WorldWideScience

Sample records for agricultural fields based

  1. A contemporary decennial global Landsat sample of changing agricultural field sizes

    Science.gov (United States)

    White, Emma; Roy, David

    2014-05-01

    Agriculture has caused significant human induced Land Cover Land Use (LCLU) change, with dramatic cropland expansion in the last century and significant increases in productivity over the past few decades. Satellite data have been used for agricultural applications including cropland distribution mapping, crop condition monitoring, crop production assessment and yield prediction. Satellite based agricultural applications are less reliable when the sensor spatial resolution is small relative to the field size. However, to date, studies of agricultural field size distributions and their change have been limited, even though this information is needed to inform the design of agricultural satellite monitoring systems. Moreover, the size of agricultural fields is a fundamental description of rural landscapes and provides an insight into the drivers of rural LCLU change. In many parts of the world field sizes may have increased. Increasing field sizes cause a subsequent decrease in the number of fields and therefore decreased landscape spatial complexity with impacts on biodiversity, habitat, soil erosion, plant-pollinator interactions, and impacts on the diffusion of herbicides, pesticides, disease pathogens, and pests. The Landsat series of satellites provide the longest record of global land observations, with 30m observations available since 1982. Landsat data are used to examine contemporary field size changes in a period (1980 to 2010) when significant global agricultural changes have occurred. A multi-scale sampling approach is used to locate global hotspots of field size change by examination of a recent global agricultural yield map and literature review. Nine hotspots are selected where significant field size change is apparent and where change has been driven by technological advancements (Argentina and U.S.), abrupt societal changes (Albania and Zimbabwe), government land use and agricultural policy changes (China, Malaysia, Brazil), and/or constrained by

  2. Automated Agricultural Field Extraction from Multi-temporal Web Enabled Landsat Data

    Science.gov (United States)

    Yan, L.; Roy, D. P.

    2012-12-01

    Agriculture has caused significant anthropogenic surface change. In many regions agricultural field sizes may be increasing to maximize yields and reduce costs resulting in decreased landscape spatial complexity and increased homogenization of land uses with potential for significant biogeochemical and ecological effects. To date, studies of the incidence, drivers and impacts of changing field sizes have not been undertaken over large areas because of computational constraints and because consistently processed appropriate resolution data have not been available or affordable. The Landsat series of satellites provides near-global coverage, long term, and appropriate spatial resolution (30m) satellite data to document changing field sizes. The recent free availability of all the Landsat data in the U.S. Landsat archive now provides the opportunity to study field size changes in a global and consistent way. Commercial software can be used to extract fields from Landsat data but are inappropriate for large area application because they require considerable human interaction. This paper presents research to develop and validate an automated computational Geographic Object Based Image Analysis methodology to extract agricultural fields and derive field sizes from Web Enabled Landsat Data (WELD) (http://weld.cr.usgs.gov/). WELD weekly products (30m reflectance and brightness temperature) are classified into Satellite Image Automatic Mapper™ (SIAM™) spectral categories and an edge intensity map and a map of the probability of each pixel being agricultural are derived from five years of 52 weeks of WELD and corresponding SIAM™ data. These data are fused to derive candidate agriculture field segments using a variational region-based geometric active contour model. Geometry-based algorithms are used to decompose connected segments belonging to multiple fields into coherent isolated field objects with a divide and conquer strategy to detect and merge partial circle

  3. Building Rural Communities through School-Based Agriculture Programs

    Science.gov (United States)

    Martin, Michael J.; Henry, Anna

    2012-01-01

    The purpose of this study was to develop a substantive theory for community development by school-based agriculture programs through grounded theory methodology. Data for the study included in-depth interviews and field observations from three school-based agriculture programs in three non-metropolitan counties across a Midwestern state. The…

  4. Creating optimized machine working patterns on agricultural fields

    OpenAIRE

    Mark Spekken

    2015-01-01

    In the current agricultural context, agricultural machine unproductivity on fields and their impacts on soil along pathways are unavoidable. These machines have direct and indirect costs associated to their work in field, with non-productive time spent in manoeuvres when these are reaching field borders; likewise, there is a double application of product when machines are covering headlands while adding farm inputs. Both issues aggravate under irregular field geometry. Moreover, unproductive ...

  5. Agricultural field reclamation utilizing native grass crop production

    Science.gov (United States)

    J. Cure

    2013-01-01

    Developing a method of agricultural field reclamation to native grasses in the Lower San Pedro Watershed could prove to be a valuable tool for educational and practical purposes. Agricultural field reclamation utilizing native grass crop production will address water table depletion, soil degradation and the economic viability of the communities within the watershed....

  6. A contemporary decennial global sample of changing agricultural field sizes

    Science.gov (United States)

    White, E.; Roy, D. P.

    2011-12-01

    In the last several hundred years agriculture has caused significant human induced Land Cover Land Use Change (LCLUC) with dramatic cropland expansion and a marked increase in agricultural productivity. The size of agricultural fields is a fundamental description of rural landscapes and provides an insight into the drivers of rural LCLUC. Increasing field sizes cause a subsequent decrease in the number of fields and therefore decreased landscape spatial complexity with impacts on biodiversity, habitat, soil erosion, plant-pollinator interactions, diffusion of disease pathogens and pests, and loss or degradation in buffers to nutrient, herbicide and pesticide flows. In this study, globally distributed locations with significant contemporary field size change were selected guided by a global map of agricultural yield and literature review and were selected to be representative of different driving forces of field size change (associated with technological innovation, socio-economic conditions, government policy, historic patterns of land cover land use, and environmental setting). Seasonal Landsat data acquired on a decadal basis (for 1980, 1990, 2000 and 2010) were used to extract field boundaries and the temporal changes in field size quantified and their causes discussed.

  7. Spacial Variation in SAR Images of Different Resolution for Agricultural Fields

    DEFF Research Database (Denmark)

    Sandholt, Inge; Skriver, Henning

    1999-01-01

    The spatial variation in two types of Synthetic Aperture Radar (SAR) images covering agricultural fields is analysed. C-band polarimetric SAR data from the Danish airborne SAR, EMISAR, have been compared to space based ERS-1 C-band SAR with respect to scale and effect of polarization. The general...

  8. Vegetation Water Content Mapping in a Diverse Agricultural Landscape: National Airborne Field Experiment 2006

    Science.gov (United States)

    Cosh, Michael H.; Jing Tao; Jackson, Thomas J.; McKee, Lynn; O'Neill, Peggy

    2011-01-01

    Mapping land cover and vegetation characteristics on a regional scale is critical to soil moisture retrieval using microwave remote sensing. In aircraft-based experiments such as the National Airborne Field Experiment 2006 (NAFE 06), it is challenging to provide accurate high resolution vegetation information, especially on a daily basis. A technique proposed in previous studies was adapted here to the heterogenous conditions encountered in NAFE 06, which included a hydrologically complex landscape consisting of both irrigated and dryland agriculture. Using field vegetation sampling and ground-based reflectance measurements, the knowledge base for relating the Normalized Difference Water Index (NDWI) and the vegetation water content was extended to a greater diversity of agricultural crops, which included dryland and irrigated wheat, alfalfa, and canola. Critical to the generation of vegetation water content maps, the land cover for this region was determined from satellite visible/infrared imagery and ground surveys with an accuracy of 95.5% and a kappa coefficient of 0.95. The vegetation water content was estimated with a root mean square error of 0.33 kg/sq m. The results of this investigation contribute to a more robust database of global vegetation water content observations and demonstrate that the approach can be applied with high accuracy. Keywords: Vegetation, field experimentation, thematic mapper, NDWI, agriculture.

  9. The Role Played by Agricultural Policy-based Finance in New Village Construction

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The necessity of the agricultural policy-based finance in terms of supporting the new village construction is analyzed: in the first place, the theoretical roots of agricultural policy-based finance supporting new village construction are "market failure" and "government intervention"; in the second place, the continual decline of agriculture and the "rural financial market failure" in recent years have become the objective evidence and historical mission for agricultural policy-based finance to support new village construction; in the third place, the combination of agricultural policy-based finance and new village construction is conducive to solving the "three agriculture" problems and facilitating the reform of new village construction. The feasibility of the support is analyzed: firstly, agricultural policy-based finance boasts the status and position of the "primary drive" in new village construction; secondly, the nation continuously deepens the reform of rural financial system and policy-based banks and strengthens the functions of Agricultural Development Bank, which provides policies for agricultural policy-based finance to support new village construction; thirdly, the 14 years’ reform and development of Agricultural Development Bank and the eleventh five year plan lay sound practical basis for the support of agricultural policy-based finance to new village construction. Based on the necessity and feasibility, the following six aspects are analyzed to fully display the function of the "first engine" of agricultural policy-related finance to new village construction. Firstly, strengthening the credit and loan aid to grain and cotton and some other agricultural products in the circulation domain; secondly, strengthening the credit and loan aid to agricultural industrialization in processing field; thirdly, intensifying the credit and loan aid to agricultural comprehensive development, rural infrastructure construction, application and promotion of

  10. Mercury contamination in soil, tailing and plants on agricultural fields near closed gold mine in Buru Island, Maluku

    Directory of Open Access Journals (Sweden)

    Reginawanti Hindersah

    2018-01-01

    Full Text Available Agricultural productivity in Buru Island, Maluku is threatened by tailings which are generated from formerly gold mine in Botak Mountain in Wamsait Village. Gold that extracted by using mercury was carried out in mining area as well agricultural field.  High content of mercury in tailings and agricultural field pose a serious problem of food production and quality; and further endangers human health. The purpose of this research was to determine the contaminant level of mercury in tailing, soil and its accumulation in edible part of some food crops. Soil, tailing and plant samples for Hg testing were taken by purposive method based on mining activities in Waelata, Waeapo and Namlea sub district. Six soil samples had been analyzed for their chemical properties. Total mercury levels in tailings and plants were measured by Atomic Adsorption Spectrophotometer. This study showed that agricultural field where tailings were deposited contained Hg above the threshold but agricultural area which is far from hot spot did not. Most edible parts of food crops accumulated mercury more than Indonesian threshold for mercury content in food. This evidence explained that tailings deposited on the surface of agricultural field had an impact on soil quality and crop quality. Tailing accumulated on soil will decreased soil quality since naturally soil fertility in agricultural field in Buru is low.

  11. A mobile app for delivering in-field soil data for precision agriculture

    Science.gov (United States)

    Isaacs, John P.; Stojanovic, Vladeta; Falconer, Ruth E.

    2015-04-01

    In the last decade precision agriculture has grown from a concept to an emerging technology, largely due to the maturing of GPS and mobile mapping. We investigated methods for reliable delivery and display of appropriate and context aware in-field farm data on mobile devices by developing a prototype android mobile app. The 3D app was developed using OpenGL ES 2.0 and written in Java, using the Android Development Tools (ADT) SDK. The app is able to obtain GPS coordinates and automatically synchronise the view and load relevant data based on the user's location. The intended audience of the mobile app is farmers and agronomists. Apps are becoming an essential tool in an agricultural professional's arsenal however most existing apps are limited to 2D display of data even though the modern chips in mobile devices can support the display of 3D graphics at interactive rates using technologies such as webGL. This project investigated the use of games techniques in the delivery and 3D display of field data, recognising that this may be a departure from the way the field data is currently delivered and displayed to farmers and agronomists. Different interactive 3D visualisation methods presenting spatial and temporal variation in yield values were developed and tested. It is expected that this app can be used by farmers and agronomists to support decision making in the field of precision agriculture and this is a growing market in UK and Europe.

  12. Agricultural terminology in Russian language on the Institute of field and vegetable crops example

    Directory of Open Access Journals (Sweden)

    Savin Dragana

    2014-01-01

    Full Text Available Contemporary science demands that scientists are following domestic and foreign scientific and technical achievements through conference attendances and scientific and professional literature. Agricultural science is based on practical data, field experiments, but nevertheless it is essential to be up to date with the work of foreign researchers, scientific centers and institutions through their publications. The aim of this paper was to present a part of the agricultural lexicon (with the accent on the plant species names, as well as the general scientific and organizational terms with the equivalents in Russian - Serbian and Serbian - Russian, which is of the great importance in activities of Institute of Field and Vegetable Crops, presented through perennial practices of translation. Those terms are recognized as important and frequent, without wishing to go into professional divisions in agriculture as science. This paper is dedicated to the scientists who posses basic linguistic knowledge of Russian language and are starting to use Russian scientific and professional literature in agriculture, as well as students of Russian language for the purpose of establishing and widening linguistic fund.

  13. Study on the quantitative relationship between Agricultural water and fertilization process and non-point source pollution based on field experiments

    Science.gov (United States)

    Wang, H.; Chen, K.; Wu, Z.; Guan, X.

    2017-12-01

    In recent years, with the prominent of water environment problem and the relative increase of point source pollution governance, especially the agricultural non-point source pollution problem caused by the extensive use of fertilizers and pesticides has become increasingly aroused people's concern and attention. In order to reveal the quantitative relationship between agriculture water and fertilizer and non-point source pollution, on the basis of elm field experiment and combined with agricultural drainage irrigation model, the agricultural irrigation water and the relationship between fertilizer and fertilization scheme and non-point source pollution were analyzed and calculated by field emission intensity index. The results show that the variation of displacement varies greatly under different irrigation conditions. When the irrigation water increased from 22cm to 42cm, the irrigation water increased by 20 cm while the field displacement increased by 11.92 cm, about 66.22% of the added value of irrigation water. Then the irrigation water increased from 42 to 68, irrigation water increased 26 cm, and the field displacement increased by 22.48 cm, accounting for 86.46% of irrigation water. So there is an "inflection point" between the irrigation water amount and field displacement amount. The load intensity increases with the increase of irrigation water and shows a significant power correlation. Under the different irrigation condition, the increase amplitude of load intensity with the increase of irrigation water is different. When the irrigation water is smaller, the load intensity increase relatively less, and when the irrigation water increased to about 42 cm, the load intensity will increase considerably. In addition, there was a positive correlation between the fertilization and load intensity. The load intensity had obvious difference in different fertilization modes even with same fertilization level, in which the fertilizer field unit load intensity

  14. Parkinson's Disease Prevalence and Proximity to Agricultural Cultivated Fields

    Science.gov (United States)

    Yitshak Sade, Maayan; Zlotnik, Yair; Kloog, Itai; Novack, Victor; Peretz, Chava; Ifergane, Gal

    2015-01-01

    The risk for developing Parkinson's disease (PD) is a combination of multiple environmental and genetic factors. The Negev (Southern Israel) contains approximately 252.5 km2 of agricultural cultivated fields (ACF). We aimed to estimate the prevalence and incidence of PD and to examine possible geographical clustering and associations with agricultural exposures. We screened all “Clalit” Health Services members in the Negev (70% of the population) between the years 2000 and 2012. Individual demographic, clinical, and medication prescription data were available. We used a refined medication tracer algorithm to identify PD patients. We used mixed Poisson models to calculate the smoothed standardized incidence rates (SIRs) for each locality. We identified ACF and calculate the size and distance of the fields from each locality. We identified 3,792 cases of PD. SIRs were higher than expected in Jewish rural localities (median SIR [95% CI]: 1.41 [1.28; 1.53] in 2001–2004, 1.62 [1.48; 1.76] in 2005–2008, and 1.57 [1.44; 1.80] in 2009–2012). Highest SIR was observed in localities located in proximity to large ACF (SIR 1.54, 95% CI 1.32; 1.79). In conclusion, in this population based study we found that PD SIRs were higher than expected in rural localities. Furthermore, it appears that proximity to ACF and the field size contribute to PD risk. PMID:26357584

  15. System and Field Devices (non Nuclear) in Agriculture Research in Malaysian Nuclear Agency

    International Nuclear Information System (INIS)

    Shyful Azizi Abdul Rahman; Abdul Rahim Harun

    2015-01-01

    Research to improve productivity on an ongoing basis in the agricultural sector is essential to ensure and guarantee the country's food security. Malaysian Nuclear Agency, agricultural research had begun in 1981 in which the focus of research is related to mutation breeding, irradiation and the use of isotopes in the study of plant nutrition. Although projects agricultural research carried out based on nuclear technology, other information relating to agricultural research such as agronomy, plant physiology, meteorology and ecology, soil characteristics and water is essential to obtain the understanding and research results that are relevant and significant. Data acquisition for other aspects also need a system and a modern and efficient equipment, in accordance with current technological developments. This paper describes the use, function and capabilities of the existing field equipment available in Agrotechnology and Biosciences Division, Malaysian Nuclear Agency in acquiring data related to weather, measurement and control of ground water, soil nutrients assessment and monitoring of plant physiology. The latest technological developments in sensor technology, computer technology and communication is very helpful in getting data more easily, quickly and accurately. Equipment and the data obtained is also likely to be used by researchers in other fields in Nuclear Malaysia. (author)

  16. Towards an Open Software Platform for Field Robots in Precision Agriculture

    Directory of Open Access Journals (Sweden)

    Kjeld Jensen

    2014-06-01

    Full Text Available Robotics in precision agriculture has the potential to improve competitiveness and increase sustainability compared to current crop production methods and has become an increasingly active area of research. Tractor guidance systems for supervised navigation and implement control have reached the market, and prototypes of field robots performing precision agriculture tasks without human intervention also exist. But research in advanced cognitive perception and behaviour that is required to enable a more efficient, reliable and safe autonomy becomes increasingly demanding due to the growing software complexity. A lack of collaboration between research groups contributes to the problem. Scientific publications describe methods and results from the work, but little field robot software is released and documented for others to use. We hypothesize that a common open software platform tailored to field robots in precision agriculture will significantly decrease development time and resources required to perform experiments due to efficient reuse of existing work across projects and robot platforms. In this work we present the FroboMind software platform and evaluate the performance when applied to precision agriculture tasks.

  17. Engineering and agronomy aspects of a long-term precision agriculture field experiment

    Science.gov (United States)

    Much research has been conducted on specific precision agriculture tools and implementation strategies, but little has been reported on long-term evaluation of integrated precision agriculture field experiments. In 2004 our research team developed and initiated a multi-faceted “precision agriculture...

  18. AGRICULTURAL DEVELOPMENT PLANNING BASED ON LOCAL RESOURCES IN DEPOK CITY, INDONESIA

    Directory of Open Access Journals (Sweden)

    Abdurahim A.

    2018-01-01

    Full Text Available The background of this study is that Dewa Starfruit as a local resource in Depok City is threatened with extinction. The absence of regulations that protect these local resources and high rate of land use conversion causes decreasing number of starfruit plants and production. Starfruit farmers tend to switch professions to non-agricultural occupations. In national level, the largest number of agricultural business households experienced the greatest decline in horticulture subsector by 37.4% (Agricultural Census 2013. The elected regional head has branded Depok City with the tagline "friendly city" replacing Dewa Starfruit. The government's orientation and support for Dewa starfruit is fading away. Therefore, Depok City Government, especially DKP3, need to develop local resource-based agriculture development plan in order to be able to maintain local resources while improving it for society welfare. This research uses qualitative approach. The research informants were DKP3 apparatus of Depok City, Bappeda (Regional Government apparatus of Depok City, field officer and farmer group. Data collection techniques used in-depth interviews and documentary studies. Data analysis utilized interactive model. Research results indicate that the development of local resource-based agricultural development plans has not gone well. Despite various supporting factors, there are existing inhibiting factors which are land use conversion had never been discussed; DKP3 Depok City efforts to safeguard agricultural issues in musrenbang has not been optimal; no field data update, either by couseling workers or farmers; DKP3 Depok City prioritized RPL activity; uneducated farmers; and absence of regional head support.

  19. In pursuit of a science of agriculture: the role of statistics in field experiments.

    Science.gov (United States)

    Parolini, Giuditta

    2015-09-01

    Since the beginning of the twentieth century statistics has reshaped the experimental cultures of agricultural research taking part in the subtle dialectic between the epistemic and the material that is proper to experimental systems. This transformation has become especially relevant in field trials and the paper will examine the British agricultural institution, Rothamsted Experimental Station, where statistical methods nowadays popular in the planning and analysis of field experiments were developed in the 1920s. At Rothamsted statistics promoted randomisation over systematic arrangements, factorisation over one-question trials, and emphasised the importance of the experimental error in assessing field trials. These changes in methodology transformed also the material culture of agricultural science, and a new body, the Field Plots Committee, was created to manage the field research of the agricultural institution. Although successful, the vision of field experimentation proposed by the Rothamsted statisticians was not unproblematic. Experimental scientists closely linked to the farming community questioned it in favour of a field research that could be more easily understood by farmers. The clash between the two agendas reveals how the role attributed to statistics in field experimentation defined different pursuits of agricultural research, alternately conceived of as a scientists' science or as a farmers' science.

  20. Profiling nematode communities in unmanaged flowerbed and agricultural field soils in Japan by DNA barcode sequencing.

    Directory of Open Access Journals (Sweden)

    Hisashi Morise

    Full Text Available Soil nematodes play crucial roles in the soil food web and are a suitable indicator for assessing soil environments and ecosystems. Previous nematode community analyses based on nematode morphology classification have been shown to be useful for assessing various soil environments. Here we have conducted DNA barcode analysis for soil nematode community analyses in Japanese soils. We isolated nematodes from two different environmental soils of an unmanaged flowerbed and an agricultural field using the improved flotation-sieving method. Small subunit (SSU rDNA fragments were directly amplified from each of 68 (flowerbed samples and 48 (field samples isolated nematodes to determine the nucleotide sequence. Sixteen and thirteen operational taxonomic units (OTUs were obtained by multiple sequence alignment from the flowerbed and agricultural field nematodes, respectively. All 29 SSU rDNA-derived OTUs (rOTUs were further mapped onto a phylogenetic tree with 107 known nematode species. Interestingly, the two nematode communities examined were clearly distinct from each other in terms of trophic groups: Animal predators and plant feeders were markedly abundant in the flowerbed soils, in contrast, bacterial feeders were dominantly observed in the agricultural field soils. The data from the flowerbed nematodes suggests a possible food web among two different trophic nematode groups and plants (weeds in the closed soil environment. Finally, DNA sequences derived from the mitochondrial cytochrome oxidase c subunit 1 (COI gene were determined as a DNA barcode from 43 agricultural field soil nematodes. These nematodes were assigned to 13 rDNA-derived OTUs, but in the COI gene analysis were assigned to 23 COI gene-derived OTUs (cOTUs, indicating that COI gene-based barcoding may provide higher taxonomic resolution than conventional SSU rDNA-barcoding in soil nematode community analysis.

  1. Profiling Nematode Communities in Unmanaged Flowerbed and Agricultural Field Soils in Japan by DNA Barcode Sequencing

    Science.gov (United States)

    Morise, Hisashi; Miyazaki, Erika; Yoshimitsu, Shoko; Eki, Toshihiko

    2012-01-01

    Soil nematodes play crucial roles in the soil food web and are a suitable indicator for assessing soil environments and ecosystems. Previous nematode community analyses based on nematode morphology classification have been shown to be useful for assessing various soil environments. Here we have conducted DNA barcode analysis for soil nematode community analyses in Japanese soils. We isolated nematodes from two different environmental soils of an unmanaged flowerbed and an agricultural field using the improved flotation-sieving method. Small subunit (SSU) rDNA fragments were directly amplified from each of 68 (flowerbed samples) and 48 (field samples) isolated nematodes to determine the nucleotide sequence. Sixteen and thirteen operational taxonomic units (OTUs) were obtained by multiple sequence alignment from the flowerbed and agricultural field nematodes, respectively. All 29 SSU rDNA-derived OTUs (rOTUs) were further mapped onto a phylogenetic tree with 107 known nematode species. Interestingly, the two nematode communities examined were clearly distinct from each other in terms of trophic groups: Animal predators and plant feeders were markedly abundant in the flowerbed soils, in contrast, bacterial feeders were dominantly observed in the agricultural field soils. The data from the flowerbed nematodes suggests a possible food web among two different trophic nematode groups and plants (weeds) in the closed soil environment. Finally, DNA sequences derived from the mitochondrial cytochrome oxidase c subunit 1 (COI) gene were determined as a DNA barcode from 43 agricultural field soil nematodes. These nematodes were assigned to 13 rDNA-derived OTUs, but in the COI gene analysis were assigned to 23 COI gene-derived OTUs (cOTUs), indicating that COI gene-based barcoding may provide higher taxonomic resolution than conventional SSU rDNA-barcoding in soil nematode community analysis. PMID:23284767

  2. Parkinson’s Disease Prevalence and Proximity to Agricultural Cultivated Fields

    Directory of Open Access Journals (Sweden)

    Maayan Yitshak Sade

    2015-01-01

    Full Text Available The risk for developing Parkinson’s disease (PD is a combination of multiple environmental and genetic factors. The Negev (Southern Israel contains approximately 252.5 km2 of agricultural cultivated fields (ACF. We aimed to estimate the prevalence and incidence of PD and to examine possible geographical clustering and associations with agricultural exposures. We screened all “Clalit” Health Services members in the Negev (70% of the population between the years 2000 and 2012. Individual demographic, clinical, and medication prescription data were available. We used a refined medication tracer algorithm to identify PD patients. We used mixed Poisson models to calculate the smoothed standardized incidence rates (SIRs for each locality. We identified ACF and calculate the size and distance of the fields from each locality. We identified 3,792 cases of PD. SIRs were higher than expected in Jewish rural localities (median SIR [95% CI]: 1.41 [1.28; 1.53] in 2001–2004, 1.62 [1.48; 1.76] in 2005–2008, and 1.57 [1.44; 1.80] in 2009–2012. Highest SIR was observed in localities located in proximity to large ACF (SIR 1.54, 95% CI 1.32; 1.79. In conclusion, in this population based study we found that PD SIRs were higher than expected in rural localities. Furthermore, it appears that proximity to ACF and the field size contribute to PD risk.

  3. Research on Intelligent Agriculture Greenhouses Based on Internet of Things Technology

    OpenAIRE

    Shang Ying; Fu An-Ying

    2017-01-01

    Internet of things is a hot topic in the field of research, get a lot of attention, On behalf of the future development trend of the network, Internet of Things has a wide range of applications, because of the efficient and reliable information transmission in modern agriculture. In the greenhouse, the conditions of the Greenhouse determine the quality of crops, high yield and many other aspects. Research on Intelligent Agriculture Greenhouses based on Internet of Things, mainly Research on h...

  4. Satellite Images-Based Obstacle Recognition and Trajectory Generation for Agricultural Vehicles

    Directory of Open Access Journals (Sweden)

    Mehmet Bodur

    2015-12-01

    Full Text Available In this study, a method for the generation of tracking trajectory points, detection and positioning of obstacles in agricultural fields have been presented. Our principal contribution is to produce traceable GPS trajectories for agricultural vehicles to be utilized by path planning algorithms, rather than a new path planning algorithm. The proposed system works with minimal initialization requirements, specifically, a single geographical coordinate entry of an agricultural field. The automation of agricultural plantation requires many aspects to be addressed, many of which have been covered in previous studies. Depending on the type of crop, different agricultural vehicles may be used in the field. However, regardless of their application, they all follow a specified trajectory in the field. This study takes advantage of satellite images for the detection and positioning of obstacles, and the generation of GPS trajectories in the agricultural realm. A set of image processing techniques is applied in Matlab for detection and positioning.

  5. Designing and Testing a UAV Mapping System for Agricultural Field Surveying

    Directory of Open Access Journals (Sweden)

    Martin Peter Christiansen

    2017-11-01

    Full Text Available A Light Detection and Ranging (LiDAR sensor mounted on an Unmanned Aerial Vehicle (UAV can map the overflown environment in point clouds. Mapped canopy heights allow for the estimation of crop biomass in agriculture. The work presented in this paper contributes to sensory UAV setup design for mapping and textual analysis of agricultural fields. LiDAR data are combined with data from Global Navigation Satellite System (GNSS and Inertial Measurement Unit (IMU sensors to conduct environment mapping for point clouds. The proposed method facilitates LiDAR recordings in an experimental winter wheat field. Crop height estimates ranging from 0.35–0.58 m are correlated to the applied nitrogen treatments of 0–300 kg N ha . The LiDAR point clouds are recorded, mapped, and analysed using the functionalities of the Robot Operating System (ROS and the Point Cloud Library (PCL. Crop volume estimation is based on a voxel grid with a spatial resolution of 0.04 × 0.04 × 0.001 m. Two different flight patterns are evaluated at an altitude of 6 m to determine the impacts of the mapped LiDAR measurements on crop volume estimations.

  6. Designing and Testing a UAV Mapping System for Agricultural Field Surveying.

    Science.gov (United States)

    Christiansen, Martin Peter; Laursen, Morten Stigaard; Jørgensen, Rasmus Nyholm; Skovsen, Søren; Gislum, René

    2017-11-23

    A Light Detection and Ranging (LiDAR) sensor mounted on an Unmanned Aerial Vehicle (UAV) can map the overflown environment in point clouds. Mapped canopy heights allow for the estimation of crop biomass in agriculture. The work presented in this paper contributes to sensory UAV setup design for mapping and textual analysis of agricultural fields. LiDAR data are combined with data from Global Navigation Satellite System (GNSS) and Inertial Measurement Unit (IMU) sensors to conduct environment mapping for point clouds. The proposed method facilitates LiDAR recordings in an experimental winter wheat field. Crop height estimates ranging from 0.35-0.58 m are correlated to the applied nitrogen treatments of 0-300 kg N ha . The LiDAR point clouds are recorded, mapped, and analysed using the functionalities of the Robot Operating System (ROS) and the Point Cloud Library (PCL). Crop volume estimation is based on a voxel grid with a spatial resolution of 0.04 × 0.04 × 0.001 m. Two different flight patterns are evaluated at an altitude of 6 m to determine the impacts of the mapped LiDAR measurements on crop volume estimations.

  7. An application to model traffic intensity of agricultural machinery at field scale

    Science.gov (United States)

    Augustin, Katja; Kuhwald, Michael; Duttmann, Rainer

    2017-04-01

    Several soil-pressure-models deal with the impact of agricultural machines on soils. In many cases, these models were used for single spots and consider a static machine configuration. Therefore, a statement about the spatial distribution of soil compaction risk for entire working processes is limited. The aim of the study is the development of an application for the spatial modelling of traffic lanes from agricultural vehicles including wheel load, ground pressure and wheel passages at the field scale. The application is based on Open Source software, application and data formats, using python programming language. Minimum input parameters are GPS-positions, vehicles and tires (producer and model) and the tire inflation pressure. Five working processes were distinguished: soil tillage, manuring, plant protection, sowing and harvest. Currently, two different models (Diserens 2009, Rücknagel et al. 2015) were implemented to calculate the soil pressure. The application was tested at a study site in Lower Saxony, Germany. Since 2015, field traffic were recorded by RTK-GPS and used machine set ups were noted. Using these input information the traffic lanes, wheel load and soil pressure were calculated for all working processes. For instance, the maize harvest in 2016 with a crop chopper and one transport vehicle crossed about 55 % of the total field area. At some places the machines rolled over up to 46 times. Approximately 35 % of the total area was affected by wheel loads over 7 tons and soil pressures between 163 and 193 kPa. With the information about the spatial distribution of wheel passages, wheel load and soil pressure it is possible to identify hot spots of intensive field traffic. Additionally, the use of the application enables the analysis of soil compaction risk induced by agricultural machines for long- and short-term periods.

  8. Preparing students for higher education and careers in agriculture and related fields: An ethnography of an urban charter school

    Science.gov (United States)

    Henry, Kesha Atasha

    This study explored the preparation of students for higher education and careers in agriculturally-related fields at an urban charter high school. The data were collected through interviews, observations, and field notes. The data were analyzed by qualitative methodology with phenomenology as the theoretical framework. Findings indicated that administrators thought it was important to incorporate agricultural science courses into urban school curricula. They stated that agricultural science courses gave urban students a different way of looking at science and helped to enhance the science and technology focus of the school. Further, agricultural science courses helped to break urban students' stereotypes about agriculture and helped to bring in more state funding for educational programs. However they thought that it was more challenging to teach agricultural science in urban versus rural schools and they focused more on Science, Technology, Engineering, and Mathematics (STEM) related careers. The students had mixed views about higher education and careers in agriculture. This was based on their limited knowledge and stereotypes about agricultural majors and career options. The students highlighted several key reasons why they chose to enroll in agricultural science courses. This included the benefits of dual science credits and the ability to earn an associate degree upon successful completion of their program. Students also loved science and appreciated the science intensive nature of the agricultural courses. Additionally, they thought that the agricultural science courses were better than the other optional courses. The results also showed that electronic media such as radio and TV had a negative impact on students' perceptions about higher education and careers in agriculturally-related fields. Conclusions and recommendations are presented.

  9. Improving the efficiency of spatially selective operations for agricultural robotics in cropping field

    Directory of Open Access Journals (Sweden)

    Y. L. Li

    2013-01-01

    Full Text Available Cropping fields often have well-defined poor-performing patches due to spatial and temporal variability. In an attempt to increase crop performance on poor patches, spatially selective field operations may be performed by agricultural robotics to apply additional inputs with targeted requirements. This paper addresses the route planning problem for an agricultural robot that has to treat some poor-patches in a field with row crops, with respect to the minimization of the total non-working distance travelled during headland turnings and in-field travel distance. The traversal of patches in the field is expressed as the traversal of a mixed weighted graph, and then the problem of finding an optimal patch sequence is formulated as an asymmetric traveling salesman problem and solved by the partheno-genetic algorithm. The proposed method is applied on a cropping field located in Northwestern China. Research results show that by using optimum patch sequences, the total non-working distance travelled during headland turnings and in-field travel distance can be reduced. But the savings on the non-working distance inside the field interior depend on the size and location of patches in the field, and the introduction of agricultural robotics is beneficial to increase field efficiency.

  10. Improving the efficiency of spatially selective operations for agricultural robotics in cropping field

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y. L.; Yi, S. P.

    2013-05-01

    Cropping fields often have well-defined poor-performing patches due to spatial and temporal variability. In an attempt to increase crop performance on poor patches, spatially selective field operations may be performed by agricultural robotics to apply additional inputs with targeted requirements. This paper addresses the route planning problem for an agricultural robot that has to treat some poor-patches in a field with row crops, with respect to the minimization of the total non-working distance travelled during headland turnings and in-field travel distance. The traversal of patches in the field is expressed as the traversal of a mixed weighted graph, and then the problem of finding an optimal patch sequence is formulated as an asymmetric traveling salesman problem and solved by the parthenogenetic algorithm. The proposed method is applied on a cropping field located in Northwestern China. Research results show that by using optimum patch sequences, the total non-working distance travelled during headland turnings and in-field travel distance can be reduced. But the savings on the non-working distance inside the field interior depend on the size and location of patches in the field, and the introduction of agricultural robotics is beneficial to increase field efficiency. (Author) 21 refs.

  11. Radio-Agriculture - Ground and Space-Based Determination of Agricultural Productivity

    Science.gov (United States)

    Cockell, C. S.

    The decision to sow seeds in a field, either on a local level (such as on an individual plot) or on vast agricultural complexes, is irreversible. Once the seed is sown, provided there is liquid water, tem- perature conditions are adequate and in some cases light is available, it will germinate. The timing of seed sowing has important effects on subsequent agricultural productivity [1-4]. The correlation between time of sowing and productivity causes several problems. Firstly, sowing seed depends absolutely upon a correct judgement on weather conditions, sometimes to the day. Secondly, not all crops need to be sown at the same time and so resources in manpower and equipment must be available for sowing different crops at different times. Great im- provements in resource allocation could be made if all seeds could be sown at the same time. Thirdly, there is no flexibility once resources to sowing have been committed. For example, in large agricultural areas manpower and machinery might be committed at particular times of the year to sowing, but if the weather conditions are not correct either they must be re-scheduled or productivity is lost. Local factors such as irrigation system availability might also impose upon a farmer a wish to be able to regulate the germination of particular fields, particularly in developing countries.

  12. A regional field-based assessment of organic C sequestration and GHG balances in irrigated agriculture in Mediterranean semi-arid land

    Science.gov (United States)

    Virto, Inigo; Antón, Rodrigo; Arias, Nerea; Orcaray, Luis; Enrique, Alberto; Bescansa, Paloma

    2016-04-01

    In a context of global change and increasing food demand, agriculture faces the challenge of ensuring food security making a sustainable use of resources, especially arable land and water. This implies in many areas a transition towards agricultural systems with increased and stable productivity and a more efficient use of inputs. The introduction of irrigation is, within this framework, a widespread strategy. However, the C cycle and the net GHG emissions can be significantly affected by irrigation. The net effect of this change needs to be quantified at a regional scale. In the region of Navarra (NE Spain) more than 22,300 ha of rainfed agricultural land have been converted to irrigation in the last years, adding to the previous existing irrigated area of 70,000 ha. In this framework the project Life+ Regadiox (LIFE12 ENV/ES/000426, http://life-regadiox.es/) has the objective of evaluating the net GHG balances and atmospheric CO2 fixation rates of different management strategies in irrigated agriculture in the region. The project involved the identification of areas representative of the different pedocllimatic conditions in the region. This required soil and climate characterizations, and the design of a network of agricultural fields representative of the most common dryland and irrigation managements in these areas. This was done from available public datasets on climate and soil, and from soil pits especially sampled for this study. Two areas were then delimited, mostly based on their degree of aridity. Within each of those areas, fields were selected to allow for comparisons at three levels: (i) dryland vs irrigation, (ii) soil and crop management systems for non-permanent crops, and (iii) soil management strategies for permanent crops (namely olive orchards and vineyards). In a second step, the objective of this work was to quantify net SOC variations and GHG balances corresponding to the different managements identified in the previous step. These

  13. Energy Savings from Optimised In-Field Route Planning for Agricultural Machinery

    Directory of Open Access Journals (Sweden)

    Efthymios Rodias

    2017-10-01

    Full Text Available Various types of sensors technologies, such as machine vision and global positioning system (GPS have been implemented in navigation of agricultural vehicles. Automated navigation systems have proved the potential for the execution of optimised route plans for field area coverage. This paper presents an assessment of the reduction of the energy requirements derived from the implementation of optimised field area coverage planning. The assessment regards the analysis of the energy requirements and the comparison between the non-optimised and optimised plans for field area coverage in the whole sequence of operations required in two different cropping systems: Miscanthus and Switchgrass production. An algorithmic approach for the simulation of the executed field operations by following both non-optimised and optimised field-work patterns was developed. As a result, the corresponding time requirements were estimated as the basis of the subsequent energy cost analysis. Based on the results, the optimised routes reduce the fuel energy consumption up to 8%, the embodied energy consumption up to 7%, and the total energy consumption from 3% up to 8%.

  14. Biochar-based functional materials in the purification of agricultural wastewater: Fabrication, application and future research needs.

    Science.gov (United States)

    Wei, Dongning; Li, Bingyu; Huang, Hongli; Luo, Lin; Zhang, Jiachao; Yang, Yuan; Guo, Jiajun; Tang, Lin; Zeng, Guangming; Zhou, Yaoyu

    2018-04-01

    Nowadays, agricultural contamination is becoming more and more serious due to the rapid growth of agricultural industry, which discharged antibiotics, pesticides or toxic metals into farmlands. A large number of researchers have applied biochar-based functional materials to the treatment of agricultural wastewater contamination. Meanwhile, biochar has also proved to be a very promising and effective technology in water purification field due to its various beneficial properties (e.g., cost effective, high specific surface area, and surface reactive groups). The focus of this review is to highlight the fabrication methods and application of biochar-based functional materials with the removal of different agricultural contaminants, and discuss the underlying mechanisms. However, the application of biochar-based functional materials is currently under its infancy, with the main hindrance is identified as the gap between laboratory scale and field application, immaturity of engineered biochar production technologies, and lack of quality standards. In order to fill these knowledge gaps, more efforts should be made to pay for the relevant research in future studies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Effects of fertilizers used in agricultural fields on algal blooms

    DEFF Research Database (Denmark)

    Chakraborty, Subhendu; Tiwari, P. K.; Sasmal, S. K.

    2017-01-01

    of factors and from observation it is difficult to identify the most important one. In the present paper, using a mathematical model we compare the effects of three human induced factors (fertilizer input in agricultural field, eutrophication due to other sources than fertilizers, and overfishing......) on the bloom dynamics and DO level. By applying a sophisticated sensitivity analysis technique, we found that the increasing use of fertilizers in agricultural field causes more rapid algal growth and decreases DO level much faster than eutrophication from other sources and overfishing. We also look...... at the mechanisms how fertilizer input rate affects the algal bloom dynamics and DO level. The model can be helpful for the policy makers in determining the influential factors responsible for the bloom formation....

  16. On dealing with the pollution costs in agriculture: A case study of paddy fields

    Energy Technology Data Exchange (ETDEWEB)

    Yaqubi, Morteza, E-mail: yaqubi@pgs.usb.ac.ir [Faculty of Management and Economics, Department of Agricultural Economics, University of Sistan and Baluchestan Zahedan (Iran, Islamic Republic of); Shahraki, Javad, E-mail: j.shahraki@eco.usb.ac.ir [Faculty of Management and Economics, Department of Agricultural Economics, University of Sistan and Baluchestan Zahedan (Iran, Islamic Republic of); Sabouhi Sabouni, Mahmood, E-mail: sabouhi@ferdowsi.um.ac.ir [Department of Agricultural Economics, Ferdowsi University of Mashhad, Azadi Square, Mashhad (Iran, Islamic Republic of)

    2016-06-15

    The main purpose of this study is to evaluate marginal abatement cost of the main agricultural pollutants. In this sense, we construct three indices including Net Global Warming Potential (NGWP) and Nitrogen Surplus (NS), simulated by a biogeochemistry model, and also an Environmental Impact Quotient (EQI) for paddy fields. Then, using a Data Envelopment Analysis (DEA) model, we evaluate environmental inefficiencies and shadow values of these indices. The results show that there is still room for improvement at no extra cost just through a better input management. Besides, enormous potential for pollution reduction in the region is feasible. Moreover, in paddy cultivation, marginal abatement cost of pesticides and herbicides are much bigger than nitrogen surplus and greenhouse gasses. In addition, in the status quo, the mitigation costs are irrelevant to production decisions. Finally, to deal with the private pollution costs, market-based instruments are proved to be better than command-and-control regulation. - Highlights: • To evaluate agricultural pollution costs, a combination of two DNDC and DEA models was introduced. • The shadow values of three main agricultural pollutants in paddy fields were evaluated. • In the study area, a high potential for pollution reduction is feasible. • The pollution cost of pesticides are much bigger than nitrogen surplus and greenhouse gases. • From the farmers' viewpoint, a positive shadow value of undesirable outputs also is feasible. • To deal with the pollution costs, market-based instruments are preferred to command-and-control regulation.

  17. On dealing with the pollution costs in agriculture: A case study of paddy fields

    International Nuclear Information System (INIS)

    Yaqubi, Morteza; Shahraki, Javad; Sabouhi Sabouni, Mahmood

    2016-01-01

    The main purpose of this study is to evaluate marginal abatement cost of the main agricultural pollutants. In this sense, we construct three indices including Net Global Warming Potential (NGWP) and Nitrogen Surplus (NS), simulated by a biogeochemistry model, and also an Environmental Impact Quotient (EQI) for paddy fields. Then, using a Data Envelopment Analysis (DEA) model, we evaluate environmental inefficiencies and shadow values of these indices. The results show that there is still room for improvement at no extra cost just through a better input management. Besides, enormous potential for pollution reduction in the region is feasible. Moreover, in paddy cultivation, marginal abatement cost of pesticides and herbicides are much bigger than nitrogen surplus and greenhouse gasses. In addition, in the status quo, the mitigation costs are irrelevant to production decisions. Finally, to deal with the private pollution costs, market-based instruments are proved to be better than command-and-control regulation. - Highlights: • To evaluate agricultural pollution costs, a combination of two DNDC and DEA models was introduced. • The shadow values of three main agricultural pollutants in paddy fields were evaluated. • In the study area, a high potential for pollution reduction is feasible. • The pollution cost of pesticides are much bigger than nitrogen surplus and greenhouse gases. • From the farmers' viewpoint, a positive shadow value of undesirable outputs also is feasible. • To deal with the pollution costs, market-based instruments are preferred to command-and-control regulation.

  18. Image-based particle filtering for navigation in a semi-structured agricultural environment

    NARCIS (Netherlands)

    Hiremath, S.; van Evert, F.K.; ter Braak, C.J.F.; Stein, A.; van der Heijden, G.

    2014-01-01

    Autonomous navigation of field robots in an agricultural environment is a difficult task due to the inherent uncertainty in the environment. The drawback of existing systems is the lack of robustness to these uncertainties. In this study we propose a vision-based navigation method to address these

  19. Innovating for skills enhancement in agricultural sciences in Africa: The centrality of field attachment programs

    Directory of Open Access Journals (Sweden)

    Anthony Egeru

    2016-09-01

    Full Text Available Africa remains an intensely agrarian continent, with two-thirds of its people directly or indirectly deriving their livelihood from agriculture. Higher agricultural education has thus emphasised production of graduates with the requisite skills to drive agricultural development. Despite these efforts, too few graduates in sub-Saharan Africa (SSA have the employable skills necessary to transition to the labour market. A similar situation is observable among agricultural science graduates, who are vital to serving rural smallholder farmers. Most Colleges of Agriculture in Africa offer field attachment internships in agriculture and related fields but they are largely designed to cater for undergraduate students and are not part of the training programs at graduate level. To ameliorate this gap, the Regional Universities Forum for Capacity Building in Agriculture (RUFORUM, a network of 55 member universities in SSA, designed and rolled out an innovative field attachment program award (FAPA, launched in 2010, to serve graduate students. The FAPA is competitively based and designed to encourage students to follow through with the dissemination of their research and to enable them to link more closely with the communities and agencies working in the geographical area where the research was undertaken. During the period 2010–2015, five grant cycles were successfully implemented and 114 graduate students from 17 countries in SSA awarded. This article discusses the lessons learned during this period by examining two key areas: (1 the application process and implementation of the awards; and (2 the reported outcomes and challenges for grantees. Establishing the award has generated key technical and implementation lessons that the network and individual universities have been able to use to improve and institutionalise processes. Grantees have reported gaining a range of cross-cutting skills in personal mastery, initiative leadership and innovativeness

  20. Mobile device-based optical instruments for agriculture

    Science.gov (United States)

    Sumriddetchkajorn, Sarun

    2013-05-01

    Realizing that a current smart-mobile device such as a cell phone and a tablet can be considered as a pocket-size computer embedded with a built-in digital camera, this paper reviews and demonstrates on how a mobile device can be specifically functioned as a portable optical instrument for agricultural applications. The paper highlights several mobile device-based optical instruments designed for searching small pests, measuring illumination level, analyzing spectrum of light, identifying nitrogen status in the rice field, estimating chlorine in water, and determining ripeness level of the fruit. They are suitable for individual use as well as for small and medium enterprises.

  1. Celtic field agriculture and Early Anthropogenic Environmental change in the Meuse-Demer-Scheldt region, NW Europe

    Science.gov (United States)

    Van der Sanden, Germaine; Kluiving, Sjoerd; Roymans, Nico

    2016-04-01

    The field of Archaeology remains focused on historical issues while underexploring its potential contribution on currently existing societal problems, e.g. climate change. The aim of this paper is to show the relevance of archeological studies for the research of the 'human species as a significant moving agent' in terms of the changing natural environment during a much earlier time frame. This research is based on the study area of the Meuse-Demer-Scheldt region in the Netherlands and Belgium and exhibits the period from the Late Bronze Age to the Early Roman period. This period is characterized by the widespread introduction and use of an agricultural system, often referred to as the Celtic Field system that served as one of the most modifying systems in terms of anthropogenic-environmental change during this period. Emphasis in this research is given to results generated by the use of the remote sensing technology, LiDAR. New information is reported considering a correlation between singular field size and the overall surface of the agricultural complexes and secondly, the presentation of newly identified Celtic field systems in the Meuse-Demer-Scheldt region are presented. The study of the dynamics of the Celtic Field agricultural system provides evidence for a significant anthropogenic footprint on the natural environment due to land cover dominance, soil degeneration, increased soil acidification and forest clearance. Soil exhaustion forced the inhabitants to re-establish their relationship with the landscape in terms of fundamental changes in the habitation pattern and the agrarian exploitations of the land.

  2. Towards an Open Software Platform for Field Robots in Precision Agriculture

    DEFF Research Database (Denmark)

    Jensen, Kjeld; Larsen, Morten; Nielsen, Søren H

    2014-01-01

    Robotics in precision agriculture has the potential to improve competitiveness and increase sustainability compared to current crop production methods and has become an increasingly active area of research. Tractor guidance systems for supervised navigation and implement control have reached...... the market, and prototypes of field robots performing precision agriculture tasks without human intervention also exist. But research in advanced cognitive perception and behaviour that is required to enable a more efficient, reliable and safe autonomy becomes increasingly demanding due to the growing...... software complexity. A lack of collaboration between research groups contributes to the problem. Scientific publications describe methods and results from the work, but little field robot software is released and documented for others to use. We hypothesize that a common open software platform tailored...

  3. Integrating ICT in Agriculture for Knowledge-Based Economy

    African Journals Online (AJOL)

    agriculturebased livelihoods, demands the integration of ICT knowledge with agriculture. .... (CGIAR) shows the vital role of Agricultural development in Rwanda's ... Network, Rwanda National Backbone Project, Regional Communication.

  4. Spatial Variability of Physical Soil Quality Index of an Agricultural Field

    Directory of Open Access Journals (Sweden)

    Sheikh M. Fazle Rabbi

    2014-01-01

    Full Text Available A field investigation was carried out to evaluate the spatial variability of physical indicators of soil quality of an agricultural field and to construct a physical soil quality index (SQIP map. Surface soil samples were collected using 10  m×10 m grid from an Inceptisol on Ganges Tidal Floodplain of Bangladesh. Five physical soil quality indicators, soil texture, bulk density, porosity, saturated hydraulic conductivity (KS, and aggregate stability (measured as mean weight diameter, MWD were determined. The spatial structures of sand, clay, and KS were moderate but the structure was strong for silt, bulk density, porosity, and MWD. Each of the physical soil quality indicators was transformed into 0 and 1 using threshold criteria which are required for crop production. The transformed indicators were the combined into SQIP. The kriged SQIP map showed that the agricultural field studied could be divided into two parts having “good physical quality” and “poor physical soil quality.”

  5. Comparing erosion rates in burnt forests and agricultural fields for a mountain catchment in NW Iberia

    Science.gov (United States)

    Nunes, João Pedro; Marisa Santos, Juliana; Bernard-Jannin, Léonard; Keizer, Jan Jacob

    2013-04-01

    A large part of northwestern Iberia is nowadays covered by commercial forest plantations of eucalypts and maritime pines, which have partly replaced traditional agricultural land-uses. The humid Mediterranean climate, with mild wet winters and warm dry summers, creates favorable conditions for the occurrence of frequent and recurrent forest fires. Erosion rates in recently burnt areas have been the subject of numerous studies; however, there is still a lack of information on their relevance when compared with agricultural erosion rates, impairing a comprehensive assessment of the role of forests for soil protection. This study focuses on Macieira de Alcoba, head-water catchment in the Caramulo Mountain Range, north-central Portugal, with a mixture of agricultural fields (mostly a rotation between winter pastures and summer cereals) on the lower slopes and forest plantations (mostly eucalypts) on the upper slopes. Agricultural erosion in this catchment has been monitored since 2010; a forest fire in 2011 presented an opportunity to compare post-fire and agricultural erosion rates at nearby sites with comparable soil and climatic conditions. Erosion rates were monitored between 2010 and 2013 by repeated surveys of visible erosion features and, in particular, by mapping and measuring rills and gullies after important rainfall events. During the 2011/2012 hydrological year, erosion rates in the burnt forest were two orders of magnitude above those in agricultural fields, amounting to 17.6 and. 0.1 Mg ha-1, respectively. Rills were widespread in the burnt area, while in the agricultural area they were limited to a small number of fields with higher slope; these particular fields experienced an erosion rate of 2.3 Mg ha-1, still one order of magnitude lower than at the burnt forest site. The timing of the erosion features was also quite distinct for the burnt area and the agricultural fields. During the first nine months after the fire, rill formation was not observed in

  6. Effects of fertilizers used in agricultural fields on algal blooms

    Science.gov (United States)

    Chakraborty, Subhendu; Tiwari, P. K.; Sasmal, S. K.; Misra, A. K.; Chattopadhyay, Joydev

    2017-06-01

    The increasing occurrence of algal blooms and their negative ecological impacts have led to intensified monitoring activities. This needs the proper identification of the most responsible factor/factors for the bloom formation. However, in natural systems, algal blooms result from a combination of factors and from observation it is difficult to identify the most important one. In the present paper, using a mathematical model we compare the effects of three human induced factors (fertilizer input in agricultural field, eutrophication due to other sources than fertilizers, and overfishing) on the bloom dynamics and DO level. By applying a sophisticated sensitivity analysis technique, we found that the increasing use of fertilizers in agricultural field causes more rapid algal growth and decreases DO level much faster than eutrophication from other sources and overfishing. We also look at the mechanisms how fertilizer input rate affects the algal bloom dynamics and DO level. The model can be helpful for the policy makers in determining the influential factors responsible for the bloom formation.

  7. Pre-Columbian Agriculture: Construction history of raised fields in Bermeo, in the Bolivian Lowlands

    Science.gov (United States)

    Rodrigues, Leonor; Fehr, Seraina; Lombardo, Umberto; Veit, Heinz

    2013-04-01

    Since the beginning of the 1960s, research in the Amazon has revealed that in Pre-Columbian times, landscapes that were viewed as challenging living environments were nevertheless altered in several ways. Raised fields agriculture is one of the most impressive phenomena that can be found in South-eastern Amazonia. Pre-Columbian raised fields are earth platforms of differing shape and dimension that are elevated above the landscape's natural surface. The Llanos de Moxos, situated in the Bolivian Lowlands is one of the areas with the highest density of raised fields. In spite of the high interest in raised field agriculture, very few field-based investigations have been performed. As a result, there remains little explanation as to how they were constructed, managed or for what time frame they were in use. Recently, more detailed investigations have been performed on raised fields located in the indigenous community of Bermeo, in the vicinity of San Ignacio de Moxos. Combined data from fieldwork and laboratory analysis including particle size distribution, thin section micromorphology and radiocarbon analyses as well as optically stimulated luminescence analysis has given an insight into the history of their construction. Applied to the Bolivian Lowlands, the current study provides for the first time data showing aspects of the Pre-Columbian management of the raised fields, and a chronological sequence of utilization and abandonment of these fields. Radiocarbon dating has shown that the raised fields had been in use since as early as 900 AD. Two distinct paleosols identified in the field sequence point to the existence of two separate prolonged soil formation periods. The paleosols are characterized by initial stages of Bt-horizons. Each soil sequence indicates therefore a particular stable period of the field during which no new earth was heaped up. This suggests that contrary to the well supported theory that raised fields were managed through continuous

  8. Agricultural Conservation Planning Framework: 3. Land Use and Field Boundary Database Development and Structure.

    Science.gov (United States)

    Tomer, Mark D; James, David E; Sandoval-Green, Claudette M J

    2017-05-01

    Conservation planning information is important for identifying options for watershed water quality improvement and can be developed for use at field, farm, and watershed scales. Translation across scales is a key issue impeding progress at watershed scales because watershed improvement goals must be connected with implementation of farm- and field-level conservation practices to demonstrate success. This is particularly true when examining alternatives for "trap and treat" practices implemented at agricultural-field edges to control (or influence) water flows through fields, landscapes, and riparian corridors within agricultural watersheds. We propose that database structures used in developing conservation planning information can achieve translation across conservation-planning scales, and we developed the Agricultural Conservation Planning Framework (ACPF) to enable practical planning applications. The ACPF comprises a planning concept, a database to facilitate field-level and watershed-scale analyses, and an ArcGIS toolbox with Python scripts to identify specific options for placement of conservation practices. This paper appends two prior publications and describes the structure of the ACPF database, which contains land use, crop history, and soils information and is available for download for 6091 HUC12 watersheds located across Iowa, Illinois, Minnesota, and parts of Kansas, Missouri, Nebraska, and Wisconsin and comprises information on 2.74 × 10 agricultural fields (available through /). Sample results examining land use trends across Iowa and Illinois are presented here to demonstrate potential uses of the database. While designed for use with the ACPF toolbox, users are welcome to use the ACPF watershed data in a variety of planning and modeling approaches. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. Proximity to agricultural fields as proxy for environmental exposure to pesticides among children : The PIAMA birth cohort

    NARCIS (Netherlands)

    Bukalasa, Joseph S; Brunekreef, Bert; Brouwer, Maartje; Vermeulen, Roel; de Jongste, Johan C.; van Rossem, Lenie; Vonk, Judith M.; Wijga, Alet; Huss, Anke; Gehring, Ulrike

    2017-01-01

    Background: Agricultural pesticides are frequently used for crop protection. Residents living in close proximity to treated fields may be exposed to these pesticides. There is some indication that children living near agricultural fields have an increased risk of developing asthma and decreased lung

  10. A Comparison between Standard and Functional Clustering Methodologies: Application to Agricultural Fields for Yield Pattern Assessment

    Directory of Open Access Journals (Sweden)

    Simone Pascucci

    2018-04-01

    Full Text Available The recognition of spatial patterns within agricultural fields, presenting similar yield potential areas, stable through time, is very important for optimizing agricultural practices. This study proposes the evaluation of different clustering methodologies applied to multispectral satellite time series for retrieving temporally stable (constant patterns in agricultural fields, related to within-field yield spatial distribution. The ability of different clustering procedures for the recognition and mapping of constant patterns in fields of cereal crops was assessed. Crop vigor patterns, considered to be related to soils characteristics, and possibly indicative of yield potential, were derived by applying the different clustering algorithms to time series of Landsat images acquired on 94 agricultural fields near Rome (Italy. Two different approaches were applied and validated using Landsat 7 and 8 archived imagery. The first approach automatically extracts and calculates for each field of interest (FOI the Normalized Difference Vegetation Index (NDVI, then exploits the standard K-means clustering algorithm to derive constant patterns at the field level. The second approach applies novel clustering procedures directly to spectral reflectance time series, in particular: (1 standard K-means; (2 functional K-means; (3 multivariate functional principal components clustering analysis; (4 hierarchical clustering. The different approaches were validated through cluster accuracy estimates on a reference set of FOIs for which yield maps were available for some years. Results show that multivariate functional principal components clustering, with an a priori determination of the optimal number of classes for each FOI, provides a better accuracy than those of standard clustering algorithms. The proposed novel functional clustering methodologies are effective and efficient for constant pattern retrieval and can be used for a sustainable management of

  11. Deriving a per-field land use and land cover map in an agricultural mosaic catchment

    Science.gov (United States)

    Seo, B.; Bogner, C.; Poppenborg, P.; Martin, E.; Hoffmeister, M.; Jun, M.; Koellner, T.; Reineking, B.; Shope, C. L.; Tenhunen, J.

    2014-09-01

    Detailed data on land use and land cover constitute important information for Earth system models, environmental monitoring and ecosystem services research. Global land cover products are evolving rapidly; however, there is still a lack of information particularly for heterogeneous agricultural landscapes. We censused land use and land cover field by field in the agricultural mosaic catchment Haean in South Korea. We recorded the land cover types with additional information on agricultural practice. In this paper we introduce the data, their collection and the post-processing protocol. Furthermore, because it is important to quantitatively evaluate available land use and land cover products, we compared our data with the MODIS Land Cover Type product (MCD12Q1). During the studied period, a large portion of dry fields was converted to perennial crops. Compared to our data, the forested area was underrepresented and the agricultural area overrepresented in MCD12Q1. In addition, linear landscape elements such as waterbodies were missing in the MODIS product due to its coarse spatial resolution. The data presented here can be useful for earth science and ecosystem services research. The data are available at the public repository Pangaea (doi:110.1594/PANGAEA.823677).

  12. Field-based evidence for consistent responses of bacterial communities to copper contamination in two contrasting agricultural soils

    Directory of Open Access Journals (Sweden)

    Jing eLi

    2015-02-01

    Full Text Available Copper contamination on China’s arable land could pose severe economic, ecological and healthy consequences in the coming decades. As the drivers in maintaining ecosystem functioning, the responses of soil microorganisms to long-term copper contamination in different soil ecosystems are still debated. This study investigated the impacts of copper gradients on soil bacterial communities in two agricultural fields with contrasting soil properties. Our results revealed consistent reduction in soil microbial biomass carbon (SMBC with increasing copper levels in both soils, coupled by significant declines in bacterial abundance in most cases. Despite of contrasting bacterial community structures between the two soils, the bacterial diversity in the copper-contaminated soils showed considerably decreasing patterns when copper levels elevated. High-throughput sequencing revealed copper selection for major bacterial guilds, in particular, Actinobacteria showed tolerance, while Acidobacteria and Chloroflexi were highly sensitive to copper. The thresholds that bacterial communities changed sharply were 800 and 200 added copper mg kg-1 in the fluvo-aquic soil and red soil, respectively, which were similar to the toxicity thresholds (EC50 values characterized by SMBC. Structural equation model (SEM analysis ascertained that the shifts of bacterial community composition and diversity were closely related with the changes of SMBC in both soils. Our results provide field-based evidence that copper contamination exhibits consistently negative impacts on soil bacterial communities, and the shifts of bacterial communities could have largely determined the variations of the microbial biomass.

  13. A process-based agricultural model for the irrigated agriculture sector in Alberta, Canada

    Science.gov (United States)

    Ammar, M. E.; Davies, E. G.

    2015-12-01

    Connections between land and water, irrigation, agricultural productivity and profitability, policy alternatives, and climate change and variability are complex, poorly understood, and unpredictable. Policy assessment for agriculture presents a large potential for development of broad-based simulation models that can aid assessment and quantification of policy alternatives over longer temporal scales. The Canadian irrigated agriculture sector is concentrated in Alberta, where it represents two thirds of the irrigated land-base in Canada and is the largest consumer of surface water. Despite interest in irrigation expansion, its potential in Alberta is uncertain given a constrained water supply, significant social and economic development and increasing demands for both land and water, and climate change. This paper therefore introduces a system dynamics model as a decision support tool to provide insights into irrigation expansion in Alberta, and into trade-offs and risks associated with that expansion. It is intended to be used by a wide variety of users including researchers, policy analysts and planners, and irrigation managers. A process-based cropping system approach is at the core of the model and uses a water-driven crop growth mechanism described by AquaCrop. The tool goes beyond a representation of crop phenology and cropping systems by permitting assessment and quantification of the broader, long-term consequences of agricultural policies for Alberta's irrigation sector. It also encourages collaboration and provides a degree of transparency that gives confidence in simulation results. The paper focuses on the agricultural component of the systems model, describing the process involved; soil water and nutrients balance, crop growth, and water, temperature, salinity, and nutrients stresses, and how other disciplines can be integrated to account for the effects of interactions and feedbacks in the whole system. In later stages, other components such as

  14. Soil nutrient content of old-field and agricultural ecosystems exposed to chronic gamma irradiation

    International Nuclear Information System (INIS)

    Armentano, T.V.; Holt, B.R.; Bottino, P.J.

    1975-01-01

    Soil nutrients (extractable P. and NO 3 -N, exchangeable Ca, Mg and K), exchangeable Al, pH and organic matter content were measured over the top six inches of the soils of the seven-year old-field portion and the cultivated portion of the Brookhaven gamma field. Although concentrations of all nutrient elements were higher in the agricultural soil, the distributions of Ca, P, Al, pH and organic matter were similar along the radiation gradient in both fields. There was also a regular reduction in the phosphorus with decreasing exposure, but distribution of other elements was not clearly related to radiation effects. The distribution of all elements except K was significantly correlated with pH in the agricultural soil. In the old-field only Ca, Mg and Al showed this relationship. The most conspicuous effects of nearly 25 yr of chronic irradiation of the site were a reduction in soil organic matter content and an increase in soil P in both fields. (author)

  15. Nitrate concentration-drainage flow (C-Q) relationship for a drained agricultural field in Eastern North Carolina Plain

    Science.gov (United States)

    Liu, W.; Youssef, M.; Birgand, F.; Chescheir, G. M.; Maxwell, B.; Tian, S.

    2017-12-01

    Agricultural drainage is a practice used to artificially enhance drainage characteristics of naturally poorly drained soils via subsurface drain tubing or open-ditch systems. Approximately 25% of the U.S. agricultural land requires improved drainage for economic crop production. However, drainage increases the transport of dissolved agricultural chemicals, particularly nitrates to downstream surface waters. Nutrient export from artificially drained agricultural landscapes has been identified as the leading source of elevated nutrient levels in major surface water bodies in the U.S. Controlled drainage has long been practiced to reduce nitrogen export from agricultural fields to downstream receiving waters. It has been hypothesized that controlled drainage reduces nitrogen losses by promoting denitrification, reducing drainage outflow from the field, and increasing plant uptake. The documented performance of the practice was widely variable as it depends on several site-specific factors. The goal of this research was to utilize high frequency measurements to investigate the effect of agricultural drainage and related management practices on nitrate fate and transport for an artificially drained agricultural field in eastern North Carolina. We deployed a field spectrophotometer to measure nitrate concentration every 45 minutes and measured drainage flow rate using a V-notch weir every 15 minutes. Furthermore, we measured groundwater level, precipitation, irrigation amount, temperature to characterize antecedent conditions for each event. Nitrate concentration-drainage flow (C-Q) relationships generated from the high frequency measurements illustrated anti-clockwise hysteresis loops and nitrate flushing mechanism in response to most precipitation and irrigation events. Statistical evaluation will be carried out for the C-Q relationships. The results of our analysis, combined with numerical modeling, will provide a better understanding of hydrological and

  16. Leaf Area Index Estimation Using Chinese GF-1 Wide Field View Data in an Agriculture Region.

    Science.gov (United States)

    Wei, Xiangqin; Gu, Xingfa; Meng, Qingyan; Yu, Tao; Zhou, Xiang; Wei, Zheng; Jia, Kun; Wang, Chunmei

    2017-07-08

    Leaf area index (LAI) is an important vegetation parameter that characterizes leaf density and canopy structure, and plays an important role in global change study, land surface process simulation and agriculture monitoring. The wide field view (WFV) sensor on board the Chinese GF-1 satellite can acquire multi-spectral data with decametric spatial resolution, high temporal resolution and wide coverage, which are valuable data sources for dynamic monitoring of LAI. Therefore, an automatic LAI estimation algorithm for GF-1 WFV data was developed based on the radiative transfer model and LAI estimation accuracy of the developed algorithm was assessed in an agriculture region with maize as the dominated crop type. The radiative transfer model was firstly used to simulate the physical relationship between canopy reflectance and LAI under different soil and vegetation conditions, and then the training sample dataset was formed. Then, neural networks (NNs) were used to develop the LAI estimation algorithm using the training sample dataset. Green, red and near-infrared band reflectances of GF-1 WFV data were used as the input variables of the NNs, as well as the corresponding LAI was the output variable. The validation results using field LAI measurements in the agriculture region indicated that the LAI estimation algorithm could achieve satisfactory results (such as R² = 0.818, RMSE = 0.50). In addition, the developed LAI estimation algorithm had potential to operationally generate LAI datasets using GF-1 WFV land surface reflectance data, which could provide high spatial and temporal resolution LAI data for agriculture, ecosystem and environmental management researches.

  17. Prediction of the glyphosate sorption coefficient across two loamy agricultural fields

    DEFF Research Database (Denmark)

    Paradelo Pérez, Marcos; Norgaard, Trine; Moldrup, Per

    2015-01-01

    , suggesting that different properties control glyphosate sorption in different locations and at different scales of analysis. Better predictions were obtained for the best-four set for the field in Estrup (R2 = 0.87) and for both fields (R2 = 0.70), while the field in Silstrup showed a lower predictability (R......2 = 0.36). Possibly, the low predictability for the field in Silstrup originated from opposing gradients in clay and oxalate-extractable Fe across the field. Also, whereas a lower clay content in Estrup may be the limiting variable for glyphosate sorption, the field in Silstrup has a higher clay...... sorption coefficient, Kd, from easily measurable soil properties in two loamy, agricultural fields in Denmark: Estrup and Silstrup. Forty-five soil samples in Estrup and 65 in Silstrup were collected fromthe surface in a rectangular grid of 15 × 15-mfromeach field, and selected soil properties...

