WorldWideScience

Sample records for air battery development

  1. Metal-air battery research and development

    Science.gov (United States)

    Behrin, E.; Cooper, J. F.

    1982-05-01

    This report summarizes the activities of the Metal-air Battery Program during the calendar year 1981. The principal objective is to develop a refuelable battery as an automotive energy source for general-purpose electric vehicles and to conduct engineering demonstrations of its ability to provide vehicles with the range, acceleration, and rapid refueling capability of current internal-combustion-engine automobiles. The second objective is to develop an electrically-rechargeable battery for specific-mission electric vehicles, such as commuter vehicles, that can provide low-cost transportation. The development progression is to: (1) develop a mechanically rechargeable aluminum-air power cell using model electrodes, (2) develop cost-effective anode and cathode materials and structures as required to achieve reliability and efficiency goals, and to establish the economic competitiveness of this technology, and (3) develop and integrated propulsion system utilizing the power cell.

  2. High Performance Cathodes for Li-Air Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Yangchuan

    2013-08-22

    The overall objective of this project was to develop and fabricate a multifunctional cathode with high activities in acidic electrolytes for the oxygen reduction and evolution reactions for Li-air batteries. It should enable the development of Li-air batteries that operate on hybrid electrolytes, with acidic catholytes in particular. The use of hybrid electrolytes eliminates the problems of lithium reaction with water and of lithium oxide deposition in the cathode with sole organic electrolytes. The use of acid electrolytes can eliminate carbonate formation inside the cathode, making air breathing Li-air batteries viable. The tasks of the project were focused on developing hierarchical cathode structures and bifunctional catalysts. Development and testing of a prototype hybrid Li-air battery were also conducted. We succeeded in developing a hierarchical cathode structure and an effective bifunctional catalyst. We accomplished integrating the cathode with existing anode technologies and made a pouch prototype Li-air battery using sulfuric acid as catholyte. The battery cathodes contain a nanoscale multilayer structure made with carbon nanotubes and nanofibers. The structure was demonstrated to improve battery performance substantially. The bifunctional catalyst developed contains a conductive oxide support with ultra-low loading of platinum and iridium oxides. The work performed in this project has been documented in seven peer reviewed journal publications, five conference presentations, and filing of two U.S. patents. Technical details have been documented in the quarterly reports to DOE during the course of the project.

  3. Metal-air batteries with high energy density: Li-air versus Zn-air

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jang-Soo; Sun, Tai Kim; Cao, Ruiguo; Choi, Nam-Soon; Lee, Kyu Tae; Cho, Jaephil [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), Ulsan (Korea, Republic of); Liu, Meilin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA (United States)

    2011-01-01

    In the past decade, there have been exciting developments in the field of lithium ion batteries as energy storage devices, resulting in the application of lithium ion batteries in areas ranging from small portable electric devices to large power systems such as hybrid electric vehicles. However, the maximum energy density of current lithium ion batteries having topatactic chemistry is not sufficient to meet the demands of new markets in such areas as electric vehicles. Therefore, new electrochemical systems with higher energy densities are being sought, and metal-air batteries with conversion chemistry are considered a promising candidate. More recently, promising electrochemical performance has driven much research interest in Li-air and Zn-air batteries. This review provides an overview of the fundamentals and recent progress in the area of Li-air and Zn-air batteries, with the aim of providing a better understanding of the new electrochemical systems. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. The development of aluminum-air batteries for application in electric vehicles

    Science.gov (United States)

    Rudd, E. J.; Lott, S.

    1990-12-01

    The recently concluded program, jointly funded by ELTECH Research Corporation and the Department of Energy, focused upon the development of an aluminum-air battery system for electric vehicle applications. The operation of the aluminum-air battery involves the dissolution of aluminum to produce a current and aluminate. Initially the objectives were to evaluate and optimize the battery design that was developed prior to this program (designated as the B300 cell) and to design and evaluate the components of the auxiliary system. During the program, three additional tasks were undertaken, addressing needs identified by ELTECH and by Sandia National Laboratories. First, the capability to produce aluminum alloys as relatively large ingots (100 to 150 lbs), with the required electrochemical performance, was considered essential to the development of the battery. The second additional task was the adoption of an advanced cell (designated as the AT400 cell), designed by ELTECH in a different program. Finally, it was recognized that a system model would allow evaluation of the interactions of the several unit operations involved in the battery. Therefore, the development of a mathematical model, based upon material and energy balances for the battery, was undertaken. At a systems level, sufficient information was obtained in the completion of this program to support the design, fabrication and operation of a batch or solids-free battery system. For the first time, the components of the auxiliary system, i.e., a heat exchanger, carbon dioxide scrubber and hydrogen disposal technology, have been defined for a vehicle battery. Progress on each component or system is summarized in the following sections.

  5. Current status of the development of the refuelable aluminum-air battery

    Science.gov (United States)

    Cooper, J. F.; Kraftick, K. A.; McKinley, B. J.

    1983-05-01

    The technical status of a refuelable aluminum air battery using flowing caustic aluminate electrolyte at 50 to 700 C is reviewed. Four distinct designs for rapidly refuelable cells were evaluated in single or multicell modules on an engineering scale (167 to 1000 cm(2)/cell). Consideration is given to cells of the wedge configuration, which allow partial recharge, high anode utilization, and rapid refueling. Kinetic models developed for aluminum trihydroxide precipitation are used to predict the behavior of integrated cell/crystallizer systems. Drive cycle life and polarization data are reviewed for air electrodes under simulated vehicle operating conditions. Problems in the development of cost effective anode alloys are described. These results are interpreted from the perspective of the potential of an aluminum air battery to provide an electric vehicle with the range, acceleration and rapid refueling capabilities of common automobiles.

  6. Modeling aluminum-air battery systems

    Science.gov (United States)

    Savinell, R. F.; Willis, M. S.

    The performance of a complete aluminum-air battery system was studied with a flowsheet model built from unit models of each battery system component. A plug flow model for heat transfer was used to estimate the amount of heat transferred from the electrolyte to the air stream. The effect of shunt currents on battery performance was found to be insignificant. Using the flowsheet simulator to analyze a 100 cell battery system now under development demonstrated that load current, aluminate concentration, and electrolyte temperature are dominant variables controlling system performance. System efficiency was found to decrease as both load current and aluminate concentration increases. The flowsheet model illustrates the interdependence of separate units on overall system performance.

  7. Iron-Air Rechargeable Battery

    Science.gov (United States)

    Narayan, Sri R. (Inventor); Prakash, G.K. Surya (Inventor); Kindler, Andrew (Inventor)

    2014-01-01

    Embodiments include an iron-air rechargeable battery having a composite electrode including an iron electrode and a hydrogen electrode integrated therewith. An air electrode is spaced from the iron electrode and an electrolyte is provided in contact with the air electrode and the iron electrodes. Various additives and catalysts are disclosed with respect to the iron electrode, air electrode, and electrolyte for increasing battery efficiency and cycle life.

  8. Recent progress in rechargeable alkali metalâair batteries

    OpenAIRE

    Xin Zhang; Xin-Gai Wang; Zhaojun Xie; Zhen Zhou

    2016-01-01

    Rechargeable alkali metalâair batteries are considered as the most promising candidate for the power source of electric vehicles (EVs) due to their high energy density. However, the practical application of metalâair batteries is still challenging. In the past decade, many strategies have been purposed and explored, which promoted the development of metalâair batteries. The reaction mechanisms have been gradually clarified and catalysts have been rationally designed for air cathodes. In this ...

  9. Development of efficient air-cooling strategies for lithium-ion battery module based on empirical heat source model

    International Nuclear Information System (INIS)

    Wang, Tao; Tseng, K.J.; Zhao, Jiyun

    2015-01-01

    Thermal modeling is the key issue in thermal management of lithium-ion battery system, and cooling strategies need to be carefully investigated to guarantee the temperature of batteries in operation within a narrow optimal range as well as provide cost effective and energy saving solutions for cooling system. This article reviews and summarizes the past cooling methods especially forced air cooling and introduces an empirical heat source model which can be widely applied in the battery module/pack thermal modeling. In the development of empirical heat source model, three-dimensional computational fluid dynamics (CFD) method is employed, and thermal insulation experiments are conducted to provide the key parameters. A transient thermal model of 5 × 5 battery module with forced air cooling is then developed based on the empirical heat source model. Thermal behaviors of battery module under different air cooling conditions, discharge rates and ambient temperatures are characterized and summarized. Varies cooling strategies are simulated and compared in order to obtain an optimal cooling method. Besides, the battery fault conditions are predicted from transient simulation scenarios. The temperature distributions and variations during discharge process are quantitatively described, and it is found that the upper limit of ambient temperature for forced air cooling is 35 °C, and when ambient temperature is lower than 20 °C, forced air-cooling is not necessary. - Highlights: • An empirical heat source model is developed for battery thermal modeling. • Different air-cooling strategies on module thermal characteristics are investigated. • Impact of different discharge rates on module thermal responses are investigated. • Impact of ambient temperatures on module thermal behaviors are investigated. • Locations of maximum temperatures under different operation conditions are studied.

  10. Air and metal hydride battery

    Energy Technology Data Exchange (ETDEWEB)

    Lampinen, M.; Noponen, T. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Applied Thermodynamics

    1998-12-31

    The main goal of the air and metal hydride battery project was to enhance the performance and manufacturing technology of both electrodes to such a degree that an air-metal hydride battery could become a commercially and technically competitive power source for electric vehicles. By the end of the project it was possible to demonstrate the very first prototype of the air-metal hydride battery at EV scale, achieving all the required design parameters. (orig.)

  11. Advanced Architectures and Relatives of Air Electrodes in Zn–Air Batteries

    Science.gov (United States)

    Pan, Jing; Xu, Yang Yang; Yang, Huan; Dong, Zehua; Liu, Hongfang

    2018-01-01

    Abstract Zn–air batteries are becoming the promising power sources for portable and wearable electronic devices and hybrid/electric vehicles because of their high specific energy density and the low cost for next‐generation green and sustainable energy technologies. An air electrode integrated with an oxygen electrocatalyst is the most important component and inevitably determines the performance and cost of a Zn–air battery. This article presents exciting advances and challenges related to air electrodes and their relatives. After a brief introduction of the Zn–air battery, the architectures and oxygen electrocatalysts of air electrodes and relevant electrolytes are highlighted in primary and rechargeable types with different configurations, respectively. Moreover, the individual components and major issues of flexible Zn–air batteries are also highlighted, along with the strategies to enhance the battery performance. Finally, a perspective for design, preparation, and assembly of air electrodes is proposed for the future innovations of Zn–air batteries with high performance. PMID:29721418

  12. An improved high-performance lithium-air battery.

    Science.gov (United States)

    Jung, Hun-Gi; Hassoun, Jusef; Park, Jin-Bum; Sun, Yang-Kook; Scrosati, Bruno

    2012-06-10

    Although dominating the consumer electronics markets as the power source of choice for popular portable devices, the common lithium battery is not yet suited for use in sustainable electrified road transport. The development of advanced, higher-energy lithium batteries is essential in the rapid establishment of the electric car market. Owing to its exceptionally high energy potentiality, the lithium-air battery is a very appealing candidate for fulfilling this role. However, the performance of such batteries has been limited to only a few charge-discharge cycles with low rate capability. Here, by choosing a suitable stable electrolyte and appropriate cell design, we demonstrate a lithium-air battery capable of operating over many cycles with capacity and rate values as high as 5,000 mAh g(carbon)(-1) and 3 A g(carbon)(-1), respectively. For this battery we estimate an energy density value that is much higher than those offered by the currently available lithium-ion battery technology.

  13. The aluminum-air battery for electric vehicles - An update

    Science.gov (United States)

    1980-11-01

    The development of aluminum-air batteries as mechanically rechargeable power sources to be used in electric vehicles is discussed. The chemistry of the aluminum-air battery, which has a potential for providing the range, acceleration and rapid refueling capability of contemporary automobiles and is based on the reaction of aluminum metal with atmospheric oxygen in the presence of an aqueous sodium hydroxide/sodium aluminate electrolyte, is examined, and it is pointed out that the electric vehicle would be practically emissionless. The battery development program at the Lawrence Livermore National Laboratory, which includes evaluations of electrochemical and chemical phenomena, studies of the economics and energy balance of a transportation system based on aluminum, and power cell design and performance analysis, is presented. It is concluded that although difficult problems must be overcome before the technical and economic feasibility of aluminum-air batteries for electric vehicles can be established, projections indicate that the aluminum-air vehicle is potentially competitive with internal combustion vehicles powered by synthetic liquid fuels.

  14. Oxygen Selective Membranes for Li-Air (O2 Batteries

    Directory of Open Access Journals (Sweden)

    Mark Salomon

    2012-05-01

    Full Text Available Lithium-air (Li-air batteries have a much higher theoretical energy density than conventional lithium batteries and other metal air batteries, so they are being developed for applications that require long life. Water vapor from air must be prevented from corroding the lithium (Li metal negative electrode during discharge under ambient conditions, i.e., in humid air. One method of protecting the Li metal from corrosion is to use an oxygen selective membrane (OSM that allows oxygen into the cell while stopping or slowing the ingress of water vapor. The desired properties and some potential materials for OSMs for Li-air batteries are discussed and the literature is reviewed.

  15. High-Performance Lithium-Air Battery with a Coaxial-Fiber Architecture.

    Science.gov (United States)

    Zhang, Ye; Wang, Lie; Guo, Ziyang; Xu, Yifan; Wang, Yonggang; Peng, Huisheng

    2016-03-24

    The lithium-air battery has been proposed as the next-generation energy-storage device with a much higher energy density compared with the conventional lithium-ion battery. However, lithium-air batteries currently suffer enormous problems including parasitic reactions, low recyclability in air, degradation, and leakage of liquid electrolyte. Besides, they are designed into a rigid bulk structure that cannot meet the flexible requirement in the modern electronics. Herein, for the first time, a new family of fiber-shaped lithium-air batteries with high electrochemical performances and flexibility has been developed. The battery exhibited a discharge capacity of 12,470 mAh g(-1) and could stably work for 100 cycles in air; its electrochemical performances were well maintained under bending and after bending. It was also wearable and formed flexible power textiles for various electronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. High-energy metal air batteries

    Science.gov (United States)

    Zhang, Ji-Guang; Xiao, Jie; Xu, Wu; Wang, Deyu; Williford, Ralph E.; Liu, Jun

    2013-07-09

    Disclosed herein are embodiments of lithium/air batteries and methods of making and using the same. Certain embodiments are pouch-cell batteries encased within an oxygen-permeable membrane packaging material that is less than 2% of the total battery weight. Some embodiments include a hybrid air electrode comprising carbon and an ion insertion material, wherein the mass ratio of ion insertion material to carbon is 0.2 to 0.8. The air electrode may include hydrophobic, porous fibers. In particular embodiments, the air electrode is soaked with an electrolyte comprising one or more solvents including dimethyl ether, and the dimethyl ether subsequently is evacuated from the soaked electrode. In other embodiments, the electrolyte comprises 10-20% crown ether by weight.

  17. Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts.

    Science.gov (United States)

    Cheng, Fangyi; Chen, Jun

    2012-03-21

    Because of the remarkably high theoretical energy output, metal-air batteries represent one class of promising power sources for applications in next-generation electronics, electrified transportation and energy storage of smart grids. The most prominent feature of a metal-air battery is the combination of a metal anode with high energy density and an air electrode with open structure to draw cathode active materials (i.e., oxygen) from air. In this critical review, we present the fundamentals and recent advances related to the fields of metal-air batteries, with a focus on the electrochemistry and materials chemistry of air electrodes. The battery electrochemistry and catalytic mechanism of oxygen reduction reactions are discussed on the basis of aqueous and organic electrolytes. Four groups of extensively studied catalysts for the cathode oxygen reduction/evolution are selectively surveyed from materials chemistry to electrode properties and battery application: Pt and Pt-based alloys (e.g., PtAu nanoparticles), carbonaceous materials (e.g., graphene nanosheets), transition-metal oxides (e.g., Mn-based spinels and perovskites), and inorganic-organic composites (e.g., metal macrocycle derivatives). The design and optimization of air-electrode structure are also outlined. Furthermore, remarks on the challenges and perspectives of research directions are proposed for further development of metal-air batteries (219 references).

  18. Sodium-metal halide and sodium-air batteries.

    Science.gov (United States)

    Ha, Seongmin; Kim, Jae-Kwang; Choi, Aram; Kim, Youngsik; Lee, Kyu Tae

    2014-07-21

    Impressive developments have been made in the past a few years toward the establishment of Na-ion batteries as next-generation energy-storage devices and replacements for Li-ion batteries. Na-based cells have attracted increasing attention owing to low production costs due to abundant sodium resources. However, applications of Na-ion batteries are limited to large-scale energy-storage systems because of their lower energy density compared to Li-ion batteries and their potential safety problems. Recently, Na-metal cells such as Na-metal halide and Na-air batteries have been considered to be promising for use in electric vehicles owing to good safety and high energy density, although less attention is focused on Na-metal cells than on Na-ion cells. This Minireview provides an overview of the fundamentals and recent progress in the fields of Na-metal halide and Na-air batteries, with the aim of providing a better understanding of new electrochemical systems. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Design and fabrication of a micro zinc/air battery

    International Nuclear Information System (INIS)

    Fu, L; Luo, J K; Huber, J E; Lu, T J

    2006-01-01

    Micro-batteries are one of the key components that restrict the application of autonomous Microsystems. However little efforts were made to solve the problem. We have proposed a new planar zinc/air micro-battery, suitable for autonomous microsystem applications. The micro-battery has a layered structure of zinc electrode/alkaline electrolyte/air cathode. A 3D zinc electrode with a high density of posts was designed to obtain a high porosity, hence to offer a best performance. A model of the micro-battery is developed and the device performances were simulated and discussed. A four-mask process was developed to fabricate the prototype micro-batteries. The preliminary testing results showed the micro-batteries is able to deliver a maximum power up to 5 mW, and with an average power of 100 μW at a steady period for up to 2hrs. Fabrication process is still under optimization for further improvement

  20. Aluminum-air battery crystallizer

    Science.gov (United States)

    Maimoni, A.

    1987-01-01

    A prototype crystallizer system for the aluminum-air battery operated reliably through simulated startup and shutdown cycles and met its design objectives. The crystallizer system allows for crystallization and removal of the aluminium hydroxide reaction product; it is required to allow steady-state and long-term operation of the aluminum-air battery. The system has to minimize volume and maintain low turbulence and shear to minimize secondary nucleation and energy consumption while enhancing agglomeration. A lamella crystallizer satisfies system constraints.

  1. Range-extending Zinc-air battery for electric vehicle

    Directory of Open Access Journals (Sweden)

    Steven B. Sherman

    2018-01-01

    Full Text Available A vehicle model is used to evaluate a novel powertrain that is comprised of a dual energy storage system (Dual ESS. The system includes two battery packs with different chemistries and the necessary electronic controls to facilitate their coordination and optimization. Here, a lithium-ion battery pack is used as the primary pack and a Zinc-air battery as the secondary or range-extending pack. Zinc-air batteries are usually considered unsuitable for use in vehicles due to their poor cycle life, but the model demonstrates the feasibility of this technology with an appropriate control strategy, with limited cycling of the range extender pack. The battery pack sizes and the battery control strategy are configured to optimize range, cost and longevity. In simulation the vehicle performance compares favourably to a similar vehicle with a single energy storage system (Single ESS powertrain, travelling up to 75 km further under test conditions. The simulation demonstrates that the Zinc-air battery pack need only cycle 100 times to enjoy a ten-year lifespan. The Zinc-air battery model is based on leading Zinc-air battery research from literature, with some assumptions regarding achievable improvements. Having such a model clarifies the performance requirements of Zinc-air cells and improves the research community's ability to set performance targets for Zinc-air cells.

  2. A comprehensive review on recent progress in aluminum–air batteries

    Directory of Open Access Journals (Sweden)

    Yisi Liu

    2017-07-01

    Full Text Available The aluminum–air battery is considered to be an attractive candidate as a power source for electric vehicles (EVs because of its high theoretical energy density (8100 Wh kg−1, which is significantly greater than that of the state-of-the-art lithium-ion batteries (LIBs. However, some technical and scientific problems preventing the large-scale development of Al–air batteries have not yet to be resolved. In this review, we present the fundamentals, challenges and the recent advances in Al–air battery technology from aluminum anode, air cathode and electrocatalysts to electrolytes and inhibitors. Firstly, the alloying of aluminum with transition metal elements is reviewed and shown to reduce the self-corrosion of Al and improve battery performance. Additionally for the cathode, extensive studies of electrocatalytic materials for oxygen reduction/evolution including Pt and Pt alloys, nonprecious metal catalysts, and carbonaceous materials at the air cathode are highlighted. Moreover, for the electrolyte, the application of aqueous and nonaqueous electrolytes in Al–air batteries are discussed. Meanwhile, the addition of inhibitors to the electrolyte to enhance electrochemical performance is also explored. Finally, the challenges and future research directions are proposed for the further development of Al–air batteries. Keywords: Aluminum–air battery, Aluminum anode, Air cathode, Oxygen reduction reaction, Electrolytes

  3. A Long-Life Lithium-Air Battery in Ambient Air with a Polymer Electrolyte Containing a Redox Mediator.

    Science.gov (United States)

    Guo, Ziyang; Li, Chao; Liu, Jingyuan; Wang, Yonggang; Xia, Yongyao

    2017-06-19

    Lithium-air batteries when operated in ambient air generally exhibit poor reversibility and cyclability, because of the Li passivation and Li 2 O 2 /LiOH/Li 2 CO 3 accumulation in the air electrode. Herein, we present a Li-air battery supported by a polymer electrolyte containing 0.05 m LiI, in which the polymer electrolyte efficiently alleviates the Li passivation induced by attacking air. Furthermore, it is demonstrated that I - /I 2 conversion in polymer electrolyte acts as a redox mediator that facilitates electrochemical decomposition of the discharge products during recharge process. As a result, the Li-air battery can be stably cycled 400 times in ambient air (relative humidity of 15 %), which is much better than previous reports. The achievement offers a hope to develop the Li-air battery that can be operated in ambient air. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Gradient porous electrode architectures for rechargeable metal-air batteries

    Science.gov (United States)

    Dudney, Nancy J.; Klett, James W.; Nanda, Jagjit; Narula, Chaitanya Kumar; Pannala, Sreekanth

    2016-03-22

    A cathode for a metal air battery includes a cathode structure having pores. The cathode structure has a metal side and an air side. The porosity decreases from the air side to the metal side. A metal air battery and a method of making a cathode for a metal air battery are also disclosed.

  5. Cost and energy consumption estimates for the aluminum-air battery anode fuel cycle

    Science.gov (United States)

    1990-01-01

    At the request of DOE's Office of Energy Storage and Distribution (OESD), Pacific Northwest Laboratory (PNL) conducted a study to generate estimates of the energy use and costs associated with the aluminum anode fuel cycle of the aluminum-air (Al-air) battery. The results of this analysis indicate that the cost and energy consumption characteristics of the mechanically rechargeable Al-air battery system are not as attractive as some other electrically rechargeable electric vehicle battery systems being developed by OESD. However, there are distinct advantages to mechanically rechargeable batteries, which may make the Al-air battery (or other mechanically rechargeable batteries) attractive for other uses, such as stand-alone applications. Fuel cells, such as the proton exchange membrane (PEM), and advanced secondary batteries may be better suited to electric vehicle applications.

  6. Electrically rechargeable zinc/air battery: a high specific energy system

    Energy Technology Data Exchange (ETDEWEB)

    Holzer, F; Sauter, J -C; Masanz, G; Mueller, S [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    This contribution describes our research and development efforts towards the demonstration of a light-weight, low-cost 12 V/20 Ah electrically rechargeable Zn/air battery. We successfully developed electrodes having active areas of up to 200 cm{sup 2}. Deep discharge cycles at different currents as well as current-voltage curves are reported for a 10 cell Zn/air battery (serial connection) with a rated capacity of 20 Ah. Based on the discharge cycle at a power of 19 W, and the weight of the battery, a specific energy of more than 90 Wh/kg could be evaluated for the whole system. (author) 4 figs., 1 tab., 5 refs.

  7. The Salty Science of the Aluminum-Air Battery

    Science.gov (United States)

    Chasteen, Stephanie V.; Chasteen, N. Dennis; Doherty, Paul

    2008-12-01

    Fruit batteries and saltwater batteries are excellent ways to explore simple circuits in the classroom. These are examples of air batteries in which metal reacts with oxygen in the air in order to generate free electrons, which flow through an external circuit and do work. Students are typically told that the salt or fruit water acts as an electrolyte to bring electrons from the anode to the cathode. That's true, but it leaves the battery as a black box. Physics teachers often don't have the background to explain the chemistry behind these batteries. We've written this paper to explore the electrochemistry behind an air battery using copper cathode, aluminum anode, and saltwater.

  8. Analysis of reaction and transport processes in zinc air batteries

    CERN Document Server

    Schröder, Daniel

    2016-01-01

    This book contains a novel combination of experimental and model-based investigations, elucidating the complex processes inside zinc air batteries. The work presented helps to answer which battery composition and which air-composition should be adjusted to maintain stable and efficient charge/discharge cycling. In detail, electrochemical investigations and X-ray transmission tomography are applied on button cell zinc air batteries and in-house set-ups. Moreover, model-based investigations of the battery anode and the impact of relative humidity, active operation, carbon dioxide and oxygen on zinc air battery operation are presented. The techniques used in this work complement each other well and yield an unprecedented understanding of zinc air batteries. The methods applied are adaptable and can potentially be applied to gain further understanding of other metal air batteries. Contents Introduction on Zinc Air Batteries Characterizing Reaction and Transport Processes Identifying Factors for Long-Term Stable O...

  9. Novel Stable Gel Polymer Electrolyte: Toward a High Safety and Long Life Li-Air Battery.

    Science.gov (United States)

    Yi, Jin; Liu, Xizheng; Guo, Shaohua; Zhu, Kai; Xue, Hailong; Zhou, Haoshen

    2015-10-28

    Nonaqueous Li-air battery, as a promising electrochemical energy storage device, has attracted substantial interest, while the safety issues derived from the intrinsic instability of organic liquid electrolytes may become a possible bottleneck for the future application of Li-air battery. Herein, through elaborate design, a novel stable composite gel polymer electrolyte is first proposed and explored for Li-air battery. By use of the composite gel polymer electrolyte, the Li-air polymer batteries composed of a lithium foil anode and Super P cathode are assembled and operated in ambient air and their cycling performance is evaluated. The batteries exhibit enhanced cycling stability and safety, where 100 cycles are achieved in ambient air at room temperature. The feasibility study demonstrates that the gel polymer electrolyte-based polymer Li-air battery is highly advantageous and could be used as a useful alternative strategy for the development of Li-air battery upon further application.

  10. Design and research on discharge performance for aluminum-air battery

    Science.gov (United States)

    Liu, Zu; Zhao, Junhong; Cai, Yanping; Xu, Bin

    2017-01-01

    As a kind of clean energy, the research of aluminum air battery is carried out because aluminum-air battery has advantages of high specific energy, silence and low infrared. Based on the research on operating principle of aluminum-air battery, a novel aluminum-air battery system was designed composed of aluminum-air cell and the circulation system of electrolyte. A system model is established to analyze the polarization curve, the constant current discharge performance and effect of electrolyte concentration on the performance of monomer. The experimental results show that the new energy aluminum-air battery has good discharge performance, which lays a foundation for its application.

  11. The Salty Science of the Aluminum-Air Battery

    Science.gov (United States)

    Chasteen, Stephanie V.; Chasteen, N. Dennis; Doherty, Paul

    2008-01-01

    Fruit batteries and saltwater batteries are excellent ways to explore simple circuits in the classroom. These are examples of air batteries in which metal reacts with oxygen in the air in order to generate free electrons, which flow through an external circuit and do work. Students are typically told that the salt or fruit water acts as an…

  12. Crowdsourcing urban air temperatures from smartphone battery temperatures

    Science.gov (United States)

    Overeem, Aart; Robinson, James C. R.; Leijnse, Hidde; Steeneveld, Gert-Jan; Horn, Berthold K. P.; Uijlenhoet, Remko

    2014-05-01

    Accurate air temperature observations in urban areas are important for meteorology and energy demand planning. They are indispensable to study the urban heat island effect and the adverse effects of high temperatures on human health. However, the availability of temperature observations in cities is often limited. Here we show that relatively accurate air temperature information for the urban canopy layer can be obtained from an alternative, nowadays omnipresent source: smartphones. In this study, battery temperatures were collected by an Android application for smartphones. It has been shown that a straightforward heat transfer model can be employed to estimate daily mean air temperatures from smartphone battery temperatures for eight major cities around the world. The results demonstrate the enormous potential of this crowdsourcing application for real-time temperature monitoring in densely populated areas. Battery temperature data were collected by users of an Android application for cell phones (opensignal.com). The application automatically sends battery temperature data to a server for storage. In this study, battery temperatures are averaged in space and time to obtain daily averaged battery temperatures for each city separately. A regression model, which can be related to a physical model, is employed to retrieve daily air temperatures from battery temperatures. The model is calibrated with observed air temperatures from a meteorological station of an airport located in or near the city. Time series of air temperatures are obtained for each city for a period of several months, where 50% of the data is for independent verification. The methodology has been applied to Buenos Aires, London, Los Angeles, Paris, Mexico City, Moscow, Rome, and Sao Paulo. The evolution of the retrieved air temperatures often correspond well with the observed ones. The mean absolute error of daily air temperatures is less than 2 degrees Celsius, and the bias is within 1 degree

  13. Performance of a rapidly-refuelable aluminum-air battery

    Science.gov (United States)

    Levy, D. J.; Hollandsworth, R. P.; Gonzales, E. M.; Littauer, E. L.

    The Al-air battery is being developed to provide an electric vehicle with conventional automobile performance. A rapidly-refuelable, 6-cell battery (200-sq cm electrodes) was evaluated. RX-808 aluminum anodes and air cathodes were used with a flowing alkaline electrolyte. Peak power was found to increase with temperature, decrease with aluminate concentration and be unaffected by electrolyte flow. The best performance was 5.28 kW/sq m peak power density, 2.08 kWh/kg Al energy density and 80 percent coulombic efficiency. Anode refueling is rapid and 100 percent utilization is achieved. Additional evaluation included cathode catalysts, a thermal balance and monitoring electrolyte composition.

  14. The Rechargeability of Silicon-Air Batteries

    Science.gov (United States)

    2012-06-01

    an Si-air electrochemical cell a source of water for other applications. Metal-air batteries, silicon-air, electrochemistry , rechargeable batteries UU...be based on constant amount of water in the IL.  The electrochemistry has to be based on more robust reference electrode. Some use of ferrocence...MgO  -569.4  -601.7  3942  6859  Zn  Zn + 1/2O2 ZnO   -320.8  -350.7  1363  9677  Si  Si + O2 SiO2  -856.5  -910.9  8470  21090  7 electrode. RTIL

  15. Li-air batteries: Decouple to stabilize

    Science.gov (United States)

    Xu, Ji-Jing; Zhang, Xin-Bo

    2017-09-01

    The utilization of porous carbon cathodes in lithium-air batteries is hindered by their severe decomposition during battery cycling. Now, dual redox mediators are shown to decouple the complex electrochemical reactions at the cathode, avoiding cathode passivation and decomposition.

  16. Computational Analysis and Design of New Materials for Metal-Air Batteries

    DEFF Research Database (Denmark)

    Mekonnen, Yedilfana Setarge; Hummelshøj, Jens Strabo

    In the last decade, great effort has been paid to the development of next generation batteries. Metal-O2 /Air batteries (Li-, Na-, Mg-, Al-, Fe- and Zn-O2 batteries) in both aqueous and nonaqueous (aprotic) electrolytes have gained much attention. Metal-air batteries have high theoretical specific...... gravimetric energy. In the case of Li-O2, it is comparable to that of gasoline. Thus, Li-O2 batteries could be attractive for electric vehicle manufacturers since the energy storage capacity accessible by commercially available Li-ion technology is too low to solve increasing capacity demands. However......, current Li-O2 batteries suffer from several drawbacks, e.g. dendrite formation, poor rechargeability and low capacity caused by the so-called “sudden death” at its cathode during the discharge process due to insulating discharge products. This thesis is devoted to understand the charge transport...

  17. Lithium-air batteries: survey on the current status and perspectives towards automotive applications from a battery industry standpoint

    Energy Technology Data Exchange (ETDEWEB)

    Park, Myounggu; Sun, Heeyoung; Lee, Hyungbok; Lee, Junesoo [Battery R and D, SK Innovation, Wonchon-dong, Yuseong-gu, Daejeon (Korea, Republic of); Cho, Jaephil [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), Ulsan (Korea, Republic of)

    2012-07-15

    Li-air rechargeable batteries theoretically have advantages from both secondary batteries and fuel cells, which can be viewed as the best technological blends for automotive applications resolving the so called mileage anxiety problem due to the limited driving range of electrical vehicles based upon Li-ion batteries; this problem is rooted in the intrinsically small energy density of Li-ion batteries. This very scientific trait of Li-air batteries, which is apparently suited to the requirements of batteries for future electric vehicles, has induced quite a strong surge of research recently. This occurrence has motivated the authors to undertake a thorough review in an effort to understand the current status of Li-air battery related technologies. A comprehensive survey from a battery industry standpoint has been conducted on the fundamentals of chemistry, utilized Li-air cell configurations (or types) vs. performance, and major components comprising Li-air batteries using various sources of previously published peer-reviewed journal papers, book chapters, patents, and industrial reports. The survey results are presented here. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Lithium battery fires: implications for air medical transport.

    Science.gov (United States)

    Thomas, Frank; Mills, Gordon; Howe, Robert; Zobell, Jim

    2012-01-01

    Lithium-ion batteries provide more power and longer life to electronic medical devices, with the benefits of reduced size and weight. It is no wonder medical device manufacturers are designing these batteries into their products. Lithium batteries are found in cell phones, electronic tablets, computers, and portable medical devices such as ventilators, intravenous pumps, pacemakers, incubators, and ventricular assist devices. Yet, if improperly handled, lithium batteries can pose a serious fire threat to air medical transport personnel. Specifically, this article discusses how lithium-ion batteries work, the fire danger associated with them, preventive measures to reduce the likelihood of a lithium battery fire, and emergency procedures that should be performed in that event. Copyright © 2012 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.

  19. Overcurrent Abuse of Primary Prismatic Zinc–Air Battery Cells Studying Air Supply Effects on Performance and Safety Shut-Down

    Directory of Open Access Journals (Sweden)

    Fredrik Larsson

    2017-01-01

    Full Text Available Overcurrent abuse has been performed on commercial 48 Ah primary prismatic zinc (Zn–Air battery cells with full air supply as well as with shut-off air supply. Compared to other battery technologies, e.g., lithium-ion batteries, metal–air batteries offer the possibility to physically stop the battery operation by stopping its air supply, thus offering an additional protection against severe battery damage in the case of, e.g., an accidental short circuit. This method may also reduce the electrical hazard in a larger battery system since, by stopping the air supply, the voltage can be brought to zero while maintaining the energy capacity of the battery. Measurements of overdischarge currents and current cut-off by suffocation have been performed to assess the safety of this type of Zn–air battery. The time to get to zero battery voltage is shown to mainly be determined by the volume of air trapped in the cell.

  20. Exploring Faraday's Law of Electrolysis Using Zinc-Air Batteries with Current Regulative Diodes

    Science.gov (United States)

    Kamata, Masahiro; Paku, Miei

    2007-01-01

    Current regulative diodes (CRDs) are applied to develop new educational experiments on Faraday's law by using a zinc-air battery (PR2330) and a resistor to discharge it. The results concluded that the combination of zinc-air batteries and the CRD array is simpler, less expensive, and quantitative and gives accurate data.

  1. Facile preparation of Ag-Cu bifunctional electrocatalysts for zinc-air batteries

    International Nuclear Information System (INIS)

    Jin, Yachao; Chen, Fuyi

    2015-01-01

    Highlights: • Ag-Cu dendrites are observed for the first time to exhibit high catalytic activity for oxygen reduction reaction. • Ag-Cu dendrites are directly synthesized through galvanic displacement on the current collector layer made of Ni foams. • A bifunctional air cathode is fabricated using Ag-Cu dendrites as a carbon-free, binder-free catalyst layer. • Both the primary and rechargeable zinc–air batteries fabricated by Ag-Cu catalysts exhibit excellent performance. - ABSTRACT: An inexpensive, facile galvanic displacement reaction for the direct growth of silver–copper (Ag-Cu) catalysts on nickel foams is developed for the first time. The resulting Ag-Cu catalysts exhibit dendritic morphologies. Ag and Cu atoms are in their metallic state while the presence of CuO and Cu 2 O are limited on the surface of catalyst. The catalysts demonstrate high catalytic activity for oxygen reduction reaction (ORR) in alkaline solution, as evaluated by both linear scanning voltammetry and rotating disk electrode polarization measurements. The ORR catalysed by Ag-Cu catalyst in alkaline solution proceeds through a four-electron pathway. An air cathode is fabricated using Ag-Cu catalyst as a carbon-free, binder-free catalyst layer. Using this Ag-Cu catalyst based air cathode, both the primary and rechargeable zinc-air batteries show excellent battery performance. The specific capacity of the primary zinc-air battery is 572 mAh g −1 . Especially, the rechargeable zinc-air battery shows high round-trip efficiency, appealing stability at a long charge-discharge cycle period

  2. First Principles Investigation of Zinc-anode Dissolution in Zinc-air Batteries

    DEFF Research Database (Denmark)

    Siahrostami, Samira; Tripkovic, Vladimir; Lundgård, Keld Troen

    2013-01-01

    With surging interest in high energy density batteries, much attention has recently been devoted to metal-air batteries. The zinc-air battery has been known for more than hundred years and is commercially available as a primary battery, but recharging has remained elusive; in part because...... the fundamental mechanisms still remain to be fully understood. Here, we present a density functional theory investigation of the zinc dissolution (oxidation) on the anode side in the zinc-air battery. Two models are envisaged, the most stable (0001) surface and a kink surface. The kink model proves to be more....... The applied methodology provides new insight into computational modelling and design of secondary metal-air batteries....

  3. Prediction of the theoretical capacity of non-aqueous lithium-air batteries

    International Nuclear Information System (INIS)

    Tan, Peng; Wei, Zhaohuan; Shyy, W.; Zhao, T.S.

    2013-01-01

    Highlights: • The theoretical capacity of non-aqueous lithium-air batteries is predicted. • Key battery design parameters are defined and considered. • The theoretical battery capacity is about 10% of the lithium capacity. • The battery mass and volume changes after discharge are also studied. - Abstract: In attempt to realistically assess the high-capacity feature of emerging lithium-air batteries, a model is developed for predicting the theoretical capacity of non-aqueous lithium-air batteries. Unlike previous models that were formulated by assuming that the active materials and electrolyte are perfectly balanced according to the electrochemical reaction, the present model takes account of the fraction of the reaction products (Li 2 O 2 and Li 2 O), the utilization of the onboard lithium metal, the utilization of the void volume of the porous cathode, and the onboard excess electrolyte. Results show that the gravimetric capacity increases from 1033 to 1334 mA h/g when the reaction product varies from pure Li 2 O 2 to pure Li 2 O. It is further demonstrated that the capacity declines drastically from 1080 to 307 mA h/g when the case of full utilization of the onboard lithium is altered to that only 10% of the metal is utilized. Similarly, the capacity declines from 1080 to 144 mA h/g when the case of full occupation of the cathode void volume by the reaction products is varied to that only 10% of the void volume is occupied. In general, the theoretical gravimetric capacity of typical non-aqueous lithium-air batteries falls in the range of 380–450 mA h/g, which is about 10–12% of the gravimetric capacity calculated based on the energy density of the lithium metal. The present model also facilitates the study of the effects of different parameters on the mass and volume change of non-aqueous lithium-air batteries

  4. Retrieval of air temperatures from crowd-sourced battery temperatures of cell phones

    Science.gov (United States)

    Overeem, Aart; Robinson, James; Leijnse, Hidde; Uijlenhoet, Remko; Steeneveld, Gert-Jan; Horn, Berthold K. P.

    2013-04-01

    Accurate air temperature observations are important for urban meteorology, for example to study the urban heat island and adverse effects of high temperatures on human health. The number of available temperature observations is often relatively limited. A new development is presented to derive temperature information for the urban canopy from an alternative source: cell phones. Battery temperature data were collected by users of an Android application for cell phones (opensignal.com). The application automatically sends battery temperature data to a server for storage. In this study, battery temperatures are averaged in space and time to obtain daily averaged battery temperatures for each city separately. A regression model, which can be related to a physical model, is employed to retrieve daily air temperatures from battery temperatures. The model is calibrated with observed air temperatures from a meteorological station of an airport located in or near the city. Time series of air temperatures are obtained for each city for a period of several months, where 50% of the data is for independent verification. Results are presented for Buenos Aires, London, Los Angeles, Paris, Mexico City, Moscow, Rome, and Sao Paulo. The evolution of the retrieved air temperatures often correspond well with the observed ones. The mean absolute error of daily air temperatures is less than 2 degrees Celsius, and the bias is within 1 degree Celsius. This shows that monitoring air temperatures employing an Android application holds great promise. Since 75% of the world's population has a cell phone, 20% of the land surface of the earth has cellular telephone coverage, and 500 million devices use the Android operating system, there is a huge potential for measuring air temperatures employing cell phones. This could eventually lead to real-time world-wide temperature maps.

  5. Comparative analysis of aluminum-air battery propulsion systems for passenger vehicles

    Science.gov (United States)

    Salisbury, J. D.; Behrin, E.; Kong, M. K.; Whisler, D. J.

    1980-02-01

    Three electric propulsion systems using an aluminum air battery were analyzed and compared to the internal combustion engine (ICE) vehicle. The engine and fuel systems of a representative five passenger highway vehicle were replaced conceptually by each of the three electric propulsion systems. The electrical vehicles were constrained by the computer simulation to be equivalent to the ICE vehicle in range and acceleration performance. The vehicle masses and aluminum consumption rates were then calculated for the electric vehicles and these data were used as figures of merit. The Al-air vehicles analyzed were (1) an Al-air battery only electric vehicle; (2) an Al-air battery combined with a nickel zinc secondary battery for power leveling and regenerative braking; and (3) an Al-air battery combined with a flywheel for power leveling and regenerative braking. All three electric systems compared favorably with the ICE vehicle.

  6. A Lithium-Air Battery Stably Working at High Temperature with High Rate Performance.

    Science.gov (United States)

    Pan, Jian; Li, Houpu; Sun, Hao; Zhang, Ye; Wang, Lie; Liao, Meng; Sun, Xuemei; Peng, Huisheng

    2018-02-01

    Driven by the increasing requirements for energy supply in both modern life and the automobile industry, the lithium-air battery serves as a promising candidate due to its high energy density. However, organic solvents in electrolytes are likely to rapidly vaporize and form flammable gases under increasing temperatures. In this case, serious safety problems may occur and cause great harm to people. Therefore, a kind of lithium-air that can work stably under high temperature is desirable. Herein, through the use of an ionic liquid and aligned carbon nanotubes, and a fiber shaped design, a new type of lithium-air battery that can effectively work at high temperatures up to 140 °C is developed. Ionic liquids can offer wide electrochemical windows and low vapor pressures, as well as provide high thermal stability for lithium-air batteries. The aligned carbon nanotubes have good electric and heat conductivity. Meanwhile, the fiber format can offer both flexibility and weavability, and realize rapid heat conduction and uniform heat distribution of the battery. In addition, the high temperature has also largely improved the specific powers by increasing the ionic conductivity and catalytic activity of the cathode. Consequently, the lithium-air battery can work stably at 140 °C with a high specific current of 10 A g -1 for 380 cycles, indicating high stability and good rate performance at high temperatures. This work may provide an effective paradigm for the development of high-performance energy storage devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Reduced graphene oxide for Li–air batteries

    DEFF Research Database (Denmark)

    Storm, Mie Møller; Overgaard, Marc; Younesi, Reza

    2015-01-01

    Reduced graphene oxide (rGO) has shown great promise as an air-cathode for Li-air batteries with high capacity. In this article we demonstrate how the oxidation time of graphene oxide (GO) affects the ratio of different functional groups and how trends of these in GO are extended to chemically...... and thermally reduced GO. We investigate how differences in functional groups and synthesis may affect the performance of Li-O-2 batteries. The oxidation timescale of the GO was varied between 30 min and 3 days before reduction. Powder Xray diffraction, micro-Raman, FE-SEM, BET analysis, and XPS were used...... techniques can enhance the structural understanding of rGO. Different rGO cathodes were tested in Li-O-2 batteries which revealed a difference in overpotentials and discharge capacities for the different rGO's. We report the highest Li-O-2 battery discharge capacity recorded of approximately 60,000 m...

  8. The lithium air battery fundamentals

    CERN Document Server

    Imanishi, Nobuyuki; Bruce, Peter G

    2014-01-01

    Lithium air rechargeable batteries are the best candidate for a power source for electric vehicles, because of their high specific energy density. In this book, the history, scientific background, status and prospects of the lithium air system are introduced by specialists in the field. This book will contain the basics, current statuses, and prospects for new technologies. This book is ideal for those interested in electrochemistry, energy storage, and materials science.

  9. Prototype Lithium-Ion Battery Developed for Mars 2001 Lander

    Science.gov (United States)

    Manzo, Michelle A.

    2000-01-01

    In fiscal year 1997, NASA, the Jet Propulsion Laboratory, and the U.S. Air Force established a joint program to competitively develop high-power, rechargeable lithium-ion battery technology for aerospace applications. The goal was to address Department of Defense and NASA requirements not met by commercial battery developments. Under this program, contracts have been awarded to Yardney Technical Products, Eagle- Picher Technologies, LLC, BlueStar Advanced Technology Corporation, and SAFT America, Inc., to develop cylindrical and prismatic cell and battery systems for a variety of NASA and U.S. Air Force applications. The battery systems being developed range from low-capacity (7 to 20 A-hr) and low-voltage (14 to 28 V) systems for planetary landers and rovers to systems for aircraft that require up to 270 V and for Unmanned Aerial Vehicles that require capacities up to 200 A-hr. Low-Earth-orbit and geosynchronousorbit spacecraft pose additional challenges to system operation with long cycle life (>30,000 cycles) and long calendar life (>10 years), respectively.

  10. A lithium–oxygen battery with a long cycle life in an air-like atmosphere

    Science.gov (United States)

    Asadi, Mohammad; Sayahpour, Baharak; Abbasi, Pedram; Ngo, Anh T.; Karis, Klas; Jokisaari, Jacob R.; Liu, Cong; Narayanan, Badri; Gerard, Marc; Yasaei, Poya; Hu, Xuan; Mukherjee, Arijita; Lau, Kah Chun; Assary, Rajeev S.; Khalili-Araghi, Fatemeh; Klie, Robert F.; Curtiss, Larry A.; Salehi-Khojin, Amin

    2018-03-01

    Lithium–air batteries are considered to be a potential alternative to lithium-ion batteries for transportation applications, owing to their high theoretical specific energy. So far, however, such systems have been largely restricted to pure oxygen environments (lithium–oxygen batteries) and have a limited cycle life owing to side reactions involving the cathode, anode and electrolyte. In the presence of nitrogen, carbon dioxide and water vapour, these side reactions can become even more complex. Moreover, because of the need to store oxygen, the volumetric energy densities of lithium–oxygen systems may be too small for practical applications. Here we report a system comprising a lithium carbonate-based protected anode, a molybdenum disulfide cathode and an ionic liquid/dimethyl sulfoxide electrolyte that operates as a lithium–air battery in a simulated air atmosphere with a long cycle life of up to 700 cycles. We perform computational studies to provide insight into the operation of the system in this environment. This demonstration of a lithium–oxygen battery with a long cycle life in an air-like atmosphere is an important step towards the development of this field beyond lithium-ion technology, with a possibility to obtain much higher specific energy densities than for conventional lithium-ion batteries.

  11. A lithium-oxygen battery with a long cycle life in an air-like atmosphere.

    Science.gov (United States)

    Asadi, Mohammad; Sayahpour, Baharak; Abbasi, Pedram; Ngo, Anh T; Karis, Klas; Jokisaari, Jacob R; Liu, Cong; Narayanan, Badri; Gerard, Marc; Yasaei, Poya; Hu, Xuan; Mukherjee, Arijita; Lau, Kah Chun; Assary, Rajeev S; Khalili-Araghi, Fatemeh; Klie, Robert F; Curtiss, Larry A; Salehi-Khojin, Amin

    2018-03-21

    Lithium-air batteries are considered to be a potential alternative to lithium-ion batteries for transportation applications, owing to their high theoretical specific energy. So far, however, such systems have been largely restricted to pure oxygen environments (lithium-oxygen batteries) and have a limited cycle life owing to side reactions involving the cathode, anode and electrolyte. In the presence of nitrogen, carbon dioxide and water vapour, these side reactions can become even more complex. Moreover, because of the need to store oxygen, the volumetric energy densities of lithium-oxygen systems may be too small for practical applications. Here we report a system comprising a lithium carbonate-based protected anode, a molybdenum disulfide cathode and an ionic liquid/dimethyl sulfoxide electrolyte that operates as a lithium-air battery in a simulated air atmosphere with a long cycle life of up to 700 cycles. We perform computational studies to provide insight into the operation of the system in this environment. This demonstration of a lithium-oxygen battery with a long cycle life in an air-like atmosphere is an important step towards the development of this field beyond lithium-ion technology, with a possibility to obtain much higher specific energy densities than for conventional lithium-ion batteries.

  12. All-solid-state Al-air batteries with polymer alkaline gel electrolyte

    Science.gov (United States)

    Zhang, Zhao; Zuo, Chuncheng; Liu, Zihui; Yu, Ying; Zuo, Yuxin; Song, Yu

    2014-04-01

    Aluminum-air (Al-air) battery is one of the most promising candidates for next-generation energy storage systems because of its high capacity and energy density, and abundance. The polyacrylic acid (PAA)-based alkaline gel electrolyte is used in all-solid-state Al-air batteries instead of aqueous electrolytes to prevent leakage. The optimal gel electrolyte exhibits an ionic conductivity of 460 mS cm-1, which is close to that of aqueous electrolytes. The Al-air battery peak capacity and energy density considering only Al can reach 1166 mAh g-1-Al and 1230 mWh g-1-Al, respectively, during constant current discharge. The battery prototype also exhibits a high power density of 91.13 mW cm-2. For the battery is a laminated structure, area densities of 29.2 mAh cm-2 and 30.8 mWh cm-2 are presented to appraise the performance of the whole cell. A novel design to inhibit anodic corrosion is proposed by separating the Al anode from the gel electrolyte when not in use, thereby effectively maintaining the available capacity of the battery.

  13. Computational fluid dynamic and thermal analysis of Lithium-ion battery pack with air cooling

    International Nuclear Information System (INIS)

    Saw, Lip Huat; Ye, Yonghuang; Tay, Andrew A.O.; Chong, Wen Tong; Kuan, Seng How; Yew, Ming Chian

    2016-01-01

    Highlights: • We designed and analyzed the thermal behavior of the Li-ion battery pack. • We analyzed the heat generation of 38,120 Li-ion cell using ARC. • We validated the simulation results with experimental studies. • We developed the correlations of Nu and Re for the air cooling battery pack. - Abstract: A battery pack is produced by connecting the cells in series and/or in parallel to provide the necessary power for electric vehicles (EVs). Those parameters affecting cost and reliability of the EVs, including cycle life, capacity, durability and warranty are highly dependent on the thermal management system. In this work, computational fluid dynamic analysis is performed to investigate the air cooling system for a 38,120 cell battery pack. The battery pack contained 24 pieces of 38,120 cells, copper bus bars, intake and exhaust plenum and holding plates with venting holes. Heat generated by the cell during charging is measured using an accelerating rate calorimeter. Thermal performances of the battery pack were analyzed with various mass flow rates of cooling air using steady state simulation. The correlation between Nu number and Re number were deduced from the numerical modeling results and compared with literature. Additionally, an experimental testing of the battery pack at different charging rates is conducted to validate the correlation. This method provides a simple way to estimate thermal performance of the battery pack when the battery pack is large and full transient simulation is not viable.

  14. Effects of oxygen partial pressure on Li-air battery performance

    Science.gov (United States)

    Kwon, Hyuk Jae; Lee, Heung Chan; Ko, Jeongsik; Jung, In Sun; Lee, Hyun Chul; Lee, Hyunpyo; Kim, Mokwon; Lee, Dong Joon; Kim, Hyunjin; Kim, Tae Young; Im, Dongmin

    2017-10-01

    For application in electric vehicles (EVs), the Li-air battery system needs an air intake system to supply dry oxygen at controlled concentration and feeding rate as the cathode active material. To facilitate the design of such air intake systems, we have investigated the effects of oxygen partial pressure (≤1 atm) on the performance of the Li-air cell, which has not been systematically examined. The amounts of consumed O2 and evolved CO2 from the Li-air cell are measured with a custom in situ differential electrochemical gas chromatography-mass spectrometry (DEGC-MS). The amounts of consumed O2 suggest that the oxygen partial pressure does not affect the reaction mechanism during discharge, and the two-electron reaction occurs under all test conditions. On the other hand, the charging behavior varies by the oxygen partial pressure. The highest O2 evolution ratio is attained under 70% O2, along with the lowest CO2 evolution. The cell cycle life also peaks at 70% O2 condition. Overall, an oxygen partial pressure of about 0.5-0.7 atm maximizes the Li-air cell capacity and stability at 1 atm condition. The findings here indicate that the appropriate oxygen partial pressure can be a key factor when developing practical Li-air battery systems.

  15. A Rechargeable Li-Air Fuel Cell Battery Based on Garnet Solid Electrolytes.

    Science.gov (United States)

    Sun, Jiyang; Zhao, Ning; Li, Yiqiu; Guo, Xiangxin; Feng, Xuefei; Liu, Xiaosong; Liu, Zhi; Cui, Guanglei; Zheng, Hao; Gu, Lin; Li, Hong

    2017-01-24

    Non-aqueous Li-air batteries have been intensively studied in the past few years for their theoretically super-high energy density. However, they cannot operate properly in real air because they contain highly unstable and volatile electrolytes. Here, we report the fabrication of solid-state Li-air batteries using garnet (i.e., Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 , LLZTO) ceramic disks with high density and ionic conductivity as the electrolytes and composite cathodes consisting of garnet powder, Li salts (LiTFSI) and active carbon. These batteries run in real air based on the formation and decomposition at least partially of Li 2 CO 3 . Batteries with LiTFSI mixed with polyimide (PI:LiTFSI) as a binder show rechargeability at 200 °C with a specific capacity of 2184 mAh g -1 carbon at 20 μA cm -2 . Replacement of PI:LiTFSI with LiTFSI dissolved in polypropylene carbonate (PPC:LiTFSI) reduces interfacial resistance, and the resulting batteries show a greatly increased discharge capacity of approximately 20300 mAh g -1 carbon and cycle 50 times while maintaining a cutoff capacity of 1000 mAh g -1 carbon at 20 μA cm -2 and 80 °C. These results demonstrate that the use of LLZTO ceramic electrolytes enables operation of the Li-air battery in real air at medium temperatures, leading to a novel type of Li-air fuel cell battery for energy storage.

  16. Continuous fabrication of a MnS/Co nanofibrous air electrode for wide integration of rechargeable zinc-air batteries.

    Science.gov (United States)

    Wang, Yang; Fu, Jing; Zhang, Yining; Li, Matthew; Hassan, Fathy Mohamed; Li, Guang; Chen, Zhongwei

    2017-10-26

    Exploring highly efficient bifunctional electrocatalysts toward the oxygen reduction and evolution reactions is essential for the realization of high-performance rechargeable zinc-air batteries. Herein, a novel nanofibrous bifunctional electrocatalyst film, consisting of metallic manganese sulfide and cobalt encapsulated by nitrogen-doped carbon nanofibers (CMS/NCNF), is prepared through a continuous electrospinning method followed by carbonization treatment. The CMS/NCNF bifunctional catalyst shows both comparable ORR and OER performances to those of commercial precious metal-based catalysts. Furthermore, the free-standing CMS/NCNF fibrous thin film is directly used as the air electrode in a solid-state zinc-air battery, which exhibits superior flexibility while retaining stable battery performance at different bending angles. This study provides a versatile design route for the rational design of free-standing bifunctional catalysts for direct use as the air electrode in rechargeable zinc-air batteries.

  17. Semi-rechargeable Aluminum-Air Battery with a TiO2 Internal Layer with Plain Salt Water as an Electrolyte

    Science.gov (United States)

    Mori, Ryohei

    2016-07-01

    To develop a semi-rechargeable aluminum-air battery, we attempted to insert various kinds of ceramic oxides between an aqueous NaCl electrolyte and an aluminum anode. From cyclic voltammetry experiments, we found that some of the ceramic oxide materials underwent an oxidation-reduction reaction, which indicates the occurrence of a faradaic electrochemical reaction. Using a TiO2 film as an internal layer, we successfully prepared an aluminum-air battery with secondary battery behavior. However, cell impedance increased as the charge/discharge reactions proceeded probably because of accumulation of byproducts in the cell components and the air cathode. Results of quantum calculations and x-ray photoelectron spectroscopy suggest the possibility of developing an aluminum rechargeable battery using TiO2 as an internal layer.

  18. Aluminum anode for aluminum-air battery - Part I: Influence of aluminum purity

    Science.gov (United States)

    Cho, Young-Joo; Park, In-Jun; Lee, Hyeok-Jae; Kim, Jung-Gu

    2015-03-01

    2N5 commercial grade aluminum (99.5% purity) leads to the lower aluminum-air battery performances than 4N high pure grade aluminum (99.99% purity) due to impurities itself and formed impurity complex layer which contained Fe, Si, Cu and others. The impurity complex layer of 2N5 grade Al declines the battery voltage on standby status. It also depletes discharge current and battery efficiency at 1.0 V which is general operating voltage of aluminum-air battery. However, the impurity complex layer of 2N5 grade Al is dissolved with decreasing discharge voltage to 0.8 V. This phenomenon leads to improvement of discharge current density and battery efficiency by reducing self-corrosion reaction. This study demonstrates the possibility of use of 2N5 grade Al which is cheaper than 4N grade Al as the anode for aluminum-air battery.

  19. Air Force standards for nickel hydrogen battery

    Science.gov (United States)

    Hwang, Warren; Milden, Martin

    1994-01-01

    The topics discussed are presented in viewgraph form and include Air Force nickel hydrogen standardization goals, philosophy, project outline, cell level standardization, battery level standardization, and schedule.

  20. Air compressor battery duration with mechanical ventilation in a field anesthesia machine.

    Science.gov (United States)

    Szpisjak, Dale F; Giberman, Anthony A

    2015-05-01

    Compressed air to power field anesthesia machine ventilators may be supplied by air compressor with battery backup. This study determined the battery duration when the compPAC ventilator's air compressor was powered by NiCd battery to ventilate the Vent Aid Training Test Lung modeling high (HC = 0.100 L/cm H2O) and low (LC = 0.020 L/cm H2O) pulmonary compliance. Target tidal volumes (VT) were 500, 750, and 1,000 mL. Respiratory rate = 10 bpm, inspiratory-to-expiratory time ratio = 1:2, and fresh gas flow = 1 L/min air. N = 5 in each group. Control limits were determined from the first 150 minutes of battery power for each run and lower control limit = mean VT - 3SD. Battery depletion occurred when VT was below the lower control limit. Battery duration ranged from 185.8 (±3.2) minutes in the LC-1000 group to 233.3 (±3.6) minutes in the HC-750 group. Battery duration of the LC-1000 group was less than all others (p = 0.027). The differences among the non-LC-1000 groups were not clinically significant. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.

  1. Thermal analysis and two-directional air flow thermal management for lithium-ion battery pack

    Science.gov (United States)

    Yu, Kuahai; Yang, Xi; Cheng, Yongzhou; Li, Changhao

    2014-12-01

    Thermal management is a routine but crucial strategy to ensure thermal stability and long-term durability of the lithium-ion batteries. An air-flow-integrated thermal management system is designed in the present study to dissipate heat generation and uniformize the distribution of temperature in the lithium-ion batteries. The system contains of two types of air ducts with independent intake channels and fans. One is to cool the batteries through the regular channel, and the other minimizes the heat accumulations in the middle pack of batteries through jet cooling. A three-dimensional anisotropic heat transfer model is developed to describe the thermal behavior of the lithium-ion batteries with the integration of heat generation theory, and validated through both simulations and experiments. Moreover, the simulations and experiments show that the maximum temperature can be decreased to 33.1 °C through the new thermal management system in comparison with 42.3 °C through the traditional ones, and temperature uniformity of the lithium-ion battery packs is enhanced, significantly.

  2. Aqueous lithium air batteries

    Science.gov (United States)

    Visco, Steven J.; Nimon, Yevgeniy S.; De Jonghe, Lutgard C.; Petrov, Alexei; Goncharenko, Nikolay

    2017-05-23

    Aqueous Li/Air secondary battery cells are configurable to achieve high energy density and prolonged cycle life. The cells include a protected a lithium metal or alloy anode and an aqueous catholyte in a cathode compartment. The aqueous catholyte comprises an evaporative-loss resistant and/or polyprotic active compound or active agent that partakes in the discharge reaction and effectuates cathode capacity for discharge in the acidic region. This leads to improved performance including one or more of increased specific energy, improved stability on open circuit, and prolonged cycle life, as well as various methods, including a method of operating an aqueous Li/Air cell to simultaneously achieve improved energy density and prolonged cycle life.

  3. Multi-layered, chemically bonded lithium-ion and lithium/air batteries

    Science.gov (United States)

    Narula, Chaitanya Kumar; Nanda, Jagjit; Bischoff, Brian L; Bhave, Ramesh R

    2014-05-13

    Disclosed are multilayer, porous, thin-layered lithium-ion batteries that include an inorganic separator as a thin layer that is chemically bonded to surfaces of positive and negative electrode layers. Thus, in such disclosed lithium-ion batteries, the electrodes and separator are made to form non-discrete (i.e., integral) thin layers. Also disclosed are methods of fabricating integrally connected, thin, multilayer lithium batteries including lithium-ion and lithium/air batteries.

  4. Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies

    International Nuclear Information System (INIS)

    Wang, Tao; Tseng, K.J.; Zhao, Jiyun; Wei, Zhongbao

    2014-01-01

    Highlights: • Three-dimensional CFD model with forced air cooling are developed for battery modules. • Impact of different air cooling strategies on module thermal characteristics are investigated. • Impact of different model structures on module thermal responses are investigated. • Effect of inter-cell spacing on cell thermal characteristics are also studied. • The optimal battery module structure and air cooling strategy is recommended. - Abstract: Thermal management needs to be carefully considered in the lithium-ion battery module design to guarantee the temperature of batteries in operation within a narrow optimal range. This article firstly explores the thermal performance of battery module under different cell arrangement structures, which includes: 1 × 24, 3 × 8 and 5 × 5 arrays rectangular arrangement, 19 cells hexagonal arrangement and 28 cells circular arrangement. In addition, air-cooling strategies are also investigated by installing the fans in the different locations of the battery module to improve the temperature uniformity. Factors that influence the cooling capability of forced air cooling are discussed based on the simulations. The three-dimensional computational fluid dynamics (CFD) method and lumped model of single cell have been applied in the simulation. The temperature distributions of batteries are quantitatively described based on different module patterns, fan locations as well as inter-cell distance, and the conclusions are arrived as follows: when the fan locates on top of the module, the best cooling performance is achieved; the most desired structure with forced air cooling is cubic arrangement concerning the cooling effect and cost, while hexagonal structure is optimal when focus on the space utilization of battery module. Besides, the optimized inter-cell distance in battery module structure has been recommended

  5. Single-Site Active Iron-Based Bifunctional Oxygen Catalyst for a Compressible and Rechargeable Zinc-Air Battery.

    Science.gov (United States)

    Ma, Longtao; Chen, Shengmei; Pei, Zengxia; Huang, Yan; Liang, Guojin; Mo, Funian; Yang, Qi; Su, Jun; Gao, Yihua; Zapien, Juan Antonio; Zhi, Chunyi

    2018-02-27

    The exploitation of a high-efficient, low-cost, and stable non-noble-metal-based catalyst with oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) simultaneously, as air electrode material for a rechargeable zinc-air battery is significantly crucial. Meanwhile, the compressible flexibility of a battery is the prerequisite of wearable or/and portable electronics. Herein, we present a strategy via single-site dispersion of an Fe-N x species on a two-dimensional (2D) highly graphitic porous nitrogen-doped carbon layer to implement superior catalytic activity toward ORR/OER (with a half-wave potential of 0.86 V for ORR and an overpotential of 390 mV at 10 mA·cm -2 for OER) in an alkaline medium. Furthermore, an elastic polyacrylamide hydrogel based electrolyte with the capability to retain great elasticity even under a highly corrosive alkaline environment is utilized to develop a solid-state compressible and rechargeable zinc-air battery. The creatively developed battery has a low charge-discharge voltage gap (0.78 V at 5 mA·cm -2 ) and large power density (118 mW·cm -2 ). It could be compressed up to 54% strain and bent up to 90° without charge/discharge performance and output power degradation. Our results reveal that single-site dispersion of catalytic active sites on a porous support for a bifunctional oxygen catalyst as cathode integrating a specially designed elastic electrolyte is a feasible strategy for fabricating efficient compressible and rechargeable zinc-air batteries, which could enlighten the design and development of other functional electronic devices.

