WorldWideScience

Sample records for agents including honeybee

  1. Radioprotection: mechanism and radioprotective agents including honeybee venom

    Since 1949, a great deal of research has been carried on the radioprotective action of chemical substances. These substances have shown to reduce mortality when administered to animals prior to exposure to a lethal dose of radiation. This fact is of considerable importance since it permits reduction of radiation-induced damage and provides prophylactic treatment for the damaging effects produced by radiotherapy. The following radioprotection mechanisms were proposed: free radical scavenger, repair by hydrogen donation to target molecules formation of mixed disulfides, delay of cellular division and induction of hypoxia in the tissues. Radioprotective agents have been divided into four major groups: the thiol compounds, other sulfur compounds, pharmacological agents (anesthetic drugs, analgesics, tranquilizers, etc.) and other radioprotective agents (WR-1065, WR-2721, vitamins C and E, glutathione, etc.). Several studies revealed the radioprotective action of Apis mellifera honeybee venom as well as that of its components mellitin and histamine. Radioprotective activity of bee venom involves mainly the stimulation of the hematopoietic system. In addition, release of histamine and reduction in oxygen tension also contribute to the radioprotective action of bee venom. (author)

  2. Radioprotection: mechanism and radioprotective agents including honeybee venom

    Varanda, E.A.; Tavares, D.C. [UNESP, Araraquara, SP (Brazil). Escola de Ciencias Farmaceuticas. Dept. de Ciencias Biologicas

    1998-07-01

    Since 1949, a great deal of research has been carried on the radioprotective action of chemical substances. These substances have shown to reduce mortality when administered to animals prior to exposure to a lethal dose of radiation. This fact is of considerable importance since it permits reduction of radiation-induced damage and provides prophylactic treatment for the damaging effects produced by radiotherapy. The following radioprotection mechanisms were proposed: free radical scavenger, repair by hydrogen donation to target molecules formation of mixed disulfides, delay of cellular division and induction of hypoxia in the tissues. Radioprotective agents have been divided into four major groups: the thiol compounds, other sulfur compounds, pharmacological agents (anesthetic drugs, analgesics, tranquilizers, etc.) and other radioprotective agents (WR-1065, WR-2721, vitamins C and E, glutathione, etc.). Several studies revealed the radioprotective action of Apis mellifera honeybee venom as well as that of its components mellitin and histamine. Radioprotective activity of bee venom involves mainly the stimulation of the hematopoietic system. In addition, release of histamine and reduction in oxygen tension also contribute to the radioprotective action of bee venom. (author)

  3. Complete Genome Sequences of Nine Phages Capable of Infecting Paenibacillus larvae, the Causative Agent of American Foulbrood Disease in Honeybees.

    Tsourkas, Philippos K; Yost, Diane G; Krohn, Andrew; LeBlanc, Lucy; Zhang, Anna; Stamereilers, Casey; Amy, Penny S

    2015-01-01

    We present here the complete genome sequences of nine phages that infect Paenibacillus larvae, the causative agent of American foulbrood disease in honeybees. The phages were isolated from soil, propolis, and infected bees from three U.S. states. This is the largest number of P. larvae phage genomes sequenced in a single publication to date. PMID:26472825

  4. Application of honey-bee mating optimization on state estimation of a power distribution system including distributed generators

    Taher NIKNAM

    2008-01-01

    We present a new approach based on honey-bee mating optimization to estimate the state variables in distribution networks including distributed generators. The proposed method considers practical models of electrical equipments such as smilc var compensators,voltage regulators,and under-load tap changer transformers,which have usually nonlinear and discrete characteristics. The feasibility of the proposed approach is demonstrated by comparison with the methods based on neural networks,ant colony optimization,and genetic algorithms for two test systems,a network with 34-bus radial test feeders and a realistic 80-bus 20 kV network.

  5. 13 CFR 107.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent. 107.1620 Section 107.1620 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION SMALL BUSINESS INVESTMENT COMPANIES SBA Financial Assistance...

  6. Lactobacillus apis sp. nov., from the stomach of honeybees (Apis mellifera), having an in vitro inhibitory effect on the causative agents of American and European foulbrood.

    Killer, J; Dubná, S; Sedláček, I; Švec, P

    2014-01-01

    A taxonomic study was performed on Gram-stain-positive, catalase-negative and regular rod-shaped bacterial strains R4B(T) and R4C, isolated from the stomachs of honeybees. 16S rRNA gene sequence analysis revealed that the phylogenetic position of the novel strains was within the genus Lactobacillus; the highest sequence similarity to R4B(T) was shown by Lactobacillus acidophilus BCRC 10695(T) (93.6 %). Lower sequence similarities were found to other obligately homofermentative lactobacilli. A PCR-DGGE method could detect the sequence of the 16S rRNA gene of strain R4B(T) at different developmental stages of honeybees occurring in two different locations in the Czech Republic. The distinctiveness of the strains from other lactobacilli was also confirmed by analysis of sequences of other phylogenetic markers applicable to the taxonomy of the genus Lactobacillus, ribotyping and rep-PCR analysis. The DNA G+C content of strain R4B(T) was 41.3 mol%. The predominant cellular fatty acids of strain R4B(T) were C18 : 1ω9c, summed C19 : 1ω6c/C19 : 0 cyclo ω10c, C16 : 0, summed C18 : 1ω7c/C18 : 1ω6c and summed C16 : 1ω7c/C16 : 1ω6c. The major polar lipids of strain R4B(T) were glycolipids, lipids and phospholipids. Phenotypic and phylogenetic characteristics also confirmed the independent status of the strains at the species level. Interestingly, strain R4B(T) was able to inhibit growth in vitro of Paenibacillus larvae subsp. larvae (causal agent of American foulbrood in honeybees) and Melissococcus plutonius (causal agent of European foulbrood). The name Lactobacillus apis sp. nov. is proposed for this novel taxon; the type strain is R4B(T) ( = CCM 8403(T) = LMG 26964(T)). PMID:24096349

  7. A Reactive Behavior Agent: Including Emotions into a Video Game

    A. L. Laureano-Cruces

    2012-10-01

    Full Text Available Why we have emotions and how they influence human behavior are two questions we constantly ask ourselves.According to researchers in the field, there are two kinds of information that the person receives to make a decision.This information is integrated to generate a whole. One comes from ourselves it is proprioceptive and refers toemotions; the other one is external, it comes from the environment. Thus, emotions are immersed in different areas ofa person’s life, including social, functional, and cognitive aspects. It has an important role in the decision-makingprocess. It is on this last point that this paper focuses its approach, which consists of including a cognitive structure ofemotions in a reactive behavior in order to enrich behavior, including the information generated through internalevaluation of the external physical stimuli. Our work is based on the OCC theory (named after the name of its authors:Ortony, Collins and Clore. This theory proposes that a decision-making process is affected through differentperspectives: a goals and events, b agents and their actions, and c objects and their capacity for attraction. Thecase study is situated within a scenario that represents an approach that seeks to include a module of emotions withinthe design of the architecture of a videogame.

  8. In vitro antibacterial effect of exotic plants essential oils on the honeybee pathogen Paenibacillus larvae, causal agent of American foul brood

    Fuselli, S. R.; Garcia de la Rosa, S. B.; Eguaras, M. J.; Fritz, R.

    2010-07-01

    Chemical composition and antimicrobial activity of exotic plants essential oils to potentially control Paenibacillus larvae, the causal agent of American foul brood disease (AFB) were determined. AFB represents one of the main plagues that affect the colonies of honeybees Apis mellifera L. with high negative impact on beekeepers worldwide. Essential oils tested were niaouli (Melaleuca viridiflora) and tea tree (Melaleuca alternifolia) from Myrtaceae, and citronella grass (Cymbopogon nardus) and palmarosa (Cymbopogon martinii) from Gramineae. The components of the essential oils were identified by SPME-GC/MS analysis. The antimicrobial activity of the oils against P. larvae was determined by the broth micro dilution method. In vitro assays of M. viridiflora and C. nardus oils showed the inhibition of the bacterial strains at the lowest concentrations tested, with minimal inhibitory concentration (MIC) mean value about 320 mg L{sup -}1 for both oils, respectively. This property could be attributed to the kind and percentage of the components of the oils. Terpinen-4-ol (29.09%), {alpha}-pinene (21.63%) and limonene (17.4%) were predominant in M. viridiflora, while limonene (24.74%), citronelal (24.61%) and geraniol (15.79%) were the bulk of C. nardus. The use of these essential oils contributes to the screening of alternative natural compounds to control AFB in the apiaries; toxicological risks and other undesirable effects would be avoided as resistance factors, developed by the indiscriminate use of antibiotics. (Author) 40 refs.

  9. Honeybee immunity and colony losses

    F. Nazzi

    2014-10-01

    Full Text Available The decline of honeybee colonies and their eventual collapse is a widespread phenomenon in the Northern hemisphere of the globe, which severely limits the beekeeping industry. This dramatic event is associated with an enhanced impact of parasites and pathogens on honeybees, which is indicative of reduced immunocompetence. The parasitic mite Varroa destructor and the vectored viral pathogens appear to play a key-role in the induction of this complex syndrome. In particular, the Deformed Wing Virus (DWV is widespread and is now considered, along with Varroa, one of the major causes of bee colony losses. Several lines of evidence indicate that this mite/DWV association severely affects the immune system of honeybees and makes them more sensitive to the action of other stress factors. The molecular mechanisms underpinning these complex interactions are currently being investigated and the emerging information has allowed the development of a new functional model, describing how different stress factors may synergistically concur in the induction of bee immune alteration and health decline. This provides a new logical framework in which to interpret the proposed multifactorial origin of bee colony losses and sets the stage for a more comprehensive and integrated analysis of the effect that multiple stress agents may have on honeybees.

  10. Lactobacillus apis sp. nov., from the stomach of honeybees (Apis mellifera), having an in vitro inhibitory effect on the causative agents of American and European foulbrood

    Killer, Jiří; Dubná, S.; Sedláček, I.; Švec, P.

    2014-01-01

    Roč. 64, č. 1 (2014), s. 152-157. ISSN 1466-5026 Grant ostatní: GA MŠk(CZ) EE2.3.20.0183 Institutional support: RVO:67985904 Keywords : honeybees Subject RIV: EE - Microbiology, Virology Impact factor: 2.511, year: 2014

  11. Disease dynamics of honeybees with Varroa destructor as parasite and virus vector.

    Kang, Yun; Blanco, Krystal; Davis, Talia; Wang, Ying; DeGrandi-Hoffman, Gloria

    2016-05-01

    The worldwide decline in honeybee colonies during the past 50 years has often been linked to the spread of the parasitic mite Varroa destructor and its interaction with certain honeybee viruses carried by Varroa mites. In this paper, we propose a honeybee-mite-virus model that incorporates (1) parasitic interactions between honeybees and the Varroa mites; (2) five virus transmission terms between honeybees and mites at different stages of Varroa mites: from honeybees to honeybees, from adult honeybees to the phoretic mites, from brood to the reproductive mites, from the reproductive mites to brood, and from adult honeybees to the phoretic mites; and (3) Allee effects in the honeybee population generated by its internal organization such as division of labor. We provide completed local and global analysis for the full system and its subsystems. Our analytical and numerical results allow us have a better understanding of the synergistic effects of parasitism and virus infections on honeybee population dynamics and its persistence. Interesting findings from our work include: (a) due to Allee effects experienced by the honeybee population, initial conditions are essential for the survival of the colony. (b) Low adult honeybees to brood ratios have destabilizing effects on the system which generate fluctuating dynamics that lead to a catastrophic event where both honeybees and mites suddenly become extinct. This catastrophic event could be potentially linked to Colony Collapse Disorder (CCD) of honeybee colonies. (c) Virus infections may have stabilizing effects on the system, and parasitic mites could make disease more persistent. Our model illustrates how the synergy between the parasitic mites and virus infections consequently generates rich dynamics including multiple attractors where all species can coexist or go extinct depending on initial conditions. Our findings may provide important insights on honeybee viruses and parasites and how to best control them. PMID

  12. MicroRNA expression correlated with hygienic behaviour in honeybees

    Francesca Dell'Orco

    2015-07-01

    Full Text Available Honeybees (Apis mellifera play important roles in modern agriculture regarding zootechnical production and crop pollination. Recently, honeybees have received more attention from the public, beekeepers and researchers due to emerging heath issues. Thus, scientific interest for honeybee health and selection resistance to major pathogens is sharply increasing. Honeybees evolved social immunity mechanisms consisting in the cooperation of individuals to control disease level in the hive, and in particular hygienic behavior (HB, as based on the uncapping and removal of dead, diseased or parasitized brood. HB is affected by heritable and environmental factors, and specific neurogenomic states can be inferred based on the coordinated brain expression of transcription factors and their predicted target genes, including Mblk-1 (transcription factor that function in the mushroom body and Obp4 (sensitive olfactory detection in the antennae of adult bees. Besides, microRNAs are known to influence neurological status linked to age-related social behaviour in honeybees7. In order to investigate the relationship between microRNA expression and HB, the present work performed the expression profile of selected honeybee brain microRNA in individual’s honeybee from field colonies with high HB level compared to low HB level, in comparison with the expression profile of Mblk-1 and Obp4. The genetic information resulting from this project could help to understand the role of microRNAs in HB and to drive honeybee selection schemes for production, health, and behavioral traits favoring pathogen control.

  13. Virus infections of honeybees Apis Mellifera

    Giuseppina Tantillo

    2015-09-01

    Full Text Available The health and vigour of honeybee colonies are threatened by numerous parasites (such as Varroa destructor and Nosema spp. and pathogens, including viruses, bacteria, protozoa. Among honeybee pathogens, viruses are one of the major threats to the health and wellbeing of honeybees and cause serious concern for researchers and beekeepers. To tone down the threats posed by these invasive organisms, a better understanding of bee viral infections will be of crucial importance in developing effective and environmentally benign disease control strategies. Here we summarize recent progress in the understanding of the morphology, genome organization, transmission, epidemiology and pathogenesis of eight honeybee viruses: Deformed wing virus (DWV and Kakugo virus (KV; Sacbrood virus (SBV; Black Queen cell virus (BQCV; Acute bee paralysis virus (ABPV; Kashmir bee virus (KBV; Israeli Acute Paralysis Virus (IAPV; Chronic bee paralysis virus (CBPV. The review has been designed to provide researchers in the field with updated information about honeybee viruses and to serve as a starting point for future research.

  14. [Evaluation of the Epsilometer (Etest) method for the detection of tetracycline susceptibility in Paenibacillus larvae, the causal agent of American foulbrood disease of honeybees].

    Alippi, Adriana M; Reynaldi, Francisco J; López, Ana C

    2013-01-01

    American foulbrood (AFB) is a bacterial disease caused by the spore-forming, grampositive bacterium Paenibacillus larvae, which affects honeybee broods worldwide. The aim of this work was to compare the Epsilometer test (Etest) to the agar dilution method for testing a collection of 22 P. larvae strains to tetracycline by using MYPGP and Iso- Sensitest agars. Results showed that a categorical agreement of 100% was found when using Iso-Sensitest, while a categorical agreement of 86.36% was found (with 3 minor errors) when MYPGP was tested. In conclusion, the Etest could be a rapid and reliable method for testing MIC values of tetracycline in P. larvae only when used in combination with Iso-Sensitest agar. Nevertheless, these results should be confirmed with future studies involving a larger number of isolates. PMID:24401780

  15. Characterization of secreted proteases of Paenibacillus larvae, potential virulence factors in honeybee larval infection

    Paenibacillus larvae is the causative agent of American Foulbrood (AFB), the most severe bacterial disease that affects honeybee larvae. AFB causes a significant decrease in the honeybee population affecting the beekeeping industry and agricultural production. After infection of larvae, P. larvae se...

  16. Detection of Methyl Salicylate Transforted by Honeybees (Apis mellifera) Using Solid Phase Microextration (SPME) Fibers

    BENDER, SUSAN FAE ANN; RODACY, PHILIP J.; BARNETT, JAMES L.; BENDER, GARY L.

    2001-12-01

    The ultimate goal of many environmental measurements is to determine the risk posed to humans or ecosystems by various contaminants. Conventional environmental monitoring typically requires extensive sampling grids covering several media including air, water, soil and vegetation. A far more efficient, innovative and inexpensive tactic has been found using honeybees as sampling mechanisms. Members from a single bee colony forage over large areas ({approx}2 x 10{sup 6} m{sup 2}), making tens of thousands of trips per day, and return to a fixed location where sampling can be conveniently conducted. The bees are in direct contact with the air, water, soil and vegetation where they encounter and collect any contaminants that are present in gaseous, liquid and particulate form. The monitoring of honeybees when they return to the hive provides a rapid method to assess chemical distributions and impacts (1). The primary goal of this technology is to evaluate the efficiency of the transport mechanism (honeybees) to the hive using preconcentrators to collect samples. Once the extent and nature of the contaminant exposure has been characterized, resources can be distributed and environmental monitoring designs efficiently directed to the most appropriate locations. Methyl salicylate, a chemical agent surrogate was used as the target compound in this study.

  17. Detection of Methyl Salicylate Transforted by Honeybees (Apis mellifera) Using Solid Phase Microextration (SPME) Fibers; TOPICAL

    The ultimate goal of many environmental measurements is to determine the risk posed to humans or ecosystems by various contaminants. Conventional environmental monitoring typically requires extensive sampling grids covering several media including air, water, soil and vegetation. A far more efficient, innovative and inexpensive tactic has been found using honeybees as sampling mechanisms. Members from a single bee colony forage over large areas ((approx)2 x 10(sup 6) m(sup 2)), making tens of thousands of trips per day, and return to a fixed location where sampling can be conveniently conducted. The bees are in direct contact with the air, water, soil and vegetation where they encounter and collect any contaminants that are present in gaseous, liquid and particulate form. The monitoring of honeybees when they return to the hive provides a rapid method to assess chemical distributions and impacts (1). The primary goal of this technology is to evaluate the efficiency of the transport mechanism (honeybees) to the hive using preconcentrators to collect samples. Once the extent and nature of the contaminant exposure has been characterized, resources can be distributed and environmental monitoring designs efficiently directed to the most appropriate locations. Methyl salicylate, a chemical agent surrogate was used as the target compound in this study

  18. Harmful Effects of Biocides on Honeybees

    Gürel, Yasemin; Çarhan, Ahmet; KOÇ, Feride; Daş, Yavuz Kürşad

    2015-01-01

    Biocides are chemical substances which are use to fight against harmful insects around residential areas and enviroment. Furthermore, drink water disinfectans, hospital and food industry disinfectants are also included as biocidal products. Recently, biocidal products are blamed for the honeybee loss and colony collapse disorder (CCD). There are several factors have been determined for CCD in some countries (Fletcher and Barnett, 2003, Rortais and col., 2005; Underwood and vanEngelsdorp ve co...

  19. Risks of neonicotinoid insecticides to honeybees

    Fairbrother, Anne; Purdy, John; Anderson, Troy; Fell, Richard

    2014-01-01

    The European honeybee, Apis mellifera, is an important pollinator of agricultural crops. Since 2006, when unexpectedly high colony losses were first reported, articles have proliferated in the popular press suggesting a range of possible causes and raising alarm over the general decline of bees. Suggested causes include pesticides, genetically modified crops, habitat fragmentation, and introduced diseases and parasites. Scientists have concluded that multiple factors in various combinations—i...

  20. A Prototype for an Agent-based Secure Electronic Marketplace including Reputation Tracking Mechanisms

    Padovan Boris; Sackmann Stefan; Eymann Thorsten; Pippow Ingo

    2002-01-01

    The future of electronic commerce will be shaped by open, heterogeneous and complex structures, consisting of networked marketplaces. Software agents will interact and negotiate on behalf of their human (or organizational) principals. Principals will be able to implement fraudulent strategies in their agents, which cannot be countered by technical security alone. In the absence of a single correctional institution, agents will have to rely on social mechanisms for assessing reliability and re...

  1. Insulin Modifies Honeybee Worker Behavior

    Christine M. Mott

    2012-10-01

    Full Text Available The insulin signaling pathway has been hypothesized to play a key role in regulation of worker social insect behavior. We tested whether insulin treatment has direct effects on worker honeybee behavior in two contexts, sucrose response thresholds in winter bees and the progression to foraging by summer nurse bees. Treatment of winter worker bees with bovine insulin, used as a proxy for honeybee insulin, increased the bees’ sucrose response threshold. Treatment of summer nurse bees with bovine insulin significantly decreased the age at which foraging was initiated. This work provides further insight into the role of endocrine controls in behavior of in honeybees and insects in general.

  2. Isolation and characterization of a novel phage lysin active against Paenibacillus larvae, a honeybee pathogen

    LeBlanc, Lucy; Nezami, Sara; Yost, Diane; Tsourkas, Philippos; Amy, Penny S.

    2015-01-01

    Paenibacillus larvae is the causative agent of American foulbrood (AFB) disease which affects early larval stages during honeybee development. Due to its virulence, transmissibility, capacity to develop antibiotic resistance, and the inherent resilience of its endospores, Paenibacillus larvae is extremely difficult to eradicate from infected hives which often must be burned. AFB contributes to the worldwide decline of honeybee populations, which are crucial for pollination and the food supply...

  3. 21 CFR 700.13 - Use of mercury compounds in cosmetics including use as skinbleaching agents in cosmetic...

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Use of mercury compounds in cosmetics including...) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.13 Use of mercury compounds in cosmetics including use as skinbleaching agents in cosmetic preparations also regarded as drugs. (a)...

  4. Metagenomic detection of viral pathogens in Spanish honeybees: co-infection by Aphid Lethal Paralysis, Israel Acute Paralysis and Lake Sinai Viruses.

    Fredrik Granberg

    Full Text Available The situation in Europe concerning honeybees has in recent years become increasingly aggravated with steady decline in populations and/or catastrophic winter losses. This has largely been attributed to the occurrence of a variety of known and "unknown", emerging novel diseases. Previous studies have demonstrated that colonies often can harbour more than one pathogen, making identification of etiological agents with classical methods difficult. By employing an unbiased metagenomic approach, which allows the detection of both unexpected and previously unknown infectious agents, the detection of three viruses, Aphid Lethal Paralysis Virus (ALPV, Israel Acute Paralysis Virus (IAPV, and Lake Sinai Virus (LSV, in honeybees from Spain is reported in this article. The existence of a subgroup of ALPV with the ability to infect bees was only recently reported and this is the first identification of such a strain in Europe. Similarly, LSV appear to be a still unclassified group of viruses with unclear impact on colony health and these viruses have not previously been identified outside of the United States. Furthermore, our study also reveals that these bees carried a plant virus, Turnip Ringspot Virus (TuRSV, potentially serving as important vector organisms. Taken together, these results demonstrate the new possibilities opened up by high-throughput sequencing and metagenomic analysis to study emerging new diseases in domestic and wild animal populations, including honeybees.

  5. Characterization of bifidobacteria in the digestive tract of the Japanese honeybee, Apis cerana japonica.

    Wu, Meihua; Sugimura, Yuya; Takaya, Noriko; Takamatsu, Daisuke; Kobayashi, Masaru; Taylor, DeMar; Yoshiyama, Mikio

    2013-01-01

    Bifidobacteria were isolated from the intestinal tract of the Japanese honeybee, Apis cerana japonica, and investigated for potential application as a probiotic agent against Melissococcus plutonius, the causal agent of European foulbrood (EFB), based on the findings of in vitro inhibition assays. A total of 11 bifidobacteria strains (designated as AcjBF1-AcjBF11) were isolated using a culture-dependent method and their 16S rRNA gene sequences were analyzed. The AcjBF isolates belonged to three distinct bifidobacterial phylotypes that were similar to those found in the European honeybee, Apis mellifera. Although the Japanese and European honeybees are distinct species with different traits and habits, the observation that they share highly similar bifidobacterial phylotypes suggests that bifidobacteria are conserved among honeybee species. Despite having extremely high 16S rRNA gene sequence similarities, the AcjBF isolates had markedly different carbohydrate fermentation profiles. In addition, in vitro growth inhibition assays revealed that the cell-free supernatants of all AcjBF isolates exhibited antagonistic effects on M. plutonius growth. These results indicate that the bifidobacteria isolated from the gut of Japanese honeybee could potentially be employed as a new biological agent to control EFB. PMID:23069130

  6. Genetic variation in natural honeybee populations, Apis mellifera capensis

    Hepburn, Randall; Neumann, Peter; Radloff, Sarah E.

    2004-09-01

    Genetic variation in honeybee, Apis mellifera, populations can be considerably influenced by breeding and commercial introductions, especially in areas with abundant beekeeping. However, in southern Africa apiculture is based on the capture of wild swarms, and queen rearing is virtually absent. Moreover, the introduction of European subspecies constantly failed in the Cape region. We therefore hypothesize a low human impact on genetic variation in populations of Cape honeybees, Apis mellifera capensis. A novel solution to studying genetic variation in honeybee populations based on thelytokous worker reproduction is applied to test this hypothesis. Environmental effects on metrical morphological characters of the phenotype are separated to obtain a genetic residual component. The genetic residuals are then re-calculated as coefficients of genetic variation. Characters measured included hair length on the abdomen, width and length of wax plate, and three wing angles. The data show for the first time that genetic variation in Cape honeybee populations is independent of beekeeping density and probably reflects naturally occurring processes such as gene flow due to topographic and climatic variation on a microscale.

  7. Mobile phone-induced honeybee worker piping

    Favre, Daniel

    2011-01-01

    The worldwide maintenance of the honeybee has major ecological, economic, and political implications. In the present study, electromagnetic waves originating from mobile phones were tested for potential effects on honeybee behavior. Mobile phone handsets were placed in the close vicinity of honeybees. The sound made by the bees was recorded and analyzed. The audiograms and spectrograms revealed that active mobile phone handsets have a dramatic impact on the behavior of the bees, namely by ind...

  8. Lysophosphatidylcholine acts in the constitutive immune defence against American foulbrood in adult honeybees

    Riessberger-Gallé, Ulrike; Hernández-López, Javier; Rechberger, Gerald; Crailsheim, Karl; Schuehly, Wolfgang

    2016-01-01

    Honeybee (Apis mellifera) imagines are resistant to the Gram-positive bacterium Paenibacillus larvae (P. larvae), causative agent of American foulbrood (AFB), whereas honeybee larvae show susceptibility against this pathogen only during the first 48 h of their life. It is known that midgut homogenate of adult honeybees as well as a homogenate of aged larvae exhibit strong anti-P. larvae activity. A bioactivity-guided LC-HRMS analysis of midgut homogenate resulted in the identification of 1-oleoyl-sn-glycero-3-phosphocholine (LPC) pointing to a yet unknown immune defence in adult honeybees against P. larvae. Antimicrobial activity of LPC was also demonstrated against Melissococcus plutonius, causative agent of European Foulbrood. To demonstrate an AFB-preventive effect of LPC in larvae, artificially reared larvae were supplemented with LPC to evaluate its toxicity and to assess whether, after infection with P. larvae spores, LPC supplementation prevents AFB infection. 10 μg LPC per larva applied for 3 d significantly lowered mortality due to AFB in comparison to controls. A potential delivery route of LPC to the larvae in a colony via nurse bees was assessed through a tracking experiment using fluorescent-labelled LPC. This yet undescribed and non-proteinous defense of honeybees against P. larvae may offer new perspectives for a treatment of AFB without the utilization of classic antibiotics. PMID:27480379

  9. MtDNA COI-COII marker and drone congregation area: an efficient method to establish and monitor honeybee (Apis mellifera L.) conservation centres.

    Bertrand, Bénédicte; Alburaki, Mohamed; Legout, Hélène; Moulin, Sibyle; Mougel, Florence; Garnery, Lionel

    2015-05-01

    Honeybee subspecies have been affected by human activities in Europe over the past few decades. One such example is the importation of nonlocal subspecies of bees which has had an adverse impact on the geographical repartition and subsequently on the genetic diversity of the black honeybee Apis mellifera mellifera. To restore the original diversity of this local honeybee subspecies, different conservation centres were set up in Europe. In this study, we established a black honeybee conservation centre Conservatoire de l'Abeille Noire d'Ile de France (CANIF) in the region of Ile-de-France, France. CANIF's honeybee colonies were intensively studied over a 3-year period. This study included a drone congregation area (DCA) located in the conservation centre. MtDNA COI-COII marker was used to evaluate the genetic diversity of CANIF's honeybee populations and the drones found and collected from the DCA. The same marker (mtDNA) was used to estimate the interactions and the haplotype frequency between CANIF's honeybee populations and 10 surrounding honeybee apiaries located outside of the CANIF. Our results indicate that the colonies of the conservation centre and the drones of the DCA show similar stable profiles compared to the surrounding populations with lower level of introgression. The mtDNA marker used on both DCA and colonies of the conservation centre seems to be an efficient approach to monitor and maintain the genetic diversity of the protected honeybee populations. PMID:25335970

  10. Antimicrosporidian activity of sulphated polysaccharides from algae and their potential to control honeybee nosemosis.

    Roussel, M; Villay, A; Delbac, F; Michaud, P; Laroche, C; Roriz, D; El Alaoui, H; Diogon, M

    2015-11-20

    Nosemosis is one of the most common and widespread diseases of adult honeybees. The causative agents, Nosema apis and Nosema ceranae, belong to microsporidia some obligate intracellular eukaryotic parasites. In this study, 10 sulphated polysaccharides from algae were evaluated for their antimicrosporidian activity. They were first shown to inhibit the in vitro growth of the mammal microsporidian model, Encephalitozoon cuniculi. The most efficient polysaccharides were then tested for their ability to inhibit the growth of Nosema ceranae in experimentally-infected adult honeybees. Two polysaccharides extracted from Porphyridium spp. did not show any toxicity in honeybees and one of them allowed a decrease of both parasite load and mortality rate due to N. ceranae infection. A decrease in parasite abundance but not in mortality rate was also observed with an iota carrageenan. Our results are promising and suggest that algal sulphated polysaccharides could be used to prevent and/or control bee nosemosis. PMID:26344274

  11. A DNA Barcoding Approach to Characterize Pollen Collected by Honeybees

    Andrea Galimberti; Fabrizio De Mattia; Ilaria Bruni; Daniela Scaccabarozzi; Anna Sandionigi; Michela Barbuto; Maurizio Casiraghi; Massimo Labra

    2014-01-01

    In the present study, we investigated DNA barcoding effectiveness to characterize honeybee pollen pellets, a food supplement largely used for human nutrition due to its therapeutic properties. We collected pollen pellets using modified beehives placed in three zones within an alpine protected area (Grigna Settentrionale Regional Park, Italy). A DNA barcoding reference database, including rbcL and trnH-psbA sequences from 693 plant species (104 sequenced in this study) was assembled. The datab...

  12. Olfactory Discrimination Ability and Odor Structure Activity Relationships in Honeybees

    Laska, Matthias; Galizia, Cosmas Giovanni; Giurfa, Martin; Menzel, Randolf

    1999-01-01

    Using the training procedure introduced by von Frisch in 1919, we tested the ability of free-flying honeybees to discriminate a conditioning odor from an array of 44 simultaneously presented substances. The stimuli included homologous series of aliphatic alcohols, aldehydes and ketones, isomeric forms of some of these substances, as well as several terpenes and odor mixtures, and thus comprised stimuli of varying degrees of structural similarity to any conditioning odor. We found (i) that the...

  13. Modelling the spread of American foulbrood in honeybees.

    Datta, Samik; Bull, James C; Budge, Giles E; Keeling, Matt J

    2013-11-01

    We investigate the spread of American foulbrood (AFB), a disease caused by the bacterium Paenibacillus larvae, that affects bees and can be extremely damaging to beehives. Our dataset comes from an inspection period carried out during an AFB epidemic of honeybee colonies on the island of Jersey during the summer of 2010. The data include the number of hives of honeybees, location and owner of honeybee apiaries across the island. We use a spatial SIR model with an underlying owner network to simulate the epidemic and characterize the epidemic using a Markov chain Monte Carlo (MCMC) scheme to determine model parameters and infection times (including undetected 'occult' infections). Likely methods of infection spread can be inferred from the analysis, with both distance- and owner-based transmissions being found to contribute to the spread of AFB. The results of the MCMC are corroborated by simulating the epidemic using a stochastic SIR model, resulting in aggregate levels of infection that are comparable to the data. We use this stochastic SIR model to simulate the impact of different control strategies on controlling the epidemic. It is found that earlier inspections result in smaller epidemics and a higher likelihood of AFB extinction. PMID:24026473

  14. Molecular characterization of hemoglobin from the honeybee Apis mellifera.

    Hankeln, Thomas; Klawitter, Sabine; Krämer, Melanie; Burmester, Thorsten

    2006-07-01

    Due to the prevailing importance of the tracheal system for insect respiration, hemoglobins had been considered rare exceptions in this arthropod subphylum. Here we report the identification, cloning and expression analysis of a true hemoglobin gene in the honeybee Apis mellifera (Hymenoptera). The deduced amino acid sequence covers 171 residues (19.5kDa) and harbors all globin-typical features, including the proximal and the distal histidines. The protein has no signal peptide for transmembrane transport and was predicted to localize in the cytoplasm. The honeybee hemoglobin gene shows an ancient structure, with introns in positions B12.2 and G7.0, while most other insect globins have divergent intron positions. In situ hybridization studies showed that hemoglobin expression in the honeybee is mainly associated with the tracheal system. We also observe hemoglobin expression in the Malpighi tubes and testis. We further demonstrated that hemoglobins occur in other insect orders (Hemiptera, Coleoptera, Lepidoptera), suggesting that such genes belong to the standard repertoire of an insect genome. Phylogenetic analyses show that globins evolved along with the accepted insect systematics, with a remarkable diversification within the Diptera. Although insect hemoglobins may be in fact involved in oxygen metabolism, it remains uncertain whether they carry out a myoglobin-like function in oxygen storage and delivery. PMID:16698031

  15. Presence of Nosema ceranae associated with honeybee queen introductions.

    Muñoz, Irene; Cepero, Almudena; Pinto, Maria Alice; Martín-Hernández, Raquel; Higes, Mariano; De la Rúa, Pilar

    2014-04-01

    Microsporidiosis caused by Nosema species is one of the factors threatening the health of the honeybee (Apis mellifera), which is an essential element in agriculture mainly due to its pollination function. The dispersion of this pathogen may be influenced by many factors, including various aspects of beekeeping management such as introduction of queens with different origin. Herein we study the relation of the presence and distribution of Nosema spp. and the replacement of queens in honeybee populations settled on the Atlantic Canary Islands. While Nosema apis has not been detected, an increase of the presence and distribution of Nosema ceranae during the last decade has been observed in parallel with a higher frequency of foreign queens. On the other hand, a reduction of the number of N. ceranae positive colonies was observed on those islands with continued replacement of queens. We suggest that such replacement could help maintaining low rates of Nosema infection, but healthy queens native to these islands should be used in order to conserve local honeybee diversity. PMID:24568841

  16. Self-organized defensive behavior in honeybees

    Millor, J.; Pham-Delegue, M; Deneubourg, J. L.; Camazine, S

    1999-01-01

    We investigated the defensive behavior of honeybees under controlled experimental conditions. During an attack on two identical targets, the spatial distribution of stings varied as a function of the total number of stings, evincing the classic “pitchfork bifurcation” phenomenon of nonlinear dynamics. The experimental results support a model of defensive behavior based on a self-organizing mechanism. The model helps to explain several of the characteristic features of the honeybee defensive r...

  17. Prospective and Retrospective Learning in Honeybees

    Giurfa, Martin; Benard, Julie

    2006-01-01

    We focus on non-elemental forms of learning in honeybees in order to answer the question of whether retrospective learning can be found in an insect. We analyze three different forms of learning: category learning, rule learning and backward blocking. We provide examples showing that honeybees demonstrate these three forms of learning and propose that causal retrospection underlies them to different extents. We argue that an elemental associative account explains category learning whereas rul...

  18. Control del Ácaro Varroa destructor (Mesostigmata: Varroidae en Colmenas de Apis mellifera (Hymenoptera: Apidae mediante la Aplicación de distintos Principios Activos Control of Varroa destructor (Mesostigmata: Varroidae in honeybee colonies of Apis mellifera Hymenoptera: Apidae by means of different active agents

    Jorge Augusto Marcangeli

    2003-12-01

    Full Text Available El objetivo de este trabajo fue evaluar la eficacia acaricida de cuatro productos utilizados para el control del ácaro Varroa destructor (Anderson & Trueman en colmenas de Apis mellifera (L.. Se seleccionaron 25 colmenas dividivas en cinco lotes iguales a las que se les suministró Apistan®, Bayvarol®, Apitol® y Folbex®. El último lote representó el control. Los ácaros muertos se recolectaron en pisos especiales que se controlaron semanalmente. Finalizada la experiencia cada lote fue sometido a un cruzamiento con otros productos con el fin de eliminar los ácaros remanentes y poder calcular las eficacias. El producto Apistan® fue el más efectivo con un valor promedio de 85,38% seguido por el Bayvarol® (83,83%, Apitol® (71,77% y Folbex® (62,78%. En todos los casos, los valores obtenidos resultaron inferiores a los estipulados por los laboratorios productores. Estos resultados alertan sobre la posible generación de resistencias por parte de las poblaciones del ácaro y la necesidad de buscar nuevos agentes de control eficaces para esta enfermedad.The aim of this work was to evaluate the acaricide efficacy of four commercial products against the mite Varroa destructor (Anderson & Trueman in honeybee colonies of Apis mellifera (L.. Twenty five honeybee colonies divided in five equal groups were selected. Groups received Apistan®, Bayvarol®, Apitol® and Folbex®. Final group was the control. Dead mites were collected weekly in special floors. After treatment, each colony received a shock treatment with the other three products to kill remnant mites and to obtain acaricide efficacy. Average values of efficacy were Apistan® 85,38%, Bayvarol® 83,83%, Apitol® 71,77% and Folbex® 62,78%. In all cases these values were lower than those reported by the laboratories that produce them. These results alert about the possible generation of resistant mite populations and justify research directed to search for alternative products for the

  19. Characterization of the honeybee AmNaV1 channel and tools to assess the toxicity of insecticides

    Pascal Gosselin-Badaroudine; Adrien Moreau; Lucie Delemotte; Thierry Cens; Claude Collet; Matthieu Rousset; Pierre Charnet; Michael L Klein; Mohamed Chahine

    2015-01-01

    Pollination is important for both agriculture and biodiversity. For a significant number of plants, this process is highly, and sometimes exclusively, dependent on the pollination activity of honeybees. The large numbers of honeybee colony losses reported in recent years have been attributed to colony collapse disorder. Various hypotheses, including pesticide overuse, have been suggested to explain the disorder. Using the Xenopus oocytes expression system and two microelectrode voltage-clamp,...

  20. Characterization of a metabotropic glutamate receptor in the honeybee (Apis mellifera): implications for memory formation.

    Kucharski, R; Mitri, C; Grau, Y; Maleszka, R

    2007-06-01

    G-protein-coupled metabotropic glutamate receptors (GPC mGluRs) are important constituents of glutamatergic synapses where they contribute to synaptic plasticity and development. Here we characterised a member of this family in the honeybee. We show that the honeybee genome encodes a genuine mGluR (AmGluRA) that is expressed at low to medium levels in both pupal and adult brains. Analysis of honeybee protein sequence places it within the type 3 GPCR family, which includes mGlu receptors, GABA-B receptors, calcium-sensing receptors, and pheromone receptors. Phylogenetic comparisons combined with pharmacological evaluation in HEK 293 cells transiently expressing AmGluRA show that the honeybee protein belongs to the group II mGluRs. With respect to learning and memory AmGluRA appears to be required for memory formation. Both agonists and antagonists selective against the group II mGluRs impair long-term (24 h) associative olfactory memory formation when applied 1 h before training, but have no effect when injected post-training or pre-testing. Our results strengthen the notion that glutamate is a key neurotransmitter in memory processes in the honeybee. PMID:17372777

  1. Characterization of honeybee venom by MALDI-TOF and nanoESI-QqTOF mass spectrometry.

    Matysiak, Jan; Schmelzer, Christian E H; Neubert, Reinhard H H; Kokot, Zenon J

    2011-01-25

    The aim of the study was to comprehensively characterize different honeybee venom samples applying two complementary mass spectrometry methods. 41 honeybee venom samples of different bee strains, country of origin (Poland, Georgia, and Estonia), year and season of the venom collection were analyzed using MALDI-TOF and nanoESI-QqTOF-MS. It was possible to obtain semi-quantitative data for 12 different components in selected honeybee venom samples using MALDI-TOF method without further sophisticated and time consuming sample pretreatment. Statistical analysis (ANOVA) has shown that there are qualitative and quantitative differences in the composition between honeybee venom samples collected over different years. It has also been demonstrated that MALDI-TOF spectra can be used as a "protein fingerprint" of honeybee venom in order to confirm the identity of the product. NanoESI-QqTOF-MS was applied especially for identification purposes. Using this technique 16 peptide sequences were identified, including melittin (12 different breakdown products and precursors), apamine, mast cell degranulating peptide and secapin. Moreover, the significant achievement of this study is the fact that the new peptide (HTGAVLAGV+Amidated (C-term), M(r)=822.53Da) has been discovered in bee venom for the first time. PMID:20850943

  2. Reevaluation of honeybee (Apis mellifera) microtaxonomy: a geometric morphometric approach

    Kandemir, Irfan; Özkan, Ayça; FUCHS, Stefan

    2011-01-01

    International audience In the present study, the microtaxonomy of honeybee (Apis mellifera L.) subspecies was reevaluated based on a geometric morphometric method. Wing images of honeybee subspecies, obtained from the Morphometric Bee Data Bank in Oberursel, Germany, were assigned to four honeybee lineages from the indivudial images, and 40 Cartesian coordinates were obtained. Honeybee lineages were significantly different based on individual and colony consensus average wing shapes of hon...

  3. Sublethal effects of acaricides and Nosema ceranae infection on immune related gene expression in honeybees.

    Garrido, Paula Melisa; Porrini, Martín Pablo; Antúnez, Karina; Branchiccela, Belén; Martínez-Noël, Giselle María Astrid; Zunino, Pablo; Salerno, Graciela; Eguaras, Martín Javier; Ieno, Elena

    2016-01-01

    Nosema ceranae is an obligate intracellular parasite and the etiologic agent of Nosemosis that affects honeybees. Beside the stress caused by this pathogen, honeybee colonies are exposed to pesticides under beekeeper intervention, such as acaricides to control Varroa mites. These compounds can accumulate at high concentrations in apicultural matrices. In this work, the effects of parasitosis/acaricide on genes involved in honeybee immunity and survival were evaluated. Nurse bees were infected with N. ceranae and/or were chronically treated with sublethal doses of coumaphos or tau-fluvalinate, the two most abundant pesticides recorded in productive hives. Our results demonstrate the following: (1) honeybee survival was not affected by any of the treatments; (2) parasite development was not altered by acaricide treatments; (3) coumaphos exposure decreased lysozyme expression; (4) N. ceranae reduced levels of vitellogenin transcripts independently of the presence of acaricides. However, combined effects among stressors on imagoes were not recorded. Sublethal doses of acaricides and their interaction with other ubiquitous parasites in colonies, extending the experimental time, are of particular interest in further research work. PMID:27118545

  4. Melittin, a honeybee venom-derived antimicrobial peptide, may target methicillin-resistant Staphylococcus aureus

    Choi, Ji Hae; JANG, A YEUNG; Lin, Shunmei; Lim, Sangyong; Kim, Dongho; Park, Kyungho; Han, Sang-Mi; YEO, JOO-HONG; Seo, Ho Seong

    2015-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is difficult to treat using available antibiotic agents. Honeybee venom has been widely used as an oriental treatment for several inflammatory diseases and bacterial infections. The venom contains predominantly biologically active compounds, however, the therapeutic effects of such materials when used to treat MRSA infections have not been investigated extensively. The present study evaluated bee venom and its principal active component, meli...

  5. Transcriptome Analysis of Honeybee (Apis Mellifera) Haploid and Diploid Embryos Reveals Early Zygotic Transcription during Cleavage

    Pires, Camilla Valente; Freitas, Flávia Cristina de Paula; Cristino, Alexandre S.; Dearden, Peter K.; Simões, Zilá Luz Paulino

    2016-01-01

    In honeybees, the haplodiploid sex determination system promotes a unique embryogenesis process wherein females develop from fertilized eggs and males develop from unfertilized eggs. However, the developmental strategies of honeybees during early embryogenesis are virtually unknown. Similar to most animals, the honeybee oocytes are supplied with proteins and regulatory elements that support early embryogenesis. As the embryo develops, the zygotic genome is activated and zygotic products gradually replace the preloaded maternal material. The analysis of small RNA and mRNA libraries of mature oocytes and embryos originated from fertilized and unfertilized eggs has allowed us to explore the gene expression dynamics in the first steps of development and during the maternal-to-zygotic transition (MZT). We localized a short sequence motif identified as TAGteam motif and hypothesized to play a similar role in honeybees as in fruit flies, which includes the timing of early zygotic expression (MZT), a function sustained by the presence of the zelda ortholog, which is the main regulator of genome activation. Predicted microRNA (miRNA)-target interactions indicated that there were specific regulators of haploid and diploid embryonic development and an overlap of maternal and zygotic gene expression during the early steps of embryogenesis. Although a number of functions are highly conserved during the early steps of honeybee embryogenesis, the results showed that zygotic genome activation occurs earlier in honeybees than in Drosophila based on the presence of three primary miRNAs (pri-miRNAs) (ame-mir-375, ame-mir-34 and ame-mir-263b) during the cleavage stage in haploid and diploid embryonic development. PMID:26751956

  6. Rare royal families in honeybees, Apis mellifera

    Moritz, Robin F. A.; Lattorff, H. Michael G.; Neumann, Peter; Kraus, F. Bernhard; Radloff, Sarah E.; Hepburn, H. Randall

    2005-10-01

    The queen is the dominant female in the honeybee colony, Apis mellifera, and controls reproduction. Queen larvae are selected by the workers and are fed a special diet (royal jelly), which determines caste. Because queens mate with many males a large number of subfamilies coexist in the colony. As a consequence, there is a considerable potential for conflict among the subfamilies over queen rearing. Here we show that honeybee queens are not reared at random but are preferentially reared from rare “royal” subfamilies, which have extremely low frequencies in the colony's worker force but a high frequency in the queens reared.

  7. Honeybee Conservation centers in Western Europe: an innovative strategy using sustainable beekeeping to reduce honeybee decline

    Vilas Boas, Miguel; Pinto, Maria Alice; Neves, Catia; Garnery, Lionel; Legout, Hélène; Houte, Sylvie; Odoux, Jean Francois; Estonba, Andone; Miguel, Irati; Montes, Iratxe; Mallet, Noël; Grenier, Claude; Labat, Jean-Charles; Champin, Luc; Colombet, Jonathan

    2015-01-01

    Apis mellifera is subdivided into at least 26 physiologically, behaviourally and morphologically distinct subspecies. As an agronomical species of interest, the natural distribution of honeybee subspecies has been disturbed for many decades by beekeeping activities, particularly because of international trade of honeybees. These movements were particularly amplified this last decade due to livestock rebuilding to counter the effects of colony losses. An interesting assumption is that current ...

  8. Analysis of the waggle dance motion of honeybees for the design of a biomimetic honeybee robot.

    Tim Landgraf

    Full Text Available The honeybee dance "language" is one of the most popular examples of information transfer in the animal world. Today, more than 60 years after its discovery it still remains unknown how follower bees decode the information contained in the dance. In order to build a robotic honeybee that allows a deeper investigation of the communication process we have recorded hundreds of videos of waggle dances. In this paper we analyze the statistics of visually captured high-precision dance trajectories of European honeybees (Apis mellifera carnica. The trajectories were produced using a novel automatic tracking system and represent the most detailed honeybee dance motion information available. Although honeybee dances seem very variable, some properties turned out to be invariant. We use these properties as a minimal set of parameters that enables us to model the honeybee dance motion. We provide a detailed statistical description of various dance properties that have not been characterized before and discuss the role of particular dance components in the commmunication process.

  9. East learns from West: Asiatic honeybees can understand dance language of European honeybees.

    Songkun Su

    Full Text Available The honeybee waggle dance, through which foragers advertise the existence and location of a food source to their hive mates, is acknowledged as the only known form of symbolic communication in an invertebrate. However, the suggestion, that different species of honeybee might possess distinct 'dialects' of the waggle dance, remains controversial. Furthermore, it remains unclear whether different species of honeybee can learn from and communicate with each other. This study reports experiments using a mixed-species colony that is composed of the Asiatic bee Apis cerana cerana (Acc, and the European bee Apis mellifera ligustica (Aml. Using video recordings made at an observation hive, we first confirm that Acc and Aml have significantly different dance dialects, even when made to forage in identical environments. When reared in the same colony, these two species are able to communicate with each other: Acc foragers could decode the dances of Aml to successfully locate an indicated food source. We believe that this is the first report of successful symbolic communication between two honeybee species; our study hints at the possibility of social learning between the two honeybee species, and at the existence of a learning component in the honeybee dance language.

  10. Aminergic Control and Modulation of Honeybee Behaviour

    Scheiner, R; Baumann, A.; Blenau, W

    2006-01-01

    Biogenic amines are important messenger substances in the central nervous system and in peripheral organs of vertebrates and of invertebrates. The honeybee, Apis mellifera, is excellently suited to uncover the functions of biogenic amines in behaviour, because it has an extensive behavioural repertoire, with a number of biogenic amine receptors characterised in this insect.

  11. The function of resilin in honeybee wings.

    Ma, Yun; Ning, Jian Guo; Ren, Hui Lan; Zhang, Peng Fei; Zhao, Hong Yan

    2015-07-01

    The present work aimed to reveal morphological characteristics of worker honeybee (Apis mellifera) wings and demonstrate the function of resilin on camber changes during flapping flight. Detailed morphological investigation of the wings showed that different surface characteristics appear on the dorsal and ventral side of the honeybee wings and the linking structure connecting the forewing and hindwing plays an indispensable role in honeybee flapping flight. Resilin stripes were found on both the dorsal and ventral side of the wings, and resilin patches mostly existed on the ventral side. On the basis of resilin distribution, five flexion lines and three cambered types around the lines of passive deformation of the coupled-wing profile were obtained, which defined the deformation mechanism of the wing along the chord, i.e. concave, flat plate and convex. From a movie obtained using high-speed photography from three orthogonal views of free flight in honeybees, periodic changes of the coupled-wing profile were acquired and further demonstrated that the deformation mechanism is a fundamental property for variable deformed shapes of the wing profile during flapping flight, and, in particular, the flat wing profile achieves a nice transition between downstrokes and upstrokes. PMID:25987733

  12. Trans-generational immune priming in honeybees.

    Hernández López, Javier; Schuehly, Wolfgang; Crailsheim, Karl; Riessberger-Gallé, Ulrike

    2014-06-22

    Maternal immune experience acquired during pathogen exposure and passed on to progeny to enhance resistance to infection is called trans-generational immune priming (TgIP). In eusocial insects like honeybees, TgIP would result in a significant improvement of health at individual and colony level. Demonstrated in invertebrates other than honeybees, TgIP has not yet been fully elucidated in terms of intensity and molecular mechanisms underlying this response. Here, we immune-stimulated honeybee queens with Paenibacillus larvae (Pl), a spore-forming bacterium causing American Foulbrood, the most deadly bee brood disease worldwide. Subsequently, offspring of stimulated queens were exposed to spores of Pl and mortality rates were measured to evaluate maternal transfer of immunity. Our data substantiate the existence of TgIP effects in honeybees by direct evaluation of offspring resistance to bacterial infection. A further aspect of this study was to investigate a potential correlation between immune priming responses and prohaemocytes-haemocyte differentiation processes in larvae. The results point out that a priming effect triggers differentiation of prohaemocytes to haemocytes. However, the mechanisms underlying TgIP responses are still elusive and require future investigation. PMID:24789904

  13. Honeybees, Butterflies, and Ladybugs: Partners to Plants

    Campbell, Ashley

    2009-01-01

    Honeybees, butterflies, and ladybugs all have fascinating mutually beneficial relationships with plants and play important ecosystem roles. Children also love these creatures. But how do we teach children about these symbiotic interactions and help them appreciate their vital roles in our environment? One must is to give children direct experience…

  14. Diversity of honey stores and their impact on pathogenic bacteria of the honeybee, Apis mellifera.

    Erler, Silvio; Denner, Andreas; Bobiş, Otilia; Forsgren, Eva; Moritz, Robin F A

    2014-10-01

    Honeybee colonies offer an excellent environment for microbial pathogen development. The highest virulent, colony killing, bacterial agents are Paenibacillus larvae causing American foulbrood (AFB), and European foulbrood (EFB) associated bacteria. Besides the innate immune defense, honeybees evolved behavioral defenses to combat infections. Foraging of antimicrobial plant compounds plays a key role for this "social immunity" behavior. Secondary plant metabolites in floral nectar are known for their antimicrobial effects. Yet, these compounds are highly plant specific, and the effects on bee health will depend on the floral origin of the honey produced. As worker bees not only feed themselves, but also the larvae and other colony members, honey is a prime candidate acting as self-medication agent in honeybee colonies to prevent or decrease infections. Here, we test eight AFB and EFB bacterial strains and the growth inhibitory activity of three honey types. Using a high-throughput cell growth assay, we show that all honeys have high growth inhibitory activity and the two monofloral honeys appeared to be strain specific. The specificity of the monofloral honeys and the strong antimicrobial potential of the polyfloral honey suggest that the diversity of honeys in the honey stores of a colony may be highly adaptive for its "social immunity" against the highly diverse suite of pathogens encountered in nature. This ecological diversity may therefore operate similar to the well-known effects of host genetic variance in the arms race between host and parasite. PMID:25505523

  15. Synergistic parasite-pathogen interactions mediated by host immunity can drive the collapse of honeybee colonies.

    Francesco Nazzi

    Full Text Available The health of the honeybee and, indirectly, global crop production are threatened by several biotic and abiotic factors, which play a poorly defined role in the induction of widespread colony losses. Recent descriptive studies suggest that colony losses are often related to the interaction between pathogens and other stress factors, including parasites. Through an integrated analysis of the population and molecular changes associated with the collapse of honeybee colonies infested by the parasitic mite Varroa destructor, we show that this parasite can de-stabilise the within-host dynamics of Deformed wing virus (DWV, transforming a cryptic and vertically transmitted virus into a rapidly replicating killer, which attains lethal levels late in the season. The de-stabilisation of DWV infection is associated with an immunosuppression syndrome, characterized by a strong down-regulation of the transcription factor NF-κB. The centrality of NF-κB in host responses to a range of environmental challenges suggests that this transcription factor can act as a common currency underlying colony collapse that may be triggered by different causes. Our results offer an integrated account for the multifactorial origin of honeybee losses and a new framework for assessing, and possibly mitigating, the impact of environmental challenges on honeybee health.