  18. Development of Field Information Monitoring System Based on the Internet of Things

    Science.gov (United States)

    Cai, Ken; Liang, Xiaoying; Wang, Keqiang

    With the rapid development and wide application of electronics, communication and embedded system technologies, the global agriculture is changing from traditional agriculture that is to improve the production relying on the increase of labor, agricultural inputs to the new stage of modern agriculture with low yields, high efficiency, real-time and accuracy. On the other hand the research and development of the Internet of Things, which is an information network to connect objects, with the full capacity to perceive objects, and having the capabilities of reliable transmission and intelligence processing for information, allows us to obtain real-time information of anything. The application of the Internet of Things in field information online monitoring is an effective solution for present wired sensor monitoring system, which has much more disadvantages, such as high cost, the problems of laying lines and so on. In this paper, a novel field information monitoring system based on the Internet of Things is proposed. It can satisfy the requirements of multi-point measurement, mobility, convenience in the field information monitoring process. The whole structure of system is given and the key designs of system design are described in the hardware and software aspect. The studies have expanded current field information measurement methods and strengthen the application of the Internet of Things.

  19. Alternative agricultures: Emphasis in contributions of the people of field of southwestern sector of Colombia

    International Nuclear Information System (INIS)

    Mejia Gutierrez, M.

    1995-01-01

    It offers a definition of alternative agricultures. Some antecedents are mentioned about the evolution of the Colombian movements from the chemical agriculture toward alternative forms. Some Colombian experiences are enumerated, making emphasis in people of field of the southwestern sector of the country contributions. Some conclusions settle down

  20. Attitudes of students at College of Food and Agricultural Sciences toward agriculture

    Directory of Open Access Journals (Sweden)

    Mohammed Saleh Shenaifi

    2013-06-01

    Full Text Available The primary purpose of the study was to determine the attitudes of students at the College of Agriculture toward agriculture programs and the field of agriculture in an effort to better identify, recruit, and retain students in the College of Agriculture. The population of the study was 110 students from the College of Agriculture freshmen enrolling in course 203 Ag. ext. Communication skills in 2009 and 60 students who transferred from the College of Agriculture to another College. Questionnaire was reviewed for content and face validity by a panel of experts from the department of Agricultural Extension at the College of Agriculture, King Saud University. A five-point Likert-type scale was used. Cronbach’s alpha coefficient was found to be 0.89, which indicated the internal consistency of the scale. Ninety-six of the students were from cities and do not have a farm background. Many of them indicated that they were not happy in the College of Agriculture. Only 31.18% of the respondents (53 indicated that more students should be encouraged to enroll in the College of Agriculture, whereas nearly 69 disagreed or were uncertain. The attitudes of students toward the field of Agriculture were positive. Seventy-one of respondents viewed Agriculture as a scientific area of study, nearly 66% of respondents viewed the field of Agriculture as a blend of scientific principles and agricultural practices. Significant differences at the level of 0.01 were detected, in means of students who had been enrolled in Agricultural program and those students who had not. Students who had enrolled in Agriculture program displayed different attitudes toward the field of Agriculture than did students who were in non-Agriculture program. Generally, students who were studying Agriculture programs possessed attitudes, which were supportive of Agriculture as a career field. Freshmen of the College of Agriculture viewed agriculture as being both scientific and technical. It

  1. Selection of flooded agricultural fields and other landscapes by female northern pintails wintering in Tulare Basin, California

    Science.gov (United States)

    Fleskes, Joseph P.; Jarvis, Robert L.; Gilmer, David S.

    2003-01-01

    Habitat selection and use are measures of relative importance of habitats to wildlife and necessary information for effective wildlife conservation. To measure the relative importance of flooded agricultural fields and other landscapes to northern pintails (Anas acuta) wintering in Tulare Basin (TB), California, we radiotagged female pintails during late August-early October, 1991-1993 in TB and other San Joaquin Valley areas and determined use and selection of these TB landscapes through March each year. Availability of landscape and field types in TB changed within and among years. Pintail use and selection (based upon use-to-availability log ratios) of landscape and field types differed among seasons, years, and diel periods. Fields flooded after harvest and before planting (i.e., pre-irrigated) were the most available, used, and selected landscape type before the hunting season (Prehunt). Safflower was the most available, used, and-except in 1993, when pre-irrigated fallow was available-selected pre-irrigated field type during Prehunt. Pre-irrigated barley-wheat received 19-22% of use before hunting season, but selection varied greatly among years and diel periods. During and after hunting season, managed marsh was the most available, used, and, along with floodwater areas, selected landscape type; pre-irrigated cotton and alfalfa were the least selected field types and accounted for <13% of pintail use. Agricultural drainwater evaporation ponds, sewage treatment ponds, and reservoirs accounted for 42-48% of flooded landscape available but were little used and least selected. Exodus of pintails from TB coincided with drying of pre-irrigated fallow, safflower, and barley-wheat fields early in winter, indicating that preferred habitats were lacking in TB during late winter. Agriculture conservation programs could improve TB for pintails by increasing flooding of fallow and harvested safflower and grain fields. Conservation of remaining wetlands should concentrate

  2. Identification of High-Variation Fields based on Open Satellite Imagery

    DEFF Research Database (Denmark)

    Jeppesen, Jacob Høxbroe; Jacobsen, Rune Hylsberg; Nyholm Jørgensen, Rasmus

    2017-01-01

    . The categorization is based on vegetation indices derived from Sentinel-2 satellite imagery. A case study on 7678 winter wheat fields is presented, which employs open data and open source software to analyze the satellite imagery. Furthermore, the method can be automated to deliver categorizations at every update......This paper proposes a simple method for categorizing fields on a regional level, with respect to intra-field variations. It aims to identify fields where the potential benefits of applying precision agricultural practices are highest from an economic and environmental perspective...

  3. Rapid mineralisation of the herbicide isoproturon in soil from a previously treated Danish agricultural field.

    Science.gov (United States)

    Sørensen, Sebastian R; Aamand, Jens

    2003-10-01

    Mineralisation of the phenylurea herbicide isoproturon (3-(4-isopropylphenyl)-1,1-dimethylurea) and two of its known metabolites, 3-(4-isopropylphenyl)-1-methylurea (monodesmethyl-isoproturon) and 4-isopropylaniline, was studied in Danish agricultural soils with or without previous exposure to isoproturon. A potential for rapid mineralisation of isoproturon and the two metabolites was present in soils sampled from three plots within an agricultural field previously treated regularly with the herbicide, with 34-45%, 51-58% and 33-36% of the added [phenyl-U-14C]isoproturon, [phenyl-U-14C]monodesmethyl-isoproturon and [phenyl-U-14C]4-isopropylaniline metabolised to [14C]carbon dioxide within 30 days at 20 degrees C. In contrast, such extensive mineralisation of these three compounds was not observed within this period in soils sampled from two other agricultural fields without previous treatment with isoproturon. The mineralisation patterns indicated growth-linked metabolism of the three compounds in the previously exposed soils, and doubling times for [14C]carbon dioxide production ranged from 1.6 to 3.2, 1.0 to 2.1 and 1.3 to 1.7 days for isoproturon, monodesmethyl-isoproturon and 4-isopropylaniline, respectively. The ability to mineralise [phenyl-U-14C]isoproturon to [14C]carbon dioxide was successfully sub-cultured to a fresh mineral medium which provided isoproturon as sole source of carbon and nitrogen. One of the soils sampled from an agricultural field not previously treated with isoproturon showed accelerated mineralisation of [phenyl-U-14C]4-isopropylaniline toward the end of the experiment, with a doubling time for [14C]carbon dioxide production of 7.4days. This study indicates that the occurrence of rapid mineralisation of the phenyl ring of isoproturon to carbon dioxide is related to previous exposure to the herbicide, which suggests that microbial adaptation upon repeated isoproturon use may occur within agricultural fields.

  4. Long-term monitoring of nitrate transport to drainage from three agricultural clayey till fields

    Science.gov (United States)

    Ernstsen, V.; Olsen, P.; Rosenbom, A. E.

    2015-08-01

    The application of nitrogen (N) fertilisers to crops grown on tile-drained fields is required to sustain most modern crop production, but it poses a risk to the aquatic environment since tile drains facilitate rapid transport pathways with no significant reduction in nitrate. To maintain the water quality of the aquatic environment and the provision of food from highly efficient agriculture in line with the EU's Water Framework Directive and Nitrates Directive, field-scale knowledge is essential for introducing water management actions on-field or off-field and producing an optimal differentiated N-regulation in future. This study strives to provide such knowledge by evaluating on 11 years of nitrate-N concentration measurements in drainage from three subsurface-drained clayey till fields (1.3-2.3 ha) representing approximately 71 % of the surface sediments in Denmark dominated by clay. The fields differ in their inherent hydrogeological field settings (e.g. soil-type, geology, climate, drainage and groundwater table) and the agricultural management of the fields (e.g. crop type, type of N fertilisers and agricultural practices). The evaluation revealed three types of clayey till fields characterised by: (i) low net precipitation, high concentration of nitrate-N, and short-term low intensity drainage at air temperatures often below 5 °C; (ii) medium net precipitation, medium concentration of nitrate-N, and short-term medium-intensity drainage at air temperatures often above 5 °C; and (iii) high net precipitation, low concentration of nitrate-N and long-term high intensity drainage at air temperatures above 5 °C. For each type, on-field water management actions, such as the selection of crop types and introduction of catch crops, appeared relevant, whereas off-field actions only seemed relevant for the latter two field types given the temperature-dependent reduction potential of nitrate off-field. This initial well-documented field-scale knowledge from fields

  5. Multiple routes of pesticide exposure for honey bees living near agricultural fields.

    Directory of Open Access Journals (Sweden)

    Christian H Krupke

    Full Text Available Populations of honey bees and other pollinators have declined worldwide in recent years. A variety of stressors have been implicated as potential causes, including agricultural pesticides. Neonicotinoid insecticides, which are widely used and highly toxic to honey bees, have been found in previous analyses of honey bee pollen and comb material. However, the routes of exposure have remained largely undefined. We used LC/MS-MS to analyze samples of honey bees, pollen stored in the hive and several potential exposure routes associated with plantings of neonicotinoid treated maize. Our results demonstrate that bees are exposed to these compounds and several other agricultural pesticides in several ways throughout the foraging period. During spring, extremely high levels of clothianidin and thiamethoxam were found in planter exhaust material produced during the planting of treated maize seed. We also found neonicotinoids in the soil of each field we sampled, including unplanted fields. Plants visited by foraging bees (dandelions growing near these fields were found to contain neonicotinoids as well. This indicates deposition of neonicotinoids on the flowers, uptake by the root system, or both. Dead bees collected near hive entrances during the spring sampling period were found to contain clothianidin as well, although whether exposure was oral (consuming pollen or by contact (soil/planter dust is unclear. We also detected the insecticide clothianidin in pollen collected by bees and stored in the hive. When maize plants in our field reached anthesis, maize pollen from treated seed was found to contain clothianidin and other pesticides; and honey bees in our study readily collected maize pollen. These findings clarify some of the mechanisms by which honey bees may be exposed to agricultural pesticides throughout the growing season. These results have implications for a wide range of large-scale annual cropping systems that utilize neonicotinoid seed

  6. CLOUD-BASED AGRICULTURAL SOLUTION: A CASE STUDY OF NEAR REAL-TIME REGIONAL AGRICULTURAL CROP GROWTH INFORMATION IN SOUTH AFRICA

    Directory of Open Access Journals (Sweden)

    J. Hiestermann

    2017-11-01

    Full Text Available Recent advances in cloud-based technology has led to the rapid increase of geospatial web-based applications. The combination of GIS and cloud-based solutions is revolutionizing product development in the geospatial industry and is facilitating accessibility to a wider range of users, planners and decision makers. Accessible through an internet browser, web applications are an effective and convenient method to disseminate information in multiple formats, and they provide an interface offering interactive access to geospatial data, real-time integration and data processing, and application specific analysis tools. An example of such a web application is GeoTerraImage’s monthly crop monitoring tool called GeoFarmer. This tool uses climatic data and satellite imagery processed through a complex rule-based algorithms to determine monthly climatic averages and anomalies, and most importantly the field specific crop status (i.e. is the field fallow, or is the crop emerging, or if the field has been harvested. Monthly field verification has formed a part of calibrating the growth classification outputs to further improve the accuracy of its monthly agricultural reporting. The goal of this application is to provide timely data to decision makers to assist them in field-level and regional crop growth monitoring, crop production and management, financial risk assessment and insurance, and food security applications. This web application has the unique advantage of being highly transportable to other regions, since it has been designed so it can easily be adapted to other seasonal growth response patterns, and up-scaled to regional or national coverages for operational use.

  7. Electronic Field Data Collection in Support of Satellite-Based Food Security Monitoring in Tanzania

    Science.gov (United States)

    Nakalembe, C. L.; Dempewolf, J.; Justice, C. J.; Becker-Reshef, I.; Tumbo, S.; Maurice, S.; Mbilinyi, B.; Ibrahim, K.; Materu, S.

    2016-12-01

    In Tanzania agricultural extension agents traditionally collect field data on agriculture and food security on paper, covering most villages throughout the country. The process is expensive, slow and cumbersome and prone to data transcription errors when the data get entered at the district offices into electronic spreadsheets. Field data on the status and condition of agricultural crops, the population's nutritional status, food storage levels and other parameters are needed in near realtime for early warning to make critical but most importantly timely and appropriate decisions that are informed with verified data from the ground. With the ubiquitous distribution of cell phones, which are now used by the vast majority of the population in Tanzania including most farmers, new, efficient and cost-effective methods for field data collection have become available. Using smartphones and tablets data on crop conditions, pest and diseases, natural disasters and livelihoods can be collected and made available and easily accessible in near realtime. In this project we implemented a process for obtaining high quality electronic field data using the GeoODK application with a large network of field extension agents in Tanzania and Uganda. These efforts contribute to work being done on developing an advanced agriculture monitoring system for Tanzania, incorporating traditional data collection with satellite information and field data. The outcomes feed directly into the National Food Security Bulletin for Tanzania produced by the Ministry of Agriculture as well as a form a firm evidence base and field scale monitoring of the disaster risk financing in Uganda.

  8. Rainfall-runoff of anthropogenic waste indicators from agricultural fields applied with municipal biosolids.

    Science.gov (United States)

    Gray, James L; Borch, Thomas; Furlong, Edward T; Davis, Jessica G; Yager, Tracy J; Yang, Yun-Ya; Kolpin, Dana W

    2017-02-15

    The presence of anthropogenic contaminants such as antimicrobials, flame-retardants, and plasticizers in runoff from agricultural fields applied with municipal biosolids may pose a potential threat to the environment. This study assesses the potential for rainfall-induced runoff of 69 anthropogenic waste indicators (AWIs), widely found in household and industrial products, from biosolids amended field plots. The agricultural field containing the test plots was treated with biosolids for the first time immediately prior to this study. AWIs present in soil and biosolids were isolated by continuous liquid-liquid extraction and analyzed by full-scan gas chromatography/mass spectrometry. Results for 18 AWIs were not evaluated due to their presence in field blank QC samples, and another 34 did not have sufficient detection frequency in samples to analyze trends in data. A total of 17 AWIs, including 4-nonylphenol, triclosan, and tris(2-butoxyethyl)phosphate, were present in runoff with acceptable data quality and frequency for subsequent interpretation. Runoff samples were collected 5days prior to and 1, 9, and 35days after biosolids application. Of the 17 AWIs considered, 14 were not detected in pre-application samples, or their concentrations were much smaller than in the sample collected one day after application. A range of trends was observed for individual AWI concentrations (typically from 0.1 to 10μg/L) over the course of the study, depending on the combination of partitioning and degradation mechanisms affecting each compound most strongly. Overall, these results indicate that rainfall can mobilize anthropogenic contaminants from biosolids-amended agricultural fields, directly to surface waters and redistribute them to terrestrial sites away from the point of application via runoff. For 14 of 17 compounds examined, the potential for runoff remobilization during rainstorms persists even after three 100-year rainstorm-equivalent simulations and the passage of a

  9. Rainfall-runoff of anthropogenic waste indicators from agricultural fields applied with municipal biosolids

    Science.gov (United States)

    Gray, James L.; Borch, Thomas; Furlong, Edward T.; Davis, Jessica; Yager, Tracy; Yang, Yun-Ya; Kolpin, Dana W.

    2017-01-01

    The presence of anthropogenic contaminants such as antimicrobials, flame-retardants, and plasticizers in runoff from agricultural fields applied with municipal biosolids may pose a potential threat to the environment. This study assesses the potential for rainfall-induced runoff of 69 anthropogenic waste indicators (AWIs), widely found in household and industrial products, from biosolids amended field plots. The agricultural field containing the test plots was treated with biosolids for the first time immediately prior to this study. AWIs present in soil and biosolids were isolated by continuous liquid-liquid extraction and analyzed by full-scan gas chromatography/mass spectrometry. Results for 18 AWIs were not evaluated due to their presence in field blank QC samples, and another 34 did not have sufficient detection frequency in samples to analyze trends in data. A total of 17 AWIs, including 4-nonylphenol, triclosan, and tris(2-butoxyethyl)phosphate, were present in runoff with acceptable data quality and frequency for subsequent interpretation. Runoff samples were collected 5 days prior to and 1, 9, and 35 days after biosolids application. Of the 17 AWIs considered, 14 were not detected in pre-application samples, or their concentrations were much smaller than in the sample collected one day after application. A range of trends was observed for individual AWI concentrations (typically from 0.1 to 10 μg/L) over the course of the study, depending on the combination of partitioning and degradation mechanisms affecting each compound most strongly. Overall, these results indicate that rainfall can mobilize anthropogenic contaminants from biosolids-amended agricultural fields, directly to surface waters and redistribute them to terrestrial sites away from the point of application via runoff. For 14 of 17 compounds examined, the potential for runoff remobilization during rainstorms persists even after three 100-year rainstorm-equivalent simulations and the

  10. The dominant factors affecting agricultural land use (rice field change in Yogyakarta Special Province

    Directory of Open Access Journals (Sweden)

    Hadi Sabari Yunus

    2013-07-01

    The research shows that the period of 1980 - 2000 in Yogyakarta Special Province has indicated very significantly the increase in population, the development of road and the extension of built up area. For the time being, agricultural land mainly in Sleman Regency, Bantul Regency and Yogyakarta Municipality has decreased. Sleman regency performed the largest decrease of rice field and followed after then by Bantul regency and Yogyakarta Municipality. The regency of Kulon Progo and Gunung Kidul have experienced reverse phenomenon i.e. the increase of rice field during this period. Individually or simultaneously, three variables used in this research (number of people, road's length and built up area have significantly influenced the agricultural land use.

  11. Regional markets with agricultural workforce based on Labour offices' data

    Directory of Open Access Journals (Sweden)

    František Nohel

    2011-01-01

    Full Text Available The changes in Czech agriculture over the past twenty years have had their impact on the agricultural labour market, too. The regional differentiation of the chances of applicants on the labour market as well as the agricultural enterprises’ chances of hiring employees fitting their requirements, are, among others, influenced by the specific conditions of agricultural production. The aim of this paper pertains to two basic problem areas: first, the differentiation of respective regions based on the number of agricultural applicants and job vacancies, and second, the identification of disequilibrium on the agricultural labour market. The latter is based on a theoretical framework defined by approaches in economy dealing with labour market equilibrium. Due to the unavailability of economic data (including wages, economic performance, etc. on the regional level, authors develop their own methodological approach, based on the number of applicants per job vacancy. A database of applicants and vacancies available from the Labour Offices is used as a source for the analysis and interpretation of data, enabling us to study the agricultural labour market not only sector-wise but also region-wise.

  12. Education and Training Needs in the Field of Agriculture and Rural Development in the Lower Danube Region

    Directory of Open Access Journals (Sweden)

    Nicolae Istudor

    2010-11-01

    Full Text Available Given the conditions of European Strategy for Labour which was ratified also by Romania, that states an intensifying implementation at national level of labour policies and especially those regarding young person labour market integration, and taking into consideration the great human and agricultural potential of Lower Danube Region, we consider the implementation of national and regional programmes in order to train agriculture and rural development specialists to be very necessary. This article inquires the necessity of training agriculture and rural development specialists within Lower Danube Region in the context of cross-border cooperation between Romania and Bulgaria. This research starts by analysing the European and national legal framework of adult training in those two fields. Subsequently, the main premises and advantages of those activities were emphasized. It is good to mention that the Academy of Economic Studies in Bucharest, Romania, and the D. Tsenov Academy of Economics in Svishtov, Bulgaria, proposed themselves to cooperate in the field of “human resources development – common development of skills and knowledge”. The legal base exists as the Romania-Bulgaria Cross-border Cooperation Programme 2007-2013 is enforced. Furthermore, a four years comparative study of the number of persons trained for the main jobs in rural area, including farmer, in Lower Danube Region was conducted. All these led to the idea that it is necessary to continue and to stress adult training of farmers and rural specialists as a solution for rural economy development and social welfare. Also, comparative analysis of supply and demand of professionals in the field of agriculture was elaborated. The main educational programs in training agriculture and rural development specialists were identified and some problems and perspectives were worked out. This research can be considered as a first step of future deeper and profound collaboration of Tsenov

  13. Trichoderma Biodiversity of Agricultural Fields in East China Reveals a Gradient Distribution of Species.

    Science.gov (United States)

    Jiang, Yuan; Wang, Jin-Liang; Chen, Jing; Mao, Li-Juan; Feng, Xiao-Xiao; Zhang, Chu-Long; Lin, Fu-Cheng

    2016-01-01

    We surveyed the Trichoderma (Hypocreales, Ascomycota) biodiversity in agricultural fields in four major agricultural provinces of East China. Trichoderma strains were identified based on molecular approaches and morphological characteristics. In three sampled seasons (spring, summer and autumn), 2078 strains were isolated and identified to 17 known species: T. harzianum (429 isolates), T. asperellum (425), T. hamatum (397), T. virens (340), T. koningiopsis (248), T. brevicompactum (73), T. atroviride (73), T. fertile (26), T. longibrachiatum (22), T. pleuroticola (16), T. erinaceum (16), T. oblongisporum (2), T. polysporum (2), T. spirale (2), T. capillare (2), T. velutinum (2), and T. saturnisporum (1). T. harzianum, T. asperellum, T. hamatum, and T. virens were identified as the dominant species with dominance (Y) values of 0.057, 0.052, 0.048, and 0.039, respectively. The species amount, isolate numbers and the dominant species of Trichoderma varied between provinces. Zhejiang Province has shown the highest diversity, which was reflected in the highest species amount (14) and the highest Shannon-Wiener diversity index of Trichoderma haplotypes (1.46). We observed that relative frequencies of T. hamatum and T. koningiopsis under rice soil were higher than those under wheat and maize soil, indicating the preference of Trichoderma to different crops. Remarkable seasonal variation was shown, with summer exhibiting the highest biodiversity of the studied seasons. These results show that Trichoderma biodiversity in agricultural fields varies by region, crop, and season. Zhejiang Province (the southernmost province in the investigated area) had more T. hamatum than Shandong Province (the northernmost province), not only in isolate amounts but also in haplotype amounts. Furthermore, at haplotype level, only T. hamatum showed a gradient distribution from south to north in correspondence analysis among the four dominant species. The above results would contribute to the

  14. Trichoderma Biodiversity of Agricultural Fields in East China Reveals a Gradient Distribution of Species

    Science.gov (United States)

    Chen, Jing; Mao, Li-Juan; Feng, Xiao-Xiao; Zhang, Chu-Long; Lin, Fu-Cheng

    2016-01-01

    We surveyed the Trichoderma (Hypocreales, Ascomycota) biodiversity in agricultural fields in four major agricultural provinces of East China. Trichoderma strains were identified based on molecular approaches and morphological characteristics. In three sampled seasons (spring, summer and autumn), 2078 strains were isolated and identified to 17 known species: T. harzianum (429 isolates), T. asperellum (425), T. hamatum (397), T. virens (340), T. koningiopsis (248), T. brevicompactum (73), T. atroviride (73), T. fertile (26), T. longibrachiatum (22), T. pleuroticola (16), T. erinaceum (16), T. oblongisporum (2), T. polysporum (2), T. spirale (2), T. capillare (2), T. velutinum (2), and T. saturnisporum (1). T. harzianum, T. asperellum, T. hamatum, and T. virens were identified as the dominant species with dominance (Y) values of 0.057, 0.052, 0.048, and 0.039, respectively. The species amount, isolate numbers and the dominant species of Trichoderma varied between provinces. Zhejiang Province has shown the highest diversity, which was reflected in the highest species amount (14) and the highest Shannon–Wiener diversity index of Trichoderma haplotypes (1.46). We observed that relative frequencies of T. hamatum and T. koningiopsis under rice soil were higher than those under wheat and maize soil, indicating the preference of Trichoderma to different crops. Remarkable seasonal variation was shown, with summer exhibiting the highest biodiversity of the studied seasons. These results show that Trichoderma biodiversity in agricultural fields varies by region, crop, and season. Zhejiang Province (the southernmost province in the investigated area) had more T. hamatum than Shandong Province (the northernmost province), not only in isolate amounts but also in haplotype amounts. Furthermore, at haplotype level, only T. hamatum showed a gradient distribution from south to north in correspondence analysis among the four dominant species. The above results would contribute to the

  15. Trichoderma Biodiversity of Agricultural Fields in East China Reveals a Gradient Distribution of Species.

    Directory of Open Access Journals (Sweden)

    Yuan Jiang

    Full Text Available We surveyed the Trichoderma (Hypocreales, Ascomycota biodiversity in agricultural fields in four major agricultural provinces of East China. Trichoderma strains were identified based on molecular approaches and morphological characteristics. In three sampled seasons (spring, summer and autumn, 2078 strains were isolated and identified to 17 known species: T. harzianum (429 isolates, T. asperellum (425, T. hamatum (397, T. virens (340, T. koningiopsis (248, T. brevicompactum (73, T. atroviride (73, T. fertile (26, T. longibrachiatum (22, T. pleuroticola (16, T. erinaceum (16, T. oblongisporum (2, T. polysporum (2, T. spirale (2, T. capillare (2, T. velutinum (2, and T. saturnisporum (1. T. harzianum, T. asperellum, T. hamatum, and T. virens were identified as the dominant species with dominance (Y values of 0.057, 0.052, 0.048, and 0.039, respectively. The species amount, isolate numbers and the dominant species of Trichoderma varied between provinces. Zhejiang Province has shown the highest diversity, which was reflected in the highest species amount (14 and the highest Shannon-Wiener diversity index of Trichoderma haplotypes (1.46. We observed that relative frequencies of T. hamatum and T. koningiopsis under rice soil were higher than those under wheat and maize soil, indicating the preference of Trichoderma to different crops. Remarkable seasonal variation was shown, with summer exhibiting the highest biodiversity of the studied seasons. These results show that Trichoderma biodiversity in agricultural fields varies by region, crop, and season. Zhejiang Province (the southernmost province in the investigated area had more T. hamatum than Shandong Province (the northernmost province, not only in isolate amounts but also in haplotype amounts. Furthermore, at haplotype level, only T. hamatum showed a gradient distribution from south to north in correspondence analysis among the four dominant species. The above results would contribute to the

  16. Developing an outcome-based biodiversity metric in support of the field to market project: Final report

    Science.gov (United States)

    Drew, C. Ashton; Alexander-Vaughn, Louise B.; Collazo, Jaime A.; McKerrow, Alexa; Anderson, John

    2013-01-01

    depends on that animal’s resource specialization, mobility, and life history strategies (Jeanneret et al. 2003a, b; Jennings & Pocock 2009). The knowledge necessary to define the biodiversity contribution of agricultural lands is specialized, dispersed, and nuanced, and thus not readily accessible. Given access to clearly defined biodiversity tradeoffs between alternative agricultural practices, landowners, land managers and farm operators could collectively enhance the conservation and economic value of agricultural landscapes. Therefore, Field to Market: The Keystone Alliance for Sustainable Agriculture and The Nature Conservancy jointly funded a pilot project to develop a biodiversity metric to integrate into Field to Market’s existing sustainability calculator, The Fieldprint Calculator (http://www. fieldtomarket.org/). Field to Market: The Keystone Alliance for Sustainable Agriculture is an alliance among producers, agribusinesses, food companies, and conservation organizations seeking to create sustainable outcomes for agriculture. The Fieldprint Calculator supports the Keystone Alliance’s vision to achieve safe, accessible, and nutritious food, fiber and fuel in thriving ecosystems to meet the needs of 9 billion people in 2050. In support of this same vision, our project provides proof-of-concept for an outcome-based biodiversity metric for Field to Market to quantify biodiversity impacts of commercial row crop production on terrestrial vertebrate richness. Little research exists examining the impacts of alternative commercial agricultural practices on overall terrestrial biodiversity (McLaughlin & Mineau 1995). Instead, most studies compare organic versus conventional practices (e.g. Freemark & Kirk 2001; Wickramasinghe et al. 2004), and most studies focus on flora, avian, or invertebrate communities (Jeanneret et al. 2003a; Maes et al. 2008; Pollard & Relton 1970). Therefore, we used an expert-knowledge-based approach to develop a metric that predicts

  17. Factors influencing the survival and leaching of tetracycline-resistant bacteria and Escherichia coli through structured agricultural fields

    DEFF Research Database (Denmark)

    Bech, Tina B.; Rosenbom, Annette E.; Kjaer, Jeanne

    2014-01-01

    Intense use of antibiotics in agricultural production may lead to the contamination of surface and groundwater by antibiotic-resistant bacteria. In the present study, the survival and leaching of E. coli and tetracycline-resistant bacteria were monitored at two well-structured agricultural fields...

  18. An Early Historical Examination of the Educational Intent of Supervised Agricultural Experiences (SAEs) and Project-Based Learning in Agricultural Education

    Science.gov (United States)

    Smith, Kasee L.; Rayfield, John

    2016-01-01

    Project-based learning has been a component of agricultural education since its inception. In light of the current call for additional emphasis of the Supervised Agricultural Experience (SAE) component of agricultural education, there is a need to revisit the roots of project-based learning. This early historical research study was conducted to…

  19. Radiation synthesis of superabsorbent CMC based hydrogels for agriculture applications

    International Nuclear Information System (INIS)

    Raafat, Amany I.; Eid, Mona; El-Arnaouty, Magda B.

    2012-01-01

    A series of superabsorbent hydrogel based on carboxymethylcellulose (CMC) and polyvinylpyrrolidone (PVP) crosslinked with gamma irradiation have been proposed for agriculture application. The effect of preparation conditions such as feed solution composition and absorbed irradiation dose on the gelation and swelling degree was evaluated. The structure and the morphology of the superabsorbent CMC/PVP hydrogel were characterized using Fourier transform infrared spectroscopy technique (FTIR), and scanning electron microscope (SEM). Effect of ionic strength and cationic and anionic kinds on the swelling behavior of the obtained hydrogel was investigated. Urea as an agrochemical model was loaded onto the obtained hydrogel to provide nitrogen (N) nutrients. The water retention capability and the urea release behavior of the CMC/PVP hydrogels were investigated. It was found that, the obtained CMC/PVP hydrogels have good swelling degree that greatly affected by its composition and absorbed dose. The swelling was also extremely sensitive to the ionic strength and cationic kind. Owing to its considerable slow urea release, good water retention capacity, being economical, and environment-friendly, it might be useful for its application in agriculture field.

  20. Radiation synthesis of superabsorbent CMC based hydrogels for agriculture applications

    Science.gov (United States)

    Raafat, Amany I.; Eid, Mona; El-Arnaouty, Magda B.

    2012-07-01

    A series of superabsorbent hydrogel based on carboxymethylcellulose (CMC) and polyvinylpyrrolidone (PVP) crosslinked with gamma irradiation have been proposed for agriculture application. The effect of preparation conditions such as feed solution composition and absorbed irradiation dose on the gelation and swelling degree was evaluated. The structure and the morphology of the superabsorbent CMC/PVP hydrogel were characterized using Fourier transform infrared spectroscopy technique (FTIR), and scanning electron microscope (SEM). Effect of ionic strength and cationic and anionic kinds on the swelling behavior of the obtained hydrogel was investigated. Urea as an agrochemical model was loaded onto the obtained hydrogel to provide nitrogen (N) nutrients. The water retention capability and the urea release behavior of the CMC/PVP hydrogels were investigated. It was found that, the obtained CMC/PVP hydrogels have good swelling degree that greatly affected by its composition and absorbed dose. The swelling was also extremely sensitive to the ionic strength and cationic kind. Owing to its considerable slow urea release, good water retention capacity, being economical, and environment-friendly, it might be useful for its application in agriculture field.

  1. Radiation synthesis of superabsorbent CMC based hydrogels for agriculture applications

    Energy Technology Data Exchange (ETDEWEB)

    Raafat, Amany I., E-mail: ismaelraafat_a@hotmail.com [Polymer Chemistry Department, National Center for Radiation Research and Technology, P.O. Box 29, Nasr City, Cairo (Egypt); Eid, Mona; El-Arnaouty, Magda B. [Polymer Chemistry Department, National Center for Radiation Research and Technology, P.O. Box 29, Nasr City, Cairo (Egypt)

    2012-07-15

    A series of superabsorbent hydrogel based on carboxymethylcellulose (CMC) and polyvinylpyrrolidone (PVP) crosslinked with gamma irradiation have been proposed for agriculture application. The effect of preparation conditions such as feed solution composition and absorbed irradiation dose on the gelation and swelling degree was evaluated. The structure and the morphology of the superabsorbent CMC/PVP hydrogel were characterized using Fourier transform infrared spectroscopy technique (FTIR), and scanning electron microscope (SEM). Effect of ionic strength and cationic and anionic kinds on the swelling behavior of the obtained hydrogel was investigated. Urea as an agrochemical model was loaded onto the obtained hydrogel to provide nitrogen (N) nutrients. The water retention capability and the urea release behavior of the CMC/PVP hydrogels were investigated. It was found that, the obtained CMC/PVP hydrogels have good swelling degree that greatly affected by its composition and absorbed dose. The swelling was also extremely sensitive to the ionic strength and cationic kind. Owing to its considerable slow urea release, good water retention capacity, being economical, and environment-friendly, it might be useful for its application in agriculture field.

  2. Research on Intelligent Agriculture Greenhouses Based on Internet of Things Technology

    Directory of Open Access Journals (Sweden)

    Shang Ying

    2017-01-01

    Full Text Available Internet of things is a hot topic in the field of research, get a lot of attention, On behalf of the future development trend of the network, Internet of Things has a wide range of applications, because of the efficient and reliable information transmission in modern agriculture. In the greenhouse, the conditions of the Greenhouse determine the quality of crops, high yield and many other aspects. Research on Intelligent Agriculture Greenhouses based on Internet of Things, mainly Research on how to control the conditions of the greenhouses, So that the indoor conditions suitable for crop growth. In the pater, we study of Zigbee technology, Designed the solar power supply module, greenhouse hardware and software part, And the system was tested by experiment, The analysis of the experimental data shows that the system can provide good conditions for the growth of crops to achieve the high yield and high quality of crops.

  3. Status of Job Motivation and Job Performance of Field Level Extension Agents in Ogun State: Implications for Agricultural Development

    Science.gov (United States)

    Fabusoro, E.; Awotunde, J. A.; Sodiya, C. I.; Alarima, C. I.

    2008-01-01

    The field level extension agents (FLEAs) are the lifeline of the agricultural extension system in Nigeria. Their motivation and job performance are therefore important to achieving faster agricultural development in Nigeria. The study identified the factors motivating the FLEAs working with Ogun State Agricultural development programme (OGADEP)…

  4. Agricultural franchising and contribution to achieving objectives of the EU common agricultural policy

    Directory of Open Access Journals (Sweden)

    Stanković Milica

    2014-01-01

    Full Text Available The Common Agricultural Policy is the oldest, the most complex, the most expensive EU policy and it represents one of the most important drivers of European integration. Agrarian franchising is one of the innovations in the field of franchising, which implementation is still in its infancy and it is necessary to strive for the popularization of this business model. The aim of the paper is to emphasize the importance of agricultural franchising concept development and contribution of implementation of this concept to the achievement of the Common Agricultural Policy objectives and improvement of the agrarian sector as a whole. Special attention is paid on agricultural franchising as a hybrid form of disinvestment in conditions of economic crisis. Based on analysis of advantages and disadvantages of agricultural franchising, we conclude that it has the potential for solving a large number of problems that occur in the agrarian sector, with a particular focus on the importance of agricultural franchising to the achievement of the CAP objectives.

  5. Data base of accident and agricultural statistics for transportation risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Saricks, C.L.; Williams, R.G.; Hopf, M.R.

    1989-11-01

    A state-level data base of accident and agricultural statistics has been developed to support risk assessment for transportation of spent nuclear fuels and high-level radioactive wastes. This data base will enhance the modeling capabilities for more route-specific analyses of potential risks associated with transportation of these wastes to a disposal site. The data base and methodology used to develop state-specific accident and agricultural data bases are described, and summaries of accident and agricultural statistics are provided. 27 refs., 9 tabs.

  6. Data base of accident and agricultural statistics for transportation risk assessment

    International Nuclear Information System (INIS)

    Saricks, C.L.; Williams, R.G.; Hopf, M.R.

    1989-11-01

    A state-level data base of accident and agricultural statistics has been developed to support risk assessment for transportation of spent nuclear fuels and high-level radioactive wastes. This data base will enhance the modeling capabilities for more route-specific analyses of potential risks associated with transportation of these wastes to a disposal site. The data base and methodology used to develop state-specific accident and agricultural data bases are described, and summaries of accident and agricultural statistics are provided. 27 refs., 9 tabs

  7. Non-destructive monitoring of agricultural product (lettuce [Lactuca sativa]) based on laser-induced fluorescence

    International Nuclear Information System (INIS)

    Ishizawa, H.; Saito, Y.; Amemiya, T.; Komatu, K.

    2002-01-01

    Quality control of agricultural products in process of cultivation and distribution has become an important problem. This paper describes a field measuring method of lettuce based on laser induced fluorescence (LIF) spectroscopy for growth monitoring. Intensity at 460nm of LIF spectra showed characteristic variations of near harvest time. The results of chemical analysis confirmed that sucrose and chlorogenic acid are origins of the 460nm fluorescence. The prediction of harvest time and the possibility of quality monitoring are discussed based on the experimental data

  8. Assessing of energy policies based on Turkish agriculture:

    International Nuclear Information System (INIS)

    Sayin, Cengiz; Nisa Mencet, M.; Ozkan, Burhan

    2005-01-01

    In this study, the current energy status of Turkey and the effects of national energy policies on Turkish agricultural support policies are discussed for both current and future requirements. Turkey is an energy-importing country producing 30 mtoe (million tons of oil equivalent) energy but consuming 80 mtoe. The energy import ratio of Turkey is 65-70% and the majority of this import is based on petroleum and natural gas. Furthermore, while world energy demand increases by 1.8% annually, Turkey's energy demand increases by about 8%. Although energy consumption in agriculture is much lower than the other sectors in Turkey, energy use as both input and output of agricultural sector is a very important issue due to its large agricultural potential and rural area. Total agricultural land area is 27.8 million hectares and about 66.5% of this area is devoted for cereal production. On the other hand, Turkey has over 4 million agricultural farm holdings of which 70-75% is engaged in cereal production. Machinery expenses, mainly diesel, constitute 30-50% of total variable expenses in cereal production costs. It is observed that energy policies pursued in agriculture have been directly affected by diesel prices in Turkey. Therefore, support policy tools for using diesel and electricity in agriculture are being pursued by the Turkish government

  9. Assessment of Agricultural Water Productivity for Tea Production in Tea Fields of Guilan Province

    Directory of Open Access Journals (Sweden)

    kourosh majdsalimi

    2016-05-01

    Full Text Available Water productivity index is one of the main factors in efficient use of water for agricultural products. In this study, the rate of water productivity (WP in six irrigated tea fields and three rainfed (no irrigation were assessed by farmer’s management for two years (2009-2010. Yield of each tea field in successive harvests, soil moisture monitoring by gravimetric soil and use of water balance equation was conducted during the growing seasons. Volume of water entered to irrigation system and amount of water reached to surface level were also measured. Tea mean yield in irrigated and rainfed field were 2843 and 1095 Kg. ha-1, respectively. Average of gross irrigation and effective rainfall (WP and irrigation water productivity (IWP in the irrigated fields were 4.39 and 4.55 kg (made tea ha-1 mm-1 and average of net WP (actual evaportanspiration and net IWP was 5.18 and 6.61 kg ha-1 mm-1, respectively. Average WP in rainfed tea fields was 3.4 kg ha-1 for each mm of effective rainfall. The most effective factors on WP reduction in tea fields were improper harvesting operations (un standard plucking and economic problems. Moreover, improper operation and maintenance and old irrigation systems and unprincipled irrigation scheduling in irrigated tea fields were also effective on WP reduction. Comparing the results of this study with other studies in past, showed that by implementing the proper methods in irrigation management and appropriate agricultural practices can improve water productivity in tea fields.

  10. Long-term monitoring of nitrate-N transport to drainage from three agricultural clayey till fields

    Science.gov (United States)

    Ernstsen, V.; Olsen, P.; Rosenbom, A. E.

    2015-01-01

    The application of nitrogen (N) fertilisers to crops grown on tile-drained fields is necessary to sustain most modern crop production, but poses a risk to the aquatic environment since tile drains facilitate rapid transport pathways with no significant reduction in nitrate. To maintain the water quality of the aquatic environment and the provision of food from highly efficient agriculture in line with the EU's Water Framework Directive and Nitrates Directive, field-scale knowledge is imperative if there is to be differentiated N-regulation in future. This study describes nitrate-N leaching to drainage based on coherent monitoring of nitrate-N concentrations, the climate, the groundwater table and crop-specific parameters obtained over eleven years (2001-2011) at three subsurface-drained clayey till fields (1.3-2.3 ha). The monitoring results showed significant field differences in nitrate-N transport to drainage. Not only were these caused by periods of bare soil after short-season crops and N-fixing crops (pea), which have been shown to generate high nitrate-N concentrations in drainage, but by the hydrogeological field conditions that were shown to be the controlling factor of nitrate-N transport to drainage. The fields had the following characteristics: (A) the lowest mass transport (13 kg N ha-1) and fertiliser input had short-term and low-intensity drainage with the highest nitrate-N concentrations detected, representing 40% of net precipitation (226 mm) combined with low air temperatures, (B) the medium mass transport (14 kg N ha-1) had medium-term and medium-intensity drainage, representing 42% of net precipitation (471 mm) combined with periods of both low and higher air temperatures, (C) the highest mass transport (19 kg N ha-1) had long-term drainage, representing 68% of net precipitation (617 mm), but had the highest potential for in-situ soil denitrification and post-treatment (e.g. constructed wetlands) due to long periods with both high water

  11. A MCIN-based architecture of smart agriculture

    Directory of Open Access Journals (Sweden)

    Xiang Gu

    2017-09-01

    Full Text Available Purpose – Material conscious and information network (MCIN is a kind of cyber physics social system. This paper aims to study the MCIN modeling method and design the MCIN-based architecture of smart agriculture (MCIN-ASA which is different from current vertical architecture and involves production, management and commerce. Architecture is composed of three MCIN-ASA participants which are MCIN-ASA enterprises, individuals and commodity. Design/methodology/approach – Architecture uses enterprises and individuals personalized portals as the carriers which are linked precisely with each other through a peer-to-peer network called six-degrees-of-separation block-chain. The authors want to establish a self-organization, open and ecological operational system which includes active, personalized consumption, direct, centralized distribution, distributed and smart production. Findings – The paper models three main MCIN-ASA participants, namely, design the smart supply, demand and management functions, which show the feasibility innovation and high efficiency of implementing MCIN on agriculture. At the same time, the paper presents a prototype system based on the architecture. Originality/value – The authors think that MCIN-ASA improves current agriculture greatly and inspires a lot in production-marketing-combined electronic commerce.

  12. Effects of agricultural practices of three crops on the soil communities under Mediterranean conditions: field evaluation.

    Science.gov (United States)

    Leitão, Sara; José Cerejeira, Maria; Abreu, Manuela; Sousa, José Paulo

    2014-05-01

    Sustainable agricultural production relies on soil communities as the main actors in key soil processes necessary to maintain sustainable soil functioning. Soil biodiversity influences soil physical and chemical characteristics and thus the sustainability of crop and agro-ecosystems functioning. Agricultural practices (e.g.: soil tillage, pesticides and fertilizer applications, irrigation) may affects negatively or positively soil biodiversity and abundances by modifying the relationships between organisms in the soil ecosystem. The present study aimed to study the influence of agricultural practices of three crops (potato, onion and maize) under Mediterranean climate conditions on soil macro- and mesofauna during their entire crop cycles. Effects on soil communities were assessed at a higher tier of environmental risk assessment comprising field testing of indigenous edaphic communities in a selected study-site located in a major agriculture region of Central Portugal, Ribatejo e Oeste, neighbouring protected wetlands. A reference site near the agricultural field site was selected as a Control site to compare the terrestrial communities' composition and variation along the crop cycle. The field soil and Control site soil are sandy loam soils. Crops irrigation was performed by center-pivot (automated sprinkler that rotates in a half a circle area) and by sprinklers. Soil macro- and mesofauna were collected at both sites (field and Control) using two methodologies through pitfall trapping and soil sampling. The community of soil macro- and mesofauna of the three crops field varied versus control site along the crops cycles. Main differences were due to arachnids, coleopterans, ants and adult Diptera presence and abundance. The feeding activity of soil fauna between control site and crop areas varied only for potato and onion crops vs. control site but not among crops. Concentration of pesticides residues in soil did not cause apparent negative effects on the soil

  13. Forests to fields. Restoring tropical lands to agriculture.

    Science.gov (United States)

    Wood, D

    1993-04-01

    In discussing land use in tropical forest regions, there is an emphasis on the following topics: the need for the expansion of cropping areas, the precedent for use of the tropical forest for cropping based on past use patterns, the pressure from conservationists against cropping, debunking the mythology that forests are "natural" and refuting the claims that forest clearance is not reversible, the archeological evidence of past forest use for agricultural purposes, abandonment of tropical land to forest, and rotation of forest and field. The assumption is that the way to stop food importation is to increase crop production in the tropics. Crop production can be increased through 1) land intensification or clearing new land, 2) output per unit of land increases, or 3) reallocation to agriculture land previously cleared and overgrown with tropical forest. "Temporary" reuse of land, which reverted back to tropical forest, is recommended. This reuse would ease population pressure, and benefit bioconservation, while populations stabilize and further progress is made in international plant breeding. The land would eventually be returned to a forest state. Conservation of tropical forest areas should be accomplished, after an assessment has been made of its former uses. Primary forests need to identified and conversion to farming ceased. Research needs to be directed to understanding the process of past forest regeneration, and to devising cropping systems with longterm viability. The green revolution is unsuitable for traditional cropping systems, is contrary to demands of international funding agencies for sustainability, and is not affordable by most poor farmers. Only .48 million sq. km of closed forest loss was in tropical rainforests; 6.53 million sq. km was lost from temperate forests cleared for intensive small-scale peasant farming. The use of tropical forest land for farming has some benefits; crops in the wetter tropics are perennial, which would "reduce

  14. Resources based factors of competitiveness of agricultural enterprises

    Directory of Open Access Journals (Sweden)

    Matyja Małgorzata

    2016-05-01

    Full Text Available Among many different definitions of competitiveness it is difficult to pinpoint the most appropriate one. In the paper it was defined as the ability to be profitable by effective use of available resources. The profitability ratios (ROS, ROA, ROE and value index were proposed as measures of competitiveness and resources were indicated as one of the group of factors that has an impact on it. Precisely, the purpose of the paper was to examine the relationship between selected resourced based factors and competitiveness of agricultural enterprises. The study was done with the use of correlation analysis on the basis of statistical data on selected Polish companies operating in agriculture. The main finding was that the analyzed resources (the level of labour, size and quality of agricultural land and size of assets were weakly correlated with competitiveness. This observation means that other factors have stronger impact on agricultural company’s competitiveness. They can refer to intangible resources (such as relational capital, know-how, managerial competencies, technological resources etc. and external conditions (such as climate, legal issues of agricultural enterprises.

  15. Development of the ClearSky smoke dispersion forecast system for agricultural field burning in the Pacific Northwest

    Science.gov (United States)

    Jain, Rahul; Vaughan, Joseph; Heitkamp, Kyle; Ramos, Charleston; Claiborn, Candis; Schreuder, Maarten; Schaaf, Mark; Lamb, Brian

    The post-harvest burning of agricultural fields is commonly used to dispose of crop residue and provide other desired services such as pest control. Despite careful regulation of burning, smoke plumes from field burning in the Pacific Northwest commonly degrade air quality, particularly for rural populations. In this paper, ClearSky, a numerical smoke dispersion forecast system for agricultural field burning that was developed to support smoke management in the Inland Pacific Northwest, is described. ClearSky began operation during the summer through fall burn season of 2002 and continues to the present. ClearSky utilizes Mesoscale Meteorological Model version 5 (MM5v3) forecasts from the University of Washington, data on agricultural fields, a web-based user interface for defining burn scenarios, the Lagrangian CALPUFF dispersion model and web-served animations of plume forecasts. The ClearSky system employs a unique hybrid source configuration, which treats the flaming portion of a field as a buoyant line source and the smoldering portion of the field as a buoyant area source. Limited field observations show that this hybrid approach yields reasonable plume rise estimates using source parameters derived from recent field burning emission field studies. The performance of this modeling system was evaluated for 2003 by comparing forecast meteorology against meteorological observations, and comparing model-predicted hourly averaged PM 2.5 concentrations against observations. Examples from this evaluation illustrate that while the ClearSky system can accurately predict PM 2.5 surface concentrations due to field burning, the overall model performance depends strongly on meteorological forecast error. Statistical evaluation of the meteorological forecast at seven surface stations indicates a strong relationship between topographical complexity near the station and absolute wind direction error with wind direction errors increasing from approximately 20° for sites in

  16. Changes in water budgets and sediment yields from a hypothetical agricultural field as a function of landscape and management characteristics--A unit field modeling approach

    Science.gov (United States)

    Roth, Jason L.; Capel, Paul D.

    2012-01-01

    Crop agriculture occupies 13 percent of the conterminous United States. Agricultural management practices, such as crop and tillage types, affect the hydrologic flow paths through the landscape. Some agricultural practices, such as drainage and irrigation, create entirely new hydrologic flow paths upon the landscapes where they are implemented. These hydrologic changes can affect the magnitude and partitioning of water budgets and sediment erosion. Given the wide degree of variability amongst agricultural settings, changes in the magnitudes of hydrologic flow paths and sediment erosion induced by agricultural management practices commonly are difficult to characterize, quantify, and compare using only field observations. The Water Erosion Prediction Project (WEPP) model was used to simulate two landscape characteristics (slope and soil texture) and three agricultural management practices (land cover/crop type, tillage type, and selected agricultural land management practices) to evaluate their effects on the water budgets of and sediment yield from agricultural lands. An array of sixty-eight 60-year simulations were run, each representing a distinct natural or agricultural scenario with various slopes, soil textures, crop or land cover types, tillage types, and select agricultural management practices on an isolated 16.2-hectare field. Simulations were made to represent two common agricultural climate regimes: arid with sprinkler irrigation and humid. These climate regimes were constructed with actual climate and irrigation data. The results of these simulations demonstrate the magnitudes of potential changes in water budgets and sediment yields from lands as a result of landscape characteristics and agricultural practices adopted on them. These simulations showed that variations in landscape characteristics, such as slope and soil type, had appreciable effects on water budgets and sediment yields. As slopes increased, sediment yields increased in both the arid and

  17. Laser-based agriculture system

    KAUST Repository

    Ooi, Boon S.

    2016-03-31

    A system and method are provided for indoor agriculture using at least one growth chamber illuminated by laser light. In an example embodiment of the agriculture system, a growth chamber is provided having one or more walls defining an interior portion of the growth chamber. The agriculture system may include a removable tray disposed within the interior portion of the growth chamber. The agriculture system also includes a light source, which may be disposed outside the growth chamber. The one or more walls may include at least one aperture. The light source is configured to illuminate at least a part of the interior portion of the growth chamber. In embodiments in which the light source is disposed outside the growth chamber, the light source is configured to transmit the laser light to the interior portion of the growth chamber via the at least one aperture.

  18. Laser-based agriculture system

    KAUST Repository

    Ooi, Boon S.; Wong, Aloysius Tze; Ng, Tien Khee

    2016-01-01

    A system and method are provided for indoor agriculture using at least one growth chamber illuminated by laser light. In an example embodiment of the agriculture system, a growth chamber is provided having one or more walls defining an interior portion of the growth chamber. The agriculture system may include a removable tray disposed within the interior portion of the growth chamber. The agriculture system also includes a light source, which may be disposed outside the growth chamber. The one or more walls may include at least one aperture. The light source is configured to illuminate at least a part of the interior portion of the growth chamber. In embodiments in which the light source is disposed outside the growth chamber, the light source is configured to transmit the laser light to the interior portion of the growth chamber via the at least one aperture.

  19. Ground penetrating radar (GPR) detects fine roots of agricultural crops in the field

    Science.gov (United States)

    Xiuwei Liu; Xuejun Dong; Qingwu Xue; Daniel I. Leskovar; John Jifon; John R. Butnor; Thomas Marek

    2018-01-01

    Aim Ground penetrating radar (GPR) as a non-invasive technique is widely used in coarse root detection. However, the applicability of the technique to detect fine roots of agricultural crops is unknown. The objective of this study was to assess the feasibility of utilizing GPR to detect fine roots in the field.

  20. Agricultural experts’ attitude towards precision agriculture: Evidence from Guilan Agricultural Organization, Northern Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Sadegh Allahyari

    2016-09-01

    Full Text Available Identifying factors that influence the attitudes of agricultural experts regarding precision agriculture plays an important role in developing, promoting and establishing precision agriculture. The aim of this study was to identify factors affecting the attitudes of agricultural experts regarding the implementation of precision agriculture. A descriptive research design was employed as the research method. A research-made questionnaire was used to examine the agricultural experts’ attitude toward precision agriculture. Internal consistency was demonstrated with a coefficient alpha of 0.87, and the content and face validity of the instrument was confirmed by a panel of experts. The results show that technical, economic and accessibility factors accounted for 55% of the changes in attitudes towards precision agriculture. The findings revealed that there were no significant differences between participants in terms of gender, field of study, extension education, age, experience, organizational position and attitudes, while education levels had a significant effect on the respondent’s attitudes.

  1. Changes in agricultural carbon emissions and factors that influence agricultural carbon emissions based on different stages in Xinjiang, China.

    Science.gov (United States)

    Xiong, Chuanhe; Yang, Degang; Xia, Fuqiang; Huo, Jinwei

    2016-11-10

    Xinjiang's agricultural carbon emissions showed three stages of change, i.e., continued to rise, declined and continued to rise, during 1991-2014. The agriculture belonged to the "low emissions and high efficiency" agriculture category, with a lower agricultural carbon emission intensity. By using the logarithmic mean divisia index decomposition method, agricultural carbon emissions were decomposed into an efficiency factor, a structure factor, an economy factor, and a labour factor. We divided the study period into five stages based on the changes in efficiency factor and economy factor. Xinjiang showed different agricultural carbon emission characteristics at different stages. The degree of impact on agricultural carbon emissions at these stages depended on the combined effect of planting-animal husbandry carbon intensity and agricultural labour productivity. The economy factor was the critical factor to promote the increase in agricultural carbon emissions, while the main inhibiting factor for agricultural carbon emissions was the efficiency factor. The labour factor became more and more obvious in increasing agricultural carbon emissions. Finally, we discuss policy recommendations in terms of the main factors, including the development of agricultural science and technology (S&T), the establishment of three major mechanisms and transfer of rural labour in ethnic areas.

  2. About soil cover heterogeneity of agricultural research stations' experimental fields

    Science.gov (United States)

    Rannik, Kaire; Kõlli, Raimo; Kukk, Liia

    2013-04-01

    Depending on local pedo-ecological conditions (topography, (geo) diversity of soil parent material, meteorological conditions) the patterns of soil cover and plant cover determined by soils are very diverse. Formed in the course of soil-plant mutual relationship, the natural ecosystems are always influenced to certain extent by the other local soil forming conditions or they are site specific. The agricultural land use or the formation of agro-ecosystems depends foremost on the suitability of soils for the cultivation of feed and food crops. As a rule, the most fertile or the best soils of the area, which do not present any or present as little as possible constraints for agricultural land use, are selected for this purpose. Compared with conventional field soils, the requirements for the experimental fields' soil cover quality are much higher. Experimental area soils and soil cover composition should correspond to local pedo-ecological conditions and, in addition to that, represent the soil types dominating in the region, whereas the fields should be as homogeneous as possible. The soil cover heterogeneity of seven arable land blocks of three research stations (Jõgeva, Kuusiku and Olustvere) was studied 1) by examining the large scale (1:10 000) digital soil map (available via the internet), and 2) by field researches using the transect method. The stages of soils litho-genetic and moisture heterogeneities were estimated by using the Estonian normal soils matrix, however, the heterogeneity of top- and subsoil texture by using the soil texture matrix. The quality and variability of experimental fields' soils humus status, was studied more thoroughly from the aspect of humus concentration (g kg-1), humus cover thickness (cm) and humus stocks (Mg ha-1). The soil cover of Jõgeva experimental area, which presents an accumulative drumlin landscape (formed during the last glacial period), consist from loamy Luvisols and associated to this Cambisols. In Kuusiku area

  3. A novel application for concentrator photovoltaic in the field of agriculture photovoltaics

    Science.gov (United States)

    Liu, Luqing; Guan, Chenggang; Zhang, Fangxin; Li, Ming; Lv, Hui; Liu, Yang; Yao, Peijun; Ingenhoff, Jan; Liu, Wen

    2017-09-01

    Agriculture photovoltaics is a trend setting area which has already led to a new industrial revolution. Shortage of land in some countries and desertification of land where regular solar panels are deployed are some of the major problems in the photovoltaic industry. Concentrator photovoltaics experienced a decline in applicability after the cost erosion of regular solar panels at the end of the last decade. We demonstrate a novel and unique application for concentrator photovoltaics tackling at a same time the issue of conventional photovoltaics preventing the land being used for agricultural purpose where ever solar panels are installed. We leverage the principle of diffractive and interference technology to split the sun light into transmitted wavelengths necessary for plant growth and reflected wavelengths useful for solar energy generation. The technology has been successfully implemented in field trials and sophisticated scientific studies have been undertaken to evaluate the suitability of this technology for competitive solar power generation and simultaneous high-quality plant growth. The average efficiency of the agriculture photovoltaic system has reached more than 8% and the average efficiency of the CPV system is 6.80%.

  4. Building SDN-Based Agricultural Vehicular Sensor Networks Based on Extended Open vSwitch.

    Science.gov (United States)

    Huang, Tao; Yan, Siyu; Yang, Fan; Pan, Tian; Liu, Jiang

    2016-01-19

    Software-defined vehicular sensor networks in agriculture, such as autonomous vehicle navigation based on wireless multi-sensor networks, can lead to more efficient precision agriculture. In SDN-based vehicle sensor networks, the data plane is simplified and becomes more efficient by introducing a centralized controller. However, in a wireless environment, the main controller node may leave the sensor network due to the dynamic topology change or the unstable wireless signal, leaving the rest of network devices without control, e.g., a sensor node as a switch may forward packets according to stale rules until the controller updates the flow table entries. To solve this problem, this paper proposes a novel SDN-based vehicular sensor networks architecture which can minimize the performance penalty of controller connection loss. We achieve this by designing a connection state detection and self-learning mechanism. We build prototypes based on extended Open vSwitch and Ryu. The experimental results show that the recovery time from controller connection loss is under 100 ms and it keeps rule updating in real time with a stable throughput. This architecture enhances the survivability and stability of SDN-based vehicular sensor networks in precision agriculture.

  5. Building SDN-Based Agricultural Vehicular Sensor Networks Based on Extended Open vSwitch

    Directory of Open Access Journals (Sweden)

    Tao Huang

    2016-01-01

    Full Text Available Software-defined vehicular sensor networks in agriculture, such as autonomous vehicle navigation based on wireless multi-sensor networks, can lead to more efficient precision agriculture. In SDN-based vehicle sensor networks, the data plane is simplified and becomes more efficient by introducing a centralized controller. However, in a wireless environment, the main controller node may leave the sensor network due to the dynamic topology change or the unstable wireless signal, leaving the rest of network devices without control, e.g., a sensor node as a switch may forward packets according to stale rules until the controller updates the flow table entries. To solve this problem, this paper proposes a novel SDN-based vehicular sensor networks architecture which can minimize the performance penalty of controller connection loss. We achieve this by designing a connection state detection and self-learning mechanism. We build prototypes based on extended Open vSwitch and Ryu. The experimental results show that the recovery time from controller connection loss is under 100 ms and it keeps rule updating in real time with a stable throughput. This architecture enhances the survivability and stability of SDN-based vehicular sensor networks in precision agriculture.

  6. Building SDN-Based Agricultural Vehicular Sensor Networks Based on Extended Open vSwitch

    Science.gov (United States)

    Huang, Tao; Yan, Siyu; Yang, Fan; Pan, Tian; Liu, Jiang

    2016-01-01

    Software-defined vehicular sensor networks in agriculture, such as autonomous vehicle navigation based on wireless multi-sensor networks, can lead to more efficient precision agriculture. In SDN-based vehicle sensor networks, the data plane is simplified and becomes more efficient by introducing a centralized controller. However, in a wireless environment, the main controller node may leave the sensor network due to the dynamic topology change or the unstable wireless signal, leaving the rest of network devices without control, e.g., a sensor node as a switch may forward packets according to stale rules until the controller updates the flow table entries. To solve this problem, this paper proposes a novel SDN-based vehicular sensor networks architecture which can minimize the performance penalty of controller connection loss. We achieve this by designing a connection state detection and self-learning mechanism. We build prototypes based on extended Open vSwitch and Ryu. The experimental results show that the recovery time from controller connection loss is under 100 ms and it keeps rule updating in real time with a stable throughput. This architecture enhances the survivability and stability of SDN-based vehicular sensor networks in precision agriculture. PMID:26797616

  7. Evaluation of the APEX Model to Simulate Runoff Quality from Agricultural Fields in the Southern Region of the United States.

    Science.gov (United States)

    Ramirez-Avila, John J; Radcliffe, David E; Osmond, Deanna; Bolster, Carl; Sharpley, Andrew; Ortega-Achury, Sandra L; Forsberg, Adam; Oldham, J Larry

    2017-11-01

    The Agricultural Policy Environmental eXtender (APEX) model has been widely applied to assess phosphorus (P) loss in runoff water and has been proposed as a model to support practical decisions regarding agricultural P management, as well as a model to evaluate tools such as the P Index. The aim of this study is to evaluate the performance of APEX to simulate P losses from agricultural systems to determine its potential use for refinement or replacement of the P Index in the southern region of the United States. Uncalibrated and calibrated APEX model predictions were compared against measured water quality data from row crop fields in North Carolina and Mississippi and pasture fields in Arkansas and Georgia. Calibrated models satisfactorily predicted event-based surface runoff volumes at all sites (Nash-Sutcliffe efficiency [NSE] > 0.47, |percent bias [PBIAS]| < 34) except Arkansas (NSE < 0.11, |PBIAS| < 50) but did not satisfactory simulate sediment, dissolved P, or total P losses in runoff water. The APEX model tended to underestimate dissolved and total P losses from fields where manure was surface applied. The model also overestimated sediments and total P loads during irrigation events. We conclude that the capability of APEX to predict sediment and P losses is limited, and consequently so is the potential for using APEX to make P management recommendations to improve P Indices in the southern United States. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. Effects of microelements on soil nematode assemblages seven years after contaminating an agricultural field

    NARCIS (Netherlands)

    Nagy, P.; Bakonyi, G.; Bongers, A.M.T.; Kádár, I.; Fábián, M.; Kiss, I.

    2004-01-01

    Long-term effects of Cd, Cr, Cu, Se and Zn were studied 7 years after artificially contaminating plots of an agricultural field on a calcareous chernozem soil. Effects of three to four different contamination levels (originally 10, 30, 90 and 270 mg kg(-1)) were studied. Nematode density was

  9. Demonstration and validation of automated agricultural field extraction from multi-temporal Landsat data for the majority of United States harvested cropland

    Science.gov (United States)

    Yan, L.; Roy, D. P.

    2014-12-01

    The spatial distribution of agricultural fields is a fundamental description of rural landscapes and the location and extent of fields is important to establish the area of land utilized for agricultural yield prediction, resource allocation, and for economic planning, and may be indicative of the degree of agricultural capital investment, mechanization, and labor intensity. To date, field objects have not been extracted from satellite data over large areas because of computational constraints, the complexity of the extraction task, and because consistently processed appropriate resolution data have not been available or affordable. A recently published automated methodology to extract agricultural crop fields from weekly 30 m Web Enabled Landsat data (WELD) time series was refined and applied to 14 states that cover 70% of harvested U.S. cropland (USDA 2012 Census). The methodology was applied to 2010 combined weekly Landsat 5 and 7 WELD data. The field extraction and quantitative validation results are presented for the following 14 states: Iowa, North Dakota, Illinois, Kansas, Minnesota, Nebraska, Texas, South Dakota, Missouri, Indiana, Ohio, Wisconsin, Oklahoma and Michigan (sorted by area of harvested cropland). These states include the top 11 U.S states by harvested cropland area. Implications and recommendations for systematic application to global coverage Landsat data are discussed.

  10. Use of hyperspectral remote sensing to estimate the gross photosynthesis of agricultural fields

    International Nuclear Information System (INIS)

    Strachan, I.B.; Pattey, E.; Salustro, C.; Miller, J.R.

    2008-01-01

    Optimization of crop growth and yield is achieved through the use of effective management practices. However, transient weather conditions will modify crop growth and yield. To assess crop development it is therefore essential to understand the current crop ecophysiological status. Such information can be monitored continuously using micrometeorological instrumented towers over agricultural surfaces. The spatial coverage of this approach is limited to the upwind area contributing to the flux. Remote sensing becomes key in deriving carbon exchanges and crop vigour over larger spatial areas. Derived from ground-based hyperspectral reflectance measurements from five growing seasons, a relationship between the eddy covariance estimates of gross photosynthesis and the product of the standardized photochemical reflectance index and the integrated modified triangular index was expanded to the field scale through the use of Compact Airborne Spectrographic Imager (CASI) data for corn and wheat over two consecutive seasons in the same field. Imagery-derived maps of gross photosynthesis successfully identified areas of potential stress that were known to be correlated with lower yield. Results were further verified using an independent flux dataset. This approach, modified from previous attempts in natural ecosystems, offers additional promise for managed systems. (author)

  11. Changes in agricultural carbon emissions and factors that influence agricultural carbon emissions based on different stages in Xinjiang, China

    Science.gov (United States)

    Xiong, Chuanhe; Yang, Degang; Xia, Fuqiang; Huo, Jinwei

    2016-01-01

    Xinjiang’s agricultural carbon emissions showed three stages of change, i.e., continued to rise, declined and continued to rise, during 1991–2014. The agriculture belonged to the “low emissions and high efficiency” agriculture category, with a lower agricultural carbon emission intensity. By using the logarithmic mean divisia index decomposition method, agricultural carbon emissions were decomposed into an efficiency factor, a structure factor, an economy factor, and a labour factor. We divided the study period into five stages based on the changes in efficiency factor and economy factor. Xinjiang showed different agricultural carbon emission characteristics at different stages. The degree of impact on agricultural carbon emissions at these stages depended on the combined effect of planting-animal husbandry carbon intensity and agricultural labour productivity. The economy factor was the critical factor to promote the increase in agricultural carbon emissions, while the main inhibiting factor for agricultural carbon emissions was the efficiency factor. The labour factor became more and more obvious in increasing agricultural carbon emissions. Finally, we discuss policy recommendations in terms of the main factors, including the development of agricultural science and technology (S&T), the establishment of three major mechanisms and transfer of rural labour in ethnic areas. PMID:27830739

  12. Nanotechnologies in agriculture and food - an overview of different fields of application, risk assessment and public perception.