  6. Aluminum-air battery: System design alternatives and status of components

    Science.gov (United States)

    Maimoni, A.

    1988-09-01

    This report summarizes the status of the various components of the aluminum-air battery system developed for the U.S. Department of Energy Technology Base Project for Electrochemical Energy Storage from 1978 to mid-1987, and presents results of system analysis. Preliminary information indicated that the concentration of carbon dioxide in the incoming air will need to be reduced to 5--100 ppM. A detailed calculation was performed to predict the performance of a full-size-vehicle system with 6-m air-cathode surface area; results showed that previous estimates of system performance are reasonable and consistent with currently available components.

  7. Combined DFT and DEMS investigation of the effect of dopants in secondary zinc‐air batteries

    DEFF Research Database (Denmark)

    Lysgaard, Steen; Christensen, Mathias K.; Hansen, Heine A.

    2018-01-01

    Zinc‐air batteries offer the potential of low cost energy storage with high energy density, but at present secondary batteries suffer from poor cyclability. To develop secondary Zn‐air batteries, several challenges need to be overcome: choking of the cathode, catalyzing the oxygen evolution...... and reduction reactions, limiting dendrite formation and the hydrogen evolution reaction (HER). Understanding and alleviating HER at the anode is a challenge, where it is necessary to involve computational as well as experimental research. Here, we combine Differential Electrochemical Mass Spectrometry (DEMS......) and density functional theory calculations to investigate the fundamental role and stability over cycling of possible additives such as In, Bi and Ag. We show that both In and Bi have the desired property for a secondary battery that upon recharging, they will remain in the surface, thereby retaining...

  8. Toward a lithium-"air" battery: the effect of CO2 on the chemistry of a lithium-oxygen cell.

    Science.gov (United States)

    Lim, Hyung-Kyu; Lim, Hee-Dae; Park, Kyu-Young; Seo, Dong-Hwa; Gwon, Hyeokjo; Hong, Jihyun; Goddard, William A; Kim, Hyungjun; Kang, Kisuk

    2013-07-03

    Lithium-oxygen chemistry offers the highest energy density for a rechargeable system as a "lithium-air battery". Most studies of lithium-air batteries have focused on demonstrating battery operations in pure oxygen conditions; such a battery should technically be described as a "lithium-dioxygen battery". Consequently, the next step for the lithium-"air" battery is to understand how the reaction chemistry is affected by the constituents of ambient air. Among the components of air, CO2 is of particular interest because of its high solubility in organic solvents and it can react actively with O2(-•), which is the key intermediate species in Li-O2 battery reactions. In this work, we investigated the reaction mechanisms in the Li-O2/CO2 cell under various electrolyte conditions using quantum mechanical simulations combined with experimental verification. Our most important finding is that the subtle balance among various reaction pathways influencing the potential energy surfaces can be modified by the electrolyte solvation effect. Thus, a low dielectric electrolyte tends to primarily form Li2O2, while a high dielectric electrolyte is effective in electrochemically activating CO2, yielding only Li2CO3. Most surprisingly, we further discovered that a high dielectric medium such as DMSO can result in the reversible reaction of Li2CO3 over multiple cycles. We believe that the current mechanistic understanding of the chemistry of CO2 in a Li-air cell and the interplay of CO2 with electrolyte solvation will provide an important guideline for developing Li-air batteries. Furthermore, the possibility for a rechargeable Li-O2/CO2 battery based on Li2CO3 may have merits in enhancing cyclability by minimizing side reactions.

  9. Weight and volume estimates for aluminum-air batteries designed for electric vehicle applications

    Science.gov (United States)

    Cooper, J. F.

    1980-01-01

    The weights and volumes of reactants, electrolyte, and hardware components are estimated for an aluminum-air battery designed for a 40-kW (peak), 70-kWh aluminum-air battery. Generalized equations are derived which express battery power and energy content as functions of total anode area, aluminum-anode weight, and discharge current density. Equations are also presented which express total battery weight and volume as linear combinations of the variables, anode area and anode weight. The sizing and placement of battery components within the engine compartment of typical five-passenger vehicles is briefly discussed.

  10. Enhanced reversibility and durability of a solid oxide Fe-air redox battery by carbothermic reaction derived energy storage materials.

    Science.gov (United States)

    Zhao, Xuan; Li, Xue; Gong, Yunhui; Huang, Kevin

    2014-01-18

    The recently developed solid oxide metal-air redox battery is a new technology capable of high-rate chemistry. Here we report that the performance, reversibility and stability of a solid oxide iron-air redox battery can be significantly improved by nanostructuring energy storage materials from a carbothermic reaction.

  11. A low cost, disposable cable-shaped Al-air battery for portable biosensors

    Science.gov (United States)

    Fotouhi, Gareth; Ogier, Caleb; Kim, Jong-Hoon; Kim, Sooyeun; Cao, Guozhong; Shen, Amy Q.; Kramlich, John; Chung, Jae-Hyun

    2016-05-01

    A disposable cable-shaped flexible battery is presented using a simple, low cost manufacturing process. The working principle of an aluminum-air galvanic cell is used for the cable-shaped battery to power portable and point-of-care medical devices. The battery is catalyzed with a carbon nanotube (CNT)-paper matrix. A scalable manufacturing process using a lathe is developed to wrap a paper layer and a CNT-paper matrix on an aluminum wire. The matrix is then wrapped with a silver-plated copper wire to form the battery cell. The battery is activated through absorption of electrolytes including phosphate-buffered saline, NaOH, urine, saliva, and blood into the CNT-paper matrix. The maximum electric power using a 10 mm-long battery cell is over 1.5 mW. As a demonstration, an LED is powered using two groups of four batteries in parallel connected in series. Considering the material composition and the cable-shaped configuration, the battery is fully disposable, flexible, and potentially compatible with portable biosensors through activation by either reagents or biological fluids.

  12. A low cost, disposable cable-shaped Al–air battery for portable biosensors

    International Nuclear Information System (INIS)

    Fotouhi, Gareth; Kramlich, John; Chung, Jae-Hyun; Ogier, Caleb; Kim, Jong-Hoon; Kim, Sooyeun; Cao, Guozhong; Shen, Amy Q

    2016-01-01

    A disposable cable-shaped flexible battery is presented using a simple, low cost manufacturing process. The working principle of an aluminum–air galvanic cell is used for the cable-shaped battery to power portable and point-of-care medical devices. The battery is catalyzed with a carbon nanotube (CNT)-paper matrix. A scalable manufacturing process using a lathe is developed to wrap a paper layer and a CNT-paper matrix on an aluminum wire. The matrix is then wrapped with a silver-plated copper wire to form the battery cell. The battery is activated through absorption of electrolytes including phosphate-buffered saline, NaOH, urine, saliva, and blood into the CNT-paper matrix. The maximum electric power using a 10 mm-long battery cell is over 1.5 mW. As a demonstration, an LED is powered using two groups of four batteries in parallel connected in series. Considering the material composition and the cable-shaped configuration, the battery is fully disposable, flexible, and potentially compatible with portable biosensors through activation by either reagents or biological fluids. (paper)

  13. Grain Boundary Engineering of Lithium-Ion-Conducting Lithium Lanthanum Titanate for Lithium-Air Batteries

    Science.gov (United States)

    2016-01-01

    Titanate for Lithium-Air Batteries by Victoria L Blair, Claire V Weiss Brennan, and Joseph M Marsico Approved for public...Air Batteries by Victoria L Blair and Claire V Weiss Brennan Weapons and Materials Research Directorate, ARL Joseph M Marsico Rochester...Titanate for Lithium-Air Batteries 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Victoria L Blair, Claire V

  14. Selective poisoning of Li-air batteries for increased discharge capacity

    DEFF Research Database (Denmark)

    Mýrdal, Jón Steinar Garðarsson; Vegge, Tejs

    2014-01-01

    The main discharge product at the cathode of non-aqueous Li-air batteries is insulating Li2O2 and its poor electronic conduction is a main limiting factor in the battery performance. Here, we apply density functional theory calculations (DFT) to investigate the potential of circumventing...... accessible battery capacity at the expense of a limited increase in the overpotentials....

  15. Multiple Electron Charge Transfer Chemistries for Electrochemical Energy Storage Systems: The Metal Boride and Metal Air Battery

    Science.gov (United States)

    Stuart, Jessica F.

    The primary focus of this work has been to develop high-energy capacity batteries capable of undergoing multiple electron charge transfer redox reactions to address the growing demand for improved electrical energy storage systems that can be applied to a range of applications. As the levels of carbon dioxide (CO2) increase in the Earth's atmosphere, the effects on climate change become increasingly apparent. According to the Energy Information Administration (EIA), the U.S. electric power sector is responsible for the release of 2,039 million metric tons of CO2 annually, equating to 39% of total U.S. energy-related CO2 emissions. Both nationally and abroad, there are numerous issues associated with the generation and use of electricity aside from the overwhelming dependence on fossil fuels and the subsequent carbon emissions, including reliability of the grid and the utilization of renewable energies. Renewable energy makes up a relatively small portion of total energy contributions worldwide, accounting for only 13% of the 3,955 billion kilowatt-hours of electricity produced each year, as reported by the EIA. As the demand to reduce our dependence on fossils fuels and transition to renewable energy sources increases, cost effective large-scale electrical energy storage must be established for renewable energy to become a sustainable option for the future. A high capacity energy storage system capable of leveling the intermittent nature of energy sources such as solar, wind, and water into the electric grid and provide electricity at times of high demand will facilitate this transition. In 2008, the Licht Group presented the highest volumetric energy capacity battery, the vanadium diboride (VB2) air battery, exceedingly proficient in transferring eleven electrons per molecule. This body of work focuses on new developments to this early battery such as fundamentally understanding the net discharge mechanism of the system, evaluation of the properties and

  16. Thermo-electrochemical model for forced convection air cooling of a lithium-ion battery module

    International Nuclear Information System (INIS)

    Tong, Wei; Somasundaram, Karthik; Birgersson, Erik; Mujumdar, Arun S.; Yap, Christopher

    2016-01-01

    Highlights: • Coupled thermal-electrochemical model for a Li-ion battery module resolving every functional layer in all cells. • Parametric analysis of forced convection air cooling of Li-ion battery module with a detailed multi-scale model. • Reversing/reciprocating airflow for Li-ion battery module thermal management provides uniform temperature distribution. - Abstract: Thermal management is critical for safe and reliable operation of lithium-ion battery systems. In this study, a one-dimensional thermal-electrochemical model of lithium-ion battery interactively coupled with a two-dimensional thermal-fluid conjugate model for forced convection air cooling of a lithium-ion battery module is presented and solved numerically. This coupled approach makes the model more unique and detailed as transport inside each cell in the battery module is solved for and thus covering multiple length and time scales. The effect of certain design and operating parameters of the thermal management system on the performance of the battery module is assessed using the coupled model. It is found that a lower temperature increase of the battery module can be achieved by either increasing the inlet air velocity or decreasing the distance between the cells. Higher air inlet velocity, staggered cell arrangement or a periodic reversal airflow of high reversal frequency results in a more uniform temperature distribution in the module. However, doing so increases the parasitic load as well as the volume of the battery module whence a trade-off should be taken into account between these parameters.

  17. High surface area carbon for bifunctional air electrodes applied in zinc-air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Arai, H [on leave from NTT Laboratories (Japan); Mueller, S; Haas, O [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Bifunctional air electrodes with high surface area carbon substrates showed low reduction overpotential, thus are promising for enhancing the energy efficiency and power capability of zinc-air batteries. The improved performance is attributed to lower overpotential due to diffusion of the reaction intermediate, namely the peroxide ion. (author) 1 fig., 2 refs.

  18. Cathodes for lithium-air battery cells with acid electrolytes

    Science.gov (United States)

    Xing, Yangchuan; Huang, Kan; Li, Yunfeng

    2016-07-19

    In various embodiments, the present disclosure provides a layered metal-air cathode for a metal-air battery. Generally, the layered metal-air cathode comprises an active catalyst layer, a transition layer bonded to the active catalyst layer, and a backing layer bonded to the transition layer such that the transition layer is disposed between the active catalyst layer and the backing layer.

  19. Capillary based Li-air batteries for in situ synchrotron X-ray powder diffraction studies

    DEFF Research Database (Denmark)

    Storm, Mie Møller; Johnsen, Rune E.; Younesi, Reza

    2015-01-01

    For Li-air batteries to reach their full potential as energy storage system, a complete understanding of the conditions and reactions in the battery during operation is needed. To follow the reactions in situ a capillary-based Li-O2 battery has been developed for synchrotron-based in situ X......-ray powder diffraction (XRPD). In this article, we present the results for the analysis of 1st and 2nd deep discharge and charge for a cathode being cycled between 2 and 4.6 V. The crystalline precipitation of Li2O2 only is observed in the capillary battery. However, there are indications of side reactions...... of constant exposure of X-ray radiation to the electrolyte and cathode during charge of the battery was also investigated. X-ray exposure during charge leads to changes in the development of the intensity and the FWHM of the Li2O2 diffraction peaks. The X-ray diffraction results are supported by ex situ X...

  20. Advances in development and application of aluminium batteries

    DEFF Research Database (Denmark)

    Qingfeng, Li; Zhuxian, Qiu

    2001-01-01

    Aluminium has long attracted attention as a potential battery anode because of its high theoretical voltage and specific energy. The protective oxide layer at aluminium surface is however detrimental to its performance to achieve its reversible potential, and also causing the delayed activation o...... aluminium batteres, especially aluminium-air batteries, and a wide range of their applications from emergency power supplies, reserve batteries field portable batteries, to batteries for electric vehicles and underwater propulsion....

  1. Communications: Elementary oxygen electrode reactions in the aprotic Li-air battery

    DEFF Research Database (Denmark)

    Hummelshøj, Jens Strabo; Blomquist, Jakob; Datta, Soumendu

    2010-01-01

    We discuss the electrochemical reactions at the oxygen electrode of an aprotic Li-air battery. Using density functional theory to estimate the free energy of intermediates during the discharge and charge of the battery, we introduce a reaction free energy diagram and identify possible origins...

  2. An All-Solid-State Fiber-Shaped Aluminum-Air Battery with Flexibility, Stretchability, and High Electrochemical Performance.

    Science.gov (United States)

    Xu, Yifan; Zhao, Yang; Ren, Jing; Zhang, Ye; Peng, Huisheng

    2016-07-04

    Owing to the high theoretical energy density of metal-air batteries, the aluminum-air battery has been proposed as a promising long-term power supply for electronics. However, the available energy density from the aluminum-air battery is far from that anticipated and is limited by current electrode materials. Herein we described the creation of a new family of all-solid-state fiber-shaped aluminum-air batteries with a specific capacity of 935 mAh g(-1) and an energy density of 1168 Wh kg(-1) . The synthesis of an electrode composed of cross-stacked aligned carbon-nanotube/silver-nanoparticle sheets contributes to the remarkable electrochemical performance. The fiber shape also provides the aluminum-air batteries with unique advantages; for example, they are flexible and stretchable and can be woven into a variety of textiles for large-scale applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Development of lithium air novel materials for electrical vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Aucher, Christophe; Knipping, E.; Amantia, D.; Almarza, A.; Faccini, M.; Gutierrez-Tauste, D.; Saez, J.A.; Aubouy, L. [Leitat Technological Center, Terrassa (Spain)

    2012-07-01

    Fluctuation of oil prices and effects of global warming have forced the scientific-technical community to look for the alternative energy storage and conversion systems, such as the smart grid. The maximum energy density of current lithium-ion batteries (LIB) is limited because of the intercalation chemistry of each electrode. Then actual LIBs are not fully satisfactory for the practical application of electric vehicles (EV). Therefore metal-air batteries have attracted much attention as a possible alternative, especially for the replacing of the diesel or gasoline, because of their energy density is extremely high compared to that of other rechargeable batteries and theoretically close to the energy density of the fossil energy. This technology leads to a very light dispositive where the limited intercalation chemistry is avoided. Li-air batteries are suitable for the development of the new generation of EVs. It is estimated that a well optimized Li-air battery can yield a specific energy of up to 3000 Wh/Kg, over a factor of 15 greater than the state of the art lithium ion batteries. Electrical cars today typically can travel only about 150 km on current LIB technology. The development of the lithium air batteries stands chance of being light enough to travel 800 km on a single charge and cheap enough to be practical for a typical family car. This problem is creating a significant barrier to electric vehicle adoption. However, the impact of this technology has so far fallen short of its potential due to several daunting challenges which must be overcome as the cyclability or the wide gap between the practical (362 Wh/kg) and the theoretical (11 kWh/g) values of the specific energy.

  4. Chemical Stability Investigations of Polyisobutylene as New Binder for Application in Lithium Air-Batteries

    International Nuclear Information System (INIS)

    Heine, Jennifer; Rodehorst, Uta; Badillo, Juan Pablo; Winter, Martin; Bieker, Peter

    2015-01-01

    ABSTRACT: The side reactions of LiO 2 , Li 2 O 2 and Li 2 O, formed during the discharge process at the cathode/electrolyte interphase, are still a main challenge of lithium-air batteries. During these reactions, polyvinylidene difluoride (PVdF), as the commonly used cathode binder material, is decomposing, leading to a shorter lifetime of the battery. In this paper, we introduced and investigated polyisobutylene (PIB), a chemically and electrochemically inert polymeric material, to substitute PVdF as binder for lithium-air batteries. Results obtained by X-ray diffraction and spectroscopic methods showed, that PIB is far more stable in the presence of O 2 − , O 2 2− as well as O 2− species compared to PVdF. This distinct inertness makes PIB a promising binder for lithium-air batteries

  5. Understanding the nanoscale redox-behavior of iron-anodes for rechargeable iron-air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Weinrich, Henning [Forschungszentrum Julich (Germany). Inst. for Energy and Climate Research-Fundamental Electrochemistry (IEK-9); RWTH Aachen Univ., Aachen (Germany). Inst. of Physical Chemistry; Come, Jérémy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Tempel, Hermann [Forschungszentrum Julich (Germany). Inst. for Energy and Climate Research-Fundamental Electrochemistry (IEK-9); Kungl, Hans [Forschungszentrum Julich (Germany). Inst. for Energy and Climate Research-Fundamental Electrochemistry (IEK-9); Eichel, Rüdiger-A. [Forschungszentrum Julich (Germany). Inst. for Energy and Climate Research-Fundamental Electrochemistry (IEK-9); Balke, Nina [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS)

    2017-10-10

    Iron-air cells provide a promising and resource-efficient alternative battery concept with superior area specific power density characteristics compared to state-of-the-art Li-air batteries and potentially superior energy density characteristics compared to present Li-ion batteries. Understanding charge-transfer reactions at the anode-electrolyte interface is the key to develop high-performance cells. By employing in-situ electrochemical atomic force microscopy (in-situ EC-AFM), in-depth insight into the electrochemically induced surface reaction processes on iron in concentrated alkaline electrolyte is obtained. The results highlight the formation and growth of the redox-layer on iron over the course of several oxidation/reduction cycles. By this means, a direct correlation between topography changes and the corresponding electrochemical reactions at the nanoscale could unambiguously be established. Here in this paper, the twofold character of the nanoparticulate redox-layer in terms of its passivating character and its contribution to the electrochemical reactions is elucidated. Furthermore, the evolution of single nanoparticles on the iron electrode surface is evaluated in unprecedented and artifact-free detail. Based on the dedicated topography analysis, a detailed structural model for the evolution of the redox-layer which is likewise elementary for corrosion science and battery research is derived.

  6. Double Trait Assessment Test Battery for Air Force Pilots

    National Research Council Canada - National Science Library

    Tarnowski, Adam

    1998-01-01

    Building on years of theoretical discussions as well as diagnostic experience in the Polish Air Force Institute of Aviation Medicine, a battery of psychological tests was proposed for the assessment...

  7. Preliminary study on aluminum-air battery applying disposable soft drink cans and Arabic gum polymer

    Science.gov (United States)

    Alva, S.; Sundari, R.; Wijaya, H. F.; Majlan, E. H.; Sudaryanto; Arwati, I. G. A.; Sebayang, D.

    2017-09-01

    This study is in relation to preliminary investigation of aluminium-air battery using disposable soft drink cans as aluminium source for anode. The cathode uses commercial porous carbon sheet to trap oxygen from air. This work applies a commercial cashing to place carbon cathode, electrolyte, Arabic gum polymer, and aluminium anode in a sandwich-like arrangement to form the aluminium-air battery. The Arabic gum as electrolyte polymer membrane protects anode surface from corrosion due to aluminium oxide formation. The study result shows that the battery discharge test using constant current loading of 0.25 mA yields battery capacity of 0.437 mAh with over 100 minute battery life times at 4M NaOH electrolyte and 20 % Arabic gum polymer as the best performance in this investigation. This study gives significant advantage in association with beneficiation of disposable soft drink cans from municipal solid waste as aluminium source for battery anode.

  8. Cathode Composition in a Saltwater Metal-Air Battery

    Directory of Open Access Journals (Sweden)

    William Shen

    2017-01-01

    Full Text Available Metal-air batteries consist of a solid metal anode and an oxygen cathode of ambient air, typically separated by an aqueous electrolyte. Here, simple saltwater-based models of aluminum-air and zinc-air cells are used to determine the differences between theoretical cell electric potentials and experimental electric potentials. A substantial difference is observed. It is also found that the metal cathode material is crucial to cell electric potential, despite the cathode not participating in the net reaction. Finally, the material composition of the cathode appears to have a more significant impact on cell potential than the submerged surface area of the cathode.

  9. Improving the aluminum-air battery system for use in electrical vehicles

    Science.gov (United States)

    Yang, Shaohua

    The objectives of this study include improvement of the efficiency of the aluminum/air battery system and demonstration of its ability for vehicle applications. The aluminum/air battery system can generate enough energy and power for driving ranges and acceleration similar to that of gasoline powered cars. Therefore has the potential to be a power source for electrical vehicles. Aluminum/air battery vehicle life cycle analysis was conducted and compared to that of lead/acid and nickel-metal hydride vehicles. Only the aluminum/air vehicles can be projected to have a travel range comparable to that of internal combustion engine vehicles (ICE). From this analysis, an aluminum/air vehicle is a promising candidate compared to ICE vehicles in terms of travel range, purchase price, fuel cost, and life cycle cost. We have chosen two grades of Al alloys (Al alloy 1350, 99.5% and Al alloy 1199, 99.99%) in our study. Only Al 1199 was studied extensively using Na 2SnO3 as an electrolyte additive. We then varied concentration and temperature, and determined the effects on the parasitic (corrosion) current density and open circuit potential. We also determined cell performance and selectivity curves. To optimize the performance of the cell based on our experiments, the recommended operating conditions are: 3--4 N NaOH, about 55°C, and a current density of 150--300 mA/cm2. We have modeled the cell performance using the equations we developed. The model prediction of cell performance shows good agreement with experimental data. For better cell performance, our model studies suggest use of higher electrolyte flow rate, smaller cell gap, higher conductivity and lower parasitic current density. We have analyzed the secondary current density distributions in a two plane, parallel Al/air cell and a wedge-type Al/air cell. The activity of the cathode has a large effect on the local current density. With increases in the cell gap, the local current density increases, but the increase is

  10. Prediction of thermal behaviors of an air-cooled lithium-ion battery system for hybrid electric vehicles

    Science.gov (United States)

    Choi, Yong Seok; Kang, Dal Mo

    2014-12-01

    Thermal management has been one of the major issues in developing a lithium-ion (Li-ion) hybrid electric vehicle (HEV) battery system since the Li-ion battery is vulnerable to excessive heat load under abnormal or severe operational conditions. In this work, in order to design a suitable thermal management system, a simple modeling methodology describing thermal behavior of an air-cooled Li-ion battery system was proposed from vehicle components designer's point of view. A proposed mathematical model was constructed based on the battery's electrical and mechanical properties. Also, validation test results for the Li-ion battery system were presented. A pulse current duty and an adjusted US06 current cycle for a two-mode HEV system were used to validate the accuracy of the model prediction. Results showed that the present model can give good estimations for simulating convective heat transfer cooling during battery operation. The developed thermal model is useful in structuring the flow system and determining the appropriate cooling capacity for a specified design prerequisite of the battery system.

  11. Design of Parallel Air-Cooled Battery Thermal Management System through Numerical Study

    Directory of Open Access Journals (Sweden)

    Kai Chen

    2017-10-01

    Full Text Available In electric vehicles, the battery pack is one of the most important components that strongly influence the system performance. The battery thermal management system (BTMS is critical to remove the heat generated by the battery pack, which guarantees the appropriate working temperature for the battery pack. Air cooling is one of the most commonly-used solutions among various battery thermal management technologies. In this paper, the cooling performance of the parallel air-cooled BTMS is improved through choosing appropriate system parameters. The flow field and the temperature field of the system are calculated using the computational fluid dynamics method. Typical numerical cases are introduced to study the influences of the operation parameters and the structure parameters on the performance of the BTMS. The operation parameters include the discharge rate of the battery pack, the inlet air temperature and the inlet airflow rate. The structure parameters include the cell spacing and the angles of the divergence plenum and the convergence plenum. The results show that the temperature rise and the temperature difference of the batter pack are not affected by the inlet air flow temperature and are increased as the discharge rate increases. Increasing the inlet airflow rate can reduce the maximum temperature, but meanwhile significantly increase the power consumption for driving the airflow. Adopting smaller cell spacing can reduce the temperature and the temperature difference of the battery pack, but it consumes much more power. Designing the angles of the divergence plenum and the convergence plenum is an effective way to improve the performance of the BTMS without occupying more system volume. An optimization strategy is used to obtain the optimal values of the plenum angles. For the numerical cases with fixed power consumption, the maximum temperature and the maximum temperature difference at the end of the five-current discharge process for

  12. Control system considerations for an aluminum-air battery powered electric vehicle

    Science.gov (United States)

    Cox, L. E.; Hassman, G. V.; Post, S. F.

    1980-05-01

    Basic motor controller requirements and tradeoffs between 30 cell and 60 cell aluminum air battery systems were established. A sample controller design was evolved and basic characteristics were evaluated. Advantages of a 60 cell battery system over a 30 cell were found in the areas of control system costs, weights, and efficiency.

  13. Assessment of the forced air-cooling performance for cylindrical lithium-ion battery packs: A comparative analysis between aligned and staggered cell arrangements

    International Nuclear Information System (INIS)

    Yang, Naixing; Zhang, Xiongwen; Li, Guojun; Hua, Dong

    2015-01-01

    An appropriate cell arrangement plays significant role to design a highly efficient cooling system for the lithium-ion battery pack. This paper performs a comparative analysis of thermal performances on different arrangements of cylindrical cells for a LiFePO 4 battery pack. A thermal model for the battery pack is developed and is solved in couple with the governing equations of fluid flow in the numerical simulations. The experiments for model validation are conducted on a single cell of the battery pack with forced-air cooling system. The effects of longitudinal and transverse spacing on the cooling performances are analyzed for the battery pack with the aligned and the staggered arrays. Under a specified flow rate of cooling air, the maximum temperature rise is proportional to the longitudinal interval for the staggered arrays, while it is in inverse for the aligned arrangement. Increasing the transverse interval leads to the increase of the battery temperature rise for both aligned and staggered arrangements. By trade-off the design requirements (maximum temperature rise, temperature uniformity, power requirement and cooling index), an appropriate solution in term of the optimal combination of the longitudinal interval, transverse interval, and air inlet width is obtained for the aligned arrangement. - Highlights: • Forced air-cooling performance for cylindrical lithium-ion battery is evaluated. • Thermal performances for aligned and staggered cell arrangements are compared. • Geometric optimization is investigated for the battery air-cooling system

  14. Combinatorial electrochemical cell array for high throughput screening of micro-fuel-cells and metal/air batteries.

    Science.gov (United States)

    Jiang, Rongzhong

    2007-07-01

    An electrochemical cell array was designed that contains a common air electrode and 16 microanodes for high throughput screening of both fuel cells (based on polymer electrolyte membrane) and metal/air batteries (based on liquid electrolyte). Electrode materials can easily be coated on the anodes of the electrochemical cell array and screened by switching a graphite probe from one cell to the others. The electrochemical cell array was used to study direct methanol fuel cells (DMFCs), including high throughput screening of electrode catalysts and determination of optimum operating conditions. For screening of DMFCs, there is about 6% relative standard deviation (percentage of standard deviation versus mean value) for discharge current from 10 to 20 mAcm(2). The electrochemical cell array was also used to study tin/air batteries. The effect of Cu content in the anode electrode on the discharge performance of the tin/air battery was investigated. The relative standard deviations for screening of metal/air battery (based on zinc/air) are 2.4%, 3.6%, and 5.1% for discharge current at 50, 100, and 150 mAcm(2), respectively.

  15. Facilitated Oxygen Chemisorption in Heteroatom-Doped Carbon for Improved Oxygen Reaction Activity in All-Solid-State Zinc-Air Batteries.

    Science.gov (United States)

    Liu, Sisi; Wang, Mengfan; Sun, Xinyi; Xu, Na; Liu, Jie; Wang, Yuzhou; Qian, Tao; Yan, Chenglin

    2018-01-01

    Driven by the intensified demand for energy storage systems with high-power density and safety, all-solid-state zinc-air batteries have drawn extensive attention. However, the electrocatalyst active sites and the underlying mechanisms occurring in zinc-air batteries remain confusing due to the lack of in situ analytical techniques. In this work, the in situ observations, including X-ray diffraction and Raman spectroscopy, of a heteroatom-doped carbon air cathode are reported, in which the chemisorption of oxygen molecules and oxygen-containing intermediates on the carbon material can be facilitated by the electron deficiency caused by heteroatom doping, thus improving the oxygen reaction activity for zinc-air batteries. As expected, solid-state zinc-air batteries equipped with such air cathodes exhibit superior reversibility and durability. This work thus provides a profound understanding of the reaction principles of heteroatom-doped carbon materials in zinc-air batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A new class of solid oxide metal-air redox batteries for advanced stationary energy storage

    Science.gov (United States)

    Zhao, Xuan

    Cost-effective and large-scale energy storage technologies are a key enabler of grid modernization. Among energy storage technologies currently being researched, developed and deployed, rechargeable batteries are unique and important that can offer a myriad of advantages over the conventional large scale siting- and geography- constrained pumped-hydro and compressed-air energy storage systems. However, current rechargeable batteries still need many breakthroughs in material optimization and system design to become commercially viable for stationary energy storage. This PhD research project investigates the energy storage characteristics of a new class of rechargeable solid oxide metal-air redox batteries (SOMARBs) that combines a regenerative solid oxide fuel cell (RSOFC) and hydrogen chemical-looping component. The RSOFC serves as the "electrical functioning unit", alternating between the fuel cell and electrolysis mode to realize discharge and charge cycles, respectively, while the hydrogen chemical-looping component functions as an energy storage unit (ESU), performing electrical-chemical energy conversion in situ via a H2/H2O-mediated metal/metal oxide redox reaction. One of the distinctive features of the new battery from conventional storage batteries is the ESU that is physically separated from the electrodes of RSOFC, allowing it to freely expand and contract without impacting the mechanical integrity of the entire battery structure. This feature also allows an easy switch in the chemistry of this battery. The materials selection for ESU is critical to energy capacity, round-trip efficiency and cost effectiveness of the new battery. Me-MeOx redox couples with favorable thermodynamics and kinetics are highly preferable. The preliminary theoretical analysis suggests that Fe-based redox couples can be a promising candidate for operating at both high and low temperatures. Therefore, the Fe-based redox-couple systems have been selected as the baseline for this

  17. Study of Stable Cathodes and Electrolytes for High Specific Density Lithium-Air Battery

    Science.gov (United States)

    Hernandez-Lugo, Dionne M.; Wu, James; Bennett, William; Ming, Yu; Zhu, Yu

    2015-01-01

    Future NASA missions require high specific energy battery technologies, greater than 400 Wh/kg. Current NASA missions are using "state-of-the-art" (SOA) Li-ion batteries (LIB), which consist of a metal oxide cathode, a graphite anode and an organic electrolyte. NASA Glenn Research Center is currently studying the physical and electrochemical properties of the anode-electrolyte interface for ionic liquid based Li-air batteries. The voltage-time profiles for Pyr13FSI and Pyr14TFSI ionic liquids electrolytes studies on symmetric cells show low over-potentials and no dendritic lithium morphology. Cyclic voltammetry measurements indicate that these ionic liquids have a wide electrochemical window. As a continuation of this work, sp2 carbon cathode and these low flammability electrolytes were paired and the physical and electrochemical properties were studied in a Li-air battery system under an oxygen environment.

  18. DISCHARGE OXIDE STORAGE CAPACITY AND VOLTAGE LOSS IN LI-AIR BATTERY

    International Nuclear Information System (INIS)

    Wang, Yun; Wang, Zhe; Yuan, Hao; Li, Tianqi

    2015-01-01

    Air cathodes, where oxygen reacts with Li ions and electrons with discharge oxide stored in their pore structure, are often considered as the most challenging component in nonaqueous Lithium-air batteries. In non-aqueous electrolytes, discharge oxides are usually insoluble and hence precipitate at local reaction site, raising the oxygen transport resistance in the pore network. Due to their low electric conductivity, their presence causes electrode passivation. This study aims to investigate the air cathode’s performance through analytically obtaining oxygen profiles, modeling electrode passivation, evaluating the transport polarization raised by discharge oxide precipitate, and developing analytical formulas for insoluble Li oxides storage capacity. The variations of cathode quantities, including oxygen content and temperature, are evaluated and related to a single dimensionless parameter — the Damköhler Number (Da). An approximate model is developed to predict discharge voltage loss, along with validation against two sets of experimental data. Air cathode properties, including tortuosity, surface coverage factor and the Da number, and their effects on the cathode’s capacity of storing Li oxides are formulated and discussed.

  19. Developments in batteries and fuel cells for electric and hybrid electric vehicles

    International Nuclear Information System (INIS)

    Ahmed, R.

    2013-01-01

    Due to ever increasing threats of climate change, urban air pollution and costly and depleting oil and gas sources a lot of work is being done for the development of electric vehicles. Hybrid electric vehicles, plug-in hybrid electric vehicles and all electric vehicles are powered by batteries or by hydrogen and fuel cells are the main types of vehicles being developed. Main types of batteries which can be used for electric vehicles are lead-acid, Ni-Cd, Nickel-Metal-Hybrid ( NiMH) and Lithium-ion (Li-ion) batteries which are discussed and compared. Lithium ion battery is the mostly used battery. Developments in the lithium ion batteries are discussed and reviewed. Redox flow batteries are also potential candidates for electric vehicles and are described. Hybrid electric vehicles can reduce fuel consumption considerably and is a good midterm solution. Electric and hybrid electric vehicles are discussed. Electric vehicles are necessary to mitigate the effects of pollution and dependence on oil. For all the electric vehicles there are two options: batteries and fuel Cells. Batteries are useful for small vehicles and shorter distances but for vehicle range greater than 150 km fuel cells are superior to batteries in terms of cost, efficiency and durability even using natural gas and other fuels in addition to hydrogen. Ultimate solution for electric vehicles are hydrogen and fuel cells and this opinion is also shared by most of the automobile manufacturers. Developments in fuel cells and their applications for automobiles are described and reviewed. Comparisons have been done in the literature between batteries and fuel cells and are described. (author)

  20. Manufacturing of Protected Lithium Electrodes for Advanced Lithium-Air, Lithium-Water & Lithium-Sulfur Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Visco, Steven J

    2015-11-30

    The global demand for rechargeable batteries is large and growing rapidly. Assuming the adoption of electric vehicles continues to increase, the need for smaller, lighter, and less expensive batteries will become even more pressing. In this vein, PolyPlus Battery Company has developed ultra-light high performance batteries based on its proprietary protected lithium electrode (PLE) technology. The Company’s Lithium-Air and Lithium-Seawater batteries have already demonstrated world record performance (verified by third party testing), and we are developing advanced lithium-sulfur batteries which have the potential deliver high performance at low cost. In this program PolyPlus Battery Company teamed with Corning Incorporated to transition the PLE technology from bench top fabrication using manual tooling to a pre- commercial semi-automated pilot line. At the inception of this program PolyPlus worked with a Tier 1 battery manufacturing engineering firm to design and build the first-of-its-kind pilot line for PLE production. The pilot line was shipped and installed in Berkeley, California several months after the start of the program. PolyPlus spent the next two years working with and optimizing the pilot line and now produces all of its PLEs on this line. The optimization process successfully increased the yield, throughput, and quality of PLEs produced on the pilot line. The Corning team focused on fabrication and scale-up of the ceramic membranes that are key to the PLE technology. PolyPlus next demonstrated that it could take Corning membranes through the pilot line process to produce state-of-the-art protected lithium electrodes. In the latter part of the program the Corning team developed alternative membranes targeted for the large rechargeable battery market. PolyPlus is now in discussions with several potential customers for its advanced PLE-enabled batteries, and is building relationships and infrastructure for the transition into manufacturing. It is likely

  1. Ag nanoparticle-modified MnO2 nanorods catalyst for use as an air electrode in zinc–air battery

    International Nuclear Information System (INIS)

    Goh, F.W. Thomas; Liu, Zhaolin; Ge, Xiaoming; Zong, Yun; Du, Guojun; Hor, T.S. Andy

    2013-01-01

    In this paper, we report the synthesis, characterization and application of an inexpensive yet efficient bifunctional catalyst composed of Ag nanocrystals (∼11 nm) anchored on α-MnO 2 nanorods. The nanostructured Ag–MnO 2 catalysts exhibit improved oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) performance in aqueous alkaline media, in terms of onset potential, generated current density and Tafel slopes. Rotating disk electrode results show that near-four electrons per oxygen molecule were transferred during ORR of Ag–MnO 2 . A zinc–air battery prototype employing Ag–MnO 2 in the air electrode was successfully operated for 270 cycles under light discharge–charge condition. Ag–MnO 2 is an efficient bifunctional catalyst for electrochemical devices such as metal–air batteries and alkaline fuel cells

  2. Development and Characterization of an Electrically Rechargeable Zinc-Air Battery Stack

    Directory of Open Access Journals (Sweden)

    Hongyun Ma

    2014-10-01

    Full Text Available An electrically rechargeable zinc-air battery stack consisting of three single cells in series was designed using a novel structured bipolar plate with air-breathing holes. Alpha-MnO2 and LaNiO3 severed as the catalysts for the oxygen reduction reaction (ORR and oxygen evolution reaction (OER. The anodic and cathodic polarization and individual cell voltages were measured at constant charge-discharge (C-D current densities indicating a uniform voltage profile for each single cell. One hundred C-D cycles were carried out for the stack. The results showed that, over the initial 10 cycles, the average C-D voltage gap was about 0.94 V and the average energy efficiency reached 89.28% with current density charging at 15 mA·cm−2 and discharging at 25 mA·cm−2. The total increase in charging voltage over the 100 C-D cycles was ~1.56% demonstrating excellent stability performance. The stack performance degradation was analyzed by galvanostatic electrochemical impedance spectroscopy. The charge transfer resistance of ORR increased from 1.57 to 2.21 Ω and that of Zn/Zn2+ reaction increased from 0.21 to 0.34 Ω after 100 C-D cycles. The quantitative analysis guided the potential for the optimization of both positive and negative electrodes to improve the cycle life of the cell stack.

  3. Defect Engineering toward Atomic Co-Nx -C in Hierarchical Graphene for Rechargeable Flexible Solid Zn-Air Batteries.

    Science.gov (United States)

    Tang, Cheng; Wang, Bin; Wang, Hao-Fan; Zhang, Qiang

    2017-10-01

    Rechargeable flexible solid Zn-air battery, with a high theoretical energy density of 1086 Wh kg -1 , is among the most attractive energy technologies for future flexible and wearable electronics; nevertheless, the practical application is greatly hindered by the sluggish oxygen reduction reaction/oxygen evolution reaction (ORR/OER) kinetics on the air electrode. Precious metal-free functionalized carbon materials are widely demonstrated as the most promising candidates, while it still lacks effective synthetic methodology to controllably synthesize carbocatalysts with targeted active sites. This work demonstrates the direct utilization of the intrinsic structural defects in nanocarbon to generate atomically dispersed Co-N x -C active sites via defect engineering. As-fabricated Co/N/O tri-doped graphene catalysts with highly active sites and hierarchical porous scaffolds exhibit superior ORR/OER bifunctional activities and impressive applications in rechargeable Zn-air batteries. Specifically, when integrated into a rechargeable and flexible solid Zn-air battery, a high open-circuit voltage of 1.44 V, a stable discharge voltage of 1.19 V, and a high energy efficiency of 63% at 1.0 mA cm -2 are achieved even under bending. The defect engineering strategy provides a new concept and effective methodology for the full utilization of nanocarbon materials with various structural features and further development of advanced energy materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The effect of zinc on the aluminum anode of the aluminum-air battery

    Science.gov (United States)

    Tang, Yougen; Lu, Lingbin; Roesky, Herbert W.; Wang, Laiwen; Huang, Baiyun

    Aluminum is an ideal material for batteries, due to its excellent electrochemical performance. Herein, the effect of zinc on the aluminum anode of the aluminum-air battery, as an additive for aluminum alloy and electrolytes, has been studied. The results show that zinc can decrease the anodic polarization, restrain the hydrogen evolution and increase the anodic utilization rate.

  5. Seeking effective dyes for a mediated glucose-air alkaline battery/fuel cell

    Science.gov (United States)

    Eustis, Ross; Tsang, Tsz Ming; Yang, Brigham; Scott, Daniel; Liaw, Bor Yann

    2014-02-01

    A significant level of power generation from an abiotic, air breathing, mediated reducing sugar-air alkaline battery/fuel cell has been achieved in our laboratories at room temperature without complicated catalysis or membrane separation in the reaction chamber. Our prior studies suggested that mass transport limitation by the mediator is a limiting factor in power generation. New and effective mediators were sought here to improve charge transfer and power density. Forty-five redox dyes were studied to identify if any can facilitate mass transport in alkaline electrolyte solution; namely, by increasing the solubility and mobility of the dye, and the valence charge carried per molecule. Indigo dyes were studied more closely to understand the complexity involved in mass transport. The viability of water-miscible co-solvents was also explored to understand their effect on solubility and mass transport of the dyes. Using a 2.0 mL solution, 20% methanol by volume, with 100 mM indigo carmine, 1.0 M glucose and 2.5 M sodium hydroxide, the glucose-air alkaline battery/fuel cell attained 8 mA cm-2 at short-circuit and 800 μW cm-2 at the maximum power point. This work shall aid future optimization of mediated charge transfer mechanism in batteries or fuel cells.

  6. Battery Thermal Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Keyser, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-08

    The operating temperature is critical in achieving the right balance between performance, cost, and life for both Li-ion batteries and ultracapacitors. The chemistries of advanced energy-storage devices - such as lithium-based batteries - are very sensitive to operating temperature. High temperatures degrade batteries faster while low temperatures decrease their power and capacity, affecting vehicle range, performance, and cost. Understanding heat generation in battery systems - from the individual cells within a module, to the inter-connects between the cells, and across the entire battery system - is imperative for designing effective thermal-management systems and battery packs. At NREL, we have developed unique capabilities to measure the thermal properties of cells and evaluate thermal performance of battery packs (air or liquid cooled). We also use our electro-thermal finite element models to analyze the thermal performance of battery systems in order to aid battery developers with improved thermal designs. NREL's tools are used to meet the weight, life, cost, and volume goals set by the U.S. Department of Energy for electric drive vehicles.

  7. One-dimensional manganese-cobalt oxide nanofibres as bi-functional cathode catalysts for rechargeable metal-air batteries

    OpenAIRE

    Jung, Kyu-Nam; Hwang, Soo Min; Park, Min-Sik; Kim, Ki Jae; Kim, Jae-Geun; Dou, Shi Xue; Kim, Jung Ho; Lee, Jong-Won

    2015-01-01

    Rechargeable metal-air batteries are considered a promising energy storage solution owing to their high theoretical energy density. The major obstacles to realising this technology include the slow kinetics of oxygen reduction and evolution on the cathode (air electrode) upon battery discharging and charging, respectively. Here, we report non-precious metal oxide catalysts based on spinel-type manganese-cobalt oxide nanofibres fabricated by an electrospinning technique. The spinel oxide nanof...

  8. Oxygen-Rich Lithium Oxide Phases Formed at High Pressure for Potential Lithium-Air Battery Electrode.

    Science.gov (United States)

    Yang, Wenge; Kim, Duck Young; Yang, Liuxiang; Li, Nana; Tang, Lingyun; Amine, Khalil; Mao, Ho-Kwang

    2017-09-01

    The lithium-air battery has great potential of achieving specific energy density comparable to that of gasoline. Several lithium oxide phases involved in the charge-discharge process greatly affect the overall performance of lithium-air batteries. One of the key issues is linked to the environmental oxygen-rich conditions during battery cycling. Here, the theoretical prediction and experimental confirmation of new stable oxygen-rich lithium oxides under high pressure conditions are reported. Three new high pressure oxide phases that form at high temperature and pressure are identified: Li 2 O 3 , LiO 2 , and LiO 4 . The LiO 2 and LiO 4 consist of a lithium layer sandwiched by an oxygen ring structure inherited from high pressure ε-O 8 phase, while Li 2 O 3 inherits the local arrangements from ambient LiO 2 and Li 2 O 2 phases. These novel lithium oxides beyond the ambient Li 2 O, Li 2 O 2 , and LiO 2 phases show great potential in improving battery design and performance in large battery applications under extreme conditions.

  9. Develop improved battery charger (Turbo-Z Battery Charging System). Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    The output of this project was a flexible control board. The control board can be used to control a variety of rapid battery chargers. The control module will reduce development cost of rapid battery charging hardware. In addition, PEPCO's proprietary battery charging software have been pre-programmed into the control microprocessor. This product is being applied to the proprietary capacitive charging system now under development.

  10. The effect of crystal orientation on the aluminum anodes of the aluminum-air batteries in alkaline electrolytes

    Science.gov (United States)

    Fan, Liang; Lu, Huimin; Leng, Jing; Sun, Zegao; Chen, Chunbo

    2015-12-01

    Recently, aluminum-air (Al-air) batteries have received attention from researchers as an exciting option for safe and efficient batteries. The electrochemical performance of Aluminum anode remains an active area of investigation. In this paper, the electrochemical properties of polycrystalline Al, Al (001), (110) and (111) single crystals are investigated using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) in 4 M NaOH and KOH. Hydrogen corrosion rates of the Al anodes are determined by hydrogen collection. Battery performance using the anodes is tested by constant current discharge at 10 mA cm-2. This is the first report showing that the electrochemical properties of Al are closely related to the crystallographic orientation in alkaline electrolytes. The (001) crystallographic plane has good corrosion resistance but (110) is more sensitive. Al (001) single crystals display higher anode efficiency and capacity density. Controlling the crystallographic orientation of the Al anode is another way to improve the performance of Al-air batteries in alkaline electrolytes.

  11. Status of the DOE Battery and Electrochemical Technology Program V

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, R.

    1985-06-01

    The program consists of two activities, Technology Base Research (TBR) managed by the Lawrence Berkeley Laboratory (LBL) and Exploratory Technology Development and Testing (EDT) managed by the Sandia National Laboratories (SNL). The status of the Battery Energy Storage Test (BEST) Facility is presented, including the status of the batteries to be tested. ECS program contributions to the advancement of the lead-acid battery and specific examples of technology transfer from this program are given. The advances during the period December 1982 to June 1984 in the characterization and performance of the lead-acid, iron/nickel-oxide, iron/air, aluminum/air, zinc/bromide, zinc/ferricyanide, and sodium/sulfur batteries and in fuel cells for transport are summarized. Novel techniques and the application of established techniques to the study of electrode processes, especially the electrode/electrolyte interface, are described. Research with the potential of leading to improved ceramic electrolytes and positive electrode container and current-collectors for the sodium/sulfur battery is presented. Advances in the electrocatalysis of the oxygen (air) electrode and the relationship of these advances to the iron/air and aluminum/air batteries and to the fuel cell are noted. The quest for new battery couples and battery materials is reviewed. New developments in the modeling of electrochemical cell and electrode performance with the approaches to test these models are reported.

  12. Tapioca binder for porous zinc anodes electrode in zinc–air batteries

    Directory of Open Access Journals (Sweden)

    Mohamad Najmi Masri

    2015-07-01

    Full Text Available Tapioca was used as a binder for porous Zn anodes in an electrochemical zinc-air (Zn-air battery system. The tapioca binder concentrations varied to find the optimum composition. The effect of the discharge rate at 100 mA on the constant current, current–potential and current density–power density of the Zn-air battery was measured and analyzed. At concentrations of 60–80 mg cm−3, the tapioca binder exhibited the optimum discharge capability, with a specific capacity of approximately 500 mA h g−1 and a power density of 17 mW cm−2. A morphological analysis proved that at this concentration, the binder is able to provide excellent binding between the Zn powders. Moreover, the structure of Zn as the active material was not affected by the addition of tapioca as the binder, as shown by the X-ray diffraction analysis. Furthermore, the conversion of Zn into ZnO represents the full utilization of the active material, which is a good indication that tapioca can be used as the binder.

  13. A Stable, Magnetic, and Metallic Li3O4 Compound as a Discharge Product in a Li-Air Battery.

    Science.gov (United States)

    Yang, Guochun; Wang, Yanchao; Ma, Yanming

    2014-08-07

    The Li-air battery with the specific energy exceeding that of a Li ion battery has been aimed as the next-generation battery. The improvement of the performance of the Li-air battery needs a full resolution of the actual discharge products. Li2O2 has been long recognized as the main discharge product, with which, however, there are obvious failures on the understanding of various experimental observations (e.g., magnetism, oxygen K-edge spectrum, etc.) on discharge products. There is a possibility of the existence of other Li-O compounds unknown thus far. Here, a hitherto unknown Li3O4 compound as a discharge product of the Li-air battery was predicted through first-principles swarm structure searching calculations. The new compound has a unique structure featuring the mixture of superoxide O2(-) and peroxide O2(2-), the first such example in the Li-O system. The existence of superoxide O2(-) creates magnetism and hole-doped metallicity. Findings of Li3O4 gave rise to direct explanations of the unresolved experimental magnetism, triple peaks of oxygen K-edge spectra, and the Raman peak at 1125 cm(-1) of the discharge products. Our work enables an opportunity for the performance of capacity, charge overpotential, and round-trip efficiency of the Li-air battery.

  14. Temperature and concentration transients in the aluminum-air battery

    Science.gov (United States)

    Homsy, R. V.

    1981-08-01

    Coupled conservation equations of heat and mass transfer are solved that predict temperature and concentration of the electrolyte of an aluminum-air battery system upon start-up and shutdown. Results of laboratory studies investigating the crystallization kinetics and solubility of the caustic-aluminate electrolyte system are used in the predictions. Temperature and concentration start-up transients are short, while during standby conditions, temperature increases to maximum and decreases slowly.

  15. Preparation of hydroxide ion conductive KOH–layered double hydroxide electrolytes for an all-solid-state iron–air secondary battery

    Directory of Open Access Journals (Sweden)

    Taku Tsuneishi

    2014-06-01

    Full Text Available Anion conductive solid electrolytes based on Mg–Al layered double hydroxide (LDH were prepared for application in an all-solid-state Fe–air battery. The ionic conductivity and the conducting ion species were evaluated from impedance and electromotive force measurements. The ion conductivity of LDH was markedly enhanced upon addition of KOH. The electromotive force in a water vapor concentration cell was similar to that of an anion-conducting polymer membrane. The KOH–LDH obtained was used as a hydroxide ion conductive electrolyte for all-solid-state Fe–air batteries. The cell performance of the Fe–air batteries was examined using a mixture of KOH–LDH and iron-oxide-supported carbon as the negative electrode.

  16. The role of transition metal interfaces on the electronic transport in lithium–air batteries

    DEFF Research Database (Denmark)

    Chen, Jingzhe; Hummelshøj, Jens S.; Thygesen, Kristian Sommer

    2011-01-01

    Low electronic conduction is expected to be a main limiting factor in the performance of reversible lithium–air, Li–O2, batteries. Here, we apply density functional theory and non-equilibrium Green's function calculations to determine the electronic transport through lithium peroxide, Li2O2, formed...... at the cathode during battery discharge. We find the transport to depend on the orientation and lattice matching of the insulator–metal interface in the presence of Au and Pt catalysts. Bulk lithium vacancies are found to be available and mobile under battery charging conditions, and found to pin the Fermi level...

  17. Development of all-solid lithium-ion battery using Li-ion conducting glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Inda, Yasushi [Research and Development Department, Ohara-inc, 1-15-30 Oyama, Sagamihara, Kanagawa 229-1186 (Japan); Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551 (Japan); Katoh, Takashi [Research and Development Department, Ohara-inc, 1-15-30 Oyama, Sagamihara, Kanagawa 229-1186 (Japan); Baba, Mamoru [Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551 (Japan)

    2007-12-06

    We have developed a high performance lithium-ion conducting glass-ceramics. This glass-ceramics has the crystalline form of Li{sub 1+x+y}Al{sub x}Ti{sub 2-x}Si{sub y}P{sub 3-y}O{sub 12} with a NASICON-type structure, and it exhibits a high lithium-ion conductivity of 10{sup -3} S cm{sup -1} or above at room temperature. Moreover, since this material is stable in the open atmosphere and even to exposure to moist air, it is expected to be applied for various uses. One of applications of this material is as a solid electrolyte for a lithium-ion battery. Batteries were developed by combining a LiCoO{sub 2} positive electrode, a Li{sub 4}Ti{sub 5}O{sub 12} negative electrode, and a composite electrolyte. The battery using the composite electrolyte with a higher conductivity exhibited a good charge-discharge characteristic. (author)

  18. Development of battery management system for nickel-metal hydride batteries in electric vehicle applications

    Science.gov (United States)

    Jung, Do Yang; Lee, Baek Haeng; Kim, Sun Wook

    Electric vehicle (EV) performance is very dependent on traction batteries. For developing electric vehicles with high performance and good reliability, the traction batteries have to be managed to obtain maximum performance under various operating conditions. Enhancement of battery performance can be accomplished by implementing a battery management system (BMS) that plays an important role in optimizing the control mechanism of charge and discharge of the batteries as well as monitoring the battery status. In this study, a BMS has been developed for maximizing the use of Ni-MH batteries in electric vehicles. This system performs several tasks: the control of charging and discharging, overcharge and over-discharge protection, the calculation and display of state-of-charge (SOC), safety, and thermal management. The BMS is installed in and tested in a DEV5-5 electric vehicle developed by Daewoo Motor Co. and the Institute for Advanced Engineering in Korea. Eighteen modules of a Panasonic nickel-metal hydride (Ni-MH) battery, 12 V, 95 A h, are used in the DEV5-5. High accuracy within a range of 3% and good reliability are obtained. The BMS can also improve the performance and cycle-life of the Ni-MH battery peak, as well as the reliability and the safety of the electric vehicles.

  19. Performance and stability of a liquid anode high-temperature metal-air battery

    Science.gov (United States)

    Otaegui, L.; Rodriguez-Martinez, L. M.; Wang, L.; Laresgoiti, A.; Tsukamoto, H.; Han, M. H.; Tsai, C.-L.; Laresgoiti, I.; López, C. M.; Rojo, T.

    2014-02-01

    A High-Temperature Metal-Air Battery (HTMAB) that operates based on a simple redox reaction between molten metal and atmospheric oxygen at 600-1000 °C is presented. This innovative HTMAB concept combines the technology of conventional metal-air batteries with that of solid oxide fuel cells to provide a high energy density system for many applications. Electrochemical reversibility is demonstrated with 95% coulomb efficiency. Cell sealing has been identified as a key issue in order to determine the end-of-charge voltage, enhance coulomb efficiency and ensure long term stability. In this work, molten Sn is selected as anode material. Low utilization of the stored material due to precipitation of the SnO2 on the electrochemically active area limits the expected capacity, which should theoretically approach 903 mAh g-1. Nevertheless, more than 1000 charge/discharge cycles are performed during more than 1000 h at 800 °C, showing highly promising results of stability, reversibility and cyclability.

  20. Electric vehicle batteries. Development status for the promising candidates; Elbilsbatterier. Utvecklingsstatus foer de fraemsta kandidaterna

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Bo; Johansson, Arne [Catella Generics AB, Jaerfaella (Sweden)

    2000-04-01

    One driver for the EV and HEV programme of KFB is to study the effects of a large scale introduction of electric vehicles in the future. Catella Generics was contracted to investigate and report on the development status for EV batteries and the success potential for the different candidates, their development obstacles and alternative usage and on the links between different players. The batteries studied in greater detail have been evaluated according to special criteria like performance, cost, ruggedness, resource efficiency, safety and environmental impact and how that will influence their likely success. Models for the evaluation of EV batteries have been developed by the car manufacturers and authorities. We have based our investigation on the criteria established by USABC and the modifications made by PNGV for the energy storage in hybrid electric vehicles. Some basic conclusions reported as a result of this investigation are listed below: Lead-acid may have a role as energy storage in HEVs. Ni/Cd batteries are attractive from a technical standpoint, but questioned based on the environmental concern for cadmium. Ni/MH batteries are attracting a great attention in the medium term. Na/NiCl{sub 2} batteries have been successful in the German demonstration programme. Lithium batteries have a great potential in the long term. Metal/air batteries have been operated without problems, however there need for a special infrastructure is a major draw-back. Fuel cells and ultra capacitors are new alternative power sources for propulsion of EVs, however these are not included in this report.

  1. Hydrogen battery car developed in Matsuda; Matsuda suiso nenryo denchisha wo kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    Matsuda announced that the hydrogen battery car 'Demio FCEV' was developed by the company. This new type car not only does not need an air humidifying machine, but also supplies the necessary electricity with an ultra capacitor of a large scale condenser. Its maximum output is 40 kw, the highest speed is 90 km per hour, and the accelerating time from the stop state to 40 m is about 5 seconds, the same level as a gasoline car. One time of hydrogen charging serves for 170 km running. As a hydrogen battery car, it is the third one in the world, following the DAIMURA in Germany and TOYOTA. (translated by NEDO)

  2. Measurement of air cooling characteristics for the several surface types of Li-ion battery

    International Nuclear Information System (INIS)

    Byelyayev, Andrey A.; Fedorchenko, Dmitrij V.; Khazhmuradov, Manap A.; Lukhanin, Olekdandr A.; Lukhanin, Oleksiy A.; Martynov, Sergey O.; Rudychev, Yegor V.; Sporov, Eugen O.; Rohatgi, Upendra S.

    2013-01-01

    The system of air cooling for Li-Ion batteries is considered. Experimental setup included thermal chamber and Li-Ion battery cell simulators with temperature sensors. We investigated static and dynamic cooling regimes for several types of cooling surfaces, for different gaps between the simulators and flow rates. Experimental results are compared to the data of computer modelling using SolidWorks Flow Simulation software. The cooling efficiencies of the various surfaces for static and transient heat emission modes are compared.

  3. Surface-Tuned Co3O4 Nanoparticles Dispersed on Nitrogen-Doped Graphene as an Efficient Cathode Electrocatalyst for Mechanical Rechargeable Zinc-Air Battery Application.

    Science.gov (United States)

    Singh, Santosh K; Dhavale, Vishal M; Kurungot, Sreekumar

    2015-09-30

    The most vital component of the fuel cells and metal-air batteries is the electrocatalyst, which can facilitate the oxygen reduction reaction (ORR) at a significantly reduced overpotential. The present work deals with the development of surface-tuned cobalt oxide (Co3O4) nanoparticles dispersed on nitrogen-doped graphene as a potential ORR electrocatalyst possessing some unique advantages. The thermally reduced nitrogen-doped graphene (NGr) was decorated with three different morphologies of Co3O4 nanoparticles, viz., cubic, blunt edged cubic, and spherical, by using a simple hydrothermal method. We found that the spherical Co3O4 nanoparticle supported NGr catalyst (Co3O4-SP/NGr-24h) has acquired a significant activity makeover to display the ORR activity closely matching with the state-of-the-art Pt supported carbon (PtC) catalyst in alkaline medium. Subsequently, the Co3O4-SP/NGr-24h catalyst has been utilized as the air electrode in a Zn-air battery, which was found to show comparable performance to the system derived from PtC. Co3O4-SP/NGr-24h catalyst has shown several hours of flat discharge profile at the discharge rates of 10, 20, and 50 mA/cm(2) with a specific capacity and energy density of ~590 mAh/g-Zn and ~840 Wh/kg-Zn, respectively, in the primary Zn-air battery system. In conjunction, Co3O4-SP/NGr-24h has outperformed as an air electrode in mechanical rechargeable Zn-air battery as well, which has shown consistent flat discharge profile with minimal voltage loss at a discharge rate of 50 mA/cm(2). The present results, thus demonstrate that the proper combination of the tuned morphology of Co3O4 with NGr will be a promising and inexpensive material for efficient and ecofriendly cathodes for Zn-air batteries.

  4. Discharge behaviour of Mg-Al-Pb and Mg-Al-Pb-In alloys as anodes for Mg-air battery

    International Nuclear Information System (INIS)

    Wang, Naiguang; Wang, Richu; Peng, Chaoqun; Peng, Bing; Feng, Yan; Hu, Chengwang

    2014-01-01

    Highlights: • We investigate the effect of indium on the discharge behaviour of Mg-Al-Pb alloy. • We evaluate the performance of Mg-air batteries with Mg-Al-Pb and Mg-Al-Pb-In anodes. • We analyze the activation mechanism of Mg-Al-Pb-In alloy in the discharge process. - Abstract: The discharge behaviour of Mg-Al-Pb and Mg-Al-Pb-In alloys in 3.5 wt.% NaCl solution is investigated by electrochemical techniques, and compared with that of pure magnesium. The results show that Mg-Al-Pb-In alloy provides a more negative potential and exhibits a higher utilization efficiency in contrast with Mg-Al-Pb alloy and pure magnesium during the half-cell test at a large current density, and gives desirable discharge performance when used as anode for Mg- air battery. The peak power density of the Mg-air battery with Mg-Al-Pb-In anode is 94.5 mW cm −2 , which is comparable with those of Mg-H 2 O 2 semi-fuel batteries. Moreover, the activation mechanism of Mg-Al-Pb-In alloy during the discharge process is also analyzed

  5. DFT Study On Effects of CO2 Contamination in Non-Aqueous Li-Air Batteries

    DEFF Research Database (Denmark)

    Mekonnen, Yedilfana Setarge; Mýrdal, Jón Steinar Garðarsson; Vegge, Tejs

    2013-01-01

    Density Functional Theory (DFT) studies on the effects of carbon dioxide (CO2) contamination at the cathode of rechargeable non-aqueous Li-O2 batteries, where the insulating material Lithium peroxide (Li2O2) is the main discharge product. The Li2O2 growth mechanism and overpotentials are investig...... and result in an increased battery capacity. However, CO2 contamination on the Li2O2 surface confirms an asymmetric increase in the overpotentials; particularly the charging overvoltage exhibits sustantial increase, which would reduce the efficiency of the Li-air battery.......Density Functional Theory (DFT) studies on the effects of carbon dioxide (CO2) contamination at the cathode of rechargeable non-aqueous Li-O2 batteries, where the insulating material Lithium peroxide (Li2O2) is the main discharge product. The Li2O2 growth mechanism and overpotentials...

  6. Hierarchically Designed 3D Holey C2N Aerogels as Bifunctional Oxygen Electrodes for Flexible and Rechargeable Zn-Air Batteries.

    Science.gov (United States)

    Shinde, Sambhaji S; Lee, Chi Ho; Yu, Jin-Young; Kim, Dong-Hyung; Lee, Sang Uck; Lee, Jung-Ho

    2018-01-23

    The future of electrochemical energy storage spotlights on the designed formation of highly efficient and robust bifunctional oxygen electrocatalysts that facilitate advanced rechargeable metal-air batteries. We introduce a scalable facile strategy for the construction of a hierarchical three-dimensional sulfur-modulated holey C 2 N aerogels (S-C 2 NA) as bifunctional catalysts for Zn-air and Li-O 2 batteries. The S-C 2 NA exhibited ultrahigh surface area (∼1943 m 2 g -1 ) and superb electrocatalytic activities with lowest reversible oxygen electrode index ∼0.65 V, outperforms the highly active bifunctional and commercial (Pt/C and RuO 2 ) catalysts. Density functional theory and experimental results reveal that the favorable electronic structure and atomic coordination of holey C-N skeleton enable the reversible oxygen reactions. The resulting Zn-air batteries with liquid electrolytes and the solid-state batteries with S-C 2 NA air cathodes exhibit superb energy densities (958 and 862 Wh kg -1 ), low charge-discharge polarizations, excellent reversibility, and ultralong cycling lives (750 and 460 h) than the commercial Pt/C+RuO 2 catalysts, respectively. Notably, Li-O 2 batteries with S-C 2 NA demonstrated an outstanding specific capacity of ∼648.7 mA h g -1 and reversible charge-discharge potentials over 200 cycles, illustrating great potential for commercial next-generation rechargeable power sources of flexible electronics.