  16. Molecular characterization of the honeybee Apis mellifera carnica in Serbia

    Nedić N.; Stanisavljević L.; Mladenović M.; Stanisavljević Jelena

    2009-01-01

    The sequences COI-COII of the mitochondrial DNA region in honeybee from four geographically distant regions in Serbia (Vršac, Knjaževac, Kraljevo, and Vranje) are analyzed. The research was conducted on eight different, previously selected honeybee lines preserved (linear selection) in the four reprocenters for queen bees. All four studied honeybee lines differ in morphological and productive traits, each being specific for the corresponding region. In addition to analysis of the mtDNA sequen...

  17. Mechanisms, functions and ecology of colour vision in the honeybee

    Hempel de Ibarra, N.; Vorobyev, M.; Menzel, R

    2014-01-01

    Research in the honeybee has laid the foundations for our understanding of insect colour vision. The trichromatic colour vision of honeybees shares fundamental properties with primate and human colour perception, such as colour constancy, colour opponency, segregation of colour and brightness coding. Laborious efforts to reconstruct the colour vision pathway in the honeybee have provided detailed descriptions of neural connectivity and the properties of photoreceptors and interneurons in the ...

  18. Genetic structure of honeybee populations from southern Brazil and Uruguay

    Nilza Maria Diniz; Ademilson Espencer Egea Soares,; Walter Steve Sheppard; Marco Antonio Del Lama

    2003-01-01

    Apis mellifera scutellata was introduced to Brazil in 1956 and Africanized honeybee populations have now spread from Argentina to the southwestern United States. Temperate climatic restrictions seem to be a natural limit to Africanized honeybee expansion around parallels 35° to 40° SL. We used allozyme loci (Mdh-1 and Hk-1) and mtDNA haplotypes to characterize honeybee populations in southern Brazil and Uruguay and define a possible transition area between Africanized and European bees. Sampl...

  19. Deformed Wing Virus Implicated in Overwintering Honeybee Colony Losses ▿

    Highfield, Andrea C.; El Nagar, Aliya; Mackinder, Luke C. M.; Noël, Laure M.-L.J.; Hall, Matthew J.; Martin, Stephen J; Schroeder, Declan C.

    2009-01-01

    The worldwide decline in honeybee colonies during the past 50 years has often been linked to the spread of the parasitic mite Varroa destructor and its interaction with certain honeybee viruses. Recently in the United States, dramatic honeybee losses (colony collapse disorder) have been reported; however, there remains no clear explanation for these colony losses, with parasitic mites, viruses, bacteria, and fungal diseases all being proposed as possible candidates. Common characteristics tha...

  20. A DNA barcoding approach to characterize pollen collected by honeybees.

    Andrea Galimberti

    Full Text Available In the present study, we investigated DNA barcoding effectiveness to characterize honeybee pollen pellets, a food supplement largely used for human nutrition due to its therapeutic properties. We collected pollen pellets using modified beehives placed in three zones within an alpine protected area (Grigna Settentrionale Regional Park, Italy. A DNA barcoding reference database, including rbcL and trnH-psbA sequences from 693 plant species (104 sequenced in this study was assembled. The database was used to identify pollen collected from the hives. Fifty-two plant species were identified at the molecular level. Results suggested rbcL alone could not distinguish among congeneric plants; however, psbA-trnH identified most of the pollen samples at the species level. Substantial variability in pollen composition was observed between the highest elevation locality (Alpe Moconodeno, characterized by arid grasslands and a rocky substrate, and the other two sites (Cornisella and Ortanella at lower altitudes. Pollen from Ortanella and Cornisella showed the presence of typical deciduous forest species; however in samples collected at Ortanella, pollen of the invasive Lonicera japonica, and the ornamental Pelargonium x hortorum were observed. Our results indicated pollen composition was largely influenced by floristic local biodiversity, plant phenology, and the presence of alien flowering species. Therefore, pollen molecular characterization based on DNA barcoding might serve useful to beekeepers in obtaining honeybee products with specific nutritional or therapeutic characteristics desired by food market demands.

  1. A DNA barcoding approach to characterize pollen collected by honeybees.

    Galimberti, Andrea; De Mattia, Fabrizio; Bruni, Ilaria; Scaccabarozzi, Daniela; Sandionigi, Anna; Barbuto, Michela; Casiraghi, Maurizio; Labra, Massimo

    2014-01-01

    In the present study, we investigated DNA barcoding effectiveness to characterize honeybee pollen pellets, a food supplement largely used for human nutrition due to its therapeutic properties. We collected pollen pellets using modified beehives placed in three zones within an alpine protected area (Grigna Settentrionale Regional Park, Italy). A DNA barcoding reference database, including rbcL and trnH-psbA sequences from 693 plant species (104 sequenced in this study) was assembled. The database was used to identify pollen collected from the hives. Fifty-two plant species were identified at the molecular level. Results suggested rbcL alone could not distinguish among congeneric plants; however, psbA-trnH identified most of the pollen samples at the species level. Substantial variability in pollen composition was observed between the highest elevation locality (Alpe Moconodeno), characterized by arid grasslands and a rocky substrate, and the other two sites (Cornisella and Ortanella) at lower altitudes. Pollen from Ortanella and Cornisella showed the presence of typical deciduous forest species; however in samples collected at Ortanella, pollen of the invasive Lonicera japonica, and the ornamental Pelargonium x hortorum were observed. Our results indicated pollen composition was largely influenced by floristic local biodiversity, plant phenology, and the presence of alien flowering species. Therefore, pollen molecular characterization based on DNA barcoding might serve useful to beekeepers in obtaining honeybee products with specific nutritional or therapeutic characteristics desired by food market demands. PMID:25296114

  2. Antimicrobial activity of Scutia buxifolia against the honeybee pathogen Paenibacillus larvae.

    Boligon, Aline Augusti; Brum, Thiele Faccim de; Zadra, Marina; Piana, Mariana; Alves, Camilla Filippi Dos Santos; Fausto, Viviane Pedroso; Júnior, Valdir Dos Santos Barboza; Vaucher, Rodrigo de Almeida; Santos, Roberto Christ Vianna; Athayde, Margareth Linde

    2013-02-01

    The honeybee disease American foulbrood (AFB) is a serious problem since its causative agent (Paenibacillus larvae) has become increasingly resistant to conventional antibiotics. One of the feasible alternative treatments being used for control of this disease are plants extracts. The aim of the present work was to evaluate the effect of crude extract and fractions of Scutia buxifolia against six Paenibacillus species, including P. larvae, and its potential use for the control of AFB. In vitro activity of S. buxifolia samples against Paenibacillus species were evaluated by the disk diffusion and microdilution methods, and the minimal inhibitory concentration (MIC) were also determined. All Paenibacillus species were sensitive to crude extract and fractions of S. buxifolia. The dichloromethane (DC) fraction showed the better MIC (1.56 mg/mL), followed by ethyl acetate (EtAc) (6.25 mg/mL), n-butanol (BuOH) (25 mg/mL) and Crude extract (CE) (50 mg/mL). Toxic effect of S. buxifolia crude extracts and fractions against bees were also evaluated by the spraying application method of the same concentrations of MICs. The samples tested showed no toxic effects for the bees after 15 days of observation. These results are first time described for this species and showed that S. buxifolia presented a important activity against Paenibacillus species and proved to be a natural alternative for the prevention/control of AFB. PMID:23220240

  3. Africanized honeybees in urban areas: a public health concern

    Rodrigo Zaluski

    2014-10-01

    Full Text Available Introduction This study aimed to investigate the occurrence of Africanized honeybees in Botucatu, São Paulo, Brazil, and to implement a program to remove such swarms. Methods The occurrences of Africanized honeybee swarms between 2010 and 2012 were studied and strategies to prevent accidents were developed. Results We noted 1,164 cases of Africanized honeybee occurrences in the city, and 422 swarms were collected. The developed strategies to prevent accidents were disseminated to the population. Conclusions We contributed to reducing the risks represented by Africanized honeybee swarms in urban areas, by collecting swarms and disseminating strategic information for preventing accidents.

  4. Characterization of the honeybee AmNaV1 channel and tools to assess the toxicity of insecticides.

    Gosselin-Badaroudine, Pascal; Moreau, Adrien; Delemotte, Lucie; Cens, Thierry; Collet, Claude; Rousset, Matthieu; Charnet, Pierre; Klein, Michael L; Chahine, Mohamed

    2015-01-01

    Pollination is important for both agriculture and biodiversity. For a significant number of plants, this process is highly, and sometimes exclusively, dependent on the pollination activity of honeybees. The large numbers of honeybee colony losses reported in recent years have been attributed to colony collapse disorder. Various hypotheses, including pesticide overuse, have been suggested to explain the disorder. Using the Xenopus oocytes expression system and two microelectrode voltage-clamp, we report the functional expression and the molecular, biophysical, and pharmacological characterization of the western honeybee's sodium channel (Apis Mellifera NaV1). The NaV1 channel is the primary target for pyrethroid insecticides in insect pests. We further report that the honeybee's channel is also sensitive to permethrin and fenvalerate, respectively type I and type II pyrethroid insecticides. Molecular docking of these insecticides revealed a binding site that is similar to sites previously identified in other insects. We describe in vitro and in silico tools that can be used to test chemical compounds. Our findings could be used to assess the risks that current and next generation pesticides pose to honeybee populations. PMID:26202396

  5. Chemical composition and antimicrobial activity of honeybee ( Apis mellifera ligustica) propolis from subtropical eastern Australia

    Massaro, Carmelina Flavia; Simpson, Jack Bruce; Powell, Daniel; Brooks, Peter

    2015-12-01

    Propolis is a material manufactured by bees and contains beeswax, bee salivary secretions and plant resins. Propolis preparations have been used for millennia by humans in food, cosmetics and medicines due to its antibacterial effects. Within the hive, propolis plays an important role in bees' health, with much of its bioactivity largely dependent on the plant resins the bees select for its production. Few chemical studies are available on the chemistry of propolis produced by Australian honeybees ( Apis mellifera, Apidae). This study aimed to determine the chemical composition as well as in vitro antimicrobial effects of propolis harvested from honeybees in subtropical eastern Australia. Honeybee propolis was produced using plastic frames and multiple beehives in two subtropical sites in eastern Australia. Methanolic extracts of propolis were analysed by liquid chromatography with ultraviolet detection and high-resolution mass spectrometry (ultra-high-pressure liquid chromatography (UHPLC)-UV-high-resolution tandem mass spectrometry (HR-MS/MS)) and by gas chromatography mass spectrometry (GC-MS). The resulting chemical data were dereplicated for compound characterisation. The two crude extracts in abs. ethanol were tested in vitro by the agar diffusion and broth dilution methods, using a phenol standard solution as the positive control and abs. ethanol as the negative control. Chemical constituents were identified to be pentacyclic triterpenoids and C-prenylated flavonoids, including Abyssinoflavanone VII, Propolin C and Nymphaeol C. The two propolis crude extracts showed bactericidal effects at the minimal inhibitory concentrations of 0.37-2.04 mg mL-1 against Staphylococcus aureus ATCC 25923. However, the extracts were inactive against Klebsiella pneumoniae ATCC 13883 and Candida albicans ATCC 10231. The antistaphylococcal potential of propolis was discussed, also in relation to honeybees' health, as it warrants further investigations on the social and

  6. Evidence of trapline foraging in honeybees.

    Buatois, Alexis; Lihoreau, Mathieu

    2016-08-15

    Central-place foragers exploiting floral resources often use multi-destination routes (traplines) to maximise their foraging efficiency. Recent studies on bumblebees have showed how solitary foragers can learn traplines, minimising travel costs between multiple replenishing feeding locations. Here we demonstrate a similar routing strategy in the honeybee (Apis mellifera), a major pollinator known to recruit nestmates to discovered food resources. Individual honeybees trained to collect sucrose solution from four artificial flowers arranged within 10 m of the hive location developed repeatable visitation sequences both in the laboratory and in the field. A 10-fold increase of between-flower distances considerably intensified this routing behaviour, with bees establishing more stable and more efficient routes at larger spatial scales. In these advanced social insects, trapline foraging may complement cooperative foraging for exploiting food resources near the hive (where dance recruitment is not used) or when resources are not large enough to sustain multiple foragers at once. PMID:27307487

  7. Conceptualization of relative size by honeybees

    Aurore eAvargues-Weber

    2014-03-01

    Full Text Available The ability to process visual information using relational rules allows for decisions independent of the specific physical attributes of individual stimuli. Until recently, the manipulation of relational concepts was considered as a prerogative of large mammalian brains. Here we show that individual free flying honeybees can learn to use size relationship rules to choose either the larger or smaller stimulus as the correct solution in a given context, and subsequently apply the learnt rule to novel colors and shapes providing that there is sufficient input to the long wavelength (green photoreceptor channel. Our results add a novel, size-based conceptual rule to the set of relational concepts that honeybees have been shown to master and underline the value of bees as an animal model for studying the emergence of conceptualization abilities.

  8. Collective fluid mechanics of honeybee nest ventilation

    Gravish, Nick; Combes, Stacey; Wood, Robert J.; Peters, Jacob

    2014-11-01

    Honeybees thermoregulate their brood in the warm summer months by collectively fanning their wings and creating air flow through the nest. During nest ventilation workers flap their wings in close proximity in which wings continuously operate in unsteady oncoming flows (i.e. the wake of neighboring worker bees) and near the ground. The fluid mechanics of this collective aerodynamic phenomena are unstudied and may play an important role in the physiology of colony life. We have performed field and laboratory observations of the nest ventilation wing kinematics and air flow generated by individuals and groups of honeybee workers. Inspired from these field observations we describe here a robotic model system to study collective flapping wing aerodynamics. We microfabricate arrays of 1.4 cm long flapping wings and observe the air flow generated by arrays of two or more fanning robotic wings. We vary phase, frequency, and separation distance among wings and find that net output flow is enhanced when wings operate at the appropriate phase-distance relationship to catch shed vortices from neighboring wings. These results suggest that by varying position within the fanning array honeybee workers may benefit from collective aerodynamic interactions during nest ventilation.

  9. Magnetoreception system in honeybees (Apis mellifera.

    Chin-Yuan Hsu

    Full Text Available Honeybees (Apis mellifera undergo iron biomineralization, providing the basis for magnetoreception. We showed earlier the presence of superparamagnetic magnetite in iron granules formed in honeybees, and subscribed to the notion that external magnetic fields may cause expansion or contraction of the superparamagnetic particles in an orientation-specific manner, relaying the signal via cytoskeleton (Hsu and Li 1994. In this study, we established a size-density purification procedure, with which quantitative amount of iron granules was obtained from honey bee trophocytes and characterized; the density of iron granules was determined to be 1.25 g/cm(3. While we confirmed the presence of superparamagnetic magnetite in the iron granules, we observed changes in the size of the magnetic granules in the trophycytes upon applying additional magnetic field to the cells. A concomitant release of calcium ion was observed by confocal microscope. This size fluctuation triggered the increase of intracellular Ca(+2 , which was inhibited by colchicines and latrunculin B, known to be blockers for microtubule and microfilament syntheses, respectively. The associated cytoskeleton may thus relay the magnetosignal, initiating a neural response. A model for the mechanism of magnetoreception in honeybees is proposed, which may be applicable to most, if not all, magnetotactic organisms.

  10. Cholinergic pesticides cause mushroom body neuronal inactivation in honeybees

    Palmer, Mary J; Moffat, Christopher; Saranzewa, Nastja; Harvey, Jenni; Wright, Geraldine A.; Connolly, Christopher N.

    2013-01-01

    Pesticides that target cholinergic neurotransmission are highly effective, but their use has been implicated in insect pollinator population decline. Honeybees are exposed to two widely used classes of cholinergic pesticide: neonicotinoids (nicotinic receptor agonists) and organophosphate miticides (acetylcholinesterase inhibitors). Although sublethal levels of neonicotinoids are known to disrupt honeybee learning and behaviour, the neurophysiological basis of these effects has not been shown...

  11. Diversity of Melissococcus plutonius from Honeybee Larvae in Japan and Experimental Reproduction of European Foulbrood with Cultured Atypical Isolates

    Rie Arai; Kiyoshi Tominaga; Meihua Wu; Masatoshi Okura; Kazutomo Ito; Naomi Okamura; Hidetaka Onishi; Makoto Osaki; Yuya Sugimura; Mikio Yoshiyama; Daisuke Takamatsu

    2012-01-01

    European foulbrood (EFB) is an important infectious disease of honeybee larvae, but its pathogenic mechanisms are still poorly understood. The causative agent, Melissococcus plutonius, is a fastidious organism, and microaerophilic to anaerobic conditions and the addition of potassium phosphate to culture media are required for growth. Although M. plutonius is believed to be remarkably homologous, in addition to M. plutonius isolates with typical cultural characteristics, M. plutonius-like org...

  12. [New Approach to the Mitotype Classification in Black Honeybee Apis mellifera mellifera and Iberian Honeybee Apis mellifera iberiensis].

    Ilyasov, R A; Poskryakov, A V; Petukhov, A V; Nikolenko, A G

    2016-03-01

    The black honeybee Apis mellifera mellifera L. is today the only subspecies of honeybee which is suitable for commercial breeding in the climatic conditions of Northern Europe with long cold winters. The main problem of the black honeybee in Russia and European countries is the preservation of the indigenous gene pool purity, which is lost as a result of hybridization with subspecies, A. m. caucasica, A. m. carnica, A. m. carpatica, and A. m. armeniaca, introduced from southern regions. Genetic identification of the subspecies will reduce the extent of hybridization and provide the gene pool conservation of the black honeybee. Modern classification of the honeybee mitotypes is mainly based on the combined use ofthe DraI restriction endonuclease recognition site polymorphism and sequence polymorphism of the mtDNA COI-COII region. We performed a comparative analysis of the mtDNA COI-COII region sequence polymorphism in the honeybees ofthe evolutionary lineage M from Ural and West European populations of black honeybee A. m. mellifera and Spanish bee A. m. iberiensis. A new approach to the classification of the honeybee M mitotypes was suggested. Using this approach and on the basis of the seven most informative SNPs of the mtDNA COI-COII region, eight honeybee mitotype groups were identified. In addition, it is suggested that this approach will simplify the previously proposed complicated mitotype classification and will make it possible to assess the level of the mitotype diversity and to identify the mitotypes that are the most valuable for the honeybee breeding and rearing. PMID:27281852

  13. The role of serotonin in feeding and gut contractions in the honeybee

    French, Alice S.; Simcock, Kerry L.; Rolke, Daniel; Gartside, Sarah E; Blenau, Wolfgang; Wright, Geraldine A.

    2014-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) is involved in the regulation of feeding and digestion in many animals from worms to mammals. In insects, 5-HT functions both as a neurotransmitter and as a systemic hormone. Here we tested its role as a neurotransmitter in feeding and crop contractions and its role as a systemic hormone that affected feeding in adult foraging honeybees. We found 5-HT immunoreactive processes throughout the gut, including on the surface of the oesophagus, crop, proventric...

  14. Confinement of small hive beetles (Aethina tumida) by Cape honeybees (Apis mellifera capensis)

    James D. Ellis Jr.,; Hepburn, Randall; Elzen, Patti

    2004-01-01

    International audience In this study we quantify small hive beetle (Aethina tumida Murray) and Cape honeybee (A.m. capensis Esch., an African subspecies) behaviours that are associated with beetle confinement in an effort to understand why Cape bees can withstand large beetle infestations. Four observation hives were each inoculated with 25 beetles and were observed for 11-17 days. Data collected included guard bee (worker bees who guard beetle confinement sites) and confined beetle behavi...

  15. Extensive population admixture on drone congregation areas of the giant honeybee, Apis dorsata (Fabricius, 1793)

    Beaurepaire, Alexis L; Kraus, Bernard F; Koeniger, Gudrun; KOENIGER, Nikolaus; Lim, Herbert; Moritz, Robin F.A.

    2014-01-01

    The giant honeybee Apis dorsata often forms dense colony aggregations which can include up to 200 often closely related nests in the same location, setting the stage for inbred matings. Yet, like in all other Apis species, A. dorsata queens mate in mid-air on lek like drone congregation areas (DCAs) where large numbers of males gather in flight. We here report how the drone composition of A. dorsata DCAs facilitates outbreeding, taking into the account both spatial (three DCAs) and temporal (...

  16. Honeybee foraging in differentially structured landscapes.

    Steffan-Dewenter, Ingolf; Kuhn, Arno

    2003-03-22

    Honeybees communicate the distance and location of resource patches by bee dances, but this spatial information has rarely been used to study their foraging ecology. We analysed, for the first time to the best of the authors' knowledge, foraging distances and dance activities of honeybees in relation to landscape structure, season and colony using a replicated experimental approach on a landscape scale. We compared three structurally simple landscapes characterized by a high proportion of arable land and large patches, with three complex landscapes with a high proportion of semi-natural perennial habitats and low mean patch size. Four observation hives were placed in the centre of the landscapes and switched at regular intervals between the six landscapes from the beginning of May to the end of July. A total of 1137 bee dances were observed and decoded. Overall mean foraging distance was 1526.1 +/- 37.2 m, the median 1181.5 m and range 62.1-10037.1 m. Mean foraging distances of all bees and foraging distances of nectar-collecting bees did not significantly differ between simple and complex landscapes, but varied between month and colonies. Foraging distances of pollen-collecting bees were significantly larger in simple (1743 +/- 95.6 m) than in complex landscapes (1543.4 +/- 71 m) and highest in June when resources were scarce. Dancing activity, i.e. the number of observed bee dances per unit time, was significantly higher in complex than in simple landscapes, presumably because of larger spatial and temporal variability of resource patches in complex landscapes. The results facilitate an understanding of how human landscape modification may change the evolutionary significance of bee dances and ecological interactions, such as pollination and competition between honeybees and other bee species. PMID:12769455

  17. Widespread exploitation of the honeybee by early Neolithic farmers.

    Roffet-Salque, Mélanie; Regert, Martine; Evershed, Richard P; Outram, Alan K; Cramp, Lucy J E; Decavallas, Orestes; Dunne, Julie; Gerbault, Pascale; Mileto, Simona; Mirabaud, Sigrid; Pääkkönen, Mirva; Smyth, Jessica; Šoberl, Lucija; Whelton, Helen L; Alday-Ruiz, Alfonso; Asplund, Henrik; Bartkowiak, Marta; Bayer-Niemeier, Eva; Belhouchet, Lotfi; Bernardini, Federico; Budja, Mihael; Cooney, Gabriel; Cubas, Miriam; Danaher, Ed M; Diniz, Mariana; Domboróczki, László; Fabbri, Cristina; González-Urquijo, Jesus E; Guilaine, Jean; Hachi, Slimane; Hartwell, Barrie N; Hofmann, Daniela; Hohle, Isabel; Ibáñez, Juan J; Karul, Necmi; Kherbouche, Farid; Kiely, Jacinta; Kotsakis, Kostas; Lueth, Friedrich; Mallory, James P; Manen, Claire; Marciniak, Arkadiusz; Maurice-Chabard, Brigitte; Mc Gonigle, Martin A; Mulazzani, Simone; Özdoğan, Mehmet; Perić, Olga S; Perić, Slaviša R; Petrasch, Jörg; Pétrequin, Anne-Marie; Pétrequin, Pierre; Poensgen, Ulrike; Pollard, C Joshua; Poplin, François; Radi, Giovanna; Stadler, Peter; Stäuble, Harald; Tasić, Nenad; Urem-Kotsou, Dushka; Vuković, Jasna B; Walsh, Fintan; Whittle, Alasdair; Wolfram, Sabine; Zapata-Peña, Lydia; Zoughlami, Jamel

    2015-11-12

    The pressures on honeybee (Apis mellifera) populations, resulting from threats by modern pesticides, parasites, predators and diseases, have raised awareness of the economic importance and critical role this insect plays in agricultural societies across the globe. However, the association of humans with A. mellifera predates post-industrial-revolution agriculture, as evidenced by the widespread presence of ancient Egyptian bee iconography dating to the Old Kingdom (approximately 2400 BC). There are also indications of Stone Age people harvesting bee products; for example, honey hunting is interpreted from rock art in a prehistoric Holocene context and a beeswax find in a pre-agriculturalist site. However, when and where the regular association of A. mellifera with agriculturalists emerged is unknown. One of the major products of A. mellifera is beeswax, which is composed of a complex suite of lipids including n-alkanes, n-alkanoic acids and fatty acyl wax esters. The composition is highly constant as it is determined genetically through the insect's biochemistry. Thus, the chemical 'fingerprint' of beeswax provides a reliable basis for detecting this commodity in organic residues preserved at archaeological sites, which we now use to trace the exploitation by humans of A. mellifera temporally and spatially. Here we present secure identifications of beeswax in lipid residues preserved in pottery vessels of Neolithic Old World farmers. The geographical range of bee product exploitation is traced in Neolithic Europe, the Near East and North Africa, providing the palaeoecological range of honeybees during prehistory. Temporally, we demonstrate that bee products were exploited continuously, and probably extensively in some regions, at least from the seventh millennium cal BC, likely fulfilling a variety of technological and cultural functions. The close association of A. mellifera with Neolithic farming communities dates to the early onset of agriculture and may provide

  18. HERITABILITY OF STING CHARACTERS IN AFRICANIZED HONEYBEES

    A. MELO

    1997-01-01

    Full Text Available In this paper we proposed to estimate the heritability of seven morphological characters that compose the sting apparatus of the Africanized honeybee workers. An experimental design to estimate genetic parameters was based on the method developed by Oldroyd and Moran(9. This method was modified to eliminate within-colony environmental effects associated with the additive genetic variance. The estimated h values ranged from 0.17 ± 0.11 (maximum width of bulb of sting stylet and height of the valve of right lancet to 0.74 ± 0.30 (length of the lancet.

  19. Survey of diseases and parasites of honeybees (Apis mellifera L.) in Sudan

    A survey of the honeybee diseases and parasites including questionnaires were carried out in eight bee areas in Sudan during the season 2002/03. About 117 local colonies and 324 packages of imported colonies of Apis mellifera were inspected, in addition to 25 colonies of Apis florea. All areas were found to be free of most bacterial brood diseases and fungal diseases, except the bacterial brood disease (Serratia marcescens) which was merely detected in 2.6% of Khartoum colonies. However, non infective dysentery was the only adult disease found during this study infecting 18.2% of Kordofan colonies. On the other hand, the parasitic mite (Varroa jacobsoni) was reported as first record in Sudan, detected only in Khartoum State infecting about 75% of colonies in apiaries and 27% of wild colonies. Sudanese honeybees were found to be characterized by hygienic behaviour of colonies which resist most pests and diseases, and no chemicals were used for control.(Author)

  20. The bite of the honeybee: 2-heptanone secreted from honeybee mandibles during a bite acts as a local anaesthetic in insects and mammals.

    Alexandros Papachristoforou

    Full Text Available Honeybees secrete 2-heptanone (2-H from their mandibular glands when they bite. Researchers have identified several possible functions: 2-H could act as an alarm pheromone to recruit guards and soldiers, it could act as a chemical marker, or it could have some other function. The actual role of 2-H in honeybee behaviour remains unresolved. In this study, we show that 2-H acts as an anaesthetic in small arthropods, such as wax moth larva (WML and Varroa mites, which are paralysed after a honeybee bite. We demonstrated that honeybee mandibles can penetrate the cuticle of WML, introducing less than one nanolitre of 2-H into the WML open circulatory system and causing instantaneous anaesthetization that lasts for a few minutes. The first indication that 2-H acts as a local anaesthetic was that its effect on larval response, inhibition and recovery is very similar to that of lidocaine. We compared the inhibitory effects of 2-H and lidocaine on voltage-gated sodium channels. Although both compounds blocked the hNav1.6 and hNav1.2 channels, lidocaine was slightly more effective, 2.82 times, on hNav.6. In contrast, when the two compounds were tested using an ex vivo preparation-the isolated rat sciatic nerve-the function of the two compounds was so similar that we were able to definitively classify 2-H as a local anaesthetic. Using the same method, we showed that 2-H has the fastest inhibitory effect of all alkyl-ketones tested, including the isomers 3- and 4-heptanone. This suggests that natural selection may have favoured 2-H over other, similar compounds because of the associated fitness advantages it confers. Our results reveal a previously unknown role of 2-H in honeybee defensive behaviour and due to its minor neurotoxicity show potential for developing a new local anaesthetic from a natural product, which could be used in human and veterinary medicine.

  1. Molecular characterization of the honeybee Apis mellifera carnica in Serbia

    Nedić N.

    2009-01-01

    Full Text Available The sequences COI-COII of the mitochondrial DNA region in honeybee from four geographically distant regions in Serbia (Vršac, Knjaževac, Kraljevo, and Vranje are analyzed. The research was conducted on eight different, previously selected honeybee lines preserved (linear selection in the four reprocenters for queen bees. All four studied honeybee lines differ in morphological and productive traits, each being specific for the corresponding region. In addition to analysis of the mtDNA sequences in Serbian honeybee, a comparative analysis of the phylogenetic group of so far known C2 haplotypes was also performed. The results revealed two novel polymorphic positions in the COI-COII mtDNA region, viz., h2 at position 3474 and l2 at position 3534 (a T nucleotide deletion in both cases in honeybees from the regions of Vranje and Knjaževac, respectively. Two novel mtDNA haplotypes in the honeybee C2 phylogenetic group, together with C2I (the new polymorphic position l2 and G-A transition at position 3587 and C2J (the new polymorphic position h2, are described. Also, comparative analysis performed on sequences from GenBank data showed a high degree of similarity (similarity index = 99.4% between the novel C2I mtDNA haplotype and an A. m. cypria haplotype originating from Turkey. Certain domestic Kranjska honeybee populations from Serbia represent an autochthonous gene pool that can be of great importance for further presentation of honeybee biodiversity. The present paper contributes to characterization of mtDNA in honeybee of Serbia.

  2. Transient exposure to low levels of insecticide affects metabolic networks of honeybee larvae.

    Derecka, Kamila; Blythe, Martin J; Malla, Sunir; Genereux, Diane P; Guffanti, Alessandro; Pavan, Paolo; Moles, Anna; Snart, Charles; Ryder, Thomas; Ortori, Catharine A; Barrett, David A; Schuster, Eugene; Stöger, Reinhard

    2013-01-01

    The survival of a species depends on its capacity to adjust to changing environmental conditions, and new stressors. Such new, anthropogenic stressors include the neonicotinoid class of crop-protecting agents, which have been implicated in the population declines of pollinating insects, including honeybees (Apis mellifera). The low-dose effects of these compounds on larval development and physiological responses have remained largely unknown. Over a period of 15 days, we provided syrup tainted with low levels (2 µg/L(-1)) of the neonicotinoid insecticide imidacloprid to beehives located in the field. We measured transcript levels by RNA sequencing and established lipid profiles using liquid chromatography coupled with mass spectrometry from worker-bee larvae of imidacloprid-exposed (IE) and unexposed, control (C) hives. Within a catalogue of 300 differentially expressed transcripts in larvae from IE hives, we detect significant enrichment of genes functioning in lipid-carbohydrate-mitochondrial metabolic networks. Myc-involved transcriptional response to exposure of this neonicotinoid is indicated by overrepresentation of E-box elements in the promoter regions of genes with altered expression. RNA levels for a cluster of genes encoding detoxifying P450 enzymes are elevated, with coordinated downregulation of genes in glycolytic and sugar-metabolising pathways. Expression of the environmentally responsive Hsp90 gene is also reduced, suggesting diminished buffering and stability of the developmental program. The multifaceted, physiological response described here may be of importance to our general understanding of pollinator health. Muscles, for instance, work at high glycolytic rates and flight performance could be impacted should low levels of this evolutionarily novel stressor likewise induce downregulation of energy metabolising genes in adult pollinators. PMID:23844170

  3. Honeybee (Apis mellifera ligustica) drone embryo proteomes.

    Li, Jianke; Fang, Yu; Zhang, Lan; Begna, Desalegn

    2011-03-01

    Little attention has been paid to the drone honeybee (Apis mellifera ligustica) which is a haploid individual carrying only the set of alleles that it inherits from its mother. Molecular mechanisms underlying drone embryogenesis are poorly understood. This study evaluated protein expression profiles of drone embryogenesis at embryonic ages of 24, 48 and 72h. More than 100 reproducible proteins were analyzed by mass spectrometry on 2D electrophoresis gels. Sixty-two proteins were significantly changed at the selected three experimental age points. Expression of the metabolic energy requirement-related protein peaked at the embryonic age of 48h, whereas development and metabolizing amino acid-related proteins expressed optimally at 72h. Cytoskeleton, protein folding and antioxidant-related proteins were highly expressed at 48 and 72h. Protein networks of the identified proteins were constructed and protein expressions were validated at the transcription level. This first proteomic study of drone embryogenesis in the honeybee may provide geneticists an exact timetable and candidate protein outline for further manipulations of drone stem cells. PMID:21172355

  4. Elevated virulence of an emerging viral genotype as a driver of honeybee loss.

    McMahon, Dino P; Natsopoulou, Myrsini E; Doublet, Vincent; Fürst, Matthias; Weging, Silvio; Brown, Mark J F; Gogol-Döring, Andreas; Paxton, Robert J

    2016-06-29

    Emerging infectious diseases (EIDs) have contributed significantly to the current biodiversity crisis, leading to widespread epidemics and population loss. Owing to genetic variation in pathogen virulence, a complete understanding of species decline requires the accurate identification and characterization of EIDs. We explore this issue in the Western honeybee, where increasing mortality of populations in the Northern Hemisphere has caused major concern. Specifically, we investigate the importance of genetic identity of the main suspect in mortality, deformed wing virus (DWV), in driving honeybee loss. Using laboratory experiments and a systematic field survey, we demonstrate that an emerging DWV genotype (DWV-B) is more virulent than the established DWV genotype (DWV-A) and is widespread in the landscape. Furthermore, we show in a simple model that colonies infected with DWV-B collapse sooner than colonies infected with DWV-A. We also identify potential for rapid DWV evolution by revealing extensive genome-wide recombination in vivo The emergence of DWV-B in naive honeybee populations, including via recombination with DWV-A, could be of significant ecological and economic importance. Our findings emphasize that knowledge of pathogen genetic identity and diversity is critical to understanding drivers of species decline. PMID:27358367

  5. Secreted and immunogenic proteins produced by the honeybee bacterial pathogen, Paenibacillus larvae.

    Antúnez, Karina; Anido, Matilde; Evans, Jay D; Zunino, Pablo

    2010-03-24

    American Foulbrood is a severe disease affecting larvae of honeybee Apis mellifera, causing significant decrease in the honeybee population, beekeeping industries and agricultural production. In spite of its importance, little is known about the virulence factors secreted by Paenibacillus larvae during larval infection. The aim of the present work was to perform a first approach to the identification and characterization of P. larvae secretome. P. larvae secreted proteins were analyzed by SDS-PAGE and identified by MALDI-TOF. Protein toxicity was evaluated using an experimental model based on feeding of A. mellifera larvae and immunogenicity was evaluated by Western blot, using an antiserum raised against cells and spores of P. larvae. Ten different proteins were identified among P. larvae secreted proteins, including proteins involved in transcription, metabolism, translation, cell envelope, transport, protein folding, degradation of polysaccharides and motility. Although most of these proteins are cytosolic, many of them have been previously detected in the extracellular medium of different Bacillus spp. cultures and have been related to virulence. The secreted proteins resulted highly toxic and immunogenic when larvae were exposed using an experimental model. This is the first description of proteins secreted by the honeybee pathogen P. larvae. This information may be relevant for the elucidation of bacterial pathogenesis mechanisms. PMID:19781868

  6. Honeybees as a model for the study of visually guided flight, navigation, and biologically inspired robotics.

    Srinivasan, Mandyam V

    2011-04-01

    Research over the past century has revealed the impressive capacities of the honeybee, Apis mellifera, in relation to visual perception, flight guidance, navigation, and learning and memory. These observations, coupled with the relative ease with which these creatures can be trained, and the relative simplicity of their nervous systems, have made honeybees an attractive model in which to pursue general principles of sensorimotor function in a variety of contexts, many of which pertain not just to honeybees, but several other animal species, including humans. This review begins by describing the principles of visual guidance that underlie perception of the world in three dimensions, obstacle avoidance, control of flight speed, and orchestrating smooth landings. We then consider how navigation over long distances is accomplished, with particular reference to how bees use information from the celestial compass to determine their flight bearing, and information from the movement of the environment in their eyes to gauge how far they have flown. Finally, we illustrate how some of the principles gleaned from these studies are now being used to design novel, biologically inspired algorithms for the guidance of unmanned aerial vehicles. PMID:21527730

  7. Notch signalling mediates reproductive constraint in the adult worker honeybee

    Duncan, Elizabeth J.; Hyink, Otto; Dearden, Peter K.

    2016-01-01

    The hallmark of eusociality is the reproductive division of labour, in which one female caste reproduces, while reproduction is constrained in the subordinate caste. In adult worker honeybees (Apis mellifera) reproductive constraint is conditional: in the absence of the queen and brood, adult worker honeybees activate their ovaries and lay haploid male eggs. Here, we demonstrate that chemical inhibition of Notch signalling can overcome the repressive effect of queen pheromone and promote ovary activity in adult worker honeybees. We show that Notch signalling acts on the earliest stages of oogenesis and that the removal of the queen corresponds with a loss of Notch protein in the germarium. We conclude that the ancient and pleiotropic Notch signalling pathway has been co-opted into constraining reproduction in worker honeybees and we provide the first molecular mechanism directly linking ovary activity in adult worker bees with the presence of the queen. PMID:27485026

  8. Amino acid PET tracers are reliable markers of treatment responses to single-agent or combination therapies including temozolomide, interferon-β, and/or bevacizumab for glioblastoma

    Introduction: We examined whether the amino acid PET tracers, trans-1-amino-3-18F-fluorocyclobutanecarboxylic acid (anti-18F-FACBC) and 11C-methyl-L-methionine (11C-Met), are suitable for detecting early responses to combination therapies including temozolomide (TMZ), interferon-β (IFN), and bevacizumab (Bev) in glioblastoma. Methods: Human glioblastoma U87MG (U87) cells were incubated with low dose TMZ to induce chemoresistance. Both trans-1-amino-3-fluoro-1-14C-cyclobutanecarboxylic acid (anti-14C-FACBC) and 3H-methyl-L-methionine (3H-Met) uptake were quantified using triple-label accumulation assays to examine the relationship between tracer uptake and proliferation (3H-thymidine (TdR) accumulation) in vitro. U87 and U87R (TMZ-resistant subculture) cells were inoculated into the right and left basal ganglia, respectively, of F344/N-rnu rats. The efficacy of single-agent (TMZ, Bev) and combination therapy (TMZ/IFN, TMZ/Bev, TMZ/IFN/Bev) was examined in orthotopic gliomas using MRI, Evans blue extravasation, anti-14C-FACBC, and 3H-Met autoradiography, and MIB-1 immunostaining. Results: TMZ treatment decreased 3H-TdR accumulation and the volume distribution of anti-14C-FACBC and 3H-Met in U87 but not U87R cells. TMZ/IFN combination therapy significantly decreased these parameters in U87R cells; however, Bev had no additional effect in vitro. In vivo, U87R-derived gliomas were observed as equivocal tumors on MRI and T2-high intensity lesions. Bev treatment, either alone or in combination, markedly decreased U87 enhancing lesions. By contrast, autoradiographic images using anti-14C-FACBC and 3H-Met clearly delineated tumor extent, which spread widely beyond T2-high intensity lesions and enhancing lesions. TMZ therapy significantly decreased tracer accumulation and proliferation of U87- but not U87R-derived tumors. TMZ/IFN combination treatment significantly decreased these parameters in U87R tumors, which were further reduced (in both tumor types) by Bev addition

  9. In-Depth N-Glycosylation Reveals Species-Specific Modifications and Functions of the Royal Jelly Protein from Western (Apis mellifera) and Eastern Honeybees (Apis cerana).

    Feng, Mao; Fang, Yu; Han, Bin; Xu, Xiang; Fan, Pei; Hao, Yue; Qi, Yuping; Hu, Han; Huo, Xinmei; Meng, Lifeng; Wu, Bin; Li, Jianke

    2015-12-01

    Royal jelly (RJ), secreted by honeybee workers, plays diverse roles as nutrients and defense agents for honeybee biology and human health. Despite being reported to be glycoproteins, the glycosylation characterization and functionality of RJ proteins in different honeybee species are largely unknown. An in-depth N-glycoproteome analysis and functional assay of RJ produced by Apis mellifera lingustica (Aml) and Apis cerana cerana (Acc) were conducted. RJ produced by Aml yielded 80 nonredundant N-glycoproteins carrying 190 glycosites, of which 23 novel proteins harboring 35 glycosites were identified. For Acc, all 43 proteins glycosylated at 138 glycosites were reported for the first time. Proteins with distinct N-glycoproteomic characteristics in terms of glycoprotein species, number of N-glycosylated sites, glycosylation motif, abundance level of glycoproteins, and N-glycosites were observed in this two RJ samples. The fact that the low inhibitory efficiency of N-glycosylated major royal jelly protein 2 (MRJP2) against Paenibacillus larvae (P. larvae) and the absence of antibacterial related glycosylated apidaecin, hymenoptaecin, and peritrophic matrix in the Aml RJ compared to Acc reveal the mechanism for why the Aml larvae are susceptible to P. larvae, the causative agent of a fatal brood disease (American foulbrood, AFB). The observed antihypertension activity of N-glycosylated MRJP1 in two RJ samples and a stronger activity found in Acc than in Aml reveal that specific RJ protein and modification are potentially useful for the treatment of hypertensive disease for humans. Our data gain novel understanding that the western and eastern bees have evolved species-specific strategies of glycosylation to fine-tune protein activity for optimizing molecular function as nutrients and immune agents for the good of honeybee and influence on the health promoting activity for human as well. This serves as a valuable resource for the targeted probing of the biological

  10. Parallel reinforcement pathways for conditioned food aversions in the honeybee

    Wright, Geraldine A.; Mustard, Julie A; Simcock, Nicola K.; Ross-Taylor, Alexandra A.R.; McNicholas, Lewis D.; Popescu, Alexandra; Marion-Poll, Frederic

    2010-01-01

    Summary Avoiding toxins in food is as important as obtaining nutrition. Conditioned food aversions have been studied in animals as diverse as nematodes and humans [1, 2], but the neural signaling mechanisms underlying this form of learning have been difficult to pinpoint. Honeybees quickly learn to associate floral cues with food [3], a trait that makes them an excellent model organism for studying the neural mechanisms of learning and memory. Here we show that honeybees not only detect toxin...

  11. The Behavioral Relevance of Landmark Texture for Honeybee Homing

    Laura eDittmar; Martin eEgelhaaf; Wolfgang eStürzl; Norbert eBoeddeker

    2011-01-01

    Honeybees visually pinpoint the location of a food source using landmarks. Studies on the role of visual memories have suggested that bees approach the goal by finding a close match between their current view and a memorized view of the goal location. The most relevant landmark features for this matching process seem to be their retinal positions, the size as defined by their edges, and their colour. Recently, we showed that honeybees can use landmarks that are statically camouflaged, suggest...

  12. Comparison of flight design of Asian honeybee drones

    Radloff, Sarah; Randall Hepburn, H.; Koeniger, Gudrun

    2003-01-01

    International audience The excess power index (integrating body dry mass, thorax-to-body dry mass and wing surface area) was compared in drones of seven Asian Apis species. There are two statistically distinct groups of drones: drones of the dwarf honeybees form one class, all other Asian species belong to the second. Drones of dwarf honeybees have a 36% ergonomic advantage in power availability and 20% advantage in available excess power over all other drones. Comparisons of flight dimens...

  13. Diesel exhaust rapidly degrades floral odours used by honeybees

    Girling, Robbie D.; Inka Lusebrink; Emily Farthing; Newman, Tracey A.; Poppy, Guy M.

    2013-01-01

    Honeybees utilise floral odours when foraging for flowers; we investigated whether diesel exhaust pollution could interrupt these floral odour stimuli. A synthetic blend of eight floral chemicals, identified from oilseed rape, was exposed to diesel exhaust pollution. Within one minute of exposure the abundances of four of the chemicals were significantly lowered, with two components rendered undetectable. Honeybees were trained to recognise the full synthetic odour mix; altering the blend, by...

  14. Quantitative comparison of caste differences in honeybee hemolymph.

    Chan, Queenie W T; Howes, Charles G; Foster, Leonard J

    2006-12-01

    The honeybee, Apis mellifera, is an invaluable partner in agriculture around the world both for its production of honey and, more importantly, for its role in pollination. Honeybees are largely unexplored at the molecular level despite a long and distinguished career as a model organism for understanding social behavior. Like other eusocial insects, honeybees can be divided into several castes: the queen (fertile female), workers (sterile females), and drones (males). Each caste has different energetic and metabolic requirements, and each differs in its susceptibility to pathogens, many of which have evolved to take advantage of the close social network inside a colony. Hemolymph, arthropods' equivalent to blood, distributes nutrients throughout the bee, and the immune components contained within it form one of the primary lines of defense against invading microorganisms. In this study we have applied qualitative and quantitative proteomics to gain a better understanding of honeybee hemolymph and how it varies among the castes and during development. We found large differences in hemolymph protein composition, especially between larval and adult stage bees and between male and female castes but even between adult workers and queens. We also provide experimental evidence for the expression of several unannotated honeybee genes and for the detection of biomarkers of a viral infection. Our data provide an initial molecular picture of honeybee hemolymph, to a greater depth than previous studies in other insects, and will pave the way for future biochemical studies of innate immunity in this animal. PMID:16920818

  15. Aspects of Honeybee Natural History According to the Solega

    Aung Si

    2013-07-01

    Full Text Available Honeybees and their products are highly prized by many cultures around the world, and as a result, indigenous communities have come to possess rich and detailed knowledge of the biology of these important insects. In this paper, I present an in-depth investigation into some aspects of honeybee natural history, as related to me by the Solega people of southern India. The Solega recognize, name, and exploit four honeybee species, and are well aware of the geographical and temporal distributions of each one. In spite of not being beekeepers – as they only forage for wild honey – their knowledge of obscure and complex phenomena such as honeybee gender and reproduction rivals that of comparable, non-industrial beekeeping societies. Swarming, another hard-to-understand honeybee behavior, is also accurately explained by Solega consultants. I contrast this knowledge to that of European bee-keeping cultures, as evidenced by the writings of Aristotle and 18th century European beekeepers. This paper shows that the Solega have a reliable and internally consistent body of honeybee knowledge based entirely on brief encounters with these wild, migratory insects that are present in the forest for only part of the year.

  16. Deformed Wing Virus Implicated in Overwintering Honeybee Colony Losses ▿

    Highfield, Andrea C.; El Nagar, Aliya; Mackinder, Luke C. M.; Noël, Laure M.-L. J.; Hall, Matthew J.; Martin, Stephen J.; Schroeder, Declan C.

    2009-01-01

    The worldwide decline in honeybee colonies during the past 50 years has often been linked to the spread of the parasitic mite Varroa destructor and its interaction with certain honeybee viruses. Recently in the United States, dramatic honeybee losses (colony collapse disorder) have been reported; however, there remains no clear explanation for these colony losses, with parasitic mites, viruses, bacteria, and fungal diseases all being proposed as possible candidates. Common characteristics that most failing colonies share is a lack of overt disease symptoms and the disappearance of workers from what appears to be normally functioning colonies. In this study, we used quantitative PCR to monitor the presence of three honeybee viruses, deformed wing virus (DWV), acute bee paralysis virus (ABPV), and black queen cell virus (BQCV), during a 1-year period in 15 asymptomatic, varroa mite-positive honeybee colonies in Southern England, and 3 asymptomatic colonies confirmed to be varroa mite free. All colonies with varroa mites underwent control treatments to ensure that mite populations remained low throughout the study. Despite this, multiple virus infections were detected, yet a significant correlation was observed only between DWV viral load and overwintering colony losses. The long-held view has been that DWV is relatively harmless to the overall health status of honeybee colonies unless it is in association with severe varroa mite infestations. Our findings suggest that DWV can potentially act independently of varroa mites to bring about colony losses. Therefore, DWV may be a major factor in overwintering colony losses. PMID:19783750

  17. Deformed wing virus implicated in overwintering honeybee colony losses.

    Highfield, Andrea C; El Nagar, Aliya; Mackinder, Luke C M; Noël, Laure M-L J; Hall, Matthew J; Martin, Stephen J; Schroeder, Declan C

    2009-11-01

    The worldwide decline in honeybee colonies during the past 50 years has often been linked to the spread of the parasitic mite Varroa destructor and its interaction with certain honeybee viruses. Recently in the United States, dramatic honeybee losses (colony collapse disorder) have been reported; however, there remains no clear explanation for these colony losses, with parasitic mites, viruses, bacteria, and fungal diseases all being proposed as possible candidates. Common characteristics that most failing colonies share is a lack of overt disease symptoms and the disappearance of workers from what appears to be normally functioning colonies. In this study, we used quantitative PCR to monitor the presence of three honeybee viruses, deformed wing virus (DWV), acute bee paralysis virus (ABPV), and black queen cell virus (BQCV), during a 1-year period in 15 asymptomatic, varroa mite-positive honeybee colonies in Southern England, and 3 asymptomatic colonies confirmed to be varroa mite free. All colonies with varroa mites underwent control treatments to ensure that mite populations remained low throughout the study. Despite this, multiple virus infections were detected, yet a significant correlation was observed only between DWV viral load and overwintering colony losses. The long-held view has been that DWV is relatively harmless to the overall health status of honeybee colonies unless it is in association with severe varroa mite infestations. Our findings suggest that DWV can potentially act independently of varroa mites to bring about colony losses. Therefore, DWV may be a major factor in overwintering colony losses. PMID:19783750

  18. 7 CFR 760.204 - Eligible livestock, honeybees, and farm-raised fish.

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Eligible livestock, honeybees, and farm-raised fish... for Livestock, Honeybees, and Farm-Raised Fish Program § 760.204 Eligible livestock, honeybees, and farm-raised fish. (a) To be considered eligible livestock for livestock feed losses and grazing...

  19. Disease dynamics of honeybees with Varroa destructor as parasite and virus vector

    The worldwide decline in honeybee colonies during the past 50 years has often been linked to the spread of the parasitic mite Varroa destructor and its interaction with certain honeybee viruses carried by Varroa mites. In this article, we propose a honeybee-mite-virus model that incorporates (1) par...

  20. Characterization of secreted proteases of Paenibacillus larvae, potential virulence factors involved in honeybee larval infection.

    Antúnez, Karina; Anido, Matilde; Schlapp, Geraldine; Evans, Jay D; Zunino, Pablo

    2009-10-01

    Paenibacillus larvae is the causative agent of American Foulbrood (AFB), the most severe bacterial disease that affects honeybee larvae. AFB causes a significant decrease in the honeybee population affecting the beekeeping industry and agricultural production. After infection of larvae, P. larvae secretes proteases that could be involved in the pathogenicity. In the present article, we present the secretion of different proteases by P. larvae. Inhibition assays confirmed the presence of metalloproteases. Two different proteases patterns (PP1 and PP2) were identified in a collection of P. larvae isolates from different geographic origin. Forty nine percent of P. larvae isolates showed pattern PP1 while 51% exhibited pattern PP2. Most isolates belonging to genotype ERIC I - BOX A presented PP2, most isolates belonging to ERIC I - BOX C presented PP1 although relations were not significant. Isolates belonging to genotypes ERIC II and ERIC III presented PP2. No correlation was observed between the secreted proteases patterns and geographic distribution, since both patterns are widely distributed in Uruguay. According to exposure bioassays, isolates showing PP2 are more virulent than those showing PP1, suggesting that difference in pathogenicity could be related to the secretion of proteases. PMID:19638278

  1. Metalloprotease production by Paenibacillus larvae during the infection of honeybee larvae.

    Antúnez, Karina; Arredondo, Daniela; Anido, Matilde; Zunino, Pablo

    2011-05-01

    American foulbrood is a bacterial disease of worldwide distribution that affects larvae of the honeybee Apis mellifera. The causative agent is the Gram-positive, spore-forming bacterium Paenibacillus larvae. Several authors have proposed that P. larvae secretes metalloproteases that are involved in the larval degradation that occurs after infection. The aim of the present work was to evaluate the production of a metalloprotease by P. larvae during larval infection. First, the complete gene encoding a metalloprotease was identified in the P. larvae genome and its distribution was evaluated by PCR in a collection of P. larvae isolates from different geographical regions. Then, the complete gene was amplified, cloned and overexpressed, and the recombinant metalloprotease was purified and used to generate anti-metalloprotease antibodies. Metalloprotease production was evaluated by immunofluorescence and fluorescence in situ hybridization. The gene encoding a P. larvae metalloprotease was widely distributed in isolates from different geographical origins in Uruguay and Argentina. Metalloprotease was detected inside P. larvae vegetative cells, on the surface of P. larvae spores and secreted to the external growth medium. Its production was also confirmed in vivo, during the infection of honeybee larvae. This protein was able to hydrolyse milk proteins as described for P. larvae, suggesting that could be involved in larval degradation. This work contributes to the knowledge of the pathogenicity mechanisms of a bacterium of great economic significance and is one step in the characterization of potential P. larvae virulence factors. PMID:21330433

  2. Nosema Tolerant Honeybees (Apis mellifera) Escape Parasitic Manipulation of Apoptosis

    Kurze, Christoph; Le Conte, Yves; Dussaubat, Claudia; Erler, Silvio; Kryger, Per; Lewkowski, Oleg; Müller, Thomas; Widder, Miriam; Moritz, Robin F. A.