    Science.gov (United States)

    Grobe, Antje; Rissanen, Mikko E

    2012-12-01

    Nanomaterials in agriculture and food are key issues of public and regulatory interest. Over the past ten years, patents for nanotechnological applications in the field of food and agriculture have become abundant. Uncertainty prevails however regarding their current development status and presence in the consumer market. Thus, the discussion on nanotechnologies in the food sector with its specific public perception of benefits and risks and the patterns of communication are becoming similar to the debate on genetically modified organisms. The food industry's silence in communication increased mistrust of consumer organisations and policy makers. The article discusses the background of the current regulatory debates, starting with the EU recommendation for defining nanomaterials, provides an overview of possible fields of application in agriculture and food industries and discusses risk assessment and the public debate on benefits and risks. Communicative recommendations are directed at researchers, the food industry and regulators in order to increase trust both in stakeholders, risk management and regulatory processes.

  13. Improving Agricultural Water Resources Management Using Ground-based Infrared Thermometry

    Science.gov (United States)

    Taghvaeian, S.

    2014-12-01

    Irrigated agriculture is the largest user of freshwater resources in arid/semi-arid parts of the world. Meeting rapidly growing demands in food, feed, fiber, and fuel while minimizing environmental pollution under a changing climate requires significant improvements in agricultural water management and irrigation scheduling. Although recent advances in remote sensing techniques and hydrological modeling has provided valuable information on agricultural water resources and their management, real improvements will only occur if farmers, the decision makers on the ground, are provided with simple, affordable, and practical tools to schedule irrigation events. This presentation reviews efforts in developing methods based on ground-based infrared thermometry and thermography for day-to-day management of irrigation systems. The results of research studies conducted in Colorado and Oklahoma show that ground-based remote sensing methods can be used effectively in quantifying water stress and consequently triggering irrigation events. Crop water use estimates based on stress indices have also showed to be in good agreement with estimates based on other methods (e.g. surface energy balance, root zone soil water balance, etc.). Major challenges toward the adoption of this approach by agricultural producers include the reduced accuracy under cloudy and humid conditions and its inability to forecast irrigation date, which is a critical knowledge since many irrigators need to decide about irrigations a few days in advance.

  14. Methylmercury cycling, bioaccumulation, and export from agricultural and non-agricultural wetlands in the Yolo Bypass

    Science.gov (United States)

    Windham-Myers, Lisamarie; Marvin-DiPasquale, Mark; Fleck, Jacob; Alpers, Charles N.; Ackerman, Joshua T.; Eagles-Smith, Collin A.; Stricker, Craig; Stephenson, Mark; Feliz, David; Gill, Gary; Bachand, Philip; Brice, Ann; Kulakow, Robin

    2010-01-01

    This 18-month field study addresses the seasonal and spatial patterns and processes controlling methylmercury (MeHg) production, bioaccumulation, and export from natural and agricultural wetlands of the Yolo Bypass Wildlife Area (YBWA). The data were collected in conjuntion with a Proposition 40 grant from the State Water Resources Control Board in support of the development of Best Management Practices (BMP's) for reducing MeHg loading from agricultural lands in the wetland-dominated Yolo Bypass to the Sacramento-San Joaquin River Delta. The four managemenr-based questions addressed in this study were: 1. Is there a different among agricultural and managfed wetland types in terms of Me Hg dynamic (production, degradation, bioaccumulation, or export)?

  15. Status and developmental strategy of nuclear agricultural sciences in researches of eco-environmental sciences in agriculture

    International Nuclear Information System (INIS)

    Hua Luo; Wang Xunqing

    2001-01-01

    The concept, research scopes, research progress and achievement of nuclear agricultural sciences in past several decades in China, as well as the relationship between nuclear agriculture research and eco-environmental sciences were described. The disciplinary frontier, major research fields and priority developmental fields of nuclear agriculture in eco-environmental sciences was displayed. Suggestions were made to improve and strengthen nuclear agriculture research. Those provided basic source materials and consideration for application developmental strategy of nuclear agriculture in eco-environmental sciences

  16. A component-based system for agricultural drought monitoring by remote sensing.

    Science.gov (United States)

    Dong, Heng; Li, Jun; Yuan, Yanbin; You, Lin; Chen, Chao

    2017-01-01

    In recent decades, various kinds of remote sensing-based drought indexes have been proposed and widely used in the field of drought monitoring. However, the drought-related software and platform development lag behind the theoretical research. The current drought monitoring systems focus mainly on information management and publishing, and cannot implement professional drought monitoring or parameter inversion modelling, especially the models based on multi-dimensional feature space. In view of the above problems, this paper aims at fixing this gap with a component-based system named RSDMS to facilitate the application of drought monitoring by remote sensing. The system is designed and developed based on Component Object Model (COM) to ensure the flexibility and extendibility of modules. RSDMS realizes general image-related functions such as data management, image display, spatial reference management, image processing and analysis, and further provides drought monitoring and evaluation functions based on internal and external models. Finally, China's Ningxia region is selected as the study area to validate the performance of RSDMS. The experimental results show that RSDMS provide an efficient and scalable support to agricultural drought monitoring.

  17. Study on the manganese distribution in the soil of an agricultural field using neutron activation analysis method

    International Nuclear Information System (INIS)

    Souza, Marcos P. de; Armelin, Maria J.A.; Cruvinel, Paulo E.

    1997-01-01

    Manganese distribution in the soil of an agricultural field was evaluated by neutron activation analysis. The accuracy and precision of the method were verified by the analysis of two Standard Reference Materials with different manganese concentration in the experimental field, through one schematic diagram. (author). 7 refs., 1 fig., 2 tabs

  18. Development and field testing of agricultural snowmelting agents made from recycled bio-waste materials

    International Nuclear Information System (INIS)

    Hirota, T.; Hasegawa, M.; Tanaka, H.; Suzuki, S.; Tadano, T.

    2008-01-01

    In snow-covering region of Japan, the promotion of snowmelting with application of agricultural snowmelting agents ('Yusetsuzai' in Japanese) has been widely carried out by farmers at the snowmelting season. When black colored materials with albedo-lowering effect are spread on snow surface, absorption of solar radiation by snow is increased, the snowmelting is promoted and snow thawing date becomes earlier. As a result, the growing season of crop plants is extended. Existing agricultural snowmelting agents have been mostly made from industrial waste materials or industrial processed products due to requirement for the low cost of the raw materials. These agents may contain harmful heavy metal elements and may lead to environmental pollution. To solve these problems, we developed the new agricultural snowmelting agents made from recycled bio-waste materials generated from the fields of agriculture and fishery. The developed snowmelting agents were made from shells of Patinopecten yessoensis, fowl droppings and processed wastes of fish and shellfish, etc. Especially, the shells of Patinopecten yessoensis has problems due to generation of a huge quantity in Hokkaido. Therefore, the recycling-use of these waste materials was strongly requested and expected. The developed snowmelting agents were possible to spread efficiently and safely on the snow-surface without wide scattering by controlling the particle size within the range larger than 100 microm and smaller than 1180 microm. Results obtained from the field experiment showed that the albedo was decreased from 0.70 for natural snow to 0.20 and the promotion of snowmelting for 11 days was recognized when 100 kg/10a of developed agent was spread. The promoting ability of the developed agent was equivalent to those of the existing commercial snowmelting agents. (author)

  19. Danish emission inventories for agriculture

    DEFF Research Database (Denmark)

    Mikkelsen, Mette Hjorth; Albrektsen, Rikke; Gyldenkærne, Steen

    . This report contains a description of the emissions from the agricultural sector from 1985 to 2009. Furthermore, the report includes a detailed description of methods and data used to calculate the emissions, which is based on national methodologies as well as international guidelines. For the Danish...... emissions calculations and data management an Integrated Database model for Agricultural emissions (IDA) is used. The emission from the agricultural sector includes emission of the greenhouse gases methane (CH4), nitrous oxide (N2O), ammonia (NH3), particulate matter (PM), non-methane volatile organic...... compounds (NMVOC) and other pollutants related to the field burning of agricultural residue such as NOx, CO2, CO, SO2, heavy metals, dioxin and PAH. The ammonia emission from 1985 to 2009 has decreased from 119 300 tonnes of NH3 to 73 800 tonnes NH3, corresponding to a 38 % reduction. The emission...

  20. Agricultural SWOT analysis and wisdom agriculture design of chengdu

    Science.gov (United States)

    Zhang, Qian; Chen, Xiangyu; Du, Shaoming; Yin, Guowei; Yu, Feng; Liu, Guicai; Gong, Jin; Han, Fujun

    2017-08-01

    According to the status of agricultural information, this paper analyzed the advantages, opportunities and challenges of developing wisdom agriculture in Chengdu. By analyzed the local characteristics of Chengdu agriculture, the construction program of Chengdu wisdom agriculture was designed, which was based on the existing agricultural informatization. The positioning and development theme of Chengdu agriculture is leisure agriculture, urban agriculture and quality agriculture.

  1. An economic theory-based explanatory model of agricultural land-use patterns

    NARCIS (Netherlands)

    Diogo, V.; Koomen, E.; Kuhlman, T.

    2015-01-01

    An economic theory-based land-use modelling framework is presented aiming to explain the causal link between economic decisions and resulting spatial patterns of agricultural land use. The framework assumes that farmers pursue utility maximisation in agricultural production systems, while

  2. An Algorithm and Implementation Based on an Agricultural EOQ Model

    Directory of Open Access Journals (Sweden)

    Hu Zhineng

    2015-01-01

    Full Text Available With the improvement of living quality, the agricultural supermarket gradually take the place of the farmers market as the trend. But the agricultural supermarkets’ inappropriate inventory strategies are wasteful and inefficient. So this paper will put forward an inventory strategy for the agricultural supermarkets to lead the conductor decides when and how much to shelve the product. This strategy has significant meaning that it can reduce the loss and get more profit. The research methods are based on the inventory theory and the EOQ model, but the authors add multiple cycles’ theory to them because of the agricultural products’ decreasing characteristics. The research procedures are shown as follows. First, the authors do research in the agricultural supermarket to find their real conduction, and then put forward the new strategy in this paper. Second, the authors found out the model. At last, the authors search the specialty agriculture document to find the data such as the loss rate and the fresh parameters, and solve it out by MATLAB. The numerical result proves that the strategy is better than the real conduction in agricultural supermarket, and it also proves the feasibility.

  3. The big data processing platform for intelligent agriculture

    Science.gov (United States)

    Huang, Jintao; Zhang, Lichen

    2017-08-01

    Big data technology is another popular technology after the Internet of Things and cloud computing. Big data is widely used in many fields such as social platform, e-commerce, and financial analysis and so on. Intelligent agriculture in the course of the operation will produce large amounts of data of complex structure, fully mining the value of these data for the development of agriculture will be very meaningful. This paper proposes an intelligent data processing platform based on Storm and Cassandra to realize the storage and management of big data of intelligent agriculture.

  4. Extracurricular Activities Targeted towards Increasing the Number of Engineers Working in the Field of Precision Agriculture

    DEFF Research Database (Denmark)

    Larsen, Leon Bonde; Stark Olsen, Kent; Ahrenkiel, Linda

    SERVICE ROBOTS in precision agriculture have the potential to ensure a more competitive and sustainable production, but the lack of skilled engineers within this area is limiting the industry’s ability to develop new and innovative agricultural technology products. Part of the reason...... is that engineers and scientists have little knowledge about agricultural technology, and they therefore choose to work in other domains. It is hypothesised that introducing engineering students to precision agriculture through practical work with small-scale service robots will increase their interest...... in agriculture and agricultural technology. This article presents the results of an interdisciplinary extracurricular activity for first year engineering students carried out in the Fall 2012 at the University of Southern Denmark. The case was based on practical group-work centered around an agricultural mobile...

  5. The effectiveness of agrobusiness technical training and education model for the field agricultural extension officers

    Directory of Open Access Journals (Sweden)

    Kristiyo Sumarwono

    2017-07-01

    Full Text Available The study was to: (1 find the most effective agrobusiness technical training and education model for the Field Agricultural Extension Officers to be implemented; and (2 to identify the knowledge level, the highest agrobusiness skills and the strongest self-confidence that might be achieved by the participants through the implemented training and education patterns. The study was conducted by means of experiment method with the regular pattern of training and education program as the control and the mentoring pattern of training and education program as the treatment. The three patterns of training and education programs served as the independent variables while the knowledge, the skills and the self-confidence served as the dependent variables. The study was conducted in three locations namely: the Institution of Agricultural Human Resources Development in the Province of Yogyakarta Special Region (Balai Pengembangan Sumber Daya Manusia Pertanian Daerah Istimewa Yogyakarta – BPSMP DIY; the Institution of Agricultural Human Resources Empowerment (Balai Pemberdayaan Sumber Daya Manusia Pertanian – BPSDMTAN Soropadan Temanggung Provinsi Jawa Tengah in Soropadan, Temanggung, the Province of Central Java; and the Institution of Training and Education in Semarang, the Province of Central Java (Badan Pendidikan dan Pelatihan Semarang Provinsi Jawa Tengah. The study was conducted to all of the participants who attended the agrobusiness technical training and education program and, therefore, all of the participants became the subjects of the study. The study was conducted from October 2013 until March 2014. The results of the study showed that: (1 there had not been any significant difference on the knowledge and the skills of the participants who attended the regular pattern in training and education programs and those who attended the mentoring pattern in training and education programs; (2 the regular pattern in training and education programs

  6. The Infusion of Inquiry-Based Learning into School-Based Agricultural Education: A Review of Literature

    Science.gov (United States)

    Wells, Trent; Matthews, Jennifer; Caudle, Lawrence; Lunceford, Casey; Clement, Brian; Anderson, Ryan

    2015-01-01

    Demands for increases in student achievement have led education professionals to incorporate various and rigorous teaching strategies into classrooms across the United States. Within school-based agricultural education (SBAE), agriculture teachers have responded to these challenges quite well. SBAE incorporates a wide variety of teaching and…

  7. Estimation of decay rates for fecal indicator bacteria and bacterial pathogens in agricultural field-applied manure

    Science.gov (United States)

    Field-applied manure is an important source of pathogenic exposure in surface water bodies for humans and ecological receptors. We analyzed the persistence and decay of fecal indicator bacteria and bacterial pathogens from three sources (cattle, poultry, swine) for agricultural f...

  8. Trade and agriculture policy conditions for the use of plant oils in the energy field

    International Nuclear Information System (INIS)

    Joerdens, R.

    1994-01-01

    Preservation of resources, ecology and agricultural policy supply the most important argument for an increased use of raw materials which grow again. Regenerative raw materials are at present grown on about 2.5% of the arable land area in Germany, where production for the chemical technical field is to the fore. Access to the energy field is, however, difficult due to the considerable economic deficit compared to fossil fuels. Possibilities of use exist mainly in heating plant and in Diesel engines. (BWI) [de

  9. A component-based system for agricultural drought monitoring by remote sensing.

    Directory of Open Access Journals (Sweden)

    Heng Dong

    Full Text Available In recent decades, various kinds of remote sensing-based drought indexes have been proposed and widely used in the field of drought monitoring. However, the drought-related software and platform development lag behind the theoretical research. The current drought monitoring systems focus mainly on information management and publishing, and cannot implement professional drought monitoring or parameter inversion modelling, especially the models based on multi-dimensional feature space. In view of the above problems, this paper aims at fixing this gap with a component-based system named RSDMS to facilitate the application of drought monitoring by remote sensing. The system is designed and developed based on Component Object Model (COM to ensure the flexibility and extendibility of modules. RSDMS realizes general image-related functions such as data management, image display, spatial reference management, image processing and analysis, and further provides drought monitoring and evaluation functions based on internal and external models. Finally, China's Ningxia region is selected as the study area to validate the performance of RSDMS. The experimental results show that RSDMS provide an efficient and scalable support to agricultural drought monitoring.

  10. Future trends in agricultural engineering.

    NARCIS (Netherlands)

    Jongebreur, A.A.; Speelman, L.

    1997-01-01

    Beside traditional mechanical engineering, other engineering branches such as electronics, control engineering and physics play their specific role within the agricultural engineering field. Agricultural engineering has affected and stimulated major changes in agriculture. In the last decades

  11. A method of detecting a structure in a field, a method of steering an agricultural vehicle and an agricultural vehicle

    DEFF Research Database (Denmark)

    2011-01-01

    An agricultural vehicle (2) comprises a steering system providing steering signals, said steering system comprising an imaging device (11) for imaging surroundings of the vehicle and an image processing device (13), said steering system operating to provide by means of the imaging device (11......) an image of the field (21), analyse the image to obtain texture information, assign to a plurality of areas of the image probability-values reflecting the likelihood that the respective area relates to a specific structure (12), assume at least one geometric property of said specific structure (12...

  12. Monitoring pathogens from irradiated agriculture products

    International Nuclear Information System (INIS)

    Butterweck, J.S.

    1990-01-01

    The final food and environmental safety assessment of agriculture product irradiation can only be determined by product history. Product history will be used for future research and development, regulations, commercial practices and implementation of agriculture and food irradiation on a regional basis. The commercial irradiator treats large varieties and amounts of products that are used in various environments. it, in time, will generate a large data base of product history. Field product monitoring begins when food irradiation progresses from the pilot/demonstration phase to the commercial phase. At that time, it is important that there be in place a monitoring system to collect and analyze field data. The systems managers, public health authorities and exotic disease specialists will use this information to assess the reduction of food pathogens on the populace and the environment. (author)

  13. Fast phosphorus loss by sediment resuspension in a re-established shallow lake on former agricultural fields

    DEFF Research Database (Denmark)

    Kragh, Theis; Sand-Jensen, Kaj; Petersen, Kathrine

    2017-01-01

    Lake restoration on fertilized agricultural fields can lead to extensive nutrient release from flooded soils which can maintain a poor ecological quality in the new lake. The period with high sediment release is poorly understood due to few detailed lake restorations studies. We conducted...

  14. Optimization of agricultural field workability predictions for improved risk management

    Science.gov (United States)

    Risks introduced by weather variability are key considerations in agricultural production. The sensitivity of agriculture to weather variability is of special concern in the face of climate change. In particular, the availability of workable days is an important consideration in agricultural practic...

  15. Utilization of radiation in industrial, agricultural and medical fields and its perspective

    International Nuclear Information System (INIS)

    Shibata, Tokushi

    2008-01-01

    The current status for the utilization of radiation in Japan was given from the view point of the economic scale. The topics which will be developed in near future such as lithography, radiation processing, radiation analysis in the industry, mutation breeding, sterile insect technique, food irradiation in agriculture, and radiation diagnosis, radiation therapy in medical field were presented. The important techniques for the further development of utilization of radiation will be the techniques related to the fabrication of semiconductor, developments of small accelerators and compact neutron generators. (author)

  16. Emerging Agricultural Biotechnologies for Sustainable Agriculture and Food Security.

    Science.gov (United States)

    Anderson, Jennifer A; Gipmans, Martijn; Hurst, Susan; Layton, Raymond; Nehra, Narender; Pickett, John; Shah, Dilip M; Souza, Thiago Lívio P O; Tripathi, Leena

    2016-01-20

    As global populations continue to increase, agricultural productivity will be challenged to keep pace without overtaxing important environmental resources. A dynamic and integrated approach will be required to solve global food insecurity and position agriculture on a trajectory toward sustainability. Genetically modified (GM) crops enhanced through modern biotechnology represent an important set of tools that can promote sustainable agriculture and improve food security. Several emerging biotechnology approaches were discussed in a recent symposium organized at the 13th IUPAC International Congress of Pesticide Chemistry meeting in San Francisco, CA, USA. This paper summarizes the innovative research and several of the new and emerging technologies within the field of agricultural biotechnology that were presented during the symposium. This discussion highlights how agricultural biotechnology fits within the context of sustainable agriculture and improved food security and can be used in support of further development and adoption of beneficial GM crops.

  17. Fast phosphorus loss by sediment resuspension in a re-established shallow lake on former agricultural fields

    DEFF Research Database (Denmark)

    Kragh, Theis; Sand-Jensen, Kaj; Petersen, Kathrine

    2017-01-01

    Lake restoration on fertilized agricultural fields can lead to extensive nutrient release from flooded soils which can maintain a poor ecological quality in the new lake. The period with high sediment release is poorly understood due to few detailed lake restorations studies. We conducted such a ...

  18. Research on the Optimization of Agricultural Supply Chain Based on Internet of Things

    OpenAIRE

    Zhang , Guangsheng

    2013-01-01

    International audience; Technology of IOT which used in agricultural supply chain can help to improve operational efficiency and reduce supply chain costs. This paper analyzes the basic structure of agricultural supply chain, current status of the research, and summarizes major obstacles of the development process. The paper also describes application of IOT principle, as well as agricultural supply chain optimization approach based on internet of things, including agricultural production, pr...

  19. Brief history of agricultural systems modeling.

    Science.gov (United States)

    Jones, James W; Antle, John M; Basso, Bruno; Boote, Kenneth J; Conant, Richard T; Foster, Ian; Godfray, H Charles J; Herrero, Mario; Howitt, Richard E; Janssen, Sander; Keating, Brian A; Munoz-Carpena, Rafael; Porter, Cheryl H; Rosenzweig, Cynthia; Wheeler, Tim R

    2017-07-01

    Agricultural systems science generates knowledge that allows researchers to consider complex problems or take informed agricultural decisions. The rich history of this science exemplifies the diversity of systems and scales over which they operate and have been studied. Modeling, an essential tool in agricultural systems science, has been accomplished by scientists from a wide range of disciplines, who have contributed concepts and tools over more than six decades. As agricultural scientists now consider the "next generation" models, data, and knowledge products needed to meet the increasingly complex systems problems faced by society, it is important to take stock of this history and its lessons to ensure that we avoid re-invention and strive to consider all dimensions of associated challenges. To this end, we summarize here the history of agricultural systems modeling and identify lessons learned that can help guide the design and development of next generation of agricultural system tools and methods. A number of past events combined with overall technological progress in other fields have strongly contributed to the evolution of agricultural system modeling, including development of process-based bio-physical models of crops and livestock, statistical models based on historical observations, and economic optimization and simulation models at household and regional to global scales. Characteristics of agricultural systems models have varied widely depending on the systems involved, their scales, and the wide range of purposes that motivated their development and use by researchers in different disciplines. Recent trends in broader collaboration across institutions, across disciplines, and between the public and private sectors suggest that the stage is set for the major advances in agricultural systems science that are needed for the next generation of models, databases, knowledge products and decision support systems. The lessons from history should be

  20. Standardization of doctoral study in agricultural and extension education: is the field of study mature enough for achievement of the optimum degree of order?

    Science.gov (United States)

    Briers, G E; Lindner, J R; Shinn, G C; Wingenbach, G W; Baker, M T

    2010-01-01

    Agricultural and extension education--or some derivative name--is a field of study leading to the doctoral degree in universities around the world. Is there are body of knowledge or a taxonomy of the knowledge--e.g., a knowledge domain--that one should possess with a doctorate in agricultural and extension education? The purpose of this paper was to synthesize the work of researchers who attempted to define the field of study, with a taxonomy comprising the knowledge domains (standards) and knowledge objects--structured interrelated sets of data, knowledge, and wisdom--of the field of study. Doctoral study in agricultural and extension education needs a document that provides for rules and guidelines--rules and guidelines that in turn provide for common and repeated use--all leading to achievement of an optimum degree of order in the context of academic, scholarly, and professional practice in agricultural and extension education. Thus, one would know in broad categories the knowledge, skills, and abilities possessed by one who holds a doctoral degree in agricultural and extension education. That is, there would exist a standard for doctoral degrees in agricultural and extension education. A content analysis of three previous attempts to categorize knowledge in agricultural and extension education served as the primary technique to create a new taxonomy--or to confirm an existing taxonomy--for doctoral study in agricultural and extension education. The following coalesced as nine essential knowledge domains for a doctorate in agricultural and extension education: (1) history, philosophy, ethics, and policy; (2) agricultural/rural development; (3) organizational development and change management; (4) planning, needs assessment, and evaluation; (5) learning theory; (6) curriculum development and instructional design; (7) teaching methods and delivery strategies; (8) research methods and tools; and, (9) scholarship and communications.

  1. Polylactide-based renewable green composites from agricultural residues and their hybrids.

    Science.gov (United States)

    Nyambo, Calistor; Mohanty, Amar K; Misra, Manjusri

    2010-06-14

    Agricultural natural fibers like jute, kenaf, sisal, flax, and industrial hemp have been extensively studied in green composites. The continuous supply of biofibers in high volumes to automotive part makers has raised concerns. Because extrusion followed by injection molding drastically reduces the aspect ratio of biofibers, the mechanical performance of injection molded agricultural residue and agricultural fiber-based composites are comparable. Here, the use of inexpensive agricultural residues and their hybrids that are 8-10 times cheaper than agricultural fibers is demonstrated to be a better way of getting sustainable materials with better performance. Green renewable composites from polylactide (PLA), agricultural residues (wheat straw, corn stover, soy stalks, and their hybrids) were successfully prepared through twin-screw extrusion, followed by injection molding. The effect on mechanical properties of varying the wheat straw amount from 10 to 40 wt % in PLA-wheat straw composites was studied. Tensile moduli were compared with theoretical calculations from the rule of mixture (ROM). Combination of agricultural residues as hybrids is proved to reduce the supply chain concerns for injection molded green composites. Densities of the green composites were found to be lower than those of conventional glass fiber composites.

  2. Monitoring and Analysis of Nonpoint Source Pollution - Case study on terraced paddy fields in an agricultural watershed

    Science.gov (United States)

    Chen, Shih-Kai; Jang, Cheng-Shin; Yeh, Chun-Lin

    2013-04-01

    The intensive use of chemical fertilizer has negatively impacted environments in recent decades, mainly through water pollution by nitrogen (N) and phosphate (P) originating from agricultural activities. As a main crop with the largest cultivation area about 0.25 million ha per year in Taiwan, rice paddies account for a significant share of fertilizer consumption among agriculture crops. This study evaluated the fertilization of paddy fields impacting return flow water quality in an agricultural watershed located at Hsinchu County, northern Taiwan. Water quality monitoring continued for two crop-periods in 2012, around subject to different water bodies, including the irrigation water, drainage water, and shallow groundwater. The results indicated that obviously increasing of ammonium-N, nitrate-N and TP concentrations in the surface drainage water were observed immediately following three times of fertilizer applications (including basal, tillering, and panicle fertilizer application), but reduced to relatively low concentrations after 7-10 days after each fertilizer application. Groundwater quality monitoring showed that the observation wells with the more shallow water depth, the more significant variation of concentrations of ammonium-N, nitrate-N and TP could be observed, which means that the contamination potential of nutrient of groundwater is related not only to the impermeable plow sole layer but also to the length of percolation route in this area. The study also showed that the potential pollution load of nutrient could be further reduced by well drainage water control and rational fertilizer management, such as deep-water irrigation, reuse of return flow, the rational application of fertilizers, and the SRI (The System of Rice Intensification) method. The results of this study can provide as an evaluation basis to formulate effective measures for agricultural non-point source pollution control and the reuse of agricultural return flow. Keywords

  3. Construction of Network Management Information System of Agricultural Products Supply Chain Based on 3PLs

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The necessity to construct the network management information system of 3PLs agricultural supply chain is analyzed,showing that 3PLs can improve the overall competitive advantage of agricultural supply chain.3PLs changes the homogeneity management into specialized management of logistics service and achieves the alliance of the subjects at different nodes of agricultural products supply chain.Network management information system structure of agricultural products supply chain based on 3PLs is constructed,including the four layers (the network communication layer,the hardware and software environment layer,the database layer,and the application layer) and 7 function modules (centralized control,transportation process management,material and vehicle scheduling,customer relationship,storage management,customer inquiry,and financial management).Framework for the network management information system of agricultural products supply chain based on 3PLs is put forward.The management of 3PLs mainly includes purchasing management,supplier relationship management,planning management,customer relationship management,storage management and distribution management.Thus,a management system of internal and external integrated agricultural enterprises is obtained.The network management information system of agricultural products supply chain based on 3PLs has realized the effective sharing of enterprise information of agricultural products supply chain at different nodes,establishing a long-term partnership revolving around the 3PLs core enterprise,as well as a supply chain with stable relationship based on the supply chain network system,so as to improve the circulation efficiency of agricultural products,and to explore the sales market for agricultural products.

  4. [Spatial evaluation on ecological and aesthetic quality of Beijing agricultural landscape].

    Science.gov (United States)

    Pan, Ying; Xiao, He; Yu, Zhen-Rong

    2009-10-01

    A total of ten single indices mainly reflecting the ecological and aesthetic quality of agricultural landscape, including ecosystem function, naturalness, openness and diversity, contamination probability, and orderliness were selected, their different weights were given based on field survey and expert system, and an integrated evaluation index system of agricultural landscape quality was constructed. In the meantime, the land use data provided by GIS and the remote sensing data of vegetation index were used to evaluate the Beijing agricultural landscape quality and its spatial variation. There was a great spatial variation in the agricultural landscape quality of Beijing, being worse at the edges of urban area and towns, but better in suburbs. The agricultural landscape quality was mainly related to topography and human activity. To construct a large-scale integrated index system based on remote sensing data and landscape indices would have significance in evaluating the spatial variation of agricultural landscape quality.

  5. DeepAnomaly: Combining Background Subtraction and Deep Learning for Detecting Obstacles and Anomalies in an Agricultural Field

    Directory of Open Access Journals (Sweden)

    Peter Christiansen

    2016-11-01

    Full Text Available Convolutional neural network (CNN-based systems are increasingly used in autonomous vehicles for detecting obstacles. CNN-based object detection and per-pixel classification (semantic segmentation algorithms are trained for detecting and classifying a predefined set of object types. These algorithms have difficulties in detecting distant and heavily occluded objects and are, by definition, not capable of detecting unknown object types or unusual scenarios. The visual characteristics of an agriculture field is homogeneous, and obstacles, like people, animals and other obstacles, occur rarely and are of distinct appearance compared to the field. This paper introduces DeepAnomaly, an algorithm combining deep learning and anomaly detection to exploit the homogenous characteristics of a field to perform anomaly detection. We demonstrate DeepAnomaly as a fast state-of-the-art detector for obstacles that are distant, heavily occluded and unknown. DeepAnomaly is compared to state-of-the-art obstacle detectors including “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks” (RCNN. In a human detector test case, we demonstrate that DeepAnomaly detects humans at longer ranges (45–90 m than RCNN. RCNN has a similar performance at a short range (0–30 m. However, DeepAnomaly has much fewer model parameters and (182 ms/25 ms = a 7.28-times faster processing time per image. Unlike most CNN-based methods, the high accuracy, the low computation time and the low memory footprint make it suitable for a real-time system running on a embedded GPU (Graphics Processing Unit.

  6. Energy-Efficient Wireless Sensor Networks for Precision Agriculture: A Review.

    Science.gov (United States)

    Jawad, Haider Mahmood; Nordin, Rosdiadee; Gharghan, Sadik Kamel; Jawad, Aqeel Mahmood; Ismail, Mahamod

    2017-08-03

    Wireless sensor networks (WSNs) can be used in agriculture to provide farmers with a large amount of information. Precision agriculture (PA) is a management strategy that employs information technology to improve quality and production. Utilizing wireless sensor technologies and management tools can lead to a highly effective, green agriculture. Based on PA management, the same routine to a crop regardless of site environments can be avoided. From several perspectives, field management can improve PA, including the provision of adequate nutrients for crops and the wastage of pesticides for the effective control of weeds, pests, and diseases. This review outlines the recent applications of WSNs in agriculture research as well as classifies and compares various wireless communication protocols, the taxonomy of energy-efficient and energy harvesting techniques for WSNs that can be used in agricultural monitoring systems, and comparison between early research works on agriculture-based WSNs. The challenges and limitations of WSNs in the agricultural domain are explored, and several power reduction and agricultural management techniques for long-term monitoring are highlighted. These approaches may also increase the number of opportunities for processing Internet of Things (IoT) data.

  7. Assets. Biological Assets. The Seasonal Model in Agriculture

    Directory of Open Access Journals (Sweden)

    Atanasiu Pop

    2008-07-01

    Full Text Available In order to support the agricultural exploitation we tried in this paper to develop a model that involves a seasonal component at entity’s level. Consequently, we made a study to an exploitation acting in the vegetal field by collecting accounting informations from the data base entity and by informations that were processed using different statistical functions. So, through the proposed model we try to make certain previsions taking into account the economic situation in which the agricultural exploitation works.

  8. TractorEYE: Vision-based Real-time Detection for Autonomous Vehicles in Agriculture

    DEFF Research Database (Denmark)

    Christiansen, Peter

    ) using a smaller memory footprint and 7.3-times faster processing. Low memory footprint and fast processing makes DeepAnomaly suitable for real-time applications running on an embedded GPU. FieldSAFE is a multi-modal dataset for detection of static and moving obstacles in agriculture. The dataset...... (four for rgb camera, one for thermal camera and one for a Multi-beam lidar) and fuse detection information in a common format using either 3D positions or Inverse Sensor Models. A GPU powered computational platform is able to run detection algorithms online. For the rgb camera, a deep learning...... algorithm is proposed DeepAnomaly to perform real-time anomaly detection of distant, heavy occluded and unknown obstacles in agriculture. DeepAnomaly is - compared to a state-of-the-art object detector Faster R-CNN - for an agricultural use-case able to detect humans better and at longer ranges (45-90m...

  9. Fe and Mn levels regulated by agricultural activities in alluvial groundwaters underneath a flooded paddy field

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kangjoo [School of Civil and Environmental Engineering, Kunsan National University, Jeonbuk 573-701 (Korea, Republic of)], E-mail: kangjoo@kunsan.ac.kr; Kim, Hyun-Jung; Choi, Byoung-Young; Kim, Seok-Hwi; Park, Ki-hoon [School of Civil and Environmental Engineering, Kunsan National University, Jeonbuk 573-701 (Korea, Republic of); Park, Eungyu [Department of Geology, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Koh, Dong-Chan [Korea Institute of Geoscience and Mineral Resources, Daejeon 305-350 (Korea, Republic of); Yun, Seong-Taek [Department of Earth and Environmental Sciences, Korea University, Seoul 136-701 (Korea, Republic of)

    2008-01-15

    Iron and Mn concentrations in fresh groundwaters of alluvial aquifers are generally high in reducing conditions reflecting low SO{sub 4} concentrations. The mass balance and isotopic approaches of this study demonstrate that reduction of SO{sub 4}, supplied from agricultural activities such as fertilization and irrigation, is important in lowering Fe and Mn levels in alluvial groundwaters underneath a paddy field. This study was performed to investigate the processes regulating Fe and Mn levels in groundwaters of a point bar area, which has been intensively used for flood cultivation. Four multilevel-groundwater samplers were installed to examine the relationship between geology and the vertical changes in water chemistry. The results show that Fe and Mn levels are regulated by the presence of NO{sub 3} at shallow depths and by SO{sub 4} reduction at the greater depths. Isotopic and mass balance analyses revealed that NO{sub 3} and SO{sub 4} in groundwater are mostly supplied from the paddy field, suggesting that the Fe-and Mn-rich zone of the study area is confined by the agricultural activities. For this reason, the geologic conditions controlling the infiltration of agrochemicals are also important for the occurrence of Fe/Mn-rich groundwaters in the paddy field area.

  10. Emissions of carbon dioxide and methane from fields fertilized with digestate from an agricultural biogas plant

    Science.gov (United States)

    Czubaszek, Robert; Wysocka-Czubaszek, Agnieszka

    2018-01-01

    Digestate from biogas plants can play important role in agriculture by providing nutrients, improving soil structure and reducing the use of mineral fertilizers. Still, less is known about greenhouse gas emissions from soil during and after digestate application. The aim of the study was to estimate the emissions of carbon dioxide (CO2) and methane (CH4) from a field which was fertilized with digestate. The gas fluxes were measured with the eddy covariance system. Each day, the eddy covariance system was installed in various places of the field, depending on the dominant wind direction, so that each time the results were obtained from an area where the digestate was distributed. The results showed the relatively low impact of the studied gases emissions on total greenhouse gas emissions from agriculture. Maximum values of the CO2 and CH4 fluxes, 79.62 and 3.049 µmol s-1 m-2, respectively, were observed during digestate spreading on the surface of the field. On the same day, the digestate was mixed with the topsoil layer using a disc harrow. This resulted in increased CO2 emissions the following day. Intense mineralization of digestate, observed after fertilization may not give the expected effects in terms of protection and enrichment of soil organic matter.

  11. Fe and Mn levels regulated by agricultural activities in alluvial groundwaters underneath a flooded paddy field

    International Nuclear Information System (INIS)

    Kim, Kangjoo; Kim, Hyun-Jung; Choi, Byoung-Young; Kim, Seok-Hwi; Park, Ki-hoon; Park, Eungyu; Koh, Dong-Chan; Yun, Seong-Taek

    2008-01-01

    Iron and Mn concentrations in fresh groundwaters of alluvial aquifers are generally high in reducing conditions reflecting low SO 4 concentrations. The mass balance and isotopic approaches of this study demonstrate that reduction of SO 4 , supplied from agricultural activities such as fertilization and irrigation, is important in lowering Fe and Mn levels in alluvial groundwaters underneath a paddy field. This study was performed to investigate the processes regulating Fe and Mn levels in groundwaters of a point bar area, which has been intensively used for flood cultivation. Four multilevel-groundwater samplers were installed to examine the relationship between geology and the vertical changes in water chemistry. The results show that Fe and Mn levels are regulated by the presence of NO 3 at shallow depths and by SO 4 reduction at the greater depths. Isotopic and mass balance analyses revealed that NO 3 and SO 4 in groundwater are mostly supplied from the paddy field, suggesting that the Fe-and Mn-rich zone of the study area is confined by the agricultural activities. For this reason, the geologic conditions controlling the infiltration of agrochemicals are also important for the occurrence of Fe/Mn-rich groundwaters in the paddy field area

  12. Construction of Agricultural University Students’ Entrepreneurship Incubation Base – Taking Sichuan Agricultural University as a Case Study

    OpenAIRE

    Xia Yao; Jianping Xie; Linchun He

    2013-01-01

    In the recent years, as an effective practice in university students’ entrepreneurship education, construction of university students’ entrepreneurship incubation base has been rapidly developed in different universities. This paper takes construction of the entrepreneurship incubation base in Sichuan Agricultural University as a case study, analyzes the current status of university students’ entrepreneurship incubation base and makes a discussion on establishment of management institution, f...

  13. Examining shifts in Carabidae assemblages across a forest-agriculture ecotone.

    Science.gov (United States)

    Leslie, T W; Biddinger, D J; Rohr, J R; Hulting, A G; Mortensen, D A; Fleischer, S J

    2014-02-01

    Northeastern U.S. farms are often situated adjacent to forestland due to the heterogeneous nature of the landscape. We investigated how forested areas influence Carabidae diversity within nearby crop fields by establishing transects of pitfall traps. Trapping extended across a forest-agriculture ecotone consisting of maize, an intermediate mowed grass margin, and a forest edge. Carabidae diversity was compared among the three habitats, and community and population dynamics were assessed along the transect. We used a principal response curve to examine and visualize community change across a spatial gradient. The highest levels of richness and evenness were observed in the forest community, and carabid assemblages shifted significantly across the ecotone, especially at the forest-grass interface. Despite strong ecotone effects, population distributions showed that some species were found in all three habitats and seemed to thrive at the ecotone. Based on similarity indices, carabid assemblages collected in maize adjacent to forest differed from carabid assemblages in maize not adjacent to forest. We conclude that forest carabid assemblages exhibit high degrees of dissimilarity with those found in agricultural fields and forested areas should thus be retained in agricultural landscapes to increase biodiversity at the landscape scale. However, ecotone species found at forest edges can still noticeably influence carabid community composition within neighboring agricultural fields. Further studies should determine how these shifts in carabid assemblages influence agroecosystem services in relation to ecosystem services observed in fields embedded in an agricultural matrix.

  14. Mapping Sub-Saharan African Agriculture in High-Resolution Satellite Imagery with Computer Vision & Machine Learning

    Science.gov (United States)

    Debats, Stephanie Renee

    Smallholder farms dominate in many parts of the world, including Sub-Saharan Africa. These systems are characterized by small, heterogeneous, and often indistinct field patterns, requiring a specialized methodology to map agricultural landcover. In this thesis, we developed a benchmark labeled data set of high-resolution satellite imagery of agricultural fields in South Africa. We presented a new approach to mapping agricultural fields, based on efficient extraction of a vast set of simple, highly correlated, and interdependent features, followed by a random forest classifier. The algorithm achieved similar high performance across agricultural types, including spectrally indistinct smallholder fields, and demonstrated the ability to generalize across large geographic areas. In sensitivity analyses, we determined multi-temporal images provided greater performance gains than the addition of multi-spectral bands. We also demonstrated how active learning can be incorporated in the algorithm to create smaller, more efficient training data sets, which reduced computational resources, minimized the need for humans to hand-label data, and boosted performance. We designed a patch-based uncertainty metric to drive the active learning framework, based on the regular grid of a crowdsourcing platform, and demonstrated how subject matter experts can be replaced with fleets of crowdsourcing workers. Our active learning algorithm achieved similar performance as an algorithm trained with randomly selected data, but with 62% less data samples. This thesis furthers the goal of providing accurate agricultural landcover maps, at a scale that is relevant for the dominant smallholder class. Accurate maps are crucial for monitoring and promoting agricultural production. Furthermore, improved agricultural landcover maps will aid a host of other applications, including landcover change assessments, cadastral surveys to strengthen smallholder land rights, and constraints for crop modeling

  15. Determining the optimum production portfolio in agricultural sector : province of Denizli case

    OpenAIRE

    Akyer, Hasan; Utku, Mehmet; Kaya, Yusuf

    2016-01-01

    Agriculture is a field which is critically important for the economy of every country. Countries pursue different agricultural production strategies in different regions in accordance with their needs. In this study, a production planning model was developed based on Modern Portfolio Theory for the production of summer and winter vegetables in Denizli, which has a significant agricultural production potential for the Aegean region. The historical data of the specified products were obtained f...

  16. Carbon Stock in Integrated Field Laboratory Faculty of Agriculture University of Lampung

    Directory of Open Access Journals (Sweden)

    Irwan Sukri Banuwa

    2016-05-01

    Full Text Available This study aimed to determine the amount of carbon stock and CO2 plant uptake in the Integrated Field Laboratory (IFL Faculty of Agriculture University of Lampung. The research was conducted from April to November 2015. The study was arranged in a completely randomized block design (CRBD, consisting of five land units as treatment with four replications for each treatment. Biomass of woody plants was estimated using allometric equation, biomass of understorey plants was estimated using plant dry weight equation, and organic C content in plants and soils were analyzed using a Walkey and Black method. The results showed that land unit consisting of densely woody plants significantly affects total biomass of woody plants, organic C content in woody plants and total carbon content (above and below ground. The highest amount of woody plant biomass was observed in land unit 5, i.e. 1,196.88 Mg ha-1, and above ground total carbon was 437.19 Mg ha-1. IFL Faculty of Agriculture University of Lampung has a total carbon stock of 2,051.90 Mg and capacity to take up total CO2 of 6,656.88 Mg.

  17. Environmental Fate of the Herbicide Fluazifop-P-butyl and Its Degradation Products in Two Loamy Agricultural Soils: A Combined Laboratory and Field Study

    DEFF Research Database (Denmark)

    Badawi, Nora; Rosenbom, Anette E.; Olsen, Preben

    2015-01-01

    The herbicide fluazifop-P-butyl (FPB) is used against grasses in agricultural crops such as potato, oilseed rape and sugar beet. Limited information is available in Scientific literature on its environmental fate, therefore extensive monitoring at two agricultural test fields was combined...

  18. Estimating pesticide emissions for LCA of agricultural products

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky

    2000-01-01

    Emission data for pesticides from agricultural product systems may be based on national and international pesticide usage statistics, but these only provide information on the applied dose. When the field is considered as part of the technosphere, the emissions from the system are those quantitie...

  19. Linking field observations, Landsat and MODIS data to estimate agricultural change in European Russia.

    Science.gov (United States)

    de Beurs, K. M.; Ioffe, G.

    2011-12-01

    Agricultural reform has been one of the most important anthropogenic change processes in European Russia that has been unfolding since the formal collapse of the Soviet Union at the end of 1991. Widespread land abandonment is perhaps the most vivid side effect of the reform, even visible in synoptic imagery. Currently, Russia is transitioning into a country with an internal "archipelago" of islands of productive agriculture around cities embedded in a matrix of unproductive, abandoned lands. This heterogeneous spatial pattern is mainly driven by depopulation of the least favorable parts of the countryside, where "least favorable" is a function of fertility, remoteness, and their interaction. In this work we provide a satellite, GIS and field based overview of the current agricultural developments in Russia and look beyond the unstable period immediately following the collapse of the Soviet Union. We apply Landsat images in one of Russia's oblasts to create a detailed land cover map. We then use a logistic model to link the Landsat land cover map with the inter-annual variability in key phenological parameters calculated from MODIS to derive the percent of cropland per 500m MODIS pixel. By evaluating the phenological characteristics of the MODIS curves for each year we determine whether a pixel was actually cropped or left fallow. A comparison of satellite-estimated cropped areas with regional statistics (by rayon) revealed that the satellite estimates are highly correlated with the regional statistics for both arable lands and successfully cropped areas. We use the crop maps to determine the number of times a particular area was cropped between 2002 and 2009 by summing all the years with crops per pixel. This variable provides a good indication about the intensification and de-intensification of the Russian croplands over the last decade. We have visited several rural areas in Russia and we link the satellite data with information acquired through field interviews

  20. Agricultural and Social Resiliency of Small-Scale Agriculture to Economic and Climatic Shocks: A Comparison of Subsistence versus Market-Based Agricultural Approaches in Rural Guatemala

    Science.gov (United States)

    Malard, J. J.; Melgar-Quiñonez, H.; Pineda, P.; Gálvez, J.; Adamowski, J. F.

    2014-12-01

    Agricultural production is heavily dependent not only on climate but also on markets as well as on the social and community systems managing the agroecosystem. In addition, the ultimate goal of agricultural production, human food security, is also affected not only by net agricultural production but also by similar economic and social factors. These complex feedbacks assume a particular importance in the case of smallholder farms in the tropics, where alternative rural development policies have led to different and contrasting agricultural management systems. Current approaches at comparing such systems generally study their environmental, economic or social components in isolation, potentially missing important interconnections. This research uses a participatory systems dynamics modelling (SDM) framework to compare two small-scale agricultural approaches in rural Guatemala which differ in their social, economic and ecosystem management decisions. The first case study community, in Quiché, has adopted a subsistence-based system that aims to use low levels of outside inputs to produce food for their own consumption, while the second, in Sololá, has opted for market-based agriculture that uses high input levels to obtain marketable crops in order to assure income for the purchase of food and other necessities. Each of these systems has its respective vulnerabilities; while the Sololá community suffers from more environmental degradation issues (soils and pests), the Quiché community, given lower monetary incomes, is more vulnerable to events whose responses require a significant monetary expenditure. Through the SDM approach, we incorporate local stakeholder knowledge of the respective systems, including biophysical and socioeconomic variables, into a joint biophysical and socioeconomic model for each community. These models then allow for the comparison of the resilience of both types of socio-agroecosystems in the face of climatic, economic and biological

  1. Evaluation of Three Models for Simulating Pesticide Runoff from Irrigated Agricultural Fields.

    Science.gov (United States)

    Zhang, Xuyang; Goh, Kean S

    2015-11-01

    Three models were evaluated for their accuracy in simulating pesticide runoff at the edge of agricultural fields: Pesticide Root Zone Model (PRZM), Root Zone Water Quality Model (RZWQM), and OpusCZ. Modeling results on runoff volume, sediment erosion, and pesticide loss were compared with measurements taken from field studies. Models were also compared on their theoretical foundations and ease of use. For runoff events generated by sprinkler irrigation and rainfall, all models performed equally well with small errors in simulating water, sediment, and pesticide runoff. The mean absolute percentage errors (MAPEs) were between 3 and 161%. For flood irrigation, OpusCZ simulated runoff and pesticide mass with the highest accuracy, followed by RZWQM and PRZM, likely owning to its unique hydrological algorithm for runoff simulations during flood irrigation. Simulation results from cold model runs by OpusCZ and RZWQM using measured values for model inputs matched closely to the observed values. The MAPE ranged from 28 to 384 and 42 to 168% for OpusCZ and RZWQM, respectively. These satisfactory model outputs showed the models' abilities in mimicking reality. Theoretical evaluations indicated that OpusCZ and RZWQM use mechanistic approaches for hydrology simulation, output data on a subdaily time-step, and were able to simulate management practices and subsurface flow via tile drainage. In contrast, PRZM operates at daily time-step and simulates surface runoff using the USDA Soil Conservation Service's curve number method. Among the three models, OpusCZ and RZWQM were suitable for simulating pesticide runoff in semiarid areas where agriculture is heavily dependent on irrigation. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. Nanotechnology: The new perspective in precision agriculture

    Directory of Open Access Journals (Sweden)

    Joginder Singh Duhan

    2017-09-01

    Full Text Available Nanotechnology is an interdisciplinary research field. In recent past efforts have been made to improve agricultural yield through exhaustive research in nanotechnology. The green revolution resulted in blind usage of pesticides and chemical fertilizers which caused loss of soil biodiversity and developed resistance against pathogens and pests as well. Nanoparticle-mediated material delivery to plants and advanced biosensors for precision farming are possible only by nanoparticles or nanochips. Nanoencapsulated conventional fertilizers, pesticides and herbicides helps in slow and sustained release of nutrients and agrochemicals resulting in precise dosage to the plants. Nanotechnology based plant viral disease detection kits are also becoming popular and are useful in speedy and early detection of viral diseases. In this article, the potential uses and benefits of nanotechnology in precision agriculture are discussed. The modern nanotechnology based tools and techniques have the potential to address the various problems of conventional agriculture and can revolutionize this sector.

  3. Pretreatment of agriculture field water for improving membrane flux during pesticide removal

    Science.gov (United States)

    Mehta, Romil; Saha, N. K.; Bhattacharya, A.

    2017-10-01

    Pretreatment of feed water to improve membrane flux during filtration of agriculture field water containing substituted phenyl urea pesticide diuron has been reported. Laboratory-made reverse osmosis membrane was used for filtration. Preliminary experiments were conducted with model solution containing natural organic matter extracted from commercial humic acids, divalent ions Ca2+, Mg2+. Membrane fouling was characterized by pure water flux decline, change in membrane hydrophilicity and infrared spectroscopy. Natural organic matter present in field water causes severe membrane fouling. The presence of divalent cations further aggravated fouling. Use of ethylenediaminetetraacetic acid (EDTA) and polyacrylic acids (PAA) in feed resulted in the decrease in membrane fouling. Pretreatment of field water is a must if it is contaminated with micro-organism having membrane fouling potential. Feed water pretreatment and use of PAA restricted membrane fouling to 16 % after 60 h of filtration. Membrane permeate flux decline was maximum at the first 12 h and thereafter remained steady at around 45-46 lm-2h-1 till the end of 60 h. Diuron rejection remained consistently greater than 93 % throughout the experiment. Diuron rejection was found to be unaffected by membrane fouling.

  4. Vision-based control in driving assistance of agricultural vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Khadraoui, D.; Martinet, P.; Bonton, P.; Gallice, J. [Univ. Blaise Pascal, Aubiere (France). Lab. des Sciences et Materiaux pour l`Electronique et d`Automatique; Debain, C. [Inst. de Recherche pour l`Ingenierie de l`Agriculture et de l`Environment, Montoldre (France). Div. Techniques du Machinisme Agricole; Rouveure, R. [Inst. de Recherche pour l`Ingenierie de l`Agriculture et de l`Environment, Antony (France). Div. Electronique et Intelligence Artificielle

    1998-10-01

    This article presents a real-time control system for an agricultural mobile machine (vehicle) based on an on-board vision system using a single camera. This system has been designed to help humans in repetitive and difficult tasks in the agricultural domain. The aim of the robotics application concerns the control of the vehicle with regard to the reap limit detected in image space. The perception aspect in relation to the application has been described in previous work, and here the authors deal with the control aspect. They integrate image features issues from the modeling of the scene in the control loop to perform an image-based servoing technique. The vehicle behavior described here concerns bicycle and neural models, and three control laws are then synthesized. The first and the second are modeling approaches and use an interaction between the scene and the image space. They are based on the regulation of a task function. The third is a black-box modeling technique, and is based on a neural network. Finally, experimental results obtained with these different control laws in different conditions are presented and discussed.

  5. The Relationship between Agriculture Knowledge Bases for Teaching and Sources of Knowledge

    Science.gov (United States)

    Rice, Amber H.; Kitchel, Tracy

    2015-01-01

    The purpose of this study was to describe the agriculture knowledge bases for teaching of agriculture teachers and to see if a relationship existed between years of teaching experience, sources of knowledge, and development of pedagogical content knowledge (PCK), using quantitative methods. A model of PCK from mathematics was utilized as a…

  6. Task-based agricultural mobile robots in arable farming: A review

    International Nuclear Information System (INIS)

    Aravind, K.R.; Raja, P.; Pérez-Ruiz, M.

    2017-01-01

    In agriculture (in the context of this paper, the terms “agriculture” and “farming” refer to only the farming of crops and exclude the farming of animals), smart farming and automated agricultural technology have emerged as promising methodologies for increasing the crop productivity without sacrificing produce quality. The emergence of various robotics technologies has facilitated the application of these techniques in agricultural processes. However, incorporating this technology in farms has proven to be challenging because of the large variations in shape, size, rate and type of growth, type of produce, and environmental requirements for different types of crops. Agricultural processes are chains of systematic, repetitive, and time-dependent tasks. However, some agricultural processes differ based on the type of farming, namely permanent crop farming and arable farming. Permanent crop farming includes permanent crops or woody plants such as orchards and vineyards whereas arable farming includes temporary crops such as wheat and rice. Major operations in open arable farming include tilling, soil analysis, seeding, transplanting, crop scouting, pest control, weed removal and harvesting and robots can assist in performing all of these tasks. Each specific operation requires axillary devices and sensors with specific functions. This article reviews the latest advances in the application of mobile robots in these agricultural operations for open arable farming and provide an overview of the systems and techniques that are used. This article also discusses various challenges for future improvements in using reliable mobile robots for arable farming.

  7. Task-based agricultural mobile robots in arable farming: A review

    Energy Technology Data Exchange (ETDEWEB)

    Aravind, K.R.; Raja, P.; Pérez-Ruiz, M.

    2017-09-01

    In agriculture (in the context of this paper, the terms “agriculture” and “farming” refer to only the farming of crops and exclude the farming of animals), smart farming and automated agricultural technology have emerged as promising methodologies for increasing the crop productivity without sacrificing produce quality. The emergence of various robotics technologies has facilitated the application of these techniques in agricultural processes. However, incorporating this technology in farms has proven to be challenging because of the large variations in shape, size, rate and type of growth, type of produce, and environmental requirements for different types of crops. Agricultural processes are chains of systematic, repetitive, and time-dependent tasks. However, some agricultural processes differ based on the type of farming, namely permanent crop farming and arable farming. Permanent crop farming includes permanent crops or woody plants such as orchards and vineyards whereas arable farming includes temporary crops such as wheat and rice. Major operations in open arable farming include tilling, soil analysis, seeding, transplanting, crop scouting, pest control, weed removal and harvesting and robots can assist in performing all of these tasks. Each specific operation requires axillary devices and sensors with specific functions. This article reviews the latest advances in the application of mobile robots in these agricultural operations for open arable farming and provide an overview of the systems and techniques that are used. This article also discusses various challenges for future improvements in using reliable mobile robots for arable farming.

  8. Task-based agricultural mobile robots in arable farming: A review

    Directory of Open Access Journals (Sweden)

    Krishnaswamy R. Aravind

    2017-04-01

    Full Text Available In agriculture (in the context of this paper, the terms “agriculture” and “farming” refer to only the farming of crops and exclude the farming of animals, smart farming and automated agricultural technology have emerged as promising methodologies for increasing the crop productivity without sacrificing produce quality. The emergence of various robotics technologies has facilitated the application of these techniques in agricultural processes. However, incorporating this technology in farms has proven to be challenging because of the large variations in shape, size, rate and type of growth, type of produce, and environmental requirements for different types of crops. Agricultural processes are chains of systematic, repetitive, and time-dependent tasks. However, some agricultural processes differ based on the type of farming, namely permanent crop farming and arable farming. Permanent crop farming includes permanent crops or woody plants such as orchards and vineyards whereas arable farmingincludestemporary crops such as wheat and rice. Major operations in open arable farming include tilling, soil analysis, seeding, transplanting, crop scouting, pest control, weed removal and harvesting and robots can assist in performing all of these tasks. Each specific operation requires axillary devices and sensors with specific functions. This article reviews the latest advances in the application of mobile robots in these agricultural operations for open arable farming and provide an overview of the systems and techniques that are used. This article also discusses various challenges for future improvements in using reliable mobile robots for arable farming.

  9. Estimation of Tree Cover in an Agricultural Parkland of Senegal Using Rule-Based Regression Tree Modeling

    Directory of Open Access Journals (Sweden)

    Stefanie M. Herrmann

    2013-10-01

    Full Text Available Field trees are an integral part of the farmed parkland landscape in West Africa and provide multiple benefits to the local environment and livelihoods. While field trees have received increasing interest in the context of strengthening resilience to climate variability and change, the actual extent of farmed parkland and spatial patterns of tree cover are largely unknown. We used the rule-based predictive modeling tool Cubist® to estimate field tree cover in the west-central agricultural region of Senegal. A collection of rules and associated multiple linear regression models was constructed from (1 a reference dataset of percent tree cover derived from very high spatial resolution data (2 m Orbview as the dependent variable, and (2 ten years of 10-day 250 m Moderate Resolution Imaging Spectrometer (MODIS Normalized Difference Vegetation Index (NDVI composites and derived phenological metrics as independent variables. Correlation coefficients between modeled and reference percent tree cover of 0.88 and 0.77 were achieved for training and validation data respectively, with absolute mean errors of 1.07 and 1.03 percent tree cover. The resulting map shows a west-east gradient from high tree cover in the peri-urban areas of horticulture and arboriculture to low tree cover in the more sparsely populated eastern part of the study area. A comparison of current (2000s tree cover along this gradient with historic cover as seen on Corona images reveals dynamics of change but also areas of remarkable stability of field tree cover since 1968. The proposed modeling approach can help to identify locations of high and low tree cover in dryland environments and guide ground studies and management interventions aimed at promoting the integration of field trees in agricultural systems.

  10. The floristic changes on excluded from agricultural production field after single Roundup spraying

    Directory of Open Access Journals (Sweden)

    Wojciech Jabłoński

    2013-12-01

    Full Text Available The purpose of experiment conducting on the field, weedy by Agropyron repens (L. P. B. was established what is the degree of elimination of Agropyron repens plants from experimental plots by single Roundup spraying. The changes of the species composition on the fields with different clover-grass mixtures or with Phacelia tanacaetifolia Benth. were studied as well. The stand tables have been made in the first year of the conducting experiment, to determination the density of weeds, after different agricultural practices. It has been found the great elimination of Agropyron repens (L. P. B. plants after Roundup spraying and the great density of Echinochloa crus-galli (L. P. B. plants. It has been found the great density of Chenopodium album L. at VII treatment and Galinsoga parviflora Cav. at III, V, VII and VIII treatments as well (Table I.

  11. Accidental Strangulation Due to Entrapment of Saree in Crop Thrasher Machine in an Elderly Women Working at Agricultural Field.

    Science.gov (United States)

    Parchake, Manoj Bhausaheb; Kumre, Vikas; Kachare, Rajesh V

    2016-09-01

    Strangulation is generally considered as homicidal death and in accidental strangulation circumstantial evidence alone can point toward the accidental nature of incidence. In present case, a 71-year-old woman, wearing a saree (garment worn by traditional women in India) working in agricultural field, got entangled in the crop thrasher machine and got strangled. Immediately, she was taken to the nearest hospital, where she survived for 6 to 8 hours and then died. The autopsy reveals cross ribbon-shaped ligature mark on neck and anterior chest along with 1 puncture wound at the right lateral aspect of the neck. A lack of proper precaution and safety measures at agricultural field are other contributing factors. Accidental strangulation by saree is extremely rare, hence, this case is presented for its rarity and pattern of injury.

  12. Research on Agricultural Development Based on “Internet +”

    OpenAIRE

    Feng , Wenjie; Wang , Lei; Zhao , Jia; Ruan , Huaijun

    2015-01-01

    International audience; Agricultural modernization is an important way to construct modern agriculture. The development of intelligent terminal, mobile internet, communication technology, internet of things is being applied to agricultural production. It will greatly improve the level and degree of agricultural informatization, promote agricultural informatization development, improve agricultural production efficiency and improve agricultural production efficiency and promote the development...

  13. Energy for agriculture. A computerized information retrieval system

    Energy Technology Data Exchange (ETDEWEB)

    Stout, B.A.; Myers, C.A. (comps.)

    1979-12-01

    Energy may come from the sun or the earth or be the product of plant materials or agricultural wastes. Whatever its source, energy is indispensable to our way of life, beginning with the production, processing, and distribution of abundant, high quality food and fiber supplies. This specialized bibliography on the subject of energy for agriculture contains 2613 citations to the literature for 1973 through May 1979. Originally issued by Michigan State University (MSU), it is being reprinted and distributed by the U.S. Department of Agriculture. The literature citations will be incorporated into AGRICOLA (Agricultural On-Line Access), the comprehensive bibliographic data base maintained by Technical Information Systems (TIS), a component of USDA's Science and Education Administration (SEA). The citations and the listing of research projects will be combined with other relevant references to provide a continuously updated source of information on energy programs in the agricultural field. No abstracts are included.

  14. Risk-based prioritization method for the classification of groundwater pesticide pollution from agricultural regions.

    Science.gov (United States)

    Yang, Yu; Lian, Xin-Ying; Jiang, Yong-Hai; Xi, Bei-Dou; He, Xiao-Song

    2017-11-01

    Agricultural regions are a significant source of groundwater pesticide pollution. To ensure that agricultural regions with a significantly high risk of groundwater pesticide contamination are properly managed, a risk-based ranking method related to groundwater pesticide contamination is needed. In the present paper, a risk-based prioritization method for the classification of groundwater pesticide pollution from agricultural regions was established. The method encompasses 3 phases, including indicator selection, characterization, and classification. In the risk ranking index system employed here, 17 indicators involving the physicochemical properties, environmental behavior characteristics, pesticide application methods, and inherent vulnerability of groundwater in the agricultural region were selected. The boundary of each indicator was determined using K-means cluster analysis based on a survey of a typical agricultural region and the physical and chemical properties of 300 typical pesticides. The total risk characterization was calculated by multiplying the risk value of each indicator, which could effectively avoid the subjectivity of index weight calculation and identify the main factors associated with the risk. The results indicated that the risk for groundwater pesticide contamination from agriculture in a region could be ranked into 4 classes from low to high risk. This method was applied to an agricultural region in Jiangsu Province, China, and it showed that this region had a relatively high risk for groundwater contamination from pesticides, and that the pesticide application method was the primary factor contributing to the relatively high risk. The risk ranking method was determined to be feasible, valid, and able to provide reference data related to the risk management of groundwater pesticide pollution from agricultural regions. Integr Environ Assess Manag 2017;13:1052-1059. © 2017 SETAC. © 2017 SETAC.

  15. Potentials and prospects of precision agriculture in pakistan - a review

    International Nuclear Information System (INIS)

    Mahmood, H.S.; Ahmad, T.; Saeed, M.A.; Iqbal, M.

    2013-01-01

    Precision agriculture is to fine-tune the agricultural production system by emergence and convergence of several information-based technologies for enhancing profit and reducing environmental risks. These technologies have demonstrated to provide benefits to farmers as well as reduced environmental stresses in the developed world. Present paper provides an overview of precision agriculture and examines the potentials, prospects, implications, issues and relevance of precision agricultural applications in Pakistani agricultural system. There is a scope of many precision technologies to be implemented in the country. In this perspective, farmers and government authorities should look forward to adopt new and sustainable technologies to increase the efficiency of available resources and reduce the input costs. Before this, the effectiveness of precision technologies needs to be realised in Pakistan through field experiments and land management practices. (author)

  16. Addressing bystander exposure to agricultural pesticides in life cycle impact assessment

    DEFF Research Database (Denmark)

    Ryberg, Morten Walbech; Rosenbaum, Ralph K.; Mosqueron, Luc

    2018-01-01

    Residents living near agricultural fields may be exposed to pesticides drifting from the fields after application to different field crops. To address this currently missing exposure pathway in life cycle assessment (LCA), we developed a modeling framework for quantifying exposure of bystanders...... magnitude of individual bystanders can be substantially larger than the exposure of populations not living in the proximity to agricultural fields. Our framework for assessing bystander exposure to pesticide applications closes a relevant gap in the exposure assessment included in LCA for agricultural...... to pesticide spray drift from agricultural fields. Our framework consists of three parts addressing: (1) loss of pesticides from an agricultural field via spray drift; (2) environmental fate of pesticide in air outside of the treated field; and (3) exposure of bystanders to pesticides via inhalation...

  17. Maize production and land degradation: a Portuguese agriculture field case study

    Science.gov (United States)

    Ferreira, Carla S. S.; Pato, João V.; Moreira, Pedro M.; Valério, Luís M.; Guilherme, Rosa; Casau, Fernando J.; Santos, Daniela; Keizer, Jacob J.; Ferreira, António J. D.

    2016-04-01

    While food security is a main challenge faced by human kind, intensive agriculture often leads to soil degradation which then can threaten productivity. Maize is one of the most important crops across the world, with 869 million tons produced worldwide in 2012/2013 (IGC 2015), of which 929.5 thousand tons in Portugal (INE 2014). In Portugal, maize is sown in April/May and harvest occurs generally in October. Conventional maize production requires high inputs of water and fertilizers to achieve higher yields. As Portuguese farmers are typically rather old (on average, 63 years) and typically have a low education level (INE 2014), sustainability of their land management practises is often not a principal concern. This could explain why, in 2009, only 4% of the Portuguese temporary crops were under no-tillage, why only 8% of the farmers performed soil analyses in the previous three years, and why many soils have a low organic matter content (INE 2014). Nonetheless, sustainable land management practices are generally accepted to be the key to reducing agricultural soil degradation, preventing water pollution, and assuring long-term crop production objectives and food security. Sustainable land management should therefore not only be a concern for policy makers but also for farmers, since land degradation will have negative repercussions on the productivity, thus, on their economical income. This paper aims to assess the impact of maize production on soil properties. The study focusses on an 8 ha maize field located in central Portugal, with a Mediterranean climate on a gently sloping terrain (<3%) and with a soil classified as Eutric Fluvisol. On the field, several experiments were carried out with different maize varieties as well as with different fertilizers (solid, liquid and both). Centre pivot irrigation was largely used. Data is available from 2003, and concerns crop yield, fertilization and irrigation practices, as well as soil properties assessed through

  18. integrated aerospace technologies in support of precision agriculture

    International Nuclear Information System (INIS)

    Borfecchia, Flavio; De Cecco, Luigi; Martini, Sandro

    2015-01-01

    In a scenario where agriculture plays a role increasingly important and strategic, dissemination, in this field, these space technologies and advanced robotic, more and more accessible, responds We need to base decisions on information integrated, not only to increase the production, but also to ensure quality food to the people World, minimizing environmental impacts and climate, and enhancing biodiversity. In this context, applications based on these technologies are proving increasingly central role in tackling the challenges of productivity increase in agriculture required by the global market, with a view Environmental sustainability also focused on diffusion of green economy and circular, in which refer some of the experimental applications and on April conducted in ENEA. [it

  19. Bringing diversity back to agriculture: Smaller fields and non-crop elements enhance biodiversity in intensively managed arable farmlands

    Czech Academy of Sciences Publication Activity Database

    Šálek, Martin; Hula, V.; Kipson, M.; Daňková, R.; Niedobová, J.; Gamero, A.