  7. Ag-Cu nanoalloyed film as a high-performance cathode electrocatalytic material for zinc-air battery

    Science.gov (United States)

    Lei, Yimin; Chen, Fuyi; Jin, Yachao; Liu, Zongwen

    2015-04-01

    A novel Ag50Cu50 film electrocatalyst for oxygen reduction reaction (ORR) was prepared by pulsed laser deposition (PLD) method. The electrocatalyst actually is Ag-Cu alloyed nanoparticles embedded in amorphous Cu film, based on transmission electron microscopy (TEM) characterization. The rotating disk electrode (RDE) measurements provide evidence that the ORR proceed via a four-electron pathway on the electrocatalysts in alkaline solution. And it is much more efficient than pure Ag catalyst. The catalytic layer has maximum power density of 67 mW cm-2 and an acceptable cell voltage at 0.863 V when current densities increased up to 100 mA cm-2 in the Ag50Cu50-based primary zinc-air battery. The resulting rechargeable zinc-air battery exhibits low charge-discharge voltage polarization of 1.1 V at 20 mAcm-2 and high durability over 100 cycles in natural air.

  8. Advancement of technology towards developing Na-ion batteries

    Science.gov (United States)

    Jamesh, Mohammed Ibrahim; Prakash, A. S.

    2018-02-01

    The Na-ion-batteries are considered much attention for the next-generation power-sources due to the high abundance of Na resources that lower the cost and become the alternative for the state of the art Li-ion batteries in future. In this review, the recently reported potential cathode and anode candidates for Na-ion-batteries are identified in-light-of-their high-performance for the development of Na-ion-full-cells. Further, the recent-progress on the Na-ion full-cells including the strategies used to improve the high cycling-performance (stable even up-to 50000 cycles), operating voltage (even ≥ 3.7 V), capacity (>350 mAhg-1 even at 1000 mAg-1 (based-on-mass-of-the-anode)), and energy density (even up-to 400 Whkg-1) are reviewed. In addition, Na-ion-batteries with the electrodes containing reduced graphene oxide, and the recent developments on symmetric Na-ion-batteries are discussed. Further, this paper identifies the promising Na-ion-batteries including the strategies used to assemble full-cell using hard-carbon-anodes, Na3V2(PO4)3 cathodes, and other-electrode-materials. Then, comparison between aqueous and non-aqueous Na-ion-batteries in terms of voltage and energy density has been given. Later, various types of electrolytes used for Na-ion-batteries including aqueous, non-aqueous, ionic-liquids and solid-state electrolytes are discussed. Finally, commercial and technological-developments on Na-ion-batteries are provided. The scientific and engineering knowledge gained on Na-ion-batteries afford conceivable development for practical application in near future.

  9. Development of a Digital and Battery-Free Smart Flowmeter

    Directory of Open Access Journals (Sweden)

    Wang Song Hao

    2014-06-01

    Full Text Available To effectively manage and save energy and natural resources, the measurement and monitoring of gas/fluid flows play extremely important roles. The objective of this study was to incorporate an efficient power generation and a power management system for a commercial water flow meter thus eliminating the usage of batteries. Three major technologies have made this possible: a low power consumption metering unit, a cog-resistance-free generator with high efficiency; and an effective methodology to extract/store energy. In this system, a new attempt and simple approach was developed to successfully extract a portion of the kinetic energy from the fluid/air, store it in a capacitor and used it efficiently. The resistance to the flow was negligible because of the very low power consumption as well as the application of the coreless generator technology. Feasibility was demonstrated through repeated experiments: for air flowing in an 11 mm diameter pipe, 18 s of energy harvesting at 10 revolution-per-second (RPS turbine speeds generated enough power for the flowmeter to operate for 720 s with a flowrate of 20 RPS, without battery or any external power. The pipeline monitoring in remote areas such as deep sea oil drilling; geothermal power plants and even nuclear power plants could benefit greatly from this self-power metering system design.

  10. Aluminum-air research and development program. Summary report for FY 1982

    Science.gov (United States)

    Cooper, J. F.

    1983-04-01

    The aluminum-air program focused on the following research areas: (1) experimental investigation of alternative cell configurations; (2) testing of specific configurations in multicell stacks; (3) long term testing of air electrodes under simulated vehicle duty cycles; (4) determination of kinetic of aluminum trihydroxide crystallization under candidate battery operating conditions; and (5) studies of anode behavior of alloys containing minor impurities such as iron, manganese, gallium, and phosphorus. The major achievements were: the operation of six celled and two cell stacks without degration of performance compared to laboratory baseline cells, redesign of solution side current collection grid and successful application to wedge shaped cells on the engineering scale (600 cm(2)); demonstration of ability of such cells for continuous anode feed and rapid refueling, fabrication and testing of air electrodes catalyzed with certain macrocyclic complexes; extension of cycle life to above 1000 standard drive cycles using nonnoble metal catalysts, determination of role of minor electrolye additions and precipitated Al(OH)3 on air electrode life, development of a comprehensive mathematical model of aluminum trihydroxide precipitation under battery conditions.

  11. Electron transfer number control of the oxygen reduction reaction on nitrogen-doped reduced graphene oxides for the air electrodes of zinc-air batteries and organic degradation

    International Nuclear Information System (INIS)

    Wu, Sheng-Hui; Li, Po-Chieh; Hu, Chi-Chang

    2016-01-01

    The mean electron transfer number (n) of the oxygen reduction reaction (ORR) on reduced graphene oxide (rGO) is controlled by nitrogen doping for the air electrodes of Zn-air batteries and electrochemical organic degradation. Melamine and pyrrole are employed as the nitrogen sources for fabricating N-doped rGO (N-rGO) by microwave-assisted hydrothermal synthesis (MAHS). The n value of the ORR is determined by the rotating ring-disk electrode (RRDE) voltammetry and is successfully controlled from 2.34 to 3.93 by preparation variables. The N-doped structures are examined by the x-ray photoelectron spectroscopic (XPS) analysis. The morphology and the defect degree of N-rGOs are characterized by high resolution transmission electron microscopy (HR-TEM) and Raman spectroscopy. N-rGOs with high and low n values are employed as the air electrode catalysts of zinc-air batteries and in-situ hydrogen peroxide (H_2O_2) generation, respectively. The highest discharge cell voltage of 1.235 V for a Zn-air battery is obtained at 2 mA cm"−"2 meanwhile the current efficiency of H_2O_2 generation in 1-h electrolysis at 0 V (vs. RHE) reaches 43%. The electrocatalytic degradation of orange G (OG), analyzed by UV-VIS absorption spectra, reveals a high decoloration degree from the relative absorbance of 0.38 for the azo π-conjugation structure of OG. - Highlights: • The mean electron transfer number (n) is controlled by nitrogen doping. • Melamine and pyrrole are used as the nitrogen sources for fabricating N-rGO. • The n value is successfully controlled from 2.34 to 3.93 by preparation variables. • The highest discharge cell voltage of 1.235 V for a Zn-air battery. • The current efficiency of H_2O_2 generation 1-h electrolysis reaches 43%.

  12. Crowdsourcing urban air temperatures through smartphone battery temperatures in São Paulo, Brazil

    NARCIS (Netherlands)

    Droste, A.M.; Pape, J.J.; Overeem, A.; Leijnse, H.; Steeneveld, G.J.; Delden, van A.J.; Uijlenhoet, R.

    2017-01-01

    Crowdsourcing as a method to obtain and apply vast datasets is rapidly becoming prominent in meteorology, especially for urban areas where routine weather observations are scarce. Previous studies showed that smartphone battery temperature readings can be used to estimate the daily and citywide air

  13. Nickel-cadmium battery system for electric vehicles

    Science.gov (United States)

    Klein, M.; Charkey, A.

    A nickel-cadmium battery system has been developed and is being evaluated for electric vehicle propulsion applications. The battery system design features include: (1) air circulation through gaps between cells for thermal management, (2) a metal-gas coulometric fuel gauge for state-of-charge and charge control, and (3) a modified constant current ac/dc power supply for the charger. The battery delivers one and a half to two times the energy density of comparable lead-acid batteries depending on operating conditions.

  14. Aluminum anode for aluminum-air battery - Part II: Influence of In addition on the electrochemical characteristics of Al-Zn alloy in alkaline solution

    Science.gov (United States)

    Park, In-Jun; Choi, Seok-Ryul; Kim, Jung-Gu

    2017-07-01

    Effects of Zn and In additions on the aluminum anode for Al-air battery in alkaline solution are examined by the self-corrosion rate, cell voltage, current-voltage characteristics, anodic polarization, discharge performance and AC impedance measurements. The passivation behavior of Zn-added anode during anodic polarization decreases the discharge performance of Al-air battery. The addition of In to Al-Zn anode reduces the formation of Zn passivation film by repeated adsorption and desorption behavior of In ion onto anode surface. The attenuated Zn passive layer by In ion attack leads to the improvement of discharge performance of Al-air battery.

  15. Status of the DOE battery and electrochemical technology program. III

    International Nuclear Information System (INIS)

    Roberts, R.

    1982-02-01

    This report reviews the status of the Department of Energy Subelement on Electrochemical Storage Systems. It emphasizes material presented at the Fourth US Department of Energy Battery and Electrochemical Contractors' Conference, held June 2-4, 1981. The conference stressed secondary batteries, however, the aluminum/air mechanically rechargeable battery and selected topics on industrial electrochemical processes were included. The potential contributions of the battery and electrochemical technology efforts to supported technologies: electric vehicles, solar electric systems, and energy conservation in industrial electrochemical processes, are reviewed. The analyses of the potential impact of these systems on energy technologies as the basis for selecting specific battery systems for investigation are noted. The battery systems in the research, development, and demonstration phase discussed include: aqueous mobile batteries (near term) - lead-acid, iron/nickel-oxide, zinc/nickel-oxide; advanced batteries - aluminum/air, iron/air, zinc/bromine, zinc/ferricyanide, chromous/ferric, lithium/metal sulfide, sodium/sulfur; and exploratory batteries - lithium organic electrolyte, lithium/polymer electrolyte, sodium/sulfur (IV) chloroaluminate, calcium/iron disulfide, lithium/solid electrolyte. Supporting research on electrode reactions, cell performance modeling, new battery materials, ionic conducting solid electrolytes, and electrocatalysis is reviewed. Potential energy saving processes for the electrowinning of aluminum and zinc, and for the electrosynthesis of inorganic and organic compounds are included

  16. Bipolar nickel-hydrogen battery development - A program review

    Science.gov (United States)

    Manzo, Michelle; Lenhart, Stephen; Hall, Arnold

    1989-01-01

    An overview of spacecraft power system design trends, focusing on higher power bus voltages and improved energy storage systems, is followed by a discussion of bipolar Ni/H2 battery development efforts. Several 10-cell batteries and one 50-cell battery are described, and performance results are presented. A comparison of individual-pressure-vessel and bipolar Ni/H2 technologies is used to suggest a new direction for bipolar Ni/H2 battery development efforts, toward a large number of passively cooled cells in parallel.

  17. Development of membranes and a study of their interfaces for rechargeable lithium-air battery

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Jitendra; Kumar, Binod [Electrochemical Power Group, Metals and Ceramics Division, University of Dayton Research Institute, OH 45469-0171 (United States)

    2009-12-01

    This paper describes an investigation with an objective to screen and select high performance membrane materials for a working, rechargeable lithium-air battery. Membrane laminates comprising glass-ceramic (GC) and polymer-ceramic (PC) membranes were assembled, evaluated and analyzed. A superionic conducting GC membrane with a chemical composition of Li{sub 1+x}Al{sub x}Ge{sub 2-x}(PO{sub 4}){sub 3} (x = 0.5) was used. Polymer membranes comprising of PC(BN), PC(AlN), PC(Si{sub 3}N{sub 4}) and PC(Li{sub 2}O) electrochemically coupled the GC membrane with the lithium anode. The cell and membrane laminates were characterized by determining cell conductivity, open circuit voltage and carrier concentration and its mobility. The measurements identified Li{sub 2}O and BN as suitable dopants in polymer matrix which catalyzed anodic charge transfer reaction, formed stable SEI layer and provided high lithium ion conductivity. (author)

  18. The Comparative Performance of Batteries: The Lead-Acid and the Aluminum-Air Cells.

    Science.gov (United States)

    LeRoux, Xavier; And Others

    1996-01-01

    Describes a teaching program that shows how electrochemical principles can be conveyed by means of hands-on experiences of student-centered teaching experiments. Employs the readily available lead-acid cell and the simple aluminum-air cell. Discusses the batteries, equilibrium cell potential, performance comparison, current, electrode separation,…

  19. Nitrogen and Sulfur Co-doped Graphene Supported Cobalt Sulfide Nanoparticles as an Efficient Air Cathode for Zinc-air Battery

    International Nuclear Information System (INIS)

    Ganesan, Pandian; Ramakrishnan, Prakash; Prabu, Moni; Shanmugam, Sangaraju

    2015-01-01

    Highlights: • CoS 2 nanoparticles supported on a nitrogen and sulfur co-doped graphene oxide is described. • Improved round trip efficiency was observed for CoS 2 (400)/N,S-GO. • CoS 2 (400)/N,S-GO possess improved durability with low over-potential. • CoS 2 (400)/N,S-GO is a promising air cathode for zinc-air battery. - ABSTRACT: Zinc-air battery is considered as one of the promising energy storage devices due to their low cost, eco-friendly and safe. Here, we present a simple approach to the preparation of cobalt sulfide nanoparticles supported on a nitrogen and sulfur co-doped graphene oxide surface. Cobalt sulfide nanoparticles dispersed on graphene oxide hybrid was successfully prepared by solid state thermolysis approach at 400 °C, using cobalt thiourea and graphene oxide. X-ray diffraction study revealed that hybrid electrode prepared at 400 °C results in pure CoS 2 phase. The hybrid CoS 2 (400)/N,S-GO electrode exhibits low over-potential gap about 0.78 V vs. Zn after 70 cycles with remarkable and robust charge and discharge profile. And also the CoS 2 (400)/N,S-GO showing deep discharge behavior with stability up to 7.5 h.

  20. USAF Enlisted Air Traffic Controller Selection: Examination of the Predictive Validity of the FAA Air Traffic Selection and Training Battery versus Training Performance

    National Research Council Canada - National Science Library

    Carretta, Thomas R; King, Raymond E

    2008-01-01

    .... The current study examined the utility of the FAA Air Traffic Selection and Training (AT-SAT) battery for incrementing the predictiveness of the ASVAB versus several enlisted ATC training criteria...

  1. Electrocatalytic activity of silver decorated ceria microspheres for the oxygen reduction reaction and their application in aluminium-air batteries.

    Science.gov (United States)

    Sun, Shanshan; Xue, Yejian; Wang, Qin; Li, Shihua; Huang, Heran; Miao, He; Liu, Zhaoping

    2017-07-11

    Nanosheet-constructing porous CeO 2 microspheres with silver nanoparticles anchored on the surface were developed as a highly efficient oxygen reduction reaction (ORR) catalyst. The aluminum-air batteries applying Ag-CeO 2 as the ORR catalyst exhibit a high output power density and low degradation rate of 345 mW cm -2 and 2.6% per 100 h, respectively.

  2. Battery algorithm verification and development using hardware-in-the-loop testing

    Science.gov (United States)

    He, Yongsheng; Liu, Wei; Koch, Brain J.

    Battery algorithms play a vital role in hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), extended-range electric vehicles (EREVs), and electric vehicles (EVs). The energy management of hybrid and electric propulsion systems needs to rely on accurate information on the state of the battery in order to determine the optimal electric drive without abusing the battery. In this study, a cell-level hardware-in-the-loop (HIL) system is used to verify and develop state of charge (SOC) and power capability predictions of embedded battery algorithms for various vehicle applications. Two different batteries were selected as representative examples to illustrate the battery algorithm verification and development procedure. One is a lithium-ion battery with a conventional metal oxide cathode, which is a power battery for HEV applications. The other is a lithium-ion battery with an iron phosphate (LiFePO 4) cathode, which is an energy battery for applications in PHEVs, EREVs, and EVs. The battery cell HIL testing provided valuable data and critical guidance to evaluate the accuracy of the developed battery algorithms, to accelerate battery algorithm future development and improvement, and to reduce hybrid/electric vehicle system development time and costs.

  3. Battery algorithm verification and development using hardware-in-the-loop testing

    Energy Technology Data Exchange (ETDEWEB)

    He, Yongsheng [General Motors Global Research and Development, 30500 Mound Road, MC 480-106-252, Warren, MI 48090 (United States); Liu, Wei; Koch, Brain J. [General Motors Global Vehicle Engineering, Warren, MI 48090 (United States)

    2010-05-01

    Battery algorithms play a vital role in hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), extended-range electric vehicles (EREVs), and electric vehicles (EVs). The energy management of hybrid and electric propulsion systems needs to rely on accurate information on the state of the battery in order to determine the optimal electric drive without abusing the battery. In this study, a cell-level hardware-in-the-loop (HIL) system is used to verify and develop state of charge (SOC) and power capability predictions of embedded battery algorithms for various vehicle applications. Two different batteries were selected as representative examples to illustrate the battery algorithm verification and development procedure. One is a lithium-ion battery with a conventional metal oxide cathode, which is a power battery for HEV applications. The other is a lithium-ion battery with an iron phosphate (LiFePO{sub 4}) cathode, which is an energy battery for applications in PHEVs, EREVs, and EVs. The battery cell HIL testing provided valuable data and critical guidance to evaluate the accuracy of the developed battery algorithms, to accelerate battery algorithm future development and improvement, and to reduce hybrid/electric vehicle system development time and costs. (author)

  4. Development of automotive battery systems capable of surviving modern underhood environments

    Science.gov (United States)

    Pierson, John R.; Johnson, Richard T.

    The starting, lighting, and ignition (SLI) battery in today's automobile typically finds itself in an engine compartment that is jammed with mechanical, electrical, and electronic devices. The spacing of these devices precludes air movement and, thus, heat transfer out of the compartment. Furthermore, many of the devices, in addition to the internal combustion engine, actually generate heat. The resulting underhood environment is extremely hostile to thermally-sensitive components, especially the battery. All indications point to a continuation of this trend towards higher engine-compartment temperatures as future vehicles evolve. The impact of ambient temperature on battery life is clearly demonstrated in the failure-mode analysis conducted by the Battery Council International in 1990. This study, when combined with additional failure-mode analyses, vehicle systems simulation, and elevated temperature life testing, provides insight into the potential for extension of life of batteries. Controlled fleet and field tests are used to document and quantify improvements in product design. Three approaches to battery life extension under adverse thermal conditions are assessed, namely: (i) battery design; (ii) thermal management, and (iii) alternative battery locations. The advantages and disadvantages of these approaches (both individually and in combination) for original equipment and aftermarket applications are explored.

  5. In-situ Electrodeposition of Highly Active Silver Catalyst on Carbon Fiber Papers as Binder Free Cathodes for Aluminum-air Battery.

    Science.gov (United States)

    Hong, Qingshui; Lu, Huimin

    2017-06-13

    Carbon fiber papers supported Ag catalysts (Ag/CFP) with different coverage of electro-active site are prepared by electrochemical deposition and used as binder free cathodes in primary aluminum-air (Al-air) battery. Scanning Electron Microscopy and X-ray Diffraction studies are carried out to characterize the as-prepared Ag/CFP air cathodes. Oxygen reduction reaction (ORR) activities on these air cathodes in alkaline solutions are systematic studied. A newly designed aluminum-air cell is used to further determine the cathodes performance under real operation condition and during the test, the Ag/CFP electrodes show outstanding catalytic activity for ORR in concentrated alkaline electrolyte, and no obvious activity degradation is observed after long-time discharge. The electrochemical test results display the dependence of coverage of the electro-active Ag on the catalytic performance of the air cathodes. The resulting primary Al-air battery made from the best-performing cathode shows an impressive discharge peak power density, outperforming that of using commercial nano-manganese catalyst air electrodes.

  6. Research and development of a phosphoric acid fuel cell/battery power source integrated in a test-bed bus. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-30

    This project, the research and development of a phosphoric acid fuel cell/battery power source integrated into test-bed buses, began as a multi-phase U.S. Department of Energy (DOE) project in 1989. Phase I had a goal of developing two competing half-scale (25 kW) brassboard phosphoric acid fuel cell systems. An air-cooled and a liquid-cooled fuel cell system were developed and tested to verify the concept of using a fuel cell and a battery in a hybrid configuration wherein the fuel cell supplies the average power required for operating the vehicle and a battery supplies the `surge` or excess power required for acceleration and hill-climbing. Work done in Phase I determined that the liquid-cooled system offered higher efficiency.

  7. Highly Rechargeable Lithium-CO2 Batteries with a Boron- and Nitrogen-Codoped Holey-Graphene Cathode.

    Science.gov (United States)

    Qie, Long; Lin, Yi; Connell, John W; Xu, Jiantie; Dai, Liming

    2017-06-06

    Metal-air batteries, especially Li-air batteries, have attracted significant research attention in the past decade. However, the electrochemical reactions between CO 2 (0.04 % in ambient air) with Li anode may lead to the irreversible formation of insulating Li 2 CO 3 , making the battery less rechargeable. To make the Li-CO 2 batteries usable under ambient conditions, it is critical to develop highly efficient catalysts for the CO 2 reduction and evolution reactions and investigate the electrochemical behavior of Li-CO 2 batteries. Here, we demonstrate a rechargeable Li-CO 2 battery with a high reversibility by using B,N-codoped holey graphene as a highly efficient catalyst for CO 2 reduction and evolution reactions. Benefiting from the unique porous holey nanostructure and high catalytic activity of the cathode, the as-prepared Li-CO 2 batteries exhibit high reversibility, low polarization, excellent rate performance, and superior long-term cycling stability over 200 cycles at a high current density of 1.0 A g -1 . Our results open up new possibilities for the development of long-term Li-air batteries reusable under ambient conditions, and the utilization and storage of CO 2 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Mechanistic understanding of monosaccharide-air flow battery electrochemistry

    Science.gov (United States)

    Scott, Daniel M.; Tsang, Tsz Ho; Chetty, Leticia; Aloi, Sekotilani; Liaw, Bor Yann

    Recently, an inexpensive monosaccharide-air flow battery configuration has been demonstrated to utilize a strong base and a mediator redox dye to harness electrical power from the partial oxidation of glucose. Here the mechanistic understanding of glucose oxidation in this unique glucose-air power source is further explored by acid-base titration experiments, 13C NMR, and comparison of results from chemically different redox mediators (indigo carmine vs. methyl viologen) and sugars (fructose vs. glucose) via studies using electrochemical techniques. Titration results indicate that gluconic acid is the main product of the cell reaction, as supported by evidence in the 13C NMR spectra. Using indigo carmine as the mediator dye and fructose as the energy source, an abiotic cell configuration generates a power density of 1.66 mW cm -2, which is greater than that produced from glucose under similar conditions (ca. 1.28 mW cm -2). A faster transition from fructose into the ene-diol intermediate than from glucose likely contributed to this difference in power density.

  9. Electron transfer number control of the oxygen reduction reaction on nitrogen-doped reduced graphene oxides for the air electrodes of zinc-air batteries and organic degradation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Sheng-Hui; Li, Po-Chieh; Hu, Chi-Chang, E-mail: cchu@che.nthu.edu.tw

    2016-11-01

    The mean electron transfer number (n) of the oxygen reduction reaction (ORR) on reduced graphene oxide (rGO) is controlled by nitrogen doping for the air electrodes of Zn-air batteries and electrochemical organic degradation. Melamine and pyrrole are employed as the nitrogen sources for fabricating N-doped rGO (N-rGO) by microwave-assisted hydrothermal synthesis (MAHS). The n value of the ORR is determined by the rotating ring-disk electrode (RRDE) voltammetry and is successfully controlled from 2.34 to 3.93 by preparation variables. The N-doped structures are examined by the x-ray photoelectron spectroscopic (XPS) analysis. The morphology and the defect degree of N-rGOs are characterized by high resolution transmission electron microscopy (HR-TEM) and Raman spectroscopy. N-rGOs with high and low n values are employed as the air electrode catalysts of zinc-air batteries and in-situ hydrogen peroxide (H{sub 2}O{sub 2}) generation, respectively. The highest discharge cell voltage of 1.235 V for a Zn-air battery is obtained at 2 mA cm{sup −2} meanwhile the current efficiency of H{sub 2}O{sub 2} generation in 1-h electrolysis at 0 V (vs. RHE) reaches 43%. The electrocatalytic degradation of orange G (OG), analyzed by UV-VIS absorption spectra, reveals a high decoloration degree from the relative absorbance of 0.38 for the azo π-conjugation structure of OG. - Highlights: • The mean electron transfer number (n) is controlled by nitrogen doping. • Melamine and pyrrole are used as the nitrogen sources for fabricating N-rGO. • The n value is successfully controlled from 2.34 to 3.93 by preparation variables. • The highest discharge cell voltage of 1.235 V for a Zn-air battery. • The current efficiency of H{sub 2}O{sub 2} generation 1-h electrolysis reaches 43%.

  10. A review on battery thermal management in electric vehicle application

    Science.gov (United States)

    Xia, Guodong; Cao, Lei; Bi, Guanglong

    2017-11-01

    The global issues of energy crisis and air pollution have offered a great opportunity to develop electric vehicles. However, so far, cycle life of power battery, environment adaptability, driving range and charging time seems far to compare with the level of traditional vehicles with internal combustion engine. Effective battery thermal management (BTM) is absolutely essential to relieve this situation. This paper reviews the existing literature from two levels that are cell level and battery module level. For single battery, specific attention is paid to three important processes which are heat generation, heat transport, and heat dissipation. For large format cell, multi-scale multi-dimensional coupled models have been developed. This will facilitate the investigation on factors, such as local irreversible heat generation, thermal resistance, current distribution, etc., that account for intrinsic temperature gradients existing in cell. For battery module based on air and liquid cooling, series, series-parallel and parallel cooling configurations are discussed. Liquid cooling strategies, especially direct liquid cooling strategies, are reviewed and they may advance the battery thermal management system to a new generation.

  11. Performance of Mg-14Li-1Al-0.1Ce as anode for Mg-air battery

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yibin; Li, Deyu [School of Chemical Engineering and Technology, Harbin Institute of Technology, West Street No. 92, Harbin 150001 (China); Li, Ning [School of Chemical Engineering and Technology, Harbin Institute of Technology, West Street No. 92, Harbin 150001 (China); Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001 (China); Zhang, Milin; Huang, Xiaomei [Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001 (China)

    2011-02-15

    In this research, a new Mg-air battery based on Mg-14Li-1Al-0.1Ce was prepared and the battery performance was investigated by constant current discharge test. The corrosion behavior of Mg, AZ31 and Mg-Li-Al-Ce were studied by self-corrosion rate measurement and potentiodynamic polarization measurement. The characteristics of Mg-Li-Al-Ce after discharge were investigated by electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results show that Mg-Li-Al-Ce is more active than Mg and AZ31. The self-corrosion rate is found to be in the order: Mg-Li-Al-Ce < Mg < AZ31. It has been observed that the Mg-air battery based on Mg-Li-Al-Ce offers higher operating voltage, anodic efficiency and capacity than those with Mg and AZ31. SEM and EIS results show that the discharge product of Mg-Li-Al-Ce is loosely adhered to the alloy surface, and thus Mg-Li-Al-Ce could keep high discharge activity during discharge. (author)

  12. Mercury pollution of effluent, air, and soil near a battery factory in Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Semu, E.; Singh, B.R.; Selmer-Olsen, A.R.

    1986-01-01

    Effluent, air, and soil samples near a battery factory in Dar es Salaam, Tanzania, where HgCl/sub 2/ is used to prevent mold growth, were collected to explore the potential for pollution of the environment from industrial discharge of Hg. Flameless atomic absorption spectrophotometry was used for Hg determinations. The concentration of Hg in the effluent ranged from <0.2 to 5.2 mg L/sup -1/ and the Hg concentration varied greatly within and among sampling days, showing different peaks. Air contained a mean of 4.0 ..mu..g m /sup -3/ with little variation within and between sampling days. Soils near the factory contained high Hg levels, from 6.7 to 472 mg kg/sup -1/ in the immediate vicinity, the highest level being associated with disposal of solid waste (defective batteries). Downwind the concentration of Hg decreased with increasing distance from the factory resulting in a soil concentration of 1.0 mg Hg kg/sup -1/ about 2 km away. Upwind the Hg concentration decreased drastically within a distance of 100 to 200 m.

  13. Development of nuclear battery using isotope sources

    International Nuclear Information System (INIS)

    Chang, Won Jun

    2004-02-01

    Until now, the development of the useful micro electromechanical systems has the problems because previous batteries (solar, chemical, etc) did not satisfy the requirements related to power supply. At this point of time, nuclear battery using isotope sources is rising the solution of this problem. Nuclear battery can provide superior out-put power and lifetime. So a new type of micro power source (nuclear battery) for micro electromechanical systems has been designed and analyzed. In this work, I designed the three parts, isotope source, conversion device, and shielding. I chose suitable sources, and designed semiconductor using the chosen isotope sources. Power is generated by radiation exciting electrons in the semiconductor depletion region. The efficiency of the nuclear battery depends upon the pn-junction. In this study the several conceptual nuclear batteries using radioactive materials are described with pn-junction. And for the safety, I designed the shielding to protect the environment by reducing the kinetic energy of beta particles

  14. Aluminum-air power cell research and development

    Science.gov (United States)

    Cooper, J. F.

    1984-12-01

    The wedge-shaped design, of the aluminum-air battery being developed, is mechanically simple and capable of full anode utilization and rapid full or partial recharge. To maintain constant interelectrode separation and to collect anodic current, the cell uses tin-coated copper tracks mounted on removable cassettes. Under gravity feed, slabs of aluminum enter the cell at a continuous and constant rate and gradually assume the wedge shape as they dissolve. Voltage losses at this tin-aluminum junction are 7 mV at 2 kA/m(2). A second-generation wedge cell incorporates air and electrolyte manifolding into individually replaceable air-cathode cassettes. Prototype wedge cells of one design were operated simultaneously with a fluidized-bed crystallizer, which stabilized aluminate concentration and produced a granular aluminum-trihydroxide reaction product. Electrolyte was circulated between the cell and crystallizer, and a hydrocyclone was used to retain particles larger than 0.015 mm within the crystallizer. Air electrodes were tested over simulated vehicle drive systems that include a standby phase in cold, supersaturated electrolyte.

  15. Battery waste management status

    International Nuclear Information System (INIS)

    Barnett, B.M.; Sabatini, J.C.; Wolsky, S.

    1993-01-01

    The paper consists of a series of slides used in the conference presentation. The topics outlined in the slides are: an overview of battery waste management; waste management of lead acid batteries; lead acid recycling; typical legislation for battery waste; regulatory status in European countries; mercury use in cells; recent trends in Hg and Cd use; impact of batteries to air quality at MSW incinerators; impact of electric vehicles; new battery technologies; and unresolved issues

  16. 5 KV low-induction capactitor battery

    International Nuclear Information System (INIS)

    Babalin, A.I.; Burtsev, V.A.; Emel'yanov, A.I.; Kunaev, G.T.; Ovsyannikov, V.A.; Zhmodikov, B.S.

    1981-01-01

    A 1.2 MJ capacitor battery is developed and constructed for creating strong magnetic fields for thermonuclear facilities, pumping of laser active media. The capacitor battery is assembled of 512 IMU5-150 and 128 IS5-200 capacitors. The design is based on division of the capacitor battery in 40 sections. The energy commutation is performed by air spark gaps of the trigatron type with 24 to 60 nH inductance. Electromagnetic switches are made on the base of the EP 41V-33 relay. A low-induction generator is developed for spark gap ignition. The capacitor sections, each of them comprising 16 capacitors, and loadings are switched-in either by means of cables or flat lines. Accidents were not observed during operation of 20 sections of the capacitor battery (capacitors break-down, break of polyethylene isolation, deformation of tyre-wires) [ru

  17. Fabricating Ir/C Nanofiber Networks as Free-Standing Air Cathodes for Rechargeable Li-CO2 Batteries.

    Science.gov (United States)

    Wang, Chengyi; Zhang, Qinming; Zhang, Xin; Wang, Xin-Gai; Xie, Zhaojun; Zhou, Zhen

    2018-06-07

    Li-CO 2 batteries are promising energy storage systems by utilizing CO 2 at the same time, though there are still some critical barriers before its practical applications such as high charging overpotential and poor cycling stability. In this work, iridium/carbon nanofibers (Ir/CNFs) are prepared via electrospinning and subsequent heat treatment, and are used as cathode catalysts for rechargeable Li-CO 2 batteries. Benefitting from the unique porous network structure and the high activity of ultrasmall Ir nanoparticles, Ir/CNFs exhibit excellent CO 2 reduction and evolution activities. The Li-CO 2 batteries present extremely large discharge capacity, high coulombic efficiency, and long cycling life. Moreover, free-standing Ir/CNF films are used directly as air cathodes to assemble Li-CO 2 batteries, which show high energy density and ultralong operation time, demonstrating great potential for practical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Gelled-electrolyte batteries for electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Tuphorn, H. (Accumulatorenfabrik Sonnenschein GmbH, Buedingen (Germany))

    1992-09-15

    Increasing problems of air pollution have pushed activities of electric vehicle projects world-wide and in spite of projects for developing new battery systems for high energy densities, today lead/acid batteries are almost the single system, ready for technical usage in this application. Valve-regulated lead/acid batteries with gelled electrolyte have the advantage that no maintenance is required and because the gel system does not cause problems with electrolyte stratification, no additional appliances for central filling or acid addition are required, which makes the system simple. Those batteries with high density active masses indicate high endurance results and field tests with 40 VW-CityStromers, equipped with 96 V/160 A h gel batteries with thermal management show good results during four years. In addition, gelled lead acid batteries possess superior high rate performance compared with conventional lead/acid batteries, which guarantees good acceleration results of the car and which makes the system recommendable for application in electric vehicles. (orig.).

  19. Gelled-electrolyte batteries for electric vehicles

    Science.gov (United States)

    Tuphorn, Hans

    Increasing problems of air pollution have pushed activities of electric vehicle projects worldwide and in spite of projects for developing new battery systems for high energy densities, today lead/acid batteries are almost the single system, ready for technical usage in this application. Valve-regulated lead/acid batteries with gelled electrolyte have the advantage that no maintenance is required and because the gel system does not cause problems with electrolyte stratification, no additional appliances for central filling or acid addition are required, which makes the system simple. Those batteries with high density active masses indicate high endurance results and field tests with 40 VW-CityStromers, equipped with 96 V/160 A h gel batteries with thermal management show good results during four years. In addition, gelled lead/acid batteries possess superior high rate performance compared with conventional lead/acid batteries, which guarantees good acceleration results of the car and which makes the system recommendable for application in electric vehicles.

  20. Relationship between Air Traffic Selection and Training (AT-SAT)) Battery Test Scores and Composite Scores in the Initial en Route Air Traffic Control Qualification Training Course at the Federal Aviation Administration (FAA) Academy

    Science.gov (United States)

    Kelley, Ronald Scott

    2012-01-01

    Scope and Method of Study: This study focused on the development and use of the AT-SAT test battery and the Initial En Route Qualification training course for the selection, training, and evaluation of air traffic controller candidates. The Pearson product moment correlation coefficient was used to measure the linear relationship between the…

  1. Advances in nickel hydrogen technology at Yardney Battery Division

    Science.gov (United States)

    Bentley, J. G.; Hall, A. M.

    1987-01-01

    The current major activites in nickel hydrogen technology being addressed at Yardney Battery Division are outlined. Five basic topics are covered: an update on life cycle testing of ManTech 50 AH NiH2 cells in the LEO regime; an overview of the Air Force/industry briefing; nickel electrode process upgrading; 4.5 inch cell development; and bipolar NiH2 battery development.

  2. Highly rechargeable lithium-CO{sub 2} batteries with a boron- and nitrogen-codoped holey-graphene cathode

    Energy Technology Data Exchange (ETDEWEB)

    Qie, Long; Xu, Jiantie; Dai, Liming [Center of Advanced Science and Engineering for Carbon, Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH (United States); Lin, Yi [National Institute of Aerospace, Hampton, VA (United States); Connell, John W. [Advanced Materials and Processing Branch, NASA Langley Research Center, Hampton, VA (United States)

    2017-06-06

    Metal-air batteries, especially Li-air batteries, have attracted significant research attention in the past decade. However, the electrochemical reactions between CO{sub 2} (0.04 % in ambient air) with Li anode may lead to the irreversible formation of insulating Li{sub 2}CO{sub 3}, making the battery less rechargeable. To make the Li-CO{sub 2} batteries usable under ambient conditions, it is critical to develop highly efficient catalysts for the CO{sub 2} reduction and evolution reactions and investigate the electrochemical behavior of Li-CO{sub 2} batteries. Here, we demonstrate a rechargeable Li-CO{sub 2} battery with a high reversibility by using B,N-codoped holey graphene as a highly efficient catalyst for CO{sub 2} reduction and evolution reactions. Benefiting from the unique porous holey nanostructure and high catalytic activity of the cathode, the as-prepared Li-CO{sub 2} batteries exhibit high reversibility, low polarization, excellent rate performance, and superior long-term cycling stability over 200 cycles at a high current density of 1.0 A g{sup -1}. Our results open up new possibilities for the development of long-term Li-air batteries reusable under ambient conditions, and the utilization and storage of CO{sub 2}. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Household batteries: Evaluation of collection methods

    Energy Technology Data Exchange (ETDEWEB)

    Seeberger, D.A.

    1992-12-31

    While it is difficult to prove that a specific material is causing contamination in a landfill, tests have been conducted at waste-to-energy facilities that indicate that household batteries contribute significant amounts of heavy metals to both air emissions and ash residue. Hennepin County, MN, used a dual approach for developing and implementing a special household battery collection. Alternative collection methods were examined; test collections were conducted. The second phase examined operating and disposal policy issues. This report describes the results of the grant project, moving from a broad examination of the construction and content of batteries, to a description of the pilot collection programs, and ending with a discussion of variables affecting the cost and operation of a comprehensive battery collection program. Three out-of-state companies (PA, NY) were found that accept spent batteries; difficulties in reclaiming household batteries are discussed.

  4. Household batteries: Evaluation of collection methods

    Energy Technology Data Exchange (ETDEWEB)

    Seeberger, D.A.

    1992-01-01

    While it is difficult to prove that a specific material is causing contamination in a landfill, tests have been conducted at waste-to-energy facilities that indicate that household batteries contribute significant amounts of heavy metals to both air emissions and ash residue. Hennepin County, MN, used a dual approach for developing and implementing a special household battery collection. Alternative collection methods were examined; test collections were conducted. The second phase examined operating and disposal policy issues. This report describes the results of the grant project, moving from a broad examination of the construction and content of batteries, to a description of the pilot collection programs, and ending with a discussion of variables affecting the cost and operation of a comprehensive battery collection program. Three out-of-state companies (PA, NY) were found that accept spent batteries; difficulties in reclaiming household batteries are discussed.

  5. Partially Fluorinated Solvent as a co-solvent for the Non-aqueous Electrolyte of Li/air Battery

    Science.gov (United States)

    2010-11-11

    ether ( MFE ) and tris(2,2,2-trifluoroethyl) phosphite (TTFP), respectively, as a co-solvent for the non-aqueous electrolyte of Li–air battery. Results...fluorinated solvents on the discharge performance of Li–air bat- tery. For this purpose, we here selectmethyl nonafluorobutyl ether ( MFE ) and tris...196, (2011) pgs. 2867-2870 14. ABSTRACT In this workwestudy methyl nonafluorobutyl ether ( MFE ) and tris(2,2,2-trifluoroethyl) phosphite (TTFP

  6. Development and characterization of textile batteries

    Science.gov (United States)

    Normann, M.; Grethe, T.; Schwarz-Pfeiffer, A.; Ehrmann, A.

    2017-02-01

    During the past years, smart textiles have gained more and more attention. Products cover a broad range of possible applications, from fashion items such as LED garments to sensory shirts detecting vital signs to clothes with included electrical stimulation of muscles. For all electrical or electronic features included in garments, a power supply is needed - which is usually the bottleneck in the development of smart textiles, since common power supplies are not flexible and often not lightweight, prohibiting their unobtrusive integration in electronic textiles. In a recent project, textile-based batteries are developed. For this, metallized woven fabrics (e.g. copper, zinc, or silver) are used in combinations with carbon fabrics. The article gives an overview of our recent advances in optimizing power storage capacity and durability of the textile batteries by tailoring the gel-electrolyte. The gel-electrolyte is modified with respect to thickness and electrolyte concentration; additionally, the influence of additives on the long-time stability of the batteries is examined.

  7. High-Thermal- and Air-Stability Cathode Material with Concentration-Gradient Buffer for Li-Ion Batteries.

    Science.gov (United States)

    Shi, Ji-Lei; Qi, Ran; Zhang, Xu-Dong; Wang, Peng-Fei; Fu, Wei-Gui; Yin, Ya-Xia; Xu, Jian; Wan, Li-Jun; Guo, Yu-Guo

    2017-12-13

    Delivery of high capacity with high thermal and air stability is a great challenge in the development of Ni-rich layered cathodes for commercialized Li-ion batteries (LIBs). Herein we present a surface concentration-gradient spherical particle with varying elemental composition from the outer end LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM) to the inner end LiNi 0.8 Co 0.15 Al 0.05 O 2 (NCA). This cathode material with the merit of NCM concentration-gradient protective buffer and the inner NCA core shows high capacity retention of 99.8% after 200 cycles at 0.5 C. Furthermore, this cathode material exhibits much improved thermal and air stability compared with bare NCA. These results provide new insights into the structural design of high-performance cathodes with high energy density, long life span, and storage stability materials for LIBs in the future.

  8. Crystallization of aluminum hydroxide in the aluminum-air battery: Literature review, crystallizer design and results of integrated system tests

    Science.gov (United States)

    Maimoni, A.

    1988-03-01

    The literature on aluminum trihydroxide crystallization is reviewed and the implications of crystallization on the design and performance of the aluminum-air battery are illustrated. Results of research on hydrargillite crystallization under battery operating conditions at Alcoa Laboratories, Alcan Kingston Laboratories, and Lawrence Livermore National Laboratory are summarized and are applied to the design of an electrolyte management system using lamella settlers for clarification of the electrolyte and product separation. The design principles were validated in a series of experiments that, for the first time in the aluminum-air program, demonstrated continuous operation of an integrated system consisting of cells, crystallizer, and a product-removal system.

  9. A Battery Health Monitoring Framework for Planetary Rovers

    Science.gov (United States)

    Daigle, Matthew J.; Kulkarni, Chetan Shrikant

    2014-01-01

    Batteries have seen an increased use in electric ground and air vehicles for commercial, military, and space applications as the primary energy source. An important aspect of using batteries in such contexts is battery health monitoring. Batteries must be carefully monitored such that the battery health can be determined, and end of discharge and end of usable life events may be accurately predicted. For planetary rovers, battery health estimation and prediction is critical to mission planning and decision-making. We develop a model-based approach utilizing computaitonally efficient and accurate electrochemistry models of batteries. An unscented Kalman filter yields state estimates, which are then used to predict the future behavior of the batteries and, specifically, end of discharge. The prediction algorithm accounts for possible future power demands on the rover batteries in order to provide meaningful results and an accurate representation of prediction uncertainty. The framework is demonstrated on a set of lithium-ion batteries powering a rover at NASA.

  10. Invention of Lithium Ion Secondary Battery and Its Business Development

    OpenAIRE

    正本, 順三/米田,晴幸; 米田, 晴幸; MASAMOTO, Junzo; YONEDA, Haruyuki

    2010-01-01

    At present, mobile phones and laptop computers are essential items in our daily life. As a battery for such portable devices, the lithium ion secondary battery is used. The lithium ion secondary battery, which is used as a battery for such portable devices, was first invented by Dr. Yoshino at Asahi Kasei. In this paper, the authors describe how the lithium ion secondary battery was developed by the inventor. The authors also describe the battery separator, which is one of the key components ...

  11. Study of Poly (3,4-ethylenedioxythiophene)/MnO2 as Composite Cathode Materials for Aluminum-Air Battery

    International Nuclear Information System (INIS)

    Kuo, Yu-Lin; Wu, Ching-Chen; Chang, Wen-Sheng; Yang, Ching-Ru; Chou, Hung-Lung

    2015-01-01

    Highlights: • Open-tunnel structure of MnO 2 catalysts were prepared by the hydrothermal method. • PEDOT was deposited on MnO 2 /carbon paper by oxidative chemical vapor deposition. • PEDOT/α-MnO 2 /10AA composite cathode shows the highest discharge performance. • The enhancement on discharge performance was due to the clear charge transfer. - Abstract: This study focuses on the development of the composite electrode materials for an aluminum-air battery and improving the oxygen reduction reaction (ORR) of the air electrode by matching alpha- and beta- manganese dioxide (MnO 2 ) with poly-(3,4-ethylenedioxythiophene) (PEDOT) conducting polymer. The catalyst powders of α-MnO 2 and β-MnO 2 are prepared by hydrothermal method with different precursors, while PEDOT conducting polymer is subsequently deposited on the screen-printed electrodes (MnO 2 /carbon paper) by oxidative chemical vapor deposition (oCVD). Material characteristics of prepared MnO 2 powder and PEDOT layer are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Raman scattering spectroscopy. The half-cell polarization curve test is found to be strongly depended on the crystalline phases of MnO 2 . From experimental observations and a density functional theory (DFT) study, the conductivity of PEDOT/α-MnO 2 is found to be higher than PEDOT/β-MnO 2 contributed to structural effect mediated improvements in charge transfer. As a result, integrating the deposition of PEDOT on α-MnO 2 /carbon paper as composite cathode is suitable for the use in aluminum-air battery

  12. Primary and secondary battery consumption trends in Sweden 1996–2013: Method development and detailed accounting by battery type

    International Nuclear Information System (INIS)

    Patrício, João; Kalmykova, Yuliya; Berg, Per E.O.; Rosado, Leonardo; Åberg, Helena

    2015-01-01

    Highlights: • Developed MFA method was validated by the national statistics. • Exponential increase of EEE sales leads to increase in integrated battery consumption. • Digital convergence is likely to be a cause for primary batteries consumption decline. • Factors for estimation of integrated batteries in EE are provided. • Sweden reached the collection rates defined by European Union. - Abstract: In this article, a new method based on Material Flow Accounting is proposed to study detailed material flows in battery consumption that can be replicated for other countries. The method uses regularly available statistics on import, industrial production and export of batteries and battery-containing electric and electronic equipment (EEE). To promote method use by other scholars with no access to such data, several empirically results and their trends over time, for different types of batteries occurrence among the EEE types are provided. The information provided by the method can be used to: identify drivers of battery consumption; study the dynamic behavior of battery flows – due to technology development, policies, consumers behavior and infrastructures. The method is exemplified by the study of battery flows in Sweden for years 1996–2013. The batteries were accounted, both in units and weight, as primary and secondary batteries; loose and integrated; by electrochemical composition and share of battery use between different types of EEE. Results show that, despite a fivefold increase in the consumption of rechargeable batteries, they account for only about 14% of total use of portable batteries. Recent increase in digital convergence has resulted in a sharp decline in the consumption of primary batteries, which has now stabilized at a fairly low level. Conversely, the consumption of integrated batteries has increased sharply. In 2013, 61% of the total weight of batteries sold in Sweden was collected, and for the particular case of alkaline manganese

  13. Primary and secondary battery consumption trends in Sweden 1996–2013: Method development and detailed accounting by battery type

    Energy Technology Data Exchange (ETDEWEB)

    Patrício, João, E-mail: joao.patricio@chalmers.se [Department of Civil and Environmental Engineering, Chalmers University of Technology, 412 96 Gothenburg (Sweden); Kalmykova, Yuliya; Berg, Per E.O.; Rosado, Leonardo [Department of Civil and Environmental Engineering, Chalmers University of Technology, 412 96 Gothenburg (Sweden); Åberg, Helena [The Faculty of Education, University of Gothenburg, 40530 Gothenburg (Sweden)

    2015-05-15

    Highlights: • Developed MFA method was validated by the national statistics. • Exponential increase of EEE sales leads to increase in integrated battery consumption. • Digital convergence is likely to be a cause for primary batteries consumption decline. • Factors for estimation of integrated batteries in EE are provided. • Sweden reached the collection rates defined by European Union. - Abstract: In this article, a new method based on Material Flow Accounting is proposed to study detailed material flows in battery consumption that can be replicated for other countries. The method uses regularly available statistics on import, industrial production and export of batteries and battery-containing electric and electronic equipment (EEE). To promote method use by other scholars with no access to such data, several empirically results and their trends over time, for different types of batteries occurrence among the EEE types are provided. The information provided by the method can be used to: identify drivers of battery consumption; study the dynamic behavior of battery flows – due to technology development, policies, consumers behavior and infrastructures. The method is exemplified by the study of battery flows in Sweden for years 1996–2013. The batteries were accounted, both in units and weight, as primary and secondary batteries; loose and integrated; by electrochemical composition and share of battery use between different types of EEE. Results show that, despite a fivefold increase in the consumption of rechargeable batteries, they account for only about 14% of total use of portable batteries. Recent increase in digital convergence has resulted in a sharp decline in the consumption of primary batteries, which has now stabilized at a fairly low level. Conversely, the consumption of integrated batteries has increased sharply. In 2013, 61% of the total weight of batteries sold in Sweden was collected, and for the particular case of alkaline manganese

  14. Friedel-Crafts Crosslinked Highly Sulfonated Polyether Ether Ketone (SPEEK) Membranes for a Vanadium/Air Redox Flow Battery.

    Science.gov (United States)

    Merle, Géraldine; Ioana, Filipoi Carmen; Demco, Dan Eugen; Saakes, Michel; Hosseiny, Seyed Schwan

    2013-12-30

    Highly conductive and low vanadium permeable crosslinked sulfonated poly(ether ether ketone) (cSPEEK) membranes were prepared by electrophilic aromatic substitution for a Vanadium/Air Redox Flow Battery (Vanadium/Air-RFB) application. Membranes were synthesized from ethanol solution and crosslinked under different temperatures with 1,4-benzenedimethanol and ZnCl2 via the Friedel-Crafts crosslinking route. The crosslinking mechanism under different temperatures indicated two crosslinking pathways: (a) crosslinking on the sulfonic acid groups; and (b) crosslinking on the backbone. It was observed that membranes crosslinked at a temperature of 150 °C lead to low proton conductive membranes, whereas an increase in crosslinking temperature and time would lead to high proton conductive membranes. High temperature crosslinking also resulted in an increase in anisotropy and water diffusion. Furthermore, the membranes were investigated for a Vanadium/Air Redox Flow Battery application. Membranes crosslinked at 200 °C for 30 min with a molar ratio between 2:1 (mol repeat unit:mol benzenedimethanol) showed a proton conductivity of 27.9 mS/cm and a 100 times lower VO2+ crossover compared to Nafion.

  15. In-situ Electrodeposition of Highly Active Silver Catalyst on Carbon Fiber Papers as Binder Free Cathodes for Aluminum-air Battery

    OpenAIRE

    Hong, Qingshui; Lu, Huimin

    2017-01-01

    Carbon fiber papers supported Ag catalysts (Ag/CFP) with different coverage of electro-active site are prepared by electrochemical deposition and used as binder free cathodes in primary aluminum-air (Al-air) battery. Scanning Electron Microscopy and X-ray Diffraction studies are carried out to characterize the as-prepared Ag/CFP air cathodes. Oxygen reduction reaction (ORR) activities on these air cathodes in alkaline solutions are systematic studied. A newly designed aluminum-air cell is use...

  16. Carbon coated CoS_2 thermal battery electrode material with enhanced discharge performances and air stability

    International Nuclear Information System (INIS)

    Xie, Song; Deng, Yafeng; Mei, Jun; Yang, Zhaotang; Lau, Woon-Ming; Liu, Hao

    2017-01-01

    Graphical abstract: A novel carbon coated CoS_2 composite is prepared and investigated as a cathode material for thermal batteries. - Highlights: • A novel C@CoS_2 composite is successfully prepared by hydrothermal method. • The growth of CoS_2 in the glucose solution results in a smaller grain size. • The coating of carbon favors electron transfer and buffers polysulfides formation. • The in situ coated carbon layer effectively prevents the oxidation of CoS_2. • The C@CoS_2 composite shows competitive thermal stability and discharge property. - Abstract: Cobalt disulfide (CoS_2) is a promising thermal battery electrode material for its superior thermal stability and discharge performance. However, the low natural resource and poor air stability restrict its application in thermal battery fabrication. In this work, carbon coated CoS_2 composite was prepared by a facile one-pot hydrothermal method with glucose as carbon source. During the growth of CoS_2, the glucose molecules were in situ adsorbed and carbonized on the surface of the as-synthesized CoS_2, and the resultant carbon coating provided improved electrical conductivity and discharge performances to the composite. The thermal battery cell, which was fabricated with such a composite cathode and with a Li-Si anode, can output a capacity of 235.8 mAh g"−"1 and an energy density of 416.9 Wh kg"−"1 at a cut-off voltage of 1.7 V. This carbon coated CoS_2 composite also presented enhanced air stability. After being stored in dry air for 3 months, the composite can still provide a capacity of 232.4 mAh g"−"1 to 1.7 V, whereas the capacity of bare CoS_2 stored with the same condition dropped from 202.4 mAh g"−"1 to 189.7 mAh g"−"1.

  17. USABC Development of 12 Volt Battery for Start-Stop Application: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tataria, H.; Gross, O.; Bae, C.; Cunningham, B.; Barnes, J. A.; Deppe, J.; Neubauer, J.

    2015-02-01

    Global automakers are accelerating the development of fuel efficient vehicles, as a part of meeting regional regulatory CO2 emissions requirements. The micro hybrid vehicles with auto start-stop functionality are considered economical solutions for the stringent European regulations. Flooded lead acid batteries were initially considered the most economical solution for idle-stop systems. However, the dynamic charge acceptance (DCA) at lower state-of-charge (SOC) was limiting the life of the batteries. While improved lead-acid batteries with AGM and VRLA features have improved battery longevity, they do not last the life of the vehicle. The United States Advanced Battery Consortium (or USABC, a consortium of GM, Ford, and Chrysler) analyzed energy storage needs for a micro hybrid automobile with start-stop capability, and with a single power source. USABC has analyzed the start-stop behaviors of many drivers and has developed the requirements for the start-stop batteries (Table 3). The testing procedures to validate the performance and longevity were standardized and published. The guideline for the cost estimates calculations have also been provided, in order to determine the value of the newly developed modules. The analysis effort resulted in a set of requirements which will help the battery manufacturers to develop a module to meet the automotive Original Equipment Manufacturers (OEM) micro hybrid vehicle requirements. Battery developers were invited to submit development proposals and two proposals were selected for 50% cost share with USABC/DOE.

  18. Using elastin protein to develop highly efficient air cathodes for lithium-O2 batteries

    International Nuclear Information System (INIS)

    Guo, Guilue; Ang, Huixiang; Tan, Huiteng; Zhang, Yu; Guo, Yuanyuan; Fong, Eileen; Yan, Qingyu; Yao, Xin

    2016-01-01

    Transition metal-nitrogen/carbon (M-N/C, M = Fe, Co) catalysts are synthesized using environmentally friendly histidine-tag-rich elastin protein beads, metal sulfate and water soluble carbon nanotubes followed by post-annealing and acid leaching processes. The obtained catalysts are used as cathode materials in lithium-O 2 batteries. It has been discovered that during discharge, Li 2 O 2 nanoparticles first nucleate and grow around the bead-decorated CNT regions (M-N/C centres) and coat on the catalysts at a high degree of discharge. The Fe-N/C catalyst-based cathodes deliver a capacity of 12 441 mAh g −1 at a current density of 100 mA g −1 . When they were cycled at a limited capacity of 800 mAh g −1 at current densities of 200 or 400 mA g −1 , these cathodes showed stable charge voltages of ∼3.65 or 3.90 V, corresponding to energy efficiencies of ∼71.2 or 65.1%, respectively. These results are considerably superior to those of the cathodes based on bare annealed CNTs, which prove that the Fe-N/C catalysts developed here are promising for use in non-aqueous lithium-O 2 battery cathodes. (paper)

  19. Using elastin protein to develop highly efficient air cathodes for lithium-O2 batteries

    Science.gov (United States)

    Guo, Guilue; Yao, Xin; Ang, Huixiang; Tan, Huiteng; Zhang, Yu; Guo, Yuanyuan; Fong, Eileen; Yan, Qingyu

    2016-01-01

    Transition metal-nitrogen/carbon (M-N/C, M = Fe, Co) catalysts are synthesized using environmentally friendly histidine-tag-rich elastin protein beads, metal sulfate and water soluble carbon nanotubes followed by post-annealing and acid leaching processes. The obtained catalysts are used as cathode materials in lithium-O2 batteries. It has been discovered that during discharge, Li2O2 nanoparticles first nucleate and grow around the bead-decorated CNT regions (M-N/C centres) and coat on the catalysts at a high degree of discharge. The Fe-N/C catalyst-based cathodes deliver a capacity of 12 441 mAh g-1 at a current density of 100 mA g-1. When they were cycled at a limited capacity of 800 mAh g-1 at current densities of 200 or 400 mA g-1, these cathodes showed stable charge voltages of ˜3.65 or 3.90 V, corresponding to energy efficiencies of ˜71.2 or 65.1%, respectively. These results are considerably superior to those of the cathodes based on bare annealed CNTs, which prove that the Fe-N/C catalysts developed here are promising for use in non-aqueous lithium-O2 battery cathodes.

  20. Identification of conductive hearing loss using air conduction tests alone: reliability and validity of an automatic test battery.

    Science.gov (United States)

    Convery, Elizabeth; Keidser, Gitte; Seeto, Mark; Freeston, Katrina; Zhou, Dan; Dillon, Harvey

    2014-01-01

    The primary objective of this study was to determine whether a combination of automatically administered pure-tone audiometry and a tone-in-noise detection task, both delivered via an air conduction (AC) pathway, could reliably and validly predict the presence of a conductive component to the hearing loss. The authors hypothesized that performance on the battery of tests would vary according to hearing loss type. A secondary objective was to evaluate the reliability and validity of a novel automatic audiometry algorithm to assess its suitability for inclusion in the test battery. Participants underwent a series of hearing assessments that were conducted in a randomized order: manual pure-tone air conduction audiometry and bone conduction audiometry; automatic pure-tone air conduction audiometry; and an automatic tone-in-noise detection task. The automatic tests were each administered twice. The ability of the automatic test battery to: (a) predict the presence of an air-bone gap (ABG); and (b) accurately measure AC hearing thresholds was assessed against the results of manual audiometry. Test-retest conditions were compared to determine the reliability of each component of the automatic test battery. Data were collected on 120 ears from normal-hearing and conductive, sensorineural, and mixed hearing-loss subgroups. Performance differences between different types of hearing loss were observed. Ears with a conductive component (conductive and mixed ears) tended to have normal signal to noise ratios (SNR) despite impaired thresholds in quiet, while ears without a conductive component (normal and sensorineural ears) demonstrated, on average, an increasing relationship between their thresholds in quiet and their achieved SNR. Using the relationship between these two measures among ears with no conductive component as a benchmark, the likelihood that an ear has a conductive component can be estimated based on the deviation from this benchmark. The sensitivity and

  1. Effect of high donor number solvent and cathode morphology on interfacial processes in Li-air batteries

    Science.gov (United States)

    Kislenko, S. A.

    2018-01-01

    The work is focused on the investigation of the effect of solvent and carbon cathode morphology on the performance of Li-air batteries. Molecular dynamics simulation was used to explore the interfacial behavior of the main reactants (O2 and Li+) of the oxygen reduction reaction in high donor number solvent dimethyl sulfoxide (DMSO) at the following carbon surfaces: graphene plane, graphene edge, nanotube. It was shown that the adsorption barrier of O2 molecules decreases in the order graphene plane > nanotube > graphene edge, leading to the fastest adsorption kinetics on graphene edges. Strong solvation of Li+ in DMSO prevents ions adsorption on defect-free graphene planes and nanotubes, which is qualitatively different from low donor number solvents, such as acetonitrile. It can be concluded from these results, that nucleation and growth of discharge products in DMSO is shifted from the surface towards the solvent bulk that, in turn, leads to capacity increase of Li-air batteries.

  2. Sustainability and in situ monitoring in battery development

    Science.gov (United States)

    Grey, C. P.; Tarascon, J. M.

    2017-01-01

    The development of improved rechargeable batteries represents a major technological challenge for this new century, as batteries constitute the limiting components in the shift from petrol (gasoline) powered to electric vehicles, while also enabling the use of more renewable energy on the grid. To minimize the ecological implications associated with their wider use, we must integrate sustainability of battery materials into our research endeavours, choosing chemistries that have a minimum footprint in nature and that are more readily recycled or integrated into a full circular economy. Sustainability and cost concerns require that we greatly increase the battery lifetime and consider second lives for batteries. As part of this, we must monitor the state of health of batteries continuously during operation to minimize their degradation. It is thus important to push the frontiers of operando techniques to monitor increasingly complex processes. In this Review, we will describe key advances in both more sustainable chemistries and operando techniques, along with some of the remaining challenges and possible solutions, as we personally perceive them.

  3. Development of a thin-shaped lightweight MF battery for motorcycles. Nirinshayo usugata keiryo maintenance free battery no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, S.; Onozuka, T. (Honda Motor Co. Ltd., Tokyo (Japan)); Uemichi, S. (Yuasa Battery Co. Ltd., Osaka (Japan))

    1992-08-01

    This paper describes a thin-shaped lightweight maintenance free motorcycle battery used in a motor scooter, a new product from Honda Motors launching its sales in 1992, as well as the related structural development thereof. The points aimed at in the development include more utilization of available space in a vehicle, improved maintainability, and adoption of perfect instant activation system (dry-charged system) which makes a battery serviceable upon initial filling of electrolyte. Attentions have been given on reducing the battery volume by 30% and weight by 20% compared with the conventional batteries, and ensuring interchangeability, leakage-free performance, and free and easy replacement. Contrivances for practical application have been given on assuring low-temperature high-rate discharge performance for reliable engine starting. Devised also are the thinner battery plates, better vibration resistance, longer life, uniformed plate thickness, higher separator porosity, and better stability in plate group pressurization. Better performance than the conventional batteries was realized by improving parts construction and mounting systems, including one-touch terminal connection, fast coupling of terminal posts, soldering, and fuse built-in couplers. The battery has superior appearance and design. 18 figs.

  4. Highly ordered and ultra-long carbon nanotube arrays as air cathodes for high-energy-efficiency Li-oxygen batteries

    Science.gov (United States)

    Yu, Ruimin; Fan, Wugang; Guo, Xiangxin; Dong, Shaoming

    2016-02-01

    Carbonaceous air cathodes with rational architecture are vital for the nonaqueous Li-O2 batteries to achieve large energy density, high energy efficiency and long cycle life. In this work, we report the cathodes made of highly ordered and vertically aligned carbon nanotubes grown on permeable Ta foil substrates (VACNTs-Ta) via thermal chemical vapour deposition. The VACNTs-Ta, composed of uniform carbon nanotubes with approximately 240 μm in superficial height, has the super large surface area. Meanwhile, the oriented carbon nanotubes provide extremely outstanding passageways for Li ions and oxygen species. Electrochemistry tests of VACNTs-Ta air cathodes show enhancement in discharge capacity and cycle life compared to those made from short-range oriented and disordered carbon nanotubes. By further combining with the LiI redox mediator that is dissolved in the tetraethylene dimethyl glycol based electrolytes, the batteries exhibit more than 200 cycles at the current density of 200 mA g-1 with a cut-off discharge capacity of 1000 mAh g-1, and their energy efficiencies increase from 50% to 82%. The results here demonstrate the importance of cathode construction for high-energy-efficiency and long-life Li-O2 batteries.

  5. Friedel–Crafts Crosslinked Highly Sulfonated Polyether Ether Ketone (SPEEK Membranes for a Vanadium/Air Redox Flow Battery

    Directory of Open Access Journals (Sweden)

    Géraldine Merle

    2013-12-01

    Full Text Available Highly conductive and low vanadium permeable crosslinked sulfonated poly(ether ether ketone (cSPEEK membranes were prepared by electrophilic aromatic substitution for a Vanadium/Air Redox Flow Battery (Vanadium/Air-RFB application. Membranes were synthesized from ethanol solution and crosslinked under different temperatures with 1,4-benzenedimethanol and ZnCl2 via the Friedel–Crafts crosslinking route. The crosslinking mechanism under different temperatures indicated two crosslinking pathways: (a crosslinking on the sulfonic acid groups; and (b crosslinking on the backbone. It was observed that membranes crosslinked at a temperature of 150 °C lead to low proton conductive membranes, whereas an increase in crosslinking temperature and time would lead to high proton conductive membranes. High temperature crosslinking also resulted in an increase in anisotropy and water diffusion. Furthermore, the membranes were investigated for a Vanadium/Air Redox Flow Battery application. Membranes crosslinked at 200 °C for 30 min with a molar ratio between 2:1 (mol repeat unit:mol benzenedimethanol showed a proton conductivity of 27.9 mS/cm and a 100 times lower VO2+ crossover compared to Nafion.