    2015-01-01

    Apoptosis is not only pivotal for development, but also for pathogen defence in multicellular organisms. Although numerous intracellular pathogens are known to interfere with the host’s apoptotic machinery to overcome this defence, its importance for host-parasite coevolution has been neglected. We conducted three inoculation experiments to investigate in the apoptotic respond during infection with the intracellular gut pathogen Nosema ceranae, which is considered as potential global threat to the honeybee (Apis mellifera) and other bee pollinators, in sensitive and tolerant honeybees. To explore apoptotic processes in the gut epithelium, we visualised apoptotic cells using TUNEL assays and measured the relative expression levels of subset of candidate genes involved in the apoptotic machinery using qPCR. Our results suggest that N. ceranae reduces apoptosis in sensitive honeybees by enhancing inhibitor of apoptosis protein-(iap)-2 gene transcription. Interestingly, this seems not be the case in Nosema tolerant honeybees. We propose that these tolerant honeybees are able to escape the manipulation of apoptosis by N. ceranae, which may have evolved a mechanism to regulate an anti-apoptotic gene as key adaptation for improved host invasion. PMID:26445372

  3. Nosema Tolerant Honeybees (Apis mellifera Escape Parasitic Manipulation of Apoptosis.

    Christoph Kurze

    Full Text Available Apoptosis is not only pivotal for development, but also for pathogen defence in multicellular organisms. Although numerous intracellular pathogens are known to interfere with the host's apoptotic machinery to overcome this defence, its importance for host-parasite coevolution has been neglected. We conducted three inoculation experiments to investigate in the apoptotic respond during infection with the intracellular gut pathogen Nosema ceranae, which is considered as potential global threat to the honeybee (Apis mellifera and other bee pollinators, in sensitive and tolerant honeybees. To explore apoptotic processes in the gut epithelium, we visualised apoptotic cells using TUNEL assays and measured the relative expression levels of subset of candidate genes involved in the apoptotic machinery using qPCR. Our results suggest that N. ceranae reduces apoptosis in sensitive honeybees by enhancing inhibitor of apoptosis protein-(iap-2 gene transcription. Interestingly, this seems not be the case in Nosema tolerant honeybees. We propose that these tolerant honeybees are able to escape the manipulation of apoptosis by N. ceranae, which may have evolved a mechanism to regulate an anti-apoptotic gene as key adaptation for improved host invasion.

  4. Impact of bifenthrin on honeybees and Culex quinquefasciatus.

    Qualls, Whitney A; Xue, Rui-De; Zhong, He

    2010-06-01

    The impact of bifenthrin on honeybees, Apis mellifera (Hymenoptera: Apidae) was evaluated in both laboratory and semifield assays. Ten serial dilutions of bifenthrin and an acetone control using the bottle bioassay protocol were used in the laboratory to determine killing time after 15-, 30-, and 60-min honeybee exposure. Both dose and exposure time significantly affected honeybee mortality (df = 6, F = 10.9, P star) and Duranta erecta L. (golden dewdrop); a water control was also used. Bee mortality was significantly higher (P < 0.05, df = 2, F = 20.8) at 29.5 ml/liter compared to the mortality at 19.5-ml/liter and 9.7-ml/liter application rates after 24-h exposure to the treated vegetation. Mortality of Culex quinquefasciatus exposed to treated vegetation was significantly (P < 0.05, df = 10, F = 114) different by week and by application rate. PMID:20649134

  5. Patients with massive honeybee stings: report of four cases

    Shahidi Sh

    2008-11-01

    Full Text Available "nBackground: Insect stings can cause local or systemic reactions that range from mild to fatal, and are among the most common causes of anaphylaxis. The major allergens of honeybee venom are phospholipase A2, hyaluronidase, acid phosphatase, allergen C and melitin. Phospholipase and melitin induce hemolysis, rhabdomyolysis and liver damage due to cell membrane breakdown, damage of the vascular endothelium and activation of the inflammatory response. Rhabdomyolysis has been implicated as the cause of acute renal failure in approximately 5-7% of cases. However, bee stings are a rare cause of rhabdomyolysis, and are usually associated with 50 or more stings. It has been reported that more than 250 bee stings are capable of causing death in humans. "nCase report: We report two cases of massive honeybee stings (>2000 with rhabdomyolysis, hemolysis and acute renal failure who survived with full recovery, and two cases of >500 honeybee stings who survived without significant complications.

  6. Scouts behave as streakers in honeybee swarms

    Greggers, Uwe; Schöning, Caspar; Degen, Jacqueline; Menzel, Randolf

    2013-08-01

    Harmonic radar tracking was used to record the flights of scout bees during takeoff and initial flight path of two honeybee swarms. One swarm remained intact and performed a full flight to a destination beyond the range of the harmonic radar, while a second swarm disintegrated within the range of the radar and most of the bees returned to the queen. The initial stretch of the full flight is characterized by accelerating speed, whereas the disintegrating swarm flew steadily at low speed. The two scouts in the swarm displaying full flight performed characteristic flight maneuvers. They flew at high speed when traveling in the direction of their destination and slowed down or returned over short stretches at low speed. Scouts in the disintegrating swarm did not exhibit the same kind of characteristic flight performance. Our data support the streaker bee hypothesis proposing that scout bees guide the swarm by traveling at high speed in the direction of the new nest site for short stretches of flight and slowing down when reversing flight direction.

  7. Multiple reversal olfactory learning in honeybees

    Theo Mota

    2010-07-01

    Full Text Available In multiple reversal learning, animals trained to discriminate a reinforced from a non-reinforced stimulus are subjected to various, successive reversals of stimulus contingencies (e.g. A+ vs. B-, A- vs. B+, A+ vs. B-. This protocol is useful to determine whether or not animals learn to learn and solve successive discriminations faster (or with fewer errors with increasing reversal experience. Here we used the olfactory conditioning of proboscis extension reflex to study how honeybees Apis mellifera perform in a multiple reversal task. Our experiment contemplated four consecutive differential conditioning phases involving the same odors (A+ vs. B- to A- vs. B+ to A+ vs. B- to A- vs. B+. We show that bees in which the weight of reinforced or non-reinforced stimuli was similar mastered the multiple olfactory reversals. Bees which failed the task exhibited asymmetric responses to reinforced and non-reinforced stimuli, thus being unable to rapidly reverse stimulus contingencies. Efficient reversers did not improve their successive discriminations but rather tended to generalize their choice to both odors at the end of conditioning. As a consequence, both discrimination and reversal efficiency decreasedalong experimental phases. This result invalidates a learning-to-learn effect and indicates that bees do not only respond to the actual stimulus contingencies but rather combine these with an average of past experiences with the same stimuli.  

  8. Small hive beetles survive in honeybee prisons by behavioural mimicry

    Ellis, J. D.; Pirk, C. W. W.; Hepburn, H. R.; Kastberger, G.; Elzen, P. J.

    2002-05-01

    We report the results of a simple experiment to determine whether honeybees feed their small hive beetle nest parasites. Honeybees incarcerate the beetles in cells constructed of plant resins and continually guard them. The longevity of incarcerated beetles greatly exceeds their metabolic reserves. We show that survival of small hive beetles derives from behavioural mimicry by which the beetles induce the bees to feed them trophallactically. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at htpp://dx.doi.org/10.1007/s00114-002-0326-y.

  9. Automatic behaviour analysis system for honeybees using computer vision

    Tu, Gang Jun; Hansen, Mikkel Kragh; Kryger, Per;

    2016-01-01

    -cost embedded computer with very limited computational resources as compared to an ordinary PC. The system succeeds in counting honeybees, identifying their position and measuring their in-and-out activity. Our algorithm uses background subtraction method to segment the images. After the segmentation stage, the...... demonstrate that this system can be used as a tool to detect the behaviour of honeybees and assess their state in the beehive entrance. Besides, the result of the computation time show that the Raspberry Pi is a viable solution in such real-time video processing system....

  10. Repeated self-healing of nano and micro scale cracks in epoxy based composites by tri-axial electrospun fibers including different healing agents

    Seyyed Monfared Zanjani, Jamal; Saner Okan, Burcu; Letofsky-Papst, Ilse; Menceloğlu, Yusuf Z.; Menceloglu, Yusuf Z.; Yıldız, Mehmet; Yildiz, Mehmet

    2015-01-01

    Multi-walled healing fibers with a novel architecture are fabricated through a direct, one-step tri-axial electrospinning process to encapsulate different healing agents inside the fibers with two distinct protective walls. Self healing systems based on ring opening metathesis polymerization (ROMP) and an amine–epoxy reaction are redesigned by utilizing these tri-axial fibers. In ROMP, Grubbs' catalysts are integrated in the outer wall of the fibers instead of the composite matrix to reduce t...

  11. Honeybees (Apis mellifera learn color discriminations via differential conditioning independent of long wavelength (green photoreceptor modulation.

    David H Reser

    Full Text Available BACKGROUND: Recent studies on colour discrimination suggest that experience is an important factor in how a visual system processes spectral signals. In insects it has been shown that differential conditioning is important for processing fine colour discriminations. However, the visual system of many insects, including the honeybee, has a complex set of neural pathways, in which input from the long wavelength sensitive ('green' photoreceptor may be processed either as an independent achromatic signal or as part of a trichromatic opponent-colour system. Thus, a potential confound of colour learning in insects is the possibility that modulation of the 'green' photoreceptor could underlie observations. METHODOLOGY/PRINCIPAL FINDINGS: We tested honeybee vision using light emitting diodes centered on 414 and 424 nm wavelengths, which limit activation to the short-wavelength-sensitive ('UV' and medium-wavelength-sensitive ('blue' photoreceptors. The absolute irradiance spectra of stimuli was measured and modelled at both receptor and colour processing levels, and stimuli were then presented to the bees in a Y-maze at a large visual angle (26°, to ensure chromatic processing. Sixteen bees were trained over 50 trials, using either appetitive differential conditioning (N = 8, or aversive-appetitive differential conditioning (N = 8. In both cases the bees slowly learned to discriminate between the target and distractor with significantly better accuracy than would be expected by chance. Control experiments confirmed that changing stimulus intensity in transfers tests does not significantly affect bee performance, and it was possible to replicate previous findings that bees do not learn similar colour stimuli with absolute conditioning. CONCLUSION: Our data indicate that honeybee colour vision can be tuned to relatively small spectral differences, independent of 'green' photoreceptor contrast and brightness cues. We thus show that colour vision is

  12. Lipophilic extracts composition of honey-bee collected pollen

    Barbosa, Sandra; Vilas-Boas, Miguel; Dias, L. G.; Estevinho, Leticia M.; Silvestre, Armando; Simões, Mário

    2003-01-01

    Honey-bee derived products such as pollen have been applied for centuries in traditional medicine as well as in food diets and supplementary nutrition due to their nutritional and physiological properties, above all in regard to their healthy effects on the human organism

  13. Sperm use economy of honeybee (Apis mellifera) queens

    Baer, Boris; Collins, Jason; Maalaps, Kristiina;

    2016-01-01

    the fecundity and longevity of queens and therefore colony fitness. We quantified the number of sperm that honeybee (Apis mellifera) queens use to fertilize eggs. We examined sperm use in naturally mated queens of different ages and in queens artificially inseminated with different volumes of semen. We found...

  14. Vibration transmission characteristics of the legs of freely standing honeybees

    Rohrseitz, Kristin; Kilpinen, Ole

    The leg vibrations of honeybees standing on a vibrating substrate were measured with laser Doppler vibrometry, both in freely standing bees and in bees attached to a holder. In both cases, no resonances were found. In the fixed bee preparation, the legs moved with approximately the same amplitude...

  15. Nosema spp. infections cause no energetic stress in tolerant honeybees.

    Kurze, Christoph; Mayack, Christopher; Hirche, Frank; Stangl, Gabriele I; Le Conte, Yves; Kryger, Per; Moritz, Robin F A

    2016-06-01

    Host-pathogen coevolution leads to reciprocal adaptations, allowing pathogens to increase host exploitation or hosts to minimise costs of infection. As pathogen resistance is often associated with considerable costs, tolerance may be an evolutionary alternative. Here, we examined the effect of two closely related and highly host dependent intracellular gut pathogens, Nosema apis and Nosema ceranae, on the energetic state in Nosema tolerant and sensitive honeybees facing the infection. We quantified the three major haemolymph carbohydrates fructose, glucose, and trehalose using high-performance liquid chromatography (HPLC) as a measure for host energetic state. Trehalose levels in the haemolymph were negatively associated with N. apis infection intensity and with N. ceranae infection regardless of the infection intensity in sensitive honeybees. Nevertheless, there was no such association in Nosema spp. infected tolerant honeybees. These findings suggest that energy availability in tolerant honeybees was not compromised by the infection. This result obtained at the individual level may also have implications at the colony level where workers in spite of a Nosema infection can still perform as well as healthy bees, maintaining colony efficiency and productivity. PMID:26976406

  16. Honeybee economics: optimisation of foraging in a variable world

    Stabentheiner, Anton; Kovac, Helmut

    2016-01-01

    In honeybees fast and efficient exploitation of nectar and pollen sources is achieved by persistent endothermy throughout the foraging cycle, which means extremely high energy costs. The need for food promotes maximisation of the intake rate, and the high costs call for energetic optimisation. Experiments on how honeybees resolve this conflict have to consider that foraging takes place in a variable environment concerning microclimate and food quality and availability. Here we report, in simultaneous measurements of energy costs, gains, and intake rate and efficiency, how honeybee foragers manage this challenge in their highly variable environment. If possible, during unlimited sucrose flow, they follow an ‘investment-guided’ (‘time is honey’) economic strategy promising increased returns. They maximise net intake rate by investing both own heat production and solar heat to increase body temperature to a level which guarantees a high suction velocity. They switch to an ‘economizing’ (‘save the honey’) optimisation of energetic efficiency if the intake rate is restricted by the food source when an increased body temperature would not guarantee a high intake rate. With this flexible and graded change between economic strategies honeybees can do both maximise colony intake rate and optimise foraging efficiency in reaction to environmental variation. PMID:27320240

  17. Honeybee economics: optimisation of foraging in a variable world.

    Stabentheiner, Anton; Kovac, Helmut

    2016-01-01

    In honeybees fast and efficient exploitation of nectar and pollen sources is achieved by persistent endothermy throughout the foraging cycle, which means extremely high energy costs. The need for food promotes maximisation of the intake rate, and the high costs call for energetic optimisation. Experiments on how honeybees resolve this conflict have to consider that foraging takes place in a variable environment concerning microclimate and food quality and availability. Here we report, in simultaneous measurements of energy costs, gains, and intake rate and efficiency, how honeybee foragers manage this challenge in their highly variable environment. If possible, during unlimited sucrose flow, they follow an 'investment-guided' ('time is honey') economic strategy promising increased returns. They maximise net intake rate by investing both own heat production and solar heat to increase body temperature to a level which guarantees a high suction velocity. They switch to an 'economizing' ('save the honey') optimisation of energetic efficiency if the intake rate is restricted by the food source when an increased body temperature would not guarantee a high intake rate. With this flexible and graded change between economic strategies honeybees can do both maximise colony intake rate and optimise foraging efficiency in reaction to environmental variation. PMID:27320240

  18. Genetic structure of Balearic honeybee populations based on microsatellite polymorphism

    Moritz Robin FA

    2003-05-01

    Full Text Available Abstract The genetic variation of honeybee colonies collected in 22 localities on the Balearic Islands (Spain was analysed using eight polymorphic microsatellite loci. Previous studies have demonstrated that these colonies belong either to the African or west European evolutionary lineages. These populations display low variability estimated from both the number of alleles and heterozygosity values, as expected for the honeybee island populations. Although genetic differentiation within the islands is low, significant heterozygote deficiency is present, indicating a subpopulation genetic structure. According to the genetic differentiation test, the honeybee populations of the Balearic Islands cluster into two groups: Gimnesias (Mallorca and Menorca and Pitiusas (Ibiza and Formentera, which agrees with the biogeography postulated for this archipelago. The phylogenetic analysis suggests an Iberian origin of the Balearic honeybees, thus confirming the postulated evolutionary scenario for Apis mellifera in the Mediterranean basin. The microsatellite data from Formentera, Ibiza and Menorca show that ancestral populations are threatened by queen importations, indicating that adequate conservation measures should be developed for protecting Balearic bees.

  19. Trace analysis of pollutants by use of honeybees, immunoassays, and chemiluminescence detection.

    Girotti, S; Ghini, S; Maiolini, E; Bolelli, L; Ferri, E N

    2013-01-01

    Specific and sensitive analysis to reveal and monitor the wide variety of chemical contaminants polluting all environment compartments, feed, and food is urgently required because of the increasing attention devoted to the environment and health protection. Our research group has been involved in monitoring the presence and distribution of agrochemicals by monitoring beehives distributed throughout the area studied. Honeybees have been used both as biosensors, because the pesticides affect their viability, and as "contaminant collectors" for all environmental pollutants. We focused our research on the development of analytical procedures able to reveal and quantify pesticides in different samples but with a special attention to the complex honeybee matrix. Specific extraction and purification procedures have been developed and some are still under optimization. The analytes of interest were determined by gas or liquid chromatographic methods and by compound-specific or group-specific immunoassays in the ELISA format, the analytical performance of which was improved by introducing luminescence detection. The range of chemiluminescent immunoassays developed was extended to include the determination of completely different pollutants, for example explosives, volatile organic compounds (including benzene, toluene, ethylbenzene, xylenes), and components of plastics, for example bisphenol A. An easier and portable format, a lateral flow immunoassay (LFIA) was added to the ELISA format to increase application flexibility in these assays. Aspects of the novelty, the specific characteristics, the analytical performance, and possible future development of the different chromatographic and immunological methods are described and discussed. PMID:23064670

  20. Functional characterization of transmembrane adenylyl cyclases from the honeybee brain.

    Balfanz, Sabine; Ehling, Petra; Wachten, Sebastian; Jordan, Nadine; Erber, Joachim; Mujagic, Samir; Baumann, Arnd

    2012-06-01

    The second messenger cAMP has a pivotal role in animals' physiology and behavior. Intracellular concentrations of cAMP are balanced by cAMP-synthesizing adenylyl cyclases (ACs) and cAMP-cleaving phosphodiesterases. Knowledge about ACs in the honeybee (Apis mellifera) is rather limited and only an ortholog of the vertebrate AC3 isoform has been functionally characterized, so far. Employing bioinformatics and functional expression we characterized two additional honeybee genes encoding membrane-bound (tm)ACs. The proteins were designated AmAC2t and AmAC8. Unlike the common structure of tmACs, AmAC2t lacks the first transmembrane domain. Despite this unusual topography, AmAC2t-activity could be stimulated by norepinephrine and NKH477 with EC(50s) of 0.07 μM and 3 μM. Both ligands stimulated AmAC8 with EC(50s) of 0.24 μM and 3.1 μM. In brain cryosections, intensive staining of mushroom bodies was observed with specific antibodies against AmAC8, an expression pattern highly reminiscent of the Drosophila rutabaga AC. In a current release of the honeybee genome database we identified three additional tmAC- and one soluble AC-encoding gene. These results suggest that (1) the AC-gene family in honeybees is comparably large as in other species, and (2) based on the restricted expression of AmAC8 in mushroom bodies, this enzyme might serve important functions in honeybee behavior. PMID:22426196

  1. Whole-genome resequencing of honeybee drones to detect genomic selection in a population managed for royal jelly.

    Wragg, David; Marti-Marimon, Maria; Basso, Benjamin; Bidanel, Jean-Pierre; Labarthe, Emmanuelle; Bouchez, Olivier; Le Conte, Yves; Vignal, Alain

    2016-01-01

    Four main evolutionary lineages of A. mellifera have been described including eastern Europe (C) and western and northern Europe (M). Many apiculturists prefer bees from the C lineage due to their docility and high productivity. In France, the routine importation of bees from the C lineage has resulted in the widespread admixture of bees from the M lineage. The haplodiploid nature of the honeybee Apis mellifera, and its small genome size, permits affordable and extensive genomics studies. As a pilot study of a larger project to characterise French honeybee populations, we sequenced 60 drones sampled from two commercial populations managed for the production of honey and royal jelly. Results indicate a C lineage origin, whilst mitochondrial analysis suggests two drones originated from the O lineage. Analysis of heterozygous SNPs identified potential copy number variants near to genes encoding odorant binding proteins and several cytochrome P450 genes. Signatures of selection were detected using the hapFLK haplotype-based method, revealing several regions under putative selection for royal jelly production. The framework developed during this study will be applied to a broader sampling regime, allowing the genetic diversity of French honeybees to be characterised in detail. PMID:27255426

  2. Identification of Multiple Loci Associated with Social Parasitism in Honeybees.

    Wallberg, Andreas; Pirk, Christian W; Allsopp, Mike H; Webster, Matthew T

    2016-06-01

    In colonies of the honeybee Apis mellifera, the queen is usually the only reproductive female, which produces new females (queens and workers) by laying fertilized eggs. However, in one subspecies of A. mellifera, known as the Cape bee (A. m. capensis), worker bees reproduce asexually by thelytoky, an abnormal form of meiosis where two daughter nucleii fuse to form single diploid eggs, which develop into females without being fertilized. The Cape bee also exhibits a suite of phenotypes that facilitate social parasitism whereby workers lay such eggs in foreign colonies so their offspring can exploit their resources. The genetic basis of this switch to social parasitism in the Cape bee is unknown. To address this, we compared genome variation in a sample of Cape bees with other African populations. We find genetic divergence between these populations to be very low on average but identify several regions of the genome with extreme differentiation. The regions are strongly enriched for signals of selection in Cape bees, indicating that increased levels of positive selection have produced the unique set of derived phenotypic traits in this subspecies. Genetic variation within these regions allows unambiguous genetic identification of Cape bees and likely underlies the genetic basis of social parasitism. The candidate loci include genes involved in ecdysteroid signaling and juvenile hormone and dopamine biosynthesis, which may regulate worker ovary activation and others whose products localize at the centrosome and are implicated in chromosomal segregation during meiosis. Functional analysis of these loci will yield insights into the processes of reproduction and chemical signaling in both parasitic and non-parasitic populations and advance understanding of the process of normal and atypical meiosis. PMID:27280405

  3. Identification of Multiple Loci Associated with Social Parasitism in Honeybees.

    Andreas Wallberg

    2016-06-01

    Full Text Available In colonies of the honeybee Apis mellifera, the queen is usually the only reproductive female, which produces new females (queens and workers by laying fertilized eggs. However, in one subspecies of A. mellifera, known as the Cape bee (A. m. capensis, worker bees reproduce asexually by thelytoky, an abnormal form of meiosis where two daughter nucleii fuse to form single diploid eggs, which develop into females without being fertilized. The Cape bee also exhibits a suite of phenotypes that facilitate social parasitism whereby workers lay such eggs in foreign colonies so their offspring can exploit their resources. The genetic basis of this switch to social parasitism in the Cape bee is unknown. To address this, we compared genome variation in a sample of Cape bees with other African populations. We find genetic divergence between these populations to be very low on average but identify several regions of the genome with extreme differentiation. The regions are strongly enriched for signals of selection in Cape bees, indicating that increased levels of positive selection have produced the unique set of derived phenotypic traits in this subspecies. Genetic variation within these regions allows unambiguous genetic identification of Cape bees and likely underlies the genetic basis of social parasitism. The candidate loci include genes involved in ecdysteroid signaling and juvenile hormone and dopamine biosynthesis, which may regulate worker ovary activation and others whose products localize at the centrosome and are implicated in chromosomal segregation during meiosis. Functional analysis of these loci will yield insights into the processes of reproduction and chemical signaling in both parasitic and non-parasitic populations and advance understanding of the process of normal and atypical meiosis.

  4. Identification of Multiple Loci Associated with Social Parasitism in Honeybees

    Pirk, Christian W.; Allsopp, Mike H.

    2016-01-01

    In colonies of the honeybee Apis mellifera, the queen is usually the only reproductive female, which produces new females (queens and workers) by laying fertilized eggs. However, in one subspecies of A. mellifera, known as the Cape bee (A. m. capensis), worker bees reproduce asexually by thelytoky, an abnormal form of meiosis where two daughter nucleii fuse to form single diploid eggs, which develop into females without being fertilized. The Cape bee also exhibits a suite of phenotypes that facilitate social parasitism whereby workers lay such eggs in foreign colonies so their offspring can exploit their resources. The genetic basis of this switch to social parasitism in the Cape bee is unknown. To address this, we compared genome variation in a sample of Cape bees with other African populations. We find genetic divergence between these populations to be very low on average but identify several regions of the genome with extreme differentiation. The regions are strongly enriched for signals of selection in Cape bees, indicating that increased levels of positive selection have produced the unique set of derived phenotypic traits in this subspecies. Genetic variation within these regions allows unambiguous genetic identification of Cape bees and likely underlies the genetic basis of social parasitism. The candidate loci include genes involved in ecdysteroid signaling and juvenile hormone and dopamine biosynthesis, which may regulate worker ovary activation and others whose products localize at the centrosome and are implicated in chromosomal segregation during meiosis. Functional analysis of these loci will yield insights into the processes of reproduction and chemical signaling in both parasitic and non-parasitic populations and advance understanding of the process of normal and atypical meiosis. PMID:27280405

  5. Varroa destructor mite in Africanized honeybee colonies Apis mellifera L. under royal jelly or honey production

    Pedro da Rosa Santos

    2015-08-01

    Full Text Available This study evaluated the level of invasion of Varroa mite into worker brood cells, the infestation rate on adult worker honeybees, total and effective reproduction rates of the mite in Africanized honeybee colonies under royal jelly or honey production. Invasion and infestation rates were not statistically different between honeybee colonies producing honey or royal jelly and the averages for these parameters were 5.79 and 8.54%, respectively. Colonies producing honey presented a higher (p < 0.05 total and effective reproduction of Varroa than colonies producing royal jelly. There was a negative correlation between levels of invasion and infestation with minimum external temperature, relative humidity and rainfall. The variables month and season influenced the development of the mite, but rates were low and within the range normally found in Brazil for Africanized honeybee colonies, which confirm the greater resistance of these honeybees to Varroa destructor than European honeybees.

  6. EFFECTS OF C60 FULLERENE — CISPLATIN COMPLEX ON HONEYBEE Apis mellifera L.

    Kuznietsova H. M.

    2015-08-01

    Full Text Available The toxicity of С60 fullerene, traditional cytostatic cisplatin and С60 fullerene-cisplatin complex on honeybee Apis mellifera L. toxicity estimation test system was assessed. Water-soluble pristine C60 fullerenes were nontoxic for honeybee when consumed with the food in doses equivalent nontoxic and effective ones for mammalian. Cisplatin toxicity for honeybee in the doses exceed the same for mammalian in 2 times was observed as fallows: honeybee 56% death occurred after consumption of 60 mg/kg of bee weight. С60 fullerene-cisplatin complex proved to be more toxic for honeybee in comparison with free cisplatin and caused honeybee 50% lethality after consumption of 40 mg/kg bee weight.

  7. Deformed wing virus is a recent global epidemic in honeybees driven by Varroa mites.

    Wilfert, L; Long, G; Leggett, H C; Schmid-Hempel, P; Butlin, R; Martin, S J M; Boots, M

    2016-02-01

    Deformed wing virus (DWV) and its vector, the mite Varroa destructor, are a major threat to the world's honeybees. Although the impact of Varroa on colony-level DWV epidemiology is evident, we have little understanding of wider DWV epidemiology and the role that Varroa has played in its global spread. A phylogeographic analysis shows that DWV is globally distributed in honeybees, having recently spread from a common source, the European honeybee Apis mellifera. DWV exhibits epidemic growth and transmission that is predominantly mediated by European and North American honeybee populations and driven by trade and movement of honeybee colonies. DWV is now an important reemerging pathogen of honeybees, which are undergoing a worldwide manmade epidemic fueled by the direct transmission route that the Varroa mite provides. PMID:26912700

  8. Multi-residue method for the determination of pesticides and pesticide metabolites in honeybees by liquid and gas chromatography coupled with tandem mass spectrometry--Honeybee poisoning incidents.

    Kiljanek, Tomasz; Niewiadowska, Alicja; Semeniuk, Stanisław; Gaweł, Marta; Borzęcka, Milena; Posyniak, Andrzej

    2016-02-26

    A method for the determination of 200 pesticides and pesticide metabolites in honeybee samples has been developed and validated. Almost 98% of compounds included in this method are approved to use within European Union, as active substances of plant protection products or veterinary medicinal products used by beekeepers to control mites Varroa destructor in hives. Many significant metabolites, like metabolites of imidacloprid, thiacloprid, fipronil, methiocarb and amitraz, are also possible to detect. The sample preparation was based on the buffered QuEChERS method. Samples of bees were extracted with acetonitrile containing 1% acetic acid and then subjected to clean-up by dispersive solid phase extraction (dSPE) using a new Z-Sep+ sorbent and PSA. The majority of pesticides, including neonicotionoids and their metabolites, were analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS) but some of pesticides, especially pyrethroid insecticides, were analyzed by gas chromatography tandem mass spectrometry (GC-MS/MS). The procedure was validated according to the Guidance document SANCO/12571/2013 at four concentration levels: 1, 5, 10 and 100 ng/g bees and verified in the international proficiency test. The analysis of bee samples spiked at the limit of quantification (LOQ) showed about 98% mean recovery value (trueness) and 97% of analytes showed recovery in the required range of 70-120% and RSDr (precision) below 20%. Linearity and matrix effects were also established. The LOQs of pesticides were in the range of 1-100 ng/g. The developed method allows determination of insecticides at concentrations of 10 ng/g or less, except abamectin and tebufenozide. LOQ values are lower than the median lethal doses LD50 for bees. The method was used to investigate more than 70 honeybee poisoning incidents. Data about detected pesticides and their metabolites are included. PMID:26830634

  9. Discovery and basic pharmacology of erythropoiesis-stimulating agents (ESAs), including the hyperglycosylated ESA, darbepoetin alfa: an update of the rationale and clinical impact.

    Kiss, Zoltán; Elliott, Steven; Jedynasty, Kinga; Tesar, Vladimír; Szegedi, János

    2010-04-01

    Cloning of the human erythropoietin (EPO) gene and development of the first recombinant human erythropoietin (rHuEPO) drug were truly breakthroughs. This allowed a deeper understanding of the structure and pharmacology of rHuEpo, which in turn inspired the discovery and development of additional erythropoiesis-stimulating agents (ESAs). In vivo specific activity and serum half-life of rHuEPO are influenced by the amount and structure of the attached carbohydrate. Increased numbers of sialic acids on carbohydrate attached to rHuEPO correlated with a relative increase in in-vivo-specific activity and increased serum half-life. The effect of increasing the number of sialic-acid-containing carbohydrates on in-vivo-specific activity was explored. Initial research focused on solving the problem of how the protein backbone could be engineered so a cell would add more carbohydrate to it. Additional work resulted in darbepoetin alfa, a longer-acting molecule with two additional carbohydrate chains. PMID:20127232

  10. Survival rate of honeybee (Apis mellifera) workers after exposure to sublethal concentrations of imidacloprid

    Blacquiere, T.

    2010-01-01

    Imidacloprid is a commonly used systemic insecticide which can induce several sublethal effects. Previous research has not shown any increased mortality in bees that were fed with sublethal doses. However, there is very little research conducted with the focus on survival rate of honeybees in the field. The aim of this study is to assess the influence of imidacloprid on the survival rate of honeybees under field conditions. Honeybees from different colonies were administered a single dose of ...

  11. Function and distribution of 5-HT2 receptors in the honeybee (Apis mellifera)

    Markus Thamm; Daniel Rolke; Nadine Jordan; Sabine Balfanz; Christian Schiffer; Arnd Baumann; Wolfgang Blenau

    2013-01-01

    BACKGROUND: Serotonin plays a pivotal role in regulating and modulating physiological and behavioral processes in both vertebrates and invertebrates. In the honeybee (Apis mellifera), serotonin has been implicated in division of labor, visual processing, and learning processes. Here, we present the cloning, heterologous expression, and detailed functional and pharmacological characterization of two honeybee 5-HT2 receptors. METHODS: Honeybee 5-HT2 receptor cDNAs were amplified from brain cDNA...

  12. Behavioural and neurophysiological study of olfactory perception and learning in honeybees

    Jean-Christophe eSandoz

    2011-01-01

    The honeybee Apis mellifera has been a central insect model in the study of olfactory perception and learning for more than a century, starting with pioneer work by Karl von Frisch. Research on olfaction in honeybees has greatly benefited from the advent of a range of behavioural and neurophysiological paradigms in the Lab. Here I review major findings about how the honeybee brain detects, processes, and learns odours, based on behavioural, neuroanatomical and neurophysiological approaches. I...

  13. Are commercial probiotics and prebiotics effective in the treatment and prevention of honeybee nosemosis C?

    Ptaszyńska, Aneta A.; Borsuk, Grzegorz; Zdybicka-Barabas, Agnieszka; Cytryńska, Małgorzata; Małek, Wanda

    2015-01-01

    The study was conducted to investigate the effect of Lactobacillus rhamnosus (a commercial probiotic) and inulin (a prebiotic) on the survival rates of honeybees infected and uninfected with Nosema ceranae, the level of phenoloxidase (PO) activity, the course of nosemosis, and the effect on the prevention of nosemosis development in bees. The cells of L. rhamnosus exhibited a high rate of survival in 56.56 % sugar syrup, which was used to feed the honeybees. Surprisingly, honeybees fed with s...

  14. Host Specificity in the Honeybee Parasitic Mite, Varroa spp. in Apis mellifera and Apis cerana.

    Alexis L Beaurepaire

    Full Text Available The ectoparasitic mite Varroa destructor is a major global threat to the Western honeybee Apis mellifera. This mite was originally a parasite of A. cerana in Asia but managed to spill over into colonies of A. mellifera which had been introduced to this continent for honey production. To date, only two almost clonal types of V. destructor from Korea and Japan have been detected in A. mellifera colonies. However, since both A. mellifera and A. cerana colonies are kept in close proximity throughout Asia, not only new spill overs but also spill backs of highly virulent types may be possible, with unpredictable consequences for both honeybee species. We studied the dispersal and hybridisation potential of Varroa from sympatric colonies of the two hosts in Northern Vietnam and the Philippines using mitochondrial and microsatellite DNA markers. We found a very distinct mtDNA haplotype equally invading both A. mellifera and A. cerana in the Philippines. In contrast, we observed a complete reproductive isolation of various Vietnamese Varroa populations in A. mellifera and A. cerana colonies even if kept in the same apiaries. In light of this variance in host specificity, the adaptation of the mite to its hosts seems to have generated much more genetic diversity than previously recognised and the Varroa species complex may include substantial cryptic speciation.

  15. Host Specificity in the Honeybee Parasitic Mite, Varroa spp. in Apis mellifera and Apis cerana.

    Beaurepaire, Alexis L; Truong, Tuan A; Fajardo, Alejandro C; Dinh, Tam Q; Cervancia, Cleofas; Moritz, Robin F A

    2015-01-01

    The ectoparasitic mite Varroa destructor is a major global threat to the Western honeybee Apis mellifera. This mite was originally a parasite of A. cerana in Asia but managed to spill over into colonies of A. mellifera which had been introduced to this continent for honey production. To date, only two almost clonal types of V. destructor from Korea and Japan have been detected in A. mellifera colonies. However, since both A. mellifera and A. cerana colonies are kept in close proximity throughout Asia, not only new spill overs but also spill backs of highly virulent types may be possible, with unpredictable consequences for both honeybee species. We studied the dispersal and hybridisation potential of Varroa from sympatric colonies of the two hosts in Northern Vietnam and the Philippines using mitochondrial and microsatellite DNA markers. We found a very distinct mtDNA haplotype equally invading both A. mellifera and A. cerana in the Philippines. In contrast, we observed a complete reproductive isolation of various Vietnamese Varroa populations in A. mellifera and A. cerana colonies even if kept in the same apiaries. In light of this variance in host specificity, the adaptation of the mite to its hosts seems to have generated much more genetic diversity than previously recognised and the Varroa species complex may include substantial cryptic speciation. PMID:26248192

  16. The proboscis extension reflex to evaluate learning and memory in honeybees ( Apis mellifera): some caveats

    Frost, Elisabeth H.; Shutler, Dave; Hillier, Neil Kirk

    2012-09-01

    The proboscis extension reflex (PER) is widely used in a classical conditioning (Pavlovian) context to evaluate learning and memory of a variety of insect species. The literature is particularly prodigious for honeybees ( Apis mellifera) with more than a thousand publications. Imagination appears to be the only limit to the types of challenges to which researchers subject honeybees, including all the sensory modalities and a broad diversity of environmental treatments. Accordingly, some remarkable insights have been achieved using PER. However, there are several challenges to evaluating the PER literature that warrant a careful and thorough review. We assess here variation in methods that makes interpretation of studies, even those researching the same question, tenuous. We suggest that the numerous variables that might influence experimental outcomes from PER be thoroughly detailed by researchers. Moreover, the influence of individual variables on results needs to carefully evaluated, as well as among two or more variables. Our intent is to encourage investigation of the influence of numerous variables on PER results.

  17. A critical number of workers in a honeybee colony triggers investment in reproduction

    Smith, Michael L.; Ostwald, Madeleine M.; Loftus, J. Carter; Seeley, Thomas D.

    2014-10-01

    Social insect colonies, like individual organisms, must decide as they develop how to allocate optimally their resources among survival, growth, and reproduction. Only when colonies reach a certain state do they switch from investing purely in survival and growth to investing also in reproduction. But how do worker bees within a colony detect that their colony has reached the state where it is adaptive to begin investing in reproduction? Previous work has shown that larger honeybee colonies invest more in reproduction (i.e., the production of drones and queens), however, the term `larger' encompasses multiple colony parameters including number of adult workers, size of the nest, amount of brood, and size of the honey stores. These colony parameters were independently increased in this study to test which one(s) would increase a colony's investment in reproduction via males. This was assayed by measuring the construction of drone comb, the special type of comb in which drones are reared. Only an increase in the number of workers stimulated construction of drone comb. Colonies with over 4,000 workers began building drone comb, independent of the other colony parameters. These results show that attaining a critical number of workers is the key parameter for honeybee colonies to start to shift resources towards reproduction. These findings are relevant to other social systems in which a group's members must adjust their behavior as a function of the group's size.

  18. Using Errors by Guard Honeybees (Apis mellifera) to Gain New Insights into Nestmate Recognition Signals.

    Pradella, Duccio; Martin, Stephen J; Dani, Francesca R

    2015-11-01

    Although the honeybee (Apis mellifera) is one of the world most studied insects, the chemical compounds used in nestmate recognition, remains an open question. By exploiting the error prone recognition system of the honeybee, coupled with genotyping, we studied the correlation between cuticular hydrocarbon (CHC) profile of returning foragers and acceptance or rejection behavior by guards. We revealed an average recognition error rate of 14% across 3 study colonies, that is, allowing a non-nestmate colony entry, or preventing a nestmate from entry, which is lower than reported in previous studies. By analyzing CHCs, we found that CHC profile of returning foragers correlates with acceptance or rejection by guarding bees. Although several CHC were identified as potential recognition cues, only a subset of 4 differed consistently for their relative amount between accepted and rejected individuals in the 3 studied colonies. These include a unique group of 2 positional alkene isomers (Z-8 and Z-10), which are almost exclusively produced by the bees Bombus and Apis spp, and may be candidate compounds for further study. PMID:26385960

  19. Comparison of Varroa destructor and Worker Honeybee Microbiota Within Hives Indicates Shared Bacteria.

    Hubert, Jan; Kamler, Martin; Nesvorna, Marta; Ledvinka, Ondrej; Kopecky, Jan; Erban, Tomas

    2016-08-01

    The ectoparasitic mite Varroa destructor is a major pest of the honeybee Apis mellifera. In a previous study, bacteria were found in the guts of mites collected from winter beehive debris and were identified using Sanger sequencing of their 16S rRNA genes. In this study, community comparison and diversity analyses were performed to examine the microbiota of honeybees and mites at the population level. The microbiota of the mites and honeybees in 26 colonies in seven apiaries in Czechia was studied. Between 10 and 50 Varroa females were collected from the bottom board, and 10 worker bees were removed from the peripheral comb of the same beehive. Both bees and mites were surface sterilized. Analysis of the 16S rRNA gene libraries revealed significant differences in the Varroa and honeybee microbiota. The Varroa microbiota was less diverse than was the honeybee microbiota, and the relative abundances of bacterial taxa in the mite and bee microbiota differed. The Varroa mites, but not the honeybees, were found to be inhabited by Diplorickettsia. The relative abundance of Arsenophonus, Morganella, Spiroplasma, Enterococcus, and Pseudomonas was higher in Varroa than in honeybees, and the Diplorickettsia symbiont detected in this study is specific to Varroa mites. The results demonstrated that there are shared bacteria between Varroa and honeybee populations but that these bacteria occur in different relative proportions in the honeybee and mite bacteriomes. These results support the suggestion of bacterial transfer via mites, although only some of the transferred bacteria may be harmful. PMID:27129319

  20. Effect of flumethrin on survival and olfactory learning in honeybees.

    Ken Tan

    Full Text Available Flumethrin has been widely used as an acaricide for the control of Varroa mites in commercial honeybee keeping throughout the world for many years. Here we test the mortality of the Asian honeybee Apis cerana cerana after treatment with flumethrin. We also ask (1 how bees react to the odor of flumethrin, (2 whether its odor induces an innate avoidance response, (3 whether its taste transmits an aversive reinforcing component in olfactory learning, and (4 whether its odor or taste can be associated with reward in classical conditioning. Our results show that flumethrin has a negative effect on Apis ceranàs lifespan, induces an innate avoidance response, acts as a punishing reinforcer in olfactory learning, and interferes with the association of an appetitive conditioned stimulus. Furthermore flumethrin uptake within the colony reduces olfactory learning over an extended period of time.

  1. Detection of Illicit Drugs by Trained Honeybees (Apis mellifera.

    Matthias Schott

    Full Text Available Illegal drugs exacerbate global social challenges such as substance addiction, mental health issues and violent crime. Police and customs officials often rely on specially-trained sniffer dogs, which act as sensitive biological detectors to find concealed illegal drugs. However, the dog "alert" is no longer sufficient evidence to allow a search without a warrant or additional probable cause because cannabis has been legalized in two US states and is decriminalized in many others. Retraining dogs to recognize a narrower spectrum of drugs is difficult and training new dogs is time consuming, yet there are no analytical devices with the portability and sensitivity necessary to detect substance-specific chemical signatures. This means there is currently no substitute for sniffer dogs. Here we describe an insect screening procedure showing that the western honeybee (Apis mellifera can sense volatiles associated with pure samples of heroin and cocaine. We developed a portable electroantennographic device for the on-site measurement of volatile perception by these insects, and found a positive correlation between honeybee antennal responses and the concentration of specific drugs in test samples. Furthermore, we tested the ability of honeybees to learn the scent of heroin and trained them to show a reliable behavioral response in the presence of a highly-diluted scent of pure heroin. Trained honeybees could therefore be used to complement or replace the role of sniffer dogs as part of an automated drug detection system. Insects are highly sensitive to volatile compounds and provide an untapped resource for the development of biosensors. Automated conditioning as presented in this study could be developed as a platform for the practical detection of illicit drugs using insect-based sensors.

  2. Vector integration and novel shortcutting in honeybee navigation

    Menzel, Randolf; Lehmann, Konstantin; Manz, Gisela; Fuchs, Jacqueline; Koblofsky, Miriam; Greggers, Uwe

    2012-01-01

    Honeybees that had been trained to visit two feeders simultaneously were released at five sites located further away from the training area. Harmonic radar tracking was used to record the complete homing flights. The bees performed multiple straight flight components (SFCs) between curved search flights. SFCs reflect vector directions between the two feeding sites and the respective vectors between the feeding sites and the hive. Direct flights back to the hive were also observed. The latter ...

  3. Detection of Illicit Drugs by Trained Honeybees (Apis mellifera).

    Schott, Matthias; Klein, Birgit; Vilcinskas, Andreas

    2015-01-01

    Illegal drugs exacerbate global social challenges such as substance addiction, mental health issues and violent crime. Police and customs officials often rely on specially-trained sniffer dogs, which act as sensitive biological detectors to find concealed illegal drugs. However, the dog "alert" is no longer sufficient evidence to allow a search without a warrant or additional probable cause because cannabis has been legalized in two US states and is decriminalized in many others. Retraining dogs to recognize a narrower spectrum of drugs is difficult and training new dogs is time consuming, yet there are no analytical devices with the portability and sensitivity necessary to detect substance-specific chemical signatures. This means there is currently no substitute for sniffer dogs. Here we describe an insect screening procedure showing that the western honeybee (Apis mellifera) can sense volatiles associated with pure samples of heroin and cocaine. We developed a portable electroantennographic device for the on-site measurement of volatile perception by these insects, and found a positive correlation between honeybee antennal responses and the concentration of specific drugs in test samples. Furthermore, we tested the ability of honeybees to learn the scent of heroin and trained them to show a reliable behavioral response in the presence of a highly-diluted scent of pure heroin. Trained honeybees could therefore be used to complement or replace the role of sniffer dogs as part of an automated drug detection system. Insects are highly sensitive to volatile compounds and provide an untapped resource for the development of biosensors. Automated conditioning as presented in this study could be developed as a platform for the practical detection of illicit drugs using insect-based sensors. PMID:26083377

  4. Genetic characterization of Lithuanian honeybee lines based on ISSR polymorphism

    Ceksteryte, Violeta; Paplauskiene, Vanda; Tamasauskiene, Diana; Pasakinskiene, Izolda; Mazeikiene, Ingrida

    2012-01-01

    International audience This study presents the first results from the selection and evaluation of inter-simple sequence repeat markers for the genetic assessment of honeybee lines developed in Lithuania and introduced subspecies. Two Lithuania-bred lines of Apis mellifera carnica were compared to those introduced from Czech Republic and Slovenia and also to a subspecies introduced from the Caucasus (Apis mellifera caucasica) and local Buckfast hybrids. The genetic constitution was assayed ...

  5. Differences in drone and worker physiology in honeybees (Apis mellifera)

    Hrassnigg, Norbert; Crailsheim, Karl

    2005-01-01

    International audience Drones and workers have completely different roles in a honeybee colony. This is reflected in many physiological, morphological and behavioural differences. Our overview mainly focuses on aspects of diet and metabolism in larvae and adults, and on the physiology of digestion. As larvae, drones have different protein and sugar requirements than workers, and in each life stage drones and workers differ in body composition (percentages of glycogen, lipids and proteins)....

  6. Contribution of honeybee drones of different age to colonial thermoregulation

    Kovac, Helmut; Stabentheiner, Anton; Brodschneider, Robert

    2009-01-01

    In addition to honeybee workers, drones also contribute to colonial thermoregulation. We show the drones’ contribution to thermoregulation at 5 different experimental temperatures ranging from 15–34 °C. The frequency and the degree of endothermy depended on the drones’ local ambient temperature and age. Location on brood or non-brood areas had no influence. The frequency of endothermic drones and the intensity of endothermy increased with decreasing temperature. 30% of drones of 8 days and ol...

  7. Widespread exploitation of the honeybee by early neolithic farmers

    Roffet-Salque, M.; Regert, M.; Evershed, R.P.; Outram, A.K.; Cramp, L.J.E.; Decavallas, O.; Dunne, J.; Gerbault, P.; Mileto, S.; Mirabaud, S.; Pääkkönen, M.; Smyth, J; Šoberl, L.; Whelton, H.L.; Alday-Ruiz, A. (Alfonso)

    2015-01-01

    The pressures on Honeybee (Apis mellifera) populations, resulting from threats by modern pesticides, parasites, predators and diseases, have raised awareness of the economic importance and critical role this insect plays in agricultural societies across the globe. However, human’s association with A. mellifera predates post-industrial revolution agriculture, as evidenced by the widespread presence of ancient Egyptian bee iconography dating to the Old Kingdom (ca. 2400 BC). There are also hint...

  8. Control of reproductive dominance by the thelytoky gene in honeybees

    Lattorff, H Michael G; Moritz, Robin F.A.; Crewe, Robin M.; Solignac, Michel

    2007-01-01

    Differentiation into castes and reproductive division of labour are a characteristics of eusocial insects. Caste determination occurs at an early stage of larval development in social bees and is achieved via differential nutrition irrespective of the genotype. Workers are usually subordinate to the queen and altruistically refrain from reproduction. Workers of the Cape honeybee (Apis mellifera capensis) do not necessarily refrain from reproduction. They have the unique ability to produce fem...

  9. Use of geometric morphometrics to differentiate selected lines of Carniolan honeybees (Apis mellifera carnica in Serbia and Montenegro

    Rašić Slađan

    2015-01-01

    Full Text Available In a selection of honeybees from autochthonous ecotypes, different lines must be identified. Honeybee lineages are usually distinguished by classical morphometrics and molecular markers, but these approaches are both costly and time-consuming to implement. Recognition of the purity of races is very important for regional and country regulations to allow a sustainable conservation of the huge variety of local honeybees. A geometric morphometric approach has been frequently used. In this work, honeybee samples were collected from stationary apiaries (belonging to the centers for honeybee queen selection from two different Serbian areas: Vršac (northeastern Serbia, mostly flatland and Vranje (southern Serbia, mostly mountainous, and two different Montenegrin areas: Bijelo Polje (northern Montenegro, mountainous region and Sutomore (southern Montenegro, coastal region. Each sample consisted of 150 honeybee workers, collected from 10 hives (15 specimens each. On the honeybee left forewings, a total of 19 vein intersections were used to determine the differences among the honeybees using MorphoJ 1.4a software. Canonical variate analysis (CVA slightly separated the honeybee lines into one overlapping cloud of specimens at the individual level. The first canonical variable (60.57% of the total variability discriminated mainly between Bijelo Polje and Sutomore honeybee lines. Therefore, on the colony level, CVA separated all four groups of breeding honeybee lines. The results show that geometric morphometrics are reliable in the discrimination of honeybee lines within subspecies only at the colony level. [Projekat Ministarstva nauke Republike Srbije, br. III43001

  10. Mapping the expression of soluble olfactory proteins in the honeybee.

    Dani, Francesca Romana; Iovinella, Immacolata; Felicioli, Antonio; Niccolini, Alberto; Calvello, Maria Antonietta; Carucci, Maria Giovanna; Qiao, Huili; Pieraccini, Giuseppe; Turillazzi, Stefano; Moneti, Gloriano; Pelosi, Paolo

    2010-04-01

    Chemical communication in insects is mediated by soluble binding proteins, belonging to two large families, Odorant-binding Proteins (OBPs) and Chemosensory Proteins (CSPs). Recently, evidence has been provided that OBPs are involved in recognition of chemical stimuli. We therefore decided to investigate the expression of OBPs and CSPs in the honeybee at the protein level, using a proteomic approach. Our results are in agreement with previous reports of expression at the RNA level and show that 12 of the 21 OBPs predicted in the genome of the honeybee Apis mellifera and 2 of the 6 CSPs are present in the foragers' antennae, while the larvae express only three OBPs and a single CSP. MALDI mass spectrometry on crude antennal extracts and MALDI profiling on sections of antennae demonstrated that these techniques can be applied to investigate individual differences in the expression of abundant proteins, such as OBPs and CSPs, as well as to detect the presence of proteins in different regions of the antenna. Finally, as part of a project aimed at the characterization of all OBPs and CSPs of the honeybee, we expressed 5 OBPs and 4 CSPs in a bacterial system and measured their affinity to a number of ligands. Clear differences in their binding spectra have been observed between OBPs, as well as CSPs. PMID:20155982

  11. Parasitic Cape honeybee workers, Apis mellifera capensis, evade policing

    Martin, Stephen J.; Beekman, Madeleine; Wossler, Theresa C.; Ratnieks, Francis L. W.

    2002-01-01

    Relocation of the Cape honeybee, Apis mellifera capensis, by bee-keepers from southern to northern South Africa in 1990 has caused widespread death of managed African honeybee, A. m. scutellata, colonies. Apis mellifera capensis worker bees are able to lay diploid, female eggs without mating by means of automictic thelytoky (meiosis followed by fusion of two meiotic products to restore egg diploidy), whereas workers of other honeybee subspecies are able to lay only haploid, male eggs. The A. m. capensis workers, which are parasitizing and killing A. m. scutellata colonies in northern South Africa, are the asexual offspring of a single, original worker in which the small amount of genetic variation observed is due to crossing over during meiosis (P. Kryger, personal communication). Here we elucidate two principal mechanisms underlying this parasitism. Parasitic A. m. capensis workers activate their ovaries in host colonies that have a queen present (queenright colonies), and they lay eggs that evade being killed by other workers (worker policing)-the normal fate of worker-laid eggs in colonies with a queen. This unique parasitism by workers is an instance in which a society is unable to control the selfish actions of its members.

  12. Mating flights select for symmetry in honeybee drones ( Apis mellifera)

    Jaffé, Rodolfo; Moritz, Robin F. A.

    2010-03-01

    Males of the honeybee ( Apis mellifera) fly to specific drone congregation areas (DCAs), which virgin queens visit in order to mate. From the thousands of drones that are reared in a single colony, only very few succeed in copulating with a queen, and therefore, a strong selection is expected to act on adult drones during their mating flights. In consequence, the gathering of drones at DCAs may serve as an indirect mate selection mechanism, assuring that queens only mate with those individuals having a better flight ability and a higher responsiveness to the queen’s visual and chemical cues. Here, we tested this idea relying on wing fluctuating asymmetry (FA) as a measure of phenotypic quality. By recapturing marked drones at a natural DCA and comparing their size and FA with a control sample of drones collected at their maternal hives, we were able to detect any selection on wing size and wing FA occurring during the mating flights. Although we found no solid evidence for selection on wing size, wing FA was found to be significantly lower in the drones collected at the DCA than in those collected at the hives. Our results demonstrate the action of selection during drone mating flights for the first time, showing that developmental stability can influence the mating ability of honeybee drones. We therefore conclude that selection during honeybee drone mating flights may confer some fitness advantages to the queens.

