions, tests in normal testing conditions, tests during changes of the affecting quantities, and tests of changes in the air circuit. (P.A.)

  8. [Assessment of the air quality improment of cleaning and disinfection on central air-conditioning ventilation system].

    Science.gov (United States)

    Liu, Hongliang; Zhang, Lei; Feng, Lihong; Wang, Fei; Xue, Zhiming

    2009-09-01

    To assess the effect of air quality of cleaning and disinfection on central air-conditioning ventilation systems. 102 air-conditioning ventilation systems in 46 public facilities were sampled and investigated based on Hygienic assessment criterion of cleaning and disinfection of public central air-conditioning systems. Median dust volume decreased from 41.8 g/m2 to 0.4 g/m2, and the percentage of pipes meeting the national standard for dust decreased from 17.3% (13/60) to 100% (62/62). In the dust, median aerobic bacterial count decreased from 14 cfu/cm2 to 1 cfu/cm2. Median aerobic fungus count decreased from 10 cfu/cm2 to 0 cfu/cm2. The percentage of pipes with bacterial and fungus counts meeting the national standard increased from 92.4% (171/185) and 82.2% (152/185) to 99.4% (165/166) and 100% (166/166), respectively. In the ventilation air, median aerobic bacterial count decreased from 756 cfu/m3 to 229 cfu/m3. Median aerobic fungus count decreased from 382 cfu/m3 to 120 cfu/m3. The percentage of pipes meeting the national standard for ventilation air increased from 33.3% (81/243) and 62.1% (151/243) to 79.8% (292/366) and 87.7% (242/276), respectively. But PM10 rose from 0.060 mg/m3 to 0.068 mg/m3, and the percentage of pipes meeting the national standard for PM10 increased from 74.2% (13/60) to 90.2% (46/51). The cleaning and disinfection of central air-conditioning ventilation systems could have a beneficial effect of air quality.

  9. 40 CFR Appendix D to Subpart B of... - SAE J2810 Standard for Recovery Only Equipment for HFC-134a Refrigerant

    Science.gov (United States)

    2010-07-01

    ... removed from, motor vehicle air-conditioning systems. 1. Scope The purpose of this SAE Standard is to... 700 Standard or allow for recycling of the recovered refrigerant to SAE J2788 specifications by using... (R-134a) Recovery/Recycling Equipment and Recovery/Recycling/Recharging for Mobile Air-Conditioning...

  10. [Biological contamination in office buildings related to ventilation/air conditioning system].

    Science.gov (United States)

    Bródka, Karolina; Sowiak, Małgorzata; Kozajda, Anna; Cyprowski, Marcin; Irena, Szadkowska-Stańczyk

    2012-01-01

    Indoor air is contaminated with microorganisms coming from both the atmospheric air and sources present in premises. The aim of this study was to analyze the concentrations of biological agents in office buildings, dependending on ventilation/air conditioning system and season. The study covered office buildings (different in the system of ventila-tion/air conditioning). Air samples for assessing the levels of inhalable dust, endotoxins and (1-->3)-beta-D-glucans, were taken at the selected stationary points of each building during summer and winter. The air was sampled for 6 h, using portable sets consisting of the GilAir 5 pump and the head filled with a filter of fiber glass. The samples for the presence of airborne bacteria and fungi were collected twice during the day using the impaction method. Average concentrations of inhalable dust, bacteria, fungi, endotoxins and (1-->3)-beta-D-glucans in office premises were 0.09 mg/m3, 6.00 x 10(2) cfu/m3, 4.59 x 10(1) cfu/m3, 0.42 ng/m3 and 3.91 ng/m3, respectively. Higher concentrations of the investigated agents were found in summer. In premises with air conditioning concentrations of airborne fungi, (1-->3)-beta-D-glucans and inhalable dust were significantly lower in winter. In summer the trend was reverse except for (1-->3)-beta-D-glucans. Concentrations of biological agents were affected by the season and the presence of air conditioning. Concentrations of inhalable dust, bacteria, fungi, endotoxins and (1-->3)-beta-D-glucans, observed inside the office buildings, were significantly higher in summer than in winter. The presence of the air conditioning system modified in various ways the levels of biological agents. Its influence was greater on the concentration of fungi and (1-->3)-beta-D-glucans than on that of bacteria and endotoxins.

  11. Effects of preheated combustion air on laminar coflow diffusion flames under normal and microgravity conditions

    Science.gov (United States)

    Ghaderi Yeganeh, Mohammad

    Global energy consumption has been increasing around the world, owing to the rapid growth of industrialization and improvements in the standard of living. As a result, more carbon dioxide and nitrogen oxide are being released into the environment. Therefore, techniques for achieving combustion at reduced carbon dioxide and nitric oxide emission levels have drawn increased attention. Combustion with a highly preheated air and low-oxygen concentration has been shown to provide significant energy savings, reduce pollution and equipment size, and uniform thermal characteristics within the combustion chamber. However, the fundamental understanding of this technique is limited. The motivation of the present study is to identify the effects of preheated combustion air on laminar coflow diffusion flames. Combustion characteristics of laminar coflow diffusion flames are evaluated for the effects of preheated combustion air temperature under normal and low-gravity conditions. Experimental measurements are conducted using direct flame photography, particle image velocimetry (PIV) and optical emission spectroscopy diagnostics. Laminar coflow diffusion flames are examined under four experimental conditions: normal-temperature/normal-gravity (case I), preheated-temperature/normal gravity (case II), normal-temperature/low-gravity (case III), and preheated-temperature/low-gravity (case IV). Comparisons between these four cases yield significant insights. In our studies, increasing the combustion air temperature by 400 K (from 300 K to 700 K), causes a 37.1% reduction in the flame length and about a 25% increase in peak flame temperature. The results also show that a 400 K increase in the preheated air temperature increases CH concentration of the flame by about 83.3% (CH is a marker for the rate of chemical reaction), and also increases the C2 concentration by about 60% (C2 is a marker for the soot precursor). It can therefore be concluded that preheating the combustion air

  12. Advanced Strategy Guideline: Air Distribution Basics and Duct Design

    Energy Technology Data Exchange (ETDEWEB)

    Burdick, A.

    2011-12-01

    This report discusses considerations for designing an air distribution system for an energy efficient house that requires less air volume to condition the space. Considering the HVAC system early in the design process will allow adequate space for equipment and ductwork and can result in cost savings. Principles discussed that will maximize occupant comfort include delivery of the proper amount of conditioned air for appropriate temperature mixing and uniformity without drafts, minimization of system noise, the impacts of pressure loss, efficient return air duct design, and supply air outlet placement, as well as duct layout, materials, and sizing.

  13. Performance Evaluation of Photovoltaic Solar Air Conditioning

    Directory of Open Access Journals (Sweden)

    Snegirjovs A.

    2016-12-01

    Full Text Available Information on the electrical-driven solar air conditioning (SAC is rather scanty. A considerable body of technical data mostly concerns large-scale photo-voltaic solar air conditioning (PV-SAC systems. Reliable information about the energy output has arisen only in recent years; however, it is still not easily accessible, and sometimes its sources are closed. Despite these facts, solar energy researchers, observers and designers devote special attention to this type of SAC systems. In this study, performance evaluation is performed for the PV-SAC technology, in which low-power (up to 15 kWp of cooling power on average systems are used. Such a system contains a PV electric-driven compression chiller with cold and heat sensible thermal storage capacities, and a rejected energy unit used for preheating domestic hot water (DHW. In a non-cooling season, it is possible to partly employ the system in the reverse mode for DHW production. In this mode, the ambient air serves as a heat source. Besides, free cooling is integrated in the PV-SAC concept.

  14. Performance Evaluation of Photovoltaic Solar Air Conditioning

    Science.gov (United States)

    Snegirjovs, A.; Shipkovs, P.; Lebedeva, K.; Kashkarova, G.; Migla, L.; Gantenbein, P.; Omlin, L.

    2016-12-01

    Information on the electrical-driven solar air conditioning (SAC) is rather scanty. A considerable body of technical data mostly concerns large-scale photo-voltaic solar air conditioning (PV-SAC) systems. Reliable information about the energy output has arisen only in recent years; however, it is still not easily accessible, and sometimes its sources are closed. Despite these facts, solar energy researchers, observers and designers devote special attention to this type of SAC systems. In this study, performance evaluation is performed for the PV-SAC technology, in which low-power (up to 15 kWp of cooling power on average) systems are used. Such a system contains a PV electric-driven compression chiller with cold and heat sensible thermal storage capacities, and a rejected energy unit used for preheating domestic hot water (DHW). In a non-cooling season, it is possible to partly employ the system in the reverse mode for DHW production. In this mode, the ambient air serves as a heat source. Besides, free cooling is integrated in the PV-SAC concept.

  15. A mixed air/air and air/water heat pump system ensures the air-conditioning of a cinema; Un systeme mixte PAC air/air et air/eau climatise un cinema

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2001-03-01

    This article presents the air conditioning system of a new cinema complex of Boulogne (92, France) which comprises a double-flux air processing plant and two heat pumps. Each heat pump has two independent refrigerating loops: one with a air condenser and the other with a water condenser. This system allows to limit the power of the loop and to reduce the size of the cooling tower and of the vertical ducts. This article describes the technical characteristics of the installation: thermodynamic units, smoke clearing, temperature control, air renewing. (J.S.)

  16. The Effect of Air-Conditioning on Student and Teacher Performance.

    Science.gov (United States)

    Phoenix Union High School District, AZ. Dept. of Research and Planning.

    The literature is reviewed to see if research shows a relationship between student and teacher performance and air conditioning of classrooms. The benefits of air conditioning in promoting learning are substantiated by studies that are summarized but not cited. The relationship of the report to the Phoenix Union High School System Advisory…

  17. Air Quality and Meteorological Boundary Conditions during the MCMA-2003 Field Campaign

    Science.gov (United States)

    Sosa, G.; Arriaga, J.; Vega, E.; Magaña, V.; Caetano, E.; de Foy, B.; Molina, L. T.; Molina, M. J.; Ramos, R.; Retama, A.; Zaragoza, J.; Martínez, A. P.; Márquez, C.; Cárdenas, B.; Lamb, B.; Velasco, E.; Allwine, E.; Pressley, S.; Westberg, H.; Reyes, R.

    2004-12-01

    A comprehensive field campaign to characterize photochemical smog in the Mexico City Metropolitan Area (MCMA) was conducted during April 2003. An important number of equipment was deployed all around the urban core and its surroundings to measure gas and particles composition from the various sources and receptor sites. In addition to air quality measurements, meteorology variables were also taken by regular weather meteorological stations, tethered balloons, radiosondes, sodars and lidars. One important issue with regard to the field campaign was the characterization of the boundary conditions in order to feed meteorological and air quality models. Four boundary sites were selected to measure continuously criteria pollutants, VOC and meteorological variables at surface level. Vertical meteorological profiles were measured at three other sites : radiosondes in Tacubaya site were launched every six hours daily; tethered balloons were launched at CENICA and FES-Cuautitlan sites according to the weather conditions, and one sodar was deployed at UNAM site in the south of the city. Additionally to these measurements, two fixed meteorological monitoring networks deployed along the city were available to complement these measurements. In general, we observed that transport of pollutants from the city to the boundary sites changes every day, according to the coupling between synoptic and local winds. This effect were less important at elevated sites such as Cerro de la Catedral and ININ, where synoptic wind were more dominant during the field campaign. Also, local sources nearby boundary sites hide the influence of pollution coming from the city some days, particularly at the La Reforma site.

  18. Criticality Analysis of SFP Region I under Dry Air Condition

    International Nuclear Information System (INIS)

    Kim, Ki Yong; Kim, Min Chul

    2016-01-01

    This paper is to provide a result of the criticality evaluation under the condition that new fuel assemblies for initial fuel loading are storing in Region 1 of SFP in the dry air. The objective of this analysis is to ensure the effective neutron multiplication factor(k_e_f_f) of SFP is less than 0.95 under that condition. This analysis ensured the effective neutron multiplication factor(k_e_f_f) of Region 1 of SFP is less than 0.95 under the condition in the air. The keff in Region I of SFP under the condition of the dry air is 0.5865. The increased k_c_a_l_c of the Region 1 after the mislocated fuel assembly accident is 0.0444 at the pool flooded with un-borated water

  19. 76 FR 77914 - Energy Conservation Program for Certain Commercial and Industrial Equipment: Test Procedures for...

    Science.gov (United States)

    2011-12-15

    ... lifetime. Correlated color temperature (CCT) and color rendering index (CRI) would also be measured as potential means to delineate equipment classes for HID lamps. This notice of proposed rulemaking (NOPR) also... Conditions a. Ambient Conditions i. Ambient Test Temperature ii. Air Speed b. Power Supply Characteristics i...

  20. Sustainability Challenges from Climate Change and Air Conditioning Use in Urban Areas

    Directory of Open Access Journals (Sweden)

    Karin Lundgren

    2013-07-01

    Full Text Available Global climate change increases heat loads in urban areas causing health and productivity risks for millions of people. Inhabitants in tropical and subtropical urban areas are at especial risk due to high population density, already high temperatures, and temperature increases due to climate change. Air conditioning is growing rapidly, especially in South and South-East Asia due to income growth and the need to protect from high heat exposures. Studies have linked increased total hourly electricity use to outdoor temperatures and humidity; modeled future predictions when facing additional heat due to climate change, related air conditioning with increased street level heat and estimated future air conditioning use in major urban areas. However, global and localized studies linking climate variables with air conditioning alone are lacking. More research and detailed data is needed looking at the effects of increasing air conditioning use, electricity consumption, climate change and interactions with the urban heat island effect. Climate change mitigation, for example using renewable energy sources, particularly photovoltaic electricity generation, to power air conditioning, and other sustainable methods to reduce heat exposure are needed to make future urban areas more climate resilient.

  1. Advanced Strategy Guideline. Air Distribution Basics and Duct Design

    Energy Technology Data Exchange (ETDEWEB)

    Arlan Burdick

    2011-12-01

    This report discusses considerations for designing an air distribution system for an energy efficient house that requires less air volume to condition the space. Considering the HVAC system early in the design process will allow adequate space for equipment and ductwork and can result in cost savings.

  2. Evaluation of severe accident environmental conditions taking accident management strategy into account for equipment survivability assessments

    International Nuclear Information System (INIS)

    Lee, Byung Chul; Jeong, Ji Hwan; Na, Man Gyun; Kim, Soong Pyung

    2003-01-01

    This paper presents a methodology utilizing accident management strategy in order to determine accident environmental conditions in equipment survivability assessments. In case that there is well-established accident management strategy for specific nuclear power plant, an application of this tool can provide a technical rationale on equipment survivability assessment so that plant-specific and time-dependent accident environmental conditions could be practically and realistically defined in accordance with the equipment and instrumentation required for accident management strategy or action appropriately taken. For this work, three different tools are introduced; Probabilistic Safety Assessment (PSA) outcomes, major accident management strategy actions, and Accident Environmental Stages (AESs). In order to quantitatively investigate an applicability of accident management strategy to equipment survivability, the accident simulation for a most likely scenario in Korean Standard Nuclear Power Plants (KSNPs) is performed with MAAP4 code. The Accident Management Guidance (AMG) actions such as the Reactor Control System (RCS) depressurization, water injection into the RCS, the containment pressure and temperature control, and hydrogen concentration control in containment are applied. The effects of these AMG actions on the accident environmental conditions are investigated by comparing with those from previous normal accident simulation, especially focused on equipment survivability assessment. As a result, the AMG-involved case shows the higher accident consequences along the accident environmental stages

  3. Air Conditioning and Refrigeration. Book One.

    Science.gov (United States)

    Wantiez, Gary W.

    Designed to provide students with the basic skills for an occupation in air conditioning and refrigeration, this curriculum guide includes seven major areas, each consisting of one or more units of instruction. These areas and their respective units are titled as follows: Orientation (history and development, and job opportunities), Safety…

  4. Heating, Ventilation and Air-Conditioning Systems, Part of Indoor Air Quality Design Tools for Schools

    Science.gov (United States)

    The main purposes of a Heating, Ventilation, and Air-Conditioning system are to help maintain good indoor air quality through adequate ventilation with filtration and provide thermal comfort. HVAC systems are among the largest energy consumers in schools.

  5. Evaluation of comfort level in desks equipped with two personalized ventilation systems in slightly warm environments

    Energy Technology Data Exchange (ETDEWEB)

    Conceicao, Eusebio Z.E. [Faculdade de Ciencias e Tecnologia - Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Lucio, Manuela J.R. [Agrupamento Vertical Professor Paula Nogueira, R. Comunidade Lusiada, 8700-000 Olhao (Portugal); Rosa, Silvia P.; Custodio, Ana L.V.; Andrade, Renata L.; Meira, Maria J.P.A. [Faculdade de Ciencias do Mar e do Ambiente - Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal)

    2010-03-15

    In this work the comfort level, namely the thermal comfort, local thermal discomfort and air quality levels, in a classroom with desks equipped with two personalized ventilation systems, in slightly warm environments, is evaluated. A manikin, a ventilated classroom desk, two indoor climate analyzers, a multi-nodal human thermal comfort numerical model and a computational fluid dynamic numerical model, are used. The classroom desk, with double occupation capacity, is used by a student, located in the right side seat. Each personalized ventilation system is equipped with one air terminal device located above the desk writing area, in front to the trunk area, and an other located below the desk writing area, in front to the legs area. The thermal comfort level is evaluated by the developed multi-nodal human thermal comfort numerical model, using a PMV value, the local thermal discomfort level, namely the draught risk and the air velocity fluctuation equivalent frequencies, is evaluated by empirical models, while the air quality level and the detailed airflow around the manikin are evaluated by the computational fluid dynamic numerical model. In the experimental tests the mean air velocity and the turbulence intensity in the upper air terminal device are 3.5 m/s and 9.7%, while in the lower air terminal device are 2.6 m/s and 15.2%. The mean air temperature in the air terminal devices is around 28 C, while the mean radiant temperature in the occupation area, the mean air temperature far from the occupation area and the internal mean air relative humidity were, respectively, 28 C, 28 C and 50%. The air velocity and temperature around the occupant are measured around 15 human body sections. The actual personalized ventilation system, which promotes an ascendant airflow around the occupant with highest air renovation rate in the respiration area, promotes acceptable thermal comfort conditions and air quality in the respiration area in accord to the present standards. The

  6. Potential Evaluation of Solar Heat Assisted Desiccant Hybrid Air Conditioning System

    Science.gov (United States)

    Tran, Thien Nha; Hamamoto, Yoshinori; Akisawa, Atsushi; Kashiwagi, Takao

    The solar thermal driven desiccant dehumidification-absorption cooling hybrid system has superior advantage in hot-humid climate regions. The reasonable air processing of desiccant hybrid air conditioning system and the utility of clean and free energy make the system environment friendly and energy efficient. The study investigates the performance of the desiccant dehumidification air conditioning systems with solar thermal assistant. The investigation is performed for three cases which are combinations of solar thermal and absorption cooling systems with different heat supply temperature levels. Two solar thermal systems are used in the study: the flat plate collector (FPC) and the vacuum tube with compound parabolic concentrator (CPC). The single-effect and high energy efficient double-, triple-effect LiBr-water absorption cooling cycles are considered for cooling systems. COP of desiccant hybrid air conditioning systems are determined. The evaluation of these systems is subsequently performed. The single effect absorption cooling cycle combined with the flat plate collector solar system is found to be the most energy efficient air conditioning system.

  7. Effect of Intake Air Filter Condition on Vehicle Fuel Economy

    Energy Technology Data Exchange (ETDEWEB)

    Norman, Kevin M [ORNL; Huff, Shean P [ORNL; West, Brian H [ORNL

    2009-02-01

    The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy and the U.S. Environmental Protection Agency (EPA) jointly maintain a fuel economy website (www.fueleconomy.gov), which helps fulfill their responsibility under the Energy Policy Act of 1992 to provide accurate fuel economy information [in miles per gallon (mpg)] to consumers. The site provides information on EPA fuel economy ratings for passenger cars and light trucks from 1985 to the present and other relevant information related to energy use such as alternative fuels and driving and vehicle maintenance tips. In recent years, fluctuations in the price of crude oil and corresponding fluctuations in the price of gasoline and diesel fuels have renewed interest in vehicle fuel economy in the United States. (User sessions on the fuel economy website exceeded 20 million in 2008 compared to less than 5 million in 2004 and less than 1 million in 2001.) As a result of this renewed interest and the age of some of the references cited in the tips section of the website, DOE authorized the Oak Ridge National Laboratory (ORNL) Fuels, Engines, and Emissions Research Center (FEERC) to initiate studies to validate and improve these tips. This report documents a study aimed specifically at the effect of engine air filter condition on fuel economy. The goal of this study was to explore the effects of a clogged air filter on the fuel economy of vehicles operating over prescribed test cycles. Three newer vehicles (a 2007 Buick Lucerne, a 2006 Dodge Charger, and a 2003 Toyota Camry) and an older carbureted vehicle were tested. Results show that clogging the air filter has no significant effect on the fuel economy of the newer vehicles (all fuel injected with closed-loop control and one equipped with MDS). The engine control systems were able to maintain the desired AFR regardless of intake restrictions, and therefore fuel consumption was not increased. The carbureted engine did show a decrease in

  8. A flight investigation of oscillating air forces: Equipment and technique

    Science.gov (United States)

    Reed, W. H., III

    1975-01-01

    The equipment and techniques are described which are to be used in a project aimed at measuring oscillating air forces and dynamic aeroelastic response of a swept wing airplane at high subsonic speeds. Electro-hydraulic inertia type shakers installed in the wing tips will excite various elastic airplane modes while the related oscillating chordwise pressures at two spanwise wing stations and the wing mode shapes are recorded on magnetic tape. The data reduction technique, following the principle of a wattmeter harmonic analyzer employed by Bratt, Wight, and Tilly, utilizes magnetic tape and high speed electronic multipliers to record directly the real and imaginary components of oscillatory data signals relative to a simple harmonic reference signal. Through an extension of this technique an automatic flight-flutter-test data analyzer is suggested in which vector plots of mechanical admittance or impedance would be plotted during the flight test.

  9. Cooling energy efficiency and classroom air environment of a school building operated by the heat recovery air conditioning unit

    International Nuclear Information System (INIS)

    Wang, Yang; Zhao, Fu-Yun; Kuckelkorn, Jens; Liu, Di; Liu, Li-Qun; Pan, Xiao-Chuan

    2014-01-01

    The recently-built school buildings have adopted novel heat recovery ventilator and air conditioning system. Heat recovery efficiency of the heat recovery facility and energy conservation ratio of the air conditioning unit were analytically modeled, taking the ventilation networks into account. Following that, school classroom displacement ventilation and its thermal stratification and indoor air quality indicated by the CO 2 concentration have been numerically modeled concerning the effects of delivering ventilation flow rate and supplying air temperature. Numerical results indicate that the promotion of mechanical ventilation rate can simultaneously boost the dilution of indoor air pollutants and the non-uniformity of indoor thermal and pollutant distributions. Subsequent energy performance analysis demonstrates that classroom energy demands for ventilation and cooling could be reduced with the promotion of heat recovery efficiency of the ventilation facility, and the energy conservation ratio of the air conditioning unit decreases with the increasing temperatures of supplying air. Fitting correlations of heat recovery ventilation and cooling energy conservation have been presented. - Highlights: • Low energy school buildings and classroom environment. • Heat recovery facility operating with an air conditioning unit. • Displacement ventilation influenced by the heat recovery efficiency. • Energy conservation of cooling and ventilation through heat recovery. • Enhancement of classroom environment with reduction of school building energy

  10. 14 CFR 203.5 - Compliance as condition on operations in air transportation.

    Science.gov (United States)

    2010-01-01

    ... air transportation. 203.5 Section 203.5 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF... DEFENSES § 203.5 Compliance as condition on operations in air transportation. It shall be a condition on the authority of all direct U.S. and foreign carriers to operate in air transportation that they have...

  11. The point of view of thermal equipment users; Le point de vue des gestionnaires d`equipements thermiques

    Energy Technology Data Exchange (ETDEWEB)

    Barroyer, P. [Compagnie Generale de Chauffe, 59 - Saint Andre Lez Lille (France)

    1997-12-31

    The influence of new pollution regulations in France on the operation of thermal equipment for central heating systems or industrial heat process systems, is examined. The main French regulations concerning air pollution control and energy rational consumption are reviewed, and their effects on the design, equipment, operation and costs of heat plants are discussed: impacts of the decree on upgrading and disposal of fossil fuel ashes, the decree on special protection zone (large cities), the clean air law, the compulsory declaration for classified combustion plants and limit air pollution emission levels

  12. Feedback linearization based control of a variable air volume air conditioning system for cooling applications.

    Science.gov (United States)

    Thosar, Archana; Patra, Amit; Bhattacharyya, Souvik

    2008-07-01

    Design of a nonlinear control system for a Variable Air Volume Air Conditioning (VAVAC) plant through feedback linearization is presented in this article. VAVAC systems attempt to reduce building energy consumption while maintaining the primary role of air conditioning. The temperature of the space is maintained at a constant level by establishing a balance between the cooling load generated in the space and the air supply delivered to meet the load. The dynamic model of a VAVAC plant is derived and formulated as a MIMO bilinear system. Feedback linearization is applied for decoupling and linearization of the nonlinear model. Simulation results for a laboratory scale plant are presented to demonstrate the potential of keeping comfort and maintaining energy optimal performance by this methodology. Results obtained with a conventional PI controller and a feedback linearizing controller are compared and the superiority of the proposed approach is clearly established.

  13. Analysis of the air flow generated by an air-assisted sprayer equipped with two axial fans using a 3D sonic anemometer.

    Science.gov (United States)

    García-Ramos, F Javier; Vidal, Mariano; Boné, Antonio; Malón, Hugo; Aguirre, Javier

    2012-01-01

    The flow of air generated by a new design of air assisted sprayer equipped with two axial fans of reversed rotation was analyzed. For this goal, a 3D sonic anemometer has been used (accuracy: 1.5%; measurement range: 0 to 45 m/s). The study was divided into a static test and a dynamic test. During the static test, the air velocity in the working vicinity of the sprayer was measured considering the following machine configurations: (1) one activated fan regulated at three air flows (machine working as a traditional sprayer); (2) two activated fans regulated at three air flows for each fan. In the static test 72 measurement points were considered. The location of the measurement points was as follow: left and right sides of the sprayer; three sections of measurement (A, B and C); three measurement distances from the shaft of the machine (1.5 m, 2.5 m and 3.5 m); and four measurement heights (1 m, 2 m, 3 m and 4 m). The static test results have shown significant differences in the module and the vertical angle of the air velocity vector in function of the regulations of the sprayer. In the dynamic test, the air velocity was measured at 2.5 m from the axis of the sprayer considering four measurement heights (1 m, 2 m, 3 m and 4 m). In this test, the sprayer regulations were: one or two activated fans; one air flow for each fan; forward speed of 2.8 km/h. The use of one fan (back) or two fans (back and front) produced significant differences on the duration of the presence of wind in the measurement point and on the direction of the air velocity vector. The module of the air velocity vector was not affected by the number of activated fans.

  14. Air conditioning with small power gas appliances

    International Nuclear Information System (INIS)

    Canci, Franco

    1997-01-01

    This article describes research and test activities on small power air conditioning appliances for residential use carried out in the United States, Japan and Europe. The absorption technology aims at the following objectives: to develop appliances requiring reduced maintenance and having a size comparable with electric units of the same output; to reduce production costs and therefore the final prince by adopting special manufacturing technologies such as welded plate exchangers; to obtain appliances which operate both in summer and winter ( as heat pumps), allowing to minimize management and installation costs in southern European climates. The final aim is to offer the customer one appliance only for the following purposes: hot water production for sanitary use, water refrigeration for summer air conditioning, hot water production production for winter heating. This kind of appliance should have management and maintenance costs similar to current individual boilers

  15. Air-conditioning Australian households: The impact of dynamic peak pricing

    International Nuclear Information System (INIS)

    Strengers, Yolande

    2010-01-01

    International mandates for smart metering are enabling variable and real-time pricing regimes such as dynamic peak pricing (DPP), which charges 10-40 times the off-peak rate for electricity during short periods. This regime aims to reduce peak electricity demand (predominantly due to increase in residential air-conditioning usage) and curb greenhouse gas emissions. Although trials indicate that DPP can achieve significant demand reductions, particularly in summer, little is known about how or why households change their cooling practices in response to this strategy. This paper discusses the outcomes of a small qualitative study assessing the impact of a DPP trial on household cooling practices in the Australian state of New South Wales. The study challenges common assumptions about the necessity of air-conditioning and impact of price signals. It finds that DPP engages households as co-managers of their cooling practices through a series of notification signals (SMS, phone, in-home display, email, etc.). Further, by linking the price signal to air-conditioning, some householders consider this practice discretionary for short periods of time. The paper concludes by warning that policy makers and utilities may serve to legitimise air-conditioning usage and/or negate demand reductions by failing to acknowledge the non-rational dynamics of DPP and household cooling practices. - Research highlights: →Most householders consider air-conditioning discretionary during DPP events →DPP engages householders as co-managers of their demand →Notification of an upcoming DPP event is significant to the response →Householders feel obligated to respond to DPP for a range of non-financial reasons

  16. Cost-Effective and Environmentally Safe Corrosion Prevention for 2nd Marine Air Wing Support Equipment Using Desiccant Wheel Dehumidification (DEW)

    National Research Council Canada - National Science Library

    McCarthy, David

    1994-01-01

    ...: change the material, coat its surface or keep the item dry. In an effort to reduce the cost and environmental impact of maintaining contingency support equipment, the 2nd Marine Air Wing (2nd MAW...

  17. An expert fault diagnosis system for vehicle air conditioning product development

    NARCIS (Netherlands)

    Tan, C.F.; Tee, B.T.; Khalil, S.N.; Chen, W.; Rauterberg, G.W.M.

    2015-01-01

    The paper describes the development of the vehicle air-conditioning fault diagnosis system in automotive industries with expert system shell. The main aim of the research is to diagnose the problem of new vehicle air-conditioning system development process and select the most suitable solution to

  18. Effectiveness of photocatalytic filter for removing volatile organic compounds in the heating, ventilation, and air conditioning system.

    Science.gov (United States)

    Yu, Kuo-Pin; Lee, Grace Whei-May; Huang, Wei-Ming; Wu, Chih-Cheng; Lou, Chia-ling; Yang, Shinhao

    2006-05-01

    Nowadays, the heating, ventilation, and air conditioning (HVAC) system has been an important facility for maintaining indoor air quality. However, the primary function of typical HVAC systems is to control the temperature and humidity of the supply air. Most indoor air pollutants, such as volatile organic compounds (VOCs), cannot be removed by typical HVAC systems. Thus, some air handling units for removing VOCs should be added in typical HVAC systems. Among all of the air cleaning techniques used to remove indoor VOCs, photocatalytic oxidation is an attractive alternative technique for indoor air purification and deodorization. The objective of this research is to investigate the VOC removal efficiency of the photocatalytic filter in a HVAC system. Toluene and formaldehyde were chosen as the target pollutants. The experiments were conducted in a stainless steel chamber equipped with a simplified HVAC system. A mechanical filter coated with Degussa P25 titania photocatalyst and two commercial photocatalytic filters were used as the photocatalytic filters in this simplified HVAC system. The total air change rates were controlled at 0.5, 0.75, 1, 1.25, and 1.5 hr(-1), and the relative humidity (RH) was controlled at 30%, 50%, and 70%. The ultraviolet lamp used was a 4-W, ultraviolet-C (central wavelength at 254 nm) strip light bulb. The first-order decay constant of toluene and formaldehyde found in this study ranged from 0.381 to 1.01 hr(-1) under different total air change rates, from 0.34 to 0.433 hr(-1) under different RH, and from 0.381 to 0.433 hr(-1) for different photocatalytic filters.

  19. Air Motion and Thermal Environment in Pig Housing Facilities with Diffuse Inlet

    DEFF Research Database (Denmark)

    Jacobsen, Lis

    A ventilation system with ambient air supply through diffuse ceiling used in pig production facilities is presented. The climatic conditions were examined both experimentally and numerically in an full scale experimental room and the inlet boundary conditions of the diffuse inlet were examined...... in ambient temperature and air exchange rate. The effect of housing equipment on environmental conditions has been examined both experimental and numerically and it was found that impervious housing equipment has a significant effect on the climatic conditions close to the wall in the occupational zone...... in a wind tunnel model. In the full scale experiments the focus has been on the correlation between variations in ambient climatic conditions and changes in environmental condition in the occupational zone. It was found that the environmental conditions in the occupational zone were independent on changes...

  20. DESIGN OF WATER-COOLED PACKAGED AIR-CONDITIONING SYSTEMS BASED ON RELIABILITY ASSESSMENT

    OpenAIRE

    関口, 圭輔; 中尾, 正喜; 藁谷, 至誠; 植草, 常雄; 羽山, 広文

    2007-01-01

    Water-cooled packaged air-conditioning systems are reevaluated in terms of alleviating the heat island phenomenon in cities and effectively utilizing building rooftops. Up to now, such reliability assessment has been insufficient, and this has limited the use of this kind of air-conditioning system in the information and communications sectors that demand a high reliability. This work has led to the development of a model for evaluating the reliability of water-cooled package air-conditioning...

  1. Open air-vapor compression refrigeration system for air conditioning and hot water cooled by cool water

    International Nuclear Information System (INIS)

    Hou Shaobo; Li Huacong; Zhang Hefei

    2007-01-01

    This paper presents an open air-vapor compression refrigeration system for air conditioning and hot water cooled by cool water and proves its feasibility through performance simulation. Pinch technology is used in analysis of heat exchange in the surface heat exchanger, and the temperature difference at the pinch point is selected as 6 o C. Its refrigeration depends mainly on both air and vapor, more efficient than a conventional air cycle, and the use of turbo-machinery makes this possible. This system could use the cool in the cool water, which could not be used to cool air directly. Also, the heat rejected from this system could be used to heat cool water to 33-40 o C. The sensitivity analysis of COP to η c and η t and the simulated results T 4 , T 7 , T 8 , q 1 , q 2 and W m of the cycle are given. The simulations show that the COP of this system depends mainly on T 7 , η c and η t and varies with T 3 or T wet and that this cycle is feasible in some regions, although the COP is sensitive to the efficiencies of the axial compressor and turbine. The optimum pressure ratio in this system could be lower, and this results in a fewer number of stages of the axial compressor. Adjusting the rotation speed of the axial compressor can easily control the pressure ratio, mass flow rate and the refrigerating capacity. The adoption of this cycle will make the air conditioned room more comfortable and reduce the initial investment cost because of the obtained very low temperature air. Humid air is a perfect working fluid for central air conditioning and no cost to the user. The system is more efficient because of using cool water to cool the air before the turbine. In addition, pinch technology is a good method to analyze the wet air heat exchange with water

  2. Magnetic Refrigeration Technology for High Efficiency Air Conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Boeder, A; Zimm, C

    2006-09-30

    Magnetic refrigeration was investigated as an efficient, environmentally friendly, flexible alternative to conventional residential vapor compression central air conditioning systems. Finite element analysis (FEA) models of advanced geometry active magnetic regenerator (AMR) beds were developed to minimize bed size and thus magnet mass by optimizing geometry for fluid flow and heat transfer and other losses. Conventional and magnetocaloric material (MCM) regenerator fabrication and assembly techniques were developed and advanced geometry passive regenerators were built and tested. A subscale engineering prototype (SEP) magnetic air conditioner was designed, constructed and tested. A model of the AMR cycle, combined with knowledge from passive regenerator experiments and FEA results, was used to design the regenerator beds. A 1.5 Tesla permanent magnet assembly was designed using FEA and the bed structure and plenum design was extensively optimized using FEA. The SEP is a flexible magnetic refrigeration platform, with individually instrumented beds and high flow rate and high frequency capability, although the current advanced regenerator geometry beds do not meet performance expectations, probably due to manufacturing and assembly tolerances. A model of the AMR cycle was used to optimize the design of a 3 ton capacity magnetic air conditioner, and the system design was iterated to minimize external parasitic losses such as heat exchanger pressure drop and fan power. The manufacturing cost for the entire air conditioning system was estimated, and while the estimated SEER efficiency is high, the magnetic air conditioning system is not cost competitive as currently configured. The 3 ton study results indicate that there are other applications where magnetic refrigeration is anticipated to have cost advantages over conventional systems, especially applications where magnetic refrigeration, through the use of its aqueous heat transfer fluid, could eliminate intermediate

  3. Low-Flow Liquid Desiccant Air Conditioning: General Guidance and Site Considerations

    Energy Technology Data Exchange (ETDEWEB)

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.

    2014-09-01

    Dehumidification or latent cooling in buildings is an area of growing interest that has been identified as needing more research and improved technologies for higher performance. Heating, ventilating, and air-conditioning (HVAC) systems typically expend excessive energy by using overcool-and-reheat strategies to dehumidify buildings. These systems first overcool ventilation air to remove moisture and then reheat the air to meet comfort requirements. Another common strategy incorporates solid desiccant rotors that remove moisture from the air more efficiently; however, these systems increase fan energy consumption because of the high airside pressure drop of solid desiccant rotors and can add heat of absorption to the ventilation air. Alternatively, liquid desiccant air-conditioning (LDAC) technology provides an innovative dehumidification solution that: (1) eliminates the need for overcooling and reheating from traditional cooling systems; and (2) avoids the increased fan energy and air heating from solid desiccant rotor systems.

  4. Smart Sensors Enable Smart Air Conditioning Control

    Directory of Open Access Journals (Sweden)

    Chin-Chi Cheng

    2014-06-01

    Full Text Available In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants’ information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans’ intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It’s also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection.

  5. The characteristics of welded joints for air conditioning application

    Science.gov (United States)

    Weglowski, M. St.; Weglowska, A.; Miara, D.; Kwiecinski, K.; Błacha, S.; Dworak, J.; Rykala, J.; Pikula, J.; Ziobro, G.; Szafron, A.; Zimierska-Nowak, P.; Richert, M.; Noga, P.

    2017-10-01

    In the paper the results of metallographic examination of welded joints for air-conditioning elements are presented. The European directives 2006/40/EC on the greenhouse gasses elimination demand to stop using traditional refrigerant and to change it to R744 (CO2) medium in air conditioning installation. The R744 refrigerant is environmental friendly medium if compared with standard solution such as R12, R134a or R1234yf and safer for passengers than R1234yf. The non-standard thermodynamic parameters of the R744 which translate into high pressure and high temperature require specific materials to develop the shape and to specify the technology of manufacturing for the particular elements of the conduits and moreover the technologies of joining for the whole structure, which would meet the exploitation requirements of the new air-conditioning system. To produce the test welded joints of stainless steels four different joining technologies were applied: laser welding, plasma welding, electron beam welding as well as high speed rotation welding. This paper describes the influence of the selected welding process on the macrostructure and microstructure of welded joints of AISI 304 and AISI 316L steels. The results indicated that plasma welding laser welding and electron beam welding technologies guaranty the proper quality of welded joints and can be used for the air conditioning application in automotive industry. However, high speed rotation welding not guarantee the good quality of welded joints and cannot be used for above application.

  6. Intelligent energy management control of vehicle air conditioning system coupled with engine

    International Nuclear Information System (INIS)

    Khayyam, Hamid; Abawajy, Jemal; Jazar, Reza N.

    2012-01-01

    Vehicle Air Conditioning (AC) systems consist of an engine powered compressor activated by an electrical clutch. The AC system imposes an extra load to the vehicle's engine increasing the vehicle fuel consumption and emissions. Energy management control of the vehicle air conditioning is a nonlinear dynamic system, influenced by uncertain disturbances. In addition, the vehicle energy management control system interacts with different complex systems, such as engine, air conditioning system, environment, and driver, to deliver fuel consumption improvements. In this paper, we describe the energy management control of vehicle AC system coupled with vehicle engine through an intelligent control design. The Intelligent Energy Management Control (IEMC) system presented in this paper includes an intelligent algorithm which uses five exterior units and three integrated fuzzy controllers to produce desirable internal temperature and air quality, improved fuel consumption, low emission, and smooth driving. The three fuzzy controllers include: (i) a fuzzy cruise controller to adapt vehicle cruise speed via prediction of the road ahead using a Look-Ahead system, (ii) a fuzzy air conditioning controller to produce desirable temperature and air quality inside vehicle cabin room via a road information system, and (iii) a fuzzy engine controller to generate the required engine torque to move the vehicle smoothly on the road. We optimised the integrated operation of the air conditioning and the engine under various driving patterns and performed three simulations. Results show that the proposed IEMC system developed based on Fuzzy Air Conditioning Controller with Look-Ahead (FAC-LA) method is a more efficient controller for vehicle air conditioning system than the previously developed Coordinated Energy Management Systems (CEMS). - Highlights: ► AC interacts: vehicle, environment, driver components, and the interrelationships between them. ► Intelligent AC algorithm which uses

  7. Contribution of air conditioning adoption to future energy use under global warming

    Science.gov (United States)

    Davis, Lucas W.; Gertler, Paul J.