    2018-01-01

    Roč. 90, July (2018), s. 65-73 ISSN 1470-160X Institutional support: RVO:68081766 Keywords : Common Agricultural Policy * Conservation measures * Field size * Habitat heterogeneity * Species richness * Abundance * Biodiversity indicators Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 3.898, year: 2016

  20. Distribution of uranium in soil components of agricultural fields after long-term application of phosphate fertilizers

    International Nuclear Information System (INIS)

    Yamaguchi, N.; Kawasaki, A.; Iiyama, I.

    2009-01-01

    Long-term application of phosphate fertilizers causes accumulation of U in the surface soil of agricultural fields. We investigated the soil constituents that contribute to the accumulation of U by using chemical extraction methods. Surface soil samples were obtained from upland fields, pastures, and paddy fields cultivated without any phosphate fertilizer (control site), with NPK fertilizer (NPK site), and with both NPK fertilizer and compost (NPK + compost site) for more than 20 years. In addition to the total U (U t ) concentration in soil, the concentrations of pyrophosphate- and acid oxalate-extractable U were determined as a measure of U associated with soil organic matter and poorly crystalline Fe/Al minerals in soil, respectively. The total, pyrophosphate-extractable, and acid oxalate-extractable U concentrations were higher in the soil obtained from the NPK and NPK + compost sites than in that obtained from the control site. The difference in the U concentrations between the NPK or NPK + compost site and the control site corresponded with the increased U concentration observed after the application of the phosphate fertilizer or both the fertilizer and compost. In the upland field and pasture soil, the increase in pyrophosphate-extractable U was 83-94% of that in U t . On the other hand, the increase in acid oxalate-extractable U was 44-58% of that in U t in the upland field and pasture soil, but it was almost equivalent to the increase in U t in the paddy soil with NPK. In conclusion, most of the phosphate fertilizer-derived U was either incorporated into the soil organic matter or poorly crystalline Fe/Al minerals in the surface soil of agricultural fields. Thus, soil organic matter is an important pool of U in upland field and pasture soil, whereas poorly crystalline Fe/Al minerals are important pools of U in paddy soil experiencing alternating changes in redox conditions

  1. Drought characterisation based on an agriculture-oriented standardised precipitation index

    Science.gov (United States)

    Tigkas, Dimitris; Vangelis, Harris; Tsakiris, George

    2018-03-01

    Drought is a major natural hazard with significant effects in the agricultural sector, especially in arid and semi-arid regions. The accurate and timely characterisation of agricultural drought is crucial for devising contingency plans, including the necessary mitigation measures. Many drought indices have been developed during the last decades for drought characterisation and analysis. One of the most widely used indices worldwide is the Standardised Precipitation Index (SPI). Although other comprehensive indices have been introduced over the years, SPI remains the most broadly accepted index due to a number of reasons, the most important of which are its simple structure and the fact that it uses only precipitation data. In this paper, a modified version of SPI is proposed, namely the Agricultural Standardised Precipitation Index (aSPI), based on the substitution of the total precipitation by the effective precipitation, which describes more accurately the amount of water that can be used productively by the plants. Further, the selection of the most suitable reference periods and time steps for agricultural drought identification using aSPI is discussed. This conceptual enhancement of SPI aims at improving the suitability of the index for agricultural drought characterisation, while retaining the advantages of the original index, including its dependence only on precipitation data. The evaluation of the performance of both SPI and aSPI in terms of correlating drought magnitude with crop yield response in four regions of Greece under Mediterranean conditions indicated that aSPI is more robust than the original index in identifying agricultural drought.

  2. Increased spring flooding of agricultural fields will exhibit altered production of greenhouse gases

    Science.gov (United States)

    Paul, R. F.; Smith, C. M.; Smyth, E. M.; Kantola, I. B.; DeLucia, E. H.

    2013-12-01

    The U.S. Corn Belt currently is a net source of carbon dioxide and nitrous oxide to the atmosphere, but is also a sink of methane. Among the proposed effects of climate change in the North American Midwest region is an increase in the frequency and duration of spring flooding events. This would cause ponding in fields which may change the greenhouse gas balance of the region, especially by providing a suitable anoxic environment for the proliferation of methanogens, increasing methane emissions. To determine whether methanogenesis occurs in flooded agricultural soils of the Midwest and how other gas fluxes are affected, we installed collars into the ground of a research field located in central Illinois. The control group was maintained at the same conditions as the surrounding field. Two groups of collars were sustained with water flooding the headspaces via a drip irrigation system; one treatment was analyzed for gas fluxes of CH4, N2O, and CO2 evolving from the collars, and a separate treatment of flooded collars was used for soil sampling. Comparing flooded soils versus control we measured reduced N2O fluxes (-3.12 x 10-6 × 6.8 x 10-7 g N m-2 min-1), reduced CO2 fluxes (-6.13 x 10-3 × 9.3 x 10-4 g CO2 m-2 min-1), and increased methane fluxes (+2.72 x 10-6 × 5.8 x 10-7 g CH4 m-2 min-1). After only one week of treatment the flooded soils switched from being sinks to sources of methane, which continued across the duration of the experiment. These preliminary results indicate that methanogenesis occurs in flooded agricultural fields, and suggest including regional modeling into further study. Although the global warming potential of methane is 25 times greater than CO2, our measured rates of methane production were compensated by reductions in nitrous oxide and CO2 fluxes, reducing the total 100-year horizon global warming potential of the flooded soils we studied by 64.8%. This indicates that accounting for more frequent seasonal ponding would significantly

  3. Assessment on the rates and potentials of soil organic carbon sequestration in agricultural lands in Japan using a process-based model and spatially explicit land-use change inventories - Part 2: Future potentials

    Science.gov (United States)

    Yagasaki, Y.; Shirato, Y.

    2014-08-01

    Future potentials of the sequestration of soil organic carbon (SOC) in agricultural lands in Japan were estimated using a simulation system we recently developed to simulate SOC stock change at country-scale under varying land-use change, climate, soil, and agricultural practices, in a spatially explicit manner. Simulation was run from 1970 to 2006 with historical inventories, and subsequently to 2020 with future scenarios of agricultural activity comprised of various agricultural policy targets advocated by the Japanese government. Furthermore, the simulation was run subsequently until 2100 while forcing no temporal changes in land-use and agricultural activity to investigate duration and course of SOC stock change at country scale. A scenario with an increased rate of organic carbon input to agricultural fields by intensified crop rotation in combination with the suppression of conversion of agricultural lands to other land-use types was found to have a greater reduction of CO2 emission by enhanced soil carbon sequestration, but only under a circumstance in which the converted agricultural lands will become settlements that were considered to have a relatively lower rate of organic carbon input. The size of relative reduction of CO2 emission in this scenario was comparable to that in another contrasting scenario (business-as-usual scenario of agricultural activity) in which a relatively lower rate of organic matter input to agricultural fields was assumed in combination with an increased rate of conversion of the agricultural fields to unmanaged grasslands through abandonment. Our simulation experiment clearly demonstrated that net-net-based accounting on SOC stock change, defined as the differences between the emissions and removals during the commitment period and the emissions and removals during a previous period (base year or base period of Kyoto Protocol), can be largely influenced by variations in future climate. Whereas baseline-based accounting, defined

  4. Agricultural production - Phase 2. Indonesia. Sources and sinks of nitrogen-E phosphorus-based nutrients in cropping systems

    International Nuclear Information System (INIS)

    Wetselaar, R.I.

    1992-01-01

    This document is the report of an expert mission to assist in the initiation of research on sustainable agriculture in rice-based cropping systems as related to the flow of plant nutrients, and on the use of legumes in upland cropping systems. Experimental suggestions include an investigation of the acid tolerance of different soybean strains under upland conditions, an analysis of ways to replace fertilizer nitrogen for rice crops by a green manure such as azolla, and a study of the increase in nutrient availability due to th presence of fish in a paddy field

  5. Overview of the Bushland Evapotranspiration and Agricultural Remote sensing EXperiment 2008 (BEAREX08): A field experiment evaluating methods for quantifying ET at multiple scales

    Science.gov (United States)

    Evett, Steven R.; Kustas, William P.; Gowda, Prasanna H.; Anderson, Martha C.; Prueger, John H.; Howell, Terry A.

    2012-12-01

    In 2008, scientists from seven federal and state institutions worked together to investigate temporal and spatial variations of evapotranspiration (ET) and surface energy balance in a semi-arid irrigated and dryland agricultural region of the Southern High Plains in the Texas Panhandle. This Bushland Evapotranspiration and Agricultural Remote sensing EXperiment 2008 (BEAREX08) involved determination of micrometeorological fluxes (surface energy balance) in four weighing lysimeter fields (each 4.7 ha) containing irrigated and dryland cotton and in nearby bare soil, wheat stubble and rangeland fields using nine eddy covariance stations, three large aperture scintillometers, and three Bowen ratio systems. In coordination with satellite overpasses, flux and remote sensing aircraft flew transects over the surrounding fields and region encompassing an area contributing fluxes from 10 to 30 km upwind of the USDA-ARS lysimeter site. Tethered balloon soundings were conducted over the irrigated fields to investigate the effect of advection on local boundary layer development. Local ET was measured using four large weighing lysimeters, while field scale estimates were made by soil water balance with a network of neutron probe profile water sites and from the stationary flux systems. Aircraft and satellite imagery were obtained at different spatial and temporal resolutions. Plot-scale experiments dealt with row orientation and crop height effects on spatial and temporal patterns of soil surface temperature, soil water content, soil heat flux, evaporation from soil in the interrow, plant transpiration and canopy and soil radiation fluxes. The BEAREX08 field experiment was unique in its assessment of ET fluxes over a broad range in spatial scales; comparing direct and indirect methods at local scales with remote sensing based methods and models using aircraft and satellite imagery at local to regional scales, and comparing mass balance-based ET ground truth with eddy covariance

  6. Soil Erosion and Agricultural Sustainability

    Science.gov (United States)

    Montgomery, D. R.

    2009-04-01

    Data drawn from a global compilation of studies support the long articulated contention that erosion rates from conventionally plowed agricultural fields greatly exceed rates of soil production, erosion under native vegetation, and long-term geological erosion. Whereas data compiled from around the world show that soil erosion under conventional agriculture exceeds both rates of soil production and geological erosion rates by up to several orders of magnitude, similar global distributions of soil production and geological erosion rates suggest an approximate balance. Net soil erosion rates in conventionally plowed fields on the order of 1 mm/yr can erode typical hillslope soil profiles over centuries to millennia, time-scales comparable to the longevity of major civilizations. Well-documented episodes of soil loss associated with agricultural activities date back to the introduction of erosive agricultural methods in regions around the world, and stratigraphic records of accelerated anthropogenic soil erosion have been recovered from lake, fluvial, and colluvial stratigraphy, as well as truncation of soil stratigraphy (such as truncated A horizons). A broad convergence in the results from studies based on various approaches employed to study ancient soil loss and rates of downstream sedimentation implies that widespread soil loss has accompanied human agricultural intensification in examples drawn from around the world. While a broad range of factors, including climate variability and society-specific social and economic contexts — such as wars or colonial relationships — all naturally influence the longevity of human societies, the ongoing loss of topsoil inferred from studies of soil erosion rates in conventional agricultural systems has obvious long-term implications for agricultural sustainability. Consequently, modern agriculture — and therefore global society — faces a fundamental question over the upcoming centuries. Can an agricultural system

  7. Economic feasibility of surface flow constructed (SFCW) wetlands for reduction of water pollution from agricultural fields in Denmark

    DEFF Research Database (Denmark)

    Gachango, Florence Gathoni; Pedersen, Søren Marcus; Kjaergaard, Charlotte

    2014-01-01

    Constructed wetlands have been proposed as cost effective and more targeted technologies in the reduction of nitrogen and phosphorous water pollution in drainage losses from agricultural fields in Denmark. Using two pig farms and one dairy farm situated in a pumped lowland catchment as study cases...

  8. Study on Web-Based Tool for Regional Agriculture Industry Structure Optimization Using Ajax

    Science.gov (United States)

    Huang, Xiaodong; Zhu, Yeping

    According to the research status of regional agriculture industry structure adjustment information system and the current development of information technology, this paper takes web-based regional agriculture industry structure optimization tool as research target. This paper introduces Ajax technology and related application frameworks to build an auxiliary toolkit of decision support system for agricultural policy maker and economy researcher. The toolkit includes a “one page” style component of regional agriculture industry structure optimization which provides agile arguments setting method that enables applying sensitivity analysis and usage of data and comparative advantage analysis result, and a component that can solve the linear programming model and its dual problem by simplex method.

  9. Assessment of environmental impacts following alternative agricultural policy scenarios.

    Science.gov (United States)

    Bárlund, I; Lehtonen, H; Tattari, S

    2005-01-01

    Abstract Finnish agriculture is likely to undergo major changes in the near and intermediate future. The ifuture policy context can be examined at a general level by strategic scenario building. Computer-based modelling in combination with agricultural policy scenarios can in turn create a basis for the assessments of changes in environmental quality following possible changes in Finnish agriculture. The analysis of economic consequences is based on the DREMFIA model, which is applied to study effects of various agricultural policies on land use, animal production, and farmers' income. The model is suitable for an impact analysis covering an extended time span--here up to the year 2015. The changes in land use, obtained with the DREMFIA model assuming rational economic behaviour, form the basis when evaluating environmental impacts of different agricultural policies. The environmental impact assessment is performed using the field scale nutrient transport model ICECREAM. The modelled variables are nitrogen and phosphorus losses in surface runoff and percolation. In this paper the modelling strategy will be presented and highlighted using two case study catchments with varying environmental conditions and land use as an example. In addition, the paper identifies issues arising when connecting policy scenarios with impact modelling.

  10. Applied statistics for agriculture, veterinary, fishery, dairy and allied fields

    CERN Document Server

    Sahu, Pradip Kumar

    2016-01-01

    This book is aimed at a wide range of readers who lack confidence in the mathematical and statistical sciences, particularly in the fields of Agriculture, Veterinary, Fishery, Dairy and other related areas. Its goal is to present the subject of statistics and its useful tools in various disciplines in such a manner that, after reading the book, readers will be equipped to apply the statistical tools to extract otherwise hidden information from their data sets with confidence. Starting with the meaning of statistics, the book introduces measures of central tendency, dispersion, association, sampling methods, probability, inference, designs of experiments and many other subjects of interest in a step-by-step and lucid manner. The relevant theories are described in detail, followed by a broad range of real-world worked-out examples, solved either manually or with the help of statistical packages. In closing, the book also includes a chapter on which statistical packages to use, depending on the user’s respecti...

  11. Assessment of soil erosion and deposition rates in a Moroccan agricultural field using fallout 137Cs and 210Pbex.

    Science.gov (United States)

    Benmansour, M; Mabit, L; Nouira, A; Moussadek, R; Bouksirate, H; Duchemin, M; Benkdad, A

    2013-01-01

    In Morocco land degradation - mainly caused by soil erosion - is one of the most serious agroenvironmental threats encountered. However, only limited data are available on the actual magnitude of soil erosion. The study site investigated was an agricultural field located in Marchouch (6°42' W, 33° 47' N) at 68 km south east from Rabat. This work demonstrates the potential of the combined use of (137)Cs, (210)Pb(ex) as radioisotopic soil tracers to estimate mid and long term erosion and deposition rates under Mediterranean agricultural areas. The net soil erosion rates obtained were comparable, 14.3 t ha(-1) yr(-1) and 12.1 ha(-1) yr(-1) for (137)Cs and (210)Pb(ex) respectively, resulting in a similar sediment delivery ratio of about 92%. Soil redistribution patterns of the study field were established using a simple spatialisation approach. The resulting maps generated by the use of both radionuclides were similar, indicating that the soil erosion processes has not changed significantly over the last 100 years. Over the previous 10 year period, the additional results provided by the test of the prediction model RUSLE 2 provided results of the same order of magnitude. Based on the (137)Cs dataset established, the contribution of the tillage erosion impact has been evaluated with the Mass Balance Model 3 and compared to the result obtained with the Mass Balance Model 2. The findings highlighted that water erosion is the leading process in this Moroccan cultivated field, tillage erosion under the experimental condition being the main translocation process within the site without a significant and major impact on the net erosion. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Study of agricultural waste treatment in China and Russia-based on the agriculture environment sustainable development

    Science.gov (United States)

    Chernyaeva, Victoria A.; Teng, Xiuyi; Sergio

    2017-06-01

    China and Russia are both agriculture countries, agricultural environment sustainable development is very important for them. The paper studies three main agricultural wastes: straw, organic waste and plastic waste, and analyzes their treatments with the view of agricultural sustainable development.

  13. Green Agriculture - features and agricultural policy measures for the transition to a sustainable agriculture

    Directory of Open Access Journals (Sweden)

    Cornelia Nistor

    2015-12-01

    Full Text Available Agriculture is one of the most important economic activities in each country or area, as it is in close correlation with all other the other economic activities, in a whole which must be structured so as to achieve a more efficient planning and organization of the territory. The practice of a traditional agriculture, based on industrialization, affects the natural environment through emissions of pollutants, waste and deforestation which together affects biodiversity. Green Agriculture suppose to empower managers to widespread the use of fertilizers, to improve the crop rotation, to realize a more efficient water consumption, to improve the storage methods and the supply chain of products. Agricultural policies are closely interrelated with environmental policies as agricultural activities have a considerable influence on the environment. The efficiency of agricultural policies is reflected in monetary transfers between agriculture and other economic sectors, in the costs due to the reallocation of the resources between different agricultural and non-agricultural activities and in the realized gains. Currently there is a constant concern of the governments for the transition to a green agriculture, and most countries recognize the importance of achieving sustainable economic development.

  14. Evaluation on Core Competitiveness of Wholesale Market of Agricultural Products Based on CWAA Operator

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    According to relevant data,we select five indices,namely management ability,organization and management capability,enterprise culture,development ability and technical equipment ability,to establish the index system of core competitiveness of wholesale market of agricultural products.Based on combination weight arithmetic average(CWAA) operator,we advance an evaluation model of core competitiveness of wholesale market of agricultural products which involves participation of many people.By inviting five exerts,we conduct evaluation in terms of management ability of wholesale market of agricultural products,organization and management capability of leadership,enterprise culture of wholesale market of agricultural products,future development ability of wholesale market of agricultural products,and exiting technical equipment ability of wholesale market of agricultural products.We adopt hundred-mark system to grade and evaluate core competitiveness of wholesale market of agricultural products.The results show that the experts’ evaluation score of core competitiveness of wholesale market of agricultural products is high.The evaluation result is reasonable and authentic and this model is feasible.

  15. Assessment of soil erosion and deposition rates in a Moroccan agricultural field using fallout 137Cs and 210Pbex

    International Nuclear Information System (INIS)

    Benmansour, M.; Mabit, L.; Nouira, A.; Moussadek, R.; Bouksirate, H.; Duchemin, M.; Benkdad, A.

    2013-01-01

    In Morocco land degradation – mainly caused by soil erosion – is one of the most serious agroenvironmental threats encountered. However, only limited data are available on the actual magnitude of soil erosion. The study site investigated was an agricultural field located in Marchouch (6°42′ W, 33° 47′ N) at 68 km south east from Rabat. This work demonstrates the potential of the combined use of 137 Cs, 210 Pb ex as radioisotopic soil tracers to estimate mid and long term erosion and deposition rates under Mediterranean agricultural areas. The net soil erosion rates obtained were comparable, 14.3 t ha −1 yr −1 and 12.1 ha −1 yr −1 for 137 Cs and 210 Pb ex respectively, resulting in a similar sediment delivery ratio of about 92%. Soil redistribution patterns of the study field were established using a simple spatialisation approach. The resulting maps generated by the use of both radionuclides were similar, indicating that the soil erosion processes has not changed significantly over the last 100 years. Over the previous 10 year period, the additional results provided by the test of the prediction model RUSLE 2 provided results of the same order of magnitude. Based on the 137 Cs dataset established, the contribution of the tillage erosion impact has been evaluated with the Mass Balance Model 3 and compared to the result obtained with the Mass Balance Model 2. The findings highlighted that water erosion is the leading process in this Moroccan cultivated field, tillage erosion under the experimental condition being the main translocation process within the site without a significant and major impact on the net erosion. - Highlights: ► Net erosion rates estimated by 137 Cs and 210 Pb ex techniques were found comparable. ► The water erosion is the leading process in this Moroccan cultivated field. ► Soil erosion process has not changed significantly over the last 100 years. ► The prediction model RUSLE 2 provided results of the same order of

  16. Curriculum Guidelines for a Distance Education Course in Urban Agriculture Based on an Eclectic Model.

    Science.gov (United States)

    Gaum, Wilma G.; van Rooyen, Hugo G.

    1997-01-01

    Describes research to develop curriculum guidelines for a distance education course in urban agriculture. The course, designed to train the teacher, is based on an eclectic curriculum design model. The course is aimed at the socioeconomic empowerment of urban farmers and is based on sustainable ecological-agricultural principles, an…

  17. Multi-Domain SDN Survivability for Agricultural Wireless Sensor Networks.

    Science.gov (United States)

    Huang, Tao; Yan, Siyu; Yang, Fan; Liu, Jiang

    2016-11-06

    Wireless sensor networks (WSNs) have been widely applied in agriculture field; meanwhile, the advent of multi-domain software-defined networks (SDNs) have improved the wireless resource utilization rate and strengthened network management. In recent times, multi-domain SDNs have been applied to agricultural sensor networks, namely multi-domain software-defined wireless sensor networks (SDWSNs). However, when the SDNs controlling agriculture networks suddenly become unavailable, whether intra-domain or inter-domain, sensor network communication is abnormal because of the loss of control. Moreover, there are controller and switch info-updating problems even if the controller becomes available again. To resolve these problems, this paper proposes a new approach based on an Open vSwitch extension for multi-domain SDWSNs, which can enhance agriculture network survivability and stability. We achieved this by designing a connection-state mechanism, a communication mechanism on both L2 and L3, and an info-updating mechanism based on Open vSwitch. The experimental results show that, whether it is agricultural inter-domain or intra-domain during the controller failure period, the sensor switches can enter failure recovery mode as soon as possible so that the sensor network keeps a stable throughput, a short failure recovery time below 300 ms, and low packet loss. Further, the domain can smoothly control the domain network again once the controller becomes available. This approach based on an Open vSwitch extension can enhance the survivability and stability of multi-domain SDWSNs in precision agriculture.

  18. Multi-Domain SDN Survivability for Agricultural Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Tao Huang

    2016-11-01

    Full Text Available Wireless sensor networks (WSNs have been widely applied in agriculture field; meanwhile, the advent of multi-domain software-defined networks (SDNs have improved the wireless resource utilization rate and strengthened network management. In recent times, multi-domain SDNs have been applied to agricultural sensor networks, namely multi-domain software-defined wireless sensor networks (SDWSNs. However, when the SDNs controlling agriculture networks suddenly become unavailable, whether intra-domain or inter-domain, sensor network communication is abnormal because of the loss of control. Moreover, there are controller and switch info-updating problems even if the controller becomes available again. To resolve these problems, this paper proposes a new approach based on an Open vSwitch extension for multi-domain SDWSNs, which can enhance agriculture network survivability and stability. We achieved this by designing a connection-state mechanism, a communication mechanism on both L2 and L3, and an info-updating mechanism based on Open vSwitch. The experimental results show that, whether it is agricultural inter-domain or intra-domain during the controller failure period, the sensor switches can enter failure recovery mode as soon as possible so that the sensor network keeps a stable throughput, a short failure recovery time below 300 ms, and low packet loss. Further, the domain can smoothly control the domain network again once the controller becomes available. This approach based on an Open vSwitch extension can enhance the survivability and stability of multi-domain SDWSNs in precision agriculture.

  19. Agriculture. Sector 4

    International Nuclear Information System (INIS)

    1994-01-01

    In Lebanon, emissions of greenhouse gases from agricultural activities occur through the following processes: -enteric fermentation and manure management of the domestic livestock emits methane and nitrous oxide. -agricultural burning of crop residues is of minor importance since field burning of crop residue is not a common practice in Lebanon -agricultural soils are a source of nitrous oxide directly from the soils and from animal production, and indirectly from the nitrogen added to the soils. The following results were obtained for the inventory year 1994: 7.60955 Gg of methane, 3.01478 Gg of nitrous oxide, 0.00146 Gg of nitrogen oxides and 0.04306 Gg of carbon monoxide

  20. Fungal biology and agriculture: revisiting the field

    Science.gov (United States)

    Yarden, O.; Ebbole, D.J.; Freeman, S.; Rodriguez, R.J.; Dickman, M. B.

    2003-01-01

    Plant pathology has made significant progress over the years, a process that involved overcoming a variety of conceptual and technological hurdles. Descriptive mycology and the advent of chemical plant-disease management have been followed by biochemical and physiological studies of fungi and their hosts. The later establishment of biochemical genetics along with the introduction of DNA-mediated transformation have set the stage for dissection of gene function and advances in our understanding of fungal cell biology and plant-fungus interactions. Currently, with the advent of high-throughput technologies, we have the capacity to acquire vast data sets that have direct relevance to the numerous subdisciplines within fungal biology and pathology. These data provide unique opportunities for basic research and for engineering solutions to important agricultural problems. However, we also are faced with the challenge of data organization and mining to analyze the relationships between fungal and plant genomes and to elucidate the physiological function of pertinent DNA sequences. We present our perspective of fungal biology and agriculture, including administrative and political challenges to plant protection research.

  1. Use of Airborne Hyperspectral Imagery to Map Soil Properties in Tilled Agricultural Fields

    International Nuclear Information System (INIS)

    Hively, W.D; McCarty, G.W; Reeves, J.B; Lang, M.W; Oesterling, R.A; Delwiche, S.R

    2011-01-01

    Soil hyperspectral reflectance imagery was obtained for six tilled (soil) agricultural fields using an airborne imaging spectrometer (400-2450 nm, -10 nm resolution, 2.5 m spatial resolution). Surface soil samples (n=315) were analyzed for carbon content, particle size distribution, and 15 agronomically important elements (Mehlich-III extraction). When partial least squares (PLS) regression of imagery-derived reflectance spectra was used to predict analyte concentrations, 13 of the 19 analytes were predicted with R 2 >0.50, including carbon (0.65), aluminum (0.76), iron (0.75), and silt content (0.79). Comparison of 15 spectral math preprocessing treatments showed that a simple first derivative worked well for nearly all analytes. The resulting PLS factors were exported as a vector of coefficients and used to calculate predicted maps of soil properties for each field. Image smoothing with a 3 x 3 low-pass filter prior to spectral data extraction improved prediction accuracy. The resulting raster maps showed variation associated with topographic factors, indicating the effect of soil redistribution and moisture regime on in-field spatial variability. High-resolution maps of soil analyte concentrations can be used to improve precision environmental management of farmlands.

  2. Agricultural resources and development priorities of the municipality of Stara Pazova

    Directory of Open Access Journals (Sweden)

    Mihailović Branko

    2017-01-01

    Full Text Available This paper examines the agricultural potentials of Stara Pazova, and consequently defines development priorities in this area. The aim at the research is to assess the real possibilities for improvement on agriculture Municipality. The analysis is focused on: knowledge transfer and innovation, agriculture technical equipment, warehouse and finishing capacities in agriculture, processing of agricultural products and the vision and development priorities over agriculture Municipality. The research results show that the improvement to the competitiveness of the agricultural sector of Stara Pazova requires the implementation of adequate policy measures and projects related to the improvement to human resources, higher level of processing of agricultural and food products, as well as better agricultural technical equipment agricultural producers. Activities in this area include primarily higher correlation science and practice across the reorganized agricultural station, extension services, home service , agricultural cooperatives and other associations of farmers; development and implementation of new knowledge and skills of farmers through advice, training, seminars, courses; support young farmers in the modernization of farms. All projects in this field must be based on adequate state support and coordinated efforts of the public and private sectors.

  3. Agroecology as a Science of Integration for Sustainability in Agriculture

    Directory of Open Access Journals (Sweden)

    Fabio Caporali

    2007-06-01

    Full Text Available A knowledge contribution is provided in order to understand agroecology as both a scientific discipline and a philosophical paradigm for promoting sustainability in agriculture. The peculiar character of agroecology as an applied science based on the systems paradigm is explored in the fields of research and tuition. As an organisational capability of connecting different hierarchical levels in accordance with the goal of sustainability, integration is shown as an emergent property of the evolution of agriculture as a human activity system.

  4. Toward Future Photovoltaic-Based Agriculture in Sea.

    Science.gov (United States)

    Moustafa, Khaled

    2016-04-01

    To meet the challenges of climate change and water shortages, combining solar energy-based seawater desalination technologies with floating agriculture stations in one innovative hybrid system would be worthy of investigation for dry and sunny regions for seawater desalination and crop production within the same platform. Here, I discuss the feasibility of such a 'floating farm' or 'bluehouse' in the sea, by comparing it with the use of terrestrial greenhouses. I also debate the potential advantages and shortcomings of such a system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Contributions of Agriculture to Economic Fluctuations in Romania

    Directory of Open Access Journals (Sweden)

    Anca DACHIN

    2011-01-01

    Full Text Available Globalization and European integration could be advantages for the development of agriculture in Romania, which still holds a high relative position in the economy and has structures of business organization and employment that do not match the European model. Based on the empirical analysis of available data, the paper presents changes of the Romanian agriculture in the last two decades and their influence on the whole economy, by pointing out three important fields of macroeconomic fluctuations: gross domestic product, prices and employment. The extended size of the subsistence component in the agricultural sector keeps the dependence of production variations on the natural conditions, strongly influenced by climate changes, while inducing significant variations in the GDP, but is also a solution to soften the social effects of the economic crisis.

  6. Enhanced levels of atmospheric low-molecular weight monocarboxylic acids in gas and particulates over Mt. Tai, North China, during field burning of agricultural wastes

    Science.gov (United States)

    Mochizuki, Tomoki; Kawamura, Kimitaka; Nakamura, Shinnosuke; Kanaya, Yugo; Wang, Zifa

    2017-12-01

    To understand the source and atmospheric behaviour of low molecular weight monocarboxylic acids (monoacids), gaseous (G) and particulate (P) organic acids were collected at the summit of Mt. Tai in the North China Plain (NCP) during field burning of agricultural waste (wheat straw). Particulate organic acids were collected with neutral quartz filter whereas gaseous organic acids were collected with KOH-impregnated quartz filter. Normal (C1-C10), branched (iC4-iC6), hydroxy (lactic and glycolic), and aromatic (benzoic) monoacids were determined with a capillary gas chromatography employing p-bromophenacyl esters. We found acetic acid as the most abundant gas-phase species whereas formic acid is the dominant particle-phase species. Concentrations of formic (G/P 1 570/1 410 ng m-3) and acetic (3 960/1 120 ng m-3) acids significantly increased during the enhanced field burning of agricultural wastes. Concentrations of formic and acetic acids in daytime were found to increase in both G and P phases with those of K+, a field-burning tracer (r = 0.32-0.64). Primary emission and secondary formation of acetic acid is linked with field burning of agricultural wastes. In addition, we found that particle-phase fractions (Fp = P/(G + P)) of formic (0.50) and acetic (0.31) acids are significantly high, indicating that semi-volatile organic acids largely exist as particles. Field burning of agricultural wastes may play an important role in the formation of particulate monoacids in the NCP. High levels (917 ng m-3) of particle-phase lactic acid, which is characteristic of microorganisms, suggest that microbial activity associated with terrestrial ecosystem significantly contributes to the formation of organic aerosols.

  7. Implementation monitoring temperature, humidity and mositure soil based on wireless sensor network for e-agriculture technology

    Science.gov (United States)

    Sumarudin, A.; Ghozali, A. L.; Hasyim, A.; Effendi, A.

    2016-04-01

    Indonesian agriculture has great potensial for development. Agriculture a lot yet based on data collection for soil or plant, data soil can use for analys soil fertility. We propose e-agriculture system for monitoring soil. This system can monitoring soil status. Monitoring system based on wireless sensor mote that sensing soil status. Sensor monitoring utilize soil moisture, humidity and temperature. System monitoring design with mote based on microcontroler and xbee connection. Data sensing send to gateway with star topology with one gateway. Gateway utilize with mini personal computer and connect to xbee cordinator mode. On gateway, gateway include apache server for store data based on My-SQL. System web base with YII framework. System done implementation and can show soil status real time. Result the system can connection other mote 40 meters and mote lifetime 7 hours and minimum voltage 7 volt. The system can help famer for monitoring soil and farmer can making decision for treatment soil based on data. It can improve the quality in agricultural production and would decrease the management and farming costs.

  8. Research on prediction of agricultural machinery total power based on grey model optimized by genetic algorithm

    Science.gov (United States)

    Xie, Yan; Li, Mu; Zhou, Jin; Zheng, Chang-zheng

    2009-07-01

    Agricultural machinery total power is an important index to reflex and evaluate the level of agricultural mechanization. It is the power source of agricultural production, and is the main factors to enhance the comprehensive agricultural production capacity expand production scale and increase the income of the farmers. Its demand is affected by natural, economic, technological and social and other "grey" factors. Therefore, grey system theory can be used to analyze the development of agricultural machinery total power. A method based on genetic algorithm optimizing grey modeling process is introduced in this paper. This method makes full use of the advantages of the grey prediction model and characteristics of genetic algorithm to find global optimization. So the prediction model is more accurate. According to data from a province, the GM (1, 1) model for predicting agricultural machinery total power was given based on the grey system theories and genetic algorithm. The result indicates that the model can be used as agricultural machinery total power an effective tool for prediction.

  9. REMOTE CONTROLLING OF AN AGRICULTURAL PUMP SYSTEM BASED ON THE DUAL TONE MULTI-FREQUENCY (DTMF TECHNIQUE

    Directory of Open Access Journals (Sweden)

    BEZA N. GETU

    2015-10-01

    Full Text Available In modern days, as a result of advances in technology, human beings are interested to remotely control different systems and applications. In this work, telephone signalling technique using Dual Tone Multi-Frequency (DTMF signalling, is used to control switching of electrical loads such as agricultural pumps located in remote areas. A DTMF tone command sent from a transmitting fixed or mobile phone terminal will be used to SWITCH ON/OFF the motors used to pump water for agricultural fields. A processing electronic system at the receiving side is designed to interpret the tone commands and sends an appropriate signal to the motor driving circuit to complete the pump switching states. In the design methodology, it is possible to control several water pumps distributed in a certain agricultural site, however, in this work we considered four pumps and the paper presents the complete electronic design and simulation results at the different stages of the design. The electronic design is based on discrete passive and active electronic components and the system is tested and simulated using Multism program. The results of the simulation show that the design is capable of controlling the switching state of the motors. For a certain DTMF command, it is possible to switch ON/OFF a specific motor pump or all of the four motors.

  10. Object-Based Land Use Classification of Agricultural Land by Coupling Multi-Temporal Spectral Characteristics and Phenological Events in Germany

    Science.gov (United States)

    Knoefel, Patrick; Loew, Fabian; Conrad, Christopher

    2015-04-01

    Crop maps based on classification of remotely sensed data are of increased attendance in agricultural management. This induces a more detailed knowledge about the reliability of such spatial information. However, classification of agricultural land use is often limited by high spectral similarities of the studied crop types. More, spatially and temporally varying agro-ecological conditions can introduce confusion in crop mapping. Classification errors in crop maps in turn may have influence on model outputs, like agricultural production monitoring. One major goal of the PhenoS project ("Phenological structuring to determine optimal acquisition dates for Sentinel-2 data for field crop classification"), is the detection of optimal phenological time windows for land cover classification purposes. Since many crop species are spectrally highly similar, accurate classification requires the right selection of satellite images for a certain classification task. In the course of one growing season, phenological phases exist where crops are separable with higher accuracies. For this purpose, coupling of multi-temporal spectral characteristics and phenological events is promising. The focus of this study is set on the separation of spectrally similar cereal crops like winter wheat, barley, and rye of two test sites in Germany called "Harz/Central German Lowland" and "Demmin". However, this study uses object based random forest (RF) classification to investigate the impact of image acquisition frequency and timing on crop classification uncertainty by permuting all possible combinations of available RapidEye time series recorded on the test sites between 2010 and 2014. The permutations were applied to different segmentation parameters. Then, classification uncertainty was assessed and analysed, based on the probabilistic soft-output from the RF algorithm at the per-field basis. From this soft output, entropy was calculated as a spatial measure of classification uncertainty

  11. Estimating Impacts of Agricultural Subsurface Drainage on Evapotranspiration Using the Landsat Imagery-Based METRIC Model

    Directory of Open Access Journals (Sweden)

    Kul Khand

    2017-11-01

    Full Text Available Agricultural subsurface drainage changes the field hydrology and potentially the amount of water available to the crop by altering the flow path and the rate and timing of water removal. Evapotranspiration (ET is normally among the largest components of the field water budget, and the changes in ET from the introduction of subsurface drainage are likely to have a greater influence on the overall water yield (surface runoff plus subsurface drainage from subsurface drained (TD fields compared to fields without subsurface drainage (UD. To test this hypothesis, we examined the impact of subsurface drainage on ET at two sites located in the Upper Midwest (North Dakota-Site 1 and South Dakota-Site 2 using the Landsat imagery-based METRIC (Mapping Evapotranspiration at high Resolution with Internalized Calibration model. Site 1 was planted with corn (Zea mays L. and soybean (Glycine max L. during the 2009 and 2010 growing seasons, respectively. Site 2 was planted with corn for the 2013 growing season. During the corn growing seasons (2009 and 2013, differences between the total ET from TD and UD fields were less than 5 mm. For the soybean year (2010, ET from the UD field was 10% (53 mm greater than that from the TD field. During the peak ET period from June to September for all study years, ET differences from TD and UD fields were within 15 mm (<3%. Overall, differences between daily ET from TD and UD fields were not statistically significant (p > 0.05 and showed no consistent relationship.

  12. Measurements of the effectiveness of conservation agriculture at the field scale using radioisotopic techniques and runoff plots

    Science.gov (United States)

    Mabit, L.; Klik, A.; Toloza, A.; Benmansour, M.; Geisler, A.; Gerstmann, U. C.

    2009-04-01

    Growing evidence of the cost of soil erosion on agricultural land and off site impact of associated processes has emphasized the needs for quantitative assessment of erosion rates to develop and assess erosion control technology and to allocate conservation resources and development of conservation regulation, policies and programmes. Our main study goal was to assess the magnitude of deposition rates using Fallout Radionuclides ‘FRNs' (137-Cs and 210-Pb) and the mid-term (13 years) erosion rates using conventional runoff plot measurements in a small agricultural watershed under conventional and conservation tillage practices. The tillage treatments were conventional tillage system (CT), mechanical plough to 30 cm depth (the most common tillage system within the watershed); conservation tillage (CS) with cover crops during winter; and direct seeding (DS) no tillage with cover crops during winter. The experimental design - located in Mistelbach watershed 60 km north of Vienna/Austria - consists of one 3-metre-wide and 15-metre-long runoff plot (silt loam - slope of 14%) for each tillage system (CT, CS and DS) with the plots placed in the upper part of an agricultural field. 76 soil samples were collected to evaluate the initial fallout of 137-Cs and 210-Pb in a small forested area close to the experimental field, along a systematic multi-grid design,. In the sedimentation area of the watershed and down slope the agricultural field, 2 additional soil profiles were collected to 1 m depth. All soil samples were air dried, sieved to 2mm and analysed for their 137-Cs and 210-Pb contents using gamma detector. The main results and conclusion can be summarised as following: i) The initial 137-Cs fallout as measured in the 76 forested soil samples ranged from 1123 to 3354 Bq/m2 for an average of 1954 Bq/m2 with a coefficient of variation of 20.4 %. ii) Long-term erosion measurements (1994-2006) from runoff plots located in the upper part of the agricultural field just up

  13. Agricultural utilization of industrial thermal effluents

    International Nuclear Information System (INIS)

    Guillermin, P.; Delmas, J.; Grauby, A.

    1976-01-01

    An assessment is made of the utilization of thermal effluent for agricultural purpose (viz. early vegetables, cereals, trees). Heated waters are being used in field experiments on soil heating, improvement of agricultural procedures and crop yields. Thermal pollution cannot be removed yet it is reduced to acceptable limits. New prospects are open to traditional agriculture, leading towards a more competitive industrial model [fr

  14. A review of Agent Based Modeling for agricultural policy evaluation

    NARCIS (Netherlands)

    Kremmydas, Dimitris; Athanasiadis, I.N.; Rozakis, Stelios

    2018-01-01

    Farm level scale policy analysis is receiving increased attention due to a changing agricultural policy orientation. Agent based models (ABM) are farm level models that have appeared in the end of 1990's, having several differences from traditional farm level models, like the consideration of

  15. Introduction to the JEEG Agricultural Geophysics Special Issue

    Science.gov (United States)

    Allred, Barry J.; Smith, Bruce D.

    2010-01-01

    Near-surface geophysical methods have become increasingly important tools in applied agricultural practices and studies. The great advantage of geophysical methods is their potential rapidity, low cost, and spatial continuity when compared to more traditional methods of assessing agricultural land, such as sample collection and laboratory analysis. Agricultural geophysics investigations commonly focus on obtaining information within the soil profile, which generally does not extend much beyond 2 meters beneath the ground surface. Although the depth of interest oftentimes is rather shallow, the area covered by an agricultural geophysics survey can vary widely in scale, from experimental plots (10 s to 100 s of square meters), to farm fields (10 s to 100 s of hectares), up to the size of watersheds (10 s to 100 s of square kilometers). To date, three predominant methods—resistivity, electromagnetic induction (EMI), and ground-penetrating radar (GPR)—have been used to obtain surface-based geophysical measurements within agricultural settings. However, a recent conference on agricultural geophysics (Bouyoucos Conference on Agricultural Geophysics, September 8–10, 2009, Albuquerque, New Mexico; www.ag-geophysics.org) illustrated that other geophysical methods are being applied or developed. These include airborne electromagnetic induction, magnetometry, seismic, and self-potential methods. Agricultural geophysical studies are also being linked to ground water studies that utilize deeper penetrating geophysical methods than normally used.

  16. Assessment of soil redistribution rates by (137)Cs and (210)Pbex in a typical Malagasy agricultural field.

    Science.gov (United States)

    Rabesiranana, N; Rasolonirina, M; Solonjara, A F; Ravoson, H N; Raoelina Andriambololona; Mabit, L

    2016-02-01

    Soil degradation processes affect more than one-third of the Malagasy territory and are considered as the major environmental threat impacting the natural resources of the island. This innovative study reports about a pioneer test and use of radio-isotopic techniques (i.e. Cs-137 and Pb-210ex) under Madagascar agroclimatic condition to evaluate soil erosion magnitude. This preliminary investigation has been conducted in a small agricultural field situated in the eastern central highland of Madagascar, 40 km East from Antananarivo. Both anthropogenic Cs-137 and geogenic Pb-210 soil tracers provided similar results highlighting soil erosion rates reaching locally 18 t ha(-1) yr(-1,) a level almost two times higher than the sustainable soil loss rate under Madagascar agroclimatic condition. The sediment delivery ratio established with both radiotracers was above 80% indicating that most of the mobilized sediment exits the field. Assessing soil erosion rate through fallout radionuclides in Madagascar is a first step towards an efficient land and water resource management policy to optimise the effectiveness of future agricultural soil conservation practices. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Estimates of sustainable agricultural water use in northern China based on the equilibrium of groundwater

    Science.gov (United States)

    Yali, Y.; Yu, C.

    2015-12-01

    The northern plain is the important food production region in China. However, due to the lack of surface water resources, it needs overmuch exploitation of groundwater to maintain water use in agriculture, which leads to serious environmental problems. Based on the assumption that the reserves of groundwater matches the statistics and keeps on stable, the author explores the reasonable agricultural water and its spatial distribution based on the principle of sustainable utilization of water resources. According to the priorities of water resources allocation (domestic water and ecological water>industrial water>agricultural water), it is proposed to reduce agricultural water use to balance the groundwater reserves on condition that the total water supply is constant. Method: Firstly, we calculate annual average of northern groundwater reserves changes from 2004 to 2010, which is regarded as the reduction of agricultural water; Then, we estimate the food production changes using variables of typical crop water requirements and unit yields assuming that the efficiency of water use keeps the same during the entire study period; Finally, we evaluate the usage of sustainable agricultural water. The results reveal that there is a significant reduction of groundwater reserves in Haihe river basin and Xinjiang oasis regions; And the annual loss of the corn and wheat production is about 1.86 billion kg and 700 million kg respectively due to the reduction of agricultural water; What's more, in order to ensure China's food security and sustainable agricultural water use, in addition to great efforts to develop water-saving agriculture, an important adjustment in the distribution of food production is in need. This study provided a basis to the availability of agricultural water and a new perspective was put forth for an estimation of agricultural water.

  18. Remote sensing based evapotranspiration and runoff modeling of agricultural, forest and urban flux sites in Denmark: From field to macro-scale

    DEFF Research Database (Denmark)

    Bøgh, E.; Poulsen, R.N.; Butts, M.

    2009-01-01

    representing agricultural, forest and urban land surfaces in physically based hydrological modeling makes it possible to reproduce much of the observed variability (48–73%) in stream flow (Q − Qb) when data and modeling is applied at an effective spatial resolution capable of representing land surface...... variability in eddy covariance latent heat fluxes. The “effective” spatial resolution needed to adopt local-scale model parameters for spatial-deterministic hydrological modeling was assessed using a high-spatial resolution (30 m) variogram analysis of the NDVI. The use of the NDVI variogram to evaluate land...

  19. Prospect and current situation survey of nuclear agricultural research in china

    International Nuclear Information System (INIS)

    Chai Lihong; Ye Qingfu; Hua Yuejin

    2008-01-01

    Based on the survey result, which investigated 22 related institutes and universities in the field of nuclear agricultural sciences in China in Sep. 2007, this paper introduces the current status of research conditions, existing facilities and research progress on isotope tracing technology, new biological resources creation, research of nuclear irradiation and irradiation processing technology form 1996 to 2006. Due to not enough financial supports on this field, the development of nuclear agricultural sciences was slow down. However, the solid basis set up during last several decades, and the great efforts made by all the researchers, significant social and economic achievements were gained. Some of the researches have already taken the leading position in the world. (authors)

  20. Evaluation of the Agricultural Non-point Source Pollution in Chongqing Based on PSR Model

    Institute of Scientific and Technical Information of China (English)

    Hanwen; ZHANG; Xinli; MOU; Hui; XIE; Hong; LU; Xingyun; YAN

    2014-01-01

    Through a series of exploration based on PSR framework model,for the purpose of building a suitable Chongqing agricultural nonpoint source pollution evaluation index system model framework,combined with the presence of Chongqing specific agro-environmental issues,we build a agricultural non-point source pollution assessment index system,and then study the agricultural system pressure,agro-environmental status and human response in total 3 major categories,develope an agricultural non-point source pollution evaluation index consisting of 3 criteria indicators and 19 indicators. As can be seen from the analysis,pressures and responses tend to increase and decrease linearly,state and complex have large fluctuations,and their fluctuations are similar mainly due to the elimination of pressures and impact,increasing the impact for agricultural non-point source pollution.

  1. Determination for regional differences of agriculture using satellite data

    Science.gov (United States)

    Saito, G.

    2006-12-01

    Remote Sensing Laboratory, Field Science Center, Graduate School of Agriculture Science, Tohoku University starts at April 2004. For studies and education at the laboratory we are now developing the system of remote sensing and GIS. Earth Remote Sensing Data Analysis Center (ERSDAC) made the Home Pages of Terra/ASTER Image Web Library 3 "The Major Airport of the World." http://www.Ersdac.or.jp/ASTERimage3/library_E.html. First, we check the Airport Data to use agricultural understanding for the world. Almost major airport is located in rural area and surrounded with agriculture field. To survey the agriculture field adjacent to the major airport has almost the same condition of human activities. The images are same size and display about 18km X 14km. We can easily understand field size and surrounding conditions. We study seven airports as follows, 1. Tokyo Narita Airport (NRT), Japan, 2. Taipei Chiang kai Shek International Airport (TPE), Taiwan, 3. Bangkok International Airport (BKK), Thailand, 4. Riyadh King Khalid International Airport (RUH), Saudi Arabia, 5. Charles de Gaulle Airport (CDG), Paris, France, 6. Vienna International Airport (VIE), Austria, 7. Denver International Airport (DEN), CO, USA. At the area of Tokyo Narita Airport, there are many golf courses, big urban area and small size of agricultural fields. At Taipei Airport area are almost same as Tokyo Narita Airport area and there are many ponds for irrigations. Bangkok Airport area also has golf courses and many ponds for irrigation water. Riyadh Airport area is quite different from others, and there are large bare soils and small agriculture fields with irrigation and circle shape. Paris Airport area and Vienna Airport area are almost agricultural fields and there are vegetated field and bare soil fields because of crop rotation. Denver Airport area consists of almost agriculture fields and each field size is very large. The advantages of ASTER data are as follows, 1. High-resolution and large

  2. Salinity Impacts on Agriculture and Groundwater in Delta Regions

    Science.gov (United States)

    Clarke, D.; Salehin, M.; Jairuddin, M.; Saleh, A. F. M.; Rahman, M. M.; Parks, K. E.; Haque, M. A.; Lázár, A. N.; Payo, A.

    2015-12-01

    Delta regions are attractive for high intensity agriculture due to the availability of rich sedimentary soils and of fresh water. Many of the world's tropical deltas support high population densities which are reliant on irrigated agriculture. However environmental changes such as sea level rise, tidal inundation and reduced river flows have reduced the quantity and quality of water available for successful agriculture. Additionally, anthropogenic influences such as the over abstraction of ground water and the increased use of low quality water from river inlets has resulted in the accumulation of salts in the soils which diminishes crop productivity. Communities based in these regions are usually reliant on the same water for drinking and cooking because surface water is frequently contaminated by commercial and urban pollution. The expansion of shallow tube well systems for drinking water and agricultural use over the last few decades has resulted in mobilisation of salinity in the coastal and estuarine fringes. Sustainable development in delta regions is becoming constrained by water salinity. However salinity is often studied as an independent issue by specialists working in the fields of agriculture, community water supply and groundwater. The lack of interaction between these disciplines often results in corrective actions being applied to one sector without fully assessing the effects of these actions on other sectors. This paper describes a framework for indentifying the causes and impacts of salinity in delta regions based on the source-pathway-receptor framework. It uses examples and scenarios from the Ganges-Brahmaputra-Meghna delta in Bangladesh together with field measurements and observations made in vulnerable coastal communities. The paper demonstrates the importance of creating an holistic understanding of the development and management of water resources to reduce the impact of salinity in fresh water in delta regions.

  3. Sorbents for phosphate removal from agricultural drainage water

    DEFF Research Database (Denmark)

    Lyngsie, Gry

    Subsurface transport of phosphate (P) from fertilized agricultural fields to freshwaters may lead to eutrophication and reduced biodiversity in inland waters. Mitigation of eutrophic waters is difficult and costly. Reduction of P export to surface waters using filters installed in agricultural...... drains comprising P sorbing materials (PSM) may be a more efficient and cost-effective way to improve water quality. Several materials have been proposed as PSMs for use for cleaning agricultural drainage water. The objective of the present study was to provide data on sorption behavior among a variety...... of PSMs in order to select a material that can quickly remove P from runoff water at both base and peak flow. This was done by screening 15 “local” PSMs’ for their ability to sorb and retain low orthophosphate concentrations (0-161 µM) at short equilibration time (

  4. Health hazards to children in agriculture.

    Science.gov (United States)

    Wilk, V A

    1993-09-01

    Children comprise a significant portion of the agricultural workforce and are exposed to many workplace hazards, including farm machinery, pesticides, poor field sanitation, unsafe transportation, and fatigue from doing physically demanding work for long periods. Migrant farmworker children face the additional hazard of substandard or nonexistent housing in the fields. Children account for a disproportionate share of agricultural workplace fatalities and disabling injuries, with more than 300 deaths and 27,000 injuries per year. The most common cause of fatal and nonfatal injury among children in agriculture is farm machinery, with tractors accounting for the greatest number. Remedies to the problems of child labor must take into account family economics and the need for child care. Labor law reform and rigorous enforcement of existing laws and of workplace health and safety requirements are vital to better protect the children and adults working in agriculture.

  5. 3-D Imaging Systems for Agricultural Applications—A Review

    Directory of Open Access Journals (Sweden)

    Manuel Vázquez-Arellano

    2016-04-01

    Full Text Available Efficiency increase of resources through automation of agriculture requires more information about the production process, as well as process and machinery status. Sensors are necessary for monitoring the status and condition of production by recognizing the surrounding structures such as objects, field structures, natural or artificial markers, and obstacles. Currently, three dimensional (3-D sensors are economically affordable and technologically advanced to a great extent, so a breakthrough is already possible if enough research projects are commercialized. The aim of this review paper is to investigate the state-of-the-art of 3-D vision systems in agriculture, and the role and value that only 3-D data can have to provide information about environmental structures based on the recent progress in optical 3-D sensors. The structure of this research consists of an overview of the different optical 3-D vision techniques, based on the basic principles. Afterwards, their application in agriculture are reviewed. The main focus lays on vehicle navigation, and crop and animal husbandry. The depth dimension brought by 3-D sensors provides key information that greatly facilitates the implementation of automation and robotics in agriculture.

  6. Development process and achievements of China nuclear agricultural sciences

    International Nuclear Information System (INIS)

    Wen Xianfang

    2009-01-01

    This paper outlines the creation of our nuclear agricultural sciences and the development process as well as the main results for agricultural applications of nuclear technology. Nuclear agricultural sciences in China began in 1956, after 50 years of development, the collaborative research network, the academic exchange network, and the international exchange network have been formatted. These three networks comprehensively have promoted the formation and development of China nuclear agricultural sciences. Remarkable results have been achieved in the fields of radiation mutation breeding, space mutation breeding, isotope tracer technique application in agriculture, agricultural products storage and preservation of irradiation processing, irradiation sterile insect technique, low-doses of radiation to stimulate output. In addition, the concept of suggestions on the future development of China nuclear agricultural sciences, as well as the priorities of research fields are put forward. (authors)

  7. Radiation technology in agriculture

    International Nuclear Information System (INIS)

    D'Souza, S.F.

    2013-01-01

    The Department of Atomic Energy through its research, development and deployment activities in nuclear science and technology, has been contributing towards enhancing the production of agricultural commodities and their preservation. Radiations and radioisotopes are used in agricultural research to induce genetic variability in crop plants to develop improved varieties, to manage insect pests, monitor fate and persistence of pesticides, to study fertilizer use efficiency and plant micronutrient uptake and also to preserve agricultural produce. Use of radiation and radioisotopes in agriculture which is often referred to as nuclear agriculture is one of the important fields of peaceful applications of atomic energy for societal benefit and BARC has contributed significantly in this area. 41 new crop varieties developed at BARC have been released and Gazette notified by the MoA, GOI for commercial cultivation and are popular among the farming community and grown through out the country

  8. Agricultural biomass monitoring on watersheds based on remotely sensed data.

    Science.gov (United States)

    Tamás, János; Nagy, Attila; Fehér, János

    2015-01-01

    There is a close quality relationship between the harmful levels of all three drought indicator groups (meteorological, hydrological and agricultural). However, the numerical scale of the relationships between them is unclear and the conversion of indicators is unsolved. Different areas or an area with different forms of drought cannot be compared. For example, from the evaluation of meteorological drought using the standardized precipitation index (SPI) values of a river basin, it cannot be stated how many tonnes of maize will be lost during a given drought period. A reliable estimated rate of yield loss would be very important information for the planned interventions (i.e. by farmers or river basin management organisations) in terms of time and cost. The aim of our research project was to develop a process which could provide information for estimating relevant drought indexes and drought related yield losses more effectively from remotely sensed spectral data and to determine the congruency of data derived from spectral data and from field measurements. The paper discusses a new calculation method, which provides early information on physical implementation of drought risk levels. The elaborated method provides improvement in setting up a complex drought monitoring system, which could assist hydrologists, meteorologists and farmers to predict and more precisely quantify the yield loss and the role of vegetation in the hydrological cycle. The results also allow the conversion of different-purpose drought indices, such as meteorological, agricultural and hydrological ones, as well as allow more water-saving agricultural land use alternatives to be planned in the river basins.

  9. Liquidity and Stability of Agriculture in the Czech Republic

    Directory of Open Access Journals (Sweden)

    Lánský J.

    2017-09-01

    Full Text Available This article is based on empirical research and 2007–2012 statistical data from joint stock companies which were active in the agriculture sector of the Czech Republic. It deals with the wider aspects of liquidity and stability using suitable liquidity indicators and a vertical financial analysis over a sufficient period of time providing valid results for assessing liquidity and stability of agriculture in relation to cyclic fluctuations. The vertical financial analysis was performed to determine the liquidity structure at current assets and short term debts. Then convenient indicators of current ratio, quick ratio, and cash ratio were applied and interpreted in relation to cyclical deviations and agriculture specifics. From the viewpoint of liquidity measured using the current ratio, agriculture in the Czech Republic is stable and the current ratio values bear witness to solid liquidity, whereby the short-term assets exceed the short-term external funds. Research is to show whether the agriculture sector is liquid and whether the liquidity indicators provide the basis for solvency in the given field.

  10. Agricultural methanization

    International Nuclear Information System (INIS)

    2011-01-01

    After having briefly outlined the interest of the development of methanization of agricultural by-products in the context of struggle against climate change, and noticed that France is only now developing this sector as some other countries already did, this publication describes the methanization process also called anaerobic digestion, which produces a digestate and biogas. Advantages for the agriculture sector are outlined, as well as drawbacks and recommendations (required specific technical abilities, an attention to the use of energetic crops, an improved economic balance which still depends on public subsidies, competition in the field of waste processing). Actions undertaken by the ADEME are briefly evoked

  11. Systematic framework and measures of economic policy in function of Serbian agriculture improvement requirements

    Directory of Open Access Journals (Sweden)

    Branko KATIC

    2010-12-01

    Full Text Available One of the most significant economic activities in Serbia is agriculture, which also represents the base for food industry and some other branches of processing industry. In this field Serbia finds its developmental opportunity in future period. Inclusion of the country in EU, as well as in the World Tourist Organization, implies appropriate preparation and qualification in this field, so there could be more successful deal with rising competitiveness of foreign goods, in conditions of increasing liberalization level of foreign trade. Therefore, domestic regulatory rules must be adjusted to EU regulatory rules, like as concrete measures regarding agriculture and rural development improvement must be adjusted to the measures in the Joint EU Agrarian Policy. Serbian agriculture is in quite bad condition, and financial possibilities of the state, to expedite its development by abundant assets, are still insufficient. In terms of recession, caused by world economic crisis, too, incentive assets reduce, while making business in this field become more and more aggravated. This paper points out, in short, to significance and condition of agriculture in Serbia, on regulatory rules and future plan documents important for this field, as well as on concrete measures, which have to be undertaken in order to improve this activity.

  12. Application of swine manure on agricultural fields contributes to extended-spectrum β-lactamase-producing Escherichia coli spread in Tai’an, China

    Directory of Open Access Journals (Sweden)

    Lili eGao

    2015-04-01

    Full Text Available The prevalence of extended-spectrum beta-lactamase (ESBL-producing Escherichia coli (E. coli is increasing rapidly in both hospital environments and animal farms. A lot of animal manure has been directly applied into arable fields in the developing countries. But the impact of ESBL-positive bacteria from animal manure on the agricultural fields is sparse, especially in the rural regions of Tai’an, China. Here, we collected 29, 3, and 10 ESBL-producing E. coli from pig manure, compost, and soil samples, respectively. To track ESBL-harboring E. coli from agricultural soil, these isolates of different sources were analyzed with regard to antibiotic resistance profiles, ESBL genes, plasmid replicons, and enterobacterial repetitive intergenic consensus (ERIC-polymerase chain reaction (PCR typing. The results showed that all the isolates exhibited multi-drug resistance. CTX-M gene was the predominant ESBL gene in the isolates from pig farm samples (30/32, 93.8% and soil samples (7/10, 70.0%, but no SHV gene was detected. 25 isolates contained the IncF-type replicon of plasmid, including 18 strains (18/32, 56.3% from the pig farm and 7 (7/10, 70.0% from the soil samples. ERIC-PCR demonstrated that 3 isolates from the soil had above 90% genetic similarity with strains from pig farm samples. In conclusion, application of animal manure carrying drug-resistant bacteria on agricultural fields is a likely contributor to antibiotic resistance gene spread.

  13. Sensitivity-based virtual fields for the non-linear virtual fields method

    Science.gov (United States)

    Marek, Aleksander; Davis, Frances M.; Pierron, Fabrice

    2017-09-01

    The virtual fields method is an approach to inversely identify material parameters using full-field deformation data. In this manuscript, a new set of automatically-defined virtual fields for non-linear constitutive models has been proposed. These new sensitivity-based virtual fields reduce the influence of noise on the parameter identification. The sensitivity-based virtual fields were applied to a numerical example involving small strain plasticity; however, the general formulation derived for these virtual fields is applicable to any non-linear constitutive model. To quantify the improvement offered by these new virtual fields, they were compared with stiffness-based and manually defined virtual fields. The proposed sensitivity-based virtual fields were consistently able to identify plastic model parameters and outperform the stiffness-based and manually defined virtual fields when the data was corrupted by noise.

  14. Applications of Smartphone-Based Sensors in Agriculture: A Systematic Review of Research

    Directory of Open Access Journals (Sweden)

    Suporn Pongnumkul

    2015-01-01

    Full Text Available Smartphones have become a useful tool in agriculture because their mobility matches the nature of farming, the cost of the device is highly accessible, and their computing power allows a variety of practical applications to be created. Moreover, smartphones are nowadays equipped with various types of physical sensors which make them a promising tool to assist diverse farming tasks. This paper systematically reviews smartphone applications mentioned in research literature that utilize smartphone built-in sensors to provide agricultural solutions. The initial 1,500 articles identified through database search were screened based on exclusion criteria and then reviewed thoroughly in full text, resulting in 22 articles included in this review. The applications are categorized according to their agricultural functions. Those articles reviewed describe 12 farming applications, 6 farm management applications, 3 information system applications, and 4 extension service applications. GPS and cameras are the most popular sensors used in the reviewed papers. This shows an opportunity for future applications to utilize other sensors such as accelerometer to provide advanced agricultural solutions.

  15. Integrating ICT in Agriculture for Knowledge-Based Economy | Balraj ...

    African Journals Online (AJOL)

    ... demands the integration of ICT knowledge with agriculture. Already projects such as Agriculture Management Information System (AMIS), and e-Soko (which means electronic marketing) – which provides farmers with the price decision making tools enlightens the path to socio-economic development through agriculture.

  16. Esophageal cancer among Brazilian agricultural workers: case-control study based on death certificates.

    Science.gov (United States)

    Meyer, Armando; Alexandre, Pedro Celso Braga; Chrisman, Juliana de Rezende; Markowitz, Steven B; Koifman, Rosalina Jorge; Koifman, Sergio

    2011-03-01

    Several studies suggest that agricultural workers are at higher risk to develop and die by certain types of cancer. Esophageal cancer is not commonly listed among these types. However, some recent studies indicated that if there is an association between agricultural working and esophageal cancer, it s more likely to be observed among workers highly exposed to pesticides. In the present study, the magnitude of the association between agricultural working and esophageal cancer mortality was evaluated in a high pesticide use area in Brazil, through a death certificate-based case-control study. Cases were individuals from both genders, 30-59 years old, for whom basic cause of death was ascertained as cancer of the esophagus. For each case, one control was randomly selected from all possible controls for which the basic cause of death was ascertained as different from neoplasm and diseases of the digestive system. In addition, controls matched their cases by sex, age, year of death, and state of residence. Crude and adjusted odds ratios were then calculated to estimate the magnitude of the risk. Results showed that, in general, agricultural workers were at significantly higher risk to die by esophageal cancer, when compared to non-agricultural workers. Stratified analysis also revealed that the magnitude of such risk was slightly higher among illiterate agricultural workers, and simultaneous adjustment for several covariates showed that the risk was quantitatively higher among younger southern agricultural workers. These results suggest the esophageal cancer may be included among those types of cancer etiologically associated to agricultural working. Copyright © 2010 Elsevier GmbH. All rights reserved.

  17. Plant biotechnology patents: applications in agriculture and medicine.

    Science.gov (United States)

    Hefferon, Kathleen

    2010-06-01

    Recent advances in agricultural biotechnology have enabled the field of plant biology to move forward in great leaps and bounds. In particular, recent breakthroughs in molecular biology, plant genomics and crop science have brought about a paradigm shift of thought regarding the manner by which plants can be utilized both in agriculture and in medicine. Besides the more well known improvements in agronomic traits of crops such as disease resistance and drought tolerance, plants can now be associated with topics as diverse as biofuel production, phytoremediation, the improvement of nutritional qualities in edible plants, the identification of compounds for medicinal purposes in plants and the use of plants as therapeutic protein production platforms. This diversification of plant science has been accompanied by the great abundance of new patents issued in these fields and, as many of these inventions approach commercial realization, the subsequent increase in agriculturally-based industries. While this review chapter is written primarily for plant scientists who have great interest in the new directions being taken with respect to applications in agricultural biotechnology, those in other disciplines, such as medical researchers, environmental scientists and engineers, may find significant value in reading this article as well. The review attempts to provide an overview of the most recent patents issued for plant biotechnology with respect to both agriculture and medicine. The chapter concludes with the proposal that the combined driving forces of climate change, as well as the ever increasing needs for clean energy and food security will play a pivotal role in leading the direction for applied plant biotechnology research in the future.

  18. [Landscape planning approaches for biodiversity conservation in agriculture].

    Science.gov (United States)

    Liu, Yun-hui; Li, Liang-tao; Yu, Zhen-rong

    2008-11-01

    Biodiversity conservation in agriculture not only relates to the sustainable development of agriculture, but also is an essential part of species conservation. In recent years, the landscape planning approach for biodiversity was highlighted instead of species-focused approach. In this paper, the landscape factors affecting the biodiversity in agriculture were reviewed, and the possible landscape approaches at three different scales for more efficient conservation of biodiversity in agro-landscape were suggested, including: (1) the increase of the proportion of natural or semi-natural habitats in agriculture, diversification of land use or crop pattern, and protection or construction of corridor at landscape level; (2) the establishment of non-cropping elements such as field margin at between-field level; and (3) the application of reasonable crop density, crop distribution pattern and rotation, and intercrop etc. at within-field level. It was suggested that the relevant policies for natural conservation, land use planning, and ecological compensation should be made to apply the landscape approaches for biodiversity conservation at larger scale.