  13. Proteomic analysis of honeybee worker (Apis mellifera hypopharyngeal gland development

    Li Jianke

    2009-12-01

    Full Text Available Abstract Background Hypopharyngeal glands (HG of honeybee workers play an important role in honeybee nutrition and caste differentiation. Previous research mainly focused on age-dependent morphological, physiological, biochemical and genomic characters of the HG. Here proteomics and biochemical network analysis were used to follow protein changes during the HG development. Results A total of 87, 76, 85, 74, 71, and 55 proteins were unambiguously identified on day 1, 3, 6, 12, 15 and 20, respectively. These proteins were major royal jelly proteins (MRJPs, metabolism of carbohydrates, lipids and proteins, cytoskeleton, development regulation, antioxidant, molecule transporter, regulation of transcription/translation, proteins with folding functions. The most interesting is that MRJP's that have been detected in the HG of the newly emerged worker bees. The MRJP's expression is at peak level from 6-12 days, was validated by western blot analysis of MRJP1, 2 and 3. Moreover, 35 key node proteins were found in the biochemical networks of the HG. Conclusions HG secretes RJ at peak level within 6-12 days, but the worker bee can secrete royal jelly (RJ since birth, which is a new finding. Several key node proteins play an important role in the biochemical networks of the developing HG. This provides us some target proteins when genetically manipulating honeybees.

  14. The behavioural relevance of landmark texture for honeybee homing

    Laura eDittmar

    2011-04-01

    Full Text Available Honeybees visually pinpoint the location of a food source using landmarks. Studies on the role of visual memories have suggested that bees approach the goal by finding a close match between their current view and a memorized view of the goal location. The most relevant landmark features for this matching process seem to be their retinal positions, the size as defined by their edges, and their colour. Recently, we showed that honeybees can use landmarks that are statically camouflaged, suggesting that motion cues are relevant as well. Currently it is unclear how bees weight these different landmark features when accomplishing navigational tasks, and whether this depends on their saliency. Since natural objects are often distinguished by their texture, we investigate the behavioural relevance and the interplay of the spatial configuration and the texture of landmarks. We show that landmark texture is a feature that bees memorise, and being given the opportunity to identify landmarks by their texture improves the bees’ navigational performance. Landmark texture is weighted more strongly than landmark configuration when it provides the bees with positional information and when the texture is salient. In the vicinity of the landmark honeybees changed their flight behaviour according to its texture.

  15. Mechanisms, functions and ecology of colour vision in the honeybee.

    Hempel de Ibarra, N; Vorobyev, M; Menzel, R

    2014-06-01

    Research in the honeybee has laid the foundations for our understanding of insect colour vision. The trichromatic colour vision of honeybees shares fundamental properties with primate and human colour perception, such as colour constancy, colour opponency, segregation of colour and brightness coding. Laborious efforts to reconstruct the colour vision pathway in the honeybee have provided detailed descriptions of neural connectivity and the properties of photoreceptors and interneurons in the optic lobes of the bee brain. The modelling of colour perception advanced with the establishment of colour discrimination models that were based on experimental data, the Colour-Opponent Coding and Receptor Noise-Limited models, which are important tools for the quantitative assessment of bee colour vision and colour-guided behaviours. Major insights into the visual ecology of bees have been gained combining behavioural experiments and quantitative modelling, and asking how bee vision has influenced the evolution of flower colours and patterns. Recently research has focussed on the discrimination and categorisation of coloured patterns, colourful scenes and various other groupings of coloured stimuli, highlighting the bees' behavioural flexibility. The identification of perceptual mechanisms remains of fundamental importance for the interpretation of their learning strategies and performance in diverse experimental tasks. PMID:24828676

  16. Invasive ants carry novel viruses in their new range and form reservoirs for a honeybee pathogen.

    Sébastien, Alexandra; Lester, Philip J; Hall, Richard J; Wang, Jing; Moore, Nicole E; Gruber, Monica A M

    2015-09-01

    When exotic animal species invade new environments they also bring an often unknown microbial diversity, including pathogens. We describe a novel and widely distributed virus in one of the most globally widespread, abundant and damaging invasive ants (Argentine ants, Linepithema humile). The Linepithema humile virus 1 is a dicistrovirus, a viral family including species known to cause widespread arthropod disease. It was detected in samples from Argentina, Australia and New Zealand. Argentine ants in New Zealand were also infected with a strain of Deformed wing virus common to local hymenopteran species, which is a major pathogen widely associated with honeybee mortality. Evidence for active replication of viral RNA was apparent for both viruses. Our results suggest co-introduction and exchange of pathogens within local hymenopteran communities. These viral species may contribute to the collapse of Argentine ant populations and offer new options for the control of a globally widespread invader. PMID:26562935

  17. Modelling the subgenual organ of the honeybee, Apis mellifera

    Storm, Jesper; Kilpinen, Ole

    1998-01-01

    In a recent study on the honeybee (Apis mellifera), the subgenual organ was observed moving inside the leg during sinusoidal vibrations of the leg (Kilpinen and Storm 1997). The subgenual organ of the honeybee is suspended in a haemolymph channel in the tibia of each leg. When the leg accelerates...

  18. A selective sweep in a microsporidian parasite Nosema-tolerant honeybee population, Apis mellifera

    Huang, Q.; Lattorff, H. M. G.; Kryger, P.;

    2014-01-01

    Nosema is a microsporidian parasite of the honeybee, which infects the epithelial cells of the gut. In Denmark, honeybee colonies have been selectively bred for the absence of Nosema over decades, resulting in a breeding line that is tolerant toward Nosema infections. As the tolerance toward the ...

  19. A SNP test to identify Africanized honeybees via proportion of 'African' ancestry.

    Chapman, Nadine C; Harpur, Brock A; Lim, Julianne; Rinderer, Thomas E; Allsopp, Michael H; Zayed, Amro; Oldroyd, Benjamin P

    2015-11-01

    The honeybee, Apis mellifera, is the world's most important pollinator and is ubiquitous in most agricultural ecosystems. Four major evolutionary lineages and at least 24 subspecies are recognized. Commercial populations are mainly derived from subspecies originating in Europe (75-95%). The Africanized honeybee is a New World hybrid of A. m. scutellata from Africa and European subspecies, with the African component making up 50-90% of the genome. Africanized honeybees are considered undesirable for bee-keeping in most countries, due to their extreme defensiveness and poor honey production. The international trade in honeybees is restricted, due in part to bans on the importation of queens (and semen) from countries where Africanized honeybees are extant. Some desirable strains from the United States of America that have been bred for traits such as resistance to the mite Varroa destructor are unfortunately excluded from export to countries such as Australia due to the presence of Africanized honeybees in the USA. This study shows that a panel of 95 single nucleotide polymorphisms, chosen to differentiate between the African, Eastern European and Western European lineages, can detect Africanized honeybees with a high degree of confidence via ancestry assignment. Our panel therefore offers a valuable tool to mitigate the risks of spreading Africanized honeybees across the globe and may enable the resumption of queen and bee semen imports from the Americas. PMID:25846634

  20. Melittin, a honeybee venom‑derived antimicrobial peptide, may target methicillin‑resistant Staphylococcus aureus.

    Choi, Ji Hae; Jang, A Yeung; Lin, Shunmei; Lim, Sangyong; Kim, Dongho; Park, Kyungho; Han, Sang-Mi; Yeo, Joo-Hong; Seo, Ho Seong

    2015-11-01

    Methicillin‑resistant Staphylococcus aureus (MRSA) is difficult to treat using available antibiotic agents. Honeybee venom has been widely used as an oriental treatment for several inflammatory diseases and bacterial infections. The venom contains predominantly biologically active compounds, however, the therapeutic effects of such materials when used to treat MRSA infections have not been investigated extensively. The present study evaluated bee venom and its principal active component, melittin, in terms of their antibacterial activities and in vivo protection against MRSA infections. In vitro, bee venom and melittin exhibited comparable levels of antibacterial activity, which was more marked against MRSA strains, compared with other Gram‑positive bacteria. When MRSA‑infected mice were treated with bee venom or melittin, only the latter animals were successfully rescued from MRSA‑ induced bacteraemia or exhibited recovery from MRSA‑infected skin wounds. Together, the data of the present study demonstrated for the first time, to the best of our knowledge, that melittin may be used as a promising antimicrobial agent to enhance the healing of MRSA‑induced wounds. PMID:26330195

  1. Are commercial probiotics and prebiotics effective in the treatment and prevention of honeybee nosemosis C?

    Ptaszyńska, Aneta A; Borsuk, Grzegorz; Zdybicka-Barabas, Agnieszka; Cytryńska, Małgorzata; Małek, Wanda

    2016-01-01

    The study was conducted to investigate the effect of Lactobacillus rhamnosus (a commercial probiotic) and inulin (a prebiotic) on the survival rates of honeybees infected and uninfected with Nosema ceranae, the level of phenoloxidase (PO) activity, the course of nosemosis, and the effect on the prevention of nosemosis development in bees. The cells of L. rhamnosus exhibited a high rate of survival in 56.56 % sugar syrup, which was used to feed the honeybees. Surprisingly, honeybees fed with sugar syrup supplemented with a commercial probiotic and a probiotic + prebiotic were more susceptible to N. ceranae infection, and their lifespan was much shorter. The number of microsporidian spores in the honeybees fed for 9 days prior to N. ceranae infection with a sugar syrup supplemented with a commercial probiotic was 25 times higher (970 million spores per one honeybee) than in a control group fed with pure sucrose syrup (38 million spores per one honeybee). PO activity reached its highest level in the hemolymph of this honeybee control group uninfected with N. ceranae. The addition of probiotics or both probiotics and prebiotics to the food of uninfected bees led to the ~2-fold decrease in the PO activity. The infection of honeybees with N. ceranae accompanied an almost 20-fold decrease in the PO level. The inulin supplemented solely at a concentration of 2 μg/mL was the only administrated factor which did not significantly affect honeybees' survival, the PO activity, or the nosemosis infection level. In conclusion, the supplementation of honeybees' diet with improperly selected probiotics or both probiotics and prebiotics does not prevent nosemosis development, can de-regulate insect immune systems, and may significantly increase bee mortality. PMID:26437644

  2. Depression of brain dopamine and its metabolite after mating in European honeybee (Apis mellifera) queens

    Harano, Ken-Ichi; Sasaki, Ken; Nagao, Takashi

    2005-07-01

    To explore neuro-endocrinal changes in the brain of European honeybee (Apis mellifera) queens before and after mating, we measured the amount of several biogenic amines, including dopamine and its metabolite in the brain of 6- and 12-day-old virgins and 12-day-old mated queens. Twelve-day-old mated queens showed significantly lower amounts of dopamine and its metabolite (N-acetyldopamine) than both 6- and 12-day-old virgin queens, whereas significant differences in the amounts of these amines were not detected between 6- and 12-day-old virgin queens. These results are explained by down-regulation of both synthesis and secretion of brain dopamine after mating. It is speculated that higher amounts of brain dopamine in virgin queens might be involved in activation of ovarian follicles arrested in previtellogenic stages, as well as regulation of their characteristic behaviors.

  3. Sperm use economy of honeybee (Apis mellifera) queens.

    Baer, Boris; Collins, Jason; Maalaps, Kristiina; den Boer, Susanne P A

    2016-05-01

    The queens of eusocial ants, bees, and wasps only mate during a very brief period early in life to acquire and store a lifetime supply of sperm. As sperm cannot be replenished, queens have to be highly economic when using stored sperm to fertilize eggs, especially in species with large and long-lived colonies. However, queen fertility has not been studied in detail, so that we have little understanding of how economic sperm use is in different species, and whether queens are able to influence their sperm use. This is surprising given that sperm use is a key factor of eusocial life, as it determines the fecundity and longevity of queens and therefore colony fitness. We quantified the number of sperm that honeybee (Apis mellifera) queens use to fertilize eggs. We examined sperm use in naturally mated queens of different ages and in queens artificially inseminated with different volumes of semen. We found that queens are remarkably efficient and only use a median of 2 sperm per egg fertilization, with decreasing sperm use in older queens. The number of sperm in storage was always a significant predictor for the number of sperm used per fertilization, indicating that queens use a constant ratio of spermathecal fluid relative to total spermathecal volume of 2.364 × 10(-6) to fertilize eggs. This allowed us to calculate a lifetime fecundity for honeybee queens of around 1,500,000 fertilized eggs. Our data provide the first empirical evidence that honeybee queens do not manipulate sperm use, and fertilization failures in worker-destined eggs are therefore honest signals that workers can use to time queen replacement, which is crucial for colony performance and fitness. PMID:27217944

  4. Hox gene expression leads to differential hind leg development between honeybee castes.

    Bomtorin, Ana Durvalina; Barchuk, Angel Roberto; Moda, Livia Maria; Simoes, Zila Luz Paulino

    2012-01-01

    Beyond the physiological and behavioural, differences in appendage morphology between the workers and queens of Apis mellifera are pre-eminent. The hind legs of workers, which are highly specialized pollinators, deserve special attention. The hind tibia of worker has an expanded bristle-free region used for carrying pollen and propolis, the corbicula. In queens this structure is absent. Although the morphological differences are well characterized, the genetic inputs driving the development of this alternative morphology remain unknown. Leg phenotype determination takes place between the fourth and fifth larval instar and herein we show that the morphogenesis is completed at brown-eyed pupa. Using results from the hybridization of whole genome-based oligonucleotide arrays with RNA samples from hind leg imaginal discs of pre-pupal honeybees of both castes we present a list of 200 differentially expressed genes. Notably, there are castes preferentially expressed cuticular protein genes and members of the P450 family. We also provide results of qPCR analyses determining the developmental transcription profiles of eight selected genes, including abdominal-A, distal-less and ultrabithorax (Ubx), whose roles in leg development have been previously demonstrated in other insect models. Ubx expression in workers hind leg is approximately 25 times higher than in queens. Finally, immunohistochemistry assays show that Ubx localization during hind leg development resembles the bristles localization in the tibia/basitarsus of the adult legs in both castes. Our data strongly indicate that the development of the hind legs diphenism characteristic of this corbiculate species is driven by a set of caste-preferentially expressed genes, such as those encoding cuticular protein genes, P450 and Hox proteins, in response to the naturally different diets offered to honeybees during the larval period. PMID:22848371

  5. Neonicotinoid-Coated Zea mays Seeds Indirectly Affect Honeybee Performance and Pathogen Susceptibility in Field Trials.

    Alburaki, Mohamed; Boutin, Sébastien; Mercier, Pierre-Luc; Loublier, Yves; Chagnon, Madeleine; Derome, Nicolas

    2015-01-01

    Thirty-two honeybee (Apis mellifera) colonies were studied in order to detect and measure potential in vivo effects of neonicotinoid pesticides used in cornfields (Zea mays spp) on honeybee health. Honeybee colonies were randomly split on four different agricultural cornfield areas located near Quebec City, Canada. Two locations contained cornfields treated with a seed-coated systemic neonicotinoid insecticide while the two others were organic cornfields used as control treatments. Hives were extensively monitored for their performance and health traits over a period of two years. Honeybee viruses (brood queen cell virus BQCV, deformed wing virus DWV, and Israeli acute paralysis virus IAPV) and the brain specific expression of a biomarker of host physiological stress, the Acetylcholinesterase gene AChE, were investigated using RT-qPCR. Liquid chromatography-mass spectrometry (LC-MS) was performed to detect pesticide residues in adult bees, honey, pollen, and corn flowers collected from the studied hives in each location. In addition, general hive conditions were assessed by monitoring colony weight and brood development. Neonicotinoids were only identified in corn flowers at low concentrations. However, honeybee colonies located in neonicotinoid treated cornfields expressed significantly higher pathogen infection than those located in untreated cornfields. AChE levels showed elevated levels among honeybees that collected corn pollen from treated fields. Positive correlations were recorded between pathogens and the treated locations. Our data suggests that neonicotinoids indirectly weaken honeybee health by inducing physiological stress and increasing pathogen loads. PMID:25993642

  6. Neonicotinoid-Coated Zea mays Seeds Indirectly Affect Honeybee Performance and Pathogen Susceptibility in Field Trials.

    Mohamed Alburaki

    Full Text Available Thirty-two honeybee (Apis mellifera colonies were studied in order to detect and measure potential in vivo effects of neonicotinoid pesticides used in cornfields (Zea mays spp on honeybee health. Honeybee colonies were randomly split on four different agricultural cornfield areas located near Quebec City, Canada. Two locations contained cornfields treated with a seed-coated systemic neonicotinoid insecticide while the two others were organic cornfields used as control treatments. Hives were extensively monitored for their performance and health traits over a period of two years. Honeybee viruses (brood queen cell virus BQCV, deformed wing virus DWV, and Israeli acute paralysis virus IAPV and the brain specific expression of a biomarker of host physiological stress, the Acetylcholinesterase gene AChE, were investigated using RT-qPCR. Liquid chromatography-mass spectrometry (LC-MS was performed to detect pesticide residues in adult bees, honey, pollen, and corn flowers collected from the studied hives in each location. In addition, general hive conditions were assessed by monitoring colony weight and brood development. Neonicotinoids were only identified in corn flowers at low concentrations. However, honeybee colonies located in neonicotinoid treated cornfields expressed significantly higher pathogen infection than those located in untreated cornfields. AChE levels showed elevated levels among honeybees that collected corn pollen from treated fields. Positive correlations were recorded between pathogens and the treated locations. Our data suggests that neonicotinoids indirectly weaken honeybee health by inducing physiological stress and increasing pathogen loads.

  7. Neonicotinoid-Coated Zea mays Seeds Indirectly Affect Honeybee Performance and Pathogen Susceptibility in Field Trials

    Alburaki, Mohamed; Boutin, Sébastien; Mercier, Pierre-Luc; Loublier, Yves; Chagnon, Madeleine; Derome, Nicolas

    2015-01-01

    Thirty-two honeybee (Apis mellifera) colonies were studied in order to detect and measure potential in vivo effects of neonicotinoid pesticides used in cornfields (Zea mays spp) on honeybee health. Honeybee colonies were randomly split on four different agricultural cornfield areas located near Quebec City, Canada. Two locations contained cornfields treated with a seed-coated systemic neonicotinoid insecticide while the two others were organic cornfields used as control treatments. Hives were extensively monitored for their performance and health traits over a period of two years. Honeybee viruses (brood queen cell virus BQCV, deformed wing virus DWV, and Israeli acute paralysis virus IAPV) and the brain specific expression of a biomarker of host physiological stress, the Acetylcholinesterase gene AChE, were investigated using RT-qPCR. Liquid chromatography-mass spectrometry (LC-MS) was performed to detect pesticide residues in adult bees, honey, pollen, and corn flowers collected from the studied hives in each location. In addition, general hive conditions were assessed by monitoring colony weight and brood development. Neonicotinoids were only identified in corn flowers at low concentrations. However, honeybee colonies located in neonicotinoid treated cornfields expressed significantly higher pathogen infection than those located in untreated cornfields. AChE levels showed elevated levels among honeybees that collected corn pollen from treated fields. Positive correlations were recorded between pathogens and the treated locations. Our data suggests that neonicotinoids indirectly weaken honeybee health by inducing physiological stress and increasing pathogen loads. PMID:25993642

  8. A primary report on honeybee space-flight breeding

    The semen of honeybees (Apis mellifera ligustica and Apis mellifera carnica) was carried by the recoverable satellite for a spaceflight and was inseminated instrumentally to the virgin queens after returning to the earth. The preliminary results showed that both the vitality of the sperm and the survival rate of SP1 queen were lower than those of the control. Obvious variations in morphology appeared on the progeny workers of queens in SP2 and in SP3 generations, but most of variation were unfavorable. Mutants with desirable characters were not found after the space fight. (authors)

  9. Proteomic characterization of royal jelly proteins in Chinese (Apis cerana cerana) and European (Apis mellifera) honeybees.

    Qu, Ning; Jiang, Jie; Sun, Liangxian; Lai, Changcheng; Sun, Lifang; Wu, Xueji

    2008-06-01

    In this study, the proteins contained in royal jelly (RJ) derived from Chinese and European honeybees have been analyzed in detail and compared. Remarkable differences were found in the heterogeneity of major royal jelly proteins (MRJPs), MRJP2 and MRJP3, in terms of molecular weight and isoelectric points between the two species of RJ. MRJP2 and MRJP3 produced by Chinese honeybee are less polymorphic than those produced by European honeybee. This study is a contribution to the description of the royal jelly proteome. PMID:18620533

  10. Mimicking honeybee eyes with a 2800 field of view catadioptric imaging system

    We present a small single camera imaging system that provides a continuous 2800 field of view (FOV) inspired by the large FOV of insect eyes. This is achieved by combining a curved reflective surface that is machined into acrylic glass with lenses covering the frontal field that otherwise would have been obstructed by the mirror. Based on the work of Seidl (1982 PhD Thesis Technische Hochschule Darmstadt), we describe an extension of the 'bee eye optics simulation' (BEOS) model by Giger (1996 PhD Thesis Australian National University) to the full FOV which enables us to remap camera images according to the spatial resolution of honeybee eyes. This model is also useful for simulating the visual input of a bee-like agent in a virtual environment. The imaging system in combination with our bee eye model can serve as a tool for assessing the visual world from a bee's perspective which is particularly helpful for experimental setups. It is also well suited for mobile robots, in particular on flying vehicles that need light-weight sensors.

  11. Do honeybees, Apis mellifera scutellata, regulate humidity in their nest?

    Human, Hannelie; Nicolson, Sue W.; Dietemann, Vincent

    2006-08-01

    Honeybees are highly efficient at regulating the biophysical parameters of their hive according to colony needs. Thermoregulation has been the most extensively studied aspect of nest homeostasis. In contrast, little is known about how humidity is regulated in beehives, if at all. Although high humidity is necessary for brood development, regulation of this parameter by honeybee workers has not yet been demonstrated. In the past, humidity was measured too crudely for a regulation mechanism to be identified. We reassess this issue, using miniaturised data loggers that allow humidity measurements in natural situations and at several places in the nest. We present evidence that workers influence humidity in the hive. However, there are constraints on potential regulation mechanisms because humidity optima may vary in different locations of the nest. Humidity could also depend on variable external factors, such as water availability, which further impair the regulation. Moreover, there are trade-offs with the regulation of temperature and respiratory gas exchanges that can disrupt the establishment of optimal humidity levels. As a result, we argue that workers can only adjust humidity within sub-optimal limits.

  12. Complex memories in honeybees: can there be more than two?

    Reinhard, Judith; Srinivasan, Mandyam V; Zhang, Shaowu

    2006-04-01

    Foraging honeybees are likely to learn visual and chemical cues associated with many different food sources. Here, we explore how many such sources can be memorized and recalled. Marked bees were trained to visit two (or three) sugar feeders, each placed at a different outdoor location and carrying a different scent. We then tested the ability of the bees to recall these locations and fly to them, when the training scents were blown into the hive, and the scents and food at the feeders were removed. When trained on two feeder locations, each associated with a different scent, the bees could correctly recall the location associated with each scent. However, this ability broke down when the number of scents and feeder locations was increased to three. Performance was partially restored when each of the three training feeders was endowed with an additional cue, namely, a distinct colour. Our results suggest that bees can recall a maximum of two locations when each is associated with a different scent. However, this number can be increased if the scent cues are augmented by visual cues. These findings have implications for the ways in which associations are established and laid down in honeybee memory. PMID:16365769

  13. Breeding the Mite-Resistant Honeybee by Nutritional Crossbreed Technology

    XIE Xian-bing; PENG Wen-jun; ZENG Zhi-jiang

    2008-01-01

    Mite (Varroa destructor) is one of the most serious parasite threats to the honey bee (Apis mellifera) reared in China. The beekeepers mainly use the drug to control and kill the mite in the past years, but the honey products may be contaminated and the mite is becoming drug-resistant. The main idea of this paper is to research the possibility of mite-resistant honeybee rearing by nutritional crossbreed. The larvae (Apis mellifera ligustica) are bred with the royal jelly of Apis carana carana, and then the morphological index of the worker generation, genotypic frequency and gene frequency of the MDH Ⅱ, genetic resemblance, and mite resistance are measured. The results show that: compared to the parent workers, the proboscis length, anterior wing area, the total length of the third and fourth dorsal plate of the abdomen, the length of the fourth dorsal plate of the tuberculum, the area of the sixth abdominal segment, and the area of wax mirrors are significantly different, but the differences in the brachium index, dactylus index, and wing claw are not significant. Moreover, there are some mutations in the genotypic frequency and gene frequency of the MDH Ⅱ. The mite resistance of the nutritional crossbreed worker is significantly higher. The morphological, physical, and biochemical characters, genetic resemblance, and the mite-resistant ability of the worker generation can be changed by nutritional crossbreeding. Nutritional crossbreeding can be a new way to breed the honeybee.

  14. Mouthpart grooming behavior in honeybees: Kinematics and sectionalized friction between foreleg tarsi and proboscises.

    Linghu, Zelin; Wu, Jianing; Wang, Changlong; Yan, Shaoze

    2015-11-01

    The mouthpart of a honeybee is prone to contamination by granular particles such as pollen or dirt from the field. To clean the contaminated mouthparts, a honeybee swings its foreleg tarsi forward and backward to brush the proboscis continuously, sweeping the contaminant from the surfaces of the labial palpi, galeae, and bushy haired tongue (glossa). This grooming behavior has been documented but the dynamic characteristics therein have not been investigated yet. We quantified the grooming behavior of a honeybee from the perspective of kinematic and tribological properties. We captured high-speed videos that recorded the mouthpart grooming patterns of honeybees from the front and side views and measured the friction on the grooming surfaces using a precision dynamometer. During grooming, a honeybee first positions the mouthpart and then places a pair of foreleg tarsi to the tubular-folded galea. The tarsi press the galea and labial palpi and slide downward while keeping close contact with the galea. Then, the hairy glossa stretches out of the temporary tube with the glossa setae erected. The tarsi slowly slide down when grooming the glossa. In the return stroke of grooming, the foreleg tarsi detach from the mouthpart and retreat swiftly. Friction analysis shows that the honeybees can coordinate the velocity of the foreleg tarsi to the sectionalized tribological property of the tarsus-mouthpart interface. The specific grooming pattern enables honeybees to save energy and resist wear, resulting in a possible highly evolved grooming strategy. These findings lead to further understanding of the honeybee's grooming behavior facilitated by the special motion kinematics and friction characteristics. PMID:26453086

  15. Genetic tests for alleles of complementary-sex-determiner to support honeybee breeding programmes

    Hyink, Otto; Laas, Frans; Dearden, Peter

    2013-01-01

    International audience The honeybee haplodiploid sex determination system depends on genetic variation at the complementary sex-determiner (csd) locus. In closed populations of honeybees, especially those undergoing selective breeding, the number of csd alleles can drop such that brood viability is affected. Here we present two polymerase chain reaction tests that allow the discrimination of csd alleles. Such tests should find utility in bee breeding programmes allowing the tracking and ma...

  16. The Prevalence of Parasites and Pathogens in Asian Honeybees Apis cerana in China

    Li, Jilian; Qin, Haoran; Wu, Jie; Sadd, Ben M.; Wang, Xiuhong; Evans, Jay D.; Peng, Wenjun; Chen, Yanping

    2012-01-01

    Pathogens and parasites represent significant threats to the health and well-being of honeybee species that are key pollinators of agricultural crops and flowers worldwide. We conducted a nationwide survey to determine the occurrence and prevalence of pathogens and parasites in Asian honeybees, Apis cerana, in China. Our study provides evidence of infections of A. cerana by pathogenic Deformed wing virus (DWV), Black queen cell virus (BQCV), Nosema ceranae, and C. bombi species that have been...

  17. Genotype effect on regulation of behaviour by vitellogenin supports reproductive origin of honeybee foraging bias

    Ihle, Kate E.; Page, Robert E.; Frederick, Katy; Fondrk, M. Kim; Amdam, Gro V.

    2010-01-01

    In honeybee colonies, food collection is performed by a group of mostly sterile females called workers. After an initial nest phase, workers begin foraging for nectar and pollen, but tend to bias their collection towards one or the other. The foraging choice of honeybees is influenced by vitellogenin (vg), an egg-yolk precursor protein that is expressed although workers typically do not lay eggs. The forager reproductive ground plan hypothesis (RGPH) proposes an evolutionary path in which the...

  18. So Near and Yet So Far: Harmonic Radar Reveals Reduced Homing Ability of Nosema Infected Honeybees

    Stephan Wolf; McMahon, Dino P; Lim, Ka S.; Pull, Christopher D.; Clark, Suzanne J.; Paxton, Robert J.; Osborne, Juliet L.

    2014-01-01

    Pathogens may gain a fitness advantage through manipulation of the behaviour of their hosts. Likewise, host behavioural changes can be a defence mechanism, counteracting the impact of pathogens on host fitness. We apply harmonic radar technology to characterize the impact of an emerging pathogen - Nosema ceranae (Microsporidia) - on honeybee (Apis mellifera) flight and orientation performance in the field. Honeybees are the most important commercial pollinators. Emerging diseases have been pr...

  19. Expression and characterization of honeybee, Apis mellifera, larva chymotrypsin-like protease

    Matsuoka, Takuma; Takasaki, Akihiko; Mishima, Tomoyuki; Kawashima, Takuji; Kanamaru, Yoshihiro; Nakamura, Tadasi; Yabe, Tomio

    2015-01-01

    International audience Previously, we found three enzyme fractions containing activities for the hydrolysis of royal jelly proteins from honeybee queen larvae. In this study, we identified a honeybee chymotrypsin-like protease (HCLPase) by LC-MS/MS and expressed it as a recombinant protein in Escherichia coli. The protease had an estimated molecular weight of around 26 kDa and showed high specificity for succinyl-Ala-Ala-Pro-Phe p-nitroanilide as a proteolytic substrate. Furthermore, the p...

  20. Molecular characterization and population structure of the honeybees from the balearic islands (Spain)

    De la Rúa, Pilar; Galián, José; Serrano, José; Moritz, R.

    2001-01-01

    International audience Honeybees (Apis mellifera L.) were collected from 23 localities on the Balearic islands in the Mediterranean Sea. The mitochondrial genome (mtDNA) was surveyed for diagnostic restriction sites and characterized with DraI digestion of the tRNA$^{{\\rm leu}}$-COII intergenic region. Both approaches demonstrated that honeybees bearing either African or west European haplotypes coexist on the Balearic islands. Two African and two west European haplotypes were found with d...

  1. PRELIMINARY RESEARCHES REGARDING THE GENETIC AND MORPHOMETRIC CHARACTERIZATION OF HONEYBEES (A. MELLIFERA L.) FROM ROMANIA

    ELIZA CAUIA; DANIELA USURELU; LAURA MONICA MAGDALENA; Cimponeriu, D; POMPILIA APOSTOL; A. SICEANU; ALINA HOLBAN; L. Gavrila

    2013-01-01

    The international investigations regarding the honeybees’ diversity carried out until now have revealed a certain degree of genetic pollution in different countries from Europe, because of the import of more productive honeybees’ races or of some interracial honeybees’ hybrids. This fact might have a negative impact on the success adaptability of honeybees at the ecosystem. Although, the Romanian honeybees (Apis mellifera carpathica) are well adapted to the local conditions and express a good...

  2. Effects of Sublethal Doses of Imidacloprid on Young Adult Honeybee Behaviour

    Carolina Mengoni Goñalons; Walter Marcelo Farina

    2015-01-01

    Imidacloprid (IMI), a neonicotinoid used for its high selective toxicity to insects, is one of the most commonly used pesticides. However, its effect on beneficial insects such as the honeybee Apis mellifera L is still controversial. As young adult workers perform in-hive duties that are crucial for colony maintenance and survival, we aimed to assess the effect of sublethal IMI doses on honeybee behaviour during this period. Also, because this insecticide acts as a cholinergic-nicotinic agoni...

  3. Crop flower visitation by honeybees, bumblebees and solitary bees: behavioural differences and diversity responses to landscape

    Woodcock, B. A.; Edwards, M.; Redhead, J; Meak, W.R.; Nuttall, P; Falk, S; Nowakowski, M.; Pywell, R.F.

    2013-01-01

    In Europe, oilseed rape is the principal crop used in the production of edible and renewable fuel oil products. Insect pollinators, in particular bees, have been shown to have a positive effect on the seed set of this crop. We undertook experiments looking at behavioural differences between honeybees, bumblebees and solitary bees visiting oilseed rape flowers, and related this to landscape scale responses in visitation rates. We found that behavioural differences between honeybees, bumblebees...

  4. The Genetic Architecture of Sucrose Responsiveness in the Honeybee (Apis mellifera L.)

    Rueppell, Olav; Chandra, Sathees B.C.; Pankiw, Tanya; Fondrk, M. Kim; Beye, Martin; Hunt, Greg; Page, Robert E.

    2006-01-01

    One of the best examples of a natural behavioral syndrome is the pollen-hoarding syndrome in honeybees that ties together multiple behavioral phenotypes, ranging from foraging behavior to behavioral ontogeny and learning performance. A central behavioral factor is the bees' responsiveness to sucrose, measured as their proboscis extension reflex. This study examines the genetics of this trait in diploid worker and haploid male honeybees (drones) to learn more about the genetic architecture of ...

  5. Use of oxalic acid to control Varroa destructor in honeybee (Apis mellifera L.) colonies

    AKYOL, Ethem; YENİNAR, Halil

    2009-01-01

    This study was carried out to determine the effects of oxalic acid (OA) on reducing Varroa mite (Varroa destructor) populations in honeybee (Apis mellifera L.) colonies in the fall. Twenty honeybee colonies, in wooden Langstroth hives, were used in this experiment. Average Varroa infestation levels (%) of the OA and control groups were 25.87% and 24.57% on adult workers before the treatments. The OA treatments were applied twice, on 3 November and 13 November 2006. Average Varroa infestation ...

  6. Male behavioural maturation rate responds to selection on pollen hoarding in honeybees

    Rueppell, Olav; Page, Robert E.; Fondrk, M. Kim

    2006-01-01

    Division of labour in social insect colonies relies on behavioural functional differentiation (specialization) of individuals with similar genomes. However, individual behavioural traits do not evolve independently of each other (behavioural syndromes). A prime example is the suite of behavioural differences in honeybee workers that has evolved in response to bidirectional selection on pollen hoarding of honeybee colonies (pollen-hoarding syndrome). More generally, these differences reflect f...

  7. Drag reduction effects facilitated by microridges inside the mouthparts of honeybee workers and drones.

    Li, Chu-Chu; Wu, Jia-Ning; Yang, Yun-Qiang; Zhu, Ren-Gao; Yan, Shao-Ze

    2016-01-21

    The mouthpart of a honeybee is a natural well-designed micropump that uses a reciprocating glossa through a temporary tube comprising a pair of galeae and labial palpi for loading nectar. The shapes and sizes of mouthparts differ among castes of honeybees, but the diversities of the functional microstructures inside the mouthparts of honeybee workers and drones remain poorly understood. Through scanning electron microscopy, we found the dimensional difference of uniformly distributed microridges on the inner galeae walls of Apis mellifera ligustica workers and drones. Subsequently, we recorded the feeding process of live honeybees by using a specially designed high-speed camera system. Considering the microridges and kinematics of the glossa, we constructed a hydrodynamic model to calculate the friction coefficient of the mouthpart. In addition, we test the drag reduction through the dimensional variations of the microridges on the inner walls of mouthparts. Theoretical estimations of the friction coefficient with respect to dipping frequency show that inner microridges can reduce friction during the feeding process of honeybees. The effects of drag reduction regulated by specific microridges were then compared. The friction coefficients of the workers and drones were found to be 0.011±0.007 (mean±s.d.) and 0.045±0.010, respectively. These results indicate that the mouthparts of workers are more capable of drag reduction compared with those of drones. The difference was analyzed by comparing the foraging behavior of the workers and drones. Workers are equipped with well-developed hypopharyngeal, and their dipping frequency is higher than that of drones. Our research establishes a critical link between microridge dimensions and drag reduction capability during the nectar feeding of honeybees. Our results reveal that microridges inside the mouthparts of honeybee workers and drones reflect the caste-related life cycles of honeybees. PMID:26542139

  8. Absence of nepotism in the harassment of duelling queens by honeybee workers.

    Gilley, David C

    2003-01-01

    Nepotism shapes interactions among the members of almost every animal society. However, clear evidence of nepotism within highly cooperative insect societies, such as ant, wasp and honeybee colonies, is rare. Recent empirical findings suggest that nepotism occurs within honeybee colonies where kin-selection theory most strongly predicts its existence: during the lethal queen-queen duels that determine which of several young queens will become the colony's next queen. In this study, I test whe...

  9. Am5-HT7: molecular and pharmacological characterization of the first serotonin receptor of the honeybee (Apis mellifera).

    Schlenstedt, Jana; Balfanz, Sabine; Baumann, Arnd; Blenau, Wolfgang

    2006-09-01

    The biogenic amine serotonin (5-HT) plays a key role in the regulation and modulation of many physiological and behavioural processes in both vertebrates and invertebrates. These functions are mediated through the binding of serotonin to its receptors, of which 13 subtypes have been characterized in vertebrates. We have isolated a cDNA from the honeybee Apis mellifera (Am5-ht7) sharing high similarity to members of the 5-HT(7) receptor family. Expression of the Am5-HT(7) receptor in HEK293 cells results in an increase in basal cAMP levels, suggesting that Am5-HT(7) is expressed as a constitutively active receptor. Serotonin application to Am5-ht7-transfected cells elevates cyclic adenosine 3',5'-monophosphate (cAMP) levels in a dose-dependent manner (EC(50) = 1.1-1.8 nm). The Am5-HT(7) receptor is also activated by 5-carboxamidotryptamine, whereas methiothepin acts as an inverse agonist. Receptor expression has been investigated by RT-PCR, in situ hybridization, and western blotting experiments. Receptor mRNA is expressed in the perikarya of various brain neuropils, including intrinsic mushroom body neurons, and in peripheral organs. This study marks the first comprehensive characterization of a serotonin receptor in the honeybee and should facilitate further analysis of the role(s) of the receptor in mediating the various central and peripheral effects of 5-HT. PMID:16945110

  10. A descriptive study of the prevalence of parasites and pathogens in Chinese black honeybees.

    Peng, Wenjun; Li, Jilian; Zhao, Yazhou; Chen, Yanping; Zeng, Zhijiang

    2015-09-01

    The Chinese black honey bee is a distinct honey bee subspecies distributed in the Xinjiang, Heilongjiang and Jilin Provinces of China. We conducted a study to investigate the genetic origin and the parasite/pathogen profile on Chinese black honeybees. The phylogenetic analysis indicated that Chinese black honeybees were two distinct groups: one group of bees formed a distinct clade that was most similar to Apis mellifera mellifera and the other group was a hybrid of the subspecies, Apis mellifera carnica, Apis mellifera anatolica and Apis mellifera caucasica. This suggests that the beekeeping practices might have promoted gene flow between different subspecies. Screening for pathogens and parasites showed that Varroa destructor and viruses were detected at low prevalence in Chinese black honeybees, compared with Italian bees. Further, a population of pure breeding black honeybees, A. m. mellifera, displayed a high degree of resistance to Varroa. No Varroa mites or Deformed wing virus could be detected in any examined bee colonies. This finding suggests that a population of pure breeding Chinese black honeybees possess some natural resistance to Varroa and indicated the need or importance for the conservation of the black honeybees in China. PMID:26291681

  11. Seasonal prevalence of pathogens and parasites in the savannah honeybee (Apis mellifera scutellata).

    Strauss, Ursula; Human, Hannelie; Gauthier, Laurent; Crewe, Robin M; Dietemann, Vincent; Pirk, Christian W W

    2013-09-01

    The loss of Apis mellifera L. colonies in recent years has, in many regions of the world, been alarmingly high. No single cause has been identified for these losses, but the interactions between several factors (mostly pathogens and parasites) have been held responsible. Work in the Americas on honeybees originating mainly from South Africa indicates that Africanised honeybees are less affected by the interplay of pathogens and parasites. However, little is known about the health status of South African honeybees (A. m. scutellata and A. m. capensis) in relation to pathogens and parasites. We therefore compared the seasonal prevalence of honeybee pathogens (viruses, bacteria, fungi) and parasites (mites, bee lice, wax moth, small hive beetles, A. m. capensis social parasites) between sedentary and migratory A. m. scutellata apiaries situated in the Gauteng region of South Africa. No significant differences were found in the prevalence of pathogens and parasites between sedentary and migratory apiaries. Three (Black queen cell virus, Varroa destructor virus 1 and Israeli acute paralysis virus) of the eight viruses screened were detected, a remarkable difference compared to European honeybees. Even though no bacterial pathogens were detected, Nosema apis and Chalkbrood were confirmed. All of the honeybee parasites were found in the majority of the apiaries with the most common parasite being the Varroa mite. In spite of hosting few pathogens, yet most parasites, A. m. scutellata colonies appeared to be healthy. PMID:23702244

  12. GC-MS investigation of the chemical composition of honeybee drone and queen larvae homogenate

    Isidorov Valery A.

    2016-06-01

    Full Text Available Honeybee larva homogenate appears to be underrated and insufficiently explored but this homogenate is an exceptionally valuable honeybee product. Drone larva homogenate is very nutritional due to its high content of proteins, free amino acids, lipids, and carbohydrates. Moreover, the biological characteristics of honeybee larvae indicate the presence of chemical substances that may be pharmacologically active. In spite of the above, the chemical composition of honeybee larva has not gained as much attention as that of other bee products. In this study, the chemical composition of honeybee brood homogenate has been investigated using gas chromatography/mass spectrometry. As a result, it was possible to isolate as many as 115 extractive organic compounds from 6 samples of crude queen and 9 samples of drone homogenate. The main groups of substances extracted from either type of homogenate were composed of free amino acids and carbohydrates. The relative content of amino acids in queen homogenate as well as the share of essential amino acids were found to be higher than in the drone homogenate. Disaccharide trehalose was the dominant sugar in the queen larvae, whilst glucose prevailed in the drone larvae. Comparative chemical analyses of honeybee queen and drone larva homogenates have allowed us to make a preliminary inference about a higher overall value of the former.

  13. Antennal proteome comparison of sexually mature drone and forager honeybees.

    Feng, Mao; Song, Feifei; Aleku, Dereje Woltedji; Han, Bin; Fang, Yu; Li, Jianke

    2011-07-01

    Honeybees have evolved an intricate system of chemical communication to regulate their complex social interactions. Specific proteins involved in odorant detection most likely supported this chemical communication. Odorant reception takes place mainly in the antennae within hairlike structures called olfactory sensilla. Antennal proteomes of sexually mature drone and forager worker bees (an age group of bees assigned to perform field tasks) were compared using two-dimensional electrophoresis, mass spectrometry, quantitative real-time polymerase chain reaction, and bioinformatics. Sixty-one differentially expressed proteins were identified in which 67% were highly upregulated in the drones' antennae whereas only 33% upregulated in the worker bees' antennae. The antennae of the worker bees strongly expressed carbohydrate and energy metabolism and molecular transporters signifying a strong demand for metabolic energy and odorant binding proteins for their foraging activities and other olfactory responses, while proteins related to fatty acid metabolism, antioxidation, and protein folding were strongly upregulated in the drones' antennae as an indication of the importance for the detection and degradation of sex pheromones during queen identification for mating. On the basis of both groups of altered antenna proteins, carbohydrate metabolism and energy production and molecular transporters comprised more than 80% of the functional enrichment analysis and 45% of the constructed biological interaction networks (BIN), respectively. This suggests these two protein families play crucial roles in the antennal olfactory function of sexually mature drone and forager worker bees. Several key node proteins in the BIN were validated at the transcript level. This first global proteomic comparative analysis of antennae reveals sex-biased protein expression in both bees, indicating that odorant response mechanisms are sex-specific because of natural selection for different olfactory

  14. How does the mite Varroa destructor kill the honeybee Apis mellifera? Alteration of cuticular hydrcarbons and water loss in infested honeybees.

    Annoscia, Desiderato; Del Piccolo, Fabio; Nazzi, Francesco

    2012-12-01

    Several factors threaten the health of honeybees; among them the parasitic mite Varroa destructor and the Deformed Wing Virus play a major role. Recently, the dangerous interplay between the mite and the virus was studied in detail and the transition, triggered by mite feeding, from a benign covert infection to a devastating viral outbreak, characterized by an intense viral replication, associated with some characteristic symptoms, was described. In order to gain insight into the events preceding that crucial transition we carried out standardized lab experiments aiming at studying the effects of parasitization in asymptomatic bees to establish a relationship between such effects and bee mortality. It appears that parasitization alters the capacity of the honeybee to regulate water exchange; this, in turn, has severe effects on bee survival. These results are discussed in light of possible novel strategies aiming at mitigating the impact of the parasite on honeybee health. PMID:23041382

  15. Diversity of Melissococcus plutonius from honeybee larvae in Japan and experimental reproduction of European foulbrood with cultured atypical isolates.

    Rie Arai

    Full Text Available European foulbrood (EFB is an important infectious disease of honeybee larvae, but its pathogenic mechanisms are still poorly understood. The causative agent, Melissococcus plutonius, is a fastidious organism, and microaerophilic to anaerobic conditions and the addition of potassium phosphate to culture media are required for growth. Although M. plutonius is believed to be remarkably homologous, in addition to M. plutonius isolates with typical cultural characteristics, M. plutonius-like organisms, with characteristics seemingly different from those of typical M. plutonius, have often been isolated from diseased larvae with clinical signs of EFB in Japan. Cultural and biochemical characterization of 14 M. plutonius and 19 M. plutonius-like strain/isolates revealed that, unlike typical M. plutonius strain/isolates, M. plutonius-like isolates were not fastidious, and the addition of potassium phosphate was not required for normal growth. Moreover, only M. plutonius-like isolates, but not typical M. plutonius strain/isolates, grew anaerobically on sodium phosphate-supplemented medium and aerobically on some potassium salt-supplemented media, were positive for β-glucosidase activity, hydrolyzed esculin, and produced acid from L-arabinose, D-cellobiose, and salicin. Despite the phenotypic differences, 16S rRNA gene sequence analysis and DNA-DNA hybridization demonstrated that M. plutonius-like organisms were taxonomically identical to M. plutonius. However, by pulsed-field gel electrophoresis analysis, these typical and atypical (M. plutonius-like isolates were separately grouped into two genetically distinct clusters. Although M. plutonius is known to lose virulence quickly when cultured artificially, experimental infection of representative isolates showed that atypical M. plutonius maintained the ability to cause EFB in honeybee larvae even after cultured in vitro in laboratory media. Because the rapid decrease of virulence in cultured M

  16. Diversity of Melissococcus plutonius from honeybee larvae in Japan and experimental reproduction of European foulbrood with cultured atypical isolates.

    Arai, Rie; Tominaga, Kiyoshi; Wu, Meihua; Okura, Masatoshi; Ito, Kazutomo; Okamura, Naomi; Onishi, Hidetaka; Osaki, Makoto; Sugimura, Yuya; Yoshiyama, Mikio; Takamatsu, Daisuke

    2012-01-01

    European foulbrood (EFB) is an important infectious disease of honeybee larvae, but its pathogenic mechanisms are still poorly understood. The causative agent, Melissococcus plutonius, is a fastidious organism, and microaerophilic to anaerobic conditions and the addition of potassium phosphate to culture media are required for growth. Although M. plutonius is believed to be remarkably homologous, in addition to M. plutonius isolates with typical cultural characteristics, M. plutonius-like organisms, with characteristics seemingly different from those of typical M. plutonius, have often been isolated from diseased larvae with clinical signs of EFB in Japan. Cultural and biochemical characterization of 14 M. plutonius and 19 M. plutonius-like strain/isolates revealed that, unlike typical M. plutonius strain/isolates, M. plutonius-like isolates were not fastidious, and the addition of potassium phosphate was not required for normal growth. Moreover, only M. plutonius-like isolates, but not typical M. plutonius strain/isolates, grew anaerobically on sodium phosphate-supplemented medium and aerobically on some potassium salt-supplemented media, were positive for β-glucosidase activity, hydrolyzed esculin, and produced acid from L-arabinose, D-cellobiose, and salicin. Despite the phenotypic differences, 16S rRNA gene sequence analysis and DNA-DNA hybridization demonstrated that M. plutonius-like organisms were taxonomically identical to M. plutonius. However, by pulsed-field gel electrophoresis analysis, these typical and atypical (M. plutonius-like) isolates were separately grouped into two genetically distinct clusters. Although M. plutonius is known to lose virulence quickly when cultured artificially, experimental infection of representative isolates showed that atypical M. plutonius maintained the ability to cause EFB in honeybee larvae even after cultured in vitro in laboratory media. Because the rapid decrease of virulence in cultured M. plutonius was a major

  17. Airflow and optic flow mediate antennal positioning in flying honeybees

    Roy Khurana, Taruni; Sane, Sanjay P

    2016-01-01

    To maintain their speeds during navigation, insects rely on feedback from their visual and mechanosensory modalities. Although optic flow plays an essential role in speed determination, it is less reliable under conditions of low light or sparse landmarks. Under such conditions, insects rely on feedback from antennal mechanosensors but it is not clear how these inputs combine to elicit flight-related antennal behaviours. We here show that antennal movements of the honeybee, Apis mellifera, are governed by combined visual and antennal mechanosensory inputs. Frontal airflow, as experienced during forward flight, causes antennae to actively move forward as a sigmoidal function of absolute airspeed values. However, corresponding front-to-back optic flow causes antennae to move backward, as a linear function of relative optic flow, opposite the airspeed response. When combined, these inputs maintain antennal position in a state of dynamic equilibrium. DOI: http://dx.doi.org/10.7554/eLife.14449.001 PMID:27097104

  18. Wax combs mediate nestmate recognition by guard honeybees

    D'Ettorre, Patrizia; Wenseleers, Tom; Dawson, Jenny;

    2006-01-01

    context of bees at colony entrances. Wax combs constructed by each experimental colony were swapped between hives and the acceptance of nestmate and non-nestmate forager workers was recorded before and after the swap, and in relation to a control hive not involved in the swap. We conducted the experiment......Research has shown that the wax combs are important in the acquisition of colony odour in the honeybee, Apis mellifera. However, many of these studies were conducted in the laboratory or under artificial conditions. We investigated the role of the wax combs in nestmate recognition in the natural...... in the first year, and from 8 to 47% in the second year. This effect wore off within 3 weeks. Chemical analyses showed that the cuticular profile of non-nestmates involved in the experimental comb swap became more similar to each other after the swap, and that acceptance by guards of bees from...

  19. Airflow and optic flow mediate antennal positioning in flying honeybees.

    Roy Khurana, Taruni; Sane, Sanjay P

    2016-01-01

    To maintain their speeds during navigation, insects rely on feedback from their visual and mechanosensory modalities. Although optic flow plays an essential role in speed determination, it is less reliable under conditions of low light or sparse landmarks. Under such conditions, insects rely on feedback from antennal mechanosensors but it is not clear how these inputs combine to elicit flight-related antennal behaviours. We here show that antennal movements of the honeybee, Apis mellifera, are governed by combined visual and antennal mechanosensory inputs. Frontal airflow, as experienced during forward flight, causes antennae to actively move forward as a sigmoidal function of absolute airspeed values. However, corresponding front-to-back optic flow causes antennae to move backward, as a linear function of relative optic flow, opposite the airspeed response. When combined, these inputs maintain antennal position in a state of dynamic equilibrium. PMID:27097104

  20. Pheromonal contest between honeybee workers ( Apis mellifera capensis)

    Moritz, R. F. A.; Simon, U. E.; Crewe, R. M.

    2000-10-01

    Queenless workers of the Cape honeybee ( Apis mellifera capensis) can develop into reproductives termed pseudoqueens. Although they morphologically remain workers they become physiologically queenlike, produce offspring, and secrete mandibular gland pheromones similar to those of true queens. However, after queen loss only very few workers gain pseudoqueen status. A strong intracolonial selection governs which workers start oviposition and which remain sterile. The "queen substance", 9-keto-2(E)-decenoic acid (9-ODA), the dominant compound of the queen's mandibular gland pheromones, suppresses the secretion of queenlike mandibular gland pheromones in workers. It may act as an important signal in pseudoqueen selection. By analysing the mandibular gland pheromones of workers kept in pairs, we found that A. m. capensis workers compete to produce the strongest queen-like signal.

  1. Conditioning procedure and color discrimination in the honeybee Apis mellifera

    Giurfa, Martin

    We studied the influence of the conditioning procedure on color discrimination by free-flying honeybees. We asked whether absolute and differential conditioning result in different discrimination capabilities for the same pairs of colored targets. In absolute conditioning, bees were rewarded on a single color; in differential conditioning, bees were rewarded on the same color but an alternative, non-rewarding, similar color was also visible. In both conditioning procedures, bees learned their respective task and could also discriminate the training stimulus from a novel stimulus that was perceptually different from the trained one. Discrimination between perceptually closer stimuli was possible after differential conditioning but not after absolute conditioning. Differences in attention inculcated by these training procedures may underlie the different discrimination performances of the bees.

  2. Memory formation in reversal learning of the honeybee

    Randolf Menzel

    2010-12-01

    Full Text Available In reversal learning animals are first trained with a differential learning protocol, where they learn to respond to a reinforced odor (CS+ and not to respond to a nonreinforced odor (CS-. Once they respond correctly to this rule, the contingencies of the conditioned stimuli are reversed, and animals learn to adjust their response to the new rule. This study investigated the effect of a protein synthesis inhibitor (emetine on the memory formed after reversal learning in the honeybee Apis mellifera. Two groups of bees were studied: summer bees and winter bees, each yielded different results. Blocking protein synthesis in summer bees inhibits consolidation of the excitatory learning following reversal learning whereas it blocked the consolidation of the inhibitory learning in winter bees. These findings suggest that excitatory and inhibitory learning may involve different molecular processes in bees, which are seasonally dependent.