    2015-01-01

    As household incomes rise around the world and global temperatures go up, the use of air conditioning is poised to increase dramatically. Air conditioning growth is expected to be particularly strong in middle-income countries, but direct empirical evidence is scarce. In this paper we use high-quality microdata from Mexico to describe the relationship between temperature, income, and air conditioning. We describe both how electricity consumption increases with temperature given current levels of air conditioning, and how climate and income drive air conditioning adoption decisions. We then combine these estimates with predicted end-of-century temperature changes to forecast future energy consumption. Under conservative assumptions about household income, our model predicts near-universal saturation of air conditioning in all warm areas within just a few decades. Temperature increases contribute to this surge in adoption, but income growth by itself explains most of the increase. What this will mean for electricity consumption and carbon dioxide emissions depends on the pace of technological change. Continued advances in energy efficiency or the development of new cooling technologies could reduce the energy consumption impacts. Similarly, growth in low-carbon electricity generation could mitigate the increases in carbon dioxide emissions. However, the paper illustrates the enormous potential impacts in this sector, highlighting the importance of future research on adaptation and underscoring the urgent need for global action on climate change. PMID:25918391

  8. Contribution of air conditioning adoption to future energy use under global warming.

    Science.gov (United States)

    Davis, Lucas W; Gertler, Paul J

    2015-05-12

    As household incomes rise around the world and global temperatures go up, the use of air conditioning is poised to increase dramatically. Air conditioning growth is expected to be particularly strong in middle-income countries, but direct empirical evidence is scarce. In this paper we use high-quality microdata from Mexico to describe the relationship between temperature, income, and air conditioning. We describe both how electricity consumption increases with temperature given current levels of air conditioning, and how climate and income drive air conditioning adoption decisions. We then combine these estimates with predicted end-of-century temperature changes to forecast future energy consumption. Under conservative assumptions about household income, our model predicts near-universal saturation of air conditioning in all warm areas within just a few decades. Temperature increases contribute to this surge in adoption, but income growth by itself explains most of the increase. What this will mean for electricity consumption and carbon dioxide emissions depends on the pace of technological change. Continued advances in energy efficiency or the development of new cooling technologies could reduce the energy consumption impacts. Similarly, growth in low-carbon electricity generation could mitigate the increases in carbon dioxide emissions. However, the paper illustrates the enormous potential impacts in this sector, highlighting the importance of future research on adaptation and underscoring the urgent need for global action on climate change.

  9. Vertical hydraulic generators experience with dynamic air gap monitoring

    International Nuclear Information System (INIS)

    Pollock, G.B.; Lyles, J.F.

    1992-01-01

    Until recently, dynamic monitoring of the rotor to stator air gap of hydraulic generators was not practical. Cost effective and reliable dyamic air gap monitoring equipment has been developed in recent years. Dynamic air gap monitoring was originally justified because of the desire of the owner to minimize the effects of catastrophic air gap failure. However, monitoring air gaps on a time basis has been shown to be beneficial by assisting in the assessment of hydraulic generator condition. The air gap monitor provides useful information on rotor and stator condition and generator vibration. The data generated by air gap monitors will assist managers in the decision process with respect to the timing and extent of required maintenance for a particular generating unit

  10. Air-water flow measurement for ERVC conditions by LIF/PIV

    International Nuclear Information System (INIS)

    Yoon, Jong Woong; Jeong, Yong Hoon

    2016-01-01

    Critical heat flux (CHF) of the external reactor vessel wall is a safety limit that indicate the integrity of the reactor vessel during the situation. Many research conducted CHF experiments in the IVR-ERVC conditions. However, the flow velocity field which is an important factor in the CHF mechanism were not studied enough in the IVR-ERVC situations. In this study, flow measurements including velocity vector field and the liquid velocity in the IVR-ERVC conditions were studied. The air-water two phase flow loop simulating IVRERVC conditions was set up and liquid velocity field was measured by LIF/PIV technique in this study. The experiment was conducted with and without air injection conditions. For the air-water flow experiment, liquid velocity at the outside of two phase boundary layer became higher and the two phase boundary layer thickness became smaller when the mass flux increases. The velocity data obtained in this study are expected to improve the CHF correlation in the IVR-ERVC situations.

  11. Air-water flow measurement for ERVC conditions by LIF/PIV

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jong Woong; Jeong, Yong Hoon [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    Critical heat flux (CHF) of the external reactor vessel wall is a safety limit that indicate the integrity of the reactor vessel during the situation. Many research conducted CHF experiments in the IVR-ERVC conditions. However, the flow velocity field which is an important factor in the CHF mechanism were not studied enough in the IVR-ERVC situations. In this study, flow measurements including velocity vector field and the liquid velocity in the IVR-ERVC conditions were studied. The air-water two phase flow loop simulating IVRERVC conditions was set up and liquid velocity field was measured by LIF/PIV technique in this study. The experiment was conducted with and without air injection conditions. For the air-water flow experiment, liquid velocity at the outside of two phase boundary layer became higher and the two phase boundary layer thickness became smaller when the mass flux increases. The velocity data obtained in this study are expected to improve the CHF correlation in the IVR-ERVC situations.

  12. Controlled air incinerator for radioactive waste. Volume I. Rationale, process, equipment, performance, and recommendations

    International Nuclear Information System (INIS)

    Neuls, A.S.; Draper, W.E.; Koenig, R.A.; Newmyer, J.M.; Warner, C.L.

    1982-11-01

    This two-volume report is a detailed design and operating documentation of the Los Alamos National Laboratory Controlled Air Incinerator (CAI) and is an aid to technology transfer to other Department of Energy contractor sites and the commercial sector. Volume I describes the CAI process, equipment, and performance, and it recommends modifications based on Los Alamos experience. It provides the necessary information for conceptual design and feasibility studies. Volume II provides descriptive engineering information such as drawings specifications, calculations, and costs. It aids duplication of the process at other facilities

  13. Calculation of the Chilling Requirement for Air Conditioning in the Excavation Roadway

    Directory of Open Access Journals (Sweden)

    Yueping Qin

    2015-10-01

    Full Text Available To effectively improve the climate conditions of the excavation roadway in coal mine, the calculation of the chilling requirement taking air conditioning measures is extremely necessary. The temperature field of the surrounding rock with moving boundary in the excavation roadway was numerically simulated by using finite volume method. The unstable heat transfer coefficient between the surrounding rock and air flow was obtained via the previous calculation. According to the coupling effects of the air flow inside and outside air duct, the differential calculation mathematical model of air flow temperature in the excavation roadway was established. The chilling requirement was calculated with the selfdeveloped computer program for forecasting the required cooling capacity of the excavation roadway. A good air conditioning effect had been observed after applying the calculated results to field trial, which indicated that the prediction method and calculation procedure were reliable.

  14. Influence of the outlet air temperature on the thermohydraulic behaviour of air coolers

    Directory of Open Access Journals (Sweden)

    Đorđević Emila M.

    2003-01-01

    Full Text Available The determination of the optimal process conditions for the operation of air coolers demands a detailed analysis of their thermohydraulic behaviour on the one hand, and the estimation of the operating costs, on the other. One of the main parameters of the thermohydraulic behaviour of this type of equipment, is the outlet air temperature. The influence of the outlet air temperature on the performance of air coolers (heat transfer coefficient overall heat transfer coefficient, required surface area for heat transfer air-side pressure drop, fan power consumption and sound pressure level was investigated in this study. All the computations, using AirCooler software [1], were applied to cooling of the process fluid and the condensation of a multicomponent vapour mixture on two industrial devices of known geometries.

  15. 10 CFR 71.74 - Accident conditions for air transport of plutonium.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Accident conditions for air transport of plutonium. 71.74 Section 71.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Package, Special Form, and LSA-III Tests 2 § 71.74 Accident conditions for air transport of...

  16. An intelligent service matching method for mechanical equipment condition monitoring using the fibre Bragg grating sensor network

    Science.gov (United States)

    Zhang, Fan; Zhou, Zude; Liu, Quan; Xu, Wenjun

    2017-02-01

    Due to the advantages of being able to function under harsh environmental conditions and serving as a distributed condition information source in a networked monitoring system, the fibre Bragg grating (FBG) sensor network has attracted considerable attention for equipment online condition monitoring. To provide an overall conditional view of the mechanical equipment operation, a networked service-oriented condition monitoring framework based on FBG sensing is proposed, together with an intelligent matching method for supporting monitoring service management. In the novel framework, three classes of progressive service matching approaches, including service-chain knowledge database service matching, multi-objective constrained service matching and workflow-driven human-interactive service matching, are developed and integrated with an enhanced particle swarm optimisation (PSO) algorithm as well as a workflow-driven mechanism. Moreover, the manufacturing domain ontology, FBG sensor network structure and monitoring object are considered to facilitate the automatic matching of condition monitoring services to overcome the limitations of traditional service processing methods. The experimental results demonstrate that FBG monitoring services can be selected intelligently, and the developed condition monitoring system can be re-built rapidly as new equipment joins the framework. The effectiveness of the service matching method is also verified by implementing a prototype system together with its performance analysis.

  17. Analysis on a hybrid desiccant air-conditioning system

    International Nuclear Information System (INIS)

    Jia, C.X.; Dai, Y.J.; Wu, J.Y.; Wang, R.Z.

    2006-01-01

    Hybrid desiccant-assisted preconditioner and split cooling coil system, which combines the merits of moisture removal by desiccant and cooling coil for sensible heat removal, is a potential alternative to conventional vapor compression cooling systems. In this paper, experiments on a hybrid desiccant air-conditioning system, which is actually an integration of a rotary solid desiccant dehumidification and a vapor compression air-conditioning unit, had been carried out. It is found that, compared with the conventional VC (vapor compression) system, the hybrid desiccant cooling system economizes 37.5% electricity powers when the process air temperature and relative humidity are maintained at 30 o C, and 55% respectively. The reason why the hybrid desiccant cooling system features better performance relative to the VC system lies in the improvement brought about in the performance of the evaporator in VC unit due to desiccant dehumidification. A thermodynamic model of the hybrid desiccant system with R-22 as the refrigerant has been developed and the impact of operating parameters on the sensible heat ratio of the evaporator and the electric power saving rate has been analyzed. It is found that a majority of evaporators can operate in the dry condition even if the regeneration temperature is lower (i.e. 80 o C)

  18. Human requirements in future air-conditioned environments

    DEFF Research Database (Denmark)

    Fanger, Povl Ole

    1999-01-01

    Although air-conditioning has played a positive role for economic development in warm climates, its image is globally mixed. Field studies demonstrate that there are substantial numbers of dissatisfied people in many buildings, among them those suffering from Sick Building Syndrome (SBS) symptoms...

  19. Human requirements in future air-conditioned environments

    DEFF Research Database (Denmark)

    Fanger, Povl Ole

    2001-01-01

    Although air-conditioning has played a positive role for economic development in warm climates, its image is globally mixed. Field studies demonstrate that there are substantial numbers of dissatisfied people in many buildings, among them those suffering from Sick Building Syndrome (SBS) symptoms...

  20. The equipment for low radioactivity measurements in industrial and field conditions

    International Nuclear Information System (INIS)

    Malik, R.; Owczarczyk, A.; Szpilowski, S.; Zenczykiewicz, Z.

    1992-01-01

    The equipment for low radioactivity measurements in industrial and field conditions has been worked out. Three scintillation detectors applied work in coincidence system. Their scintillation crystals are divided one to another by lead shieldings. All measuring system is situated in a lead container with lead cover. The measuring vessel fills practically all free volume of the lead container. Their shape ensures the best possible measurement geometry. (author). 3 figs

  1. A New Method of Reliability Evaluation Based on Wavelet Information Entropy for Equipment Condition Identification

    International Nuclear Information System (INIS)

    He, Z J; Zhang, X L; Chen, X F

    2012-01-01

    Aiming at reliability evaluation of condition identification of mechanical equipment, it is necessary to analyze condition monitoring information. A new method of reliability evaluation based on wavelet information entropy extracted from vibration signals of mechanical equipment is proposed. The method is quite different from traditional reliability evaluation models that are dependent on probability statistics analysis of large number sample data. The vibration signals of mechanical equipment were analyzed by means of second generation wavelet package (SGWP). We take relative energy in each frequency band of decomposed signal that equals a percentage of the whole signal energy as probability. Normalized information entropy (IE) is obtained based on the relative energy to describe uncertainty of a system instead of probability. The reliability degree is transformed by the normalized wavelet information entropy. A successful application has been achieved to evaluate the assembled quality reliability for a kind of dismountable disk-drum aero-engine. The reliability degree indicates the assembled quality satisfactorily.

  2. Does the air condition system in busses spread allergic fungi into driver space?

    Science.gov (United States)

    Sowiak, Małgorzata; Kozajda, Anna; Jeżak, Karolina; Szadkowska-Stańczyk, Irena

    2018-02-01

    The aim of this study was to establish whether the air-conditioning system in buses constitutes an additional source of indoor air contamination with fungi, and whether or not the fungi concentration depends on the period from the last disinfection of the system, combined with replacement of the cabin dust particle filter. The air samples to fungi analysis using impact method were taken in 30 buses (20 with an air-conditioning system, ACS; 10 with a ventilation system, VS) in two series: 1 and 22 weeks after cabin filter replacement and disinfection of the air-conditioning system. During one test in each bus were taken two samples: before the air-conditioning or ventilation system switched on and 6 min after operating of these systems. The atmospheric air was the external background (EB). After 1 week of use of the system, the fungi concentrations before starting of the ACS and VS system were 527.8 and 1053.0 cfu/m 3 , respectively, and after 22 weeks the concentrations were 351.9 and 1069.6 cfu/m 3 , respectively. While in the sample after 6 min of ACS and VS system operating, the fungi concentration after 1 week of use was 127.6 and 233.7 cfu/m 3 , respectively, and after 22 weeks it was 113.3 and 324.9 cfu/m 3 , respectively. Results do not provide strong evidence that air-conditioning system is an additional source of indoor air contamination with fungi. A longer operation of the system promoted increase of fungi concentration in air-conditioned buses only.

  3. Duct corrosion in the ventilating air conditioning system for Main Control Room

    International Nuclear Information System (INIS)

    Yamada, Kohei; Kobayashi, Takashi; Minami, Akiko; Fukuba, Kazushi

    2014-01-01

    Higashidori Nuclear Power Station, start-of-operation in December 2005, is a relatively new plant. We decided to get original data of air duct condition to determine maintenance policy of air duct, because planned maintenance of air duct has never been done and the corrosion of air duct has occurred in other plant. In January 2014, we found a corrosion-hole at the downstream of the inlet damper in the ventilating air conditioning system for Main Control Room (MCR). We supposed that the cause of rapid corrosion is related to the characteristic environment of this site. (author)

  4. Report based on fiscal 2000 diagnostic X-ray equipment questionnaire survey. Conditions of radiography

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Mitsuo [Kitasato Univ., Sagamihara, Kanagawa (Japan). School of Allied Health Sciences; Matsuura, Takatoshi [Sekishinkai Sayama Hospital, Saitama (Japan); Okuaki, Tomoyuki; Imai, Yoshio; Tsukamoto, Atsuko [Kanto Medical Center NTT EC, Tokyo (Japan); Ide, Toshinori [Kajima Corp., Tokyo (Japan). Kajima Clinic; Shinohara, Fuminori [Nippon Medical School, Kawasaki, Kanagawa (Japan). Second Hospital; Miyazaki, Shigeru [Toho Univ., Tokyo (Japan). Ohashi Hospital

    2002-08-01

    X-ray equipment has seen advances in inverters and the digitalization of reception systems. The X-ray Systems Study Group, in order to examine changes in the conditions of radiography, including pediatric radiography, variations in shortest irradiation time, and standardization of the conditions of radiography, carried out investigative research using a questionnaire survey that was sent to 400 facilities. The recovery rate was 33%. In terms of the reception system, half of the general radiography systems were using computed radiography (CR). Seventy percent of respondents used an intensifying screen and film (SEF) in stomach double-contrast radiography. About 80% used digital radiography (DR) and digital subtraction angiography (DSA) in aorta abdominalis angiography. At least 70% of high-voltage generators were of the inverter type. The conditions of radiography were not greatly influenced by changes in reception systems and X-ray equipment. Many pediatric radiographies were carried out by radiological technologists. We consider it useful to conduct such survey investigations. (author)

  5. [Report based on fiscal 2000 diagnostic x-ray equipment questionnaire survey(conditions of radiography)].

    Science.gov (United States)

    Ishikawa, Mitsuo; Matsuura, Takatoshi; Okuaki, Tomiyuki; Imai, Yoshio; Tsukamoto, Atsuko; Ide, Toshinori; Shinohara, Fuminori; Miyazaki, Shigeru

    2002-08-01

    X-ray equipment has seen advances in inverters and the digitalization of reception systems. The X-ray Systems Study Group, in order to examine changes in the conditions of radiography, including pediatric radiography, variations in shortest irradiation time, and standardization of the conditions of radiography, carried out investigative research using a questionnaire survey that was sent to 400 facilities. The recovery rate was 33%. In terms of the reception system, half of the general radiography systems were using computed radiography (CR). Seventy percent of respondents used an intensifying screen and film(S EF)in stomach double-contrast radiography. About 80% used digital radiography (DR) and digital subtraction angiography (DSA) in aorta abdominalis angiography. At least 70% of high-voltage generators were of the inverter type. The conditions of radiography were not greatly influenced by changes in reception systems and X-ray equipment. Many pediatric radiographies were carried out by radiological technologists. We consider it useful to conduct such survey investigations.

  6. Report of study 7.3: cooling and air conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Russo, F.

    2000-07-01

    This report describes the results of the study carried out by the study group 7.3 in the triennium 1997-2000. The study was focused on industrial refrigeration and air conditioning for the large building utilising natural gas. The goal of this study, carried out in collaboration of the members of study group 7.3, was to analyse the markets of industrial refrigeration and air conditioning for large buildings to identify possibilities to increase the natural gas share in these sectors. The available technology in the two sectors of the market are described in a single section, i.e. the 'State of the art of the technology'. In this section, technical characteristics, applications, performances, new developments and others topics are discussed for absorbers, gas engines, gas turbines and fuel cells. In the 'Industrial Refrigeration' section an analysis of the present global market for the industrial sector is presented. Economics, advantages and barriers to gas units compared with the electrical units are discussed. Information on existing industrial plants, possible application options and new technology developments are described as well. The 'Air conditioning for the large building' section deals with offices, hotels, commercial buildings, hospitals and shopping centres with a cooling capacity of 350 kW or higher. It appears that the use of natural gas for cooling of large buildings has been increasing during the last decade, thanks to the greater availability of natural gas and the development of new technologies. A marketing survey of gas air-conditioning was carried out in cooperation with a group of Intergas Marketing. Based on the survey, the report describes the market position of natural gas relative to electricity. It provides the strategic prospects for further developing natural gas as a competitive option for air-conditioning of large buildings using a combination of state-of-the-art technologies. It is important to highlight

  7. Refrigeration and air-conditioning technology workshop

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, P. J.; Counce, D. M. [eds.

    1993-01-01

    The Alternative Fluorocarbon Environmental Acceptability Study (AFEAS), a consortium of fluorocarbon manufacturers, and the US Department of Energy (DOE) are collaborating on a project to evaluate the energy use and global warming impacts of CFC alternatives. The goal of this project is to identify technologies that could replace the use of CFCs in refrigeration, heating, and air-conditioning equipment; to evaluate the direct impacts of chemical emissions on global warming; and to compile accurate estimates of energy use and, indirect CO{sub 2} emissions of substitute technologies. The first phase of this work focused on alternatives that could be commercialized before the year 2000. The second phase of the project is examining not-in-kind and next-generation technologies that could be developed to replace CFCs, HCFCs, and HFCs over a longer period. As part of this effort, Oak Ridge National Laboratory held a workshop on June 23--25, 1993. The preliminary agenda covered a broad range of alternative technologies and at least one speaker was invited to make a brief presentation at the workshop on each technology. Some of the invited speakers were unable to participate, and in a few cases other experts could not be identified. As a result, those technologies were not represented at the workshop. Each speaker was asked to prepare a five to seven page paper addressing six key issues concerning the technology he/she is developing. These points are listed in the sidebar. Each expert also spoke for 20 to 25 minutes at the workshop and answered questions from the other participants concerning the presentation and area of expertise. The primary goal of the presentations and discussions was to identify the developmental state of the technology and to obtain comparable data on system efficiencies. Individual papers are indexed separately.

  8. Technique and equipment for measuring volume activity of radon in the air of radon laboratories and clinics

    International Nuclear Information System (INIS)

    Vorob'ev, I.B.; Krivokhatskij, A.S.; Nekrasov, E.V.; Nikolaev, V.A.; Potapov, V.G.; Terent'ev, M.V.

    1990-01-01

    Usability of a new equipment-technique combination for measuring radon activity in the air of radon laboratories and balneological clinics is studied. The complex includes nitrate-cellulose detector, radon chamber, Aist, Istra type spark counters and technique of spark counting. The method sensitivity is 50 Bqxm 3 , the error is 30%. Usability and advisability of track method in radon laboratories and balneological clinics for simultaneous measurement in several points of integral volumetric radon activities are confirmred. The method permits to carry out rapid and accurate bulk investigations. The results of determining mean volumetric radon activity in the air in different points of radon laboratory and radon clinics are presented

  9. Days individual equipment of protection and professional risks; Equipements de protection individuelle et risques professionnelles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The personal protection equipment is studied in the legal way (legal liabilities, certification, European texts), technical way (ergonomics, painfulness of ventilated equipment wearing, reliability of a respirable air line, protection gloves against the chemical risk, exposure to nano particulates, working in hot area), human factors (hostile area and emotion management), studies on personal equipment such evaluation, efficiency, conception of new equipment, physiological tolerance, limit of use, and some general safety studies on the working places. (N.C.)

  10. Study on sampling conditions for the monitoring of waste air

    International Nuclear Information System (INIS)

    Moeller, T.J.; Buetefisch, K.A.

    1998-01-01

    The technical codes for radiological monitoring of the waste air released from a radwaste repository demand that sampling for determination of aerosol-borne radioactivity is to be made with a screener equipped with a suitable number of measuring probes extending over the entire cross-sectional surface of the vent. Another requirement is to ensure that the waste air stream passing through the measuring channel is representative, containing the typical, operation-induced distribution of aerosols across the surface to be scanned. The study reported was intended to determine in a scaled-down model (1:10) of a repository ventilating duct the typical spatial distribution of aerosols (3D particulate density) in order to establish information on the type of typical distributions of aerosols, to be used for optimisation of the measuring site and monitoring instruments. (orig./CB) [de

  11. Human requirements in future air-conditioned environments

    DEFF Research Database (Denmark)

    Fanger, Povl Ole

    2002-01-01

    Air-conditioning of buildings has played a very positive role for economic development in warm climates. Still its image is globally mixed. Field studies demonstrate that there are substantial numbers of dissatisfied people in many buildings, among them those suffering from SBS symptoms, even...

  12. Residential Central Air Conditioning and Heat Pump Installation – Workshop Outcomes

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Burlington, MA (United States); Zogg, Robert [Navigant Consulting, Burlington, MA (United States); Young, Jim [Navigant Consulting, Burlington, MA (United States); Bargach, Youssef [Navigant Consulting, Burlington, MA (United States)

    2016-11-01

    DOE's Building Technologies Office works with researchers and industry partners to develop and deploy technologies that can substantially reduce energy consumption in residential and commercial buildings. This report aims to advance BTO’s energy savings, emissions reduction, and other program goals by identifying research and development (R&D), demonstration and deployment, and other non-regulatory initiatives for improving the design and installation of residential central air conditioners (CAC) and central heat pumps (CHP). Improving the adoption of CAC/CHP design and installation best practices has significant potential to reduce equipment costs, improve indoor air quality and comfort, improve system performance, and most importantly, reduce household energy consumption and costs for heating and cooling by addressing a variety of common installation issues.

  13. Validation of a CFD model by using 3D sonic anemometers to analyse the air velocity generated by an air-assisted sprayer equipped with two axial fans.

    Science.gov (United States)

    García-Ramos, F Javier; Malón, Hugo; Aguirre, A Javier; Boné, Antonio; Puyuelo, Javier; Vidal, Mariano

    2015-01-22

    A computational fluid dynamics (CFD) model of the air flow generated by an air-assisted sprayer equipped with two axial fans was developed and validated by practical experiments in the laboratory. The CFD model was developed by considering the total air flow supplied by the sprayer fan to be the main parameter, rather than the outlet air velocity. The model was developed for three air flows corresponding to three fan blade settings and assuming that the sprayer is stationary. Actual measurements of the air velocity near the sprayer were taken using 3D sonic anemometers. The workspace sprayer was divided into three sections, and the air velocity was measured in each section on both sides of the machine at a horizontal distance of 1.5, 2.5, and 3.5 m from the machine, and at heights of 1, 2, 3, and 4 m above the ground The coefficient of determination (R2) between the simulated and measured values was 0.859, which demonstrates a good correlation between the simulated and measured data. Considering the overall data, the air velocity values produced by the CFD model were not significantly different from the measured values.

  14. Report on the Audit of the Acquisition of the Tactical Air Operations Center/Modular Control Equipment

    Science.gov (United States)

    1991-06-06

    This is our final report on the Audit of the Acquisition of the Tactical Air Operations Center/Modular Control Equipment (TAOC/MCE) for your...matters of concern that could affect the acquisition of the TAOC/MCE. We performed the audit from March through December 1990. The audit objective was...controls related to the audit objectives. The audit was made in accordance with the Inspector General’s critical program management element approach

  15. Design of Air Conditioning Automation for Patisserie Shopwindow

    OpenAIRE

    Kemal Tutuncu; Recai Ozcan

    2013-01-01

    Having done in this study, air-conditioning automation for patisserie shopwindow was designed. In the cooling sector it is quite important to cooling up the air temperature in the shopwindow within short time interval. Otherwise the patisseries inside of the shopwindow will be spoilt in a few days. Additionally the humidity is other important parameter for the patisseries kept in shopwindow. It must be raised up to desired level in a quite short time. Traditional patisser...

  16. Analysis and simulation of mobile air conditioning system coupled with engine cooling system

    International Nuclear Information System (INIS)

    Qi, Zhao-gang; Chen, Jiang-ping; Chen, Zhi-jiu

    2007-01-01

    Many components of the mobile air conditioning system and engine cooling system are closely interrelated and make up the vehicle climate control system. In the present paper, a vehicle climate control system model including air conditioning system and engine cooling system has been proposed under different operational conditions. All the components have been modeled on the basis of experimental data. Based on the commercial software, a computer simulation procedure of the vehicle climate control system has been developed. The performance of the vehicle climate control system is simulated, and the calculational data have good agreement with experimental data. Furthermore, the vehicle climate control simulation results have been compared with an individual air conditioning system and engine cooling system. The influences between the mobile air conditioning system and the engine cooling system are discussed

  17. Normal people working in normal organizations with normal equipment: system safety and cognition in a mid-air collision.

    Science.gov (United States)

    de Carvalho, Paulo Victor Rodrigues; Gomes, José Orlando; Huber, Gilbert Jacob; Vidal, Mario Cesar

    2009-05-01

    A fundamental challenge in improving the safety of complex systems is to understand how accidents emerge in normal working situations, with equipment functioning normally in normally structured organizations. We present a field study of the en route mid-air collision between a commercial carrier and an executive jet, in the clear afternoon Amazon sky in which 154 people lost their lives, that illustrates one response to this challenge. Our focus was on how and why the several safety barriers of a well structured air traffic system melted down enabling the occurrence of this tragedy, without any catastrophic component failure, and in a situation where everything was functioning normally. We identify strong consistencies and feedbacks regarding factors of system day-to-day functioning that made monitoring and awareness difficult, and the cognitive strategies that operators have developed to deal with overall system behavior. These findings emphasize the active problem-solving behavior needed in air traffic control work, and highlight how the day-to-day functioning of the system can jeopardize such behavior. An immediate consequence is that safety managers and engineers should review their traditional safety approach and accident models based on equipment failure probability, linear combinations of failures, rules and procedures, and human errors, to deal with complex patterns of coincidence possibilities, unexpected links, resonance among system functions and activities, and system cognition.

  18. THERMAL COMFORT STUDY OF AN AIR-CONDITIONED DESIGN STUDIO IN TROPICAL SURABAYA

    OpenAIRE

    Agus Dwi Hariyanto

    2005-01-01

    This paper evaluates the current thermal comfort condition in an air-conditioned design studio using objective measurement and subjective assessment. Objective measurement is mainly to quantify the air temperature, MRT, relative humidity, and air velocity. Subjective assessment is conducted using a questionnaire to determine the occupants thermal comfort sensations and investigate their perception of the thermal comfort level. A design studio in an academic institution in Surabaya was chosen ...

  19. FY1999 Meeting of The Society of Heating, Air-Conditioning and Sanitary Engineering of Japan. Air conditioning systems for various facilities; 1999 nendo gakujutsu koenkai gaiyo. Kakushu shisetsu kucho system

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, K. [Takenaka Corp., Osaka (Japan)

    1999-12-05

    B-49 reported the outline of an artificial weather room composed of one inner room and two outer rooms, and its temperature change and temperature profiles during air conditioning. The room is scheduled to be used for evaluation of air conditioning systems, thermal performance evaluation of building materials and study on ventilation efficiency. B-50 reported the seasonal measurement results on thermal environment, and cooling and heating use patterns of living rooms and common spaces of 4 welfare homes for aged persons, and showed that room temperature difference in winter should be considered. Measurement data on facilities with floor heating were required. B-51 reported the experiment and numerical analysis results on thermal environment, draft sensation, condensation and radiation effect of patient bedrooms by using a full-scale 4-bed room model with a specific outlet developed for patient bedroom air conditioning. B-52 reported the outline of an air conditioning system for vegetable factories, and its performance evaluation result during cooling. The effect of blackout curtains and local air conditioning was reported. B-53 reported the comparison study result on air conditioning for animal breeding rooms by full-scale model experiment and numerical analysis. The line outlet + hanging wall + rack back exhaust system was most favorable from the viewpoint of temperature profile and prevention of pollutants from diffusion. (translated by NEDO)

  20. Analysis of Direct Outdoor Air Cooling Efficency for Combined Variable Air Volume Air-conditioning System in Stores in Cold Climates of China

    OpenAIRE

    Luo, Zhiwen

    2006-01-01

    Direct outdoor air cooling contributes a lot not only to the improvement of the indoor air quality but also to the energy saving. Its full use will reduce the water chiller’s running time especially in some stores where cooling load keeps much higher and longer than that in other buildings. A novel air-conditioning system named Combined Variable Air Volume system (CVAV), combining a normal AHU with a separate outdoor air supply system, was proposed firstly by the authors. The most attractive ...

  1. RETRIEVAL EQUIPMENT DESCRIPTIONS

    International Nuclear Information System (INIS)

    J. Steinhoff

    1997-01-01

    The objective and the scope of this document are to list and briefly describe the major mobile equipment necessary for waste package (WP) retrieval from the proposed subsurface nuclear waste repository at Yucca Mountain. Primary performance characteristics and some specialized design features of the equipment are explained and summarized in the individual subsections of this document. There are no quality assurance requirements or QA controls in this document. Retrieval under normal conditions is accomplished with the same fleet of equipment as is used for emplacement. Descriptions of equipment used for retrieval under normal conditions is found in Emplacement Equipment Descriptions, DI: BCAF00000-01717-5705-00002 (a document in progress). Equipment used for retrieval under abnormal conditions is addressed in this document and consists of the following: (1) Inclined Plane Hauler; (2) Bottom Lift Transporter; (3) Load Haul Dump (LHD) Loader; (4) Heavy Duty Forklift for Emplacement Drifts; (5) Covered Shuttle Car; (6) Multipurpose Vehicle; and (7) Scaler

  2. History of ventilation and of air conditioning in Dolni Rozinka uranium mines

    International Nuclear Information System (INIS)

    Voltr, S.

    1987-01-01

    At a time of the start of mining operations in the Dolni Rozinka uranium mine, ventilation had been provided using the underpressure technique with diagonal winding shafts. From 1967 the overpressure system had been used. The system is described in detail and its constraints are listed. In 1983, on the basis of an analysis and model tests, the ventilation system was replaced by a underpressure system which satisfied the current hygiene specifications, was costsaving and reliable. Since 1985, an air conditioning system has been in operation featuring mobile cooling units and a closed-circuit air conditioning water system that is separated from the mining water pumping system. In view of the favourable temperature factors of the deposit, the mobile air conditioning units are only installed in blind headings. When the through-flow wind stream is achieved, air conditioning is abandoned. (J.B.). 2 figs., 5 refs

  3. Load Distribution of Semi-Central Evaporative Cooling Air-Conditioning System Based on the TRNSYS Platform

    Directory of Open Access Journals (Sweden)

    Ji Li

    2018-05-01

    Full Text Available Evaporative cooling is a green, energy-efficient cooling technology adopted in hot and dry regions, which has wider application in the field of air-conditioning systems. Outdoor meteorological parameters have a great influence on the operation mode and control strategy of evaporative cooling air-conditioning systems, and the system load distribution and system configuration will be affected. This paper aims at investigating the load distribution of semi-central evaporative cooling air-conditioning systems under the condition of hourly outdoor meteorological parameters. Firstly, this paper introduced the design partition, operation mode, controlling strategy and load distribution method on semi-central evaporative cooling air-conditioning system. Then, taking an office building in Lanzhou (China as an example, the evaporative cooling air-conditioning system was divided into five regions and the load distribution was simulated by TRNSYS (The Transient Energy System Simulation Tool under the condition of hourly outdoor meteorological parameters. Finally, the results have shown that the evaporative cooling air-conditioning system can provide 25.46% of the building loads, which was of great significance to reduce the energy consumption of air-conditioning system.

  4. Drilling equipment for difficult coring conditions: a new type of core lifter and triple tube core barrel

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, J B

    1968-08-01

    Although considerable improvements in diamond drilling equipment have been made since the early 1950's, deficiencies in existing equipment led to the development of a new type core lifter and special 20 ft triple tube core barrel designed to operate in bad coring conditions. It is claimed that although developed essentially for coal drilling, the new equipment could be adapted to other fields of diamond drilling with the cost advantage of increased life of the core lifter.

  5. Air conditioning system

    Science.gov (United States)

    Lowenstein, Andrew; Miller, Jeffrey; Gruendeman, Peter; DaSilva, Michael

    2005-02-01

    An air conditioner comprises a plurality of plates arranged in a successively stacked configuration with portions thereof having a spaced apart arrangement, and defining between successive adjacent pairs of plates at the spaced apart portions a first and second series of discrete alternating passages wherein a first air stream is passed through the first series of passages and a second air stream is passed through the second series of passages; and said stacked configuration of plates forming integrally therewith a liquid delivery means for delivering from a source a sufficient quantity of a liquid to the inside surfaces of the first series of fluid passages in a manner which provides a continuous flow of the liquid from a first end to a second end of the plurality of plates while in contact with the first air stream.

  6. Cleaning and air conditioning device for atmosphere in thermonuclear reactor chamber

    International Nuclear Information System (INIS)

    Ishida, Seiji.

    1993-01-01

    The device of the present invention removes tritium efficiently and attains ventilation and conditioning of a great amount of air flow. That is, there are disposed a humidity separator, a filter, a heater, a catalyst filled layer, a water jetting type humidifying heat insulation cooler and a cooler in this order from an inlet side (upstream) of contaminated room atmospheric gases. The catalyst filled layer, etc. are incorporated integrally into the ventilation air conditioning facility for ventilating air in the chamber of the thermonuclear reactor, to clean a tritium atmosphere at the same time. Accordingly, the device is made compact as a whole. A limit for the air flow rate owing to the use of the conventional catalyst tower and adsorbing tower is eliminated. Then a ventilating air conditioning for a great flow rate can be attained. Tritium is removed by cooling and dehumidification without using any adsorbent. Accordingly, an adsorbing tower is no more necessary and conventional regeneration operation is not required. As a result, space for installation is reduced, the system is simplified and the cost for construction and facility can be reduced. (I.S.)

  7. Logistic advantages of an air curtain in a cold store; Heiploeg ervaart logistieke voordelen van vrieshuis-luchtgordijn

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Fog and ice are problems in cold storage warehouses. A manufacturer of air conditioning equipment (Biddle in Kootstertille, Netherlands) claims to have found the solution in the so-called Multi Air stream Technology, an air curtain for cold stores.

  8. A study of energy use for ventilation and air-conditioning systems in Hong Kong

    Science.gov (United States)

    Yu, Chung Hoi Philip

    Most of the local modern buildings are high-rise with enclosed structure. Mechanical ventilation and air conditioning (MVAC) systems are installed for thermal comfort. Various types of MVAC systems found in Hong Kong were critically reviewed with comments on their characteristics in energy efficiency as well as application. The major design considerations were also discussed. Besides MVAC, other energy-consuming components in commercial buildings were also identified, such as lighting, lifts and escalators, office equipment, information technology facilities, etc. A practical approach has been adopted throughout this study in order that the end results will have pragmatic value to the heating, ventilating and air-conditioning (HVAC) industry in Hong Kong. Indoor Air Quality (IAQ) has become a major issue in commercial buildings worldwide including Hong Kong. Ventilation rate is no doubt a critical element in the design of HVAC systems, which can be realized more obviously in railway train compartments where the carbon dioxide level will be built up quickly when the compartments are crowded during rush hours. A study was carried out based on a simplified model using a train compartment that is equipped with an MVAC system. Overall Thermal Transfer Value (OTTV) is a single-value parameter for controlling building energy use and is relatively simple to implement legislatively. The local government has taken a first step in reacting to the worldwide concern of energy conservation and environmental protection since 1995. Different methods of OTTV calculation were studied and the computation results were compared. It gives a clear picture of the advantages and limitations for each method to the building designers. However, due to the limitations of using OTTV as the only parameter for building energy control, some new approaches to a total control of building energy use were discussed and they might be considered for future revision of the building energy codes in Hong

  9. Thermal comfort in air-conditioned mosques in the dry desert climate

    Energy Technology Data Exchange (ETDEWEB)

    Al-ajmi, Farraj F. [Department of Civil Engineering, College of Technological Studies, Shuwaikh 70654 (Kuwait)

    2010-11-15

    In Kuwait, as in most countries with a typical dry desert climate, the summer season is long with a mean daily maximum temperature of 45 C. Centralized air-conditioning, which is generally deployed from the beginning of April to the end of October, can have tremendous impact on the amount of electrical energy utilized to mechanically control the internal environment in mosque buildings. The indoor air temperature settings for all types of air-conditioned buildings and mosque buildings in particular, are often calculated based on the analytical model of ASHRAE 55-2004 and ISO 7730. However, a field study was conducted in six air-conditioned mosque buildings during the summers of 2007 to investigate indoor climate and prayers thermal comfort in state of Kuwait. The paper presents statistical data about the indoor environmental conditions in Kuwait mosque buildings, together with an analysis of prayer thermal comfort sensations for a total of 140 subjects providing 140 sets of physical measurements and subjective questionnaires were used to collect data. Results show that the neutral temperature (T{sub n}) of the prayers is found to be 26.1 C, while that for PMV is 23.3 C. Discrepancy of these values is in fact about 2.8 C higher than those predicted by PMV model. Therefore, thermal comfort temperature in Kuwait cannot directly correlate with ISO 7730 and ASHRAE 55-2004 standards. Findings from this study should be considered when designing air conditioning for mosque buildings. This knowledge can contribute towards the development of future energy-related design codes for Kuwait. (author)

  10. Temperature and Humidity Control in Air-Conditioned Buildings with lower Energy Demand and increased Indoor Air Quality

    DEFF Research Database (Denmark)

    Paul, Joachim; Martos, E. T.