  6. Friedel–Crafts Crosslinked Highly Sulfonated Polyether Ether Ketone (SPEEK) Membranes for a Vanadium/Air Redox Flow Battery

    Science.gov (United States)

    Merle, Géraldine; Ioana, Filipoi Carmen; Demco, Dan Eugen; Saakes, Michel; Hosseiny, Seyed Schwan

    2014-01-01

    Highly conductive and low vanadium permeable crosslinked sulfonated poly(ether ether ketone) (cSPEEK) membranes were prepared by electrophilic aromatic substitution for a Vanadium/Air Redox Flow Battery (Vanadium/Air-RFB) application. Membranes were synthesized from ethanol solution and crosslinked under different temperatures with 1,4-benzenedimethanol and ZnCl2 via the Friedel–Crafts crosslinking route. The crosslinking mechanism under different temperatures indicated two crosslinking pathways: (a) crosslinking on the sulfonic acid groups; and (b) crosslinking on the backbone. It was observed that membranes crosslinked at a temperature of 150 °C lead to low proton conductive membranes, whereas an increase in crosslinking temperature and time would lead to high proton conductive membranes. High temperature crosslinking also resulted in an increase in anisotropy and water diffusion. Furthermore, the membranes were investigated for a Vanadium/Air Redox Flow Battery application. Membranes crosslinked at 200 °C for 30 min with a molar ratio between 2:1 (mol repeat unit:mol benzenedimethanol) showed a proton conductivity of 27.9 mS/cm and a 100 times lower VO2+ crossover compared to Nafion. PMID:24957118

  7. Textile Inspired Lithium-Oxygen Battery Cathode with Decoupled Oxygen and Electrolyte Pathways.

    Science.gov (United States)

    Xu, Shaomao; Yao, Yonggang; Guo, Yuanyuan; Zeng, Xiaoqiao; Lacey, Steven D; Song, Huiyu; Chen, Chaoji; Li, Yiju; Dai, Jiaqi; Wang, Yanbin; Chen, Yanan; Liu, Boyang; Fu, Kun; Amine, Khalil; Lu, Jun; Hu, Liangbing

    2018-01-01

    The lithium-air (Li-O 2 ) battery has been deemed one of the most promising next-generation energy-storage devices due to its ultrahigh energy density. However, in conventional porous carbon-air cathodes, the oxygen gas and electrolyte often compete for transport pathways, which limit battery performance. Here, a novel textile-based air cathode is developed with a triple-phase structure to improve overall battery performance. The hierarchical structure of the conductive textile network leads to decoupled pathways for oxygen gas and electrolyte: oxygen flows through the woven mesh while the electrolyte diffuses along the textile fibers. Due to noncompetitive transport, the textile-based Li-O 2 cathode exhibits a high discharge capacity of 8.6 mAh cm -2 , a low overpotential of 1.15 V, and stable operation exceeding 50 cycles. The textile-based structure can be applied to a range of applications (fuel cells, water splitting, and redox flow batteries) that involve multiple phase reactions. The reported decoupled transport pathway design also spurs potential toward flexible/wearable Li-O 2 batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Primary and secondary battery consumption trends in Sweden 1996-2013: method development and detailed accounting by battery type.

    Science.gov (United States)

    Patrício, João; Kalmykova, Yuliya; Berg, Per E O; Rosado, Leonardo; Åberg, Helena

    2015-05-01

    In this article, a new method based on Material Flow Accounting is proposed to study detailed material flows in battery consumption that can be replicated for other countries. The method uses regularly available statistics on import, industrial production and export of batteries and battery-containing electric and electronic equipment (EEE). To promote method use by other scholars with no access to such data, several empirically results and their trends over time, for different types of batteries occurrence among the EEE types are provided. The information provided by the method can be used to: identify drivers of battery consumption; study the dynamic behavior of battery flows - due to technology development, policies, consumers behavior and infrastructures. The method is exemplified by the study of battery flows in Sweden for years 1996-2013. The batteries were accounted, both in units and weight, as primary and secondary batteries; loose and integrated; by electrochemical composition and share of battery use between different types of EEE. Results show that, despite a fivefold increase in the consumption of rechargeable batteries, they account for only about 14% of total use of portable batteries. Recent increase in digital convergence has resulted in a sharp decline in the consumption of primary batteries, which has now stabilized at a fairly low level. Conversely, the consumption of integrated batteries has increased sharply. In 2013, 61% of the total weight of batteries sold in Sweden was collected, and for the particular case of alkaline manganese dioxide batteries, the value achieved 74%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Accelerating Development of EV Batteries Through Computer-Aided Engineering (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, A.; Kim, G. H.; Smith, K.; Santhanagopalan, S.

    2012-12-01

    The Department of Energy's Vehicle Technology Program has launched the Computer-Aided Engineering for Automotive Batteries (CAEBAT) project to work with national labs, industry and software venders to develop sophisticated software. As coordinator, NREL has teamed with a number of companies to help improve and accelerate battery design and production. This presentation provides an overview of CAEBAT, including its predictive computer simulation of Li-ion batteries known as the Multi-Scale Multi-Dimensional (MSMD) model framework. MSMD's modular, flexible architecture connects the physics of battery charge/discharge processes, thermal control, safety and reliability in a computationally efficient manner. This allows independent development of submodels at the cell and pack levels.

  10. Electric vehicles batteries thermal management systems employing phase change materials

    Science.gov (United States)

    Ianniciello, Lucia; Biwolé, Pascal Henry; Achard, Patrick

    2018-02-01

    Battery thermal management is necessary for electric vehicles (EVs), especially for Li-ion batteries, due to the heat dissipation effects on those batteries. Usually, air or coolant circuits are employed as thermal management systems in Li-ion batteries. However, those systems are expensive in terms of investment and operating costs. Phase change materials (PCMs) may represent an alternative which could be cheaper and easier to operate. In fact, PCMs can be used as passive or semi-passive systems, enabling the global system to sustain near-autonomous operations. This article presents the previous developments introducing PCMs for EVs battery cooling. Different systems are reviewed and solutions are proposed to enhance PCMs efficiency in those systems.

  11. Development of the lithium polymer battery for the GM Precept

    Energy Technology Data Exchange (ETDEWEB)

    Rouillard, R.; Richard, M.; Pomerleau, D.; St-Germain, P.; St-Pierre, C. [Argo-Tech Productions Inc., Boucherville, PQ (Canada); Gastonguay, L.; Choquette, Y. [Hydro-Quebec, Montreal, PQ (Canada). Research Inst

    2000-07-01

    The role that Hydro-Quebec and Argo-Tech played in the development of the GM Precept was discussed. The prototype hybrid electric-powered vehicle is a 5-passenger family sedan developed by General Motors. It is expected to achieve 80 mpg efficiency and emit fewer exhaust gases. The car's energy storage system uses lithium polymer battery (LPB) technology developed jointly by Hydro-Quebec and Argo-Tech. The development team had to meet the objectives of the GM Precept program using a unique electrochemical configuration, module and pack design. This included battery management and thermal management systems. The performance targets and parameters for the prototype were established by the Partnership for a New Generation of Vehicles (PNGV) program. In 1993, the United States Advanced Battery Consortium (USABC) issued a contract to Hydro-Quebec to further develop their ongoing research on the LPB for EV applications. This included improvements in base chemistry as well as in the development processes and manufacturing technologies needed to produce a high-performance, low-cost electric-vehicle battery, under a series of USABC cost-shared contracts. The design and performance data of the LPB in addition to tests at the cell level suggest that the commercialization of the LPB battery is achievable. Focus is now being placed on reproducibility and robustness. Commercialization is planned for 2005. refs., tabs., figs.

  12. Testing and development of electric vehicle batteries for EPRI Electric Transportation Program

    Science.gov (United States)

    1985-11-01

    Argonne National Laboratory conducted an electric-vehicle battery testing and development program for the Electric Power Research Institute. As part of this program, eighteen battery modules previously developed by Johnson Controls, Inc. were tested. This type of battery (EV-2300 - an improved state-of-the-art lead-acid battery) was designed specifically for improved performance, range, and life in electric vehicles. In order to obtain necessary performance data, the batteries were tested under various duty cycles typical of normal service. This program, supported by the Electric Power Research Institute, consisted of three tasks: determination of the effect of cycle life vs peak power and rest period, determination of the impact of charge method on cycle life, and evaluation of the EV-2300 battery system. Two supporting studies were also carried out: one on thermal management of electric-vehicle batteries and one on enhanced utilization of active material in lead-acid batteries.

  13. Oxygen reduction reaction catalysts of manganese oxide decorated by silver nanoparticles for aluminum-air batteries

    International Nuclear Information System (INIS)

    Sun, Shanshan; Miao, He; Xue, Yejian; Wang, Qin; Li, Shihua; Liu, Zhaoping

    2016-01-01

    In this paper, the hybrid catalysts of manganese oxide decorated by silver nanoparticles (Ag-MnO x ) are fully investigated and show the excellent oxygen reduction reaction (ORR) activity. The Ag-MnO 2 is synthesized by a facile strategy of the electroless plating of silver on the manganese oxide. The catalysts are characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Then, the ORR activities of the catalysts are systematically investigated by the rotating disk electrode (RDE) and aluminum-air battery technologies. The Ag nanoparticles with the diameters at about 10 nm are anchored on the surface of α-MnO 2 and a strong interaction between Ag and MnO 2 components in the hybrid catalyst are confirmed. The electrochemical tests show that the activity and stability of the 50%Ag-MnO 2 composite catalyst (the mass ratio of Ag/MnO 2 is 1:1) toward ORR are greatly enhanced comparing with single Ag or MnO 2 catalyst. Moreover, the peak power density of the aluminum-air battery with 50%Ag-MnO 2 can reach 204 mW cm −2 .

  14. Lithium-Ion Battery Demonstrated for NASA Desert Research and Technology Studies

    Science.gov (United States)

    Bennett, William R.; Baldwin, Richard S.

    2008-01-01

    Lithium-ion batteries have attractive performance characteristics that are well suited to a number of NASA applications. These rechargeable batteries produce compact, lightweight energy-storage systems with excellent cycle life, high charge/discharge efficiency, and low self-discharge rate. NASA Glenn Research Center's Electrochemistry Branch designed and produced five lithium-ion battery packs configured to power the liquid-air backpack (LAB) on spacesuit simulators. The demonstration batteries incorporated advanced, NASA-developed electrolytes with enhanced low-temperature performance characteristics. The objectives of this effort were to (1) demonstrate practical battery performance under field-test conditions and (2) supply laboratory performance data under controlled laboratory conditions. Advanced electrolyte development is being conducted under the Exploration Technology Development Program by the NASA Jet Propulsion Laboratory. Three field trials were successfully completed at Cinder Lake from September 10 to 12, 2007. Extravehicular activities of up to 1 hr and 50 min were supported, with residual battery capacity sufficient for 30 min of additional run time. Additional laboratory testing of batteries and cells is underway at Glenn s Electrochemical Branch.

  15. Simulation on the optimum thickness of Ni-63 for nuclear battery development

    International Nuclear Information System (INIS)

    Kang, S. K.; Kang, Y. R.; Lim, H. J.; Rhee, D. J.; Jeong, D. H.; Son, K. J.; Choi, B. G.

    2013-01-01

    A nuclear battery is an electrical device to obtain the electrical power using radiations from a radioisotope. The beta-ray emitting radioisotopes such as H-3, Ni-63, Pm-147, Tc-99 were used for producing the nuclear battery. Specifically, long half-life (>50 years) radioisotopes were preferred for developing a long-life battery. Recently, the nuclear battery is considered to be an alternate energy source. The efficiency of the output power of the nuclear battery can be improved by changing the fabrication process. Designing the shape of the radioisotope and the semiconductor structures, and determining the type of the elements in the battery in manufacturing process were required before the production of the nuclear battery. In this study, the flat Ni-63 sources with various thicknesses were simulated to maximize the efficiency of the transfer of the total energy of beta-rays into the electrical power. The minimum thicknesses of the silicon layer and the Ni-63 source in the nuclear battery for the optimized efficiency were determined to be 16 μm and 2.0 μm respectively. This simulation results would be applied to the development in the high efficiency nuclear battery. Further study to determine the geometry and the shape of the radioisotopes and the semiconductors for developing the more efficient nuclear battery would be desired

  16. Investigations of oxygen reduction reactions in non-aqueous electrolytes and the lithium-air battery

    Science.gov (United States)

    O'Laoire, Cormac Micheal

    Unlocking the true energy capabilities of the lithium metal negative electrode in a lithium battery has until now been limited by the low capacity intercalation and conversion reactions at the positive electrodes. This is overcome by removing these electrodes and allowing lithium to react directly with oxygen in the atmosphere forming the Li-air battery. Chapter 2 discusses the intimate role of electrolyte, in particular the role of ion conducting salts on the mechanism and kinetics of oxygen reduction in non-aqueous electrolytes designed for such applications and in determining the reversibility of the electrode reactions. Such fundamental understanding of this high energy density battery is crucial to harnessing its full energy potential. The kinetics and mechanisms of O2 reduction in solutions of hexafluorophosphate salts of the general formula X+ PF6-, where, X = tetra butyl ammonium (TBA), K, Na and Li, in acetonitrile have been studied on glassy carbon electrodes using cyclic voltammetry (CV) and rotating disk electrode (RDE) techniques. Our results show that cation choice strongly influences the reduction mechanism of O2. Electrochemical data supports the view that alkali metal oxides formed via electrochemical and chemical reactions passivate the electrode surface inhibiting the kinetics and reversibility of the processes. The O2 reduction mechanisms in the presence of the different cations have been supplemented by kinetic parameters determined from detailed analyses of the CV and RDE data. The organic solvent present in the Li+-conducting electrolyte has a major role on the reversibility of each of the O2 reduction products as found from the work discussed in the next chapter. A fundamental study of the influence of solvents on the oxygen reduction reaction (ORR) in a variety of non-aqueous electrolytes was conducted in chapter 4. In this work special attention was paid to elucidate the mechanism of the oxygen electrode processes in the rechargeable Li-air

  17. Air bio-battery with a gas/liquid porous diaphragm cell for medical and health care devices.

    Science.gov (United States)

    Arakawa, Takahiro; Xie, Rui; Seshima, Fumiya; Toma, Koji; Mitsubayashi, Kohji

    2018-04-30

    Powering future generations of medical and health care devices mandates the transcutaneous transfer of energy or harvesting energy from the human body fluid. Glucose-driven bio fuel cells (bio-batteries) demonstrate promise as they produce electrical energy from glucose, which is a substrate presents in physiological fluids. Enzymatic biofuel cells can convert chemical energy into electrical energy using enzymes as catalysts. In this study, an air bio-battery was developed for healthcare and medical applications, consisting of a glucose-driven enzymatic biofuel cell using a direct gas-permeable membrane or a gas/liquid porous diaphragm. The power generation characteristics included a maximum current density of 285μA/cm 2 and maximum power density of 70.7μW/cm 2 in the presence of 5mmol/L of glucose in solution. In addition, high-performance, long-term-stabilized power generation was achieved using the gas/liquid porous diaphragm for the reactions between oxygen and enzyme. This system can be powered using 5mmol/L of glucose, the value of which is similar to that of the blood sugar range in humans. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. New developments in battery technology

    Energy Technology Data Exchange (ETDEWEB)

    Gray, J

    1982-01-01

    Practical, high energy density alternatives to the lead-acid battery are considered for both vehicular and utility load-leveling use, in view of year 2000 potential markets. After demonstrating the high costs and low energy densities and life cycles of lead/acid, nickel/iron and nickel/zinc systems, as well as batteries using gaseous electrodes such as the nickel/hydrogen system employed by communication satellites and those taking advantage of light metals like lithium and sodium, a description is given of the design features and operational characteristics of the sodium/sulfur battery. Attention is given to both internal and external sodium volume battery configurations, both of which employ beta alumina as a solid electrolyte with high sodium ion conductivity, and molten sodium and sulfur at 350 C. It is the thermal insulation of the sodium/sulfur battery that makes its application to electric vehicles difficult, despite a very high energy density.

  19. Development of nickel/metal-hydride batteries for EVs and HEVs

    Science.gov (United States)

    Taniguchi, Akihiro; Fujioka, Noriyuki; Ikoma, Munehisa; Ohta, Akira

    This paper is to introduce the nickel/metal-hydride (Ni/MH) batteries for electric vehicles (EVs) and hybrid electric vehicles (HEVs) developed and mass-produced by our company. EV-95 for EVs enables a vehicle to drive approximately 200 km per charge. As the specific power is extremely high, more than 200 W/kg at 80% depth of discharge (DOD), the acceleration performance is equivalent to that of gasoline fuel automobiles. The life characteristic is also superior. This battery gives the satisfactory result of more than 1000 cycles in bench tests and approximately 4-year on-board driving. EV-28 developed for small EVs comprises of a compact and light battery module with high specific power of 300 W/kg at 80% DOD by introducing a new technology for internal cell connection. Meanwhile, our cylindrical battery for the HEV was adopted into the first generation Toyota Prius in 1997 which is the world's first mass-product HEV, and has a high specific power of 600 W/kg. Its life characteristic was found to be equivalent to more than 100,000 km driving. Furthermore, a new prismatic module in which six cells are connected internally was used for the second generation Prius in 2000. The prismatic battery comprises of a compact and light battery pack with a high specific power of 1000 W/kg, which is approximately 1.7 times that of conventional cylindrical batteries, as a consequence of the development of a new internal cell connection and a new current collection structure.

  20. Development of nickel hydrogen battery expert system

    Science.gov (United States)

    Shiva, Sajjan G.

    1990-01-01

    The Hubble Telescope Battery Testbed employs the nickel-cadmium battery expert system (NICBES-2) which supports the evaluation of performances of Hubble Telescope spacecraft batteries and provides alarm diagnosis and action advice. NICBES-2 also provides a reasoning system along with a battery domain knowledge base to achieve this battery health management function. An effort to modify NICBES-2 to accommodate nickel-hydrogen battery environment in testbed is described.

  1. Graphene-based battery electrodes having continuous flow paths

    Science.gov (United States)

    Zhang, Jiguang; Xiao, Jie; Liu, Jun; Xu, Wu; Li, Xiaolin; Wang, Deyu

    2014-05-24

    Some batteries can exhibit greatly improved performance by utilizing electrodes having randomly arranged graphene nanosheets forming a network of channels defining continuous flow paths through the electrode. The network of channels can provide a diffusion pathway for the liquid electrolyte and/or for reactant gases. Metal-air batteries can benefit from such electrodes. In particular Li-air batteries show extremely high capacities, wherein the network of channels allow oxygen to diffuse through the electrode and mesopores in the electrode can store discharge products.

  2. Development of an Experimental Testbed for Research in Lithium-Ion Battery Management Systems

    Directory of Open Access Journals (Sweden)

    Mehdi Ferdowsi

    2013-10-01

    Full Text Available Advanced electrochemical batteries are becoming an integral part of a wide range of applications from household and commercial to smart grid, transportation, and aerospace applications. Among different battery technologies, lithium-ion (Li-ion batteries are growing more and more popular due to their high energy density, high galvanic potential, low self-discharge, low weight, and the fact that they have almost no memory effect. However, one of the main obstacles facing the widespread commercialization of Li-ion batteries is the design of reliable battery management systems (BMSs. An efficient BMS ensures electrical safety during operation, while increasing battery lifetime, capacity and thermal stability. Despite the need for extensive research in this field, the majority of research conducted on Li-ion battery packs and BMS are proprietary works conducted by manufacturers. The available literature, however, provides either general descriptions or detailed analysis of individual components of the battery system, and ignores addressing details of the overall system development. This paper addresses the development of an experimental research testbed for studying Li-ion batteries and their BMS design. The testbed can be configured in a variety of cell and pack architectures, allowing for a wide range of BMS monitoring, diagnostics, and control technologies to be tested and analyzed. General considerations that should be taken into account while designing Li-ion battery systems are reviewed and different technologies and challenges commonly encountered in Li-ion battery systems are investigated. This testbed facilitates future development of more practical and improved BMS technologies with the aim of increasing the safety, reliability, and efficiency of existing Li-ion battery systems. Experimental results of initial tests performed on the system are used to demonstrate some of the capabilities of the developed research testbed. To the authors

  3. In Situ-Grown ZnCo2O4 on Single-Walled Carbon Nanotubes as Air Electrode Materials for Rechargeable Lithium–Oxygen Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bin; Xu, Wu; Yan, Pengfei; Bhattacharya, Priyanka; Cao, Ruiguo; Bowden, Mark E.; Engelhard, Mark H.; Wang, Chong M.; Zhang, Jiguang

    2015-10-12

    Although lithium-oxygen (Li-O2) batteries have great potential to be used as one of the next generation energy storage systems due to their ultrahigh theoretical specific energy, there are still many significant barriers before their practical applications. These barriers include electrolyte and electrode instability, poor ORR/OER efficiency and cycling capability, etc. Development of a highly efficient catalyst will not only enhance ORR/OER efficiency, it may also improve the stability of electrolyte because the reduced charge voltage. Here we report the synthesis of nano-sheet-assembled ZnCo2O4 spheres/single walled carbon nanotubes (ZCO/SWCNTs) composites as high performance air electrode materials for Li-O2 batteries. The ZCO catalyzed SWCNTs electrodes delivered high discharge capacities, decreased the onset of oxygen evolution reaction by 0.9 V during charge processes, and led to more stable cycling stability. These results indicate that ZCO/SWCNTs composite can be used as highly efficient air electrode for oxygen reduction and evolution reactions. The highly enhanced catalytic activity by uniformly dispersed ZnCo2O4 catalyst on nanostructured electrodes is expected to inspire

  4. Silver decorated LaMnO3 nanorod/graphene composite electrocatalysts as reversible metal-air battery electrodes

    Science.gov (United States)

    Hu, Jie; Liu, Qiunan; Shi, Lina; Shi, Ziwei; Huang, Hao

    2017-04-01

    Perovskite LaMnO3 nanorod/reduced graphene oxides (LMO-NR/RGO) decorated with Ag nanoparticles are studied as a bifunctional catalyst for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline electrolyte. LMO-NR/RGO composites are synthesized by using cetyltrimethyl ammonium bromide (CTAB) as template via a simple hydrothermal reaction followed by heat treatment; overlaying of Ag nanoparticles is obtained through a traditional silver mirror reaction. Electron microscopy reveals that LMO-NR is embedded between the sheets of RGO, and the material is homogeneously overlaid with Ag nanoparticles. The unique composite morphology of Ag/LMO-NR/RGO not only enhances the electron transport property by increasing conductivity but also facilitates the diffusion of electrolytes and oxygen. As confirmed by electrochemical testing, Ag/LMO-NR/RGO exhibits very strong synergy with Ag nanoparticles, LMO-NR, and RGO, and the catalytic activities of Ag/LMO-NR/RGO during ORR and OER are significantly improved. With the novel catalyst, the homemade zinc-air battery can be reversibly charged and discharged and display a stable cycle performance, indicating the great potential of this composite as an efficient bifunctional electrocatalyst for metal-air batteries.

  5. Micro-battery Development for Juvenile Salmon Acoustic Telemetry System Applications

    Science.gov (United States)

    Chen, Honghao; Cartmell, Samuel; Wang, Qiang; Lozano, Terence; Deng, Z. Daniel; Li, Huidong; Chen, Xilin; Yuan, Yong; Gross, Mark E.; Carlson, Thomas J.; Xiao, Jie

    2014-01-01

    The Endangered Species Act requires actions that improve the passage and survival rates for migrating salmonoids and other fish species that sustain injury and mortality when passing through hydroelectric dams. To develop a low-cost revolutionary acoustic transmitter that may be injected instead of surgically implanted into the fish, one major challenge that needs to be addressed is the micro-battery power source. This work focuses on the design and fabrication of micro-batteries for injectable fish tags. High pulse current and required service life have both been achieved as well as doubling the gravimetric energy density of the battery. The newly designed micro-batteries have intrinsically low impedance, leading to significantly improved electrochemical performances at low temperatures as compared with commercial SR416 batteries. Successful field trial by using the micro-battery powered transmitters injected into fish has been demonstrated, providing an exemplary model of transferring fundamental research into practical devices with controlled qualities.

  6. Theoretical Limiting Potentials in Mg/O2 Batteries

    DEFF Research Database (Denmark)

    Smith, Jeffrey G.; Naruse, Junichi; Hiramatsu, Hidehiko

    2016-01-01

    A rechargeable battery based on a multivalent Mg/O2 couple is an attractive chemistry due to its high theoretical energy density and potential for low cost. Nevertheless, metal-air batteries based on alkaline earth anodes have received limited attention and generally exhibit modest performance....... In addition, many fundamental aspects of this system remain poorly understood, such as the reaction mechanisms associated with discharge and charging. The present study aims to close this knowledge gap and thereby accelerate the development of Mg/O2 batteries by employing first-principles calculations...... by the presence of large thermodynamic overvoltages. In contrast, MgO2-based cells are predicted to be much more efficient: superoxide-terminated facets on MgO2 crystallites enable low overvoltages and round-trip efficiencies approaching 90%. These data suggest that the performance of Mg/O2 batteries can...

  7. Fundamental mechanisms in Li-air battery electrochemistry

    DEFF Research Database (Denmark)

    Højberg, Jonathan

    used to manage a full size electric vehicle battery. An automated differential electrochemical mass spectrometer (DEMS) was built to investigate the relationship between current and the consumption and release of gases, which is important to identify and quantify degradation reactions. The setup...... was primarily due to the formation of a mixed potential between competing oxidation reactions needed to maintain a constant current. The knowledge about impedance spectroscopy was used to propose and investigate a novel battery management tool to estimate the state of charge and the state of health of a Li-O2...

  8. Exploratory battery technology development and testing report for 1989

    Energy Technology Data Exchange (ETDEWEB)

    Magnani, N.J.; Diegle, R.B.; Braithwaite, J.W.; Bush, D.M.; Freese, J.M.; Akhil, A.A.; Lott, S.E.

    1990-12-01

    Sandia National Laboratories, Albuquerque, has been designated as Lead Center for the Exploratory Battery Technology Development and Testing Project, which is sponsored by the US Department of Energy's Office of Energy Storage and Distribution. In this capacity, Sandia is responsible for the engineering development of advanced rechargeable batteries for both mobile and stationary energy storage applications. This report details the technical achievements realized in pursuit of the Lead Center's goals during calendar year 1989. 4 refs., 84 figs., 18 tabs.

  9. The air quality and human health effects of integrating utility-scale batteries into the New York State electricity grid

    International Nuclear Information System (INIS)

    Gilmore, Elisabeth A.; Apt, Jay; Lave, Lester B.; Walawalkar, Rahul; Adams, Peter J.

    2010-01-01

    In a restructured electricity market, utility-scale energy storage technologies such as advanced batteries can generate revenue by charging at low electricity prices and discharging at high prices. This strategy changes the magnitude and distribution of air quality emissions and the total carbon dioxide (CO 2 ) emissions. We evaluate the social costs associated with these changes using a case study of 500 MW sodium-sulfur battery installations with 80% round-trip efficiency. The batteries displace peaking generators in New York City and charge using off-peak generation in the New York Independent System Operator (NYISO) electricity grid during the summer. We identify and map charging and displaced plant types to generators in the NYISO. We then convert the emissions into ambient concentrations with a chemical transport model, the Particulate Matter Comprehensive Air Quality Model with extensions (PMCAM x ). Finally, we transform the concentrations into their equivalent human health effects and social benefits and costs. Reductions in premature mortality from fine particulate matter (PM 2.5 ) result in a benefit of 4.5 cents kWh -1 and 17 cents kWh -1 from displacing a natural gas and distillate fuel oil fueled peaking plant, respectively, in New York City. Ozone (O 3 ) concentrations increase due to decreases in nitrogen oxide (NO x ) emissions, although the magnitude of the social cost is less certain. Adding the costs from charging, displacing a distillate fuel oil plant yields a net social benefit, while displacing the natural gas plant has a net social cost. With the existing base-load capacity, the upstate population experiences an increase in adverse health effects. If wind generation is charging the battery, both the upstate charging location and New York City benefit. At $20 per tonne of CO 2 , the costs from CO 2 are small compared to those from air quality. We conclude that storage could be added to existing electricity grids as part of an integrated

  10. The air quality and human health effects of integrating utility-scale batteries into the New York State electricity grid

    Science.gov (United States)

    Gilmore, Elisabeth A.; Apt, Jay; Walawalkar, Rahul; Adams, Peter J.; Lave, Lester B.

    In a restructured electricity market, utility-scale energy storage technologies such as advanced batteries can generate revenue by charging at low electricity prices and discharging at high prices. This strategy changes the magnitude and distribution of air quality emissions and the total carbon dioxide (CO 2) emissions. We evaluate the social costs associated with these changes using a case study of 500 MW sodium-sulfur battery installations with 80% round-trip efficiency. The batteries displace peaking generators in New York City and charge using off-peak generation in the New York Independent System Operator (NYISO) electricity grid during the summer. We identify and map charging and displaced plant types to generators in the NYISO. We then convert the emissions into ambient concentrations with a chemical transport model, the Particulate Matter Comprehensive Air Quality Model with extensions (PMCAM x). Finally, we transform the concentrations into their equivalent human health effects and social benefits and costs. Reductions in premature mortality from fine particulate matter (PM 2.5) result in a benefit of 4.5 ¢ kWh -1 and 17 ¢ kWh -1 from displacing a natural gas and distillate fuel oil fueled peaking plant, respectively, in New York City. Ozone (O 3) concentrations increase due to decreases in nitrogen oxide (NO x) emissions, although the magnitude of the social cost is less certain. Adding the costs from charging, displacing a distillate fuel oil plant yields a net social benefit, while displacing the natural gas plant has a net social cost. With the existing base-load capacity, the upstate population experiences an increase in adverse health effects. If wind generation is charging the battery, both the upstate charging location and New York City benefit. At 20 per tonne of CO 2, the costs from CO 2 are small compared to those from air quality. We conclude that storage could be added to existing electricity grids as part of an integrated strategy from a

  11. From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries

    Science.gov (United States)

    Hartmann, Pascal; Bender, Conrad L; Busche, Martin; Eufinger, Christine

    2015-01-01

    Summary Research devoted to room temperature lithium–sulfur (Li/S8) and lithium–oxygen (Li/O2) batteries has significantly increased over the past ten years. The race to develop such cell systems is mainly motivated by the very high theoretical energy density and the abundance of sulfur and oxygen. The cell chemistry, however, is complex, and progress toward practical device development remains hampered by some fundamental key issues, which are currently being tackled by numerous approaches. Quite surprisingly, not much is known about the analogous sodium-based battery systems, although the already commercialized, high-temperature Na/S8 and Na/NiCl2 batteries suggest that a rechargeable battery based on sodium is feasible on a large scale. Moreover, the natural abundance of sodium is an attractive benefit for the development of batteries based on low cost components. This review provides a summary of the state-of-the-art knowledge on lithium–sulfur and lithium–oxygen batteries and a direct comparison with the analogous sodium systems. The general properties, major benefits and challenges, recent strategies for performance improvements and general guidelines for further development are summarized and critically discussed. In general, the substitution of lithium for sodium has a strong impact on the overall properties of the cell reaction and differences in ion transport, phase stability, electrode potential, energy density, etc. can be thus expected. Whether these differences will benefit a more reversible cell chemistry is still an open question, but some of the first reports on room temperature Na/S8 and Na/O2 cells already show some exciting differences as compared to the established Li/S8 and Li/O2 systems. PMID:25977873

  12. From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries

    Directory of Open Access Journals (Sweden)

    Philipp Adelhelm

    2015-04-01

    Full Text Available Research devoted to room temperature lithium–sulfur (Li/S8 and lithium–oxygen (Li/O2 batteries has significantly increased over the past ten years. The race to develop such cell systems is mainly motivated by the very high theoretical energy density and the abundance of sulfur and oxygen. The cell chemistry, however, is complex, and progress toward practical device development remains hampered by some fundamental key issues, which are currently being tackled by numerous approaches. Quite surprisingly, not much is known about the analogous sodium-based battery systems, although the already commercialized, high-temperature Na/S8 and Na/NiCl2 batteries suggest that a rechargeable battery based on sodium is feasible on a large scale. Moreover, the natural abundance of sodium is an attractive benefit for the development of batteries based on low cost components. This review provides a summary of the state-of-the-art knowledge on lithium–sulfur and lithium–oxygen batteries and a direct comparison with the analogous sodium systems. The general properties, major benefits and challenges, recent strategies for performance improvements and general guidelines for further development are summarized and critically discussed. In general, the substitution of lithium for sodium has a strong impact on the overall properties of the cell reaction and differences in ion transport, phase stability, electrode potential, energy density, etc. can be thus expected. Whether these differences will benefit a more reversible cell chemistry is still an open question, but some of the first reports on room temperature Na/S8 and Na/O2 cells already show some exciting differences as compared to the established Li/S8 and Li/O2 systems.

  13. Co3O4/MnO2/Hierarchically Porous Carbon as Superior Bifunctional Electrodes for Liquid and All-Solid-State Rechargeable Zinc-Air Batteries.

    Science.gov (United States)

    Li, Xuemei; Dong, Fang; Xu, Nengneng; Zhang, Tao; Li, Kaixi; Qiao, Jinli

    2018-05-09

    The design of efficient, durable, and affordable catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is very indispensable in liquid-type and flexible all-solid-state zinc-air batteries. Herein, we present a high-performance bifunctional catalyst with cobalt and manganese oxides supported on porous carbon (Co 3 O 4 /MnO 2 /PQ-7). The optimized Co 3 O 4 /MnO 2 /PQ-7 exhibited a comparable ORR performance with commercial Pt/C and a more superior OER performance than all of the other prepared catalysts, including commercial Pt/C. When applied to practical aqueous (6.0 M KOH) zinc-air batteries, the Co 3 O 4 /MnO 2 /porous carbon hybrid catalysts exhibited exceptional performance, such as a maximum discharge peak power density as high as 257 mW cm -2 and the most stable charge-discharge durability over 50 h with negligible deactivation to date. More importantly, a series of flexible all-solid-state zinc-air batteries can be fabricated by the Co 3 O 4 /MnO 2 /porous carbon with a layer-by-layer method. The optimal catalyst (Co 3 O 4 /MnO 2 /PQ-7) exhibited an excellent peak power density of 45 mW cm -2 . The discharge potentials almost remained unchanged for 6 h at 5 mA cm -2 and possessed a long cycle life (2.5 h@5 mA cm -2 ). These results make the optimized Co 3 O 4 /MnO 2 /PQ-7 a promising cathode candidate for both liquid-type and flexible all-solid-state zinc-air batteries.

  14. Developments in lithium-ion battery technology in the Peoples Republic of China.

    Energy Technology Data Exchange (ETDEWEB)

    Patil, P. G.; Energy Systems

    2008-02-28

    Argonne National Laboratory prepared this report, under the sponsorship of the Office of Vehicle Technologies (OVT) of the U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy, for the Vehicles Technologies Team. The information in the report is based on the author's visit to Beijing; Tianjin; and Shanghai, China, to meet with representatives from several organizations (listed in Appendix A) developing and manufacturing lithium-ion battery technology for cell phones and electronics, electric bikes, and electric and hybrid vehicle applications. The purpose of the visit was to assess the status of lithium-ion battery technology in China and to determine if lithium-ion batteries produced in China are available for benchmarking in the United States. With benchmarking, DOE and the U.S. battery development industry would be able to understand the status of the battery technology, which would enable the industry to formulate a long-term research and development program. This report also describes the state of lithium-ion battery technology in the United States, provides information on joint ventures, and includes information on government incentives and policies in the Peoples Republic of China (PRC).

  15. Development and characterization of a high capacity lithium/thionyl chloride battery

    Science.gov (United States)

    Boyle, Gerald H.; Goebel, Franz

    A 30 V lithium/thionyl chloride battery with 320 Ah capacity capable of operating at currents of 14 to 75 A has been developed and tested over a temperature range from 15 to 71 °C. The 81 lb battery consists of nine series connected cylindrical cells in a three-by-three arrangement within an aluminum case. The cells are of a parallel disc electrode design with a total active surface area of 10 200 cm 2. Cells and batteries have each been tested for safety, performance and to a space environment. The battery has clearly performed in excess of the specification requirements. The cell design is very adaptable to many battery design requirements.

  16. Development and characterization of a high capacity lithium/thionyl chloride battery

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, G.H. [Yardney Technical Products, Inc., Pawcatuck, CT (United States); Goebel, F. [Yardney Technical Products, Inc., Pawcatuck, CT (United States)

    1995-04-01

    A 30 V lithium/thionyl chloride battery with 320 Ah capacity capable of operating at currents of 14 to 75 A has been developed and tested over a temperature range from 15 to 71 C. The 81 lb battery consists of nine series connected cylindrical cells in a three-by-three arrangement within an aluminum case. The cells are of a parallel disc electrode design with a total active surface area of 10 200 cm{sup 2}. Cells and batteries have each been tested for safety, performance and to a space environment. The battery has clearly performed in excess of the specification requirements. The cell design is very adaptable to many battery design requirements. (orig.)

  17. Batteries for electric and hybrid-electric vehicles.

    Science.gov (United States)

    Cairns, Elton J; Albertus, Paul

    2010-01-01

    Batteries have powered vehicles for more than a century, but recent advances, especially in lithium-ion (Li-ion) batteries, are bringing a new generation of electric-powered vehicles to the market. Key barriers to progress include system cost and lifetime, and derive from the difficulty of making a high-energy, high-power, and reversible electrochemical system. Indeed, although humans produce many mechanical and electrical systems, the number of reversible electrochemical systems is very limited. System costs may be brought down by using cathode materials less expensive than those presently employed (e.g., sulfur or air), but reversibility will remain a key challenge. Continued improvements in the ability to synthesize and characterize materials at desired length scales, as well as to use computations to predict new structures and their properties, are facilitating the development of a better understanding and improved systems. Battery research is a fascinating area for development as well as a key enabler for future technologies, including advanced transportation systems with minimal environmental impact.

  18. Battery and Fuel Cell Development for NASA's Constellation Missions

    Science.gov (United States)

    Manzo, Michelle A.

    2009-01-01

    NASA's return to the moon will require advanced battery, fuel cell and regenerative fuel cell energy storage systems. This paper will provide an overview of the planned energy storage systems for the Orion Spacecraft and the Aries rockets that will be used in the return journey to the Moon. Technology development goals and approaches to provide batteries and fuel cells for the Altair Lunar Lander, the new space suit under development for extravehicular activities (EY A) on the Lunar surface, and the Lunar Surface Systems operations will also be discussed.

  19. Battery and Fuel Cell Development for NASA's Exploration Missions

    Science.gov (United States)

    Manzo, Michelle A.; Reid, Concha M.

    2009-01-01

    NASA's return to the moon will require advanced battery, fuel cell and regenerative fuel cell energy storage systems. This paper will provide an overview of the planned energy storage systems for the Orion Spacecraft and the Aries rockets that will be used in the return journey to the Moon. Technology development goals and approaches to provide batteries and fuel cells for the Altair Lunar Lander, the new space suit under development for extravehicular activities (EVA) on the Lunar surface, and the Lunar Surface Systems operations will also be discussed.

  20. 40 CFR 63.303 - Standards for nonrecovery coke oven batteries.

    Science.gov (United States)

    2010-07-01

    ... batteries. 63.303 Section 63.303 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... National Emission Standards for Coke Oven Batteries § 63.303 Standards for nonrecovery coke oven batteries... existing nonrecovery coke oven battery that exceed any of the following emission limitations or...

  1. Development of nickel-hydrogen battery for electric vehicle; Denki jidoshayo nickel-suiso denchi no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Research and development of battery, a main part of electric vehicle, have been promoted. Various batteries, such as lead battery, nickel-cadmium battery, nickel-hydrogen battery, lithium ion battery and so on, have been investigated for electric vehicles. Among these, nickel-hydrogen battery is superior to the others from the points of energy density, lifetime, low-temperature properties, and safety. It is one of the most prospective batteries for electric vehicle. Research and development of the nickel-hydrogen battery with higher energy density and longer lifetime have been promoted for the practical application by Tohoku Electric Power Co., Inc. This article shows main performance of the developed nickel-hydrogen battery for electric vehicle. The nominal voltage is 12 V, the rated capacity is 125 Ah, the outside dimension is L302{times}W170{times}H245 mm, the weight is 25.5 kg, the energy density is 60 Wh/kg, the output density is 180 W/kg, and the available environment temperature is between -20 and 60 {degree}C. 1 fig., 1 tab.

  2. Corrosion in batteries and fuel-cell power sources

    International Nuclear Information System (INIS)

    Cieslak, W.R.

    1987-01-01

    Batteries and fuel cells, as electrochemical power sources, provide energy through controlled redox reactions. Because these devices contain electrochemically active components, they place metals in contact with environments in which the metals may corrode. The shelf lives of batteries, particularly those that operate at ambient temperatures depend on very slow rates of corrosion of the electrode materials at open circuit. The means of reducing this corrosion must also be evaluated for its influence on performance. A second major corrosion consideration in electrochemical power sources involves the hardware. Again, shelf lives and service lives depend on very good corrosion resistance of the containment materials and inactive components, such as separators. In those systems in which electrolyte purity is important, even small amounts of corrosion that have not lessened structural integrity can degrade performance. There is a wide variety of batteries and fuel cells, and new systems are constantly under development. Therefore, to illustrate the types of corrosion phenomena that occur, this article will discuss the following systems: lead-acid batteries, alkaline batteries (in terms of the sintered nickel electrode only), lithium ambient-temperature batteries, aluminum/air batteries, sodium/sulfur batteries, phosphoric acid (H/sub 3/PO/sub 4/) fuel cells, and molten carbonate fuel cells

  3. Tendencies of Development of Global Battery Market with Emphasis on Republic of Croatia

    Directory of Open Access Journals (Sweden)

    Ivan Miloloža

    2013-07-01

    Full Text Available Starter and traction batteries are build in vehicles with internal combustion engine or electric engine. Similar, stationary batteries supply power to communication or computer centres. The use of these products indicates the specific market for them, because the battery producer is not often in connection with the final consumer, almost always there is someone between them, connecting them. Thus, between the user and the battery manufacturer intermediate distributors, service installations in which this product are build in or vehicle producers (OEM – original equipment of the manufacturer, first installation of the starter battery.Battery production is a strategic industry branch, because starting a vehicle depends on the availability of fuel and the availability of the starter or traction batteries. This paper contains a review of the battery manufacturing industry, as a industry branch, on global and Croatian market.The development has been reviewed by the structure, but also by the sources of applied technologies, especially modern technologies. The paper has been focused mainly on the development of Croatian battery industry and its only representative, company Munja d.d. Zagreb. Beginnings of the Munja d.d. company are correlated with the beginnings of the automobile industry at all.Business activity of any company cannot be considered in isolation from the environment. Therefore, the business of the Munja d.d. company has been observed with regards to the technological development in the last century, but compared to other battery manufacturers, in the former two common states, and also compared with the world manufacturers.

  4. Quick charge battery

    Energy Technology Data Exchange (ETDEWEB)

    Parise, R.J.

    1998-07-01

    Electric and hybrid electric vehicles (EVs and HEVs) will become a significant reality in the near future of the automotive industry. Both types of vehicles will need a means to store energy on board. For the present, the method of choice would be lead-acid batteries, with the HEV having auxiliary power supplied by a small internal combustion engine. One of the main drawbacks to lead-acid batteries is internal heat generation as a natural consequence of the charging process as well as resistance losses. This limits the re-charging rate to the battery pack for an EV which has a range of about 80 miles. A quick turnaround on recharge is needed but not yet possible. One of the limiting factors is the heat buildup. For the HEV the auxiliary power unit provides a continuous charge to the battery pack. Therefore heat generation in the lead-acid battery is a constant problem that must be addressed. Presented here is a battery that is capable of quick charging, the Quick Charge Battery with Thermal Management. This is an electrochemical battery, typically a lead-acid battery, without the inherent thermal management problems that have been present in the past. The battery can be used in an all-electric vehicle, a hybrid-electric vehicle or an internal combustion engine vehicle, as well as in other applications that utilize secondary batteries. This is not restricted to only lead-acid batteries. The concept and technology are flexible enough to use in any secondary battery application where thermal management of the battery must be addressed, especially during charging. Any battery with temperature constraints can benefit from this advancement in the state of the art of battery manufacturing. This can also include nickel-cadmium, metal-air, nickel hydroxide, zinc-chloride or any other type of battery whose performance is affected by the temperature control of the interior as well as the exterior of the battery.

  5. NASA Glenn Research Center Electrochemistry Branch Battery and Fuel Cell Development Overview

    Science.gov (United States)

    Manzo, Michelle A.

    2011-01-01

    This presentation covers an overview of NASA Glenn s history and heritage in the development of electrochemical systems for aerospace applications. Current developments related to batteries and fuel cells are addressed. Specific areas of focus are Li-ion batteries and Polymer Electrolyte Membrane Fuel cells systems and their development for future Exploration missions.

  6. 78 FR 1119 - Hazardous Materials: Transportation of Lithium Batteries

    Science.gov (United States)

    2013-01-07

    ...: Transportation of Lithium Batteries AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT... lithium cells and batteries that have been adopted into the 2013-2014 International Civil Aviation... edition, when transporting batteries domestically by air. Incorporation by reference of the 2013-2014...

  7. Enhanced performance of Li-O2 battery based on CFx/C composites as cathode materials

    International Nuclear Information System (INIS)

    Wu, Chaolumen; Wang, Haibin; Liao, Chenbo; Yang, Jun; Li, Lei

    2015-01-01

    A hybrid air-electrode composed of a mixture of fluorinated carbon (CF x ) and Ketjen black (KB) active carbon composite materials was prepared to improve performance of Li-O 2 battery. In the hybrid air-electrodes, four kinds of CF x materials including fluorinated graphite, fluorinated carbon fiber, fluorinated coke and fluorinated black carbon were utilized as lithium insertion materials. The physical properties and morphologies of the KB and CF x carbon materials were characterized by Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Scanning electron microscopy (SEM) measurements. Compared with the conventional KB air-electrode, all the CF x /KB hybrid air-electrodes in Li-O 2 batteries showed higher specific discharge capacity, especially at high current density. Among these CF x /KB hybrid air-electrodes, the fluorinated graphite based electrode showed the best electrochemical performance in Li-O 2 battery due to its highest discharge capacity of the fluorinated graphite material in the Li/CF x primary battery, highest specific surface area, and highest total pore volume. The electrochemical performance of Li-O 2 and Li-air batteries using the hybrid air-electrodes with the different fluorinated graphite: KB weight ratio, including specific charge and discharge capacity, cycling stability and rate capability were systematically investigated. At a current density of 0.5 mA cm −2 , the fluorinated graphite based air-electrode delivered a high specific discharge capacity of 1138 mAh g −1 in Li-O 2 batteries, which was more than four times than that of the conventional KB air-electrode (265 mAh g −1 ) under same testing conditions. The battery assembled with the fluorinated graphite based air-electrode exhibited better cycling stability than that of the battery assembled with the conventional KB air-electrode.

  8. From battery modeling to battery management

    NARCIS (Netherlands)

    Notten, P.H.L.; Danilov, D.

    2011-01-01

    The principles of rechargeable battery operation form the basis of the electronic network models developed for Nickel-based aqueous battery systems, including Nickel Metal Hydride (NiMH), and non-aqueous battery systems, such as the well-known Li-ion. These electronic network models are based on

  9. 77 FR 21714 - Hazardous Materials: Transportation of Lithium Batteries

    Science.gov (United States)

    2012-04-11

    ...: Transportation of Lithium Batteries AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT... cells and batteries that have been adopted into the 2013-2014 International Civil Aviation Organization...) to address the air transportation risks posed by lithium cells and batteries. Some of the proposals...

  10. Developments of Electrolyte Systems for Lithium–Sulfur Batteries: A Review

    International Nuclear Information System (INIS)

    Li, Gaoran; Li, Zhoupeng; Zhang, Bin; Lin, Zhan

    2015-01-01

    With a theoretical specific energy five times higher than that of lithium–ion batteries (2,600 vs. ~500 Wh kg −1 ), lithium–sulfur (Li–S) batteries have been considered as one of the most promising energy storage systems for the electrification of vehicles. However, both the polysulfide shuttle effects of the sulfur cathode and dendrite formation of the lithium anode are still key limitations to practical use of traditional Li–S batteries. In this review, we focus on the recent developments in electrolyte systems. First, we start with a brief discussion on fundamentals of Li–S batteries and key challenges associated with traditional liquid cells. We then introduce the most recent progresses in liquid systems, including ether-based, carbonate-based, and ionic liquid-based electrolytes. And then we move on to the advances in solid systems, including polymer and non-polymer electrolytes. Finally, the opportunities and perspectives for future research in both the liquid and solid Li–S batteries are presented.

  11. Developments of Electrolyte Systems for Lithium–Sulfur Batteries: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gaoran; Li, Zhoupeng [College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang (China); Zhang, Bin [Anhui Academy for Environmental Science Research, Hefei, Anhui (China); Lin, Zhan, E-mail: zhanlin@zju.edu.cn [College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang (China)

    2015-02-11

    With a theoretical specific energy five times higher than that of lithium–ion batteries (2,600 vs. ~500 Wh kg{sup −1}), lithium–sulfur (Li–S) batteries have been considered as one of the most promising energy storage systems for the electrification of vehicles. However, both the polysulfide shuttle effects of the sulfur cathode and dendrite formation of the lithium anode are still key limitations to practical use of traditional Li–S batteries. In this review, we focus on the recent developments in electrolyte systems. First, we start with a brief discussion on fundamentals of Li–S batteries and key challenges associated with traditional liquid cells. We then introduce the most recent progresses in liquid systems, including ether-based, carbonate-based, and ionic liquid-based electrolytes. And then we move on to the advances in solid systems, including polymer and non-polymer electrolytes. Finally, the opportunities and perspectives for future research in both the liquid and solid Li–S batteries are presented.

  12. Developments of Electrolyte Systems for Lithium-Sulfur Batteries: A Review

    Directory of Open Access Journals (Sweden)

    Zhan eLin

    2015-02-01

    Full Text Available With a theoretical specific energy 5 times higher than that of lithium-ion (Li-ion batteries (2,600 vs. ~500 Wh kg-1, lithium-sulfur (Li-S batteries have been considered as one of the most promising energy storage systems for the electrification of vehicles. However, both the polysulfide shuttle effects of the sulfur cathode and dendrite formation of the lithium anode are still key limitations to practical use of traditional Li-S batteries. In this review, we focus on the recent developments in electrolyte systems. First we start with a brief discussion on fundamentals of Li-S batteries and key challenges associated with traditional liquid cells. We then introduce the most recent progresses in liquid systems, including ether-based, carbonate-based, and ionic liquid-based electrolytes. And then we move on to the advances in solid systems, including polymer and non-polymer electrolytes. Finally, the opportunities and perspectives for future research in both the liquid and solid Li-S batteries are presented.

  13. Development of a compound energy system for cold region houses using small-scale natural gas cogeneration and a gas hydrate battery

    International Nuclear Information System (INIS)

    Obara, Shin'ya; Kikuchi, Yoshinobu; Ishikawa, Kyosuke; Kawai, Masahito; Yoshiaki, Kashiwaya

    2015-01-01

    In this study, an independent energy system for houses in cold regions was developed using a small-scale natural gas CGS (cogeneration), air-source heat pump, heat storage tank, and GHB (gas hydrate battery). Heat sources for the GHB were the ambient air and geothermal resources of the cold region. The heat cycle of CO 2 hydrate as a source of energy was also experimentally investigated. To increase the formation speed of CO 2 hydrates, a ferrous oxide–graphite system catalyst was used. The ambient air of cold regions was used as a heat source for the formation process (electric charge) of the GHB, and the heat supplied by a geothermal heat exchanger was used for the dissociation process (electric discharge). Using a geothermal heat source, fuel consumption was halved because of an increased capacity for hydrate formation in the GHB, a shortening of the charging and discharging cycle, and a decrease in the freeze rate of hydrate formation space. Furthermore, when the GHB was introduced into a cold region house, the application rate of renewable energy was 47–71% in winter. The spread of the GHB can greatly reduce fossil fuel consumption and the associated greenhouse gases released from houses in cold regions. - Highlights: • Compound energy system for cold region houses by a gas hydrate battery was proposed. • Heat sources of a gas hydrate battery are exhaust heat of the CGS and geothermal. • Drastic reduction of the fossil fuel consumption in a cold region is realized

  14. Reducing dust emissions at OAO Alchevskkoks coke battery 10A

    Energy Technology Data Exchange (ETDEWEB)

    T.F. Trembach; E.N. Lanina [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

    2009-07-15

    Coke battery 10A with rammed batch is under construction at OAO Alchevskkoks. The design documentation developed by Giprokoks includes measures for reducing dust emissions to the atmosphere. Aspiration systems with dry dust trapping are employed in the new components of coke battery 10A and in the existing coke-sorting equipment. Two-stage purification of dusty air in cyclones and bag filters is employed for the coke-sorting equipment. This system considerably reduces coke-dust emissions to the atmosphere.

  15. Performance calculations for battery power supplies as laboratory research tools

    International Nuclear Information System (INIS)

    Scanlon, J.J.; Rolader, G.E.; Jamison, K.A.; Petresky, H.

    1991-01-01

    Electromagnetic Launcher (EML) research at the Air Force Armament Laboratory, Hypervelocity Launcher Branch (AFATL/SAH), Eglin AFB, has focused on developing the technologies required for repetitively launching several kilogram payloads to high velocities. Previous AFATL/SAH experiments have been limited by the available power supply resulting in small muzzle energies on the order of 100's of kJ. In an effort to advance the development of EML's, AFATL/SAH has designed and constructed a battery power supply (BPS) capable of providing several mega-Amperes of current for several seconds. This system consists of six modules each containing 2288 automotive batteries which may be connected in two different series - parallel arrangements. In this paper the authors define the electrical characteristics of the AFATL Battery Power supply at the component level

  16. Advanced secondary batteries: Their applications, technological status, market and opportunity

    Science.gov (United States)

    Yao, M.

    1989-03-01

    Program planning for advanced battery energy storage technology is supported within the NEMO Program. Specifically this study had focused on the review of advanced battery applications; the development and demonstration status of leading battery technologies; and potential marketing opportunity. Advanced secondary (or rechargeable) batteries have been under development for the past two decades in the U.S., Japan, and parts of Europe for potential applications in electric utilities and for electric vehicles. In the electric utility applications, the primary aim of a battery energy storage plant is to facilitate peak power load leveling and/or dynamic operations to minimize the overall power generation cost. In the application for peak power load leveling, the battery stores the off-peak base load energy and is discharged during the period of peak power demand. This allows a more efficient use of the base load generation capacity and reduces the need for conventional oil-fired or gas-fire peak power generation equipment. Batteries can facilitate dynamic operations because of their basic characteristics as an electrochemical device capable of instantaneous response to the changing load. Dynamic operating benefits results in cost savings of the overall power plant operation. Battery-powered electric vehicles facilitate conservation of petroleum fuel in the transportation sector, but more importantly, they reduce air pollution in the congested inner cities.

  17. Development of Gel Polymer Electrolytes Using Radiation for Lithium Secondary Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung Ki; Lee, Jun Young; Lee, Dong Jin [KAIST, Daejeon (Korea, Republic of)

    2010-05-15

    Recently, demands of high performance lithium battery are increased. Development of battery materials for high power, high capacity, high safety are also needed. This project deals with the new gel polymer electrolyte based on the microporous matrix with specific functions using radiation techniques.

  18. Research, development and demonstration of nickel-zinc batteries for electric vehicle propulsion

    Science.gov (United States)

    1980-06-01

    The feasibility of the nickel zinc battery for electric vehicle propulsion is discussed. The program is divided into seven distinct but highly interactive tasks collectively aimed at the development and commercialization of nickel zinc technology. These basic technical tasks are separator development, electrode development, product design and analysis, cell/module battery testing, process development, pilot manufacturing, and thermal manufacturing, and thermal management. Significant progress has been made in the understanding of separator failure mechanisms, and a generic category of materials has been specified for the 300+ deep discharge applications. Shape change has been reduced significantly. Progress in the area of thermal management was significant, with the development of a model that accurately represents heat generation and rejection rates during battery operation.

  19. Self-assembly formation of Bi-functional Co3O4/MnO2-CNTs hybrid catalysts for achieving both high energy/power density and cyclic ability of rechargeable zinc-air battery.

    Science.gov (United States)

    Xu, Nengneng; Liu, Yuyu; Zhang, Xia; Li, Xuemei; Li, Aijun; Qiao, Jinli; Zhang, Jiujun

    2016-09-20

    α-MnO2 nanotubes-supported Co3O4 (Co3O4/MnO2) and its carbon nanotubes (CNTs)-hybrids (Co3O4/MnO2-CNTs) have been successfully developed through a facile two-pot precipitation reaction and hydrothermal process, which exhibit the superior bi-functional catalytic activity for both ORR and OER. The high performance is believed to be induced by the hybrid effect among MnO2 nanotubes, hollow Co3O4 and CNTs, which can produce a synergetic enhancement. When integrated into the practical primary and electrochemically rechargeable Zn-air batteries, such a hybrid catalyst can give a discharge peak power density as high as 450 mW cm(-2). At 1.0 V of cell voltage, a current density of 324 mA cm(-2) is achieved. This performance is superior to all reported non-precious metal catalysts in literature for zinc-air batteries and significantly outperforms the state-of-the-art platinum-based catalyst. Particularly, the rechargeable Zn-air battery can be fabricated into all-solid-state one through a simple solid-state approach, which exhibits an excellent peak power density of 62 mW cm(-2), and the charge and discharge potentials remain virtually unchanged during the overall cycles, which is comparable to the one with liquid electrolyte.

  20. Trends in the development of radioisotope batteries

    International Nuclear Information System (INIS)

    Goeldner, R.; Leonhardt, J.W.; Radmaneche, R.; Schlegel, H.

    1978-01-01

    Improved methods for producing radioisotopes by nuclear fuel reprocessing and the rapid development of microelectronics offer new possibilities for utilizing radioisotope batteries. A review is given of the main principles of conversion of decay energy into electric power. The current state of such energy sources is evaluated. Finally, new fields of application and further trends in the development are indicated. (author)

  1. A review of thermal management and safety for lithium ion batteries

    DEFF Research Database (Denmark)

    Saeed Madani, Seyed; Swierczynski, Maciej Jozef; Kær, Søren Knudsen

    2017-01-01

    performance. Therefore,thermal management of batteries is essential for various purposes containing thermal runaway and longstanding of cell functioning period. The favorable outcome of electricdriven vehicles (EDVs) depends on the lithium-ion battery technology. Notwithstanding, the safety concern...... is a considerable technical problem and has become an important factor which might postpones subsequent extension of lithium-ion batteries. This paper reviews different methods for thermal management of lithium-ion batteries. Various methods such as using Phase change materials and using air cooling, straight......Decreasing of fossil fuel sources and ecological worries has spurred global attention in the expansion of developing energy storing systems for electric vehicles (EVs). As a consequence of escalating appeal on new dependable power supplier for hybrid electric vehicles, lithium-ion (Li...

  2. Computational Design and Characterization of New Battery Materials

    DEFF Research Database (Denmark)

    Mýrdal, Jón Steinar Garðarsson

    . It is hoped that high energy dense Li-air batteries will be able to replace Li-ion batteries in the future. There are however number of challenge that need to be solved before that can happen. We have studied the growth and decomposition of Li2O2, which is the main discharge product of Li-O2batteries......This thesis is dedicated to the investigation and design of new functional materials for energy storage. The focus of the presented work is on components for the successful Li-ion and the promising Li-air batteries. First principle density function theory calculations are applied to screening...... electrolytes are believed to increase safety in Li based batteries as they would prevent metallic growth in the electrolyte. LiBH4 has a solid superionic conducting HT phase that is stable above 390 K. The HT phase can be stabilized at room temperature with substitution of I into the LiBH4 structure. Here we...

  3. Progress in batteries and solar cells. Volume 5

    International Nuclear Information System (INIS)

    Shimotake, H.

    1984-01-01

    The 89 articles in this book are on research in batteries, solar cells and fuel cells. Topics include uses of batteries in electric powered vehicles, load management in power plants, batteries for miniature electronic devices, electrochemical processes, and various electrode and electrolyte materials, including organic compounds. Types of batteries discussed are lithium, lead-acid, manganese dioxide, Silver cells, Air cells, Nickel cells and solar cells. Problems of recharging and life cycle are also discussed

  4. Frontier battery development for hybrid vehicles

    OpenAIRE

    Lewis, Heather; Park, Haram; Paolini, Maion

    2012-01-01

    Abstract Background Interest in hybrid-electric vehicles (HEVs) has recently spiked, partly due to an increasingly negative view toward the U.S. foreign oil dependency and environmental concerns. Though HEVs are becoming more common, they have a significant price premium over gasoline-powered vehicles. One of the primary drivers of this “hybrid premium” is the cost of the vehicles’ batteries. This paper focuses on these batteries used in hybrid vehicles, examines the types of batteries used f...

  5. Prototype Pompa Air Portable Tenaga Surya

    OpenAIRE

    Taufik, Mohammad

    2016-01-01

    Makalah ini menyajikan purwarupa pompa air portable tenaga surya. Sistem pompa air portable terdiri atas pompa air, panel surya, solar charge controller, battery, solar frame, tiang, dan box. Sistem dapat dirangkai, sehingga bersifat portable. Pompa air portable ini berguna untuk kolam, irigasi, dan penyediaan air bersih. Hasil optimasi memberikan spesifikasi pompa air berdaya 50 Watt dan tegangan 12 VDC, solar panel berdaya 50 Wp, battery berkapasitas 50 Ah dan tegangan 12 VDC, da...

  6. In Situ Imaging the Oxygen Reduction Reactions of Solid State Na-O2 Batteries with CuO Nanowires as the Air Cathode.

    Science.gov (United States)

    Liu, Qiunan; Yang, Tingting; Du, Congcong; Tang, Yongfu; Sun, Yong; Jia, Peng; Chen, Jingzhao; Ye, Hongjun; Shen, Tongde; Peng, Qiuming; Zhang, Liqiang; Huang, Jianyu

    2018-05-14

    We report real time imaging of the oxygen reduction reactions (ORRs) in all solid state sodium oxygen batteries (SOBs) with CuO nanowires (NWs) as the air cathode in an aberration-corrected environmental transmission electron microscope under an oxygen environment. The ORR occurred in a distinct two-step reaction, namely, a first conversion reaction followed by a second multiple ORR. In the former, CuO was first converted to Cu 2 O and then to Cu; in the latter, NaO 2 formed first, followed by its disproportionation to Na 2 O 2 and O 2 . Concurrent with the two distinct electrochemical reactions, the CuO NWs experienced multiple consecutive large volume expansions. It is evident that the freshly formed ultrafine-grained Cu in the conversion reaction catalyzed the latter one-electron-transfer ORR, leading to the formation of NaO 2 . Remarkably, no carbonate formation was detected in the oxygen cathode after cycling due to the absence of carbon source in the whole battery setup. These results provide fundamental understanding into the oxygen chemistry in the carbonless air cathode in all solid state Na-O 2 batteries.

  7. Recent Development of Carbonaceous Materials for Lithium–Sulphur Batteries

    Directory of Open Access Journals (Sweden)

    Xingxing Gu

    2016-11-01

    Full Text Available The effects of climate change are just beginning to be felt, and as such, society must work towards strategies of reducing humanity’s impact on the environment. Due to the fact that energy production is one of the primary contributors to greenhouse gas emissions, it is obvious that more environmentally friendly sources of power are required. Technologies such as solar and wind power are constantly being improved through research; however, as these technologies are often sporadic in their power generation, efforts must be made to establish ways to store this sustainable energy when conditions for generation are not ideal. Battery storage is one possible supplement to these renewable energy technologies; however, as current Li-ion technology is reaching its theoretical capacity, new battery technology must be investigated. Lithium–sulphur (Li–S batteries are receiving much attention as a potential replacement for Li-ion batteries due to their superior capacity, and also their abundant and environmentally benign active materials. In the spirit of environmental harm minimization, efforts have been made to use sustainable carbonaceous materials for applications as carbon–sulphur (C–S composite cathodes, carbon interlayers, and carbon-modified separators. This work reports on the various applications of carbonaceous materials applied to Li–S batteries, and provides perspectives for the future development of Li–S batteries with the aim of preparing a high energy density, environmentally friendly, and sustainable sulphur-based cathode with long cycle life.

  8. 40 CFR 63.302 - Standards for by-product coke oven batteries.

    Science.gov (United States)

    2010-07-01

    ... batteries. 63.302 Section 63.302 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... National Emission Standards for Coke Oven Batteries § 63.302 Standards for by-product coke oven batteries... oven emissions from each affected existing by-product coke oven battery that exceed any of the...