  3. Multiple host shifts by the emerging honeybee parasite, Varroa jacobsoni.

    Roberts, J M K; Anderson, D L; Tay, W T

    2015-05-01

    Host shifts are a key mechanism of parasite evolution and responsible for the emergence of many economically important pathogens. Varroa destructor has been a major factor in global honeybee (Apis mellifera) declines since shifting hosts from the Asian honeybee (Apis cerana) > 50 years ago. Until recently, only two haplotypes of V. destructor (Korea and Japan) had successfully host shifted to A. mellifera. In 2008, the sister species V. jacobsoni was found for the first time parasitizing A. mellifera in Papua New Guinea (PNG). This recent host shift presents a serious threat to world apiculture but also provides the opportunity to examine host shifting in this system. We used 12 microsatellites to compare genetic variation of V. jacobsoni on A. mellifera in PNG with mites on A. cerana in both PNG and surrounding regions. We identified two distinct lineages of V. jacobsoni reproducing on A. mellifera in PNG. Our analysis indicated independent host shift events have occurred through small numbers of mites shifting from local A. cerana populations. Additional lineages were found in the neighbouring Papua and Solomon Islands that had partially host shifted to A. mellifera, that is producing immature offspring on drone brood only. These mites were likely in transition to full colonization of A. mellifera. Significant population structure between mites on the different hosts suggested host shifted V. jacobsoni populations may not still reproduce on A. cerana, although limited gene flow may exist. Our studies provide further insight into parasite host shift evolution and help characterize this new Varroa mite threat to A. mellifera worldwide. PMID:25846956

  4. Olfactory subsystems in the honeybee: sensory supply and sex specificity.

    Kropf, Jan; Kelber, Christina; Bieringer, Kathrin; Rössler, Wolfgang

    2014-09-01

    The antennae of honeybee (Apis mellifera) workers and drones differ in various aspects. One striking difference is the presence of Sensilla basiconica in (female) workers and their absence in (male) drones. We investigate the axonal projection patterns of olfactory receptor neurons (ORNs) housed in S. basiconica in honeybee workers by using selective anterograde labeling with fluorescent tracers and confocal-microscopy analysis of axonal projections in antennal lobe glomeruli. Axons of S. basiconica-associated ORNs preferentially projected into a specific glomerular cluster in the antennal lobe, namely the sensory input-tract three (T3) cluster. T3-associated glomeruli had previously been shown to be innervated by uniglomerular projection (output) neurons of the medial antennal lobe tract (mALT). As the number of T3 glomeruli is reduced in drones, we wished to determine whether this was associated with the reduction of glomeruli innervated by medial-tract projection neurons. We retrogradely traced mALT projection neurons in drones and counted the innervated glomeruli. The number of mALT-associated glomeruli was strongly reduced in drones compared with workers. The preferential projections of S. basiconica-associated ORNs in T3 glomeruli together with the reduction of mALT-associated glomeruli support the presence of a female (worker)-specific olfactory subsystem that is partly innervated by ORNs from S. basiconica and is associated with the T3 cluster of glomeruli and mALT projection neurons. We propose that this olfactory subsystem supports parallel olfactory processing related to worker-specific olfactory tasks such as the coding of colony odors, colony pheromones and/or odorants associated with foraging on floral resources. PMID:24817103

  5. Reproductive interference between honeybee species in artificial sympatry.

    Remnant, Emily J; Koetz, Anna; Tan, Ken; Hinson, Eloise; Beekman, Madeleine; Oldroyd, Benjamin P

    2014-03-01

    Reproductive isolation between closely related species is often incomplete. The Western honeybee, Apis mellifera, and the Eastern hive bee, Apis cerana, have been allopatric for millions of years, but are nonetheless similar in morphology and behaviour. During the last century, the two species were brought into contact anthropogenically, providing potential opportunities for interspecific matings. Hybrids between A. mellifera and A. cerana are inviable, so natural interspecific matings are of concern because they may reduce the viability of A. cerana and A. mellifera populations - two of the world's most important pollinators. We examined the mating behaviour of A. mellifera and A. cerana queens and drones from Caoba Basin, China and Cairns, Australia. Drone mating flight times overlap in both areas. Analysis of the spermathecal contents of queens with species-specific genetic markers indicated that in Caoba Basin, 14% of A. mellifera queens mated with at least one A. cerana male, but we detected no A. cerana queens that had mated with A. mellifera males. Similarly, in Cairns, no A. cerana queens carried A. mellifera sperm, but one-third of A. mellifera queens had mated with at least one A. cerana male. No hybrid embryos were detected in eggs laid by interspecifically mated A. mellifera queens in either location. However, A. mellifera queens artificially inseminated with A. cerana sperm produced inviable hybrid eggs or unfertilized drones. This suggests that reproductive interference will impact the viability of honeybee populations wherever A. cerana and A. mellifera are in contact. PMID:24443879

  6. Similar effects of disease-modifying antirheumatic drugs, glucocorticoids, and biologic agents on radiographic progression in rheumatoid arthritis: meta-analysis of 70 randomized placebo-controlled or drug-controlled studies, including 112 comparisons

    Graudal, Niels; Jürgens, Gesche

    2010-01-01

    To define the differences in effects on joint destruction in rheumatoid arthritis (RA) patients between therapy with single and combination disease-modifying antirheumatic drugs (DMARDs), glucocorticoids, and biologic agents.......To define the differences in effects on joint destruction in rheumatoid arthritis (RA) patients between therapy with single and combination disease-modifying antirheumatic drugs (DMARDs), glucocorticoids, and biologic agents....

  7. Nosema Tolerant Honeybees (Apis mellifera) Escape Parasitic Manipulation of Apoptosis

    Kurze, Christoph; Le Conte, Yves; Dussaubat, Claudia;

    2015-01-01

    conducted three inoculation experiments to investigate in the apoptotic respond during infection with the intracellular gut pathogen Nosema ceranae, which is considered as potential global threat to the honeybee (Apis mellifera) and other bee pollinators, in sensitive and tolerant honeybees. To explore...

  8. Beehold : the colony of the honeybee (Apis mellifera L) as a bio-sampler for pollutants and plant pathogens

    Steen, van der J.J.M.

    2016-01-01

    Bio-sampling is a function of bio-indication. Bio-indication with honeybee colonies (Apis mellifera L) is where the research fields of environmental technology and apiculture overlap. The honeybees are samplers of the environment by collecting unintentionally and simultaneously, along with nectar, p

  9. Similar effects of disease-modifying antirheumatic drugs, glucocorticoids, and biologic agents on radiographic progression in rheumatoid arthritis: meta-analysis of 70 randomized placebo-controlled or drug-controlled studies, including 112 comparisons

    Graudal, Niels; Jürgens, Gesche

    2010-01-01

    To define the differences in effects on joint destruction in rheumatoid arthritis (RA) patients between therapy with single and combination disease-modifying antirheumatic drugs (DMARDs), glucocorticoids, and biologic agents....

  10. Effects of sublethal dose of fipronil on neuron metabolic activity of Africanized honeybees.

    Roat, Thaisa Cristina; Carvalho, Stephan M; Nocelli, Roberta C F; Silva-Zacarin, Elaine C M; Palma, Mario Sérgio; Malaspina, Osmar

    2013-04-01

    Fipronil is a neurotoxic insecticide that inhibits the gamma-aminobutyric acid receptor and can affect gustative perception, olfactory learning, and motor activity of the honeybee Apis mellifera. This study determined the lethal dose (LD50) and the lethal concentration (LC50) for Africanized honeybee and evaluated the toxicity of a sublethal dose of fipronil on neuron metabolic activity by way of histochemical analysis using cytochrome oxidase detection in brains from worker bees of different ages. In addition, the present study investigated the recovery mechanism by discontinuing the oral exposure to fipronil. The results showed that mushroom bodies of aged Africanized honeybees are affected by fipronil, which causes changes in metabolism by increasing the respiratory activity of mitochondria. In antennal lobes, the sublethal dose of fipronil did not cause an increase in metabolic activity. The recovery experiments showed that discontinued exposure to a diet contaminated with fipronil did not lead to recovery of neural activity. Our results show that even at very low concentrations, fipronil is harmful to honeybees and can induce several types of injuries to honeybee physiology. PMID:23224048

  11. Biphasic responses of the honeybee heart to nanomolar concentrations of amitraz.

    Papaefthimiou, Chrisovalantis; Papachristoforou, Alexandros; Theophilidis, George

    2013-09-01

    Amitraz is a pesticide targeting the octopaminergic receptors. In a previous study, octopamine, a biogenic amine, was found to induce a biphasic effect on the honeybee heart, inhibition at low concentrations and excitation at high concentrations. Furthermore, the honeybee heart was found to be far more sensitive to octopamine compared to other insect hearts. The objective of the present study was to investigate the effects of amitraz on the electrical and mechanical properties of the honeybee heart ex vivo and on the heart rate in vivo. In ex vivo conditions, amitraz at 10(-12) M caused a significant inhibition in the mechanical (pinhibition for 7.86±1.26 min (n=7), followed by strong excitation of spontaneously-generated contractions (n=7). The initial elimination of heart activity was caused by strong hyperpolarization, while the subsequent excitation was caused by a depolarization in the membrane potential of pacemaker cells at 10(-9) M (n=8). In the in vivo experiments, abdominal injection or oral application of 0.20 ng of amitraz per bee induced a persistent increase of 134.28±4.07% (p<0.05, n=4) in the frequency of the cardiac action potentials. The above responses clearly show that the heart of the honeybee is extremely vulnerable to amitraz, which is nevertheless still used inside beehives, ostensibly to "protect" the honeybees against their main parasite, Varroa destructor. PMID:25149247

  12. Neural organization and visual processing in the anterior optic tubercle of the honeybee brain.

    Mota, Theo; Yamagata, Nobuhiro; Giurfa, Martin; Gronenberg, Wulfila; Sandoz, Jean-Christophe

    2011-08-10

    The honeybee Apis mellifera represents a valuable model for studying the neural segregation and integration of visual information. Vision in honeybees has been extensively studied at the behavioral level and, to a lesser degree, at the physiological level using intracellular electrophysiological recordings of single neurons. However, our knowledge of visual processing in honeybees is still limited by the lack of functional studies of visual processing at the circuit level. Here we contribute to filling this gap by providing a neuroanatomical and neurophysiological characterization at the circuit level of a practically unstudied visual area of the bee brain, the anterior optic tubercle (AOTu). First, we analyzed the internal organization and neuronal connections of the AOTu. Second, we established a novel protocol for performing optophysiological recordings of visual circuit activity in the honeybee brain and studied the responses of AOTu interneurons during stimulation of distinct eye regions. Our neuroanatomical data show an intricate compartmentalization and connectivity of the AOTu, revealing a dorsoventral segregation of the visual input to the AOTu. Light stimuli presented in different parts of the visual field (dorsal, lateral, or ventral) induce distinct patterns of activation in AOTu output interneurons, retaining to some extent the dorsoventral input segregation revealed by our neuroanatomical data. In particular, activity patterns evoked by dorsal and ventral eye stimulation are clearly segregated into distinct AOTu subunits. Our results therefore suggest an involvement of the AOTu in the processing of dorsoventrally segregated visual information in the honeybee brain. PMID:21832175

  13. Isolation and characterization of a Nocardiopsis sp. from honeybee guts.

    Patil, Preeti B; Zeng, Yu; Coursey, Tami; Houston, Preston; Miller, Iain; Chen, Shawn

    2010-11-01

    Although actinomycetes are the plant-associated environmental bacteria best known for producing thousands of antibiotics, their presence in the guts of flower-feeding honeybees has rarely been reported. Here, we report on the selective isolation of actinomycetes from the gut microbiota of healthy honeybees, and their inhibitory activity against honeybee indigenous bacteria. More than 70% of the sampled honeybees (N>40) in a season carried at least one CFU of actinomycete. The isolates from bees of one location produced inhibitory bioactivities that were almost exclusively against several bee indigenous Bacillus strains and Gram-positive human pathogens but not Escherichia coli. An antibiotic-producing actinomycete closely related to Nocardiopsis alba was isolated from the guts in every season of the year. A DNA fragment encoding a homologous gene (phzD) involved in phenazine biosynthesis was identified in the isolate. Expression of the phzD detected by reverse transcription-PCR can explain the survival of this organism in anaerobic environments as some redox-active extracellular phenazines are commonly regarded as respiratory electron acceptors. The results raise important questions concerning the roles of the antibiotic-producing actinomycetes and the phenazine-like molecules in honeybee guts and honey. PMID:20846361

  14. Transcriptome analyses of the honeybee response to Nosema ceranae and insecticides.

    Julie Aufauvre

    Full Text Available Honeybees (Apis mellifera are constantly exposed to a wide variety of environmental stressors such as parasites and pesticides. Among them, Nosema ceranae and neurotoxic insecticides might act in combination and lead to a higher honeybee mortality. We investigated the molecular response of honeybees exposed to N. ceranae, to insecticides (fipronil or imidacloprid, and to a combination of both stressors. Midgut transcriptional changes induced by these stressors were measured in two independent experiments combining a global RNA-Seq transcriptomic approach with the screening of the expression of selected genes by quantitative RT-PCR. Although N. ceranae-insecticide combinations induced a significant increase in honeybee mortality, we observed that they did not lead to a synergistic effect. According to gene expression profiles, chronic exposure to insecticides had no significant impact on detoxifying genes but repressed the expression of immunity-related genes. Honeybees treated with N. ceranae, alone or in combination with an insecticide, showed a strong alteration of midgut immunity together with modifications affecting cuticle coatings and trehalose metabolism. An increasing impact of treatments on gene expression profiles with time was identified suggesting an absence of stress recovery which could be linked to the higher mortality rates observed.

  15. Six quantitative trait loci influence task thresholds for hygienic behaviour in honeybees (Apis mellifera).

    Oxley, Peter R; Spivak, Marla; Oldroyd, Benjamin P

    2010-04-01

    Honeybee hygienic behaviour provides colonies with protection from many pathogens and is an important model system of the genetics of a complex behaviour. It is a textbook example of complex behaviour under simple genetic control: hygienic behaviour consists of two components--uncapping a diseased brood cell, followed by removal of the contents--each of which are thought to be modulated independently by a few loci of medium to large effect. A worker's genetic propensity to engage in hygienic tasks affects the intensity of the stimulus required before she initiates the behaviour. Genetic diversity within colonies leads to task specialization among workers, with a minority of workers performing the majority of nest-cleaning tasks. We identify three quantitative trait loci that influence the likelihood that workers will engage in hygienic behaviour and account for up to 30% of the phenotypic variability in hygienic behaviour in our population. Furthermore, we identify two loci that influence the likelihood that a worker will perform uncapping behaviour only, and one locus that influences removal behaviour. We report the first candidate genes associated with engaging in hygienic behaviour, including four genes involved in olfaction, learning and social behaviour, and one gene involved in circadian locomotion. These candidates will allow molecular characterization of this distinctive behavioural mode of disease resistance, as well as providing the opportunity for marker-assisted selection for this commercially significant trait. PMID:20298472

  16. Quantum chemical study on the stability of honeybee queen pheromone against atmospheric factors.

    Shi, Rongwei; Liu, Fanglin

    2016-06-01

    The managed honeybee, Apis mellifera, has been experienced a puzzling event, termed as colony collapse disorder (CCD), in which worker bees abruptly disappear from their hives. Potential factors include parasites, pesticides, malnutrition, and environmental stresses. However, so far, no definitive relationship has been established between specific causal factors and CCD events. Here we theoretically test whether atmospheric environment could disturb the chemical communication between the queen and their workers in a colony. A quantum chemistry method has been used to investigate for the stability of the component of A. mellifera queen mandibular pheromone (QMP), (E)-9-keto-2-decenoic acid (9-ODA), against atmospheric water and free radicals. The results show that 9-ODA is less likely to react with water due to the high barrier heights (~36.5 kcal · mol(-1)) and very low reaction rates. However, it can easily react with triplet oxygen and hydroxyl radicals because of low or negative energy barriers. Thus, the atmospheric free radicals may disturb the chemical communication between the queen and their daughters in a colony. Our pilot study provides new insight for the cause of CCD, which has been reported throughout the world. PMID:27207255

  17. Extensive population admixture on drone congregation areas of the giant honeybee, Apis dorsata (Fabricius, 1793).

    Beaurepaire, Alexis L; Kraus, Bernard F; Koeniger, Gudrun; Koeniger, Nikolaus; Lim, Herbert; Moritz, Robin F A

    2014-12-01

    The giant honeybee Apis dorsata often forms dense colony aggregations which can include up to 200 often closely related nests in the same location, setting the stage for inbred matings. Yet, like in all other Apis species, A. dorsata queens mate in mid-air on lek like drone congregation areas (DCAs) where large numbers of males gather in flight. We here report how the drone composition of A. dorsata DCAs facilitates outbreeding, taking into the account both spatial (three DCAs) and temporal (subsequent sampling days) dynamics. We compared the drones' genotypes at ten microsatellite DNA markers with those of the queen genotypes of six drone-producing colonies located close to the DCAs (Tenom, Sabah, Malaysia). None of 430 sampled drones originated from any of these nearby colonies. Moreover, we estimated that 141 unidentified colonies were contributing to the three DCAs. Most of these colonies were participating multiple times in the different locations and/or during the consecutive days of sampling. The drones sampled in the DCAs could be attributed to six subpopulations. These were all admixed in all DCA samples, increasing the effective population size an order of magnitude and preventing matings between potentially related queens and drones. PMID:25558361

  18. Exposure to Sublethal Doses of Fipronil and Thiacloprid Highly Increases Mortality of Honeybees Previously Infected by Nosema ceranae

    Vidau, Cyril; Diogon, Marie; Aufauvre, Julie; Fontbonne, Régis; Viguès, Bernard; Brunet, Jean-Luc; Texier, Catherine; Biron, David G.; Blot, Nicolas; El Alaoui, Hicham; Belzunces, Luc P.; Delbac, Frédéric

    2011-01-01

    Background The honeybee, Apis mellifera, is undergoing a worldwide decline whose origin is still in debate. Studies performed for twenty years suggest that this decline may involve both infectious diseases and exposure to pesticides. Joint action of pathogens and chemicals are known to threaten several organisms but the combined effects of these stressors were poorly investigated in honeybees. Our study was designed to explore the effect of Nosema ceranae infection on honeybee sensitivity to sublethal doses of the insecticides fipronil and thiacloprid. Methodology/Finding Five days after their emergence, honeybees were divided in 6 experimental groups: (i) uninfected controls, (ii) infected with N. ceranae, (iii) uninfected and exposed to fipronil, (iv) uninfected and exposed to thiacloprid, (v) infected with N. ceranae and exposed 10 days post-infection (p.i.) to fipronil, and (vi) infected with N. ceranae and exposed 10 days p.i. to thiacloprid. Honeybee mortality and insecticide consumption were analyzed daily and the intestinal spore content was evaluated 20 days after infection. A significant increase in honeybee mortality was observed when N. ceranae-infected honeybees were exposed to sublethal doses of insecticides. Surprisingly, exposures to fipronil and thiacloprid had opposite effects on microsporidian spore production. Analysis of the honeybee detoxification system 10 days p.i. showed that N. ceranae infection induced an increase in glutathione-S-transferase activity in midgut and fat body but not in 7-ethoxycoumarin-O-deethylase activity. Conclusions/Significance After exposure to sublethal doses of fipronil or thiacloprid a higher mortality was observed in N. ceranae-infected honeybees than in uninfected ones. The synergistic effect of N. ceranae and insecticide on honeybee mortality, however, did not appear strongly linked to a decrease of the insect detoxification system. These data support the hypothesis that the combination of the increasing

  19. Exposure to sublethal doses of fipronil and thiacloprid highly increases mortality of honeybees previously infected by Nosema ceranae.

    Cyril Vidau

    Full Text Available BACKGROUND: The honeybee, Apis mellifera, is undergoing a worldwide decline whose origin is still in debate. Studies performed for twenty years suggest that this decline may involve both infectious diseases and exposure to pesticides. Joint action of pathogens and chemicals are known to threaten several organisms but the combined effects of these stressors were poorly investigated in honeybees. Our study was designed to explore the effect of Nosema ceranae infection on honeybee sensitivity to sublethal doses of the insecticides fipronil and thiacloprid. METHODOLOGY/FINDING: Five days after their emergence, honeybees were divided in 6 experimental groups: (i uninfected controls, (ii infected with N. ceranae, (iii uninfected and exposed to fipronil, (iv uninfected and exposed to thiacloprid, (v infected with N. ceranae and exposed 10 days post-infection (p.i. to fipronil, and (vi infected with N. ceranae and exposed 10 days p.i. to thiacloprid. Honeybee mortality and insecticide consumption were analyzed daily and the intestinal spore content was evaluated 20 days after infection. A significant increase in honeybee mortality was observed when N. ceranae-infected honeybees were exposed to sublethal doses of insecticides. Surprisingly, exposures to fipronil and thiacloprid had opposite effects on microsporidian spore production. Analysis of the honeybee detoxification system 10 days p.i. showed that N. ceranae infection induced an increase in glutathione-S-transferase activity in midgut and fat body but not in 7-ethoxycoumarin-O-deethylase activity. CONCLUSIONS/SIGNIFICANCE: After exposure to sublethal doses of fipronil or thiacloprid a higher mortality was observed in N. ceranae-infected honeybees than in uninfected ones. The synergistic effect of N. ceranae and insecticide on honeybee mortality, however, did not appear strongly linked to a decrease of the insect detoxification system. These data support the hypothesis that the combination of the

  20. Short-sighted evolution of virulence in parasitic honeybee workers ( Apis mellifera capensis Esch.)

    Moritz, Robin F. A.; Pirk, Christian W. W.; Hepburn, H. Randall; Neumann, Peter

    2008-06-01

    The short-sighted selection hypothesis for parasite virulence predicts that winners of within-host competition are poorer at transmission to new hosts. Social parasitism by self-replicating, female-producing workers occurs in the Cape honeybee Apis mellifera capensis, and colonies of other honeybee subspecies are susceptible hosts. We found high within-host virulence but low transmission rates in a clone of social parasitic A. m. capensis workers invading the neighbouring subspecies A. m. scutellata. In contrast, parasitic workers from the endemic range of A. m. capensis showed low within-host virulence but high transmission rates. This suggests a short-sighted selection scenario for the host-parasite co-evolution in the invasive range of the Cape honeybee, probably facilitated by beekeeping-assisted parasite transmission in apiaries.

  1. Long-term maintenance of in vitro cultured honeybee (Apis mellifera embryonic cells

    Aamodt Randi M

    2006-03-01

    Full Text Available Abstract Background In vitro cultivation of cells allows novel investigation of in vivo- mechanisms and is a helpful tool in developmental biology, biochemistry and functional genomics. Numerous cell lines of insect species, e.g., silkworm and mosquito, have been reported. However, this is not the case for successful long-term cultivation of cells in honeybees. Results Methods for cultivation of honeybee embryonic cells are discussed here. Pre-gastrula stage embryos were used to initiate cultures, and cells were reared on 96-wells microplates with Grace insect medium, supplemented with Fetal Bovine Serum. Cells proliferated in clusters, and maintained viable and mitotic for more than three months. Conclusion We report here, for the first time, long-term cultivation of honeybee cells. Results represent a highly useful in vitro-system for studying a model organism of increasing importance in areas such as aging, sociality and neurobiology.

  2. Agricultural Policies Exacerbate Honeybee Pollination Service Supply-Demand Mismatches Across Europe

    Breeze, Tom D.; Vaissière, Bernard E.; Bommarco, Riccardo; Petanidou, Theodora; Seraphides, Nicos; Kozák, Lajos; Scheper, Jeroen; Biesmeijer, Jacobus C.; Kleijn, David; Gyldenkærne, Steen; Moretti, Marco; Holzschuh, Andrea; Steffan-Dewenter, Ingolf; Stout, Jane C.; Pärtel, Meelis; Zobel, Martin; Potts, Simon G.

    2014-01-01

    Declines in insect pollinators across Europe have raised concerns about the supply of pollination services to agriculture. Simultaneously, EU agricultural and biofuel policies have encouraged substantial growth in the cultivated area of insect pollinated crops across the continent. Using data from 41 European countries, this study demonstrates that the recommended number of honeybees required to provide crop pollination across Europe has risen 4.9 times as fast as honeybee stocks between 2005 and 2010. Consequently, honeybee stocks were insufficient to supply >90% of demands in 22 countries studied. These findings raise concerns about the capacity of many countries to cope with major losses of wild pollinators and highlight numerous critical gaps in current understanding of pollination service supplies and demands, pointing to a pressing need for further research into this issue. PMID:24421873

  3. Chemical Composition of Different Botanical Origin Honeys Produced by Sicilian Black Honeybees (Apis mellifera ssp. sicula).

    Mannina, Luisa; Sobolev, Anatoly P; Di Lorenzo, Arianna; Vista, Silvia; Tenore, Gian Carlo; Daglia, Maria

    2015-07-01

    In 2008 a Slow Food Presidium was launched in Sicily (Italy) for an early warning of the risk of extinction of the Sicilian native breed of black honeybee (Apis mellifera L. ssp sicula). Today, the honey produced by these honeybees is the only Sicilian honey produced entirely by the black honeybees. In view of few available data regarding the chemical composition of A. mellifera ssp. sicula honeys, in the present investigation the chemical compositions of sulla honey (Hedysarum coronarium L.) and dill honey (Anethum graveolens L.) were studied with a multimethodological approach, which consists of HPLC-PDA-ESI-MSn and NMR spectroscopy. Moreover, three unifloral honeys (lemon honey (obtained from Citrus limon (L.) Osbeck), orange honey (Citrus arantium L.), and medlar honey (Eriobotrya japonica (Thunb.) Lindl)), with known phenol and polyphenol compositions, were studied with NMR spectroscopy to deepen the knowledge about sugar and amino acid compositions. PMID:25730368

  4. Interactions among flavonoids of propolis affect antibacterial activity against the honeybee pathogen Paenibacillus larvae.

    Mihai, Cristina Manuela; Mărghitaş, Liviu Al; Dezmirean, Daniel S; Chirilă, Flore; Moritz, Robin F A; Schlüns, Helge

    2012-05-01

    Propolis is derived from plant resins, collected by honeybees (Apis mellifera) and renown for its antibacterial properties. Here we test the antibacterial effects of ethanolic extracts of propolis from different origins on Paenibacillus larvae, the bacterial pathogen that causes American Foulbrood, a larval disease that can kill the honeybee colony. All tested propolis samples inhibited significantly the growth of P. larvae tested in vitro. The extracts showed major differences in the content of total flavonoids (ranging from 2.4% to 16.4%) and the total polyphenols (ranging between 23.3% and 63.2%). We found that it is not only the content of compounds in propolis, which influences the strength of antimicrobial effects but there is also a significant interaction effect among flavonoids of the propolis extracts. We propose that interaction effects among the various chemical compounds in propolis should be taken into account when considering the antibacterial effects against honeybee pathogens. PMID:22386493

  5. Biologic Activities of Honeybee Products Obtained From Different Phytogeographical Regions of Turkey

    Hamide Doğan

    2014-06-01

    Full Text Available Honeybee products are rich in phenolic compounds, which effect as natural antioxidants. These compounds may be attached as indicators in studies into the floral and geographical origin of the natural bee products. In this study, we aimed to determine average total antioxidant capacity, average total oxidant capacity and average oxidative stress index of natural bee products obtained from different regions of Turkey. Collected honeybee samples were kept at +4o C until extracted. Natural bee products were extracted with specific methods and antioxidant capacities were defined with in vitro analyses and data were compared. As a result, the highest average total antioxidant capacities were observed in propolis and pollen samples. Total antioxidant capacities of honeybee products collected from various regions demonstrated differences (P<0.05 because of different phytogeographical characteristics of regions of Turkey.

  6. The effectiveness and cost-effectiveness of erythropoiesis-stimulating agents (epoetin and darbepoetin) for treating cancer treatment-induced anaemia (including review of technology appraisal no. 142): a systematic review and economic model.

    Crathorne, Louise; Huxley, Nicola; Haasova, Marcela; Snowsill, Tristan; Jones-Hughes, Tracey; Hoyle, Martin; Briscoe, Simon; Coelho, Helen; Long, Linda; Medina-Lara, Antonieta; Mujica-Mota, Ruben; Napier, Mark; Hyde, Chris

    2016-01-01

    BACKGROUND Anaemia is a common side effect of cancer treatments and can lead to a reduction in quality of life. Erythropoiesis-stimulating agents (ESAs) are licensed for use in conjunction with red blood cell transfusions to improve cancer treatment-induced anaemia (CIA). OBJECTIVE To investigate the effectiveness and cost-effectiveness of ESAs in anaemia associated with cancer treatment (specifically chemotherapy). DATA SOURCES The following databases were searched from 2004 to 2013: The Cochrane Library, MEDLINE, MEDLINE In-Process & Other Non-Indexed Citations, EMBASE, Web of Science, Cumulative Index to Nursing and Allied Health Literature, British Nursing Index, Health Management Information Consortium, Current Controlled Trials and ClinicalTrials.gov. The US Food and Drug Administration and European Medicines Agency websites were also searched. Bibliographies of included papers were scrutinised for further potentially includable studies. REVIEW METHODS The clinical effectiveness review followed principles published by the NHS Centre for Reviews and Dissemination. Randomised controlled trials (RCTs), or systematic reviews of RCTs, of ESAs (epoetin or darbepoetin) for treating people with CIA were eligible for inclusion in the review. Comparators were best supportive care, placebo or other ESAs. Anaemia- and malignancy-related outcomes, health-related quality of life (HRQoL) and adverse events (AEs) were evaluated. When appropriate, data were pooled using meta-analysis. An empirical health economic model was developed comparing ESA treatment with no ESA treatment. The model comprised two components: one evaluating short-term costs and quality-adjusted life-years (QALYs) (while patients are anaemic) and one evaluating long-term QALYs. Costs and benefits were discounted at 3.5% per annum. Probabilistic and univariate deterministic sensitivity analyses were performed. RESULTS Of 1457 titles and abstracts screened, 23 studies assessing ESAs within their licensed

  7. Rapid detection of sacbrood virus in honeybee using ultra-rapid real-time polymerase chain reaction.

    Yoo, Mi-Sun; Thi, Kim Cuc Nguyen; Van Nguyen, Phu; Han, Sang-Hoon; Kwon, Soon-Hwan; Yoon, Byoung-Su

    2012-01-01

    A real-time reverse transcription-polymerase chain reaction (qRT-PCR) assay was developed for the fast and highly sensitive detection of the sacbrood virus (SBV) genome and applied to honeybee samples. Using plasmid DNA containing a partial SBV genome and diluted serially, as few as 1×10(2)copies/μl (correlation co-efficiency >0.99) were detected by the qRT-PCR assay, whereas 1×10(3)copies/μl were detected by the conventional RT-PCR assay. As a rapid detection method, ultra-rapid real-time PCR (URRT-PCR) was carried out with a GenSpector TMC-1000 silicon-glass chip-based thermal cycler, which has a 6μl micro-chamber volume and a fast outstandingly heating/cooling rate. Using this method, 10(3)copies of pBX-SBV3.8 clone were detected within 17 min after 40 PCR cycles, including melting point analysis. To reduce the detection time for SBV, synthesis of the cDNA of the SBV genome from a honeybee sample was attempted for different reaction times and the cDNA was used as the template for URRT-PCR assays. The results indicated that a 5 min reaction time was sufficient to synthesize cDNA as the template for the SBV URRT-PCR assay. This study described a novel PCR-based method that is able to detect an RNA virus in environmental samples within 22 min, including reverse transcription, PCR detection and melting point analysis in real-time. PMID:22079620

  8. A strong immune response in young adult honeybees masks their increased susceptibility to infection compared to older bees.

    James C Bull

    2012-12-01

    Full Text Available Honeybees, Apis mellifera, show age-related division of labor in which young adults perform maintenance ("housekeeping" tasks inside the colony before switching to outside foraging at approximately 23 days old. Disease resistance is an important feature of honeybee biology, but little is known about the interaction of pathogens and age-related division of labor. We tested a hypothesis that older forager bees and younger "house" bees differ in susceptibility to infection. We coupled an infection bioassay with a functional analysis of gene expression in individual bees using a whole genome microarray. Forager bees treated with the entomopathogenic fungus Metarhizium anisopliae s.l. survived for significantly longer than house bees. This was concomitant with substantial differences in gene expression including genes associated with immune function. In house bees, infection was associated with differential expression of 35 candidate immune genes contrasted with differential expression of only two candidate immune genes in forager bees. For control bees (i.e. not treated with M. anisopliae the development from the house to the forager stage was associated with differential expression of 49 candidate immune genes, including up-regulation of the antimicrobial peptide gene abaecin, plus major components of the Toll pathway, serine proteases, and serpins. We infer that reduced pathogen susceptibility in forager bees was associated with age-related activation of specific immune system pathways. Our findings contrast with the view that the immunocompetence in social insects declines with the onset of foraging as a result of a trade-off in the allocation of resources for foraging. The up-regulation of immune-related genes in young adult bees in response to M. anisopliae infection was an indicator of disease susceptibility; this also challenges previous research in social insects, in which an elevated immune status has been used as a marker of increased

  9. Rapid odor processing in the honeybee antennal lobe network

    Randolf Menzel

    2009-01-01

    Full Text Available In their natural environment, many insects need to identify and evaluate behaviorally relevant odorants on a rich and dynamic olfactory background. Behavioral studies have demonstrated that bees recognize learned odors within less than 200ms, indicating a rapid processing of olfactory input in the sensory pathway. We studied the role of the honeybee antennal lobe network in constructing a fast and reliable code of odor identity using in vivo intracellular recordings of individual projection neurons (PNs and local interneurons (LNs. We found a complementary ensemble code where odor identity is encoded in the spatio-temporal pattern of response latencies as well as in the pattern of activated and inactivated PN firing. This coding scheme rapidly reaches a stable representation within 50-150ms after stimulus onset. Testing an odor mixture versus its individual compounds revealed different representations in the two morphologically distinct types of lateral and median (l- and m- PNs. Individual m-PNs mixture responses were dominated by the most effective compound (elemental representation whereas l-PNs showed suppressed responses to the mixture but not to its individual compounds (synthetic representation. The onset of inhibition in the membrane potential of l-PNs coincided with the responses of putative inhibitory interneurons that responded significantly faster than PNs. Taken together, our results suggest that processing within the local interneuron network of the AL is an essential component of constructing the antennal lobe population code.

  10. Rapid learning dynamics in individual honeybees during classical conditioning

    Evren Pamir

    2014-09-01

    Full Text Available Associative learning in insects has been studied extensively by a multitude of classical conditioning protocols. However, so far little emphasis has been put on the dynamics of learning in individuals. The honeybee is a well-established animal model for learning and memory. We here studied associative learning as expressed in individual behavior based on a large collection of data on olfactory classical conditioning (25 datasets, 3,298 animals. We show that the group-averaged learning curve and memory retention score confound three attributes of individual learning: the ability or inability to learn a given task, the generally fast acquisition of a conditioned response in learners, and the high stability of the conditioned response during consecutive training and memory retention trials. We reassessed the prevailing view that more training results in better memory performance and found that 24h memory retention can be indistinguishable after single-trial and multiple-trial conditioning in individuals. We explain how inter-individual differences in learning can be accommodated within the Rescorla-Wagner theory of associative learning. In both data-analysis and modeling we demonstrate how the conflict between population-level and single-animal perspectives on learning and memory can be disentangled.

  11. Contribution of honeybee drones of different age to colonial thermoregulation.

    Kovac, Helmut; Stabentheiner, Anton; Brodschneider, Robert

    2009-01-01

    In addition to honeybee workers, drones also contribute to colonial thermoregulation. We show the drones' contribution to thermoregulation at 5 different experimental temperatures ranging from 15-34 °C. The frequency and the degree of endothermy depended on the drones' local ambient temperature and age. Location on brood or non-brood areas had no influence. The frequency of endothermic drones and the intensity of endothermy increased with decreasing temperature. 30% of drones of 8 days and older heated their thorax by more than 1 °C above the abdomen. The youngest drones (0-2 days) did not exceed this level of endothermy. Though young drones were less often engaged in active heat production, their contribution to brood warming was not insignificant because their abundance on the brood nest was 3.5 times higher than that of the oldest drones (≥13 days). Results suggest that the stimulus for the drones' increased frequency of heating at low experimental temperatures was their low local ambient air and/or comb temperature. PMID:22140282

  12. Floral odor learning within the hive affects honeybees' foraging decisions

    Arenas, Andrés; Fernández, Vanesa M.; Farina, Walter M.

    2007-03-01

    Honeybees learn odor cues quickly and efficiently when visiting rewarding flowers. Memorization of these cues facilitates the localization and recognition of food sources during foraging flights. Bees can also use information gained inside the hive during social interactions with successful foragers. An important information cue that can be learned during these interactions is food odor. However, little is known about how floral odors learned in the hive affect later decisions of foragers in the field. We studied the effect of food scent on foraging preferences when this learning is acquired directly inside the hive. By using in-hive feeders that were removed 24 h before the test, we showed that foragers use the odor information acquired during a 3-day stimulation period with a scented solution during a food-choice situation outside the nest. This bias in food preference is maintained even 24 h after the replacement of all the hive combs. Thus, without being previously collected outside by foragers, food odors learned within the hive can be used during short-range foraging flights. Moreover, correct landings at a dual-choice device after replacing the storing combs suggests that long-term memories formed within the colony can be retrieved while bees search for food in the field.

  13. The prevalence of parasites and pathogens in Asian honeybees Apis cerana in China.

    Jilian Li

    Full Text Available Pathogens and parasites represent significant threats to the health and well-being of honeybee species that are key pollinators of agricultural crops and flowers worldwide. We conducted a nationwide survey to determine the occurrence and prevalence of pathogens and parasites in Asian honeybees, Apis cerana, in China. Our study provides evidence of infections of A. cerana by pathogenic Deformed wing virus (DWV, Black queen cell virus (BQCV, Nosema ceranae, and C. bombi species that have been linked to population declines of European honeybees, A. mellifera, and bumble bees. However, the prevalence of DWV, a virus that causes widespread infection in A. mellifera, was low, arguably a result of the greater ability of A. cerana to resist the ectoprasitic mite Varroa destructor, an efficient vector of DWV. Analyses of microbial communities from the A. cerana digestive tract showed that Nosema infection could have detrimental effects on the gut microbiota. Workers infected by N. ceranae tended to have lower bacterial quantities, with these differences being significant for the Bifidobacterium and Pasteurellaceae bacteria groups. The results of this nationwide screen show that parasites and pathogens that have caused serious problems in European honeybees can be found in native honeybee species kept in Asia. Environmental changes due to new agricultural practices and globalization may facilitate the spread of pathogens into new geographic areas. The foraging behavior of pollinators that are in close geographic proximity likely have played an important role in spreading of parasites and pathogens over to new hosts. Phylogenetic analyses provide insights into the movement and population structure of these parasites, suggesting a bidirectional flow of parasites among pollinators. The presence of these parasites and pathogens may have considerable implications for an observed population decline of Asian honeybees.

  14. MOLECULAR EXCLUSION CHROMATOGRAPHY OF CRUDE VENOM AS AN AUXILIARY TOOL TO IDENTIFY HYBRID HONEYBEE POPULATIONS

    M.S. PALMA

    1995-01-01

    Full Text Available A comparison among the profiles of molecular exclusion chromatography in Sephadex G 100 column of venoms from Apis mellifera adansonii and Africanized honeybees revealed unique peaks which might be used to identify these populations. The venoms from hybrid populations resulting from the reciprocal mating of Apis mellifera adansonii and Africanized honeybees presented unique peaks, probably resulting from a synergistic effect between the parental genomes. The occurrence of characteristic peaks in venoms of hybrid populations might be used to identify these populations as well as to distinguish them from their parents.

  15. Flight, orientation, and homing abilities of honeybees following exposure to 2. 45-GHz CW microwaves

    Gary, N.E.; Westerdahl, B.B.

    1981-01-01

    Foraging-experienced honeybees retained normal flight, orientation, and memory functions after 30 minutes' exposure to 2.45-GHz CW microwaves at power densities from 3 to 50 mW/cm2. These experiments were conducted at power densities approximating and exceeding those that would be present above receiving antennas of the proposed solar power satellite (SPS) energy transmission system and for a duration exceeding that which honeybees living outside a rectenna might be expected to spend within the rectenna on individual foraging trips. There was no evidence that airborne invertebrates would be significantly affected during transient passage through microwaves associated with SPS ground-based microwave receiving stations.

  16. Resistance rather than tolerance explains survival of savannah honeybees (Apis mellifera scutellata) to infestation by the parasitic mite Varroa destructor.

    Strauss, Ursula; Dietemann, Vincent; Human, Hannelie; Crewe, Robin M; Pirk, Christian W W

    2016-03-01

    Varroa destructor is considered the most damaging parasite affecting honeybees (Apis mellifera L.). However, some honeybee populations such as the savannah honeybee (Apis mellifera scutellata) can survive mite infestation without treatment. It is unclear if survival is due to resistance mechanisms decreasing parasite reproduction or to tolerance mechanisms decreasing the detrimental effects of mites on the host. This study investigates both aspects by quantifying the reproductive output of V. destructor and its physiological costs at the individual host level. Costs measured were not consistently lower when compared with susceptible honeybee populations, indicating a lack of tolerance. In contrast, reproduction of V. destructor mites was distinctly lower than in susceptible populations. There was higher proportion of infertile individuals and the reproductive success of fertile mites was lower than measured to date, even in surviving populations. Our results suggest that survival of savannah honeybees is based on resistance rather than tolerance to this parasite. We identified traits that may be useful for breeding programmes aimed at increasing the survival of susceptible populations. African honeybees may have benefited from a lack of human interference, allowing natural selection to shape a population of honeybees that is more resistant to Varroa mite infestation. PMID:26690678

  17. In-depth proteomic analysis of Varroa destructor: Detection of DWV-complex, ABPV, VdMLV and honeybee proteins in the mite.

    Erban, Tomas; Harant, Karel; Hubalek, Martin; Vitamvas, Pavel; Kamler, Martin; Poltronieri, Palmiro; Tyl, Jan; Markovic, Martin; Titera, Dalibor

    2015-01-01

    We investigated pathogens in the parasitic honeybee mite Varroa destructor using nanoLC-MS/MS (TripleTOF) and 2D-E-MS/MS proteomics approaches supplemented with affinity-chromatography to concentrate trace target proteins. Peptides were detected from the currently uncharacterized Varroa destructor Macula-like virus (VdMLV), the deformed wing virus (DWV)-complex and the acute bee paralysis virus (ABPV). Peptide alignments revealed detection of complete structural DWV-complex block VP2-VP1-VP3, VDV-1 helicase and single-amino-acid substitution A/K/Q in VP1, the ABPV structural block VP1-VP4-VP2-VP3 including uncleaved VP4/VP2, and VdMLV coat protein. Isoforms of viral structural proteins of highest abundance were localized via 2D-E. The presence of all types of capsid/coat proteins of a particular virus suggested the presence of virions in Varroa. Also, matches between the MWs of viral structural proteins on 2D-E and their theoretical MWs indicated that viruses were not digested. The absence/scarce detection of non-structural proteins compared with high-abundance structural proteins suggest that the viruses did not replicate in the mite; hence, virions accumulate in the Varroa gut via hemolymph feeding. Hemolymph feeding also resulted in the detection of a variety of honeybee proteins. The advantages of MS-based proteomics for pathogen detection, false-positive pathogen detection, virus replication, posttranslational modifications, and the presence of honeybee proteins in Varroa are discussed. PMID:26358842

  18. Honeybees Increase Fruit Set in Native Plant Species Important for Wildlife Conservation

    Cayuela, Luis; Ruiz-Arriaga, Sarah; Ozers, Christian P.

    2011-11-01

    Honeybee colonies are declining in some parts of the world. This may have important consequences for the pollination of crops and native plant species. In Spain, as in other parts of Europe, land abandonment has led to a decrease in the number of non professional beekeepers, which aggravates the problem of honeybee decline as a result of bee diseases In this study, we investigated the effects of honeybees on the pollination of three native plant species in northern Spain, namely wildcherry Prunus avium L., hawthorn Crataegus monogyna Jacq., and bilberry Vaccinium myrtillus L. We quantified fruit set of individuals from the target species along transects established from an apiary outwards. Half the samples were bagged in a nylon mesh to avoid insect pollination. Mixed-effects models were used to test the effect of distance to the apiary on fruit set in non-bagged samples. The results showed a negative significant effect of distance from the apiary on fruit set for hawthorn and bilberry, but no significant effects were detected for wildcherry. This suggests that the use of honeybees under traditional farming practices might be a good instrument to increase fruit production of some native plants. This may have important consequences for wildlife conservation, since fruits, and bilberries in particular, constitute an important feeding resource for endangered species, such as the brown bear Ursus arctos L. or the capercaillie Tetrao urogallus cantabricus L.

  19. Involvement of Phosphorylated "Apis Mellifera" CREB in Gating a Honeybee's Behavioral Response to an External Stimulus

    Gehring, Katrin B.; Heufelder, Karin; Feige, Janina; Bauer, Paul; Dyck, Yan; Ehrhardt, Lea; Kühnemund, Johannes; Bergmann, Anja; Göbel, Josefine; Isecke, Marlene; Eisenhardt, Dorothea

    2016-01-01

    The transcription factor cAMP-response element-binding protein (CREB) is involved in neuronal plasticity. Phosphorylation activates CREB and an increased level of phosphorylated CREB is regarded as an indicator of CREB-dependent transcriptional activation. In honeybees ("Apis mellifera") we recently demonstrated a particular high…

  20. Biophysics of the subgenual organ of the honeybee, Apis mellifera

    Kilpinen, Ole; Storm, Jesper

    1997-01-01

    The subgenual organ of the honeybee (Apis mellifera) is suspended in a haemolymph channel in the tibia of each leg. When the leg is accelerated, inertia causes the haemolymph (and the subgenual organ) to lag behind the movement of the rest of the leg. The magnitude of this phase lag determines the...

  1. Steroid Hormone (20-Hydroxyecdysone) Modulates the Acquisition of Aversive Olfactory Memories in Pollen Forager Honeybees

    Geddes, Lisa H.; McQuillan, H. James; Aiken, Alastair; Vergoz, Vanina; Mercer, Alison R.

    2013-01-01

    Here, we examine effects of the steroid hormone, 20-hydroxyecdysone (20-E), on associative olfactory learning in the honeybee, "Apis mellifera." 20-E impaired the bees' ability to associate odors with punishment during aversive conditioning, but did not interfere with their ability to associate odors with a food reward (appetitive…

  2. Survival rate of honeybee (Apis mellifera) workers after exposure to sublethal concentrations of imidacloprid

    Blacquiere, T.

    2010-01-01

    Imidacloprid is a commonly used systemic insecticide which can induce several sublethal effects. Previous research has not shown any increased mortality in bees that were fed with sublethal doses. However, there is very little research conducted with the focus on survival rate of honeybees in the fi

  3. Interaction between Varroa destructor and imidacloprid reduces flight capacity of honeybees

    Blanken, Lisa; Langevelde, van F.; Dooremalen, van J.A.

    2015-01-01

    Current high losses of honeybees seriously threaten crop pollination. Whereas parasite exposure is acknowledged as an important cause of these losses, the role of insecticides is controversial. Parasites and neonicotinoid insecticides reduce homing success of foragers (e.g. by reduced orientation),

  4. Two Waves of Transcription Are Required for Long-Term Memory in the Honeybee

    Lefer, Damien; Perisse, Emmanuel; Hourcade, Benoit; Sandoz, JeanChristophe; Devaud, Jean-Marc

    2013-01-01

    Storage of information into long-term memory (LTM) usually requires at least two waves of transcription in many species. However, there is no clear evidence of this phenomenon in insects, which are influential models for memory studies. We measured retention in honeybees after injecting a transcription inhibitor at different times before and after…

  5. Modelling Gene Flow between Fields of White Clover with Honeybees as Pollen Vectors

    Løjtnant, Christina; Boelt, Birte; Clausen, Sabine Karin;

    2012-01-01

    The portion-dilution model is a parametric restatement of the conventional view of animal pollination; it predicts the level of pollinator-mediated gene dispersal. In this study, the model was applied to white clover (Trifolium repens) and its most frequent pollinator, the honeybee (Apis mellifera...

  6. PRELIMINARY RESEARCHES REGARDING THE GENETIC AND MORPHOMETRIC CHARACTERIZATION OF HONEYBEES (A. MELLIFERA L. FROM ROMANIA

    ELIZA CAUIA

    2013-12-01

    Full Text Available The international investigations regarding the honeybees’ diversity carried out until now have revealed a certain degree of genetic pollution in different countries from Europe, because of the import of more productive honeybees’ races or of some interracial honeybees’ hybrids. This fact might have a negative impact on the success adaptability of honeybees at the ecosystem. Although, the Romanian honeybees (Apis mellifera carpathica are well adapted to the local conditions and express a good resistance to diseases, the introgression (genetic pollution of different honeybees’ races could be an imminent event. So that, starting from 2007, by a cooperation between the Institute for Beekeeping Research and Development from Bucharest and the Institute of Genetics of the University of Bucharest, we have initiated different investigations in order to obtain a more accurate state of the Romanian honeybees’ diversity. We have performed specific molecular analyses, using mtDNA (the COI-COII test extracted from 32 different honeybees samples collected from several regions from Romania. For a better and detailed characterization of the collected honeybee’s samples we have also carried out some morphometric measurements of their wings. Our data have shown that the Romanian population of honeybees is almost homogenous from the genetic and the morphometric points of views. These types of investigations represent a premiere for Romania.

  7. Molecular identification and functional characterization of an adenylyl cyclase from the honeybee.

    Wachten, Sebastian; Schlenstedt, Jana; Gauss, Renate; Baumann, Arnd

    2006-03-01

    Cyclic AMP (cAMP) serves as an important messenger in virtually all organisms. In the honeybee (Apis mellifera), cAMP-dependent signal transduction has been implicated in behavioural processes as well as in learning and memory. Key components of cAMP-signalling cascades are adenylyl cyclases. However, the molecular identities and biochemical properties of adenylyl cyclases are completely unknown in the honeybee. We have cloned a cDNA (Amac3) from honeybee brain that encodes a membrane-bound adenylyl cyclase. The Amac3 gene is an orthologue of the Drosophila ac39E gene. The corresponding proteins share an overall amino acid similarity of approximately 62%. Phylogenetically, AmAC3 belongs to group 1 adenylyl cyclases. Heterologously expressed AmAC3 displays basal enzymatic activity and efficient coupling to endogenous G protein signalling pathways. Stimulation of beta-adrenergic receptors induces AmAC3 activity with an EC(50) of about 3.1 microm. Enzymatic activity is also increased by forskolin (EC(50) approximately 15 microm), a specific agonist of membrane-bound adenylyl cyclases. Similar to certain biogenic amine receptor genes of the honeybee, Amac3 transcripts are expressed in many somata of the brain, especially in mushroom body neurones. These results suggest that the enzyme serves in biogenic amine signal transduction cascades and in higher brain functions that contribute to learning and memory of the bee. PMID:16464235

  8. Germ cell development in the Honeybee (Apis mellifera; Vasa and Nanos expression

    Dearden Peter K

    2006-02-01

    Full Text Available Abstract Background Studies of specification of germ-cells in insect embryos has indicated that in many taxa the germ cells form early in development, and their formation is associated with pole plasm, germ plasm or an organelle called the oosome. None of these morphological features associated with germ cell formation have been identified in the Honeybee Apis mellifera. In this study I report the cloning and expression analysis of Honeybee homologues of vasa and nanos, germ cell markers in insects and other animals. Results Apis vasa and nanos RNAs are present in early honeybee embryos, but the RNAs clear rapidly, without any cells expressing these germ cell markers past stage 2. These genes are then only expressed in a line of cells in the abdomen from stage 9 onwards. These cells are the developing germ cells that are moved dorsally by dorsal closure and are placed in the genital ridge. Conclusion This study of the expression of germ cell markers in the honeybee implies that in this species either germ cells are formed by an inductive event, late in embryogenesis, or they are formed early in development in the absence of vasa and nanos expression. This contrasts with germ cell development in other members of the Hymenoptera, Diptera and Lepidoptera.

  9. Appetitive but Not Aversive Olfactory Conditioning Modifies Antennal Movements in Honeybees

    Cholé, Hanna; Junca, Pierre; Sandoz, Jean-Christophe

    2015-01-01

    In honeybees, two olfactory conditioning protocols allow the study of appetitive and aversive Pavlovian associations. Appetitive conditioning of the proboscis extension response (PER) involves associating an odor, the conditioned stimulus (CS) with a sucrose solution, the unconditioned stimulus (US). Conversely, aversive conditioning of the sting…

  10. Ovariole number and ovary activation of Russian honeybee workers (Apis mellifera L.)

    Although functionally sterile under normal hive conditions, honeybee workers retain small ovaries. The size of the worker ovaries varies considerably within Apis mellifera and has been linked to individual reproduction and various aspects of social behavior. Here, we report the ovary size of workers...