    2003-01-01

    Air-conditioning is not only a matter of temperature control. Thermal comfort and good indoor air quality are mainly a matter of humidity. Human health and well being may suffer seriously from inadequate humidity and/or too low temperatures in a room. A case study involving supermarket air......%. For indoor air temperature and humidity control, the use of an ice slurry (´Binary Ice´)was compared to conventional chilled water. The use of Binary Ice instead of chilled water makes the air handling and air distribution installation much simpler, recirculation of air becomes obsolete, and a higher portion...... of ambient air can be supplied, thus improving the indoor air quality still further. Reheating of air is not necessary when using Binary Ice. The introduction of chilled air into a room requires a different type of air outlet, however. When using Binary Ice, energy savings are high for climates with low...

  11. 40 CFR 63.1434 - Equipment leak provisions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Equipment leak provisions. 63.1434... Standards for Hazardous Air Pollutant Emissions for Polyether Polyols Production § 63.1434 Equipment leak provisions. (a) The owner or operator of each affected source shall comply with the HON equipment leak...

  12. Cold Vacuum Drying Instrument Air System Design Description. System 12

    International Nuclear Information System (INIS)

    SHAPLEY, B.J.; TRAN, Y.S.

    2000-01-01

    This system design description (SDD) addresses the instrument air (IA) system of the spent nuclear fuel (SNF). This IA system provides instrument quality air to the Cold Vacuum Drying (CVD) Facility. The IA system is a general service system that supports the operation of the heating, ventilation, and air conditioning (HVAC) system, the process equipment skids, and process instruments in the CVD Facility. The following discussion is limited to the compressor, dryer, piping, and valving that provide the IA as shown in Drawings H-1-82222, Cold Vacuum Drying Facility Mechanical Utilities Compressed and Instrument Air PandID, and H-1.82161, Cold Vacuum Drying Facility Process Equipment Skid PandID MCO/Cusk Interface. Figure 1-1 shows the physical location of the 1A system in the CVD Facility

  13. Cold Vacuum Drying Instrument Air System Design Description (SYS 12)

    Energy Technology Data Exchange (ETDEWEB)

    SHAPLEY, B.J.; TRAN, Y.S.

    2000-06-05

    This system design description (SDD) addresses the instrument air (IA) system of the spent nuclear fuel (SNF). This IA system provides instrument quality air to the Cold Vacuum Drying (CVD) Facility. The IA system is a general service system that supports the operation of the heating, ventilation, and air conditioning (HVAC) system, the process equipment skids, and process instruments in the CVD Facility. The following discussion is limited to the compressor, dryer, piping, and valving that provide the IA as shown in Drawings H-1-82222, Cold Vacuum Drying Facility Mechanical Utilities Compressed & Instrument Air P&ID, and H-1.82161, Cold Vacuum Drying Facility Process Equipment Skid P&ID MCO/Cusk Interface. Figure 1-1 shows the physical location of the 1A system in the CVD Facility.

  14. Air curtain incinerator equipment performance evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    About 50 tonnes of oil-contaminated debris and related wood products were successfully incinerated in a 10-h performance evaluation of a mobile air curtain incinerator. The test was conducted to evaluate the incinerator's ability to combust oil-contaminated trash and debris obtained from oil spill sites. The operating principle of the apparatus involves a diesel engine driving an air blower to deliver ca 20,000 scfm of air into a 5-m long manifold angled at a 30{degree} slope into an incineration tank. A bottomhole aerator is lowered to the bottom of the tank and compressed air is injected into the aerator to control burn efficiency. The blower is engaged once the debris in the tank is burning sufficiently after starting a fire in the debris. The air curtain effect created by the air deflecting off the opposite wall from the blower manifold and bouncing off the bottom and up the side of the incineration tank results in repeated combustion of the gases, thereby significantly reducing the degree of visible smoke emission. The unit is capable of incinerating ca 5 tonnes/h and of generating ca 16 m{sup 3}/h of hot water which can be used for flushing spill sites and cleaning shorelines. 12 figs.

  15. Fuzzy logic speed control for the engine of an air-powered vehicle

    OpenAIRE

    Qihui Yu; Yan Shi; Maolin Cai; Weiqing Xu

    2016-01-01

    To improve the condition of air and eliminate exhaust gas pollution, this article proposes a compressed air power system. Instead of an internal combustion engine, the automobile is equipped with a compressed air engine, which transforms the energy of compressed air into mechanical motion energy. A prototype was built, and the compressed air engine was tested on an experimental platform. The output torque and energy efficiency were obtained from experimental results. When the supply pressure ...

  16. Condition monitoring of electrical equipment in nuclear power plants

    International Nuclear Information System (INIS)

    Sugarman, A.

    1986-01-01

    Condition monitoring (CM) is a subset of maintenance testing. It is a quantitative, predictive technique for assessing the effects of all types of aging (environmental, cyclic, operational, etc) on the ''health'' of the equipment. A difference between CM and maintenance testing is that the latter is neither quantitative (i.e., measures the relative condition of the component or material as opposed to merely verifying that its condition is acceptable) nor predictive (i.e., makes judgments, on the ability of the component to perform at a future time). A common example of the principle of CM can be illustrated with the automobile which has a lifetime that is small enough to observe all the periods (break in, random failure, wear out) that occur throughout aging. There are several weak link components in the car (e.g., water hoses, contacts in the distributor, generator, spark plug cables, solenoid, etc) which if they fail will cause failure of the automobile to either start or run. From the day the car is put on the road and is subjected to heat and vibration, significant aging of these components occurs. Degradation in the water hoses, for example is manifested by the elastomeric casing becoming brittle and cracking

  17. Integrated Instrumentation and Sensor Systems Enabling Condition-Based Maintenance of Aerospace Equipment

    Directory of Open Access Journals (Sweden)

    Richard C. Millar

    2012-01-01

    Full Text Available The objective of the work reported herein was to use a systems engineering approach to guide development of integrated instrumentation/sensor systems (IISS incorporating communications, interconnections, and signal acquisition. These require enhanced suitability and effectiveness for diagnostics and health management of aerospace equipment governed by the principles of Condition-based maintenance (CBM. It is concluded that the systems engineering approach to IISS definition provided clear benefits in identifying overall system requirements and an architectural framework for categorizing and evaluating alternative architectures, relative to a bottom up focus on sensor technology blind to system level user needs. CBM IISS imperatives identified include factors such as tolerance of the bulk of aerospace equipment operational environments, low intrusiveness, rapid reconfiguration, and affordable life cycle costs. The functional features identified include interrogation of the variety of sensor types and interfaces common in aerospace equipment applications over multiplexed communication media with flexibility to allow rapid system reconfiguration to adapt to evolving sensor needs. This implies standardized interfaces at the sensor location (preferably to open standards, reduced wire/connector pin count in harnesses (or their elimination through use of wireless communications.

  18. Sensory evaluation of heating and air conditioning systems

    Energy Technology Data Exchange (ETDEWEB)

    Evin, F.; Siekierski, E. [Electricite de France, Research and Development Division, Les Renardieres, Moret Sur Loing (France)

    2002-07-01

    Existing standards and models, such as ISO 7730 or the work of Fanger [Thermal Comfort], are not sufficient to characterise the satisfaction and pleasantness of end-users provided by heating or air conditioning systems. For this reason Electricite de France (EDF) has initiated a project with the aim of using sensory evaluation techniques in the design of HVAC systems. Sensory evaluation has been used for more than 30 years in the food industry, and now involves the cosmetics, the phone and the automotive industries. It is based on a dual evaluation: sensation measurements carried out by a small panel of trained expert assessors; preference studies performed by a large panel of representative consumers. A correlation between the data of both studies is then used to explain the preferences in terms of sensations (preference mapping). The first experiments performed in 1999 and 2000 have provided lists of descriptors of thermal sensation and acoustic sensation associated with heating and air conditioning appliances. They show that it is possible to define discriminative descriptors, to train a panel and to reliably quantify these descriptors. It is then possible to draw the sensory profiles of different heating, ventilation and air conditioning (HVAC) systems. The future experimental laboratory that EDF has decided to build is also presented, where the trained panels and end-users will evaluate the sensations and the preferences of real systems in eight 'realistic environmental chambers' designed, furnished and decorated like offices and flats. (author)

  19. The survey of blood irradiation equipment. About the present condition and a problem

    International Nuclear Information System (INIS)

    Irikawa, Tomio; Kuramitsu, Hideaki; Tanaka, Keiko; Hamamoto, Takaaki

    2001-01-01

    Once it shows the symptoms of post transfusion graft versus host disease, mostly all examples follow fatal progress. For this reason, generally 15-50 Gy irradiation is performed into the blood for transfusion by the ''guideline of radiation'' of the Japan society of blood transfusion as measure only in development-of-symptoms prevention. This time, the questionnaire was performed for the hospital of 100 institutions of the Chugoku and the Shikoku district, and the actual condition of management employment of blood irradiation equipment was investigated. Consequently, there was little institution in which the medical-examination radiological technologist is participating directly, and it was made clear dependent on the maker of an equipment management. (author)

  20. MODELS OF AIR TRAFFIC CONTROLLERS ERRORS PREVENTION IN TERMINAL CONTROL AREAS UNDER UNCERTAINTY CONDITIONS

    Directory of Open Access Journals (Sweden)

    Volodymyr Kharchenko

    2017-03-01

    Full Text Available Purpose: the aim of this study is to research applied models of air traffic controllers’ errors prevention in terminal control areas (TMA under uncertainty conditions. In this work the theoretical framework descripting safety events and errors of air traffic controllers connected with the operations in TMA is proposed. Methods: optimisation of terminal control area formal description based on the Threat and Error management model and the TMA network model of air traffic flows. Results: the human factors variables associated with safety events in work of air traffic controllers under uncertainty conditions were obtained. The Threat and Error management model application principles to air traffic controller operations and the TMA network model of air traffic flows were proposed. Discussion: Information processing context for preventing air traffic controller errors, examples of threats in work of air traffic controllers, which are relevant for TMA operations under uncertainty conditions.

  1. Ice Storage Air-Conditioning System Simulation with Dynamic Electricity Pricing: A Demand Response Study

    Directory of Open Access Journals (Sweden)

    Chi-Chun Lo

    2016-02-01

    Full Text Available This paper presents an optimal dispatch model of an ice storage air-conditioning system for participants to quickly and accurately perform energy saving and demand response, and to avoid the over contact with electricity price peak. The schedule planning for an ice storage air-conditioning system of demand response is mainly to transfer energy consumption from the peak load to the partial-peak or off-peak load. Least Squares Regression (LSR is used to obtain the polynomial function for the cooling capacity and the cost of power consumption with a real ice storage air-conditioning system. Based on the dynamic electricity pricing, the requirements of cooling loads, and all technical constraints, the dispatch model of the ice-storage air-conditioning system is formulated to minimize the operation cost. The Improved Ripple Bee Swarm Optimization (IRBSO algorithm is proposed to solve the dispatch model of the ice storage air-conditioning system in a daily schedule on summer. Simulation results indicate that reasonable solutions provide a practical and flexible framework allowing the demand response of ice storage air-conditioning systems to demonstrate the optimization of its energy savings and operational efficiency and offering greater energy efficiency.

  2. A robust model predictive control strategy for improving the control performance of air-conditioning systems

    International Nuclear Information System (INIS)

    Huang Gongsheng; Wang Shengwei; Xu Xinhua

    2009-01-01

    This paper presents a robust model predictive control strategy for improving the supply air temperature control of air-handling units by dealing with the associated uncertainties and constraints directly. This strategy uses a first-order plus time-delay model with uncertain time-delay and system gain to describe air-conditioning process of an air-handling unit usually operating at various weather conditions. The uncertainties of the time-delay and system gain, which imply the nonlinearities and the variable dynamic characteristics, are formulated using an uncertainty polytope. Based on this uncertainty formulation, an offline LMI-based robust model predictive control algorithm is employed to design a robust controller for air-handling units which can guarantee a good robustness subject to uncertainties and constraints. The proposed robust strategy is evaluated in a dynamic simulation environment of a variable air volume air-conditioning system in various operation conditions by comparing with a conventional PI control strategy. The robustness analysis of both strategies under different weather conditions is also presented.

  3. Experimental evaluation of air distribution in mechanically ventilated residential rooms

    DEFF Research Database (Denmark)

    Tomasi, R.; Krajčík, M.; Simone, A.

    2013-01-01

    The effect of low ventilation rates (1 or 0.5 air change per hour) on thermal comfort and ventilation effectiveness was experimentally studied in a simulated residential room equipped with radiant floor heating/cooling and mixing ventilation systems. The tests were performed for various positions...... of supply and extract air terminals and different winter and summer boundary conditions. Vertical air temperature, operative temperature and air velocity profiles were measured in different positions in the room, and equivalent temperatures were derived, in order to characterize thermal comfort. Contaminant...... with unconditioned outdoor air supply, i.e. at the supply air temperatures higher than the room air temperature. Moreover, low floor temperatures were needed to maintain the desired reference temperature in the stratified thermal environment. Mainly in cooling conditions the ventilation effectiveness depended...

  4. Respiratory and protective equipment at a large nuclear facility

    International Nuclear Information System (INIS)

    Zippler, D.B.

    1975-12-01

    A variety of personal protective equipment is used in a large nuclear facility to protect employees against both nuclear and ordinary industrial materials. Equipment requirements are based on risk evaluation and may range from a minimum of shoe covers to whole body protection by air-supplied plastic suits. Types of equipment are listed and one-year costs are given. Criteria for evaluating and compartmentalizing risks are discussed. Air-supplied suits and hoods are discussed in detail

  5. Air-side performance of a micro-channel heat exchanger in wet surface conditions

    Directory of Open Access Journals (Sweden)

    Srisomba Raviwat

    2017-01-01

    Full Text Available The effects of operating conditions on the air-side heat transfer, and pressure drop of a micro-channel heat exchanger under wet surface conditions were studied experimentally. The test section was an aluminum micro-channel heat exchanger, consisting of a multi-louvered fin and multi-port mini-channels. Experiments were conducted to study the effects of inlet relative humidity, air frontal velocity, air inlet temperature, and refrigerant temperature on air-side performance. The experimental data were analyzed using the mean enthalpy difference method. The test run was performed at relative air humidities ranging between 45% and 80%; air inlet temperature ranges of 27, 30, and 33°C; refrigerant-saturated temperatures ranging from 18 to 22°C; and Reynolds numbers between 128 and 166. The results show that the inlet relative humidity, air inlet temperature, and the refrigerant temperature had significant effects on heat transfer performance and air-side pressure drop. The heat transfer coefficient and pressure drop for the micro-channel heat exchanger under wet surface conditions are proposed in terms of the Colburn j factor and Fanning f factor.

  6. Experimental study on split air conditioner with new hybrid equipment of energy storage and water heater all year round

    International Nuclear Information System (INIS)

    Wang Shaowei; Liu Zhenyan; Li Yuan; Zhao Keke; Wang Zhigang

    2005-01-01

    This paper presents a split air conditioner with a new hybrid equipment of energy storage and water heater all year round (ACWES). The authors made a special design on the storage tank to adjust the refrigerant capacity in the storage coils under different functions, instead of adding an accumulator to the system. An ACWES prototype, rebuilt from an original split air conditioner, has been finished, and experimental study of the operation processes of the prototype was done from which some important conclusions and suggestions have been made, which were helpful in the primary design and improvement of an ACWES system for potential users

  7. Numerical Analysis of Exergy for Air-Conditioning Influenced by Ambient Temperature

    Directory of Open Access Journals (Sweden)

    Jing-Nang Lee

    2014-07-01

    Full Text Available The article presents numerical analysis of exergy for air-conditioning influenced by ambient temperature. The model of numerical simulation uses an integrated air conditioning system exposed in varied ambient temperature to observe change of the four main devices, the compressor, the condenser, the capillary, and the evaporator in correspondence to ambient temperature. The analysis devices of the four devices’s exergy influenced by the varied ambient temperature and found that the capillary has unusual increasing exergy loss vs. increasing ambient temperature in comparison to the other devices. The result shows that reducing exergy loss of the capillary influenced by the ambient temperature is the key for improving working efficiency of an air-conditioning system when influence of the ambient temperature is considered. The higher ambient temperature causes the larger pressure drop of capillary and more exergy loss.

  8. Prediction of thermal sensation in non-air-conditioned buildings in warm climates

    DEFF Research Database (Denmark)

    Fanger, Povl Ole; Toftum, Jørn

    2002-01-01

    The PMV model agrees well with high-quality field studies in buildings with HVAC systems, situated in cold, temperate and warm climates, studied during both summer and winter. In non-air-conditioned buildings in warm climates, occupants may sense the warmth as being less severe than the PMV...... predicts. The main reason is low expectations, but a metabolic rate that is estimated too high can also contribute to explaining the difference. An extension of the PMV model that includes an expectancy factor is introduced for use in non-air-conditioned buildings in warm climates. The extended PMV model...... agrees well with quality field studies in non-air-conditioned buildings of three continents....

  9. Maintenance of electromechanical equipment in quality organization under operating conditions

    International Nuclear Information System (INIS)

    Mercier, J.P.

    1984-01-01

    The paper outlines the principles adopted by the Thermal Production Service of Electricite de France on the basis of the experience of the first years of operation of its 900 MW(e)PWR units for the purpose of improving quality organization in operating conditions in respect of the maintenance of electromechanical safety equipment. This organization is based on application of the usual principles for quality assurance, adapted in accordance with current French regulations. The paper first recalls the now traditional methods of applying the principles of quality organization in the area of equipment maintenance. It then defines particular so-called ''delicate'' activities which, in accordance with the above regulations, are subjected to additional quality organizational procedures; this applies in particular to the area of pre-maintenance preparation and studies and to the control exercised by the French safety authorities over the execution of those activities. The paper explains how the application of the regulations improves maintenance practices compared with standard quality organization. It describes how the attempt to establish a frontier between these two types of activity (current and ''delicate'') has led to the definition of a classification criterion which is technically correct and simple to use and is based on the professional skills of those performing each activity. The paper then describes in greater detail the principal rules for the performance of those tasks which come under the standard organization and those to which more stringent criteria apply. Lastly, it explains the thinking behind equipment surveillance programmes and the analysis of anomalies discovered through surveillance measures or brought to light by operating incidents, the aim of these being to benefit from the experience gained

  10. Physiological and subjective responses in the elderly when using floor heating and air conditioning systems.

    Science.gov (United States)

    Hashiguchi, Nobuko; Tochihara, Yutaka; Ohnaka, Tadakatsu; Tsuchida, Chiaki; Otsuki, Tamio

    2004-11-01

    The purpose of this study was to investigate the effects of a floor heating and air conditioning system on thermal responses of the elderly. Eight elderly men and eight university students sat for 90 minutes in a chair under the following 3 conditions: air conditioning system (A), floor heating system (F) and no heating system (C). The air temperature of sitting head height for condition A was 25 degrees C, and the maximum difference in vertical air temperature was 4 degrees C. The air and floor temperature for condition F were 21 and 29 degrees C, respectively. The air temperature for condition C was 15 degrees C. There were no significant differences in rectal temperature and mean skin temperature between condition A and F. Systolic blood pressure of the elderly men in condition C significantly increased compared to those in condition A and F. No significant differences in systolic blood pressure between condition A and F were found. The percentage of subjects who felt comfortable under condition F was higher than that of those under condition A in both age groups, though the differences between condition F and A was not significant. Relationships between thermal comfort and peripheral (e.g., instep, calf, hand) skin temperature, and the relationship between thermal comfort and leg thermal sensation were significant for both age groups. However, the back and chest skin temperature and back thermal sensation for the elderly, in contrast to that for the young, was not significantly related to thermal comfort. These findings suggested that thermal responses and physiological strain using the floor heating system did not significantly differ from that using the air conditioning system, regardless of the subject age and despite the fact that the air temperature with the floor heating system was lower. An increase in BP for elderly was observed under the condition in which the air temperature was 15 degrees C, and it was suggested that it was necessary for the elderly

  11. Alternative air-conditioning with the use of solar energy

    International Nuclear Information System (INIS)

    Algarbi, N. M.

    2006-01-01

    The paper concerns the investigation of the alternative air condition systems on the basis of the open absorbtion cycle with the use of solar energy as a heat source. Schematic solution of systems has been carried. The design analysis of working characteristics was performed for a wide rang of initial parameters (teperature and humidity of ambient air, the type and concentration of liquid sorbents, etc.) and construction features of heat and mass transfer.(Author)

  12. Amelioration of Heat-Stress Conditions of Egyptian Summer Season on Friesian Calves Using Air Condition

    International Nuclear Information System (INIS)

    Nessim, M.Z.; Kamal, T.H.; Khalil, W.K.B.

    2010-01-01

    Male Friesian calves were used to evaluate cool air condition (AC) in alleviating heat stress (HS) determined by Heat Shock Protein genes expression (HSP), hormonal, biochemical and physiological parameters. The animals were exposed to summer heat stress (HS) under shade for two weeks (control). The maximum temperature humidity index (THI) during summer HS was from 81 to 88. Afterward the animals were exposed to AC, inside a climatic chamber for 6 hours daily for two weeks, where, the THI was from 70 to 71. The results revealed that expression level of the Hsp genes (Hsp72, Hsp70.1, Hsp70 and Hsp47) was lower under air condition treatment than under summer heat stress. Rectal temperature and respiration rate were significantly lower (p< 0.01) under air condition treatment than those under heat stress. Total triiodothyronin (T3) level was significantly higher (P< 0.05) in AC cooling treatments than in HS, while cortisol level was significantly lower (P < 0.01) in AC cooling treatment than in HS calves. Creatinine and Urea -N levels were significantly lower (P < 0.01) in AC cooling treatment than in HS calves. Triglycerides, ALT and AST levels were significantly lower (p<0.01), (P< 0.01) and (p<0.05), respectively in AC cooling treatment than in HS calves. These results demonstrated that there is a relationship between the molecular weight of HSPs and the level of HSPs gene exprisson. The higher the molecular weight (HSP 72) the lower is the HSPs gene expression level (0.82 in HS and 0.39 in AC) and vise versa. This holds true in both heat stress and air condition. AC treatment is capable to ameliorate heat stress of Friesian calves under hot summer climate

  13. Effect of Air Stability on the Dispersal of Exhaled Contaminant in Rooms

    DEFF Research Database (Denmark)

    Xu, Chunwen; Gong, Guangcai; Nielsen, Peter V.

    2013-01-01

    the manikin, indicating that the person who exhales the contaminant may not be polluted by himself as the protective effect of the thermal boundary layer around the body, especially in stable condition with two concentration zones and clean air drawn from the inlets. However, other persons facing......Experiments are conducted in a full-scale chamber equipped with whole floor and whole ceiling supply or exhaust to form approximately zero and larger temperature gradients corresponding to unstable and stable air conditions. It can be observed that the air with smoke exhaled from a life...

  14. A SVDD and K-Means Based Early Warning Method for Dual-Rotor Equipment under Time-Varying Operating Conditions

    Directory of Open Access Journals (Sweden)

    Zhinong Jiang

    2018-01-01

    Full Text Available Under frequently time-varying operating conditions, equipment with dual rotors like gas turbines is influenced by two rotors with different rotating speeds. Alarm methods of fixed threshold are unable to consider the influences of time-varying operating conditions. Hence, those methods are not suitable for monitoring dual-rotor equipment. An early warning method for dual-rotor equipment under time-varying operating conditions is proposed in this paper. The influences of time-varying rotating speeds of dual rotors on alarm thresholds have been considered. Firstly, the operating conditions are divided into several limited intervals according to rotating speeds of dual rotors. Secondly, the train data within each interval is processed by SVDD and the allowable ranges (i.e., the alarm threshold of the vibration are determined. The alarm threshold of each interval of operating conditions is obtained. The alarm threshold can be expressed as a sphere, whose controlling parameters are the coordinate of the center and the radius. Then, the cluster center of the test data, whose alarm state is to be judged, can be extracted through K-means. Finally, the alarm state can be obtained by comparing the cluster center with the corresponding sphere. Experiments are conducted to validate the proposed method.

  15. Experimental investigation of a novel configuration of desiccant based evaporative air conditioning system

    International Nuclear Information System (INIS)

    Uçkan, İrfan; Yılmaz, Tuncay; Hürdoğan, Ertaç; Büyükalaca, Orhan

    2013-01-01

    Highlights: ► A novel desiccant based evaporative cooling system is developed and tested. ► Cooling capacity, COP and energy consumption of the system are evaluated. ► Indoor air conditions are in the range of thermal comfort zone and expanded comfort zone. ► Designing of the system have considerable effect on the energy consumption. - Abstract: A novel configuration of desiccant based evaporative cooling system for air conditioning application is developed and tested. At the beginning of the design stage of the system, an analysis is carried out in order to maximize the performance of the system. It is found based on configuration that outdoor air must be used for regeneration to increase performance of the system and so three air channels are used. Experiments are carried out to investigate the total performance of the system and performance of the components used during summer season in a hot and humid climate. Effectiveness values for both heat exchangers and evaporative coolers are calculated through this work. In addition to the cooling capacity, coefficient of performance (COP) and energy consumption of the system are also evaluated. Results show that the effectiveness for the heat exchangers and evaporative coolers are very high under different outdoor conditions. It is also shown from the results that indoor air conditions are in the range of thermal comfort zone defined by ASHRAE and expanded comfort zone for evaporative air conditioning applications.

  16. The application of fuzzy control on energy saving for multi-unit room air-conditioners

    International Nuclear Information System (INIS)

    Chiou, C.B.; Chiou, C.H.; Chu, C.M.; Lin, S.L.

    2009-01-01

    Most research, on energy saving methods for air-conditioners have focused on large chillers as its subject. As most school offices, laboratories, and classrooms are equipped with unitary systems for air-conditioning, this paper discusses methods for energy savings with regard to unitary systems. This paper will put forward the fuzzy temperature control method for multi-unit air-conditioners to enhance energy efficiency. The results show that the use of fuzzy control is efficient for energy saving as well as causing temperature control be steadier, even if there is a change to the thermal loading, the fuzzy control system is able to control the air-conditioning in stable conditions

  17. 14 CFR 91.213 - Inoperative instruments and equipment.

    Science.gov (United States)

    2010-01-01

    ... specific operations by this part. (c) A person authorized to use an approved Minimum Equipment List issued... a master minimum equipment list has not been developed; or (ii) Small rotorcraft, nonturbine-powered small airplane, glider, or lighter-than-air aircraft for which a Master Minimum Equipment List has been...

  18. A simulation Model of the Reactor Hall Ventilation and air Conditioning Systems of ETRR-2

    International Nuclear Information System (INIS)

    Abd El-Rahman, M.F.

    2004-01-01

    Although the conceptual design for any system differs from one designer to another. each of them aims to achieve the function of the system required. the ventilation and air conditioning system of reactors hall is one of those systems that really differs but always dose its function for which it is designed. thus, ventilation and air conditioning in some reactor hall constitute only one system whereas in some other ones, they are separate systems. the Egypt Research Reactor-2 (ETRR-2)represents the second type. most studies conducted on ventilation and air conditioning simulation models either in traditional building or for research rectors show that those models were not designed similarly to the model of the hall of ETRR-2 in which ventilation and air conditioning constitute two separate systems.besides, those studies experimented on ventilation and air conditioning simulation models of reactor building predict the temperature and humidity inside these buildings at certain outside condition and it is difficult to predict when the outside conditions are changed . also those studies do not discuss the influences of reactor power changes. therefore, the present work deals with a computational study backed by infield experimental measurements of the performance of the ventilation and air conditioning systems of reactor hall during normal operation at different outside conditions as well as at different levels of reactor power

  19. Experimental Study on Intelligent Control Scheme for Fan Coil Air-Conditioning System

    Directory of Open Access Journals (Sweden)

    Yanfeng Li

    2013-01-01

    Full Text Available An intelligent control scheme for fan coil air-conditioning systems has been put forward in order to overcome the shortcomings of the traditional proportion-integral-derivative (PID control scheme. These shortcomings include the inability of anti-interference and large inertia. An intelligent control test rig of fan coil air-conditioning system has been built, and MATLAB/Simulink dynamics simulation software has been adopted to implement the intelligent control scheme. A software for data exchange has been developed to combine the intelligence control system and the building automation (BA system. Experimental tests have been conducted to investigate the effectiveness of different control schemes including the traditional PID control, fuzzy control, and fuzzy-PID control for fan coil air-conditioning system. The effects of control schemes have been compared and analyzed in robustness, static and dynamic character, and economy. The results have shown that the developed data exchange interface software can induce the intelligent control scheme of the BA system more effectively. Among the proposed control strategies, fuzzy-PID control scheme which has the advantages of both traditional PID and fuzzy schemes is the optimal control scheme for the fan coil air-conditioning system.

  20. 2017 German refrigeration and air conditioning meeting. Proceedings

    International Nuclear Information System (INIS)

    2017-01-01

    This year's lecture programme includes 117 presentations in the five working departments of DKV and 10 lectures at the special event ''Energy-efficient air conditioning in data centres''. The main topics in the respective departments were: (1) Cryogenics: Space applications; Cryogenic plants; Cryomedicine and cryobiology; Components, developments; Processes and plants; Valves, design. (2) Basics: Evaporation, material values; evaporation, condensation; absorption; adsorption, latent storage; cycle simulation. (3) Components: CO 2 plant engineering and components; refrigerants; process control, adsorption, sublimation and storage technology; refrigerating machine oils, heat exchangers and corrosion; components 4.0, sensors and control technology; simulation of plant processes. (4) Cold application: Application; Application / Natural Refrigerants; Mobile Applications Car; Mobile Applications; Supermarket / Efficiency; Optimization / Efficiency. (5) Air conditioning and heat pump applications: load shifting, smart home, flexibility; heat sources and industrial heat pumps; modelling, simulations; energy concepts heat pumps and photovoltaics; monitoring, evaluation; technology trends / working materials. Six papers are separately analyzed for this database. [de

  1. Estimation of thermal sensation during varied air temperature conditions.

    Science.gov (United States)

    Katsuura, T; Tabuchi, R; Iwanaga, K; Harada, H; Kikuchi, Y

    1998-03-01

    Seven male students were exposed to four varied air temperature environments: hot (37 degrees C) to neutral (27 degrees C) (HN), neutral to hot (NH), cool (17 degrees C) to neutral (CN), and neutral to cool (NC). The air temperature was maintained at the first condition for 20 min, then was changed to the second condition after 15 min and was held there for 20 min. Each subject wore a T-shirt, briefs, trunks, and socks. Each sat on a chair and was continuously evaluated for thermal sensation, thermal comfort, and air velocity sensation. Some physiological and thermal parameters were also measured every 5 s during the experiment. The correlation between thermal sensation and skin temperature at 15 sites was found to be poor. The subjects felt much warmer during the rising phase of the air temperature (CN, NH) than during the descending phase (HN, NC) at a given mean skin temperature. However, thermal sensation at the same heat flux or at the same value of the difference between skin and air temperature (delta(Tsk - Ta)) was not so different among the four experimental conditions, and the correlation between thermal sensation and heat flux or delta(Tsk - Ta) was fairly good. The multiple regression equation of the thermal sensation (TS) on 15 sites of skin temperature (Tsk; degrees C) was calculated and the coefficient of determination (R*2) was found to be 0.656. Higher coefficients of determination were found in the equations of thermal sensation for the heat flux (H; kcal.m-2.h-1) at the right and left thighs of the subjects and on delta(Tsk - Ta) (degrees C) at 4 sites. They were as follows: TS = 2.04 - 0.016 Hright - 0.036 Hleft; R*2 = 0.717, TS = 1.649 + 0.013 delta(Tsk - Ta)UpperArm - 0.036 delta(Tsk - Ta)Chest - 0.223 delta(Tsk - Ta)Thigh-0.083 delta(Tsk - Ta)LowerLeg; R*2 = 0.752, respectively.

  2. Modeling air concentration over macro roughness conditions by Artificial Intelligence techniques

    Science.gov (United States)

    Roshni, T.; Pagliara, S.

    2018-05-01

    Aeration is improved in rivers by the turbulence created in the flow over macro and intermediate roughness conditions. Macro and intermediate roughness flow conditions are generated by flows over block ramps or rock chutes. The measurements are taken in uniform flow region. Efficacy of soft computing methods in modeling hydraulic parameters are not common so far. In this study, modeling efficiencies of MPMR model and FFNN model are found for estimating the air concentration over block ramps under macro roughness conditions. The experimental data are used for training and testing phases. Potential capability of MPMR and FFNN model in estimating air concentration are proved through this study.

  3. Development of ZL400 Mine Cooling Unit Using Semi-Hermetic Screw Compressor and Its Application on Local Air Conditioning in Underground Long-Wall Face

    Science.gov (United States)

    Chu, Zhaoxiang; Ji, Jianhu; Zhang, Xijun; Yan, Hongyuan; Dong, Haomin; Liu, Junjie

    2016-12-01

    Aiming at heat injuries occurring in the process of deep coal mining in China, a ZL400 mine-cooling unit employing semi-hermetic screw compressor with a cooling capacity of 400 kW is developed. This paper introduced its operating principle, structural characteristics and technical indexes. By using the self-built testing platform, some parameters for indication of its operation conditions were tested on the ground. The results show that the aforementioned cooling unit is stable in operation: cooling capacity of the unit was 420 kW underground-test conditions, while its COP (coefficient of performance) reached 3.4. To address the issue of heat injuries existing in No. 16305 U-shaped long-wall ventilation face of Jining No. 3 coal mine, a local air conditioning system was developed with ZL400 cooling unit as the system's core. The paper presented an analysis of characteristics of the air current flowing in the air-mixing and cooling mode of ZL400 cooling unit used in air intake way. Through i-d patterns we described the process of the airflow treatment, such as cooling, mixing and heating, etc. The cooling system decreased dry bulb temperature on working face by 3°C on average and 3.8°C at most, while lowered the web bulb temperature by 3.6°C on average and 4.8°C at most. At the same time, it reduced relative humidity by 5% on average and 8.6% at most. The field application of the ZL400 cooling unit had gain certain effects in air conditioning and provided support for the solution of mine heat injuries in China in terms of technology and equipment.

  4. Study of the test method for prediction of air conditioning equipment seasonal performance

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, S.B.

    1980-05-01

    The test procedure, Method of Testing, Rating and Estimating the Seasonal Performance of Central Air-Conditioners and Heat Pumps Operating in the Cooling Mode, has been analyzed. The analysis of the test procedure incorporated two main functions: (1) to determine the validity of the test procedure; and (2) to determine if there are other alternate methods of obtaining the same results with less testing burden. Data were collected from industry and analyzed for any significant trends. Certain conclusions are drawn about the energy efficiency ratios, degradation coefficients and seasonal energy efficiency ratios. An error analysis was performed on the test procedure to determine the approximate amount of error when using this procedure. A semi-empirical model assuming a first order system response was developed to determine the factors that affect the part-load and cooling-load factors. The corresponding transient characteristics are then determined in terms of a single time constant. A thermostat demand cycle is used to determine the relationship between on-time and cycle-time. Recommendations are made regarding an alternate method being used to determine the seasonal energy efficiency ratio.

  5. Silver zeolite antimicrobial activity in aluminium heating, ventilation and air conditioning system ducts.

    Science.gov (United States)

    Rizzetto, R; Mansi, A; Panatto, D; Rizzitelli, E; Tinteri, C; Sasso, T; Gasparini, R; Crovari, P

    2008-03-01

    Air pollution in confined environments is a serious health problem, in that most people spend long periods indoors (in homes, offices, classrooms etc.). Some people (children, the elderly, heart disease patients, asthmatic or allergic subjects) are at greater risk because of their conditions of frailty. The growing use of air-conditioning systems in many public and private buildings aggravates this health risk, especially when these systems are not correctly installed or regularly serviced. The aim of our study was to verify the capacity of Ag+ ions to stop the growth of bacteria and moulds inside the ducts of Heating, Ventilation and Air Conditioning system ducts (HVAC) systems when these ducts were lined with active Ag+ ions zeolite-coated panels. A Y-shaped HVAC model with two branches was used; one branch was made of traditional galvanized iron, as was the whole system, while the other was lined with active Ag+ zeolite-coated polyurethane panels. During the test, samples of dust present inside both ducts were collected and seeded in liquid and solid media to detect bacteria and moulds. The presence of bacteria was also sought in the air emerging from the outlets of both ducts. Tests made on samples of particulate collected from the two different ducts revealed a lower total bacterial load in the samples collected from the Ag+ zeolite-coated duct than in the samples from the traditional Zn galvanized duct. In addition, the values of bacterial load found in the air emerging from the Ag+ ions zeolite-lined duct were 5 times lower than those found in the air from the traditional galvanized iron duct. The utilization of Ag+ zeolite-coated panels in air-conditioning systems could improve the quality of the emerging air in comparison with traditional installations in galvanized iron. This innovation could prove particularly advantageous in the event of accidents during the installation of air-conditioning systems or of contaminated aerosols coming from outside.

  6. Field Study on Humidification Performance of a Desiccant Air-Conditioning System Combined with a Heat Pump

    Directory of Open Access Journals (Sweden)

    Koichi Kawamoto

    2016-01-01

    Full Text Available A desiccant air-conditioning system was developed as a latent-load-processing air conditioner in a dedicated outdoor air system during the summer. This study investigated the application of this air-conditioning system to humidification during the winter without using make-up water, thereby eliminating the cause of microbial contamination in air-conditioning systems. The experiments were conducted with a system used for summer applications to determine the feasibility of adsorbing vapor from outdoor air and supplying it to an indoor space. The humidification performance, energy efficiency, and operating conditions were examined. Although the conditions were subpar because the experiments were performed with an actual dedicated outdoor air system, the results showed that it is possible to supply air with a minimum humidity ratio of 5.8 g/kg dry air (DA when the humidity ratio of outdoor air ranges from 1.8 to 2.3 g/kg DA. The minimum humidification performance required for a dedicated outdoor air system was achieved by increasing the airflow rate of the moisture-adsorption side to 2–3 times that of the humidification side. In addition, air leaking from the moisture-adsorption side to the humidification side, improving the mechanical structure, such as by the insulation of the moisture-adsorption side, and an efficient operating method were examined for humidification during the winter.

  7. Los Alamos Controlled Air Incinerator for radioactive waste. Volume I. Rationale, process, equipment, performance, and recommendations

    International Nuclear Information System (INIS)

    Neuls, A.S.; Draper, W.E.; Koenig, R.A.; Newmyer, J.M.; Warner, C.L.

    1982-08-01

    This two-volume report is a detailed design and operating documentation of the Los Alamos National Laboratory Controlled Air Incinerator (CAI) and is an aid to technology transfer to other Department of Energy contractor sites and the commercial sector. Volume I describes the CAI process, equipment, and performance, and it recommends modifications based on Los Alamos experience. It provides the necessary information for conceptual design and feasibility studies. Volume II provides descriptive engineering information such as drawing, specifications, calculations, and costs. It aids duplication of the process at other facilities

  8. Los Alamos Controlled Air Incinerator for radioactive waste. Volume I. Rationale, process, equipment, performance, and recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Neuls, A.S.; Draper, W.E.; Koenig, R.A.; Newmyer, J.M.; Warner, C.L.

    1982-08-01

    This two-volume report is a detailed design and operating documentation of the Los Alamos National Laboratory Controlled Air Incinerator (CAI) and is an aid to technology transfer to other Department of Energy contractor sites and the commercial sector. Volume I describes the CAI process, equipment, and performance, and it recommends modifications based on Los Alamos experience. It provides the necessary information for conceptual design and feasibility studies. Volume II provides descriptive engineering information such as drawing, specifications, calculations, and costs. It aids duplication of the process at other facilities.