  19. Strategies for soil-based precision agriculture in cotton

    Science.gov (United States)

    Neely, Haly L.; Morgan, Cristine L. S.; Stanislav, Scott; Rouze, Gregory; Shi, Yeyin; Thomasson, J. Alex; Valasek, John; Olsenholler, Jeff

    2016-05-01

    The goal of precision agriculture is to increase crop yield while maximizing the use efficiency of farm resources. In this application, UAV-based systems are presenting agricultural researchers with an opportunity to study crop response to environmental and management factors in real-time without disturbing the crop. The spatial variability soil properties, which drive crop yield and quality, cannot be changed and thus keen agronomic choices with soil variability in mind have the potential to increase profits. Additionally, measuring crop stress over time and in response to management and environmental conditions may enable agronomists and plant breeders to make more informed decisions about variety selection than the traditional end-of-season yield and quality measurements. In a previous study, seed-cotton yield was measured over 4 years and compared with soil variability as mapped by a proximal soil sensor. It was found that soil properties had a significant effect on seed-cotton yield and the effect was not consistent across years due to different precipitation conditions. However, when seed-cotton yield was compared to the normalized difference vegetation index (NDVI), as measured using a multispectral camera from a UAV, predictions improved. Further improvement was seen when soil-only pixels were removed from the analysis. On-going studies are using UAV-based data to uncover the thresholds for stress and yield potential. Long-term goals of this research include detecting stress before yield is reduced and selecting better adapted varieties.

  20. Celtic field agriculture and Early Anthropogenic Environmental change in soil records of the Meuse-Demer-Scheldt region, NW Europe.

    Science.gov (United States)

    Van der Sanden, Germaine; Kluiving, Sjoerd; Roymans, Nico

    2017-04-01

    Archaeological research is fundamental in the process of obtaining a greater understanding on the intricate dynamics between the human species and the 'natural' environment. Deep historical processes can evaluate the complex interactions that eventually led to the human species as the dominating agent, in terms of the Earth's biotic and abiotic processes. Regional landscape studies can determine whether the human species can be evaluated as a formative element in soil formation processes during the Holocene. This study is directed to examine early anthropogenic land cover change (ALCC) in the Meuse-Demer-Scheldt region, in the southern Netherlands and northern Belgium, between the Late Bronze Age and Early Roman Period (1050-200 AD). The introduction of an extensive agricultural system, the Celtic field system, in co-relation with demographic rise, led to increased anthropogenic pressure on the MDS landscape. Throughout the Holocene, demographic rise pressured farmers to develop increasingly efficient and innovative methods of extracting more yields per unit area farmed resulting in a decrease in land use per capita over time (Kaplan et al. 2010; Boserup, 1965,1981)). The land use per capita under Celtic field technology was relatively high compared to contemporary numbers, based on the assumption that land use per capita did not remain constant. The MDS region is a clear example of early Holocene ALCC and modification of terrestrial ecosystems due to excessive clearance of vegetation. Early Holocene ALCC resulted in ecological deficiencies in the landscape, e.g. deforestation, acceleration of podzolisation and a decrease in terrestrial carbon storage as well as water retention capacity. ALCC can impact climate through biogeophysical and biogeochemical feedbacks to the atmosphere, and result in regional negative radiative forcing. Here we hypothesize that the previously presumed fundamental restructuring that led to a structural bipartition in the landscape due to

  1. A Study on the Application Model of B2B E-Commerce in the Agricultural Sector

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jinlong; DU Xiaofang

    2004-01-01

    There are two main application models of B2B e-commerce, which are best suitable for agricultural sector. One is the e-market intermediation model (EMIM), and the other is the Integrative content center model (ICCM). Based on the analysis of these two models in application field of agriculture, a conclusion is drawn that these two models will be the main application ones of agricultural e-cornmerce at present, while ICCM will be a transition from local e-commerce to integrative e-commerce. The future development of agricultural e-commerce will follow the direction of integrative e-commerce which is based on the supply chain model on the E-Hubs. And a new framework of integrative e-commerce is presented as a conclusion at last.

  2. THE USE OF CHEMICALS IN THE FIELD OF FARM ANIMAL HEALTH (NUTRITION, ENTOMOLOGY, PATHOLOGY). AGRICULTURAL CHEMICALS TECHNOLOGY, NUMBER 7.

    Science.gov (United States)

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    DEVELOPED BY A NATIONAL TASK FORCE ON THE BASIS OF STATE STUDIES, THIS MODULE IS ONE OF A SERIES DESIGNED TO ASSIST TEACHERS IN PREPARING POST-SECONDARY STUDENTS FOR AGRICULTURAL CHEMICAL OCCUPATIONS. THE SPECIFIC OBJECTIVE OF THIS MODULE IS TO PREPARE TECHNICIANS IN THE FIELD OF THE USE OF CHEMICALS FOR ANIMAL HEALTH. SECTIONS INCLUDE -- (1)…

  3. Sustainability and Competitiveness of Romanian Farms through Organic Agriculture

    Directory of Open Access Journals (Sweden)

    Mirela Ionela Aceleanu

    2016-03-01

    Full Text Available Currently, the development of any sector involves respecting the principles of sustainability, which means economic, social and environmental development. Moreover, organic farming is a very important field for ensuring sustainable development. Romania has great potential for the development of organic agriculture, especially due to the large number of available farmland and reduced use of fertilizers and other chemicals. However, the development of organic farming in Romania is in an early stage, due to the numerous problems that Romanian agriculture is still facing. Concern for the environment should be reflected at the level of production processes and consumption. As market demand influences and stimulates production, we can ask the question to what extent stimulating the consumption of organic products through green marketing can boost organic agriculture development and competitiveness of Romanian farms. Using several methods of research, such as analysis, synthesis, comparison, statistical methods and by calling on studies, reports and data series on organic farming in the EU and Romania, this paper highlights Romania's position in terms of the level of development of organic agriculture and recommends several ways to improve the outcomes obtained by Romania in the field. Moreover, based on regression equations, the trend of convergence of Romanian organic agriculture development in relation to the EU countries is analysed. The paper demonstrates that one of the measures that can be taken by Romanian farms is green marketing strategy development that can stimulate both consumption and production of organic products. Therefore, with increasing interest in the development of organic agriculture in Romania, green marketing can play an increasingly important role in promoting the benefits of consuming organic products, thus contributing to business development of organic products as well as to the development of Romanian agriculture

  4. Field tracer investigation of unsaturated zone flow paths and mechanisms in agricultural soils of northwestern Mississippi, USA

    Science.gov (United States)

    Perkins, K.S.; Nimmo, J.R.; Rose, C.E.; Coupe, R.H.

    2011-01-01

    In many farmed areas, intensive application of agricultural chemicals and withdrawal of groundwater for irrigation have led to water quality and supply issues. Unsaturated-zone processes, including preferential flow, play a major role in these effects but are not well understood. In the Bogue Phalia basin, an intensely agricultural area in the Delta region of northwestern Mississippi, the fine-textured soils often exhibit surface ponding and runoff after irrigation and rainfall as well as extensive surface cracking during prolonged dry periods. Fields are typically land-formed to promote surface flow into drainage ditches and streams that feed into larger river ecosystems. Downward flow of water below the root zone is considered minimal; regional groundwater models predict only 5% or less of precipitation recharges the heavily used alluvial aquifer. In this study transport mechanisms within and below the root zone of a fallow soybean field were assessed by performing a 2-m ring infiltration test with tracers and subsurface monitoring instruments. Seven months after tracer application, 48 continuous cores were collected for tracer extraction to define the extent of water movement and quantify preferential flow using a mass-balance approach. Vertical water movement was rapid below the pond indicating the importance of vertical preferential flow paths in the shallow unsaturated zone, especially to depths where agricultural disturbance occurs. Lateral flow of water at shallow depths was extensive and spatially non-uniform, reaching up to 10. m from the pond within 2. months. Within 1. month, the wetting front reached a textural boundary at 4-5. m between the fine-textured soil and sandy alluvium, now a potential capillary barrier which, prior to extensive irrigation withdrawals, was below the water table. Within 10. weeks, tracer was detectable at the water table which is presently about 12. m below land surface. Results indicate that 43% of percolation may be through

  5. Climate-Agriculture-Modeling and Decision Tool for Disease (CAMDT-Disease) for seasonal climate forecast-based crop disease risk management in agriculture

    Science.gov (United States)

    Kim, K. H.; Lee, S.; Han, E.; Ines, A. V. M.

    2017-12-01

    Climate-Agriculture-Modeling and Decision Tool (CAMDT) is a decision support system (DSS) tool that aims to facilitate translations of probabilistic seasonal climate forecasts (SCF) to crop responses such as yield and water stress. Since CAMDT is a software framework connecting different models and algorithms with SCF information, it can be easily customized for different types of agriculture models. In this study, we replaced the DSSAT-CSM-Rice model originally incorporated in CAMDT with a generic epidemiological model, EPIRICE, to generate a seasonal pest outlook. The resulting CAMDT-Disease generates potential risks for selected fungal, viral, and bacterial diseases of rice over the next months by translating SCFs into agriculturally-relevant risk information. The integrated modeling procedure of CAMDT-Disease first disaggregates a given SCF using temporal downscaling methods (predictWTD or FResampler1), runs EPIRICE with the downscaled weather inputs, and finally visualizes the EPIRICE outputs as disease risk compared to that of the previous year and the 30-year-climatological average. In addition, the easy-to-use graphical user interface adopted from CAMDT allows users to simulate "what-if" scenarios of disease risks over different planting dates with given SCFs. Our future work includes the simulation of the effect of crop disease on yields through the disease simulation models with the DSSAT-CSM-Rice model, as disease remains one of the most critical yield-reducing factors in the field.

  6. FATE OF ATRAZINE IN THE AGRICULTURAL SOIL OF CORN FIELDS IN FARS PROVINCE OF IRAN

    Directory of Open Access Journals (Sweden)

    S. Nasseri ، M. Dehghani ، S. Amin ، K. Naddafi ، Z. Zamanian

    2009-10-01

    Full Text Available Atrazine, a herbicide widely used in corn production, is frequently detected as pesticide in water resources. In this research, four agricultural fields with a long history of atrazine application in Shiraz and its vicinity in Fars province of Iran, have been studied to determine the fate of atrazine through the passage of time. These four farms were cultivated under a crop rotation (corn-wheat during the past 10 years. Samples were collected from four soil profiles of 0-10, 10-20, 20-40, and 40-60 cm soil depth at different times. The time intervals for soil sampling started before atrazine application and continued until no atrazine was detected. According to the general linear model, there was no significant difference between atrazine residual concentrations and the soil moisture and depth (p≥0.05. But, significant difference between atrazine residual concentrations and the sampling regions was observed (p<0.001. Based on the data, atrazine leaching and dissipation rate in different soil profiles in the four sampling regions were high and significant. Therefore, there is a high risk of atrazine pollution in groundwater resources of the region.

  7. Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology.

    Science.gov (United States)

    Holaskova, Edita; Galuszka, Petr; Frebort, Ivo; Oz, M Tufan

    2015-11-01

    Antimicrobial peptides (AMPs) are vital components of the innate immune system of nearly all living organisms. They generally act in the first line of defense against various pathogenic bacteria, parasites, enveloped viruses and fungi. These low molecular mass peptides are considered prospective therapeutic agents due to their broad-spectrum rapid activity, low cytotoxicity to mammalian cells and unique mode of action which hinders emergence of pathogen resistance. In addition to medical use, AMPs can also be employed for development of innovative approaches for plant protection in agriculture. Conferred disease resistance by AMPs might help us surmount losses in yield, quality and safety of agricultural products due to plant pathogens. Heterologous expression in plant-based systems, also called plant molecular farming, offers cost-effective large-scale production which is regarded as one of the most important factors for clinical or agricultural use of AMPs. This review presents various types of AMPs as well as plant-based platforms ranging from cell suspensions to whole plants employed for peptide production. Although AMP production in plants holds great promises for medicine and agriculture, specific technical limitations regarding product yield, function and stability still remain. Additionally, establishment of particular stable expression systems employing plants or plant tissues generally requires extended time scale for platform development compared to certain other heterologous systems. Therefore, fast and promising tools for evaluation of plant-based expression strategies and assessment of function and stability of the heterologously produced AMPs are critical for molecular farming and plant protection. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Monitoring-based analysis of agriculture in Iraq

    OpenAIRE

    Tokareva, Olga Sergeevna; Pasko, Olga Anatolievna; Alshaibi, A.; Mochalov, M.

    2016-01-01

    The paper deals with change in area and structure of Iraq agricultural lands. It revealed the main reasons for the change: crisis (war, sanctions, etc.); economic (swamp and lake drainage, melioration, etc.); weather condition. Land-use intensification as a reason for reduction of agricultural land areas was not proved. The area of cultivated lands proved to correlate significantly with the level of precipitation, wheat productivity -with the average temperature in Iraq.

  9. AGRICULTURAL FRANCHISING AND CONTRIBUTION TO ACHIEVING OBJECTIVES OF THE EU COMMON AGRICULTURAL POLICY

    OpenAIRE

    Stanković, Milica

    2014-01-01

    The Common Agricultural Policy is the oldest, the most complex, the most expensive EU policy and it represents one of the most important drivers of European integration. Agrarian franchising is one of the innovations in the field of franchising, which implementation is still in its infancy and it is necessary to strive for the popularization of this business model. The aim of the paper is to emphasize the importance of agricultural franchising concept development and contribution of implement...

  10. Nitrous oxide emissions from European agriculture - an analysis of variability and drivers of emissions from field experiments

    DEFF Research Database (Denmark)

    Rees, R M; Agustin, J; Alberti, G

    2013-01-01

    Nitrous oxide emissions from a network of agricultural experiments in Europe were used to explore the relative importance of site and management controls of emissions. At each site, a selection of management interventions were compared within replicated experimental designs in plot-based experime......Nitrous oxide emissions from a network of agricultural experiments in Europe were used to explore the relative importance of site and management controls of emissions. At each site, a selection of management interventions were compared within replicated experimental designs in plot...

  11. Agricultural Fragility Estimates Subjected to Volcanic Ash Fall Hazards

    Science.gov (United States)

    Ham, H. J.; Lee, S.; Choi, S. H.; Yun, W. S.

    2015-12-01

    Agricultural Fragility Estimates Subjected to Volcanic Ash Fall Hazards Hee Jung Ham1, Seung-Hun Choi1, Woo-Seok Yun1, Sungsu Lee2 1Department of Architectural Engineering, Kangwon National University, Korea 2Division of Civil Engineering, Chungbuk National University, Korea ABSTRACT In this study, fragility functions are developed to estimate expected volcanic ash damages of the agricultural sector in Korea. The fragility functions are derived from two approaches: 1) empirical approach based on field observations of impacts to agriculture from the 2006 eruption of Merapi volcano in Indonesia and 2) the FOSM (first-order second-moment) analytical approach based on distribution and thickness of volcanic ash observed from the 1980 eruption of Mt. Saint Helens and agricultural facility specifications in Korea. Fragility function to each agricultural commodity class is presented by a cumulative distribution function of the generalized extreme value distribution. Different functions are developed to estimate production losses from outdoor and greenhouse farming. Seasonal climate influences vulnerability of each agricultural crop and is found to be a crucial component in determining fragility of agricultural commodities to an ash fall. In the study, the seasonality coefficient is established as a multiplier of fragility function to consider the seasonal vulnerability. Yields of the different agricultural commodities are obtained from Korean Statistical Information Service to create a baseline for future agricultural volcanic loss estimation. Numerically simulated examples of scenario ash fall events at Mt. Baekdu volcano are utilized to illustrate the application of the developed fragility functions. Acknowledgements This research was supported by a grant 'Development of Advanced Volcanic Disaster Response System considering Potential Volcanic Risk around Korea' [MPSS-NH-2015-81] from the Natural Hazard Mitigation Research Group, Ministry of Public Safety and Security of

  12. Business and production performance of different types of agricultural holdings

    Directory of Open Access Journals (Sweden)

    Katarina Rosić

    2016-12-01

    Full Text Available Farm Accountancy Data Network (FADN was established in the EU in 1965 and now it is obligated for all member states of the EU. The system is based on an annual collection of production, economic and financial data from a representative sample of comercial farms, classified into groups according to the criteria of economic farm size, type of agricultural production and regional affiliation. Research made by FADN system represent the European Commission instrument for evaluating the income of agricultural producers and determining the impact of the Common Agricultural Policy of the EU on their business. In this paper the comparison is made between production and economic indicators of different types of agricultural holdings (field crops; horticulture crops; permanent crops, orchards and olive yards; dairy farms; grazing livestock; pig and poultry farms and mixed farms. On the basis of Standard Results for the year 2014 it is possible to conclude that in Croatia field crops and grazing livestock farms lead by their utilized agricultural area. Pig and poultry farming have the most livestock units, while the most working hours is spent in the cultivation of vegetables and flowers. The highest values of labor productivity have holdings that are engaged in the production of vegetables and flowers, while the lowest labor productivity have grazing livestock farms. Cost-effectiveness of all types of farms exceeding a value of 1. The highest value of the gross income is achieved at pig and poultry farms, while the smallest has a mixed type of farms. The average farm direct payments account for a high 44% in the net income, and the largest share of direct payments in the net income has field crop type of farms.

  13. Agricultural and Food Processing Applications of Pulsed Power and Plasma Technologies

    Science.gov (United States)

    Takaki, Koichi

    Agricultural and food processing applications of pulsed power and plasma technologies are described in this paper. Repetitively operated compact pulsed power generators with a moderate peak power are developed for the agricultural and the food processing applications. These applications are mainly based on biological effects and can be categorized as germination control of plants such as Basidiomycota and arabidopsis inactivation of bacteria in soil and liquid medium of hydroponics; extraction of juice from fruits and vegetables; decontamination of air and liquid, etc. Types of pulsed power that have biological effects are caused with gas discharges, water discharges, and electromagnetic fields. The discharges yield free radicals, UV radiation, intense electric field, and shock waves. Biologically based applications of pulsed power and plasma are performed by selecting the type that gives the target objects the adequate result from among these agents or byproducts. For instance, intense electric fields form pores on the cell membrane, which is called electroporation, or influence the nuclei. This paper mainly describes the application of the pulsed power for the germination control of Basidiomycota i.e. mushroom, inactivation of fungi in the soil and the liquid medium in hydroponics, and extraction of polyphenol from skins of grape.

  14. ORGANIZATIONAL AND ECONOMIC BASES OF ENERGY CONSERVATION IN AGRICULTURE

    Directory of Open Access Journals (Sweden)

    N. Lisjutchenko

    2012-04-01

    Full Text Available Russian agricultural production at current stage is very energy intensive. At the cost of agricultural production overall cost of energy resources is growing: in 2000 was 36.5 billion rubles, 2008 - 92 billion rubles, 2009 - 110.6 billion rubles, and in 2010 rose to 119.8 billion rubles, or increased by 3.3 times. The analysis of consumption of the main energy sources for the period from 1990 to 2010 showed a decrease in general and the specific consumption of diesel fuel, gasoline and electricity by 5-7 times. Reducing energy consumption is explained as a forced saving resources because of lack of funds for the acquisition and implementation of agricultural enterprises of energy and resource saving measures (resource-saving technologies in the production process, motor fuel, biofuels and alternative energy sources. To solve this problem State and business in a matter of priority should be to build an effective system of innovation development for agriculture, promote the participation of agricultural science and education system in this process, modernize the domestic agricultural machinery, engineering and technology infrastructure.

  15. The sustainability, base for the agriculture of next century

    International Nuclear Information System (INIS)

    Baquero Haeberlin, I.B.

    1997-01-01

    It is defined the sustainability concept, their origin and the operation form to the interior of CORPOICA. It discusses the concept of sustained development and the characteristics that it should have the agricultural technology to involve the concept in the agricultural development, under the perspective of satisfying the necessities of people presently, maintaining options for the future generations. The sustainable agricultural development is analyzed in connection with the ecological, economic and social sustainability and the situation of the agricultural producer in the application of the concept. It thinks about the agriculture ecology like strategy guided to achieve a sustainable agriculture by means of the knowledge of the relationships that they are given among the production systems and the processes that govern the behavior and offer of the intervened ecosystems. Complementarity the technology use of under environmental impact and the development of productive systems adapted to the environment, taking advantage of the biodiversity. It concludes that the sustainability should be above all an ethical concept that makes part of the investigator's formation inside a holistic and interdisciplinary context

  16. Local PM10 and PM2.5 emission inventories from agricultural tillage and harvest in northeastern China.

    Science.gov (United States)

    Chen, Weiwei; Tong, Daniel Q; Zhang, Shichun; Zhang, Xuelei; Zhao, Hongmei

    2017-07-01

    Mineral particles or particulate matters (PMs) emitted during agricultural activities are major recurring sources of atmospheric aerosol loading. However, precise PM inventory from agricultural tillage and harvest in agricultural regions is challenged by infrequent local emission factor (EF) measurements. To understand PM emissions from these practices in northeastern China, we measured EFs of PM 10 and PM 2.5 from three field operations (i.e., tilling, planting and harvesting) in major crop production (i.e., corn and soybean), using portable real-time PM analyzers and weather station data. County-level PM 10 and PM 2.5 emissions from agricultural tillage and harvest were estimated, based on local EFs, crop areas and crop calendars. The EFs averaged (107±27), (17±5) and 26mg/m 2 for field tilling, planting and harvesting under relatively dry conditions (i.e., soil moisture agricultural dust emissions to regional air quality in northeastern China. Copyright © 2016. Published by Elsevier B.V.

  17. Agricultural and Management Practices and Bacterial Contamination in Greenhouse versus Open Field Lettuce Production

    Science.gov (United States)

    Holvoet, Kevin; Sampers, Imca; Seynnaeve, Marleen; Jacxsens, Liesbeth; Uyttendaele, Mieke

    2014-01-01

    The aim of this study was to gain insight into potential differences in risk factors for microbial contamination in greenhouse versus open field lettuce production. Information was collected on sources, testing, and monitoring and if applicable, treatment of irrigation and harvest rinsing water. These data were combined with results of analysis on the levels of Escherichia coli as a fecal indicator organism and the presence of enteric bacterial pathogens on both lettuce crops and environmental samples. Enterohemorragic Escherichia coli (EHEC) PCR signals (vt1 or vt2 positive and eae positive), Campylobacter spp., and Salmonella spp. isolates were more often obtained from irrigation water sampled from open field farms (21/45, 46.7%) versus from greenhouse production (9/75, 12.0%). The open field production was shown to be more prone to fecal contamination as the number of lettuce samples and irrigation water with elevated E. coli was significantly higher. Farmers comply with generic guidelines on good agricultural practices available at the national level, but monitoring of microbial quality, and if applicable appropriateness of water treatment, or water used for irrigation or at harvest is restricted. These results indicate the need for further elaboration of specific guidelines and control measures for leafy greens with regard to microbial hazards. PMID:25546272

  18. The agricultural sector of the Pechora-Ural North

    Directory of Open Access Journals (Sweden)

    Valentin Aleksandrovich Ivanov

    2014-05-01

    Full Text Available The article reveals the rural sector’s role in food supply of the population of the Komi Republic arctic and subarctic territories (the Pechora-Ural North. It considers conditions, analyses resources, organizational-legal management forms in agricultural production. The study indicates the agriculture status in the pre-reform (1960–1980 and market upgrade periods (since 1992 and the reforms’ impact on socio-economic processes in the industry. The article investigates obstacles to the agricultural sector development. It proposes development directions of reindeer and cattle breeding. It recommends to accelerate the development and adoption of the law “On reindeer breeding in the Russian Federation”, a federal target program for the reindeer breeding development, and it also proposes to enhance interregional relations in the field of joint systems of pastures control. The research highlights the necessity to strengthen the material and technological base of the dual purpose cattle breeding, to increase financial support of traditional Northern branches

  19. Effects of low concentrations of glyphosate-based herbicide factor 540® on an agricultural stream freshwater phytoplankton community.

    Science.gov (United States)

    Smedbol, Élise; Gomes, Marcelo Pedrosa; Paquet, Serge; Labrecque, Michel; Lepage, Laurent; Lucotte, Marc; Juneau, Philippe

    2018-02-01

    Residual glyphosate from glyphosate based herbicides (GBH) are ubiquitously detected in streams draining agricultural fields, and may affect phytoplankton communities present in these ecosystems. Here, the effects of the exposure (96 h) of a phytoplankton community collected in an agricultural stream to various glyphosate concentrations (1, 5, 10, 50, 100, 500 and 1000 μg l -1 ) of Factor 540 ® GBH were investigated. The lowest GBH concentration of 1 μg l -1 reduced chlorophyll a and carotenoid contents. Low glyphosate concentrations, such as 5 and 10 μg l -1 , promoted changes in the community's structure and reduced the diversity of the main algal species. At glyphosate concentrations ranging from 50 to 1000 μg l -1 , the phytoplankton community's composition was modified and new main species appeared. The highest glyphosate concentrations (500 and 1000 μg l -1 ) affected the shikimate content, the lipid peroxidation and the activity of antioxidant enzymes (superoxide dismutase, catalase and ascorbate peroxidase). These results indicate that GBH can modify structural and functional properties of freshwater phytoplankton communities living in streams located in agricultural areas at glyphosate concentrations much inferior to the 800 μg l -1 threshold set by the Canadian guidelines for the protection of aquatic life. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  20. PestLCI - a model for estimating field emissions of pesticides in agricultural LCA

    DEFF Research Database (Denmark)

    Birkved, Morten; Hauschild, Michael Zwicky

    2006-01-01

    of a product or service is a specific element of LCA termed life cycle inventory (LCI). Estimation of chemical emissions in agricultural LCA is typically based on standard emission factors which at best are determined by a few physical-chemical substance properties and the use scenario of the chemical compound...... to the different environmental compartments. It estimates the fractions of the applied quantity which is emitted to the air, surface water, and groundwater compartment based on information which will normally be available to the model user about: type and time of application, crop species and development stage...... for other regions of the world. (c) 2006 Elsevier B.V. All rights reserved....

  1. Development of a global Agricultural Stress Index System (ASIS) based on remote sensing data

    Science.gov (United States)

    Van Hoolst, R.

    2016-12-01

    According to the 2012 IPCC SREX report, extreme drought events are projected to become more frequent and intense in several regions of the world. Wide and timely monitoring systems are required to mitigate the impact of agricultural drought. Therefore, FAO's Global Information and Early Warning System (GIEWS) and the Climate, Energy and Tenure Division (NRC) have established the `Agricultural Stress Index System' (ASIS). The ASIS is a remote sensing application that provides early warnings of agricultural drought at a global scale. The ASIS has first been designed and described by Rojas et al. (2011). This study focused on the African continent and was based on the back processing of low resolution data of the NOAA-satellites. In the current setup, developed by VITO (Flemish Institute for Technological Research), the system operates in Near Real Time using data from the METOP-AVHRR sensor. The Agricultural Stress Index (ASI) is the percentage of agricultural area affected by drought in the course of the growing season within a given administrative unit. The start and end of the growing season are derived per pixel from the long term NDVI average of SPOT-VEGETATION. The Global Administrative Unit Layer (GAUL) defines the administrative boundaries at level 0, 1 and 2. A global cropland and grassland map eliminates non-agricultural areas. Temperature and NDVI anomalies are used as drought indicators and calculated at a per pixel base. The ASIS aggregates this information and produces every dekad global maps to highlight hotspots of drought stress. New developments are ongoing to strengthen the ASIS to produce country specific outputs, improve existing drought indicators and estimate production deficits using a probabilistic approach.

  2. Journal of Agricultural Extension Vol.17 (2) December, 2013 ISSN ...

    African Journals Online (AJOL)

    ONIKOYI

    management staff (head of department agriculture) and five (5) field staff from other cadres were ..... Inadequate budget allocation to agricultural departments. 3.47*. 0.724 ... Lack of quick or immediate cash return from most agricultural projects.

  3. Ecological risk assessment of agricultural soils for the definition of soil screening values: A comparison between substance-based and matrix-based approaches.

    Science.gov (United States)

    Pivato, Alberto; Lavagnolo, Maria Cristina; Manachini, Barbara; Vanin, Stefano; Raga, Roberto; Beggio, Giovanni

    2017-04-01

    The Italian legislation on contaminated soils does not include the Ecological Risk Assessment (ERA) and this deficiency has important consequences for the sustainable management of agricultural soils. The present research compares the results of two ERA procedures applied to agriculture (i) one based on the "substance-based" approach and (ii) a second based on the "matrix-based" approach. In the former the soil screening values (SVs) for individual substances were derived according to institutional foreign guidelines. In the latter, the SVs characterizing the whole-matrix were derived originally by the authors by means of experimental activity. The results indicate that the "matrix-based" approach can be efficiently implemented in the Italian legislation for the ERA of agricultural soils. This method, if compared to the institutionalized "substance based" approach is (i) comparable in economic terms and in testing time, (ii) is site specific and assesses the real effect of the investigated soil on a battery of bioassays, (iii) accounts for phenomena that may radically modify the exposure of the organisms to the totality of contaminants and (iv) can be considered sufficiently conservative.

  4. Agro-Science Journal of Tropical Agriculture, Food, Environment ...

    African Journals Online (AJOL)

    PC USER

    Agro-Science Journal of Tropical Agriculture, Food, Environment and Extension. Volume 12 Number 3 ... agricultural field one could maintain a high level of soil fertility. ..... Journal of Applied Biosciences. 7: 202-206. ... International Journal of.

  5. Nanoagroparticles emerging trends and future prospect in modern agriculture system.

    Science.gov (United States)

    Baker, Syed; Volova, Tatiana; Prudnikova, Svetlana V; Satish, S; Prasad M N, Nagendra

    2017-07-01

    Increment of technical knowledge has remarkably uplifted logical thinking among scientific communities to shape the theoretical concepts into near product-oriented research. The concept of nanotechnology has overwhelmed almost all forms of lives and has traded its applications in myriad fields. Despite rapid expansion of nanotechnology, sustainable competitions still do exist in the field of agriculture. In current scenario, agriculture is a manifestation demand to provide adequate nutrition for relentless growing global population. It is estimated that nearly one-third of the global crop production is destroyed annually. The loss owes to various stresses such as pest infestation, microbial pathogens, weeds, natural calamities, lack of soil fertility and much more. In order to overcome these limitations, various technological strategies are implemented but a majority of these have their own repercussions. Hence there is a scrawling progress on the evaluation of nanoparticles into agriculture sector which can reform the modern agricultural system. Applications of these nanomaterials can add tremendous value in the current scenario of a global food scarcity. Nanotechnology can address the adverse effects posed by the abundant use of chemical agrochemicals which are reported to cause biomagnification in an ecosystem. Based on these facts and consideration, present review envisages on nanoparticles as nanoherbicides, nanopesticides, onsite detection agro-pathogens and nanoparticles in post harvest management. The review also elucidates on the importance of nanoparticles in soil fertility, irrigation management and its influence on improving crop yield. With scanty reports available on nanotechnology in agriculture system, present review attributes toward developing nanoagroparticles as the future prospect which can give new facelift for existing agriculture system. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Nanotechnology in Agriculture

    Science.gov (United States)

    An overview is given of the application of nanotechnology to agriculture. This is an active field of R&D, where a large number of findings and innovations have been reported. For example, in soil management, applications reported include nanofertilizers, soil binders, water retention aids, and nut...

  7. A scientometric review of emerging trends and new developments in agricultural ecological compensation.

    Science.gov (United States)

    He, Ke; Zhang, Junbiao; Wang, Xueting; Zeng, Yangmei; Zhang, Lu

    2018-05-08

    Agricultural ecological compensation has drawn an increasingly broad range of interest since early 1990s. In recent years, the volume of the literature grows rapidly. As a result, a systematic review of the diverse research field and its current trends becomes essential. This paper surveys the literature of agricultural ecological compensation between 1990 and 2016. Specifically, by employing CiteSpace information visualization software, we firstly identified the research hotspots and evolution path and then illustrated the frontier and developing trend of the domain in core and broader perspectives. It is found that the focus of the academic community has always been researches on the theoretical policy and application of the payment for agro-ecosystem services, agricultural ecological compensation based on contingent valuation method, and ecological compensation of farmland landscape and organic food production as well as willingness to accept/pay for land use and ecological protection. Meanwhile, we also found that, in recent years, qualitative research has received more and more attention in the field of agricultural ecological compensation, since global warming, agricultural carbon emissions, and other emerging environmental issues have aroused widespread concern of the people around the world. Moreover, we believed that more and more scholars will employ case study methodology to analyze agricultural ecological compensation in specific systems, regions, or circumstances in the future.

  8. SAR Agriculture Rice Production Estimation (SARPE)

    Science.gov (United States)

    Raimadoya, M.

    2013-12-01

    The study of SAR Agriculture Rice Production Estimation (SARPE) was held in Indonesia on 2012, as part of Asia-Rice Crop Estimation & Monitoring (Asia-RiCE), which is a component for the GEO Global Agricultural Monitoring (GEOGLAM) initiative. The study was expected to give a breakthrough result, by using radar technology and paradigm shift of the standard production estimation system from list frame to area frame approach. This initial product estimation system is expected to be refined (fine tuning) in 2013, by participating as part of Technical Demonstration Site (Phase -1A) of Asia-RICE. The implementation period of this initial study was from the date of March 12 to December 10, 2012. The implementation of the study was done by following the approach of the BIMAS-21 framework, which has been developed since 2008. The results of this study can be briefly divided into two major components, namely: Rice-field Baseline Mapping (PESBAK - Peta Sawah Baku) and Crop Growth Monitoring. Rice-fields were derived from the mapping results of the Ministry of Agriculture (Kemtan), and validated through Student Extension Campaign of the Faculty of Agriculture, Bogor Agricultural University (IPB). While for the crop growth, it was derived from the results of image analysis process. The analysis was done, either on radar/Radarsat-2 (medium resolution) or optical/ MODIS (low resolution), based on the Planting Calendar (KATAM) of Kemtan. In this case, the planting season II/2012-2013 of rice production centers in West Java Province (Karawang, Subang and Indramayu counties). The selection of crop season and county were entirely dependent on the quality of the available PESBAK and procurement process of radar imagery. The PESBAK is still in the form of block instead of fields, so it can not be directly utilized in this study. Efforts to improve the PESBAK can not be optimal because the provided satellite image (ECW format) is not the original one. While the procurement process of

  9. The Role of Community Based Orgs (Cbos) In Rural and Agricultural ...

    African Journals Online (AJOL)

    The result showed that community based organizations are veritable agents of development in ensuring the agricultural and rural transformation of Delta State. The study recommended that there is need to develop a link between the state and community us so as to increase the managerial and professional capabilities of ...

  10. UAV Based Agricultural Planning and Landslide Monitoring

    Directory of Open Access Journals (Sweden)

    Servet Yaprak

    2017-12-01

    Full Text Available The use of Unmanned Aerial Vehicle (UAV tools has become widespread in map production, land surveying, landslide, erosion monitoring, monitoring of agricultural activities, aerial crop surveying, forest fire detection and monitoring operations. In this study, GEO 2 UAV manufactured by TEKNOMER equipped with SONY A6000 camera has been used. The flight plan have been performed with 100 m altitude, with 80% longitudinal and 60% side overlapping. Ground Control Points (GCPs have been observed with Topcon and Trimble GNSS geodetic receivers. Recorded GNSS signals have been processed with LGO V.8.4 software to get sensitive location information. 985 photos have been taken for the 344 hectares the agricultural area. 291 photos have been taken for 50 hectares the landslide area. All photos were processed by PIX4D software. For the agricultural area, 25 GCPs and for the landslide area, 8 GCPs have been included in the evaluation. 3D images were produced with pixel matching algorithms. As a result, the RMS evaluation was obtained as ±0.054 m for the agricultural area and as ±0.018 m for the landslide area. UAV images have indisputable contributions to the management of catastrophes such as landslides and earthquakes, and it is impossible to make terrestrial measurements in areas where disaster impact continues.

  11. Recent advancement on chemical arsenal of Bt toxin and its application in pest management system in agricultural field.

    Science.gov (United States)

    Chattopadhyay, Pritam; Banerjee, Goutam

    2018-04-01

    Bacillus thuringiensis ( Bt ) is a Gram-positive, spore-forming, soil bacterium, which is very popular bio-control agent in agricultural and forestry. In general, B. thuringiensis secretes an array of insecticidal proteins including toxins produced during vegetative growth phase (such as secreted insecticidal protein, Sip; vegetative insecticidal proteins, Vip), parasporal crystalline δ-endotoxins produced during vegetative stationary phase (such as cytolytic toxin, Cyt; and crystal toxin, Cry), and β-exotoxins. Till date, a wide spectrum of Cry proteins has been reported and most of them belong to three-domain-Cry toxins, Bin-like toxin, and Etx_Mtx2-like toxins. To the best of our knowledge, neither Bt insecticidal toxins are exclusive to Bt nor all the strains of Bt are capable of producing insecticidal Bt toxins. The lacuna in their latest classification has also been discussed. In this review, the updated information regarding the insecticidal Bt toxins and their different mode of actions were summarized. Before applying the Bt toxins on agricultural field, the non-specific effects of toxins should be investigated. We also have summarized the problem of insect resistance and the strategies to combat with this problem. We strongly believe that this information will help a lot to the budding researchers in the field of modern pest control biotechnology.

  12. Multifunctionality assessment of urban agriculture in Beijing City, China.

    Science.gov (United States)

    Peng, Jian; Liu, Zhicong; Liu, Yanxu; Hu, Xiaoxu; Wang, An

    2015-12-15

    As an important approach to the realization of agricultural sustainable development, multifunctionality has become a hot spot in the field of urban agriculture. Taking 13 agricultural counties of Beijing City as the assessing units, this study selects 10 assessing index from ecological, economic and social aspects, determines the index weight using Analytic Hierarchy Process (AHP) method, and establishes an index system for the integrated agricultural function. Based on standardized data from agricultural census and remote sensing, the integrated function and multifunctionality of urban agriculture in Beijing City are assessed through the index grade mapping. The results show that agricultural counties with the highest score in ecological, economic, and social function are Yanqing, Changping, and Miyun, respectively; and the greatest disparity among those counties is economic function, followed by social and ecological function. Topography and human disturbance may be the factors that affect integrated agricultural function. The integrated agricultural function of Beijing rises at the beginning then drops later with the increase of mean slope, average altitude, and distance from the city. The whole city behaves balance among ecological, economic, and social functions at the macro level, with 8 out of the 13 counties belonging to ecology-society-economy balanced areas, while no county is dominant in only one of the three functions. On the micro scale, however, different counties have their own functional inclination: Miyun, Yanqing, Mentougou, and Fengtai are ecology-society dominant, and Tongzhou is ecology-economy dominant. The agricultural multifunctionality in Beijing City declines from the north to the south, with Pinggu having the most significant agricultural multifunctionality. The results match up well with the objective condition of Beijing's urban agriculture planning, which has proved the methodological rationality of the assessment to a certain extent

  13. Data mining in agriculture

    CERN Document Server

    Mucherino, Antonio; Pardalos, Panos M

    2009-01-01

    Data Mining in Agriculture represents a comprehensive effort to provide graduate students and researchers with an analytical text on data mining techniques applied to agriculture and environmental related fields. This book presents both theoretical and practical insights with a focus on presenting the context of each data mining technique rather intuitively with ample concrete examples represented graphically and with algorithms written in MATLAB®. Examples and exercises with solutions are provided at the end of each chapter to facilitate the comprehension of the material. For each data mining technique described in the book variants and improvements of the basic algorithm are also given. Also by P.J. Papajorgji and P.M. Pardalos: Advances in Modeling Agricultural Systems, 'Springer Optimization and its Applications' vol. 25, ©2009.

  14. Remote sensing and GIS techniques for assessment of the soil water content in order to improve agricultural practice and reduce the negative impact on groundwater: case study, agricultural area Ştefan cel Mare, Călăraşi County.

    Science.gov (United States)

    Tevi, Giuliano; Tevi, Anca

    2012-01-01

    Traditional agricultural practices based on non-customized irrigation and soil fertilization are harmful for the environment, and may pose a risk for human health. By continuing the use of these practices, it is not possible to ensure effective land management, which might be acquired by using advanced satellite technology configured for modern agricultural development. The paper presents a methodology based on the correlation between remote sensing data and field observations, aiming to identify the key features and to establish an interpretation pattern for the inhomogeneity highlighted by the remote sensing data. Instead of using classical methods for the evaluation of land features (field analysis, measurements and mapping), the approach is to use high resolution multispectral and hyperspectral methods, in correlation with data processing and geographic information systems (GIS), in order to improve the agricultural practices and mitigate their environmental impact (soil and shallow aquifer).

  15. A Risk-Based Interval Two-Stage Programming Model for Agricultural System Management under Uncertainty

    Directory of Open Access Journals (Sweden)

    Ye Xu

    2016-01-01

    Full Text Available Nonpoint source (NPS pollution caused by agricultural activities is main reason that water quality in watershed becomes worse, even leading to deterioration. Moreover, pollution control is accompanied with revenue’s fall for agricultural system. How to design and generate a cost-effective and environmentally friendly agricultural production pattern is a critical issue for local managers. In this study, a risk-based interval two-stage programming model (RBITSP was developed. Compared to general ITSP model, significant contribution made by RBITSP model was that it emphasized importance of financial risk under various probabilistic levels, rather than only being concentrated on expected economic benefit, where risk is expressed as the probability of not meeting target profit under each individual scenario realization. This way effectively avoided solutions’ inaccuracy caused by traditional expected objective function and generated a variety of solutions through adjusting weight coefficients, which reflected trade-off between system economy and reliability. A case study of agricultural production management with the Tai Lake watershed was used to demonstrate superiority of proposed model. Obtained results could be a base for designing land-structure adjustment patterns and farmland retirement schemes and realizing balance of system benefit, system-failure risk, and water-body protection.

  16. EXPERT SYSTEMS - DEVELOPMENT OF AGRICULTURAL INSURANCE TOOL

    Directory of Open Access Journals (Sweden)

    NAN Anca-Petruţa

    2013-07-01

    Full Text Available Because of the fact that specialty agricultural assistance is not always available when the farmers need it, we identified expert systems as a strong instrument with an extended potential in agriculture. This started to grow in scale recently, including all socially-economic activity fields, having the role of collecting data regarding different aspects from human experts with the purpose of assisting the user in the necessary steps for solving problems, at the performance level of the expert, making his acquired knowledge and experience available. We opted for a general presentation of the expert systems as well as their necessity, because, the solution to develop the agricultural system can come from artificial intelligence by implementing the expert systems in the field of agricultural insurance, promoting existing insurance products, farmers finding options in depending on their necessities and possibilities. The objective of this article consists of collecting data about different aspects about specific areas of interest of agricultural insurance, preparing the database, a conceptual presentation of a pilot version which will become constantly richer depending on the answers received from agricultural producers, with the clearest exposure of knowledgebase possible. We can justify picking this theme with the fact that even while agricultural insurance plays a very important role in agricultural development, the registered result got from them are modest, reason why solutions need to be found in the scope of developing the agricultural sector. The importance of this consists in the proposal of an immediate viable solution to correspond with the current necessities of agricultural producers and in the proposal of an innovative solution, namely the implementation of expert system in agricultural insurance as a way of promoting insurance products. Our research, even though it treats the subject at an conceptual level, it wants to undertake an

  17. Super-Resolution of Plant Disease Images for the Acceleration of Image-based Phenotyping and Vigor Diagnosis in Agriculture.

    Science.gov (United States)

    Yamamoto, Kyosuke; Togami, Takashi; Yamaguchi, Norio

    2017-11-06

    Unmanned aerial vehicles (UAVs or drones) are a very promising branch of technology, and they have been utilized in agriculture-in cooperation with image processing technologies-for phenotyping and vigor diagnosis. One of the problems in the utilization of UAVs for agricultural purposes is the limitation in flight time. It is necessary to fly at a high altitude to capture the maximum number of plants in the limited time available, but this reduces the spatial resolution of the captured images. In this study, we applied a super-resolution method to the low-resolution images of tomato diseases to recover detailed appearances, such as lesions on plant organs. We also conducted disease classification using high-resolution, low-resolution, and super-resolution images to evaluate the effectiveness of super-resolution methods in disease classification. Our results indicated that the super-resolution method outperformed conventional image scaling methods in spatial resolution enhancement of tomato disease images. The results of disease classification showed that the accuracy attained was also better by a large margin with super-resolution images than with low-resolution images. These results indicated that our approach not only recovered the information lost in low-resolution images, but also exerted a beneficial influence on further image analysis. The proposed approach will accelerate image-based phenotyping and vigor diagnosis in the field, because it not only saves time to capture images of a crop in a cultivation field but also secures the accuracy of these images for further analysis.

  18. Polyoxyethylene Tallow Amine, a Glyphosate Formulation Adjuvant: Soil Adsorption Characteristics, Degradation Profile, and Occurrence on Selected Soils from Agricultural Fields in Iowa, Illinois, Indiana, Kansas, Mississippi, and Missouri.

    Science.gov (United States)

    Tush, Daniel; Meyer, Michael T

    2016-06-07

    Polyoxyethylene tallow amine (POEA) is an inert ingredient added to formulations of glyphosate, the most widely applied agricultural herbicide. POEA has been shown to have toxic effects to some aquatic organisms making the potential transport of POEA from the application site into the environment an important concern. This study characterized the adsorption of POEA to soils and assessed its occurrence and homologue distribution in agricultural soils from six states. Adsorption experiments of POEA to selected soils showed that POEA adsorbed much stronger than glyphosate; calcium chloride increased the binding of POEA; and the binding of POEA was stronger in low pH conditions. POEA was detected on a soil sample from an agricultural field near Lawrence, Kansas, but with a loss of homologues that contain alkenes. POEA was also detected on soil samples collected between February and early March from corn and soybean fields from ten different sites in five other states (Iowa, Illinois, Indiana, Missouri, Mississippi). This is the first study to characterize the adsorption of POEA to soil, the potential widespread occurrence of POEA on agricultural soils, and the persistence of the POEA homologues on agricultural soils into the following growing season.

  19. Work characteristics and pesticide exposures among migrant agricultural families: a community-based research approach.

    Science.gov (United States)

    McCauley, L A; Lasarev, M R; Higgins, G; Rothlein, J; Muniz, J; Ebbert, C; Phillips, J

    2001-05-01

    There are few data on pesticide exposures of migrant Latino farmworker children, and access to this vulnerable population is often difficult. In this paper we describe a community-based approach to implement culturally appropriate research methods with a migrant Latino farmworker community in Oregon. Assessments were conducted in 96 farmworker homes and 24 grower homes in two agricultural communities in Oregon. Measurements included surveys of pesticide use and work protection practices and analyses of home-dust samples for pesticide residues of major organophosphates used in area crops. Results indicate that migrant farmworker housing is diverse, and the amounts and types of pesticide residues found in homes differ. Azinphos-methyl (AZM) was the pesticide residue found most often in both farmworker and grower homes. The median level of AZM in farmworker homes was 1.45 ppm compared to 1.64 ppm in the entry area of grower homes. The median level of AZM in the play areas of grower homes was 0.71 ppm. The levels of AZM in migrant farmworker homes were most associated with the distance from fields and the number of agricultural workers in the home. Although the levels of AZM in growers and farmworker homes were comparable in certain areas, potential for disproportionate exposures occur in areas of the homes where children are most likely to play. The relationship between home resident density, levels of pesticide residues, and play behaviors of children merit further attention.

  20. Utilizing Secondary Agricultural Education Programs to Deliver Evidence-Based Grain Safety Training for Young and Beginning Workers.

    Science.gov (United States)

    Cheng, Yuan-Hsin; Field, William E; Tormoehlen, Roger L; French, Brian F

    2017-01-01

    Purdue University's Agricultural Safety and Health Program (PUASHP) has collaborated with secondary agricultural education programs, including FFA Chapters, for over 70 years to deliver and promote agricultural safety and health programming. With support from a U.S. Department of Labor Susan Harwood Program grant, PUASHP utilized a Developing a Curriculum (DACUM) process to develop, implement, and evaluate an evidence-based curriculum for use with young and beginning workers, ages 16-20, exposed to hazards associated with grain storage and handling. The primary audience was students enrolled in secondary agricultural education programs. A review of the literature identified a gap in educational resources that specifically addresses this target population. The curriculum developed was based on fatality and injury incident data mined from Purdue's Agricultural Confined Space Incident Database and input from a panel of experts. The process identified 27 learning outcomes and finalized a pool of test questions, supported by empirical evidence and confirmed by a panel of experts. An alignment process was then completed with the current national standards for secondary agricultural education programs. Seventy-two youth, ages 16-20, enrolled in secondary-school agricultural education programs, and a smaller group of post-secondary students under the age of 21 interested in working in the grain industry pilot tested the curriculum. Based on student and instructor feedback, the curriculum was refined and submitted to OSHA for approval as part of OSHA's online training resources. The curriculum was delivered to 3,665 students, ages 16-20. A total of 346 pre- and post-tests were analyzed, and the results used to confirm content validity and assess knowledge gain. Findings led to additional modifications to curriculum content, affirmed knowledge gain, and confirmed appropriateness for use with secondary agricultural education programs. The curriculum has been promoted

  1. Mercury cycling in agricultural and managed wetlands: a synthesis of methylmercury production, hydrologic export, and bioaccumulation from an integrated field study

    Science.gov (United States)

    Windham-Myers, Lisamarie; Fleck, Jacob A.; Ackerman, Joshua T.; Marvin-DiPasquale, Mark C.; Stricker, Craig A.; Heim, Wesley A.; Bachand, Philip A.M.; Eagles-Smith, Collin A.; Gill, Gary; Stephenson, Mark; Alpers, Charles N.

    2014-01-01

    With seasonal wetting and drying, and high biological productivity, agricultural wetlands (rice paddies) may enhance the conversion of inorganic mercury (Hg(II)) to methylmercury (MeHg), the more toxic, organic form that biomagnifies through food webs. Yet, the net balance of MeHg sources and sinks in seasonal wetland environments is poorly understood because it requires an annual, integrated assessment across biota, sediment, and water components. We examined a suite of wetlands managed for rice crops or wildlife during 2007–2008 in California's Central Valley, in an area affected by Hg contamination from historic mining practices. Hydrologic management of agricultural wetlands for rice, wild rice, or fallowed — drying for field preparation and harvest, and flooding for crop growth and post-harvest rice straw decay — led to pronounced seasonality in sediment and aqueous MeHg concentrations that were up to 95-fold higher than those measured concurrently in adjacent, non-agricultural permanently-flooded and seasonally-flooded wetlands. Flooding promoted microbial MeHg production in surface sediment of all wetlands, but extended water residence time appeared to preferentially enhance MeHg degradation and storage. When incoming MeHg loads were elevated, individual fields often served as a MeHg sink, rather than a source. Slow, horizontal flow of shallow water in the agricultural wetlands led to increased importance of vertical hydrologic fluxes, including evapoconcentration of surface water MeHg and transpiration-driven advection into the root zone, promoting temporary soil storage of MeHg. Although this hydrology limited MeHg export from wetlands, it also increased MeHg exposure to resident fish via greater in situ aqueous MeHg concentrations. Our results suggest that the combined traits of agricultural wetlands — slow-moving shallow water, manipulated flooding and drying, abundant labile plant matter, and management for wildlife — may enhance microbial

  2. A Remote Sensing Approach for Regional-Scale Mapping of Agricultural Land-Use Systems Based on NDVI Time Series

    Directory of Open Access Journals (Sweden)

    Beatriz Bellón

    2017-06-01

    Full Text Available In response to the need for generic remote sensing tools to support large-scale agricultural monitoring, we present a new approach for regional-scale mapping of agricultural land-use systems (ALUS based on object-based Normalized Difference Vegetation Index (NDVI time series analysis. The approach consists of two main steps. First, to obtain relatively homogeneous land units in terms of phenological patterns, a principal component analysis (PCA is applied to an annual MODIS NDVI time series, and an automatic segmentation is performed on the resulting high-order principal component images. Second, the resulting land units are classified into the crop agriculture domain or the livestock domain based on their land-cover characteristics. The crop agriculture domain land units are further classified into different cropping systems based on the correspondence of their NDVI temporal profiles with the phenological patterns associated with the cropping systems of the study area. A map of the main ALUS of the Brazilian state of Tocantins was produced for the 2013–2014 growing season with the new approach, and a significant coherence was observed between the spatial distribution of the cropping systems in the final ALUS map and in a reference map extracted from the official agricultural statistics of the Brazilian Institute of Geography and Statistics (IBGE. This study shows the potential of remote sensing techniques to provide valuable baseline spatial information for supporting agricultural monitoring and for large-scale land-use systems analysis.

  3. Isotopes in tropical agriculture

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1962-04-15

    Ways in which the use of radioisotopes and radiation can help to improve the agriculture of tropical Africa were discussed by a panel of experts. The panel included scientists from Africa, Europe, and the United States, most of whom had had actual experience dealing with agricultural problems in various parts of tropical Africa. The experts agreed that radioisotopes and radiation might now be employed to particular advantage in tropical Africa to improve crop nutrition and combat insect pests. Other applications discussed were in the fields of hydrology, plant breeding and food preservation

  4. Isotopes in tropical agriculture

    International Nuclear Information System (INIS)

    1962-01-01

    Ways in which the use of radioisotopes and radiation can help to improve the agriculture of tropical Africa were discussed by a panel of experts. The panel included scientists from Africa, Europe, and the United States, most of whom had had actual experience dealing with agricultural problems in various parts of tropical Africa. The experts agreed that radioisotopes and radiation might now be employed to particular advantage in tropical Africa to improve crop nutrition and combat insect pests. Other applications discussed were in the fields of hydrology, plant breeding and food preservation

  5. Cost-effectiveness analysis of surface flow constructed wetlands (SFCW) for nutrient reduction in drainage discharge from agricultural fields in Denmark

    DEFF Research Database (Denmark)

    Gachango, Florence Gathoni; Pedersen, Søren Marcus; Kjærgaard, Charlotte

    2015-01-01

    Constructed wetlands have been proposed as cost-effective and more targeted technologies in the reduction of nitrogen and phosphorous water pollution in drainage losses from agricultural fields in Denmark. Using two pig farms and one dairy farm situated in a pumped lowland catchment as case studies......, this paper explores the feasibility of implementing surface flow constructed wetlands (SFCW) based on their cost effectiveness. Sensitivity analysis is conducted by varying the cost elements of the wetlands in order to establish the most cost-effective scenario and a comparison with the existing nutrients...... reduction measures carried out. The analyses show that the cost effectiveness of the SFCW is higher in the drainage catchments with higher nutrient loads. The range of the cost effectiveness ratio on nitrogen reduction differs distinctively with that of catch crop measure. The study concludes that SFCW...

  6. Intellectual Properties Rights-A strong determinant of economic growth in agriculture

    Directory of Open Access Journals (Sweden)

    Love Kumar Singh

    2010-01-01

    Full Text Available In the past few decades the subject of intellectual property rights (IPRs has occupied center stage in debates about globalization, economic development and poverty elimination. This study concerns the strengthening of IPRs in the plant breeding industry and its effect on agriculture in India. In India, most of the population relies on agricul-ture for its livelihood. India is self-sufficient in wheat and paddy, but deficient in other agricultural products. Pat-ents are good indicators of research and development output. Patent analysis makes it possible to map out the trend of technological change and life cycle of a technology - growth, development, maturity and decline. Patent infor-mation and patent statistical analysis have been used for examining present, technological status and to forecast future trends. One can determine the directions of corporate R&D and market interests by analyzing patent data. The present study is an attempt to analyze patents granted in India in the field of agriculture and importance of biotechnology-based innovations in agriculture

  7. Potential of Cellulose-Based Superabsorbent Hydrogels as Water Reservoir in Agriculture

    Directory of Open Access Journals (Sweden)

    C. Demitri

    2013-01-01

    Full Text Available The present work deals with the development of a biodegradable superabsorbent hydrogel, based on cellulose derivatives, for the optimization of water resources in agriculture, horticulture and, more in general, for instilling a wiser and savvier approach to water consumption. The sorption capability of the proposed hydrogel was firstly assessed, with specific regard to two variables that might play a key role in the soil environment, that is, ionic strength and pH. Moreover, a preliminary evaluation of the hydrogel potential as water reservoir in agriculture was performed by using the hydrogel in experimental greenhouses, for the cultivation of tomatoes. The soil-water retention curve, in the presence of different hydrogel amounts, was also analysed. The preliminary results showed that the material allowed an efficient storage and sustained release of water to the soil and the plant roots. Although further investigations should be performed to completely characterize the interaction between the hydrogel and the soil, such findings suggest that the envisaged use of the hydrogel on a large scale might have a revolutionary impact on the optimization of water resources management in agriculture.

  8. The role and potential of information technology in agricultural improvement

    Directory of Open Access Journals (Sweden)

    Milovanović Slavoljub

    2014-01-01

    Full Text Available The agro-industrial sector in developing countriesis faced with challenges, such as requirement for increase of food production and yield and creation of opportunity for employment of rural and poor population. In addition, the agricultural sector is influenced by global factors and fast changes. These facts indicate that there is great need for information and information technologies (IT, which can be used to cope with the challenges and changes and to improve agricultural production and marketing. However, the potential of IT is not fully utilized in agriculture. Implementation of IT in agricultural sector and rural areas is relatively slow in comparison to the other sectors of the economy where contemporary IT has been implemented at high speed. The aim of the paper is to analyze role, potential and contribution of IT in agribusiness and to explain opportunities for use of IT in many fields of agricultural sector. Our findings are based on economic theory and available literature, and they suggest that IT has great potential for supporting farmers and the other stakeholders in improvement of efficiency, effectiveness and productivity of agriculture. However, the stakeholders have to cope with many limitations and problems in IT implementation and use.

  9. SOME NORMATIVE AND INSTITUTIONAL DEVELOPMENTS IN THE FIELD OF COMMON AGRICULTURAL POLICY AND THEIR CONSEQUENCES ON THE PROTECTION OF THE EUROPEAN CITIZENS’ INTERESTS

    Directory of Open Access Journals (Sweden)

    Gabriela Alexandra Oanta

    2007-07-01

    Full Text Available This paper intends to briefly comment on some changes in the field of Common Agricultural Policy, especially regarding the safety of agricultural products and foodstuff. Within the framework of the CAP the food safety has managed to progressively constitute its third pillar, currently boasting an outstanding place in the attainment of its objectives. CAP has been progressing in its mechanisms and legal instruments towards a more relevant integration of the concerns relative to the consumer’s health protection and to the food safety in the objectives to be reached.

  10. An economic theory-based explanatory model of agricultural land-use patterns: The Netherlands as a case study

    NARCIS (Netherlands)

    Diogo, V.; Koomen, E.; Kuhlman, T.

    2015-01-01

    An economic theory-based land-use modelling framework is presented aiming to explain the causal link between economic decisions and resulting spatial patterns of agricultural land use. The framework assumes that farmers pursue utility maximisation in agricultural production systems, while

  11. Nutrient uptake by agricultural crops from biochar-amended soils: results from two field experiments in Austria

    Science.gov (United States)

    Karer, Jasmin; Zehetner, Franz; Kloss, Stefanie; Wimmer, Bernhard; Soja, Gerhard

    2013-04-01

    The use of biochar as soil amendment is considered as a promising agricultural soil management technique, combining carbon sequestration and soil fertility improvements. These expectations are largely founded on positive experiences with biochar applications to impoverished or degraded tropical soils. The validity of these results for soils in temperate climates needs confirmation from field experiments with typical soils representative for intensive agricultural production areas. Frequently biochar is mixed with other organic additives like compost. As these two materials interact with each other and each one may vary considerably in its basic characteristics, it is difficult to attribute the effects of the combined additive to one of its components and to a specific physico-chemical parameter. Therefore investigations of the amendment efficacy require the study of the pure components to characterize their specific behavior in soil. This is especially important for adsorption behavior of biochar for macro- and micronutrients because in soil there are multiple nutrient sinks that compete with plant roots for vital elements. Therefore this contribution presents results from a field amendment study with pure biochar that had the objective to characterize the macro- and microelement uptake of crops from different soils in two typical Austrian areas of agricultural production. At two locations in North and South-East Austria, two identical field experiments on different soils (Chernozem and Cambisol) were installed in 2011 with varying biochar additions (0, 30 and 90 t/ha) and two nitrogen levels. The biochar was a product from slow pyrolysis of wood (SC Romchar SRL). During the installation of the experiments, the biochar fraction of corn). An omission of biochar addition at the same nitrogen addition rate resulted in a yield decrease of 10 % for barley although the total N uptake was 11 % higher but P and K uptake decreased by 14 and 6 %. This indicates that the

  12. Prospective analysis agriculture energy 2030. Agriculture and the challenges of energy - Synthesis

    International Nuclear Information System (INIS)

    Vert, Julien; Portet, Fabienne; Even, Marie-Aude; Herault, Bruno; Laisney, Celine; Mahe, Thuriane

    2010-01-01

    The present overview document contains the main results of the Agriculture Energy 2030 prospective study, based on the work of the group led by the CEP [Centre d'etudes et de prospective/Centre for studies and strategic foresight] at the Ministry of Agriculture, Food, Fisheries, Rural Affairs and Spatial Planning. Energy in agriculture is all too often seen as a purely cyclical problem whereas it is a major issue for the future due to its economic consequences for agricultural holdings, its links with environmental and climatic issues, and its influence on food supply chains and spatial planning. Based on the scenario method, this analysis initially involved describing the whole range of links between agriculture and energy in France and organising them into a system of variables before going on to draw up an inventory of the knowledge available. Starting out from this diagnostic approach, the group constructed four scenarios over the period to 2030: 'Regionalization and sobriety to confront the crisis', 'Twin track agriculture and energy realism', 'Health Agriculture with no major energy constraints' and 'Ecological agriculture and energy savings'. These scenarios do not form an exhaustive panorama of all possible developments of the agriculture-energy system - they are rather formalised images of what the future might hold. However, quantification and comparison of the scenarios has led to the identification of major room for progress in energy efficiency in French farming. By helping gain greater awareness of future difficulties and issues or, conversely, opportunities to be grasped, these scenarios provided input for the strategic analysis phase, the concluding stage of this exercise, and the identification of general objectives and levers for public action. (authors)

  13. Image-Based Particle Filtering For Robot Navigation In A Maize Field

    NARCIS (Netherlands)

    Hiremath, S.; Evert, van F.K.; Heijden, van der G.W.A.M.; Braak, ter C.J.F.; Stein, A.

    2012-01-01

    Autonomous navigation of a robot in an agricultural field is a challenge as the robot is in an environment with many sources of noise. This includes noise due to uneven terrain, varying shapes, sizes and colors of the plants, imprecise sensor measurements and effects due to wheel-slippage. The

  14. The Knowledge Management Research of Agricultural Scientific Research Institution

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Based on the perception of knowledge management from experts specializing in different fields,and experts at home and abroad,the knowledge management of agricultural scientific research institution can build new platform,offer new approach for realization of explicit or tacit knowledge,and promote resilience and innovative ability of scientific research institution.The thesis has introduced functions of knowledge management research of agricultural science.First,it can transform the tacit knowledge into explicit knowledge.Second,it can make all the scientific personnel share knowledge.Third,it is beneficial to the development of prototype system of knowledge management.Fourth,it mainly researches the realization of knowledge management system.Fifth,it can manage the external knowledge via competitive intelligence.Sixth,it can foster talents of knowledge management for agricultural scientific research institution.Seventh,it offers the decision-making service for leaders to manage scientific program.The thesis also discusses the content of knowledge management of agricultural scientific research institution as follows:production and innovation of knowledge;attainment and organizing of knowledge;dissemination and share of knowledge;management of human resources and the construction and management of infrastructure.We have put forward corresponding countermeasures to further reinforce the knowledge management research of agricultural scientific research institution.

  15. Pesticide Leaching Models in a Brazilian Agricultural Field Scenario

    NARCIS (Netherlands)

    Scorza, R.P.; Oliveira Rigitano, de R.L.; Boesten, J.J.T.I.

    2011-01-01

    The use of Pesticide Leaching Models (PLM) for risk assessment may be an efficient and attractive way of assessing solutions to some agricultural and environmental problems. Many countries of the European Union and the USA have been using PLM for risk assessment already for a few decades. This

  16. [Ecological agriculture: future of Good Agriculture Practice of Chinese materia medica].

    Science.gov (United States)

    Guo, Lan-ping; Zhou, Liang-yun; Mo, Ge; Wang, Sheng; Huang, Lu-qi

    2015-09-01

    Based on the ecological and economic problems in Good Agriculture Practice (GAP) of Chinese material medica, we introduced the origin, concept, features and operative technology of eco-agriculture worldwide, emphasizing its modes on different biological levels of landscape, ecosystem, community, population, individual and gene in China. And on this basis, we analyzed the background and current situation of eco-agriculture of Chinese materia medica, and proposed its development ideas and key tasks, including: (1) Analysis and planning of the production pattern of Chinese material medica national wide. (2) Typical features extraction of regional agriculture of Chinese materia medica. (3) Investigation of the interaction and its mechanism between typical Chinese materia medica in each region and the micro-ecology of rhizosphere soil. (4) Study on technology of eco-agriculture of Chinese materia medica. (5) Extraction and solidification of eco-agriculture modes of Chinese materia medica. (6) Study on the theory of eco-agriculture of Chinese materia medica. Also we pointed out that GAP and eco-agriculture of Chinese material medica are both different and relative, but they are not contradictory with their own features. It is an irresistible trend to promote eco-agriculture in the GAP of Chinese material medica and coordinate ecological and economic development.

  17. Greenhouse Gas Emissions from Agricultural Production

    DEFF Research Database (Denmark)

    Bennetzen, Eskild Hohlmann

    unit. This dissertation presents results and comprehensions from my PhD study on the basis of three papers. The overall aim has been to develop a new identity-based framework, the KPI, to estimate and analyse GHG emissions from agriculture and LUC and apply this on national, regional and global level....... The KPI enables combined analyses of changes in total emissions, emissions per area and emissions per product. Also, the KPI can be used to assess how a change in each GHG emission category affects the change in total emissions; thus pointing to where things are going well and where things are going less...... well in relation to what is actually produced. The KPI framework is scale independent and can be applied at any level from field and farm to global agricultural production. Paper I presents the first attempt to develop the KPI identity framework and, as a case study, GHG emissions from Danish crop...

  18. Place-Based Picture Books as an Adult Learning Tool: Supporting Agricultural Learning in Papua New Guinea

    Science.gov (United States)

    Simoncini, Kym; Pamphilon, Barbara; Mikhailovich, Katja

    2017-01-01

    This article describes the rationale, development, and outcomes of two place-based, dual-language picture books with agricultural messages for women farmers and their families in Papua New Guinea. The purpose of the books was to disseminate better agricultural and livelihood practices to women farmers with low literacy. The books were designed and…

  19. Simulation and optimization of agricultural product supply chain system based on Witness

    Directory of Open Access Journals (Sweden)

    Jiandong Liu

    2017-03-01

    Full Text Available Researches on agricultural product supply chain have important implications for improving the efficiency of agricultural products circulation, strengthening the construction of agricultural market system, promoting agricultural modernization and solving the three rural issues. Agricultural product supply chain system has begun to be optimized through simulation technique. In this paper, agricultural product supply chain system is reasonably simplified and assumed. A simulation model was developed by using the simulation software Wit-ness to study agricultural product supply chain. Through the analysis of the simulation output data, improvement suggestions were also proposed as follows: improving the organization degree of agricultural products, improving the agricultural products processing, establishing strategic partnership and scientifically developing agricultural products logistics.

  20. Research on Agricultural Product Options Pricing Based on Lévy Copula

    Science.gov (United States)

    Qiu, Hong

    2017-11-01

    China is a large agricultural country, and the healthy development of agriculture is related to the stability of the whole society. With the advancement of modern agriculture and the expansion of agricultural scale, the demand for farmers to avoid market risks is increasingly urgent. Option trading has the effect of attracting farmers’ intervention, promoting order agriculture development, perfecting agricultural support policy and promoting the development of agricultural futures market. Relative to the futures, the option transaction because the margin is low, reducing the trader’s entry threshold, you can make more small and medium investors to participate. This is not only active in the futures market, but also for many small and medium investors to provide effective financial management tools.