  9. Frontier battery development for hybrid vehicles

    Directory of Open Access Journals (Sweden)

    Lewis Heather

    2012-04-01

    Full Text Available Abstract Background Interest in hybrid-electric vehicles (HEVs has recently spiked, partly due to an increasingly negative view toward the U.S. foreign oil dependency and environmental concerns. Though HEVs are becoming more common, they have a significant price premium over gasoline-powered vehicles. One of the primary drivers of this “hybrid premium” is the cost of the vehicles’ batteries. This paper focuses on these batteries used in hybrid vehicles, examines the types of batteries used for transportation applications and addresses some of the technological, environmental and political drivers in battery development and the deployment of HEVs. Methods This paper examines the claim, often voiced by HEV proponents, that by taking into account savings on gasoline and vehicle maintenance, hybrid cars are cheaper than traditional gasoline cars. This is done by a quantitative benefit-cost analysis, in addition to qualitative benefit-cost analysis from political, technological and environmental perspectives. Results The quantitative benefit-cost analysis shows that, taking account of all costs for the life of the vehicle, hybrid cars are in fact more expensive than gasoline-powered vehicles; however, after five years, HEVs will break even with gasoline cars. Conclusions Our results show that it is likely that after 5 years, using hybrid vehicles should be cheaper in effect and yield a positive net benefit to society. There are a number of externalities that could significantly impact the total social cost of the car. These externalities can be divided into four categories: environmental, industrial, R&D and political. Despite short-term implications and hurdles, increased HEV usage forecasts a generally favorable long-term net benefit to society. Most notably, increasing HEV usage could decrease greenhouse gas emissions, while also decreasing U.S. dependence on foreign oil.

  10. Frontier battery development for hybrid vehicles.

    Science.gov (United States)

    Lewis, Heather; Park, Haram; Paolini, Maion

    2012-04-23

    Interest in hybrid-electric vehicles (HEVs) has recently spiked, partly due to an increasingly negative view toward the U.S. foreign oil dependency and environmental concerns. Though HEVs are becoming more common, they have a significant price premium over gasoline-powered vehicles. One of the primary drivers of this "hybrid premium" is the cost of the vehicles' batteries. This paper focuses on these batteries used in hybrid vehicles, examines the types of batteries used for transportation applications and addresses some of the technological, environmental and political drivers in battery development and the deployment of HEVs. This paper examines the claim, often voiced by HEV proponents, that by taking into account savings on gasoline and vehicle maintenance, hybrid cars are cheaper than traditional gasoline cars. This is done by a quantitative benefit-cost analysis, in addition to qualitative benefit-cost analysis from political, technological and environmental perspectives. The quantitative benefit-cost analysis shows that, taking account of all costs for the life of the vehicle, hybrid cars are in fact more expensive than gasoline-powered vehicles; however, after five years, HEVs will break even with gasoline cars. Our results show that it is likely that after 5 years, using hybrid vehicles should be cheaper in effect and yield a positive net benefit to society. There are a number of externalities that could significantly impact the total social cost of the car. These externalities can be divided into four categories: environmental, industrial, R&D and political. Despite short-term implications and hurdles, increased HEV usage forecasts a generally favorable long-term net benefit to society. Most notably, increasing HEV usage could decrease greenhouse gas emissions, while also decreasing U.S. dependence on foreign oil.

  11. Frontier battery development for hybrid vehicles

    Science.gov (United States)

    2012-01-01

    Background Interest in hybrid-electric vehicles (HEVs) has recently spiked, partly due to an increasingly negative view toward the U.S. foreign oil dependency and environmental concerns. Though HEVs are becoming more common, they have a significant price premium over gasoline-powered vehicles. One of the primary drivers of this “hybrid premium” is the cost of the vehicles’ batteries. This paper focuses on these batteries used in hybrid vehicles, examines the types of batteries used for transportation applications and addresses some of the technological, environmental and political drivers in battery development and the deployment of HEVs. Methods This paper examines the claim, often voiced by HEV proponents, that by taking into account savings on gasoline and vehicle maintenance, hybrid cars are cheaper than traditional gasoline cars. This is done by a quantitative benefit-cost analysis, in addition to qualitative benefit-cost analysis from political, technological and environmental perspectives. Results The quantitative benefit-cost analysis shows that, taking account of all costs for the life of the vehicle, hybrid cars are in fact more expensive than gasoline-powered vehicles; however, after five years, HEVs will break even with gasoline cars. Conclusions Our results show that it is likely that after 5 years, using hybrid vehicles should be cheaper in effect and yield a positive net benefit to society. There are a number of externalities that could significantly impact the total social cost of the car. These externalities can be divided into four categories: environmental, industrial, R&D and political. Despite short-term implications and hurdles, increased HEV usage forecasts a generally favorable long-term net benefit to society. Most notably, increasing HEV usage could decrease greenhouse gas emissions, while also decreasing U.S. dependence on foreign oil. PMID:22540987

  12. Facile Synthesis of Defect-Rich and S/N Co-Doped Graphene-Like Carbon Nanosheets as an Efficient Electrocatalyst for Primary and All-Solid-State Zn-Air Batteries.

    Science.gov (United States)

    Zhang, Jian; Zhou, Huang; Zhu, Jiawei; Hu, Pei; Hang, Chao; Yang, Jinlong; Peng, Tao; Mu, Shichun; Huang, Yunhui

    2017-07-26

    Developing facile and low-cost porous graphene-based catalysts for highly efficient oxygen reduction reaction (ORR) remains an important matter for fuel cells. Here, a defect-enriched and dual heteroatom (S and N) doped hierarchically porous graphene-like carbon nanomaterial (D-S/N-GLC) was prepared by a simple and scalable strategy, and exhibits an outperformed ORR activity and stability as compared to commercial Pt/C catalyst in an alkaline condition (its half-wave potential is nearly 24 mV more positive than Pt/C). The excellent ORR performance of the catalyst can be attributed to the synergistic effect, which integrates the novel graphene-like architectures, 3D hierarchically porous structure, superhigh surface area, high content of active dopants, and abundant defective sites in D-S/N-GLC. As a result, the developed catalysts are used as the air electrode for primary and all-solid-state Zn-air batteries. The primary batteries demonstrate a higher peak power density of 252 mW cm -2 and high voltage of 1.32 and 1.24 V at discharge current densities of 5 and 20 mA cm -2 , respectively. Remarkably, the all-solid-state battery also exhibits a high peak power density of 81 mW cm -2 with good discharge performance. Moreover, such catalyst possesses a comparable ORR activity and higher stability than Pt/C in acidic condition. The present work not only provides a facile but cost-efficient strategy toward preparation of graphene-based materials, but also inspires an idea for promoting the electrocatalytic activity of carbon-based materials.

  13. Testing Conducted for Lithium-Ion Cell and Battery Verification

    Science.gov (United States)

    Reid, Concha M.; Miller, Thomas B.; Manzo, Michelle A.

    2004-01-01

    The NASA Glenn Research Center has been conducting in-house testing in support of NASA's Lithium-Ion Cell Verification Test Program, which is evaluating the performance of lithium-ion cells and batteries for NASA mission operations. The test program is supported by NASA's Office of Aerospace Technology under the NASA Aerospace Flight Battery Systems Program, which serves to bridge the gap between the development of technology advances and the realization of these advances into mission applications. During fiscal year 2003, much of the in-house testing effort focused on the evaluation of a flight battery originally intended for use on the Mars Surveyor Program 2001 Lander. Results of this testing will be compared with the results for similar batteries being tested at the Jet Propulsion Laboratory, the Air Force Research Laboratory, and the Naval Research Laboratory. Ultimately, this work will be used to validate lithium-ion battery technology for future space missions. The Mars Surveyor Program 2001 Lander battery was characterized at several different voltages and temperatures before life-cycle testing was begun. During characterization, the battery displayed excellent capacity and efficiency characteristics across a range of temperatures and charge/discharge conditions. Currently, the battery is undergoing lifecycle testing at 0 C and 40-percent depth of discharge under low-Earth-orbit (LEO) conditions.

  14. (La1-xSrx)0.98MnO3 perovskite with A-site deficiencies toward oxygen reduction reaction in aluminum-air batteries

    Science.gov (United States)

    Xue, Yejian; Miao, He; Sun, Shanshan; Wang, Qin; Li, Shihua; Liu, Zhaoping

    2017-02-01

    The strontium doped Mn-based perovskites have been proposed as one of the best oxygen reduction reaction catalysts (ORRCs) to substitute the noble metal. However, few studies have investigated the catalytic activities of LSM with the A-site deficiencies. Here, the (La1-xSrx)0.98MnO3 (LSM) perovskites with A-site deficiencies are prepared by a modified solid-liquid method. The structure, morphology, valence state and oxygen adsorption behaviors of these LSM samples are characterized, and their catalytic activities toward ORR are studied by the rotating ring-disk electrode (RRDE) and aluminum-air battery technologies. The results show that the appropriate doping with Sr and introducing A-site stoichiometry can effectively tailor the Mn valence and increase the oxygen adsorption capacity of LSM. Among all the LSM samples in this work, the (La0.7Sr0.3)0.98MnO3 perovskite composited with 50% carbon (50%LSM30) exhibits the best ORR catalytic activity due to the excellent oxygen adsorption capacity. Also, this catalyst has much higher durability than that of commercial 20%Pt/C. Moreover, the maximum power density of the aluminum-air battery using 50%LSM30 as the ORRC can reach 191.3 mW cm-2. Our work indicates that the LSM/C composite catalysts with A-site deficiencies can be used as a promising ORRC in the metal-air batteries.

  15. Advancing electric-vehicle development with pure-lead-tin battery technology

    Science.gov (United States)

    O'Brien, W. A.; Stickel, R. B.; May, G. J.

    Electric-vehicle (EV) development continues to make solid progress towards extending vehicle range, reliability and ease of use, aided significantly by technological advances in vehicle systems. There is, however, a widespread misconception that current battery technologies are not capable of meeting even the minimum user requirements that would launch EVs into daily use. Existing pure-lead-tin technology is moving EVs out of research laboratories and onto the streets, in daily side-by-side operation with vehicles powered by conventional gasoline and alternative fuels. This commercially available battery technology can provide traffic-compatible performance in a reliable and affordable manner, and can be used for either pure EVs or hybrid electric vehicles (HEVs). Independent results obtained when applying lead-tin batteries in highly abusive conditions, both electrically and environmentally, are presented. The test fleet of EVs is owned and operated by Arizona Public Service (APS), an electric utility in Phoenix, AZ, USA. System, charger and battery development will be described. This gives a single charge range of up to 184 km at a constant speed of 72 km h -1, and with suitable opportunity charging, a 320 km range in a normal 8 h working day.

  16. The mission and status of the U.S. Department of Energy's battery energy storage program

    Science.gov (United States)

    Quinn, J. E.; Landgrebe, A. R.; Hurwitch, J. W.; Hauser, S. G.

    1985-12-01

    Attention is given to the U.S. Department of Energy's battery energy storage program history, assessing the importance it has had in the national interest to date in industrial, vehicular, and electric utility load leveling applications. The development status of battery technology is also evaluated for the cases of sodium-sulfur, zinc-bromine, zinc-ferricyanide, nickel-hydrogen, aluminum-air, lithium-metal disulfide, and fuel cell systems. Development trends are projected into the foreseeable future.

  17. Nickel-hydrogen battery; Nikkeru/suiso batteri

    Energy Technology Data Exchange (ETDEWEB)

    Kuwajima, S. [National Space Development Agency, Tokyo (Japan)

    1996-07-01

    In artificial satellites, electric power is supplied from batteries loaded on them, when sun light can not be rayed on the event of equinoxes. Thus, research and development was started as early as 1970s for light and long-life batteries. Nickel-hydrogen batteries have been used on practical satellites since middle of 1980s. Whereas the cathode reaction of this battery is the same as that of a conventional nickel-cadmium battery, the anode reaction is different in that it involves decomposition and formation of water, generating hydrogen and consuming it. Hydrogen is stored in a state of pressurized gas within the battery vessel. The shape of this vessel is of a bomb, whose size for the one with capacity of 35 Ah is 8cm in diameter and 18cm in length. On a satellite, this one is assembled into a set of 16 ones. National Space Development Agency of Japan has been conducting the evaluation test for nickel-hydrogen batteries in a long term range. It was made clear that the life-determinant factor is related to the inner electrode, not to the vessel. Performance data on long-term endurance of materials to be used have been accumulated also in the agency. 2 figs.

  18. Development of prismatic sealed nickel-cadmium battery, 2000PF

    Energy Technology Data Exchange (ETDEWEB)

    Arahi,; Kazuo,; Yoshimura, Hideaki; Takeshima, Kenji; Kawamura, Chiaki

    1988-10-21

    Though, as for the sealed Ni-Cd battery, that of cylindrical form has been majorly used, that of prismatic form is heightened in needs, with the portable electronic appliances made smaller and thinner, for which needs a new type battery 2000 PF, by new production process technology and components, was developed. As compared with the past cylindrical sealed Ni-Ca batter, generally less than 100Wh/l in energy density, the new one is higher and 133Wh/l in it, with the achievement of a 17 to 34% lightening in weight. That heightening in energy density was realized by the optimized design of lamination structure, availing of the advantage not to necessitate the electrode to be wound in a spiral form, as necessary in the cylindrical battery. While as the sealing by caulking can not be adopted like the cylindrical battery, a precise welding technique by laser was established. The assembly line is of an almost unmanned on-line computer control system. The charge and discharge characteristics, etc. were indicated in detail. 11 figures, 1 table.

  19. Nuclear battery materials and application of nuclear batteries

    International Nuclear Information System (INIS)

    Hao Shaochang; Lu Zhenming; Fu Xiaoming; Liang Tongxiang

    2006-01-01

    Nuclear battery has lots of advantages such as small volume, longevity, environal stability and so on, therefore, it was widely used in aerospace, deep-sea, polar region, heart pacemaker, micro-electromotor and other fields etc. The application of nuclear battery and the development of its materials promote each other. In this paper the development and the latest research progress of nuclear battery materials has been introduced from the view of radioisotope, electric energy conversion and encapsulation. And the current and potential applications of the nuclear battery are also summarized. (authors)

  20. Progress and challenges in bipolar lead-acid battery development

    Science.gov (United States)

    Bullock, Kathryn R.

    1995-05-01

    Bipolar lead-acid batteries have higher power densities than any other aqueous battery system. Predicted specific powers based on models and prototypes range from 800 kW/kg for 100 ms discharge times to 1.6 kW/kg for 10 s. A 48 V automotive bipolar battery could have 2 1/2 times the cold cranking rate of a monopolar 12 V design in the same size. Problems which have precluded the development of commercial bipolar designs include the instability of substrate materials and enhanced side reactions. Design approaches include pseudo-bipolar configurations, as well as true bipolar designs in planar and tubular configurations. Substrate materials used include lead and lead alloys, carbons, conductive ceramics, and tin-oxide-coated glass fibers. These approaches are reviewed and evaluated.

  1. Battery Modeling

    NARCIS (Netherlands)

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.

    2008-01-01

    The use of mobile devices is often limited by the capacity of the employed batteries. The battery lifetime determines how long one can use a device. Battery modeling can help to predict, and possibly extend this lifetime. Many different battery models have been developed over the years. However,

  2. Rechargeable Aluminum-Ion Batteries Based on an Open-Tunnel Framework.

    Science.gov (United States)

    Kaveevivitchai, Watchareeya; Huq, Ashfia; Wang, Shaofei; Park, Min Je; Manthiram, Arumugam

    2017-09-01

    Rechargeable batteries based on an abundant metal such as aluminum with a three-electron transfer per atom are promising for large-scale electrochemical energy storage. Aluminum can be handled in air, thus offering superior safety, easy fabrication, and low cost. However, the development of Al-ion batteries has been challenging due to the difficulties in identifying suitable cathode materials. This study presents the use of a highly open framework Mo 2.5 +  y VO 9 +  z as a cathode for Al-ion batteries. The open-tunnel oxide allows a facile diffusion of the guest species and provides sufficient redox centers to help redistribute the charge within the local host lattice during the multivalent-ion insertion, thus leading to good rate capability with a specific capacity among the highest reported in the literature for Al-based batteries. This study also presents the use of Mo 2.5 +  y VO 9 +  z as a model host to develop a novel ultrafast technique for chemical insertion of Al ions into host structures. The microwave-assisted method employing diethylene glycol and aluminum diacetate (Al(OH)(C 2 H 3 O 2 ) 2 ) can be performed in air in as little as 30 min, which is far superior to the traditional chemical insertion techniques involving moisture-sensitive organometallic reagents. The Al-inserted Al x Mo 2.5 +  y VO 9 +  z obtained by the microwave-assisted chemical insertion can be used in Al-based rechargeable batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Development of Zinc/Bromine Batteries for Load-Leveling Applications: Phase 2 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    CLARK,NANCY H.; EIDLER,PHILLIP

    1999-10-01

    This report documents Phase 2 of a project to design, develop, and test a zinc/bromine battery technology for use in utility energy storage applications. The project was co-funded by the U.S. Department of Energy Office of Power Technologies through Sandia National Laboratories. The viability of the zinc/bromine technology was demonstrated in Phase 1. In Phase 2, the technology developed during Phase 1 was scaled up to a size appropriate for the application. Batteries were increased in size from 8-cell, 1170-cm{sup 2} cell stacks (Phase 1) to 8- and then 60-cell, 2500-cm{sup 2} cell stacks in this phase. The 2500-cm{sup 2} series battery stacks were developed as the building block for large utility battery systems. Core technology research on electrolyte and separator materials and on manufacturing techniques, which began in Phase 1, continued to be investigated during Phase 2. Finally, the end product of this project was a 100-kWh prototype battery system to be installed and tested at an electric utility.

  4. Preparation and Characterization of Cathode Materials for Lithium-Oxygen Batteries

    DEFF Research Database (Denmark)

    Storm, Mie Møller

    A possible future battery type is the Li-air battery which theoretically has the potential of reaching gravimetric energy densities close to those of gasoline. The Li-airbattery is discharged by the reaction of Li-ions and oxygen, drawn from the air, reacting at the battery cathode to form Li2O2....... The type of cathode material affects the battery discharge capacity and charging potential and with a carbon based cathode many questions are still unanswered. The focus of this Ph.D. project has been the synthesis of reduced graphene oxide as well as the investigation of the effect of reduced graphene...... the discharge capacity of the battery as well as the charging potential. In situ X-ray diffraction studies on carbon black cathodes in a capillary battery showed the formation of crystalline Li2O2 on the first discharge cycle, the intensity of Li2O2 on the second discharge cycle was however diminished...

  5. Experimental and numerical investigation on thermal management of an outdoor battery cabinet

    International Nuclear Information System (INIS)

    Meng, X.Z.; Lu, Z.; Jin, L.W.; Zhang, L.Y.; Hu, W.Y.; Wei, L.C.; Chai, J.C.

    2015-01-01

    Many forms of electronic equipment such as battery packs and telecom equipment must be stored in harsh outdoor environment. It is essential that these facilities be protected from a wide range of ambient temperatures and solar radiation. Temperature extremes greatly reduce lead-acid based battery performance and shorten battery life. Therefore, it is important to maintain the cabinet temperature within the optimal values between 20 °C and 30 °C to ensure battery stability and to extend battery lifespan. To this end, cabinet enclosures with proper thermal management have been developed to house such electronic equipment in a highly weather tight manner, especially for battery cabinet. In this paper, the flow field and temperature distribution inside an outdoor cabinet are studied experimentally and numerically. The battery cabinets house 24 batteries in two configurations namely, two-layer configuration and six-layer configuration respectively. The cabinet walls are maintained at a constant temperature by a refrigeration system. The cabinet's ability to protect the batteries from an ambient temperature as high as 50 °C is studied. An experimental facility is developed to measure the battery surface temperatures and to validate the numerical simulations. The differences between the experimental and computational fluid dynamic (CFD) results are within 5%. - Highlights: • Battery placement has significant effect on temperature field in battery cabinet. • The six-layer configuration achieves better temperature uniformity. • Internal air circulation depends on battery configuration. • Natural convection could be an effective solution satisfying safety concerns.

  6. Data-driven battery product development: Turn battery performance into a competitive advantage.

    Energy Technology Data Exchange (ETDEWEB)

    Sholklapper, Tal [Voltaiq, Inc.

    2016-04-19

    Poor battery performance is a primary source of user dissatisfaction across a broad range of applications, and is a key bottleneck hindering the growth of mobile technology, wearables, electric vehicles, and grid energy storage. Engineering battery systems is difficult, requiring extensive testing for vendor selection, BMS programming, and application-specific lifetime testing. This work also generates huge quantities of data. This presentation will explain how to leverage this data to help ship quality products faster using fewer resources while ensuring safety and reliability in the field, ultimately turning battery performance into a competitive advantage.

  7. Further development of pyrometallurgical IME recycling process for Li-ion batteries from electric vehicles

    International Nuclear Information System (INIS)

    Vest, Matthias

    2016-01-01

    Li-ion batteries are increasingly used in hybrid electric vehicles (HEV), electric vehicles (EV) and stationary storage applications. Those applications are significantly different in terms of storage capacity, life cycles and charging times from consumer type batteries such as mobile phones and handheld tools. Naturally, those HEV and EV Li-ion batteries also differ significantly in chemical composition and size. Coherently, a recycling concept has been developed for HEV, EV and stationary storage Li-ion batteries. This concept is based on the existing IME-ACCUREC recycling process for consumer type batteries. This work describes the whole process development including slag design, test series in a lab-scale electric arc furnace and a 1 t scale trial in a top blown rotary converter.

  8. Stand Alone Battery Thermal Management System

    Energy Technology Data Exchange (ETDEWEB)

    Brodie, Brad [Denso International America, Incorporated, Southfield, MI (United States)

    2015-09-30

    The objective of this project is research, development and demonstration of innovative thermal management concepts that reduce the cell or battery weight, complexity (component count) and/or cost by at least 20%. The project addresses two issues that are common problems with current state of the art lithium ion battery packs used in vehicles; low power at cold temperatures and reduced battery life when exposed to high temperatures. Typically, battery packs are “oversized” to satisfy the two issues mentioned above. The first phase of the project was spent making a battery pack simulation model using AMEsim software. The battery pack used as a benchmark was from the Fiat 500EV. FCA and NREL provided vehicle data and cell data that allowed an accurate model to be created that matched the electrical and thermal characteristics of the actual battery pack. The second phase involved using the battery model from the first phase and evaluate different thermal management concepts. In the end, a gas injection heat pump system was chosen as the dedicated thermal system to both heat and cool the battery pack. Based on the simulation model. The heat pump system could use 50% less energy to heat the battery pack in -20°C ambient conditions, and by keeping the battery cooler at hot climates, the battery pack size could be reduced by 5% and still meet the warranty requirements. During the final phase, the actual battery pack and heat pump system were installed in a test bench at DENSO to validate the simulation results. Also during this phase, the system was moved to NREL where testing was also done to validate the results. In conclusion, the heat pump system can improve “fuel economy” (for electric vehicle) by 12% average in cold climates. Also, the battery pack size, or capacity, could be reduced 5%, or if pack size is kept constant, the pack life could be increased by two years. Finally, the total battery pack and thermal system cost could be reduced 5% only if the

  9. The development of hydrogen storage electrode alloys for nickel hydride batteries

    Science.gov (United States)

    Hong, Kuochih

    The development of hydrogen storage electrode alloys in the 1980s resulted in the birth and growth of the rechargeable nickel hydride (Ni/MH) battery. In this paper we describe briefly a semi-empirical electrochemical/thermodynamic approach to develop/screen a hydrogen storage alloy for electrochemical application. More specifically we will discuss the AB x Ti/Zr-based alloys. Finally, the current state of the Ni/MH batteries including commercial manufacture processes, cell performance and applications is given.

  10. Bipolar nickel-hydrogen battery development

    Science.gov (United States)

    Koehler, C. W.; Applewhite, A. Z.; Hall, A. M.; Russell, P. G.

    1985-01-01

    A comparison of the bipolar Ni-H2 battery with other energy systems to be used in future high-power space systems is presented. The initial design for the battery under the NASA-sponsored program is described and the candidate stack components are evaluated, including electrodes, separator, electrolyte reservoir plate, and recombination sites. The compressibility of the cell elements, electrolyte activation, and thermal design are discussed. Manufacturing and prototype test results are summarized.

  11. Numerical investigation of thermal behaviors in lithium-ion battery stack discharge

    International Nuclear Information System (INIS)

    Liu, Rui; Chen, Jixin; Xun, Jingzhi; Jiao, Kui; Du, Qing

    2014-01-01

    Highlights: • The thermal behaviors of a Li-ion battery stack have been investigated by modeling. • Parametric studies have been performed focusing on three different cooling materials. • Effects of discharge rate, ambient temperature and Reynolds number are examined. • General guidelines are proposed for the thermal management of a Li-ion battery stack. - Abstract: Thermal management is critically important to maintain the performance and prolong the lifetime of a lithium-ion (Li-ion) battery. In this paper, a two-dimensional and transient model has been developed for the thermal management of a 20-flat-plate-battery stack, followed by comprehensive numerical simulations to study the influences of ambient temperature, Reynolds number, and discharge rate on the temperature distribution in the stack with different cooling materials. The simulation results indicate that liquid cooling is generally more effective in reducing temperature compared to phase-change material, while the latter can lead to more homogeneous temperature distribution. Fast and deep discharge should be avoided, which generally yields high temperature beyond the acceptable range regardless of cooling materials. At low or even subzero ambient temperatures, air cooling is preferred over liquid cooling because heat needs to be retained rather than removed. Such difference becomes small when the ambient temperature increases to a mild level. The effects of Reynolds number are apparent in liquid cooling but negligible in air cooling. Choosing appropriate cooling material and strategy is particularly important in low ambient temperature and fast discharge cases. These findings improve the understanding of battery stack thermal behaviors and provide the general guidelines for thermal management system. The present model can also be used in developing control system to optimize battery stack thermal behaviors

  12. High throughput materials research and development for lithium ion batteries

    Directory of Open Access Journals (Sweden)

    Parker Liu

    2017-09-01

    Full Text Available Development of next generation batteries requires a breakthrough in materials. Traditional one-by-one method, which is suitable for synthesizing large number of sing-composition material, is time-consuming and costly. High throughput and combinatorial experimentation, is an effective method to synthesize and characterize huge amount of materials over a broader compositional region in a short time, which enables to greatly speed up the discovery and optimization of materials with lower cost. In this work, high throughput and combinatorial materials synthesis technologies for lithium ion battery research are discussed, and our efforts on developing such instrumentations are introduced.

  13. Preliminary energy use and economic analysis of the aluminum-air battery for automotive propulsion

    Science.gov (United States)

    Hudson, C. L.; Putnam, E. S.

    1980-04-01

    Cost and energy parameters were analyzed based on existing technology and resource pricing structures. The results of these status quo assessments were critiqued in the light of potential changes in technology and resource prices. Estimates of the operating characteristics of the vehicle were made on the basis of laboratory test results, performance simulation model test results, and hypotheses on the refueling infrastructural scenario. If the amount of energy currently used to produce aluminum remains the same, the energy efficiency of the aluminum air battery vehicle in 2000 was estimated to be less than the energy efficiency of future vehicles operating on coal-derived methanol or gasoline.

  14. Electrochemical performance of CuNCN for sodium ion batteries and comparison with ZnNCN and lithium ion batteries

    Science.gov (United States)

    Eguia-Barrio, A.; Castillo-Martínez, E.; Klein, F.; Pinedo, R.; Lezama, L.; Janek, J.; Adelhelm, P.; Rojo, T.

    2017-11-01

    Transition metal carbodiimides (TMNCN) undergo conversion reactions during electrochemical cycling in lithium and sodium ion batteries. Micron sized copper and zinc carbodiimide powders have been prepared as single phase as confirmed by PXRD and IR and their thermal stability has been studied in air and nitrogen atmosphere. CuNCN decomposes at ∼250 °C into CuO or Cu while ZnNCN can be stable until 400 °C and 800 °C in air and nitrogen respectively. Both carbodiimides were electrochemically analysed for sodium and lithium ion batteries. The electrochemical Na+ insertion in CuNCN exhibits a relatively high reversible capacity (300 mAh·g-1) which still indicates an incomplete conversion reaction. This incomplete reaction confirmed by ex-situ EPR analysis, is partly due to kinetic limitations as evidenced in the rate capability experiments and in the constant potential measurements. On the other hand, ZnNCN shows incomplete conversion reaction but with good capacity retention and lower hysteresis as negative electrode for sodium ion batteries. The electrochemical performance of these materials is comparable to that of other materials which operate through displacement reactions and is surprisingly better in sodium ion batteries in comparison with lithium ion batteries.

  15. Regulatory trends in the battery industry

    International Nuclear Information System (INIS)

    McColl, K.G.

    1994-01-01

    The scope of regulations in the battery industry is extensive and also complex. In the future, regulations will become more demanding and will encompass issues not currently considered. Increased focus on environmental issues by government bodies, environmental groups, local communities will result in more strict compliance standards. The USA is currently leading the world's battery industries in the scope and compliance level of regulations. By studying trends in the USA, the rest of the battery industry can prepare itself for the future operating environment. This paper reviews the most critical areas of air pollution, blood-lead levels and recycling. The paper concludes that the battery industry must adopt a culture of exceeding current compliance standards. (orig.)

  16. Development and Testing of an UltraBattery-Equipped Honda Civic Hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Sally (Xiaolei) Sun; Tyler Gray; Pattie Hovorka; Jeffrey Wishart; Donald Karner; James Francfort

    2012-08-01

    The UltraBattery Retrofit Project DP1.8 and Carbon Enriched Project C3, performed by ECOtality North America (ECOtality) and funded by the U.S. Department of Energy and the Advanced Lead Acid Battery Consortium (ALABC), are established to demonstrate the suitability of advanced lead battery technology in hybrid electrical vehicles (HEVs). A profile, termed the “Simulated Honda Civic HEV Profile” (SHCHEVP) has been developed in Project DP1.8 in order to provide reproducible laboratory evaluations of different battery types under real-world HEV conditions. The cycle is based on the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles and simulates operation of a battery pack in a Honda Civic HEV. One pass through the SHCHEVP takes 2,140 seconds and simulates 17.7 miles of driving. A complete nickel metal hydride (NiMH) battery pack was removed from a Honda Civic HEV and operated under SHCHEVP to validate the profile. The voltage behavior and energy balance of the battery during this operation was virtually the same as that displayed by the battery when in the Honda Civic operating on the dynamometer under the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles, thus confirming the efficacy of the simulated profile. An important objective of the project has been to benchmark the performance of the UltraBatteries manufactured by both Furukawa Battery Co., Ltd., Japan (Furakawa) and East Penn Manufacturing Co., Inc. (East Penn). Accordingly, UltraBattery packs from both Furakawa and East Penn have been characterized under a range of conditions. Resistance measurements and capacity tests at various rates show that both battery types are very similar in performance. Both technologies, as well as a standard lead-acid module (included for baseline data), were evaluated under a simple HEV screening test. Both Furakawa and East Penn UltraBattery packs operated for over 32,000 HEV cycles, with minimal loss in performance; whereas the

  17. 76 FR 3118 - Notice of Availability of Advanced Battery Technology Related Patents for Exclusive, Partially...

    Science.gov (United States)

    2011-01-19

    ... Electrolytes for Lithium/Air Batteries (US 7,585,579). 2. ARL 02-06--Solvent Systems Comprising a Mixture of..., Less Expensive Lithium Ion Batteries (US 7,629,080). 6. ARL 05-18--High Capacity Metal/Air Battery... Salt & Purification Process. Filed with USPTO on 10/27/10 (S/N 61/407,153). 12. ARL 09-41--Longer...

  18. Two-Dimensional Metal Oxide Nanomaterials for Next-Generation Rechargeable Batteries.

    Science.gov (United States)

    Mei, Jun; Liao, Ting; Kou, Liangzhi; Sun, Ziqi

    2017-12-01

    The exponential increase in research focused on two-dimensional (2D) metal oxides has offered an unprecedented opportunity for their use in energy conversion and storage devices, especially for promising next-generation rechargeable batteries, such as lithium-ion batteries (LIBs) and sodium-ion batteries (NIBs), as well as some post-lithium batteries, including lithium-sulfur batteries, lithium-air batteries, etc. The introduction of well-designed 2D metal oxide nanomaterials into next-generation rechargeable batteries has significantly enhanced the performance of these energy-storage devices by providing higher chemically active interfaces, shortened ion-diffusion lengths, and improved in-plane carrier-/charge-transport kinetics, which have greatly promoted the development of nanotechnology and the practical application of rechargeable batteries. Here, the recent progress in the application of 2D metal oxide nanomaterials in a series of rechargeable LIBs, NIBs, and other post lithium-ion batteries is reviewed relatively comprehensively. Current opportunities and future challenges for the application of 2D nanomaterials in energy-storage devices to achieve high energy density, high power density, stable cyclability, etc. are summarized and outlined. It is believed that the integration of 2D metal oxide nanomaterials in these clean energy devices offers great opportunities to address challenges driven by increasing global energy demands. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The potential for ionic liquid electrolytes to stabilise the magnesium interface for magnesium/air batteries

    International Nuclear Information System (INIS)

    Khoo, Timothy; Howlett, Patrick C.; Tsagouria, Maureen; MacFarlane, Douglas R.; Forsyth, Maria

    2011-01-01

    Magnesium/air batteries are a possible high-energy density power source that, to date, have not received strong commercial interest due to issues with the corrosion of the magnesium and evaporation of the electrolyte. In this work we report on the use of ionic liquid based electrolytes to stabilise the metal/electrolyte interface and their impact on the electrochemical performance. Galvanostatic measurements indicate that the water content of the ionic liquid electrolyte plays an important role in the cell discharge characteristics. Surface characterisation using EIS, ATR-FTIR and powder diffraction examined the unique properties of the surface film formed on the magnesium anode.

  20. Batteries: Overview of Battery Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Doeff, Marca M

    2010-07-12

    The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as

  1. Using smartphone batteries as an urban thermometer

    Science.gov (United States)

    Droste, Arjan; Pape, Jan-Jaap; Overeem, Aart; Leijnse, Hidde; Steeneveld, Gert-Jan; Van Delden, Aarnout; Uijlenhoet, Remko

    2017-04-01

    Taking meteorological measurements in the urban environment is notoriously difficult due to the complex geometry at street and neighbourhood level. Traditional weather stations are absent in cities because of WMO regulations, so urban data has to come from typically expensive measurement-networks, or short intensive campaigns. While traditional measurements are scarce, there is an abundance of smart devices in cities: the well-known Internet of Things. It is for these reasons that crowdsourcing data has an enormous potential in cities, to deliver vast quantities of data without the maintenance costs of a measurement network. A promising source of potentially valuable data is the smartphone, because of its ubiquity and the many sensors most newer phone models now possess. Since most people nowadays have a smartphone, and carry it around wherever they go, data logged by the phone can be used to estimate the urban air temperature. A persistent log taken by nearly all smartphone models, even those without air temperature sensors, is the smartphone's battery temperature. The free OpenSignal smartphone application logs this battery temperature (among many other variables) and the position of the smartphone, which makes it possible to estimate the urban air temperature through a straightforward heat transfer model relating battery temperature to air and body temperature. The obtained urban temperatures are accurate within 1 to 2 degrees of certified measurement stations, proving the huge potential of this innovative method. This poster focuses on describing how thousands of daily smartphone battery temperature measurements can be translated to a relatively robust estimation of an urban air temperature, using 2 years of data from São Paulo in Brazil. Analysis of the results is presented in a separate session.

  2. Development of a Microcontroller-based Battery Charge Controller for an Off-grid Photovoltaic System

    Science.gov (United States)

    Rina, Z. S.; Amin, N. A. M.; Hashim, M. S. M.; Majid, M. S. A.; Rojan, M. A.; Zaman, I.

    2017-08-01

    A development of a microcontroller-based charge controller for a 12V battery has been explained in this paper. The system is designed based on a novel algorithm to couple existing solar photovoltaic (PV) charging and main grid supply charging power source. One of the main purposes of the hybrid charge controller is to supply a continuous charging power source to the battery. Furthermore, the hybrid charge controller was developed to shorten the battery charging time taken. The algorithm is programmed in an Arduino Uno R3 microcontroller that monitors the battery voltage and generates appropriate commands for the charging power source selection. The solar energy is utilized whenever the solar irradiation is high. The main grid supply will be only consumed whenever the solar irradiation is low. This system ensures continuous charging power supply and faster charging of the battery.

  3. Recent developments in organic redox flow batteries: A critical review

    Science.gov (United States)

    Leung, P.; Shah, A. A.; Sanz, L.; Flox, C.; Morante, J. R.; Xu, Q.; Mohamed, M. R.; Ponce de León, C.; Walsh, F. C.

    2017-08-01

    Redox flow batteries (RFBs) have emerged as prime candidates for energy storage on the medium and large scales, particularly at the grid scale. The demand for versatile energy storage continues to increase as more electrical energy is generated from intermittent renewable sources. A major barrier in the way of broad deployment and deep market penetration is the use of expensive metals as the active species in the electrolytes. The use of organic redox couples in aqueous or non-aqueous electrolytes is a promising approach to reducing the overall cost in long-term, since these materials can be low-cost and abundant. The performance of such redox couples can be tuned by modifying their chemical structure. In recent years, significant developments in organic redox flow batteries has taken place, with the introduction of new groups of highly soluble organic molecules, capable of providing a cell voltage and charge capacity comparable to conventional metal-based systems. This review summarises the fundamental developments and characterization of organic redox flow batteries from both the chemistry and materials perspectives. The latest advances, future challenges and opportunities for further development are discussed.

  4. Further demonstration of the VRLA-type UltraBattery under medium-HEV duty and development of the flooded-type UltraBattery for micro-HEV applications

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, J.; Takada, T.; Monma, D. [The Furukawa Battery Co., Ltd., R and D Division, 23-6 Kuidesaku, Shimofunao-machi, Joban, Iwaki-city, 972-8501 (Japan); Lam, L.T. [CSIRO Energy Technology, Bayview Avenue, Clayton South, Vic. 3169 (Australia)

    2010-02-15

    The UltraBattery has been invented by the CSIRO Energy Technology in Australia and has been developed and produced by the Furukawa Battery Co., Ltd., Japan. This battery is a hybrid energy storage device which combines a super capacitor and a lead-acid battery in single unit cells, taking the best from both technologies without the need of extra, expensive electronic controls. The capacitor enhances the power and lifespan of the lead-acid battery as it acts as a buffer during high-rate discharging and charging, thus enabling it to provide and absorb charge rapidly during vehicle acceleration and braking. The laboratory results of the prototype valve-regulated UltraBatteries show that the capacity, power, available energy, cold cranking and self-discharge of these batteries have met, or exceeded, all the respective performance targets set for both minimum and maximum power-assist HEVs. The cycling performance of the UltraBatteries under micro-, mild- and full-HEV duties is at least four times longer than that of the state-of-the-art lead-acid batteries. Importantly, the cycling performance of UltraBatteries is proven to be comparable or even better than that of the Ni-MH cells. On the other hand, the field trial of UltraBatteries in the Honda Insight HEV shows that the vehicle has surpassed 170,000 km and the batteries are still in a healthy condition. Furthermore, the UltraBatteries demonstrate very good acceptance of the charge from regenerative braking even at high state-of-charge, e.g., 70% during driving. Therefore, no equalization charge is required for the UltraBatteries during field trial. The HEV powered by UltraBatteries gives slightly higher fuel consumption (cf., 4.16 with 4.05 L/100 km) and CO{sub 2} emissions (cf., 98.8 with 96 g km{sup -1}) compared with that by Ni-MH cells. There are no differences in driving experience between the Honda Insight powered by UltraBatteries and by Ni-MH cells. Given such comparable performance, the UltraBattery pack

  5. Common-Pressure-Vessel Nickel-Hydrogen Battery Development

    OpenAIRE

    Otzinger, Burton; Wheeler, James

    1991-01-01

    The dual-cell, common-pressure vessel, nickel-hydrogen configuration has recently emerged as an option for small satellite nickel-hydrogen battery application. An important incentive is that the dual-cell, CPV configured battery presents a 30 percent reduction in volume and nearly 50 percent reduction in mounting footprint, when compared with an equivalent battery of individual pressure- vessel (IPV) cells. In addition energy density and cost benefits are significant. Eagle-Picher Industries ...

  6. New developments in nickel-hydrogen cell and battery design for commercial applications

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, D.B.; Fox, C.L.; Miller, L.E. [Eagle-Picher Industries, Inc., Joplin, MO (United States)

    1997-12-31

    Nickel-hydrogen (NiH{sub 2}) battery systems were first developed for space applications more than 20 years ago. Currently, they are being manufactured for commercial, terrestrial applications. The battery is ideal for commercial terrestrial energy storage applications because it offers a better potential cycle life than any other battery system and is maintenance free. A selection of low-cost components, electrodes, cell designs and battery designs are being tested to determine their feasibility for commercial applications. The dependent pressure vessel (DPV) design, developed by Eagle-Picher Industries, is the newest step in the continued development and evolution of the NiH{sub 2} system. The unique feature of the DPV cell design is the prismatic electrode stack which is more efficient than the cylindrical electrode stack. The electrode stack is the electrochemically active part of the cell. It contains nickel and hydrogen electrodes interspersed with an absorbent separator. DPV cells of two sizes, 40 and 60 Ah cells, have been developed. The DPV cell offers high specific energy at a reduced cost. The advanced DPV design also offers an efficient mechanical, electrical and thermal configuration and a reduced parts count. The design promotes compact, minimum volume packaging and weight efficiency. 8 refs., 7 figs.

  7. Recycling rice husks for high-capacity lithium battery anodes.

    Science.gov (United States)

    Jung, Dae Soo; Ryou, Myung-Hyun; Sung, Yong Joo; Park, Seung Bin; Choi, Jang Wook

    2013-07-23

    The rice husk is the outer covering of a rice kernel and protects the inner ingredients from external attack by insects and bacteria. To perform this function while ventilating air and moisture, rice plants have developed unique nanoporous silica layers in their husks through years of natural evolution. Despite the massive amount of annual production near 10(8) tons worldwide, so far rice husks have been recycled only for low-value agricultural items. In an effort to recycle rice husks for high-value applications, we convert the silica to silicon and use it for high-capacity lithium battery anodes. Taking advantage of the interconnected nanoporous structure naturally existing in rice husks, the converted silicon exhibits excellent electrochemical performance as a lithium battery anode, suggesting that rice husks can be a massive resource for use in high-capacity lithium battery negative electrodes.

  8. Development of Zinc/Bromine Batteries for Load-Leveling Applications: Phase 1 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Eidler, Phillip

    1999-07-01

    The Zinc/Bromine Load-Leveling Battery Development contract (No. 40-8965) was partitioned at the outset into two phases of equal length. Phase 1 started in September 1990 and continued through December 1991. In Phase 1, zinc/bromine battery technology was to be advanced to the point that it would be clear that the technology was viable and would be an appropriate choice for electric utilities wishing to establish stationary energy-storage facilities. Criteria were established that addressed most of the concerns that had been observed in the previous development efforts. The performances of 8-cell and 100-cell laboratory batteries demonstrated that the criteria were met or exceeded. In Phase 2, 100-kWh batteries will be built and demonstrated, and a conceptual design for a load-leveling plant will be presented. At the same time, work will continue to identify improved assembly techniques and operating conditions. This report details the results of the efforts carried out in Phase 1. The highlights are: (1) Four 1-kWh stacks achieved over 100 cycles, One l-kWh stack achieved over 200 cycles, One 1-kWh stack achieved over 300 cycles; (2) Less than 10% degradation in performance occurred in the four stacks that achieved over 100 cycles; (3) The battery used for the zinc loading investigation exhibited virtually no loss in performance for loadings up to 130 mAh/cm{sup 2}; (4) Charge-current densities of 50 ma/cm{sup 2} have been achieved in minicells; (5) Fourteen consecutive no-strip cycles have been conducted on the stack with 300+ cycles; (6) A mass and energy balance spreadsheet that describes battery operation was completed; (7) Materials research has continued to provide improvements in the electrode, activation layer, and separator; and (8) A battery made of two 50-cell stacks (15 kWh) was produced and delivered to Sandia National Laboratories (SNL) for testing. The most critical development was the ability to assemble a battery stack that remained leak free. The

  9. High-Energy-Density Metal-Oxygen Batteries: Lithium-Oxygen Batteries vs Sodium-Oxygen Batteries.

    Science.gov (United States)

    Song, Kyeongse; Agyeman, Daniel Adjei; Park, Mihui; Yang, Junghoon; Kang, Yong-Mook

    2017-12-01

    The development of next-generation energy-storage devices with high power, high energy density, and safety is critical for the success of large-scale energy-storage systems (ESSs), such as electric vehicles. Rechargeable sodium-oxygen (Na-O 2 ) batteries offer a new and promising opportunity for low-cost, high-energy-density, and relatively efficient electrochemical systems. Although the specific energy density of the Na-O 2 battery is lower than that of the lithium-oxygen (Li-O 2 ) battery, the abundance and low cost of sodium resources offer major advantages for its practical application in the near future. However, little has so far been reported regarding the cell chemistry, to explain the rate-limiting parameters and the corresponding low round-trip efficiency and cycle degradation. Consequently, an elucidation of the reaction mechanism is needed for both lithium-oxygen and sodium-oxygen cells. An in-depth understanding of the differences and similarities between Li-O 2 and Na-O 2 battery systems, in terms of thermodynamics and a structural viewpoint, will be meaningful to promote the development of advanced metal-oxygen batteries. State-of-the-art battery design principles for high-energy-density lithium-oxygen and sodium-oxygen batteries are thus reviewed in depth here. Major drawbacks, reaction mechanisms, and recent strategies to improve performance are also summarized. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. High-rate lithium thionyl-chloride battery development

    Energy Technology Data Exchange (ETDEWEB)

    Cieslak, W.R.; Weigand, D.E.

    1993-12-31

    We have developed a lithium thionyl-chloride cell for use in a high rate battery application to provide power for a missile computer and stage separation detonators. The battery pack contains 20 high surface area ``DD`` cells wired in a series-parallel configuration to supply a nominal 28 volts with a continuous draw of 20 amperes. The load profile also requires six squib firing pulses of one second duration at a 20 ampere peak. Performance and safety of the cells were optimized in a ``D`` cell configuration before progressing to the longer ``DD` cell. Active surface area in the ``D`` cell is 735 cm{sup 2}, and 1650 cm{sup 2} in the ``DD`` cell. The design includes 1.5M LiAlCl{sub 4}/SOCl{sub 2} electrolyte, a cathode blend of Shawinigan Acetylene Black and Cabot Black Pearls 2000 carbons, Scimat ETFE separator, and photoetched current collectors.

  11. Development of single cell lithium ion battery model using Scilab/Xcos

    Science.gov (United States)

    Arianto, Sigit; Yunaningsih, Rietje Y.; Astuti, Edi Tri; Hafiz, Samsul

    2016-02-01

    In this research, a lithium battery model, as a component in a simulation environment, was developed and implemented using Scicos/Xcos graphical language programming. Scicos used in this research was actually Xcos that is a variant of Scicos which is embedded in Scilab. The equivalent circuit model used in modeling the battery was Double Polarization (DP) model. DP model consists of one open circuit voltage (VOC), one internal resistance (Ri), and two parallel RC circuits. The parameters of the battery were extracted using Hybrid Power Pulse Characterization (HPPC) testing. In this experiment, the Double Polarization (DP) electrical circuit model was used to describe the lithium battery dynamic behavior. The results of simulation of the model were validated with the experimental results. Using simple error analysis, it was found out that the biggest error was 0.275 Volt. It was occurred mostly at the low end of the state of charge (SOC).

  12. Energy analysis of batteries in photovoltaic systems. Part II: Energy return factors and overall battery efficiencies

    International Nuclear Information System (INIS)

    Rydh, Carl Johan; Sanden, Bjoern A.

    2005-01-01

    Energy return factors and overall energy efficiencies are calculated for a stand-alone photovoltaic (PV)-battery system. Eight battery technologies are evaluated: lithium-ion (nickel), sodium-sulphur, nickel-cadmium, nickel-metal hydride, lead-acid, vanadium-redox, zinc-bromine and polysulphide-bromide. With a battery energy storage capacity three times higher than the daily energy output, the energy return factor for the PV-battery system ranges from 2.2 to 10 in our reference case. For a PV-battery system with a service life of 30 yr, this corresponds to energy payback times between 2.5 and 13 yr. The energy payback time is 1.8-3.3 yr for the PV array and 0.72-10 yr for the battery, showing the energy related significance of batteries and the large variation between different technologies. In extreme cases, energy return factors below one occur, implying no net energy output. The overall battery efficiency, including not only direct energy losses during operation but also energy requirements for production and transport of the charger, the battery and the inverter, is 0.41-0.80. For some batteries, the overall battery efficiency is significantly lower than the direct efficiency of the charger, the battery and the inverter (0.50-0.85). The ranking order of batteries in terms of energy efficiency, the relative importance of different battery parameters and the optimal system design and operation (e.g. the use of air conditioning) are, in many cases, dependent on the characterisation of the energy background system and on which type of energy efficiency measure is used (energy return factor or overall battery efficiency)

  13. 3D analysis of thermal exchange in finned batteries. A comparison between round and elliptical tubes

    International Nuclear Information System (INIS)

    Valdiserri, P.

    2001-01-01

    In this paper a numerical 3D analysis of the thermal exchange in air-cooled finned batteries has been carried out. Speed and temperature values in each hub of the numerical simulation domain have been reckoned both at different air flows and with different shapes of the tubes. The thermal power exchanged between tubes and air is obtained by the simulation of a numerical model of a finned battery with round section tubes and is compared to the values obtained for three batteries with elliptical section tubes. The comparison has been performed for different values of the air input speed [it

  14. BATTERIES 2020 – A Joint European Effort towards European Competitive Automotive Batteries

    DEFF Research Database (Denmark)

    Timmermans, J.-M.; Rodriguez-Martinez, L.M.; Omar, N.

    The Integrated Project “Batteries 2020” unites 9 European partners jointly working on the research and development of European competitive automotive batteries. The project aims at increasing lifetime and energy density of large format high-energy lithium-ion batteries towards the goals targeted...... for automotive batteries. Three parallel strategies will be followed in order to achieve those targets: (i) Highly focused materials development; two improved generations of NMC materials will allow the performance, stability and cyclability of state of the art cells to be improved. (ii) Understanding ageing...... of degradation processes. (iii) Reduction of battery cost; a way to reduce costs, increase battery residual value and improve sustainability is to consider second life uses of batteries used in EV. These batteries are still operational and suitable to less restrictive conditions, such as those for stationary...

  15. Silver decorated LaMnO_3 nanorod/graphene composite electrocatalysts as reversible metal-air battery electrodes

    International Nuclear Information System (INIS)

    Hu, Jie; Liu, Qiunan; Shi, Lina; Shi, Ziwei; Huang, Hao

    2017-01-01

    Graphical abstract: Silver decorated LaMnO_3 nanorod/reduced graphene oxide composite possess excellent bifunctional electrocatalytic activity and good electrochemical stability in alkaline medium. - Highlights: • Silver decorated LaMnO_3 nanorod/graphene composite were synthesized for the first time. • The ORR and OER of composite in alkaline medium were evaluated. • This composite as an efficient bifunctional catalyst has a good cycle performance. - Abstract: Perovskite LaMnO_3 nanorod/reduced graphene oxides (LMO-NR/RGO) decorated with Ag nanoparticles are studied as a bifunctional catalyst for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline electrolyte. LMO-NR/RGO composites are synthesized by using cetyltrimethyl ammonium bromide (CTAB) as template via a simple hydrothermal reaction followed by heat treatment; overlaying of Ag nanoparticles is obtained through a traditional silver mirror reaction. Electron microscopy reveals that LMO-NR is embedded between the sheets of RGO, and the material is homogeneously overlaid with Ag nanoparticles. The unique composite morphology of Ag/LMO-NR/RGO not only enhances the electron transport property by increasing conductivity but also facilitates the diffusion of electrolytes and oxygen. As confirmed by electrochemical testing, Ag/LMO-NR/RGO exhibits very strong synergy with Ag nanoparticles, LMO-NR, and RGO, and the catalytic activities of Ag/LMO-NR/RGO during ORR and OER are significantly improved. With the novel catalyst, the homemade zinc-air battery can be reversibly charged and discharged and display a stable cycle performance, indicating the great potential of this composite as an efficient bifunctional electrocatalyst for metal-air batteries.

  16. Research, development and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    Activities in a program to develop a Ni/Zn battery for electric vehicle propulsion are reported. Aspects discussed include battery design and development, nickel cathode study, and basic electrochemistry. A number of engineering drawings are supplied. 61 figures, 11 tables. (RWR)

  17. Thermal management of cylindrical power battery module for extending the life of new energy electric vehicles

    International Nuclear Information System (INIS)

    Zhao, Jiateng; Rao, Zhonghao; Huo, Yutao; Liu, Xinjian; Li, Yimin

    2015-01-01

    Thermal management especially cooling plays an important role in power battery modules for electric vehicles. In order to comprehensively understand the heat transfer characteristics of air cooling system, the air cooling numerical simulation battery models for cylindrical lithium-ion power battery pack were established in this paper, and a detailed parametric investigation was undertaken to study effects of different ventilation types and velocities, gap spacing between neighbor batteries, temperatures of environment and entrance air, amount of single row cells and battery diameter on the thermal management performance of battery pack. The results showed that the local temperature difference increased firstly and then decreased with the increase of wind speed. Reversing the air flow direction between adjacent rows is not necessarily appropriate and the gap spacing should not be too small and too large. It is prone to thermal runaway when the ambient temperature is too high, and the most suitable value of S/D (the ratio of spacing distance between neighbor cells and cell diameter) is gradually reduced along with the increase of cell diameter. - Highlights: • Air cooling models were established for cylindrical lithium-ion power battery pack. • Local temperature difference increased firstly and then decreased with wind speed. • The gap spacing size of battery pack should not be too small and too large. • It is prone to thermal runaway when the ambient temperature is too high. • The ratio of S/D is gradually reduced with the increase of cell diameter

  18. Current developments at Giprokoks for coke-battery construction and reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    V.I. Rudyka; Y.E. Zingerman; V.B. Kamenyuka; O.N. Surenskii; G.E. Kos' kova; V.V. Derevich; V.A. Gushchin [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

    2009-07-15

    Approaches developed at Giprokoks for coke-battery construction and reconstruction are considered. Recommendations regarding furnace construction and reconstruction are made on the basis of Ukrainian and world experience.

  19. 3D hollow sphere Co3O4/MnO2-CNTs: Its high-performance bi-functional cathode catalysis and application in rechargeable zinc-air battery

    Directory of Open Access Journals (Sweden)

    Xuemei Li

    2017-07-01

    Full Text Available There has been a continuous need for high active, excellently durable and low-cost electrocatalysts for rechargeable zinc-air batteries. Among many low-cost metal based candidates, transition metal oxides with the CNTs composite have gained increasing attention. In this paper, the 3-D hollow sphere MnO2 nanotube-supported Co3O4 nanoparticles and its carbon nanotubes hybrid material (Co3O4/MnO2-CNTs have been synthesized via a simple co-precipitation method combined with post-heat treatment. The morphology and composition of the catalysts are thoroughly analyzed through SEM, TEM, TEM-mapping, XRD, EDX and XPS. In comparison with the commercial 20% Pt/C, Co3O4/MnO2, bare MnO2 nanotubes and CNTs, the hybrid Co3O4/MnO2-CNTs-350 exhibits perfect bi-functional catalytic activity toward oxygen reduction reaction and oxygen evolution reaction under alkaline condition (0.1 M KOH. Therefore, high cell performances are achieved which result in an appropriate open circuit voltage (∼1.47 V, a high discharge peak power density (340 mW cm−2 and a large specific capacity (775 mAh g−1 at 10 mA cm−2 for the primary Zn-air battery, a small charge–discharge voltage gap and a high cycle-life (504 cycles at 10 mA cm−2 with 10 min per cycle for the rechargeable Zn-air battery. In particular, the simple synthesis method is suitable for a large-scale production of this bifunctional material due to a green, cost effective and readily available process. Keywords: Bi-functional catalyst, Oxygen reduction reaction, Oxygen evolution reaction, Activity and stability, Rechargeable zinc-air battery

  20. Development of lithium-thionyl chloride batteries for Centaur

    Energy Technology Data Exchange (ETDEWEB)

    Halpert, G.; Frank, H.; Lutwack, R.

    1988-04-01

    Lithium thionyl chloride (LiSOCl2) primary cells and batteries have received considerable attention over the last several years because of their high theoretical specific energy and energy density. The objective was to develop a 300 wh/kg cell capable of safe operation at C/2 rate and active storage life for 5 to 10 years. This technology would replace other primary cell technologies in NASA applications mainly the silver zinc (AgZn) batteries presently in use. The LiSOCl2 system exceeds the capabilities of the AgZn in terms of specific energy of 300 wh/kg (compared with 100 wh/kg for AgZn), active storage life of 10 to 20 times the 3 to 6 months active storage and has a significantly lower projected cost.

  1. Electrode Nanostructures in Lithium‐Based Batteries

    Science.gov (United States)

    Mahmood, Nasir

    2014-01-01

    Lithium‐based batteries possessing energy densities much higher than those of the conventional batteries belong to the most promising class of future energy devices. However, there are some fundamental issues related to their electrodes which are big roadblocks in their applications to electric vehicles (EVs). Nanochemistry has advantageous roles to overcome these problems by defining new nanostructures of electrode materials. This review article will highlight the challenges associated with these chemistries both to bring high performance and longevity upon considering the working principles of the various types of lithium‐based (Li‐ion, Li‐air and Li‐S) batteries. Further, the review discusses the advantages and challenges of nanomaterials in nanostructured electrodes of lithium‐based batteries, concerns with lithium metal anode and the recent advancement in electrode nanostructures. PMID:27980896

  2. The state-of-the-art and prospects for the development of rechargeable lithium batteries

    International Nuclear Information System (INIS)

    Skundin, Aleksandr M; Efimov, Oleg N; Yarmolenko, Ol'ga V

    2002-01-01

    The state-of-the-art of investigations into the development and perfection of the most promising class of chemical power sources, namely, rechargeable lithium batteries, is considered. The main problems of designing the batteries with a metallic lithium electrode are formulated and the use of alternative negative electrodes is substantiated. Special attention is paid to the studies dealing with the principles of the performance of lithium-ion batteries as well as the key directions for the perfection of these devices, which mainly concern the elaboration of new materials for lithium-ion batteries. A separate section is devoted to the consideration of polymeric electrolytes for lithium and lithium-ion batteries. The bibliography includes 390 references.

  3. Emergency power supply with batteries. Notstromversorgung mit Batterien

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    This conference volume contains the wording of the following 16 papers given at the symposium: ''Stationary Pb batteries''; ''maintenance-free Pb batteries with antimony-free grid plates or tube plates and dry fit system''; ''stationary alkali, Ag/Zc and gas-tight Ni/Cd batteries''; ''modern Li systems''; ''high-temperature batteries''; ''primary and secondary metal-air cells''; ''peak-load coverage with Pb batteries in distribution networks and industrial plants''; ''Success and problems with national and international standardization''; ''electronic monitoring of batteries'', ''up-to-date charging and converter technology''; ''versatile emergency power supply with the Federal German Railways''; ''emergency lighting''; ''emergency power supply in large-scale industrial plants''; ''battery power supply with the Federal German Post and Telecommunications''; ''Power supply to modern communication facilities''; ''modular d.-c. converter''; ''back-up power supply in the military field''; and it contains the wording of the discussions following the papers.

  4. Battery Peak Power Shaving Strategy to Prolong Battery Life for Electric Buses

    NARCIS (Netherlands)

    Pham, T.H.; Rosea, B.; Wilkins, S.

    2016-01-01

    This paper presents a battery peak power shaving strategy for battery electric buses. The developed strategy restricts the battery charge/discharge power when the propulsion power demand is high to avoid high deterioration of the battery capacity during operation. Without reducing the propulsion

  5. Recent Developments of All-Solid-State Lithium Secondary Batteries with Sulfide Inorganic Electrolytes.

    Science.gov (United States)

    Xu, Ruochen; Zhang, Shengzhao; Wang, Xiuli; Xia, Yan; Xia, Xinhui; Wu, Jianbo; Gu, Changdong; Tu, Jiangping

    2018-04-20

    Due to the increasing demand of security and energy density, all-solid-state lithium ion batteries have become the promising next-generation energy storage devices to replace the traditional liquid batteries with flammable organic electrolytes. In this Minireview, we focus on the recent developments of sulfide inorganic electrolytes for all-solid-state batteries. The challenges of assembling bulk-type all-solid-state batteries for industrialization are discussed, including low ionic conductivity of the present sulfide electrolytes, high interfacial resistance and poor compatibility between electrolytes and electrodes. Many efforts have been focused on the solutions for these issues. Although some progresses have been achieved, it is still far away from practical application. The perspectives for future research on all-solid-state lithium ion batteries are presented. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. New Lithium-ion Polymer Battery for the Extravehicular Mobility Unit Suit

    Science.gov (United States)

    Jeevarajan, J. A.; Darcy, E. C.

    2004-01-01

    The Extravehicular Mobility Unit (EMU) suit currently has a silver-zinc battery that is 20.5 V and 45 Ah capacity. The EMU's portable life support system (PLSS) will draw power from the battery during the entire period of an EVA. Due to the disadvantages of using the silver-zinc battery in terms of cost and performance, a new high energy density battery is being developed for future use, The new battery (Lithium-ion battery or LIB) will consist of Li-ion polymer cells that will provide power to the EMU suit. The battery design consists of five 8 Ah cells in parallel to form a single module of 40 Ah and five such modules will be placed in series to give a 20.5 V, 40 Ah battery. Charging will be accomplished on the Shuttle or Station using the new LIB charger or the existing ALPS (Air Lock Power Supply) charger. The LIB delivers a maximum of 3.8 A on the average, for seven continuous hours, at voltages ranging from 20.5 V to 16.0 V and it should be capable of supporting transient pulses during start up and once every hour to support PLSS fan and pump operation. Figure 1 shows the placement of the battery in the backpack area of the EMU suit. The battery and cells will undergo testing under different conditions to understand its performance and safety characteristics.

  7. Carbon dioxide assist for non-aqueous sodium–oxygen batteries

    KAUST Repository

    Das, Shyamal K.; Xu, Shaomao; Archer, Lynden A.

    2013-01-01

    We report a novel non-aqueous Na-air battery that utilizes a gas mixture of CO2 and O2. The battery exhibits a high specific energy of 6500-7000 Whkg- 1 (based on the carbon mass) over a range of CO2 feed compositions. The energy density achieved

  8. PROBLEMS WITH DETERMINATION OF FUGITIVE EMISSION OF POLYCYCLIC AROMATIC HYDROCARBONS FROM COKE OVEN BATTERY

    Directory of Open Access Journals (Sweden)

    Rafał Bigda

    2017-03-01

    Full Text Available Coke oven battery is complex and multifaceted facility in terms of air pollutant emissions. As far as stack or quenching tower does not cause major difficulties of emission measurement, the fugitive emission measurement from sources such as battery top elements (charging holes, ascension pipes or oven doors is still complicated and not fully solved problem. This article presents the discussion concerning main problems and errors likely to be made in particular stages of procedure of fugitive emissions characterization from coke oven battery (selection of sampling points, sampling itself, measurement of air velocity over battery top and laboratory analyses. In addition, results of concentrations measurements of selected substances characteristic for the coking process (naphthalene, anthracene, 4 PAHs and TSP originating from fugitive sources of coke oven battery and subjected to reporting under the E-PRTR are presented. The measurements were carried out on coke oven battery top in points selected on the basis of the preceding detailed air convection velocity measurements over battery top. Results of the velocity measurements were compared with results of numerical modelling using CFD software. The presented material is an attempt to cross-sectional presentation of issues related to the quantitative evaluation of fugitive emission from coke oven battery, discussed on the example of PAHs emission as a group of substances characteristic for coking of coal.

  9. Cluster size matters: Size-driven performance of subnanometer clusters in catalysis, electrocatalysis and Li-air batteries

    Science.gov (United States)

    Vajda, Stefan

    2015-03-01

    This paper discusses the strongly size-dependent performance of subnanometer cluster based catalysts in 1) heterogeneous catalysis, 2) electrocatalysis and 3) Li-air batteries. The experimental studies are based on I. fabrication of ultrasmall clusters with atomic precision control of particle size and their deposition on oxide and carbon based supports; II. test of performance, III. in situand ex situ X-ray characterization of cluster size, shape and oxidation state; and IV.electron microscopies. Heterogeneous catalysis. The pronounced effect of cluster size and support on the performance of the catalyst (catalyst activity and the yield of Cn products) will be illustrated on the example of nickel and cobalt clusters in Fischer-Tropsch reaction. Electrocatalysis. The study of the oxygen evolution reaction (OER) on size-selected palladium clusters supported on ultrananocrystalline diamond show pronounced size effects. While Pd4 clusters show no reaction, Pd6 and Pd17 clusters are among the most active catalysts known (in in terms of turnover rate per Pd atom). The system (soft-landed Pd4, Pd6, or Pd17 clusters on an UNCD Si coated electrode) shows stable electrochemical potentials over several cycles, and the characterization of the electrodes show no evidence for evolution or dissolution of either the support Theoretical calculations suggest that this striking difference may be a demonstration that bridging Pd-Pd sites, which are only present in three-dimensional clusters, are active for the oxygen evolution reaction in Pd6O6. Li-air batteries. The studies show that sub-nm silver clusters have dramatic size-dependent effect on the lowering of the overpotential, charge capacity, morphology of the discharge products, as well as on the morphology of the nm size building blocks of the discharge products. The results suggest that by precise control of the active surface sites on the cathode, the performance of Li-air cells can be significantly improved

  10. Report on Lithium Ion Battery Trade Studies to Support the Exploration Technology Development Program (ETDP) Energy Storage Project

    Science.gov (United States)

    Green, Robert D.; Kissock, Barbara I.; Bennett, William R.