  9. Development of Fuzzy Logic Control for Vehicle Air Conditioning System

    Directory of Open Access Journals (Sweden)

    Henry Nasution

    2008-08-01

    Full Text Available A vehicle air conditioning system is experimentally investigated. Measurements were taken during the experimental period at a time interval of one minute for a set point temperature of 22, 23 and 24oC with internal heat loads of 0, 1 and 2 kW. The cabin temperature and the speed of the compressor were varied and the performance of the system, energy consumption and energy saving ware analyzed. The main objective of the experimental work is to evaluate the energy saving obtained when the fuzzy logic control (FLC algorithm, through an inverter, continuously regulates the compressor speed. It demonstrates better control of the compressor operation in terms of energy consumption as compared to the control by using a thermostat imposing On/Off cycles on the compressor at the nominal frequency of 50 Hz. The experimental set-up consists of original components from the air conditioning system of a compact passenger vehicle. The experimental results indicate that the proposed technique can save energy and improve indoor comfort significantly for vehicle air conditioning systems compared to the conventional (On/Off control technique.

  10. Energy savings potential of a hybrid desiccant dehumidification air conditioning system in Beirut

    International Nuclear Information System (INIS)

    Ghali, Kamel

    2008-01-01

    In this work, the transient performance of a hybrid desiccant vapor compression air conditioning system is numerically simulated for the ambient conditions of Beirut. The main feature of this hybrid system is that the regenerative heat needed by the desiccant wheel is partly supplied by the condenser dissipated heat while the rest is supplied by an auxiliary gas heater. The hybrid air conditioning system of the present study replaces a 23 kW vapor compression unit for a typical office in Beirut characterized by a high latent load. The vapor compression subsystem size in the hybrid air conditioning system is reduced to 15 kW at the peak load when the regeneration temperature was fixed at 75 deg. C. Also the sensible heat ratio of the combined hybrid system increased from 0.47 to 0.73. Based on hour by hour simulation studies for a wide range of recorded ambient conditions of Beirut city, this paper predicts the annual energy consumption of the hybrid system in comparison with the conventional vapor compression system for the entire cooling season. The annual running costs savings for the hybrid system is 418.39 USD for a gas cost price of 0.141 USD/kg. The pay back period of the hybrid system is less than five years when the initial cost of the hybrid air conditioning system priced an additional 1712.00 USD. Hence, for a 20-year life cycle, the life cycle savings of the hybrid air conditioning system are 4295.19 USD

  11. Performance Investigation of Air Velocity Effects on PV Modules under Controlled Conditions

    Directory of Open Access Journals (Sweden)

    Muzaffar Ali

    2017-01-01

    Full Text Available Junction temperature of PV modules is one of the key parameters on which the performance of PV modules depends. In the present work, an experimental investigation was carried out to analyze the effects of air velocity on the performance of two PV modules, that is, monocrystalline silicon and polycrystalline silicon under the controlled conditions of a wind tunnel in the presence of an artificial solar simulator. The parameters investigated include the surface temperature variation, power output, and efficiency of PV modules under varying air velocity from near zero (indoor lab. conditions to 15 m/s. Additionally, the results were also determined at two different module angular positions: at 0° angle, that is, parallel to air direction and at 10° angle with the direction of coming air to consider the effects of tilt angles. Afterwards, the thermal analysis of the modules was performed using Ansys-Fluent in which junction temperature and heat flux of modules were determined by applying appropriate boundary conditions, such as air velocity, heat flux, and solar radiation. Finally, the numerical results are compared with the experiment in terms of junction temperatures of modules and good agreement was found. Additionally, the results showed that the maximum module temperature drops by 17.2°C and the module efficiency and power output increased from 10 to 12% with increasing air velocity.

  12. 30 CFR 75.1730 - Compressed air; general; compressed air systems.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Compressed air; general; compressed air systems... Compressed air; general; compressed air systems. (a) All pressure vessels shall be constructed, installed... Safety and Health district office. (b) Compressors and compressed-air receivers shall be equipped with...

  13. Conceptual Design of Automotive Compressor for Integrated Portable Air Conditioning System

    Directory of Open Access Journals (Sweden)

    Ishak Muhammad Ikman

    2017-01-01

    Full Text Available This study introduces a new concept of portable air conditioner which integrated with some available components in automotive air conditioning system. This new idea intends to solve the storage problems as well as to reduce the price of current portable air conditioner since some devices could directly be used from the automotive air conditioning system. The primary emphasis of this study was on the modification of automotive compressor design so as the system may alternately be operated. The length of conventional compressor shaft is extended to place an additional clutch pulley, a drive plate and a clutch coil. The new concept particularly the shaft and pulley were analysed through slope deflection and computational finite element analyses. The result of engineering analyses exhibited that the new design of compressor shaft and clutch pulleys promote a low risk of failure as the data values recorded are lower than the critical value for each criterion investigated.

  14. THERMAL COMFORT STUDY OF AN AIR-CONDITIONED DESIGN STUDIO IN TROPICAL SURABAYA

    Directory of Open Access Journals (Sweden)

    Agus Dwi Hariyanto

    2005-01-01

    Full Text Available This paper evaluates the current thermal comfort condition in an air-conditioned design studio using objective measurement and subjective assessment. Objective measurement is mainly to quantify the air temperature, MRT, relative humidity, and air velocity. Subjective assessment is conducted using a questionnaire to determine the occupants thermal comfort sensations and investigate their perception of the thermal comfort level. A design studio in an academic institution in Surabaya was chosen for the study. Results show that more than 80% of the occupants accepted the indoor thermal conditions even though both the environmental and comfort indices exceeded the limit of the standard (ASHRAE Standard 55 and ISO 7730. In addition, non-uniformity of spatial temperature was present in this studio. Some practical recommendations were made to improve the thermal comfort in the design studio.

  15. Experimental analysis of the thermal entrainment factor of air curtains in vertical open display cabinets for different ambient air conditions

    International Nuclear Information System (INIS)

    Gaspar, Pedro Dinis; Carrilho Goncalves, L.C.; Pitarma, R.A.

    2011-01-01

    The vertical open refrigerated display cabinets suffer alterations of their thermal performance and energy efficiency due to variations of ambient air conditions. The air curtain provides an aerothermodynamics insulation effect that can be evaluated by the thermal entrainment factor calculation as an engineering approximation or by the calculus of all sensible and latent thermal loads. This study presents the variation of heat transfer rate and thermal entrainment factor obtained through experimental tests carried out for different ambient air conditions, varying air temperature, relative humidity, velocity and its direction relatively to the display cabinet frontal opening. The thermal entrainment factor are analysed and compared with the total sensible and latent heats results for the experimental tests. From an engineering point of view, it is concluded that thermal entrainment factor cannot be used indiscriminately, although its use is suitable to design better cabinet under the same climate class condition.

  16. Undulator Hall Air Temperature Fault Scenarios

    International Nuclear Information System (INIS)

    Sevilla, J.

    2010-01-01

    Recent experience indicates that the LCLS undulator segments must not, at any time following tuning, be allowed to change temperature by more than about ±2.5 C or the magnetic center will irreversibly shift outside of acceptable tolerances. This vulnerability raises a concern that under fault conditions the ambient temperature in the Undulator Hall might go outside of the safe range and potentially could require removal and retuning of all the segments. In this note we estimate changes that can be expected in the Undulator Hall air temperature for three fault scenarios: (1) System-wide power failure; (2) Heating Ventilation and Air Conditioning (HVAC) system shutdown; and (3) HVAC system temperature regulation fault. We find that for either a system-wide power failure or an HVAC system shutdown (with the technical equipment left on), the short-term temperature changes of the air would be modest due to the ability of the walls and floor to act as a heat ballast. No action would be needed to protect the undulator system in the event of a system-wide power failure. Some action to adjust the heat balance, in the case of the HVAC power failure with the equipment left on, might be desirable but is not required. On the other hand, a temperature regulation failure of the HVAC system can quickly cause large excursions in air temperature and prompt action would be required to avoid damage to the undulator system.

  17. IEA SHC Task 38 'Solar air-conditioning and refrigeration'. Danish participation 2007-2010; IEA SHC Task 38 'Solar air-conditioning and refrigeration'. Dansk deltagelse 2007-2010

    Energy Technology Data Exchange (ETDEWEB)

    Ellehauge, K. (Ellehauge og Kildemoes, Aarhus (Denmark)); Muenster, E. (PlanEnergi, Skoerping (Denmark)); Reinholdt, L. (Teknologisk Institut, Aarhus (Denmark)); Minds, S. (AC-Sun Aps, Horsens (Denmark))

    2011-03-15

    Skive City Hall. The Technological Institute has participated closely in preparing the report for subtask A 'Small Systems'. Furthermore The Technological Institute had the role as coordinator of activities around the optimization of 'heat rejection'. In this context it is especially the derived electricity for pumps and fans in the heat emitter (cooling tower, dry cooler, etc.) that are looked at. Traditionally heat driven refrigeration machines are controlled by regulating the driving heat flow (lower regeneration temperature). This has however, for most types of sys-tems, negative impact on the system efficiency and thus the power consumption of auxiliary equipment. This has led to the development of an alternative regulation strategy tested at Skive City Hall plant. In 2009 it was planned to attach adiabatic pre-cooling of the air cooling coils at Skive City Hall, however the solution proved to be quite expensive. Further optimization of the solution was therefore not implemented. The study of adiabatic pre-cooling was instead made in a laboratory setting at the Technological Institute. This was combined with the test of a new air cooling system, based on indirect evaporation of water. The test was conducted on a cooler purchased from the Netherlands and a MST project was demonstrating this technology to heat driven air conditioning in a supermarket. AC Sun has designed and produced an optimized prototype 2 and begun data collection. Prototype (2) is flexibly designed for testing different bearing solutions. The prototype is installed in a buffer tank connected to the heating elements as external heat source acting as a collector. Prototype 2 will be used as the final internal testing station before the final design and manufacture of test facilities for 'field' test in 5 test stations Denmark, Germany, Italy, Spain and Malaysia, respectively. Most of the testing stations are expected operating in spring 2011. Ellehauge and Kildemoes

  18. Human reliability analysis for In-Tank Precipitation alignment and startup of emergency purge ventilation equipment

    International Nuclear Information System (INIS)

    Olsen, L.M.

    1993-08-01

    This report documents the methodology used for calculating the human error probability for establishing air based ventilation using emergency purge ventilation equipment on In-Tank Precipitation (ITP) processing tanks 48 and 49 after a failure of the nitrogen purge system following a seismic event. The analyses were performed according to THERP (Technique for Human Error Rate Prediction). The calculated human error probabilities are provided as input to the Fault Tree Analysis for the ITP Nitrogen Purge System. The analysis assumes a seismic event initiator leading to establishing air based ventilation on the ITP processing tanks 48 and 49. At the time of this analysis only the tanks and the emergency purge ventilation equipment are seismically qualified. Consequently, onsite and offsite power is assumed to be unavailable and all operator control actions are to be performed locally on the tank top. Assumptions regarding procedures, staffing, equipment locations, equipment tagging, equipment availability, and training were made and are documented in this report. The human error probability for establishing air based ventilation using the emergency purge ventilation equipment on In-Tank Precipitation processing tanks 48 and 49 after a failure of the nitrogen purge system following a seismic event is 4.2E-6 (median value on the lognormal scale). It is important to note that this result is predicated on the implementation of all of the assumptions listed in the ''Assumptions'' section of this report. This analysis was not based on the current conditions in ITP. The analysis is to be used as a tool to aid ITP operations personnel in achieving the training, procedural, and operational goals outlined in this document

  19. Generation of equipment response spectrum considering equipment-structure interaction

    International Nuclear Information System (INIS)

    Lee, Sang Hoon; Yoo, Kwang Hoon

    2005-01-01

    Floor response spectra for dynamic response of subsystem such as equipment, or piping in nuclear power plant are usually generated without considering dynamic interaction between main structure and subsystem. Since the dynamic structural response generally has the narrow-banded shapes, the resulting floor response spectra developed for various locations in the structure usually have high spectral peak amplitudes in the narrow frequency bands corresponding to the natural frequencies of the structural system. The application of such spectra for design of subsystems often leads to excessive design conservatisms, especially when the equipment frequency and structure are at resonance condition. Thus, in order to provide a rational and realistic design input for dynamic analysis and design of equipment, dynamic equipment-structure interaction (ESI) should be considered in developing equipment response spectrum which is particularly important for equipment at the resonance condition. Many analytical methods have been proposed in the past for developing equipment response spectra considering ESI. However, most of these methods have not been adapted to the practical applications because of either the complexities or the lack of rigorousness of the methods. At one hand, mass ratio among the equipment and structure was used as an important parameter to obtain equipment response spectra. Similarly, Tseng has also proposed the analytical method for developing equipment response spectra using mass ratio in the frequency domain. This method is analytically rigorous and can be easily validated. It is based on the dynamic substructuring method as applied to the dynamic soil-structure interaction (SSI) analysis, and can relatively easily be implemented for practical applications without to change the current dynamic analysis and design practice for subsystems. The equipment response spectra derived in this study are also based on Tseng's proposed method

  20. Heat pipe heat exchanger for heat recovery in air conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Abd El-Baky, Mostafa A.; Mohamed, Mousa M. [Mechanical Power Engineering Department, Faculty of Engineering, Minufiya University, Shebin El-Kom (Egypt)

    2007-03-15

    The heat pipe heat exchangers are used in heat recovery applications to cool the incoming fresh air in air conditioning applications. Two streams of fresh and return air have been connected with heat pipe heat exchanger to investigate the thermal performance and effectiveness of heat recovery system. Ratios of mass flow rate between return and fresh air of 1, 1.5 and 2.3 have been adapted to validate the heat transfer and the temperature change of fresh air. Fresh air inlet temperature of 32-40{sup o}C has been controlled, while the inlet return air temperature is kept constant at about 26{sup o}C. The results showed that the temperature changes of fresh and return air are increased with the increase of inlet temperature of fresh air. The effectiveness and heat transfer for both evaporator and condenser sections are also increased to about 48%, when the inlet fresh air temperature is increased to 40{sup o}C. The effect of mass flow rate ratio on effectiveness is positive for evaporator side and negative for condenser side. The enthalpy ratio between the heat recovery and conventional air mixing is increased to about 85% with increasing fresh air inlet temperature. The optimum effectiveness of heat pipe heat exchanger is estimated and compared with the present experimental data. The results showed that the effectiveness is close to the optimum effectiveness at fresh air inlet temperature near the fluid operating temperature of heat pipes. (author)

  1. Development of an environmental chamber for evaluating the performance of low-cost air quality sensors under controlled conditions

    Science.gov (United States)

    Papapostolou, Vasileios; Zhang, Hang; Feenstra, Brandon J.; Polidori, Andrea

    2017-12-01

    A state-of-the-art integrated chamber system has been developed for evaluating the performance of low-cost air quality sensors. The system contains two professional grade chamber enclosures. A 1.3 m3 stainless-steel outer chamber and a 0.11 m3 Teflon-coated stainless-steel inner chamber are used to create controlled aerosol and gaseous atmospheres, respectively. Both chambers are temperature and relative humidity controlled with capability to generate a wide range of environmental conditions. The system is equipped with an integrated zero-air system, an ozone and two aerosol generation systems, a dynamic dilution calibrator, certified gas cylinders, an array of Federal Reference Method (FRM), Federal Equivalent Method (FEM), and Best Available Technology (BAT) reference instruments and an automated control and sequencing software. Our experiments have demonstrated that the chamber system is capable of generating stable and reproducible aerosol and gas concentrations at low, medium, and high levels. This paper discusses the development of the chamber system along with the methods used to quantitatively evaluate sensor performance. Considering that a significant number of academic and research institutions, government agencies, public and private institutions, and individuals are becoming interested in developing and using low-cost air quality sensors, it is important to standardize the procedures used to evaluate their performance. The information discussed herein provides a roadmap for entities who are interested in characterizing air quality sensors in a rigorous, systematic and reproducible manner.

  2. Extension of the PMV model to non-air-conditioned building in warm climates

    DEFF Research Database (Denmark)

    Fanger, Povl Ole; Toftum, Jørn

    2002-01-01

    The PMV model agrees well with high-quality field studies in buildings with HVAC systems, situated in cold, temperate and warm climates, studied during both summer and winter. In non-air-conditioned buildings in warm climates, occupants may sense the warmth as being less severe than the PMV...... predicts. The main reason is low expectations, but a metabolic rate that is estimated too high can also contribute to explaining the difference. An extension of the PMV model that includes an expectancy factor is introduced for use in non-air-conditioned buildings in warm climates. The extended PMV model...... agrees well with quality field studies in non-air-conditioned buildings of three continents....

  3. Photocatalytic equipment with nitrogen-doped titanium dioxide for air cleaning and disinfecting

    International Nuclear Information System (INIS)

    Le, Thanh Son; Ngo, Quoc Buu; Nguyen, Viet Dung; Nguyen, Hoai Chau; Dao, Trong Hien; Tran, Xuan Tin; Kabachkov, E N; Balikhin, I L

    2014-01-01

    Nitrogen-doped TiO 2 nanoparticle photocatalysts were synthesized by a sol–gel procedure using tetra-n-butyl orthotitanate as a titanium precursor and urea as a nitrogen source. Systematic studies for the preparation parameters and their impact on the material's structure were carried out by multiple techniques: thermogravimetric and differential scanning calorimetric analysis, x-ray diffraction, scanning electron microscope, transmission electron microscopy, energy dispersive x-ray spectroscopy and UV–Vis diffuse reflectance spectrophotometry showed that the nitrogen-doped TiO 2 calcined at 500 °C for 3 h exhibited a spherical form with a particle size about 15–20 nm and crystal phase presented a mixture of 89.12% anatase. The obtained product was deposited on a porous quartz tube (D = 74 mm; l = 418 mm) to manufacture an air photocatalytic cleaner as a prototype of the TIOKRAFT company's equipment. The created air cleaner was able to remove 60% of 10 ppm acetone within 390 min and degrade 98.5% of bacteria (total aerobic bacteria and fungi, 300 cfu m −3 ) within 120 min in a 10 m 3 box. These photodegradation activities of N-TiO 2 are higher than that of the commercial nano-TiO 2 (Skyspring Inc., USA, particle size of 5–10 nm). (paper)

  4. Condition monitoring a key component in the preventive maintenance

    International Nuclear Information System (INIS)

    Isar, C.

    2006-01-01

    The preventive maintenance programs are necessary to ensure that nuclear safety significant equipment will function when it is supposed to. Diesel generator, pumps, motor operated valves and air operated control valves are typically operated every three months. When you drive a car, you depend on lot of sounds, the feel of the steering wheel and gauges to determine if the car is running correctly. Similarly with operating equipment for a power plant - sounds or vibration of the equipment or the gauges and test equipment indicate a problem or degradation, actions are taken to correct the deficiency. Due to safety and economical reason diagnostic and monitoring systems are of growing interest in all complex industrial production. Diagnostic systems are requested to detect, diagnose and localize faulty operating conditions at an early stage in order to prevent severe failures and to enable predictive and condition oriented maintenance. In this context it is a need for using various on-line and off-line condition monitoring and diagnostics, non-destructive inspection techniques and surveillance. The condition monitoring technique used in nuclear power plant Cernavoda are presented in this paper. The selection of components and parameters to be monitored, monitoring and diagnostics techniques used are incorporated into a preventive maintenance program. Modern measurement technique in combination with advanced computerized data processing and acquisition show new ways in the field of machine surveillance. The diagnostic capabilities of predictive maintenance technologies have increased recently year with advances made in sensor technologies. The paper will focus on the following condition monitoring technique: - oil analysis - acoustic leakage monitoring - thermography - valve diagnostics: motor operated valve, air operated valve and check valve - motor current signature - vibration monitoring and rotating machine monitoring and diagnostics For each condition monitoring

  5. IEA SHC Task 38 'Solar air-conditioning and refrigeration'. Danish participation 2007-2010. Appendix; IEA SHC Task 38 'Solar air-conditioning and refrigeration'. Dansk deltagelse 2007-2010. Bilag

    Energy Technology Data Exchange (ETDEWEB)

    Ellehauge, K [Ellehauge og Kildemoes, Aarhus (Denmark); Muenster, E [PlanEnergi, Skoerping (Denmark); Reinholdt, L [Teknologisk Institut, Aarhus (Denmark); Munds, S [AC-Sun Aps, Horsens (Denmark)

    2011-03-15

    IEA SHC Task 38 'Solar Air-Conditioning and Refrigeration' ran from October 2006 to December 2010. Denmark was represented in the task from January 2007 to December 2010. The aim of the task was to encourage use of solar powered refrigeration and air conditioning systems in particular at residential, commercial and industrial sectors. Furthermore, the aim was to contribute to new research and development activities on new systems and concepts. The appendix contains the publications prepared by the Danish project group.(LN)

  6. 2016 German refrigeration and air conditioning meeting. Proceedings

    International Nuclear Information System (INIS)

    2016-01-01

    The following topics were dealt with: Large cryogenic facilities, relief valves, liquid helium, liquid-nitrogen and liquid hydrogen cooling, new concepts, foundations and materials of the heat-pump techniques, evaporation, phase-change materials, absorption, afterheat usage, ionic liquids, sorption, condensers, heat exchangers, back-cooling systems, refrigerants, caron dioxide, mobile applications, efficiency and optimization, air conditioning.

  7. 30 CFR 77.412 - Compressed air systems.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Compressed air systems. 77.412 Section 77.412... for Mechanical Equipment § 77.412 Compressed air systems. (a) Compressors and compressed-air receivers... involving the pressure system of compressors, receivers, or compressed-air-powered equipment shall not be...

  8. Evaluation of the air quality in pig housing facilities equipped with a liquid-solid separation system

    International Nuclear Information System (INIS)

    Lavoie, J.; Beaudet, Y.; Letourneau, C.; Godbout, S.; Lemay, S.; Belzile, M.; Lachance, I.; Pouliot, F.

    2006-01-01

    A new regulation regarding agricultural operations in Quebec was passed in June 2002. It stated the new standards for managing phosphorous generated from animal livestock. The regulation is intended to protect the environment, more specifically, water, soil and air quality. This new regulation stipulates that agricultural producers acquire a balanced phosphorous assessment by 2010. In order to achieve this, a system is needed to separate solid and liquid pig manure on a daily basis. Producers must also comply with environmental requirements on odour elimination and atmospheric control. The proposed solid-liquid separation system would improve the indoor and outdoor air quality at pig housing facilities by reducing toxic gas and bioaerosol formation. In addition, it would contribute to stream purification. The solid-liquid separation technique was successfully tested in a pilot project at a mini pig housing facility. It was concluded that type of separation equipment system could readily used for other types of animal farming, such as cattle raising. 41 refs., 13 tabs., 12 figs

  9. An energy performance assessment for indoor environmental quality (IEQ) acceptance in air-conditioned offices

    International Nuclear Information System (INIS)

    Wong, L.T.; Mui, K.W.

    2009-01-01

    Maintaining an acceptable indoor environmental quality (IEQ) for air-conditioned office buildings consumes a considerable amount of thermal energy. This study correlates thermal energy consumption with the overall occupant acceptance of IEQ in some air-conditioned offices. An empirical expression of an IEQ index associated with thermal comfort, indoor air quality, aural and visual comfort is used to benchmark the offices. Employing input parameters obtained from the building stocks of Hong Kong, the office portfolios regarding the thermal energy consumption and the IEQ index are determined by Monte Carlo simulations. In particular, an energy-to-acceptance ratio and an energy-to-IEQ improvement ratio are proposed to measure the performance of energy consumption for the IEQ in the air-conditioned offices. The ratios give the thermal energy consumption corresponding to a desirable percentage of IEQ acceptances and to an IEQ upgrade, respectively. The results showed a non-linear increasing trend of annual thermal energy consumption for IEQ improvement at the offices of higher IEQ benchmarks. The thermal energy consumption for visual comfort and indoor air quality would also be significant in these offices. This study provides useful information that incorporates the IEQ in air-conditioned offices into the development of performance evaluation measures for thermal energy consumption.

  10. Local Air Quality Conditions and Forecasts

    Science.gov (United States)

    ... Monitor Location Archived Maps by Region Canada Air Quality Air Quality on Google Earth Links A-Z About AirNow AirNow International Air Quality Action Days / Alerts AirCompare Air Quality Index (AQI) ...

  11. Reducing indoor air pollution by air conditioning is associated with improvements in cardiovascular health among the general population.

    Science.gov (United States)

    Lin, Lian-Yu; Chuang, Hsiao-Chi; Liu, I-Jung; Chen, Hua-Wei; Chuang, Kai-Jen

    2013-10-01

    Indoor air pollution is associated with cardiovascular effects, however, little is known about the effects of improving indoor air quality on cardiovascular health. The aim of this study was to explore whether improving indoor air quality through air conditioning can improve cardiovascular health in human subjects. We recruited a panel of 300 healthy subjects from Taipei, aged 20 and over, to participate in six home visits each, to measure a variety of cardiovascular endpoints, including high sensitivity-C-reactive protein (hs-CRP), 8-hydroxy-2'-deoxyguanosine (8-OHdG), fibrinogen in plasma and heart rate variability (HRV). Indoor particles and total volatile organic compounds (VOCs) were measured simultaneously at the participant's home during each visit. Three exposure conditions were investigated in this study: participants were requested to keep their windows open during the first two visits, close their windows during the next two visits, and close the windows and turn on their air conditioners during the last two visits. We used linear mixed-effects models to associate the cardiovascular endpoints with individual indoor air pollutants. The results showed that increases in hs-CRP, 8-OHdG and fibrinogen, and decreases in HRV indices were associated with increased levels of indoor particles and total VOCs in single-pollutant and two-pollutant models. The effects of indoor particles and total VOCs on cardiovascular endpoints were greatest during visits with the windows open. During visits with the air conditioners turned on, no significant changes in cardiovascular endpoints were observed. In conclusion, indoor air pollution is associated with inflammation, oxidative stress, blood coagulation and autonomic dysfunction. Reductions in indoor air pollution and subsequent improvements in cardiovascular health can be achieved by closing windows and turning on air conditioners at home. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Design and Simulation of an Air Conditioning Project in a Hospital Based on Computational Fluid Dynamics

    OpenAIRE

    Ding X. R.; Guo Y. Y.; Chen Y. Y.

    2017-01-01

    This study aims to design a novel air cleaning facility which conforms to the current situation in China, and moreover can satisfy our demand on air purification under the condition of poor air quality, as well as discuss the development means of a prototype product. Air conditions in the operating room of a hospital were measured as the research subject of this study. First, a suitable turbulence model and boundary conditions were selected and computational fluid dynamics (CFD) software was ...

  13. Optimum Remediation Conditions of Vertical Electrokinetic-Flushing Equipment to Decontaminate a Radioactive Soil

    International Nuclear Information System (INIS)

    Kim, Gye Nam; Yang, Byeong IL; Moon, Jei Kwon; Lee, Kune Woo

    2009-01-01

    Vertical electrokintic-flushing remediation equipment was developed for the remediation of a radioactive soil near nuclear facilities. An optimum reagent was selected to decontaminate the radioactive soil near nuclear facilities with the developed vertical electrokintic-flushing remediation equipment, and the optimum remediation conditions were established to obtain a higher remediation efficiency. Namely, acetic acid was selected as an optimum reagent due to its higher remediation efficiency. When the electrokinetic remediation and the electrokinetic-flushing remediation results were compared, the removal efficiency of 4.6% and the soil waste solution volume of 1.5 times were increased in the electrokinetic remediation. When the potential gradient within an electrokinetic soil cell was increased by two times (4.0 V/cm), the removal efficiencies of Co 2+ and Cs + were increased by about 4.3%( Co 2+ : 98.9%, Cs + : 96.7%). Also, when the reagent concentration was increased from 0.01 M to 0.05 M, the removal efficiency of Co 2+ was increased but that of Cs + was decreased. Therefore, the optimum remediation conditions were that the acetic concentration was 0.01 M ∼ 0.05 M, the potential gradient was 4 V/cm, the injection of reagent 2.4 ml/g, and the remediation period was 20 days.

  14. Analisa Performansi Sistem Air Conditioning Mobil tipe ET 450 dengan Variasi Tekanan Kerja Kompresor

    Directory of Open Access Journals (Sweden)

    Adi Purnawan

    2012-11-01

    Full Text Available Comfort and coolness when traveling by vehicle especially car is highly needed. So many attempts have been made byhumans that comfortable traveling by car can be achieved. One of the effective ways in which comfortable traveling by car can beobtained is by installing air conditioning. The performance of air conditioning system is highly influenced by how the compressorworks. In other words, the pressure resulting from the suction highly determines the performance of air conditioning system,which then affects how the compressor works, the compressor power, the refrigeration effect, the efficiency of isentropic andcoefficient of performance (COP of the car air conditioning sytem especially that of the car air conditioner type ET 450. Fromwhat has been described above, the writer would like to conduct a research entiled “ Analysis of the Performance of the Car AirConditioning system Type ET 450 with Variation of the Compressor Pressure”.The test was conducted on the car air conditioner type ET 450 with variations of suction 2.8 bar, 3 bar, 3.2 bar, 3.4bar, 3.6 bar and 3.8 bar. The data were obtained from the pressure of compressor output (P2, the temperatures in each point areT1, T2, T3, T4, the compressor rotationn is n, the strength of electrical current is I, and the volumetric flow rate. The data werethen processed and analyzed so that so that the performance of each variation of the suction could be actually and theoreticallyobtained.The findings show that the bigger the suction, the bigger the performance of the car air conditioner type ET 450 wouldbe. The theoretical coefficient of performance (COP produced was bigger than the actual COP. The optimal COP took placewhen the suction was 441.325 kPa, the actual COP was 3.513177 and the theoretical COP was 3.632062

  15. 2014 German refrigeration and air conditioning meeting. Proceedings; Deutsche Kaelte- und Klimatagung 2014. Tagungsbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The proceedings of the 2014 German refrigeration and air conditioning meeting contain contributions on the following topics: cryotechnology, fundamentals and materials for the refrigeration and heat pump technology, devices and components for the refrigeration and heat pump technology, applications of refrigeration technologies, air conditioning technology and heat pump applications, cryotechnology in biology and medicine, heat transfer and ventilation, guidelines and legal topics, refrigerant fluid - oil mixtures, control and surveillance, simulation and control, ambient air.

  16. Life cycle cost analysis of HPVT air collector under different Indian climatic conditions

    International Nuclear Information System (INIS)

    Raman, Vivek; Tiwari, G.N.

    2008-01-01

    In this communication, a study is carried out to evaluate an annual thermal and exergy efficiency of a hybrid photovoltaic thermal (HPVT) air collector for different Indian climate conditions, of Srinagar, Mumbai, Jodhpur, New Delhi and Banglore. The study has been based on electrical, thermal and exergy output of the HPVT air collector. Further, the life cycle analysis in terms of cost/kWh has been carried out. The main focus of the study is to see the effect of interest rate, life of the HPVT air collector, subsidy, etc. on the cost/kWh HPVT air collector. A comparison is made keeping in view the energy matrices. The study reveals that (i) annual thermal and electrical efficiency decreases with increase in solar radiation and (ii) the cost/kWh is higher in case of exergy when compared with cost/kWh on the basis of thermal energy for all climate conditions. The cost/kWh for climate conditions of Jodhpur is most economical

  17. Energy performance and optimal control of air-conditioned buildings with envelopes enhanced by phase change materials

    International Nuclear Information System (INIS)

    Zhu Na; Wang Shengwei; Ma Zhenjun; Sun Yongjun

    2011-01-01

    Highlights: → Impact of PCM on the energy consumption and peak load demand as well as electricity cost of air-conditioned buildings. → Impact of load shifting control on energy consumption, peak load and electricity cost of air-conditioned PCM buildings. → Impact of demand limiting control on energy consumption, peak load and electricity cost of air-conditioned PCM buildings. → Energy/cost effects of different control strategies and use of PCM in energy-plus-demand-based pricing policy. → Energy/cost effects of different control strategies and use of PCM in time-based pricing policy. - Abstract: Studies are conducted to investigate the impacts of shape-stabilized phase change material (SSPCM) and different control strategies on the energy consumption and peak load demand as well as electricity cost of building air-conditioning systems at typical summer conditions in two climates (subtropical and dry continental climates). An office building using a typical variable air volume (VAV) air-conditioning system was selected and simulated as the reference building in this study. Its envelopes were enhanced by integrating the SSPCM layers into its walls while the air-conditioning system and other configurations of the building remained unchanged. The building system was tested under two typical weather conditions and two typical electricity pricing policies (i.e. time-based pricing and energy-plus-demand-based pricing). Test results show that the use of SSPCM in the building could reduce the building electricity cost significantly (over 11% in electricity cost reduction and over 20% in peak load reduction), under two pricing policies by using load shifting control and demand limiting control respectively. This paper presents the test results and the evaluation on the energy performance and the optimal control strategies of air-conditioned commercial buildings with envelopes enhanced by SSPCM.

  18. Electricity Breakdown Management for Sarawak Energy: Use of Condition-Based Equipment for Detection of Defective Insulator

    Science.gov (United States)

    Tan, J. K.; Abas, N.

    2017-07-01

    Managing electricity breakdown is vital since an outage causes economic losses for customers and the utility companies. However, electricity breakdown is unavoidable due to some internal or external factors beyond our control. Electricity breakdown on overhead lines tend occur more frequently because it is prone to external disturbances such as animal, overgrown vegetation and defective pole top accessories. In Sarawak Energy Berhad (SEB), majority of the network are composed of overhead lines and hence, is more prone to failure. Conventional method of equipment inspection and fault finding are not effective to quickly identify the root cause of failure. SEB has engaged the use of corona discharge camera as condition-based monitoring equipment to carry out condition based inspection on the line in order to diagnose the condition of the lines prior to failure. Experimental testing has been carried out to determine the correlation between the corona discharge count and the level of defect on line insulator. The result shall be tabulated and will be used as reference for future scanning and diagnostic on any defect on the lines.

  19. 40 CFR 63.648 - Equipment leak standards.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Equipment leak standards. 63.648...) National Emission Standards for Hazardous Air Pollutants From Petroleum Refineries § 63.648 Equipment leak...) through (c)(10) and (e) through (i) of this section. (1) The instrument readings that define a leak for...

  20. 40 CFR 63.1331 - Equipment leak provisions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Equipment leak provisions. 63.1331... Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins § 63.1331 Equipment leak... in pumps and agitator seals in light liquid service shall not be considered to be a leak. For...

  1. Experimental and numerical study of an evaporatively-cooled condenser of air-conditioning systems

    International Nuclear Information System (INIS)

    Islam, M.R.; Jahangeer, K.A.; Chua, K.J.

    2015-01-01

    The performance of an air-conditioning unit with evaporately-cooled condenser coil is studied experimentally and numerically. An experimental setup is fabricated by retrofitting a commercially available air-conditioning unit and installing comprehensive measuring sensors and controllers. Experimental result shows that the COP (Coefficient of Performance) of the evaporately-cooled air-conditioning unit increases by about 28% compared to the conventional air cooled air-conditioning unit. To analyze the heat and mass transfer processes involved in the evaporately-cooled condenser, a detailed theoretical model has been developed based on the fluid flow characteristics of the falling film and the thermodynamic aspect of the evaporation process. Simulated results agree well with experimental data. The numerical model provides new insights into the intrinsic links between operating variables and heat transfer characteristics of water film in evaluating the performance of evaporatively-cooled condenser system. Two heat transfer coefficients, namely, wall to bulk and bulk to interface are introduced and computed from the simulation results under different operating conditions. Finally, the overall heat transfer coefficient for the water film is computed and presented as a function of dimensionless variables which can conveniently be employed by engineers to design and analyze high performance evaporatively-cooled heat exchangers. - Highlights: • Performance of evaporatively-cooled condenser is investigated. • Local convective heat transfer coefficients of water film are determined. • Thermal resistance of water film is negligible. • Heat transfer with evaporated vapor plays significant role on performance. • Better condenser performance translates to an improvement in COP

  2. Experimental study of an air conditioning system to control a greenhouse microclimate

    International Nuclear Information System (INIS)

    Attar, I.; Naili, N.; Khalifa, N.; Hazami, M.; Lazaar, M.; Farhat, A.

    2014-01-01

    Highlights: • Contribution in the control of the greenhouse microclimate for pepper cultivation. • The energy storing in the ground and in the water ensure the greenhouse heating. • The circulation of the cold water in the exchangers ensures the greenhouse cooling. • The system makes the greenhouse appropriate for the pepper cultivation whole year. - Abstract: In this papper, a thermal model is developed to investigate the possibility to use the ground thermal energy for the greenhouse heating or cooling. A control system of the ground heat storing is integrated in a chapel greenhouse located in the premises of the Technology and Research Energy Center, Tunis, Tunisia. Polypropylene capillary heat exchangers, suspended in the air and buried into the ground of the greenhouse, are used to store or destore solar energy excess. During the day, the air-suspended exchangers recuperate the solar energy in excess. This recuperated energy is then stored into the ground through the buried exchangers. At night the stored thermal energy is brought back by the suspended exchangers to heat the greenhouse air. The purpose of this study is to contribute in the greenhouse microclimate control. In order to maintain the greenhouse air temperature at 20 °C, suitable for a defined agriculture, the solar energy and the cold water are respectively used for heating and cooling the greenhouse inside air. The design and construction of a chapel greenhouse equipped with the control system is carried out. The studied system is used, at the same time for; heating, cooling the greenhouse air and storing the solar energy in excess. Experiments were conducted during the years 2012–2013, to evaluate the effectiveness of the control system achieved. The measured values of the greenhouse air temperatures with and without the control system are discussed

  3. Days individual equipment of protection and professional risks

    International Nuclear Information System (INIS)

    2007-01-01

    The personal protection equipment is studied in the legal way (legal liabilities, certification, European texts), technical way (ergonomics, painfulness of ventilated equipment wearing, reliability of a respirable air line, protection gloves against the chemical risk, exposure to nano particulates, working in hot area), human factors (hostile area and emotion management), studies on personal equipment such evaluation, efficiency, conception of new equipment, physiological tolerance, limit of use, and some general safety studies on the working places. (N.C.)

  4. Studies of Radon and Radon Progeny in Air Conditioned Rooms in Hospitals

    International Nuclear Information System (INIS)

    Marley, F.; Denman, A.R.; Phillips, P.S.

    1998-01-01

    A series of continuous real-time radon and radon progeny measurements together with passive etched track detector measurements were performed in hospital premises during 1996. In one small room, detailed measurements over several weeks showed that both the radon concentration and the Equilibrium Factor depended on the intermittent operation of a filtered positive pressure displacement air-conditioning system, which was designed to conform to operating theatre standards. The average radon level measured while the air-conditioning was off was almost four times higher than that recorded whilst it was on. The progeny level was over five times higher than that whilst it was on. Thus, the Equilibrium Factor (F), was significantly lower when the air-conditioning was on. Measurements in similar rooms in two hospitals, confirmed that the reduction in radon level was a general finding. Thus staff working in such environments receive significantly lower radiation dose from radon than staff working in nearby normally ventilated rooms. (author)

  5. Hollow Fiber Membrane Dehumidification Device for Air Conditioning System.

    Science.gov (United States)

    Zhao, Baiwang; Peng, Na; Liang, Canzeng; Yong, Wai Fen; Chung, Tai-Shung

    2015-11-16

    In order to provide a comfortable living and working environment indoors in tropical countries, the outdoor air often needs to be cooled and dehumidified before it enters the rooms. Membrane separation is an emerging technology for air dehumidification and it is based on the solution diffusion mechanism. Water molecules are preferentially permeating through the membranes due to its smaller kinetic diameter and higher condensability than the other gases. Compared to other dehumidification technologies such as direct cooling or desiccation, there is no phase transition involved in membrane dehumidification, neither the contact between the fresh air stream and the desiccants. Hence, membrane dehumidification would not only require less energy consumption but also avoid cross-contamination problems. A pilot scale air dehumidification system is built in this study which comprises nine pieces of one-inch PAN/PDMS hollow fiber membrane modules. A 150 h long-term test shows that the membrane modules has good water vapor transport properties by using a low vacuum force of only 0.78 bar absolute pressure at the lumen side. The water vapor concentration of the feed humid air decreases dramatically from a range of 18-22 g/m³ to a range of 13.5-18.3 g/m³. Most importantly, the total energy saving is up to 26.2% compared with the conventional air conditioning process.