  11. Dead or alive: deformed wing virus and Varroa destructor reduce the life span of winter honeybees.

    Dainat, Benjamin; Evans, Jay D; Chen, Yan Ping; Gauthier, Laurent; Neumann, Peter

    2012-02-01

    Elevated winter losses of managed honeybee colonies are a major concern, but the underlying mechanisms remain controversial. Among the suspects are the parasitic mite Varroa destructor, the microsporidian Nosema ceranae, and associated viruses. Here we hypothesize that pathogens reduce the life expectancy of winter bees, thereby constituting a proximate mechanism for colony losses. A monitoring of colonies was performed over 6 months in Switzerland from summer 2007 to winter 2007/2008. Individual dead workers were collected daily and quantitatively analyzed for deformed wing virus (DWV), acute bee paralysis virus (ABPV), N. ceranae, and expression levels of the vitellogenin gene as a biomarker for honeybee longevity. Workers from colonies that failed to survive winter had a reduced life span beginning in late fall, were more likely to be infected with DWV, and had higher DWV loads. Colony levels of infection with the parasitic mite Varroa destructor and individual infections with DWV were also associated with reduced honeybee life expectancy. In sharp contrast, the level of N. ceranae infection was not correlated with longevity. In addition, vitellogenin gene expression was significantly positively correlated with ABPV and N. ceranae loads. The findings strongly suggest that V. destructor and DWV (but neither N. ceranae nor ABPV) reduce the life span of winter bees, thereby constituting a parsimonious possible mechanism for honeybee colony losses. PMID:22179240

  12. Computational and transcriptional evidence for microRNAs in the honeybee genome.

    Noncoding microRNAs (miRNAs) are key regulators of gene expression in eukaryotes. Insect miRNAs help regulate the levels of proteins involved with development, metabolism, and other life history traits. The recently sequenced honeybee genome provides an opportunity to detect novel miRNAs in both th...

  13. Parasites and Pathogens of the Honeybee (Apis mellifera and Their Influence on Inter-Colonial Transmission.

    Nadège Forfert

    Full Text Available Pathogens and parasites may facilitate their transmission by manipulating host behavior. Honeybee pathogens and pests need to be transferred from one colony to another if they are to maintain themselves in a host population. Inter-colony transmission occurs typically through honeybee workers not returning to their home colony but entering a foreign colony ("drifting". Pathogens might enhance drifting to enhance transmission to new colonies. We here report on the effects infection by ten honeybee viruses and Nosema spp., and Varroa mite infestation on honeybee drifting. Genotyping of workers collected from colonies allowed us to identify genuine drifted workers as well as source colonies sending out drifters in addition to sink colonies accepting them. We then used network analysis to determine patterns of drifting. Distance between colonies in the apiary was the major factor explaining 79% of drifting. None of the tested viruses or Nosema spp. were associated with the frequency of drifting. Only colony infestation with Varroa was associated with significantly enhanced drifting. More specifically, colonies with high Varroa infestation had a significantly enhanced acceptance of drifters, although they did not send out more drifting workers. Since Varroa-infested colonies show an enhanced attraction of drifting workers, and not only those infected with Varroa and its associated pathogens, infestation by Varroa may also facilitate the uptake of other pests and parasites.

  14. The Acute Oral Toxicity of Commonly Used Pesticides in Iran, to Honeybees (Apis Mellifera Meda

    Rasuli Farhang

    2015-06-01

    Full Text Available The honey bee is credited with approximately 85% of the pollinating activity necessary to supply about one-third of the world’s food supply. Well over 50 major crops depend on these insects for pollination. The crops produce more abundantly when honey bees are plentiful. Worker bees are the ones primarily affected by pesticides. Poisoning symptoms can vary depending on the developmental stage of the individual bee, and the kind of chemical employed. The oral toxicity of these insecticides: (phosalone and pirimicarb, acaricide (propargite, insecticide and acaricide (fenpropathrin, fungicides, and bactericides (copper oxychloride and the Bordeaux mixture, were evaluated for the purposes of this research. The results showed that fenpropathrin had high acute oral toxicity (LC50-24h and LC50-48 were 0.54 and 0.3 ppm, respectively. Propargite had 7785 ppm (active ingredient for LC50-24h and 6736 ppm (active ingredient for LC50-48h in honeybees and is therefore, non-toxic to Apis mellifera. On the other hand, copper oxychloride had minimum acute oral toxicity to honeybees (LC50-24h and LC50-48 were 4591.5 and 5407.9 ppm, respectively and was therefore considered non-toxic. Also, the Bordeaux mixture was safe to use around honeybees. Phosalone and primicarb were considered highly and moderately toxic to honeybees, respectively.

  15. Parasites and Pathogens of the Honeybee (Apis mellifera) and Their Influence on Inter-Colonial Transmission

    Frey, Eva; Rosenkranz, Peter; Paxton, Robert J.; Moritz, Robin F. A.

    2015-01-01

    Pathogens and parasites may facilitate their transmission by manipulating host behavior. Honeybee pathogens and pests need to be transferred from one colony to another if they are to maintain themselves in a host population. Inter-colony transmission occurs typically through honeybee workers not returning to their home colony but entering a foreign colony (“drifting”). Pathogens might enhance drifting to enhance transmission to new colonies. We here report on the effects infection by ten honeybee viruses and Nosema spp., and Varroa mite infestation on honeybee drifting. Genotyping of workers collected from colonies allowed us to identify genuine drifted workers as well as source colonies sending out drifters in addition to sink colonies accepting them. We then used network analysis to determine patterns of drifting. Distance between colonies in the apiary was the major factor explaining 79% of drifting. None of the tested viruses or Nosema spp. were associated with the frequency of drifting. Only colony infestation with Varroa was associated with significantly enhanced drifting. More specifically, colonies with high Varroa infestation had a significantly enhanced acceptance of drifters, although they did not send out more drifting workers. Since Varroa-infested colonies show an enhanced attraction of drifting workers, and not only those infected with Varroa and its associated pathogens, infestation by Varroa may also facilitate the uptake of other pests and parasites. PMID:26451849

  16. Functional Morphology of the Divided Compound Eye of the Honeybee Drone (Apis mellifera)

    Menzel, J.G.; Wunderer, H.; Stavenga, D.G.

    1991-01-01

    Using different approaches, the functional morphology of the compound eye of the honeybee drone was examined. The drone exhibits an extended acute zone in the dorsal part of its eye. The following specializations were found here: enlarged facet diameters; smaller interommatidial angles; red-leaky sc

  17. How regulation based on a common stomach leads to economic optimization of honeybee foraging.

    Schmickl, Thomas; Karsai, Istvan

    2016-01-21

    Simple regulatory mechanisms based on the idea of the saturable 'common stomach' can control the regulation of protein foraging and protein allocation in honeybee colonies and colony-level responses to environmental changes. To study the economic benefits of pollen and nectar foraging strategies of honeybees to both plants and honeybees under different environmental conditions, a model was developed and analyzed. Reallocation of the foraging workforce according to the quality and availability of resources (an 'adaptive' strategy used by honeybees) is not only a successful strategy for the bees but also for plants, because intensified pollen foraging after rain periods (when nectar quality is low) compensates a major fraction of the pollination flights lost during the rain. The 'adaptive' strategy performed better than the'fixed' (steady, minimalistic, and non-adaptive foraging without feedback) or the 'proactive' (stockpiling in anticipation of rain) strategies in brood survival and or in nectar/sugar economics. The time pattern of rain periods has profound effect on the supply-and-demand of proteins. A tropical rain pattern leads to a shortage of the influx of pollen and nectar, but it has a less profound impact on brood mortality than a typical continental rainfall pattern. Allocating more bees for pollen foraging has a detrimental effect on the nectar stores, therefore while saving larvae from starvation the 'proactive' strategy could fail to collect enough nectar for surviving winter. PMID:26576492

  18. Re-evaluation of honeybees and wind on pollination of avocado

    Avocado (Persea americana Mill) flowers, with their synchronously dichogamous behavior, are considered to be pollinated by honeybees, despite the lack of any direct evidence. Results in south Florida showed that avocado pollen was transferable by wind and dispersed over a brief period of time (15-60...

  19. In vitro growth inhibition by Hypericum extracts and isolated pure compounds of Paenibacillus larvae, a lethal disease affecting honeybees worldwide.

    Hernández-López, Javier; Crockett, Sara; Kunert, Olaf; Hammer, Elfe; Schuehly, Wolfgang; Bauer, Rudolf; Crailsheim, Karl; Riessberger-Gallé, Ulrike

    2014-05-01

    The in vitro inhibitory potential of 50 extracts from various species of the flowering plant genus Hypericum was investigated using the Kirby-Bauer disk diffusion susceptibility test against Paenibacillus larvae, a spore-forming, Gram-positive bacterial pathogen that causes American foulbrood (AFB), a lethal disease affecting honeybee brood worldwide. Of the tested extracts, 14 were identified as highly active against P. larvae as compared to the activity of the positive control, indicating the presence of highly potent antibacterial compounds in the extracts. Examination of these extracts using TLC and HPLC/MS analyses revealed the presence of acylphloroglucinol and filicinic-acid derivatives. Six pure compounds isolated from these extracts, viz., hyperforin (1), uliginosin B (2), uliginosin A (3), 7-epiclusianone (4), albaspidin AA (5), and drummondin E (6), displayed strong antibacterial activity against the vegetative form of P. larvae (MIC ranging from 0.168-220 μM). Incubation of P. larvae spores with the lipophilic extract of Hypericum perforatum and its main acylphloroglucinol constituent 1 led to the observation of significantly fewer colony forming units as compared to the negative control, indicating that the acylphloroglucinol scaffold represents an interesting lead structure for the development of new AFB control agents. PMID:24827680

  20. Function and distribution of 5-HT2 receptors in the honeybee (Apis mellifera.

    Markus Thamm

    Full Text Available BACKGROUND: Serotonin plays a pivotal role in regulating and modulating physiological and behavioral processes in both vertebrates and invertebrates. In the honeybee (Apis mellifera, serotonin has been implicated in division of labor, visual processing, and learning processes. Here, we present the cloning, heterologous expression, and detailed functional and pharmacological characterization of two honeybee 5-HT2 receptors. METHODS: Honeybee 5-HT2 receptor cDNAs were amplified from brain cDNA. Recombinant cell lines were established constitutively expressing receptor variants. Pharmacological properties of the receptors were investigated by Ca(2+ imaging experiments. Quantitative PCR was applied to explore the expression patterns of receptor mRNAs. RESULTS: The honeybee 5-HT2 receptor class consists of two subtypes, Am5-HT2α and Am5-HT2β. Each receptor gene also gives rise to alternatively spliced mRNAs that possibly code for truncated receptors. Only activation of the full-length receptors with serotonin caused an increase in the intracellular Ca(2+ concentration. The effect was mimicked by the agonists 5-methoxytryptamine and 8-OH-DPAT at low micromolar concentrations. Receptor activities were blocked by established 5-HT receptor antagonists such as clozapine, methiothepin, or mianserin. High transcript numbers were detected in exocrine glands suggesting that 5-HT2 receptors participate in secretory processes in the honeybee. CONCLUSIONS: This study marks the first molecular and pharmacological characterization of two 5-HT2 receptor subtypes in the same insect species. The results presented should facilitate further attempts to unravel central and peripheral effects of serotonin mediated by these receptors.

  1. Excitable properties of adult skeletal muscle fibres from the honeybee Apis mellifera.

    Collet, Claude; Belzunces, Luc

    2007-02-01

    In the hive, a wide range of honeybees tasks such as cell cleaning, nursing, thermogenesis, flight, foraging and inter-individual communication (waggle dance, antennal contact and trophallaxy) depend on proper muscle activity. However, whereas extensive electrophysiological studies have been undertaken over the past ten years to characterize ionic currents underlying the physiological neuronal activity in honeybee, ionic currents underlying skeletal muscle fibre activity in this insect remain, so far, unexplored. Here, we show that, in contrast to many other insect species, action potentials in muscle fibres isolated from adult honeybee metathoracic tibia, are not graded but actual all-or-none responses. Action potentials are blocked by Cd(2+) and La(3+) but not by tetrodotoxin (TTX) in current-clamp mode of the patch-clamp technique, and as assessed under voltage-clamp, both Ca(2+) and K(+) currents are involved in shaping action potentials in single muscle fibres. The activation threshold potential for the voltage-dependent Ca(2+) current is close to -40 mV, its mean maximal amplitude is -8.5+/-1.9 A/F and the mean apparent reversal potential is near +40 mV. In honeybees, GABA does not activate any ionic membrane currents in muscle fibres from the tibia, but L-glutamate, an excitatory neurotransmitter at the neuromuscular synapse induces fast activation of an inward current when the membrane potential is voltage clamped close to its resting value. Instead of undergoing desensitization as is the case in many other preparations, a component of this glutamate-activated current has a sustained component, the reversal potential of which is close to 0 mV, as demonstrated with voltage ramps. Future investigations will allow extensive pharmacological characterization of membrane ionic currents and excitation-contraction coupling in skeletal muscle from honeybee, a useful insect that became a model to study many physiological phenomena and which plays a major role in

  2. Antifungal agents.

    Ryder, N S

    1999-12-01

    At this year's ICAAC Meeting, new data on approximately 20 different antifungal agents were presented, while no new agents were disclosed. Drugs in late development include the triazoles, voriconazole (Pfizer Ltd) and Sch-56592 (Schering-Plough Corp), and the echinocandins, caspofungin (Merck & Co Inc) and FK-463 (Fujisawa Pharmaceutical Co Ltd). In contrast to previous years, presentations on these and earlier developmental compounds were relatively modest in scope, with few significant new data. Little new information appeared on the most recent novel class of agents, the sordarins (Glaxo Wellcome plc). Early clinical results were presented for FK-463, showing acceptable tolerability and dose-dependent efficacy in AIDS-associated esophageal candidiasis. A new liposomal formulation of nystatin (Nyotran; Aronex Pharmaceuticals Inc) was shown to be equivalent to conventional amphotericin B in empiric therapy of presumed fungal infection in neutropenic patients, but with reduced toxicity. Intravenous itraconazole (Janssen Pharmaceutica NV) was an effective prophylactic therapy in invasive pulmonary aspergillosis, while oral itraconazole was discussed as a treatment for fungal infection in heart and liver transplant patients. The allylamine compound, terbinafine (Novartis AG), showed good clinical efficacy against fungal mycetoma, a serious tropical infection. A major highlight was the first presentation of inhibitors of fungal efflux pumps as a strategy for overcoming resistance. MC-510027 (milbemycin alpha-9; Microcide Pharmaceuticals Inc) and its derivatives, potentiated the antifungal activity of triazoles and terbinafine in a number of Candida spp. Another pump inhibitor, MC-005172 (Microcide Pharmaceuticals Inc) showed in vivo potentiation of fluconazole in a mouse kidney infection model. Microcide Pharmaceuticals Inc also presented inhibitors of bacterial efflux pumps. PMID:16113946

  3. Transcriptional profiling reveals multifunctional roles for transferrin in the honeybee, Apis mellifera

    R. Kucharski

    2003-08-01

    Full Text Available Transferrins belong to a family of iron-binding proteins that have been implicated in innate immunity and in vitellogenesis in insects. Here we have sequenced and characterized a full-length cDNA encoding a putative iron-binding transferrin (AmTRF in the honeybee. AmTRF shows high level of sequence identity with transferrins in both vertebrates and insects (26-46% suggesting that the primary function of the predicted 712 amino acid protein is binding and transporting of iron. AmTRF is expressed ubiquitously, but particularly high levels of its mRNA are found in the central brain and in the compound eye. Using northern blotting and a microarray based approach we have examined the levels of AmTRF mRNA by expression profiling under a wide range of conditions including developmental stages, septic injury and juvenile hormone treatment. Increased expression of AmTRF is seen during early pupal stages, in the brain of mature foragers and in the abdomen of virgin queens, whereas treatment with juvenile hormone leads to a decrease of AmTRF levels in the abdomen. We show that a transcriptional response of transferrin to septic injury with E. coli is relatively moderate as compared to a dramatic up-regulation of an antibacterial polypeptide, Hymenoptaecin, under similar conditions. We conclude that major fluctuations of AmTRF mRNA in time and space are consistent with context-dependent functional significance and suggest broader multifunctional roles for transferrin in insects.

  4. A Locomotor Deficit Induced by Sublethal Doses of Pyrethroid and Neonicotinoid Insecticides in the Honeybee Apis mellifera.

    Mercédès Charreton; Axel Decourtye; Mickaël Henry; Guy Rodet; Jean-Christophe Sandoz; Pierre Charnet; Claude Collet

    2015-01-01

    The toxicity of pesticides used in agriculture towards non-targeted organisms and especially pollinators has recently drawn the attention from a broad scientific community. Increased honeybee mortality observed worldwide certainly contributes to this interest. The potential role of several neurotoxic insecticides in triggering or potentiating honeybee mortality was considered, in particular phenylpyrazoles and neonicotinoids, given that they are widely used and highly toxic for insects. Along...

  5. Understanding the Logics of Pheromone Processing in the Honeybee Brain: From Labeled-Lines to Across-Fiber Patterns

    Sandoz, Jean-Christophe; Deisig, Nina; de Brito Sanchez, Maria Gabriela; Giurfa, Martin

    2007-01-01

    Honeybees employ a very rich repertoire of pheromones to ensure intraspecific communication in a wide range of behavioral contexts. This communication can be complex, since the same compounds can have a variety of physiological and behavioral effects depending on the receiver. Honeybees constitute an ideal model to study the neurobiological basis of pheromonal processing, as they are already one of the most influential animal models for the study of general odor processing and learning at beh...

  6. Understanding the logics of pheromone processing in the honeybee brain: from labeled-lines to across-fiber patterns

    Nina Deisig

    2007-01-01

    Honeybees employ a very rich repertoire of pheromones to ensure intraspecific communication in a wide range of behavioral contexts. This communication can be complex, since the same compounds can have a variety of physiological and behavioral effects depending on the receiver. Honeybees constitute an ideal model to study the neurobiological basis of pheromonal processing, as they are already one of the most infl uential animal models for the study of general odor processing and learning at be...

  7. Modes of honeybees exposure to systemic insecticides: estimated amounts of contaminated pollen and nectar consumed by different categories of bees

    Rortais, Agnès; ARNOLD, Gérard; Halm, Marie-Pierre; Touffet-Briens, Frédérique

    2005-01-01

    International audience The hazard posed to honeybees by systemic insecticides is determined by toxicity tests that are designed to study the effects of insecticides applied on the aerial parts of plants, but are not adapted to systemic substances used as soil or seed treatments. Based on the available data found in the literature, this paper proposes modes of honeybees exposure to systemic insecticides by estimating their pollen and nectar consumption. Estimates are given for larvae and fo...

  8. A Strong Immune Response in Young Adult Honeybees Masks Their Increased Susceptibility to Infection Compared to Older Bees

    Bull, James C.; Ryabov, Eugene V.; Gill Prince; Andrew Mead; Cunjin Zhang; Baxter, Laura A.; Pell, Judith K.; Osborne, Juliet L; Dave Chandler

    2012-01-01

    Honeybees, Apis mellifera, show age-related division of labor in which young adults perform maintenance ("housekeeping") tasks inside the colony before switching to outside foraging at approximately 23 days old. Disease resistance is an important feature of honeybee biology, but little is known about the interaction of pathogens and age-related division of labor. We tested a hypothesis that older forager bees and younger "house" bees differ in susceptibility to infection. We coupled an infect...

  9. Varroa destructor mite in Africanized honeybee colonies Apis mellifera L. under royal jelly or honey production

    Pedro da Rosa Santos; Priscila Wielewski; Andre Luiz Halak; Patrícia Faquinello; Vagner de Alencar Arnaut de Toledo

    2015-01-01

    This study evaluated the level of invasion of Varroa mite into worker brood cells, the infestation rate on adult worker honeybees, total and effective reproduction rates of the mite in Africanized honeybee colonies under royal jelly or honey production. Invasion and infestation rates were not statistically different between honeybee colonies producing honey or royal jelly and the averages for these parameters were 5.79 and 8.54%, respectively. Colonies producing honey presented a higher (p < ...

  10. Detection of Neural Activity in the Brains of Japanese Honeybee Workers during the Formation of a “Hot Defensive Bee Ball”

    Ugajin, Atsushi; Kiya, Taketoshi; Kunieda, Takekazu; Ono, Masato; Yoshida, Tadaharu; Kubo, Takeo

    2012-01-01

    Anti-predator behaviors are essential to survival for most animals. The neural bases of such behaviors, however, remain largely unknown. Although honeybees commonly use their stingers to counterattack predators, the Japanese honeybee (Apis cerana japonica) uses a different strategy to fight against the giant hornet (Vespa mandarinia japonica). Instead of stinging the hornet, Japanese honeybees form a “hot defensive bee ball” by surrounding the hornet en masse, killing it with heat. The Europe...

  11. Isoform-specific modulation of the chemical sensitivity of conserved TRPA1 channel in the major honeybee ectoparasitic mite, Tropilaelaps mercedesae.

    Dong, Xiaofeng; Kashio, Makiko; Peng, Guangda; Wang, Xinyue; Tominaga, Makoto; Kadowaki, Tatsuhiko

    2016-06-01

    We identified and characterized the TRPA1 channel of Tropilaelaps mercedesae (TmTRPA1), one of two major species of honeybee ectoparasitic mite. Three TmTRPA1 isoforms with unique N-terminal sequences were activated by heat, and the isoform highly expressed in the mite's front legs, TmTRPA1b, was also activated by 27 plant-derived compounds including electrophiles. This suggests that the heat- and electrophile-dependent gating mechanisms as nocisensitive TRPA1 channel are well conserved between arthropod species. Intriguingly, one TmTRPA1 isoform, TmTRPA1a, was activated by only six compounds compared with two other isoforms, demonstrating that the N-terminal sequences are critical determinants for the chemical sensitivity. This is the first example of isoform-specific modulation of chemical sensitivity of TRPA1 channel in one species. α-terpineol showed repellent activity towards T. mercedesae in a laboratory assay and repressed T. mercedesae entry for reproduction into the brood cells with fifth instar larvae in hives. Thus, α-terpineol could be used as the potential compound to control two major honeybee ectoparasitic mites, T. mercedesae and Varroa destructor, in the apiculture industry. PMID:27307515

  12. Genome analyses suggest the presence of polyploidy and recent human-driven expansions in eight global populations of the honeybee pathogen Nosema ceranae.

    Pelin, Adrian; Selman, Mohammed; Aris-Brosou, Stéphane; Farinelli, Laurent; Corradi, Nicolas

    2015-11-01

    Nosema ceranae is a microsporidian pathogen whose infections have been associated with recent global declines in the populations of western honeybees (Apis mellifera). Despite the outstanding economic and ecological threat that N. ceranae may represent for honeybees worldwide, many aspects of its biology, including its mode of reproduction, propagation and ploidy, are either very unclear or unknown. In the present study, we set to gain knowledge in these biological aspects by re-sequencing the genome of eight isolates (i.e. a population of spores isolated from one single beehive) of this species harvested from eight geographically distant beehives, and by investigating their level of polymorphism. Consistent with previous analyses performed using single gene sequences, our analyses uncovered the presence of very high genetic diversity within each isolate, but also very little hive-specific polymorphism. Surprisingly, the nature, location and distribution of this genetic variation suggest that beehives around the globe are infected by a population of N. ceranae cells that may be polyploid (4n or more), and possibly clonal. Lastly, phylogenetic analyses based on genome-wide single-nucleotide polymorphism data extracted from these parasites and mitochondrial sequences from their hosts all failed to support the current geographical structure of our isolates. PMID:25914091

  13. Identification and characterization of a novel corticotropin-releasing hormone-binding protein (CRH-BP) gene from Chinese honeybee (Apis cerana cerana).

    Liu, Li; Yu, Xiaoli; Meng, Fei; Guo, Xingqi; Xu, Baohua

    2011-11-01

    Corticotropin-releasing hormone-binding protein (CRH-BP) is an essential secreted glycoprotein for coordinating the neuroendocrine responses to stress by binding either CRHs or its related peptides. A novel CRH-BP gene AccCRH-BP from Apis cerana cerana was identified and characterized. Its genomic DNA was consisted of seven exons and six introns, and shared high similarity with the homologous members from other insects and vertebrates. Homologous and phylogenetic analysis indicated that AccCRH-BP was highly conserved, suggesting the maintenance of conservative structure might be necessary for its biological function. Real-time quantitative PCR revealed that AccCRH-BP was highly expressed in pupa and adult, especially in the head of pupa. However, there was no expression in larval stage. Furthermore, the transcripts of AccCRH-BP in the brain of honeybees were induced by exposure to environmental stresses including UV-light, heat, and cold. The expression level of AccCRH-BP in workers or queens was significantly higher than that of drones. Additionally, analysis of 5'-flanking region of AccCRH-BP revealed a number of putative development and stress transcription factor-binding sites. These data suggest that AccCRH-BP may play important roles in the regulation of honeybee development, and in the central nervous system of the brain to regulate the neuroendocrine stress responses. PMID:22006535

  14. Laboratory bioassays on the impact of cadmium, copper and lead on the development and survival of honeybee (Apis mellifera L.) larvae and foragers.

    Di, Ning; Hladun, Kristen R; Zhang, Kai; Liu, Tong-Xian; Trumble, John T

    2016-06-01

    Honeybees (Apis mellifera L.) have been widely distributed around the world to serve as pollinators for agriculture. They can encounter metal pollutants through various routes of exposure, including foraging on contaminated plant resources. Chronic and acute toxicity tests were conducted on larvae using artificial diets and on foragers using solutions of 50% sucrose, which contained cadmium (Cd), copper (Cu) and lead (Pb). We found that mortality increased in both larvae and foragers in a dose-dependent manner. Control larvae had higher relative growth indices (RGI) from day 6 to day 10 compared to all metal treatments, demonstrating substantial negative effects of metals on development. Copper was the least toxic to larvae with an LC50 of 6.97 mg L(-1). For foragers, Pb had the highest LC50, which was 345 mg L(-1). Foragers and larvae accumulated substantial quantities of all metals, and subsequent sucrose consumption decreased after dosing. Overall, honeybee larvae and foragers suffered detrimental effects when they were exposed to ecologically-relevant concentrations of Cd, Cu and Pb. PMID:27011322

  15. Factors influencing the prevalence and infestation levels of Varroa destructor in honeybee colonies in two highland agro-ecological zones of Uganda.

    Chemurot, Moses; Akol, Anne M; Masembe, Charles; de Smet, Lina; Descamps, Tine; de Graaf, Dirk C

    2016-04-01

    Varroa mites are ecto-parasites of honeybees and are a threat to the beekeeping industry. We identified the haplotype of Varroa mites and evaluated potential factors that influence their prevalence and infestation levels in the eastern and western highland agro-ecological zones of Uganda. This was done by collecting samples of adult worker bees between December 2014 and September 2015 in two sampling moments. Samples of bees were screened for Varroa using the ethanol wash method and the mites were identified by molecular techniques. All DNA sequences obtained from sampled mite populations in the two zones were 100 % identical to the Korean Haplotype (AF106899). Mean mite prevalence in the apiaries was 40 and 53 % for the western and eastern zones, respectively, during the first sampling. Over the second sampling, mean mite prevalence increased considerably in the western (59 %) but not in the eastern (51 %) zone. Factors that were associated with Varroa mite infestation levels include altitude, nature of apiary slope and apiary management practices during the first sampling. Our results further showed that Varroa mites were spreading from lower to higher elevations. Feral colonies were also infested with Varroa mites at infestation levels not significantly different from those in managed colonies. Colony productivity and strength were not correlated to mite infestation levels. We recommend a long-term Varroa mite monitoring strategy in areas of varying landscape and land use factors for a clear understanding of possible changes in mite infestation levels among African honeybees for informed decision making. PMID:26801158

  16. Investigations of hygienic behaviour and disease resistance in organic beekeeping of two honeybee ecogeographic varieties from Serbia

    Stanimirović Zoran Ž.

    2002-01-01

    Full Text Available Hygienic behaviour of the carniolan honeybee (Apis mellifera carnica Pollm was investigated in 20 localities in Serbia (10 localities from the Machva region and 10 localities from the Rudnik region. The results revealed that the grey bees from Rudnik have a more expressed form of hygienic behavior compared to the yellow bees from Machva. The obtained data indicate that colonies of both investigated honeybee varieties, yellow bees from Machva and grey bees from Rudnik, belong to a category of the so called "hygienic colonies", as the efficiency of elimination of damaged pupae amounted to 91,45% in Machva honeybees and 93,60% in Rudnik honeybees. Our results point to an indisputable relationship between hygienic behaviour and the strength of honeybee colonies, i.e. the potent colonies have more expressed hygienic behaviour. Both investigated honeybee varieties can be used for improving breeds selection and for organic beekeeping in Serbia, owing to the manifested hygienic behaviour and thence, resistance to some diseases (Varroa, American foulbrood, and especially Chalkbrood.

  17. Agent engineering

    Liu, Jiming; Zhong, Ning; Wang, Patrick S P

    2001-01-01

    Agent engineering concerns the development of autonomous computational or physical entities capable of perceiving, reasoning, adapting, learning, cooperating and delegating in a dynamic environment. It is one of the most promising areas of research and development in information technology, computer science and engineering. This book addresses some of the key issues in agent engineering: What is meant by "autonomous agents"? How can we build agents with autonomy? What are the desirable capabilities of agents with respect to surviving (they will not die) and living (they will furthermore enjoy

  18. Western honeybee drones and workers (Apis mellifera ligustica) have different olfactory mechanisms than eastern honeybees (Apis cerana cerana).

    Woltedji, Dereje; Song, Feifei; Zhang, Lan; Gala, Alemayehu; Han, Bin; Feng, Mao; Fang, Yu; Li, Jianke

    2012-09-01

    The honeybees Apis mellifera ligustica (Aml) and Apis cerana cerana (Acc) are two different western and eastern bee species that evolved in distinct ecologies and developed specific antennal olfactory systems for their survival. Knowledge of how their antennal olfactory systems function in regards to the success of each respective bee species is scarce. We compared the antennal morphology and proteome between respective sexually mature drones and foraging workers of both species using a scanning electron microscope, two-dimensional electrophoresis, mass spectrometry, bioinformatics, and quantitative real-time polymerase chain reaction. Despite the general similarities in antennal morphology of the drone and worker bees between the two species, a total of 106 and 100 proteins altered their expression in the drones' and the workers' antennae, respectively. This suggests that the differences in the olfactory function of each respective bee are supported by the change of their proteome. Of the 106 proteins that altered their expression in the drones, 72 (68%) and 34 (32%) were overexpressed in the drones of Aml and Acc, respectively. The antennae of the Aml drones were built up by the highly expressed proteins that were involved in carbohydrate metabolism and energy production, molecular transporters, antioxidation, and fatty acid metabolism in contrast to the Acc drones. This is believed to enhance the antennal olfactory functions of the Aml drones as compared to the Acc drones during their mating flight. Likewise, of the 100 proteins with expression changes between the worker bees of the two species, 67% were expressed in higher levels in the antennae of Aml worker contrasting to 33% in the Acc worker. The overall higher expressions of proteins related to carbohydrate metabolism and energy production, molecular transporters, and antioxidation in the Aml workers compared with the Acc workers indicate the Aml workers require more antennal proteins for their olfactory

  19. Chemical crowd control agents.

    Menezes, Ritesh G; Hussain, Syed Ather; Rameez, Mansoor Ali Merchant; Kharoshah, Magdy A; Madadin, Mohammed; Anwar, Naureen; Senthilkumaran, Subramanian

    2016-03-01

    Chemical crowd control agents are also referred to as riot control agents and are mainly used by civil authorities and government agencies to curtail civil disobedience gatherings or processions by large crowds. Common riot control agents used to disperse large numbers of individuals into smaller, less destructive, and more easily controllable numbers include chloroacetophenone, chlorobenzylidenemalononitrile, dibenzoxazepine, diphenylaminearsine, and oleoresin capsicum. In this paper, we discuss the emergency medical care needed by sufferers of acute chemical agent contamination and raise important issues concerning toxicology, safety and health. PMID:26658556

  20. Experimental Wing Damage Affects Foraging Effort and Foraging Distance in Honeybees Apis mellifera

    Andrew D. Higginson

    2011-01-01

    Full Text Available Bees acquire wing damage as they age, and loss of wing area affects longevity and behaviour. This may influence colony performance via effects on worker behaviour. The effects of experimental wing damage were studied in worker honeybees in observation hives by recording survivorship, how often and for how long bees foraged, and by decoding waggle dances. Mortality rate increased with both age and wing damage. Damaged bees carried out shorter and/or less frequent foraging trips, foraged closer to the hive, and reported the profitability of flower patches to be lower than did controls. These results suggest that wing damage caused a reduction in foraging ability, and that damaged bees adjusted their foraging behaviour accordingly. Furthermore, the results suggest that wing damage affects the profitability of nectar sources. These results have implications for the colony dynamics and foraging efficiency in honeybees.

  1. 蜜蜂蛋白质组研究进展%Advanced Research on Honeybee Proteome

    李建科; 冯毛; 郑爱娟

    2011-01-01

    蜜蜂在自然界和人类社会中具有举足轻重的作用.蜜蜂授粉不但能够提高农作物的产量和质量,而且对维持自然界生物多样性具有重要贡献,同时蜜蜂提供给人类的蜂产品也具有较高的营养和保健功能.随着基因组测序工作的完成,作为模式生物,蜜蜂蛋白质组学研究进入了一个新的阶段.目前对蜜蜂蛋白质组的研究比较常用的是双向电泳结合质谱的研究方法,包括不同品系蜜蜂卵、幼虫、蛹、级型分化、咽下腺等发育相关蛋白质组及差异蛋白质组研究,蜜蜂毒腺、头部、胸部、血淋巴、精液、受精囊、附腺等器官和组织的蛋白质组分析,以及蜂王浆、蜂花粉、蜂毒等部分蜂产品的蛋白质组等.本文综述了近年来蜜蜂相关蛋白质组研究进展,对其今后在蜂业科学的研究应用进行了展望,以期对蜜蜂研究有所借鉴.%Honeybee plays an important role for the nature and the human. It is crucial for agriculture as a facilitator of pollination and indispensable to maintain the biological diversity of the ecological system. Also, bee products are widely used for their nutrition and health care functions to the mankind. The proteomic researches on honeybee have been ushered into a new stage since the completion of the honeybee genome sequencing project. And the combination of two-dimensional electrophoresis and mass spectrometry is the most popular method in honeybee proteome investigations. This paper reviewed the advances in honeybee proteomics concerning the development of honeybee egg, larva, pupa, hypopharyngeal gland and caste differentiation, the comparison between nurses and foragers, the analysis of some tissues and organs such as honeybee head, thorax, hemolymph, venom gland, queen spermathecal gland, male accessory gland and sperm, the studies on royal jelly, pollen, honeybee venom and so on, hoping to provide some clues for future studies.

  2. Evidence for the evolutionary nascence of a novel sex determination pathway in honeybees

    Hasselmann, Martin; Gempe, Tanja; Schiøtt, Morten;

    2008-01-01

    Sex determination in honeybees (Apis mellifera) is governed by heterozygosity at a single locus harbouring the complementary sex determiner (csd) gene, in contrast to the well-studied sex chromosome system of Drosophila melanogaster. Bees heterozygous at csd are females, whereas homozygotes and...... hemizygotes (haploid individuals) are males. Although at least 15 different csd alleles are known among natural bee populations, the mechanisms linking allelic interactions to switching of the sexual development programme are still obscure. Here we report a new component of the sex-determining pathway in...... honeybees, encoded 12 kilobases upstream of csd. The gene feminizer (fem) is the ancestrally conserved progenitor gene from which csd arose and encodes an SR-type protein, harbouring an Arg/Ser-rich domain. Fem shares the same arrangement of Arg/Ser- and proline-rich-domain with the Drosophila principal sex...

  3. Quality of royal jelly produced by Africanized honeybees fed a supplemented diet

    Maria Josiane Sereia

    2013-06-01

    Full Text Available This study was carried out to evaluate the effect of artificial supplements prepared with soybean protein isolate, brewer's yeast, mixture of soybean protein isolate with brewer's yeast, linseed oil, palm oil, and a mixture of linseed oil with palm oil on the physicochemical and microbiological composition of royal jelly produced by Africanized honey bee colonies. Considering these results, providing supplements for Africanized honeybee colonies subjected to royal jelly production can help and strengthen the technological development of the Brazilian beekeeping industry increasing its consumption in the national market. This research presents values of royal jelly a little different from those established by the Brazilian legislation. This fact shows that is important to discuss or change the official method for royal jelly analysis. The characterization of physicochemical and microbiological parameters is important in order to standardize fresh, frozen, and lyophilized royal jelly produced by Africanized honeybees.

  4. Invertebrate learning and memory: Fifty years of olfactory conditioning of the proboscis extension response in honeybees.

    Giurfa, Martin; Sandoz, Jean-Christophe

    2012-02-01

    The honeybee Apis mellifera has emerged as a robust and influential model for the study of classical conditioning, thanks to the existence of a powerful Pavlovian conditioning protocol, the olfactory conditioning of the proboscis extension response (PER). In 2011, the olfactory PER conditioning protocol celebrates 50 years since it was first introduced by Kimihisa Takeda in 1961. Here, we review its origins, developments, and perspectives in order to define future research avenues and necessary methodological and conceptual evolutions. We show that olfactory PER conditioning has become a versatile tool for the study of questions in extremely diverse fields in addition to the study of learning and memory and that it has allowed behavioral characterizations, not only of honeybees, but also of other insect species, for which the protocol was adapted. We celebrate, therefore, Takeda's original work and prompt colleagues to conceive and establish further robust behavioral tools for an accurate characterization of insect learning and memory at multiple levels of analysis. PMID:22251890

  5. Lower disease infections in honeybee (Apis mellifera) colonies headed by polyandrous vs monandrous queens

    Tarpy, David R.; Seeley, Thomas D.

    2006-04-01

    We studied the relationship between genetic diversity and disease susceptibility in honeybee colonies living under natural conditions. To do so, we created colonies in which each queen was artificially inseminated with sperm from either one or ten drones. Of the 20 colonies studied, 80% showed at least one brood disease. We found strong differences between the two types of colonies in the infection intensity of chalkbrood and in the total intensity of all brood diseases (chalkbrood, sacbrood, American foulbrood, and European foulbrood) with both variables lower for the colonies with higher genetic diversity. Our findings demonstrate that disease can be an important factor in the ecology of honeybee colonies and they provide strong support for the disease hypothesis for the evolution of polyandry by social insect queens.

  6. FLIGHT RANGE OF AFRICANIZED HONEYBEES, Apis mellifera L. 1758 (Hymenoptera: Apidae IN AN APPLE GROVE

    PARANHOS B.A.J

    1997-01-01

    Full Text Available Africanized honeybees from five colonies were marked with P-32 and taken to an apple grove for a flight behavior study. The method used to determine the flight range was to put out an array of tagged trees in a cross pattern with the colonies arranged in the center point of a 0.8 ha test area. The tagged trees were located 10 meters apart in the 4 rows of 50 meters each, arranged according to the North, South, East, and West directions. Bees were collected while visiting the tagged tree flowers twice a day, during a ten-day period. The number of honeybees marked decreased in relation to the distance from the hives. Analysis of variance showed that a linear regression was highly significant to describe the process. Geographic directions did not affect the activity of the bees.

  7. Observations and temporal model of a honeybee's hairy tongue in microfluid transport

    Zhao, Chenjia; Wu, Jianing; Yan, Shaoze

    2015-11-01

    Nectarivorous insects are endowed with specific mouthparts, which provide an inspiration for the design of micropumps. We combined the postmortem examination and high-speed imaging to observe the kinematics of the honeybee's tongue. We found an asynchronization between the tongue movement and the glossa hair erection. We propose a physical model to describe the feeding process considering the trade-off between nectar-intake volume and energy consumption. This asynchronization is validated to be effective in maximizing the nectar-intake amount by theoretically figuring out the optimal moment when the glossal hairs began to erect. Our results reveal that the honeybee not only develops a subtle tongue with erectable glossal hairs but also preforms a highly evolved scheduled coordination between tongue movements and hair erection, which could serve as valuable models for developing miniature pumps that are both extendable and have dynamic surfaces.

  8. Sensing the intruder: a quantitative threshold for recognition cues perception in honeybees

    Cappa, Federico; Bruschini, Claudia; Cipollini, Maria; Pieraccini, Giuseppe; Cervo, Rita

    2014-02-01

    The ability to discriminate among nestmates and non-nestmate is essential to defend social insect colonies from intruders. Over the years, nestmate recognition has been extensively studied in the honeybee Apis mellifera; nevertheless, the quantitative perceptual aspects at the basis of the recognition system represent an unexplored subject in this species. To test the existence of a cuticular hydrocarbons' quantitative perception threshold for nestmate recognition cues, we conducted behavioural assays by presenting different amounts of a foreign forager's chemical profile to honeybees at the entrance of their colonies. We found an increase in the explorative and aggressive responses as the amount of cues increased based on a threshold mechanism, highlighting the importance of the quantitative perceptual features for the recognition processes in A. mellifera.

  9. Cooperative random Levy flight searches and the flight patterns of honeybees

    The most efficient Levy flight (scale-free) searching strategy for N independent searchers to adopt when target sites are randomly and sparsely distributed is identified. For N=1, it is well known that the optimal searching strategy is attained when μ=2, where the exponent μ characterizes the Levy distribution, P(l)=l-μ, of flight-lengths. For N>1, the optimal searching strategy is attained as μ->1. It is suggested that the orientation flights of honeybees can be understood within the context of such an optimal cooperative random Levy flight searching strategy. Upon returning to their hive after surveying a landscape honeybees can exchange information about the locations of target sites through the waggle dance. In accordance with observations it is predicted that the waggle dance can be disrupted without noticeable influence on a hive's ability to maintain weight when forage is plentiful

  10. Oviposition by small hive beetles elicits hygienic responses from Cape honeybees.

    Ellis, J D; Richards, C S; Hepburn, H R; Elzen, P J

    2003-11-01

    Two novel behaviours, both adaptations of small hive beetles ( Aethina tumida Murray) and Cape honeybees ( Apis mellifera capensis Esch.), are described. Beetles puncture the sides of empty cells and oviposit under the pupae in adjoining cells. However, bees detect this ruse and remove infested brood (hygienic behaviour), even under such well-disguised conditions. Indeed, bees removed 91% of treatment brood (brood cells with punctured walls caused by beetles) but only 2% of control brood (brood not exposed to beetles). Only 91% of treatment brood actually contained beetle eggs; the data therefore suggest that bees remove only that brood containing beetle eggs and leave uninfected brood alone, even if beetles have accessed (but not oviposited on) the brood. Although this unique oviposition strategy by beetles appears both elusive and adaptive, Cape honeybees are able to detect and remove virtually all of the infested brood. PMID:14610654

  11. Energetic Optimisation of Foraging Honeybees: Flexible Change of Strategies in Response to Environmental Challenges

    Anton Stabentheiner; Helmut Kovac

    2014-01-01

    Heterothermic insects like honeybees, foraging in a variable environment, face the challenge of keeping their body temperature high to enable immediate flight and to promote fast exploitation of resources. Because of their small size they have to cope with an enormous heat loss and, therefore, high costs of thermoregulation. This calls for energetic optimisation which may be achieved by different strategies. An 'economizing' strategy would be to reduce energetic investment whenever possible, ...

  12. Consumption rate of some proteinic diets affecting hypopharyngeal glands development in honeybee workers

    Al-Ghamdi, Ahmad AlKazim; Al-Khaibari, Abeer M.; Omar, Mohamed O.

    2010-01-01

    The experiment was carried out under laboratory condition to study the consumption of some proteinic diets and their effect on hypopharyngeal glands (HPG) development during nursing period. The results showed that the bee bread and the pollen loads mixture with sugar (1:1) were more consumed by honeybee workers followed by Nectapol® and Yeast-Gluten mixture. The lowest consumption amount was recorded with traditional substitute.

  13. Physicochemical characteristics of organic honey samples of africanized honeybees from Paraná River islands.

    Eloi Machado Alves; Maria Josiane Sereia; Vagner de Alencar Arnaut Toledo; Luis Carlos Marchini; Carolina Antunes Neves; Tiago Cleyton Simões de Oliveira Arnaut de Toledo; Daniela de Almeida-Anacleto

    2011-01-01

    This research was carried out to evaluate the physicochemical composition of organic honey in Paraná River islands, in Porto Brasílio, State of Paraná. Honey was harvested directly from super of the colonies in three apiaries spread in the Floresta and Laranjeira Islands, from August 2005 to August 2006. Twenty-four samples of organic honey produced by Africanized honeybees were evaluated. The following parameters were analyzed: pH, acidity, formol index, hydroxymethylfurfural, ashes, color, ...

  14. Short term hydrothermal scheduling via improved honey-bee mating optimization algorithm

    hamed baradaran tavakoli; babak mozafari

    2012-01-01

    In this paper, a new approach for solving short term hydrothermal scheduling problem is suggested, to minimize the total production cost and to produce electrical energy in an optimized way, by using honey-bee mating optimization algorithm. In the proposed method, lots of the hydrothermal system constraints such as power balance, water balance, time delay between reservoirs, volume limits and the operation limits of hydro and thermal plants, are considered. Therefore, the problem of short ter...

  15. Exposure to Acetylcholinesterase Inhibitors Alters the Physiology and Motor Function of Honeybees

    GeraldineAWright; ChristopherMoffat

    2013-01-01

    Cholinergic signalling is fundamental to neuro-muscular function in most organisms. Sub-lethal doses of neurotoxic pesticides that target cholinergic signalling can alter the behaviour of insects in subtle ways; their influence on non-target organisms may not be readily apparent in simple mortality studies. Beneficial arthropods such as honeybees perform sophisticated behavioural sequences during foraging that, if influenced by pesticides, could impair foraging success and reduce colony healt...

  16. Physiological state influences the social interactions of two honeybee nest mates.

    Geraldine A Wright

    Full Text Available Physiological state profoundly influences the expression of the behaviour of individuals and can affect social interactions between animals. How physiological state influences food sharing and social behaviour in social insects is poorly understood. Here, we examined the social interactions and food sharing behaviour of honeybees with the aim of developing the honeybee as a model for understanding how an individual's state influences its social interactions. The state of individual honeybees was manipulated by either starving donor bees or feeding them sucrose or low doses of ethanol to examine how a change in hunger or inebriation state affected the social behaviours exhibited by two closely-related nestmates. Using a lab-based assay for measuring individual motor behaviour and social behaviour, we found that behaviours such as antennation, willingness to engage in trophallaxis, and mandible opening were affected by both hunger and ethanol intoxication. Inebriated bees were more likely to exhibit mandible opening, which may represent a form of aggression, than bees fed sucrose alone. However, intoxicated bees were as willing to engage in trophallaxis as the sucrose-fed bees. The effects of ethanol on social behaviors were dose-dependent, with higher doses of ethanol producing larger effects on behaviour. Hungry donor bees, on the other hand, were more likely to engage in begging for food and less likely to antennate and to display mandible opening. We also found that when nestmates received food from donors previously fed ethanol, they began to display evidence of inebriation, indicating that ethanol can be retained in the crop for several hours and that it can be transferred between honeybee nestmates during trophallaxis.

  17. Honeybee Venom Proteome Profile of Queens and Winter Bees as Determined by a Mass Spectrometric Approach

    Ellen L. Danneels

    2015-10-01

    Full Text Available Venoms of invertebrates contain an enormous diversity of proteins, peptides, and other classes of substances. Insect venoms are characterized by a large interspecific variation resulting in extended lists of venom compounds. The venom composition of several hymenopterans also shows different intraspecific variation. For instance, venom from different honeybee castes, more specifically queens and workers, shows quantitative and qualitative variation, while the environment, like seasonal changes, also proves to be an important factor. The present study aimed at an in-depth analysis of the intraspecific variation in the honeybee venom proteome. In summer workers, the recent list of venom proteins resulted from merging combinatorial peptide ligand library sample pretreatment and targeted tandem mass spectrometry realized with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS/MS. Now, the same technique was used to determine the venom proteome of queens and winter bees, enabling us to compare it with that of summer bees. In total, 34 putative venom toxins were found, of which two were never described in honeybee venoms before. Venom from winter workers did not contain toxins that were not present in queens or summer workers, while winter worker venom lacked the allergen Api m 12, also known as vitellogenin. Venom from queen bees, on the other hand, was lacking six of the 34 venom toxins compared to worker bees, while it contained two new venom toxins, in particularly serine proteinase stubble and antithrombin-III. Although people are hardly stung by honeybees during winter or by queen bees, these newly identified toxins should be taken into account in the characterization of a putative allergic response against Apis mellifera stings.

  18. Quality of royal jelly produced by Africanized honeybees fed a supplemented diet

    Maria Josiane Sereia; Vagner de Alencar Arnaut de Toledo

    2013-01-01

    This study was carried out to evaluate the effect of artificial supplements prepared with soybean protein isolate, brewer's yeast, mixture of soybean protein isolate with brewer's yeast, linseed oil, palm oil, and a mixture of linseed oil with palm oil on the physicochemical and microbiological composition of royal jelly produced by Africanized honey bee colonies. Considering these results, providing supplements for Africanized honeybee colonies subjected to royal jelly production can help an...

  19. Characterization of an Unusually Conserved Alui Highly Reiterated DNA Sequence Family from the Honeybee, Apis Mellifera

    Tares, S.; Cornuet, J. M.; Abad, P.

    1993-01-01

    An AluI family of highly reiterated nontranscribed sequences has been found in the genome of the honeybee Apis mellifera. This repeated sequence is shown to be present at approximately 23,000 copies per haploid genome constituting about 2% of the total genomic DNA. The nucleotide sequence of 10 monomers was determined. The consensus sequence is 176 nucleotides long and has an A + T content of 58%. There are clusters of both direct and inverted repeats. Internal subrepeating units ranging from...

  20. Eph Receptor and Ephrin Signaling in Developing and Adult Brain of the Honeybee (Apis mellifera)

    Vidovic, Maria; Nighorn, Alan; Koblar, Simon; Maleszka, Ryszard

    2007-01-01

    Roles for Eph receptor tyrosine kinase and ephrin signaling in vertebrate brain development are well established. Their involvement in the modulation of mammalian synaptic structure and physiology is also emerging. However, less is known of their effects on brain development and their function in adult invertebrate nervous systems. Here, we report on the characterization of Eph receptor and ephrin orthologs in the honeybee, Apis mellifera (Am), and their role in learning and memory. In situ h...

  1. Elevated virulence of an emerging viral genotype as a driver of honeybee loss

    McMahon, Dino P; Natsopoulou, Myrsini E.; Doublet, Vincent; Fürst, Matthias; Weging, Silvio; Brown, Mark J.F.; Gogol-Döring, Andreas; Robert J Paxton

    2016-01-01

    Emerging infectious diseases (EIDs) have contributed significantly to the current biodiversity crisis, leading to widespread epidemics and population loss. Owing to genetic variation in pathogen virulence, a complete understanding of species decline requires the accurate identification and characterization of EIDs. We explore this issue in the Western honeybee, where increasing mortality of populations in the Northern Hemisphere has caused major concern. Specifically, we investigate the impor...

  2. Honeybee venom proteome profile of queens and winter bees as determined by a mass spectrometric approach

    Danneels, Ellen L.; Matthias Van Vaerenbergh; Griet Debyser; Bart Devreese; Dirk C de Graaf

    2015-01-01

    Venoms of invertebrates contain an enormous diversity of proteins, peptides, and other classes of substances. Insect venoms are characterized by a large interspecific variation resulting in extended lists of venom compounds. The venom composition of several hymenopterans also shows different intraspecific variation. For instance, venom from different honeybee castes, more specifically queens and workers, shows quantitative and qualitative variation, while the environment, like seasonal change...

  3. Honeybee venom proteome profile of queens and winter bees as determined by a mass spectrometric approach.

    Danneels, Ellen L; Van Vaerenbergh, Matthias; Debyser, Griet; Devreese, Bart; de Graaf, Dirk C

    2015-11-01

    Venoms of invertebrates contain an enormous diversity of proteins, peptides, and other classes of substances. Insect venoms are characterized by a large interspecific variation resulting in extended lists of venom compounds. The venom composition of several hymenopterans also shows different intraspecific variation. For instance, venom from different honeybee castes, more specifically queens and workers, shows quantitative and qualitative variation, while the environment, like seasonal changes, also proves to be an important factor. The present study aimed at an in-depth analysis of the intraspecific variation in the honeybee venom proteome. In summer workers, the recent list of venom proteins resulted from merging combinatorial peptide ligand library sample pretreatment and targeted tandem mass spectrometry realized with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS/MS). Now, the same technique was used to determine the venom proteome of queens and winter bees, enabling us to compare it with that of summer bees. In total, 34 putative venom toxins were found, of which two were never described in honeybee venoms before. Venom from winter workers did not contain toxins that were not present in queens or summer workers, while winter worker venom lacked the allergen Api m 12, also known as vitellogenin. Venom from queen bees, on the other hand, was lacking six of the 34 venom toxins compared to worker bees, while it contained two new venom toxins, in particularly serine proteinase stubble and antithrombin-III. Although people are hardly stung by honeybees during winter or by queen bees, these newly identified toxins should be taken into account in the characterization of a putative allergic response against Apis mellifera stings. PMID:26529016

  4. Physicochemical and microbiological characterization of cassava flower honey samples produced by africanized honeybees

    Lucimar Peres de Moura Pontara; Edmar Clemente; Dalany Menezes Oliveira; Angela Kwiatkowski; Cássia Inês Lourenzi Franco Rosa; Valter Eugênio Saia

    2012-01-01

    Cassava producers in the region of Marília-São Paulo are integrating their farming activity with beekeeping to diversify their income. The aim of this study was to evaluate the physicochemical and microbiological quality of honey samples produced by Africanized honeybees Apis mellifera from cassava flower in 2008. Analysis were carried out for pH, total soluble solids (TSS), acidity, moisture, reducing and total sugars, apparent sucrose, hydroxymethylfurfural, color, ash, proteins, water inso...