    2010-01-01

    This report documents the results of two system related analyses to support the Exploration Technology Development Program (ETDP) Energy Storage Project. The first study documents a trade study to determine the optimum Li-ion battery cell capacity for the ascent stage battery for the Altair lunar lander being developed under the Constellation Systems program. The battery cell capacity for the Ultra High Energy (UHE) Li-ion battery initially chosen as the target for development was 35 A-hr; this study concludes that a 19.4 A-hr cell capacity would be more optimum from a minimum battery mass perspective. The second study in this report is an assessment of available low temperature Li-ion battery cell performance data to determine whether lowering the operating temperature range of the Li-ion battery, in a rover application, could save overall system mass by eliminating thermal control system mass normally needed to maintain battery temperature within a tighter temperature limit than electronics or other less temperature sensitive components. The preliminary assessment for this second study indicates that the reduction in the thermal control system mass is negated by an increase in battery mass to compensate for the loss in battery capacity due to lower temperature operating conditions.

  11. Development and standardization of Indian aphasia battery

    Directory of Open Access Journals (Sweden)

    Harsimarpreet Kaur

    2017-01-01

    Full Text Available Background: Aphasia is a language disorder which may disrupt an individual's functioning. To plan a mode of therapeutic/rehabilitative work, it is important to assess problems from a neuropsychological perspective focused on remediation of the impaired processes or compensation through the intact processes or both. Aim: Due to the paucity of tests available for the assessment of aphasia in the Indian population with specific colloquial expression, the aim of the present study was to develop an aphasia test for Hindi-speaking population and to provide evidence with its reliability and validity. Methods: The conception of the test took place in two phases: Phase 1 was the development of Indian Aphasia Battery (IAB and Phase 2 was its standardization. IAB was administered along the Hindi adaptation of the Western Aphasia Battery (WAB-H on participants with aphasia, probable aphasia, and healthy volunteers. Outcomes and Results: Based on the results of this study, IAB has a high concurrent validity and test–retest reliability in comparison to WAB-H. The subtests are sensitive enough to contribute to global aphasia quotient as a functional measure of aphasia in Indian brain-damaged patients. Conclusion: IAB is a quick and easy to administer measure for assessment of aphasia in Hindi-speaking population with high reliability and validity.

  12. Meso-pores carbon nano-tubes (CNTs) tissues-perfluorocarbons (PFCs) hybrid air-electrodes for Li-O2 battery

    Science.gov (United States)

    Balaish, Moran; Ein-Eli, Yair

    2018-03-01

    Adding immiscible perfluorocarbons (PFCs), possessing superior oxygen solubility and diffusivity, to a free-standing (metal-free and binder-free) CNTs air-electrode tissues with a meso-pore structure, fully maximized the advantages of PFCs as oxygenated-species' channels-providers. The discharge behavior of hybrid PFCs-CNT Li-O2 systems demonstrated a drastic increase in cell capacity at high current density (0.2 mA cm-2), where oxygen transport limitations are best illustrated. The results of this research revealed several key factors affecting PFCs-Li-O2 systems. The incorporation of PFCs with higher superoxide solubility and oxygen diffusivity, but more importantly higher PFCs/electrolyte miscibility, in a meso-pore air-electrode enabled better exploitation of PFCs potential. Consequently, the utilization of the air-electrode' surface area was enhanced via the formation of artificial three phase reaction zones with additional oxygen transportation routes, leading to uniform and intimate Li2O2 deposit at areas further away from the oxygen reservoir. Associated mechanisms are discussed along with insights into an improved Li-O2 battery system.

  13. Life-cycle energy analyses of electric vehicle storage batteries

    Science.gov (United States)

    Sullivan, D.; Morse, T.; Patel, P.; Patel, S.; Bondar, J.; Taylor, L.

    1980-12-01

    Nickel-zinc, lead-acid, nickel-iron, zinc-chlorine, sodium-sulfur (glass electrolyte), sodium-sulfur (ceramic electrolyte), lithium-metal sulfide, and aluminum-air batteries were studied in order to evaluate the energy used to produce the raw materials and to manufacture the battery, the energy consumed by the battery during its operational life, and the energy that could be saved from the recycling of battery materials into new raw materials. The value of the life cycle analysis approach is that it includes the various penalties and credits associated with battery production and recycling, which enables a more accurate determination of the system's ability to reduce the consumption of scarce fuels. Battery component materials, the energy requirements for battery production, and credits for recycling are described. The operational energy for an electric vehicle and the procedures used to determine it are discussed.

  14. Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications

    Science.gov (United States)

    Al-Hallaj, Said; Selman, J. R.

    A major obstacle to the development of commercially successful electric vehicles (EV) or hybrid electric vehicles (HEV) is the lack of a suitably sized battery. Lithium ion batteries are viewed as the solution if only they could be "scaled-up safely", i.e. if thermal management problems could be overcome so the batteries could be designed and manufactured in much larger sizes than the commercially available near-2-Ah cells. Here, we review a novel thermal management system using phase-change material (PCM). A prototype of this PCM-based system is presently being manufactured. A PCM-based system has never been tested before with lithium-ion (Li-ion) batteries and battery packs, although its mode of operation is exceptionally well suited for the cell chemistry of the most common commercially available Li-ion batteries. The thermal management system described here is intended specifically for EV/HEV applications. It has a high potential for providing effective thermal management without introducing moving components. Thereby, the performance of EV/HEV batteries may be improved without complicating the system design and incurring major additional cost, as is the case with "active" cooling systems requiring air or liquid circulation.

  15. Micro-battery Development using beta radioisotope

    International Nuclear Information System (INIS)

    Jung, H. K.; Cheong, Y. M.; Lee, N. H.; Choi, Y. S.; Joo, Y. S.; Lee, J. S.; Jeon, B. H.

    2007-06-01

    Nuclear battery which use the beta radiation sources emitting the low penetration radiation energy from radioisotope can be applied as the long term (more than 10 years) micro power source in MEMS and nano components. This report describes the basic concept and principles of nuclear micro-battery and its fabrication in space and military field. In particular direct conversion method is described by investigating the electron-hole generation and recombination in p-n junction of silicon betavoltaics with beta radiation

  16. Battery Modeling: A Versatile Tool to Design Advanced Battery Management Systems

    NARCIS (Netherlands)

    Notten, P.H.L.; Danilov, D.L.

    Fundamental physical and (electro) chemical principles of rechargeable battery operation form the basis of the electronic network models developed for Nickel-based aqueous battery systems, including Nickel Metal Hydride (NiMH), and non-aqueous battery systems, such as the well-known Li-ion. Refined

  17. Product development strategy with quality function deployment approach: A case study in automotive battery

    Directory of Open Access Journals (Sweden)

    Heru Darmawan

    2017-12-01

    Full Text Available Customer satisfaction is one of the main factors in determining the competitiveness of every industry. Along with the technological advances, it will impact on the increasingly intense competition in the business of providing great opportunities to the consumer to find a quality product at competi-tive rates. The purpose of this study is to develop the quality of automotive battery products that meet consumer needs by using Quality Function Deployment (QFD method. The application is then analyzed and its results produced a proposal for product development according to the weight and priority development on product attributes that are considered important by customers. There are two main priorities that are most desired by customers, among others for improving the quality of products maintenance free battery in automotive battery industry with quality function deployment according to consumers. Consumers need a car battery with a good durability and great performance, low price, and environment friendly features, which can be achieved by using absorbent glass mat and expanded machine technology. Based on relative weight in House of Quality, Ab-sorbent Glass Mat receives the highest percentage of technical priority that is equal to 31% whereas technology expanded gets the second highest percentage of technical priority that is equal to 19%. It means that both technologies are more important to develop this product. Therefore, the maintenance free battery products are expected to be attractive for consumers and extensive marketing.

  18. Ecological and biomedical effects of effluents from near-term electric vehicle storage battery cycles

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    An assessment of the ecological and biomedical effects due to commercialization of storage batteries for electric and hybrid vehicles is given. It deals only with the near-term batteries, namely Pb/acid, Ni/Zn, and Ni/Fe, but the complete battery cycle is considered, i.e., mining and milling of raw materials, manufacture of the batteries, cases and covers; use of the batteries in electric vehicles, including the charge-discharge cycles; recycling of spent batteries; and disposal of nonrecyclable components. The gaseous, liquid, and solid emissions from various phases of the battery cycle are identified. The effluent dispersal in the environment is modeled and ecological effects are assessed in terms of biogeochemical cycles. The metabolic and toxic responses by humans and laboratory animals to constituents of the effluents are discussed. Pertinent environmental and health regulations related to the battery industry are summarized and regulatory implications for large-scale storage battery commercialization are discussed. Each of the seven sections were abstracted and indexed individually for EDB/ERA. Additional information is presented in the seven appendixes entitled; growth rate scenario for lead/acid battery development; changes in battery composition during discharge; dispersion of stack and fugitive emissions from battery-related operations; methodology for estimating population exposure to total suspended particulates and SO/sub 2/ resulting from central power station emissions for the daily battery charging demand of 10,000 electric vehicles; determination of As air emissions from Zn smelting; health effects: research related to EV battery technologies. (JGB)

  19. Graphene supported heterogeneous catalysts for Li–O{sub 2} batteries

    Energy Technology Data Exchange (ETDEWEB)

    Alaf, M., E-mail: mirac.alaf@bilecik.edu.tr [Bilecik Seyh Edebali University, Engineering Faculty, Department of Metallurgy and Materials Engineering, Gulumbe Campus, Bilecik 11210 (Turkey); Tocoglu, U.; Kartal, M.; Akbulut, H. [Sakarya University, Engineering Faculty, Department of Metallurgy and Materials Engineering, Esentepe Campus, Sakarya 54187 (Turkey)

    2016-09-01

    Graphical abstract: - Highlights: • Free-standing and flexible electrodes were prepared for Li–air batteries. • α-MnO{sub 2} nanorods, Pt nanoparticles and graphene were used. • α-MnO{sub 2} and Pt catalyst improved OER/ORR kinetics. - Abstract: In this study production and characterization of free-standing and flexible (i) graphene, (ii) α-MnO{sub 2}/graphene, (iii) Pt/graphene (iv) α-MnO{sub 2}/Pt/graphene composite cathodes for Li–air batteries were reported. Graphene supported heterogeneous catalysts were produced by a facile method. In order to prevent aggregation of graphene sheets and increase not only interlayer distance but also surface area, a trace amount multi-wall carbon nano tube (MWCNT) was introduced to the composite structure. The obtained composite catalysts were characterized by SEM, X-ray diffraction, N{sub 2} adsorption–desorption analyze and Raman spectroscopy. The electrochemical characterization tests including galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS) measurement of catalyst were carried out by using an ECC-Air test cell. These highly active graphene supported heterogeneous composite catalysts provide competitive properties relative to other catalyst materials for Li–air batteries.

  20. Self-assembled nitrogen-doped fullerenes and their catalysis for fuel cell and rechargeable metal-air battery applications.

    Science.gov (United States)

    Noh, Seung Hyo; Kwon, Choah; Hwang, Jeemin; Ohsaka, Takeo; Kim, Beom-Jun; Kim, Tae-Young; Yoon, Young-Gi; Chen, Zhongwei; Seo, Min Ho; Han, Byungchan

    2017-06-08

    In this study, we report self-assembled nitrogen-doped fullerenes (N-fullerene) as non-precious catalysts, which are active for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), and thus applicable for energy conversion and storage devices such as fuel cells and metal-air battery systems. We screen the best N-fullerene catalyst at the nitrogen doping level of 10 at%, not at the previously known doping level of 5 or 20 at% for graphene. We identify that the compressive surface strain induced by doped nitrogen plays a key role in the fine-tuning of catalytic activity.

  1. Status of the Space-Rated Lithium-Ion Battery Advanced Development Project in Support of the Exploration Vision

    Science.gov (United States)

    Miller, Thomas

    2007-01-01

    The NASA Glenn Research Center (GRC), along with the Goddard Space Flight Center (GSFC), Jet Propulsion Laboratory (JPL), Johnson Space Center (JSC), Marshall Space Flight Center (MSFC), and industry partners, is leading a space-rated lithium-ion advanced development battery effort to support the vision for Exploration. This effort addresses the lithium-ion battery portion of the Energy Storage Project under the Exploration Technology Development Program. Key discussions focus on the lithium-ion cell component development activities, a common lithium-ion battery module, test and demonstration of charge/discharge cycle life performance and safety characterization. A review of the space-rated lithium-ion battery project will be presented highlighting the technical accomplishments during the past year.

  2. Development of a large scale bipolar NiH2 battery

    Science.gov (United States)

    Adler, E.; Perez, F.

    1983-01-01

    The bipolar battery concept, developed in cooperation with NASA, is described in the context of the advantages afforded by near-term IPV and CVP cell technology. The projected performance, development requirements, and a possible approach to bipolar battery design are outlined. Consideration is given to packaging electrodes within a common hydrophobic plastic frame, electrode technology that involves a photochemically etched 0.1 mm thick nickel substrate coated with a 10 mg/sq cm mixture of platinum powder and TFE30, and an electrode design that eliminates the screen and doubles the electrode thickness (from the currently used 0.8 mm) while retaining the active material loading of 1.6-1.8 gm/cu cm. Also covered are thermal management, and electrolyte and oxygen management. It is concluded that a high voltage, high capacity, bipolar NiH2 cell can be configured with proper development for use in large power systems, and that it can provide considerable weight savings.

  3. In situ methods for Li-ion battery research: A review of recent developments

    Science.gov (United States)

    Harks, P. P. R. M. L.; Mulder, F. M.; Notten, P. H. L.

    2015-08-01

    A considerable amount of research is being directed towards improving lithium-ion batteries in order to meet today's market demands. In particular in situ investigations of Li-ion batteries have proven extremely insightful, but require the electrochemical cell to be fully compatible with the conditions of the testing method and are therefore often challenging to execute. Advantageously, in the past few years significant progress has been made with new, more advanced, in situ techniques. Herein, a comprehensive overview of in situ methods for studying Li-ion batteries is given, with the emphasis on new developments and reported experimental highlights.

  4. Latest position in battery techniques

    Energy Technology Data Exchange (ETDEWEB)

    Staeger, H J

    1960-03-17

    A short survey of the development of electrochemical properties as batteries is followed by an account of the construction, properties, and fields of application of lead, iron--nickel, and silver--zinc batteries, and their more recent developments, such as the hollow-rod plates in lead batteries, sintered plates, and sealed batteries. The work in progress on fuel cells is discussed and different practical cells are compared. There is no battery which is the best for all applications, each system has its own advantages or disadvantages. The lead battery in its different forms still remains the most universally applied.

  5. Nickel hydrogen common pressure vessel battery development

    Science.gov (United States)

    Jones, Kenneth R.; Zagrodnik, Jeffrey P.

    1992-01-01

    Our present design for a common pressure vessel (CPV) battery, a nickel hydrogen battery system to combine all of the cells into a common pressure vessel, uses an open disk which allows the cell to be set into a shallow cavity; subsequent cells are stacked on each other with the total number based on the battery voltage required. This approach not only eliminates the assembly error threat, but also more readily assures equal contact pressure to the heat fin between each cell, which further assures balanced heat transfer. These heat fin dishes with their appropriate cell stacks are held together with tie bars which in turn are connected to the pressure vessel weld rings at each end of the tube.

  6. MO-Co@N-Doped Carbon (M = Zn or Co): Vital Roles of Inactive Zn and Highly Efficient Activity toward Oxygen Reduction/Evolution Reactions for Rechargeable Zn-Air Battery

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Biaohua [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 P. R. China; Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029 P. R. China; He, Xiaobo [Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, Changzhou 213164 P. R. China; Yin, Fengxiang [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 P. R. China; Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029 P. R. China; Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, Changzhou 213164 P. R. China; Wang, Hao [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 P. R. China; Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029 P. R. China; Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne IL 60439 USA; Liu, Di-Jia [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne IL 60439 USA; Shi, Ruixing [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 P. R. China; Chen, Jinnan [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 P. R. China; Yin, Hongwei [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 P. R. China

    2017-06-14

    A highly efficient bifunctional oxygen catalyst is required for practical applications of fuel cells and metal-air batteries, as oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are their core electrode reactions. Here, the MO-Co@ N-doped carbon (NC, M = Zn or Co) is developed as a highly active ORR/OER bifunctional catalyst via pyrolysis of a bimetal metal-organic framework containing Zn and Co, i.e., precursor (CoZn). The vital roles of inactive Zn in developing highly active bifunctional oxygen catalysts are unraveled. When the precursors include Zn, the surface contents of pyridinic N for ORR and the surface contents of Co-N-x and Co3+/Co2+ ratios for OER are enhanced, while the high specific surface areas, high porosity, and high electrochemical active surface areas are also achieved. Furthermore, the synergistic effects between Zn-based and Co-based species can promote the well growth of multiwalled carbon nanotubes (MWCNTs) at high pyrolysis temperatures (>= 700 degrees C), which is favorable for charge transfer. The optimized CoZn-NC-700 shows the highly bifunctional ORR/OER activity and the excellent durability during the ORR/OER processes, even better than 20 wt% Pt/C (for ORR) and IrO2 (for OER). CoZn-NC-700 also exhibits the prominent Zn-air battery performance and even outperforms the mixture of 20 wt% Pt/C and IrO2.

  7. NIH EXAMINER: conceptualization and development of an executive function battery.

    Science.gov (United States)

    Kramer, Joel H; Mungas, Dan; Possin, Katherine L; Rankin, Katherine P; Boxer, Adam L; Rosen, Howard J; Bostrom, Alan; Sinha, Lena; Berhel, Ashley; Widmeyer, Mary

    2014-01-01

    Executive functioning is widely targeted when human cognition is assessed, but there is little consensus on how it should be operationalized and measured. Recognizing the difficulties associated with establishing standard operational definitions of executive functioning, the National Institute of Neurological Disorders and Stroke entered into a contract with the University of California-San Francisco to develop psychometrically robust executive measurement tools that would be accepted by the neurology clinical trials and clinical research communities. This effort, entitled Executive Abilities: Measures and Instruments for Neurobehavioral Evaluation and Research (EXAMINER), resulted in a series of tasks targeting working memory, inhibition, set shifting, fluency, insight, planning, social cognition and behavior. We describe battery conceptualization and development, data collection, scale construction based on item response theory, and lay the foundation for studying the battery's utility and validity for specific assessment and research goals.

  8. Research, development, and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report for 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    Work performed during Oct. 1, 1979 to Sept. 30, 1980 for the development of lead-acid batteries for electric vehicle propulsion is described. During this report period many of the results frpm Globe Battery's design, materials and process development programs became evident in the achievement of the ISOA (Improved State of Art) specific energy, specific power, and energy efficiency goals while testing in progress also indicates that the cycle life goal can be met. These programs led to the establishment of a working pilot assembly line which produced the first twelve volt ISOA modules. Five of these modules were delivered to the National Battery Test Laboratory during the year for capacity, power and life testing, and assembly is in progress of three full battery systems for installation in vehicles. In the battery subsystem area, design of the acid circulation system for a ninety-six volt ISOA battery pack was completed and assembly of the first such system was initiated. Charger development has been slowed by problems encountered with reliability of some circuits but a prototype unit is being prepared which will meet the charging requirements of our ninety-six volt pack. This charger will be available during the 1981 fiscal year.

  9. Improvement of Aluminum-Air Battery Performances by the Application of Flax Straw Extract.

    Science.gov (United States)

    Grishina, Ekaterina; Gelman, Danny; Belopukhov, Sergey; Starosvetsky, David; Groysman, Alec; Ein-Eli, Yair

    2016-08-23

    The effect of a flax straw extract on Al corrosion inhibition in a strong alkaline solution was studied by using electrochemical measurements, weight-loss analysis, SEM, and FTIR spectroscopy. Flax straw extract added (3 vol %) to the 5 m KOH solution to act as a mixed-type Al corrosion inhibitor. The electrochemistry of Al in the presence of a flax straw extract in the alkaline solution, the effect of the extract on the Al morphology and surface films formed, and the corrosion inhibition mechanism are discussed. Finally, the Al-air battery discharge capacity recorded from a cell that used the flax straw extract in the alkaline electrolyte is substantially higher than that with only a pure alkaline electrolyte. This improved sustainability of the Al anode is attributed to Al corrosion inhibition and, consequently, to hydrogen evolution suppression. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Development, content validity and test-retest reliability of the Lifelong Physical Activity Skills Battery in adolescents.

    Science.gov (United States)

    Hulteen, Ryan M; Barnett, Lisa M; Morgan, Philip J; Robinson, Leah E; Barton, Christian J; Wrotniak, Brian H; Lubans, David R

    2018-03-28

    Numerous skill batteries assess fundamental motor skill (e.g., kick, hop) competence. Few skill batteries examine lifelong physical activity skill competence (e.g., resistance training). This study aimed to develop and assess the content validity, test-retest and inter-rater reliability of the "Lifelong Physical Activity Skills Battery". Development of the skill battery occurred in three stages: i) systematic reviews of lifelong physical activity participation rates and existing motor skill assessment tools, ii) practitioner consultation and iii) research expert consultation. The final battery included eight skills: grapevine, golf swing, jog, push-up, squat, tennis forehand, upward dog and warrior I. Adolescents (28 boys, 29 girls; M = 15.8 years, SD = 0.4 years) completed the Lifelong Physical Activity Skills Battery on two occasions two weeks apart. The skill battery was highly reliable (ICC = 0.84, 95% CI = 0.72-0.90) with individual skill reliability scores ranging from moderate (warrior I; ICC = 0.56) to high (tennis forehand; ICC = 0.82). Typical error (4.0; 95% CI 3.4-5.0) and proportional bias (r = -0.21, p = .323) were low. This study has provided preliminary evidence for the content validity and reliability of the Lifelong Physical Activity Skills Battery in an adolescent population.

  11. Lithium iron phosphate based battery – Assessment of the aging parameters and development of cycle life model

    International Nuclear Information System (INIS)

    Omar, Noshin; Monem, Mohamed Abdel; Firouz, Yousef; Salminen, Justin; Smekens, Jelle; Hegazy, Omar; Gaulous, Hamid; Mulder, Grietus; Van den Bossche, Peter; Coosemans, Thierry; Van Mierlo, Joeri

    2014-01-01

    Highlights: • Extended life cycle tests. • Investigation of the battery life cycle at different working conditions. • Investigation of the impact fast charging on the battery performances. • Extraction all required relationship for development of a cycle life model. • Development of a new life cycle model. - Abstract: This paper represents the evaluation of ageing parameters in lithium iron phosphate based batteries, through investigating different current rates, working temperatures and depths of discharge. From these analyses, one can derive the impact of the working temperature on the battery performances over its lifetime. At elevated temperature (40 °C), the performances are less compared to at 25 °C. The obtained mathematical expression of the cycle life as function of the operating temperature reveals that the well-known Arrhenius law cannot be applied to derive the battery lifetime from one temperature to another. Moreover, a number of cycle life tests have been performed to illustrate the long-term capabilities of the proposed battery cells at different discharge constant current rates. The results reveal the harmful impact of high current rates on battery characteristics. On the other hand, the cycle life test at different depth of discharge levels indicates that the battery is able to perform 3221 cycles (till 80% DoD) compared to 34,957 shallow cycles (till 20% DoD). To investigate the cycle life capabilities of lithium iron phosphate based battery cells during fast charging, cycle life tests have been carried out at different constant charge current rates. The experimental analysis indicates that the cycle life of the battery degrades the more the charge current rate increases. From this analysis, one can conclude that the studied lithium iron based battery cells are not recommended to be charged at high current rates. This phenomenon affects the viability of ultra-fast charging systems. Finally, a cycle life model has been developed, which

  12. Research, development, and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report for 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    Progress in developing nickel-zinc batteries for propelling electric vehicles is reported. Information is included on component design, battery fabrication, and module performance testing. Although full scale hardware performance has fallen short of the contract cycle life goals, significant progress has been made to warrant further development. (LCL)

  13. Canadian consumer battery baseline study : final report

    International Nuclear Information System (INIS)

    2007-02-01

    This report provided information about the estimated number of consumer and household batteries sold, re-used, stored, recycled, and disposed each year in Canada. The report discussed the ways in which different batteries posed risks to human health and the environment, and legislative trends were also reviewed. Data used in the report were obtained from a literature review as well as through a series of interviews. The study showed that alkaline batteries are the most common primary batteries used by Canadians, followed by zinc carbon batteries. However, lithium primary batteries are gaining in popularity, and silver oxide and zinc air button cell batteries are also used in applications requiring a flat voltage and high energy. Secondary batteries used in laptop computers, and cell phones are often made of nickel-cadmium, nickel-metal-hydroxide, and lithium ion. Small sealed lead batteries are also commonly used in emergency lighting and alarm systems. Annual consumption statistics for all types of batteries were provided. Results of the study showed that the primary battery market is expected to decline. Total units of secondary batteries are expected to increase to 38.6 million units by 2010. The report also used a spreadsheet model to estimate the flow of consumer batteries through the Canadian waste management system. An estimated 347 million consumer batteries were discarded in 2004. By 2010, it is expected that an estimated 494 million units will be discarded by consumers. The study also considered issues related to lead, cadmium, mercury, and nickel disposal and the potential for groundwater contamination. It was concluded that neither Canada nor its provinces or territories have initiated legislative or producer responsibility programs targeting primary or secondary consumer batteries. 79 refs., 37 tabs., 1 fig

  14. Battery systems engineering

    CERN Document Server

    Rahn, Christopher D

    2012-01-01

    A complete all-in-one reference on the important interdisciplinary topic of Battery Systems Engineering Focusing on the interdisciplinary area of battery systems engineering, this book provides the background, models, solution techniques, and systems theory that are necessary for the development of advanced battery management systems. It covers the topic from the perspective of basic electrochemistry as well as systems engineering topics and provides a basis for battery modeling for system engineering of electric and hybrid electric vehicle platforms. This original

  15. Alkaline sodium borohydride gel as a hydrogen source for PEMFC or an energy carrier for NaBH 4-air battery

    Science.gov (United States)

    Liu, B. H.; Li, Z. P.; Chen, L. L.

    In this preliminary study, we tried to use sodium polyacrylate as the super absorbent polymer to form alkaline NaBH 4 gel and explored its possibilities for borohydride hydrolysis and borohydride electro-oxidation. It was found that the absorption capacity of sodium polyacrylate decreased with increasing NaBH 4 concentration. The formed gel was rather stable in the sealed vessel but tended to slowly decompose in open air. Hydrogen generation from the gel was carried out using CoCl 2 catalyst precursor solutions. Hydrogen generation rate from the alkaline NaBH 4 gel was found to be higher and impurities in hydrogen were less than that from the alkaline NaBH 4 solution. The NaBH 4 gel also successfully powered a NaBH 4-air battery.

  16. Bipolar zinc/oxygen battery development

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, S [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Schlatter, C [Swiss Federal Inst. of Technology, Lausanne (Switzerland)

    1997-06-01

    A bipolar electrically rechargeable Zn/O{sub 2} battery has been developed. Reticulated copper foam served as substrate for the zinc deposit on the anodic side, and La{sub 0.6}Ca{sub 0.4}CoO{sub 3}-catalyzed bifunctional oxygen electrodes were used on the cathodic side of the cells. The 100 cm{sup 2} unit cell had an open circuit voltage of 1,4 V(O{sub 2}) in moderately alkaline electrolyte. The open circuit voltage and the peak power measured for a stack containing seven cells were ca. 10V and 90W, respectively. The current-potential behaviour was determined as a function of the number of bipolar cells, and the maximum discharge capacity was determined at different discharge rates. (author) 4 figs., 1 ref.

  17. Silver decorated LaMnO{sub 3} nanorod/graphene composite electrocatalysts as reversible metal-air battery electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jie [State Key Laboratory of Metastable Materials Science & Technology, Yanshan University, Qinhuangdao, 066004 (China); Hebei Key Laboratory of Applied Chemistry, Department of Environment and Chemistry, Yanshan University, Qinhuangdao, 066004 (China); Liu, Qiunan; Shi, Lina; Shi, Ziwei [Hebei Key Laboratory of Applied Chemistry, Department of Environment and Chemistry, Yanshan University, Qinhuangdao, 066004 (China); Huang, Hao, E-mail: huanghao@ysu.edu.cn [State Key Laboratory of Metastable Materials Science & Technology, Yanshan University, Qinhuangdao, 066004 (China); Henan Huanghe Whirlwind Co. Ltd., Changge, 461500 (China)

    2017-04-30

    Graphical abstract: Silver decorated LaMnO{sub 3} nanorod/reduced graphene oxide composite possess excellent bifunctional electrocatalytic activity and good electrochemical stability in alkaline medium. - Highlights: • Silver decorated LaMnO{sub 3} nanorod/graphene composite were synthesized for the first time. • The ORR and OER of composite in alkaline medium were evaluated. • This composite as an efficient bifunctional catalyst has a good cycle performance. - Abstract: Perovskite LaMnO{sub 3} nanorod/reduced graphene oxides (LMO-NR/RGO) decorated with Ag nanoparticles are studied as a bifunctional catalyst for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline electrolyte. LMO-NR/RGO composites are synthesized by using cetyltrimethyl ammonium bromide (CTAB) as template via a simple hydrothermal reaction followed by heat treatment; overlaying of Ag nanoparticles is obtained through a traditional silver mirror reaction. Electron microscopy reveals that LMO-NR is embedded between the sheets of RGO, and the material is homogeneously overlaid with Ag nanoparticles. The unique composite morphology of Ag/LMO-NR/RGO not only enhances the electron transport property by increasing conductivity but also facilitates the diffusion of electrolytes and oxygen. As confirmed by electrochemical testing, Ag/LMO-NR/RGO exhibits very strong synergy with Ag nanoparticles, LMO-NR, and RGO, and the catalytic activities of Ag/LMO-NR/RGO during ORR and OER are significantly improved. With the novel catalyst, the homemade zinc-air battery can be reversibly charged and discharged and display a stable cycle performance, indicating the great potential of this composite as an efficient bifunctional electrocatalyst for metal-air batteries.

  18. Development of an Open Source, Air-Deployable Weather Station

    Science.gov (United States)

    Krejci, A.; Lopez Alcala, J. M.; Nelke, M.; Wagner, J.; Udell, C.; Higgins, C. W.; Selker, J. S.

    2017-12-01

    We created a packaged weather station intended to be deployed in the air on tethered systems. The device incorporates lightweight sensors and parts and runs for up to 24 hours off of lithium polymer batteries, allowing the entire package to be supported by a thin fiber. As the fiber does not provide a stable platform, additional data (pitch and roll) from typical weather parameters (e.g. temperature, pressure, humidity, wind speed, and wind direction) are determined using an embedded inertial motion unit. All designs are open sourced including electronics, CAD drawings, and descriptions of assembly and can be found on the OPEnS lab website at http://www.open-sensing.org/lowcost-weather-station/. The Openly Published Environmental Sensing Lab (OPEnS: Open-Sensing.org) expands the possibilities of scientific observation of our Earth, transforming the technology, methods, and culture by combining open-source development and cutting-edge technology. New OPEnS labs are now being established in India, France, Switzerland, the Netherlands, and Ghana.

  19. Implications of the formation of small polarons in Li2O2 for Li-air batteries

    Science.gov (United States)

    Kang, Joongoo; Jung, Yoon Seok; Wei, Su-Huai; Dillon, Anne C.

    2012-01-01

    Lithium-air batteries (LABs) are an intriguing next-generation technology due to their high theoretical energy density of ˜11 kWh/kg. However, LABs are hindered by both poor rate capability and significant polarization in cell voltage, primarily due to the formation of Li2O2 in the air cathode. Here, by employing hybrid density functional theory, we show that the formation of small polarons in Li2O2 limits electron transport. Consequently, the low electron mobility μ = 10-10-10-9 cm2/V s contributes to both the poor rate capability and the polarization that limit the LAB power and energy densities. The self-trapping of electrons in the small polarons arises from the molecular nature of the conduction band states of Li2O2 and the strong spin polarization of the O 2p state. Our understanding of the polaronic electron transport in Li2O2 suggests that designing alternative carrier conduction paths for the cathode reaction could significantly improve the performance of LABs at high current densities.

  20. Thermodynamic framework for estimating the efficiencies of alkaline batteries

    Energy Technology Data Exchange (ETDEWEB)

    Pound, B G; Singh, R P; MacDonald, D D

    1986-06-01

    A thermodynamic framework has been developed to evaluate the efficiencies of alkaline battery systems for electrolyte (MOH) concentrations from 1 to 8 mol kg/sup -1/ and over the temperature range -10 to 120/sup 0/C. An analysis of the thermodynamic properties of concentrated LiOH, NaOH, and KOH solutions was carried out to provide data for the activity of water, the activity coefficient of the hydroxide ion, and the pH of the electrolyte. Potential-pH relations were then derived for various equilibrium phenomena for the metals Li, Al, Fe, Ni, and Zn in aqueous solutions and, using the data for the alkali metal hydroxides, equilibrium potentials were computed as a function of composition and temperature. These data were then used to calculate reversible cell voltages for a number of battery systems, assuming a knowledge of the cell reactions. Finally, some of the calculated cell voltages were compared with observed cell voltages to compute voltage efficiencies for various alkaline batteries. The voltage efficiencies of H/sub 2//Ni, Fe/Ni, and Zn/Ni test cells were found to be between 90 and 100%, implying that, at least at open circuit, there is little, if any, contribution from parasitic redox couples to the cell potentials for these systems. The efficiency of an Fe/air test cell was relatively low (72%). This is probably due to the less-than-theoretical voltage of the air electrode.

  1. Comparative study for "36 V" vehicle applications: advantages of lead-acid batteries

    Science.gov (United States)

    Lailler, Patrick; Sarrau, Jean-François; Sarrazin, Christian

    From thermal engine equipped vehicles to completely electric ones, evolution of light weight vehicles in the future will take several steps in so far as there is no adequate battery or fuel cell presently available to power these vehicles for "on the road" driving. On the other hand, for city driving, vehicles can be improved a lot in terms of fuel efficiency as well as air pollution, if partly or totally electric propulsion can be developed, manufactured and marketed for appropriate applications. The 36-42 V battery is part of this orientation towards improving the efficiency of thermal vehicles in city driving, while keeping adequate autonomy on the roads. Actually, in city traffic, thermal engines are idle most of the time and stop periods represent a large part of the time spent "driving", using up fuel and polluting air for no use at all. The idea of stopping the engine during these periods, if appropriately managed, might potentially lead to a large improvement in fuel economy as well as air pollution reduction. The association of a higher voltage battery to an alternator-starter device in thermal vehicles, seems to be an interesting way towards that end. In this paper, we are presenting our results of a study we have just completed in relationship with RENAULT & VALEO, supported by the French Ministry of Industry, concerning a comparative evaluation of different automobile energy storage systems, and the definition of specifications as the final step of this study. The main conclusion is that lead-acid will still remain dominant in this role, since its operational cost versus efficiency is by far the lowest of every battery presently considered, more particularly in the less expensive car segments.

  2. Development of a Battery-Free Solar Refrigerator

    Science.gov (United States)

    Ewert, Michael K.; Bergeron, David J., III

    2000-01-01

    Recent technology developments and a systems engineering design approach have led to the development of a practical battery-free solar refrigerator as a spin-off of NASA's aerospace refrigeration research. Off-grid refrigeration is a good application of solar photovoltaic (PV) power if thermal storage is incorporated and a direct connection is made between the cooling system and the PV panel. This was accomplished by integrating water as a phase-change material into a well insulated refrigerator cabinet and by developing a microprocessor based control system that allows direct connection of a PV panel to a variable speed compressor. This second innovation also allowed peak power-point tracking from the PV panel and elimination of batteries from the system. First a laboratory unit was developed to prove the concept and then a commercial unit was produced and deployed in a field test. The laboratory unit was used to test many different configurations including thermoelectric, Stirling and vapor compression cooling systems. The final configuration used a vapor compression cooling cycle, vacuum insulation, a passive condenser, an integral evaporator/ thermal storage tank, two 77 watt PV panels and the novel controller mentioned above. The system's only moving part was the variable speed BD35 compressor made by Danfoss. The 365 liter cabinet stayed cold with as little as 274 watt-hours per day average PV power. Battery-free testing was conducted for several months with very good results. The amount of thermal storage, size of compressor and power of PV panels connected can all be adjusted to optimize the design for a given application and climate. In the commercial unit, the high cost of the vacuum insulated refrigerator cabinet and the stainless steel thermal storage tank were addressed in an effort to make the technology commercially viable. This unit started with a 142 liter, mass-produced chest freezer cabinet that had the evaporator integrated into its inner walls

  3. Electrochemical Model for Ionic Liquid Electrolytes in Lithium Batteries

    International Nuclear Information System (INIS)

    Yoo, Kisoo; Deshpande, Anirudh; Banerjee, Soumik; Dutta, Prashanta

    2015-01-01

    ABSTRACT: Room temperature ionic liquids are considered as potential electrolytes for high performance and safe lithium batteries due to their very low vapor pressure and relatively wide electrochemical and thermal stability windows. Unlike organic electrolytes, ionic liquid electrolytes are molten salts at room temperature with dissociated cations and anions. These dissociated ions interfere with the transport of lithium ions in lithium battery. In this study, a mathematical model is developed for transport of ionic components to study the performance of ionic liquid based lithium batteries. The mathematical model is based on a univalent ternary electrolyte frequently encountered in ionic liquid electrolytes of lithium batteries. Owing to the very high concentration of components in ionic liquid, the transport of lithium ions is described by the mutual diffusion phenomena using Maxwell-Stefan diffusivities, which are obtained from atomistic simulation. The model is employed to study a lithium-ion battery where the electrolyte comprises ionic liquid with mppy + (N-methyl-N-propyl pyrrolidinium) cation and TFSI − (bis trifluoromethanesulfonyl imide) anion. For a moderate value of reaction rate constant, the electric performance results predicted by the model are in good agreement with experimental data. We also studied the effect of porosity and thickness of separator on the performance of lithium-ion battery using this model. Numerical results indicate that low rate of lithium ion transport causes lithium depleted zone in the porous cathode regions as the porosity decreases or the length of the separator increases. The lithium depleted region is responsible for lower specific capacity in lithium-ion cells. The model presented in this study can be used for design of optimal ionic liquid electrolytes for lithium-ion and lithium-air batteries

  4. 76 FR 18194 - Notice of Patent Application Deadline for Advanced Battery Technology Related Patents for...

    Science.gov (United States)

    2011-04-01

    .... ARL 01-37--Choosing Electrolytes for Lithium/Air Batteries (US 7,585,579). 2. ARL 02-06--Solvent...--High Capacity Metal/Air Battery. Filed with USPTO on 4/1/2009 (S/N 12/416,309). 7. ARL 08-15.... ARL 09-33--Pure LiBOB Salt & Purification Process. Filed with USPTO on 10/27/10 (S/N 61/407,153). 12...

  5. A Novel RFID Sensing System Using Enhanced Surface Wave Technology for Battery Exchange Stations

    Directory of Open Access Journals (Sweden)

    Yeong-Lin Lai

    2014-01-01

    Full Text Available This paper presents a novel radio-frequency identification (RFID sensing system using enhanced surface wave technology for battery exchange stations (BESs of electric motorcycles. Ultrahigh-frequency (UHF RFID technology is utilized to automatically track and manage battery and user information without manual operation. The system includes readers, enhanced surface wave leaky cable antennas (ESWLCAs, coupling cable lines (CCLs, and small radiation patches (SRPs. The RFID sensing system overcomes the electromagnetic interference in the metallic environment of a BES cabinet. The developed RFID sensing system can effectively increase the efficiency of BES operation and promote the development of electric vehicles which solve the problem of air pollution as well as protect the environment of the Earth.

  6. Electric Vehicle Battery Challenge

    Science.gov (United States)

    Roman, Harry T.

    2014-01-01

    A serious drawback to electric vehicles [batteries only] is the idle time needed to recharge their batteries. In this challenge, students can develop ideas and concepts for battery change-out at automotive service stations. Such a capability would extend the range of electric vehicles.

  7. An Advanced HIL Simulation Battery Model for Battery Management System Testing

    DEFF Research Database (Denmark)

    Barreras, Jorge Varela; Fleischer, Christian; Christensen, Andreas Elkjær

    2016-01-01

    Developers and manufacturers of battery management systems (BMSs) require extensive testing of controller Hardware (HW) and Software (SW), such as analog front-end and performance of generated control code. In comparison with the tests conducted on real batteries, tests conducted on a state......-of-the-art hardware-in-the-loop (HIL) simulator can be more cost and time effective, easier to reproduce, and safer beyond the normal range of operation, especially at early stages in the development process or during fault insertion. In this paper, an HIL simulation battery model is developed for purposes of BMS...... testing on a commercial HIL simulator. A multicell electrothermal Li-ion battery (LIB) model is integrated in a system-level simulation. Then, the LIB system model is converted to C code and run in real time with the HIL simulator. Finally, in order to demonstrate the capabilities of the setup...

  8. Portable diffusion battery. It's application to measuring aerosol size characteristics

    International Nuclear Information System (INIS)

    Sinclair, D.

    1972-01-01

    A miniature portable cluster-tube diffusion battery for measurement of the size and size distribution of submicron aerosols (1-100 nm) is described. A series of commercially available Collimated Holes Structures are mounted in sleeves with O-rings so that aerosol penetration can be measured at a number of outlets along the series. The CHS are stainless-steel discs of several different diameters and thicknesses, containing a large number of nearly circular holes. The actual length of the apparatus is about 2 ft but the equivalent length is 3.25 mi. Calculated curves of penetration versus particle size are used to evaluate size distribution and show that the equivalent size frequently reported from one measurement with a rectangular diffusion battery is practically meaningless. The value depends as much on the characteristics and mode of the operation of the diffusion battery as on the aerosol; the longer the battery and the lower the air flow, the greater the equivalent size will appear to be. Graphical plots of the cumulative size distribution of room aerosol and silver aerosol are illustrated for large battery and miniature battery measurements and appear to be in close agreement. Measurements on radon daughters in uranium mines with the miniature batteries show activity median diameters from 0.1 to 0.17 micron, with standard deviations from 2 to 4. Two similar measurements made in the laboratory on room air tagged with about 50 pCi/l radon daughters show activity median diameters of 0.15 and 0.17 micron, with geometric standard deviations of 2.2 and 2.6, respectively

  9. Ionic liquids and derived materials for lithium and sodium batteries.

    Science.gov (United States)

    Yang, Qiwei; Zhang, Zhaoqiang; Sun, Xiao-Guang; Hu, Yong-Sheng; Xing, Huabin; Dai, Sheng

    2018-03-21

    The ever-growing demand for advanced energy storage devices in portable electronics, electric vehicles and large scale power grids has triggered intensive research efforts over the past decade on lithium and sodium batteries. The key to improve their electrochemical performance and enhance the service safety lies in the development of advanced electrode, electrolyte, and auxiliary materials. Ionic liquids (ILs) are liquids consisting entirely of ions near room temperature, and are characterized by many unique properties such as ultralow volatility, high ionic conductivity, good thermal stability, low flammability, a wide electrochemical window, and tunable polarity and basicity/acidity. These properties create the possibilities of designing batteries with excellent safety, high energy/power density and long-term stability, and also provide better ways to synthesize known materials. IL-derived materials, such as poly(ionic liquids), ionogels and IL-tethered nanoparticles, retain most of the characteristics of ILs while being endowed with other favourable features, and thus they have received a great deal of attention as well. This review provides a comprehensive review of the various applications of ILs and derived materials in lithium and sodium batteries including Li/Na-ion, dual-ion, Li/Na-S and Li/Na-air (O 2 ) batteries, with a particular emphasis on recent advances in the literature. Their unique characteristics enable them to serve as advanced resources, medium, or ingredient for almost all the components of batteries, including electrodes, liquid electrolytes, solid electrolytes, artificial solid-electrolyte interphases, and current collectors. Some thoughts on the emerging challenges and opportunities are also presented in this review for further development.

  10. A new rechargeable sodium battery utilizing reversible topotactic oxygen extraction/insertion of CaFeO(z) (2.5 ≤ z ≤ 3) in an organic electrolyte.

    Science.gov (United States)

    Hibino, Mitsuhiro; Harimoto, Ryuji; Ogasawara, Yoshiyuki; Kido, Ryota; Sugahara, Akira; Kudo, Tetsuichi; Tochigi, Eita; Shibata, Naoya; Ikuhara, Yuichi; Mizuno, Noritaka

    2014-01-08

    At present, significant research efforts are being devoted both to identifying means of upgrading existing batteries, including lithium ion types, and also to developing alternate technologies, such as sodium ion, metal-air, and lithium-sulfur batteries. In addition, new battery systems incorporating novel electrode reactions are being identified. One such system utilizes the reaction of electrolyte ions with oxygen atoms reversibly extracted and reinserted topotactically from cathode materials. Batteries based on this system allow the use of various anode materials, such as lithium and sodium, without the requirement to develop new cathode intercalation materials. In the present study, this concept is employed and a new battery based on a CaFeO3 cathode with a sodium anode is demonstrated.

  11. 3-D Nanofilm Primary Li Air Battery, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA requires a new primary battery capable of providing specific energy exceeding 2000Wh/kg over an operating temperature range of 0oC to 35oC with a shelf life...

  12. Recycling of battery brownstone. Recycling von Batteriebraunstein

    Energy Technology Data Exchange (ETDEWEB)

    Pfeiffer, T

    1987-02-05

    The author analyzed three processes for treating brownstone from spent, Mg-O-containing batteries. Wet chemical processing in H/sub 2/SO/sub 4/ resulted in a gamma-MnO/sub 2/ with an oxidation rate > 1.95 at a discharge capacity of 280 mAh/g. The Hg concentration of the product brownstone was reduced to < 0.05% by adding chlorate to the acid. Drawbacks are the low bulk weight of MnO/sub 2/ and the acid product solution which contains Fe, Hg, Zn, and K which requires further processing. In the second process, the battery mass was separated into manganese/graphite and zinc in a fluidized bed with SO/sub 2//air/gas mixtures. Mercury is expelled at reaction temperature. In the third process, slurries of battery material and water were converted in a wet chemical process by blowing SO/sub 2//O/sub 2/ (air) gas mixtures into the slurry. The products were coarse-grained and similar to the fluidized-bed products except for the lower MgO/sub 2/ oxidation rate. Here, too, an acid solution containing metal ions was obtained . (orig./MM)

  13. Batteries 2020 – Lithium - ion battery first and second life ageing, validated battery models, lifetime modelling and ageing assessment of thermal parameters

    DEFF Research Database (Denmark)

    Timmermans, Jean-Marc; Nikolian, Alexandros; De Hoog, Joris

    2016-01-01

    The European Project “Batteries 2020” unites nine partners jointly working on research and the development of competitive European automotive batteries. The project aims at increasing both the energy density and lifetime of large format pouch lithium-ion batteries towards the goals targeted...... vehicle application. These batteries are still operational and suitable to less restrictive conditions, such as those for stationary and renewable energy application. Therefore, possible second life opportunities have been identified and further assessed. In this paper, the main ageing effects of lithium...... ion batteries are explained. Next, an overview of different validated battery models will be discussed. Finally, a methodology for assessing the performance of the battery cells in a second life application is presented....

  14. Research, development, and demonstration of lead-acid batteries for electric-vehicle propulsion. Annual report, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    The first development effort in improving lead-acid batteries fore electric vehicles was the improvement of electric vehicle batteries using flat pasted positive plates and the second was for a tubular long life positive plate. The investigation of 32 component variables based on a flat pasted positive plate configuration is described. The experiment tested 96 - six volt batteries for characterization at 0, 25, and 40/sup 0/C and for cycle life capability at the 3 hour discharge rate with a one cycle, to 80% DOD, per day regime. Four positive paste formulations were selected. Two commercially available microporous separators were used in conjunction with a layer of 0.076 mm thick glass mat. Two concentrations of battery grade sulfuric acid were included in the test to determine if an increase in concentration would improve the battery capacity sufficient to offset the added weight of the more concentrated solution. Two construction variations, 23 plate elements with outside negative plates and 23 plate elements with outside positive plates, were included. The second development effort was an experiment designed to study the relationship of 32 component variables based on a tubular positive plate configuration. 96-six volt batteries were tested at various discharge rates at 0, 25, and 40/sup 0/C along with cycle life testing at 80% DOD of the 3 hour rate. 75 batteries remain on cycle life testing with 17 batteries having in excess of 365 life cycles. Preliminary conclusions indicate: the tubular positive plate is far more capable of withstanding deep cycles than is the flat pasted plate; as presently designed 40 Whr/kg can not be achieved, since 37.7 Whr/kg was the best tubular data obtained; electrolyte circulation is impaired due to the tight element fit in the container; and a redesign is required to reduce the battery weight which will improve the Whr/kg value. This redesign is complete and new molds have been ordered.

  15. Research, development, and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    The progress and status of Eltra's Electric Vehicle Battery Program during FY-80 are presented under five divisional headings: Research on Components and Processes; Development of Cells and Modules for Electric Vehicle Propulsion; Sub-Systems; Pilot Line Production of Electric Vehicle Battery Prototypes; and Program Management.

  16. Transient thermal analysis of a lithium-ion battery pack comparing different cooling solutions for automotive applications

    International Nuclear Information System (INIS)

    De Vita, Armando; Maheshwari, Arpit; Destro, Matteo; Santarelli, Massimo; Carello, Massimiliana

    2017-01-01

    Highlights: •An experimental set-up is designed and developed for thermal characterization of a Li-ion battery. •Heat generation and internal resistance profile at various C-rates (1C, 2C, 5C and 8C) are studied. •Heat entropic coefficient and internal resistance determination with temperature dependence were performed. •A battery thermal model is developed and used in a CFD-3D software for cooling methods analysis. -- Abstract: This paper presents a computational modeling approach to characterize the internal temperature distribution within a Li-Ion battery pack. In the mathematical formulation both entropy-based and irreversible-based heat generation have been considered; combined with CFD software in order to simulate the temperature distribution and evolution in a battery pack. A prismatic Li-ion phosphate battery is tested under constant current discharge/charge rates of 1C, 2C, 5C and 8C. Model parameters (in particular, the entropic heat coefficient and the internal resistance) needed for the calibration of the model are determined using experimentation. The model is then used to simulate two different strategies for the thermal control of a battery pack in case of car application: an air-cooling and a liquid-cooling strategy. The simulation has highlighted the pros and cons of the two strategies, allowing a good understanding of the needs during the process of battery pack design and production.

  17. Development of a Woven-Grid Quasi-BiPolar Battery

    National Research Council Canada - National Science Library

    Tokumaru, P

    1998-01-01

    .... Even so, quasi-bipolar batteries can be designed, with ten times better thermal uniformity, that meet or exceed current state of the art hybrid electric vehicle battery pack performance, even using...

  18. Trends in Cardiac Pacemaker Batteries

    Directory of Open Access Journals (Sweden)

    Venkateswara Sarma Mallela

    2004-10-01

    Full Text Available Batteries used in Implantable cardiac pacemakers-present unique challenges to their developers and manufacturers in terms of high levels of safety and reliability. In addition, the batteries must have longevity to avoid frequent replacements. Technological advances in leads/electrodes have reduced energy requirements by two orders of magnitude. Micro-electronics advances sharply reduce internal current drain concurrently decreasing size and increasing functionality, reliability, and longevity. It is reported that about 600,000 pacemakers are implanted each year worldwide and the total number of people with various types of implanted pacemaker has already crossed 3 million. A cardiac pacemaker uses half of its battery power for cardiac stimulation and the other half for housekeeping tasks such as monitoring and data logging. The first implanted cardiac pacemaker used nickel-cadmium rechargeable battery, later on zinc-mercury battery was developed and used which lasted for over 2 years. Lithium iodine battery invented and used by Wilson Greatbatch and his team in 1972 made the real impact to implantable cardiac pacemakers. This battery lasts for about 10 years and even today is the power source for many manufacturers of cardiac pacemakers. This paper briefly reviews various developments of battery technologies since the inception of cardiac pacemaker and presents the alternative to lithium iodine battery for the near future.

  19. An Approach for Designing Thermal Management Systems for Electric and Hybrid Vehicle Battery Packs

    International Nuclear Information System (INIS)

    Pesaran, Ahmad A.; Keyser, Matthew; Burch, Steve

    1999-01-01

    If battery packs for electric vehicles (EVs) and hybrid electric vehicles (HEVs) are to operate effectively in all climates, thermal management of the packs is essential. In this paper, we will review a systematic approach for designing and evaluating battery pack thermal management systems. A thermal management system using air as the heat transfer medium is less complicated than a system using liquid cooling/heating. Generally, for parallel HEVs, an air thermal management system is adequate, whereas for EVs and series HEVs, liquid-based systems may be required for optimum thermal performance. Further information on battery thermal management can be found on the Web site www.ctts.nrel.gov/BTM

  20. AIR for Javascript Developers Pocket Guide

    CERN Document Server

    Chambers, Mike; Hoyt, Kevin; Georgita, Dragos

    2009-01-01

    This book is the official guide to Adobe ® AIR[TM], written by members of the AIR team. With Adobe AIR, web developers can use technologies like HTML and JavaScript to build and deploy web applications to the desktop. Packed with examples, this book explains how AIR works and features recipes for performing common runtime tasks. Part of the Adobe Developer Library, this concise pocket guide explains: What Adobe AIR is, and the problems this runtime aims to solveHow to set up your development environmentThe HTML and JavaScript environments within AIRHow to create your first AIR application

  1. Research, development, and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    The initial phase of work comprises three factorial experiments to evaluate a variety of component combinations. Goals to be met by these batteries include the following: capacity at 3 h discharge, 20 to 30 kWh; specific energy, 40 Wh/kg; specific power, 1000 W/kg for 15 s; cycle life, 800 cycles to 80% depth; price, $50/kWh. The status of the factorial experiments is reviewed. The second phase of work, design of an advanced battery, has the following goals: 30 to 40 kWh; 60 Wh/kg; 150 W/kg for 15 s; 1000 cycles to 80% depth; $40/kWh. It is not yet possible to say whether these goals can be met. Numerous approaches are under study to increase the utilization of battery chemicals. A battery design with no live electrical connection above the battery is being developed. 52 figures, 52 tables. (RWR)

  2. Development and Testing of an UltraBattery-Equipped Honda Civic

    Energy Technology Data Exchange (ETDEWEB)

    Donald Karner

    2012-04-01

    The UltraBattery retrofit project DP1.8 and Carbon Enriched project C3, performed by ECOtality North America (ECOtality) and funded by the U.S. Department of Energy (DOE) and the Advanced Lead Acid Battery Consortium (ALABC), are to demonstrate the suitability of advanced lead battery technology in Hybrid Electrical Vehicles (HEVs).

  3. University of Arizona Compressed Air Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Joseph [Univ. of Arizona, Tucson, AZ (United States); Muralidharan, Krishna [Univ. of Arizona, Tucson, AZ (United States)

    2012-12-31

    Boiled down to its essentials, the grant’s purpose was to develop and demonstrate the viability of compressed air energy storage (CAES) for use in renewable energy development. While everyone agrees that energy storage is the key component to enable widespread adoption of renewable energy sources, the development of a viable scalable technology has been missing. The Department of Energy has focused on expanded battery research and improved forecasting, and the utilities have deployed renewable energy resources only to the extent of satisfying Renewable Portfolio Standards. The lack of dispatchability of solar and wind-based electricity generation has drastically increased the cost of operation with these components. It is now clear that energy storage coupled with accurate solar and wind forecasting make up the only combination that can succeed in dispatchable renewable energy resources. Conventional batteries scale linearly in size, so the price becomes a barrier for large systems. Flow batteries scale sub-linearly and promise to be useful if their performance can be shown to provide sufficient support for solar and wind-base electricity generation resources. Compressed air energy storage provides the most desirable answer in terms of scalability and performance in all areas except efficiency. With the support of the DOE, Tucson Electric Power and Science Foundation Arizona, the Arizona Research Institute for Solar Energy (AzRISE) at the University of Arizona has had the opportunity to investigate CAES as a potential energy storage resource.

  4. Practical Methods in Li-ion Batteries

    DEFF Research Database (Denmark)

    Barreras, Jorge Varela

    This thesis presents, as a collection of papers, practical methods in Li-ion batteries for simplified modeling (Manuscript I and II), battery electric vehicle design (III), battery management system testing (IV and V) and balancing system control (VI and VII). • Manuscript I tackles methodologies...... to parameterize battery models based solely on manufacturer’s datasheets • Manuscript II presents a parameterization method for battery models based on the notion of direct current resistance • Manuscript III proposes a battery electric vehicle design that combines fixed and swappable packs • Manuscript IV...... develops a battery system model for battery management system testing on a hardware-in-the-loop simulator • Manuscript V extends the previous work, introducing theoretical principles and presenting a practical method to develop ad hoc software and strategies for testing • Manuscript VI presents...

  5. Development of high-capacity nickel-metal hydride batteries using superlattice hydrogen-absorbing alloys

    Science.gov (United States)

    Yasuoka, Shigekazu; Magari, Yoshifumi; Murata, Tetsuyuki; Tanaka, Tadayoshi; Ishida, Jun; Nakamura, Hiroshi; Nohma, Toshiyuki; Kihara, Masaru; Baba, Yoshitaka; Teraoka, Hirohito

    New R-Mg-Ni (R: rare earths) superlattice alloys with higher-capacity and higher-durability than the conventional Mm-Ni alloys with CaCu 5 structure have been developed. The oxidation resistibility of the superlattice alloys has been improved by optimizing the alloy composition by such as substituting aluminum for nickel and optimizing the magnesium content in order to prolong the battery life. High-capacity nickel-metal hydride batteries for the retail market, the Ni-MH2500/900 series (AA size type 2500 mAh, AAA size type 900 mAh), have been developed and commercialized by using an improved superlattice alloy for negative electrode material.

  6. Microporous polyethylene separators — today and tomorrow. Separator development trends for modern automotive batteries

    Science.gov (United States)

    Böhnstedt, Werner

    During the past decade, the design of modern automotive batteries has undergone a fundamental change. The introduction of microporous polyethylene pocket separators has resulted in an approximately 8% better volume utilization. Besides increasing the energy density, the polyethylene envelope has enalbed an improvement in cold-cranking performance and has raised the production efficiency. A first failure-mode analysis of pocket-separated automotive batteries in Europe with respect to leaf separation is presented. For comparable service life, a shift in failure mode has been found. Although corrosion of the positive electrode still dominates, a significant increase in positive active-material shedding is noted. This is certainly a consequence of the general trend towards lower antimony contents. Shorting through the separator is only found in cases of severe battery mistreatment. This positive, intermediary result is supplemented by an outlook on emerging development trends. Future automotive batteries will experience elevated operating temperatures, higher cycling loads, and maintenance freedom. Battery tests at temperatures up to 75 °C with various alloy combinations show that the hybrid design is best suited to meet the expected requirements. Microporous polyethylene pocket separation is not expected to be a limiting factor; the trend to lower antimony alloy content and increased cycling load will demonstrate the advantage of this separation even more clearly than in the past. Optimization of the already achieved, balanced separator characteristics profile with the reference parameters of electrical performance, water loss, durability and machinability will stimulate further development work.

  7. Enhanced Cycling Stability of Rechargeable Li-O2 Batteries Using High Concentration Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bin; Xu, Wu; Yan, Pengfei; Sun, Xiuliang; Bowden, Mark E.; Read, Jeffrey; Qian, Jiangfeng; Mei, Donghai; Wang, Chong M.; Zhang, Jiguang

    2016-01-26

    The electrolyte stability against reactive reduced-oxygen species is crucial for the development of rechargeable Li-O2 batteries. In this work, we systematically investigated the effect of lithium salt concentration in 1,2-dimethoxyethane (DME)-based electrolytes on the cycling stability of Li-O2 batteries. Cells with high concentration electrolyte illustrate largely enhanced cycling stability under both the full discharge/charge (2.0-4.5 V vs. Li/Li+) and the capacity limited (at 1,000 mAh g-1) conditions. These cells also exhibit much less reaction-residual on the charged air electrode surface, and much less corrosion to the Li metal anode. The density functional theory calculations are conducted on the molecular orbital energies of the electrolyte components and the Gibbs activation barriers for superoxide radical anion to attack DME solvent and Li+-(DME)n solvates. In a highly concentrated electrolyte, all DME molecules have been coordinated with salt and the C-H bond scission of a DME molecule becomes more difficult. Therefore, the decomposition of highly concentrated electrolyte in a Li-O2 battery can be mitigated and both air-cathodes and Li-metal anodes exhibits much better reversibility. As a results, the cyclability of Li-O2 can be largely improved.

  8. NASA's Exploration Technology Development Program Energy Storage Project Battery Technology Development

    Science.gov (United States)

    Reid, Concha M.; Miller, Thomas B.; Mercer, Carolyn R.; Jankovsky, Amy L.

    2010-01-01

    Technical Interchange Meeting was held at Saft America s Research and Development facility in Cockeysville, Maryland on Sept 28th-29th, 2010. The meeting was attended by Saft, contractors who are developing battery component materials under contracts awarded through a NASA Research Announcement (NRA), and NASA. This briefing presents an overview of the components being developed by the contractor attendees for the NASA s High Energy (HE) and Ultra High Energy (UHE) cells. The transition of the advanced lithium-ion cell development project at NASA from the Exploration Technology Development Program Energy Storage Project to the Enabling Technology Development and Demonstration High Efficiency Space Power Systems Project, changes to deliverable hardware and schedule due to a reduced budget, and our roadmap to develop cells and provide periodic off-ramps for cell technology for demonstrations are discussed. This meeting gave the materials and cell developers the opportunity to discuss the intricacies of their materials and determine strategies to address any particulars of the technology.

  9. Development of high temperature secondary Li-Al/FeS/sub x/ batteries at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Battles, J E; Gay, E C; Steunenberg, R K; Barney, D L

    1980-01-01

    A general introduction to the battery program is given first. Subsequent sections discuss cell development, results of cell testing, and materials and component development - electrical feedthrough, electrode separators, materials for current collectors, and post-test cell examination (cell failure mechanisms, copper deposition in electrode separators, lithium gradient in negative electrodes). The Mark IA battery developed a short circuit in one of the modules that resulted in complete failure of the module; the other module was unaffected. 10 tables. (RWR)

  10. Impact of the Air-Conditioning System on the Power Consumption of an Electric Vehicle Powered by Lithium-Ion Battery

    Directory of Open Access Journals (Sweden)

    Brahim Mebarki

    2013-01-01

    Full Text Available The car occupies the daily universe of our society; however, noise pollution, global warming gas emissions, and increased fuel consumption are constantly increasing. The electric vehicle is one of the recommended solutions by the raison of its zero emission. Heating and air-conditioning (HVAC system is a part of the power system of the vehicle when the purpose is to provide complete thermal comfort for its occupants, however it requires far more energy than any other car accessory. Electric vehicles have a low-energy storage capacity, and HVAC may consume a substantial amount of the total energy stored, considerably reducing the vehicle range, which is one of the most important parameters for EV acceptability. The basic goal of this paper is to simulate the air-conditioning system impact on the power energy source of an electric vehicle powered by a lithium-ion battery.

  11. Advanced state prediction of lithium-ion traction batteries in hybrid and battery electric vehicle applications

    Energy Technology Data Exchange (ETDEWEB)

    Jadidi, Yasser

    2011-07-01

    Automotive power trains with high energy efficiencies - particularly to be found in battery and hybrid electric vehicles - find increasing attention in the focus of reduction of exhaust emissions and increase of mileage. The underlying concept, the electrification of the power train, is subject to the traction battery and its battery management system since the capability of the battery permits and restricts electric propulsion. Consequently, the overall vehicle efficiency and in particular the operation strategy performance strongly depends on the quality of information about the battery. Besides battery technology, the key challenges are given by both the accurate prediction of battery behaviour and the electrochemical battery degradation that leads to power and capacity fade of the traction battery. This book provides the methodology for development of a battery state monitoring and prediction algorithm for application in a battery management system that accounts for the effects of electrochemical degradation. (orig.)