  6. Hollow Fiber Membrane Dehumidification Device for Air Conditioning System

    Directory of Open Access Journals (Sweden)

    Baiwang Zhao

    2015-11-01

    Full Text Available In order to provide a comfortable living and working environment indoors in tropical countries, the outdoor air often needs to be cooled and dehumidified before it enters the rooms. Membrane separation is an emerging technology for air dehumidification and it is based on the solution diffusion mechanism. Water molecules are preferentially permeating through the membranes due to its smaller kinetic diameter and higher condensability than the other gases. Compared to other dehumidification technologies such as direct cooling or desiccation, there is no phase transition involved in membrane dehumidification, neither the contact between the fresh air stream and the desiccants. Hence, membrane dehumidification would not only require less energy consumption but also avoid cross-contamination problems. A pilot scale air dehumidification system is built in this study which comprises nine pieces of one-inch PAN/PDMS hollow fiber membrane modules. A 150 h long-term test shows that the membrane modules has good water vapor transport properties by using a low vacuum force of only 0.78 bar absolute pressure at the lumen side. The water vapor concentration of the feed humid air decreases dramatically from a range of 18–22 g/m3 to a range of 13.5–18.3 g/m3. Most importantly, the total energy saving is up to 26.2% compared with the conventional air conditioning process.

  7. Air-lift pumps characteristics under two-phase flow conditions

    International Nuclear Information System (INIS)

    Kassab, Sadek Z.; Kandil, Hamdy A.; Warda, Hassan A.; Ahmed, Wael H.

    2009-01-01

    Air-lift pumps are finding increasing use where pump reliability and low maintenance are required, where corrosive, abrasive, or radioactive fluids in nuclear applications must be handled and when a compressed air is readily available as a source of a renewable energy for water pumping applications. The objective of the present study is to evaluate the performance of a pump under predetermined operating conditions and to optimize the related parameters. For this purpose, an air-lift pump was designed and tested. Experiments were performed for nine submergence ratios, and three risers of different lengths with different air injection pressures. Moreover, the pump was tested under different two-phase flow patterns. A theoretical model is proposed in this study taking into account the flow patterns at the best efficiency range where the pump is operated. The present results showed that the pump capacity and efficiency are functions of the air mass flow rate, submergence ratio, and riser pipe length. The best efficiency range of the air-lift pumps operation was found to be in the slug and slug-churn flow regimes. The proposed model has been compared with experimental data and the most cited models available. The proposed model is in good agreement with experimental results and found to predict the liquid volumetric flux for different flow patterns including bubbly, slug and churn flow patterns

  8. 2015 German refrigeration and air conditioning meeting. Abstracts; Deutsche Kaelte- und Klimatagung 2015. Kurzfassungen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-01

    The volume contains the abstracts of the 2015 German refrigeration and air conditioning meeting in 5 chapters: cryo-technology, fundamentals of materials for refrigeration engineering and heat pump technology, facilities and components for the refrigeration and heat pump technology; application of refrigeration engineering; air conditioning technology and heat pump application.

  9. A new method for controlling refrigerant flow in automobile air conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Xuquan Li; Jiangping Chen; Zhijiu Chen [Shanghai Jiao Tong University (China). Institute of Refrigeration and Cryogenics Engineering; Weihua Liu; Wei Hu; Xiaobing Liu [Shanghai Delphi Automotive Air Conditiong Systems Co. Ltd., Changhai (China)

    2004-05-01

    This paper describes the improvement of the refrigerant flow control method by using an electronic expansion valve (EEV) which is driven by a stepper motor in automobile air conditioning system. An EEV can make a quick response to the abrupt change in the refrigerant flow rate during the change in automobile speed and the thermostatic on/off operation. The flow rate characteristic of the EEV for automobile air conditioning was presented. A microcontroller is used to receive the input signal and generate the output signal to control the opening of the EEV. The fuzzy self-tuning proportional-integral-derivative (PID) control method is employed. Experimental results show that the new control method can feed adequate refrigerant flow into the evaporator in various operations. The evaporator discharge air temperature has dropped by approximately 3{sup o}C as compared with that of the conventional PID control system. (author)

  10. Equipment abnormality monitoring device

    International Nuclear Information System (INIS)

    Ando, Yasumasa

    1991-01-01

    When an operator hears sounds in a plantsite, the operator compares normal sounds of equipment which he previously heard and remembered with sounds he actually hears, to judge if they are normal or abnormal. According to the method, there is a worry that abnormal conditions can not be appropriately judged in a case where the number of objective equipments is increased and in a case that the sounds are changed gradually slightly. Then, the device of the present invention comprises a plurality of monitors for monitoring the operation sound of equipments, a recording/reproducing device for recording and reproducing the signals, a selection device for selecting the reproducing signals among the recorded signals, an acoustic device for converting the signals to sounds, a switching device for switching the signals to be transmitted to the acoustic device between to signals of the monitor and the recording/reproducing signals. The abnormality of the equipments can be determined easily by comparing the sounds representing the operation conditions of equipments for controlling the plant operation and the sounds recorded in their normal conditions. (N.H.)

  11. Effects of cathode channel size and operating conditions on the performance of air-blowing PEMFCs

    International Nuclear Information System (INIS)

    Kim, Bosung; Lee, Yongtaek; Woo, Ahyoung; Kim, Yongchan

    2013-01-01

    Highlights: • Effect of cathode channel size on the air-blowing PEMFC is analyzed. • Performance and EIS tests of air-blowing PEMFCs are conducted. • Test conditions include the operating temperature, fan voltage, and anode humidity. • Flooding is a limiting factor for decreasing channel size at low temperature. • Water management is investigated by analyzing ohmic resistance. - Abstract: Air-blowing proton exchange membrane fuel cells (PEMFCs) have been developed as a potential new power source for portable electronic devices. However, air-blowing PEMFCs show lower performance than compressed-air PEMFCs because of their adverse operating conditions. In this study, the effects of the cathode channel size and operating conditions on the performance of the air-blowing PEMFC were analyzed. At the normal operating temperature, the performance of the air-blowing PEMFC improved with the decrease in the cathode channel size. However, at a low operating temperature and low fan voltage, massive flooding limits the decrease in the cathode channel size. In addition, water management in the air-blowing PEMFC was investigated by analyzing ohmic resistance. The transition current density between the humidification and the flooding region decreased with decreasing cathode channel size and operating temperature

  12. Persistence of Initial Conditions in Continental Scale Air Quality Simulations

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset contains the data used in Figures 1 – 6 and Table 2 of the technical note "Persistence of Initial Conditions in Continental Scale Air Quality...

  13. Predicting temperature and moisture distributions in conditioned spaces using the zonal approach

    Energy Technology Data Exchange (ETDEWEB)

    Mendonca, K.C. [Parana Pontifical Catholic Univ., Curitiba (Brazil); Wurtz, E.; Inard, C. [La Rochelle Univ., La Rochelle, Cedex (France). LEPTAB

    2005-07-01

    Moisture interacts with building elements in a number of different ways that impact upon building performance, causing deterioration of building materials, as well as contributing to poor indoor air quality. In humid climates, moisture represents one of the major loads in conditioned spaces. It is therefore important to understand and model moisture transport accurately. This paper discussed an intermediate zonal approach to building a library of data in order to predict whole hygrothermal behavior in conditioned rooms. The zonal library included 2 models in order to consider building envelope moisture buffering effects as well as taking into account the dynamic aspect of jet airflow in the zonal method. The zonal library was then applied to a case study to show the impact of external humidity on the whole hygrothermal performance of a room equipped with a vertical fan-coil unit. The proposed theory was structured into 3 groups representing 3 building domains: indoor air; envelope; and heating, ventilation and air conditioning (HVAC) systems. The indoor air sub-model related to indoor air space, where airflow speed was considered to be low. The envelope sub-model related to the radiation exchanges between the envelope and its environment as well as to the heat and mass transfers through the envelope material. The HVAC system sub-model referred to the whole system including equipment, control and specific airflow from the equipment. All the models were coupled into SPARK, where the resulting set of non-linear equations were solved simultaneously. A case study of a large office conditioned by a vertical fan-coil unit with a rectangular air supply diffuser was presented. Details of the building's external and internal environment were provided, as well as convective heat and mass transfer coefficients and temperature distributions versus time. Results of the study indicated that understanding building material moisture buffering effects is as important as

  14. 40 CFR 86.206-11 - Equipment required; overview.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Equipment required; overview. 86.206-11 Section 86.206-11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.206-11 Equipment required...

  15. 40 CFR 86.206-94 - Equipment required; overview.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Equipment required; overview. 86.206-94 Section 86.206-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.206-94 Equipment required...

  16. Parametric analysis of a combined dew point evaporative-vapour compression based air conditioning system

    Directory of Open Access Journals (Sweden)

    Shailendra Singh Chauhan

    2016-09-01

    Full Text Available A dew point evaporative-vapour compression based combined air conditioning system for providing good human comfort conditions at a low cost has been proposed in this paper. The proposed system has been parametrically analysed for a wide range of ambient temperatures and specific humidity under some reasonable assumptions. The proposed system has also been compared from the conventional vapour compression air conditioner on the basis of cooling load on the cooling coil working on 100% fresh air assumption. The saving of cooling load on the coil was found to be maximum with a value of 60.93% at 46 °C and 6 g/kg specific humidity, while it was negative for very high humidity of ambient air, which indicates that proposed system is applicable for dry and moderate humid conditions but not for very humid conditions. The system is working well with an average net monthly power saving of 192.31 kW h for hot and dry conditions and 124.38 kW h for hot and moderate humid conditions. Therefore it could be a better alternative for dry and moderate humid climate with a payback period of 7.2 years.

  17. Development of residential solar air conditioning system for electricity power peak cut 3

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Gwon Jong [Korea Inst. of Energy and Resources, Daeduk (Korea, Republic of)

    1995-12-31

    In this research, the converter rectifier unit of the inverter air conditioner is substituted into the bidirectional PWM converter. The DC/DC power converter is established on the DC link between the photovoltaic array and the inverter air conditioner, and the photovoltaic air conditioning system which can be parallel driven which utility is developed. (author). 35 ref., 112 figs.

  18. Efficiency assessment of indoor environmental policy for air-conditioned offices in Hong Kong

    International Nuclear Information System (INIS)

    Wong, L.T.; Mui, K.W.

    2009-01-01

    To reduce carbon dioxide (CO 2 ) emissions through thermal energy conservation, air-conditioned offices in the subtropics are recommended to operate within specified ranges of indoor temperature, relative humidity and air velocity. As thermal discomfort leads to productivity loss, some indoor environmental policies for air-conditioned offices in Hong Kong are investigated in this study with relation to thermal energy consumption, CO 2 emissions from electricity use, and productivity loss due to thermal discomfort. Occupant thermal response is specifically considered as an adaptive factor in evaluating the energy consumption and productivity loss. The energy efficiency of an office is determined by the productivity which corresponds to the CO 2 generated. The results found that a policy with little impact on occupant thermal comfort and worker productivity would improve the office efficiency while the one with excessive energy consumption reduction would result in a substantial productivity loss. This study is a useful reference source for evaluating an indoor thermal environmental policy regarding the energy consumption, CO 2 emissions reduction, thermal comfort and productivity loss in air-conditioned offices in subtropical areas.

  19. General collaboration offer of Johnson Controls regarding the performance of air conditioning automatic control systems and other buildings` automatic control systems

    Energy Technology Data Exchange (ETDEWEB)

    Gniazdowski, J.

    1995-12-31

    JOHNSON CONTROLS manufactures measuring and control equipment (800 types) and is as well a {open_quotes}turn-key{close_quotes} supplier of complete automatic controls systems for heating, air conditioning, ventilation and refrigerating engineering branches. The Company also supplies Buildings` Computer-Based Supervision and Monitoring Systems that may be applied in both small and large structures. Since 1990 the company has been performing full-range trade and contracting activities on the Polish market. We have our own well-trained technical staff and we collaborate with a series of designing and contracting enterprises that enable us to have our projects carried out all over Poland. The prices of our supplies and services correspond with the level of the Polish market.

  20. Application of acoustic agglomeration to enhance air filtration efficiency in air-conditioning and mechanical ventilation (ACMV) systems.

    Science.gov (United States)

    Ng, Bing Feng; Xiong, Jin Wen; Wan, Man Pun

    2017-01-01

    The recent episodes of haze in Southeast Asia have caused some of the worst regional atmospheric pollution ever recorded in history. In order to control the levels of airborne fine particulate matters (PM) indoors, filtration systems providing high PM capturing efficiency are often sought, which inadvertently also results in high airflow resistance (or pressure drop) that increases the energy consumption for air distribution. A pre-conditioning mechanism promoting the formation of particle clusters to enhance PM capturing efficiency without adding flow resistance in the air distribution ductwork could provide an energy-efficient solution. This pre-conditioning mechanism can be fulfilled by acoustic agglomeration, which is a phenomenon that promotes the coagulation of suspended particles by acoustic waves propagating in the fluid medium. This paper discusses the basic mechanisms of acoustic agglomeration along with influencing factors that could affect the agglomeration efficiency. The feasibility to apply acoustic agglomeration to improve filtration in air-conditioning and mechanical ventilation (ACMV) systems is investigated experimentally in a small-scale wind tunnel. Experimental results indicate that this novel application of acoustic pre-conditioning improves the PM2.5 filtration efficiency of the test filters by up to 10% without introducing additional pressure drop. The fan energy savings from not having to switch to a high capturing efficiency filter largely outstrip the additional energy consumed by the acoustics system. This, as a whole, demonstrates potential energy savings from the combined acoustic-enhanced filtration system without compromising on PM capturing efficiency.

  1. Application of acoustic agglomeration to enhance air filtration efficiency in air-conditioning and mechanical ventilation (ACMV systems.

    Directory of Open Access Journals (Sweden)

    Bing Feng Ng

    Full Text Available The recent episodes of haze in Southeast Asia have caused some of the worst regional atmospheric pollution ever recorded in history. In order to control the levels of airborne fine particulate matters (PM indoors, filtration systems providing high PM capturing efficiency are often sought, which inadvertently also results in high airflow resistance (or pressure drop that increases the energy consumption for air distribution. A pre-conditioning mechanism promoting the formation of particle clusters to enhance PM capturing efficiency without adding flow resistance in the air distribution ductwork could provide an energy-efficient solution. This pre-conditioning mechanism can be fulfilled by acoustic agglomeration, which is a phenomenon that promotes the coagulation of suspended particles by acoustic waves propagating in the fluid medium. This paper discusses the basic mechanisms of acoustic agglomeration along with influencing factors that could affect the agglomeration efficiency. The feasibility to apply acoustic agglomeration to improve filtration in air-conditioning and mechanical ventilation (ACMV systems is investigated experimentally in a small-scale wind tunnel. Experimental results indicate that this novel application of acoustic pre-conditioning improves the PM2.5 filtration efficiency of the test filters by up to 10% without introducing additional pressure drop. The fan energy savings from not having to switch to a high capturing efficiency filter largely outstrip the additional energy consumed by the acoustics system. This, as a whole, demonstrates potential energy savings from the combined acoustic-enhanced filtration system without compromising on PM capturing efficiency.

  2. Developed adaptive neuro-fuzzy algorithm to control air conditioning ...

    African Journals Online (AJOL)

    The paper developed artificial intelligence technique adaptive neuro-fuzzy controller for air conditioning systems at different pressures. The first order Sugeno fuzzy inference system was implemented and utilized for modeling and controller design. In addition, the estimation of the heat transfer rate and water mass flow rate ...

  3. 2012 German refrigeration and air conditioning meeting. Proceedings; Deutsche Kaelte-Klima-Tagung 2012 Tagungsbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Within the DKV conference of the Deutscher Kaelte- und Klimatechnischer Verein e.V. (Hanover, Federal Republic of Germany) from 21st to 23rd November, 2012, in Wuerzburg (Federal Republic of Germany) 121 lectures were held according to the following themes: Measurement and process control in cryotechnology; energy storage and energy application; application of cryotechnology in biology and medicine, new concepts and plants; fundamentals and materials for the technology of cold pumps and heat pumps - pool boiling; flow boiling / CO{sub 2}; adsorption processes; adsorption processes / phase change materials; condensation / dehumidification; plants and components of the technology of cold pumps and heat pumps - compressors; expansion and regulation; heat exchanger and reflux cooling; heat exchangers; systems simulation; systems and materials; application of cold - energy controlling / application; foodstuff / supermarket; air conditionings of passenger cars; air-conditioning of electric-powered automobiles; railway air-conditioning / system analyses; standardization and regulations; air conditioning and application of heat pumps - regulation / hardware-in-the-loop; net-zero-energy building; building engineering and simulation; standardization / IAQ / building materials; heat pumps; thermal comfort and performance in office accommodations.

  4. HVAC-DYNAMICS - a tool for quality assurance in relation to delivery of air-conditioning systems. [Heating, ventilating and air conditioning]. HVAC-DYNAMICS - et redskap for kvalitetsikring av sluttleveransen i klima-anlegg

    Energy Technology Data Exchange (ETDEWEB)

    Novakovic, V [SINTEF Varmeteknikk, Seksjon VVS (NO)

    1990-07-01

    HVAC-DYNAMICS is a computerized tool for quality assurance of the functioning of an air-conditioning system at the time of delivery. The system's efficiency in the case of fluctuating and critical operation is evaluated. The HVAC-DYNAMICS gives an optimal choice for air-conditioning systems regarding indoor climate, efficiency demands and energy consumption. The program can also be use for calibration of regulators, fault-finding, and training purposes. (CLS).

  5. Commentary: Air-conditioning as a risk for increased use of healthservices

    Energy Technology Data Exchange (ETDEWEB)

    Mendell, Mark J.

    2004-06-01

    In this issue of the journal, Preziosi et al. [2004] report the first study to assess differences in the utilization of health care related to the presence of air-conditioning in office workplaces. Although the study was simple and cross-sectional, the data variables from questionnaires, and the findings subject to a variety of questions, the findings are striking enough to deserve clarification. The study used a large random national sample of French women assembled for another purpose (to study antioxidant nutrients and prevention of cancer and cardiovascular disease). Participants reported health services and health events in monthly questionnaires over 1 year, and in one questionnaire in the middle of that period also reported whether air-conditioning was in use at their workplace. Fifteen percent of participants reported air-conditioning at work. Analyses adjusting for age and smoking status of participants found increases in most outcomes assessed: use of specific kinds of physicians, sickness absence, and hospital stays. While the increases in odds ratios (OR) and 95% confidence intervals (CI) were statistically significant for only otorhinolaryngology [OR (95% CI) = 2.33 (1.35-4.04)] and sickness absence [1.70 (1.13-2.58)], other increases were notable--dermatology [1.6 (0.98-2.65)]; hospital stay [1.51 (0.92-2.45)], and pneumonology [2.10 (0.65-6.82)]. The least elevated outcomes were for general practice medicine [0.99 (0.65-1.48)] and global medical visits [1.18 (0.67-2.07)]. [Preziosi et al., 2004 ,(Table 2)] Odds ratios for relatively common health outcomes often lie farther from the null than the risk ratios most useful for quantifying the increase in risk. Risk ratios, or prevalence ratios (PRs, the equivalent measure of effect for cross-sectional data), have seldom been used because of the convenience and availability of logistic regression models that estimate odds ratios. With baseline prevalences ranging up to 85.7% in the data from Preziosi et

  6. Design and Simulation of an Air Conditioning Project in a Hospital Based on Computational Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    Ding X. R.

    2017-06-01

    Full Text Available This study aims to design a novel air cleaning facility which conforms to the current situation in China, and moreover can satisfy our demand on air purification under the condition of poor air quality, as well as discuss the development means of a prototype product. Air conditions in the operating room of a hospital were measured as the research subject of this study. First, a suitable turbulence model and boundary conditions were selected and computational fluid dynamics (CFD software was used to simulate indoor air distribution. The analysis and comparison of the simulation results suggested that increasing the area of air supply outlets and the number of return air inlets would not only increase the area of unidirectional flow region in main flow region, but also avoid an indoor vortex and turbulivity of the operating area. Based on the summary of heat and humidity management methods, the system operation mode and relevant parameter technologies as well as the characteristics of the thermal-humidity load of the operating room were analyzed and compiled. According to the load value and parameters of indoor design obtained after our calculations, the airflow distribution of purifying the air-conditioning system in a clean operating room was designed and checked. The research results suggested that the application of a secondary return air system in the summer could reduce energy consumption and be consistent with the concept of primaiy humidity control. This study analyzed the feasibility and energy conservation properties of cleaning air-conditioning technology in operating rooms, proposed some solutions to the problem, and performed a feasible simulation, which provides a reference for practical engineering.

  7. Modeling validation and control analysis for controlled temperature and humidity of air conditioning system.

    Science.gov (United States)

    Lee, Jing-Nang; Lin, Tsung-Min; Chen, Chien-Chih

    2014-01-01

    This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14 °C, 0006 kg(w)/kg(da) in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system.

  8. Modeling Validation and Control Analysis for Controlled Temperature and Humidity of Air Conditioning System

    Directory of Open Access Journals (Sweden)

    Jing-Nang Lee

    2014-01-01

    Full Text Available This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14°C, 0006 kgw/kgda in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system.

  9. Full amenities : the jungle hums with armed guards, planned movements, air-conditioning and cultural realness

    Energy Technology Data Exchange (ETDEWEB)

    Leslie, J.

    2001-06-04

    The working situation of a Canadian consultant asked to work in Ecuador for a one-month period was described. He quickly learned that discretion is an incredibly valuable trait in this country where a number of oil and gas workers have become victims of kidnappings, because the companies that employ them are perceived as having lots of money. Accordingly, the planning for the trip began back in Canada where the worker received inoculations for yellow fever and hepatitis, among others, as well as briefing about personal security while abroad. Upon his arrival, he was met by security guards hired by the company and driven to his hotel in the capital, Quito. He found he was safe to wander inside the hotel at will, as well as just outside. If he wanted to go outside the perimeter, he had to call the company and the guards would meet and escort him, without displaying their weapons. When it came time to travel to the production site deep in the jungle, armed guards were travelling in a vehicle ahead of his, as well as in two vehicles behind him with weapons in full view. All of his movements were planned. The facilities on-site were more than adequate and resembled those found in Canada: flush toilet, air-conditioned sleeping quarters and cafeteria-style food. With air-conditioning available in buildings and in vehicles, it was not too difficult to adjust to the 40 Celsius heat, but one had to be equipped with very dark sunglasses. The high humidity and the heat made it different from conditions experienced in Canada. The people from Ecuador were very friendly and proud to be working on the rigs. Jobs are scarce and the level of poverty high. It was an enjoyable experience overall, as long as one is careful to mitigate risks and take the advice of experts. 3 figs.

  10. Air-conditioning and antibiotics: Demand management insights from problematic health and household cooling practices

    International Nuclear Information System (INIS)

    Nicholls, Larissa; Strengers, Yolande

    2014-01-01

    Air-conditioners and antibiotics are two technologies that have both been traditionally framed around individual health and comfort needs, despite aspects of their use contributing to social health problems. The imprudent use of antibiotics is threatening the capacity of the healthcare system internationally. Similarly, in Australia the increasing reliance on air-conditioning to maintain thermal comfort is contributing to rising peak demand and electricity prices, and is placing an inequitable health and financial burden on vulnerable heat-stressed households. This paper analyses policy responses to these problems through the lens of social practice theory. In the health sector, campaigns are attempting to emphasise the social health implications of antibiotic use. In considering this approach in relation to the problem of air-conditioned cooling and how to change the ways in which people keep cool during peak times, our analysis draws on interviews with 80 Australian households. We find that the problem of peak electricity demand may be reduced through attention to the social health implications of air-conditioned cooling on very hot days. We conclude that social practice theory offers a fruitful analytical route for identifying new avenues for research and informing policy responses to emerging health and environmental problems. - Highlights: • Over-use of antibiotics and air-conditioning has social health implications. • Focusing on financial incentives limits the potential of demand management programs. • Explaining peak demand to households shifts the meanings of cooling practices. • Emphasising the social health implications of antibiotics and air-conditioning may resurrect alternative practices. • Analysing policy with social practice theory offers insights into policy approaches

  11. Flow and air conditioning simulations of computer turbinectomized nose models.

    Science.gov (United States)

    Pérez-Mota, J; Solorio-Ordaz, F; Cervantes-de Gortari, J

    2018-04-16

    Air conditioning for the human respiratory system is the most important function of the nose. When obstruction occurs in the nasal airway, turbinectomy is used to correct such pathology. However, mucosal atrophy may occur sometime after this surgery when it is overdone. There is not enough information about long-term recovery of nasal air conditioning performance after partial or total surgery. The purpose of this research was to assess if, based on the flow and temperature/humidity characteristics of the air intake to the choana, partial resection of turbinates is better than total resection. A normal nasal cavity geometry was digitized from tomographic scans and a model was printed in 3D. Dynamic (sinusoidal) laboratory tests and computer simulations of airflow were conducted with full agreement between numerical and experimental results. Computational adaptations were subsequently performed to represent six turbinectomy variations and a swollen nasal cavity case. Streamlines along the nasal cavity and temperature and humidity distributions at the choana indicated that the middle turbinate partial resection is the best alternative. These findings may facilitate the diagnosis of nasal obstruction and can be useful both to plan a turbinectomy and to reduce postoperative discomfort. Graphical Abstract ᅟ.

  12. Fuzzy logic control of air-conditioning system in residential buildings

    Directory of Open Access Journals (Sweden)

    Abdel-Hamid Attia

    2015-09-01

    Full Text Available There has been a rising concern in reducing the energy consumption in building. Heating ventilation and air condition system is the biggest consumer of energy in building. In this study, fuzzy logic control of the air conditioning system of building for efficient energy operation and comfortable environment is investigated. A theoretical model of the fan coil unit (FCU and the heat transfer between air and coolant fluid is derived. The controlled variables are the room temperature and relative humidity and control consequents are the percentage of chilled and hot water flow rates at summer and the percentage of hot water and steam injected flow rates at winter. A computer simulation has been conducted and fuzzy control results are compared with that of conventional Proportional-Integral-Derivative control. It was found that the proposed control strategy satisfies the space load and at the same time to achieve the comfort zone, as defined by the ASHRAE code. Meanwhile PID control fails to adjust the room temperature at part-load operations. It has been demonstrated that fuzzy controller operation is more efficient and consumes less energy than PID control.

  13. Improving indoor air quality and thermal comfort in office building by using combination filters

    Science.gov (United States)

    Kabrein, H.; Yusof, M. Z. M.; Hariri, A.; Leman, A. M.; Afandi, A.

    2017-09-01

    Poor indoor air quality and thermal comfort condition in the workspace affected the occupants’ health and work productivity, especially when adapting the recirculation of air in heating ventilation and air-conditioning (HVAC) system. The recirculation of air was implemented in this study by mixing the circulated returned indoor air with the outdoor fresh air. The aims of this study are to assess the indoor thermal comfort and indoor air quality (IAQ) in the office buildings, equipped with combination filters. The air filtration technique consisting minimum efficiency reporting value (MERV) filter and activated carbon fiber (ACF) filter, located before the fan coil units. The findings of the study show that the technique of mixing recirculation air with the fresh air through the combination filters met the recommended thermal comfort condition in the workspace. Furthermore, the result of the post-occupancy evaluation (POE) and the environmental measurements comply with the ASHRAE 55 standard. In addition, the level of CO2 concentration continued to decrease during the period of the measurement.

  14. Developed adaptive neuro-fuzzy algorithm to control air conditioning ...

    African Journals Online (AJOL)

    user

    ... conditioning system is highly appreciated and essential in most of our daily life. ... (Hossien and Karla, 2012) presented an overview work which provides an .... energy balance for SSSF and the mass flow balance for the water in the air are ..... of Automatic Control and Electrical Engineering at Siegen University, Germany.

  15. Concept of diagnostic monitoring of condition of selected equipment for V-1 nuclear power plant

    International Nuclear Information System (INIS)

    Jaros, I.

    1981-01-01

    The vibroacoustic method based on picking up and processing vibrations, shocks and structural noise from the outer surface of equipment was chosen for testing the mechanical conditions of the reactor and of the main circulating pumps. The location of vibration pickups on the primary circuit components, their specifications, signal processing and evaluation are described. (M.D.)

  16. Two NextGen Air Safety Tools: An ADS-B Equipped UAV and a Wake Turbulence Estimator

    Science.gov (United States)

    Handley, Ward A.

    Two air safety tools are developed in the context of the FAA's NextGen program. The first tool addresses the alarming increase in the frequency of near-collisions between manned and unmanned aircraft by equipping a common hobby class UAV with an ADS-B transponder that broadcasts its position, speed, heading and unique identification number to all local air traffic. The second tool estimates and outputs the location of dangerous wake vortex corridors in real time based on the ADS-B data collected and processed using a custom software package developed for this project. The TRansponder based Position Information System (TRAPIS) consists of data packet decoders, an aircraft database, Graphical User Interface (GUI) and the wake vortex extension application. Output from TRAPIS can be visualized in Google Earth and alleviates the problem of pilots being left to imagine where invisible wake vortex corridors are based solely on intuition or verbal warnings from ATC. The result of these two tools is the increased situational awareness, and hence safety, of human pilots in the National Airspace System (NAS).

  17. Development of a solar-powered residential air conditioner: Economic analysis

    Science.gov (United States)

    1975-01-01

    The results of investigations aimed at the development of cost models to be used in the economic assessment of Rankine-powered air conditioning systems for residential application are summarized. The rationale used in the development of the cost model was to: (1) collect cost data on complete systems and on the major equipment used in these systems; (2) reduce these data and establish relationships between cost and other engineering parameters such as weight, size, power level, etc; and (3) derive simple correlations from which cost-to-the-user can be calculated from performance requirements. The equipment considered in the survey included heat exchangers, fans, motors, and turbocompressors. This kind of hardware represents more than 2/3 of the total cost of conventional air conditioners.

  18. Procedure for qualification of electric equipment installed in containments for pressurized water reactors subject to accident conditions

    International Nuclear Information System (INIS)

    1991-11-01

    This generic norm is usable for electrical equipment installed in containment building of PWR subject to accidental conditions. She defines the qualification methods and the general rules usable for the test specifications of qualification for these materials

  19. Thermal energy recovery of air conditioning system--heat recovery system calculation and phase change materials development

    International Nuclear Information System (INIS)

    Gu Zhaolin; Liu Hongjuan; Li Yun

    2004-01-01

    Latent heat thermal energy storage systems can be used to recover the rejected heat from air conditioning systems, which can be used to generate low-temperature hot water. It decreases not only the consumption of primary energy for heating domestic hot water but also the calefaction to the surroundings due to the rejection of heat from air conditioning systems. A recovery system using phase change materials (PCMs) to store the rejected (sensible and condensation) heat from air conditioning system has been developed and studied, making up the shortage of other sensible heat storage system. Also, PCMs compliant for heat recovery of air conditioning system should be developed. Technical grade paraffin wax has been discussed in this paper in order to develop a paraffin wax based PCM for the recovery of rejected heat from air conditioning systems. The thermal properties of technical grade paraffin wax and the mixtures of paraffin wax with lauric acid and with liquid paraffin (paraffin oil) are investigated and discussed, including volume expansion during the phase change process, the freezing point and the heat of fusion

  20. In-use NOx emissions from model year 2010 and 2011 heavy-duty diesel engines equipped with aftertreatment devices.

    Science.gov (United States)

    Misra, Chandan; Collins, John F; Herner, Jorn D; Sax, Todd; Krishnamurthy, Mohan; Sobieralski, Wayne; Burntizki, Mark; Chernich, Don

    2013-07-16

    The California Air Resources Board (ARB) undertook this study to characterize the in-use emissions of model year (MY) 2010 or newer diesel engines. Emissions from four trucks: one equipped with an exhaust gas recirculation (EGR) and three equipped with EGR and a selective catalytic reduction (SCR) device were measured on two different routes with three different payloads using a portable emissions measurement system (PEMS) in the Sacramento area. Results indicated that brake-specific NOx emissions for the truck equipped only with an EGR were independent of the driving conditions. Results also showed that for typical highway driving conditions, the SCR technology is proving to be effective in controlling NOx emissions. However, under operations where the SCR's do not reach minimum operating temperature, like cold starts and some low load/slow speed driving conditions, NOx emissions are still elevated. The study indicated that strategies used to maintain exhaust temperature above a certain threshold, which are used in some of the newer SCRs, have the potential to control NOx emissions during certain low-load/slow speed driving conditions.

  1. Optimization of the operating conditions of gas-turbine power stations considering the effect of equipment deterioration

    Science.gov (United States)

    Aminov, R. Z.; Kozhevnikov, A. I.

    2017-10-01

    In recent years in most power systems all over the world, a trend towards the growing nonuniformity of energy consumption and generation schedules has been observed. The increase in the portion of renewable energy sources is one of the important challenges for many countries. The ill-predictable character of such energy sources necessitates a search for practical solutions. Presently, the most efficient method for compensating for nonuniform generation of the electric power by the renewable energy sources—predominantly by the wind and solar energy—is generation of power at conventional fossil-fuel-fired power stations. In Russia, this problem is caused by the increasing portion in the generating capacity structure of the nuclear power stations, which are most efficient when operating under basic conditions. Introduction of hydropower and pumped storage hydroelectric power plants and other energy-storage technologies does not cover the demand for load-following power capacities. Owing to a simple design, low construction costs, and a sufficiently high economic efficiency, gas turbine plants (GTPs) prove to be the most suitable for covering the nonuniform electric-demand schedules. However, when the gas turbines are operated under varying duty conditions, the lifetime of the primary thermostressed components is considerably reduced and, consequently, the repair costs increase. A method is proposed for determination of the total operating costs considering the deterioration of the gas turbine equipment under varying duty and start-stop conditions. A methodology for optimization of the loading modes for the gas turbine equipment is developed. The consideration of the lifetime component allows varying the optimal operating conditions and, in some cases, rejecting short-time stops of the gas turbine plants. The calculations performed in a wide range of varying fuel prices and capital investments per gas turbine equipment unit show that the economic effectiveness can

  2. Method of estimating patient skin dose from dose displayed on medical X-ray equipment with flat panel detector

    International Nuclear Information System (INIS)

    Fukuda, Atsushi; Koshida, Kichiro; Togashi, Atsuhiko; Matsubara, Kousuke

    2004-01-01

    The International Electrotechnical Commission (IEC) has stipulated that medical X-ray equipment for interventional procedures must display radiation doses such as air kerma in free air at the interventional reference point and dose area product to establish radiation safety for patients (IEC 60601-2-43). However, it is necessary to estimate entrance skin dose for the patient from air kerma for an accurate risk assessment of radiation skin injury. To estimate entrance skin dose from displayed air kerma in free air at the interventional reference point, it is necessary to consider effective energy, the ratio of the mass-energy absorption coefficient for skin and air, and the backscatter factor. In addition, since automatic exposure control is installed in medical X-ray equipment with flat panel detectors, it is necessary to know the characteristics of control to estimate exposure dose. In order to calculate entrance skin dose under various conditions, we investigated clinical parameters such as tube voltage, tube current, pulse width, additional filter, and focal spot size, as functions of patient body size. We also measured the effective energy of X-ray exposure for the patient as a function of clinical parameter settings. We found that the conversion factor from air kerma in free air to entrance skin dose is about 1.4 for protection. (author)

  3. The effect of inlet conditions on the air side hydraulic resistance and flow maldistribution in industrial air heaters

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann-Vocke, Jonas, E-mail: jh63@waikato.ac.nz [University of Waikato, Energy Research Group, School of Science and Engineering, Private Bag 3105, Hamilton 3240 (New Zealand); Neale, James, E-mail: jamesn@waikato.ac.nz [University of Waikato, Energy Research Group, School of Science and Engineering, Private Bag 3105, Hamilton 3240 (New Zealand); Walmsley, Michael, E-mail: walmsley@waikato.ac.nz [University of Waikato, Department of Engineering, School of Science and Engineering, Private Bag 3105, Hamilton 3240 (New Zealand)

    2011-08-15

    Highlights: > Measured the effects of air heater inlet header geometry on hydraulic performance. > Measured the effects of inlet header flow maldistribution on hydraulic performance. > Inlet header flow maldistribution increases air heater system hydraulic resistance. - Abstract: Experimental system hydraulic resistance measurements on a scale air heater unit have highlighted the excessive hydraulic resistance of typical industry configurations. Both poor header inlet conditions and large header expansion angles are shown to contribute to system hydraulic resistance magnitudes 20-100% higher than suitable benchmark cases. Typical centrifugal fan system efficiencies well under 80% multiply the system resistance effects resulting in larger fan power penalties. Velocity profile measurements taken upstream and downstream of the test heat exchanger under flow maldistribution conditions provide insight into the flow maldistribution spreading caused by the heat exchanger resistance. The anisotropic resistance of the plate fin-and-tube heat exchanger is shown to result in resistance induced flow dispersion being concentrated in the axis parallel to the plate fins.

  4. The effect of inlet conditions on the air side hydraulic resistance and flow maldistribution in industrial air heaters

    International Nuclear Information System (INIS)

    Hoffmann-Vocke, Jonas; Neale, James; Walmsley, Michael

    2011-01-01

    Highlights: → Measured the effects of air heater inlet header geometry on hydraulic performance. → Measured the effects of inlet header flow maldistribution on hydraulic performance. → Inlet header flow maldistribution increases air heater system hydraulic resistance. - Abstract: Experimental system hydraulic resistance measurements on a scale air heater unit have highlighted the excessive hydraulic resistance of typical industry configurations. Both poor header inlet conditions and large header expansion angles are shown to contribute to system hydraulic resistance magnitudes 20-100% higher than suitable benchmark cases. Typical centrifugal fan system efficiencies well under 80% multiply the system resistance effects resulting in larger fan power penalties. Velocity profile measurements taken upstream and downstream of the test heat exchanger under flow maldistribution conditions provide insight into the flow maldistribution spreading caused by the heat exchanger resistance. The anisotropic resistance of the plate fin-and-tube heat exchanger is shown to result in resistance induced flow dispersion being concentrated in the axis parallel to the plate fins.

  5. System and method for conditioning intake air to an internal combustion engine

    Science.gov (United States)

    Sellnau, Mark C.

    2015-08-04

    A system for conditioning the intake air to an internal combustion engine includes a means to boost the pressure of the intake air to the engine and a liquid cooled charge air cooler disposed between the output of the boost means and the charge air intake of the engine. Valves in the coolant system can be actuated so as to define a first configuration in which engine cooling is performed by coolant circulating in a first coolant loop at one temperature, and charge air cooling is performed by coolant flowing in a second coolant loop at a lower temperature. The valves can be actuated so as to define a second configuration in which coolant that has flowed through the engine can be routed through the charge air cooler. The temperature of intake air to the engine can be controlled over a wide range of engine operation.

  6. Assessment of productivity loss in air-conditioned buildings using PMV index

    Energy Technology Data Exchange (ETDEWEB)

    Kosonen, R. [Halton OY, Kausala (Finland); Tan, F. [CapitaLand Commercial Limited, Singapore (Singapore)

    2004-07-01

    This theoretical study reports on the assessment of productivity loss in air-conditioned office buildings using the PMV approach and makes use of Wyon's reviews [D.P. Wyon, P.O. Fanger, B.W. Olesen, C.J.K. Pedersen, The mental performance of subjects clothed for comfort at two different air temperatures, Ergonomics 18 (1975) 358-374; D.P. Wyon, Individual microclimate control: required range, probable benefits and current feasibility, in: Proceedings of Indoor Air '96, Institute of Public Health, Tokyo, 1996; D.P. Wyon, Indoor environmental effects on productivity. IAQ 96 Paths to better building environments/Keynote address. Y. Kevin. Atlanta, ASHRAE, pp. 5-15] as the basis to compare and to relate how the productivity loss could be minimised through improved thermal comfort design criteria. The finding shows that task-related performance is significantly correlated with the human perception of thermal environment that in turn is dependent on temperatures. Different combinations of thermal criteria (air velocity, clo, metabolic, etc.) can lead to similar PMV value and the PMV equation is useful to predict productivity loss that is due to the rate of change in thermal conditions. The study also highlights the issues that remain to be resolved in future research. (author)

  7. Energy and Greenhouse Gas Emission Assessment of Conventional and Solar Assisted Air Conditioning Systems

    Directory of Open Access Journals (Sweden)

    Xiaofeng Li

    2015-11-01

    Full Text Available Energy consumption in the buildings is responsible for 26% of Australia’s greenhouse gas emissions where cooling typically accounts for over 50% of the total building energy use. The aim of this study was to investigate the potential for reducing the cooling systems’ environmental footprint with applications of alternative renewable energy source. Three types of cooling systems, water cooled, air cooled and a hybrid solar-based air-conditioning system, with a total of six scenarios were designed in this work. The scenarios accounted for the types of power supply to the air-conditioning systems with electricity from the grid and with a solar power from highly integrated building photovoltaics (BIPV. Within and between these scenarios, systems’ energy performances were compared based on energy modelling while the harvesting potential of the renewable energy source was further predicted based on building’s detailed geometrical model. The results showed that renewable energy obtained via BIPV scenario could cover building’s annual electricity consumption for cooling and reduce 140 tonnes of greenhouse gas emissions each year. The hybrid solar air-conditioning system has higher energy efficiency than the air cooled chiller system but lower than the water cooled system.