  1. Current Status and Future Potential of Energy Derived from Chinese Agricultural Land: A Review

    Directory of Open Access Journals (Sweden)

    Ningning Zhai

    2015-01-01

    Full Text Available Energy crisis is receiving attention with regard to the global economy and environmental sustainable development. Developing new energy resources to optimize the energy supply structure has become an important measure to prevent energy shortage as well as achieving energy conservation and emission reduction in China. This study proposed the concept of energy agriculture and constructed an energy agricultural technical support system based on the analysis of energy supply and demand and China’s foreign dependence on energy resources, combined with the function of agriculture in the energy field. Manufacturing technology equipment and agricultural and forestry energy, including crop or forestry plants and animal feces, were used in the system. The current status and future potential of China’s marginal land resources, energy crop germplasm resources, and agricultural and forestry waste energy-oriented resources were analyzed. Developing the function of traditional agriculture in food production may promote China’s social, economic, and environmental sustainable development and achieve energy saving and emission reduction.

  2. Field-based experimental water footprint study of sunflower growth in a semi-arid region of China.

    Science.gov (United States)

    Qin, Lijie; Jin, Yinghua; Duan, Peili; He, Hongshi

    2016-07-01

    Field-scale changes in the water footprint during crop growth play an important role in formulating sustainable water utilisation strategies. This study aimed to explore field-scale variation in the water footprint of growing sunflowers in the western Jilin Province, China, during a 3-year field experiment. The goals of this study were to (1) determine the components of the 'blue' and 'green' water footprints for sunflowers sown with water, and (2) analyse variations in water footprints and soil water balance under different combinations of temperature and precipitation. Specific actions could be adopted to maintain sustainable agricultural water utilisation in the semi-arid region based on this study. The green, blue, and grey water footprints accounted for 93.7-94.7%, 0.4-0.5%, and 4.9-5.8%, respectively, of the water footprint of growing sunflowers. The green water footprint for effective precipitation during the growing season accounted for 58.8% in a normal drought year but 48.2% in an extreme drought year. When the effective precipitation during the growing season could not meet the green water use, a moisture deficit arose. This increase in the moisture deficit can have a significant impact on soil water balance. Green water was the primary water source for sunflower growth in the study area, where a scarcity of irrigation water during sunflower growth damaged the soil water balance, particularly in years with continuous drought. The combination of temperature and precipitation effected the growing environment, leading to differences in yield and water footprint. The field experiments in this area may benefit from further water footprint studies at the global, national and regional scale. © 2016 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2016 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of

  3. Comparison of Uncalibrated Rgbvi with Spectrometer-Based Ndvi Derived from Uav Sensing Systems on Field Scale

    Science.gov (United States)

    Bareth, G.; Bolten, A.; Gnyp, M. L.; Reusch, S.; Jasper, J.

    2016-06-01

    The development of UAV-based sensing systems for agronomic applications serves the improvement of crop management. The latter is in the focus of precision agriculture which intends to optimize yield, fertilizer input, and crop protection. Besides, in some cropping systems vehicle-based sensing devices are less suitable because fields cannot be entered from certain growing stages onwards. This is true for rice, maize, sorghum, and many more crops. Consequently, UAV-based sensing approaches fill a niche of very high resolution data acquisition on the field scale in space and time. While mounting RGB digital compact cameras to low-weight UAVs (modified version of the Yara N-Sensor. The latter is a well-established tractor-based hyperspectral sensor for crop management and is available on the market since a decade. It was modified for this study to fit the requirements of UAV-based data acquisition. Consequently, we focus on three objectives in this contribution: (1) to evaluate the potential of the uncalibrated RGBVI for monitoring nitrogen status in winter wheat, (2) investigate the UAV-based performance of the modified Yara N-Sensor, and (3) compare the results of the two different UAV-based sensing approaches for winter wheat.

  4. The Institute of Nuclear Agriculture in Bangladesh

    International Nuclear Information System (INIS)

    Kaul, A.K.

    1978-01-01

    Since as early as 1964, a small group of agricultural scientists of the Bangladesh Atomic Research Establishment have been using radioisotopes and radiation tools in their research. Realizing the potential use of nuclear tools in agriculture, this agricultural section was reorganized and expanded into a full-fledge institute. For this work the need for outside support was foreseen and in July 1973 the Government submitted a request for support from the Swedish International Development Agency (SIDA). As a result, a technical assistance SIDA project was approved, with the IAEA being the executing agency. This US $1 million, 5 year-project provides for some 100 man-months of international expertise, some 200 man-months of fellowships, as well as for various equipment and supplies. The Institute of Nuclear Agriculture was formally inaugurated on 12 December 1977, by the Vice-President of the People's Republic of Bangladesh, Justice Abdus Sattar. Helio F.S. Bittencourt, the IAEA Deputy Director General for Technical Assistance and Publications, represented the Agency at this ceremony. The objectives of INA are: 1. To identify and solve basic agricultural problems of the country through inter-disciplinary approach, employing both nuclear and conventional research techniques. 2. To train scientists in appropriate fields of research at home and abroad, there by filling the gap of skilled manpower. 3. To conduct experiments in areas of agricultural research, such as breeding of cereals, fibre crops, legumes and oil-seed plants, irrigation and water management, soil-plant relationship studies and other related areas. 4. To perfect and apply a number of analytical techniques, which are rapid and accurate, for use in different fields of research. The physical facilities are made available to users from throughout the country. 5. To make use of international expertise in specific fields to provide on-the-spot analysis of problems, and to render advice and training to

  5. The Institute of Nuclear Agriculture in Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Kaul, A K [Institute of Nuclear Agriculture, Mymensingh (Bangladesh)

    1978-06-15

    Since as early as 1964, a small group of agricultural scientists of the Bangladesh Atomic Research Establishment have been using radioisotopes and radiation tools in their research. Realizing the potential use of nuclear tools in agriculture, this agricultural section was reorganized and expanded into a full-fledge institute. For this work the need for outside support was foreseen and in July 1973 the Government submitted a request for support from the Swedish International Development Agency (SIDA). As a result, a technical assistance SIDA project was approved, with the IAEA being the executing agency. This US $1 million, 5 year-project provides for some 100 man-months of international expertise, some 200 man-months of fellowships, as well as for various equipment and supplies. The Institute of Nuclear Agriculture was formally inaugurated on 12 December 1977, by the Vice-President of the People's Republic of Bangladesh, Justice Abdus Sattar. Helio F.S. Bittencourt, the IAEA Deputy Director General for Technical Assistance and Publications, represented the Agency at this ceremony. The objectives of INA are: 1. To identify and solve basic agricultural problems of the country through inter-disciplinary approach, employing both nuclear and conventional research techniques. 2. To train scientists in appropriate fields of research at home and abroad, there by filling the gap of skilled manpower. 3. To conduct experiments in areas of agricultural research, such as breeding of cereals, fibre crops, legumes and oil-seed plants, irrigation and water management, soil-plant relationship studies and other related areas. 4. To perfect and apply a number of analytical techniques, which are rapid and accurate, for use in different fields of research. The physical facilities are made available to users from throughout the country. 5. To make use of international expertise in specific fields to provide on-the-spot analysis of problems, and to render advice and training to

  6. Low field pulsed NMR- a mass screening tool in agricultural research

    International Nuclear Information System (INIS)

    Tiwari, P.N.

    1994-01-01

    One of the main requirements in agricultural research is to analyse large number of samples for their one or more chemical constituents and physical properties. In plant breeding programmes and germplasm evaluation, it is necessary that the analysis is fast as many samples are to be analysed. Pulsed nuclear magnetic resonance (NMR) is a potential tool for developing rapid and nondestructive method of analysis. Various applications of low resolution pulsed NMR in agricultural research, which are generally used as screening method are briefly described. 25 refs., 2 figs., 2 tabs

  7. GAOS: Spatial optimisation of crop and nature within agricultural fields

    NARCIS (Netherlands)

    Bruin, de S.; Janssen, H.; Klompe, A.; Lerink, P.; Vanmeulebrouk, B.

    2010-01-01

    This paper proposes and demonstrates a spatial optimiser that allocates areas of inefficient machine manoeuvring to field margins thus improving the use of available space and supporting map-based Controlled Traffic Farming. A prototype web service (GAOS) allows farmers to optimise tracks within

  8. Nitrous oxide production and consumption potential in an agricultural and a forest soil

    DEFF Research Database (Denmark)

    Yu, Kewei; Struwe, Sten; Kjøller, Annelise

    2008-01-01

    Both a laboratory incubation experiment using soils from an agricultural field and a forest and field measurements at the same locations were conducted to determine nitrous oxide (N2O) production and consumption (reduction) potentials using the acetylene (C2H2) inhibition technique. Results from...... measurements show that average N2O emission rates were 0.56 and 0.59 kg N ha-1 in the agricultural field and forest, respectively. When C2H2 was provided in the field measurements, N2O emission rates from the agricultural field and forest increased by 38 and 51%, respectively. Nitrous oxide consumption under...

  9. Root-collar diameter and third-year survival of three bottomland hardwoods planted on former agricultural fields in the Lower Mississippi Alluvial Valley

    Science.gov (United States)

    Emile S. Gardiner; Douglass F. Jacobs; Ronald P. Overton; George Hernandez

    2009-01-01

    Athough the Lower Mississippi Alluvial Valley (LMAV) has experienced substantial afforestation of former agricultural fields during the past 2 decades, seedling standards that support satisfactory outplanting performance of bottomland hardwood tree species are not available. A series of experimental plantations, established on three afforestation sites in the LMAV,...

  10. International Conference on Information Technology and Agricultural Engineering (ICITAE 2011)

    CERN Document Server

    Sambath, Sabo; Information Technology and Agricultural Engineering

    2012-01-01

    This volume comprises the papers from 2011 International Conference on Information Technology and Agricultural Engineering (ICITAE 2011).  2011 International Conference on Information Technology and Agricultural Engineering (ICITAE 2011) has been held in Sanya, China, December 1-2, 2011. All the papers have been peer reviewed by the selected experts. These papers represent the latest development in the field of materials manufacturing technology, spanning from the fundamentals to new technologies and applications. Specially, these papers cover the topics of Information Technology and Agricultural Engineering. This book provides a greatly valuable reference for researchers in the field of Information Technology and Agricultural Engineering who wish to further understand the underlying mechanisms and create innovative and practical techniques, systems and processes. It should also be particularly useful for engineers in information technology and agriculture who are responsible for the efficient and effective ...

  11. New technologies and worker safety in western agriculture.

    Science.gov (United States)

    Fenske, Richard A

    2009-01-01

    The New Paths: Health and Safety in Western Agriculture conference, November 11-13, 2008, highlighted the role of technological innovation in agricultural production. The tree fruit industry in the Pacific Northwest has adopted a "technology road map" to reduce production costs and improve efficiency. An agricultural tour provided field demonstrations and discussions on such topics as mobile work platforms in orchards, traumatic and musculoskeletal injuries, and new pest control technologies. Occupational safety and health research will need to adapt to and keep pace with rapid changes in agricultural production processes.

  12. The development of halophyte-based agriculture: past and present.

    Science.gov (United States)

    Ventura, Yvonne; Eshel, Amram; Pasternak, Dov; Sagi, Moshe

    2015-02-01

    Freshwater comprises about a mere 2·5% of total global water, of which approximately two-thirds is locked into glaciers at the polar ice caps and on mountains. In conjunction with this, in many instances irrigation with freshwater causes an increase in soil salinity due to overirrigation of agricultural land, inefficient water use and poor drainage of unsuitable soils. The problem of salinity was recognized a long time ago and, due to the importance of irrigated agriculture, numerous efforts have been devoted towards improving crop species for better utilization of saline soils and water. Irrigating plants with saline water is a challenge for practitioners and researchers throughout the world. Recruiting wild halophytes with economic potential was suggested several decades ago as a way to reduce the damage caused by salinization of soil and water. A range of cultivation systems for the utilization of halophytes have been developed, for the production of biofuel, purification of saline effluent in constructed wetlands, landscaping, cultivation of gourmet vegetables, and more. This review critically analyses past and present halophyte-based production systems in the context of genetics, physiology, agrotechnical issues and product value. There are still difficulties that need to be overcome, such as direct germination in saline conditions or genotype selection. However, more and more research is being directed not only towards determining salt tolerance of halophytes, but also to the improvement of agricultural traits for long-term progress. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. [Wildlife damage mitigation in agricultural crops in a Bolivian montane forest].

    Science.gov (United States)

    Perez, Eddy; Pacheco, Luis F

    2014-12-01

    Wildlife is often blamed for causing damage to human activities, including agricultural practices and the result may be a conflict between human interests and species conservation. A formal assessment of the magnitude of damage is necessary to adequately conduct management practices and an assessment of the efficiency of different management practices is necessary to enable managers to mitigate the conflict with rural people. This study was carried out to evaluate the effectiveness of agricultural management practices and controlled hunting in reducing damage to subsistence annual crops at the Cotapata National Park and Natural Area of Integrated Management. The design included seven fields with modified agricultural practices, four fields subjected to control hunting, and five fields held as controls. We registered cultivar type, density, frequency of visiting species to the field, crops lost to wildlife, species responsible for damage, and crop biomass. Most frequent species in the fields were Dasyprocta punctata and Dasypus novemcinctus. Hunted plots were visited 1.6 times more frequently than agriculturally managed plots. Crop lost to wildlife averaged 7.28% at agriculturally managed plots, 4.59% in plots subjected to hunting, and 27.61% in control plots. Species mainly responsible for damage were Pecari tajacu, D. punctata, and Sapajus apella. We concluded that both management strategies were effective to reduce damage by >50% as compared to unmanaged crop plots.

  14. Spatial probability of soil water repellency in an abandoned agricultural field in Lithuania

    Science.gov (United States)

    Pereira, Paulo; Misiūnė, Ieva

    2015-04-01

    Water repellency is a natural soil property with implications on infiltration, erosion and plant growth. It depends on soil texture, type and amount of organic matter, fungi, microorganisms, and vegetation cover (Doerr et al., 2000). Human activities as agriculture can have implications on soil water repellency (SWR) due tillage and addition of organic compounds and fertilizers (Blanco-Canqui and Lal, 2009; Gonzalez-Penaloza et al., 2012). It is also assumed that SWR has a high small-scale variability (Doerr et al., 2000). The aim of this work is to study the spatial probability of SWR in an abandoned field testing several geostatistical methods, Organic Kriging (OK), Simple Kriging (SK), Indicator Kriging (IK), Probability Kriging (PK) and Disjunctive Kriging (DK). The study area it is located near Vilnius urban area at (54 49' N, 25 22', 104 masl) in Lithuania (Pereira and Oliva, 2013). It was designed a experimental plot with 21 m2 (07x03 m). Inside this area it was measured SWR was measured every 50 cm using the water drop penetration time (WDPT) (Wessel, 1998). A total of 105 points were measured. The probability of SWR was classified in 0 (No probability) to 1 (High probability). The methods accuracy was assessed with the cross validation method. The best interpolation method was the one with the lowest Root Mean Square Error (RMSE). The results showed that the most accurate probability method was SK (RMSE=0.436), followed by DK (RMSE=0.437), IK (RMSE=0.448), PK (RMSE=0.452) and OK (RMSE=0.537). Significant differences were identified among probability tests (Kruskal-Wallis test =199.7597 ptested technique. Simple Kriging, DK, IK and PK methods identified the high SWR probabilities in the northeast and central part of the plot, while OK observed mainly in the south-western part of the plot. In conclusion, before predict the spatial probability of SWR it is important to test several methods in order to identify the most accurate. Acknowledgments COST action ES

  15. An ontology-based collaborative service framework for agricultural information

    Science.gov (United States)

    In recent years, China has developed modern agriculture energetically. An effective information framework is an important way to provide farms with agricultural information services and improve farmer's production technology and their income. The mountain areas in central China are dominated by agri...

  16. Agricultural Land Use in Ahlat District

    Directory of Open Access Journals (Sweden)

    Necmettin ELMASTAŞ

    2009-12-01

    Full Text Available Ahlat district has suitable topography for growing of agricultural products. Almost half of Ahlat district is suitable for agricultural. Today, 32.7% of the land use in Ahlat is agricultural area. 90% of agricultural area is dry farming area. 10% of agricultural area is irrigated. 60.3%of land use in Ahlat district is pasturage area. The economy of Ahlat is based on agricultural and animal husbandry. Today, agricultural products such as wheat, potato and sugar beet are grown in agricultural areas. Ahlat district has some problems like unplanned production, irrigation and marketing.

  17. First results of tall tower based nitrous oxide flux monitoring over an agricultural region in Central Europe

    Science.gov (United States)

    Haszpra, László; Hidy, Dóra; Taligás, Tímea; Barcza, Zoltán

    2018-03-01

    Nitrous oxide is one of the atmospheric greenhouse gases whose amount is significantly influenced by human activity. Its major anthropogenic sources are the agricultural soils but the emission is known only with large uncertainty yet. The paper presents a tall tower based measuring system installed in Hungary, which is designed for the long-term monitoring of nitrous oxide emission of a regionally typical composition of agricultural fields by means of eddy covariance technique. Due to the careful calibration of the gas analyzer applied the measuring system is also suitable for the recording of the atmospheric concentration of nitrous oxide on the globally compatible scale (WMO X2006A). The paper reports the results of the first two years of the monitoring program, which is the first of its kind in Central Europe. For the period of July 2015-June 2017 the concentration measurements indicate an increasing trend of 0.91 nmol mol-1 year-1 with an average concentration of 330.64 nmol mol-1. During the two years of the project, the monitoring system recorded a total of 441 ± 195 mg N2O-N m-2 nitrous oxide emission with late spring/early summer maximum. The measurements also revealed the episodic nature of the emission typically triggered by major precipitation events.

  18. Monitoring soil moisture dynamics via ground-penetrating radar survey of agriculture fields after irrigation

    Science.gov (United States)

    Muro, G.

    2015-12-01

    It is possible to examine the quality of ground-penetrating radar (GPR) as a measure of soil moisture content in the shallow vadose zone, where roots are most abundant and water conservation best management practices are critical in active agricultural fields. By analyzing temporal samplings of 100 Mhz reflection profiles and common-midpoint (CMP) soundings over a full growing season, the variability of vertical soil moisture distribution directly after irrigation events are characterized throughout the lifecycle of a production crop. Reflection profiles produce high-resolution travel time data and summed results of CMP sounding data provide sampling depth estimates for the weak, but coherent reflections amid strong point scatterers. The high ratio of clay in the soil limits the resolution of downward propagation of infiltrating moisture after irrigation; synthetic data analysis compared against soil moisture lysimeter logs throughout the profile allow identification of the discrete soil moisture content variation in the measured GPR data. The nature of short duration irrigation events, evapotranspiration, and drainage behavior in relation to root depths observed in the GPR temporal data allow further examination and comparison with the variable saturation model HYDRUS-1D. After retrieving soil hydraulic properties derived from laboratory measured soil samples and simplified assumptions about boundary conditions, the project aims to achieve good agreement between simulated and measured soil moisture profiles without the need for excessive model calibration for GPR-derived soil moisture estimates in an agricultural setting.

  19. Agricultural implications of providing soil-based constraints on urban expansion: Land use forecasts to 2050.

    Science.gov (United States)

    Smidt, Samuel J; Tayyebi, Amin; Kendall, Anthony D; Pijanowski, Bryan C; Hyndman, David W

    2018-07-01

    Urbanization onto adjacent farmlands directly reduces the agricultural area available to meet the resource needs of a growing society. Soil conservation is a common objective in urban planning, but little focus has been placed on targeting soil value as a metric for conservation. This study assigns commodity and water storage values to the agricultural soils across all of the watersheds in Michigan's Lower Peninsula to evaluate how cities might respond to a soil conservation-based urbanization strategy. Land Transformation Model (LTM) simulations representing both traditional and soil conservation-based urbanization, are used to forecast urban area growth from 2010 to 2050 at five year intervals. The expansion of urban areas onto adjacent farmland is then evaluated to quantify the conservation effects of soil-based development. Results indicate that a soil-based protection strategy significantly conserves total farmland, especially more fertile soils within each soil type. In terms of revenue, ∼$88 million (in current dollars) would be conserved in 2050 using soil-based constraints, with the projected savings from 2011 to 2050 totaling more than $1.5 billion. Soil-based urbanization also increased urban density for each major metropolitan area. For example, there were 94,640 more acres directly adjacent to urban land by 2050 under traditional development compared to the soil-based urbanization strategy, indicating that urban sprawl was more tightly contained when including soil value as a metric to guide development. This study indicates that implementing a soil-based urbanization strategy would better satisfy future agricultural resource needs than traditional urban planning. Copyright © 2018. Published by Elsevier Ltd.

  20. Towards a model-based inventory of soil organic carbon in agricultural soils for the Swiss greenhouse gas reporting

    Science.gov (United States)

    Staudt, K.; Leifeld, J.; Bretscher, D.; Fuhrer, J.

    2012-04-01

    The Swiss inventory submission under the United Nations Framework Convention on Climate Change (UNFCCC) reports on changes in soil organic carbon stocks under different land-uses and land-use changes. The approach currently employed for cropland and grassland soils combines Tier 1 and Tier 2 methods and is considered overly simplistic. As the UNFCC encourages countries to develop Tier 3 methods for national greenhouse gas reporting, we aim to build up a model-based inventory of soil organic carbon in agricultural soils in Switzerland. We conducted a literature research on currently employed higher-tier methods using process-based models in four countries: Denmark, Sweden, Finland and the USA. The applied models stem from two major groups differing in complexity - those belonging to the group of general ecosystem models that include a plant-growth submodel, e.g. Century, and those that simulate soil organic matter turnover but not plant-growth, e.g. ICBM. For the latter group, carbon inputs to the soil from plant residues and roots have to be determined separately. We will present some aspects of the development of a model-based inventory of soil organic carbon in agricultural soils in Switzerland. Criteria for model evaluation are, among others, modeled land-use classes and land-use changes, spatial and temporal resolution, and coverage of relevant processes. For model parameterization and model evaluation at the field scale, data from several long-term agricultural experiments and monitoring sites in Switzerland is available. A subsequent regional application of a model requires the preparation of regional input data for the whole country - among others spatio-temporal meteorological data, agricultural and soil data. Following the evaluation of possible models and of available data, preference for application in the Swiss inventory will be given to simpler model structures, i.e. models without a plant-growth module. Thus, we compared different allometric relations

  1. A Food Systems Approach To Healthy Food And Agriculture Policy.

    Science.gov (United States)

    Neff, Roni A; Merrigan, Kathleen; Wallinga, David

    2015-11-01

    Food has become a prominent focus of US public health policy. The emphasis has been almost exclusively on what Americans eat, not what is grown or how it is grown. A field of research, policy, and practice activities addresses the food-health-agriculture nexus, yet the work is still often considered "alternative" to the mainstream. This article outlines the diverse ways in which agriculture affects public health. It then describes three policy issues: farm-to-school programming, sustainability recommendations in the Dietary Guidelines for Americans, and antibiotic use in animal agriculture. These issues illustrate the progress, challenges, and public health benefits of taking a food systems approach that brings together the food, agriculture, and public health fields. Project HOPE—The People-to-People Health Foundation, Inc.

  2. Evaluation of a model framework to estimate soil and soil organic carbon redistribution by water and tillage using 137Cs in two U.S. Midwest agricultural fields

    Science.gov (United States)

    Young, Claudia J.; Liu, Shuguang; Schumacher, Joseph A.; Schumacher, Thomas E.; Kaspar, Thomas C.; McCarty, Gregory W.; Napton, Darrell; Jaynes, Dan B.

    2014-01-01

    Cultivated lands in the U.S. Midwest have been affected by soil erosion, causing soil organic carbon (SOC) redistribution in the landscape and other environmental and agricultural problems. The importance of SOC redistribution on soil productivity and crop yield, however, is still uncertain. In this study, we used a model framework, which includes the Unit Stream Power-based Erosion Deposition (USPED) and the Tillage Erosion Prediction (TEP) models, to understand the soil and SOC redistribution caused by water and tillage erosion in two agricultural fields in the U.S. Midwest. This model framework was evaluated for different digital elevation model (DEM) spatial resolutions (10-m, 24-m, 30-m, and 56-m) and topographic exponents (m = 1.0–1.6 and n = 1.0–1.3) using soil redistribution rates from 137Cs measurements. The results showed that the aggregated 24-m DEM, m = 1.4 and n = 1.0 for rill erosion, and m = 1.0 and n = 1.0 for sheet erosion, provided the best fit with the observation data at both sites. Moreover, estimated average SOC redistributions were 1.3 ± 9.8 g C m− 2 yr− 1 in field site 1 and 3.6 ± 14.3 g C m− 2 yr− 1 in field site 2. Spatial distribution patterns showed SOC loss (negative values) in the eroded areas and SOC gain (positive value) in the deposition areas. This study demonstrated the importance of the spatial resolution and the topographic exponents to estimate and map soil redistribution and the SOC dynamics throughout the landscape, helping to identify places where erosion and deposition from water and tillage are occurring at high rates. Additional research is needed to improve the application of the model framework for use in local and regional studies where rainfall erosivity and cover management factors vary. Therefore, using this model framework can help to improve the information about the spatial distribution of soil erosion across agricultural landscapes and to gain a better understanding of SOC

  3. How helpful is nanotechnology in agriculture?

    International Nuclear Information System (INIS)

    Ditta, Allah

    2012-01-01

    Nanotechnology has great potential, as it can enhance the quality of life through its applications in various fields like agriculture and the food system. Around the world it has become the future of any nation. But we must be very careful with any new technology to be introduced regarding its possible unforeseen related risks that may come through its positive potential. However, it is also critical for the future of a nation to produce a trained future workforce in nanotechnology. In this process, to inform the public at large about its advantages is the first step; it will result in a tremendous increase in interest and new applications in all the domains will be discovered. With this idea, the present review has been written. There is great potential in nanoscience and technology in the provision of state-of-the-art solutions for various challenges faced by agriculture and society today and in the future. Climate change, urbanization, sustainable use of natural resources and environmental issues like runoff and accumulation of pesticides and fertilizers are the hot issues for today's agriculture. This paper reviews some of the potential applications of nanotechnology in the field of agriculture and recommends many strategies for the advancement of scientific and technological knowledge currently being examined. (review)

  4. Analysis of Agricultural Drought in East Java Using Vegetation Health Index

    OpenAIRE

    Amalo, Luisa Febrina; Hidayat, Rahmat; Sulma, Sayidah

    2018-01-01

    Drought is a natural hazard indicated by the decreasing of rainfall and water storage and impacting agricultural sector. Agricultural drought assessment has been used to monitor agricultural sustainability, particularly in East Java as national agricultural production center. Identification of drought characteristics –correlated with El Niño-Southern Oscillation, and agricultural impact on paddy fields and rice production using VHI (Vegetation Health Index) were conducted. VHI is produced by ...

  5. Economic effect of applied nuclear-agricultural science in China

    International Nuclear Information System (INIS)

    Ji Xiaobing; Zhou Zhihong; Zhao Shoufeng

    1998-01-01

    The economic effect of applied nuclear-agricultural science for 40 years in China have been summarized, analyzed and appraised. The economic regularity and features which are followed by research-development-production in the field of applied nuclear agricultural science in China are explored according to the essential characteristics of economics for input-output ratio and the itself-features of nuclear agricultural science. Some propositions for promoting the development and the economic effect of the applied nuclear-agricultural science in China are also given

  6. Web-based information system design of agricultural management towards self-sufficiency local food in North Aceh

    Science.gov (United States)

    Salahuddin; Husaini; Anwar

    2018-01-01

    The agricultural sector, especially food crops and horticulture, is one of the sectors driving regional economic pillars in Aceh Utara Regency of Aceh Province. Some agricultural products and food crops that become excellent products in North Aceh regency are: rice, corn, peanuts, long beans, cassava and soybeans. The Local Government of North Aceh Regency has not been optimal in empowering and maximizing the potential of agriculture resources. One of the obstacles is caused by the North Aceh Regency Government does not have an adequate database and web information system/GIS (Geographic Information System) for data management of agricultural centre in North Aceh Regency. This research is expected to assist local government of North Aceh Regency in managing agriculture sector to realize local food independence the region in supporting national food security program. The method in this research is using waterfall method for designing and making information system by conducting sequential process starting from data collection stage, requirement analysis, design, coding, testing and implementation system. The result of this research is a web-based information system for the management of agriculture superior agricultural product centre in North Aceh. This application provides information mapping the location of agricultural superior product producers and mapping of potential locations for the development of certain commodities in North Aceh Regency region in realizing food self-sufficiency in the region.

  7. Partner Selection Optimization Model of Agricultural Enterprises in Supply Chain

    OpenAIRE

    Feipeng Guo; Qibei Lu

    2013-01-01

    With more and more importance of correctly selecting partners in supply chain of agricultural enterprises, a large number of partner evaluation techniques are widely used in the field of agricultural science research. This study established a partner selection model to optimize the issue of agricultural supply chain partner selection. Firstly, it constructed a comprehensive evaluation index system after analyzing the real characteristics of agricultural supply chain. Secondly, a heuristic met...

  8. Weather extremes could affect agriculture

    Science.gov (United States)

    Balcerak, Ernie

    2012-05-01

    As Earth's climate warms, agricultural producers will need to adapt. Changes, especially increases in extreme events, are already having an impact on food production, according to speakers at a 1 May session on agriculture and food security at the AGU Science Policy Conference. Christopher Field, director of the Department of Global Ecology at the Carnegie Institution for Science of Washington, D. C., pointed out the complex factors that come into play in understanding food security, including spatially varying controls and stresses, incomplete models, and the potential for threshold responses. Factors that are likely to cause problems include increasing population; increasing preference for meat, which needs more land and energy inputs to produce; climate change; and increasing use of agricultural lands for biomass energy.

  9. Interactive effects of agricultural management and topography on soil carbon sequestration

    Science.gov (United States)

    Ladoni, M.; Kravchenko, S.; Munoz, J.; Erickson, M.

    2012-12-01

    Proper agricultural management scenarios such as no-tillage, cover cropping, agroforestry, have demonstrated potential to increase the amount of carbon sequestered in soil and to mitigate atmospheric carbon levels. The knowledge about positive effects of cover cropping comes mostly from small uniform experimental plots, but whether these positive effects will exists in large scale fields with diverse topography and what would be the magnitude of these effects on a field scale remains to be seen. Our objective is to compare performance of different agricultural managements including those with cover crops in their influences on SOC across diverse topographical landscape in large agricultural fields. The three studied agricultural practices are Conventionally tilled and fertilized management without cover crops (T1), Low-input management with reduced chemical inputs (T3) and Organic (T4) management, the latter two have rye and red clover cover crops as part of their rotations. Within each field 1- 4 transects with three topographical positions of "depression", "slope" and "summit" were identified. The first soil sampling was done in spring 2010 and the second set of soil samples were collected from topographical positions during growing season of 2011. Samples were analyzed for total SOC and also particulate organic carbon (POC) content to show the changes in active pools of SOC. The results showed that topography has a significant influence in performance of cover crops. Agricultural managements with cover crops increased the POC in soil and the magnitude of this increase was different across space. Cover crops built the highest POC in depressions followed by summit and then slope. The conventional agricultural management increased POC in depression but decreased it on slopes. Low-input agricultural management when coupled with cover cropping has a potential to produce the highest increase in active pools of SOC across topographically diverse fields. The ratio of

  10. High-Throughput 3-D Monitoring of Agricultural-Tree Plantations with Unmanned Aerial Vehicle (UAV) Technology

    Science.gov (United States)

    Torres-Sánchez, Jorge; López-Granados, Francisca; Serrano, Nicolás; Arquero, Octavio; Peña, José M.

    2015-01-01

    The geometric features of agricultural trees such as canopy area, tree height and crown volume provide useful information about plantation status and crop production. However, these variables are mostly estimated after a time-consuming and hard field work and applying equations that treat the trees as geometric solids, which produce inconsistent results. As an alternative, this work presents an innovative procedure for computing the 3-dimensional geometric features of individual trees and tree-rows by applying two consecutive phases: 1) generation of Digital Surface Models with Unmanned Aerial Vehicle (UAV) technology and 2) use of object-based image analysis techniques. Our UAV-based procedure produced successful results both in single-tree and in tree-row plantations, reporting up to 97% accuracy on area quantification and minimal deviations compared to in-field estimations of tree heights and crown volumes. The maps generated could be used to understand the linkages between tree grown and field-related factors or to optimize crop management operations in the context of precision agriculture with relevant agro-environmental implications. PMID:26107174

  11. High-Throughput 3-D Monitoring of Agricultural-Tree Plantations with Unmanned Aerial Vehicle (UAV) Technology.

    Science.gov (United States)

    Torres-Sánchez, Jorge; López-Granados, Francisca; Serrano, Nicolás; Arquero, Octavio; Peña, José M

    2015-01-01

    The geometric features of agricultural trees such as canopy area, tree height and crown volume provide useful information about plantation status and crop production. However, these variables are mostly estimated after a time-consuming and hard field work and applying equations that treat the trees as geometric solids, which produce inconsistent results. As an alternative, this work presents an innovative procedure for computing the 3-dimensional geometric features of individual trees and tree-rows by applying two consecutive phases: 1) generation of Digital Surface Models with Unmanned Aerial Vehicle (UAV) technology and 2) use of object-based image analysis techniques. Our UAV-based procedure produced successful results both in single-tree and in tree-row plantations, reporting up to 97% accuracy on area quantification and minimal deviations compared to in-field estimations of tree heights and crown volumes. The maps generated could be used to understand the linkages between tree grown and field-related factors or to optimize crop management operations in the context of precision agriculture with relevant agro-environmental implications.

  12. High-Throughput 3-D Monitoring of Agricultural-Tree Plantations with Unmanned Aerial Vehicle (UAV Technology.

    Directory of Open Access Journals (Sweden)

    Jorge Torres-Sánchez

    Full Text Available The geometric features of agricultural trees such as canopy area, tree height and crown volume provide useful information about plantation status and crop production. However, these variables are mostly estimated after a time-consuming and hard field work and applying equations that treat the trees as geometric solids, which produce inconsistent results. As an alternative, this work presents an innovative procedure for computing the 3-dimensional geometric features of individual trees and tree-rows by applying two consecutive phases: 1 generation of Digital Surface Models with Unmanned Aerial Vehicle (UAV technology and 2 use of object-based image analysis techniques. Our UAV-based procedure produced successful results both in single-tree and in tree-row plantations, reporting up to 97% accuracy on area quantification and minimal deviations compared to in-field estimations of tree heights and crown volumes. The maps generated could be used to understand the linkages between tree grown and field-related factors or to optimize crop management operations in the context of precision agriculture with relevant agro-environmental implications.

  13. Assessing and modelling ecohydrologic processes at the agricultural field scale

    Science.gov (United States)

    Basso, Bruno

    2015-04-01

    One of the primary goals of agricultural management is to increase the amount of crop produced per unit of fertilizer and water used. World record corn yields demonstrated that water use efficiency can increase fourfold with improved agronomic management and cultivars able to tolerate high densities. Planting crops with higher plant density can lead to significant yield increases, and increase plant transpiration vs. soil water evaporation. Precision agriculture technologies have been adopted for the last twenty years but seldom have the data collected been converted to information that led farmers to different agronomic management. These methods are intuitively appealing, but yield maps and other spatial layers of data need to be properly analyzed and interpreted to truly become valuable. Current agro-mechanic and geospatial technologies allow us to implement a spatially variable plan for agronomic inputs including seeding rate, cultivars, pesticides, herbicides, fertilizers, and water. Crop models are valuable tools to evaluate the impact of management strategies (e.g., cover crops, tile drains, and genetically-improved cultivars) on yield, soil carbon sequestration, leaching and greenhouse gas emissions. They can help farmers identify adaptation strategies to current and future climate conditions. In this paper I illustrate the key role that precision agriculture technologies (yield mapping technologies, within season soil and crop sensing), crop modeling and weather can play in dealing with the impact of climate variability on soil ecohydrologic processes. Case studies are presented to illustrate this concept.

  14. Intellectual Properties Rights-A strong determinant of economic growth in agriculture

    Directory of Open Access Journals (Sweden)

    Manju Chaudhary

    2010-03-01

    Full Text Available

    In the past few decades the subject of intellectual property rights (IPRs has occupied center stage in debates about globalization, economic development and poverty elimination. This study concerns the strengthening of IPRs in the plant breeding industry and its effect on agriculture in India. In India, most of the population relies on agriculture for its livelihood. India is self-sufficient in wheat and paddy, but deficient in other agricultural products. Patents are good indicators of research and development output. Patent analysis makes it possible to map out the trend of technological change and life cycle of a technology – growth, development, maturity and decline. Patent information and patent statistical analysis have been used for examining present, technological status and to forecast future trends. One can determine the directions of corporate R&D and market interests by analyzing patent data. The present study is an attempt to analyze patents granted in India in the field of agriculture and importance of biotechnology-based innovations in agriculture

  15. Lessons From Watershed-Based Climate Smart Agricultural Practices In Jogo-Gudedo Watershed Ethiopia

    Directory of Open Access Journals (Sweden)

    Abera Assefa

    2015-08-01

    Full Text Available Abstract Land degradation is the most chronic problem in the Ethiopia. Soil erosion and denudation of vegetation covers are tending to enlarge the area of degraded and west land in semi-arid watersheds. It is therefore watershed management is believed as a holistic approach to create a climate smart landscape that integrate forestry agriculture pasture and soil water management with an objective of sustainable management of natural resources to improve livelihood. This approach pursues to promote interactions among multiple stakeholders and their interests within and between the upstream and downstream locations of a watershed. Melkassa Agricultural Research Centre MARC has been implementing integrated watershed management research project in the Jogo-gudedo watershed from 2010-2014 and lessons from Jogo-gudedo watershed are presented in this research report. Participatory action research PAR was implemented on Soil and Water Conservation SWC area enclosure Agroforestry AF Conservation Tillage CT energy saving stove drought resistance crop varieties in the Jogo-gudedo watershed. Empirical research and action research at plot level and evaluation of introduced technologies with farmers through experimental learning approach and documentation were employed. The participatory evaluation and collective action of SWC and improved practices brought high degree of acceptance of the practices and technologies. This had been ratified by the implementation of comprehensive watershed management action research which in turn enabled to taste and exploit benefits of climate-smart agricultural practices. Eventually significant reduction on soil loss and fuel wood consumption improvements on vegetation cover and crop production were quantitatively recorded as a good indicator and success. Field visit meetings trainings and frequent dialogues between practitioners and communities at watershed level have had a help in promoting the climate smart agriculture

  16. Diagnosing Management of Agricultural Research and Technology Development under the Agricultural Innovation Framework

    Directory of Open Access Journals (Sweden)

    2014-06-01

    Full Text Available This study aimed at identifying and analyzing issues and challenges on the agricultural research and technology development under the national innovation framework. The survey consisted of two groups: agricultural researchers of Agriculture-Research and Education Organization and all faculty members of public agricultural faculties of Ministry of Scientific, Research and Technology. Using Cochran sampling formula and multi-stage sampling method, 188 researchers and 205 faculty members were selected in order to fill in the survey questionnaire. Using the SPSS, collected data analyzed based on explanatory factor analysis. Totally, factor analysis of three sets of issues and challenges on the agricultural research and technology development under the national innovation framework led to extract 13 factors, including agricultural structure and policy, infrastructure and resources of agricultural development, supportive services for agricultural development (level of agricultural development, investment and capacity building in research and technology, management of research and technology development, research and technology productivity, research culture, networks for research and technology development (level of national innovation system, agricultural research policy, impacts and effectiveness of agricultural research and technology development, integrated management of research and technology, institutional development for agricultural research and technology and systematic synergy of agricultural research and higher education (level of agricultural innovation system. Totally, these three sets of factors explained 64%, 75% and 73% of the total variances. Finally, using conceptual clustering for the extracted factors, a conceptual model of issues and challenges of agricultural research and technology development under the national innovation framework was presented.

  17. Metrics and Agricultural Science - measuring Multidisciplinary and Applied Research

    Energy Technology Data Exchange (ETDEWEB)

    Holt, I.

    2016-07-01

    If we focus on the agricultural field, we see a kaleidoscopic picture. Agriculture includes a wide variety of economic activities, ranging from crop husbandry to cattle breeding and industrial processing of non-food products. It is often used in a broad sense to include for example forestry, aquaculture and fisheries. Agricultural sciences use methods from a wide variety of disciplines ranging from sociology to genomics. Although agricultural sciences are applied sciences there is a gamut from more fundamental studies to understand underlying processes to applied work to produce results that can be used directly in agricultural practice. (Author)

  18. Agricultural implications of the Fukushima nuclear accident

    International Nuclear Information System (INIS)

    Nakanishi, Tomoko M.

    2016-01-01

    More than 4 years has passed since the accident at the Fukushima Nuclear Power Plant. Immediately after the accident, 40 to 50 academic staff of the Graduate School of Agricultural and Life Sciences at the University of Tokyo created an independent team to monitor the behavior of the radioactive materials in the field and their effects on agricultural farm lands, forests, rivers, animals, etc. When the radioactive nuclides from the nuclear power plant fell, they were instantly adsorbed at the site where they first touched; consequently, the fallout was found as scattered spots on the surface of anything that was exposed to the air at the time of the accident. The adsorption has become stronger over time, so the radioactive nuclides are now difficult to remove. The findings of our study regarding the wide range of effects on agricultural fields are summarized in this report

  19. NANOTECHNOLOGY APPLICATIONS IN AGRICULTURE: AN UPDATE

    OpenAIRE

    Tejpal Dhewa

    2015-01-01

    Although the scientific studies on the applications of nanotechnology in the agriculture are less than a decade old yet the prospects of nanotechnology in this field has been considerable. The rapid developments in the nanosciences have a great impact on agricultural practices and food manufacturing industries. Nanotechnology has an enormous potential to offer smarter, stronger, cost-effective packaging materials, biosensors for the rapid detection of the food pathogens, toxins and other cont...

  20. Automated geographic registration and radiometric correction for UAV-based mosaics

    Science.gov (United States)

    Texas A&M University has been operating a large-scale, UAV-based, agricultural remote-sensing research project since 2015. To use UAV-based images in agricultural production, many high-resolution images must be mosaicked together to create an image of an agricultural field. Two key difficulties to s...

  1. Use of light agricultural waste as biomass for energy

    International Nuclear Information System (INIS)

    Kulkarni, P.K.

    1996-01-01

    Along with solar energy light agricultural wastes form an important source of renewable energy. Sugar cane field trash (PACHAT) forms a large source of energy, totally wasted even today. This article covers the thinking on biomass as energy source in India from 1985 till today and describes the important developments. Agricultural waste is a widely distributed source and costly to collect and transport. Hence its mode of use, equipment required became site specific. Equipment for carbonization and gasification of pachat developed by the author are described. Utilisation of agricultural waste is still an open field and challenge to develop and perfect small and large devices directly for thermal use or power generation. (author). 3 refs., 2 figs., 3 tabs

  2. Intensive rice agriculture deteriorates the quality of shallow groundwater in a typical agricultural catchment in subtropical central China.

    Science.gov (United States)

    Wang, Yi; Li, Yuyuan; Li, Yong; Liu, Feng; Liu, Xinliang; Gong, Dianlin; Ma, Qiumei; Li, Wei; Wu, Jinshui

    2015-09-01

    High nitrogen (N) concentrations in rural domestic water supplies have been attributed to excessive agricultural N leaching into shallow groundwater systems; therefore, it is important to determine the impact of agriculture (e.g., rice production) on groundwater quality. To understand the impact of agricultural land use on the N concentrations in the shallow groundwater in subtropical central China, a large observation program was established to observe ammonium-N (NH4-N), nitrate-N (NO3-N), and total N (TN) concentrations in 161 groundwater observation wells from April 2010 to November 2012. The results indicated that the median values of NH4-N, NO3-N, and TN concentrations in the groundwater were 0.15, 0.39, and 1.38 mg N L(-1), respectively. A total of 36.3 % of the water samples were categorized as NH4-N pollution, and only a small portion of the samples were categorized as NO3-N pollution, based on the Chinese Environmental Quality Standards for Groundwater of GB/T 14848-93 (General Administration of Quality Supervision of China, 1993). These results indicated of moderate groundwater NH4-N pollution, which was mainly attributed to intensive rice agriculture with great N fertilizer application rates in the catchment. In addition, tea and vegetable fields showed higher groundwater NO3-N and TN concentrations than other agricultural land use types. The factorial correspondence analysis (FCA) suggested that the flooded agricultural land use types (e.g., single-rice and double-rice) had potential to impose NH4-N pollution, particularly in the soil exhausting season during from July to October. And, the great N fertilizer application rates could lead to a worse NO3-N and TN pollution in shallow groundwater. Hence, to protect groundwater quality and minimize NH4-N pollution, managing optimal fertilizer application and applying appropriate agricultural land use types should be implemented in the region.

  3. Comparative susceptibility of bemisia tabaci to imidacloprid in field- and laboratory-based bioassays

    Science.gov (United States)

    Bemisia tabaci biotype B is a resistance-prone pest of protected and open agriculture. Systemic uptake bioassays used in resistance monitoring programs have provided important information on susceptibility to neonicotinoid insecticides, but have remained decoupled from field performance. Simultaneou...

  4. Agriculture and food production after a nuclear power accident

    International Nuclear Information System (INIS)

    Ulvsand, T.; Preuthun, J.; Rosen, K.; Svensson, Kettil

    1999-02-01

    In a situation with radioactive fall-out in agricultural areas in Sweden, many organisations will be engaged. The authorities in the field of agriculture and food will give advices and recommendations, the producers will see to their interests, the consumers will react and researchers and experts will be engaged. A combined game and seminar was carried through in the city of Huskvarna 17 - 18 March, 1998 with participation from the responsible authorities: Swedish Board of Agriculture, National Food Administration, Swedish Radiation Protection Institute and from producers, organisations and the government and with researchers and people from contract laboratories. The game and seminar was based upon a scenario with a release of radioactivity from the nuclear power plant of Ignalina in early July and focused on the threat phase and the time close to the deposition. The release and the weather condition resulted in a deposition of 137 Cs and 131 I in agricultural areas in southern Sweden. The biggest levels of deposition took place in the county of Oestergoetland, where the resulting levels were three times the highest levels in Sweden after the Chernobyl-accident The seminar combined lectures, group-work and discussions and actualised a great number of issues that should be further investigated. The report ends with a factual part about possible countermeasures in agriculture

  5. Diverse applications of electronic-nose technologies in agriculture and forestry.

    Science.gov (United States)

    Wilson, Alphus D

    2013-02-08

    Electronic-nose (e-nose) instruments, derived from numerous types of aroma-sensor technologies, have been developed for a diversity of applications in the broad fields of agriculture and forestry. Recent advances in e-nose technologies within the plant sciences, including improvements in gas-sensor designs, innovations in data analysis and pattern-recognition algorithms, and progress in material science and systems integration methods, have led to significant benefits to both industries. Electronic noses have been used in a variety of commercial agricultural-related industries, including the agricultural sectors of agronomy, biochemical processing, botany, cell culture, plant cultivar selections, environmental monitoring, horticulture, pesticide detection, plant physiology and pathology. Applications in forestry include uses in chemotaxonomy, log tracking, wood and paper processing, forest management, forest health protection, and waste management. These aroma-detection applications have improved plant-based product attributes, quality, uniformity, and consistency in ways that have increased the efficiency and effectiveness of production and manufacturing processes. This paper provides a comprehensive review and summary of a broad range of electronic-nose technologies and applications, developed specifically for the agriculture and forestry industries over the past thirty years, which have offered solutions that have greatly improved worldwide agricultural and agroforestry production systems.

  6. Diverse Applications of Electronic-Nose Technologies in Agriculture and Forestry

    Science.gov (United States)

    Wilson, Alphus D.

    2013-01-01

    Electronic-nose (e-nose) instruments, derived from numerous types of aroma-sensor technologies, have been developed for a diversity of applications in the broad fields of agriculture and forestry. Recent advances in e-nose technologies within the plant sciences, including improvements in gas-sensor designs, innovations in data analysis and pattern-recognition algorithms, and progress in material science and systems integration methods, have led to significant benefits to both industries. Electronic noses have been used in a variety of commercial agricultural-related industries, including the agricultural sectors of agronomy, biochemical processing, botany, cell culture, plant cultivar selections, environmental monitoring, horticulture, pesticide detection, plant physiology and pathology. Applications in forestry include uses in chemotaxonomy, log tracking, wood and paper processing, forest management, forest health protection, and waste management. These aroma-detection applications have improved plant-based product attributes, quality, uniformity, and consistency in ways that have increased the efficiency and effectiveness of production and manufacturing processes. This paper provides a comprehensive review and summary of a broad range of electronic-nose technologies and applications, developed specifically for the agriculture and forestry industries over the past thirty years, which have offered solutions that have greatly improved worldwide agricultural and agroforestry production systems. PMID:23396191

  7. Biology: An Important Agricultural Engineering Mechanism

    Science.gov (United States)

    Henderson, S. M.

    1974-01-01

    Describes the field of bioengineering with particular emphasis on agricultural engineering, and presents the results of a survey of schools that combine biology and engineering in their curricula. (JR)

  8. Effects of bio-based residue amendments on greenhouse gas emission from agricultural soil are stronger than effects of soil type with different microbial community composition

    NARCIS (Netherlands)

    Ho, Adrian; Ijaz, Umer Z.; Janssens, Thierry K.S.; Ruijs, Rienke; Kim, Sang Yoon; de Boer, Wietse; Termorshuizen, Aad; van der Putten, Wim H.; Bodelier, Paul L.E.

    2017-01-01

    With the projected rise in the global human population, agriculture intensification and land-use conversion to arable fields is anticipated to meet the food and bio-energy demand to sustain a growing population. Moving towards a circular economy, agricultural intensification results in the increased

  9. Effects of bio-based residue amendments on greenhouse gas emission from agricultural soil are stronger than effects of soil type with different microbial community composition.

    NARCIS (Netherlands)

    Ho, A.; Ijaz, Umer Zeeshan; Janssens, Thierry; Ruijs, Rienke; Kim, Sang Yoon; De Boer, W.; Termorshuizen, Aad J; van der Putten, W.H.; Bodelier, P.L.E.

    2017-01-01

    With the projected rise in the global human population, agriculture intensification and land-use conversion to arable fields is anticipated to meet the food and bio-energy demand to sustain a growing population. Moving towards a circular economy, agricultural intensification results in the increased

  10. Effects of bio-based residue amendments on greenhouse gas emission from agricultural soil are stronger than effects of soil type with different microbial community composition

    NARCIS (Netherlands)

    Ho, Adrian; Ijaz, Umer Z.; Janssens, Thierry K.S.; Ruijs, Rienke; Kim, Sang Yoon; Boer, de Wietse; Termorshuizen, Aad; Putten, van der Wim H.; Bodelier, Paul L.E.

    2017-01-01

    With the projected rise in the global human population, agriculture intensification and land-use conversion to arable fields is anticipated to meet the food and bio-energy demand to sustain a growing population. Moving towards a circular economy, agricultural intensification results in the

  11. Dynamics of Individual and Collective Agricultural Adaptation to Water Scarcity

    Science.gov (United States)

    Burchfield, E. K.; Gilligan, J. M.

    2016-12-01

    Drought and water scarcity are challenging agricultural systems around the world. We draw on extensive field-work conducted with paddy farmers in rural Sri Lanka to study adaptations to water scarcity, including switching to less water-intensive crops, farming collectively on shared land, and turning to groundwater by digging wells. We explore how variability in climate affects agricultural decision-making at the community and individual levels using three decision-making heuristics, each characterized by an objective function: risk-averse expected utility, regret-adjusted expected utility, and prospect theory loss-aversion. We also assess how the introduction of individualized access to irrigation water with wells affects long-standing community-based drought mitigation practices. Results suggest that the growth of well-irrigation may produce sudden disruptions to community-based adaptations, but that this depends on the mental models farmers use to think about risk and make decisions under uncertainty.

  12. A promising trend for field information collection: An air-ground multi-sensor monitoring system

    OpenAIRE

    Yawei Zhang; Du Chen; Shumao Wang; Lei Tian

    2018-01-01

    Timely identifying and quantifying significant spatial and temporal variability in agricultural field has been a crucial factor for improving agricultural production and management. This paper focuses on the mainstream techniques and applications can be adopted to improve the field information collection method. In this paper, the development of wireless sensor networks (WSNs) and remote sensing (RS) technology were reviewed, especially the micro unmanned aerial vehicle (mUAV)-based WSNs and ...

  13. Fluxes of Nitrous Acid (HONO) above an Agricultural Field Side near Paris

    Science.gov (United States)

    Laufs, S.; Cazaunau, M.; Stella, P.; Loubet, B.; Kurtenbach, R.; Cellier, P.; Mellouki, W.; Kleffmann, J.

    2012-04-01

    HONO is an important precursor of the OH radical, the detergent of the atmosphere. Field measurements show high diurnal HONO mixing ratios that cannot be explained by chemical models with known gas phase chemistry. Therefore, daytime sources of HONO are still under discussion. During the last decade many experimental investigation were performed to study heterogeneous production of HONO like the photo enhanced reduction of NO2 on humic acids or photolysis of HNO3 on surfaces. Recently, nitrite produced by bacteria, present in soil, was discussed as a source of HONO as well. In addition gas phase sources like the photolysis of nitrophenols, or the reaction of excited NO2 are discussed. Gradient measurements show high mixing ratios of HONO even above the boundary layer. However, beside intensive investigations on the sources of HONO, it is still an open question whether heterogeneous or gas phase sources are more important in the atmosphere. Flux measurements could represent a method to find the origin of missing sources of HONO. Until now instruments are not sensitive and fast enough to do Eddy correlation measurements for HONO. Alternatively, HONO fluxes are estimated by the Aerodynamic Gradient (AGM), or Relaxed Eddy Accumulation (REA) methods. Here we present HONO fluxes estimated by AGM and the LOPAP technique (Long Path Absorption Photometer) above an agricultural field in Grignon, Paris (48°51'N, 1°58'E). Fluxes during different seasons and different types of vegetations including bare soil will be presented and compared with chemical corrected fluxes of NO, NO2 and O3, or other parameters.

  14. A Profile of Agricultural Education Teachers with Exemplary Rural Agricultural Entrepreneurship Education Programs

    Science.gov (United States)

    Heinert, Seth B.; Roberts, T. Grady

    2017-01-01

    Rural entrepreneurship education programs may be a great tool for enhancing rural livelihoods and reducing rural outmigration. Entrepreneurship has received attention in school based agricultural education, primarily through implementation of Supervised Agricultural Experience (SAE) programs. Very little research has looked at the teaching of…

  15. Journal of Agricultural Extension

    African Journals Online (AJOL)

    Scope of journal The Journal of Agricultural Extension" is devoted to the advancement of knowledge of agricultural extension services and practice through the publication of original and empirically based research, ... Vol 22, No 1 (2018) ... Symbol recognition and interpretation of HIV/AIDS pictorial messages among rural ...

  16. Pilot utilization plan for satellite data-based service for agriculture in Poland

    Science.gov (United States)

    Gatkowska, Martyna; Paradowski, Karol; Wróbel, Karolina

    2017-10-01

    The paper aims at demonstrating the assumptions and achievements of the Pilot Utilization Plan Activities performed within the Project ASAP "Advanced Sustainable Agricultural Production", co-financed by European Space Agency under the ARTES IAP Programme. Within the course of the project, the Pilot Utilization Plan (PilUP) activities are performed in order to develop the remote sensing based models, and further calibrate and validate them in order to achieve the accuracy, which meets the requirements of paying customers. The completion of the first PilUP resulted in development of the following models based of Landsat 8 and Sentinel 2 satellite data: model of homogenous polygons demarcation on the basis of comparison of electromagnetic scanning results and bare soil spectral reflectance, model of problematic areas indication and model for yield potential, delivered on the basis of NDVI map developed 1 month before harvest and the map of yield/collected yield derived from Users participating in PilUP. The second edition of the PilUP is being conducted between March 2017 until the end of 2017. This edition includes farmers and insurance companies. The following activities are planned: development of model for delimitation of loses due to unfavorable wintering of winter crops and validation of the model with in-situ data collected by the insurance companies in-field investigators, further enhancement of the model for homogenous polygons delimitation and primary indication of soil productivity and testing of the applicability and viability of map of problematic areas with the farmers.

  17. Reliability of agriculture universal joint shafts based on temperature measuring in universal joint bearing assemblies

    Directory of Open Access Journals (Sweden)

    Аleksandar Asonja

    2015-03-01

    Full Text Available This paper presents a research into reliability calculations of agriculture double universal joint shafts based on temperature measuring in cardan-type universal joint bearing assemblies. Special laboratory equipment was developed for this research which is presented in the paper. The objective of this research was to test the real life span of universal joint shafts in the laboratory and in field, to obtain the results which can be used to improve the reliability of universal joint shafts. If the presented research were used along with maintenance measures recommended in the paper and with proper use, the level of reliability of the shafts would be 2.1 times higher. The presented results of the research showed that needle bearings, i.e. bearing assemblies of the joints, are the most critical elements on universal joint shafts and are possible causes of their lower reliability. The second universal joint is the part with the lowest reliability in the observed technical system.

  18. O2O - Based Agricultural Products Supply Chain Process Integration Optimization Based on Internet +

    OpenAIRE

    Li Huijuan

    2017-01-01

    Traditional wholesale and retail, electricity supplier of agricultural products supply chain have many difficulties. The O2O supply chain of agricultural products of “Internet+”, committed to the integration of online and offline advantage process, has become the main direction of the agricultural products supply chain transformation. Practice operation results show that O2O supply chain can effectively play the advantages of online and offline process integration, but its further development...

  19. Vegetation index-based crop coefficients to estimate evapotranspiration by remote sensing in agricultural and natural ecosystems

    Science.gov (United States)

    Glenn, E.P.; Neale, C. M. U.; Hunsaker, D.J.; Nagler, P.L.

    2011-01-01

    Crop coefficients were developed to determine crop water needs based on the evapotranspiration (ET) of a reference crop under a given set of meteorological conditions. Starting in the 1980s, crop coefficients developed through lysimeter studies or set by expert opinion began to be supplemented by remotely sensed vegetation indices (VI) that measured the actual status of the crop on a field-by-field basis. VIs measure the density of green foliage based on the reflectance of visible and near infrared (NIR) light from the canopy, and are highly correlated with plant physiological processes that depend on light absorption by a canopy such as ET and photosynthesis. Reflectance-based crop coefficients have now been developed for numerous individual crops, including corn, wheat, alfalfa, cotton, potato, sugar beet, vegetables, grapes and orchard crops. Other research has shown that VIs can be used to predict ET over fields of mixed crops, allowing them to be used to monitor ET over entire irrigation districts. VI-based crop coefficients can help reduce agricultural water use by matching irrigation rates to the actual water needs of a crop as it grows instead of to a modeled crop growing under optimal conditions. Recently, the concept has been applied to natural ecosystems at the local, regional and continental scales of measurement, using time-series satellite data from the MODIS sensors on the Terra satellite. VIs or other visible-NIR band algorithms are combined with meteorological data to predict ET in numerous biome types, from deserts, to arctic tundra, to tropical rainforests. These methods often closely match ET measured on the ground at the global FluxNet array of eddy covariance moisture and carbon flux towers. The primary advantage of VI methods for estimating ET is that transpiration is closely related to radiation absorbed by the plant canopy, which is closely related to VIs. The primary disadvantage is that they cannot capture stress effects or soil

  20. AIDS and African smallholder agriculture.

    Science.gov (United States)

    Mutangadura, G

    1998-09-01

    During the Responding to HIV/AIDS: Technology Development Needs for African Smallholder Agriculture Conference in Harare, about 70 delegates participated from government and nongovernmental organizations, community-based organizations, agricultural research, and regional and international organizations. The aims of the conference were to analyze the impact of HIV/AIDS on smallholder agriculture; identify the necessary technologies, policy, and institutional responses; and propose frameworks for future activities. The conference participants noted that the onset of HIV/AIDS has changed the African rural environment in which existing policy and programs on agriculture have been operating. In view of this, recommendations on technology and development and policy to mitigate the impact of the epidemic were highlighted; namely, promote existing labor and capital saving technologies; review existing agricultural extension; develop appropriate technologies to reduce the time spent on water and fuel collection; develop income-generating activities; strengthen existing community-based initiatives; and redefine the criteria for land tenure and ownership. Moreover, collaboration between development organizations and applied research were also emphasized.

  1. 127 Field Practical Training Programme of Faculties of Agriculture in ...

    African Journals Online (AJOL)

    User

    Keywords: Practical training, students of agriculture faculty ... fertility, agronomy and horticultural practices, crop protection activities, ... and Frick (2004) submitted that companies of today want graduates with ... The State accounts for 2.3% of Nigeria's total population. ..... Carrying out appropriate husbandry measures for.

  2. Agricultural drainage water quality

    International Nuclear Information System (INIS)

    Madani, A.; Gordon, R.

    2002-01-01

    'Full text:' Agricultural drainage systems have been identified as potential contributors of non-point source pollution. Two of the major concerns have been with nitrate-nitrogen (NO3 - -N) concentrations and bacteria levels exceeding the Maximum Acceptable Concentration in drainage water. Heightened public awareness of environmental issues has led to greater pressure to maintain the environmental quality of water systems. In an ongoing field study, three experiment sites, each with own soil properties and characteristics, are divided into drainage plots and being monitored for NO3 - -N and fecal coliforms contamination. The first site is being used to determine the impact of the rate of manure application on subsurface drainage water quality. The second site is being used to determine the difference between hog manure and inorganic fertilizer in relation to fecal coliforms and NO3-N leaching losses under a carrot rotation system. The third site examines the effect of timing of manure application on water quality, and is the only site equipped with a surface drainage system, as well as a subsurface drainage system. Each of the drains from these fields lead to heated outflow buildings to allow for year-round measurements of flow rates and water samples. Tipping buckets wired to data-loggers record the outflow from each outlet pipe on an hourly basis. Water samples, collected from the flowing drains, are analyzed for NO3 - -N concentrations using the colorimetric method, and fecal coliforms using the Most Probable Number (MPN) method. Based on this information, we will be able better positioned to assess agricultural impacts on water resources which will help towards the development on industry accepted farming practices. (author)

  3. Identifying diffused nitrate sources in a stream in an agricultural field using a dual isotopic approach

    International Nuclear Information System (INIS)

    Ding, Jingtao; Xi, Beidou; Gao, Rutai; He, Liansheng; Liu, Hongliang; Dai, Xuanli; Yu, Yijun

    2014-01-01

    Nitrate (NO 3 − ) pollution is a severe problem in aquatic systems in Taihu Lake Basin in China. A dual isotope approach (δ 15 N-NO 3 − and δ 18 O-NO 3 − ) was applied to identify diffused NO 3 − inputs in a stream in an agricultural field at the basin in 2013. The site-specific isotopic characteristics of five NO 3 − sources (atmospheric deposition, AD; NO 3 − derived from soil organic matter nitrification, NS; NO 3 − derived from chemical fertilizer nitrification, NF; groundwater, GW; and manure and sewage, M and S) were identified. NO 3 − concentrations in the stream during the rainy season [mean ± standard deviation (SD) = 2.5 ± 0.4 mg/L] were lower than those during the dry season (mean ± SD = 4.0 ± 0.5 mg/L), whereas the δ 18 O-NO 3 − values during the rainy season (mean ± SD = + 12.3 ± 3.6‰) were higher than those during the dry season (mean ± SD = + 0.9 ± 1.9‰). Both chemical and isotopic characteristics indicated that mixing with atmospheric NO 3 − resulted in the high δ 18 O values during the rainy season, whereas NS and M and S were the dominant NO 3 − sources during the dry season. A Bayesian model was used to determine the contribution of each NO 3 − source to total stream NO 3 − . Results showed that reduced N nitrification in soil zones (including soil organic matter and fertilizer) was the main NO 3 − source throughout the year. M and S contributed more NO 3 − during the dry season (22.4%) than during the rainy season (17.8%). AD generated substantial amounts of NO 3 − in May (18.4%), June (29.8%), and July (24.5%). With the assessment of temporal variation of diffused NO 3 − sources in agricultural field, improved agricultural management practices can be implemented to protect the water resource and avoid further water quality deterioration in Taihu Lake Basin. - Highlights: • The isotopic characteristics of potential NO 3 − sources were identified. • Mixing with atmospheric NO 3 − resulted

  4. O2O - Based Agricultural Products Supply Chain Process Integration Optimization Based on Internet +

    Directory of Open Access Journals (Sweden)

    Li Huijuan

    2017-01-01

    Full Text Available Traditional wholesale and retail, electricity supplier of agricultural products supply chain have many difficulties. The O2O supply chain of agricultural products of “Internet+”, committed to the integration of online and offline advantage process, has become the main direction of the agricultural products supply chain transformation. Practice operation results show that O2O supply chain can effectively play the advantages of online and offline process integration, but its further development is still subject to the logistics, information flow of the dispersion, fracture and high cost. The integrated optimization of various regions and various enterprises and all sectors of the supply chain process is the key to optimize the process Internet plus era of agricultural products supply chain.

  5. Cost-Effectiveness Analysis of Surface Flow Constructed Wetlands (SFCW) for Nutrient Reduction in Drainage Discharge from Agricultural Fields in Denmark.

    Science.gov (United States)

    Gachango, F G; Pedersen, S M; Kjaergaard, C

    2015-12-01

    Constructed wetlands have been proposed as cost-effective and more targeted technologies in the reduction of nitrogen and phosphorous water pollution in drainage losses from agricultural fields in Denmark. Using two pig farms and one dairy farm situated in a pumped lowland catchment as case studies, this paper explores the feasibility of implementing surface flow constructed wetlands (SFCW) based on their cost effectiveness. Sensitivity analysis is conducted by varying the cost elements of the wetlands in order to establish the most cost-effective scenario and a comparison with the existing nutrients reduction measures carried out. The analyses show that the cost effectiveness of the SFCW is higher in the drainage catchments with higher nutrient loads. The range of the cost effectiveness ratio on nitrogen reduction differs distinctively with that of catch crop measure. The study concludes that SFCW could be a better optimal nutrients reduction measure in drainage catchments characterized with higher nutrient loads.

  6. AMINO ACID-BASED FERTILIZER AS AN ALTERNATIVE TO CALDA VIÇOSA IN ORGANIC AGRICULTURE

    Directory of Open Access Journals (Sweden)

    Diego Fontebasso Pelizari Pinto

    2017-10-01

    Full Text Available The aim of this study was to propose a mixture of micronutrients with amino acid-based foliar fertilizer as an alternative to calda viçosa for application in organic agriculture. The study was conducted in two simultaneous trials in an experimental field in Ipeúna, SP, Brazil. The test plant was carioca type dry edible bean cv. Pérola. The treatments in trial 1 were: Control 1 = water; FA = JK® amino acid-based foliar fertilizer; and FA+Mi = FA + CuSO4 + ZnSO4 + MnSO4 + H3BO3. In trial 2, the FA treatment was substituted by calda viçosa (CVi. The treatments were through spray application three times. Dry edible bean leaves were sampled for determination of macronutrient and micronutrient concentrations. Platings of the application rates used in the treatments were performed in the laboratory in a mixture with Bacillus thuringiensis and with Beauveria bassiana to compare the degree of compatibility by means of colony forming units (CFU. The FA+Mi and CVi treatments raised the concentrations of Zn, Cu, and Mn in the leaves. The FA+Mi was compatible, the FA was a stimulant, and the CVi was noxious to B. bassiana and to B. thuringiensis when integrated in the spray mixture.