  12. Developing New Electrolytes for Advanced Li-ion Batteries

    Science.gov (United States)

    McOwen, Dennis Wayne

    The use of renewable energy sources is on the rise, as new energy generating technologies continue to become more efficient and economical. Furthermore, the advantages of an energy infrastructure which relies more on sustainable and renewable energy sources are becoming increasingly apparent. The most readily available of these renewable energy sources, wind and solar energy in particular, are naturally intermittent. Thus, to enable the continued expansion and widespread adoption of renewable energy generating technology, a cost-effective energy storage system is essential. Additionally, the market for electric/hybrid electric vehicles, which both require efficient energy storage, continues to grow as more consumers seek to reduce their consumption of gasoline. These vehicles, however, remain quite expensive, due primarily to costs associated with storing the electrical energy. High-voltage and thermally stable Li-ion battery technology is a promising solution for both grid-level and electric vehicle energy storage. Current limitations in materials, however, limit the energy density and safe operating temperature window of the battery. Specifically, the state-of-the-art electrolyte used in Li-ion batteries is not compatible with recently developed high-voltage positive electrodes, which are one of the most effectual ways of increasing the energy density. The electrolyte is also thermally unstable above 50 °C, and prone to thermal runaway reaction if exposed to prolonged heating. The lithium salt used in such electrolytes, LiPF6, is a primary contributor to both of these issues. Unfortunately, an improved lithium salt which meets the myriad property requirements for Li-ion battery electrolytes has eluded researchers for decades. In this study, a renewed effort to find such a lithium salt was begun, using a recently developed methodology to rapidly screen for desirable properties. Four new lithium salts and one relatively new but uncharacterized lithium salt were

  13. Both hydrogen and electricity chargeable battery; Suiso to denki de juden kanona denchi kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    Kuriyama group of the Osaka Industrial Research Institute developed a new air-metallic hydride battery that is chargeable by both electricity and hydrogen gas. The battery uses a hydrogen storage alloy as the negative pole and uses active carbon coated with platinum as the positive pole. Potassium hydroxide aqueous solution is used as the electrolyte, and a space is arranged in the negative pole for contacting and absorbing the hydrogen with a good efficiency. The key point is the development of the hydride for energy storage that can well absorbs the hydrogen gas even it is dampened by the electrolyte. And the pole is prepared by pulverized the particles of rare earth hydrogen storage alloy having the particle size smaller than 150 micron meter, forming a Ni layer for a catalyst to absorb hydrogen, adding fluorinated resin dispersant for the sake of repellency and forming a sheet. In a test running, a half of hydrogen storage capacity is realized by charging for 30 minutes. And, 0.6 V electricity of 10 mA per unit pole area of 1cm{sup 2} is continuously obtained for 17 hours during discharging. While a third electrode is formed by nickel hydroxide, the battery is chargeable and dischargeable as the same as nickel hydrogen battery. Low cost and small size can be expected by a combination of respectively prepared fuel battery with nickel hydrogen battery. (translated by NEDO)

  14. Research and development of advanced batteries and supercapacitors at the CSIR

    CSIR Research Space (South Africa)

    Ozoemena, KI

    2015-10-01

    Full Text Available such materials as part of efforts to advance the development of manganese oxide-based lithium-ion batteries and supercapacitors for electric vehicles, portable electronics, home and grid-scale storage. South Africa is richly endowed with the key raw materials...

  15. International Space Station Lithium-Ion Battery

    Science.gov (United States)

    Dalton, Penni J.; Schwanbeck, Eugene; North, Tim; Balcer, Sonia

    2016-01-01

    The International Space Station (ISS) primary Electric Power System (EPS) currently uses Nickel-Hydrogen (Ni-H2) batteries to store electrical energy. The electricity for the space station is generated by its solar arrays, which charge batteries during insolation for subsequent discharge during eclipse. The Ni-H2 batteries are designed to operate at a 35 depth of discharge (DOD) maximum during normal operation in a Low Earth Orbit. Since the oldest of the 48 Ni-H2 battery Orbital Replacement Units (ORUs) has been cycling since September 2006, these batteries are now approaching their end of useful life. In 2010, the ISS Program began the development of Lithium-Ion (Li-Ion) batteries to replace the Ni-H2 batteries and concurrently funded a Li-Ion ORU and cell life testing project. When deployed, they will be the largest Li-Ion batteries ever utilized for a human-rated spacecraft. This paper will include an overview of the ISS Li-Ion battery system architecture, the Li-Ion battery design and development, controls to limit potential hazards from the batteries, and the status of the Li-Ion cell and ORU life cycle testing.

  16. Aluminum-based metal-air batteries

    Science.gov (United States)

    Friesen, Cody A.; Martinez, Jose Antonio Bautista

    2016-01-12

    Provided in one embodiment is an electrochemical cell, comprising: (i) a plurality of electrodes, comprising a fuel electrode that comprises aluminum and an air electrode that absorbs gaseous oxygen, the electrodes being operable in a discharge mode wherein the aluminum is oxidized at the fuel electrode and oxygen is reduced at the air electrode, and (ii) an ionically conductive medium, comprising an organic solvent; wherein during non-use of the cell, the organic solvent promotes formation of a protective interface between the aluminum of the fuel electrode and the ionically conductive medium, and wherein at an onset of the discharge mode, at least some of the protective interface is removed from the aluminum to thereafter permit oxidation of the aluminum during the discharge mode.

  17. A newly developed grab sampling system for collecting stratospheric air over Antarctica

    Directory of Open Access Journals (Sweden)

    Hideyuki Honda

    1996-07-01

    Full Text Available In order to measure the concentrations of various minor constituents and their isotopic ratios in the stratosphere over Antarctica, a simple grab sampling system was newly developed. The sampling system was designed to be launched by a small number of personnel using a rubber balloon under severe experimental conditions. Special attention was paid to minimize the contamination of sample air, as well as to allow easy handling of the system. The sampler consisted mainly of a 15l sample container with electromagnetic and manual valves, control electronics for executing the air sampling procedures and sending the position and status information of the sampler to the ground station, batteries and a transmitter. All these parts were assembled in an aluminum frame gondola with a shock absorbing system for landing. The sampler was equipped with a turn-over mechanism of the gondola to minimize contamination from the gondola, as well as with a GPS receiver and a rawinsonde for its tracking. Total weight of the sampler was about 11kg. To receive, display and store the position and status data of the sampling system at the ground station, a simple data acquisition system with a portable receiver and a microcomputer was also developed. A new gas handling system was prepared to simplify the injection of He gas into the balloon. For air sampling experiments, three sampling systems were launched at Syowa Station (69°00′S, 39°35′E, Antarctica and then recovered on sea ice near the station on January 22 and 25,1996.

  18. An averaging battery model for a lead-acid battery operating in an electric car

    Science.gov (United States)

    Bozek, J. M.

    1979-01-01

    A battery model is developed based on time averaging the current or power, and is shown to be an effective means of predicting the performance of a lead acid battery. The effectiveness of this battery model was tested on battery discharge profiles expected during the operation of an electric vehicle following the various SAE J227a driving schedules. The averaging model predicts the performance of a battery that is periodically charged (regenerated) if the regeneration energy is assumed to be converted to retrievable electrochemical energy on a one-to-one basis.

  19. Non-steady experimental investigation on an integrated thermal management system for power battery with phase change materials

    International Nuclear Information System (INIS)

    Shi, Shang; Xie, Yongqi; Li, Ming; Yuan, Yanping; Yu, Jianzu; Wu, Hongwei; Liu, Bin; Liu, Nan

    2017-01-01

    Highlights: • An integrated thermal management system for power battery is designed. • The battery temperature rise is a non-steady process for charge and discharge. • A mathematical model can accurately represent temperature rise characteristics. • The heat generation power of the battery is calculated theoretically. • The excess temperatures and thermal resistances affect the system performance. - Abstract: A large amount of heat inside the power battery must be dissipated to maintain the temperature in a safe range for the hybrid power train during high-current charging/discharging processes. In this article, a combined experimental and theoretical study has been conducted to investigate a newly designed thermal management system integrating phase change material with air cooling. An unsteady mathematical model was developed for the battery with the integrated thermal management system. Meanwhile, the heat generation power, thermal resistance, and time constant were calculated. The effect of several control parameters, such as thermal resistance, initial temperature, melting temperature and ambient temperature, on the performance of the integrated thermal management system were analyzed. The results indicated that: (1) the calculated temperature rise of the battery was in good agreement with the experimental data. The appropriate operation temperature of the battery was attained by the action of the phase change storage energy unit which is composed of copper foam and n-Eicosane, (2) the remarkable decrease of the battery temperature can be achieved by reducing the convection thermal resistance or increasing the conductivity of the phase change storage energy unit, where the latter could be the better option due to no additional energy consumption. When convective resistance and thermal resistance between the battery surface and the phase change storage energy unit are less than 2.03 K/W and 1.85 K/W, respectively, the battery will not exceed the

  20. Development of diode junction nuclear battery using 63Ni

    International Nuclear Information System (INIS)

    Ulmen, B.; Miley, G.H.; Desai, P.D.; Moghaddam, S.; Masel, R.I.

    2009-01-01

    The diode junction nuclear battery is a long-lived, high-energy-density, but low electrical current power source with many specialized applications. In this type of battery, nuclear radiation is directly converted to electric power. A model is described and used to design the device configuration. Details of fabrication and testing of a planar geometry battery with 63 Ni radiation source are described. The electron beam induced current (EBIC) measurement technique and CASINO Monte Carlo simulation code were employed to analyze the device performance. Finally, an improved design with 3-dimensional surface microstructures that will provide improved performance is presented. (author)

  1. VRLA automotive batteries for stop&go and dual battery systems

    Science.gov (United States)

    May, G. J.; Calasanzio, D.; Aliberti, R.

    The electrical power requirements for vehicles are continuing to increase and evolve. A substantial amount of effort has been directed towards the development of 36/42 V systems as a route to higher power with reduced current levels but high implementation costs have resulted in the introduction of these systems becoming deferred. In the interim, however, alternator power outputs at 14 V are being increased substantially and at the same time the requirements for batteries are becoming more intensive. In particular, stop&go systems and wire-based vehicle systems are resulting in new demands. For stop&go, the engine is stopped each time the vehicle comes to rest and is restarted when the accelerator is pressed again. This results in an onerous duty cycle with many shallow discharge cycles. Flooded lead-acid batteries cannot meet this duty cycle and valve-regulated lead-acid (VRLA) batteries are needed to meet the demands that are applied. For wire-based systems, such as brake-by-wire or steer-by-wire, electrical power has become more critical and although the alternator and battery provide double redundancy, triple redundancy with a small reserve battery is specified. In this case, a small VRLA battery can be used and is optimised for standby service rather than for repeated discharges. The background to these applications is considered and test results under simulated operating conditions are discussed. Good performance can be obtained in batteries adapted for both applications. Battery management is also critical for both applications: in stop&go service, the state-of-charge (SOC) and state-of-health (SOH) need to be monitored to ensure that the vehicle can be restarted; for reserve or back-up batteries, the SOC and SOH are monitored to verify that the battery is always capable of carrying out the duty cycle if required. Practical methods of battery condition monitoring will be described.

  2. Alkaline sodium borohydride gel as a hydrogen source for PEMFC or an energy carrier for NaBH{sub 4}-air battery

    Energy Technology Data Exchange (ETDEWEB)

    Liu, B.H. [Department of Materials and Engineering, Zhejiang University (China); Li, Z.P.; Chen, L.L. [Department of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027 (China)

    2008-05-15

    In this preliminary study, we tried to use sodium polyacrylate as the super absorbent polymer to form alkaline NaBH{sub 4} gel and explored its possibilities for borohydride hydrolysis and borohydride electro-oxidation. It was found that the absorption capacity of sodium polyacrylate decreased with increasing NaBH{sub 4} concentration. The formed gel was rather stable in the sealed vessel but tended to slowly decompose in open air. Hydrogen generation from the gel was carried out using CoCl{sub 2} catalyst precursor solutions. Hydrogen generation rate from the alkaline NaBH{sub 4} gel was found to be higher and impurities in hydrogen were less than that from the alkaline NaBH{sub 4} solution. The NaBH{sub 4} gel also successfully powered a NaBH{sub 4}-air battery. (author)

  3. Assessment of high-temperature battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Sen, R K

    1989-02-01

    Three classes of high-temperature batteries are being developed internationally with transportation and stationary energy storage applications in mind: sodium/sulfur, lithium/metal sulfide, and sodium/metal chloride. Most attention is being given to the sodium/sulfur system. The Office of Energy Storage and Distribution (OESD) and the Office of Transportation Systems (OTS) of the US Department of Energy (DOE) are actively supporting the development of this battery system. It is anticipated that pilot-scale production facilities for sodium/sulfur batteries will be in operation in the next couple of years. The lithium/metal sulfide and the sodium/metal chloride systems are not receiving the same level of attention as the sodium/sulfur battery. Both of these systems are in an earlier stage of development than sodium/sulfur. OTS and OESD are supporting work on the lithium/iron sulfide battery in collaboration with the Electric Power Research Institute (EPRI); the work is being carried out at Argonne National Laboratory (ANL). The sodium/metal chloride battery, the newest member of the group, is being developed by a Consortium of South African and British companies. Very little DOE funds are presently allocated for research on this battery. The purpose of this assessment is to evaluate the present status of the three technologies and to identify for each technology a prioritized list of R and D issues. Finally, the assessment includes recommendations to DOE for a proposed high-temperature battery research and development program. 18 figs., 21 tabs.

  4. Technical feasibility for commercialization of lithium ion battery as a substitute dry battery for motorcycle

    Science.gov (United States)

    Kurniyati, Indah; Sutopo, Wahyudi; Zakaria, Roni; Kadir, Evizal Abdul

    2017-11-01

    Dry battery on a motorcycle has a rapid rate of voltage drop, life time is not too long, and a long charging time. These are problems for users of dry battery for motorcycle. When the rate in the voltage decreases, the energy storage in the battery is reduced, then at the age of one to two years of battery will be dead and cannot be used, it makes the user should replace the battery. New technology development of a motorcycle battery is lithium ion battery. Lithium ion battery has a specification that has been tested and possible to replace dry battery. Characteristics of lithium ion battery can answer the question on the dry battery service life, the rate of decrease in voltage and charging time. This paper discusses about the technical feasibility for commercialization of lithium ion battery for motorcycle battery. Our proposed methodology of technical feasibility by using a goldsmith commercialization model of the technical feasibility and reconfirm the technical standard using the national standard of motorcycle battery. The battery has been through all the stages of the technical feasibility of the goldsmith model. Based on the results of the study, lithium ion batteries have the minimum technical requirements to be commercialized and has been confirmed in accordance with the standard motorcycle battery. This paper results that the lithium ion battery is visible to commercialized by the technical aspect.

  5. Development of high-capacity nickel-metal hydride batteries using superlattice hydrogen-absorbing alloys

    International Nuclear Information System (INIS)

    Yasuoka, Shigekazu; Magari, Yoshifumi; Murata, Tetsuyuki; Tanaka, Tadayoshi; Ishida, Jun; Nakamura, Hiroshi; Nohma, Toshiyuki; Kihara, Masaru; Baba, Yoshitaka; Teraoka, Hirohito

    2006-01-01

    New R-Mg-Ni (R: rare earths) superlattice alloys with higher-capacity and higher-durability than the conventional Mm-Ni alloys with CaCu 5 structure have been developed. The oxidation resistibility of the superlattice alloys has been improved by optimizing the alloy composition by such as substituting aluminum for nickel and optimizing the magnesium content in order to prolong the battery life. High-capacity nickel-metal hydride batteries for the retail market, the Ni-MH2500/900 series (AA size type 2500mAh, AAA size type 900mAh), have been developed and commercialized by using an improved superlattice alloy for negative electrode material. alized by using an improved superlattice alloy for negative electrode material. (author)

  6. Nickel - iron battery. Nikkel - jern batteri

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, H. A.

    1989-03-15

    A newer type of nickel-iron battery, (SAFT 6v 230 Ah monobloc), which could possibly be used in relation to electrically driven light road vehicles, was tested. The same test methods used for lead batteries were utilized and results compared favourably with those reached during other testings carried out, abroad, on a SAFT nickle-iron battery and a SAB-NIFE nickel-iron battery. Description (in English) of the latter-named tests are included in the publication as is also a presentation of the SAFT battery. Testing showed that this type of battery did not last as long as had been expected, but the density of energy and effect was superior to lead batteries. However energy efficiency was rather poor in comparison to lead batteries and it was concluded that nickel-iron batteries are not suitable for stationary systems where recharging under a constant voltage is necessary. (AB).

  7. Fiscal 1999 report. Development of an electric power storage system using new type batteries, and development of a discrete type electric power storage technology (Survey on trend in developing batteries for electric power storage); 1999 nendo shingata denchi denryoku chozo system kaihatsu bunsangata denryoku chozo gijutsu kaihatsu hokokusho. Denryoku chozoyo denchi no kaihatsu doko chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Demand is increasing in recent years in Japan on batteries for electric power storage to respond to load variation in electric power supply. If electric power storage batteries are applied for practical use, nighttime excess power can be stored appropriately, which can be discharged during day time when the demand is increased, so that the demand variation can be handled adequately. Secondary batteries, if used, are characterized by having much greater energy density and output density because of storing the electric energy as chemical energy than in pumped-storage power generation which stores the energy as the positional energy of water. Therefore, this paper describes the surveys performed on the trend of developing the power storage batteries inside and outside the country. Section 1 shows the current status of annual load rates in other countries, and the current conception on power storage in these countries. Section 2 states the current status of practical application of power storage batteries having been developed in Germany and the U.S.A. and performed of demonstration tests. Section 3 reports the current status of developing new type power storage batteries. Section 4 describes the current status of developing the power storage batteries for power users. (NEDO)

  8. Review of material research and development for vanadium redox flow battery applications

    International Nuclear Information System (INIS)

    Parasuraman, Aishwarya; Lim, Tuti Mariana; Menictas, Chris; Skyllas-Kazacos, Maria

    2013-01-01

    The vanadium redox flow battery (VRB) is one of the most promising electrochemical energy storage systems deemed suitable for a wide range of renewable energy applications that are emerging rapidly to reduce the carbon footprint of electricity generation. Though the Generation 1 Vanadium redox flow battery (G1 VRB) has been successfully implemented in a number of field trials and demonstration projects around the world, it suffers from low energy density that limits its use to stationary applications. Extensive research is thus being carried out to improve its energy density and enhance its performance to enable mobile applications while simultaneously trying to minimize the cost by employing cost effective stack materials and effectively controlling the current operating procedures. The vast bulk of this research was conducted at the University of New South Wales (UNSW) in Sydney during the period 1985–2005, with a large number of other research groups contributing to novel membrane and electrode material development since then. This paper presents a historical overview of materials research and development for the VRB at UNSW, highlighting some of the significant findings that have contributed to improving the battery's performance over the years. Relevant work in this field by other research groups in recent times has also been reviewed and discussed

  9. Lithium-thionyl chloride batteries - past, present and future

    Energy Technology Data Exchange (ETDEWEB)

    McCartney, J.F.; Lund, T.J.; Sturgeon, W.J.

    1980-02-01

    Lithium based batteries have the highest theoretical energy density of known battery types. Of the lithium batteries, the lithium-thionyl chloride electrochemistry has the highest energy density of those which have been reduced to practice. The characteristics, development status, and performance of lithium-thionyl chloride batteries are treated in this paper. Safety aspects of lithium-thionyl chloride batteries are discussed along with impressive results of hazard/safety tests of these batteries. An orderly development plan of a minimum family of standard cells to avoid a proliferation of battery sizes and discharge rates is presented.

  10. Thermal battery for portable climate control

    International Nuclear Information System (INIS)

    Narayanan, Shankar; Li, Xiansen; Yang, Sungwoo; Kim, Hyunho; Umans, Ari; McKay, Ian S.; Wang, Evelyn N.

    2015-01-01

    Highlights: • ATB is adsorptive thermal battery delivering both heating and cooling via storage. • The novel design promotes transport and maximizes ATB performance. • A general theoretical framework is developed to analyze ATB performance. • NaX–water is used as the adsorbent–refrigerant pair as a specific case study. • The effect of key geometric parameters and operating conditions are presented. - Abstract: Current technologies that provide climate control in the transportation sector are quite inefficient. In gasoline-powered vehicles, the use of air-conditioning is known to result in higher emissions of greenhouse gases and pollutants apart from decreasing the gas-mileage. On the other hand, for electric vehicles (EVs), a drain in the onboard electric battery due to the operation of heating and cooling system results in a substantial decrease in the driving range. As an alternative to the conventional climate control system, we are developing an adsorption-based thermal battery (ATB), which is capable of storing thermal energy, and delivering both heating and cooling on demand, while requiring minimal electric power supply. Analogous to an electrical battery, the ATB can be charged for reuse. Furthermore, it promises to be compact, lightweight, and deliver high performance, which is desirable for mobile applications. In this study, we describe the design and operation of the ATB-based climate control system. We present a general theoretical framework to determine the maximum achievable heating and cooling performance using the ATB. The framework is then applied to study the feasibility of ATB integration in EVs, wherein we analyze the use of NaX zeolite–water as the adsorbent–refrigerant pair. In order to deliver the necessary heating and cooling performance, exceeding 2.5 kW h thermal capacity for EVs, the analysis determines the optimal design and operating conditions. While the use of the ATB in EVs can potentially enhance its driving

  11. Ensuring clean air: Developing a clean air strategy for British Columbia

    International Nuclear Information System (INIS)

    1992-04-01

    In 1992, a clean air strategy will be developed to incorporate views of British Columbians on ways to meet goals related to air quality. A discussion paper is presented to provide information to those interested in participation in developing this strategy. The paper gives information on air quality issues important to the province, including local air quality, urban smog, ozone layer depletion, and global climate change. The views and concerns expressed by stakeholders who attended the Clean Air Conference in 1991 are summarized. The process used to develop the clean air strategy is outlined and some outcomes to be anticipated from the strategy are suggested, including policies and priorities for action to ensure clean air. Air pollutants of concern are total reduced sulfur, mainly from pulp mills and gas processing plants; smoke from wood burning; sulfur dioxide from pulp mills and gas plants; hydrogen fluoride from aluminum smelting; ground-level ozone in urban areas; and acid rain. Elements of a clean air strategy include a smoke management policy, management strategies for greenhouse gases and ozone smog, ozone layer protection measures, regional air quality management plans, and long-term planning efforts in energy use, transportation modes, community design, and land use. 12 refs., 14 figs., 2 tabs

  12. Plug-in hybrid electric vehicle LiFePO4 battery life implications of thermal management, driving conditions, and regional climate

    Science.gov (United States)

    Yuksel, Tugce; Litster, Shawn; Viswanathan, Venkatasubramanian; Michalek, Jeremy J.

    2017-01-01

    Battery degradation strongly depends on temperature, and many plug-in electric vehicle applications employ thermal management strategies to extend battery life. The effectiveness of thermal management depends on the design of the thermal management system as well as the battery chemistry, cell and pack design, vehicle system characteristics, and operating conditions. We model a plug-in hybrid electric vehicle with an air-cooled battery pack composed of cylindrical LiFePO4/graphite cells and simulate the effect of thermal management, driving conditions, regional climate, and vehicle system design on battery life. We estimate that in the absence of thermal management, aggressive driving can cut battery life by two thirds; a blended gas/electric-operation control strategy can quadruple battery life relative to an all-electric control strategy; larger battery packs can extend life by an order of magnitude relative to small packs used for all-electric operation; and batteries last 73-94% longer in mild-weather San Francisco than in hot Phoenix. Air cooling can increase battery life by a factor of 1.5-6, depending on regional climate and driving patterns. End of life criteria has a substantial effect on battery life estimates.

  13. Process for using lead battery scrap. Verfahren zum Verarbeiten von Bleiakkumulatorenschrott

    Energy Technology Data Exchange (ETDEWEB)

    Sycev, A P; Kim, G V; Larin, V F; Sidorova, G D; Vicharev, I G; Kuur, V P; Achmetov, R S; Moiseev, G L; Maslov, V I; Kabacek, V G

    1986-06-26

    The process for using lead battery scrap is such that it leads to an increase of lead metal without the use of fluxes for forming the melt. According to the invention, the battery scrap is broken up, dangerous parts (organic substances containing chlorine) are removed and large pieces of lead (pole bridges, grids, contact pins) are sorted out. The remainder is chopped up into pieces less than 10 mm in size. The small pieces are melted by the suspension melting process at a temperature of 1300 to 1500/sup 0/C in an oxidising atmosphere (air or oxygen) without using any fuel. As the small pieces contain parts of the battery case (= organic substances free of chlorine), they burn in air generating heat, which is then used to melt the sulphate oxide lead compounds. The previously sorted large lead parts are then added to the lead oxide melt. Finally, the lead oxide is reduced to lead metal with coke in a furnace. After the reduction of lead oxide to lead, less than 0.2% of the initial lead content in the battery scrap being processed is lost in the dumped slag.

  14. The battery as a thermal storage. Impacts on the air conditioning of interior spaces, the thermal architecture and the operation strategy of electric-powered vehicles; Die Batterie als thermischer Speicher. Auswirkungen auf die Innenraumklimatisierung, die thermische Architektur und die Betriebsstrategie von Elektrofahrzeugen

    Energy Technology Data Exchange (ETDEWEB)

    Bouvy, Claude [Forschungsgesellschaft Kraftfahrwesen mbH, Aachen (Germany); Jeck, Peter; Gissing, Joerg; Lichius, Thomas; Baltzer, Sidney; Eckstein, Lutz [RWTH Aachen Univ. (Germany). Inst. fuer Kraftfahrzeuge

    2012-11-01

    In this paper the use of the electric traction battery as a thermal storage unit is analysed by means of simulations. The stored thermal energy is exclusively used in this work to heat the passenger cabin. For this scenario two alternative concepts are being compared to a conventional operational mode, without the use of the battery as a thermal storage. On the one hand the stored heat is directly used for cabin heating with an liquid/air heat exchanger. On the other hand a heat pump raises the temperature level. First the holistic modeling approach and the detailed architectures are presented. Then these models are simulated for a winter scenario and the results are discussed. (orig.)

  15. Advances in the development of ovonic nickel metal hydride batteries for industrial and electric vehicles

    International Nuclear Information System (INIS)

    Venkatesan, S.; Fetcenko, M.A.; Dhar, S.K.; Ovshinsky, S.R.

    1991-01-01

    This paper reports that increasing concerns over urban pollution and continued uncertainties about oil supplies have forced the government and industry to refocus their attention on electric vehicles. Despite enormous expenditures in research and development for the ideal battery system, no commercially viable candidate has emerged. The battery systems being considered today due to renewed environmental concerns are still the same systems that were so extensively tested over the last 15 years. For immediate application, an electric vehicle designer has very little choice other than the lead-acid battery despite the fact that energy density is so low as to make vehicle range inadequate, as well as the need for replacement every 20,000 miles. The high energy density projections of Na-S and other so-called high energy batteries have proven to be significantly less in practical modules and there are still concern over cycle life which can be attained under aggressive conditions, reliability under freeze/thaw cycling and consequences resulting from high temperature operation. The conventional nickel-based systems (Ni- Zn, Ni-Fe, Ni-Cd) provide near term higher energy density as compared to lead-acid, but still do not address other important issues such as long life, the need for maintenance-free operation, the use of nontoxic materials and low cost. Against this background, the development of Ovonic Nickel-Metal Hydride (Ni-MH) batteries for electric vehicles has been rapid and successful. Ovonic No-Mh battery technology is uniquely qualified for electric vehicles due to its high energy density, high discharge rate capability, non-toxic alloys, long cycle life. low cost, tolerance to abuse and ability to be sealed for totally maintenance free operation

  16. FY2016 Advanced Batteries R&D Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-08-31

    The Advanced Batteries research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. This report describes the progress made on the research and development projects funded by the Battery subprogram in 2016. This section covers the Vehicle Technologies Office overview; the Battery subprogram R&D overview; Advanced Battery Development project summaries; and Battery Testing, Analysis, and Design project summaries. It also includes the cover and table of contents.

  17. Battery Separator Characterization and Evaluation Procedures for NASA's Advanced Lithium-Ion Batteries

    Science.gov (United States)

    Baldwin, Richard S.; Bennet, William R.; Wong, Eunice K.; Lewton, MaryBeth R.; Harris, Megan K.

    2010-01-01

    To address the future performance and safety requirements for the electrical energy storage technologies that will enhance and enable future NASA manned aerospace missions, advanced rechargeable, lithium-ion battery technology development is being pursued within the scope of the NASA Exploration Technology Development Program s (ETDP's) Energy Storage Project. A critical cell-level component of a lithium-ion battery which significantly impacts both overall electrochemical performance and safety is the porous separator that is sandwiched between the two active cell electrodes. To support the selection of the optimal cell separator material(s) for the advanced battery technology and chemistries under development, laboratory characterization and screening procedures were established to assess and compare separator material-level attributes and associated separator performance characteristics.

  18. Development and demonstration of process and components for the control of aluminum-air-battery electrolyte composition through the precipitation of aluminum trihydroxide. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Swansiger, T. G.; Misra, C.

    1982-05-11

    Physical property data on density, viscosity, and electrical conductivity were developed and reduced to correlation form for synthetic electrolytes containing nominally 7 g/L Sn and 0.20 g/L Ga in 3,4,5,6 M NaOH. Concentrations of Al(OH)/sub 4/ were selected at six levels for each NaOH concentration and ranged from 0 to as high as 4 M Al(OH)/sub 4/ at 6 M NaOH. Measurements of each property were made at 25, 40, 60, and 80 C. The effect of the Sn and Ga impurities was to increase density by a relatively small percentage, increase viscosity by a significant percentage, and decrease electrical conductance by a significant percentage. Isothermal, batch precipitation experiments at 40, 60, and 80 C were utilized to develop data from which kinetic and solubility correlations were derived as functions of electrolyte and system parameters. Precipitation rate was negatively affected by tin in solution, with a 40% reduction in the rate constant being attributed to 0.06 M Sn. Both Sn and Ga co-precipitated with the Al(OH)/sub 3/ to an extent strongly dependent on temperature. Very high precipitation rates resulted in Na levels in product exceeding the target level of 0.24% Na on the hydrate basis. The incorporation of Na in product was also a strong function of temperature. A total of 108 computer simulations were performed and documented to delineate the region of feasible operation with respect to meeting the aluminate production specification. A full-scale precipitator was operated in a continuous mode to assess production rate, population changes with time, and hardware aspects. A digester was used to perform the function of an Al-Air battery, that is to drive Al(OH)/sub 4//sup -/ into solution. Results are presented in detail. (WHK)

  19. Membrane development for vanadium redox flow batteries.

    Science.gov (United States)

    Schwenzer, Birgit; Zhang, Jianlu; Kim, Soowhan; Li, Liyu; Liu, Jun; Yang, Zhenguo

    2011-10-17

    Large-scale energy storage has become the main bottleneck for increasing the percentage of renewable energy in our electricity grids. Redox flow batteries are considered to be among the best options for electricity storage in the megawatt range and large demonstration systems have already been installed. Although the full technological potential of these systems has not been reached yet, currently the main problem hindering more widespread commercialization is the high cost of redox flow batteries. Nafion, as the preferred membrane material, is responsible for about 11% of the overall cost of a 1 MW/8 MWh system. Therefore, in recent years two main membrane related research threads have emerged: 1) chemical and physical modification of Nafion membranes to optimize their properties with regard to vanadium redox flow battery (VRFB) application; and 2) replacement of the Nafion membranes with different, less expensive materials. This review summarizes the underlying basic scientific issues associated with membrane use in VRFBs and presents an overview of membrane-related research approaches aimed at improving the efficiency of VRFBs and making the technology cost-competitive. Promising research strategies and materials are identified and suggestions are provided on how materials issues could be overcome.

  20. Multiphysics Based Thermal Modeling of a Pouch Lithium-Ion Battery Cell for the Development of Pack Level Thermal Management System

    DEFF Research Database (Denmark)

    Khan, Mohammad Rezwan; Kær, Søren Knudsen

    2016-01-01

    The research is focused on the development of a three-dimensional cell level multiphysics battery thermal model. The primary aim is to represent the cooling mechanism inside the unit cell battery pack. It is accomplished through the coupling of heat transfer and computational fluid dynamics (CFD......) physics. A lumped value of heat generation (HG) inside the battery cell is used. It stems from isothermal calorimeter experiment. HG depends on current rate and the corresponding operating temperature. It is demonstrated that the developed model provides a deeper understanding of the thermal spatio......-temporal behavior of Li-ion battery in different operating conditions....

  1. Nanowire Electrodes for Advanced Lithium Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lei; Wei, Qiulong; Sun, Ruimin; Mai, Liqiang, E-mail: mlq518@whut.edu.cn [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, WUT-Harvard Joint Nano Key Laboratory, Wuhan University of Technology, Wuhan (China)

    2014-10-27

    Since the commercialization of lithium ion batteries (LIBs) in the past two decades, rechargeable LIBs have become widespread power sources for portable devices used in daily life. However, current demands require higher energy density and power density of batteries. The electrochemical energy storage performance of LIBs could be improved by applying nanomaterial electrodes, but their fast capacity fading is still one of the key limitations and the mechanism need to be clearly understood. Single nanowire electrode devices are considered as a versatile platform for in situ probing the direct relationship between electrical transport, structure change, and other properties of the single nanowire electrode along with the charge/discharge process. The results indicate that the conductivity decrease of the nanowire electrode and the structural disorder/destruction during electrochemical reaction limit the cycling performance of LIBs. Based on the in situ observations, some feasible optimization strategies, including prelithiation, coaxial structure, nanowire arrays, and hierarchical structure architecture, are proposed and utilized to restrain the conductivity decrease and structural disorder/destruction. Further, the applications of nanowire electrodes in some “beyond Li-ion” batteries, such as Li-S and Li-air batteries are also described.

  2. Nanowire Electrodes for Advanced Lithium Batteries

    Directory of Open Access Journals (Sweden)

    Lei eHuang

    2014-10-01

    Full Text Available Since the commercialization of lithium ion batteries (LIBs in the past two decades, rechargeable LIBs have become widespread power sources for portable devices used in daily life. However, current demands require higher energy density and power density of batteries. The electrochemical energy storage performance of LIBs could be improved by applying nanomaterial electrodes, but their fast capacity fading is still one of the key limitations and the mechanism needs to be clearly understood. Single nanowire electrode devices are considered as a versatile platform for in situ probing the direct relationship between electrical transport, structure change, and other properties of the single nanowire electrode along with the charge/discharge process. The results indicate the conductivity decrease of the nanowire electrode and the structural disorder/destruction during electrochemical reactions which limit the cycling performance of LIBs. Based on the in situ observations, some feasible structure architecture strategies, including prelithiation, coaxial structure, nanowire arrays and hierarchical structure architecture, are proposed and utilized to restrain the conductivity decrease and structural disorder/destruction. Further, the applications of nanowire electrodes in some beyond Li-ion batteries, such as Li-S and Li-air battery, are also described.

  3. Nanowire Electrodes for Advanced Lithium Batteries

    International Nuclear Information System (INIS)

    Huang, Lei; Wei, Qiulong; Sun, Ruimin; Mai, Liqiang

    2014-01-01

    Since the commercialization of lithium ion batteries (LIBs) in the past two decades, rechargeable LIBs have become widespread power sources for portable devices used in daily life. However, current demands require higher energy density and power density of batteries. The electrochemical energy storage performance of LIBs could be improved by applying nanomaterial electrodes, but their fast capacity fading is still one of the key limitations and the mechanism need to be clearly understood. Single nanowire electrode devices are considered as a versatile platform for in situ probing the direct relationship between electrical transport, structure change, and other properties of the single nanowire electrode along with the charge/discharge process. The results indicate that the conductivity decrease of the nanowire electrode and the structural disorder/destruction during electrochemical reaction limit the cycling performance of LIBs. Based on the in situ observations, some feasible optimization strategies, including prelithiation, coaxial structure, nanowire arrays, and hierarchical structure architecture, are proposed and utilized to restrain the conductivity decrease and structural disorder/destruction. Further, the applications of nanowire electrodes in some “beyond Li-ion” batteries, such as Li-S and Li-air batteries are also described.

  4. Air cathode structure manufacture

    Science.gov (United States)

    Momyer, William R.; Littauer, Ernest L.

    1985-01-01

    An improved air cathode structure for use in primary batteries and the like. The cathode structure includes a matrix active layer, a current collector grid on one face of the matrix active layer, and a porous, nonelectrically conductive separator on the opposite face of the matrix active layer, the collector grid and separator being permanently bonded to the matrix active layer. The separator has a preselected porosity providing low IR losses and high resistance to air flow through the matrix active layer to maintain high bubble pressure during operation of the battery. In the illustrated embodiment, the separator was formed of porous polypropylene. A thin hydrophobic film is provided, in the preferred embodiment, on the current collecting metal grid.

  5. Technological progress in sealed lead/acid batteries

    Science.gov (United States)

    Yamashita, J.; Nakashima, H.; Kasai, Y.

    A brief review is given of the history of the research and development of sealed lead/acid batteries during the 30 years since, in 1959, the Yuasa Battery Co. introduced a small-sized sealed battery as the power supply for portable television sets. In 1965, Yuasa began the full-scale mass production and sale of a small-sized sealed lead/acid battery under the NOYPER brand. In 1970, the use of a PbCa alloy grid was adopted, and there followed the successful development of a sealed battery with an oxygen-recombination facility. In 1976, Yuasa more or less established the basic technology for the valve-regulated sealed lead/acid battery — the NP battery — which is now the type in general use. Throughout the 1980s, Yuasa, has continued development in order to expand the sphere of application for the production technology of valve-regulated batteries for motorcycles, as well as for stationary duties with large capacities of 100 to 3000 A h. Recently, in order to improve the reliability and boost the output of sealed lead/acid batteries for employment in UPS power sources, Yuasa has been working intently on the design of a valve-regulated lead/acid battery with outstanding characteristics for high-rate discharge and resistance to high temperatures.

  6. Recycling of batteries after storage

    International Nuclear Information System (INIS)

    Posthumus, W.

    1997-06-01

    An overview is given of the types and composition of batteries and their waste processing techniques that are operational or under development. Attention is paid to the demands of the waste processing techniques with respect to the quality of the collected batteries. Finally the storage of batteries is discussed. 18 refs

  7. Thermodynamic model of a thermal storage air conditioning system with dynamic behavior

    International Nuclear Information System (INIS)

    Fleming, Evan; Wen, Shaoyi; Shi, Li; Silva, Alexandre K. da

    2013-01-01

    Highlights: • We developed an automotive thermal storage air conditioning system model. • The thermal storage unit utilizes phase change materials. • We use semi-analytic solution to the coupled phase change and forced convection. • We model the airside heat exchange using the NTU method. • The system model can incorporate dynamic inputs, e.g. variable inlet airflow. - Abstract: A thermodynamic model was developed to predict transient behavior of a thermal storage system, using phase change materials (PCMs), for a novel electric vehicle climate conditioning application. The main objectives of the paper are to consider the system’s dynamic behavior, such as a dynamic air flow rate into the vehicle’s cabin, and to characterize the transient heat transfer process between the thermal storage unit and the vehicle’s cabin, while still maintaining accurate solution to the complex phase change heat transfer. The system studied consists of a heat transfer fluid circulating between either of the on-board hot and cold thermal storage units, which we refer to as thermal batteries, and a liquid–air heat exchanger that provides heat exchange with the incoming air to the vehicle cabin. Each thermal battery is a shell-and-tube configuration where a heat transfer fluid flows through parallel tubes, which are surrounded by PCM within a larger shell. The system model incorporates computationally inexpensive semi-analytic solution to the conjugated laminar forced convection and phase change problem within the battery and accounts for airside heat exchange using the Number of Transfer Units (NTUs) method for the liquid–air heat exchanger. Using this approach, we are able to obtain an accurate solution to the complex heat transfer problem within the battery while also incorporating the impact of the airside heat transfer on the overall system performance. The implemented model was benchmarked against a numerical study for a melting process and against full system

  8. Batteries at NASA - Today and Beyond

    Science.gov (United States)

    Reid, Concha M.

    2015-01-01

    NASA uses batteries for virtually all of its space missions. Batteries can be bulky and heavy, and some chemistries are more prone to safety issues than others. To meet NASA's needs for safe, lightweight, compact and reliable batteries, scientists and engineers at NASA develop advanced battery technologies that are suitable for space applications and that can satisfy these multiple objectives. Many times, these objectives compete with one another, as the demand for more and more energy in smaller packages dictates that we use higher energy chemistries that are also more energetic by nature. NASA partners with companies and universities, like Xavier University of Louisiana, to pool our collective knowledge and discover innovative technical solutions to these challenges. This talk will discuss a little about NASA's use of batteries and why NASA seeks more advanced chemistries. A short primer on battery chemistries and their chemical reactions is included. Finally, the talk will touch on how the work under the Solid High Energy Lithium Battery (SHELiB) grant to develop solid lithium-ion conducting electrolytes and solid-state batteries can contribute to NASA's mission.

  9. Numerical analyses on optimizing a heat pipe thermal management system for lithium-ion batteries during fast charging

    International Nuclear Information System (INIS)

    Ye, Yonghuang; Saw, Lip Huat; Shi, Yixiang; Tay, Andrew A.O.

    2015-01-01

    Thermal management is crucial for the operation of electric vehicles because lithium ion batteries are vulnerable to excessive heat generation during fast charging or other severe scenarios. In this work, an optimized heat pipe thermal management system (HPTMS) is proposed for fast charging lithium ion battery cell/pack. A numerical model is developed and comprehensively validated with experimental results. This model is then employed to investigate the thermal performance of the HPTMS under steady state and transient conditions. It is found that a cylinder vortex generator placed in front of the heat pipe condensers in the coolant stream improves the temperature uniformity. The uses of cooper heat spreaders and cooling fins greatly improve the performance of the thermal management system. Experiments and transient simulations of heat pipe thermal management system integrated with batteries prove that the improved HPTMS is capable for thermal management of batteries during fast charging. The air-cooled HPTMS is infeasible for thermal management of batteries during fast charging at the pack level due to the limitation of low specific heat capacity. - Highlights: • We develop a numerical model for optimizing a heat pipe thermal management system for fast charging batteries. • The numerical model is comprehensively validated with experimental data. • A cylinder vortex generator is placed at the inlet of the cooling stream to improve the temperature uniformity. • We validate the effectiveness of the optimized system with integration of prismatic batteries

  10. Zinc Bromide Flow Battery Installation for Islanding and Backup Power

    Science.gov (United States)

    2017-08-09

    demonstrates the energy security and cost benefits of implementing a Zn/Br Flow Battery-based ESS at the Marine Corps Air Station (MCAS) located at...user will be realized through the system’s peak shaving mode. This benefit was also used to calculate the operational cost reductions when using the...EW-201242) Zinc Bromide Flow Battery Installation for Islanding and Backup Power August 2017 This document has been cleared for public release

  11. Preliminary study on zinc-air battery using zinc regeneration electrolysis with propanol oxidation as a counter electrode reaction

    Science.gov (United States)

    Wen, Yue-Hua; Cheng, Jie; Ning, Shang-Qi; Yang, Yu-Sheng

    A zinc-air battery using zinc regeneration electrolysis with propanol oxidation as a counter electrode reaction is reported in this paper. It possesses functions of both zincate reduction and electrochemical preparation, showing the potential for increasing the electronic energy utilization. Charge/discharge tests and scanning electron microscopy (SEM) micrographs reveal that when a nickel sheet plated with the high-H 2-overpotential metal, cadmium, was used as the negative substrate electrode, the dendritic formation and hydrogen evolution are suppressed effectively, and granular zinc deposits become larger but relatively dense with the increase of charge time. The performance of batteries is favorable even if the charge time is as long as 5 h at the current density of 20 mA cm -2. Better discharge performance is achieved using a 'cavity-opening' configuration for the discharge cell rather than a 'gas-introducing' configuration. The highest energy efficiency is up to 59.2%. That is, the energy consumed by organic electro-synthesis can be recovered by 59.2%. Cyclic voltammograms show that the sintered nickel electrode exhibits a good electro-catalysis activity for the propanol oxidation. The increase of propanol concentration conduces to an enhancement in the organic electro-synthesis efficiency. The organic electro-synthesis current efficiency of 82% can be obtained.

  12. Thermodynamic model of a thermal storage air conditioning system with dynamic behavior

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, E; Wen, SY; Shi, L; da Silva, AK

    2013-12-01

    A thermodynamic model was developed to predict transient behavior of a thermal storage system, using phase change materials (PCMs), for a novel electric vehicle climate conditioning application. The main objectives of the paper are to consider the system's dynamic behavior, such as a dynamic air flow rate into the vehicle's cabin, and to characterize the transient heat transfer process between the thermal storage unit and the vehicle's cabin, while still maintaining accurate solution to the complex phase change heat transfer. The system studied consists of a heat transfer fluid circulating between either of the on-board hot and cold thermal storage units, which we refer to as thermal batteries, and a liquid-air heat exchanger that provides heat exchange with the incoming air to the vehicle cabin. Each thermal battery is a shell-and-tube configuration where a heat transfer fluid flows through parallel tubes, which are surrounded by PCM within a larger shell. The system model incorporates computationally inexpensive semianalytic solution to the conjugated laminar forced convection and phase change problem within the battery and accounts for airside heat exchange using the Number of Transfer Units (NTUs) method for the liquid-air heat exchanger. Using this approach, we are able to obtain an accurate solution to the complex heat transfer problem within the battery while also incorporating the impact of the airside heat transfer on the overall system performance. The implemented model was benchmarked against a numerical study for a melting process and against full system experimental data for solidification using paraffin wax as the PCM. Through modeling, we demonstrate the importance of capturing the airside heat exchange impact on system performance, and we investigate system response to dynamic operating conditions, e.g., air recirculation. (C) 2013 Elsevier Ltd. All rights reserved.

  13. Experimental investigation of a passive thermal management system for high-powered lithium ion batteries using nickel foam-paraffin composite

    International Nuclear Information System (INIS)

    Hussain, Abid; Tso, C.Y.; Chao, Christopher Y.H.

    2016-01-01

    It is necessary for electric vehicles (EVs) and hybrid electric vehicles (HEVs) to have a highly efficient thermal management system to maintain high powered lithium ion batteries within permissible temperature limits. In this study, an efficient thermal management system for high powered lithium ion batteries using a novel composite (nickel foam-paraffin wax) is designed and investigated experimentally. The results have been compared with two other cases: a natural air cooling mode and a cooling mode with pure phase change materials (PCM). The results indicate that the safety demands of lithium ion batteries cannot be fulfilled using natural air convection as the thermal management mode. The use of PCM can dramatically reduce the surface temperature within the permissible range due to heat absorption by the PCM undergoing phase change. This effect can be further enlarged by using the nickel foam-paraffin composite, showing a temperature reduction of 31% and 24% compared to natural air convection and pure PCM, respectively under 2 C discharge rate. The effect of the geometric parameters of the foam on the battery surface temperature has also been studied. The battery surface temperature decreases with the decrease of porosity and the pore density of the metal foam. On the other hand, the discharge capacity increases with the increase in porosity, but decreases with pore density. - Highlights: • Thermal management for Li-ion batteries using nickel-paraffin is studied. • The temperature is reduced by 31% as compared to natural air cooling mode. • The temperature increases with increase of porosity and pore density of metal foam. • Battery discharge capacity increases with the increase in porosity. • Battery discharge capacity increases with the decreases in pore density.

  14. Redox-flow battery of actinide complexes

    International Nuclear Information System (INIS)

    Yamamura, Tomoo; Shiokawa, Yoshinobu

    2006-01-01

    Np battery and U battery were developed. We suggested that Np redox-flow battery should be (-)|Np 3+ ,Np 4+ ||NpO 2 + ,NpO 2 2+ |(+), and U battery (-)|[U III T 2 ] - ,[U IV T 2 ] 0 ||[U V O 2 T] - ,[U VI O 2 T] 0 |(+). The electromotive force at 50 % charge of Np and U battery is 1.10 V and 1.04 V, respectively. The energy efficiency of 70 mA/cm 2 of Np and U battery shows 99 % and 98 %, respectively. V redox-flow battery, electrode reactions of An battery, Np battery, U battery and future of U battery are described. The concept of V redox-flow battery, comparison of energy efficiency of Np, U and V battery, oxidation state and ionic species of 3d transition metals and main An, Purbe diagram of Np and U aqueous solution, shift of redox potential of β-diketones by pKa, and specifications of three redox-flow batteries are reported. (S.Y.)

  15. Advanced solid state batteries

    Energy Technology Data Exchange (ETDEWEB)

    Levasseur, A; Delmas, C; Menetrier, M; Hagenmuller, P

    1984-01-01

    Direct electrochemical storage of electricity is attractive because of its adaptability to vehicle traction as well as to stationary applications. Important advancements are necessary to improve primary or secondary batteries so far used. The aim of this study was to develop and to characterize materials for the next generation of advanced, rechargeable solid state batteries for vehicle transport and stationary storage applications. One of the best electricity storage systems was the lithium/intercalation compound secondary battery, though up to now the behavior of liquid organic electrolytes did not allow for good recycling in such systems. The research program for these batteries is described.

  16. Enhanced Cyclability of Lithium-Oxygen Batteries with Electrodes Protected by Surface Films Induced via In-Situ Electrochemical Process

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bin; Xu, Wu; Tao, Jinhui; Yan, Pengfei; Zheng, Jianming; Engelhard, Mark H.; Lu, Dongping; Wang, Chongmin; Zhang, Jiguang

    2018-04-16

    Although the rechargeable lithium-oxygen (Li-O2) batteries have extremely high theoretical specific energy, the practical application of these batteries is still limited by the instability of their carbon-based air-electrode, Li metal anode, and electrolytes towards reduced oxygen species. Here we demonstrate a simple one-step in-situ electrochemical pre-charging strategy to generate thin protective films on both carbon nanotubes (CNTs) air-electrode and Li metal anode simultaneously under an inert atmosphere. Li-O2 cells after such pre-treatment demonstrate significantly extended cycle life of 110 and 180 cycles under the capacity-limited protocol of 1000 mAh g-1 and 500 mAh g-1, respectively, which is far more than those without pre-treatment. The thin-films formed from decomposition of electrolyte during in-situ electrochemical pre-charging process in an inert environment can protect both CNTs air-electrode and Li metal anode prior to conventional Li-O2 discharge/charge cycling where reactive reduced oxygen species are formed. This work provides a new approach for protections of carbon-based air-electrode and Li metal anode in practical Li-O2 batteries, and may also be applied to other battery systems.

  17. Ballistic negatron battery

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, M.S.R. [Koneru Lakshmiah Univ.. Dept. of Electrical and Electronics Engineering, Green fields, Vaddeswaram (India)

    2012-07-01

    If we consider the Statistics there is drastic increase in dependence of batteries from year to year, due to necessity of power storage equipment at homes, power generating off grid and on grid Wind, PV systems, etc.. Where wind power is leading in renewable sector, there is a need to look at its development. Considering the scenario in India, most of the wind resource areas are far away from grid and the remaining areas which are near to grid are of low wind currents which is of no use connecting these equipment directly to grid. So, there is a need for a power storage utility to be integrated, such as the BNB (Ballistic Negatron Battery). In this situation a country like India need a battery which should be reliable, cheap and which can be industrialized. So this paper presents the concept of working, design, operation, adaptability of a Ballistic Negatron Battery. Unlike present batteries with low energy density, huge size, more weight, more charging time and low resistant to wear level, this Ballistic Negatron Battery comes with, 1) High energy storage capability (many multiples more than the present most advanced battery). 2) Very compact in size. 3) Almost negligible in weight compared to present batteries. 4) Charges with in very less time. 5) Never exhibits a wear level greater than zero. Seems like inconceivable but adoptable with simple physics. This paper will explains in detail the principle, model, design, construction and practical considerations considered in making this battery. (Author)

  18. Ion conducting polymers and polymer blends for alkali metal ion batteries

    Science.gov (United States)

    DeSimone, Joseph M.; Pandya, Ashish; Wong, Dominica; Vitale, Alessandra

    2017-08-29

    Electrolyte compositions for batteries such as lithium ion and lithium air batteries are described. In some embodiments the compositions are liquid compositions comprising (a) a homogeneous solvent system, said solvent system comprising a perfluropolyether (PFPE) and polyethylene oxide (PEO); and (b) an alkali metal salt dissolved in said solvent system. In other embodiments the compositions are solid electrolyte compositions comprising: (a) a solid polymer, said polymer comprising a crosslinked product of a crosslinkable perfluropolyether (PFPE) and a crosslinkable polyethylene oxide (PEO); and (b) an alkali metal ion salt dissolved in said polymer. Batteries containing such compositions as electrolytes are also described.

  19. Development of new anodes for rechargeable lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sandi, G. [Argonne National Laboratory, Argonne, IL (United States)

    2001-10-01

    Lithium ion batteries have been introduced in the early 1990s by Sony Corporation. Ever since their introduction carbonaceous materials have received considerable attention for use as anodes because of their potential safety and reliability advantages. Natural graphite, cokes, carbon fibres, non-graphitizable carbon, and pyrolytic carbon have been used as sources for carbon materials. Recently metal alloys and metal oxides have been studied as alternatives to carbon as negative electrodes in lithium-ion cells. This paper reviews the performance of some of the carbonaceous materials used in lithium-ion batteries as well as some of the new metallic alloys of aluminum, silica, selenium, lead, bismuth, antimony and arsenic, as alternatives to carbon as negative electrodes in lithium-ion batteries. It is concluded that while some of these materials are promising, practical applications will continue to be limited until after the volume expansion and the irreversibility problems are resolved. 50 refs., 5 figs.

  20. The Shortest Path Problems in Battery-Electric Vehicle Dispatching with Battery Renewal

    Directory of Open Access Journals (Sweden)

    Minfang Huang

    2016-06-01

    Full Text Available Electric vehicles play a key role for developing an eco-sustainable transport system. One critical component of an electric vehicle is its battery, which can be quickly charged or exchanged before it runs out. The problem of electric vehicle dispatching falls into the category of the shortest path problem with resource renewal. In this paper, we study the shortest path problems in (1 electric transit bus scheduling and (2 electric truck routing with time windows. In these applications, a fully-charged battery allows running a limited operational distance, and the battery before depletion needs to be quickly charged or exchanged with a fully-charged one at a battery management facility. The limited distance and battery renewal result in a shortest path problem with resource renewal. We develop a label-correcting algorithm with state space relaxation to find optimal solutions. In the computational experiments, real-world road geometry data are used to generate realistic travel distances, and other types of data are obtained from the real world or randomly generated. The computational results show that the label-correcting algorithm performs very well.

  1. Innovation on Energy Power Technology (7)Development and Practical Application of Sodium-Sulfur Battery for Electric Energy Storage System

    Science.gov (United States)

    Rachi, Hideki

    Sodium-Sulfur battery (NAS battery), which has more than 3 times of energy density compared with the conventional lead-acid battery and can be compactly established, has a great installation effects as a distributed energy storage system in the urban area which consumes big electric power. For the power company, NAS battery contributes to the load leveling, the supply capability up at the peak period, the efficient operation of the electric power equipment and the reduction of the capital expenditure. And for the customer, it is possible to enjoy the reduction of the electricity charges by utilizing nighttime electric power and the securing of a security. The contribution to the highly sophisticated information society where the higher electric power quality is desired, mainly office buildings and factories by the progress of IT, is very big. Tokyo Electric Power Company (TEPCO) developed the elementary technology of NAS battery from 1984 and ended the development of practical battery which has long-term durability and the safety and the performance verification of the megawatt scale. Finally TEPCO accomplished the practical application and commercialization of the stationary energy storage technology by NAS battery. In this paper, we introduces about conquered problems until practical application and commercialization.

  2. Computer Aided Battery Engineering Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, Ahmad

    2016-06-07

    A multi-national lab collaborative team was assembled that includes experts from academia and industry to enhance recently developed Computer-Aided Battery Engineering for Electric Drive Vehicles (CAEBAT)-II battery crush modeling tools and to develop microstructure models for electrode design - both computationally efficient. Task 1. The new Multi-Scale Multi-Domain model framework (GH-MSMD) provides 100x to 1,000x computation speed-up in battery electrochemical/thermal simulation while retaining modularity of particles and electrode-, cell-, and pack-level domains. The increased speed enables direct use of the full model in parameter identification. Task 2. Mechanical-electrochemical-thermal (MECT) models for mechanical abuse simulation were simultaneously coupled, enabling simultaneous modeling of electrochemical reactions during the short circuit, when necessary. The interactions between mechanical failure and battery cell performance were studied, and the flexibility of the model for various batteries structures and loading conditions was improved. Model validation is ongoing to compare with test data from Sandia National Laboratories. The ABDT tool was established in ANSYS. Task 3. Microstructural modeling was conducted to enhance next-generation electrode designs. This 3- year project will validate models for a variety of electrodes, complementing Advanced Battery Research programs. Prototype tools have been developed for electrochemical simulation and geometric reconstruction.

  3. Development method of Hybrid Energy Storage System, including PEM fuel cell and a battery

    Science.gov (United States)

    Ustinov, A.; Khayrullina, A.; Borzenko, V.; Khmelik, M.; Sveshnikova, A.

    2016-09-01

    Development of fuel cell (FC) and hydrogen metal-hydride storage (MH) technologies continuously demonstrate higher efficiency rates and higher safety, as hydrogen is stored at low pressures of about 2 bar in a bounded state. A combination of a FC/MH system with an electrolyser, powered with a renewable source, allows creation of an almost fully autonomous power system, which could potentially replace a diesel-generator as a back-up power supply. However, the system must be extended with an electro-chemical battery to start-up the FC and compensate the electric load when FC fails to deliver the necessary power. Present paper delivers the results of experimental and theoretical investigation of a hybrid energy system, including a proton exchange membrane (PEM) FC, MH- accumulator and an electro-chemical battery, development methodology for such systems and the modelling of different battery types, using hardware-in-the-loop approach. The economic efficiency of the proposed solution is discussed using an example of power supply of a real town of Batamai in Russia.

  4. Development method of Hybrid Energy Storage System, including PEM fuel cell and a battery

    International Nuclear Information System (INIS)

    Ustinov, A; Khayrullina, A; Khmelik, M; Sveshnikova, A; Borzenko, V

    2016-01-01

    Development of fuel cell (FC) and hydrogen metal-hydride storage (MH) technologies continuously demonstrate higher efficiency rates and higher safety, as hydrogen is stored at low pressures of about 2 bar in a bounded state. A combination of a FC/MH system with an electrolyser, powered with a renewable source, allows creation of an almost fully autonomous power system, which could potentially replace a diesel-generator as a back-up power supply. However, the system must be extended with an electro-chemical battery to start-up the FC and compensate the electric load when FC fails to deliver the necessary power. Present paper delivers the results of experimental and theoretical investigation of a hybrid energy system, including a proton exchange membrane (PEM) FC, MH- accumulator and an electro-chemical battery, development methodology for such systems and the modelling of different battery types, using hardware-in-the-loop approach. The economic efficiency of the proposed solution is discussed using an example of power supply of a real town of Batamai in Russia. (paper)

  5. Emergency power supply with batteries. Notstromversorgung mit Batterien

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    The proceedings volume contains the wording of the following 15 papers presented at the symposium: 'The physical chemistry of power sources'; 'Conventional and sealed maintenance-free Pb batteries'; 'Open and gas-tight Ni/Cd batteries'; 'Advances in the development and acceptance of primary and secondary lithium systems'; 'Metal-hydrogen, especially nickel oxide-hydrogen, a new battery system'; 'The storage systems zinc-bromine and zinc-chlorine'; 'High temperature batteries'; 'Material problems of lead batteries and fuel cells'; 'DIN/VDE 0510, safety specifications for batteries and battery systems'; 'Frequency control, immediate reserve and peak load compensation with large battery systems in electric utilities'; 'Versatile emergency power supply at the Bundesanstalt fuer Flugsicherung'; 'Batteries used by the Bundeswehr'; 'Batteries in the service of the Deutsche Bundesbahn'; 'State of the art and development of opto- and micro-electronics and their power supply'; 'Experience and requirements of the Deutsche Bundespost on central and decentralized battery systems'. The proceedings also contain the wording of the discussions following the papers.

  6. About the Territorial Potential of the Construction of Battery-Charging Stations for Autonomous Electric Motor Vehicles in the Regions

    Directory of Open Access Journals (Sweden)

    Shilova Lyubov

    2016-01-01

    Full Text Available The article describes the main current trends in the development of electric motor vehicles with "zero emission" as well as the battery-charging stations concerned. The study is based on a preliminary comparative analysis of the RF regions with respect to five indices (average per capita income, number of private cars in the region, air pollution level, provision of the region with power supply and the potential use of local renewable energy resources, and it gives some recommendations on the prospects of possible construction of battery-charging stations in the regions.

  7. Cost reductions in nickel-hydrogen battery

    Science.gov (United States)

    Beauchamp, Richard L.; Sindorf, Jack F.

    1987-01-01

    Significant progress was made toward the development of a commercially marketable hydrogen nickel oxide battery. The costs projected for this battery are remarkably low when one considers where the learning curve is for commercialization of this system. Further developmental efforts on this project are warranted as the H2/NiO battery is already cost competitive with other battery systems.

  8. Costs of lithium-ion batteries for vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Gaines, L.; Cuenca, R.

    2000-08-21

    One of the most promising battery types under development for use in both pure electric and hybrid electric vehicles is the lithium-ion battery. These batteries are well on their way to meeting the challenging technical goals that have been set for vehicle batteries. However, they are still far from achieving the current cost goals. The Center for Transportation Research at Argonne National Laboratory undertook a project for the US Department of Energy to estimate the costs of lithium-ion batteries and to project how these costs might change over time, with the aid of research and development. Cost reductions could be expected as the result of material substitution, economies of scale in production, design improvements, and/or development of new material supplies. The most significant contributions to costs are found to be associated with battery materials. For the pure electric vehicle, the battery cost exceeds the cost goal of the US Advanced Battery Consortium by about $3,500, which is certainly enough to significantly affect the marketability of the vehicle. For the hybrid, however, the total cost of the battery is much smaller, exceeding the cost goal of the Partnership for a New Generation of Vehicles by only about $800, perhaps not enough to deter a potential buyer from purchasing the power-assist hybrid.

  9. A Rechargeable High-Temperature Molten Salt Iron-Oxygen Battery.

    Science.gov (United States)

    Peng, Cheng; Guan, Chengzhi; Lin, Jun; Zhang, Shiyu; Bao, Hongliang; Wang, Yu; Xiao, Guoping; Chen, George Zheng; Wang, Jian-Qiang

    2018-06-11

    The energy and power density of conventional batteries are far lower than their theoretical expectations, primarily because of slow reaction kinetics that are often observed under ambient conditions. Here we describe a low-cost and high-temperature rechargeable iron-oxygen battery containing a bi-phase electrolyte of molten carbonate and solid oxide. This new design merges the merits of a solid-oxide fuel cell and molten metal-air battery, offering significantly improved battery reaction kinetics and power capability without compromising the energy capacity. The as-fabricated battery prototype can be charged at high current density, and exhibits excellent stability and security in the highly charged state. It typically exhibits specific energy, specific power, energy density, and power density of 129.1 Wh kg -1 , 2.8 kW kg -1 , 388.1 Wh L -1 , and 21.0 kW L -1 , respectively, based on the mass and volume of the molten salt. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Second Life for Electric Vehicle Batteries: Answering Questions on Battery Degradation and Value

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, J. S.; Wood, E.; Pesaran, A.

    2015-05-04

    Battery second use – putting used plug-in electric vehicle (PEV) batteries into secondary service following their automotive tenure – has been proposed as a means to decrease the cost of PEVs while providing low cost energy storage to other fields (e.g. electric utility markets). To understand the value of used automotive batteries, however, we must first answer several key questions related to National Renewable Energy Laboratory (NREL) has developed a methodology and the requisite tools to answer these questions, including NREL’s Battery Lifetime Simulation Tool (BLAST). Herein we introduce these methods and tools, and demonstrate their application. We have found that capacity fade from automotive use has a much larger impact on second use value than resistance growth. Where capacity loss is driven by calendar effects more than cycling effects, average battery temperature during automotive service – which is often driven by climate – is found to be the single factor with the largest effect on remaining value. Installing hardware and software capabilities onboard the vehicle that can both infer remaining battery capacity from in-situ measurements, as well as track average battery temperature over time, will thereby facilitate the second use of automotive batteries.

  11. Development of a Standard Test Scenario to Evaluate the Effectiveness of Portable Fire Extinguishers on Lithium-ion Battery Fires

    Science.gov (United States)

    Juarez, Alfredo; Harper, Susan A.; Hirsch, David B.; Carriere, Thierry

    2013-01-01

    Many sources of fuel are present aboard current spacecraft, with one especially hazardous source of stored energy: lithium ion batteries. Lithium ion batteries are a very hazardous form of fuel due to their self-sustaining combustion once ignited, for example, by an external heat source. Batteries can become extremely energetic fire sources due to their high density electrochemical energy content that may, under duress, be violently converted to thermal energy and fire in the form of a thermal runaway. Currently, lithium ion batteries are the preferred types of batteries aboard international spacecraft and therefore are routinely installed, collectively forming a potentially devastating fire threat to a spacecraft and its crew. Currently NASA is developing a fine water mist portable fire extinguisher for future use on international spacecraft. As its development ensues, a need for the standard evaluation of various types of fire extinguishers against this potential threat is required to provide an unbiased means of comparing between fire extinguisher technologies and ranking them based on performance.