  8. Improving the Thermal Testing Technology of Technological Equipment of Autonomous Complexes

    Directory of Open Access Journals (Sweden)

    V. V. Chugunkov

    2017-01-01

    Full Text Available The environmental conditions of autonomous objects of different-purpose technical complexes are in close relationship with increased values of operating temperatures. This requires thermal pretesting of the process equipment. The publication [1] considers the thermal test conditions in which the equipment elements under test are placed in a heated water tank covered by the globe insulators where, under automatic temperature control using a block of heaters, they are then kept for a specified period of time at a specified temperature range. Such an approach to the thermal tests of equipment allows us to reduce, but not eliminate completely the mass flows of water from evaporation with reducing power consumption of test equipment.Despite the results achieved, even a little bit of water vapor available when conducting the thermal tests may cause a failure of equipment. Therefore, there is a need in test equipment modernization for complete eliminating the fluxes of mass water and better power consumption in the test process. To this end, it is proposed to place a three-layer bubble wrap on the open surface of water.To justify an efficiency of the proposed option was developed a mathematical model of heat and mass transfer processes that occur during thermal tests, taking into account the geometric and thermo-physical characteristics of test tank, polymer film, and equipment. Using the laws and equations of heat and mass transfer enabled us to determine the required capacities for heating the tank with water and equipment to the required temperature range for a specified time, as well as the mass flows of water when evaporating from the tank surface.The efficiency of the three-layer bubble film as compared with the globe insulators as the elements for covering the test tank the surface has been analysed on the basis of the results obtained.The proposed film coating allowed almost complete elimination of evaporation losses of water mass and almost 8

  9. Energy Performance and Optimal Control of Air-conditioned Buildings Integrated with Phase Change Materials

    Science.gov (United States)

    Zhu, Na

    This thesis presents an overview of the previous research work on dynamic characteristics and energy performance of buildings due to the integration of PCMs. The research work on dynamic characteristics and energy performance of buildings using PCMs both with and without air-conditioning is reviewed. Since the particular interest in using PCMs for free cooling and peak load shifting, specific research efforts on both subjects are reviewed separately. A simplified physical dynamic model of building structures integrated with SSPCM (shaped-stabilized phase change material) is developed and validated in this study. The simplified physical model represents the wall by 3 resistances and 2 capacitances and the PCM layer by 4 resistances and 2 capacitances respectively while the key issue is the parameter identification of the model. This thesis also presents the studies on the thermodynamic characteristics of buildings enhanced by PCM and on the investigation of the impacts of PCM on the building cooling load and peak cooling demand at different climates and seasons as well as the optimal operation and control strategies to reduce the energy consumption and energy cost by reducing the air-conditioning energy consumption and peak load. An office building floor with typical variable air volume (VAV) air-conditioning system is used and simulated as the reference building in the comparison study. The envelopes of the studied building are further enhanced by integrating the PCM layers. The building system is tested in two selected cities of typical climates in China including Hong Kong and Beijing. The cold charge and discharge processes, the operation and control strategies of night ventilation and the air temperature set-point reset strategy for minimizing the energy consumption and electricity cost are studied. This thesis presents the simulation test platform, the test results on the cold storage and discharge processes, the air-conditioning energy consumption and demand

  10. Determination of the ejector dimensions of a bus air-conditioning system using analytical and numerical methods

    International Nuclear Information System (INIS)

    Ünal, Şaban

    2015-01-01

    Comfortable journey with commercial buses is an essential goal of transportation companies. An air-conditioning system can play an important role for this comfortable journey but it can put extra load on the engine and extra cost in the fuel consumption. The purpose of this work is to increase the performance of air-conditioning system of the buses by reducing the load on the engine and fuel consumption. Using a two-phase ejector as an expansion valve can increase the coefficient of performance (COP) of the air-conditioning system. An improvement in the COP can reduce the empty vehicle weight and fuel consumption of buses. Two-phase ejector dimensions can be determined using the empirical methods available in the literature. In this paper, the two-phase ejector dimensions of air conditioning system for a bus are calculated using the analytical and numerical methods. First of all, the thermodynamic analysis of the vapor-compression refrigeration cycle with a two-phase ejector is performed, and then the ejector dimensions are subsequently determined. The cooling loads of the midibus and bus with R134a as a refrigerant are assumed to be 14 kW and 32 kW, respectively. The total length of the two-phase ejector for the midibuses and buses due to these cooling loads, are computed to be 480.8 mm and 793.1 mm, respectively. Also, an experimental setup is installed on a midibus air conditioner to turn it into the ejector air conditioning system to validate theoretical results with the experimental study. - Highlights: • Determination of two-phase ejector dimensions of a bus air-conditioning system. • Thermodynamic analysis of the two-phase ejector cooling system. • Experimental study on a midibus air conditioner using two-phase ejector.

  11. 42 CFR 410.38 - Durable medical equipment: Scope and conditions.

    Science.gov (United States)

    2010-10-01

    ... or purchase of durable medical equipment, including iron lungs, oxygen tents, hospital beds, and wheelchairs, if the equipment is used in the patient's home or in an institution that is used as a home. (b... vehicle whose steering is operated by an electronic device or a joystick to control direction and turning...

  12. Space Heating Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, Kevin D.

    1998-01-01

    The performance evaluation of space heating equipment for a geothermal application is generally considered from either of two perspectives: (a) selecting equipment for installation in new construction, or (b) evaluating the performance and retrofit requirements of an existing system. With regard to new construction, the procedure is relatively straightforward. Once the heating requirements are determined, the process need only involve the selection of appropriately sized hot water heating equipment based on the available water temperature. It is important to remember that space heating equipment for geothermal applications is the same equipment used in non-geothermal applications. What makes geothermal applications unique is that the equipment is generally applied at temperatures and flow rates that depart significantly from traditional heating system design. This chapter presents general considerations for the performance of heating equipment at non-standard temperature and flow conditions, retrofit of existing systems, and aspects of domestic hot water heating.

  13. Dictionary of heating and air conditioning. Woerterbuch der Heizungs- und Klimatechnik

    Energy Technology Data Exchange (ETDEWEB)

    Laege, K

    1981-01-01

    This German-English and English-German dictionary includes some 4000 technical terms of the field of heating and air conditioning engineering. It represents the latest state of this technical terminology.

  14. Step response and frequency response of an air conditioning system

    NARCIS (Netherlands)

    Crommelin, R.D.; Jackman, P.J.

    1978-01-01

    A system of induction units of an existing air conditioning system has been analyzed with respect to its dynamic properties. Time constants were calculated and measured by analogue models. Comparison with measurements at the installation itself showed a reasonable agreement. Frequency responses were

  15. Ambient air pollution associated to domestic wood burning heating systems

    International Nuclear Information System (INIS)

    Friboulet, I.; Durif, M.; Malherbe, L.

    2009-01-01

    Main publications are considering effects of wood burning appliances on indoor air quality, which is a major issue in some countries. But impacts on ambient air, close environment and human exposure are rather poorly characterised so far. Besides, woods burning for domestic purpose may develop in the next years while promoting bio fuels. The aim of the ongoing study is to assess in which conditions associated air pollution and population exposure could be significant, this poster shows preliminary results of the impact of a village of 98 houses equipped with a wood burning heating system. (N.C.)

  16. Design of energy efficient ventilation and air-conditioning systems

    CERN Document Server

    Seppänen, Olli; Bertilsson, Thore; Maripuu, Mari-Liis; Lamy, Hervé; Vanden Borre, Alex

    2012-01-01

    This guidebook covers numerous system components of ventilation and air-conditioning systems and shows how they can be improved by applying the latest technology products. Special attention is paid to details, which are often overlooked in the daily design practice, resulting in poor performance of high quality products once they are installed in the building system.

  17. Heat pumping using the thermal earth gradient to produce air conditioned and hot water with savings of up to 70%; Bombeo de calor utilizando el gradiente termico de la tierra para producir aire acondicionado y agua caliente con ahorros de hasta un 70%

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez Ramirez, Alejandro [Novaenergia de Mexico S.A. de C.V. (Mexico)

    2003-07-01

    The pumping of heat using the Earth heat as partial energy source bases its principle on which the energy of the ground is constant and the energy efficiency to produce air conditioning and hot water simultaneously is important, obtaining savings up to 70%, comparing itself with the traditional equipment and what these operate of separated way to produce each one of them the cold air and the hot water. The use of this technology presents an opportunity to reduce the energy costs of and the demand of the company. [Spanish] El bombeo de calor utilizando el calor de la tierra como fuente parcial de energia basa su principio en que la energia del suelo es constante y el rendimiento energetico para producir simultaneamente aire acondicionado y agua caliente es importante, obteniendose ahorros hasta de un 70%, comparandose con los equipos tradicionales y que estos operan de manera separada para producir cada uno de ellos el aire frio y el agua caliente. El uso de esta tecnologia presenta una oportunidad para reducir los costos de energia y demanda de la empresa.

  18. Characteristic Evaluation on the Cooling Performance of an Electrical Air Conditioning System Using R744 for a Fuel Cell Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Moo-Yeon Lee

    2012-05-01

    Full Text Available The objective of this study was to investigate the cooling performance characteristics of an electrical air conditioning system using R744 as an alternative of R-134a for a fuel cell electric vehicle. In order to analyze the cooling performance characteristics of the air conditioning system using R744 for a fuel cell electric vehicle, an electrical air conditioning system using R744 was developed and tested under various operating conditions according to both inlet air conditions of the gas cooler and evaporator and compressor speed. The cooling capacity and coefficient of performance (COP forcooling of the tested air conditioning system were up to 6.4 kW and 2.5, respectively. In addition, the electrical air conditioning system with R744 using an inverter driven compressor showed better performance than the conventional air conditioning system with R-134a under the same operating conditions. The observed cooling performance of the developed electrical air conditioning system was found to be sufficient for cooling loads under various real driving conditions for a fuel cell electric vehicle.

  19. Japanese and American competition in the development of scroll compressors and its impact on the American air conditioning industry

    Energy Technology Data Exchange (ETDEWEB)

    Ushimaru, Kenji (Energy International, Inc., Bellevue, WA (USA))

    1990-02-01

    This report examines the technological development of scroll compressors and its impact on the air conditioning equipment industry. Scroll compressors, although considered to be the compressors of the future for energy-efficient residential heat pumps and possibly for many other applications, are difficult to manufacture on a volume-production base. The manufacturing process requires computer-aided, numerically controlled tools for high-precision fabrication of major parts. Japan implemented a global strategy for dominating the technological world market in the 1970s, and scroll compressor technology benefited from the advent of new-generation machine tools. As a result, if American manufacturers of scroll compressors purchase or are essentially forced to purchase numerically controlled tools from Japan in the future, they will then become dependent on their own competitors because the same Japanese conglomerates that make numerically controlled tools also make scroll compressors. This study illustrates the importance of the basic machine tool industry to the health of the US economy. Without a strong machine tool industry, it is difficult for American manufacturers to put innovations, whether patented or not, into production. As we experience transformation in the air conditioning and refrigeration market, it will be critical to establish a consistent national policy to provide healthy competition among producers, to promote innovation within the industry, to enhance assimilation of new technology, and to eliminate practices that are incompatible with these goals. 72 refs., 8 figs., 1 tab.

  20. Performance evaluation of control room HVAC and air cleaning systems under accident conditions

    International Nuclear Information System (INIS)

    Almerico, F.; Machiels, A.J.; Ornberg, S.C.; Lahti, G.P.

    1985-01-01

    In light water reactors, control rooms and technical support centers must be designed to provide habitable environments in accordance with the requirements specified in General Design Criterion 19 of Appendix A, 10 CFR Part 50. Therefore, the effectiveness of HVAC and air cleaning system designs with respect to plant operator protection has to be evaluated by the system designer. Guidance for performing the analysis has been previously given in ANSI/ASME N509-1980 as well as in presentations at past Air Cleaning Conferences. The previous work is extended and the methodology used in a generic, interactive computer program that performs Main Control Room and Technical Support Center (TSC) habitability analyses for LWR nuclear power plants is presented. For given accident concentrations of radionuclides or hazardous gases in the outdoor air intakes and plant spaces surrounding the Main Control Room (or TSC), the program models the performance of the HVAC and air cleaning system designs, and determines control room (or TSC) contaminant concentrations and plant operator protection factors. Calculated or actual duct leakage, air cleaning efficiency, and airborne contamination are taken into account. Flexibility of the model allows for the representation of most control rooms (or TSC) and associated HVAC and air cleaning system conceptual designs that have been used by the US architect/engineers. The program replaced tedious calculations to determine the effects of HVAC ductwork and equipment leakage and permits (1) parametric analyses of various HVAC system design options early in the conceptual phase of a project, and (2) analysis of the effects of leakage test results on contaminant room concentrations, and therefore operator doses

  1. Achieving better energy-efficient air conditioning – A review of technologies and strategies

    International Nuclear Information System (INIS)

    Chua, K.J.; Chou, S.K.; Yang, W.M.; Yan, J.

    2013-01-01

    Air conditioning is essential for maintaining thermal comfort in indoor environments, particularly for hot and humid climates. Today, air conditioning, comprising cooling and dehumidification, has become a necessity in commercial and residential buildings and industrial processes. It accounts for a major share of the energy consumption of a building or facility. In tropical climates, the energy consumed by heating, ventilation and air-conditioning (HVAC) can exceed 50% of the total energy consumption of a building. This significant figure is primarily due to the heavy duty placed on cooling technologies to remove both sensible and latent heat loads. Therefore, there is tremendous potential to improve the overall efficiency of the air-conditioning systems in buildings. Based on today’s practical technology for cooling, the major components of a chiller plant are (1) compressors, (2) cooling towers, (3) pumps (chilled and cooling water) and (4) fans in air handling units. They all consume mainly electricity to operate. When specifying the kW/R ton of a plant, there are two levels of monitoring cooling efficiency: (1) at the efficiency of the chiller machines or the compressors which consume a major amount of electricity; and (2) at the overall efficiency of cooling plants which include the cooling towers, pumps for moving coolant (chilled and cooling water) to all air-handling units. Pragmatically, a holistic approach is necessary towards achieving a low energy input per cooling achieved such as 0.6 kW/R ton cooling or lower by considering all aspects of the cooling plant. In this paper, we present a review of recent innovative cooling technology and strategies that could potentially lower the kW/R ton of cooling systems – from the existing mean of 0.9 kW/R ton towards 0.6 kW/R ton or lower. The paper, broadly divided into three key sections (see Fig. 2), begins with a review of the recent novel devices that enhances the energy efficiency of cooling systems at

  2. Low-Load Space Conditioning Needs Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Puttagunta, Srikanth [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States)

    2015-05-19

    Heating, ventilating, and air-conditioning (HVAC) equipment must be right-sized to ensure energy performance and comfort. With limited low-load options in the HVAC market, many new-construction housing units are being fitted with oversized equipment that creates system efficiency, comfort, and cost penalties. To bridge the gap between currently available HVAC equipment that is oversized or inefficient and the rising demand for low-load HVAC equipment in the marketplace, HVAC equipment manufacturers need to be fully aware of the needs of the multifamily building and attached single-family (duplex and townhouse) home market. Over the past decade, Steven Winter Associates, Inc. (SWA) has provided certification and consulting services for hundreds of housing projects and has accrued a large pool of data that describe multifamily and attached single-family home characteristics. The U.S. Department of Energy’s Building America research team Consortium for Advanced Residential Buildings (CARB) compiled and analyzed these data to outline the characteristics of low-load dwellings such as the heating and cooling design loads.

  3. Transitioning to Low-GWP Alternatives in Motor Vehicle Air Conditioning Systems

    Science.gov (United States)

    This fact sheet provides information on low-GWP alternatives in newly manufactured motor vehicle air conditioning systems. It discusses HFC alternatives, market trends, challenges to market entry for alternatives, and potential solutions.

  4. Energy managemant through PCM based thermal storage system for building air-conditioning: Tidel Park, Chennai

    International Nuclear Information System (INIS)

    Nallusamy, N.; Sampath, S.; Velraj, R.

    2006-01-01

    Many modern building are designed for air-conditioning and the amount of electrical energy required for providing air-conditioning can be very significant especially in the tropics. Conservation of energy is major concern to improve the overall efficiency of the system. Integration is energy storage with the conventional system gives a lot of potential for energy saving and long-term economics. Thermal energy storage systems can improve energy management and help in matching supply and demand patterns. In the present work, a detailed study has been done on the existing thermal energy storage system used in the air-conditioning system in Tidel Park, Chennai. The present study focuses on the cool energy storage system. The modes of operation and advantages of such a system for energy management are highlighted. The reason for the adoption of combined storage system and the size of the storage medium in the air-conditioning plant are analyzed. The possibility of using this concept in other cooling and heating applications, such as storage type solar water heating system, has been explored

  5. The Histoty of Ventilation and Air Conditioning is CERN Up to Date with the latest Technological Developments?

    CERN Document Server

    Kühnl-Kinel, J

    2000-01-01

    The invention of ventilation cannot be ascribed to a certain date. It started with simple aeration when man brought fire into his abode and continued through different stages including air cooling using ice to finally arrive at the time when ventilation and air conditioning has become an essential part of our life and plays an important role in human evolution. This paper presents the history of ventilation and air conditioning, explains the key constraints over the centuries, and shows its influence on everyday life. Some examples of previous air-conditioning plants are described and different approaches to the way of calculation of ventilation systems discussed. It gives an overview of the Heating, Ventilation and Air Conditioning (HVAC) installations at CERN and points out their particularities. It also compares them with the latest technological developments in the field as well as showing the new trends that are being applied at CERN.

  6. A questionnaire survey on sleeping thermal environment and bedroom air conditioning in high-rise residences in Hong Kong

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Z. [Institute of Heating, Ventilation, Air Conditioning and Gas Engineering, Tongji University, Shanghai (China); Deng, S. [Department of Building Services Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR (China)

    2006-07-01

    This paper reports on the results of a questionnaire survey on sleeping thermal environment and bedroom air conditioning in high-rise residential buildings in Hong Kong. The survey aimed at investigating the current situation of sleeping thermal environment and bedroom air conditioning, in order to gather relevant background information to develop strategies for bedroom air conditioning in the subtropics. It focused on the use patterns and types of bedroom air conditioning systems used, human factors such as the use of bedding and sleep wear during sleep, preference for indoor air temperature settings in bedrooms, ventilation control at nighttime with room air conditioner (RAC) turned on, etc. The results of the survey showed that most of the respondents would prefer a relatively low indoor air temperature at below 24 {sup o}C. Most of the respondents might however not be satisfied with the indoor air quality (IAQ) in bedrooms in Hong Kong. On the other hand, 68% of the respondents did not use any ventilation control intentionally during their sleep with their RACs turned on. A lack of knowledge of the ventilation control devices provided on window type room air conditioners (WRACs) indicated an urgent need for user education. (author)

  7. MODELING THE AMBIENT CONDITION EFFECTS OF AN AIR-COOLED NATURAL CIRCULATION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Rui; Lisowski, Darius D.; Bucknor, Matthew; Kraus, Adam R.; Lv, Qiuping

    2017-07-02

    The Reactor Cavity Cooling System (RCCS) is a passive safety concept under consideration for the overall safety strategy of advanced reactors such as the High Temperature Gas-Cooled Reactor (HTGR). One such variant, air-cooled RCCS, uses natural convection to drive the flow of air from outside the reactor building to remove decay heat during normal operation and accident scenarios. The Natural convection Shutdown heat removal Test Facility (NSTF) at Argonne National Laboratory (“Argonne”) is a half-scale model of the primary features of one conceptual air-cooled RCCS design. The facility was constructed to carry out highly instrumented experiments to study the performance of the RCCS concept for reactor decay heat removal that relies on natural convection cooling. Parallel modeling and simulation efforts were performed to support the design, operation, and analysis of the natural convection system. Throughout the testing program, strong influences of ambient conditions were observed in the experimental data when baseline tests were repeated under the same test procedures. Thus, significant analysis efforts were devoted to gaining a better understanding of these influences and the subsequent response of the NSTF to ambient conditions. It was determined that air humidity had negligible impacts on NSTF system performance and therefore did not warrant consideration in the models. However, temperature differences between the building exterior and interior air, along with the outside wind speed, were shown to be dominant factors. Combining the stack and wind effects together, an empirical model was developed based on theoretical considerations and using experimental data to correlate zero-power system flow rates with ambient meteorological conditions. Some coefficients in the model were obtained based on best fitting the experimental data. The predictive capability of the empirical model was demonstrated by applying it to the new set of experimental data. The

  8. An H-module linear actuator for medical equipment applications

    DEFF Research Database (Denmark)

    Liu, Xiao; Wu, Keyuan; ye, yunyue

    2012-01-01

    An H-module linear actuator (HMLA) is proposed in this paper for medical equipment applications. Compared to the existing linear actuators used in medical equipment, the proposed H-module linear actuator has much lower normal force, which makes use of an additional air-suspension system unnecessary...

  9. CFD study on the effects of boundary conditions on air flow through an air-cooled condenser

    Science.gov (United States)

    Sumara, Zdeněk; Šochman, Michal

    2018-06-01

    This study focuses on the effects of boundary conditions on effectiveness of an air-cooled condenser (ACC). Heat duty of ACC is very often calculated for ideal uniform velocity field which does not correspond to reality. Therefore, this study studies the effect of wind and different landscapes on air flow through ACC. For this study software OpenFOAM was used and the flow was simulated with the use of RANS equations. For verification of numerical setup a model of one ACC cell with dimensions of platform 1.5×1.5 [m] was used. In this experiment static pressures behind fan and air flows through a model of surface of condenser for different rpm of fan were measured. In OpenFOAM software a virtual clone of this experiment was built and different meshes, turbulent models and numerical schemes were tested. After tuning up numerical setup virtual model of real ACC system was built. Influence of wind, landscape and height of ACC on air flow through ACC has been investigated.

  10. Energy problems of the central systems of air conditioning; Problemas energeticos de los sistemas centrales de climatizacion

    Energy Technology Data Exchange (ETDEWEB)

    Cardero Corria, Gaspar [Cubanacan, S.A., Varadero (Cuba)

    2003-07-01

    The central systems of air conditioning are widely used in air conditioning production for several reasons among which excel: 1) Better aesthetic of the building, 2) Less noise in the air conditioning premises and 3) Greater yield of the consumed energy. This is indeed the third reason in which this paper will try to contribute with elements that will allow reveal the problem and to identify some possible causes that originate it. The centralized systems of air conditioning must produce conditioned air with lesser power cost than the individual systems, it is that saving which allows to recover an investment that normally surpasses them in 3 to 5 times. Nevertheless, the real numbers do not demonstrate that. [Spanish] Los sistemas centrales de climatizacion son ampliamente usados en la produccion de aire acondicionado por varias razones entre las que sobresalen: 1) Mejor estetica del edificio, 2) Menor ruido en los locales climatizados y 3) Mayor rendimiento de la energia consumida. Es precisamente la tercera razon en la cual este trabajo intentara aportar elementos que permitan develar el problema e identificar algunas posibles causas que lo originan. Los sistemas centralizados de climatizacion deben producir aire acondicionado con un menor gasto energetico que los sistemas individuales, es precisamente ese ahorro lo que permite recuperar una inversion que normalmente los supera en 3 a 5 veces. Sin embargo, los numeros reales no demuestran eso.

  11. Study of a vapor-compression air-conditioning system for jetliners

    Energy Technology Data Exchange (ETDEWEB)

    Roeyttae, P.

    2009-07-01

    Most modern passenger aeroplanes use air cycle cooling. A high-speed air cycle is a reliable and light option, but not very efficient. This thesis presents research work done to design a novel vapour cooling cycle for aeroplanes. Due to advancements in high-speed permanent magnet motors, the vapour cycle is seen as a competitive option for the air cycle in aeroplanes. The aerospace industry placews tighter demands on the weight, reliability and environmental effects of the machinery than those met by conventional chillers, and thus modifications to conventional design are needed. The thesis is divided into four parts: the initial screening of the working fluid, 1-D design and performance values of the compressor, 1-D off-design value predictions of the compressor and the 3-D design of the compressor. The R24fa was selected as the working fluid based the study. The off-design range of the compressor was predicted to be wide and suitable for the application. The air-conditioning system developed is considerably smaller than previous designs using centrifugal compressors. (orig.)

  12. Operation monitor for plant equipment

    International Nuclear Information System (INIS)

    Kondo, Tetsufumi; Kanemoto, Shigeru.

    1991-01-01

    In a nuclear power plant, states of each of equipment in the plant are monitored accurately even under such a operation condition that the power is changed. That is, the fundamental idea is based on a model comparison method. A deviation between an output signal upon normal plant state obtained in a forecasting model device and that of the objective equipment in the plant are compared with a predetermined value. The result of the comparison is inputted to an alarm device to alarm the abnormality of the states of the equipment to an operator. The device of the present invention thus constituted can monitor the abnormality of the operation of equipment accurately even under such a condition that a power level fluctuates. As a result, it can remarkably contribute to mitigate operator's monitoring operation under the condition such as during load following operation. (I.S.)

  13. Model development for air conditioning system in heavy duty trucks

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; van den Bosch, P.P.J.; Zhang, Quansheng; Li, Shengbo Eben; Deng, Kun

    2016-01-01

    This chapter presents a modelling approach for the air conditioning (AC) system in heavy duty trucks. The presented model entails two major elements: a mechanical compressor model and a thermal AC model. The compressor model describes the massflow of the refrigerant as well as the mechanical power

  14. Performance improvement of a hybrid air conditioning system using the indirect evaporative cooler with internal baffles as a pre-cooling unit

    Directory of Open Access Journals (Sweden)

    A.E. Kabeel

    2017-12-01

    Full Text Available In the present paper, the effects of the indirect evaporative cooler with internal baffle on the performance of the hybrid air conditioning system are numerically investigated. The hybrid air conditioning system contains two indirect evaporative coolers with internal baffle, one is utilized to pre-cool the air inlet to the desiccant wheel and the other is utilized to pre-cool the supply air inlet to the room. The effects of the inlet conditions of the process and reactivation air and working air ratio on the thermal performance of the hybrid air conditioning system have been analyzed. The results of this study show that in the hybrid air conditioning system for using the indirect evaporative cooler with internal baffle as a pre-cooling unit, the supply air temperature reduced by 21% and the coefficient of performance improved by 71% as compared to previous designs of the hybrid air conditioning system at the same inlet conditions. For increasing process air inlet temperature from 25 °C to 45 °C, supply air temperature increases from 12.7 °C to 14.2 °C, thermal COP increases from 1.87 to 2.84, and supply air relative humidity increases from 76.7% to 77.4%. Also, for increasing the reactivation air inlet temperature from 70 °C to 110 °C, supply air temperature dropped from 15.9 °C to 10.9 °C, supply air relative humidity dropped from 82.7% to 71.8%, and thermal COP dropped from 4.5 to 1.7. The recommended optimal air working ratio in the indirect evaporative cooler with internal baffle should be 0.15. Keywords: Desiccant material, Solar air collector, Evaporative cooler, Internal baffles, Air conditioning

  15. Experimental Investigation of Thermohydraulic Performance of a Rectangular Solar Air Heater Duct Equipped with V-Shaped Perforated Blocks

    Directory of Open Access Journals (Sweden)

    Tabish Alam

    2014-01-01

    Full Text Available This paper presents the thermohydraulic performance of rectangular solar air heater duct equipped with V-shaped rectangular perforated blocks attached to the heated surface. The V-shaped perforated blocks are tested for downstream (V-down to the air flow at Reynolds number from 2000 to 20000. The perforated blocks have relative pitch ratio (P/e from 4 to 12, relative blockage height ratio (e/H from 0.4 to 1.0, and open area ration from 5% to 25% at a fixed value of angle of attack of 60∘ in a rectangular duct having duct aspect ratio (W/H of 12. Thermohydraulic performance is compared at different geometrical parameters of V-shaped perforated blocks for equal pumping power which shows that maximum performance is observed at a relative pitch of 8, relative rib height of 0.8, and open area ration of 20%. It is also observed that the performance of V-shaped perforated blocks was better than transverse-perforated blocks.

  16. 30 CFR 250.510 - Diesel engine air intakes.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Diesel engine air intakes. 250.510 Section 250... engine air intakes. Diesel engine air intakes must be equipped with a device to shut down the diesel engine in the event of runaway. Diesel engines that are continuously attended must be equipped with...

  17. Statistical modeling of urban air temperature distributions under different synoptic conditions

    Science.gov (United States)

    Beck, Christoph; Breitner, Susanne; Cyrys, Josef; Hald, Cornelius; Hartz, Uwe; Jacobeit, Jucundus; Richter, Katja; Schneider, Alexandra; Wolf, Kathrin

    2015-04-01

    Within urban areas air temperature may vary distinctly between different locations. These intra-urban air temperature variations partly reach magnitudes that are relevant with respect to human thermal comfort. Therefore and furthermore taking into account potential interrelations with other health related environmental factors (e.g. air quality) it is important to estimate spatial patterns of intra-urban air temperature distributions that may be incorporated into urban planning processes. In this contribution we present an approach to estimate spatial temperature distributions in the urban area of Augsburg (Germany) by means of statistical modeling. At 36 locations in the urban area of Augsburg air temperatures are measured with high temporal resolution (4 min.) since December 2012. These 36 locations represent different typical urban land use characteristics in terms of varying percentage coverages of different land cover categories (e.g. impervious, built-up, vegetated). Percentage coverages of these land cover categories have been extracted from different sources (Open Street Map, European Urban Atlas, Urban Morphological Zones) for regular grids of varying size (50, 100, 200 meter horizonal resolution) for the urban area of Augsburg. It is well known from numerous studies that land use characteristics have a distinct influence on air temperature and as well other climatic variables at a certain location. Therefore air temperatures at the 36 locations are modeled utilizing land use characteristics (percentage coverages of land cover categories) as predictor variables in Stepwise Multiple Regression models and in Random Forest based model approaches. After model evaluation via cross-validation appropriate statistical models are applied to gridded land use data to derive spatial urban air temperature distributions. Varying models are tested and applied for different seasons and times of the day and also for different synoptic conditions (e.g. clear and calm

  18. [Influence of industrial pollution of ambient air on health of workers engaged into open air activities in cold conditions].

    Science.gov (United States)

    Chashchin, V P; Siurin, S A; Gudkov, A B; Popova, O N; Voronin, A Iu

    2014-01-01

    The article presents the results of a study on assessment of occupational exposure to air pollutants and related health effects in3792 outdoor workers engaged in operations performed in the vicinity of non-ferrous metallurgical facilities in Far North. Findings are that during cold season repeated climate and weather conditions are associated with higher level of chemical hazards and dust in surface air. At the air temperature below -17 degrees C, maximal single concentrations of major pollutants can exceed MAC up to 10 times. With that, transitory disablement morbidity parameters and occupational accidents frequency increase significantly. The workers with long exposure to cooling meteorological factors and air pollution demonstrate significantly increased prevalence of respiratory and circulatory diseases, despite relatively low levels of sculpture dioxide and dust in the air, not exceeding the occupational exposure limits. It has been concluded that severe cold is to be considered asa factor increasing occupational risk at air polluted outdoor worksites dueto more intense air pollution, higher traumatism risk and lower efficiency of filter antidust masks respiratory PPE and due to modification of the toxic effects.

  19. Study of the simulation of working of ultrasonic equipment in order to optimize the nondestructive control conditions

    International Nuclear Information System (INIS)

    Drai, R.

    1986-01-01

    The aim of this study is, for the long run, to define one or several procedures of ultrasonic nondestructive testing, allowing the use of the equipment, at their best conditions. In this work, the behaviour of the testing system is simulated. The water bounded by a reflector plane is taken as a propagation medium. The testing equipment is considered as a system composed by a set of sub-systems (generator, cable, transducers and reception amplifier). Each of these sub-systems is modelled by its respective transfer functions. Thus, an experimental procedure for measuring sub-system characteristics is given in order to calculate the different transfer functions. With this model, we have the possibility to obtain, by calculation, all signals given by testing system for any combination of these parameters: damping, attenuation, cable length... So, it is possible to establish prior to the test, the adequate conditions for the testing system (high sensitivity, good resolution or good compromise between both)

  20. Management of air-conditioning systems in residential buildings by using fuzzy logic

    Directory of Open Access Journals (Sweden)

    Sohair F. Rezeka

    2015-06-01

    Full Text Available There has been a rising concern in reducing the energy consumption in buildings. Heating, ventilation and air-conditioning system is the biggest consumer of energy in buildings. In this study, management of the air-conditioning system of a building for efficient energy operation and comfortable environment is investigated. The strategy used in this work depends on classifying the rooms to three different groups: very important rooms, important rooms and normal rooms. The total mass flow rate is divided between all rooms by certain percentage using a fuzzy-logic system to get the optimum performance for each room. The suggested Building Management System (BMS was found capable of keeping errors in both temperature and humidity within the acceptable limits at different operating conditions. The BMS can save the chilled/hot water flow rate and the cooling/heating capacity of rooms.

  1. Performance of alternative refrigerants for residential air-conditioning applications

    International Nuclear Information System (INIS)

    Park, Ki-Jung; Seo, Taebeom; Jung, Dongsoo

    2007-01-01

    In this study, performances of two pure hydrocarbons and seven mixtures composed of propylene, propane, HFC152a, and dimethylether were measured to substitute for HCFC22 in residential air-conditioners and heat pumps. Thermodynamic cycle analysis was carried out to determine the optimum compositions before testing and actual tests were performed in a breadboard-type laboratory heat pump/air-conditioner at the evaporation and condensation temperatures of 7 and 45 deg. C, respectively. Test results show that the coefficient of performance of these mixtures is up to 5.7% higher than that of HCFC22. While propane showed a 11.5% reduction in capacity, most of the fluids had a similar capacity to that of HCFC22. For these fluids, compressor-discharge temperatures were reduced by 11-17 deg. C. For all fluids tested, the amount of charge was reduced by up to 55% as compared to HCFC22. Overall, these fluids provide good performances with reasonable energy-savings without any environmental problem and thus can be used as long-term alternatives for residential air-conditioning and heat-pumping applications

  2. Effects of air flow maldistribution on refrigeration system dynamics of air source heat pump chiller under frosting conditions

    International Nuclear Information System (INIS)

    Gong Jianying; Gao Tieyu; Yuan Xiuling; Huang Dong

    2008-01-01

    The effects of air flow maldistribution on the performance of an air source heat pump chiller under frosting conditions were investigated experimentally. The results indicated that air flow maldistribution was the dominant factor leading to hunting of the thermostatic expansion valve for medium and/or large size finned tube evaporators. With air flow maldistribution degree (AMD) increasing, frost occurred earlier, and the frost layer grew faster. The operating characteristics became lower when AMD was increased. We found such phenomenon seemed to be related to both the difference of refrigerant outlet superheat and the frosting velocity. In the hunting stage, the frost block effect became the main factor degrading the refrigeration system performance. With AMD increasing, the heat pump system pertinent performance data (suction pressure, evaporation temperature, discharge pressure, refrigerant outlet temperature, etc.) were degraded more dramatically

  3. The effect of air dried conditions on mechanical and physical ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-04-20

    Apr 20, 2009 ... small dimension wooden material is used and this affects the cost of ... The first serious application of laminating technique ... buildings, stock hangar, farms and stables constructions ... resistant lamine elements to air dried condition were easy .... the other was organic solvent water repellent protim WR230.

  4. ENERGY STAR Certified Non-AHRI Central Air Conditioner Equipment and Air Source Heat Pump

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 5.0 ENERGY STAR Program Requirements for Air Source Heat Pump and Central Air Conditioner...

  5. Increasing EDV Range through Intelligent Cabin Air Handling Strategies: Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Leighton, Daniel [National Renewable Energy Lab. (NREL), Golden, CO (United States); Rugh, John [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-08-01

    Computational fluid dynamics (CFD) simulations of a Ford Focus Electric demonstrated that a split flow heating, ventilating and air conditioning (HVAC) system with rear recirculation ducts can reduce cabin heating loads by up to 57.4% relative to full fresh air usage under some conditions (steady state, four passengers, ambient temperature of -5 deg C). Simulations also showed that implementing a continuous recirculation fraction control system into the original equipment manufacturer (OEM) HVAC system can reduce cabin heating loads by up to 50.0% relative to full fresh air usage under some conditions (steady state, four passengers, ambient temperature of -5 deg C). Identified that continuous fractional recirculation control of the OEM system can provide significant energy savings for EVs at minimal additional cost, while a split flow HVAC system with rear recirculation ducts only provides minimal additional improvement at significant additional cost.

  6. Operational experience of air washer based ventilation system for power conditioning system of Indus-2

    International Nuclear Information System (INIS)

    Pandey, R.M.; Baghel, S.L.; Parate, J.K.; Ahlawat, Sandeep; Rawlani, B.K.; Chouksey, Sanjay

    2015-01-01

    Indus-2 Synchrotron Accelerator requires high quality conditioned uninterrupted AC mains power for their smooth and reliable operation. Three units of 1670 kVA and one unit of 1100 kVA capacity rotary uninterruptible power conditioning systems (UPS) were installed and commissioned. These UPS units require dust free and cool ambient conditions for smooth operation. In order to meet the ventilation requirements, an evaporative cooling system of 80000 cubic meter/hour capacity with filtration units was designed, installed and commissioned in February 2011 and is operational on round-the-clock basis. Evaporative cooling scheme was chosen as has various advantages over a refrigerated system like lower initial capital costs, lower energy usage, lower running costs, less greenhouse gas and it does not contribute to ozone depletion. The ventilation system filters the environment air in stages up to 5 micron level and being conditioned with an automatic controlled soft water circulating system with cooling pads. An instrumentation and control scheme is included in the system to provide the automation requirements for operating 24 x 7 through the year. All the mechanical, hydraulic and electrical devices are maintained by providing preventive maintenance work without affecting the accelerator machine operation. Availability and reliability of the system was analysed based on the failure data. In Year 2014, the ventilation system was upgraded to accommodate standby blower unit, coupling unit and improved quality of supply air with new air conditioning devices. The control panel monitors the condition of air in the UPS hall and maintainsup to 28°C air temperature and 85% maximum relative humidity in round-the clock shift with more than 98% operational reliability. In this paper, we present design philosophy, installation, instrumentation, testing, operation experience and availability of the ventilation system for Power Conditioning System, Indus complex. (author)

  7. A basic condition-based maintenance strategy for air-cooled turbine generators

    International Nuclear Information System (INIS)

    Laird, T.; Griffith, G.; Hoof, M.

    2005-01-01

    This paper discusses the methods of using condition-based maintenance (CBM) for turbine generators. Even though it is focused on the maintenance strategy for air-cooled generators, all types of power producers can realize benefits from a better maintenance strategy at lower costs. A reliable assessment of the actual unit condition requires detailed knowledge of the unit design, operational weaknesses, cost of maintenance and operational capabilities. (author)

  8. Thermodynamic analysis of an innovative liquid desiccant air conditioning system to supply potable water

    International Nuclear Information System (INIS)

    Ahmed, M.A.; Gandhidasan, P.; Zubair, Syed M.; Bahaidarah, Haitham M.