  5. Exposure to acetylcholinesterase inhibitors alters the physiology and motor function of honeybees

    GeraldineAWright

    2013-02-01

    Full Text Available Cholinergic signalling is fundamental to neuro-muscular function in most organisms. Sub-lethal doses of neurotoxic pesticides that target cholinergic signalling can alter the behaviour of insects in subtle ways; their influence on non-target organisms may not be readily apparent in simple mortality studies. Beneficial arthropods such as honeybees perform sophisticated behavioural sequences during foraging that, if influenced by pesticides, could impair foraging success and reduce colony health. Here, we investigate the behavioural effects on honeybees of exposure to a selection of pesticides that target cholinergic signalling by inhibiting acetylcholinesterase (AChE. To examine how continued exposure to AChE inhibitors affected motor function, we fed adult foraging worker honeybees sub-lethal concentrations of these compounds in sucrose solution for 24 h. Using an assay for locomotion in bees, we scored walking, stopped, grooming, and upside down behaviour continuously for 15 min. At a 10nM concentration, all the AChE inhibitors caused similar effects on behaviour, notably increased grooming activity and changes in the frequency of bouts of behaviour such as head grooming. Coumaphos caused dose-dependent effects on locomotion as well as grooming behaviour, and a 1µM concentration of coumaphos induced symptoms of malaise such as abdomen grooming and defecation. Biochemical assays confirmed that the 4 compounds we assayed (coumaphos, aldicarb, chlorpyrifos, and donepezil or their metabolites acted as AChE inhibitors in bees. Furthermore, we show that transcript expression levels of two honeybee acetylcholinesterase inhibitors were selectively upregulated in the brain and in gut tissues in response to AChE inhibitor exposure. The results of our study imply that the effects of pesticides that rely on this mode of action have subtle yet profound effects on physiological effects on behaviour that could lead to reduced survival.

  6. Dead or Alive: Deformed Wing Virus and Varroa destructor Reduce the Life Span of Winter Honeybees

    Dainat, Benjamin; Jay D. Evans; Chen, Yan ping; Gauthier, Laurent; Neumann, Peter

    2012-01-01

    Elevated winter losses of managed honeybee colonies are a major concern, but the underlying mechanisms remain controversial. Among the suspects are the parasitic mite Varroa destructor, the microsporidian Nosema ceranae, and associated viruses. Here we hypothesize that pathogens reduce the life expectancy of winter bees, thereby constituting a proximate mechanism for colony losses. A monitoring of colonies was performed over 6 months in Switzerland from summer 2007 to winter 2007/2008. Indivi...

  7. Sex and Caste-Specific Variation in Compound Eye Morphology of Five Honeybee Species

    Streinzer, Martin; Brockmann, Axel; Nagaraja, Narayanappa; Spaethe, Johannes

    2013-01-01

    Ranging from dwarfs to giants, the species of honeybees show remarkable differences in body size that have placed evolutionary constrains on the size of sensory organs and the brain. Colonies comprise three adult phenotypes, drones and two female castes, the reproductive queen and sterile workers. The phenotypes differ with respect to tasks and thus selection pressures which additionally constrain the shape of sensory systems. In a first step to explore the variability and interaction between...

  8. Reduction of pollen viability of cantaloupe melon (Cucumis melo L., Cucurbitaceae) by honeybee body hairs contact

    Dibos, Chloe; Gibert, Caroline; Suchail, Séverine; Vaissière, Bernard; El Maataoui, Mohamed; Queen's University Belfast

    2008-01-01

    Honeybees take part in 80% of Angiosperms pollination. With pollen transport and transfer from flower to flower, they increase fruit and seed set compared to hand pollination. Nevertheless, it was shown in some species that bee contact decreases pollen viability. The aim of this study was to assess the bee contact effect on Cucurbitaceae pollen viability during different times. The studied model is cantaloupe melon (Cucumis melo L.), an economically important crop of Southern F...

  9. Honeybee Kenyon cells are regulated by a tonic GABA receptor conductance.

    Palmer, Mary J; Harvey, Jenni

    2014-10-15

    The higher cognitive functions of insects are dependent on their mushroom bodies (MBs), which are particularly large in social insects such as honeybees. MB Kenyon cells (KCs) receive multisensory input and are involved in associative learning and memory. In addition to receiving sensory input via excitatory nicotinic synapses, KCs receive inhibitory GABAergic input from MB feedback neurons. Cultured honeybee KCs exhibit ionotropic GABA receptor currents, but the properties of GABA-mediated inhibition in intact MBs are currently unknown. Here, using whole cell recordings from KCs in acutely isolated honeybee brain, we show that KCs exhibit a tonic current that is inhibited by picrotoxin but not by bicuculline. Bath application of GABA (5 μM) and taurine (1 mM) activate a tonic current in KCs, but l-glutamate (0.1-0.5 mM) has no effect. The tonic current is strongly potentiated by the allosteric GABAA receptor modulator pentobarbital and is reduced by inhibition of Ca(2+) channels with Cd(2+) or nifedipine. Noise analysis of the GABA-evoked current gives a single-channel conductance value for the underlying receptors of 27 ± 3 pS, similar to that of resistant to dieldrin (RDL) receptors. The amount of injected current required to evoke action potential firing in KCs is significantly lower in the presence of picrotoxin. KCs recorded in an intact honeybee head preparation similarly exhibit a tonic GABA receptor conductance that reduces neuronal excitability, a property that is likely to contribute to the sparse coding of sensory information in insect MBs. PMID:25031259

  10. Parallel processing in the honeybee olfactory pathway: structure, function, and evolution

    Rössler, Wolfgang; Brill, Martin F.

    2016-01-01

    Animals face highly complex and dynamic olfactory stimuli in their natural environments, which require fast and reliable olfactory processing. Parallel processing is a common principle of sensory systems supporting this task, for example in visual and auditory systems, but its role in olfaction remained unclear. Studies in the honeybee focused on a dual olfactory pathway. Two sets of projection neurons connect glomeruli in two antennal-lobe hemilobes via lateral and medial tracts in opposite ...

  11. Quality of honeybee drones reared in colonies with limited and unlimited access to pollen

    Czekońska, Krystyna; Chuda-Mickiewicz, Bożena; Samborski, Jerzy

    2015-01-01

    International audience Older larvae of honeybee drones are fed with a diet containing pollen. It is not known how pollen deprivation during the larval development of drones might affect their reproductive quality. This study investigated ejaculation ability and semen quality in drones reared in colonies with limited (LP) and unlimited (ULP) access to pollen. Access to pollen was limited by pollen traps. Drone brood rearing was not instantly abandoned in colonies with limited access to poll...

  12. Functional Morphology of the Divided Compound Eye of the Honeybee Drone (Apis mellifera)

    Menzel, J.G.; Wunderer, H.; Stavenga, D.G.

    1991-01-01

    Using different approaches, the functional morphology of the compound eye of the honeybee drone was examined. The drone exhibits an extended acute zone in the dorsal part of its eye. The following specializations were found here: enlarged facet diameters; smaller interommatidial angles; red-leaky screening pigment; enlarged rhabdom diameters; photopigment composition different from the drone’s ventral eye region and the worker bee’s eye. Thus, similar to other male insects, the drone compound...

  13. Parental Analysis of Introgressive Hybridization between African and European Honeybees Using Nuclear DNA Rflps

    Hall, H G

    1990-01-01

    African honeybees, introduced into Brazil 33 years ago, have spread through most of South and Central America and have largely replaced the extant European bees. Due to a paucity of genetic markers, genetic interactions between European and African bees are not well understood. Three restriction fragment length polymorphisms (RFLPs), detected with random, nuclear DNA probes, are described. The polymorphisms are specific to bees of European descent, possibly specific to certain European races....

  14. Chronic neonicotinoid pesticide exposure and parasite stress differentially affects learning in honeybees and bumblebees.

    Piiroinen, Saija; Goulson, Dave

    2016-04-13

    Learning and memory are crucial functions which enable insect pollinators to efficiently locate and extract floral rewards. Exposure to pesticides or infection by parasites may cause subtle but ecologically important changes in cognitive functions of pollinators. The potential interactive effects of these stressors on learning and memory have not yet been explored. Furthermore, sensitivity to stressors may differ between species, but few studies have compared responses in different species. Here, we show that chronic exposure to field-realistic levels of the neonicotinoid clothianidin impaired olfactory learning acquisition in honeybees, leading to potential impacts on colony fitness, but not in bumblebees. Infection by the microsporidian parasiteNosema ceranaeslightly impaired learning in honeybees, but no interactive effects were observed.Nosemadid not infect bumblebees (3% infection success). Nevertheless,Nosema-treated bumblebees had a slightly lower rate of learning than controls, but faster learning in combination with neonicotinoid exposure. This highlights the potential for complex interactive effects of stressors on learning. Our results underline that one cannot readily extrapolate findings from one bee species to others. This has important implications for regulatory risk assessments which generally use honeybees as a model for all bees. PMID:27053744

  15. Effects of Sublethal Doses of Imidacloprid on Young Adult Honeybee Behaviour.

    Mengoni Goñalons, Carolina; Farina, Walter Marcelo

    2015-01-01

    Imidacloprid (IMI), a neonicotinoid used for its high selective toxicity to insects, is one of the most commonly used pesticides. However, its effect on beneficial insects such as the honeybee Apis mellifera L is still controversial. As young adult workers perform in-hive duties that are crucial for colony maintenance and survival, we aimed to assess the effect of sublethal IMI doses on honeybee behaviour during this period. Also, because this insecticide acts as a cholinergic-nicotinic agonist and these pathways take part in insect learning and memory processes; we used IMI to assess their role and the changes they suffer along early adulthood. We focused on appetitive behaviours based on the proboscis extension response. Laboratory reared adults of 2 to 10 days of age were exposed to sublethal IMI doses (0.25 or 0.50ng) administered orally or topically prior to behavioural assessment. Modification of gustatory responsiveness and impairment of learning and memory were found as a result of IMI exposure. These outcomes differed depending on age of evaluation, type of exposure and IMI dose, being the youngest bees more sensitive and the highest oral dose more toxic. Altogether, these results imply that IMI administered at levels found in agroecosystems can reduce sensitivity to reward and impair associative learning in young honeybees. Therefore, once a nectar inflow with IMI traces is distributed within the hive, it could impair in-door duties with negative consequences on colony performance. PMID:26488410

  16. EPIDEMIOLOGY OF HONEYBEE STING CASES IN THE STATE OF CEARÁ, NORTHEASTERN BRAZIL

    DINIZ, Ana Gilza Quaresma; BELMINO, José Franscidavid Barbosa; de ARAÚJO, Kaliany Adja Medeiros; VIEIRA, Aluska Tavares; LEITE, Renner de Souza

    2016-01-01

    In the American continent, honeybee envenomation is a public health problem due to the high incidence and severity of the cases. Despite its medical importance, there is a lack of epidemiological studies on this topic in Brazil, especially referring to the Northeastern states. The present study has aimed to describe the epidemiological features of honeybee envenomation cases in the state of the Ceará, Northeastern Brazil, from 2007 to 2013. Data were collected from the Injury Notification Information System database of the Health Department of Ceará. A total of 1,307 cases were analyzed. Cases were shown to be distributed in all the months of the studied years, reaching higher frequencies in August. The majority of cases occurred in urban areas and involved men aged between 20 and 29 years. Victims were mainly stung on the head and torso, and they received medical assistance predominantly within 3 hours after being stung. Local manifestations were more frequent than systemic ones. Most cases were classified as mild and progressed to cure. The high number of honeybee sting cases shows that Ceará may be an important risk area for such injuries. Moreover, the current study provides data for the development of strategies to promote control and prevention of bee stings in this area. PMID:27253742

  17. Identification, recombinant production and structural characterization of four silk proteins from the Asiatic honeybee Apis cerana.

    Shi, Jiahai; Lua, Shixiong; Du, Ning; Liu, Xiangyang; Song, Jianxing

    2008-06-01

    Unlike silkworm and spider silks assembled from very large and repetitive fibrous proteins, the bee and ant silks were recently demonstrated to consist of four small and non-repetitive coiled-coil proteins. The design principle for this silk family remains largely unknown and so far no structural study is available on them in solution. The present study aimed to identify, express and characterize the Asiatic honeybee silk proteins using DLS, CD and NMR spectroscopy. Consequently, (1) four silk proteins are identified, with approximately 6, 10, 9 and 8% variations, respectively, from their European honeybee homologs. Strikingly, their recombinant forms can be produced in Escherichia coil with yields of 10-60 mg/l. (2) Despite containing approximately 65% coiled-coil sequences, four proteins have very low alpha-helix (9-27%) but unusually high random coil (45-56%) contents. Surprisingly, beta-sheet is also detected in four silk proteins (26-35%), implying the possible presence of beta-sheet in the bee and ant silks. (3) Four proteins lacking of the tight tertiary packing appear capable of interacting with each other weakly but this interaction triggers no significant formation of the tight tertiary packing. The study not only implies the promising potential to produce recombinant honeybee silk proteins for the development of various biomaterials; but also provides the first structural insight into the molecular mechanism underlying the formation of the coiled-coil silks. PMID:18394700

  18. Effects of Sublethal Doses of Imidacloprid on Young Adult Honeybee Behaviour.

    Carolina Mengoni Goñalons

    Full Text Available Imidacloprid (IMI, a neonicotinoid used for its high selective toxicity to insects, is one of the most commonly used pesticides. However, its effect on beneficial insects such as the honeybee Apis mellifera L is still controversial. As young adult workers perform in-hive duties that are crucial for colony maintenance and survival, we aimed to assess the effect of sublethal IMI doses on honeybee behaviour during this period. Also, because this insecticide acts as a cholinergic-nicotinic agonist and these pathways take part in insect learning and memory processes; we used IMI to assess their role and the changes they suffer along early adulthood. We focused on appetitive behaviours based on the proboscis extension response. Laboratory reared adults of 2 to 10 days of age were exposed to sublethal IMI doses (0.25 or 0.50ng administered orally or topically prior to behavioural assessment. Modification of gustatory responsiveness and impairment of learning and memory were found as a result of IMI exposure. These outcomes differed depending on age of evaluation, type of exposure and IMI dose, being the youngest bees more sensitive and the highest oral dose more toxic. Altogether, these results imply that IMI administered at levels found in agroecosystems can reduce sensitivity to reward and impair associative learning in young honeybees. Therefore, once a nectar inflow with IMI traces is distributed within the hive, it could impair in-door duties with negative consequences on colony performance.

  19. Impact of honeybee (Apis mellifera L. density on wild bee foraging behaviour

    Goras Georgios

    2016-06-01

    Full Text Available Honey bees are globally regarded as important crop pollinators and are also valued for their honey production. They have been introduced on an almost worldwide scale. During recent years, however, several studies argue their possible competition with unmanaged pollinators. Here we examine the possible effects of honey bees on the foraging behaviour of wild bees on Cistus creticus flowers in Northern Greece. We gradually introduced one, five, and eight honey-bee hives per site, each containing ca. 20,000 workers. The visitation frequency and visit duration of wild bees before and after the beehive introductions were measured by flower observation. While the visitation frequencies of wild bees were unaffected, the average time wild bees spent on C. creticus increased with the introduction of the honey-bee hives. Although competition between honey bees and wild bees is often expected, we did not find any clear evidence for significant effects even in honey-bee densities much higher than the European-wide average of 3.1 colonies/km2.

  20. Effects of erectable glossal hairs on a honeybee's nectar-drinking strategy

    Yang, Heng; Wu, Jianing; Yan, Shaoze

    2014-06-01

    With the use of a scanning electron microscope, we observe specific microstructures of the mouthpart of the Italian bee (Apis mellifera ligustica), especially the distribution and dimensions of hairs on its glossa. Considering the erection of glossal hairs for trapping nectar modifies the viscous dipping model in analyzing the drinking strategy of a honeybee. Theoretical estimations of volume intake rates with respect to sucrose solutions of different concentrations agree with experimental data, which indicates that erectable hairs can significantly increase the ability of a bee to acquire nectar efficiently. The comparison with experimental results also indicates that a honeybee may continuously augment its pumping power, rather than keep it constant, to drink nectar with sharply increasing viscosity. Under the modified assumption of increasing working power, we introduce the rate at which working power increases with viscosity and discuss the nature-preferred nectar concentration of 35% by theoretically calculating optimal concentration maximizing energetic intake rates under varying increasing rates. Finally, the ability of the mouthparts of the honeybee to transfer viscous nectar may inspire a concept for transporting microfluidics with a wide range of viscosities.

  1. Honeybees and beehives are rich sources for fructophilic lactic acid bacteria.

    Endo, Akihito; Salminen, Seppo

    2013-09-01

    Fructophilic lactic acid bacteria (FLAB) are a specific group of lactic acid bacteria (LAB) characterized and described only recently. They prefer fructose as growth substrate and inhabit only fructose-rich niches. Honeybees are high-fructose-consuming insects and important pollinators in nature, but reported to be decreasing in the wild. In the present study, we analyzed FLAB microbiota in honeybees, larvae, fresh honey and bee pollen. A total of 66 strains of LAB were isolated from samples using a selective isolation technique for FLAB. Surprisingly, all strains showed fructophilic characteristics. The 66 strains and ten FLAB strains isolated from flowers in a separate study were genotypically separated into six groups, four of which being identified as Lactobacillus kunkeei and two as Fructobacillus fructosus. One of the L. kunkeei isolates showed antibacterial activity against Melissococcus plutonius, a causative pathogen of European foulbrood, this protection being attributable to production of an antibacterial peptide or protein. Culture-independent analysis suggested that bee products and larvae contained simple Lactobacillus-group microbiota, dominated by L. kunkeei, although adult bees carried a more complex microbiota. The findings clearly demonstrate that honeybees and their products are rich sources of FLAB, and FLAB are potential candidates for future bee probiotics. PMID:23845309

  2. Effects of Sublethal Doses of Imidacloprid on Young Adult Honeybee Behaviour

    Mengoni Goñalons, Carolina; Farina, Walter Marcelo

    2015-01-01

    Imidacloprid (IMI), a neonicotinoid used for its high selective toxicity to insects, is one of the most commonly used pesticides. However, its effect on beneficial insects such as the honeybee Apis mellifera L is still controversial. As young adult workers perform in-hive duties that are crucial for colony maintenance and survival, we aimed to assess the effect of sublethal IMI doses on honeybee behaviour during this period. Also, because this insecticide acts as a cholinergic-nicotinic agonist and these pathways take part in insect learning and memory processes; we used IMI to assess their role and the changes they suffer along early adulthood. We focused on appetitive behaviours based on the proboscis extension response. Laboratory reared adults of 2 to 10 days of age were exposed to sublethal IMI doses (0.25 or 0.50ng) administered orally or topically prior to behavioural assessment. Modification of gustatory responsiveness and impairment of learning and memory were found as a result of IMI exposure. These outcomes differed depending on age of evaluation, type of exposure and IMI dose, being the youngest bees more sensitive and the highest oral dose more toxic. Altogether, these results imply that IMI administered at levels found in agroecosystems can reduce sensitivity to reward and impair associative learning in young honeybees. Therefore, once a nectar inflow with IMI traces is distributed within the hive, it could impair in-door duties with negative consequences on colony performance. PMID:26488410

  3. Establishment of a bacterial infection model using the European honeybee, Apis mellifera L.

    Kenichi Ishii

    Full Text Available Injection of human pathogenic bacteria (Pseudomonas aeruginosa, Serratia marcescens, Salmonella enterica, Staphylococcus aureus, and Listeria monocytogenes into the hemocoel of honeybee (Apis mellifera L. workers kills the infected bees. The bee-killing effects of the pathogens were affected by temperature, and the LD₅₀ values at 37°C were more than 100-fold lower than those at 15°C. Gene-disrupted S. aureus mutants of virulence genes such as agrA, saeS, arlR, srtA, hla, and hlb had attenuated bee-killing ability. Nurse bees were less susceptible than foragers and drones to S. aureus infection. Injection of antibiotics clinically used for humans had therapeutic effects against S. aureus infections of bees, and the ED₅₀ values of these antibiotics were comparable with those determined in mammalian models. Moreover, the effectiveness of orally administered antibiotics was consistent between honeybees and mammals. These findings suggest that the honeybee could be a useful model for assessing the pathogenesis of human-infecting bacteria and the effectiveness of antibiotics.

  4. Effects of a honeybee sting on the serum free amino acid profile in humans.

    Jan Matysiak

    Full Text Available The aim of this study was to assess the response to a honeybee venom by analyzing serum levels of 34 free amino acids. Another goal of this study was to apply complex analytic-bioinformatic-clinical strategy based on up-to-date achievements of mass spectrometry in metabolomic profiling. The amino acid profiles were determined using hybrid triple quadrupole/linear ion trap mass spectrometer coupled with a liquid chromatography instrument. Serum samples were collected from 27 beekeepers within 3 hours after they were stung and after a minimum of 6 weeks following the last sting. The differences in amino acid profiles were evaluated using MetaboAnalyst and ROCCET web portals. Chemometric tests showed statistically significant differences in the levels of L-glutamine (Gln, L-glutamic acid (Glu, L-methionine (Met and 3-methyl-L-histidine (3MHis between the two analyzed groups of serum samples. Gln and Glu appeared to be the most important metabolites for distinguishing the beekeepers tested shortly after a bee sting from those tested at least 6 weeks later. The role of some amino acids in the response of an organism to the honeybee sting was also discussed. This study indicated that proposed methodology may allow to identify the individuals just after the sting and those who were stung at least 6 weeks earlier. The results we obtained will contribute to better understanding of the human body response to the honeybee sting.

  5. Giant honeybees ( Apis dorsata) mob wasps away from the nest by directed visual patterns

    Kastberger, Gerald; Weihmann, Frank; Zierler, Martina; Hötzl, Thomas

    2014-11-01

    The open nesting behaviour of giant honeybees ( Apis dorsata) accounts for the evolution of a series of defence strategies to protect the colonies from predation. In particular, the concerted action of shimmering behaviour is known to effectively confuse and repel predators. In shimmering, bees on the nest surface flip their abdomens in a highly coordinated manner to generate Mexican wave-like patterns. The paper documents a further-going capacity of this kind of collective defence: the visual patterns of shimmering waves align regarding their directional characteristics with the projected flight manoeuvres of the wasps when preying in front of the bees' nest. The honeybees take here advantage of a threefold asymmetry intrinsic to the prey-predator interaction: (a) the visual patterns of shimmering turn faster than the wasps on their flight path, (b) they "follow" the wasps more persistently (up to 100 ms) than the wasps "follow" the shimmering patterns (up to 40 ms) and (c) the shimmering patterns align with the wasps' flight in all directions at the same strength, whereas the wasps have some preference for horizontal correspondence. The findings give evidence that shimmering honeybees utilize directional alignment to enforce their repelling power against preying wasps. This phenomenon can be identified as predator driving which is generally associated with mobbing behaviour (particularly known in selfish herds of vertebrate species), which is, until now, not reported in insects.

  6. Phage Therapy is Effective in Protecting Honeybee Larvae from American Foulbrood Disease.

    Ghorbani-Nezami, Sara; LeBlanc, Lucy; Yost, Diane G; Amy, Penny S

    2015-01-01

    American foulbrood disease has a major impact on honeybees (Apis melifera) worldwide. It is caused by a Gram-positive, spore-forming bacterium, Paenibacillus larvae. The disease can only affect larval honeybees, and the bacterial endospores are the infective unit of the disease. Antibiotics are not sufficient to combat the disease due to increasing resistance among P. larvae strains. Because of the durability and virulence of P. larvae endospores, infections spread rapidly, and beekeepers are often forced to burn beehives and equipment. To date, very little information is available on the use of bacteriophage therapy in rescuing and preventing American foulbrood disease, therefore the goal of this study was to test the efficacy of phage therapy against P. larvae infection. Out of 32 previously isolated P. larvae phages, three designated F, WA, and XIII were tested on artificially reared honeybee larvae infected with P. larvae strain NRRL B-3650 spores. The presence of P. larvae DNA in dead larvae was confirmed by 16S rRNA gene-specific polymerase chain reaction amplification. Survival rates for phage-treated larvae were approximately the same as for larvae never infected with spores (84%), i.e., the phages had no deleterious effect on the larvae. Additionally, prophylactic treatment of larvae with phages before spore infection was more effective than administering phages after infection, although survival in both cases was higher than spores alone (45%). Further testing to determine the optimal combination and concentration of phages, and testing in actual hive conditions are needed. PMID:26136497

  7. Laurel leaf extracts for honeybee pest and disease management: antimicrobial, microsporicidal, and acaricidal activity.

    Damiani, Natalia; Fernández, Natalia J; Porrini, Martín P; Gende, Liesel B; Álvarez, Estefanía; Buffa, Franco; Brasesco, Constanza; Maggi, Matías D; Marcangeli, Jorge A; Eguaras, Martín J

    2014-02-01

    A diverse set of parasites and pathogens affects productivity and survival of Apis mellifera honeybees. In beekeeping, traditional control by antibiotics and molecules of synthesis has caused problems with contamination and resistant pathogens. In this research, different Laurus nobilis extracts are tested against the main honeybee pests through an integrated point of view. In vivo effects on bee survival are also evaluated. The ethanol extract showed minimal inhibitory concentration (MIC) values of 208 to 416 μg/mL, having the best antimicrobial effect on Paenibacillus larvae among all substances tested. Similarly, this leaf extract showed a significant antiparasitic activity on Varroa destructor, killing 50 % of mites 24 h after a 30-s exposure, and on Nosema ceranae, inhibiting the spore development in the midgut of adult bees ingesting 1 × 10(4) μg/mL of extract solution. Both ethanol extract and volatile extracts (essential oil, hydrolate, and its main component) did not cause lethal effects on adult honeybees. Thus, the absence of topical and oral toxicity of the ethanol extract on bees and the strong antimicrobial, microsporicidal, and miticidal effects registered in this study place this laurel extract as a promising integrated treatment of bee diseases and stimulates the search for other bioactive phytochemicals from plants. PMID:24288051

  8. Establishment of a bacterial infection model using the European honeybee, Apis mellifera L.

    Ishii, Kenichi; Hamamoto, Hiroshi; Sekimizu, Kazuhisa

    2014-01-01

    Injection of human pathogenic bacteria (Pseudomonas aeruginosa, Serratia marcescens, Salmonella enterica, Staphylococcus aureus, and Listeria monocytogenes) into the hemocoel of honeybee (Apis mellifera L.) workers kills the infected bees. The bee-killing effects of the pathogens were affected by temperature, and the LD₅₀ values at 37°C were more than 100-fold lower than those at 15°C. Gene-disrupted S. aureus mutants of virulence genes such as agrA, saeS, arlR, srtA, hla, and hlb had attenuated bee-killing ability. Nurse bees were less susceptible than foragers and drones to S. aureus infection. Injection of antibiotics clinically used for humans had therapeutic effects against S. aureus infections of bees, and the ED₅₀ values of these antibiotics were comparable with those determined in mammalian models. Moreover, the effectiveness of orally administered antibiotics was consistent between honeybees and mammals. These findings suggest that the honeybee could be a useful model for assessing the pathogenesis of human-infecting bacteria and the effectiveness of antibiotics. PMID:24587122

  9. Color Difference and Memory Recall in Free-Flying Honeybees: Forget the Hard Problem

    Adrian G. Dyer

    2014-07-01

    Full Text Available Free-flying honeybees acquire color information differently depending upon whether a target color is learnt in isolation (absolute conditioning, or in relation to a perceptually similar color (differential conditioning. Absolute conditioning allows for rapid learning, but color discrimination is coarse. Differential conditioning requires more learning trials, but enables fine discriminations. Currently it is unknown whether differential conditioning to similar colors in honeybees forms a long-term memory, and the stability of memory in a biologically relevant scenario considering similar or saliently different color stimuli. Individual free-flying honeybees (N = 6 were trained to similar color stimuli separated by 0.06 hexagon units for 60 trials and mean accuracy was 81.7% ± 12.2% s.d. Bees retested on subsequent days showed a reduction in the number of correct choices with increasing time from the initial training, and for four of the bees this reduction was significant from chance expectation considering binomially distributed logistic regression models. In contrast, an independent group of 6 bees trained to saliently different colors (>0.14 hexagon units did not experience any decay in memory retention with increasing time. This suggests that whilst the bees’ visual system can permit fine discriminations, flowers producing saliently different colors are more easily remembered by foraging bees over several days.

  10. Research progress in anarchistic honeybees%蜜蜂无政府主义蜂群的研究进展

    牛德芳; 郑火青; 胡福良

    2013-01-01

    西方蜜蜂Apis mellifera作为典型的社会性昆虫,最重要的特征是生殖劳动分工.蜂王垄断蜂群的生殖权利,工蜂生殖功能受到抑制,从事除产卵和交配以外的所有职能.而在无政府主义蜂群中,即使蜂王存在,也有较多工蜂的卵巢激活并产卵,蜂群中大多数雄蜂是工蜂的后代.这些特殊蜂群为正常蜂群工蜂不育机制研究提供了绝佳的反例材料.本文对无政府主义蜂群的行为特征、产生条件、遗传基础等研究进行了综述.无政府主义蜂群中有较多的工蜂产卵,且工蜂所产卵能够逃避工蜂监督,这种行为的产生受环境、遗传组成、基因表达等多种因素的影响,并且遗传结构体系复杂,参与调控的基因数量多.无政府主义蜂群行为机制的研究为工蜂不育机制的揭示及其他社会性昆虫工职不育基因的筛选和功能研究提供借鉴.%As eusocial insects,the honeybees Apis mellifera,are characterized by the extreme reproductive division of labor.The queen monopolizes reproduction in a colony,and the workers refrain from,are coerced not to,or have lost the ability to reproduce,undertaking all the functions inside and outside of the hive except for egg laying and mating.However,in occasional "anarchistic" queenright colonies,many workers have activated ovaries and lay eggs,so the majority of drones are the offsprings of workers but not the queen.These anarchistic bees provide a superb model for investigating the mechanisms underlying the sterility in honeybee workers.In this article the characteristics,causes and genetic basis of anarchistic colonies are reviewed.Many workers lay eggs in anarchistic colonies and these eggs could escape the worker policing.The anarchistic behavior is affected by several factors,including environmental conditions,genetic constitution and gene expression.Moreover,the genetic structure system of anarchistic behavior is quite complex and many genes may be involved

  11. Antibiotic Agents

    ... either as public health or as non-public health antimicrobial agents. What is the difference between bacteriostats, sanitizers, disinfectants ... bacteria, however, there is considerable controversy surrounding their health benefits. The ... producing agents (Table of Antibacterials) have been used for many ...

  12. Duration of the Unconditioned Stimulus in Appetitive Conditioning of Honeybees Differentially Impacts Learning, Long-Term Memory Strength, and the Underlying Protein Synthesis

    Marter, Kathrin; Grauel, M. Katharina; Lewa, Carmen; Morgenstern, Laura; Buckemüller, Christina; Heufelder, Karin; Ganz, Marion; Eisenhardt, Dorothea

    2014-01-01

    This study examines the role of stimulus duration in learning and memory formation of honeybees ("Apis mellifera"). In classical appetitive conditioning honeybees learn the association between an initially neutral, conditioned stimulus (CS) and the occurrence of a meaningful stimulus, the unconditioned stimulus (US). Thereby the CS…

  13. Variable induction of vitellogenin genes in the varroa mite, Varroa destructor (Anderson & Trueman) by the honeybee, Apis mellifera L, host and its environment

    Transcript levels of vitellogenins (Vgs) in the varroa mite, Varroa destructor (Anderson & Trueman) were variably induced by interactions between the developing honeybee as a food source and the capped honeybee cell environment. Transcripts for 2 Vgs of varroa mites were sequenced and putative Vg pr...

  14. Expression of recombinant AccMRJP1 protein from royal jelly of Chinese honeybee in Pichia pastoris and its proliferation activity in an insect cell line

    Main royal jelly protein 1 (MRJP1) is the most abundant member of the main royal jelly protein (MRJP) family among honeybees. Mature MRJP1 cDNA of the Chinese honeybee (Apis cerana cerana MRJP1, or AccMRJP1) was expressed in Pichia pastoris. SDS-PAGE showed that recombinant AccMRJP1 was identical in...

  15. Proteomic analysis of the royal jelly and characterization of the functions of its derivation glands in the honeybee.

    Fujita, Toshiyuki; Kozuka-Hata, Hiroko; Ao-Kondo, Hiroko; Kunieda, Takekazu; Oyama, Masaaki; Kubo, Takeo

    2013-01-01

    To identify candidate royal jelly (RJ) proteins that might affect the physiologic status of honeybee colony members, we used shotgun proteomics to comprehensively identify the RJ proteome as well as proteomes of the hypopharyngeal gland (HpG), postcerebral gland (PcG), and thoracic gland (TG), from which RJ proteins are assumed to be derived. We identified a total of 38 nonredundant RJ proteins, including 22 putative secretory proteins and Insulin-like growth factor-binding protein complex acid labile subunit. Among them, 9 proteins were newly identified from RJ. Comparison of the RJ proteome with the HpG, PcG, and TG proteomes revealed that 17 of the 22 putative secretory RJ proteins were derived from some of these glands, suggesting that the RJ proteome is a cocktail of proteins from these three glands. Furthermore, pathway analysis suggested that the HpG proteome represents the molecular basis of the extremely high protein-synthesizing ability, whereas the PcG proteome suggests that the PcG functions as a reservoir for the volatile compounds and a primer pheromone. Finally, to further characterize the possible total RJ proteome, we identified putative secretory proteins in the proteomes of these three glands. This will be useful for predicting novel RJ protein components in future studies. PMID:23157659

  16. Molecular identification and expressive characterization of an olfactory co-receptor gene in the Asian honeybee, Apis cerana cerana.

    Zhao, Huiting; Gao, Pengfei; Zhang, Chunxiang; Ma, Weihua; Jiang, Yusuo

    2013-01-01

    Olfaction recognition process is extraordinarily complex in insects, and the olfactory receptors play an important function in the process. In this paper, a highly conserved olfactory co-receptor gene, AcerOr2 (ortholog to the Drosophila melanogaster Or83b), cloned from the antennae of the Asian honeybee, Apis cerana cerana Fabricius (Hymenoptera: Apidae), using reverse transcriptase PCR and rapid amplification of cDNA ends. The full-length sequence of the gene was 1763 bp long, and the cDNA open reading frame encoded 478 amino acid residues, including 7 putative transmembrane domains. Alignment analysis revealed that AcerOr2 shares high homology (> 74%) with similar olfactory receptors found in other Hymenoptera species. The amino acid identity with the closely related species Apis mellifera reached 99.8%. The developmental expression analysis using quantitative real-time reverse transcriptase PCR suggested that the AcerOr2 transcript was expressed at a relatively low level in the larval stage, whereas it was expressed broadly in the pupal and adult stages, with a significantly high level on the days just before and after eclosion. In situ hybridization showed that AcerOr2 mRNA was expressed in sensilla placodea and on the basal region of the worker antennal cuticle, in accordance with the previous conclusions that the conserved genes are expressed in most olfactory receptor neurons. PMID:24224665

  17. A multimodal approach for tracing lateralization along the olfactory pathway in the honeybee through electrophysiological recordings, morpho-functional imaging, and behavioural studies

    Haase, Albrecht; Frasnelli, Elisa; Trona, Federica; Tessarolo, Francesco; Vinegoni, Claudio; Anfora, Gianfranco; Vallortigara, Giorgio; Antolini, Renzo

    2011-01-01

    Recent studies have revealed asymmetries between the left and right sides of the brain in invertebrate species. Here we present a review of a series of recent studies from our labs, aimed at tracing asymmetries at different stages along the honeybee's (Apis mellifera) olfactory pathway. These include estimates of the number of sensilla present on the two antennae, obtained by scanning electron microscopy, as well as electroantennography recordings of the left and right antennal responses to odorants. We describe investigative studies of the antennal lobes, where multi-photon microscopy is used to search for possible morphological asymmetries between the two brain sides. Moreover, we report on recently published results obtained by two-photon calcium imaging for functional mapping of the antennal lobe aimed at comparing patterns of activity evoked by different odours. Finally, possible links to the results of behavioural tests, measuring asymmetries in single-sided olfactory memory recall, are discussed.

  18. Erythropoietic Agents and the Elderly

    Agarwal, Neeraj; Prchal, Josef T.

    2008-01-01

    Erythropoietin is a peptide hormone that stimulates erythropoiesis. There are several agents in clinical use and in development, which either act as ligands for the cell surface receptors of erythropoietin or promote erythropoietin production that stimulates erythropoiesis. These are known as erythropoietic agents. The agents already in use include epoetin alfa, epoetin beta, and darbepoetin alfa. Newer agents stimulating erythropoiesis (such as continuous erythropoietin receptor activator (C...

  19. The inhibition of kallikrein-bradykinin pathway may be useful in the reduction of allergic reactions during honeybee venom immunotherapy

    Ervin Ç. Mingomataj

    2009-05-01

    Full Text Available "nVenom immunotherapy (VIT protects patients with hymenoptera venom anaphylaxis from subsequent potentially life-threatening reactions. The most important side effects during VIT are systemic anaphylactic reactions (SAR, which are more prevalent during honeybee VIT. Despite the demonstrated diversity with regard to venom compounds, previous publications did not mention the plausible reason that can justify the difference of SAR frequency between honeybee and wasps. On the other hand, pre-treatment with H1-blocking antihistamines reduces the frequency and intensity of local and mild systemic anaphylactic reactions during VIT, but not appropriately moderate adverse reactions such as abdominal pain or angioedematous reactions, which can occur more prevalently also during honeybee VIT. In contrast to hymenoptera venom (HV anaphylaxis, these symptoms are very common during hereditary angioedema (HAE. In addition, in some patients who repeatedly experienced anaphylactic reactions during hyposensitization with HV are reported significantly lower renin, angiotensinogen I, and angiotensinogen II plasma levels. These facts may indicate that during honeybee VIT could be occurred a defective implication of renin-angiotensin system. This may be possible, because among hymenoptera, only the HV contains the antigen melittin, a potent kallikrein activator. These effects during honeybee VIT are similar to the HAE, because melittin-induced kallikrein activation on the first hand, as well as the implication of complement classical pathway during HAE on the second one, can lead both to increased bradykinin (BK secretion, plasma extravasation, and therefore to the occurrence of angioedema and abdominal symptoms. Consequently, the clinical effectiveness of BK receptor and generator blockers such as icatibant, ecallantide or NPC 18884, shown recently during the treatment of HAE attacks and acetic acid-induced abdominal constrictions in mice, may lead to the hypothesis

  20. Programming Service Oriented Agents

    Hirsch, Benjamin; Konnerth, Thomas; Burkhardt, Michael; Albayrak, Sahin

    2010-01-01

    This paper introduces a programming language for service-oriented agents. JADL++ combines the ease of use of scripting-languages with a state-of-the-art service oriented approach which allows the seamless integration of web-services. Furthermore, the language includes OWL-based ontologies for semantic descriptions of data and services, thus allowing agents to make intelligent decisions about service calls.

  1. Adrenal imaging agents

    The goals of this proposal are the development of selenium-containing analogs of the aromatic amino acids as imaging agents for the pancreas and of the adrenal cortex enzyme inhibitors as imaging agents for adrenal pathology. The objects for this year include (a) the synthesis of methylseleno derivatives of phenylalanine and tryptophan, and (b) the preparation and evaluation of radiolabeled iodobenzoyl derivatives of the selenazole and thiazole analogs of metyrapone and SU-9055

  2. Isolation and characterization of proteases that hydrolyze royal jelly proteins from queen bee larvae of the honeybee, Apis mellifera

    Matsuoka, Takuma; Kawashima, Takuji; Nakamura, Tadashi; Kanamaru, Yoshihiro; Yabe, Tomio

    2012-01-01

    International audience Royal jelly is a nutritious substance secreted from the hypopharyngeal and mandibular glands of worker bees that serves as the only food on which honeybee queen larvae and adults are fed and which causes them to develop into queen bees. Royal jelly is a protein-rich food and one of the most crucial factors for the growth of queen bees. In this study, we characterized the hydrolytic activity of enzymes from the homogenates of honeybee queen larvae on royal jelly prote...

  3. Odor experiences during preimaginal stages cause behavioral and neural plasticity in adult honeybees

    Gabriela eRamirez

    2016-06-01

    Full Text Available In eusocial insects, experiences acquired during the development have long-term consequences on mature behavior. In the honeybee that suffers profound changes associated with metamorphosis, the effect of odor experiences at larval instars on the subsequent physiological and behavioral response is still unclear. To address the impact of preimaginal experiences on the adult honeybee, colonies containing larvae were fed scented food. The effect of the preimaginal experiences with the food odor was assessed in learning performance, memory retention and generalization in 3-5- and 17-19-day-old bees, in the regulation of their expression of synaptic-related genes and in theperception and morphology of their antennae. Three-5 day old bees that experienced 1-hexanol (1-HEX as food scent responded more to the presentation of the odor during the 1-HEX conditioning than control bees (i.e. bees reared in colonies fed unscented food. Higher levels of PER to 1-HEX in this group also extent to HEXA, the most perceptually similar odor to the experienced one that we tested. These results were not observed for the group tested at older ages. In the brain of young adults, larval experiences triggered similar levels of neurexins and neuroligins expression, two proteins that have been involved in synaptic formation after associative learning. At the sensory periphery, the experience did not alter the number of the olfactory sensilla placoidea, but did reduce the electrical response of the antennae to the experienced and novel odor. Our study provides a new insight into the effects of preimaginal experiences in the honeybee and the mechanisms underlying olfactory plasticity at larval stage of holometabolous insects.

  4. Thiamethoxam: Assessing flight activity of honeybees foraging on treated oilseed rape using radio frequency identification technology.

    Thompson, Helen; Coulson, Mike; Ruddle, Natalie; Wilkins, Selwyn; Harkin, Sarah

    2016-02-01

    The present study was designed to assess homing behavior of bees foraging on winter oilseed rape grown from seed treated with thiamethoxam (as Cruiser OSR), with 1 field drilled with thiamethoxam-treated seed and 2 control fields drilled with fungicide-only-treated seed. Twelve honeybee colonies were used per treatment group, 4 each located at the field edge (on-field site), at approximately 500 m and 1000 m from the field. A total of nearly 300 newly emerged bees per colony were fitted (tagged) with Mic3 radio frequency identification (RFID) transponders and introduced into each of the 36 study hives. The RFID readers fitted to the entrances of the test colonies were used to monitor the activity of the tagged bees for the duration of the 5-wk flowering period of the crop. These activity data were analyzed to assess any impact on flight activity of bees foraging on the treated compared with untreated crops. Honeybees were seen to be actively foraging within all 3 treatment groups during the exposure period. The data for the more than 3000 RFID-tagged bees and more than 90 000 foraging flights monitored throughout the exposure phase for the study follow the same trends across the treatment and controls and at each of the 3 apiary distances, indicating that there were no effects from foraging on the treated crop. Under the experimental conditions, there was no effect of foraging on thiamethoxam-treated oilseed rape on honeybee flight activity or on their ability to return to the hive. PMID:26222207

  5. A selective sweep in a Varroa destructor resistant honeybee (Apis mellifera) population.

    Lattorff, H Michael G; Buchholz, Josephine; Fries, Ingemar; Moritz, Robin F A

    2015-04-01

    The mite Varroa destructor is one of the most dangerous parasites of the Western honeybee (Apis mellifera) causing enormous colony losses worldwide. Various chemical treatments for the control of the Varroa mite are currently in use, which, however, lead to residues in bee products and often to resistance in mites. This facilitated the exploration of alternative treatment methods and breeding for mite resistant honeybees has been in focus for breeders in many parts of the world with variable results. Another approach has been applied to a honeybee population on Gotland (Sweden) that was exposed to natural selection and survived Varroa-infestation for more than 10years without treatment. Eventually this population became resistant to the parasite by suppressing the reproduction of the mite. A previous QTL mapping study had identified a region on chromosome 7 with major loci contributing to the mite resistance. Here, a microsatellite scan of the significant candidate QTL regions was used to investigate potential footprints of selection in the original population by comparing the study population on Gotland before (2000) and after selection (2007). Genetic drift had caused an extreme loss of genetic diversity in the 2007 population for all genetic markers tested. In addition to this overall reduction of heterozygosity, two loci on chromosome 7 showed an even stronger and significant reduction in diversity than expected from genetic drift alone. Within the selective sweep eleven genes are annotated, one of them being a putative candidate to interfere with reduced mite reproduction. A glucose-methanol-choline oxidoreductase (GMCOX18) might be involved in changing volatiles emitted by bee larvae that might be essential to trigger oogenesis in Varroa. PMID:25660040

  6. Odor Experiences during Preimaginal Stages Cause Behavioral and Neural Plasticity in Adult Honeybees

    Ramírez, Gabriela; Fagundez, Carol; Grosso, Juan P.; Argibay, Pablo; Arenas, Andrés; Farina, Walter M.

    2016-01-01

    In eusocial insects, experiences acquired during the development have long-term consequences on mature behavior. In the honeybee that suffers profound changes associated with metamorphosis, the effect of odor experiences at larval instars on the subsequent physiological and behavioral response is still unclear. To address the impact of preimaginal experiences on the adult honeybee, colonies containing larvae were fed scented food. The effect of the preimaginal experiences with the food odor was assessed in learning performance, memory retention and generalization in 3–5- and 17–19 day-old bees, in the regulation of their expression of synaptic-related genes and in the perception and morphology of their antennae. Three-five day old bees that experienced 1-hexanol (1-HEX) as food scent responded more to the presentation of the odor during the 1-HEX conditioning than control bees (i.e., bees reared in colonies fed unscented food). Higher levels of proboscis extension response (PER) to 1-HEX in this group also extended to HEXA, the most perceptually similar odor to the experienced one that we tested. These results were not observed for the group tested at older ages. In the brain of young adults, larval experiences triggered similar levels of neurexins (NRXs) and neuroligins (Nlgs) expression, two proteins that have been involved in synaptic formation after associative learning. At the sensory periphery, the experience did not alter the number of the olfactory sensilla placoidea, but did reduce the electrical response of the antennae to the experienced and novel odor. Our study provides a new insight into the effects of preimaginal experiences in the honeybee and the mechanisms underlying olfactory plasticity at larval stage of holometabolous insects. PMID:27375445

  7. Honeybee glucose oxidase—its expression in honeybee workers and comparative analyses of its content and H2O2-mediated antibacterial activity in natural honeys

    Bucekova, Marcela; Valachova, Ivana; Kohutova, Lenka; Prochazka, Emanuel; Klaudiny, Jaroslav; Majtan, Juraj

    2014-08-01

    Antibacterial properties of honey largely depend on the accumulation of hydrogen peroxide (H2O2), which is generated by glucose oxidase (GOX)-mediated conversion of glucose in diluted honey. However, honeys exhibit considerable variation in their antibacterial activity. Therefore, the aim of the study was to identify the mechanism behind the variation in this activity and in the H2O2 content in honeys associated with the role of GOX in this process. Immunoblots and in situ hybridization analyses demonstrated that gox is solely expressed in the hypopharyngeal glands of worker bees performing various tasks and not in other glands or tissues. Real-time PCR with reference genes selected for worker heads shows that the gox expression progressively increases with ageing of the youngest bees and nurses and reached the highest values in processor bees. Immunoblot analysis of honey samples revealed that GOX is a regular honey component but its content significantly varied among honeys. Neither botanical source nor geographical origin of honeys affected the level of GOX suggesting that some other factors such as honeybee nutrition and/or genetic/epigenetic factors may take part in the observed variation. A strong correlation was found between the content of GOX and the level of generated H2O2 in honeys except honeydew honeys. Total antibacterial activity of most honey samples against Pseudomonas aeruginosa isolate significantly correlated with the H2O2 content. These results demonstrate that the level of GOX can significantly affect the total antibacterial activity of honey. They also support an idea that breeding of novel honeybee lines expressing higher amounts of GOX could help to increase the antibacterial efficacy of the hypopharyngeal gland secretion that could have positive influence on a resistance of colonies against bacterial pathogens.

  8. A virulent strain of deformed wing virus (DWV of honeybees (Apis mellifera prevails after Varroa destructor-mediated, or in vitro, transmission.

    Eugene V Ryabov

    2014-06-01

    Full Text Available The globally distributed ectoparasite Varroa destructor is a vector for viral pathogens of the Western honeybee (Apis mellifera, in particular the Iflavirus Deformed Wing Virus (DWV. In the absence of Varroa low levels DWV occur, generally causing asymptomatic infections. Conversely, Varroa-infested colonies show markedly elevated virus levels, increased overwintering colony losses, with impairment of pupal development and symptomatic workers. To determine whether changes in the virus population were due Varroa amplifying and introducing virulent virus strains and/or suppressing the host immune responses, we exposed Varroa-naïve larvae to oral and Varroa-transmitted DWV. We monitored virus levels and diversity in developing pupae and associated Varroa, the resulting RNAi response and transcriptome changes in the host. Exposed pupae were stratified by Varroa association (presence/absence and virus levels (low/high into three groups. Varroa-free pupae all exhibited low levels of a highly diverse DWV population, with those exposed per os (group NV exhibiting changes in the population composition. Varroa-associated pupae exhibited either low levels of a diverse DWV population (group VL or high levels of a near-clonal virulent variant of DWV (group VH. These groups and unexposed controls (C could be also discriminated by principal component analysis of the transcriptome changes observed, which included several genes involved in development and the immune response. All Varroa tested contained a diverse replicating DWV population implying the virulent variant present in group VH, and predominating in RNA-seq analysis of temporally and geographically separate Varroa-infested colonies, was selected upon transmission from Varroa, a conclusion supported by direct injection of pupae in vitro with mixed virus populations. Identification of a virulent variant of DWV, the role of Varroa in its transmission and the resulting host transcriptome changes furthers

  9. Insights into social insects from the genome of the honeybee Apis mellifera

    Hauser, Frank; Cazzamali, Giuseppe; Williamson, Michael;

    2006-01-01

    Here we report the genome sequence of the honeybee Apis mellifera, a key model for social behaviour and essential to global ecology through pollination. Compared with other sequenced insect genomes, the A. mellifera genome has high A+T and CpG contents, lacks major transposon families, evolves more...... genes for nectar and pollen utilization, consistent with its ecology and social organization. Compared to Drosophila, genes in early developmental pathways differ in Apis, whereas similarities exist for functions that differ markedly, such as sex determination, brain function and behaviour. Population...

  10. Work or sleep? : honeybee foragers opportunistically nap during the day when forage is not available

    Klein, Barrett; Seeley, Thomas D

    2011-01-01

    Shifts in work schedules test humans’ capacity to be flexible in the timing of both work and sleep. Honeybee, Apis mellifera, foragers also shift their work schedules, but how flexible they are in the timing of sleep as they shift the timing of work is unknown, despite the importance of colony-level plasticity in the face of a changing environment. We hypothesized that sleep schedules of foragers are not fixed and instead vary depending on the time when food is available. We trained bees to v...

  11. The composition of agricultural landscapes influences life history traits of honeybee workers

    Requier, Fabrice; Brun, François; Aupinel, Pierrick; Odoux, Jean Francois; Bretagnolle, Vincent; DECOURTYE, Axel

    2012-01-01

    Honeybee workers play a major role within the colony by taking care of the breeding of larvae until the supply in food of the entire colony, by division of tasks. The age polyethism offers to the worker the capacity to carry out successively the totality of these tasks, following its age. It is known that the worker switches the tasks following a gradient internal-outside the hive during its imago life, the oldest workers making the foraging tasks. However, the available food in agricultural ...

  12. Method for training honeybees to respond to olfactory stimuli and enhancement of memory retention therein

    McCade, Kirsten J.; Wingo, Robert M.; Haarmann, Timothy K.; Sutherland, Andrew; Gubler, Walter D.

    2015-12-15

    A specialized conditioning protocol for honeybees that is designed for use within a complex agricultural ecosystem. This method ensures that the conditioned bees will be less likely to exhibit a conditioned response to uninfected plants, a false positive response that would render such a biological sensor unreliable for agricultural decision support. Also described is a superboosting training regime that allows training without the aid of expensive equipment and protocols for training in out in the field. Also described is a memory enhancing cocktail that aids in long term memory retention of a vapor signature. This allows the bees to be used in the field for longer durations and with fewer bees trained overall.

  13. Weight watching and the effect of landscape on honeybee colony productivity

    Lecocq, Antoine; Kryger, Per; Vejsnæs, Flemming;

    2015-01-01

    Over the last few decades, a gradual departure away from traditional agricultural practices has resulted in alterations to the composition of the countryside and landscapes across Europe. In the face of such changes, monitoring the development and productivity of honey bee colonies from different...... sites can give valuable insight on the influence of landscape on their productivity and might point towards future directions for modernized beekeeping practices. Using data on honeybee colony weights provided by electronic scales spread across Denmark, we investigated the effect of the immediate...

  14. Sperm numbers in drone honeybees (Apis mellifera) depend on body size

    Schlüns, Helge; Schlüns, Ellen; Van Praagh, Job; Moritz, Robin

    2003-01-01

    International audience The effect of drone honeybee's body size on semen production was evaluated. In the same colonies, drones were either reared in drone cells (large drones) or in worker cells (small drones). Wing lengths (size indicator) and sperm numbers of small and large drones were compared. Small drones (~13% reduced wing size) produce significantly fewer spermatozoa ($7.5 \\pm 0.5$ million) than normally sized drones ($11.9 \\pm 1.0$ million spermatozoa). There is a significant pos...

  15. Social encapsulation of beetle parasites by Cape honeybee colonies (Apis mellifera capensis Esch.)

    Neumann, P.; Pirk, C. W. W.; Hepburn, H. R.; Solbrig, A. J.; Ratnieks, F. L. W.; Elzen, P. J.; Baxter, J. R.

    2001-05-01

    Worker honeybees (Apis mellifera capensis) encapsulate the small hive beetle (Aethina tumida), a nest parasite, in propolis (tree resin collected by the bees). The encapsulation process lasts 1-4 days and the bees have a sophisticated guarding strategy for limiting the escape of beetles during encapsulation. Some encapsulated beetles died (4.9%) and a few escaped (1.6%). Encapsulation has probably evolved because the small hive beetle cannot easily be killed by the bees due to its hard exoskeleton and defensive behaviour.