  12. Development and Implementation of a Battery-Electric Light-Duty Class 2a Truck including Hybrid Energy Storage

    Science.gov (United States)

    Kollmeyer, Phillip J.

    This dissertation addresses two major related research topics: 1) the design, fabrication, modeling, and experimental testing of a battery-electric light-duty Class 2a truck; and 2) the design and evaluation of a hybrid energy storage system (HESS) for this and other vehicles. The work begins with the determination of the truck's peak power and wheel torque requirements (135kW/4900Nm). An electric traction system is then designed that consists of an interior permanent magnet synchronous machine, two-speed gearbox, three-phase motor drive, and LiFePO4 battery pack. The battery pack capacity is selected to achieve a driving range similar to the 2011 Nissan Leaf electric vehicle (73 miles). Next, the demonstrator electric traction system is built and installed in the vehicle, a Ford F150 pickup truck, and an extensive set of sensors and data acquisition equipment is installed. Detailed loss models of the battery pack, electric traction machine, and motor drive are developed and experimentally verified using the driving data. Many aspects of the truck's performance are investigated, including efficiency differences between the two-gear configuration and the optimal gear selection. The remainder focuses on the application of battery/ultracapacitor hybrid energy storage systems (HESS) to electric vehicles. First, the electric truck is modeled with the addition of an ultracapacitor pack and a dc/dc converter. Rule-based and optimal battery/ultracapacitor power-split control algorithms are then developed, and the performance improvements achieved for both algorithms are evaluated for operation at 25°C. The HESS modeling is then extended to low temperatures, where battery resistance increases substantially. To verify the accuracy of the model-predicted results, a scaled hybrid energy storage system is built and the system is tested for several drive cycles and for two temperatures. The HESS performance is then modeled for three variants of the vehicle design, including the

  13. Lithium batteries advanced technologies and applications

    CERN Document Server

    Scrosati, Bruno; Schalkwijk, Walter A van; Hassoun, Jusef

    2013-01-01

    Explains the current state of the science and points the way to technological advances First developed in the late 1980s, lithium-ion batteries now power everything from tablet computers to power tools to electric cars. Despite tremendous progress in the last two decades in the engineering and manufacturing of lithium-ion batteries, they are currently unable to meet the energy and power demands of many new and emerging devices. This book sets the stage for the development of a new generation of higher-energy density, rechargeable lithium-ion batteries by advancing battery chemistry and ident

  14. Carbon dioxide assist for non-aqueous sodium–oxygen batteries

    KAUST Repository

    Das, Shyamal K.

    2013-02-01

    We report a novel non-aqueous Na-air battery that utilizes a gas mixture of CO2 and O2. The battery exhibits a high specific energy of 6500-7000 Whkg- 1 (based on the carbon mass) over a range of CO2 feed compositions. The energy density achieved is higher, by 200% to 300%, than that obtained in pure oxygen. Ex-situ FTIR and XRD analysis reveal that Na2O2, Na2C2O 4 and Na2CO3 are the principal discharge products. The Na-CO2/O2 and Mg-CO2/O 2 battery platforms provide a promising, new approach for CO 2 capture and generation of electrical energy. © 2012 Elsevier B.V. All rights reserved.

  15. Research, development, and demonstration of nickel-iron batteries for electric vehicle propulsion. Annual report, 1978

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    The objective of this program is to develop a nickel-iron battery suitable for use in electric vehicles. Ultimately, it is expected that a number of these batteries will be demonstrated under the Electric and Hybrid Vehicle Act of 1976. The report presents the technical approach and a summary of the progress that was achieved under the contract. Work began 1 May 1978. The report covers the period through September 1978. (TFD)

  16. Research, development and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    This report describes work performed from October 1, 1978 to September 30, 1979. The approach for development of both the Improved State-of-the-Art (ISOA) and Advanced lead-acid batteries is three pronged. This approach concentrates on simultaneous optimization of battery design, materials, and manufacturing processing. The 1979 fiscal year saw the achievement of significant progress in the program. Some of the major accomplishments of the year are outlined. 33 figures, 13 tables. (RWR)

  17. Energy efficiency of neptunium redox battery in comparison with vanadium battery

    International Nuclear Information System (INIS)

    Yamamura, T.; Watanabe, N.; Shiokawa, Y.

    2006-01-01

    A neptunium ion possesses two isostructural and reversible redox couples (Np 3+ /Np 4+ and NpO 2 + /NpO 2 2+ ) and is therefore suitable as an active material for a redox-flow battery. Since the plastic formed carbon (PFC) is known to show the largest k values for Np(IV)/Np(III) and Np(V)/Np(VI) reactions among various carbon electrodes, a cell was constructed by using the PFC, with the circulation induced by bubbling gas through the electrolyte. In discharge experiments with a neptunium and a vanadium battery using the cell, the former showed a lower voltage loss which suggests a smaller reaction overvoltage. Because of the high radioactivity of the neptunium, it was difficult to obtain sufficient circulation required for the redox-flow battery, therefore a model for evaluating the energy efficiency of the redox-flow battery was developed. By using the known k values for neptunium and vanadium electrode reactions at PFC electrodes, the energy efficiency of the neptunium battery was calculated to be 99.1% at 70 mA cm -2 , which exceeds that of the vanadium battery by ca. 16%

  18. Power Management for Fuel Cell and Battery Hybrid Unmanned Aerial Vehicle Applications

    Science.gov (United States)

    Stein, Jared Robert

    As electric powered unmanned aerial vehicles enter a new age of commercial viability, market opportunities in the small UAV sector are expanding. Extending UAV flight time through a combination of fuel cell and battery technologies enhance the scope of potential applications. A brief survey of UAV history provides context and examples of modern day UAVs powered by fuel cells are given. Conventional hybrid power system management employs DC-to-DC converters to control the power split between battery and fuel cell. In this study, a transistor replaces the DC-to-DC converter which lowers weight and cost. Simulation models of a lithium ion battery and a proton exchange membrane fuel cell are developed and integrated into a UAV power system model. Flight simulations demonstrate the operation of the transistor-based power management scheme and quantify the amount of hydrogen consumed by a 5.5 kg fixed wing UAV during a six hour flight. Battery power assists the fuel cell during high throttle periods but may also augment fuel cell power during cruise flight. Simulations demonstrate a 60 liter reduction in hydrogen consumption when battery power assists the fuel cell during cruise flight. Over the full duration of the flight, averaged efficiency of the power system exceeds 98%. For scenarios where inflight battery recharge is desirable, a constant current battery charger is integrated into the UAV power system. Simulation of inflight battery recharge is performed. Design of UAV hybrid power systems must consider power system weight against potential flight time. Data from the flight simulations are used to identify a simple formula that predicts flight time as a function of energy stored onboard the modeled UAV. A small selection of commercially available batteries, fuel cells, and compressed air storage tanks are listed to characterize the weight of possible systems. The formula is then used in conjunction with the weight data to generate a graph of power system weight

  19. A low pressure bipolar nickel-hydrogen battery

    Energy Technology Data Exchange (ETDEWEB)

    Golben, M.; Nechev, K.; DaCosta, D.H.; Rosso, M.J.

    1997-12-01

    Ergenics is developing a low pressure high power rechargeable battery for electric vehicles and other large battery applications. The Hy-Stor{trademark} battery couples a bipolar nickel-hydrogen electrochemical system with the high energy storage density of metal hydride technology. In addition to its long cycle life, high specific power, and energy density, this battery offers safety and economic advantages over other rechargeable batteries. Results from preliminary testing of the first Hy-Stor battery are presented.

  20. Qualitative thermal characterization and cooling of lithium batteries for electric vehicles

    Science.gov (United States)

    Mariani, A.; D'Annibale, F.; Boccardi, G.; Celata, G. P.; Menale, C.; Bubbico, R.; Vellucci, F.

    2014-04-01

    The paper deals with the cooling of batteries. The first step was the thermal characterization of a single cell of the module, which consists in the detection of the thermal field by means of thermographic tests during electric charging and discharging. The purpose was to identify possible critical hot points and to evaluate the cooling demand during the normal operation of an electric car. After that, a study on the optimal configuration to obtain the flattening of the temperature profile and to avoid hot points was executed. An experimental plant for cooling capacity evaluation of the batteries, using air as cooling fluid, was realized in our laboratory in ENEA Casaccia. The plant is designed to allow testing at different flow rate and temperatures of the cooling air, useful for the assessment of operative thermal limits in different working conditions. Another experimental facility was built to evaluate the thermal behaviour changes with water as cooling fluid. Experimental tests were carried out on the LiFePO4 batteries, under different electric working conditions using the two loops. In the future, different type of batteries will be tested and the influence of various parameters on the heat transfer will be assessed for possible optimal operative solutions.

  1. Qualitative thermal characterization and cooling of lithium batteries for electric vehicles

    International Nuclear Information System (INIS)

    Mariani, A; D'Annibale, F; Boccardi, G; Celata, G P; La Sapienza (Italy))" data-affiliation=" (University of Roma La Sapienza (Italy))" >Menale, C; La Sapienza (Italy))" data-affiliation=" (University of Roma La Sapienza (Italy))" >Bubbico, R; Vellucci, F

    2014-01-01

    The paper deals with the cooling of batteries. The first step was the thermal characterization of a single cell of the module, which consists in the detection of the thermal field by means of thermographic tests during electric charging and discharging. The purpose was to identify possible critical hot points and to evaluate the cooling demand during the normal operation of an electric car. After that, a study on the optimal configuration to obtain the flattening of the temperature profile and to avoid hot points was executed. An experimental plant for cooling capacity evaluation of the batteries, using air as cooling fluid, was realized in our laboratory in ENEA Casaccia. The plant is designed to allow testing at different flow rate and temperatures of the cooling air, useful for the assessment of operative thermal limits in different working conditions. Another experimental facility was built to evaluate the thermal behaviour changes with water as cooling fluid. Experimental tests were carried out on the LiFePO4 batteries, under different electric working conditions using the two loops. In the future, different type of batteries will be tested and the influence of various parameters on the heat transfer will be assessed for possible optimal operative solutions.

  2. Strategic Framework of Air Traffic Development

    Directory of Open Access Journals (Sweden)

    Sanja Steiner

    2008-05-01

    Full Text Available The paper elaborates the past development of air traffic inEurope from the aspect of its economic benefits and ecologicallack of sustainability of conventional technology. The mainguidelines of the strategic development are related to the implementationof the global ecological standard and actual reformationprocesses of the air traffic management system postulatedby A TM 2000+ Strategy and the "Single European Sky"standard. The paper studies the wider aspects of integrated trafficdevelopment at the regional level and the factors influencingfurther development of the European air traffic.

  3. Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries

    Science.gov (United States)

    Liu, Qi; Geng, Zhen; Han, Cuiping; Fu, Yongzhu; Li, Song; He, Yan-bing; Kang, Feiyu; Li, Baohua

    2018-06-01

    Garnet Li7La3Zr2O12 (LLZO) solid electrolytes recently have attracted tremendous interest as they have the potential to enable all solid-state lithium batteries (ASSLBs) owing to high ionic conductivity (10-3 to 10-4 S cm-1), negligible electronic transport, wide potential window (up to 9 V), and good chemical stability. Here we present the key issues and challenges of LLZO in the aspects of ion conduction property, interfacial compatibility, and stability in air. First, different preparation methods of LLZO are reviewed. Then, recent progress about the improvement of ionic conductivity and interfacial property between LLZO and electrodes are presented. Finally, we list some emerging LLZO-based solid-state batteries and provide perspectives for further research. The aim of this review is to summarize the up-to-date developments of LLZO and lead the direction for future development which could enable LLZO-based ASSLBs.

  4. Flexible lithium-ion planer thin-film battery

    KAUST Repository

    Kutbee, Arwa T.; Ghoneim, Mohamed T.; Hussain, Muhammad Mustafa

    2016-01-01

    Commercialization of wearable electronics requires miniaturized, flexible power sources. Lithium ion battery is a strong candidate as the next generation high performance flexible battery. The development of flexible materials for battery electrodes

  5. Towards identifying dyslexia in Standard Indonesian: the development of a reading assessment battery.

    Science.gov (United States)

    Jap, Bernard A J; Borleffs, Elisabeth; Maassen, Ben A M

    2017-01-01

    With its transparent orthography, Standard Indonesian is spoken by over 160 million inhabitants and is the primary language of instruction in education and the government in Indonesia. An assessment battery of reading and reading-related skills was developed as a starting point for the diagnosis of dyslexia in beginner learners. Founded on the International Dyslexia Association's definition of dyslexia, the test battery comprises nine empirically motivated reading and reading-related tasks assessing word reading, pseudoword reading, arithmetic, rapid automatized naming, phoneme deletion, forward and backward digit span, verbal fluency, orthographic choice (spelling), and writing. The test was validated by computing the relationships between the outcomes on the reading-skills and reading-related measures by means of correlation and factor analyses. External variables, i.e., school grades and teacher ratings of the reading and learning abilities of individual students, were also utilized to provide evidence of its construct validity. Four variables were found to be significantly related with reading-skill measures: phonological awareness, rapid naming, spelling, and digit span. The current study on reading development in Standard Indonesian confirms findings from other languages with transparent orthographies and suggests a test battery including preliminary norm scores for screening and assessment of elementary school children learning to read Standard Indonesian.

  6. Modelling of rechargeable NiMH batteries

    NARCIS (Netherlands)

    Ledovskikh, A.; Verbitskiy, E.; Ayeb, A.; Notten, P.H.L.

    2003-01-01

    A new mathematical model has been developed for rechargeable NiMH batteries, which is based on the occurring physical–chemical processes inside. This model enables one to simultaneously simulate the battery voltage, internal gas pressures (both PO2 and PH2) and temperature during battery operation.

  7. Intelligent automotive battery systems

    Science.gov (United States)

    Witehira, P.

    A single power-supply battery is incompatible with modern vehicles. A one-cmbination 12 cell/12 V battery, developed by Power Beat International Limited (PBIL), is described. The battery is designed to be a 'drop in' replacement for existing batteries. The cell structures, however, are designed according to load function, i.e., high-current shallow-discharge cycles and low-current deep-discharge cycles. The preferred energy discharge management logic and integration into the power distribution network of the vehicle to provide safe user-friendly usage is described. The system is designed to operate transparent to the vehicle user. The integrity of the volatile high-current cells is maintained by temperature-sensitive voltage control and discharge management. The deep-cycle cells can be fully utilized without affecting startability under extreme conditions. Electric energy management synchronization with engine starting will provide at least 6% overall reduction in hydrocarbon emissions using an intelligent on-board power-supply technology developed by PBIL.

  8. Development of a lead acid battery suitable for electric vehicle propulsion. Final report. [96 V, 20 kWh, 50 Wh/kg

    Energy Technology Data Exchange (ETDEWEB)

    Schlotter, W J

    1977-08-26

    This report contains two detailed designs, and the design rationale, for an improved state-of-the-art electric vehicle battery incorporating expanded metal grids. The nominal 96-volt and 20-kWh battery incorporating this improved design is expected to cost about 25% less when manufactured in a mature plant. This report also contains detailed estimates for the capital cost and operating cost of a pilot plant to produce electric vehicle battery plates incorporating expanded metal grids. It is expected that the first electric vehicle batteries incorporating expanded metal grids can be available fifteen months after approval of this program. An additional program to improve lead acid batteries for electric vehicles further is also described. The advanced batteries resulting from this program are expected to incorporate either expanded metal grids and/or composite lead/plastic grids. In addition, these batteries are expected to contain low-density active materials. It is anticipated that those additional developments will result in an advanced battery capable of delivering 45 to 50 watt-hours/kg. As a result of the design and cost study, a ''First Buy'' improved state-of-the art vehicle battery proposed is included as part of this report. Eltra proposes to manufacture and deliver the required 2500 vehicle batteries within the time limits set forth by the Electric and Hybrid Vehicle Research, Development, and Demonstration Act of 1976. 20 figures, 13 tables.

  9. Flexible lithium-ion planer thin-film battery

    KAUST Repository

    Kutbee, Arwa T.

    2016-02-03

    Commercialization of wearable electronics requires miniaturized, flexible power sources. Lithium ion battery is a strong candidate as the next generation high performance flexible battery. The development of flexible materials for battery electrodes suffers from the limited material choices. In this work, we present a flexible inorganic lithium-ion battery with no restrictions on the materials used. The battery showed an enhanced normalized capacity of 146 ??Ah/cm2.

  10. Single pressure vessel (SPV) nickel-hydrogen battery design

    Energy Technology Data Exchange (ETDEWEB)

    Coates, D.; Grindstaff, B.; Fox, C. [Eagle-Picher Industries, Inc., Joplin, MO (United States)

    1995-07-01

    Single pressure vessel (SPV) technology combines an entire multi-cell nickel-hydrogen (NiH{sub 2}) space battery within a single pressure vessel. SPV technology has been developed to improve the performance (volume/mass) of the NiH{sub 2} system at the battery level and ultimately to reduce overall battery cost and increase system reliability. Three distinct SPV technologies are currently under development and in production. Eagle-Picher has license to the COMSAT Laboratories technology, as well as internally developed independent SPV technology. A third technology resulted from the acquisition of Johnson Controls NiH{sub 2} battery assets in June, 1994. SPV batteries are currently being produced in 25 ampere-hour (Ah), 35 Ah and 50 Ah configurations. The battery designs have an overall outside diameter of 10 inches (25.4 centimeters).

  11. Progress in aqueous rechargeable batteries

    Directory of Open Access Journals (Sweden)

    Jilei Liu

    2018-01-01

    Full Text Available Over the past decades, a series of aqueous rechargeable batteries (ARBs were explored, investigated and demonstrated. Among them, aqueous rechargeable alkali-metal ion (Li+, Na+, K+ batteries, aqueous rechargeable-metal ion (Zn2+, Mg2+, Ca2+, Al3+ batteries and aqueous rechargeable hybrid batteries are standing out due to peculiar properties. In this review, we focus on the fundamental basics of these batteries, and discuss the scientific and/or technological achievements and challenges. By critically reviewing state-of-the-art technologies and the most promising results so far, we aim to analyze the benefits of ARBs and the critical issues to be addressed, and to promote better development of ARBs.

  12. Assessment of the development of a battery charging infrastructure for a redox flow battery based electromobility concept; Bewertung des Aufbaus einer Ladeinfrastruktur fuer eine Redox-Flow-Batteriebasierte Elektromobilitaet

    Energy Technology Data Exchange (ETDEWEB)

    Arpad Funke, Simon; Wietschel, Martin [Fraunhofer-Institut fuer System- und Innovationsforschung (ISI), Karlsruhe (Germany). Competence Center Energietechnologien und Energiesysteme

    2012-07-01

    Apart from the high acquisition cost, the major obstacles to widespread use of electric-powered vehicles today are long battery charging times and limited mileage. Rechargeable batteries might be a solution. The publication investigates a potential infrastructure for electric-powered vehicles based on so-called redox flow batteries. Redox flow batteries are characterized in that active materials are dissolved in liquid electrolyte and are stored outside the cell. Batteries are recharged by exchanging charged electrolyte for discharged electrolyte, which can be done in fuel stations. Redox flow batteries have the drawback of low energy and power density and were hardly ever considered for mobile applications so far. A technical analysis of RFB technology identified the vanadium oxygen redox flow fuel cell (VOFC) as a promising version. It provides higher energy density than conventional redox flow batteries, but development is still in an early stage. Assuming a 'best case' scenario, a refuelling infrastructure for VOFC vehicles was developed and compared with battery-powered vehicles (BEV) and fuel cell vehicles (FVEV). It was found that electromobility based on VOFC may be a promising alternative to current electromobility concepts. (orig./AKB) [German] Neben den Anschaffungsausgaben stehen lange Ladezeiten und eine beschraenkte Reichweite dem heutigen Einsatz von Elektrofahrzeugen oft entgegen. Eine moegliche Abhilfe koennten betankbare Batterien leisten. In der vorliegenden Arbeit soll ein moeglicher Infrastrukturaufbau fuer Elektrofahrzeuge mit sogenannten Redox-Flow-Batterien untersucht werden. Redox-Flow-Batterien besitzen die Eigenschaft, dass aktive Materialien geloest in Fluessigelektrolyten ausserhalb der Zelle gespeichert werden. Dieser Aufbau ermoeglicht das Aufladen der Batterie, indem der entladene Elektrolyt durch geladenen ausgetauscht wird. Dieser Tausch kann an einer Tankstelle durchgefuehrt werden. Ein wesentlicher Nachteil von Redox

  13. Influence of Battery Parametric Uncertainties on the State-of-Charge Estimation of Lithium Titanate Oxide-Based Batteries

    DEFF Research Database (Denmark)

    Stroe, Ana-Irina; Meng, Jinhao; Stroe, Daniel-Ioan

    2018-01-01

    to describe the battery dynamics. The SOC estimation method proposed in this paper is based on an Extended Kalman Filter (EKF) and nonlinear battery model which was parameterized using extended laboratory tests performed on several 13 Ah lithium titanate oxide (LTO)-based lithium-ion batteries. The developed......State of charge (SOC) is one of the most important parameters in battery management systems, as it indicates the available battery capacity at every moment. There are numerous battery model-based methods used for SOC estimation, the accuracy of which depends on the accuracy of the model considered...... a sensitivity analysis it was showed that the SOC and voltage estimation error are only slightly dependent on the variation of the battery model parameters with the SOC....

  14. Non-Intrusive Battery Health Monitoring

    Directory of Open Access Journals (Sweden)

    Gajewski Laurent

    2017-01-01

    Full Text Available The “Non-intrusive battery health monitoring”, developed by Airbus Defence and Space (ADS in cooperation with the CIRIMAT-CNRS laboratory and supported by CNES, aims at providing a diagnosis of the battery ageing in flight, called State of Health (SOH, using only the post-treatment of the battery telemetries. The battery current and voltage telemetries are used by a signal processing tool on ground to characterize and to model the battery at low frequencies which allows monitoring the evolution of its degradation with great accuracy. The frequential behaviour estimation is based on inherent disturbances on the current during the nominal functioning of the battery. For instance, on-board thermal control or equipment consumption generates random disturbances on battery current around an average current. The battery voltage response to these current random disturbances enables to model the low frequency impedance of the battery by a signal processing tool. The re-created impedance is then compared with the evolution model of the low frequencies impedance as a function of the battery ageing to estimate accurately battery degradation. Hence, this method could be applied to satellites which are already in orbit and whose battery telemetries acquisition system fulfils the constraints determined in the study. This innovative method is an improvement of present state-of-the-art and is important to have a more accurate in-flight knowledge of battery ageing which is crucial for mission and operation planning and also for possible satellite mission extension or deorbitation. This method is patented by Airbus Defence and Space and CNES.

  15. Field Synergy Analysis and Optimization of the Thermal Behavior of Lithium Ion Battery Packs

    Directory of Open Access Journals (Sweden)

    Hongwen He

    2017-01-01

    Full Text Available In this study, a three dimensional (3D modeling has been built for a lithium ion battery pack using the field synergy principle to obtain a better thermal distribution. In the model, the thermal behavior of the battery pack was studied by reducing the maximum temperature, improving the temperature uniformity and considering the difference between the maximum and maximum temperature of the battery pack. The method is further verified by simulation results based on different environmental temperatures and discharge rates. The thermal behavior model demonstrates that the design and cooling policy of the battery pack is crucial for optimizing the air-outlet patterns of electric vehicle power cabins.

  16. Development of a Fe-Ni battery for electric vehicle use. Denki jidoshayo tetsu nickel denchi no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, T.; Okuda, K. (The Tohoku Electric Power Co. Inc., Sendai (Japan))

    1993-08-11

    Development has been made on an iron-nickel battery as a low polluting electric vehicle battery that is superior in low-temperature performance to lead-acid batteries. This paper summarizes the battery. The battery uses NiOOH for positive electrodes, Fe for negative electrodes, and alkaline aqueous solution for electrolyte. The battery was manufactured in the following manners to make it suit the electric vehicle application: The iron electrode was manufactured by mixing reduced iron powder having grain sizes from 5[mu] to 6[mu] with electrolyzed iron powder with grain sizes from 20[mu] to 30[mu] in a bonding agent, and sintered at temperatures from 750[degree]C to 800[degree]C in H2 atmosphere; iron electrodes that have superior life and material utilization factor were found to have reduced iron powder ratios from 20% to 30%; the nickel electrode consists of a substrate obtained by coating metallic Ni powder on a sheet and sintering it and filling it with NiOH; the electrolyte is composed of KOH containing LiOH and KS; the separator uses a ribbed PVC porous sheet; the container is made of PP; performance evaluation tests were conducted on discharge performance, energy density, output density, temperature characteristics, charge efficiency, and cycle life; and the results of vehicle driving tests surpassed those from lead-acid batteries. 6 refs., 18 figs., 6 tabs.

  17. Portable Fuel Cell Battery Charger with Integrated Hydrogen Generator

    Energy Technology Data Exchange (ETDEWEB)

    Bossel, Ulf G. [CH-5452 Oberrohrdorf (Switzerland)

    1999-10-01

    A fully self-sufficient portable fuel cell battery charger has been designed, built, operated and is now prepared for commercialisation. The lightweight device is equipped with 24 circular polymer electrolyte cells of an innovative design. Each cell is a complete unit and can be tested prior to stacking. Hydrogen is admitted to the anode chamber from the centre of the cell. Air can reach the cathode by diffusion through a porous metal foam layer placed between cathode and separator plate. Soft seals surround the centre hole of the cells to separate hydrogen from air. Water vapour generated by the electrochemical conversion is released into the atmosphere via the porous metal foam on the cathode. All hydrogen fed to the dead-ended anode chamber is converted to electric power. The device is equipped with a chemical hydrogen generator. The fuel gas is formed by adding small amounts of water to a particular chemical compound which is contained in disposable cartridges. With one such cartridge enough hydrogen can be generated to operate CD-players, radios, recorders or portable computers for some hours, depending on the current drawn by the electronic device. The handy portable battery charger delivers about 10 W at 12 V DC. It is designed to be used in remote areas as autonomous power source for charging batteries used in radios, CD players, cellular telephones, radio transmitters, flash lights or model air planes. The power can also be used directly to provide light, sound or motion. Patents have been filed and partners are sought for commercialisation. (author) 4 figs.

  18. Study on lithium/air secondary batteries - Stability of NASICON-type lithium ion conducting glass-ceramics with water

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Satoshi; Imanishi, Nobuyuki; Zhang, Tao; Xie, Jian; Hirano, Atsushi; Takeda, Yasuo; Yamamoto, Osamu [Department of Chemistry, Faculty of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507 (Japan)

    2009-04-01

    The water stability of the fast lithium ion conducting glass-ceramic electrolyte, Li{sub 1+x+y}Al{sub x}Ti{sub 2-x}Si{sub y}P{sub 3-y}O{sub 12} (LATP), has been examined in distilled water, and aqueous solutions of LiNO{sub 3}, LiCl, LiOH, and HCl. This glass-ceramics are stable in aqueous LiNO{sub 3} and aqueous LiCl, and unstable in aqueous 0.1 M HCl and 1 M LiOH. In distilled water, the electrical conductivity slightly increases as a function of immersion time in water. The Li-Al/Li{sub 3-x}PO{sub 4-y}N{sub y}/LATP/aqueous 1 M LiCl/Pt cell, where lithium phosphors oxynitrides Li{sub 3-x}PO{sub 4-y}N{sub y} (LiPON) are used to protect the direct reaction of Li and LATP, shows a stable open circuit voltage (OCV) of 3.64 V at 25 C, and no cell resistance change for 1 week. Lithium phosphors oxynitride is effectively used as a protective layer to suppress the reaction between the LATP and Li metal. The water-stable Li/LiPON/LATP system can be used in Li/air secondary batteries with the air electrode containing water. (author)

  19. Battery for ECT Related Cognitive Deficits (B4ECT-ReCoDe): development and validation.

    Science.gov (United States)

    Viswanath, Biju; Harihara, Shashidhara N; Nahar, Abhinav; Phutane, Vivek Haridas; Taksal, Aarati; Thirthalli, Jagadisha; Gangadhar, Bangalore N

    2013-06-01

    The use of electroconvulsive therapy (ECT) in treatment of psychiatric disorders is associated with adverse cognitive effects. There is a need to develop a short assessment tool of cognitive functions during the course of ECT. This study aimed at developing and validating a short, sensitive battery to assess cognitive deficits associated with ECT in India. Battery for ECT Related Cognitive Deficits (B4ECT-ReCoDe), a brief cognitive battery (20-30 min) to assess verbal, visual, working and autobiographic memory, sustained attention, psychomotor speed and subjective memory impairment, was administered to 30 in-patients receiving bilateral ECT, one day after the 1st, 3rd and 6th ECT. Data was analysed using repeated measures analysis of variance and Pearson's correlation. Significant deficits were found in verbal, visual and autobiographic memory, psychomotor speed. Subjective experience of memory loss correlated positively with verbal memory impairment. B4ECT-ReCoDe, a brief, sensitive measure of cognitive impairments associated with ECT can be used in routine clinical practice. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Research, development, and demonstration of nickel-iron batteries for electric vehicle propulsion. Annual report, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    The objective of the Eagle-Picher nickel-iron battery program is to develop a nickel-iron battery for use in the propulsion of electric and electric-hybrid vehicles. To date, the program has concentrated on the characterization, fabrication and testing of the required electrodes, the fabrication and testing of full-scale cells, and finally, the fabrication and testing of full-scale (270 AH) six (6) volt modules. Electrodes of the final configuration have now exceeded 1880 cycles and are showing minimal capacity decline. Full-scale cells have presently exceeded 600 cycles and are tracking the individual electrode tests almost identically. Six volt module tests have exceeded 500 cycles, with a specific energy of 48 Wh/kg. Results to date indicate the nickel-iron battery is beginning to demonstrate the performance required for electric vehicle propulsion.

  1. Optimized batteries for cars with dual electrical architecture

    Science.gov (United States)

    Douady, J. P.; Pascon, C.; Dugast, A.; Fossati, G.

    During recent years, the increase in car electrical equipment has led to many problems with traditional starter batteries (such as cranking failure due to flat batteries, battery cycling etc.). The main causes of these problems are the double function of the automotive battery (starter and service functions) and the difficulties in designing batteries well adapted to these two functions. In order to solve these problems a new concept — the dual-concept — has been developed with two separate batteries: one battery is dedicated to the starter function and the other is dedicated to the service function. Only one alternator charges the two batteries with a separation device between the two electrical circuits. The starter battery is located in the engine compartment while the service battery is located at the rear of the car. From the analysis of new requirements, battery designs have been optimized regarding the two types of functions: (i) a small battery with high specific power for the starting function; for this function a flooded battery with lead-calcium alloy grids and thin plates is proposed; (ii) for the service function, modified sealed gas-recombinant batteries with cycling and deep-discharge ability have been developed. The various advantages of the dual-concept are studied in terms of starting reliability, battery weight, and voltage supply. The operating conditions of the system and several dual electrical architectures have also been studied in the laboratory and the car. The feasibility of the concept is proved.

  2. Lattice Boltzmann modeling of transport phenomena in fuel cells and flow batteries

    Science.gov (United States)

    Xu, Ao; Shyy, Wei; Zhao, Tianshou

    2017-06-01

    Fuel cells and flow batteries are promising technologies to address climate change and air pollution problems. An understanding of the complex multiscale and multiphysics transport phenomena occurring in these electrochemical systems requires powerful numerical tools. Over the past decades, the lattice Boltzmann (LB) method has attracted broad interest in the computational fluid dynamics and the numerical heat transfer communities, primarily due to its kinetic nature making it appropriate for modeling complex multiphase transport phenomena. More importantly, the LB method fits well with parallel computing due to its locality feature, which is required for large-scale engineering applications. In this article, we review the LB method for gas-liquid two-phase flows, coupled fluid flow and mass transport in porous media, and particulate flows. Examples of applications are provided in fuel cells and flow batteries. Further developments of the LB method are also outlined.

  3. A Thermal Runaway Simulation on a Lithium Titanate Battery and the Battery Module

    Directory of Open Access Journals (Sweden)

    Man Chen

    2015-01-01

    Full Text Available Based on the electrochemical and thermal model, a coupled electro-thermal runaway model was developed and implemented using finite element methods. The thermal decomposition reactions when the battery temperature exceeds the material decomposition temperature were embedded into the model. The temperature variations of a lithium titanate battery during a series of charge-discharge cycles under different current rates were simulated. The results of temperature and heat generation rate demonstrate that the greater the current, the faster the battery temperature is rising. Furthermore, the thermal influence of the overheated cell on surrounding batteries in the module was simulated, and the variation of temperature and heat generation during thermal runaway was obtained. It was found that the overheated cell can induce thermal runaway in other adjacent cells within 3 mm distance in the battery module if the accumulated heat is not dissipated rapidly.

  4. The progress of the electrode materials development for lithium ion battery

    International Nuclear Information System (INIS)

    Kang Kai; Dai Shouhui; Wan Yuhua

    2001-01-01

    The structure and the charge-discharge principle of Li-ion battery are briefly discussed; the progress of electrode materials for Li-ion battery is reviewed in detail. Graphite has found wide applications in commercial Li-ion batteries, however, the hard carbon, especially the carbon with hydrogen is the most promising anode material for Li-ion battery owing to its high capacity, which has now become hot spot of investigation. Following the LiCoO 2 , LiMn 2 O 4 spinel compound becomes the most powerful contestant. On the basis of the authors' results, the synthesis methods of LiMn 2 O 4 and its characterizations are compared. Moreover, the structural properties of intercalation electrode materials that are related to the rechargeable capacity and stability during cycling of lithium ions are also discussed

  5. Environmental characteristics comparison of Li-ion batteries and Ni–MH batteries under the uncertainty of cycle performance

    International Nuclear Information System (INIS)

    Yu, Yajuan; Wang, Xiang; Wang, Dong; Huang, Kai; Wang, Lijing; Bao, Liying; Wu, Feng

    2012-01-01

    An environmental impact assessment model for secondary batteries under uncertainty is proposed, which is a combination of the life cycle assessment (LCA), Eco-indicator 99 system and Monte Carlo simulation (MCS). The LCA can describe the environmental impact mechanism of secondary batteries, whereas the cycle performance was simulated through MCS. The composite LCA–MCS model was then carried out to estimate the environmental impact of two kinds of experimental batteries. Under this kind of standard assessment system, a comparison between different batteries could be accomplished. The following results were found: (1) among the two selected batteries, the environmental impact of the Li-ion battery is lower than the nickel–metal hydride (Ni–MH) battery, especially with regards to resource consumption and (2) the lithium ion (Li-ion) battery is less sensitive to cycle uncertainty, its environmental impact fluctuations are small when compared with the selected Ni–MH battery and it is more environmentally friendly. The assessment methodology and model proposed in this paper can also be used for any other secondary batteries and they can be helpful in the development of environmentally friendly secondary batteries.

  6. Determination of sulfur dioxide in ambient air and in industrial stack using X-ray fluorescence technique

    International Nuclear Information System (INIS)

    Sumitra, T.; Chankow, N.; Punnachaiya, S.; Laopaibul, R.

    1988-01-01

    Sulfur dioxide is a major air pollutant of concern. The gas has to be monitored both in ambient air and in industrial stacks. There are several methods of measuring sulfur dioxide. Standard methods adopted for Thailand are based on chemical methods. These are normally sensitive to light and temperature changes. Therefore a method of collecting air sample and determination of SO 2 by X-ray fluorescence technique was developed. Air sampling was done by an in-house low cost air sampler using automobile battery, dependency on a.c. source was thus avoided. The air pump has a flow rate between 0.2-1.5 liters/minute and draw about 0.6 A from a 12 V battery. SO 2 was collected on 37 mm filters impregnated with 5% sodium carbonate. This method could detect SO 2 from 10 μg up. The method has been checked by interlaboratory comparison. Field test has also been performed at some tobacco curing plants in Amphoe Sansai, Changwat Chiengmai, both in ambient air and in stacks. The results were found to be satisfactory and comparable with the standard methods

  7. New highly active oxygen reduction electrode for PEM fuel cell and Zn/air battery applications (NORA). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Thiele, D.; Zuettel, A.

    2008-04-15

    This illustrated final report for the Swiss Federal Office of Energy (SFOE) presents the results of a project concerning a new, highly active oxygen reduction electrode for PEM fuel cell and zinc/air battery applications. The goal of this project was, according to the authors, to increase the efficiency of the oxygen reduction reaction by lowering the activation polarisation through the right choice of catalyst and by lowering the concentration polarisation. In this work, carbon nanotubes are used as support material. The use of these nanotubes grown on perovskites is discussed. Theoretical considerations regarding activation polarisation are discussed and alternatives to the use of platinum are examined. The results of experiments carried out are presented in graphical and tabular form. The paper is completed with a comprehensive list of references.

  8. Bipolar lead-acid battery for hybrid electric vehicles

    NARCIS (Netherlands)

    Schmal, D.; Saakes, M.; Veen, W.R. ter; Raadschelders, J.W.; Have, P.T.J.H. ten

    2000-01-01

    In hybrid electric vehicles (HEV) the requirements on batteries are very different from those for battery electric vehicles (BEV). A high power (bipolar) lead-acid battery could be a good alternative for other types of batteries under development for this application. It is potentially cheap and

  9. A Battery Certification Testbed for Small Satellite Missions

    Science.gov (United States)

    Cameron, Zachary; Kulkarni, Chetan S.; Luna, Ali Guarneros; Goebel, Kai; Poll, Scott

    2015-01-01

    A battery pack consisting of standard cylindrical 18650 lithium-ion cells has been chosen for small satellite missions based on previous flight heritage and compliance with NASA battery safety requirements. However, for batteries that transit through the International Space Station (ISS), additional certification tests are required for individual cells as well as the battery packs. In this manuscript, we discuss the development of generalized testbeds for testing and certifying different types of batteries critical to small satellite missions. Test procedures developed and executed for this certification effort include: a detailed physical inspection before and after experiments; electrical cycling characterization at the cell and pack levels; battery-pack overcharge, over-discharge, external short testing; battery-pack vacuum leak and vibration testing. The overall goals of these certification procedures are to conform to requirements set forth by the agency and identify unique safety hazards. The testbeds, procedures, and experimental results are discussed for batteries chosen for small satellite missions to be launched from the ISS.

  10. Lithium-ion batteries for hearing aid applications. II. Pulse discharge and safety tests

    Science.gov (United States)

    Passerini, S.; Coustier, F.; Owens, B. B.

    Rechargeable lithium-ion batteries were designed to meet the power requirements of hearing aid devices (HADs). The batteries were designed in a 312-button cell size, compatible with existing hearing aids. The batteries were tested to evaluate the design and the electrochemical performance, as they relate to a typical hearing aid application. The present report covers the pulse capabilities, cycle life and preliminary safety tests. The results are compared with other battery chemistries: secondary lithium-alloy and nickel-metal hydride batteries and primary Zn-air batteries. The cell AC impedance was stable over the frequency range between 1 and 50 kHz, ranging between 5 Ω at the higher frequency and 12 Ω at the lower extreme. Pulse tests were consistent with these values, as the cells were capable of providing a series of 100 mA pulses of 10-s duration. The safety tests suggest that the design is intrinsically safe with respect to the most common types of abuse conditions.

  11. Compressed-air power tools in orthopaedic surgery: exhaust air is a potential source of contamination.

    Science.gov (United States)

    Sagi, H C; DiPasquale, Thomas; Sanders, Roy; Herscovici, Dolfi

    2002-01-01

    To determine if the exhaust from surgical compressed-air power tools contains bacteria and if the exhaust leads to contamination of sterile surfaces. Bacteriologic study of orthopaedic power tools. Level I trauma center operative theater. None. Part I. Exhaust from two sterile compact air drills was sampled directly at the exhaust port. Part II. Exhaust from the drills was directed at sterile agar plates from varying distances. The agar plates represented sterile surfaces within the operative field. Part III. Control cultures. A battery-powered drill was operated over open agar plates in similar fashion as the compressed-air drills. Agar plates left open in the operative theater served as controls to rule out atmospheric contamination. Random cultures were taken from agar plates, gloves, drills, and hoses. Incidence of positive cultures. In Part I, all filters from both compressed-air drill exhausts were culture negative ( = 0.008). In Part II, the incidence of positive cultures for air drills number one and number two was 73% and 82%, respectively. The most commonly encountered organisms were, coagulase-negative Staphylococcus, and Micrococcus species. All control cultures from agar plates, battery-powered drill, gloves, and hoses were negative ( compressed-air power tools in orthopaedic surgery may contribute to the dissemination of bacteria onto the surgical field. We do not recommend the use of compressed-air power tools that do not have a contained exhaust.

  12. Determinants of European air traffic development

    Directory of Open Access Journals (Sweden)

    Tomislav MIHETEC

    2008-01-01

    Full Text Available The paper elaborates main determinants of the strategic development as well as the key factors, which influence European air traffic dynamics. The problem of European airspace fragmentation should be solved by the comprehensive dynamic harmonization programmes, which can contribute to effective increase of airspace capacity and increase of air transport efficiency. The main objective of development strategy refers to the implementation of reformation processes of the European air traffic management system through functional ATM regionalization and adoption of Single European Sky legislation.

  13. Radioisotope battery for particular application

    International Nuclear Information System (INIS)

    Shen Tianjian; Liang Daihua; Cai Jianhua; Dai Zhimin; Xia Huihao; Wang Jianhua; Sun Sen; Yu Guojun; Wang Xiao; Wang Dongxing; Liu Xin

    2010-01-01

    Radioisotope battery, as a new type of power source, was developed in 1960s. It is advantageous in terms of long working life, high reliability, flexibility to rugged environment, maintenance free, and high capacity rate, hence its unique applications in space, isolated terrestrial or ocean spots, deep waters, and medicine. In this paper, we analysz the primary performances and classification of radioisotope thermoelectric generator, as well as characteristic, basic principle,and structure of radioisotope thermoelectric generator (RTG), which is the most popular in application of radioisotope battery in space, undersea, terrestrial and medicine. A prospect for development and application of radioisotope battery in the 21 st century is given, too. (authors)

  14. Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles. Volume 2, Battery recycling and disposal

    Energy Technology Data Exchange (ETDEWEB)

    Corbus, D

    1992-09-01

    Recycling and disposal of spent sodium-sulfur (Na/S) batteries are important issues that must be addressed as part of the commercialization process of Na/S battery-powered electric vehicles. The use of Na/S batteries in electric vehicles will result in significant environmental benefits, and the disposal of spent batteries should not detract from those benefits. In the United States, waste disposal is regulated under the Resource Conservation and Recovery Act (RCRA). Understanding these regulations will help in selecting recycling and disposal processes for Na/S batteries that are environmentally acceptable and cost effective. Treatment processes for spent Na/S battery wastes are in the beginning stages of development, so a final evaluation of the impact of RCRA regulations on these treatment processes is not possible. The objectives of tills report on battery recycling and disposal are as follows: Provide an overview of RCRA regulations and requirements as they apply to Na/S battery recycling and disposal so that battery developers can understand what is required of them to comply with these regulations; Analyze existing RCRA regulations for recycling and disposal and anticipated trends in these regulations and perform a preliminary regulatory analysis for potential battery disposal and recycling processes. This report assumes that long-term Na/S battery disposal processes will be capable of handling large quantities of spent batteries. The term disposal includes treatment processes that may incorporate recycling of battery constituents. The environmental regulations analyzed in this report are limited to US regulations. This report gives an overview of RCRA and discusses RCRA regulations governing Na/S battery disposal and a preliminary regulatory analysis for Na/S battery disposal.

  15. Recent Advances on Sodium-Oxygen Batteries: A Chemical Perspective.

    Science.gov (United States)

    Yadegari, Hossein; Sun, Xueliang

    2018-06-19

    Releasing greenhouse gases into the atmosphere because of widespread use of fossil fuels by humankind has resulted in raising the earth's temperature during the past few decades. Known as global warming, increasing the earth's temperature may in turn endanger civilization on the earth by starting a cycle of environmental changes including climate change and sea level rise. Therefore, replacing fossil fuels with more sustainable energy resources has been considered as one of the main strategies to tackle the global warming crisis. In this regard, energy saving devices are required to store the energy from sustainable resources like wind and solar when they are available and deliver them on demand. Moreover, developing plug-in electric vehicles (PEVs) as an alternative for internal combustion engines has been extensively pursued, since a major sector of fossil fuels is used for transportation purposes. However, currently available battery systems fail to meet the required demands for energy storage. Alkali metal-O 2 battery systems demonstrate a promising prospect as a high-energy density solution regarding the increasing demand of mankind for energy storage. Combining a metallic negative electrode with a breathing oxygen electrode, a metal-O 2 cell can be considered as a half battery/half fuel cell system. The negative electrode in the metal-O 2 cells operates a conversion reaction rather than intercalation mechanism, which eliminates the need for a host lattice. In addition, the positive electrode material (O 2 ) comes from the ambient air and hence is not stored in the battery. Therefore, the resultant battery systems exhibit the highest theoretical energy density, which is comparable to that of gasoline. Accordingly, an unprecedented amount of research activity was directed toward alkali metal-O 2 batteries in the past decade in response to the need for high-energy storage technology in electric transportation. This extensive research surge has resulted in a

  16. Research, development and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report, 1979. [70 W/lb

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    This second annual report under Contract No. 31-109-39-4200 covers the period July 1, 1978 through August 31, 1979. The program demonstrates the feasibility of the nickel-zinc battery for electric vehicle propulsion. The program is divided into seven distinct but highly interactive tasks collectively aimed at the development and commercialization of nickel-zinc technology. These basic technical tasks are separator development, electrode development, product design and analysis, cell/module battery testing, process development, pilot manufacturing, and thermal management. A Quality Assurance Program has also been established. Significant progress has been made in the understanding of separator failure mechanisms, and a generic category of materials has been specified for the 300+ deep discharge (100% DOD) applications. Shape change has been reduced significantly. A methodology has been generated with the resulting hierarchy: cycle life cost, volumetric energy density, peak power at 80% DOD, gravimetric energy density, and sustained power. Generation I design full-sized 400-Ah cells have yielded in excess of 70 W/lb at 80% DOD. Extensive testing of cells, modules, and batteries is done in a minicomputer-based testing facility. The best life attained with electric vehicle-size cell components is 315 cycles at 100% DOD (1.0V cutoff voltage), while four-cell (approx. 6V) module performance has been limited to about 145 deep discharge cycles. The scale-up of processes for production of components and cells has progressed to facilitate component production rates of thousands per month. Progress in the area of thermal management has been significant, with the development of a model that accurately represents heat generation and rejection rates during battery operation. For the balance of the program, cycle life of > 500 has to be demonstrated in modules and full-sized batteries. 40 figures, 19 tables. (RWR)

  17. The revolution of batteries: electricity can be stored. Battery reaches all sectors. The Li-ion king

    International Nuclear Information System (INIS)

    Moragues, Manuel; Cognasse, Olivier

    2016-01-01

    Based on the lithium-ion technology, the revolution of energy storage is on the way. A first article describes how these new batteries are now introduced into the grid (for example in the USA, in the UK, in Germany, Italy, French islands, China, South Korea, Japan and Australia) and boost energy transition. With this revolution, new regulations and new business models are to be more precisely defined. Clients are asking for energy storage solutions. If new applications seem to boost it, the market remains however complex, unsteady and full of unknowns. In an interview, the Saft chairman comments the sector evolution, fields of application, the success of Tesla batteries, and the bad surprise of a sales drop for energy storage solutions for his company in 2015. The last article discusses how the Li-ion technology extends its domination, indicates the technological differences between fields of application (each application has its cathode), perspectives of improvement for the different involved chemical processes, and evokes safety issues. The article also indicates five technologies which pretend to compete with Li-ion technology (metal lithium polymer, sodium-ion, flow batteries with two electrolytes, lithium-sulphur, and lithium air)

  18. Communication: The influence of CO2 poisoning on overvoltages and discharge capacity in non-aqueous Li-Air batteries

    DEFF Research Database (Denmark)

    Mekonnen, Yedilfana Setarge; Knudsen, Kristian Bastholm; Mýrdal, Jón Steinar Garðarsson

    2014-01-01

    The effects of Li2CO3 like species originating from reactions between CO2 and Li2O2 at the cathode of non-aqueous Li-air batteries were studied by density functional theory (DFT) and galvanostatic charge-discharge measurements. Adsorption energies of CO2 at various nucleation sites on a stepped (1......‾100) Li2O2 surface were determined and even a low concentration of CO2 effectively blocks the step nucleation site and alters the Li2O2 shape due to Li2CO3 formation. Nudged elastic band calculations show that once CO2 is adsorbed on a step valley site, it is effectively unable to diffuse and impacts...

  19. Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems

    Science.gov (United States)

    Tuffner, Francis K [Richland, WA; Kintner-Meyer, Michael C. W. [Richland, WA; Hammerstrom, Donald J [West Richland, WA; Pratt, Richard M [Richland, WA

    2012-05-22

    Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

  20. The Italian contribution to battery science and technology

    Science.gov (United States)

    Scrosati, Bruno

    The activities in the battery field currently in progress in Italian academic and industrial laboratories will be briefly reviewed. After reporting the key achievements obtained in lead-acid batteries, the presentation will be focused on systems of more recent development with particular attention to the lithium batteries. Interestingly, there is in Italy quite an intense research and development activity on these new-concept batteries which are now the power sources of choice for popular electronic devices, e.g. cellular phones, and in prospect valid systems for powering electric vehicles. Basic research is carried out in various university and government centers with the aim of characterizing new lithium ion electrode and electrolyte materials. This intense research is backed by substantial development activity since few Italian industries are presently engaged in the production of lithium batteries of different size and characteristics. Italy is then well established in battery R&D, confirming the country's historical involvement in the field since Volta's pile invention in 1800.

  1. NASA Glenn Research Center Electrochemistry Branch Battery Overview

    Science.gov (United States)

    Manzo, Michelle A.

    2010-01-01

    This presentation covers an overview of NASA Glenn s history and heritage in the development of electrochemical systems for aerospace applications. Specific areas of focus are Li-ion batteries and their development for future Exploration missions. Current component development efforts for high energy and ultra high energy Li-ion batteries are addressed. Electrochemical systems are critical to the success of Exploration, Science and Space Operations missions. NASA Glenn has a long, successful heritage with batteries and fuel cells for aerospace applications. GRC Battery capabilities and expertise span basic research through flight hardware development and implementation. There is a great deal of synergy between energy storage system needs for aerospace and terrestrial applications.

  2. Datasheet-based modeling of Li-Ion batteries

    DEFF Research Database (Denmark)

    Barreras, Jorge Varela; Schaltz, Erik; Andreasen, Søren Juhl

    2012-01-01

    Researchers and developers use battery models in order to predict the performance of batteries depending on external and internal conditions, such as temperature, C-rate, Depth-of-Discharge (DoD) or State-of-Health (SoH). Most battery models proposed in the literature require specific laboratory...

  3. Use of compressed-air storage systems; Einsatz von Druckluftspeichersystemen

    Energy Technology Data Exchange (ETDEWEB)

    Cyphely, I.; Rufer, A.; Brueckmann, Ph.; Menhardt, W.; Reller, A.

    2004-07-01

    This final report issued by the Swiss Federal Office of Energy (SFOE) looks at the use of compressed air as a means of storing energy. Historical aspects are listed and compressed-air storage as an alternative to current ideas that use electrolysis and hydrogen storage is discussed. The storage efficiency advantages of compressed-air storage is stressed and the possibilities it offers for compensating the stochastic nature of electricity production from renewable energy sources are discussed. The so-called BOP (Battery with Oil-hydraulics and Pneumatics) principle for the storage of electricity is discussed and its function is described. The advantages offered by such a system are listed and the development focus necessary is discussed.

  4. Charging a Li-O₂ battery using a redox mediator.

    Science.gov (United States)

    Chen, Yuhui; Freunberger, Stefan A; Peng, Zhangquan; Fontaine, Olivier; Bruce, Peter G

    2013-06-01

    The non-aqueous Li-air (O2) battery is receiving intense interest because its theoretical specific energy exceeds that of Li-ion batteries. Recharging the Li-O2 battery depends on oxidizing solid lithium peroxide (Li2O2), which is formed on discharge within the porous cathode. However, transporting charge between Li2O2 particles and the solid electrode surface is at best very difficult and leads to voltage polarization on charging, even at modest rates. This is a significant problem facing the non-aqueous Li-O2 battery. Here we show that incorporation of a redox mediator, tetrathiafulvalene (TTF), enables recharging at rates that are impossible for the cell in the absence of the mediator. On charging, TTF is oxidized to TTF(+) at the cathode surface; TTF(+) in turn oxidizes the solid Li2O2, which results in the regeneration of TTF. The mediator acts as an electron-hole transfer agent that permits efficient oxidation of solid Li2O2. The cell with the mediator demonstrated 100 charge/discharge cycles.

  5. A new controller for battery-powered electric vehicles

    Science.gov (United States)

    Belsterling, C. A.; Stone, J.

    1980-01-01

    This paper describes the development, under a NASA/DOE contract, of a new concept for efficient and reliable control of battery-powered vehicles. It avoids the detrimental effects of pulsed-power controllers like the SCR 'chopper' by using rotating machines to meter continuous currents to the traction motor. The concept is validated in a proof-of-principle demonstration system and a complete vehicle is simulated on an analog computer. Test results show exceptional promise for a full-scale system. Optimum control strategies to minimize controller weight are developed by means of the simulated vehicle. The design for an Engineering Model is then prepared in the form of a practical, compact two-bearing package with forced air cooling. Predicted performance is outstanding, with controller efficiency of over 90% at high speed.

  6. Battery model for electrical power system energy balance

    Science.gov (United States)

    Hafen, D. P.

    1983-01-01

    A model to simulate nickel-cadmium battery performance and response in a spacecraft electrical power system energy balance calculation was developed. The voltage of the battery is given as a function of temperature, operating depth-of-charge (DOD), and battery state-of-charge. Also accounted for is charge inefficiency. A battery is modeled by analysis of the results of a multiparameter battery cycling test at various temperatures and DOD's.

  7. Polyanion-Type Electrode Materials for Sodium-Ion Batteries.

    Science.gov (United States)

    Ni, Qiao; Bai, Ying; Wu, Feng; Wu, Chuan

    2017-03-01

    Sodium-ion batteries, representative members of the post-lithium-battery club, are very attractive and promising for large-scale energy storage applications. The increasing technological improvements in sodium-ion batteries (Na-ion batteries) are being driven by the demand for Na-based electrode materials that are resource-abundant, cost-effective, and long lasting. Polyanion-type compounds are among the most promising electrode materials for Na-ion batteries due to their stability, safety, and suitable operating voltages. The most representative polyanion-type electrode materials are Na 3 V 2 (PO 4 ) 3 and NaTi 2 (PO 4 ) 3 for Na-based cathode and anode materials, respectively. Both show superior electrochemical properties and attractive prospects in terms of their development and application in Na-ion batteries. Carbonophosphate Na 3 MnCO 3 PO 4 and amorphous FePO 4 have also recently emerged and are contributing to further developing the research scope of polyanion-type Na-ion batteries. However, the typical low conductivity and relatively low capacity performance of such materials still restrict their development. This paper presents a brief review of the research progress of polyanion-type electrode materials for Na-ion batteries, summarizing recent accomplishments, highlighting emerging strategies, and discussing the remaining challenges of such systems.

  8. Polyanion‐Type Electrode Materials for Sodium‐Ion Batteries

    Science.gov (United States)

    Ni, Qiao; Wu, Feng

    2017-01-01

    Sodium‐ion batteries, representative members of the post‐lithium‐battery club, are very attractive and promising for large‐scale energy storage applications. The increasing technological improvements in sodium‐ion batteries (Na‐ion batteries) are being driven by the demand for Na‐based electrode materials that are resource‐abundant, cost‐effective, and long lasting. Polyanion‐type compounds are among the most promising electrode materials for Na‐ion batteries due to their stability, safety, and suitable operating voltages. The most representative polyanion‐type electrode materials are Na3V2(PO4)3 and NaTi2(PO4)3 for Na‐based cathode and anode materials, respectively. Both show superior electrochemical properties and attractive prospects in terms of their development and application in Na‐ion batteries. Carbonophosphate Na3MnCO3PO4 and amorphous FePO4 have also recently emerged and are contributing to further developing the research scope of polyanion‐type Na‐ion batteries. However, the typical low conductivity and relatively low capacity performance of such materials still restrict their development. This paper presents a brief review of the research progress of polyanion‐type electrode materials for Na‐ion batteries, summarizing recent accomplishments, highlighting emerging strategies, and discussing the remaining challenges of such systems. PMID:28331782

  9. Towards identifying dyslexia in Standard Indonesian: : the development of a reading assessment battery

    NARCIS (Netherlands)

    Jap, Bernard Amadeus Jaya; Borleffs, Elisabeth; Maassen, Bernardus

    2017-01-01

    With its transparent orthography, Standard Indonesian is spoken by over 160 million inhabitants and is the primary language of instruction in education and the government in Indonesia. An assessment battery of reading and reading-related skills was developed as a starting point for the diagnosis of

  10. Button batteries

    Science.gov (United States)

    Swallowing batteries ... These devices use button batteries: Calculators Cameras Hearing aids Penlights Watches ... If a person puts the battery up their nose and breathes it further in, ... problems Cough Pneumonia (if the battery goes unnoticed) ...

  11. Experimental investigation on EV battery cooling and heating by heat pipes

    International Nuclear Information System (INIS)

    Wang, Q.; Jiang, B.; Xue, Q.F.; Sun, H.L.; Li, B.; Zou, H.M.; Yan, Y.Y.

    2015-01-01

    Enhancing battery safety and thermal behaviour are critical for electric vehicles (EVs) because they affect the durability, energy storage, lifecycle, and efficiency of the battery. Prior studies of using air, liquid or phase change materials (PCM) to manage the battery thermal environment have been investigated over the last few years, but only a few take heat pipes into account. This paper aims to provide a full experimental characterisation of heat pipe battery cooling and heating covering a range of battery ‘off-normal’ conditions. Two representative battery cells and a substitute heat source ranging from 2.5 to 40 W/cell have been constructed. Results show that the proposed method is able to keep the battery surface temperature below 40 °C if the battery generates less than 10 W/cell, and helps reduce the battery temperature down to 70 °C under uncommon thermal abuse conditions (e.g. 20–40 W/cell). Additionally, the feasibility of using sintered copper-water heat pipes under sub-zero temperatures has been assessed experimentally by exposing the test rig to −15 °C/−20 °C for more than 14 h. Data indicates that the heat pipe was able to function immediately after long hours of cold exposure and that sub-zero temperature conditions had little impact on heat pipe performance. We therefore conclude that the proposed method of battery cooling and heating via heat pipes is a viable solution for EVs

  12. Batteries for energy storage. Examples, strategies, solutions

    International Nuclear Information System (INIS)

    Fahlbusch, Eckhard

    2015-01-01

    This book presents the variety of battery technologies and describes their mobile and stationary applications and uses. The major social project of the energy transition requires a holistic approach that takes into account especially the issues of energy saving and efficiency in addition to the power generation and distribution from renewable resources. In addition, the book provides an outlook on the further development possibilities of battery technology and battery applications. Improved battery technology is an important factor to help electromobility and stationary applications of batteries as distributed energy storage breakthrough. Not least, the importance and the need for the recycling of batteries and the variety of battery technologies are presented that have the greatest importance in terms of resource conservation and resource security. [de

  13. Thermal battery automated assembly station conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, D

    1988-08-01

    Thermal battery assembly involves many operations which are labor- intense. In August 1986, a project team was formed at GE Neutron Devices to investigate and evaluate more efficient and productive battery assembly techniques through the use of automation. The result of this study was the acceptance of a plan to automate the piece part pellet fabrication and battery stacking operations by using computerized pellet presses and robots which would be integrated by a main computer. This report details the conceptual design and development plan to be followed in the fabrication, development, and implementation of a thermal battery automated assembly station. 4 figs., 8 tabs.

  14. Batteries: Polymers switch for safety

    Energy Technology Data Exchange (ETDEWEB)

    Amine, Khalil

    2016-01-11

    Ensuring safety during operation is a major issue in the development of lithium-ion batteries. Coating the electrode current collector with thermoresponsive polymer composites is now shown to rapidly shut the battery down when it overheats, and to quickly resume its function when normal operating conditions return

  15. The computer simulation of automobile use patterns for defining battery requirements for electric cars

    Science.gov (United States)

    Schwartz, H. J.

    1976-01-01

    A Monte Carlo simulation process was used to develop the U.S. daily range requirements for an electric vehicle from probability distributions of trip lengths and frequencies and average annual mileage data. The analysis shows that a car in the U.S. with a practical daily range of 82 miles (132 km) can meet the needs of the owner on 95% of the days of the year, or at all times other than his long vacation trips. Increasing the range of the vehicle beyond this point will not make it more useful to the owner because it will still not provide intercity transportation. A daily range of 82 miles can be provided by an intermediate battery technology level characterized by an energy density of 30 to 50 watt-hours per pound (66 to 110 W-hr/kg). Candidate batteries in this class are nickel-zinc, nickel-iron, and iron-air. The implication of these results for the research goals of far-term battery systems suggests a shift in emphasis toward lower cost and greater life and away from high energy density.

  16. Adaptive State of Charge Estimation for Li-Ion Batteries Based on an Unscented Kalman Filter with an Enhanced Battery Model

    Directory of Open Access Journals (Sweden)

    Yuanyuan Liu

    2013-08-01

    Full Text Available Accurate estimation of the state of charge (SOC of batteries is one of the key problems in a battery management system. This paper proposes an adaptive SOC estimation method based on unscented Kalman filter algorithms for lithium (Li-ion batteries. First, an enhanced battery model is proposed to include the impacts due to different discharge rates and temperatures. An adaptive joint estimation of the battery SOC and battery internal resistance is then presented to enhance system robustness with battery aging. The SOC estimation algorithm has been developed and verified through experiments on different types of Li-ion batteries. The results indicate that the proposed method provides an accurate SOC estimation and is computationally efficient, making it suitable for embedded system implementation.

  17. Primer on lead-acid storage batteries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This handbook was developed to help DOE facility contractors prevent accidents caused during operation and maintenance of lead-acid storage batteries. Major types of lead-acid storage batteries are discussed as well as their operation, application, selection, maintenance, and disposal (storage, transportation, as well). Safety hazards and precautions are discussed in the section on battery maintenance. References to industry standards are included for selection, maintenance, and disposal.

  18. Sulfation in lead-acid batteries

    Science.gov (United States)

    Catherino, Henry A.; Feres, Fred F.; Trinidad, Francisco

    Virtually, all military land vehicle systems use a lead-acid battery to initiate an engine start. The maintainability of these batteries and as a consequence, system readiness, has suffered from a lack of understanding of the reasons for battery failure. Often, the term most commonly heard for explaining the performance degradation of lead-acid batteries is the word, sulfation. Sulfation is a residual term that came into existence during the early days of lead-acid battery development. The usage is part of the legend that persists as a means for interpreting and justifying the eventual performance deterioration and failure of lead-acid batteries. The usage of this term is confined to the greater user community and, over time, has encouraged a myriad of remedies for solving sulfation problems. One can avoid the connotations associated with the all-inclusive word, sulfation by visualizing the general "sulfation" effect in terms of specific mechanistic models. Also, the mechanistic models are essential for properly understanding the operation and making proper use this battery system. It is evident that the better the model, the better the level of understanding.

  19. Open stack thermal battery tests

    Energy Technology Data Exchange (ETDEWEB)

    Long, Kevin N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Christine C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grillet, Anne M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Headley, Alexander J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fenton, Kyle [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wong, Dennis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ingersoll, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-04-17

    We present selected results from a series of Open Stack thermal battery tests performed in FY14 and FY15 and discuss our findings. These tests were meant to provide validation data for the comprehensive thermal battery simulation tools currently under development in Sierra/Aria under known conditions compared with as-manufactured batteries. We are able to satisfy this original objective in the present study for some test conditions. Measurements from each test include: nominal stack pressure (axial stress) vs. time in the cold state and during battery ignition, battery voltage vs. time against a prescribed current draw with periodic pulses, and images transverse to the battery axis from which cell displacements are computed. Six battery configurations were evaluated: 3, 5, and 10 cell stacks sandwiched between 4 layers of the materials used for axial thermal insulation, either Fiberfrax Board or MinK. In addition to the results from 3, 5, and 10 cell stacks with either in-line Fiberfrax Board or MinK insulation, a series of cell-free “control” tests were performed that show the inherent settling and stress relaxation based on the interaction between the insulation and heat pellets alone.

  20. Development of battery management systems (BMS) for electric vehicles (EVs) in Malaysia

    OpenAIRE

    Salehen P.M.W.; Su’ait M.S.; Razali H.; Sopian K.

    2017-01-01

    Battery Management Systems (BMS) is an electronic devices component, which is a vital fundamental device connected between the charger and the battery of the hybrid or electric vehicle (EV) systems. Thus, BMS significantly enable for safety protection and reliable battery management by performing of monitoring charge control, state evaluation, reporting the data and functionalities cell balancing. To date, 97.1% of Malaysian CO2 emissions are mainly caused by transportation activities and the...