    2017-01-01

    Highlights: • The study objective is to reduce the energy consumption of desiccant AC system. • Heat and mass losses are recovered in the proposed system using a condenser. • The conventional and the proposed systems are compared in terms of COP. • The proposed system performance is better than the conventional system. • The proposed system produces freshwater in addition to space cooling. - Abstract: Liquid desiccant air conditioning systems are cost-effective, environmentally friendly and energy efficient techniques, especially in coastal areas. In the conventional liquid desiccant air conditioning system, the scavenging air is expelled into the atmosphere carrying a considerable amount of energy and water vapor. Thus, there is plenty of room to improve the system performance by recovering these losses. The proposed system consists of a conventional liquid desiccant air conditioning system plus a condenser. The aim of this study is to reduce the energy consumption by recovering the heat from the scavenging air using the condenser while also producing freshwater in addition to space cooling. Lithium chloride (LiCl) is used as the liquid desiccant for this study. The mathematical formulation for simultaneous heat and mass transfer between the condenser and the regenerator was developed to establish a comparison between the performance of the conventional and modified systems. Using the generated model, it is found that the modified system performance is 11.25% better than the conventional system and that it produces 86.4 kg of freshwater per hour as a by-product under the given conditions.

  9. Experimental performance study of a proposed desiccant based air conditioning system.

    Science.gov (United States)

    Bassuoni, M M

    2014-01-01

    An experimental investigation on the performance of a proposed hybrid desiccant based air conditioning system referred as HDBAC is introduced in this paper. HDBAC is mainly consisted of a liquid desiccant dehumidification unit integrated with a vapor compression system (VCS). The VCS unit has a cooling capacity of 5.27 kW and uses 134a as refrigerant. Calcium chloride (CaCl2) solution is used as the working desiccant material. HDBAC system is used to serve low sensible heat factor applications. The effect of different parameters such as, process air flow rate, desiccant solution flow rate, evaporator box and condenser box solution temperatures, strong solution concentration and regeneration temperature on the performance of the system is studied. The performance of the system is evaluated using some parameters such as: the coefficient of performance (COPa), specific moisture removal and energy saving percentage. A remarkable increase of about 54% in the coefficient of performance of the proposed system over VCS with reheat is achieved. A maximum overall energy saving of about 46% is observed which emphasizes the use of the proposed system as an energy efficient air conditioning system.

  10. 2013 German refrigeration and air conditioning meeting. Proceedings; Deutsche Kaelte- und Klimatagung 2013. Tagungsbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    These proceedings cover the following main topics: cryoengineering - superconduction / energy storage; cryoapplications in biology and medicine; metrology; adsorption processes; condensation/evaporation; working fluids / simulation; ice production; plants and compressors; expansion and ejectors or recooling; use of cooling (passenger car air conditioning, supermarket); refrigerants; plant efficiency; emissions and legislation; air conditioning and use of heat pumps; air quality and control; building technology and block-type thermal power stations. [German] Dieser Tagungsbericht enthaelt folgende Themenschwerpunkte: Kryotechnik - Supraleitung/Energiespeicher; Kryoanwendungen in der Biologie und Medizin; Messtechnik; Adsorptionsprozesse; Kondensation/Verdampfung; Arbeitsfluide/Simulation; Eiserzeugung; Anlagen und Verdichter; Expansion und Ejektoren bzw. Rueckkuehlung; Kaelteanwendung (PKW-Klimatisierung; Supermarkt); Kaeltemittel; Anlageneffizienz; Emissionen und Gesetzgebung; Klimatechnik und Waermepumpenanwendung; Luftqualitaet und Regelung; Gebaeudetechnik und BHKW.

  11. Heating, ventilating, and air conditioning deactivation thermal analysis of PUREX Plant

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W.W.; Gregonis, R.A. [Westinghouse Hanford Company, Richland, WA (United States)

    1997-08-01

    Thermal analysis was performed for the proposed Plutonium Uranium Extraction Plant exhaust system after deactivation. The purpose of the analysis was to determine if enough condensation will occur to plug or damage the filtration components. A heat transfer and fluid flow analysis was performed to evaluate the thermal characteristics of the underground duct system, the deep-bed glass fiber filter No. 2, and the high-efficiency particulate air filters in the fourth filter building. The analysis is based on extreme variations of air temperature, relative humidity, and dew point temperature using 15 years of Hanford Site weather data as a basis. The results will be used to evaluate the need for the electric heaters proposed for the canyon exhaust to prevent condensation. Results of the analysis indicate that a condition may exist in the underground ductwork where the duct temperature can lead or lag changes in the ambient air temperature. This condition may contribute to condensation on the inside surfaces of the underground exhaust duct. A worst case conservative analysis was performed assuming that all of the water is removed from the moist air over the inside surface of the concrete duct area in the fully developed turbulent boundary layer while the moist air in the free stream will not condense. The total moisture accumulated in 24 hours is negligible. Water puddling would not be expected. The results of the analyses agree with plant operating experiences. The filters were designed to resist high humidity and direct wetting, filter plugging caused by slight condensation in the upstream duct is not a concern. 19 refs., 2 figs.

  12. A dynamic model for air-based photovoltaic thermal systems working under real operating conditions

    International Nuclear Information System (INIS)

    Sohel, M. Imroz; Ma, Zhenjun; Cooper, Paul; Adams, Jamie; Scott, Robert

    2014-01-01

    Highlights: • A dynamic model suitable for air-based photovoltaic thermal (PVT) systems is presented. • The model is validated with PVT data from two unique buildings. • The simulated output variables match very well with the experimental data. • The performance of the PVT system under changing working condition is analysed. - Abstract: In this paper a dynamic model suitable for simulating real operating conditions of air-based photovoltaic thermal (PVT) systems is presented. The performance of the model is validated by using the operational data collected from the building integrated photovoltaic (PVT) systems installed in two unique buildings. The modelled air outlet temperature and electrical power match very well with the experimental data. In Solar Decathlon house PVT, the average (RMS) error in air outlet temperatures was 4.2%. The average (RMS) error in electrical power was also 4.2%. In the Sustainable Buildings Research Centre PVT, the average errors (RMS) of PV and air temperatures were 3.8% and 2.2%, respectively. The performance of the PVT system under changing working condition is also analysed in this paper. The analysis includes the effect of ambient air temperature, air inlet temperature, air flow rate and solar irradiation on thermal, electrical, first law and second law efficiencies. Both the thermal and the 1st law efficiencies almost linearly increased with the increase of the ambient temperature. However, the PVT electrical efficiency and the second law efficiency decreased with the increase of the ambient temperature. All efficiencies expect the second law efficiency decreased with increase of the PVT air inlet temperature. The second law efficiency first increased and then reduced. With increasing the air flow rate all the efficiencies increased. The electrical and second law efficiencies become less sensitive when the air flow rate exceeded 300 l/s. Both the thermal and the 1st law efficiencies decreased while the electrical

  13. A dynamic switching strategy for air-conditioning systems operated in light-thermal-load conditions

    International Nuclear Information System (INIS)

    Lin, Jin-Long; Yeh, T.-J.; Hwang, Wei-Yang

    2009-01-01

    Recently, modern air-conditioners have begun to incorporate variable-speed compressors and variable-opening expansion valves, together with feedback control to improve the performance and energy efficiency. However, for the compressor there usually exists a low-speed limit below which its speed can not be continuously modulated unless it is completely turned off. When the air-conditioning system is operated in light-thermal-load conditions, the low-speed limit causes the compressor to run in an on-off manner which can significantly degrade the performance and efficiency. In this paper, a dynamic switching strategy is proposed for such scenarios. The strategy is basically an integration of a cascading control structure, an intuitive switching strategy, and a dynamic compensator. While the control structure provides the nominal performance, the intuitive switching strategy and the dynamic compensator together can account for the compressor's low-speed limitation. Theoretical analysis reveals that when the output matrix of the dynamic compensator is chosen properly, the proposed strategy can effectively reduce the output error caused by the on-off operation of the compressor. Experiments also demonstrate that the proposed strategy can simultaneously provide better regulation for the indoor temperature and improve the energy efficiency at steady state.

  14. The control network of air quality in the Lorraine steel industry country: an example of a specific steel industry network

    International Nuclear Information System (INIS)

    Poncin, G.

    1991-01-01

    This specific (for steel industry region) network for the air quality control mainly measures the concentrations in sulfur dioxide, airborne dust and fall out particles. The recent automation of this network implied a preliminary optimization study which consisted of a statistical analysis of the numerous data collected by many hand operated sensors. The implementation and working conditions of the new equipment have required the use of air-conditioned monoblock metallic cabins

  15. Development of corrosion testing equipment under heat transfer and irradiation conditions to evaluate corrosion resistance of materials used in acid recovery evaporator. Contract research

    International Nuclear Information System (INIS)

    Motooka, Takafumi; Numata, Masami; Kiuchi, Kiyoshi

    2002-01-01

    We have been evaluated the safety for corrosion of various metals applied to acid recovery evaporators by the mock-up tests using small scaled equipment and the reference tests in laboratories with small specimens. These tests have been conducted under-radioactive environment. The environment in practical reprocessing plants has many radioactive species. Therefore, the effect of irradiation on corrosion should be evaluated in detail. In this study, we have developed the corrosion testing equipment, which is employed to simulate environments in the acid recovery evaporators. This report describes the specification of corrosion testing equipment and the results of primary, reference and hot tests. Using the equipment, the corrosion test under heat transfer and irradiation conditions have been carried out for 930 hours in safety. It is expectable that useful corrosion test data in radioactive environment are accumulated with this equipment in future, and help the adequate choice of corrosion test condition in laboratories. (author)

  16. Feasibility study of using agriculture waste as desiccant for air conditioning system

    Energy Technology Data Exchange (ETDEWEB)

    Khedari, J.; Rawangkul, R.; Hirunlabh, J. [King Mongkut' s University of Technology Thonburi, Bangkok (Thailand). Buidling Scientific Research Center; Chimchavee, W. [University of Thai Chamber of Commerce, Bangkok (Thailand); Watanasungsuit, A. [South East Asia Univ., Bangkok (Thailand). Engineering Management

    2003-08-01

    This research was aimed at investigating the feasibility of using dried agricultural waste as desiccant for an open cycle air conditioning system. The natural fibers are, therefore, intended to replace chemical desiccant such as silica gel, molecular sieves etc. The investigation was limited to Coconut coir (Cocos nucifera) and Durian peels (Durio zibethinus). Experimental results confirmed that dry coconut coir and durian peel can absorb 30 g and 17 g H{sub 2}O per 100 g dry product, respectively, from air at the average condition of 32{sup o}C and 75% relative humidity. The optimum airflow rate is about 84 and 98 m{sup 3}/hr-100 g dry product, respectively. Therefore, the dry coconut coir is more suitable than the dry durian peel. Comparison between the dry coconut coir and silica gel showed that the average adsorption rate of coconut coir is less than that of silica gel by about 5 g/h-100 g dry product at an airflow rate of 84 m{sup 3}/h and 60 min operating time. However, it is still an interesting option to replace silica gel in open cycle air conditioning system, as the decrease of average adsorption rate is rather small. The other extremely interesting advantage of coconut coir is that during moisture absorption the heat generated during the process is less important. That means the air leaves the coconut coir bed at a lower temperature compared to that with a silica gel. Therefore, the saving of cooling energy is much more important. (Author)

  17. Simplified model-based optimal control of VAV air-conditioning system

    Energy Technology Data Exchange (ETDEWEB)

    Nassif, N.; Kajl, S.; Sabourin, R. [Ecole de Technologie Superieure, Montreal, PQ (Canada). Dept. of Construction Engineering

    2005-07-01

    The improvement of Variable Air Volume (VAV) system performance is one of several attempts being made to minimize the high energy use associated with the operation of heating, ventilation and air conditioning (HVAC) systems. A Simplified Optimization Process (SOP) comprised of controller set point strategies and a simplified VAV model was presented in this paper. The aim of the SOP was to determine supply set points. The advantage of the SOP over previous methods was that it did not require a detailed VAV model and optimization program. In addition, the monitored data for representative local-loop control can be checked on-line, after which controller set points can be updated in order to ensure proper operation by opting for real situations with minimum energy use. The SOP was validated using existing monitoring data and a model of an existing VAV system. Energy use simulations were compared to that of the existing VAV system. At each simulation step, 3 controller set point values were proposed and studied using the VAV model in order to select a value for each point which corresponded to the best performance of the VAV system. Simplified VAV component models were presented. Strategies for controller set points were described, including zone air temperature, duct static pressure set points; chilled water supply set points and supply air temperature set points. Simplified optimization process calculations were presented. Results indicated that the SOP provided significant energy savings when applied to specific AHU systems. In a comparison with a Detailed Optimization Process (DOP), the SOP was capable of determining set points close to those obtained by the DOP. However, it was noted that the controller set points determined by the SOP need a certain amount of time to reach optimal values when outdoor conditions or thermal loads are significantly changed. It was suggested that this disadvantage could be overcome by the use of a dynamic incremental value, which

  18. IEA SHC Task 38 'Solar air-conditioning and refrigeration'. Danish participation 2007-2010. Appendix; IEA SHC Task 38 'Solar air-conditioning and refrigeration'. Dansk deltagelse 2007-2010. Bilag

    Energy Technology Data Exchange (ETDEWEB)

    Ellehauge, K. (Ellehauge og Kildemoes, Aarhus (Denmark)); Muenster, E. (PlanEnergi, Skoerping (Denmark)); Reinholdt, L. (Teknologisk Institut, Aarhus (Denmark)); Munds, S. (AC-Sun Aps, Horsens (Denmark))

    2011-03-15

    IEA SHC Task 38 'Solar Air-Conditioning and Refrigeration' ran from October 2006 to December 2010. Denmark was represented in the task from January 2007 to December 2010. The aim of the task was to encourage use of solar powered refrigeration and air conditioning systems in particular at residential, commercial and industrial sectors. Furthermore, the aim was to contribute to new research and development activities on new systems and concepts. The appendix contains the publications prepared by the Danish project group.(LN)

  19. Operation of controlled-air incinerators and design considerations for controlled-air incinerators treating hazardous and radioactive wastes

    International Nuclear Information System (INIS)

    McRee, R.E.

    1986-01-01

    This paper reviews the basic theory and design philosophies of the so-called controlled-air incinerator and examines the features of this equipment that make it ideally suited to the application of low-level radioactive waste disposal. Special equipment design considerations for controlled air incinerators treating hazardous and radioactive wastes are presented. 9 figures

  20. Influence of Low-Temperature Plasma Treatment on The Liquid Filtration Efficiency of Melt-Blown PP Nonwovens in The Conditions of Simulated Use of Respiratory Protective Equipment

    Directory of Open Access Journals (Sweden)

    Majchrzycka Katarzyna

    2017-06-01

    Full Text Available Filtering nonwovens produced with melt-blown technology are one of the most basic materials used in the construction of respiratory protective equipment (RPE against harmful aerosols, including bio- and nanoaerosols. The improvement of their filtering properties can be achieved by the development of quasi-permanent electric charge on the fibres. Usually corona discharge method is utilized for this purpose. In the presented study, it was assumed that the low-temperature plasma treatment could be applied as an alternative method for the manufacturing of conventional electret nonwovens for the RPE construction. Low temperature plasma treatment of polypropylene nonwovens was carried out with various process gases (argon, nitrogen, oxygen or air in a wide range of process parameters (gas flow velocity, time of treatment and power supplied to the reactor electrodes. After the modification, nonwovens were evaluated in terms of filtration efficiency of paraffin oil mist. The stability of the modification results was tested after 12 months of storage and after conditioning at elevated temperature and relative humidity conditions. Moreover, scanning electron microscopy and ATR-IR spectroscopy were used to assess changes in surface topography and chemical composition of the fibres. The modification of melt-blown nonwovens with nitrogen, oxygen and air plasma did not result in a satisfactory improvement of the filtration efficiency. In case of argon plasma treatment, up to 82% increase of filtration efficiency of paraffin oil mist was observed in relation to untreated samples. This effect was stable after 12 months of storage in normal conditions and after thermal conditioning in (70 ± 3°C for 24 h. The use of low-temperature plasma treatment was proven to be a promising improvement direction of filtering properties of nonwovens used for the protection of respiratory tract against harmful aerosols.

  1. Heavy metal contamination in an urban stream fed by contaminated air-conditioning and stormwater discharges.

    Science.gov (United States)

    O'Sullivan, Aisling; Wicke, Daniel; Cochrane, Tom

    2012-03-01

    Urban waterways are impacted by diffuse stormwater runoff, yet other discharges can unintentionally contaminate them. The Okeover stream in Christchurch, New Zealand, receives air-conditioning discharge, while its ephemeral reach relies on untreated stormwater flow. Despite rehabilitation efforts, the ecosystem is still highly disturbed. It was assumed that stormwater was the sole contamination source to the stream although water quality data were sparse. We therefore investigated its water and sediment quality and compared the data with appropriate ecotoxicological thresholds from all water sources. Concentrations of metals (Zn, Cu and Pb) in stream baseflow, stormwater runoff, air-conditioning discharge and stream-bed sediments were quantified along with flow regimes to ascertain annual contaminant loads. Metals were analysed by ICP-MS following accredited techniques. Zn, Cu and Pb concentrations from stormflow exceeded relevant guidelines for the protection of 90% of aquatic species by 18-, 9- and 5-fold, respectively, suggesting substantial ecotoxicity potential. Sporadic copper (Cu) inputs from roof runoff exceeded these levels up to 3,200-fold at >4,000 μg L⁻¹ while Cu in baseflow from air-conditioning inputs exceeded them 5.4-fold. There was an 11-fold greater annual Cu load to the stream from air-conditioning discharge compared to stormwater runoff. Most Zn and Cu were dissolved species possibly enhancing metal bioavailability. Elevated metal concentrations were also found throughout the stream sediments. Environmental investigations revealed unsuspected contamination from air-conditioning discharge that contributed greater Cu annual loads to an urban stream compared to stormwater inputs. This discovery helped reassess treatment strategies for regaining ecological integrity in the ecosystem.

  2. Air conditioning design temperature - a new proposal; Temperatura de projeto para condicionamento de ar - uma nova proposta

    Energy Technology Data Exchange (ETDEWEB)

    Camargo, Jose R.; Cardoso, Sebastiao [Universidade de Taubate, SP (Brazil). Dept. de Engenharia Mecanica]. E-mails: rui@engenh.mec.unitau.br; cardoso@prppg.unitau.br; Travelho, Jeronimo S. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil)]. E-mail: jeff@lac.inpe.br

    2000-07-01

    ABNT - Associacao Brasileira de Normas Tecnicas (Brazilian Association for Technical Standards) - establishes, in NBR-6401, Table 1 (Interior Design Conditions), the dry-bulb summer temperature and the relative humidity to be used in air conditioning design. In thermal comfort plant for residences, hotels, offices and schools these values are, respectively, 23 deg C to 25 deg C and 40% to 60% rh. These data are in accordance with what is recommended by ASHRAE, which was established as a model for North America. This paper presents a new proposal to air conditioning design temperature that takes into consideration Brazilian climatological conditions. The method, named 'effective temperature distribution', compares the maximum recommended effective temperature for each region with dry-bulb temperatures and effective temperatures plotted in a single diagram. This diagram may be used in energetic planning to minimize the use of electric energy for air conditioning. It concludes that the method allows an accuracy analysis about both the temperature levels and the periods of utilization of the air conditioning systems. (author)

  3. Joint energy demand and thermal comfort optimization in photovoltaic-equipped interconnected microgrids

    International Nuclear Information System (INIS)

    Baldi, Simone; Karagevrekis, Athanasios; Michailidis, Iakovos T.; Kosmatopoulos, Elias B.

    2015-01-01

    Highlights: • Energy efficient operation of photovoltaic-equipped interconnected microgrids. • Optimized energy demand for a block of heterogeneous buildings with different sizes. • Multiobjective optimization: matching demand and supply taking into account thermal comfort. • Intelligent control mechanism for heating, ventilating, and air conditioning units. • Optimization of energy consumption and thermal comfort at the aggregate microgrid level. - Abstract: Electrical smart microgrids equipped with small-scale renewable-energy generation systems are emerging progressively as an alternative or an enhancement to the central electrical grid: due to the intermittent nature of the renewable energy sources, appropriate algorithms are required to integrate these two typologies of grids and, in particular, to perform efficiently dynamic energy demand and distributed generation management, while guaranteeing satisfactory thermal comfort for the occupants. This paper presents a novel control algorithm for joint energy demand and thermal comfort optimization in photovoltaic-equipped interconnected microgrids. Energy demand shaping is achieved via an intelligent control mechanism for heating, ventilating, and air conditioning units. The intelligent control mechanism takes into account the available solar energy, the building dynamics and the thermal comfort of the buildings’ occupants. The control design is accomplished in a simulation-based fashion using an energy simulation model, developed in EnergyPlus, of an interconnected microgrid. Rather than focusing only on how each building behaves individually, the optimization algorithm employs a central controller that allows interaction among the buildings of the microgrid. The control objective is to optimize the aggregate microgrid performance. Simulation results demonstrate that the optimization algorithm efficiently integrates the microgrid with the photovoltaic system that provides free electric energy: in

  4. Analysis of Technical State of Thermal and Mechanical Equipment of Thermal Power Stations in the Republic of Belarus under Conditions of Investment Deficit

    Directory of Open Access Journals (Sweden)

    S. N. Shichko

    2004-01-01

    Full Text Available The paper contains an analysis of the equipment state at a number of thermal power stations. This analysis is made on the basis of indifferent curves. Relationship of two factors is taken as a criterion for estimation of the equipment state. These factors are faultiness (parameter of failure fi"equency and operating time from the moment when the equipment was put into operation. It is noted that operation of the equipment in excess of specified life without replacement of so-called «weab> elements and estimation of metal state will lead to conditions of high risk in opieration of such equipment.

  5. Heat Transfer Enhancement of the Air-Cooling Tower with Rotating Wind Deflectors under Crosswind Conditions

    OpenAIRE

    Xueping Du; Dongtai Han; Qiangmin Zhu

    2018-01-01

    To investigate the effect of wind deflectors on air flow and heat transfer performance of an air-cooling tower under crosswind conditions, an experimental system based on a surface condenser aluminum exchanger-type indirect air-cooling tower is established at a 1:100 proportional reduction. A 3-D computational fluid dynamics simulation model is built to study the air flow and temperature fields. The air flow rate into the cooling tower and the heat transfer rate of the radiators are used to e...

  6. Atmospheric properties measurements and data collection from a hot-air balloon

    Science.gov (United States)

    Watson, Steven M.; Olson, N.; Dalley, R. P.; Bone, W. J.; Kroutil, Robert T.; Herr, Kenneth C.; Hall, Jeff L.; Schere, G. J.; Polak, M. L.; Wilkerson, Thomas D.; Bodrero, Dennis M.; Borys, R. O.; Lowenthal, D.

    1995-02-01

    Tethered and free-flying manned hot air balloons have been demonstrated as platforms for various atmospheric measurements and remote sensing tasks. We have been performing experiments in these areas since the winter of 1993. These platforms are extremely inexpensive to operate, do not cause disturbances such as prop wash and high airspeeds, and have substantial payload lifting and altitude capabilities. The equipment operated and tested on the balloons included FTIR spectrometers, multi-spectral imaging spectrometer, PM10 Beta attenuation monitor, mid- and far-infrared cameras, a radiometer, video recording equipment, ozone meter, condensation nuclei counter, aerodynamic particle sizer with associated computer equipment, a tethersonde and a 2.9 kW portable generator providing power to the equipment. Carbon monoxide and ozone concentration data and particle concentrations and size distributions were collected as functions of altitude in a wintertime inversion layer at Logan, Utah and summertime conditions in Salt Lake City, Utah and surrounding areas. Various FTIR spectrometers have been flown to characterize chemical plumes emitted from a simulated industrial stack. We also flew the balloon into diesel and fog oil smokes generated by U.S. Army and U.S. Air Force turbine generators to obtain particle size distributions.

  7. The effects of air stoichiometry and air excess ratio on the transient response of a PEMFC under load change conditions

    International Nuclear Information System (INIS)

    Kim, Bosung; Cha, Dowon; Kim, Yongchan

    2015-01-01

    Highlights: • Effects of controlling parameters on the transient response of a PEMFC are studied. • The transient response is measured by varying air stoichiometry and air excess ratio. • Voltage drop, undershoot, and voltage fluctuation are analyzed under the load change. • Optimal air stoichiometry and air excess ratio are suggested for stable operation. - Abstract: The transient response of a proton exchange membrane fuel cell (PEMFC) is an important issue for transportation applications. The objective of this study is to investigate the effects of operating and controlling parameters on the transient response of a PEMFC for achieving more stable cell performance under load change conditions. The transient response of a PEMFC was measured and analyzed by varying air stoichiometry, air humidity, and air excess ratio (AER). The optimal air stoichiometry and AER were determined to minimize the voltage drop, undershoot, and voltage fluctuation under the load change, while maintaining high cell performance. Based on the present data, the optimal air stoichiometry was determined to be between 2.0 and 2.5, and the optimal AER was suggested to be between 1.65 and 2.0

  8. Numerical model of sprayed air cooled condenser coupled to refrigerating system

    International Nuclear Information System (INIS)

    Youbi-Idrissi, M.; Macchi-Tejeda, H.; Fournaison, L.; Guilpart, J.

    2007-01-01

    Because of technological, economic and environmental constraints, many refrigeration and air conditioning units are equipped with a simple air cooled condenser. Spraying the condenser seems to be an original solution to improve the energetic performances of such systems. To characterise this energetic benefit, a semi-local mathematical model was developed and applied to a refrigerating machine with and without spraying its air cooled condenser. It is found that, compared to a dry air cooled condenser, both the calorific capacity and machine COP increase by 13% and 55%, respectively. Furthermore, the model shows that a spray flow rate threshold occurs. It should not be exceeded to assure an effective and rational spray use

  9. Heat Transfer Enhancement of the Air-Cooling Tower with Rotating Wind Deflectors under Crosswind Conditions

    Directory of Open Access Journals (Sweden)

    Xueping Du

    2018-04-01

    Full Text Available To investigate the effect of wind deflectors on air flow and heat transfer performance of an air-cooling tower under crosswind conditions, an experimental system based on a surface condenser aluminum exchanger-type indirect air-cooling tower is established at a 1:100 proportional reduction. A 3-D computational fluid dynamics simulation model is built to study the air flow and temperature fields. The air flow rate into the cooling tower and the heat transfer rate of the radiators are used to evaluate cooling performance. Rotating wind deflectors are adopted to reduce the influence of crosswind on the cooling tower performance. The effects of the rotating wind deflectors on the thermal-hydraulic characteristics of the air-cooling tower under different environmental crosswind speeds are studied. Results indicate that the wind direction in the tower reverses as the rotating speed of the wind deflectors increases. The thermal performance of an air-cooling tower under crosswind conditions can be improved by using rotating wind deflectors. The heat transfer rate of a cooling tower with eight wind deflectors begins to increase when the rotating speed exceeds 2 r/min.

  10. Voltage controller design for air conditioning; Diseno de controlador de voltaje para aire acondicionado

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Andrade, R; Lopez Villalobos, J.J; Valderrama Chairez, J; Ramirez, R.L. [Instituto Tecnologico de Nuevo Leon, Guadalupe, Nuevo Leon (Mexico)]. E-mails: roxana_garciaandrade@yahoo.com; xe2n@yahoo.com.mx; jose.valderrama@ieee.org

    2013-03-15

    This paper discusses the design of a voltage controller for an air conditioning system in order to generate additional power in activation or startup of the system, for which as a first stage is presented the modeling power generation of electric current through alternative means, such as solar energy. The results of this study will be the basis for development of the physical prototype of this system controller. [Spanish] El presente trabajo trata sobre el diseno de un controlador de voltaje para un sistema de aire acondicionado con el fin de generar energia adicional en la activacion o arranque de dicho sistema, para lo cual como primer fase se presenta el modelado de la generacion de corriente electrica mediante medios alternos, como lo es la energia solar. Los resultados de este trabajo seran la base para desarrollo del prototipo fisico de este sistema controlador.

  11. Experimental investigation of the influence of the air jet trajectory on convective heat transfer in buildings equipped with air-based and radiant cooling systems

    DEFF Research Database (Denmark)

    Le Dreau, Jerome; Heiselberg, Per; Jensen, Rasmus Lund

    2015-01-01

    -state and dynamic conditions. With the air-based cooling system, a dependency of the convective heat transfer on the air jet trajectory has been observed. New correlations have been developed, introducing a modified Archimedes number to account for the air flow pattern. The accuracy of the new correlations has been...... evaluated to±15%. Besides the study with an air-based cooling system, the convective heat transfer with a radiant cooling system has also been investigated. The convective flow at the activated surface is mainly driven by natural convection. For other surfaces, the complexity of the flow and the large......The complexity and diversity of airflow in buildings make the accurate definition of convective heat transfer coefficients (CHTCs) difficult. In a full-scale test facility, the convective heat transfer of two cooling systems (active chilled beam and radiant wall) has been investigated under steady...

  12. Natural convection liquid desiccant loop as an auxiliary air conditioning system: investigating the operational parameters

    Science.gov (United States)

    Fazilati, Mohammad Ali; Alemrajabi, Ali Akbar; Sedaghat, Ahmad

    2018-03-01

    Liquid desiccant air conditioning system with natural convection was presented previously as a new generation of AC systems. The system consists of two three-fluid energy exchangers namely absorber and regenerator in which the action of air dehumidifying and desiccant regeneration is done, respectively. The influence of working parameters on system performance including the heat source and heat sink temperature, concentration of desiccant solution fills the system initially and humidity content of inlet air to regenerator is investigated experimentally. The heat source temperatures of 50 °C and 60 °C, heat sink temperatures of 15 °C and 20 °C and desiccant concentrations of 30% and 34%, are examined here. The inlet air to regenerator has temperature of 38.5 °C and three relative humidity of 14%, 38% and 44%. In all experiments, the inlet air to absorber has temperature of 31 °C and relative humidity of 75%. By inspecting evaluation indexes of system, it is revealed that higher startup desiccant concentration solution is more beneficial for all study cases. It is also observed although the highest/lowest temperature heat source/heat sink is most suitable for best system operation, increasing the heat source temperature should be accompanied with decreasing heat sink temperature. Using drier air stream for regenerator inlet does not necessarily improve system performance; and the air stream with proper value of humidity content should be employed. Finally after running the system in its best working condition, the coefficient of performance (COP) reached 4.66 which verified to be higher than when the same air conditioning task done by a conventional vapor compression system, in which case the COP was 3.38.

  13. System for routine testing of self-contained and airline breathing equipment

    Energy Technology Data Exchange (ETDEWEB)

    McDermott, H.J.; Hermens, G.A.

    1980-07-01

    A system for routine testing of self-contained and airline breathing equipment, developed by Shell Oil Co., for testing breathing equipment at one of its refineries, consists of an 80 psig air supply for airline respirators; a 500-2100 psig air supply for self-contained units; a regulator test system which uses a mannequin head that simulates human inhalation and which tests the ability of the regulator to keep the mask interior at the correct positive pressure; and an exhalation valve test system which identifies a leaky or sticking valve. The testing system has been in use for about 30 mo and has led to increased acceptance of respiratory protective equipment by workers.

  14. F1 occurrence including L condition in TUCUMAN and BUENOS AIRES

    International Nuclear Information System (INIS)

    Mosert Gonzalez, M. de; Ezquer, R.G.; Oviedo, R.V. del

    1997-01-01

    An analysis of the occurrence of the F1 layer including the L condition has been done, using data from two Argentine stations: TUCUMAN and BUENOS AIRES, at different seasons and solar activity conditions. The comparisons between observations and the F1 occurrence predicted by the IRI-90 model show the need of reviewing the use of the DuCharme et al. (1973) formula adopted by the model to predict the occurrence of the intermediate F1 layer including the L condition. (author). 6 refs, 6 figs, 2 tabs

  15. Air filtration and air cooling in dairies

    Energy Technology Data Exchange (ETDEWEB)

    Rubzov, J A

    1986-01-01

    In addition to the maintenance of optimum temperatures and relative humidities, a continuous cleaning of the circulating air by means of suspended matter filters and regular disinfection of the spaces and equipment are required in the maturing and storage room for cheese. This contribution presents solutions to the use of suspended matter filters in air cooling plant for dairies in the U.S.S.R.

  16. The natural gas air-conditioning; La climatisation au gaz naturel. Un avenir prometteur, une technique confirmee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The natural gas air-conditioning market is in growth (it will cover 10% of the market in 2002).To illustrate the possibilities of this energy source, this paper presents three examples of the natural gas air-conditioning in France. The technical aspects, the cost and the advantages of such systems are discussed. (A.L.B.)

  17. The effect of the atmospheric condition on the extensive air shower analysis at the Telescope Array experiment

    International Nuclear Information System (INIS)

    Kobayashi, Y.; Tsunesada, Y.; Tokuno, H.; Kakimoto, F.; Tomida, T.

    2011-01-01

    The accuracies in determination of air shower parameters such as longitudinal profiles or primary energies with the fluorescence detection technique are strongly dependent on atmospheric conditions of the molecular and aerosol components. Moreover, air fluorescence photon yield depends on the atmospheric density, and the transparency of the air for fluorescence photons depends on the atmospheric conditions from EAS to FDs. In this paper, we describe the atmospheric monitoring system in the Telescope Array (TA experiment), and the impact of the atmospheric conditions in air shower reconstructions. The systematic uncertainties of the determination of the primary cosmic ray energies and of the measurement of depth of maximum development (X max ) of EASs due to atmospheric variance are evaluated by Monte Carlo simulation.

  18. Ecologic air-conditioning. A pilot plant for the geothermal and sorption supported air-conditioning in the HafenCity Hamburg; Oekologische Klimatisierung. Pilotanlage zur geothermisch- und sorptionsgestuetzten Klimatisierung in der HafenCity Hamburg

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xiaolong; Grabe, Juergen [Technische Univ. Hamburg-Harburg (Germany). Inst. fuer Geotechnik und Baubetrieb

    2011-10-24

    The relatively constant temperatures of the underground at a depth of 100 meters provide the opportunity to air-condition buildings with geothermal energy and economically. Currently, building air conditioning systems in Central Europe exhibit high growth rates. In summer, the task of an air conditioner is to cool and dehumidify air. Especially the dehumidification usually causes a high cooling demand, as the air is cooled below the dew point temperature of 12 C in order to condense out the water. The dew point is well below the demand for a comfortable room temperature of about 19 C. With this in mind, the authors of this contribution report on a principle of alternative dehumidification by means of a so-called sorption wheel. Sorption wheels use the hygroscopic properties of certain substances such as lithium chloride or silica gel in order to dehumidify the air. Thereby, the cooling demand significantly is reduced by the previous dehumidification. The regeneration of the sorption wheel requires heat. This heat can be provided by solar thermal plants and district heating. Since the air can no longer be dehumidified, rich supply temperatures between 16 and 19 C from. These temperatures can be achieved by means of near-surface temperature. Ground registers, geothermal energy probes or geothermal structures such as power poles are used as ground heat exchanger. The authors present the concept and the measurement results of the pilot plant in Hamburg's HafenCity.

  19. Performance enhancement of a subcooled cold storage air conditioning system

    International Nuclear Information System (INIS)

    Hsiao, M.-J.; Cheng, C.-H.; Huang, M.-C.; Chen, S.-L.

    2009-01-01

    This article experimentally investigates the enhancement of thermal performance for an air conditioning system utilizing a cold storage unit as a subcooler. The cold storage unit is composed of an energy storage tank, liquid-side heat exchanger, suction-side heat exchanger and energy storage material (ESM), water. When the cooling load is lower than the nominal cooling capacity of the system, the cold storage unit can store extra cold energy of the system to subcool the condenser outlet refrigerant. Hence, both the cooling capacity and coefficient of performance (COP) of the system will be increased. This experiment tests the two operation modes: subcooled mode with energy storage and non-subcooled mode without energy storage. The results show that for fixed cooling loads at 3.05 kW, 3.5 kW and 3.95 kW, the COP of the subcooled mode are 16.0%, 15.6% and 14.1% higher than those of the non-subcooled mode, respectively. In the varied cooling load experiments, the COP of the subcooled cold storage air conditioning system is 15.3% higher than the conventional system.

  20. Radioactive decontamination of equipment

    International Nuclear Information System (INIS)

    1982-03-01

    After a recall of some definitions relating to decontamination techniques and of the regulation into effect, the principles to be respected to arrange rationally work zones are quoted while insisting more particularly on the types of coatings which facilitate maintenance operations and the dismantling of these installations. Then, the processes and equipments to use in decontamination units for routine or particular operations are described; the list of recommended chemical products to decontaminate the equipment is given. The influence of these treatments on the state and the duration of life of equipments is studied, and some perfectible methods are quoted. In the appendix, are given: the limits of surface contamination accepted in the centers; a standard project which defines the criteria of admissible residual contamination in wastes considered as cold wastes; some remarks on the interest that certain special ventilation and air curtain devices for the protection of operators working on apparatus generating contaminated dusts [fr

  1. Experimental determination of the energy efficiency of an air-cooled chiller under part load conditions

    International Nuclear Information System (INIS)

    Yu, F.W.; Chan, K.T.

    2005-01-01

    In cities located in a subtropical climate, air-cooled chillers are commonly used to provide cooling to the indoor environment. This accounts for the increasing electricity demand of buildings over the decades. This paper investigates how the condensing temperature serves to accurately determine the energy efficiency, or coefficient of performance (COP), of air-cooled chillers under part load conditions. An experiment on an air-cooled reciprocating chiller showed that for any given operating condition, the COP of the chiller varies, depending on how the condensing temperature is controlled. A sensitivity analysis is implemented to investigate to what extent COP is responding to changes in operating variables and confirms that the condensing temperature is an adequate variable to gauge COP under various operating conditions. The specifications of the upper limit for the condensing temperature in order to improve the energy efficiency of air-cooled chillers are discussed. The results of this work will give designers and researchers a good idea about how to model chiller energy performance curves in the thermal and energy computation exercises

  2. 14 CFR 399.39 - Equipment purchase deposits.

    Science.gov (United States)

    2010-01-01

    ... PROCEEDINGS) POLICY STATEMENTS STATEMENTS OF GENERAL POLICY Policies Relating to Rates and Tariffs § 399.39... for this purpose. It is the policy of the Board not to recognize equipment purchase deposits in an air...

  3. Application of computational fluid dynamics and pedestrian-behavior simulations to the design of task-ambient air-conditioning systems of a subway station

    Energy Technology Data Exchange (ETDEWEB)

    Fukuyo, Kazuhiro [Graduate School of Innovation and Technology Management, Faculty of Engineering, Yamaguchi University, Tokiwadai 2-16-1, Ube, Yamaguchi 755-8611 (Japan)

    2006-04-15

    The effects of task-ambient (TA) air-conditioning systems on the air-conditioning loads in a subway station and the thermal comfort of passengers were studied using computational fluid dynamics (CFD) and pedestrian-behavior simulations. The pedestrian-behavior model was applied to a standard subway station. Task areas were set up to match with crowdedness as predicted by the pedestrian-behavior simulations. Subsequently, a variety of TA air-conditioning systems were designed to selectively control the microclimate of the task areas. Their effects on the thermal environment in the station in winter were predicted by CFD. The results were compared with those of a conventional air-conditioning system and evaluated in relation to the thermal comfort of subway users and the air-conditioning loads. The comparison showed that TA air-conditioning systems improved thermal comfort and decreased air-conditioning loads. (author)

  4. Human requirements in future air-conditioned environments: a search for excellence

    DEFF Research Database (Denmark)

    Fanger, Povl Ole

    2000-01-01

    Although air-conditioning has played a positive role for economic development in warm climates, its image is globally mixed. Field studies demonstrate that there are substantial numbers of dissatisfied people in many buildings, among them those suffering from SBS symptoms, even though existing...