  7. Price Uncertainty and Optimal Hedging in the Agricultural Market

    Directory of Open Access Journals (Sweden)

    Nicolae ISTUDOR

    2014-06-01

    Full Text Available The increased volatility of the agricultural prices has detrimental effects on the economic welfare and raises concerns regarding poverty and malnutrition at a global level. Financial risk management can be an efficient solution for limiting the effects of international agricultural price volatility. The paper analyzes the behavior of the U.S. wheat and corn prices, emphasizing their highly volatile and unpredictable nature. Given the existence of the basis risk, the estimation of the optimal hedge ratio is needed in order to provide an efficient hedging strategy against price risks. The role of public authorities in this context can consist in promoting education in the fields of hedging and understanding the agricultural price volatility risk. We estimate static and time varying optimal hedge ratios for wheat and corn through several methods. Based on the out of sample hedging effectiveness given by the variance reduction, the methods are compared and the results show that the time varying hedge ratios estimated through rolling window OLS and GARCH methods outperform the static counterparts.

  8. Effect of different substrates for organic agriculture in seedling development of traditional species of Solanaceae

    Energy Technology Data Exchange (ETDEWEB)

    Olaria, M.; Nebot, J.F.; Molina, H.; Troncho, P.; Lapeña, P.; Llorens, E.

    2016-11-01

    Sowing of seedlings is one of the most critical processes on the establishment of a crop, since the future development of the plant depends largely on its health when is planted on the field. Moreover, organic agriculture has to deal with the low application of fertilizers and pesticides, which hinder the growth of seedlings. In this work, we studied the big influence of different mixtures of substrates suitable for organic agriculture based on peat, coconut husk and vermicompost in traditional varieties of tomato, pepper and eggplant. Our results indicate that the use of coconut husk based substrates in organic agriculture can reduce the growth of seedlings between 20 and 30% compared with peat-based substrates. Moreover, the plants growth in this substrate showed lower levels of chlorophyll and lower weight, but the results are strongly dependent on the species tested. Comparison between traditional plants demonstrates that traditional varieties are strongly influenced by the substrate, whereas the growth of a commercial variety of tomato barely differs when different substrates are used. The election of the substrate in organic agriculture is critical to the correct development of the plant, especially when traditional plant varieties are used. (Author)

  9. Effect of different substrates for organic agriculture in seedling development of traditional species of Solanaceae

    Directory of Open Access Journals (Sweden)

    Hector Molina

    2016-03-01

    Full Text Available Sowing of seedlings is one of the most critical processes on the establishment of a crop, since the future development of the plant depends largely on its health when is planted on the field. Moreover, organic agriculture has to deal with the low application of fertilizers and pesticides, which hinder the growth of seedlings. In this work, we studied the big influence of different mixtures of substrates suitable for organic agriculture based on peat, coconut husk and vermicompost in traditional varieties of tomato, pepper and eggplant. Our results indicate that the use of coconut husk based substrates in organic agriculture can reduce the growth of seedlings between 20 and 30% compared with peat-based substrates. Moreover, the plants growth in this substrate showed lower levels of chlorophyll and lower weight, but the results are strongly dependent on the species tested. Comparison between traditional plants demonstrates that traditional varieties are strongly influenced by the substrate, whereas the growth of a commercial variety of tomato barely differs when different substrates are used. The election of the substrate in organic agriculture is critical to the correct development of the plant, especially when traditional plant varieties are used.

  10. Investigating the limits of multi functional agriculture as the dominant frame for Green Care in agriculture in Flanders and The Netherlands

    NARCIS (Netherlands)

    Dessein, J.; Bock, B.B.; Krom, de M.P.M.M.

    2013-01-01

    European agriculture and rural areas are facing multiple socio-economic changes, including a transition from an agriculture-based to a service-based economy. This restructuring forces agricultural and rural actor-networks to reformulate their (self-)definitions. One reformulation prevailing both in

  11. Agricultural production and water use scenarios in Cyprus under global change

    Science.gov (United States)

    Bruggeman, Adriana; Zoumides, Christos; Camera, Corrado; Pashiardis, Stelios; Zomeni, Zomenia

    2014-05-01

    In many countries of the world, food demand exceeds the total agricultural production. In semi-arid countries, agricultural water demand often also exceeds the sustainable supply of water resources. These water-stressed countries are expected to become even drier, as a result of global climate change. This will have a significant impact on the future of the agricultural sector and on food security. The aim of the AGWATER project consortium is to provide recommendations for climate change adaptation for the agricultural sector in Cyprus and the wider Mediterranean region. Gridded climate data sets, with 1-km horizontal resolution were prepared for Cyprus for 1980-2010. Regional Climate Model results were statistically downscaled, with the help of spatial weather generators. A new soil map was prepared using a predictive modelling and mapping technique and a large spatial database with soil and environmental parameters. Stakeholder meetings with agriculture and water stakeholders were held to develop future water prices, based on energy scenarios and to identify climate resilient production systems. Green houses, including also hydroponic systems, grapes, potatoes, cactus pears and carob trees were the more frequently identified production systems. The green-blue-water model, based on the FAO-56 dual crop coefficient approach, has been set up to compute agricultural water demand and yields for all crop fields in Cyprus under selected future scenarios. A set of agricultural production and water use performance indicators are computed by the model, including green and blue water use, crop yield, crop water productivity, net value of crop production and economic water productivity. This work is part of the AGWATER project - AEIFORIA/GEOGRO/0311(BIE)/06 - co-financed by the European Regional Development Fund and the Republic of Cyprus through the Research Promotion Foundation.

  12. Research on Supply Chain Coordination of Fresh Agricultural Products under Agricultural Insurance

    Directory of Open Access Journals (Sweden)

    Zhang Pei

    2017-01-01

    Full Text Available Based on the fact that the current fresh agricultural products are susceptible to natural risks and the coordination of supply chain is poor, This paper constructs the supply chain profit model under the two models of natural risk and agricultural insurance, Firstly, studying the coordination function of the supply chain system under Two-part Tariff; Then discussing the setting and claiming mechanism of agricultural insurance, compares the influence of agricultural insurance on supply chain profit and supply chain coordination; Finally, giving an example to validate the model results and give decision - making opinions. Research shows that the supply chain of fresh agricultural products can coordinated under Two-part Tariff, but the supply chain cooperation is poor in the natural risk , need to further stabilize and optimize the supply chain; When the risk factor is less than the non-participation insurance coefficient, not to participate in agricultural insurance is conducive to maintaining the coordination of the supply chain system; When the risk coefficient exceeds the non-participation insurance coefficient, the introduction of agricultural insurance can not only effectively manage the natural risks, but also help to improve the coordination of the supply chain system.

  13. Agricultural factors affecting Fusarium communities in wheat kernels.

    Science.gov (United States)

    Karlsson, Ida; Friberg, Hanna; Kolseth, Anna-Karin; Steinberg, Christian; Persson, Paula

    2017-07-03

    Fusarium head blight (FHB) is a devastating disease of cereals caused by Fusarium fungi. The disease is of great economic importance especially owing to reduced grain quality due to contamination by a range of mycotoxins produced by Fusarium. Disease control and prediction is difficult because of the many Fusarium species associated with FHB. Different species may respond differently to control methods and can have both competitive and synergistic interactions. Therefore, it is important to understand how agricultural practices affect Fusarium at the community level. Lower levels of Fusarium mycotoxin contamination of organically produced cereals compared with conventionally produced have been reported, but the causes of these differences are not well understood. The aim of our study was to investigate the effect of agricultural factors on Fusarium abundance and community composition in different cropping systems. Winter wheat kernels were collected from 18 organically and conventionally cultivated fields in Sweden, paired based on their geographical distance and the wheat cultivar grown. We characterised the Fusarium community in harvested wheat kernels using 454 sequencing of translation elongation factor 1-α amplicons. In addition, we quantified Fusarium spp. using real-time PCR to reveal differences in biomass between fields. We identified 12 Fusarium operational taxonomic units (OTUs) with a median of 4.5 OTUs per field. Fusarium graminearum was the most abundant species, while F. avenaceum had the highest occurrence. The abundance of Fusarium spp. ranged two orders of magnitude between fields. Two pairs of Fusarium species co-occurred between fields: F. poae with F. tricinctum and F. culmorum with F. sporotrichoides. We could not detect any difference in Fusarium communities between the organic and conventional systems. However, agricultural intensity, measured as the number of pesticide applications and the amount of nitrogen fertiliser applied, had an

  14. Conservationist Systems, one environmental alternative for the agriculture of the Northeastern Andes of Colombia

    International Nuclear Information System (INIS)

    Villamizar Moreno, J.

    1999-01-01

    The article shows the results of a proposal of alternative handling of the agriculture ecosystem tobacco-bean-maize, main agricultural activity of the Northeastern Andes of Colombia. This system is the base of the economic and alimentary security and the main factor of degradation of the natural resources of the region. The work looks for to develop the diversified rotations, as essential component of biological diversity, the reduced works as strategy of protection of the soil and the promotion of the agriculture ecology like new model of agricultural development. The results of the work show that the high volume of organic residuals coming from the rotation tobacco bean maize, become compost in the field and the reduction of the farm, they promote the stability of the productive components of the soils and their agricultural yields. The biggest levels of organic matter and of total porosity, generated by the biggest biological activity, they indicate that the technological alternatives of the proposal slow the effects of the degradation originated by the conventional agriculture. These alternatives can be included in the regional programs of agricultural production, like solution principle and as strategy for the sustainable development of the region

  15. Establishment and application of the estimation model for pollutant concentrfation in agriculture drain

    Science.gov (United States)

    Li, Qiangkun; Hu, Yawei; Jia, Qian; Song, Changji

    2018-02-01

    It is the key point of quantitative research on agricultural non-point source pollution load, the estimation of pollutant concentration in agricultural drain. In the guidance of uncertainty theory, the synthesis of fertilization and irrigation is used as an impulse input to the farmland, meanwhile, the pollutant concentration in agricultural drain is looked as the response process corresponding to the impulse input. The migration and transformation of pollutant in soil is expressed by Inverse Gaussian Probability Density Function. The law of pollutants migration and transformation in soil at crop different growth periods is reflected by adjusting parameters of Inverse Gaussian Distribution. Based on above, the estimation model for pollutant concentration in agricultural drain at field scale was constructed. Taking the of Qing Tong Xia Irrigation District in Ningxia as an example, the concentration of nitrate nitrogen and total phosphorus in agricultural drain was simulated by this model. The results show that the simulated results accorded with measured data approximately and Nash-Sutcliffe coefficients were 0.972 and 0.964, respectively.

  16. Nuclear agricultural sciences in China

    International Nuclear Information System (INIS)

    Xu Bujin

    2004-01-01

    Nuclear technique is a powerful scientific tool in agricultural research, an area with fruitful achievements in China. Nuclear technique application in agriculture based on the development of related science and technology is of a high technical area, and also a meaningful aspect of non-electrical power application of nuclear technique. Nuclear Agricultural Sciences is an important component of agricultural science and technology, and has been made a lot of significant achievements, which has made remarkable contribution to the development in economy, society and ecology of China. This article reviews the achievements and present situation of Nuclear Agricultural Sciences in China briefly. For promoting its development, the author strongly suggests that Chinese government bodies should put more attention to the study on the application of nuclear technique in agriculture to make further more contributions to Chinese society and agriculture. (authors)

  17. Preservice Agricultural Education Teachers' Mathematics Ability

    Science.gov (United States)

    Stripling, Christopher T.; Roberts, T. Grady

    2012-01-01

    The purpose of this study was to examine the mathematics ability of the nation's preservice agricultural education teachers. Based on the results of this study, preservice teachers were not proficient in solving agricultural mathematics problems, and agricultural teacher education programs require basic and intermediate mathematics as their…

  18. Road verges and winter wheat fields as resources for wild bees in agricultural landscapes

    DEFF Research Database (Denmark)

    Henriksen, Casper Christian I; Langer, Vibeke

    2013-01-01

    The effects of farming system on plant density and flowering of dicotyledonous herbs of high value for bees were investigated in 14 organic and 14 conventional winter wheat fields and adjacent road verges. The organic and conventional winter wheat fields/road verges were paired based on the perce......The effects of farming system on plant density and flowering of dicotyledonous herbs of high value for bees were investigated in 14 organic and 14 conventional winter wheat fields and adjacent road verges. The organic and conventional winter wheat fields/road verges were paired based...... on the percentage of semi-natural habitats in the surrounding landscape at 1-km scale. Mean density of high value bee plants per Raunkiaer circle was significantly higher in organic winter wheat fields and their adjacent road verges than in their conventionally farmed counterparts. The effect of organic farming...... was even more pronounced on the flowering stage of high value bee plants, with 10-fold higher mean density of flowering plants in organic fields than in conventional fields and 1.9-fold higher in road verges bordering organic fields than in those bordering conventional fields. In summary, organic farming...

  19. Agriculture: Agriculture and Air Quality

    Science.gov (United States)

    Information on air emissions from agricultural practices, types of agricultural burning, air programs that may apply to agriculture, reporting requirements, and links to state and other federal air-quality information.

  20. MAPPING SPATIAL MOISTURE CONTENT OF UNSATURATED AGRICULTURAL SOILS WITH GROUND-PENETRATING RADAR

    Directory of Open Access Journals (Sweden)

    O. Shamir

    2016-06-01

    Full Text Available Soil subsurface moisture content, especially in the root zone, is important for evaluation the influence of soil moisture to agricultural crops. Conservative monitoring by point-measurement methods is time-consuming and expensive. In this paper we represent an active remote-sensing tool for subsurface spatial imaging and analysis of electromagnetic physical properties, mostly water content, by ground-penetrating radar (GPR reflection. Combined with laboratory methods, this technique enables real-time and highly accurate evaluations of soils' physical qualities in the field. To calculate subsurface moisture content, a model based on the soil texture, porosity, saturation, organic matter and effective electrical conductivity is required. We developed an innovative method that make it possible measures spatial subsurface moisture content up to a depth of 1.5 m in agricultural soils and applied it to two different unsaturated soil types from agricultural fields in Israel: loess soil type (Calcic haploxeralf, common in rural areas of southern Israel with about 30% clay, 30% silt and 40% sand, and hamra soil type (Typic rhodoxeralf, common in rural areas of central Israel with about 10% clay, 5% silt and 85% sand. Combined field and laboratory measurements and model development gave efficient determinations of spatial moisture content in these fields. The environmentally friendly GPR system enabled non-destructive testing. The developed method for measuring moisture content in the laboratory enabled highly accurate interpretation and physical computing. Spatial soil moisture content to 1.5 m depth was determined with 1–5% accuracy, making our method useful for the design of irrigation plans for different interfaces.

  1. Be a Professional - Be Licensed! - Take the agricultural engineering professional engineering exam

    Science.gov (United States)

    Between October 2005 and October 2007, only 78 Agricultural Engineers took the professional engineering (PE) exam in the field of Agricultural Engineering, while the other 406 registered Agricultural Engineering Examinees took tests offer by other engineering disciplines. With the decline in partic...

  2. Scientometric analysis of the Ethiopian Journal of Agricultural ...

    African Journals Online (AJOL)

    A Scientometric analysis of the Ethiopian Journal of Agricultural Sciences from volume 1 to 24 covering 279 papers is reported. The journal was covering all areas of agriculture with most papers having single, two or three authors and; in a rare cases up to nine and twelve authors. The number of papers in agronomy, field ...

  3. The impact of the biotechnology in the sustainable development of the agriculture in the Latin America and Caribbean region: The Andean countries as model

    International Nuclear Information System (INIS)

    Artunduaga Salas, Rodrigo

    2001-01-01

    In accordance with the premise that the base of the sustainable agricultural development is based on the conviction that it is possible to increase the agricultural production without affecting the natural resources non-renewable, the author makes a conceptual mark of the technological revolution in Latin America, he makes an analysis of the environment and the paper of the different organisms of the state inside this field

  4. Profitability Analysis for Agricultural Investment Projects

    Directory of Open Access Journals (Sweden)

    Florina Oana VIRLANUTA

    2011-11-01

    Full Text Available In agriculture production is based on a process both economically as well as the biological one, the work results are influenced, more than any branch of economic, natural and climatic conditions are subject to higher risk and permanently. Due to the features of production in agriculture, we believe that it is necessary such as performance agricultural units to be assessed under a system of specific indicators. The correct assessment units are closely related agricultural economic-financial investment in agriculture. In the following we present and analyze a complex system of specific performance indicators of the extremely for assessing agricultural units.

  5. Emissions from Prescribed Burning of Agricultural Fields in the Pacific Northwest

    Science.gov (United States)

    Prescribed burns of winter wheat stubble and Kentucky bluegrass fields in northern Idaho and eastern Washington states (U.S.A.) were sampled using ground-, aerostat-, airplane-, and laboratory-based measurement platforms to determine emission factors, compare methods, and provide...

  6. Assessment of soil redistribution rates by 137Cs and 210Pbex in a typical Malagasy agricultural field

    International Nuclear Information System (INIS)

    Rabesiranana, N.; Rasolonirina, M.; Solonjara, A.F.; Ravoson, H.N.; Raoelina Andriambololona; Mabit, L.

    2016-01-01

    Soil degradation processes affect more than one-third of the Malagasy territory and are considered as the major environmental threat impacting the natural resources of the island. This innovative study reports about a pioneer test and use of radio-isotopic techniques (i.e. Cs-137 and Pb-210ex) under Madagascar agroclimatic condition to evaluate soil erosion magnitude. This preliminary investigation has been conducted in a small agricultural field situated in the eastern central highland of Madagascar, 40 km East from Antananarivo. Both anthropogenic Cs-137 and geogenic Pb-210 soil tracers provided similar results highlighting soil erosion rates reaching locally 18 t ha −1  yr −1, a level almost two times higher than the sustainable soil loss rate under Madagascar agroclimatic condition. The sediment delivery ratio established with both radiotracers was above 80% indicating that most of the mobilized sediment exits the field. Assessing soil erosion rate through fallout radionuclides in Madagascar is a first step towards an efficient land and water resource management policy to optimise the effectiveness of future agricultural soil conservation practices. - Highlights: • A pioneer test of radioisotopic techniques under Madagascar agroclimatic condition for estimating soil erosion magnitude. • Cs-137 and Pb-210 ex Mass Balance Models (MBM) conjointly used to highlight timescale discrimination of erosion process. • Timescale discrimination suggests significant increase of erosion magnitude during the last 50 years. • Estimated erosion rates above 10 t ha −1 yr −1 indicate a clear threat for the sustainability of Malagasy soil resources. • Findings indicate the potential of using jointly Cs-137 and Pb-210 ex under local agroecological conditions.

  7. Energy potential through agricultural biomass using geographical information system - A case study of Punjab

    International Nuclear Information System (INIS)

    Singh, Jagtar; Panesar, B.S.; Sharma, S.K.

    2008-01-01

    Agricultural biomass has immense potential for power production in an Indian state like Punjab. A judicious use of biomass energy could potentially play an important role in mitigating environmental impacts of non-renewable energy sources particularly global warming and acid rain. But the availability of agricultural biomass is spatially scattered. The spatial distribution of this resource and the associate costs of collection and transportation are major bottlenecks for the success of biomass energy conversion facilities. Biomass, being scattered and loose, has huge collection and transportation costs, which can be reduced by properly planning and locating the biomass collection centers for biomass-based power plants. Before planning the collection centers, it is necessary to evaluate the biomass, energy and collection cost of biomass in the field. In this paper, an attempt has been made to evaluate the spatial potential of biomass with geographical information system (GIS) and a mathematical model for collection of biomass in the field has been developed. The total amount of unused agricultural biomass is about 13.73 Mt year -1 . The total power generation capacity from unused biomass is approximately 900 MW. The collection cost in the field up to the carrier unit is US$3.90 t -1 . (author)

  8. Voice-Based Marketing for Agricultural Products : A Case Study in Rural Northern Ghana

    NARCIS (Netherlands)

    Dittoh, Francis; Aart, Chris Van; Boer, Victor De

    2013-01-01

    We present a study conducted in rural Northern Ghana about issues around the marketing of agricultural products and the need of mobile-based ICT solutions. The need for the spread of information and web access to communities in developing countries has given rise to the design and development of

  9. FroboMind, proposing a conceptual architecture for agricultural field robot navigation

    DEFF Research Database (Denmark)

    Jensen, Kjeld; Bøgild, Anders; Nielsen, Søren Hundevadt

    2011-01-01

    The aim of this work is to propose a conceptual system architecture Field Robot Cognitive System Architecture (FroboMind). which can provide the flexibility and extend ability required for further research and development within cognition based navigation of plant nursing robots....

  10. Biomass or biomess? - a comment on the paper by Anders Lunnan (Agriculture-based biomass energy supply - a survey of economics issues)

    International Nuclear Information System (INIS)

    Bolin, Olof

    1997-01-01

    A response to Lunnan's paper (Energy Policy, Vol. 25, No. 6, 1997), on economic issues surrounding agriculture-based biomass energy supplies is presented. This author argues that, despite Lunnan's gloomy forecasts for the economic prospects of agriculture-based bioenergy, the future of the industry will be decided in the political arena based on agricultural policy. Bioenergy production can best be promoted, it is argued, by reducing farmland prices. Caution is urged in placing too great a financial burden on farmers, however, and consumers of food or energy and tax-payers must share the risk of investment in these new technologies. (UK)

  11. Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice

    Science.gov (United States)

    Clark, Michael; Tilman, David

    2017-06-01

    Global agricultural feeds over 7 billion people, but is also a leading cause of environmental degradation. Understanding how alternative agricultural production systems, agricultural input efficiency, and food choice drive environmental degradation is necessary for reducing agriculture’s environmental impacts. A meta-analysis of life cycle assessments that includes 742 agricultural systems and over 90 unique foods produced primarily in high-input systems shows that, per unit of food, organic systems require more land, cause more eutrophication, use less energy, but emit similar greenhouse gas emissions (GHGs) as conventional systems; that grass-fed beef requires more land and emits similar GHG emissions as grain-feed beef; and that low-input aquaculture and non-trawling fisheries have much lower GHG emissions than trawling fisheries. In addition, our analyses show that increasing agricultural input efficiency (the amount of food produced per input of fertilizer or feed) would have environmental benefits for both crop and livestock systems. Further, for all environmental indicators and nutritional units examined, plant-based foods have the lowest environmental impacts; eggs, dairy, pork, poultry, non-trawling fisheries, and non-recirculating aquaculture have intermediate impacts; and ruminant meat has impacts ∼100 times those of plant-based foods. Our analyses show that dietary shifts towards low-impact foods and increases in agricultural input use efficiency would offer larger environmental benefits than would switches from conventional agricultural systems to alternatives such as organic agriculture or grass-fed beef.

  12. Bioremediation of a Petroleum-Hydrocarbon Polluted Agricultural ...

    African Journals Online (AJOL)

    A combination of field cells involving a control and five treatment cells were evaluated under field conditions in the bioremediation of a petroleum- hydrocarbon polluted agricultural soil over a six-week period. Previous works have indicated that crude oil contamination of soils depletes oxygen reserves in the soils and slows ...

  13. Presentation of a Modified Boustrophedon Decomposition Algorithm for Optimal Configuration of Flat Fields to use in Path Planning Systems of Agricultural Vehicles

    Directory of Open Access Journals (Sweden)

    R Goudarzi

    2018-03-01

    Full Text Available Introduction The demand of pre-determined optimal coverage paths in agricultural environments have been increased due to the growing application of field robots and autonomous field machines. Also coverage path planning problem (CPP has been extensively studied in robotics and many algorithms have been provided in many topics, but differences and limitations in agriculture lead to several different heuristic and modified adaptive methods from robotics. In this paper, a modified and enhanced version of currently used decomposition algorithm in robotics (boustrophedon cellular decomposition has been presented as a main part of path planning systems of agricultural vehicles. Developed algorithm is based on the parallelization of the edges of the polygon representing the environment to satisfy the requirements of the problem as far as possible. This idea is based on "minimum facing to the cost making condition" in turn, it is derived from encounter concept as a basis of cost making factors. Materials and Methods Generally, a line termed as a slice in boustrophedon cellular decomposition (BCD, sweeps an area in a pre-determined direction and decomposes the area only at critical points (where two segments can be extended to top and bottom of the point. Furthermore, sweep line direction does not change until the decomposition finish. To implement the BCD for parallelization method, two modifications were applied in order to provide a modified version of the boustrophedon cellular decomposition (M-BCD. In the first modification, the longest edge (base edge is targeted, and sweep line direction is set in line with the base edge direction (sweep direction is set perpendicular to the sweep line direction. Then Sweep line moves through the environment and stops at the first (nearest critical point. Next sweep direction will be the same as previous, If the length of those polygon's newly added edges, during the decomposition, are less than or equal to the

  14. BIODYNAMIC AGRICULTURE - ECO-FRIENDLY AGRICULTURAL PRACTICE

    Directory of Open Access Journals (Sweden)

    Veselka Vlahova

    2015-06-01

    Full Text Available Biodynamic agriculture is undoubtedly the oldest organized agricultural movement in the world. It is considered as an organic agricultural farming approach and determined as the oldest organized alternative agricultural movement in the world. In 1924 Rudolf Steiner – an Austrian natural scientist and philosopher, carried out a series of eight lectures in Koberwitz, currently Kobierzyce- Poland, where he formulated his visions on changes in agriculture and revealed his spiritual and scientific concepts about the connection between nature and agriculture by determining the important role of agriculture for the future of humanity and thus he became known as “the father of anthroposophy”. The great ecological effect of the application of the biodynamic agriculture is expressed in soil preservation and preservation of the living organisms in the soil, as well as maintenance of the natural balance in the vegetable and animal kingdom.

  15. Use of agricultural fields by ruffs staging in southwest Friesland in 2003–2013

    NARCIS (Netherlands)

    Schmaltz, Lucie E.; Vega, Marta L.; Verkuil, Yvonne I.; Hooijmeijer, Joslyn; Piersma, Theunis

    2016-01-01

    Intensive dairy farming has changed the agricultural grassland areas of The Netherlands profoundly, with negative impacts on the reproduction of the shorebirds breeding there. This modern agricultural landscape also forms a staging site for migrating shorebirds, where they moult and replenish fuel

  16. Anthropology in Agricultural Health and Safety Research and Intervention.

    Science.gov (United States)

    Arcury, Thomas

    2017-01-01

    Agriculture remains a dangerous industry, even as agricultural science and technology continue to advance. Research that goes beyond technological changes to address safety culture and policy are needed to improve health and safety in agriculture. In this commentary, I consider the potential for anthropology to contribute to agricultural health and safety research by addressing three aims: (1) I briefly consider what the articles in this issue of the Journal of Agromedicine say about anthropologists in agricultural health and safety; (2) I discuss what anthropologists can add to agricultural health and safety research; and (3) I examine ways in which anthropologists can participate in agricultural health and safety research. In using their traditions of rigorous field research to understand how those working in agriculture perceive and interpret factors affecting occupational health and safety (their "emic" perspective), and translating this perspective to improve the understanding of occupational health professionals and policy makers (an "etic" perspective), anthropologists can expose myths that limit improvements in agricultural health and safety. Addressing significant questions, working with the most vulnerable agricultural communities, and being outside establishment agriculture provide anthropologists with the opportunity to improve health and safety policy and regulation in agriculture.

  17. Smart Sensing Technology for Agriculture and Environmental Monitoring

    CERN Document Server

    2012-01-01

    The book focuses on the different aspects of sensing technology, i.e. high reliability, adaptability, recalibration, information processing, data fusion, validation and integration of novel and high performance sensors specifically aims to monitor agricultural and environmental parameters.   This book is dedicated to Sensing systems for Agricultural and Environmental Monitoring  offers to variety of users, namely, Master and PhD degree students, researchers, practitioners, especially Agriculture and Environmental engineers. The book will provide an opportunity of a dedicated and a deep approach in order to improve their knowledge in this specific field.

  18. PubMed search strings for the study of agricultural workers' diseases.

    Science.gov (United States)

    Mattioli, Stefano; Gori, Davide; Di Gregori, Valentina; Ricotta, Lara; Baldasseroni, Alberto; Farioli, Andrea; Zanardi, Francesca; Galletti, Stefania; Colosio, Claudio; Curti, Stefania; Violante, Francesco S

    2013-12-01

    Several optimized search strategies have been developed in Medicine, and more recently in Occupational Medicine. The aim of this study was to identify efficient PubMed search strategies to retrieve articles regarding putative occupational determinants of agricultural workers' diseases. We selected the Medical Subjects Heading (MeSH) term agricultural workers' diseases and six MeSH terms describing farm work (agriculture, agrochemicals NOT pesticides, animal husbandry, pesticides, rural health, rural population) alongside 61 other promising terms. We estimated proportions of articles containing potentially pertinent information regarding occupational etiology to formulate two search strategies (one "more specific," one "more sensitive"). We applied these strategies to retrieve information on the possible occupational etiology among agricultural workers of kidney cancer, knee osteoarthritis, and multiple sclerosis. We evaluated the number of needed to read (NNR) abstracts to identify one potentially pertinent article in the context of these pathologies. The "more specific" search string was based on the combination of terms that yielded the highest proportion (40%) of potentially pertinent abstracts. The "more sensitive" string was based on use of broader search fields and additional coverage provided by other search terms under study. Using the "more specific" string, the NNR to find one potentially pertinent article were: 1.1 for kidney cancer; 1.4 for knee osteoarthritis; 1.2 for multiple sclerosis. Using the sensitive strategy, the NNR were 1.4, 3.6, and 6.3, respectively. The proposed strings could help health care professionals explore putative occupational etiology for agricultural workers' diseases (even if not generally thought to be work related). © 2013 Wiley Periodicals, Inc.

  19. Significance of agricultural row structure on the microwave emissivity of soils

    Science.gov (United States)

    Promes, P. M.; Jackson, T. J.; O'Neill, P. E.

    1987-01-01

    A series of field experiments was carried out to extend the data base available for verifying agricultural row effect models of emissivity. The row effects model was used to simulate a data base from which an algorithm could be developed to account for row effects when the scene dielectric constant and small-scale roughness are unknown. One objective of the study was to quantify the significance of row structure and to develop a practical procedure for removing the effects of periodic row structure on the microwave emissivity of a soil in order to use the emissivity values to estimate the soil moisture. A second objective was to expand the data set available for model verification through field observations using a truck-mounted 1.4-GHz microwave radiometer.

  20. COMPARISON OF UNCALIBRATED RGBVI WITH SPECTROMETER-BASED NDVI DERIVED FROM UAV SENSING SYSTEMS ON FIELD SCALE

    Directory of Open Access Journals (Sweden)

    G. Bareth

    2016-06-01

    Full Text Available The development of UAV-based sensing systems for agronomic applications serves the improvement of crop management. The latter is in the focus of precision agriculture which intends to optimize yield, fertilizer input, and crop protection. Besides, in some cropping systems vehicle-based sensing devices are less suitable because fields cannot be entered from certain growing stages onwards. This is true for rice, maize, sorghum, and many more crops. Consequently, UAV-based sensing approaches fill a niche of very high resolution data acquisition on the field scale in space and time. While mounting RGB digital compact cameras to low-weight UAVs (< 5 kg is well established, the miniaturization of sensors in the last years also enables hyperspectral data acquisition from those platforms. From both, RGB and hyperspectral data, vegetation indices (VIs are computed to estimate crop growth parameters. In this contribution, we compare two different sensing approaches from a low-weight UAV platform (< 5 kg for monitoring a nitrogen field experiment of winter wheat and a corresponding farmers’ field in Western Germany. (i A standard digital compact camera was flown to acquire RGB images which are used to compute the RGBVI and (ii NDVI is computed from a newly modified version of the Yara N-Sensor. The latter is a well-established tractor-based hyperspectral sensor for crop management and is available on the market since a decade. It was modified for this study to fit the requirements of UAV-based data acquisition. Consequently, we focus on three objectives in this contribution: (1 to evaluate the potential of the uncalibrated RGBVI for monitoring nitrogen status in winter wheat, (2 investigate the UAV-based performance of the modified Yara N-Sensor, and (3 compare the results of the two different UAV-based sensing approaches for winter wheat.

  1. Harmonization of customs policy of the Republic of Serbia in the field of agriculture as a condition for accession to the European Union

    Directory of Open Access Journals (Sweden)

    Nikolić Đurica

    2016-01-01

    Full Text Available The European Union wants to expand its market in order to qualify their products, and one way is to carry out the admission of new member states into the European Union. Some Balkan countries that are also used to be the former Yugoslav Republic want to become a full member of the European Union. In order to become an inclusive member, the Republic of Serbia must adjust economic, foreign trade, customs, security and other policies. The aim is to indicate how and in which way to harmonize customs policy of the European Union and of the Republic of Serbia. Comparing the tariff policy in the field of Agriculture of the Republic of Serbia and the European Union we want to point out the similarities and differences in the measures of protection of domestic agriculture in the Republic of Serbia and in the European Union, with the desire the Republic of Serbia, as far as possible, harmonize customs policies in the field of agriculture with policy of the European Union, in order to, among other conditions, allow for accession to the European Union. The process of harmonization is time consuming, requires knowledge, skill and expertise of the people at the Ministry of Finance and the Customs Administration. It is very important that all the recommendations given by the competent bodies of the European Union are implemented in a timely manner by the Republic of Serbia.

  2. Rethinking the Risk Management Process for Genetically Engineered Crop Varieties in Small-scale, Traditionally Based Agriculture

    Directory of Open Access Journals (Sweden)

    David A. Cleveland

    2005-06-01

    Full Text Available Proponents of genetically engineered (GE crops often assume that the risk management used in the industrial world is appropriate for small-scale, traditionally based agriculture in the Third World. Opponents of GE crops often assume that risk management is inappropriate for the Third World, because it is inherently biased in favor of the industrial world. We examine both of these assumptions, by rethinking risk management for GE crops and transgenes, using the example of maize transgene flow from the U.S. to Mexico. Risk management for the Third World is a necessary first step of a broader benefit-cost analysis of GE crops, which would include comparisons with existing varieties and with alternative varieties such as transgenic farmer varieties and organic varieties. Our goal is to use existing information on GE crops and on the social and biological characteristics of Third World agriculture to identify key processes that need to be considered in risk management, and the additional research required to adequately understand them. The four main steps in risk management are hazard identification, risk analysis (exposure x harm, risk evaluation, and risk treatment. We use informal event trees to identify possible exposure to GE crops and transgenes, and resulting biological and social harm; give examples of farmers' ability to evaluate social harm; and discuss the possibilities for risk treatment. We conclude that risk management is relevant for Third World agriculture, but needs to be based on the unique biological and social characteristics of small-scale, traditionally based agriculture, including the knowledge and values of Third World farmers and consumers.

  3. Short-term marginal costs in French agriculture

    OpenAIRE

    Latruffe, Laure; LETORT, Elodie

    2011-01-01

    The paper investigates short-term marginal costs in French agriculture for field cropping, beef cattle, and dairy farms during the period 1995-2006. The multi-input multi-output Symmetric Generalised MacFadden cost function is used, with three variable inputs (crop-specific, animal-specific, energy costs), four outputs and three quasi-fixed inputs. Results indicate that marginal costs are on average lower for crop farms than for livestock samples. However, for crop farms, Common Agricultural ...

  4. Women in sustainable agriculture and food biotechnology key advances and perspectives on emerging topics

    CERN Document Server

    2017-01-01

    This volume describes the contributions made by women scientists to the field of agricultural biotechnology, the most quickly adopted agricultural practice ever adopted. It features the perspectives of women educators, researchers and key stakeholders towards the development, implementation and acceptance of this modern technology. It describes the multiplying contemporary challenges in the field, how women are overcoming technological barriers, and their thoughts on what the future may hold. As sustainable agricultural practices increasingly represent a key option in the drive towards building a greener global community, the scientific, technological and implementation issues covered in this book are vital information for anyone working in environmental engineering. Provides a broad analysis of the science of agriculture, focusing on the contributions of women to the field, from basic research to applied technology Offers insights into hot topics in the field across the life cycle, from genetic engineering t...

  5. Environmental assessment of Swedish agriculture

    International Nuclear Information System (INIS)

    Engstroem, Rebecka; Finnveden, Goeran; Wadeskog, Anders

    2007-01-01

    This article describes an environmental assessment of Swedish agriculture, including upstream and downstream effects. The analysis is based on environmentally extended input-output analysis, but it is also supplemented with data from other sources. The analysis shows that direct effects by the Swedish agriculture are the most important, while indirect effects from other sources including mobile and impacts abroad are also considerable. The most important impacts from Swedish agriculture according to the analysis are eutrophication, global warming and resource use. The agricultural sector produces a large share of the Swedish emissions causing both global warming and eutrophication. In addition, current agricultural practice causes problems with loss of biodiversity. The most important actors in the sector are agriculture itself, but also all actors using fossil fuels: primarily the transport sector and the energy sector. In addition, consumers are important since they can influence the composition of agricultural production. The analysis shows the importance of including upstream and downstream effects when analysing the environmental impacts from a sector. (author)

  6. Agricultural experts’ attitude towards precision agriculture: Evidence from Guilan Agricultural Organization, Northern Iran

    OpenAIRE

    Mohammad Sadegh Allahyari; Masoumeh Mohammadzadeh; Stefanos A. Nastis

    2016-01-01

    Identifying factors that influence the attitudes of agricultural experts regarding precision agriculture plays an important role in developing, promoting and establishing precision agriculture. The aim of this study was to identify factors affecting the attitudes of agricultural experts regarding the implementation of precision agriculture. A descriptive research design was employed as the research method. A research-made questionnaire was used to examine the agricultural experts’ attitude to...

  7. Agriculture

    International Nuclear Information System (INIS)

    Goetz, B.; Riss, A.; Zethner, G.

    2001-01-01

    This chapter deals with fertilization techniques, bioenergy from agriculture, environmental aspects of a common agriculture policy in the European Union, bio-agriculture, fruit farming in Austria and with environmental indicators in agriculture. In particular renewable energy sources (bio-diesel, biogas) from agriculture are studied in comparison to fossil fuels and other energy sources. (a.n.)

  8. Evaluation of the leucine incorporation technique for detection of pollution-induced community tolerance to copper in a long-term agricultural field trial with urban waste fertilizers

    DEFF Research Database (Denmark)

    Lekfeldt, Jonas Duus Stevens; Magid, Jakob; Holm, Peter Engelund

    2014-01-01

    increased bacterial community tolerance to Cu was observed for soils amended with organic waste fertilizers and was positively correlated with total soil Cu. However, metal speciation and whole-cell bacterial biosensor analysis demonstrated that the observed PICT responses could be explained entirely by Cu......Copper (Cu) is known to accumulate in agricultural soils receiving urban waste products as fertilizers. We here report the use of the leucine incorporation technique to determine pollution-induced community tolerance (Leu-PICT) to Cu in a long-term agricultural field trial. A significantly...

  9. Mapping Chinese Agricultural and Allied Sciences Journals Indexed in CAB Abstracts Database

    OpenAIRE

    Arundhati Kaushik; Superna Sharma; Lokendra Singh Rajput

    2013-01-01

    CAB Abstracts published by CABI (Centre for Agriculture and Biosciences International) is the premier database for agricultural and allied sciences literature. The purpose of this study is to determine the extent of index coverage in CAB Abstracts and to identify the core journals in the field of agricultural and allied sciences published in China. The study depicts the trend of Chinese agricultural and allied sciences journals, which is successfully proving a gateway of the agricultural rese...

  10. Towards Conservation Agriculture systems in Moldova

    Directory of Open Access Journals (Sweden)

    Boris Boincean

    2016-10-01

    Full Text Available As the world population and food production demands rise, keeping agricultural soils and landscapes healthy and productive are of paramount importance to sustaining local and global food security and the flow of ecosystem services to society. The global population, expected to reach 9.7 billion people by 2050, will put additional pressure on the available land area and resources for agricultural production. Sustainable production intensification for food security is a major challenge to both industrialized and developing countries. The paper focuses on the results from long-term multi-factorial experiments involving tillage practices, crop rotations and fertilization to study the interactions amongst the treatments in the context of sustainable production intensification. The paper discusses the results in relation to reported performance of crops and soil quality in Conservation Agriculture systems that are based on no or minimum soil disturbance (no-till seeding and weeding, maintenance of soil mulch cover with crop biomass and cover crops, and diversified cropping s involving annuals and perennials. Conservation Agriculture also emphasizes the necessity of an agro-ecosystems approach to the management of agricultural land for sustainable production intensification, as well as to the site-specificity of agricultural production. Arguments in favor of avoiding the use of soil tillage are discussed together with agro-ecological principles for sustainable intensification of agriculture. More interdisciplinary systems research is required to support the transformation of agriculture from the conventional tillage agriculture to a more sustainable agriculture based on the principles and practices of Conservation Agriculture, along with other complementary practices of integrated crop, nutrient, water, pest, energy and farm power management.

  11. [Effects of agricultural practices on community structure of arbuscular mycorrhizal fungi in agricultural ecosystem: a review].

    Science.gov (United States)

    Sheng, Ping-Ping; Li, Min; Liu, Run-Jin

    2011-06-01

    Arbuscular mycorrhizal (AM) fungi are rich in diversity in agricultural ecosystem, playing a vital role based on their unique community structure. Host plants and environmental factors have important effects on AM fungal community structure, so do the agricultural practices which deserve to pay attention to. This paper summarized the research advances in the effects of agricultural practices such as irrigation, fertilization, crop rotation, intercropping, tillage, and pesticide application on AM fungal community structure, analyzed the related possible mechanisms, discussed the possible ways in improving AM fungal community structure in agricultural ecosystem, and put forward a set of countermeasures, i.e., improving fertilization system and related integrated techniques, increasing plant diversity in agricultural ecosystem, and inoculating AM fungi, to enhance the AM fungal diversity in agricultural ecosystem. The existing problems in current agricultural practices and further research directions were also proposed.

  12. Factors affecting RFID adoption in the agricultural product distribution industry: empirical evidence from China.

    Science.gov (United States)

    Shi, Ping; Yan, Bo

    2016-01-01

    We conducted an exploratory investigation of factors influencing the adoption of radio frequency identification (RFID) methods in the agricultural product distribution industry. Through a literature review and field research, and based on the technology-organization-environment (TOE) theoretical framework, this paper analyzes factors influencing RFID adoption in the agricultural product distribution industry in reference to three contexts: technological, organizational, and environmental contexts. An empirical analysis of the TOE framework was conducted by applying structural equation modeling based on actual data from a questionnaire survey on the agricultural product distribution industry in China. The results show that employee resistance and uncertainty are not supported by the model. Technological compatibility, perceived effectiveness, organizational size, upper management support, trust between enterprises, technical knowledge, competitive pressure and support from the Chinese government, which are supported by the model, have significantly positive effects on RFID adoption. Meanwhile, organizational size has the strongest positive effect, while competitive pressure levels have the smallest effect. Technological complexities and costs have significantly negative effects on RFID adoption, with cost being the most significantly negative influencing factor. These research findings will afford enterprises in the agricultural products supply chain with a stronger understanding of the factors that influence RFID adoption in the agricultural product distribution industry. In addition, these findings will help enterprises remain aware of how these factors affect RFID adoption and will thus help enterprises make more accurate and rational decisions by promoting RFID application in the agricultural product distribution industry.

  13. A Description and Source Listing of Curriculum Materials in Agricultural Education. 1972-73.

    Science.gov (United States)

    American Vocational Association, Washington, DC. Agricultural Education Div.

    Listed are 246 curriculum material items in ten categories: field crops, horticulture, forestry, animal science, soils, diseases and pests, agricultural engineering, agricultural economics, agricultural occupations, and professional. Most materials are annotated and all are classified according to the AGPEX filing system. Bibliographic and…

  14. Agriculture: About EPA's National Agriculture Center

    Science.gov (United States)

    EPA's National Agriculture Center (Ag Center), with the support of the United States Department of Agriculture, serves growers, livestock producers, other agribusinesses, and agricultural information/education providers.

  15. Design and Concept of an Energy System Based on Renewable Sources for Greenhouse Sustainable Agriculture

    Directory of Open Access Journals (Sweden)

    Ioan Aschilean

    2018-05-01

    Full Text Available Bio-organic greenhouses that are based on alternative resources for producing heat and electricity stand out as an efficient option for the sustainable development of agriculture, thus ensuring good growth and development of plants in all seasons, especially during the cold season. Greenhouses can be used with maximum efficiency in various agricultural lands, providing ideal conditions of temperature and humidity for short-term plant growing, thereby increasing the local production of fruit and vegetables. This paper presents the development of a durable greenhouse concept that is based on complex energy system integrating fuel cells and solar panels. Approaching this innovative concept encountered a major problem in terms of local implementation of this type of greenhouses because of the difficulty in providing electrical and thermal energy from conventional sources to ensure an optimal climate for plant growing. The project result consists in the design and implementation of a sustainable greenhouse energy system that is based on fuel cells and solar panels.

  16. Determinants of a traditional agricultural landscape

    Directory of Open Access Journals (Sweden)

    Janina Borysiak

    2018-03-01

    Full Text Available The study aim was to define the landscape determinants as certificates of natural and cultural heritage which identify the young glacial landscape under traditional agricultural management. These studies were conducted in the upper Parsęta basin (Pomerania, Poland covered by the many annual environmental monitoring programs since 1994. The aim of this monitoring is to observe changes in geoecosystems of the temperate climate zone. The parameters of the abiotic landscape subsystem have been monitored in a wide range of terms, whereas biotic elements and cultural resources only in a very limited way. This was the reason for undertaking complementary studies. The paper presents the so-called “zero-state” for 2014, which will be a reference point from which to track the direction of landscape changes in the future. The abiotic, geobotanical, and cultural determinants of this state chosen have been characterized on the basis of field mapping data and the available literature. They were chosen based on the methodology of landscape audit to define the specificity of the traditional agricultural landscape. They were selected on the basis of assessment criteria for landscape structure: complexity (diversification of land use and cover, naturalness (syngenesis of plant communities, hydrochemical properties of surface waters, coherence of composition with natural conditions, stewardship (intensity of use, crop weeds, ecological succession, fallows, anthropogenic denudation, aesthetic and visual perception, historicity (continuity of natural landscape elements, continuation of traditional agricultural use, architectural objects, and disharmonious elements.

  17. Considering the normative, systemic and procedural dimensions in indicator-based sustainability assessments in agriculture

    International Nuclear Information System (INIS)

    Binder, Claudia R.; Feola, Giuseppe; Steinberger, Julia K.

    2010-01-01

    This paper develops a framework for evaluating sustainability assessment methods by separately analyzing their normative, systemic and procedural dimensions as suggested by Wiek and Binder [Wiek, A, Binder, C. Solution spaces for decision-making - a sustainability assessment tool for city-regions. Environ Impact Asses Rev 2005, 25: 589-608.]. The framework is then used to characterize indicator-based sustainability assessment methods in agriculture. For a long time, sustainability assessment in agriculture has focused mostly on environmental and technical issues, thus neglecting the economic and, above all, the social aspects of sustainability, the multi-functionality of agriculture and the applicability of the results. In response to these shortcomings, several integrative sustainability assessment methods have been developed for the agricultural sector. This paper reviews seven of these that represent the diversity of tools developed in this area. The reviewed assessment methods can be categorized into three types: (i) top-down farm assessment methods; (ii) top-down regional assessment methods with some stakeholder participation; (iii) bottom-up, integrated participatory or transdisciplinary methods with stakeholder participation throughout the process. The results readily show the trade-offs encountered when selecting an assessment method. A clear, standardized, top-down procedure allows for potentially benchmarking and comparing results across regions and sites. However, this comes at the cost of system specificity. As the top-down methods often have low stakeholder involvement, the application and implementation of the results might be difficult. Our analysis suggests that to include the aspects mentioned above in agricultural sustainability assessment, the bottom-up, integrated participatory or transdisciplinary methods are the most suitable ones.

  18. Cellulosic ethanol production from agricultural residues in Nigeria

    International Nuclear Information System (INIS)

    Iye, Edward; Bilsborrow, Paul

    2013-01-01

    Nigeria′s Biofuels Policy introduced in 2007 mandates a 10% blend (E10) of bioethanol with gasoline. This study investigates the potential for the development of a cellulosic ethanol industry based on the availability of agricultural residues and models the number of commercial processing facilities that could be sited in the six Geo-political zones. The potential for cellulosic ethanol production from agricultural residues in Nigeria is 7556 km 3 per annum exceeding the mandate of 10% renewable fuel required and providing the potential for 12 large- and 11 medium-scale processing facilities based on the use of a single feedstock. Cassava and yam peelings provided in excess of 80% of the process residues available with enough feedstock to supply 10 large-scale facilities with a fairly even distribution across the zones. Sorghum straw, millet straw and maize stalks represented 75% of the potential resource available from field residues with the potential to supply 2 large- and 7 medium-scale processing facilities, all of which would be located in the north of the country. When a multi-feedstock approach is used, this provides the potential for either 29 large- or 58 medium-scale facilities based on outputs of 250 and 125 km 3 per annum respectively. - Highlights: • Nigeria′s Biofuels Policy mandates a 10% blend of bioethanol with gasoline. • Total bioethanol production from agricultural residues was 7556 km 3 per annum. • Process residues offer the greatest potential accounting for 62% of production. • Nigeria has the potential for 12 large- and 11 medium scale commercial. • The use of mixed feedstocks significantly increases the potential for production

  19. Yalova: potential organic agricultural land of Turkey

    Directory of Open Access Journals (Sweden)

    Süheyla Balcı Akova

    2011-07-01

    Full Text Available La pression qui augmente de jour en jour sur les ressources naturelles et les problèmes de la malnutrition conduisent à porter un intérêt croissant aux produits biologiques. Il est assez important de s'interroger sur les surfaces convenables pour la récolte des produits biologiques et d’évaluer les potentiels d’agriculture de ces surfaces. La ville de Yalova, sujet d’étude de cet article, dispose des conditions convenables pour pratiquer l’agriculture biologique. La pratique des activités agricoles effectuées dans la région adaptée aux bases fondamentales de l’agriculture biologique permettra de valoriser le potentiel d’agriculture biologique de la région. De cette manière, les revenus obtenus augmenteront le niveau de vie des habitants de la région, les ressources naturelles de la région seront conservées et les produits biologiques obtenus seront des ressources de vie saine.Dans ce travail, on a étudié le potentiel d’agriculture biologique et l’importance de ce type d’agriculture pour la région. On a tout d’abord réfléchi sur le potentiel de la région pour l’agriculture et la situation générale de l’agriculture biologique en Turquie et dans le monde entier. On a ensuite traité du processus du développement et des caractéristiques de l’agriculture biologique à Yalova.Increasing pressure on natural resources and the problems caused by unhealthy eating habits have brought along an increase in demands for organic products. Therefore, determining the lands suitable for organic farming with an evaluation of their potentials is of great importance. The city of Yalova which constitutes our research sector has convenient conditions for organic farming. After a regulation of current agricultural activities in accordance with the fundamentals of organic farming, remarkable potential of the field would be availed by putting them into practice. Welfare level of the citizens would also be enhanced with

  20. On Scale and Fields

    DEFF Research Database (Denmark)

    Kadish, David

    2017-01-01

    This paper explores thematic parallels between artistic and agricultural practices in the postwar period to establish a link to media art and cultural practices that are currently emerging in urban agriculture. Industrial agriculture has roots in the post-WWII abundance of mechanical and chemical...... equipment and research. These systems are highly mechanically efficient. With minimal physical labour, they extract ever staggering crop yields from ever poorer soils in shifting climatic conditions. However, the fact of mechanical efficiency is used to mask a set of problems with industrial......-scale agricultural systems that range from spreading pests and diseases to poor global distribution of concentrated regional food wealth. That the conversion of vegetatively diverse farmland into monochromatic fields was popularized at the same time as the arrival of colour field paintings like Barnett Newman...

  1. Agricultural mechanization in Ethiopian: Experience, status and ...

    African Journals Online (AJOL)

    Agricultural Mechanization deals with the use of any mechanical aid in agricultural production. ... The productivity of each level depends on the power source. ... During Imperial Ethiopia, there were big farms operating as share companies, ... based agricultural mechanization system, where precision and efficiency are the ...

  2. Establishing a biotech-modern-agriculture for China | Zhengbin ...

    African Journals Online (AJOL)

    China, with a large population and small amount of arable land, is a populous as well as a large agricultural country. In order to ensure food security, agricultural sustainable development and prosperity of agriculture economy, modern agriculture based on biotechnology combined with modern equipment must be ...

  3. Nanotechnology in agriculture: prospects and constraints

    Directory of Open Access Journals (Sweden)

    Mukhopadhyay SS

    2014-08-01

    Full Text Available Siddhartha S Mukhopadhyay Electron Microscopy and Nanoscience Laboratory, Punjab Agricultural University, Ludhiana, India Abstract: Attempts to apply nanotechnology in agriculture began with the growing realization that conventional farming technologies would neither be able to increase productivity any further nor restore ecosystems damaged by existing technologies back to their pristine state; in particular because the long-term effects of farming with “miracle seeds”, in conjunction with irrigation, fertilizers, and pesticides, have been questioned both at the scientific and policy levels, and must be gradually phased out. Nanotechnology in agriculture has gained momentum in the last decade with an abundance of public funding, but the pace of development is modest, even though many disciplines come under the umbrella of agriculture. This could be attributed to: a unique nature of farm production, which functions as an open system whereby energy and matter are exchanged freely; the scale of demand of input materials always being gigantic in contrast with industrial nanoproducts; an absence of control over the input nanomaterials in contrast with industrial nanoproducts (eg, the cell phone and because their fate has to be conceived on the geosphere (pedosphere-biosphere-hydrosphere-atmosphere continuum; the time lag of emerging technologies reaching the farmers' field, especially given that many emerging economies are unwilling to spend on innovation; and the lack of foresight resulting from agricultural education not having attracted a sufficient number of brilliant minds the world over, while personnel from kindred disciplines might lack an understanding of agricultural production systems. If these issues are taken care of, nanotechnologic intervention in farming has bright prospects for improving the efficiency of nutrient use through nanoformulations of fertilizers, breaking yield barriers through bionanotechnology, surveillance and

  4. Nanotechnology in agriculture: prospects and constraints.

    Science.gov (United States)

    Mukhopadhyay, Siddhartha S

    2014-01-01

    Attempts to apply nanotechnology in agriculture began with the growing realization that conventional farming technologies would neither be able to increase productivity any further nor restore ecosystems damaged by existing technologies back to their pristine state; in particular because the long-term effects of farming with "miracle seeds", in conjunction with irrigation, fertilizers, and pesticides, have been questioned both at the scientific and policy levels, and must be gradually phased out. Nanotechnology in agriculture has gained momentum in the last decade with an abundance of public funding, but the pace of development is modest, even though many disciplines come under the umbrella of agriculture. This could be attributed to: a unique nature of farm production, which functions as an open system whereby energy and matter are exchanged freely; the scale of demand of input materials always being gigantic in contrast with industrial nanoproducts; an absence of control over the input nanomaterials in contrast with industrial nanoproducts (eg, the cell phone) and because their fate has to be conceived on the geosphere (pedosphere)-biosphere-hydrosphere-atmosphere continuum; the time lag of emerging technologies reaching the farmers' field, especially given that many emerging economies are unwilling to spend on innovation; and the lack of foresight resulting from agricultural education not having attracted a sufficient number of brilliant minds the world over, while personnel from kindred disciplines might lack an understanding of agricultural production systems. If these issues are taken care of, nanotechnologic intervention in farming has bright prospects for improving the efficiency of nutrient use through nanoformulations of fertilizers, breaking yield barriers through bionanotechnology, surveillance and control of pests and diseases, understanding mechanisms of host-parasite interactions at the molecular level, development of new-generation pesticides and

  5. A Description and Source Listing of Curriculum Materials in Agricultural Education, 1970-1971.

    Science.gov (United States)

    American Vocational Association, Washington, DC. Agricultural Education Div.

    To provide teachers of vocational agriculture, agricultural supervisors, and agricultural teacher educators with information on current curriculum materials available to them, this annotated bibliography presents 207 references classified according to the AGDEX filing system. Topics are: (1) Field Crops, (2) Horticulture, (3) Forestry, (4) Animal…

  6. THE PERSPECTIVE OF AGRICULTURE IN THE CONTEXT OF SOCIO-ECONOMIC DEVELOPMENT POTENTIAL IN VRANCEA COUNTY

    Directory of Open Access Journals (Sweden)

    RĂDULESCU CARMEN VALENTINA

    2015-06-01

    Full Text Available Agriculture is an important field and also a priority of Romania's development. In this regard, providing food for population is a factor that ensures the specificity of agriculture. For this reason, we can consider that agriculture is a starting point for the socio-economic development of the country. Romania is recognized, at European and international level, for its experience in cultivating natural and traditional products. The agricultural area offers the possibility of supplying raw materials for both the population and for the manufacturing industry. It is aimed that the organization of the agricultural area to be made so that the lands that have agricultural destination to be used as rationally as possible. Also, it is important to introduce in the agricultural circuit all the unused lands. The fragmentation of the agricultural land is a disadvantage in the process of rational organization of agricultural area. Efficient use of land, as a requirement of the intensive and durable agriculture is a complex activity that involves conservation activities and soil improvement. Due to the role that they have, the approach of the aspects referring to the medium and big farms has to be different from the approaches referring to the small farms. If the farms from the first category take into account the agriculture as a business, the small farms are important for the rural area by oferring food and social security and means of traditional production that contributes to the environment conservation. Romania's economic recovery can be achieved based on the attention that has to be given to this field. Being an important factor of social stability and of the maintainance of the ecological balance, agriculture enjoys an increasing attention worldwide. The supply and the demand of food determines the use of agricultural resources. The article presents the current situation of agriculture, at national and regional levels. Through this analysis, we

  7. Implementation of Public-Private Partnership in Turkish Agricultural Sector

    Directory of Open Access Journals (Sweden)

    Suleyman TULUCEOGLU

    2017-05-01

    Full Text Available In this study, it is aimed to determine the situation of the public-private partnership model in agriculture sector, which has been started to apply in Turkey since 1980’s and in which an extensive increase has been observed in the number of projects in some fields such as airport, hospital, electric, etc. in recent years. In this scope, the legislation and the practices related to public-private partnership in Turkish agricultural sector have been examined after referring the literature, development process, features, advantages/disadvantages and various models of public-private partnership model, and the situation in the World and Europe respectively. The findings collected indicate that the public-private partnership model has been applied especially in major-substructure projects such as construction of electric, airport, road and healthcare facilities in Turkey since 1990, and that the budget allocated into the projects of agricultural sector has been quite low in comparison with other fields, although the number of projects executed in agriculture sector has been quite much. However, it is predicted that the practices of public-private partnership in agriculture sector in Turkey will increase much more in line with the legislative arrangements implemented and increasing experience in the projects.

  8. European Society of Nuclear Methods in Agriculture. Proceedings

    International Nuclear Information System (INIS)

    The conference proceedings reported include papers on the Czechoslovak nuclear programme in the field of agriculture and food industry, the application of stable isotopes in agriculture, the applications of radioanalytical methods in agriculture, the use of waste heat from nuclear power plants, food irradiation, waste processing by irradiation, radiation-induced stimulation effects in plants, tracer techniques in animal science, radiation analysis, the use of nuclear techniques in the study of soil-plant relationships, applied mutagenesis, environmental pollution, genetic methods of pest control, the applications of radioisotopes in insect ecology, and the application of nuclear methods in plant physiology. (J.B.)

  9. Agricultural Land Use Determines the Trait Composition of Ground Beetle Communities.

    Directory of Open Access Journals (Sweden)

    Helena I Hanson

    Full Text Available In order to improve biological control of agricultural pests, it is fundamental to understand which factors influence the composition of natural enemies in agricultural landscapes. In this study, we aimed to understand how agricultural land use affects a number of different traits in ground beetle communities to better predict potential consequences of land-use change for ecosystem functioning. We studied ground beetles in fields with different agricultural land use ranging from frequently managed sugar beet fields, winter wheat fields to less intensively managed grasslands. The ground beetles were collected in emergence tents that catch individuals overwintering locally in different life stages and with pitfall traps that catch individuals that could have a local origin or may have dispersed into the field. Community weighted mean values for ground beetle traits such as body size, flight ability and feeding preference were estimated for each land-use type and sampling method. In fields with high land-use intensity the average body length of emerging ground beetle communities was lower than in the grasslands while the average body length of actively moving communities did not differ between the land-use types. The proportion of ground beetles with good flight ability or a carnivorous diet was higher in the crop fields as compared to the grasslands. Our study highlights that increasing management intensity reduces the average body size of emerging ground beetles and the proportion of mixed feeders. Our results also suggest that the dispersal ability of ground beetles enables them to compensate for local management intensities.

  10. Agricultural Land Use Determines the Trait Composition of Ground Beetle Communities.

    Science.gov (United States)

    Hanson, Helena I; Palmu, Erkki; Birkhofer, Klaus; Smith, Henrik G; Hedlund, Katarina

    2016-01-01

    In order to improve biological control of agricultural pests, it is fundamental to understand which factors influence the composition of natural enemies in agricultural landscapes. In this study, we aimed to understand how agricultural land use affects a number of different traits in ground beetle communities to better predict potential consequences of land-use change for ecosystem functioning. We studied ground beetles in fields with different agricultural land use ranging from frequently managed sugar beet fields, winter wheat fields to less intensively managed grasslands. The ground beetles were collected in emergence tents that catch individuals overwintering locally in different life stages and with pitfall traps that catch individuals that could have a local origin or may have dispersed into the field. Community weighted mean values for ground beetle traits such as body size, flight ability and feeding preference were estimated for each land-use type and sampling method. In fields with high land-use intensity the average body length of emerging ground beetle communities was lower than in the grasslands while the average body length of actively moving communities did not differ between the land-use types. The proportion of ground beetles with good flight ability or a carnivorous diet was higher in the crop fields as compared to the grasslands. Our study highlights that increasing management intensity reduces the average body size of emerging ground beetles and the proportion of mixed feeders. Our results also suggest that the dispersal ability of ground beetles enables them to compensate for local management intensities.

  11. A Qualitative Study of Technology-Based Training in Organizations that Hire Agriculture and Life Sciences Students

    Science.gov (United States)

    Bedgood, Leslie; Murphrey, Theresa Pesl; Dooley, Kim E.

    2008-01-01

    Technological advances have created unlimited opportunities in education. Training and technology have merged to create new methods referred to as technology-based training. The purpose of this study was to identify organizations that hire agriculture and life sciences students for positions involving technology-based training and identify…

  12. Nonwoven production from agricultural okra wastes and investigation of their thermal conductivities

    Science.gov (United States)

    Duman, M. N.; Kocak, E. D.; Merdan, N.; Mistik, I.

    2017-10-01

    Nowadays bio-based composite materials have been used in rising amounts and demanded widely in industrial uses, as they provide cost reduction and weight loss in the end use products. Agricultural cellulose based wastes can be a good alternative to synthetic fibers and can be used in natural fiber reinforced composite production, as there is a huge (more than 40 million tons) potential for natural cellulose production from agricultural wastes. Okra is one of the most grown vegetables around the world with stems left on the fields after harvest. When the similarity of mechanical properties of okra fibers with traditional bast fibers (flax, kenaf, hemp) are considered, from an economical and an environmental point of view this research emphasizes the potential of agricultural biomass for natural fiber production. In this study, okra stem wastes used for natural cellulosic fiber production and treated with 10% NaOH at 60°C for 10, 20, 30 and 40 minutes. By alkali treatment, decrease in fiber diameter and weight, and increase in tensile strength and elongation % have been observed. Nonwoven production has been done from both the fibers with and without surface treatments. Thermal conductivity properties of both nonwovens have been investigated.

  13. Use of stable isotopes in agriculture

    International Nuclear Information System (INIS)

    Ali, F. K.

    2011-01-01

    Scientific research is considered to be one of the most important steps to achieve sustainable agriculture development. This paper is focused on the role of stable isotopes and their applications in agriculture for plant and animal production, and to study the relationship between soil, plant, air, water, nutrients and agricultural pests. Symbiotic N 2 fixation and efficient use of chemical and organic N fertilizers using 15 N were reported. Factors affecting 13 C values and application of carbon isotope discrimination to physiological and eco-physiological studies and selection of genotypes with improved water-use efficiency and drought tolerance and the recent progress in this field are reviewed. Moreover, the use of carbon isotope compositions in monitoring environmental changes and its various applications in food technology, animal production and entomology are discussed. (author)

  14. Modeling Agricultural Crop Production in China using AVHRR-based Vegetation Health Indices

    Science.gov (United States)

    Yang, B.; Kogan, F.; Guo, W.; Zhiyuan, P.; Xianfeng, J.

    Weather related crop losses have always been a concern for farmers On a wider scale it has always influenced decision of Governments traders and other policy makers for the purpose of balanced food supplies trade and distribution of aid to the nations in need Therefore national policy and decision makers are giving increasing importance to early assessment of crop losses in response to weather fluctuations This presentation emphasizes utility of AVHRR-based Vegetation health index VHI for early warning of drought-related losses of agricultural production in China The VHI is a three-channel index characterizing greenness vigor and temperature of land surface which can be used as proxy for estimation of how healthy and potentially productive could be vegetation China is the largest in the world producer of grain including wheat and rice and cotton In the major agricultural areas China s crop production is very dependent on weather The VHI being a proxy indicator of weather impact on vegetation showed some correlation with productivity of agricultural crops during the critical period of their development The periods of the strongest correlation were investigated and used to build regression models where crop yield deviation from technological trend was accepted as a dependent and VHI as independent variables The models were developed for several major crops including wheat corn and soybeans

  15. Increasing rice production in Malaysia: Department of Agriculture approach

    International Nuclear Information System (INIS)

    Asna Booty Othman; Chua Lee Kiang; Rathinam Thiagarajan; Aziziah Md Jan

    2002-01-01

    Increasing rice productivity will continue to be an important agenda in the agricultural development program of the country. This represents a challenge to the Department of Agriculture. To address this challenge, it calls for creativity, innovation, ideas and initiatives in the use of technologies that consist of land leveling, in the field water management, Integrated Pest Management (IPM), production and distribution of quality seeds, effective fertilizer usage and value added activities. Rice areas which have been leveled using laser guided technology have shown yield increase from 3.3 t/ha to 5.1 t/ha. In-field water management increases rice yield, reduces water wastage and ensures timeliness of operations and improve soil water bearing capacity. IPM has proven highly beneficial in the control of field rats, reducing the incidence of diseases such as rice blast, lowering the occurrence of insect pest outbreaks and weed infestation. Fish rearing and fattening of ducklings to adulthood in the rice fields have also been undertaken as profitable enterprises in the rice farming system. In its effort to modernise and increase rice productivity, the Department of Agriculture approach in acquisition of technology from research agencies, and its adaptation and adoption are discussed. Any technology promoted must be economically viable, socially acceptable and technologically feasible for effective implementation. (Author)

  16. Optimal Scheme Selection of Agricultural Production Structure Adjustment - Based on DEA Model; Punjab (Pakistan)

    Institute of Scientific and Technical Information of China (English)

    Zeeshan Ahmad; Meng Jun; Muhammad Abdullah; Mazhar Nadeem Ishaq; Majid Lateef; Imran Khan

    2015-01-01

    This paper used the modern evaluation method of DEA (Data Envelopment Analysis) to assess the comparative efficiency and then on the basis of this among multiple schemes chose the optimal scheme of agricultural production structure adjustment. Based on the results of DEA model, we dissected scale advantages of each discretionary scheme or plan. We examined scale advantages of each discretionary scheme, tested profoundly a definitive purpose behind not-DEA efficient, which elucidated the system and methodology to enhance these discretionary plans. At the end, another method had been proposed to rank and select the optimal scheme. The research was important to guide the practice if the modification of agricultural production industrial structure was carried on.