  5. Thermodynamic model of a thermal storage air conditioning system with dynamic behavior

    International Nuclear Information System (INIS)

    Fleming, Evan; Wen, Shaoyi; Shi, Li; Silva, Alexandre K. da

    2013-01-01

    Highlights: • We developed an automotive thermal storage air conditioning system model. • The thermal storage unit utilizes phase change materials. • We use semi-analytic solution to the coupled phase change and forced convection. • We model the airside heat exchange using the NTU method. • The system model can incorporate dynamic inputs, e.g. variable inlet airflow. - Abstract: A thermodynamic model was developed to predict transient behavior of a thermal storage system, using phase change materials (PCMs), for a novel electric vehicle climate conditioning application. The main objectives of the paper are to consider the system’s dynamic behavior, such as a dynamic air flow rate into the vehicle’s cabin, and to characterize the transient heat transfer process between the thermal storage unit and the vehicle’s cabin, while still maintaining accurate solution to the complex phase change heat transfer. The system studied consists of a heat transfer fluid circulating between either of the on-board hot and cold thermal storage units, which we refer to as thermal batteries, and a liquid–air heat exchanger that provides heat exchange with the incoming air to the vehicle cabin. Each thermal battery is a shell-and-tube configuration where a heat transfer fluid flows through parallel tubes, which are surrounded by PCM within a larger shell. The system model incorporates computationally inexpensive semi-analytic solution to the conjugated laminar forced convection and phase change problem within the battery and accounts for airside heat exchange using the Number of Transfer Units (NTUs) method for the liquid–air heat exchanger. Using this approach, we are able to obtain an accurate solution to the complex heat transfer problem within the battery while also incorporating the impact of the airside heat transfer on the overall system performance. The implemented model was benchmarked against a numerical study for a melting process and against full system

  6. CALCULATION OF AIR ION REGIME IN THE CASE OF ARTIFICIAL AIR IONIZATION

    Directory of Open Access Journals (Sweden)

    BILIAIEV M. M.

    2015-10-01

    Full Text Available Purpose. One of the major tasks in the field of labor protection is providing of the necessary qualitative composition of air in the working areas of office and industrial spaces. In order to maintain the necessary air ion level in the air space premises, the artificial ionization of air is used often in the premises. At present in Ukraine analytical model are used for the calculation of air ion regime in premises, influencing on the formation process of air ions concentration field. An alternative solution is the use of CFD models, developing including the air jets aerodynamics in the premise, the presence of furniture, equipment, transfer of ions under an electric field, and other physical factors, determining intensity and shape of air ions concentration field in the premise. Methodology. Influence of air flow was taken into account in the development of CFD models for calculation of air ion regime in the apartment, caused by operation of ventilation, diffusion, electric field impact, as well as the interaction of different polarity ions with each other, and their interaction with dust particles. The proposed model of calculation of air ion regime in premises based on the use of aerodynamics, electrostatics and mass transfer levels. This model allows operatively to calculate air ions concentration field with the influence of the walls, floor, ceiling and obstacles on the process of air ions dispersion, the specific location of different polarity ions emission and their interaction in the premise and work areas in conditions of artificial air ionization. Results. The calculated data were obtained and on their base could be estimated the concentration of air ion anywhere in the premise with artificial air ionization. Ions concentration field, being calculated using this CFD model, as concentration field isolines is presented. Originality. The results of the air ion regime calculation in the premise are presented, based on numerical 2D CFD model

  7. An Investigation about using Nanorefrigerants in Air Conditioning Systems According to the Theoretical, CFD and Experimental Review of the Recent Literature

    Directory of Open Access Journals (Sweden)

    Farshad Panahizadeh

    2016-10-01

    Full Text Available Greenhouse gases (GHG causing global warming and climate change. In the year 2014, 32.3 billion tones CO2 emitted to the atmosphere as the most important greenhouse gas. According to the statistics, a significant portion of this amount is related to electricity demand of air conditioning systems, for producing a one ton of refrigeration in HVAC air cooled or water cooled systems respectively 1026 and 764 grams GHG emitted in the atmosphere. Therefore, air conditioning systems have an important role in the global warming and climate change. By increasing the COP of air conditioning systems the electricity demand of them reduced. One strategy for increasing the COP of air conditioning systems is using nanorefrigerants. In the present study, a comprehensive information is given regarding to use nanorefrigerants in air conditioning systems according to the theoretical, CFD and experimental review of the recent literature. This paper gives assistance to designers of air conditioning systems in their future efforts for selecting refrigerant for their systems

  8. Network-Centric Operations Case Study: Air-to-Air Combat With and Without Link 16

    National Research Council Canada - National Science Library

    Gonzales, Daniel; Hollywood, John; Kingston, Gina; Signori, David

    2005-01-01

    ...) Operational Special Project. In this exercise, the capabilities of F-15 air superiority aircraft equipped with voice-only communications were compared with F-15s equipped with voice and JTIDS Link 16 data link communications...

  9. Impact of climate change on commercial sector air conditioning energy consumption in subtropical Hong Kong

    International Nuclear Information System (INIS)

    Lam, Tony N.T.; Wan, Kevin K.W.; Wong, S.L.; Lam, Joseph C.

    2010-01-01

    Past and future trend of electricity use for air conditioning in the entire commercial sector in subtropical climates using 1979-2008 measured meteorological data as well as predictions for 2009-2100 from a general circulation model (MIROC3.2-H) was investigated. Air conditioning consumption showed an increasing trend over the past 30 years from 1979 to 2008. Principal component analysis (PCA) of measured and predicted monthly mean dry-bulb temperature, wet-bulb temperature and global solar radiation was conducted to determine a new climatic index Z for 1979-2008 and future 92 years (2009-2100) based on two emissions scenarios B1 and A1B (low and medium forcing). Through regression analysis, electricity use in air conditioning for the 92-year period was estimated. For low forcing, average consumption in 2009-2038, 2039-2068 and 2069-2100 would be, respectively, 5.7%, 12.8% and 18.4% more than the 1979-2008 average, with a mean 12.5% increase for the entire 92-year period. Medium forcing showed a similar increasing trend, but 1-4% more. Standard deviations of the monthly air conditioning consumption were found to be smaller suggesting possible reduction in seasonal variations in future years.

  10. The use of Functional Resonance Analysis Method (FRAM) in a mid-air collision to understand some characteristics of the air traffic management system resilience

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues de Carvalho, Paulo Victor, E-mail: paulov@ien.gov.br [National Nuclear Energy Commission/Nuclear Engineering Institute, Cidade Universitaria-Ilha do Fundao, Rio de Janeiro, RJ 21945-970 (Brazil)

    2011-11-15

    The Functional Resonance Analysis Model (FRAM) defines a systemic framework to model complex systems for accident analysis purposes. We use FRAM in the mid-air collision between flight GLO1907, a commercial aircraft Boeing 737-800, and flight N600XL, an executive jet EMBRAER E-145, to investigate key resilience characteristics of the Air Traffic Management System (ATM). This ATM system related accident occurred at 16:56 Brazilian time on September 29, 2006 in the Amazonian sky. FRAM analysis of flight monitoring functions showed system constraints (equipment, training, time, and supervision) that produce variability in system behavior, creating demand resources mismatches in an attempt to perceive and control the developing situation. This variability also included control and coordination breakdowns and automation surprises (TCAS functioning). The analysis showed that under normal variability conditions (without catastrophic failures) the ATM system (pilots, controllers, supervisors, and equipment) was not able to close the control loops of the flight monitoring functions using feedback or feedforward strategies to achieve an adequate control of an aircraft flying in the controlled air space. Our findings shed some light on the resilience of Brazilian ATM system operation and indicated that there is a need of a deeper understanding on how the system is actually functioning. - Highlights: > The Functional Resonance Analysis Model (FRAM) was used in a mid-air collision over Amazon. > The aim was to understand key resilience characteristics of the Air Traffic Management System (ATM). > The analysis showed how, under normal conditions, the system was not able to control flight functions. > The findings shed some light about the resilience of Brazilian ATM system operation.

  11. The use of Functional Resonance Analysis Method (FRAM) in a mid-air collision to understand some characteristics of the air traffic management system resilience

    International Nuclear Information System (INIS)

    Rodrigues de Carvalho, Paulo Victor

    2011-01-01

    The Functional Resonance Analysis Model (FRAM) defines a systemic framework to model complex systems for accident analysis purposes. We use FRAM in the mid-air collision between flight GLO1907, a commercial aircraft Boeing 737-800, and flight N600XL, an executive jet EMBRAER E-145, to investigate key resilience characteristics of the Air Traffic Management System (ATM). This ATM system related accident occurred at 16:56 Brazilian time on September 29, 2006 in the Amazonian sky. FRAM analysis of flight monitoring functions showed system constraints (equipment, training, time, and supervision) that produce variability in system behavior, creating demand resources mismatches in an attempt to perceive and control the developing situation. This variability also included control and coordination breakdowns and automation surprises (TCAS functioning). The analysis showed that under normal variability conditions (without catastrophic failures) the ATM system (pilots, controllers, supervisors, and equipment) was not able to close the control loops of the flight monitoring functions using feedback or feedforward strategies to achieve an adequate control of an aircraft flying in the controlled air space. Our findings shed some light on the resilience of Brazilian ATM system operation and indicated that there is a need of a deeper understanding on how the system is actually functioning. - Highlights: → The Functional Resonance Analysis Model (FRAM) was used in a mid-air collision over Amazon. → The aim was to understand key resilience characteristics of the Air Traffic Management System (ATM). → The analysis showed how, under normal conditions, the system was not able to control flight functions. → The findings shed some light about the resilience of Brazilian ATM system operation.

  12. Air pollution engineering

    Science.gov (United States)

    Maduna, Karolina; Tomašić, Vesna

    2017-11-01

    Air pollution is an environmental and a social problem which leads to a multitude of adverse effects on human health and standard of human life, state of the ecosystems and global change of climate. Air pollutants are emitted from natural, but mostly from anthropogenic sources and may be transported over long distances. Some air pollutants are extremely stable in the atmosphere and may accumulate in the environment and in the food chain, affecting human beings, animals and natural biodiversity. Obviously, air pollution is a complex problem that poses multiple challenges in terms of management and abatements of the pollutants emission. Effective approach to the problems of air pollution requires a good understanding of the sources that cause it, knowledge of air quality status and future trends as well as its impact on humans and ecosystems. This chapter deals with the complexities of the air pollution and presents an overview of different technical processes and equipment for air pollution control, as well as basic principles of their work. The problems of air protection as well as protection of other ecosystems can be solved only by the coordinated endeavors of various scientific and engineering disciplines, such as chemistry, physics, biology, medicine, chemical engineering and social sciences. The most important engineering contribution is mostly focused on development, design and operation of equipment for the abatement of harmful emissions into environment.

  13. A novel capacity controller for a three-evaporator air conditioning (TEAC) system for improved indoor humidity control

    International Nuclear Information System (INIS)

    Yan, Huaxia; Deng, Shiming; Chan, Ming-yin

    2016-01-01

    Highlights: • A novel capacity controller for TEAC systems for improved indoor humidity control is developed. • The novel controller was developed by integrating two previous control algorithms. • Experimental controllability tests were carried out. • Improved control over indoor humidity levels and higher energy efficiency can be achieved. - Abstract: Using a multi-evaporator air conditioning (MEAC) system to correctly control indoor air temperatures only in a multi-room application is already a challenging and difficult task, let alone the control of both indoor air temperature and humidity. This is because in an MEAC system, a number of indoor units are connected to a common condensing unit. Hence, the interferences among operation parameters of different indoor units would make the desired control of an MEAC system hard to realize. Limited capacity control algorithms for MEAC systems have been developed, with most of them focusing only on the control of indoor air temperature, and no previous studies involving control of indoor air humidity using MEAC systems can be identified. In this paper, the development of a novel capacity controller for a three-evaporator air conditioning (TEAC) system for improved indoor air humidity control is reported. The novel controller was developed by integrating two previous control algorithms for a dual-evaporator air conditioning system for temperature control and for a single-evaporator air conditioning system for improved indoor humidity control. Experimental controllability tests were carried out and the controllability test results showed that, with the novel controller, improved control over indoor humidity levels and better energy efficiency for a TEAC system could be obtained as compared to the traditional On–Off controllers extensively used by MEAC systems.

  14. Complex dynamics and chaos control of duopoly Bertrand model in Chinese air-conditioning market

    International Nuclear Information System (INIS)

    Yi, Qi Guo; Zeng, Xiang Jin

    2015-01-01

    Highlights: •A dynamic duopoly Bertrand model with bounded rationality and quadratic cost function. •In Chinese air-conditioning market the boundary equilibrium point is locally stable. •The Lyapunov dimension of the chaos attractor is 1.9585. •The adjustment speeds may cause a market structure to behave chaotically. •The chaotic behavior can be controlled by decreasing the degree of substitutability. -- Abstract: A dynamic duopoly Bertrand model with quadratic cost function which is closer to reality and different from previous researches is discussed. The model is applied into air-conditioning market where the boundary equilibrium point is locally stable. Numerical simulations illustrate that the stability of Nash equilibrium strongly depends on the speed of adjustment of bounded rational player. The adjustment speeds and the degree of substitutability may undermine the stability of the equilibrium and cause a market structure to behave chaotically. The Lyapunov dimension of the chaos attractor is 1.9585 under some conditions. The stabilization of the chaotic behavior can be obtained by reducing the degree of substitutability. The results have an important theoretical and practical significance to Chinese air-conditioning market

  15. Radiation protection instrumentation. Monitoring equipment. Radioactive aerosols in the environment

    International Nuclear Information System (INIS)

    1996-01-01

    This international standard applies to portable or installed equipment for continuous monitoring of radioactive aerosols in the environment in normal and emergency conditions. Monitoring involves continuous sampling and, where desirable, automatic start of sampling. The document applies particularly to the following assignments: (i) determination of the volume activity of radionuclides in the form of aerosols, either per time unit, along with its time changes, or in the integral form over a longer time period such as 24 h, and measurement of the volume sampled; (ii) triggering a warning alarm signal if the preset volume activity or time integral of the volume activity of aerosols has been exceeded. The document deals with radioactive aerosol monitor design, testing procedures, and documentation. Appended tables refer to the reference and normal testing conditions, tests in normal testing conditions, tests during changes of the affecting quantities, and tests of the air circuit. (P.A.)

  16. The chosen needs of Polish restructured coal mines concerning the ventilation and struggling against gas, dust and air-conditioning dangers

    Energy Technology Data Exchange (ETDEWEB)

    Matuszewski, K. [Rudzka Coal Company (Poland)

    2001-07-01

    In this paper the selected needs of Polish coal mines with regard to their ventilation, minimisation of gas, dust and air-shortage dangers are presented. As far as ventilation is concerned: the need to broaden the use of the synchronic inverter cascades for speed regulation of main fans and the delivery of ventilation air duct to ensure a delivery of 11,117 m{sup 3}/s (6,5011,000 m{sup 3}/min) has been shown. As far as gas dangers are concerned there exists a need for the dissemination of dispatcher's help systems, training safety personnel in use of so called synoptic display table, a supply of 0,8311,67 m{sup 3}/s (501,100 m{sup 3}/min) of nitrogen in gaseous state for fire prevention as well as the use of modern mineral and chemical means have been mentioned. In order to help to reduce the dust danger the projected need for a modern generation of dry or wet dust collectors enabling a reduction in dustiness to NDS standards and equipping all longwalls with cutting machines with permanent and working installations of internal sprinklers have been postulated. In the case of air conditioning, the need to install 300 kW movable coolers with 300 kW single gear fans for the supply of 10 m{sup 3}/s (600 m{sup 3}/min) and an overall air pressure increase from 1600 to 2000 Pa has been presented. In the most dangerous coal mines attention has been drawn to the need for the installation and application of stationery coolers operating intermittently. 6 refs.

  17. Methods of equipment choice in shotcreting

    Science.gov (United States)

    Sharapov, R. R.; Yadykina, V. V.; Stepanov, M. A.; Kitukov, B. A.

    2018-03-01

    Shotcrete is widely used in architecture, hydraulic engineering structures, finishing works in tunnels, arc covers and ceilings. The problem of the equipment choice in shotcreting is very important. The main issues influencing the equipment choice are quality improvement and intensification of shotcreting. Main parameters and rational limits of technological characteristic of machines used in solving different problems in shotcreting are described. It is suggested to take into account peculiarities of shotcrete mixing processes and peculiarities of applying these mixtures with compressed air kinetic energy. The described method suggests choosing a mixer with the account of energy capacity, Reynolds number and rotational frequency of the mixing drum. The suggested choice procedure of the equipment nomenclature allows decreasing exploitation costs, increasing the quality of shotcrete and shotcreting in general.

  18. Health risk air-conditioning system; Insufficient maintenance increases the risk of illness. Gesundheitsrisiko Klimaanlagen; Unzureichende Wartung erhoeht das Erkrankungsrisiko

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1994-01-01

    In Germany every fifth employee who works in air-conditioned rooms complains about headache, an increased proneness to colds and influenza infections as well as allergic reactions. These troubles are often caused by the insufficient maintenance of air-conditioning systems. At present only 15% of the estimated annual demand for maintenance of space hvac-systems is actually carried out. Problematic in case of air-conditioning systems are the so-called air washers used for air humidification which can become an ideal cultur medium for microorganisms. A second problematic area are the often very dirty filters. But health risks can be avoided with regular expert maintenance alone. As first step an analysis of the causes of faults is proposed. (BWI)

  19. [Study on air quality and pollution meteorology conditions of Guangzhou during the 2010 Asian games].

    Science.gov (United States)

    Li, Ting-Yuan; Deng, Xue-Jiao; Fan, Shao-Jia; Wu, Dui; Li, Fei; Deng, Tao; Tan, Hao-Bo; Jiang, De-Hai

    2012-09-01

    Based on the monitoring data of NO2, O3, SO2, PM, visibility, regional air quality index (RAQI) and the atmospheric transport and diffusion data from Nov. 4, 2010 to Dec. 10, 2010 in Guangzhou area, the variations of air quality and meteorological conditions during the Guangzhou Asian Games were analyzed. It was found that, during the Asian Games, the air quality was better than the air quality before or after the Asian Games. The visibility was greater than the visibility before or after the Asian Games, while the concentrations of PM1 and PM2.5 were lower. The correlation coefficient between visibility and the concentrations of PM1, PM2.5 indicated anti-correlation relationships. Daily and hourly concentrations of NO2 and SO2 met the primary ambient air quality standards, whereas the daily concentration of PM10 and hourly concentration of O3 met the secondary ambient air quality standards. Pollutants had been well controlled during the Asian Games. The concentration of SO2 in Guangzhou was influenced by local sources and long distance transmission, while the concentration of NO2 was significantly influenced by local sources. The emissions of NO2, SO2 and PM10 surrounding Guangzhou had a trend to affect the concentrations in Guangzhou, but the situation of O3 was opposite, the relatively high concentration of O3 in Guangzhou had tendency to be transported to the surrounding areas. The pollution meteorology conditions in the period of Asian Games were better than the conditions before or after the Asian Games. The decrease in the concentrations during the Asian Games did not only benefit from the emission control by the government, but also from the good meteorological conditions.

  20. Radioactive air sampling methods

    CERN Document Server

    Maiello, Mark L

    2010-01-01

    Although the field of radioactive air sampling has matured and evolved over decades, it has lacked a single resource that assimilates technical and background information on its many facets. Edited by experts and with contributions from top practitioners and researchers, Radioactive Air Sampling Methods provides authoritative guidance on measuring airborne radioactivity from industrial, research, and nuclear power operations, as well as naturally occuring radioactivity in the environment. Designed for industrial hygienists, air quality experts, and heath physicists, the book delves into the applied research advancing and transforming practice with improvements to measurement equipment, human dose modeling of inhaled radioactivity, and radiation safety regulations. To present a wide picture of the field, it covers the international and national standards that guide the quality of air sampling measurements and equipment. It discusses emergency response issues, including radioactive fallout and the assets used ...

  1. Automatic monitoring of vibration welding equipment

    Science.gov (United States)

    Spicer, John Patrick; Chakraborty, Debejyo; Wincek, Michael Anthony; Wang, Hui; Abell, Jeffrey A; Bracey, Jennifer; Cai, Wayne W

    2014-10-14

    A vibration welding system includes vibration welding equipment having a welding horn and anvil, a host device, a check station, and a robot. The robot moves the horn and anvil via an arm to the check station. Sensors, e.g., temperature sensors, are positioned with respect to the welding equipment. Additional sensors are positioned with respect to the check station, including a pressure-sensitive array. The host device, which monitors a condition of the welding equipment, measures signals via the sensors positioned with respect to the welding equipment when the horn is actively forming a weld. The robot moves the horn and anvil to the check station, activates the check station sensors at the check station, and determines a condition of the welding equipment by processing the received signals. Acoustic, force, temperature, displacement, amplitude, and/or attitude/gyroscopic sensors may be used.

  2. Using Hydrated Salt Phase Change Materials for Residential Air Conditioning Peak Demand Reduction and Energy Conservation in Coastal and Transitional Climates in the State of California

    Science.gov (United States)

    Lee, Kyoung Ok

    The recent rapid economic and population growth in the State of California have led to a significant increase in air conditioning use, especially in areas of the State with coastal and transitional climates. This fact makes that the electric peak demand be dominated by air conditioning use of residential buildings in the summer time. This extra peak demand caused by the use of air conditioning equipment lasts only a few days out of the year. As a result, unavoidable power outages have occurred when electric supply could not keep up with such electric demand. This thesis proposed a possible solution to this problem by using building thermal mass via phase change materials to reduce peak air conditioning demand loads. This proposed solution was tested via a new wall called Phase Change Frame Wall (PCFW). The PCFW is a typical residential frame wall in which Phase Change Materials (PCMs) were integrated to add thermal mass. The thermal performance of the PCFWs was first evaluated, experimentally, in two test houses, built for this purpose, located in Lawrence, KS and then via computer simulations of residential buildings located in coastal and transitional climates in California. In this thesis, a hydrated salt PCM was used, which was added in concentrations of 10% and 20% by weight of the interior sheathing of the walls. Based on the experimental results, under Lawrence, KS weather, the PCFWs at 10% and 20% of PCM concentrations reduced the peak heat transfer rates by 27.0% and 27.3%, on average, of all four walls, respectively. Simulated results using California climate data indicated that PCFWs would reduce peak heat transfer rates by 8% and 19% at 10% PCM concentration and 12.2% and 27% at 20% PCM concentration for the coastal and transitional climates, respectively. Furthermore, the PCFWs, at 10% PCM concentration, would reduce the space cooling load and the annual energy consumption by 10.4% and 7.2%, on average in both climates, respectively.

  3. Case Based Asset Maintenance for the Electric Equipment

    International Nuclear Information System (INIS)

    Kim, Ji-Hyeon; Jung, Jae-Cheon; Chang, Young-Woo; Chang, Hoon-Seon; Kim, Jae-Cheol; Kim, Hang-Bae; Kim, Kyu-Ho; Hur, Yong; Lee, Dong-Chul

    2006-01-01

    The electric equipment maintenance strategies are changing from PM(Preventive Maintenance) or CM(Corrective Maintenance) to CBM(Condition Based Maintenance). The main benefits of CBM are reduced possibility of service failures of critical equipment and reduced costs or maintenance work. In CBM, the equipment status need to be monitored continuously and a decision should be made whether an equipment need to be repaired or replaced. For the maintenance decision making, the CBR(Case Base Reasoning) system is introduced. The CBR system receives the current equipment status and retrieves the case based historic database to determine any possible equipment failure under current conditions. In retrieving the case based historic data, the suggested DSS(Decision Support System) uses a reasoning engine with an equipment/asset ontology that describes the equipment subsumption relationships

  4. An Updated Methodology for Enhancing Risk Monitors with Integrated Equipment Condition Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hirt, Evelyn H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Coles, Garill A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bonebrake, Christopher A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ivans, William J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wootan, David W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mitchell, Mark R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-07-18

    Small modular reactors (SMRs) generally include reactors with electric output of ~350 MWe or less (this cutoff varies somewhat but is substantially less than full-size plant output of 700 MWe or more). Advanced SMRs (AdvSMRs) refer to a specific class of SMRs and are based on modularization of advanced reactor concepts. Enhancing affordability of AdvSMRs will be critical to ensuring wider deployment, as AdvSMRs suffer from loss of economies of scale inherent in small reactors when compared to large (~greater than 600 MWe output) reactors and the controllable day-to-day costs of AdvSMRs will be dominated by operation and maintenance (O&M) costs. Technologies that help characterize real-time risk are important for controlling O&M costs. Risk monitors are used in current nuclear power plants to provide a point-in-time estimate of the system risk given the current plant configuration (e.g., equipment availability, operational regime, and environmental conditions). However, current risk monitors are unable to support the capability requirements listed above as they do not take into account plant-specific normal, abnormal, and deteriorating states of active components and systems. This report documents technology developments towards enhancing risk monitors that, if integrated with supervisory plant control systems, can provide the capability requirements listed and meet the goals of controlling O&M costs. The report describes research results on augmenting an initial methodology for enhanced risk monitors that integrate real-time information about equipment condition and POF into risk monitors. Methods to propagate uncertainty through the enhanced risk monitor are evaluated. Available data to quantify the level of uncertainty and the POF of key components are examined for their relevance, and a status update of this data evaluation is described. Finally, we describe potential targets for developing new risk metrics that may be useful for studying trade-offs for economic

  5. Semi-empiric model of an air cooled cabinet air conditioner for the dynamic analysis of the building and acclimation systems integrated behaviour; Modelo semi-empirico de condicionador de gabinete resfriado a ar para analise dinamica do comportamento integrado de edificacoes e sistemas de climatizacao

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Jorge E. [Para Univ., Belem (Brazil). Dept. de Engenharia Mecanica]. E-mail: jecorrea@amazon.com.br; Melo, Claudio. E-mail: melo@nrva.ufsc.br; Negrao, Cezar O. R. E-mail: negrao@energia.damec.cefetpr.br

    2000-07-01

    This work presents a semi-empirical model for a air cooled case air conditioner. This model is to be inserted in the EPS-r program (Environmental System Performance - research version) allowing the dynamic analysis of the integrated behaviour of buildings and acclimation systems using this equipment. Results obtained from simulations under the operation conditions existing in Brazil are analysed.

  6. [Hygienic assessment of a recirculatory combined air-conditioning extract-and-input system in office building].

    Science.gov (United States)

    Malysheva, A G; Abramov, E G

    2006-01-01

    The high concentrations of lead were reveled in the air and dust of some premises and on the filters of a combined air-conditioning extract-and-input system in the high-rise office buildings located in the ecologically lead favorable environment. The dust content of lead in some premises on the first floors dust was as high as 200 mg/kg, which was more than 6 times higher than that in the soil at the highway near the office buildings. The use of new technologies and devices for cleaning and optimizing the air in the premises requires analytical studies to assess the quality of the environment, by taking into account the optimal conditions of their operation.

  7. Skin sites to predict deep-body temperature while wearing firefighters' personal protective equipment during periodical changes in air temperature.

    Science.gov (United States)

    Kim, Siyeon; Lee, Joo-Young

    2016-04-01

    The aim of this study was to investigate stable and valid measurement sites of skin temperatures as a non-invasive variable to predict deep-body temperature while wearing firefighters' personal protective equipment (PPE) during air temperature changes. Eight male firefighters participated in an experiment which consisted of 60-min exercise and 10-min recovery while wearing PPE without self-contained breathing apparatus (7.75 kg in total PPE mass). Air temperature was periodically fluctuated from 29.5 to 35.5 °C with an amplitude of 6 °C. Rectal temperature was chosen as a deep-body temperature, and 12 skin temperatures were recorded. The results showed that the forehead and chest were identified as the most valid sites to predict rectal temperature (R(2) = 0.826 and 0.824, respectively) in an environment with periodically fluctuated air temperatures. This study suggests that particular skin temperatures are valid as a non-invasive variable when predicting rectal temperature of an individual wearing PPE in changing ambient temperatures. Practitioner Summary: This study should offer assistance for developing a more reliable indirect indicating system of individual heat strain for firefighters in real time, which can be used practically as a precaution of firefighters' heat-related illness and utilised along with physiological monitoring.

  8. Ice thermal storage air conditioning system for electric load leveling; Denryoku heijunka to hyochikunetsu system

    Energy Technology Data Exchange (ETDEWEB)

    Shigenaga, Y. [Daikin Industries Ltd., Osaka (Japan)

    1998-08-15

    Thermal storage air conditioning system is the one to use energy stored into thermal storing materials by using night electric power and to operate effective air conditioning. Therefore, as load can be treated by the stored energy, volume of the apparatus can be reduced. And, by reduction of the consumed power at day time, it can contribute to leveling of electric power demand. In general, there are two types in the thermal storage method: one is a method to store as thermal energy, and the other is that to store as chemical energy. For conditions required for the storing materials, important elements on their actual uses are not only physical properties such as large thermal storage per unit and easy thermal in- and out-puts, but also safety, long-term reliability, and easy receiving and economics containing future. The ice thermal storage air conditioning system is classified at the viewpoint of type of ice, kind of thermal storing medium, melting method on using cooling and heating, kinds of thermal medium on cooling and heating. 3 refs., 5 figs., 2 tabs.

  9. Characteristics of radon and its progeny concentrations in air-conditioned office buildings in Tokyo

    International Nuclear Information System (INIS)

    Tokonami, S.; Furukawa, M.; Shicchi, Y.; Sanada, T.; Yamada, Y.

    2003-01-01

    A series of measurements were carried out to understand the characteristics of radon and its progeny in air-conditioned office buildings. Long-term measurements of radon were made with etched track detectors. Continuous measurements of radon and its progeny concentrations were also conducted in some buildings to study their temporal variations. The results show that radon and its progeny concentrations routinely varied along with working activities. They are generally low while people are working, due to air conditioning, whereas they rise steadily after the air conditioning stops. When considering action levels not only in homes but also workplaces, attention should be paid to annual doses from the viewpoint of radiation protection. The annual dose is generally estimated with a long-term measurement of radon concentration using a passive device such as an etched track detector. Since its reading corresponds to a long-term average concentration regardless of working hours, the annual dose will be overestimated. When comparing a real dose after considering the working hours, they differ by a factor of more than 2. (author)

  10. Correlation between meteorological conditions and the concentration of radionuclides in the ground layer of atmospheric air

    International Nuclear Information System (INIS)

    Krajny, E.; Osrodka, L.; Wojtylak, M.; Michalik, B.; Skowronek, J.

    2001-01-01

    The main goal of this work was to find correlation between the concentrations of radionuclides in outdoor air and the meteorological conditions like: atmospheric pressure, wind velocity and amount of precipitation. Because the sampling period of radionuclides concentrations in air was relatively long (7 days), the average levels of meteorological parameters have been calculated within the same time. Data of radionuclide concentrations and meteorological data have been analyzed in order to find statistical correlation. The regression analysis and one of AI methods, known as neural network, were applied. In general, analysis of the gathered data does not show any strong correlation between the meteorological conditions and the concentrations of the radionuclides in air. A slightly stronger correlation we found for radionuclides with relatively short half-lives. The only positive correlation has been found between the 7 Be concentration and air temperature (at the significance level α = 0.05). In our opinion, the lack of correlation was caused by a too long sampling time in measurements of radionuclides in outdoor air (a whole week). Results of analysis received by means of the artificial neuron network are better. We were able to find certain groups of meteorological conditions, related with the corresponding concentrations of particular radionuclides in air. Preliminary measurements of radon progeny concentration support the thesis that the link between changes of meteorological parameters and concentrations of radionuclides in ambient air must exist. (author)

  11. Effect of real-time boundary wind conditions on the air flow and pollutant dispersion in an urban street canyon—Large eddy simulations

    Science.gov (United States)

    Zhang, Yun-Wei; Gu, Zhao-Lin; Cheng, Yan; Lee, Shun-Cheng

    2011-07-01

    Air flow and pollutant dispersion characteristics in an urban street canyon are studied under the real-time boundary conditions. A new scheme for realizing real-time boundary conditions in simulations is proposed, to keep the upper boundary wind conditions consistent with the measured time series of wind data. The air flow structure and its evolution under real-time boundary wind conditions are simulated by using this new scheme. The induced effect of time series of ambient wind conditions on the flow structures inside and above the street canyon is investigated. The flow shows an obvious intermittent feature in the street canyon and the flapping of the shear layer forms near the roof layer under real-time wind conditions, resulting in the expansion or compression of the air mass in the canyon. The simulations of pollutant dispersion show that the pollutants inside and above the street canyon are transported by different dispersion mechanisms, relying on the time series of air flow structures. Large scale air movements in the processes of the air mass expansion or compression in the canyon exhibit obvious effects on pollutant dispersion. The simulations of pollutant dispersion also show that the transport of pollutants from the canyon to the upper air flow is dominated by the shear layer turbulence near the roof level and the expansion or compression of the air mass in street canyon under real-time boundary wind conditions. Especially, the expansion of the air mass, which features the large scale air movement of the air mass, makes more contribution to the pollutant dispersion in this study. Comparisons of simulated results under different boundary wind conditions indicate that real-time boundary wind conditions produces better condition for pollutant dispersion than the artificially-designed steady boundary wind conditions.

  12. Residential solar air conditioning: Energy and exergy analyses of an ammonia–water absorption cooling system

    International Nuclear Information System (INIS)

    Aman, J.; Ting, D.S.-K.; Henshaw, P.

    2014-01-01

    Large scale heat-driven absorption cooling systems are available in the marketplace for industrial applications but the concept of a solar driven absorption chiller for air-conditioning applications is relatively new. Absorption chillers have a lower efficiency than compression refrigeration systems, when used for small scale applications and this restrains the absorption cooling system from air conditioning applications in residential buildings. The potential of a solar driven ammonia–water absorption chiller for residential air conditioning application is discussed and analyzed in this paper. A thermodynamic model has been developed based on a 10 kW air cooled ammonia–water absorption chiller driven by solar thermal energy. Both energy and exergy analyses have been conducted to evaluate the performance of this residential scale cooling system. The analyses uncovered that the absorber is where the most exergy loss occurs (63%) followed by the generator (13%) and the condenser (11%). Furthermore, the exergy loss of the condenser and absorber greatly increase with temperature, the generator less so, and the exergy loss in the evaporator is the least sensitive to increasing temperature. -- Highlights: • 10 kW solar thermal driven ammonia–water air cooled absorption chiller is investigated. • Energy and exergy analyses have been done to enhance the thermal performance. • Low driving temperature heat sources have been optimized. • The efficiencies of the major components have been evaluated

  13. The Histoty of Ventilation and Air Conditioning: is CERN Up to Date with the latest Technological Developments?

    OpenAIRE

    Kühnl-Kinel, J

    2000-01-01

    The invention of ventilation cannot be ascribed to a certain date. It started with simple aeration when man brought fire into his abode and continued through different stages including air cooling using ice to finally arrive at the time when ventilation and air conditioning has become an essential part of our life and plays an important role in human evolution. This paper presents the history of ventilation and air conditioning, explains the key constraints over the centuries, and shows its i...

  14. The effect of a personalized ventilation system on perceived air quality and SBS symptoms

    DEFF Research Database (Denmark)

    Kaczmarczyk, Jan; Zeng, Q.; Melikov, Arsen Krikor

    2002-01-01

    Perceived air quality, SBS symptoms and performance were studied with 30 human subjects. Experiments were performed in an office set-up with six workplaces, each equipped with a Personalized Ventilation System (PVS). Each PVS allowed the amount of supply air and its direction to be controlled...... condition in regard to perceived air quality, perception of freshness and intensity of SBS symptoms was when PVS supplied outdoor air at 20 deg.C. Perceived air quality in this case was significantly better (p....... Subjects participated in four experiments: (1) PVS supplying outdoor air at 20 deg.C; (2) PVS supplying outdoor air at 23 deg.C; (3) PVS supplying recirculated room air; and (4) mixing ventilation. Room temperature was kept constant at 23 deg.C and relative humidity at 30%. Results showed that the best...

  15. Remote monitoring of air movement through a high-rise, brick veneer and steel-stud wall system

    Energy Technology Data Exchange (ETDEWEB)

    Niemeyer, T.A.; Genge, G.R. [GRG Building Consultants Inc. (Canada)

    2011-07-01

    Since the early 20th century, research on building enclosures has been going on in the form of field investigations and laboratory testing, but real-time monitoring of buildings is relatively new. Compact sensors and programmable data logging equipment have allowed thorough, real-time trend analysis of occupied buildings. This paper discusses the remote monitoring of air movement using a high-rise brick veneer and steel-stud wall system. This equipment was installed across the exterior wall assembly. Temperature and air moisture content within the stud cavity and outdoor to indoor air pressure difference was measured across the entire assembly and in series across the various components of the wall. For outdoor conditions, local airport weather records were used. Comparing collected temperature data and the theoretical thermal model, it was concluded that there was air leakage. From the overall project, lessons learned included that is was important to minimize discomfort, both in aesthetics and in the number of requests for access to homes for analyses.

  16. Measure Guideline: Air Conditioner Diagnostics, Maintenance, and Replacement

    Energy Technology Data Exchange (ETDEWEB)

    Springer, D.; Dakin, B.

    2013-03-01

    This guideline responds to the need for an efficient means of identifying, diagnosing, and repairing faults in air conditioning systems in existing homes that are undergoing energy upgrades. Inadequate airflow due to constricted ducts or undersized filters, improper refrigerant charge, and other system defects can be corrected at a fraction of the cost of equipment replacement and can yield significant savings. The guideline presents a two-step approach to diagnostics and repair.

  17. Measure Guideline. Air Conditioner Diagnostics, Maintenance, and Replacement

    Energy Technology Data Exchange (ETDEWEB)

    Springer, David [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Dakin, Bill [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2013-03-01

    This guideline responds to the need for an efficient means of identifying, diagnosing, and repairing faults in air conditioning systems in existing homes that are undergoing energy upgrades. Inadequate airflow due to constricted ducts or undersized filters, improper refrigerant charge, and other system defects can be corrected at a fraction of the cost of equipment replacement and can yield significant savings. The guideline presents a two-step approach to diagnostics and repair.

  18. Liquid over-feeding air conditioning system and method

    Science.gov (United States)

    Mei, Viung C.; Chen, Fang C.

    1993-01-01

    A refrigeration air conditioning system utilizing a liquid over-feeding operation is described. A liquid refrigerant accumulator-heat exchanger is placed in the system to provide a heat exchange relationship between hot liquid refrigerant discharged from condenser and a relatively cool mixture of liquid and vaporous refrigerant discharged from the evaporator. This heat exchange relationship substantially sub-cools the hot liquid refrigerant which undergoes little or no evaporation across the expansion device and provides a liquid over-feeding operation through the evaporator for effectively using 100 percent of evaporator for cooling purposes and for providing the aforementioned mixture of liquid and vaporous refrigerant.

  19. Exergy analysis of a centralized air conditioning system for ice water

    International Nuclear Information System (INIS)

    Armas, Juan C; Lapido, Margarita J; Castellanos, Juan A

    2006-01-01

    An exergetic analysis of a centralized system of air conditioning, based on a vapor compression refrigeration cycle, appears in this article. The investigation allows to calculate the irreversibilities (exergy destruction) in the main components of the refrigeration cycle as well as to evaluate the sensitivity of this indicator when the operating conditions changes. As main result the most sensible components of the cycle are identified, information that will be useful in order to define strategies of operation focused to the power efficiency increase.

  20. Exergy storage to exploit solar energy in air conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Navarrete-Gonzalez, J.J.; Torres-Reyes, E. [Guanajuato Univ., Guanajuato (Mexico). Inst. de Investigaciones Cientificas; Cervantes-de Gortari, J.G. [Univ. of Cuidad, Mexico City (Mexico). Dept. de Termoenergia y Mejoramiento Ambiental

    2006-07-01

    A thermodynamic procedure was developed to analyze the exergy of a rock bed thermal storage unit that used solar power to acclimatize a pig farm. Thermal behaviour was described by means of a control volume that included the entire system and assumed a unidirectional air flow and an adiabatic process. The thermodynamic properties of the system were determined as a function of the experimental temperature profiles developed during thermal storage from solar to thermal energy conversion provided by a solar collector at a fixed mass rate of air flow. Experimental data were used to calculate the energy yield and to determine the entropy generation inside the system. The aim of the study was to determine how well the thermodynamic model matched the real data obtained experimentally during normal operating conditions. Results indicated that an exergy accumulation existed inside the control volume, which was the net result of the energy gain during the heating process. However, entropy generation due to irreversibilities was studied for just 1 air flow. Further research is needed to establish a semi-empirical model of the process with the minimum of entropy generation. It was concluded that the thermal energy storage system was suitable for use in pig farms. 5 refs., 8 figs.