  17. Research on the development and preliminary application of Beijing agricultural sci-tech service hotline WebApp in agricultural consulting services

    Science.gov (United States)

    Yu, Weishui; Luo, Changshou; Zheng, Yaming; Wei, Qingfeng; Cao, Chengzhong

    2017-09-01

    To deal with the “last kilometer” problem during the agricultural science and technology information service, we analyzed the feasibility, necessity and advantages of WebApp applied to agricultural information service and discussed the modes of WebApp used in agricultural information service based on the requirements analysis and the function of WebApp. To overcome the existing App’s defects of difficult installation and weak compatibility between the mobile operating systems, the Beijing Agricultural Sci-tech Service Hotline WebApp was developed based on the HTML and JAVA technology. The WebApp has greater compatibility and simpler operation than the Native App, what’s more, it can be linked to the WeChat public platform making it spread easily and run directly without setup process. The WebApp was used to provide agricultural expert consulting services and agriculture information push, obtained a good preliminary application achievement. Finally, we concluded the creative application of WebApp in agricultural consulting services and prospected the development of WebApp in agricultural information service.

  18. Chemical and biological characterization of products of incomplete combustion from the simulated field burning of agricultural plastic.

    Science.gov (United States)

    Linak, W P; Ryan, J V; Perry, E; Williams, R W; DeMarini, D M

    1989-06-01

    Chemical and biological analyses were performed to characterize products of incomplete combustion emitted during the simulated open field burning of agricultural plastic. A small utility shed equipped with an air delivery system was used to simulate pile burning and forced-air-curtain incineration of a nonhalogenated agricultural plastic that reportedly consisted of polyethylene and carbon black. Emissions were analyzed for combustion gases; volatile, semi-volatile, and particulate organics; and toxic and mutagenic properties. Emission samples, as well as samples of the used (possibly pesticide-contaminated) plastic, were analyzed for the presence of several pesticides to which the plastic may have been exposed. Although a variety of alkanes, alkenes, and aromatic and polycyclic aromatic hydrocarbon (PAH) compounds were identified in the volatile, semi-volatile, and particulate fractions of these emissions, a substantial fraction of higher molecular weight organic material was not identified. No pesticides were identified in either combustion emission samples or dichloromethane washes of the used plastic. When mutagenicity was evaluated by exposing Salmonella bacteria (Ames assay) to whole vapor and vapor/particulate emissions, no toxic or mutagenic effects were observed. However, organic extracts of the particulate samples were moderately mutagenic. This mutagenicity compares approximately to that measured from residential wood heating on a revertant per unit heat release basis. Compared to pile burning, forced air slightly decreased the time necessary to burn a charge of plastic. There was not a substantial difference, however, in the variety or concentrations of organic compounds identified in samples from these two burn conditions. This study highlights the benefits of a combined chemical/biological approach to the characterization of complex, multi-component combustion emissions. These results may not reflect those of other types of plastic that may be used

  19. Natural regeneration in abandoned fields following intensive agricultural land use in an Atlantic Forest Island, Brazil

    Directory of Open Access Journals (Sweden)

    Milene Silvestrini

    2012-08-01

    Full Text Available The time required to regrowth a forest in degraded areas depends on how the forest is removed and on the type of land use following removal. Natural regeneration was studied in abandoned old fields after intensive agricultural land use in areas originally covered by Brazilian Atlantic Forests of the Anchieta Island, Brazil in order to understand how plant communities reassemble following human disturbances as well as to determine suitable strategies of forest restoration. The fields were classified into three vegetation types according to the dominant plant species in: 1 Miconia albicans (Sw. Triana (Melastomataceae fields, 2 Dicranopteris flexuosa (Schrader Underw. (Gleicheniaceae thickets, and 3 Gleichenella pectinata (Willd. Ching. (Gleicheniaceae thickets. Both composition and structure of natural regeneration were compared among the three dominant vegetation types by establishing randomly three plots of 1 x 3 m in five sites of the island. A gradient in composition and abundance of species in natural regeneration could be observed along vegetation types from Dicranopteris fern thickets to Miconia fields. The gradient did not accurately follow the pattern of spatial distribution of the three dominant vegetation types in the island regarding their proximity of the remnant forests. A complex association of biotic and abiotic factors seems to be affecting the seedling recruitment and establishment in the study plots. The lowest plant regeneration found in Dicranopteris and Gleichenella thickets suggests that the ferns inhibit the recruitment of woody and herbaceous species. Otherwise, we could not distinguish different patterns of tree regeneration among the three vegetation types. Our results showed that forest recovery following severe anthropogenic disturbances is not direct, predictable or even achievable on its own. Appropriated actions and methods such as fern removal, planting ground covers, and enrichment planting with tree species were

  20. Mass balance and swath displacement evaluations from agricultural application field trials

    Science.gov (United States)

    Spray drift is on an ongoing concern for any agricultural application and continues to be the focus for new developments and research efforts dealing with drift reduction technologies, best management application practices and the development of new decision support systems for applicators. Typical...

  1. The Added Utility of Hydrological Model and Satellite Based Datasets in Agricultural Drought Analysis over Turkey

    Science.gov (United States)

    Bulut, B.; Hüsami Afşar, M.; Yilmaz, M. T.

    2017-12-01

    Analysis of agricultural drought, which causes substantial socioeconomically costs in Turkey and in the world, is critical in terms of understanding this natural disaster's characteristics (intensity, duration, influence area) and research on possible precautions. Soil moisture is one of the most important parameters which is used to observe agricultural drought, can be obtained using different methods. The most common, consistent and reliable soil moisture datasets used for large scale analysis are obtained from hydrologic models and remote sensing retrievals. On the other hand, Normalized difference vegetation index (NDVI) and gauge based precipitation observations are also commonly used for drought analysis. In this study, soil moisture products obtained from different platforms, NDVI and precipitation datasets over several different agricultural regions under various climate conditions in Turkey are obtained in growth season period. These datasets are later used to investigate agricultural drought by the help of annual crop yield data of selected agricultural lands. The type of vegetation over these regions are obtained using CORINE Land Cover (CLC 2012) data. The crop yield data were taken from the record of related district's statistics which is provided by Turkish Statistical Institute (TÜİK). This project is supported by TÜBİTAK project number 114Y676.

  2. Sensor Architecture and Task Classification for Agricultural Vehicles and Environments

    Directory of Open Access Journals (Sweden)

    Francisco Rovira-Más

    2010-12-01

    Full Text Available The long time wish of endowing agricultural vehicles with an increasing degree of autonomy is becoming a reality thanks to two crucial facts: the broad diffusion of global positioning satellite systems and the inexorable progress of computers and electronics. Agricultural vehicles are currently the only self-propelled ground machines commonly integrating commercial automatic navigation systems. Farm equipment manufacturers and satellite-based navigation system providers, in a joint effort, have pushed this technology to unprecedented heights; yet there are many unresolved issues and an unlimited potential still to uncover. The complexity inherent to intelligent vehicles is rooted in the selection and coordination of the optimum sensors, the computer reasoning techniques to process the acquired data, and the resulting control strategies for automatic actuators. The advantageous design of the network of onboard sensors is necessary for the future deployment of advanced agricultural vehicles. This article analyzes a variety of typical environments and situations encountered in agricultural fields, and proposes a sensor architecture especially adapted to cope with them. The strategy proposed groups sensors into four specific subsystems: global localization, feedback control and vehicle pose, non-visual monitoring, and local perception. The designed architecture responds to vital vehicle tasks classified within three layers devoted to safety, operative information, and automatic actuation. The success of this architecture, implemented and tested in various agricultural vehicles over the last decade, rests on its capacity to integrate redundancy and incorporate new technologies in a practical way.

  3. TECHNICAL ADVANCE AS A BASES DYNAMIC DEVELOPMENT OF THE ECONOMY AGRICULTURAL ENTERPRISES REGION

    Directory of Open Access Journals (Sweden)

    P.I. Ogorodnikov

    2009-12-01

    Full Text Available In the article coordinate together technical advance and economic indicators of agricultural enterprise. Justified, that lowering equipment branch crop production and cattle breeding result in considerable loss productiveness and rise expense. Necessity cost cutout determine application more high-performance machine and state-of-the-art technology on output of products agricultural industry. Underline practicability of active state support grower of agricultural produce agricultural commodities inclusive of securing social setting conditions of life man agricultural enterprise.

  4. Modeling and simulation of the agricultural sprayer boom leveling system

    KAUST Repository

    Sun, Jian

    2011-01-01

    According to the agricultural precision requirements, the distance from sprayer nozzles to the corps should be kept between 50 cm to 70 cm. The sprayer boom also needs to be kept parallel to the field during the application process. Thus we can guarantee the quality of the chemical droplets distribution on the crops. In this paper we design a sprayer boom leveling system for agricultural sprayer vehicles combined with a four-rod linkage self-leveling suspension and electro-hydraulic auto-leveling system. The dynamic analysis shows that the suspension can realize an excellent self-leveling in a comparative small inclination range. In addition we build compensation controller for the electro-hydraulic system based on the mathematical model. With simulations we can optimize the performance of this controller to make sure a fast leveling response to the inclined sprayer boom. © 2011 IEEE.

  5. The effects of erosional and management history on soil organic carbon stores in ephemeral wetlands of hummocky agricultural landscapes

    NARCIS (Netherlands)

    Bedard-Haughn, A.; Jongbloed, F.; Akkennan, J.; Uijl, A.; Jong, de E.; Yates, T.; Pennock, D.

    2006-01-01

    Carbon sequestration by agricultural soils has been widely promoted as a means of mitigating greenhouse gas emissions. In many regions agricultural fields are just one component of a complex landscape matrix and understanding the interactions between agricultural fields and other landscape

  6. Digital soil mapping as a basis for climatically oriented agriculture a thematic on the territory of the national crop testing fields of the Republic of Tatarstan, Russia

    Science.gov (United States)

    Sahabiev, I. A.; Giniyatullin, K. G.; Ryazanov, S. S.

    2018-01-01

    The concept of climate-optimized agriculture (COA) of the UN FAO implies the transformation of agriculture techniques in conditions of changing climate. It is important to implement a timely transition to the concept of COA and sustainable development of soil resources, accurate digital maps of spatial distribution of soils and soil properties are needed. Digital mapping of soil humus content was carried out on the territory of the national crop testing fields (NCTF) of the Republic of Tatarstan (Russian Federation) and the accuracy of the maps obtained was estimated.

  7. Field investigation to assess nutrient emission from paddy field to surface water in river catchment

    Science.gov (United States)

    Kogure, Kanami; Aichi, Masaatsu; Zessner, Matthias

    2015-04-01

    TD water can be sampled for infiltrating water measurement. We installed monitoring wells to measure ground water level and water quality. Inflow, outflow, flooding water, infiltrating water, and ground water were measured and sampled. Regarding to parameters, temperature, pH, EC, DO and COD, main ions were measured to understand characteristic of water quality and transformation processes. Inorganic forms of nitrogen and phosphorus were also measured, as behavior and balance of nitrogen and phosphorus are focused on. We observed following points by taking data of water quality; seasonal trend, changes occurred according to agricultural events like irrigation and fertilization. Nitrogen in ground water tends to high in June due to fertilizer. It is thought because farmers fertilize the filed before transplanting at the beginning of flooding season. Regarding to dissolved inorganic nitrogen, higher concentrations were observed in inflow water than in flooding water and outflow water. Though it needs discussion in loads as well as flow measurement, this suggests that nutrients are absorbed in paddy field and less nutrients are emitted after irrigation water passing through paddy field. Based on this research we are planning continuous investigation to assess environmental impact from paddy field.

  8. Biosensors based on enzyme field-effect transistors for determination of some substrates and inhibitors.

    Science.gov (United States)

    Dzyadevych, Sergei V; Soldatkin, Alexey P; Korpan, Yaroslav I; Arkhypova, Valentyna N; El'skaya, Anna V; Chovelon, Jean-Marc; Martelet, Claude; Jaffrezic-Renault, Nicole

    2003-10-01

    This paper is a review of the authors' publications concerning the development of biosensors based on enzyme field-effect transistors (ENFETs) for direct substrates or inhibitors analysis. Such biosensors were designed by using immobilised enzymes and ion-selective field-effect transistors (ISFETs). Highly specific, sensitive, simple, fast and cheap determination of different substances renders them as promising tools in medicine, biotechnology, environmental control, agriculture and the food industry. The biosensors based on ENFETs and direct enzyme analysis for determination of concentrations of different substrates (glucose, urea, penicillin, formaldehyde, creatinine, etc.) have been developed and their laboratory prototypes were fabricated. Improvement of the analytical characteristics of such biosensors may be achieved by using a differential mode of measurement, working solutions with different buffer concentrations and specific agents, negatively or positively charged additional membranes, or genetically modified enzymes. These approaches allow one to decrease the effect of the buffer capacity influence on the sensor response in an aim to increase the sensitivity of the biosensors and to extend their dynamic ranges. Biosensors for the determination of concentrations of different toxic substances (organophosphorous pesticides, heavy metal ions, hypochlorite, glycoalkaloids, etc.) were designed on the basis of reversible and/or irreversible enzyme inhibition effect(s). The conception of an enzymatic multibiosensor for the determination of different toxic substances based on the enzyme inhibition effect is also described. We will discuss the respective advantages and disadvantages of biosensors based on the ENFETs developed and also demonstrate their practical application.

  9. Effect of agricultural management regimes on Burkholderia community structure in soil

    NARCIS (Netherlands)

    Salles, Joanna; van Elsas, J.D.; Van Veen, J.A.

    2006-01-01

    The main objective of this study was to determine the Burkholderia community structure associated with areas under different agricultural management and to evaluate to which extent this community structure is affected by changes in agricultural management. Two fields with distinct soil history

  10. Effect of agricultural management regime on Burkholderia community structure in soil

    NARCIS (Netherlands)

    Salles, J.F.; Elsas, van J.D.; Veen, van J.A.

    2006-01-01

    The main objective of this study was to determine the Burkholderia community structure associated with areas under different agricultural management and to evaluate to which extent this community structure is affected by changes in agricultural management. Two fields with distinct soil history

  11. Effect of agricultural management regime on Burkholderia community structure in soil

    NARCIS (Netherlands)

    Salles, J. F.; van Elsas, J. D.; van Veen, J. A.

    The main objective of this study was to determine the Burkholderia community structure associated with areas under different agricultural management and to evaluate to which extent this community structure is affected by changes in agricultural management. Two fields with distinct soil history

  12. Accuracy of topographic index models at identifying ephemeral gully trajectories on agricultural fields

    Science.gov (United States)

    Sheshukov, Aleksey Y.; Sekaluvu, Lawrence; Hutchinson, Stacy L.

    2018-04-01

    Topographic index (TI) models have been widely used to predict trajectories and initiation points of ephemeral gullies (EGs) in agricultural landscapes. Prediction of EGs strongly relies on the selected value of critical TI threshold, and the accuracy depends on topographic features, agricultural management, and datasets of observed EGs. This study statistically evaluated the predictions by TI models in two paired watersheds in Central Kansas that had different levels of structural disturbances due to implemented conservation practices. Four TI models with sole dependency on topographic factors of slope, contributing area, and planform curvature were used in this study. The observed EGs were obtained by field reconnaissance and through the process of hydrological reconditioning of digital elevation models (DEMs). The Kernel Density Estimation analysis was used to evaluate TI distribution within a 10-m buffer of the observed EG trajectories. The EG occurrence within catchments was analyzed using kappa statistics of the error matrix approach, while the lengths of predicted EGs were compared with the observed dataset using the Nash-Sutcliffe Efficiency (NSE) statistics. The TI frequency analysis produced bi-modal distribution of topographic indexes with the pixels within the EG trajectory having a higher peak. The graphs of kappa and NSE versus critical TI threshold showed similar profile for all four TI models and both watersheds with the maximum value representing the best comparison with the observed data. The Compound Topographic Index (CTI) model presented the overall best accuracy with NSE of 0.55 and kappa of 0.32. The statistics for the disturbed watershed showed higher best critical TI threshold values than for the undisturbed watershed. Structural conservation practices implemented in the disturbed watershed reduced ephemeral channels in headwater catchments, thus producing less variability in catchments with EGs. The variation in critical thresholds for all

  13. Agricultural diversification into tourism

    DEFF Research Database (Denmark)

    Hjalager, Anne Mette

    1996-01-01

    Based on the empirical evidence provided by an evaluation study of the EU Objective 5b programme measures* for the expansion of rural tourism, this article discusses the impact of rural tourism on agricultural holdings. It is shown that the financial returns most often do not measure up either...... to the expectations of the politicians or to that of the farmers. In some respects rural tourism contributes positively to the innovation of the tourist product since its small scale, 'green' issues and special facilities differentiate the product from others. But the unleashing of real potential is hampered...... by the fact that farmers tend to give priority to traditional agriculture and by the fact that industrialized agriculture is not easily combined with the commodifying of agricultural traditions for tourism. The community level inter-organizational innovations which are designed to ensure the marketing...

  14. A Description and Source Listing of Curriculum Materials in Agricultural Education, 1969-1970.

    Science.gov (United States)

    American Vocational Association, Washington, DC. Agricultural Education Div.

    The purpose of this annotated bibliography is to provide teachers of vocational agriculture, agricultural supervisors, and agricultural teacher educators with information on current curriculum materials available to them. Classified according to the AGDEX filing system, the 163 references are grouped under the headings: (1) Field Crops, (2)…

  15. Integrating recycling, renewable energy and agriculture for commercial waste to wealth businesses

    International Nuclear Information System (INIS)

    Gan Khai Chung; Angeline Pang

    2010-01-01

    Recycling organic material to produce renewable energy and organic fertilizer is an attractive business model in waste to wealth business proposition. Azed Bina Sdn Bhd has developed an integrated recycling facility to recycle solid organic materials into energy and organic fertilizer, a project partially funded by MOSTI TechnoFund in 2008. The novel and innovative aspect is the water disassociation technology which separates the water into hydrogen gas and oxygen gas economically using thermal heat from the burning of biomass which is a waste material. This system is modular, scalable, economical and environmental friendly. It has many applications in the field of, Environment and Solid Waste Management - recycling organic waste into energy and organic fertilizer rather than disposal at the landfill, hence preserving our environment. Green technology - economical biogas production consists of 50% hydrogen gas which is a clean and renewable energy source. The biogas has many applications in the food industry, manufacturing industry and agriculture sector. Agro-based industry - production of clean heat energy is useful for the drying of agriculture crops. Agriculture Sector - production of ash can be used to produce organic fertilizer by incorporating effective microbes. Reduce the dependence on chemical fertilizer which is bad for the environment Rural Development - developing rural area by integrating small scale industries, agro based industry, agriculture and rural area. The company commercial applications of recycling organic materials to produce energy for companies such as laundry business, agro based food drying and waste management recycling. The next project is to provide chilled water using organic waste. (author)

  16. Simulation and controller design for an agricultural sprayer boom leveling system

    KAUST Repository

    Sun, Jian

    2011-01-01

    According to the agricultural precision requirements, the distance from sprayer nozzles to the corps should be kept between 50 cm to 70 cm. The sprayer boom also needs to be kept parallel to the field during the operation process. Thus we can guarantee the quality of the chemical droplets distribution on the crops. In this paper we introduced a sprayer boom leveling system for agricultural sprayer vehicles with electro-hydraulic auto-leveling system. The suitable hydraulic actuating cylinder and valve were selected according to the specific systemic specifications. Furthermore, a compensation controller for the electro-hydraulic system was designed based on the mathematical model. With simulations we can optimize the performance of this controller to make sure a fast leveling response to the inclined sprayer boom. © 2011 IEEE.

  17. Mapping Chinese Agricultural and Allied Sciences Journals Indexed in CAB Abstracts Database

    Directory of Open Access Journals (Sweden)

    Arundhati Kaushik

    2013-06-01

    Full Text Available CAB Abstracts published by CABI (Centre for Agriculture and Biosciences International is the premier database for agricultural and allied sciences literature. The purpose of this study is to determine the extent of index coverage in CAB Abstracts and to identify the core journals in the field of agricultural and allied sciences published in China. The study depicts the trend of Chinese agricultural and allied sciences journals, which is successfully proving a gateway of the agricultural research in China to merge into the main stream of the world.

  18. The Measurement of Relevance Amount of Documents That By Using of Google cross-language retrieval About Agriculture Subject Area are Retrieved

    Directory of Open Access Journals (Sweden)

    Fatemeh Jamshidi Ghahfarokhi

    2014-02-01

    Full Text Available In this study, the relevance amount of documents has been investigated by using google cross-language retrieval tools about a agriculture subject area in cross-language retrieval form, are retrieved. For this purpose, by using Persian journals articles that have had English abstracts, Persian phrases and subject terms with their English equivalent were extracted. In three class us, thirty number of phrases and subject terms of agriculture area were extracted: First class, subject phrases that only in agriculture are used; Secondary, agriculture subject terms that in other fields are used too; Third class, agriculture subject terms that out of this field are considered as public term. Then by these phrases and terms, documents were searched, and relevance amount of search results are investigated. Results of study showed that google cross-language retrieval tools for two classes of phrases and terms, in cross-language retrieval of relevance document about agriculture subject area, aren`t succeed: one class, agriculture subject terms that in other fields are used too. other class, agriculture subject terms that out of agriculture field are considered as public term. Google cross-language retrieval tools about subject phrase and terms that only in agriculture field are used, are performance rather desirable than other two class of phrase and terms

  19. Systemic perspectives on scaling agricultural innovations. A review

    NARCIS (Netherlands)

    Wigboldus, Seerp; Klerkx, Laurens; Leeuwis, Cees; Schut, Marc; Muilerman, Sander; Jochemsen, Henk

    2016-01-01

    Agricultural production involves the scaling of agricultural innovations such as disease-resistant and drought-tolerant maize varieties, zero-tillage techniques, permaculture cultivation practices based on perennial crops and automated milking systems. Scaling agricultural innovations should take

  20. National, holistic, watershed-scale approach to understand the sources, transport, and fate of agricultural chemicals

    Science.gov (United States)

    Capel, P.D.; McCarthy, K.A.; Barbash, J.E.

    2008-01-01

    This paper is an introduction to the following series of papers that report on in-depth investigations that have been conducted at five agricultural study areas across the United States in order to gain insights into how environmental processes and agricultural practices interact to determine the transport and fate of agricultural chemicals in the environment. These are the first study areas in an ongoing national study. The study areas were selected, based on the combination of cropping patterns and hydrologic setting, as representative of nationally important agricultural settings to form a basis for extrapolation to unstudied areas. The holistic, watershed-scale study design that involves multiple environmental compartments and that employs both field observations and simulation modeling is presented. This paper introduces the overall study design and presents an overview of the hydrology of the five study areas. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  1. Dielectric properties of agricultural materials and their applications

    CERN Document Server

    Nelson, Stuart

    2015-01-01

    Dielectric Properties of Agricultural Materials and Their Applications provides an understanding of the fundamental principles governing dielectric properties of materials, describes methods for measuring such properties, and discusses many applications explored for solving industry problems. The information in this reference stimulates new research for solving problems associated with production, handling, and processing of agricultural and food products. Anyone seeking a better understanding of dielectric properties of materials and application of radio-frequency and microwave electromagnetic energy for solution of problems in agriculture and related fields will find this an essential resource. Presents applications of dielectric properties for sensing moisture in grain and seed and the use of such properties in radio-frequency and microwave dielectric heating of agricultural materials Offers information for finding correlations between dielectric properties and quality attributes such as sweetness in melon...

  2. Weather based risks and insurances for agricultural production

    Science.gov (United States)

    Gobin, Anne

    2015-04-01

    Extreme weather events such as frost, drought, heat waves and rain storms can have devastating effects on cropping systems. According to both the agriculture and finance sectors, a risk assessment of extreme weather events and their impact on cropping systems is needed. The principle of return periods or frequencies of natural hazards is adopted in many countries as the basis of eligibility for the compensation of associated losses. For adequate risk management and eligibility, hazard maps for events with a 20-year return period are often used. Damages due to extreme events are strongly dependent on crop type, crop stage, soil type and soil conditions. The impact of extreme weather events particularly during the sensitive periods of the farming calendar therefore requires a modelling approach to capture the mixture of non-linear interactions between the crop, its environment and the occurrence of the meteorological event in the farming calendar. Physically based crop models such as REGCROP (Gobin, 2010) assist in understanding the links between different factors causing crop damage. Subsequent examination of the frequency, magnitude and impacts of frost, drought, heat stress and soil moisture stress in relation to the cropping season and crop sensitive stages allows for risk profiles to be confronted with yields, yield losses and insurance claims. The methodology is demonstrated for arable food crops, bio-energy crops and fruit. The perspective of rising risk-exposure is exacerbated further by limited aid received for agricultural damage, an overall reduction of direct income support to farmers and projected intensification of weather extremes with climate change. Though average yields have risen continuously due to technological advances, there is no evidence that relative tolerance to adverse weather events has improved. The research is funded by the Belgian Science Policy Organisation (Belspo) under contract nr SD/RI/03A.

  3. Ecological risk assessment of agricultural soils for the definition of soil screening values: A comparison between substance-based and matrix-based approaches

    Directory of Open Access Journals (Sweden)

    Alberto Pivato

    2017-04-01

    Full Text Available The Italian legislation on contaminated soils does not include the Ecological Risk Assessment (ERA and this deficiency has important consequences for the sustainable management of agricultural soils. The present research compares the results of two ERA procedures applied to agriculture (i one based on the “substance-based” approach and (ii a second based on the “matrix-based” approach. In the former the soil screening values (SVs for individual substances were derived according to institutional foreign guidelines. In the latter, the SVs characterizing the whole-matrix were derived originally by the authors by means of experimental activity.The results indicate that the “matrix-based” approach can be efficiently implemented in the Italian legislation for the ERA of agricultural soils. This method, if compared to the institutionalized “substance based” approach is (i comparable in economic terms and in testing time, (ii is site specific and assesses the real effect of the investigated soil on a battery of bioassays, (iii accounts for phenomena that may radically modify the exposure of the organisms to the totality of contaminants and (iv can be considered sufficiently conservative. Keyword: Environmental science

  4. Developing a New Wireless Sensor Network Platform and Its Application in Precision Agriculture

    Science.gov (United States)

    Aquino-Santos, Raúl; González-Potes, Apolinar; Edwards-Block, Arthur; Virgen-Ortiz, Raúl Alejandro

    2011-01-01

    Wireless sensor networks are gaining greater attention from the research community and industrial professionals because these small pieces of “smart dust” offer great advantages due to their small size, low power consumption, easy integration and support for “green” applications. Green applications are considered a hot topic in intelligent environments, ubiquitous and pervasive computing. This work evaluates a new wireless sensor network platform and its application in precision agriculture, including its embedded operating system and its routing algorithm. To validate the technological platform and the embedded operating system, two different routing strategies were compared: hierarchical and flat. Both of these routing algorithms were tested in a small-scale network applied to a watermelon field. However, we strongly believe that this technological platform can be also applied to precision agriculture because it incorporates a modified version of LORA-CBF, a wireless location-based routing algorithm that uses cluster-based flooding. Cluster-based flooding addresses the scalability concerns of wireless sensor networks, while the modified LORA-CBF routing algorithm includes a metric to monitor residual battery energy. Furthermore, results show that the modified version of LORA-CBF functions well with both the flat and hierarchical algorithms, although it functions better with the flat algorithm in a small-scale agricultural network. PMID:22346622

  5. Developing a new wireless sensor network platform and its application in precision agriculture.

    Science.gov (United States)

    Aquino-Santos, Raúl; González-Potes, Apolinar; Edwards-Block, Arthur; Virgen-Ortiz, Raúl Alejandro

    2011-01-01

    Wireless sensor networks are gaining greater attention from the research community and industrial professionals because these small pieces of "smart dust" offer great advantages due to their small size, low power consumption, easy integration and support for "green" applications. Green applications are considered a hot topic in intelligent environments, ubiquitous and pervasive computing. This work evaluates a new wireless sensor network platform and its application in precision agriculture, including its embedded operating system and its routing algorithm. To validate the technological platform and the embedded operating system, two different routing strategies were compared: hierarchical and flat. Both of these routing algorithms were tested in a small-scale network applied to a watermelon field. However, we strongly believe that this technological platform can be also applied to precision agriculture because it incorporates a modified version of LORA-CBF, a wireless location-based routing algorithm that uses cluster-based flooding. Cluster-based flooding addresses the scalability concerns of wireless sensor networks, while the modified LORA-CBF routing algorithm includes a metric to monitor residual battery energy. Furthermore, results show that the modified version of LORA-CBF functions well with both the flat and hierarchical algorithms, although it functions better with the flat algorithm in a small-scale agricultural network.

  6. Epigeic soil arthropod abundance under different agricultural land uses

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Bote, J. L.; Romero, A. J.

    2012-11-01

    The study of soil arthropods can provide valuable information how ecosystems respond to different management practices. The objective was to assess the total abundance, richness, and composition of epiedaphic arthropods in different agrosystems from southwestern Spain. Six sites with different agricultural uses were selected: olive grove, vineyards, olive grove with vineyards, wheat fields, fallows (150-300 m long), and abandoned vineyards. Crops were managed in extensive. Field margins were used as reference habitats. At the seven sites a total of 30 pitfall traps were arranged in a 10 × 3 grid. Traps were arranged to short (SD, 1 m), medium (MD, 6 m) and large (LD, 11 m) distance to the field margins in the middle of selected plots. Pitfall traps captured a total of 11,992 edaphic arthropods belonging to 11 different taxa. Soil fauna was numerically dominated by Formicidae (26.60%), Coleoptera (19.77%), and Aranae (16.76%). The higher number of soil arthropods were captured in the field margins followed by the abandoned vineyard. Significant differences were found between sites for total abundance, and zones. However, no significant differences for total abundance were found between months (April-July). Richness and diversity was highest in field margins and abandoned vineyards. Significant differences were found for these variables between sites. Our results suggest that agricultural intensification affects soil arthropods in Tierra de Barros area, a taxonomic group with an important role in the functioning of agricultural ecosystems. (Author) 32 refs.

  7. Global Agricultural Trade and Developing Countries

    OpenAIRE

    Aksoy, M. Ataman; Beghin, John C.

    2005-01-01

    Global Agricultural Trade and Developing Countries explores the outstanding issues in global agricultural trade policy and evolving world production and trade patterns. This book presents research findings based on a series of commodity studies of significant economic importance to developing countries. Setting the stage with background chapters and investigations of cross-cutting issues, the authors describe trade and domestic policy regimes affecting agricultural and food markets and analyz...

  8. Anisotropy in wavelet-based phase field models

    KAUST Repository

    Korzec, Maciek; Mü nch, Andreas; Sü li, Endre; Wagner, Barbara

    2016-01-01

    When describing the anisotropic evolution of microstructures in solids using phase-field models, the anisotropy of the crystalline phases is usually introduced into the interfacial energy by directional dependencies of the gradient energy coefficients. We consider an alternative approach based on a wavelet analogue of the Laplace operator that is intrinsically anisotropic and linear. The paper focuses on the classical coupled temperature/Ginzburg--Landau type phase-field model for dendritic growth. For the model based on the wavelet analogue, existence, uniqueness and continuous dependence on initial data are proved for weak solutions. Numerical studies of the wavelet based phase-field model show dendritic growth similar to the results obtained for classical phase-field models.

  9. Anisotropy in wavelet-based phase field models

    KAUST Repository

    Korzec, Maciek

    2016-04-01

    When describing the anisotropic evolution of microstructures in solids using phase-field models, the anisotropy of the crystalline phases is usually introduced into the interfacial energy by directional dependencies of the gradient energy coefficients. We consider an alternative approach based on a wavelet analogue of the Laplace operator that is intrinsically anisotropic and linear. The paper focuses on the classical coupled temperature/Ginzburg--Landau type phase-field model for dendritic growth. For the model based on the wavelet analogue, existence, uniqueness and continuous dependence on initial data are proved for weak solutions. Numerical studies of the wavelet based phase-field model show dendritic growth similar to the results obtained for classical phase-field models.

  10. Source apportionment of heavy metals in agricultural soil based on PMF: A case study in Hexi Corridor, northwest China.

    Science.gov (United States)

    Guan, Qingyu; Wang, Feifei; Xu, Chuanqi; Pan, Ninghui; Lin, Jinkuo; Zhao, Rui; Yang, Yanyan; Luo, Haiping

    2018-02-01

    Hexi Corridor is the most important base of commodity grain and producing area for cash crops. However, the rapid development of agriculture and industry has inevitably led to heavy metal contamination in the soils. Multivariate statistical analysis, GIS-based geostatistical methods and Positive Matrix Factorization (PMF) receptor modeling techniques were used to understand the levels of heavy metals and their source apportionment for agricultural soil in Hexi Corridor. The results showed that the average concentrations of Cr, Cu, Ni, Pb and Zn were lower than the secondary standard of soil environmental quality; however, the concentrations of eight metals (Cr, Cu, Mn, Ni, Pb, Ti, V and Zn) were higher than background values, and their corresponding enrichment factor values were significantly greater than 1. Different degrees of heavy metal pollution occurred in the agricultural soils; specifically, Ni had the most potential for impacting human health. The results from the multivariate statistical analysis and GIS-based geostatistical methods indicated both natural sources (Co and W) and anthropogenic sources (Cr, Cu, Mn, Ni, Pb, Ti, V and Zn). To better identify pollution sources of heavy metals in the agricultural soils, the PMF model was applied. Further source apportionment revealed that enrichments of Pb and Zn were attributed to traffic sources; Cr and Ni were closely related to industrial activities, including mining, smelting, coal combustion, iron and steel production and metal processing; Zn and Cu originated from agricultural activities; and V, Ti and Mn were derived from oil- and coal-related activities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Climate Change and Agricultural Vulnerability

    International Nuclear Information System (INIS)

    Fischer, G.; Shah, M.; Van Velthuizen, H.

    2002-08-01

    After the introduction Chapter 2 presents details of the ecological-economic analysis based on the FAO/IIASA agro-ecological zones (AEZ) approach for evaluation of biophysical limitations and agricultural production potentials, and IIASA's Basic Linked System (BLS) for analyzing the world's food economy and trade system. The BLS is a global general equilibrium model system for analyzing agricultural policies and food system prospects in an international setting. BLS views national agricultural systems as embedded in national economies, which interact with each other through trade at the international level. The combination of AEZ and BLS provides an integrated ecological-economic framework for the assessment of the impact of climate change. We consider climate scenarios based on experiments with four General Circulation Models (GCM), and we assess the four basic socioeconomic development pathways and emission scenarios as formulated by the Intergovernmental Panel on Climate Change (IPCC) in its Third Assessment Report. Chapter 3 presents the main AEZ results of the impact of climate change on agriculture. Results comprise environmental constraints to crop agriculture; climate variability and the variability of rain-fed cereal production; changes in potential agricultural land; changes in crop-production patterns; and the impact of climate change on cereal-production potential. Chapter 4 discusses the AEZ-BLS integrated ecological-economic analysis of climate change on the world food system. This includes quantification of scale and location of hunger, international agricultural trade, prices, production, land use, etc. It assesses trends in food production, trade, and consumption, and the impact on poverty and hunger of alternative development pathways and varying levels of climate change. Chapter 5 presents the main conclusions and policy implications of this study

  12. Trichoderma for climate resilient agriculture.

    Science.gov (United States)

    Kashyap, Prem Lal; Rai, Pallavi; Srivastava, Alok Kumar; Kumar, Sudheer

    2017-08-01

    Climate change is one of the biggest challenges of the twenty-first century for sustainable agricultural production. Several reports highlighted the need for better agricultural practices and use of eco-friendly methods for sustainable crop production under such situations. In this context, Trichoderma species could be a model fungus to sustain crop productivity. Currently, these are widely used as inoculants for biocontrol, biofertilization, and phytostimulation. They are reported to improve photosynthetic efficiency, enhance nutrient uptake and increase nitrogen use efficiency in crops. Moreover, they can be used to produce bio-energy, facilitate plants for adaptation and mitigate adverse effect of climate change. The technological advancement in high throughput DNA sequencing and biotechnology provided deep insight into the complex and diverse biotic interactions established in nature by Trichoderma spp. and efforts are being made to translate this knowledge to enhance crop growth, resistance to disease and tolerance to abiotic stresses under field conditions. The discovery of several traits and genes that are involved in the beneficial effects of Trichoderma spp. has resulted in better understanding of the performance of bioinoculants in the field, and will lead to more efficient use of these strains and possibly to their improvement by genetic modification. The present mini-review is an effort to elucidate the molecular basis of plant growth promotion and defence activation by Trichoderma spp. to garner broad perspectives regarding their functioning and applicability for climate resilient agriculture.

  13. Improving Agricultural Productivity in Tonga through Ensuring Data Availability and Enhancing Agro-meteorological Services

    Science.gov (United States)

    Kim, K. H.

    2015-12-01

    The project was first conceived in the Global Framework for Climate Services Regional Consultation in the Cook Islands in March 2014. In this meeting, key officials from the Ministry of Agriculture and Food, Forests, and Fisheries and the Tonga Meteorological Services had a meeting with the APEC Climate Center scientists with the idea to collaborate on a joint project. The project evolved to include the following components: assessment of users' needs and capacities, development of an agricultural database, research on the core relationships between agriculture and climate through modeling and field trials, and the development and delivery of agro-meteorological services. Envisioned outputs include a 2-7 day warning for pests and diseases, a suite of tools supporting decisions on planting dates and crop varieties, and other advisory services derived from seasonal climate forecasts. As one of the climate adaptation projects under its Pacific Island portfolio, the project will deliver urgent information services for Tongan agricultural growers and exporters. The project comes into greater importance and urgency, as the 2014 drought event resulted in the destruction of 80% of squash in Tonga, a main export crop from which the country derives foreign exchange earnings. Since 2014, some of the project achievements include the first agro-met data collection in Tonga, the development of an agricultural DB management system that houses archived agriculture data, and key meetings with stakeholders to ensure alignment of the project objectives and design with the interests of the Tongan government and other stakeholders. In addition, rigorous scientific research through modeling and field trials has been conducted to address the twin goals of supporting Tonga's economy as well as food security. Based on the findings from the research, tools will be developed to translate the science into knowledge that supports decisions on the farm scale.

  14. A statistical model for radar images of agricultural scenes

    Science.gov (United States)

    Frost, V. S.; Shanmugan, K. S.; Holtzman, J. C.; Stiles, J. A.

    1982-01-01

    The presently derived and validated statistical model for radar images containing many different homogeneous fields predicts the probability density functions of radar images of entire agricultural scenes, thereby allowing histograms of large scenes composed of a variety of crops to be described. Seasat-A SAR images of agricultural scenes are accurately predicted by the model on the basis of three assumptions: each field has the same SNR, all target classes cover approximately the same area, and the true reflectivity characterizing each individual target class is a uniformly distributed random variable. The model is expected to be useful in the design of data processing algorithms and for scene analysis using radar images.

  15. Agriculture

    International Nuclear Information System (INIS)

    2002-01-01

    The report entitled Climate Change Impacts and Adaptation : A Canadian Perspective, presents a summary of research regarding the impacts of climate change on key sectors over the past five years as it relates to Canada. This chapter on agriculture describes how climate change will affect primary agriculture production in Canada with particular focus on potential adaptation options, and vulnerability of agriculture at the farm level. Agriculture is a vital part of the Canadian economy, although only 7 per cent of Canada's land mass is used for agricultural purposes due to the limitations of climate and soils. Most parts of Canada are expected to experience warmer conditions, longer frost-free seasons and increased evapotranspiration. The impacts of these changes on agriculture will vary depending on precipitation changes, soil conditions, and land use. Northern regions may benefit from longer farming seasons, but poor soil conditions will limit the northward expansion of agricultural crops. Some of the negative impacts associated with climate change on agriculture include increased droughts, changes in pest and pathogen outbreaks, and moisture stress. In general, it is expected that the positive and negative impacts of climate change would offset each other. 74 refs., 2 tabs., 1 fig

  16. Sustainable agricultural water management across climates

    Science.gov (United States)

    DeVincentis, A.

    2016-12-01

    Fresh water scarcity is a global problem with local solutions. Agriculture is one of many human systems threatened by water deficits, and faces unique supply, demand, quality, and management challenges as the global climate changes and population grows. Sustainable agricultural water management is paramount to protecting global economies and ecosystems, but requires different approaches based on environmental conditions, social structures, and resource availability. This research compares water used by conservation agriculture in temperate and tropical agroecosystems through data collected from operations growing strawberries, grapes, tomatoes, and pistachios in California and corn and soybeans in Colombia. The highly manipulated hydrologic regime in California has depleted water resources and incited various adaptive management strategies, varying based on crop type and location throughout the state. Operations have to use less water more efficiently, and sometimes that means fallowing land in select groundwater basins. At the opposite end of the spectrum, the largely untouched landscape in the eastern plains of Colombia are rapidly being converted into commercial agricultural operations, with a unique opportunity to manage and plan for agricultural development with sustainability in mind. Although influenced by entirely different climates and economies, there are some similarities in agricultural water management strategies that could be applicable worldwide. Cover crops are a successful management strategy for both agricultural regimes, and moving forward it appears that farmers who work in coordination with their neighbors to plan for optimal production will be most successful in both locations. This research points to the required coordination of agricultural extension services as a critical component to sustainable water use, successful economies, and protected environments.

  17. Compositional analysis and projected biofuel potentials from common West African agricultural residues

    DEFF Research Database (Denmark)

    Thomsen, Sune Tjalfe; Kádár, Zsófia; Schmidt, Jens Ejbye

    2014-01-01

    In recent years the focus on sustainable biofuel production from agricultural residues has increased considerably. However, the scientific work within this field has predominantly been concentrated upon bioresources from industrialised and newly industrialised countries, while analyses of the res......In recent years the focus on sustainable biofuel production from agricultural residues has increased considerably. However, the scientific work within this field has predominantly been concentrated upon bioresources from industrialised and newly industrialised countries, while analyses......, cassava stalks, plantain peelings, plantain trunks, plantain leaves, cocoa husks, cocoa pods, maize cobs, maize stalks, rice straw, groundnut straw and oil palm empty fruit bunches. The yam peelings showed the highest methane and bioethanol potentials, with 439 L methane (kg Total Solids)−1 and 0.61 L...... bioethanol (kg TS)−1 based on starch and cellulose alone due to their high starch content and low content of un-biodegradable lignin and ash. A complete biomass balance was done for each of the 13 residues, providing a basis for further research into the production of biofuels or biorefining from West...

  18. Danish emission inventory for agriculture. Inventories 1985 - 2009

    Energy Technology Data Exchange (ETDEWEB)

    Hjorth Mikkelsen, M; Albrektsen, R; Gyldenkaerne, S

    2011-02-15

    By regulations given in international conventions Denmark is obliged to work out an annual emission inventory and document the methodology. The National Environmental Research Institute (NERI) at Aarhus University (AU) in Denmark is responsible for calculating and reporting the emissions. This report contains a description of the emissions from the agricultural sector from 1985 to 2009. Furthermore, the report includes a detailed description of methods and data used to calculate the emissions, which is based on national methodologies as well as international guidelines. For the Danish emissions calculations and data management an Integrated Database model for Agricultural emissions (IDA) is used. The emission from the agricultural sector includes emission of the greenhouse gases methane (CH{sub 4}), nitrous oxide (N{sub 2}O), ammonia (NH{sub 3}), particulate matter (PM), non-methane volatile organic compounds (NMVOC) and other pollutants related to the field burning of agricultural residue such as NO{sub x}, CO{sub 2}, CO, SO{sub 2}, heavy metals, dioxin and PAH. The ammonia emission from 1985 to 2009 has decreased from 119 300 tonnes of NH{sub 3} to 73 800 tonnes NH{sub 3}, corresponding to a 38 % reduction. The emission of greenhouse gases has decreased by 25 % from 12.9 M tonnes CO{sub 2} equivalents to 9.6 M tonnes CO{sub 2} equivalents from 1985 to 2009. Improvements in feed efficiency and utilisation of nitrogen in livestock manure are the most important reasons for the reduction of both the ammonia and greenhouse gas emissions. (Author)

  19. Agriculture and crop science in China:Innovation and sustainability

    Institute of Scientific and Technical Information of China (English)

    Yunbi Xu; Jiayang Li; Jianmin Wan

    2017-01-01

    The International Crop Science Congress (ICSC) is a regularly held event allowing crop scientists to integrate current knowledge into a global context and international applications. The 7th ICSC was held on August 14–19, 2016 in Beijing, China, with the theme "Crop Science: Innovation and Sustainability". As a companion production for this great congress, the nine papers collected in this special issue feature important fields of crop science in China. This editorial first briefly introduces the 7th ICSC, followed by a brief discussion of the current status of, constraints to, and innovations in Chinese agriculture and crop science. Finally, the main scientific points of the papers published in this special issue are surveyed, covering important advances in hybrid rice breeding, minor cereals, food legumes, rapeseed, crop systems, crop management, cotton, genomics-based germplasm research, and QTL mapping. In a section describing future prospects, it is indicated that China faces a full transition from traditional to modern agriculture and crop science.

  20. Nigeria Agricultural Journal

    African Journals Online (AJOL)

    Nigerian Agricultural Journal. ... Influence of differently processed mango seed kernel meal on performance response of west African dwarf goats fed spear grass based ... Borrowing behaviour among oil palm processors in Idemili North Local ...

  1. Integrating irrigation and drainage management to sustain agriculture in northern Iran

    NARCIS (Netherlands)

    Darzi-Naftchali, Abdullah; Ritzema, Henk

    2018-01-01

    In Iran, as in the rest of the world, land and water for agricultural production is under pressure. Integrating irrigation and drainage management may help sustain intensified agriculture in irrigated paddy fields. This study was aimed to investigate the long-term effects of such management

  2. Development and Strengthening of Agricultural Education in St. Lucia. A Report.

    Science.gov (United States)

    Meaders, O. Donald

    A study examined present agricultural education programs in Saint Lucia and made recommendations for needed improvements. Data for the evauation were obtained from numerous documents and publications, field trips, and discussions with key officials in various ministries and institutions, including the Ministry of Agriculture, Ministry of…

  3. Introduction: Greening the countryside? Changing frameworks of EU agricultural policy.

    Science.gov (United States)

    Lowe, Philip; Feindt, Peter H; Vihinen, Hilkka

    2010-01-01

    In response to wide-ranging criticism of agricultural policy, especially within Western industrialized countries, new frameworks of justification are emerging and new hybrid policy fields have been established to tackle some of the ‘externalities’ of agricultural support. However, institutional frameworks are proving slower to change, partly because this would require coordinated action across different levels of governance. Nevertheless, previously marginalized environmental concerns have successfully gained entrance to agricultural policy networks, while the intersection of trade liberalization and rural diversification have undermined the dominance of the productivist mindset in government. This gives rise to a plurality of policy actors and actions which defy the conventional categories of analysis of agricultural policy, calling for changing frameworks on the polity of agriculture too.

  4. The mission of the central commission of the Czechoslovak Academy of Agriculture for use of energy resources and nuclear methods in agriculture

    International Nuclear Information System (INIS)

    Horacek, P.

    1979-01-01

    The possibility is discussed of using waste heat of nuclear power plants for the intensification of agricultural production. In France, protected agricultural areas are heated with warm water circulating in a polyethylene perforated blanket. Experiments with subirrigation using warm water or with heating using water circulating in subsurface piping yield good results. Heating water for fish husbandry appears prospective and a research project in this field is suggested. (H.S.)

  5. Agricultural terraces montoring and modeling: a field survey in Chianti region, Firenze, Italy - First part

    Science.gov (United States)

    Preti, Federico; Caruso, Marco; Dani, Andrea; Errico, Alessandro; Guastini, Enrico; Trucchi, Paolo

    2015-04-01

    The two abstracts present the design and set-up of an experimental field plant whose aim is the study and modeling of water circulation in a terraced slope together with its influence on the stability of the retaining dry stone walls. The pilot plant is located at "Fattoria di Lamole" (Greve in Chianti, Firenze, Italy) where both ancient and recently restored or rebuilt dry stone retaining walls are present. The intense vineyards cultivation makes it very representative in terms of range of external stresses that affect both hillslopes and walls. The research is developed within a bigger framework of landscape preservation as a way to prevent hydrogeological instabilities and landslide risks. First Part A first/preliminary field survey was carried out in order to estimate the hydraulic and mechanical soil characteristics. Field saturated hydraulic conductivity measurements with the Simplified Falling Head (SFH) method on a terrace along an alignment were performed. Infiltrometer tests with a double ring device and soil texture determinations with both fine particle-size and skeleton fraction distributions were also performed. The Direct shear test on undisturbed and reconstituted soil samples will offer an estimation of the Mohr-Coulomb failure envelope parameters (friction angle and cohesion). A reference portion of a dry stone wall will be also monitored. Lateral earth pressure at backfill-retaining wall interface (compared to temperature and air pressure measured values), backfill volumetric water content (both in saturated and unsaturated states) and ground-water level are measured. Acknowledgements Italian Research Project of Relevant Interest (PRIN2010-2011), prot. 20104ALME4, National network for monitoring, modeling, and sustainable management of erosion processes in agricultural land and hilly-mountainous area

  6. Addressing Issues of Malnutrition in Children through Public Nutrition using Local Resources of Agriculture and Land Use: Evidence from the Field Based Evaluation Study in Uttar Pradesh

    Directory of Open Access Journals (Sweden)

    Nemthianngai Guite

    2014-12-01

    Full Text Available Introduction: Public Nutrition refers to work in the interest of the public; with the participation of the public; and with all sectors involved in society, not just the health sector, nor mainly the health sector, though for the benefit of population health and nutrition. Action outside of the health sector, particularly with regard to food systems is required, such as capacitating women in agriculture and land use for increased vegetable production. Rationale: Adopting public health approach, an evidence from a field project wherein the evaluation study was conducted by Oxfam India (a leading non-profit organization, and where the authors coordinated and documented field evidence through conducting end line evaluation study is discussed in this paper, in order to highlight the achievement of women farmers in ensuring food and nutrition security by strengthening low cost vegetable production in Shaharanpur and Pilibhit, Uttar Pradesh. Objective of the study: To assess the success and impact of measures adopted under the project in order to enhance the capacity and skills of women vegetable farmers in sustainable farming practices. Materials and Methods: Purposive Non Probability Sampling adopted to include key set of stakeholders, which includes 100 women vegetable farmers, 8 NGO and 5 government officials respectively drawn from Shahjahanpur and Pilibhit district of Uttar Pradesh.  The methods which were used to gather quantitative and qualitative data for the study were: In-depth Interview, Focused Group Discussion (FGD, Case Studies. Results: Child nutrition is positively and independently associated with increased vegetable production through agriculture and land use by women in the villages. It enhanced the nutritional status of women and improved the health status of their family members as well. Conclusion: The public nutrition approach will make it possible to increase the impact of current initiatives which aim to reverse

  7. Agricultural Land and Land Tax – Significant Indicators of Agriculture Business Activities in the Slovak Republic

    Directory of Open Access Journals (Sweden)

    Krajčírová Renáta

    2016-06-01

    Full Text Available The article is focused on the consideration between the agricultural land acreage and the amount of land tax in the selected sample of companies of agricultural primary production in the Slovak Republic within the period from 2010 to 2014 based on the data from departmental database of enterprises with primary agricultural production drawn from the factsheets of Ministry of Agriculture and Rural Development of the Slovak Republic presented by the selected statistical methods. In particular, the article presents the agricultural land and land tax from the accounting and tax perspective of the Slovak Republic and the European Union. It can be resulted that a slightly declining trend of the mean acreage of agricultural land was recorded for the evaluated group of agricultural enterprises within the reported period, while the mean land tax value per hectare of agricultural land had increasing trend. Results of the survey on significances of differences in the values of the dependent variables at the level of combinations of factors of year and enterprise indicate that the acreage of agricultural land and the volume of the land tax are statistically dependant at the level of year, however there are not dependent at the level of combination of factors of year and enterprise within the surveyed period.

  8. Advancing agricultural greenhouse gas quantification*

    Science.gov (United States)

    Olander, Lydia; Wollenberg, Eva; Tubiello, Francesco; Herold, Martin

    2013-03-01

    Agricultural Research Service 2011), which aim to improve consistency of field measurement and data collection for soil carbon sequestration and soil nitrous oxide fluxes. Often these national-level activity data and emissions factors are the basis for regional and smaller-scale applications. Such data are used for model-based estimates of changes in GHGs at a project or regional level (Olander et al 2011). To complement national data for regional-, landscape-, or field-level applications, new data are often collected through farmer knowledge or records and field sampling. Ideally such data could be collected in a standardized manner, perhaps through some type of crowd sourcing model to improve regional—and national—level data, as well as to improve consistency of locally collected data. Data can also be collected by companies working with agricultural suppliers and in country networks, within efforts aimed at understanding firm and product (supply-chain) sustainability and risks (FAO 2009). Such data may feed into various certification processes or reporting requirements from buyers. Unfortunately, this data is likely proprietary. A new process is needed to aggregate and share private data in a way that would not be a competitive concern so such data could complement or supplement national data and add value. A number of papers in this focus issue discuss issues surrounding quantification methods and systems at large scales, global and national levels, while others explore landscape- and field-scale approaches. A few explore the intersection of top-down and bottom-up data measurement and modeling approaches. 5. The agricultural greenhouse gas quantification project and ERL focus issue Important land management decisions are often made with poor or few data, especially in developing countries. Current systems for quantifying GHG emissions are inadequate in most low-income countries, due to a lack of funding, human resources, and infrastructure. Most non-Annex 1 countries

  9. APPLICATION OF CONVOLUTIONAL NEURAL NETWORK IN CLASSIFICATION OF HIGH RESOLUTION AGRICULTURAL REMOTE SENSING IMAGES

    Directory of Open Access Journals (Sweden)

    C. Yao

    2017-09-01

    Full Text Available With the rapid development of Precision Agriculture (PA promoted by high-resolution remote sensing, it makes significant sense in management and estimation of agriculture through crop classification of high-resolution remote sensing image. Due to the complex and fragmentation of the features and the surroundings in the circumstance of high-resolution, the accuracy of the traditional classification methods has not been able to meet the standard of agricultural problems. In this case, this paper proposed a classification method for high-resolution agricultural remote sensing images based on convolution neural networks(CNN. For training, a large number of training samples were produced by panchromatic images of GF-1 high-resolution satellite of China. In the experiment, through training and testing on the CNN under the toolbox of deep learning by MATLAB, the crop classification finally got the correct rate of 99.66 % after the gradual optimization of adjusting parameter during training. Through improving the accuracy of image classification and image recognition, the applications of CNN provide a reference value for the field of remote sensing in PA.

  10. Nanotechnology in agriculture: Opportunities, toxicological implications, and occupational risks.

    Science.gov (United States)

    Iavicoli, Ivo; Leso, Veruscka; Beezhold, Donald H; Shvedova, Anna A

    2017-08-15

    Nanotechnology has the potential to make a beneficial impact on several agricultural, forestry, and environmental challenges, such as urbanization, energy constraints, and sustainable use of resources. However, new environmental and human health hazards may emerge from nano-enhanced applications. This raises concerns for agricultural workers who may become primarily exposed to such xenobiotics during their job tasks. The aim of this review is to discuss promising solutions that nanotechnology may provide in agricultural activities, with a specific focus on critical aspects, challenging issues, and research needs for occupational risk assessment and management in this emerging field. Eco-toxicological aspects were not the focus of the review. Nano-fertilizers, (nano-sized nutrients, nano-coated fertilizers, or engineered metal-oxide or carbon-based nanomaterials per se), and nano-pesticides, (nano-formulations of traditional active ingredients or inorganic nanomaterials), may provide a targeted/controlled release of agrochemicals, aimed to obtain their fullest biological efficacy without over-dosage. Nano-sensors and nano-remediation methods may detect and remove environmental contaminants. However, limited knowledge concerning nanomaterial biosafety, adverse effects, fate, and acquired biological reactivity once dispersed into the environment, requires further scientific efforts to assess possible nano-agricultural risks. In this perspective, toxicological research should be aimed to define nanomaterial hazards and levels of exposure along the life-cycle of nano-enabled products, and to assess those physico-chemical features affecting nanomaterial toxicity, possible interactions with agro-system co-formulants, and stressors. Overall, this review highlights the importance to define adequate risk management strategies for workers, occupational safety practices and policies, as well as to develop a responsible regulatory consensus on nanotechnology in agriculture

  11. From alternative Agriculture to the Food Industry

    DEFF Research Database (Denmark)

    Nielsen, Thorkild; Kristensen, Niels Heine

    1997-01-01

    for organic agriculture over the last decade.Organic food production is now developing fast in some EU member states. This recent development is not only marked by more positive attitudes towards organic products from the food industry but also by an increasing need for a matching response in terms of food...... policy. Relevance: The EU regulation 2092/91/EEC is mainly focused on organic agriculture, but as the food industryenters this field the need emerges for a more specific interpretation, development and implementation of the organic principles and methods in processing, handling and distribution. Whether...

  12. Unexpected stimulation of soil methane uptake as emergent property of agricultural soils following bio-based residue application.

    Science.gov (United States)

    Ho, Adrian; Reim, Andreas; Kim, Sang Yoon; Meima-Franke, Marion; Termorshuizen, Aad; de Boer, Wietse; van der Putten, Wim H; Bodelier, Paul L E

    2015-10-01

    Intensification of agriculture to meet the global food, feed, and bioenergy demand entail increasing re-investment of carbon compounds (residues) into agro-systems to prevent decline of soil quality and fertility. However, agricultural intensification decreases soil methane uptake, reducing, and even causing the loss of the methane sink function. In contrast to wetland agricultural soils (rice paddies), the methanotrophic potential in well-aerated agricultural soils have received little attention, presumably due to the anticipated low or negligible methane uptake capacity in these soils. Consequently, a detailed study verifying or refuting this assumption is still lacking. Exemplifying a typical agricultural practice, we determined the impact of bio-based residue application on soil methane flux, and determined the methanotrophic potential, including a qualitative (diagnostic microarray) and quantitative (group-specific qPCR assays) analysis of the methanotrophic community after residue amendments over 2 months. Unexpectedly, after amendments with specific residues, we detected a significant transient stimulation of methane uptake confirmed by both the methane flux measurements and methane oxidation assay. This stimulation was apparently a result of induced cell-specific activity, rather than growth of the methanotroph population. Although transient, the heightened methane uptake offsets up to 16% of total gaseous CO2 emitted during the incubation. The methanotrophic community, predominantly comprised of Methylosinus may facilitate methane oxidation in the agricultural soils. While agricultural soils are generally regarded as a net methane source or a relatively weak methane sink, our results show that methane oxidation rate can be stimulated, leading to higher soil methane uptake. Hence, even if agriculture exerts an adverse impact on soil methane uptake, implementing carefully designed management strategies (e.g. repeated application of specific residues) may

  13. Nanotechnology in Sustainable Agriculture: Recent Developments, Challenges, and Perspectives

    Science.gov (United States)

    Prasad, Ram; Bhattacharyya, Atanu; Nguyen, Quang D.

    2017-01-01

    Nanotechnology monitors a leading agricultural controlling process, especially by its miniature dimension. Additionally, many potential benefits such as enhancement of food quality and safety, reduction of agricultural inputs, enrichment of absorbing nanoscale nutrients from the soil, etc. allow the application of nanotechnology to be resonant encumbrance. Agriculture, food, and natural resources are a part of those challenges like sustainability, susceptibility, human health, and healthy life. The ambition of nanomaterials in agriculture is to reduce the amount of spread chemicals, minimize nutrient losses in fertilization and increased yield through pest and nutrient management. Nanotechnology has the prospective to improve the agriculture and food industry with novel nanotools for the controlling of rapid disease diagnostic, enhancing the capacity of plants to absorb nutrients among others. The significant interests of using nanotechnology in agriculture includes specific applications like nanofertilizers and nanopesticides to trail products and nutrients levels to increase the productivity without decontamination of soils, waters, and protection against several insect pest and microbial diseases. Nanotechnology may act as sensors for monitoring soil quality of agricultural field and thus it maintain the health of agricultural plants. This review covers the current challenges of sustainability, food security and climate change that are exploring by the researchers in the area of nanotechnology in the improvement of agriculture. PMID:28676790

  14. Nanotechnology in Sustainable Agriculture: Recent Developments, Challenges, and Perspectives

    Directory of Open Access Journals (Sweden)

    Ram Prasad

    2017-06-01

    Full Text Available Nanotechnology monitors a leading agricultural controlling process, especially by its miniature dimension. Additionally, many potential benefits such as enhancement of food quality and safety, reduction of agricultural inputs, enrichment of absorbing nanoscale nutrients from the soil, etc. allow the application of nanotechnology to be resonant encumbrance. Agriculture, food, and natural resources are a part of those challenges like sustainability, susceptibility, human health, and healthy life. The ambition of nanomaterials in agriculture is to reduce the amount of spread chemicals, minimize nutrient losses in fertilization and increased yield through pest and nutrient management. Nanotechnology has the prospective to improve the agriculture and food industry with novel nanotools for the controlling of rapid disease diagnostic, enhancing the capacity of plants to absorb nutrients among others. The significant interests of using nanotechnology in agriculture includes specific applications like nanofertilizers and nanopesticides to trail products and nutrients levels to increase the productivity without decontamination of soils, waters, and protection against several insect pest and microbial diseases. Nanotechnology may act as sensors for monitoring soil quality of agricultural field and thus it maintain the health of agricultural plants. This review covers the current challenges of sustainability, food security and climate change that are exploring by the researchers in the area of nanotechnology in the improvement of agriculture.

  15. The role of allelopathy in agricultural pest management.

    Science.gov (United States)

    Farooq, Muhammad; Jabran, Khawar; Cheema, Zahid A; Wahid, Abdul; Siddique, Kadambot H M

    2011-05-01

    Allelopathy is a naturally occurring ecological phenomenon of interference among organisms that may be employed for managing weeds, insect pests and diseases in field crops. In field crops, allelopathy can be used following rotation, using cover crops, mulching and plant extracts for natural pest management. Application of allelopathic plant extracts can effectively control weeds and insect pests. However, mixtures of allelopathic water extracts are more effective than the application of single-plant extract in this regard. Combined application of allelopathic extract and reduced herbicide dose (up to half the standard dose) give as much weed control as the standard herbicide dose in several field crops. Lower doses of herbicides may help to reduce the development of herbicide resistance in weed ecotypes. Allelopathy thus offers an attractive environmentally friendly alternative to pesticides in agricultural pest management. In this review, application of allelopathy for natural pest management, particularly in small-farm intensive agricultural systems, is discussed. Copyright © 2011 Society of Chemical Industry.

  16. The agricultural policy of Serbia and common agricultural policy

    Directory of Open Access Journals (Sweden)

    Stanković Milica

    2012-01-01

    Full Text Available The agricultural sector has a relatively high importance in the economic structure of Serbia. The Common Agricultural Policy (CAP, Common Agricultural Policy is one of the main policies of the European Union. It is very important to point out the fundamental principles and objectives of the Common Agricultural Policy. Harmonization of the national agricultural policy of Serbia with the Common Agricultural Policy and acceptance of its mechanisms is crucial for the development of the agricultural sector as a whole.

  17. Arthropods Biodiversity in Agricultural Landscapes: Effects of Land Use and Anthropization

    Directory of Open Access Journals (Sweden)

    Enrico Previati

    2007-06-01

    Full Text Available The greatest proportion of Po river plain is occupied by arable lands. Negative effects of modern intensive agriculture on biodiversity can derive from various phenomena operating at different spatial scales, from local to regional ones. If agricultural fields are subjected to periodical disturbances by farming practices, also landscape structure can influence community structure in the fields providing refugial areas or alternative trophic resources. In the same way in perennial habitats, such as strips and meadows, community structure and composition may be linked to both local factors and surrounding land use, that can influence organism persistence and dispersal mechanisms. We studied some natural and anthropized habitats in a wide agricultural area in the province of Ferrara (conventional annual and perennial fields, herbaceous strips, hedgerows and meadows to investigate relationships between arthropod community structure and both local impact factors (habitat type, management and surronding landscape structure and use. Results from uni and multivariate analysis showed a great influence on trophic and taxonomic structure of habitat type and quality.A less complex landscape had only slightly influence on trophic structure, leading to higher abundance and richness of generalist taxa. In conclusion we emphasize the importance of maintaining high-quality habitats to enhance arthopod diversity in agricultural landscapes.

  18. Assessment on the rates and potentials of soil organic carbon sequestration in agricultural lands in Japan using a process-based model and spatially explicit land-use change inventories - Part 1: Historical trend and validation based on nation-wide soil monitoring

    Science.gov (United States)

    Yagasaki, Y.; Shirato, Y.

    2014-08-01

    In order to estimate a country-scale soil organic carbon (SOC) stock change in agricultural lands in Japan, while taking into account the effect of land-use changes, climate, different agricultural activities and the nature of soils, a spatially explicit model simulation system was developed using Rothamsted Carbon Model (RothC) with an integration of spatial and temporal inventories. Simulation was run from 1970 to 2008 with historical inventories. Simulated SOC stock was compared with observations in a nation-wide stationary monitoring program conducted during 1979-1998. Historical land-use change, characterized by a large decline in the area of paddy fields as well as a small but continuous decline in the area of orchards, occurred along with a relatively large increase in upland crop fields, unmanaged grasslands, and settlements (i.e. conversion of agricultural fields due to urbanization or abandoning). Results of the simulation on SOC stock change under varying land-use change indicated that land-use conversion from agricultural fields to settlements or other lands, as well as that from paddy fields to croplands have likely been an increasing source of CO2 emission, due to the reduction of organic carbon input to soils and the enhancement of SOC decomposition through transition of soil environment from anaerobic to aerobic conditions. The area-weighted mean concentrations of the simulated SOC stocks calculated for major soil groups under paddy fields and upland crop fields were comparable to those observed in the monitoring. Whereas in orchards, the simulated SOC stocks were underestimated. As the results of simulation indicated that SOC stock change under managed grasslands and settlements has been likely a major sink and source of CO2 emission at country-scale, respectively, validation of SOC stock change under these land-use types, which could not have been accomplished due to limited availability or a lack of measurement, remains a forthcoming challenge.

  19. Natural resources in the Agriculture

    International Nuclear Information System (INIS)

    Tovar B, Diana Alejandra; Zorro Z, Ricardo

    2003-01-01

    The objective of this investigation is identification the relation between the naturals resources degradation, and the Colombian agriculture productive. It's means a way to quantification the influence of a bad utilization in the water and land resources in the agricultural sector, to guide the sector in to a sustainable development. This objective is to make by an empirical exercise where we built four econometrics models (ordinary minims square) based in the Colombia's history statistic of the variables: land erosion, river sedimentation, plaguicides, Insecticides, Fungicides y Herbicides, agriculture productivity and agriculture yield. The resolute of this exercise is that an increase in the erosion area also the river sedimentation gives a decrease in the agriculture productivity. The same situation happens when it use the consumption of the insecticides and the fungicides which in the long time shows an opposite relation with the yield and productivity. At last we have that the aperture of the ninety's, bring to good changes for the agricultural productivity. So that, it concludes that the rivers and lands degradation affect in the long time the agriculture yield and productivity. The best use in the naturals resources, can help to increase the agricultural development, because it can increase the yield while it maintain for the future the possibility curve of production when it conserve the resources

  20. Beyond agricultural innovation systems? Exploring an agricultural innovation ecosystems approach for niche design and development in sustainability transitions

    NARCIS (Netherlands)

    Pigford, Ashlee Ann E.; Hickey, Gordon M.; Klerkx, Laurens

    2018-01-01

    Well-designed and supported innovation niches may facilitate transitions towards sustainable agricultural futures, which may follow different approaches and paradigms such as agroecology, local place-based food systems, vertical farming, bioeconomy, urban agriculture, and smart farming or digital