  16. Comparison of renewable oil, recycled oil, and commercial rejuvenating agent derived from crude oil in paving asphalt modification[Includes the CSCE forum on professional practice and career development : 1. international engineering mechanics and materials specialty conference : 1. international/3. coastal, estuarine and offshore engineering specialty conference : 2. international/8. construction specialty conference

    Gordon, C.; Ho, S.; Zanzotto, L. [Calgary Univ., AB (Canada). Schulich School of Engineering

    2009-07-01

    The asphalt industry relies heavily on crude oil. In response to increasing oil prices, there have been efforts to save money on asphalt by taking harder asphalts, such as recycled asphalt pavement (RAP), and softening them with rejuvenating agents. For asphalt that is to be used in cold climates, softer asphalts are preferred because they will perform better under extreme cold conditions without cracking. This study compared the performance, economic benefits, and environmental benefits of renewable materials, recycled oil and a commercially used rejuvenating agent derived from crude oil. Different oily materials including margarine, Cyclogen L (a crude oil-derived material), a vegetable wax, and recycled cooking oil were used to modify paving asphalt. Their effectiveness at improving the superpave low-temperature performance grade was compared. The samples were all tested using the 2008 AASHTO M320 procedures. The high temperature grades were determined using the dynamic shear rheometer test, and the low-temperature grades were determined using the bending beam rheometer test. The 3 varieties of margarine that were tested were able to improve the low-temperature grade, but they caused a greater depreciation of the high-temperature performance grade than the other materials, and were much more expensive. The best candidate for an effective, economic asphalt softening agent was found to be the recycled cooking oil. It out-performed the Cyclogen L oil in terms of improving the low- temperature performance grade, and was less expensive. 12 refs., 4 tabs., 6 figs.

  17. Agent-Based Modeling and Mapping of Manufacturing System

    Z; Zhang

    2002-01-01

    Considering the agent-based modeling and mapping i n manufacturing system, some system models are described in this paper, which are included: Domain Based Hierarchical Structure (DBHS), Cascading Agent Structure (CAS), Proximity Relation Structure (PRS), and Bus-based Network Structure (BNS ). In DBHS, one sort of agents, called static agents, individually acts as Domai n Agents, Resources Agents, UserInterface Agents and Gateway Agents. And the oth ers, named mobile agents, are the brokers of task and ...

  18. Agent, autonomous

    Luciani, Annie

    2007-01-01

    The expression autonomous agents, widely used in virtual reality, computer graphics, artificial intelligence and artificial life, corresponds to the simulation of autonomous creatures, virtual (i.e. totally computed by a program), or embodied in a physical envelope, as done in autonomous robots.

  19. 人工选育浆蜂与原种意大利蜜蜂csd基因多态性比较%Comparison of csd gene polymorphism between artificially bred high royal jelly producing honeybee and native Italy honeybee

    刘志勇; 曾志将; 吴小波; 颜伟玉; 王子龙

    2015-01-01

    In this study,artificially bred high jelly producing honeybees were used as the experimental mate⁃rial.Genome DNA was extracted from each honeybee sample for PCR amplification of the csd region 3,PCR prod⁃ucts were cloned and sequenced.Finally 13 csd haplotypes were obtained.The difference in the polymorphism of csd gene between high royal jelly producing honeybee and native Italy honeybee was compared. The results showed that the nucleotide diversity (π) values of csd in these two strains are 0.057 85±0.004 92 and 0.043 80 ±0.005 75,respectively.Z test indicated that there is no significant difference between the πvalues of these two strains.Phylogenetic tree showed that csd haplotypes do not form two branches reflecting the two strains.Rather, they are well mixed among each other.The Fst distance between high royal jelly producing honeybee and native Italy honeybee is 0.036 9,indicating a weak genetic differentiation between these two strains.These results indica⁃ted that artificial selection has no effect on the polymorphism of csd gene in high royal jelly producing honeybees.%以人工选育的浆蜂为材料,提取每个工蜂样品的基因组DNA,对csd 基因3区进行PCR扩增、克隆和测序,最终获得了13个浆蜂csd基因单倍型。对浆蜂与原种意大利蜜蜂csd基因的多态性进行比较。结果表明浆蜂和原种意大利蜜蜂的核苷酸多样度(π)分别为0.05785±0.00492和0.04380±0.00575,两者之间没有显著差异。系统进化树表明来自浆蜂和原种意大利蜜蜂的单倍型混杂在一起,没有形成完全独立的2个分支。群体分析表明浆蜂和原种意大利蜜蜂之间的Fst 距离是0.0369,两者之间的遗传分化很弱。这些结果说明人工选育对浆蜂csd基因的多态性没有产生显著影响。

  20. Molecular Mechanisms Underlying Formation of Long-Term Reward Memories and Extinction Memories in the Honeybee ("Apis Mellifera")

    Eisenhardt, Dorothea

    2014-01-01

    The honeybee ("Apis mellifera") has long served as an invertebrate model organism for reward learning and memory research. Its capacity for learning and memory formation is rooted in the ecological need to efficiently collect nectar and pollen during summer to ensure survival of the hive during winter. Foraging bees learn to associate a…

  1. The research progress of ovary activation in honeybee (Apis)%蜜蜂卵巢激活研究进展

    牛德芳; 陈璇; 胡福良

    2012-01-01

    As an eusocial insects, the honeybee Apis, is characterized by the extreme reproductive division of labor. Ovary activation is an important factor for the honeybee reproductive capacity. Factors affecting ovary activation, gene expression involved in ovary activation and the possible role of microRNA in ovary activation of the honeybee were introduced in this paper. It will provide a basis for the study on the molecular mechanism of the honeybee caste differentiation and reproductive division of labor.%蜜蜂Apis作为典型的社会性昆虫,最重要的特征就是生殖劳动分工.卵巢激活是蜜蜂发挥生殖能力的重要影响因素.本文对蜜蜂卵巢激活的影响因素、蜜蜂卵巢激活相关的基因表达及microRNA在蜜蜂卵巢激活过程中的可能作用进行了介绍,为研究蜜蜂级型分化和生殖劳动分工的分子机制提供依据.

  2. X-ray microanalytical studies on native myofibrils and mitochondria isolated by microdissection from honey-bee flight muscle

    The method of energy dispersive X-ray microanalysis was adapted to investigations on honey-bee flight muscle. Multielement (Na, Mg, Si, P, K, Cl, Ca) analysis was carried out on bulk muscle specimen, on isolated mitochondria and over different parts (I band, A band) of isolated myofibrils. (L.E.)

  3. Scaling down from species to individuals: a flower-visitation network between individual honeybees and thistle plants

    Dupont, Yoko; Nielsen, Kristian T.; Olesen, Jens Mogens

    2011-01-01

    of honeybees and thistles was denser linked than what is known from species pollination networks. Characteristics of both plants (e.g. floral display) and animals (e.g. foraging behaviour) are likely to generate this intra–specific, inter–individual link pattern. Such features of individual...

  4. Interaction between Varroa destructor and imidacloprid reduces flight capacity of honeybees.

    Blanken, Lisa J; van Langevelde, Frank; van Dooremalen, Coby

    2015-12-01

    Current high losses of honeybees seriously threaten crop pollination. Whereas parasite exposure is acknowledged as an important cause of these losses, the role of insecticides is controversial. Parasites and neonicotinoid insecticides reduce homing success of foragers (e.g. by reduced orientation), but it is unknown whether they negatively affect flight capacity. We investigated how exposing colonies to the parasitic mite Varroa destructor and the neonicotinoid insecticide imidacloprid affect flight capacity of foragers. Flight distance, time and speed of foragers were measured in flight mills to assess the relative and interactive effects of high V. destructor load and a field-realistic, chronic sub-lethal dose of imidacloprid. Foragers from colonies exposed to high levels of V. destructor flew shorter distances, with a larger effect when also exposed to imidacloprid. Bee body mass partly explained our results as bees were heavier when exposed to these stressors, possibly due to an earlier onset of foraging. Our findings contribute to understanding of interacting stressors that can explain colony losses. Reduced flight capacity decreases the food-collecting ability of honeybees and may hamper the use of precocious foraging as a coping mechanism during colony (nutritional) stress. Ineffective coping mechanisms may lead to destructive cascading effects and subsequent colony collapse. PMID:26631559

  5. Characterization of the two distinct subtypes of metabotropic glutamate receptors from honeybee, Apis mellifera.

    Funada, Masahiro; Yasuo, Shinobu; Yoshimura, Takashi; Ebihara, Shizufumi; Sasagawa, Hiromi; Kitagawa, Yasuo; Kadowaki, Tatsuhiko

    2004-04-15

    L-Glutamate is a major neurotransmitter at the excitatory synapses in the vertebrate brain. It is also the excitatory neurotransmitter at neuromuscular junctions in insects, however its functions in their brains remain to be established. We identified and characterized two different subtypes (AmGluRA and AmGluRB) of metabotropic glutamate receptors (mGluRs) from an eusocial insect, honeybee. Both AmGluRA and AmGluRB form homodimers independently on disulfide bonds, and bind [3H]glutamate with K(D) values of 156.7 and 80.7 nM, respectively. AmGluRB is specifically expressed in the brain, while AmGluRA is expressed in the brain and other body parts, suggesting that AmGluRA is also present at the neuromuscular junctions. Both mGluRs are expressed in the mushroom bodies and the brain regions of honeybees, where motor neurons are clustered. Their expression in the brain apparently overlaps, suggesting that they may interact with each other to modulate the glutamatergic neurotransmission. PMID:15050695

  6. Optimization of Power Utilization in Multimobile Robot Foraging Behavior Inspired by Honeybees System

    Faisul Arif Ahmad

    2014-01-01

    Full Text Available Deploying large numbers of mobile robots which can interact with each other produces swarm intelligent behavior. However, mobile robots are normally running with finite energy resource, supplied from finite battery. The limitation of energy resource required human intervention for recharging the batteries. The sharing information among the mobile robots would be one of the potentials to overcome the limitation on previously recharging system. A new approach is proposed based on integrated intelligent system inspired by foraging of honeybees applied to multimobile robot scenario. This integrated approach caters for both working and foraging stages for known/unknown power station locations. Swarm mobile robot inspired by honeybee is simulated to explore and identify the power station for battery recharging. The mobile robots will share the location information of the power station with each other. The result showed that mobile robots consume less energy and less time when they are cooperating with each other for foraging process. The optimizing of foraging behavior would result in the mobile robots spending more time to do real work.

  7. Effects of honeybee (Apis mellifera venom on keratinocyte migration in vitro

    Sang Mi Han

    2013-01-01

    Full Text Available Background: Since the ancient times the skin aging application of honeybee venom (BV is practiced and persisted until nowadays. The present study evaluated the effect of the honeybee venom (BV on keratinocyte migration in wound healing model in vitro. Objective: To access BV further as a cosmetic ingredient and a potential external application for topical uses, we performed studies to investigate the biologic effect of BV treatment on keratinocyte proliferation and migration in vitro. Material and Methods: BV cytotoxicity was assessed by using a 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl tetrazolium bromide (MTT assay over 24 h. To assess BV genotoxicity, damage to human epidermal keratinocyte (HEK was evaluated using the Comet assay. HEK migration was evaluated using a commercial wound healing kit. The skin pro-inflammatory cytokines interleukin (IL-8 and tumor necrosis factor (TNF-α were examined to evaluate the pro-inflammatory response to BV. Results: It was found that BV (<100 μg/ml was not cytotoxic and stimulated more HEK proliferation and migration compared to negative control, and did not induce DNA damage. There were also decreases in IL-8 and TNF-α expression levels in HEK at all time points. Conclusion: These findings highlight the potential of topical application of BV for promoting cell regeneration and wound treatment.

  8. A comparative study of relational learning capacity in honeybees (Apis mellifera and stingless bees (Melipona rufiventris.

    Antonio Mauricio Moreno

    Full Text Available BACKGROUND: Learning of arbitrary relations is the capacity to acquire knowledge about associations between events or stimuli that do not share any similarities, and use this knowledge to make behavioural choices. This capacity is well documented in humans and vertebrates, and there is some evidence it exists in the honeybee (Apis mellifera. However, little is known about whether the ability for relational learning extends to other invertebrates, although many insects have been shown to possess excellent learning capacities in spite of their small brains. METHODOLOGY/PRINCIPAL FINDINGS: Using a symbolic matching-to-sample procedure, we show that the honeybee Apis mellifera rapidly learns arbitrary relations between colours and patterns, reaching 68.2% correct choice for pattern-colour relations and 73.3% for colour-pattern relations. However, Apis mellifera does not transfer this knowledge to the symmetrical relations when the stimulus order is reversed. A second bee species, the stingless bee Melipona rufiventris from Brazil, seems unable to learn the same arbitrary relations between colours and patterns, although it exhibits excellent discrimination learning. CONCLUSIONS/SIGNIFICANCE: Our results confirm that the capacity for learning arbitrary relations is not limited to vertebrates, but even insects with small brains can perform this learning task. Interestingly, it seems to be a species-specific ability. The disparity in relational learning performance between the two bee species we tested may be linked to their specific foraging and recruitment strategies, which evolved in adaptation to different environments.

  9. Evaluation of Apis mellifera syriaca Levant region honeybee conservation using comparative genome hybridization.

    Haddad, Nizar Jamal; Batainh, Ahmed; Saini, Deepti; Migdadi, Osama; Aiyaz, Mohamed; Manchiganti, Rushiraj; Krishnamurthy, Venkatesh; Al-Shagour, Banan; Brake, Mohammad; Bourgeois, Lelania; De Guzman, Lilia; Rinderer, Thomas; Hamouri, Zayed Mahoud

    2016-06-01

    Apis mellifera syriaca is the native honeybee subspecies of Jordan and much of the Levant region. It expresses behavioral adaptations to a regional climate with very high temperatures, nectar dearth in summer, attacks of the Oriental wasp and is resistant to Varroa mites. The A. m. syriaca control reference sample (CRS) in this study was originally collected and stored since 2001 from "Wadi Ben Hammad", a remote valley in the southern region of Jordan. Morphometric and mitochondrial DNA markers of these honeybees had shown highest similarity to reference A. m. syriaca samples collected in 1952 by Brother Adam of samples collected from the Middle East. Samples 1-5 were collected from the National Center for Agricultural Research and Extension breeding apiary which was established for the conservation of A. m. syriaca. Our objective was to determine the success of an A. m. syriaca honey bee conservation program using genomic information from an array-based comparative genomic hybridization platform to evaluate genetic similarities to a historic reference collection (CRS). Our results had shown insignificant genomic differences between the current population in the conservation program and the CRS indicated that program is successfully conserving A. m. syriaca. Functional genomic variations were identified which are useful for conservation monitoring and may be useful for breeding programs designed to improve locally adapted strains of A. m. syriaca. PMID:27010806

  10. Bee-hawking by the wasp, Vespa velutina, on the honeybees Apis cerana and A. mellifera

    Tan, K.; Radloff, S. E.; Li, J. J.; Hepburn, H. R.; Yang, M. X.; Zhang, L. J.; Neumann, P.

    2007-06-01

    The vespine wasps, Vespa velutina, specialise in hawking honeybee foragers returning to their nests. We studied their behaviour in China using native Apis cerana and introduced A. mellifera colonies. When the wasps are hawking, A. cerana recruits threefold more guard bees to stave off predation than A. mellifera. The former also utilises wing shimmering as a visual pattern disruption mechanism, which is not shown by A. mellifera. A. cerana foragers halve the time of normal flight needed to dart into the nest entrance, while A. mellifera actually slows down in sashaying flight manoeuvres. V. velutina preferentially hawks A. mellifera foragers when both A. mellifera and A. cerana occur in the same apiary. The pace of wasp-hawking was highest in mid-summer but the frequency of hawking wasps was three times higher at A. mellifera colonies than at the A. cerana colonies. The wasps were taking A. mellifera foragers at a frequency eightfold greater than A. cerana foragers. The final hawking success rates of the wasps were about three times higher for A. mellifera foragers than for A. cerana. The relative success of native A. cerana over European A. mellifera in thwarting predation by the wasp V. velutina is interpreted as the result of co-evolution between the Asian wasp and honeybee, respectively.

  11. Involvement of phosphorylated Apis mellifera CREB in gating a honeybee's behavioral response to an external stimulus.

    Gehring, Katrin B; Heufelder, Karin; Feige, Janina; Bauer, Paul; Dyck, Yan; Ehrhardt, Lea; Kühnemund, Johannes; Bergmann, Anja; Göbel, Josefine; Isecke, Marlene; Eisenhardt, Dorothea

    2016-05-01

    The transcription factor cAMP-response element-binding protein (CREB) is involved in neuronal plasticity. Phosphorylation activates CREB and an increased level of phosphorylated CREB is regarded as an indicator of CREB-dependent transcriptional activation. In honeybees(Apis mellifera)we recently demonstrated a particular high abundance of the phosphorylated honeybee CREB homolog (pAmCREB) in the central brain and in a subpopulation of mushroom body neurons. We hypothesize that these high pAmCREB levels are related to learning and memory formation. Here, we tested this hypothesis by analyzing brain pAmCREB levels in classically conditioned bees and bees experiencing unpaired presentations of conditioned stimulus (CS) and unconditioned stimulus (US). We demonstrate that both behavioral protocols display differences in memory formation but do not alter the level of pAmCREB in bee brains directly after training. Nevertheless, we report that bees responding to the CS during unpaired stimulus presentations exhibit higher levels of pAmCREB than nonresponding bees. In addition, Trichostatin A, a histone deacetylase inhibitor that is thought to enhance histone acetylation by CREB-binding protein, increases the bees' CS responsiveness. We conclude that pAmCREB is involved in gating a bee's behavioral response driven by an external stimulus. PMID:27084927

  12. Simultaneous morphological and functional imaging of the honeybee's brain by two-photon microscopy

    Thanks to its rather simply structured but highly performing brain, the honeybee (Apis mellifera) is an important model for neurobiological studies. Therefore there is a great need for new functional imaging modalities adapted to this species. Herein we give a detailed report on the development and performance of a platform for in vivo functional and morphological imaging of the honeybee's brain, focusing on its primary olfactory centres, the antennal lobes (ALs). The experimental setup consists of a two-photon microscope combined with a synchronized odour stimulus generator. Our imaging platform allows to simultaneously obtain both morphological measurements of the ALs functional units, the glomeruli, and in vivo calcium recording of their neural activity. We were able to record the characteristic glomerular response maps to odour stimuli applied to the bee's antennae. Our approach offers several advantages over the commonly used conventional fluorescence microscopy. Two-photon microscopy provides substantial enhancement in both spatial and temporal resolutions, while minimizing photo damage. Calcium recordings show a more than fourfold improvement in the functional signal with respect to the techniques available up to now. Finally, the extended penetration depth, thanks to the infrared excitation, allows the functional imaging of profound glomeruli which have not been optically accessible up to now.

  13. [Study on foraging behaviors of honeybee Apis mellifera based on RFID technology].

    Tian, Liu-Qing; He, Xu-Jiang; Wu, Xiao-Bo; Gan, Hai-Yan; Han, Xu; Liu, Hao; Zeng, Zhi-Jiang

    2014-03-01

    Honeybee foragers can flexibly adjust their out-hive activities to ensure growth and reproduction of the colony. In order to explore the characteristics of honey bees foraging behaviors, in this study, their flight activities were monitored 24 hours per day for a duration of 38 days, using an radio frequency identification (RFID) system designed and manufactured by the Honeybee Research Institute of Jiangxi Agricultural University in cooperation with the Guangzhou Invengo Information Technology Co., Ltd. Our results indicated that 63.4% and 64.5% of foragers were found rotating more than one day off during the foraging period in two colonies, and 22.5% and 26.4% of the total foraging days were used for rest respectively. Further, although the total foraging time between rotating day-off foragers and continuously working foragers was equal, the former had a significant longer lifespan than the latter. Additionally, the lifespan of the early developed foragers was significantly lower than that of the normally developed foragers. This study enriched the content of foraging behaviors of honey bees, and it could be used as the basis for the further explorations on evolutionary mechanism of foraging behaviors of eusocial insects. PMID:24984504

  14. Honeybees (Apis mellifera) learn to discriminate the smell of organic compounds from their respective deuterated isotopomers.

    Gronenberg, Wulfila; Raikhelkar, Ajay; Abshire, Eric; Stevens, Jennifer; Epstein, Eric; Loyola, Karin; Rauscher, Michael; Buchmann, Stephen

    2014-03-01

    The understanding of physiological and molecular processes underlying the sense of smell has made considerable progress during the past three decades, revealing the cascade of molecular steps that lead to the activation of olfactory receptor (OR) neurons. However, the mode of primary interaction of odorant molecules with the OR proteins within the sensory cells is still enigmatic. Two different concepts try to explain these interactions: the 'odotope hypothesis' suggests that OR proteins recognize structural aspects of the odorant molecule, whereas the 'vibration hypothesis' proposes that intra-molecular vibrations are the basis for the recognition of the odorant by the receptor protein. The vibration hypothesis predicts that OR proteins should be able to discriminate compounds containing deuterium from their common counterparts which contain hydrogen instead of deuterium. This study tests this prediction in honeybees (Apis mellifera) using the proboscis extension reflex learning in a differential conditioning paradigm. Rewarding one odour (e.g. a deuterated compound) with sucrose and not rewarding the respective analogue (e.g. hydrogen-based odorant) shows that honeybees readily learn to discriminate hydrogen-based odorants from their deuterated counterparts and supports the idea that intra-molecular vibrations may contribute to odour discrimination. PMID:24452031

  15. Comparative proteomic analysis reveals mite (Varroa destructor) resistance-related proteins in Eastern honeybees (Apis cerana).

    Ji, T; Shen, F; Liu, Z; Yin, L; Shen, J; Liang, Q; Luo, Y X

    2015-01-01

    The mite (Varroa destructor) has become the greatest threat to apiculture worldwide. As the original host of the mite, Apis cerana can effectively resist the mite. An increased understanding of the resistance mechanisms of Eastern honeybees against V. destructor may help researchers to protect other species against these parasites. In this study, the proteomes of 4 Apis cerana colonies were analyzed using an isobaric tag for relative and absolute quantitation technology. We determined the differences in gene and protein expression between susceptible and resistant colonies that were either unchallenged or challenged by V. destructor. The results showed that a total of 1532 proteins were identified. Gene Ontology enrichment analysis suggested that the transcription factors and basic metabolic and respiratory processes were efficient and feasible factors controlling this resistance, and 12 differentially expressed proteins were identified in Venn analysis. The results were validated by quantitative polymerase chain reaction. This study may provide insight into the genetic mechanisms underlying the resistance of honeybee to mites. PMID:26345948

  16. So near and yet so far: harmonic radar reveals reduced homing ability of Nosema infected honeybees.

    Stephan Wolf

    Full Text Available Pathogens may gain a fitness advantage through manipulation of the behaviour of their hosts. Likewise, host behavioural changes can be a defence mechanism, counteracting the impact of pathogens on host fitness. We apply harmonic radar technology to characterize the impact of an emerging pathogen--Nosema ceranae (Microsporidia--on honeybee (Apis mellifera flight and orientation performance in the field. Honeybees are the most important commercial pollinators. Emerging diseases have been proposed to play a prominent role in colony decline, partly through sub-lethal behavioural manipulation of their hosts. We found that homing success was significantly reduced in diseased (65.8% versus healthy foragers (92.5%. Although lost bees had significantly reduced continuous flight times and prolonged resting times, other flight characteristics and navigational abilities showed no significant difference between infected and non-infected bees. Our results suggest that infected bees express normal flight characteristics but are constrained in their homing ability, potentially compromising the colony by reducing its resource inputs, but also counteracting the intra-colony spread of infection. We provide the first high-resolution analysis of sub-lethal effects of an emerging disease on insect flight behaviour. The potential causes and the implications for both host and parasite are discussed.

  17. Linking Genes and Brain Development of Honeybee Workers: A Whole-Transcriptome Approach.

    Vleurinck, Christina; Raub, Stephan; Sturgill, David; Oliver, Brian; Beye, Martin

    2016-01-01

    Honeybees live in complex societies whose capabilities far exceed those of the sum of their single members. This social synergism is achieved mainly by the worker bees, which form a female caste. The worker bees display diverse collaborative behaviors and engage in different behavioral tasks, which are controlled by the central nervous system (CNS). The development of the worker brain is determined by the female sex and the worker caste determination signal. Here, we report on genes that are controlled by sex or by caste during differentiation of the worker's pupal brain. We sequenced and compared transcriptomes from the pupal brains of honeybee workers, queens and drones. We detected 333 genes that are differently expressed and 519 genes that are differentially spliced between the sexes, and 1760 genes that are differentially expressed and 692 genes that are differentially spliced between castes. We further found that 403 genes are differentially regulated by both the sex and caste signals, providing evidence of the integration of both signals through differential gene regulation. In this gene set, we found that the molecular processes of restructuring the cell shape and cell-to-cell signaling are overrepresented. Our approach identified candidate genes that may be involved in brain differentiation that ensures the various social worker behaviors. PMID:27490820

  18. Aversive learning in honeybees revealed by the olfactory conditioning of the sting extension reflex.

    Vanina Vergoz

    Full Text Available Invertebrates have contributed greatly to our understanding of associative learning because they allow learning protocols to be combined with experimental access to the nervous system. The honeybee Apis mellifera constitutes a standard model for the study of appetitive learning and memory since it was shown, almost a century ago, that bees learn to associate different sensory cues with a reward of sugar solution. However, up to now, no study has explored aversive learning in bees in such a way that simultaneous access to its neural bases is granted. Using odorants paired with electric shocks, we conditioned the sting extension reflex, which is exhibited by harnessed bees when subjected to a noxious stimulation. We show that this response can be conditioned so that bees learn to extend their sting in response to the odorant previously punished. Bees also learn to extend the proboscis to one odorant paired with sugar solution and the sting to a different odorant paired with electric shock, thus showing that they can master both appetitive and aversive associations simultaneously. Responding to the appropriate odorant with the appropriate response is possible because two different biogenic amines, octopamine and dopamine subserve appetitive and aversive reinforcement, respectively. While octopamine has been previously shown to substitute for appetitive reinforcement, we demonstrate that blocking of dopaminergic, but not octopaminergic, receptors suppresses aversive learning. Therefore, aversive learning in honeybees can now be accessed both at the behavioral and neural levels, thus opening new research avenues for understanding basic mechanisms of learning and memory.

  19. Differential antennal proteome comparison of adult honeybee drone, worker and queen (Apis mellifera L.).

    Fang, Yu; Song, Feifei; Zhang, Lan; Aleku, Dereje Woltedji; Han, Bin; Feng, Mao; Li, Jianke

    2012-01-01

    To understand the olfactory mechanism of honeybee antennae in detecting specific volatile compounds in the atmosphere, antennal proteome differences of drone, worker and queen were compared using 2-DE, mass spectrometry and bioinformatics. Therefore, 107 proteins were altered their expressions in the antennae of drone, worker and queen bees. There were 54, 21 and 32 up-regulated proteins in the antennae of drone, worker and queen, respectively. Proteins upregulated in the drone antennae were involved in fatty acid metabolism, antioxidation, carbohydrate metabolism and energy production, protein folding and cytoskeleton. Proteins upregulated in the antennae of worker and queen bees were related to carbohydrate metabolism and energy production while molecular transporters were upregulated in the queen antennae. Our results explain the role played by the antennae of drone is to aid in perceiving the queen sexual pheromones, in the worker antennae to assist for food search and social communication and in the queen antennae to help pheromone communication with the worker and the drone during the mating flight. This first proteomic study significantly extends our understanding of honeybee olfactory activities and the possible mechanisms played by the antennae in response to various environmental, social, biological and biochemical signals. PMID:21982827

  20. Absence of nepotism in the harassment of duelling queens by honeybee workers.

    Gilley, David C

    2003-10-01

    Nepotism shapes interactions among the members of almost every animal society. However, clear evidence of nepotism within highly cooperative insect societies, such as ant, wasp and honeybee colonies, is rare. Recent empirical findings suggest that nepotism occurs within honeybee colonies where kin-selection theory most strongly predicts its existence: during the lethal queen-queen duels that determine which of several young queens will become the colony's next queen. In this study, I test whether worker bees act nepotistically by hindering duelling queens that are distantly related to themselves. I accomplished this by observing labelled workers harassing duelling queen bees in observation hives and subsequently by determining worker-queen relatedness using DNA microsatellites. I show that the workers that harassed duelling queens were neither more-closely nor more-distantly related to them than were workers selected randomly from the colony. Thus, workers did not behave nepotistically by hindering half-sister queens more than full-sister queens. These results demonstrate that under certain conditions, natural selection limits the evolution of nepotism within animal societies despite strong theoretical predictions for its existence. PMID:14561293

  1. Genetic structure of drone congregation areas of Africanized honeybees in southern Brazil

    Thais Collet

    2009-01-01

    Full Text Available As yet, certain aspects of the Africanization process are not well understood, for example, the reproductive behavior of African and European honeybees and how the first Africanized swarms were formed and spread. Drone congregation areas (DCAs are the ideal place to study honeybee reproduction under natural conditions since hundreds of drones from various colonies gather together in the same geographical area for mating. In the present study, we assessed the genetic structure of seven drone congregations and four commercial European-derived and Africanized apiaries in southern Brazil, employing seven microsatellite loci for this purpose. We also estimated the number of mother-colonies that drones of a specific DCA originated from. Pairwise comparison failed to reveal any population sub-structuring among the DCAs, thus indicating low mutual genetic differentiation. We also observed high genetic similarity between colonies of commercial apiaries and DCAs, besides a slight contribution from a European-derived apiary to a DCA formed nearby. Africanized DCAs seem to have a somewhat different genetic structure when compared to the European.

  2. Interactive effects of large- and small-scale sources of feral honey-bees for sunflower in the Argentine Pampas.

    Agustín Sáez

    Full Text Available Pollinators for animal pollinated crops can be provided by natural and semi-natural habitats, ranging from large vegetation remnants to small areas of non-crop land in an otherwise highly modified landscape. It is unknown, however, how different small- and large-scale habitat patches interact as pollinator sources. In the intensively managed Argentine Pampas, we studied the additive and interactive effects of large expanses (up to 2200 ha of natural habitat, represented by untilled isolated "sierras", and narrow (3-7 m wide strips of semi-natural habitat, represented by field margins, as pollinator sources for sunflower (Helianthus annus. We estimated visitation rates by feral honey-bees, Apis mellifera, and native flower visitors (as a group at 1, 5, 25, 50 and 100 m from a field margin in 17 sunflower fields 0-10 km distant from the nearest sierra. Honey-bees dominated the pollinator assemblage accounting for >90% of all visits to sunflower inflorescences. Honey-bee visitation was strongly affected by proximity to the sierras decreasing by about 70% in the most isolated fields. There was also a decline in honey-bee visitation with distance from the field margin, which was apparent with increasing field isolation, but undetected in fields nearby large expanses of natural habitat. The probability of observing a native visitor decreased with isolation from the sierras, but in other respects visitation by flower visitors other than honey-bees was mostly unaffected by the habitat factors assessed in this study. Overall, we found strong hierarchical and interactive effects between the study large and small-scale pollinator sources. These results emphasize the importance of preserving natural habitats and managing actively field verges in the absence of large remnants of natural habitat for improving pollinator services.

  3. Determination of Pesticide Residues in Honeybees using Modified QUEChERS Sample Work-Up and Liquid Chromatography-Tandem Mass Spectrometry

    Żaneta Bargańska

    2014-03-01

    Full Text Available Increasing emissions of chemical compounds to the environment, especially of pesticides, is one of factors that may explain present honeybee colony losses. In this work, an analytical method employing liquid chromatography-tandem mass spectrometry (LC-MS/MS was optimized for the simultaneous screening of 19 pesticides which have not been yet determined in honeybee samples from northern Poland (Pomerania. The sample preparation, based on the QuEChERS method combining salting-out liquid-liquid extraction to acetonitrile and a dispersive-SPE clean-up, was adjusted to honeybee samples by adding a small amount of hexane to eliminate beeswax. The recovery of analytes ranged from 70% to 120% with relative standard deviation ≤20%. The limits of detection were in the range of 0.91–25 ng/g. A total of 19 samples of honeybees from suspected pesticide poisoning incidents were analyzed, in which 19 different pesticides were determined.

  4. Functionally Structured Genomes in Lactobacillus kunkeei Colonizing the Honey Crop and Food Products of Honeybees and Stingless Bees.

    Tamarit, Daniel; Ellegaard, Kirsten M; Wikander, Johan; Olofsson, Tobias; Vásquez, Alejandra; Andersson, Siv G E

    2015-06-01

    Lactobacillus kunkeei is the most abundant bacterial species in the honey crop and food products of honeybees. The 16 S rRNA genes of strains isolated from different bee species are nearly identical in sequence and therefore inadequate as markers for studies of coevolutionary patterns. Here, we have compared the 1.5 Mb genomes of ten L. kunkeei strains isolated from all recognized Apis species and another two strains from Meliponini species. A gene flux analysis, including previously sequenced Lactobacillus species as outgroups, indicated the influence of reductive evolution. The genome architecture is unique in that vertically inherited core genes are located near the terminus of replication, whereas genes for secreted proteins and putative host-adaptive traits are located near the origin of replication. We suggest that these features have resulted from a genome-wide loss of genes, with integrations of novel genes mostly occurring in regions flanking the origin of replication. The phylogenetic analyses showed that the bacterial topology was incongruent with the host topology, and that strains of the same microcluster have recombined frequently across the host species barriers, arguing against codiversification. Multiple genotypes were recovered in the individual hosts and transfers of mobile elements could be demonstrated for strains isolated from the same host species. Unlike other bacteria with small genomes, short generation times and multiple rRNA operons suggest that L. kunkeei evolves under selection for rapid growth in its natural growth habitat. The results provide an extended framework for reductive genome evolution and functional genome organization in bacteria. PMID:25953738

  5. Giant Asian honeybee stings induced acute myocarditis: a case report

    NP Dinamithra

    2013-10-01

    Full Text Available Hymenopterid stings and subsequent allergic reactions including fatal anaphylaxis are a common indication for emergency department visits worldwide. Less commonly, multiple wasp stings can result in multi-system involvement ranging from intravascular hemolysis, rhabdomyolysis, acute renal failure, cardiac involvement, hepatic dysfunction and occasionally thrombocytopenia and coagulopathy. Here we report one case of multiple Giant Asian honey bee stings induced myocarditis.

  6. Radioactive diagnostic agent

    A dispersion of denatured aggregates of serum albumin to which tin is attached is prepared and lyophilized. A mixture of polycarboxylic acid and a disaccharide or monosaccharide is included in the dispersion in sufficient amount to reduce degradation during lyophilization and aging. The dispersion is suitable for radioactive labelling and use as a diagnostic agent

  7. Biomimetic Emotional Learning Agents

    Kenyon, Samuel H.

    2005-01-01

    This extended abstract proposes a type of AI agent comprised of: an autonomous real-time control system, low-level emotional learning (including a simple knowledge base that links homeostatic/innate drives to sensory perception states), and a novel sliding-priority drive motivation mechanism. Learning occurs in both phylogenetic and ontogenetic training.

  8. Agents of Change

    Hansen, Jens Aage; Lehmann, Martin

    2004-01-01

    at large, it emphasises universities as key change agents and providers in new learning, including tools such as project based and problem oriented learning (PBL) as well as information and communication technology (ICT); as providers of competent and motivated graduates to fill key positions in society...

  9. Trading Agents

    Wellman, Michael

    2011-01-01

    Automated trading in electronic markets is one of the most common and consequential applications of autonomous software agents. Design of effective trading strategies requires thorough understanding of how market mechanisms operate, and appreciation of strategic issues that commonly manifest in trading scenarios. Drawing on research in auction theory and artificial intelligence, this book presents core principles of strategic reasoning that apply to market situations. The author illustrates trading strategy choices through examples of concrete market environments, such as eBay, as well as abst

  10. Floral biology and behavior of Africanized honeybees Apis mellifera in soybean (Glycine max L. Merril

    Wainer César Chiari

    2005-05-01

    Full Text Available This research was carried out to evaluate the pollination by Africanized honeybees Apis mellifera, the floral biology and to observe the hoarding behavior in the soybean flowers (Glycine max Merril, var. BRS-133. The treatments were constituted of demarcated areas for free visitation of insects, covered areas by cages with a honeybee colony (A. mellifera and also covered areas by cage without insects visitation. All areas had 24 m² (4m x 6m. The soybean flowers stayed open for a larger time (82.82 ± 3.48 hours in covered area without honeybees. The stigma of the flowers was also more receptive (P=0.0021 in covered area without honeybees (87.3 ± 33.0% and at 10:42 o'clock was the schedule of greater receptivity. The pollen stayed viable in all treatments, the average was 99.60 ± 0.02%, which did not present differences among treatments. The percentage of abortion of the flowers was 82.91% in covered area without honeybees, this result was superior (P=0.0002 to the 52.66% and 53.95% of the treatments uncovered and covered with honeybees, respectively. Honeybees were responsible for 87.7% of the pollination accomplished by the insects. The medium amounts of total sugar and glucose measured in the nectar of the flowers were, 14.33 ± 0.96 mg/flower and 3.61 ± 0.36 mg/ flower, respectively, not showing differences (PEste experimento teve como objetivos avaliar a polinização realizada por abelhas Apis mellifera, estudar a biologia floral e observar o comportamento de coleta nas flores de soja (Glycine max L. Merril, variedade BRS-133 plantadas na região de Maringá-PR. Os tratamentos constituíram de áreas demarcadas de livre visitação por insetos, áreas cobertas por gaiolas, com uma colônia de abelhas (A. mellifera no seu interior e plantas também cobertas por gaiola que impedia a visitação por insetos. Todas as áreas possuíam 24 m² (4 m x 6 m. As flores de soja permaneceram abertas por um tempo maior (82,82 ± 3,48 horas no

  11. Microwave-Assisted Drying for the Conservation of Honeybee Pollen

    Angelo Canale

    2016-05-01

    Full Text Available Bee pollen is becoming an important product thanks to its nutritional properties, including a high content of bioactive compounds such as essential amino acids, antioxidants, and vitamins. Fresh bee pollen has a high water content (15%–30% wt %, thus it is a good substrate for microorganisms. Traditional conservation methods include drying in a hot air chamber and/or freezing. These techniques may significantly affect the pollen organoleptic properties and its content of bioactive compounds. Here, a new conservation method, microwave drying, is introduced and investigated. The method implies irradiating the fresh pollen with microwaves under vacuum, in order to reduce the water content without reaching temperatures capable of thermally deteriorating important bioactive compounds. The method was evaluated by taking into account the nutritional properties after the treatment. The analyzed parameters were phenols, flavonoids, with special reference to rutin content, and amino acids. Results showed that microwave drying offers important advantages for the conservation of bee pollen. Irrespective of microwave power and treatment time, phenol and flavonoid content did not vary over untreated fresh pollen. Similarly, rutin content was unaffected by the microwave drying, suggesting that the microwave-assisted drying could be a powerful technology to preserve bioprotective compounds in fresh pollen.

  12. UTBot: A Virtual Agent Platform for Teaching Agent System Design

    In-Cheol Kim

    2007-02-01

    Full Text Available We introduce UTBot, a virtual agent platform for teaching agent system design. UTBot implements a client for the Unreal Tournament game server and Gamebots system. It provides students with the basic functionality required to start developing their own intelligent virtual agents to play autonomously UT games. UTBot includes a generic agent architecture, CAA (Context-sensitive Agent Architecture, a domain-specific world model, a visualization tool, several basic strategies (represented by internal modes and internal behaviors, and skills (represented by external behaviors. The CAA architecture can support complex long-term behaviors as well as reactive short-term behaviors. It also realizes high context-sensitivity of behaviors. We also discuss our experience using UTBot as a pedagogical tool for teaching agent system design in undergraduate Artificial Intelligence course.

  13. Anchor Toolkit - a secure mobile agent system

    Mudumbai, Srilekha S.; Johnston, William; Essiari, Abdelilah

    2008-01-01

    Mobile agent technology facilitates intelligent operation in software systems with less human interaction. Major challenge to deployment of mobile agents include secure transmission of agents and preventing unauthorized access to resources between interacting systems, as either hosts, or agents, or both can act maliciously. The Anchor toolkit, designed by LBNL, handles the transmission and secure management of mobile agents in a heterogeneous distributed computing environment. It provide...

  14. Radioprotective Agents

    Ilker Kelle

    2008-01-01

    Full Text Available Since1949, a great deal of research has been carried out on the radioprotective activity of various chemical substances. Thiol compounds, compounds which contain –SH radical, different classes of pharmacological agents and other compounds such as vitamine C and WR-2721 have been shown to reduce mortality when administered prior to exposure to a lethal dose of radiation. Recently, honey bee venom as well as that of its components melittin and histamine have shown to be valuable in reduction of radiation-induced damage and also provide prophylactic alternative treatment for serious side effects related with radiotherapy. It has been suggested that the radioprotective activity of bee venom components is related with the stimulation of the hematopoetic system.

  15. Sex determination in honeybees: two separate mechanisms induce and maintain the female pathway

    Gempe, Tanja; Hasselmann, Martin; Schiøtt, Morten;

    2009-01-01

    Organisms have evolved a bewildering diversity of mechanisms to generate the two sexes. The honeybee (Apis mellifera) employs an interesting system in which sex is determined by heterozygosity at a single locus (the Sex Determination Locus) harbouring the complementary sex determiner (csd) gene...... the regulatory interactions of genes involved in the sex determination pathway. We show that heterozygous csd is only required to induce the female pathway, while the feminizer (fem) gene maintains this decision throughout development. By RNAi induced knockdown we show that the fem gene is essential...... for entire female development and that the csd gene exclusively processes the heterozygous state. Fem activity is also required to maintain the female determined pathway throughout development, which we show by mosaic structures in fem-repressed intersexuals. We use expression of Fem protein in males...

  16. Genetic characterization of slow bee paralysis virus of the honeybee (Apis mellifera L.).

    de Miranda, Joachim R; Dainat, Benjamin; Locke, Barbara; Cordoni, Guido; Berthoud, Helène; Gauthier, Laurent; Neumann, Peter; Budge, Giles E; Ball, Brenda V; Stoltz, Don B

    2010-10-01

    Complete genome sequences were determined for two distinct strains of slow bee paralysis virus (SBPV) of honeybees (Apis mellifera). The SBPV genome is approximately 9.5 kb long and contains a single ORF flanked by 5'- and 3'-UTRs and a naturally polyadenylated 3' tail, with a genome organization typical of members of the family Iflaviridae. The two strains, labelled 'Rothamsted' and 'Harpenden', are 83% identical at the nucleotide level (94% identical at the amino acid level), although this variation is distributed unevenly over the genome. The two strains were found to co-exist at different proportions in two independently propagated SBPV preparations. The natural prevalence of SBPV for 847 colonies in 162 apiaries across five European countries was <2%, with positive samples found only in England and Switzerland, in colonies with variable degrees of Varroa infestation. PMID:20519455

  17. Definitive identification of magnetite nanoparticles in the abdomen of the honeybee Apis mellifera

    Desoil, M.; Gillis, P.; Gossuin, Y.; Pankhurst, Q. A.; Hautot, D.

    2005-01-01

    The biogenic magnetic properties of the honeybee Apis mellifera were investigated with a view to understanding the bee's physiological response to magnetic fields. The magnetisations of bee abdomens on one hand, and heads and thoraxes on the other hand, were measured separately as functions of temperature and field. Both the antiferromagnetic responses of the ferrihydrite cores of the iron storage protein ferritin, and the ferrimagnetic responses of nanoscale magnetite (Fe3O4) particles, were observed. Relatively large magnetite particles (ca. 30 nm or more), capable of retaining a remanent magnetisation at room temperature, were found in the abdomens, but were absent in the heads and thoraxes. In both samples, more than 98% of the iron atoms were due to ferritin.

  18. Definitive identification of magnetite nanoparticles in the abdomen of the honeybee Apis mellifera

    The biogenic magnetic properties of the honeybee Apis mellifera were investigated with a view to understanding the bee's physiological response to magnetic fields. The magnetisations of bee abdomens on one hand, and heads and thoraxes on the other hand, were measured separately as functions of temperature and field. Both the antiferromagnetic responses of the ferrihydrite cores of the iron storage protein ferritin, and the ferrimagnetic responses of nanoscale magnetite (Fe3O4) particles, were observed. Relatively large magnetite particles (ca. 30 nm or more), capable of retaining a remanent magnetisation at room temperature, were found in the abdomens, but were absent in the heads and thoraxes. In both samples, more than 98% of the iron atoms were due to ferritin

  19. Foraging reactivation in the honeybee Apis mellifera L.: factors affecting the return to known nectar sources

    Gil, Mariana; Farina, Walter Marcelo

    2002-05-01

    This paper addresses, what determines that experienced forager honeybees return to places where they have previously exploited nectar. Although there was already some evidence that dance and trophallaxis can cause bees to return to feed, the fraction of unemployed foragers that follow dance or receive food from employed foragers before revisiting the feeder was unknown. We found that 27% of the experienced foragers had no contact with the returning foragers inside the hive. The most common interactions were dance following (64%) and trophallaxis (21%). The great variability found in the amount of interactions suggests that individual bees require different stimulation before changing to the foraging mode. This broad disparity negatively correlated with the number of days after marking at the feeder, a variable that is closely related to the foraging experience, suggesting that a temporal variable might affect the decision-making in reactivated foragers.

  20. Reassessing the role of the honeybee (Apis mellifera) Dufour's gland in egg marking

    Martin, Stephen; Jones, Graeme; Châline, Nicolas; Middleton, Helen; Ratnieks, Francis

    2002-10-01

    Dufour's gland secretion may allow worker honeybees to discriminate between queen-laid and worker-laid eggs. To investigate this, we combined the chemical analysis of individually treated eggs with an egg removal bioassay. We partitioned queen Dufour's gland into hydrocarbon and ester fractions. The bioassay showed that worker-laid eggs treated with either whole gland extract, ester fraction or synthetic gland esters were removed more slowly than untreated worker-laid eggs. However, the effect only lasted up to 20 h. Worker-laid eggs treated with the hydrocarbon fraction were removed at the same rate as untreated eggs. The amount of ester which reduced the egg removal rate was far higher than that naturally found on queen-laid or worker-laid eggs, and at natural ester levels no effect was found. Our results indicate that esters or hydrocarbons probably do not function as the signal by which eggs can be discriminated.

  1. Honeybee retinal glial cells transform glucose and supply the neurons with metabolic substrate

    The retina of the honeybee drone is a nervous tissue in which glial cells and photoreceptor cells (sensory neurons) constitute two distinct metabolic compartments. Retinal slices incubated with 2-deoxy[3H]glucose convert this glucose analogue to 2-deoxy[3H]glucose 6-phosphate, but this conversion is made only in the glial cells. Hence, glycolysis occurs only in glial cells. In contrast, the neurons consume O2 and this consumption is sustained by the hydrolysis of glycogen, which is contained in large amounts in the glia. During photostimulation the increased oxidative metabolism of the neurons is sustained by a higher supply of carbohydrates from the glia. This clear case of metabolic interaction between neurons and glial cells supports Golgi's original hypothesis, proposed nearly 100 years ago, about the nutritive function of glial cells in the nervous system

  2. Definitive identification of magnetite nanoparticles in the abdomen of the honeybee Apis mellifera

    Desoil, M [Biological Physics Department, University of Mons-Hainaut (Belgium); Gillis, P [Biological Physics Department, University of Mons-Hainaut (Belgium); Gossuin, Y [Biological Physics Department, University of Mons-Hainaut (Belgium); Pankhurst, Q A [London Centre for Nanotechnology, University College London, London WC1E 7HN (United Kingdom); Hautot, D [London Centre for Nanotechnology, University College London, London WC1E 7HN (United Kingdom); Institute for Science and Technology in Medicine, Keele University, Thornburrow Drive, Hartshill, Stoke-en-Trent, ST4 7QB (United Kingdom)

    2005-01-01

    The biogenic magnetic properties of the honeybee Apis mellifera were investigated with a view to understanding the bee's physiological response to magnetic fields. The magnetisations of bee abdomens on one hand, and heads and thoraxes on the other hand, were measured separately as functions of temperature and field. Both the antiferromagnetic responses of the ferrihydrite cores of the iron storage protein ferritin, and the ferrimagnetic responses of nanoscale magnetite (Fe{sub 3}O{sub 4}) particles, were observed. Relatively large magnetite particles (ca. 30 nm or more), capable of retaining a remanent magnetisation at room temperature, were found in the abdomens, but were absent in the heads and thoraxes. In both samples, more than 98% of the iron atoms were due to ferritin.

  3. Honeybee Colony Vibrational Measurements to Highlight the Brood Cycle.

    Martin Bencsik

    Full Text Available Insect pollination is of great importance to crop production worldwide and honey bees are amongst its chief facilitators. Because of the decline of managed colonies, the use of sensor technology is growing in popularity and it is of interest to develop new methods which can more accurately and less invasively assess honey bee colony status. Our approach is to use accelerometers to measure vibrations in order to provide information on colony activity and development. The accelerometers provide amplitude and frequency information which is recorded every three minutes and analysed for night time only. Vibrational data were validated by comparison to visual inspection data, particularly the brood development. We show a strong correlation between vibrational amplitude data and the brood cycle in the vicinity of the sensor. We have further explored the minimum data that is required, when frequency information is also included, to accurately predict the current point in the brood cycle. Such a technique should enable beekeepers to reduce the frequency with which visual inspections are required, reducing the stress this places on the colony and saving the beekeeper time.

  4. Odor Classification using Agent Technology

    Sigeru OMATU

    2014-03-01

    Full Text Available In order to measure and classify odors, Quartz Crystal Microbalance (QCM can be used. In the present study, seven QCM sensors and three different odors are used. The system has been developed as a virtual organization of agents using an agent platform called PANGEA (Platform for Automatic coNstruction of orGanizations of intElligent Agents. This is a platform for developing open multi-agent systems, specifically those including organizational aspects. The main reason for the use of agents is the scalability of the platform, i.e. the way in which it models the services. The system models functionalities as services inside the agents, or as Service Oriented Approach (SOA architecture compliant services using Web Services. This way the adaptation of the odor classification systems with new algorithms, tools and classification techniques is allowed.

  5. Stability of Evolving Agent Populations

    Briscoe, G

    2007-01-01

    Stability is perhaps the most desired feature in the systems that we design. It is important for us to be able to predict the response of a Multi-Agent System (MAS) to various environmental conditions prior to its actual deployment. The Chli-DeWilde agent stability measure views a MAS as a discrete time Markov chain with a potentially unknown transition probabilities. A MAS is considered to be stable when its state, a stochastic process, has converged to an equilibrium distribution. We investigate an extension of their agent stability definition to include MASs with evolutionary dynamics, focusing on evolving agent populations. Additionally, using our extended agent stability measure, we construct an entropy-based definition for the degree of instability. An example system, the Digital Ecosystem, is considered in detail to investigate the stability of an evolving agent population through simulations. The results are consistent with the original Chli-DeWilde measure.

  6. Behavioral and neural plasticity caused by early social experiences: the case of the honeybee

    Andrés eArenas

    2013-08-01

    Full Text Available Cognitive experiences during the early stages of life play an important role in shaping future behavior. Behavioral and neural long-term changes after early sensory and associative experiences have been recently reported in the honeybee. This invertebrate is an excellent model for assessing the role of precocious experiences on later behavior due to its extraordinarily tuned division of labor based on age polyethism. These studies are mainly focused on the role and importance of experiences occurred during the first days of the adult lifespan, their impact on foraging decisions and their contribution to coordinate food gathering. Odor-rewarded experiences during the first days of honeybee adulthood alter the responsiveness to sucrose, making young hive bees more sensitive to assess gustatory features about the nectar brought back to the hive and affecting the dynamic of the food transfers and the propagation of food-related information within the colony as well. Early olfactory experiences lead to stable and long-term associative memories that can be successfully recalled after many days, even at foraging ages. Also they improve memorizing of new associative learning events later in life. The establishment of early memories promotes stable reorganization of the olfactory circuits inducing structural and functional changes in the antennal lobe. Early rewarded experiences have relevant consequences at the social level too, biasing dance and trophallaxis partner choice and affecting recruitment. Here, we revised recent results in bees´ physiology, behavior and sociobiology to depict how the early experiences affect their cognition abilities and neural-related circuits.

  7. Eph receptor and ephrin signaling in developing and adult brain of the honeybee (Apis mellifera).

    Vidovic, Maria; Nighorn, Alan; Koblar, Simon; Maleszka, Ryszard

    2007-02-01

    Roles for Eph receptor tyrosine kinase and ephrin signaling in vertebrate brain development are well established. Their involvement in the modulation of mammalian synaptic structure and physiology is also emerging. However, less is known of their effects on brain development and their function in adult invertebrate nervous systems. Here, we report on the characterization of Eph receptor and ephrin orthologs in the honeybee, Apis mellifera (Am), and their role in learning and memory. In situ hybridization for mRNA expression showed a uniform distribution of expression of both genes across the developing pupal and adult brain. However, in situ labeling with Fc fusion proteins indicated that the AmEphR and Amephrin proteins were differentially localized to cell body regions in the mushroom bodies and the developing neuropiles of the antennal and optic lobes. In adults, AmEphR protein was localized to regions of synaptic contacts in optic lobes, in the glomeruli of antennal lobes, and in the medial lobe of the mushroom body. The latter two regions are involved in olfactory learning and memory in the honeybee. Injections of EphR-Fc and ephrin-Fc proteins into the brains of adult bees, 1 h before olfactory conditioning of the proboscis extension reflex, significantly reduced memory 24 h later. Experimental amnesia in the group injected with ephrin-Fc was apparent 1 h post-training. Experimental amnesia was also induced by post-training injections with ephrin-Fc suggesting a role in recall. This is the first demonstration that Eph molecules function to regulate the formation of memory in insects. PMID:17443785

  8. Electrophysiological and behavioural characterization of gustatory responses to antennal 'bitter' taste in honeybees.

    de Brito Sanchez, Maria Gabriela; Giurfa, Martin; de Paula Mota, Theo Rolla; Gauthier, Monique

    2005-12-01

    We combined behavioural and electrophysiological experiments to study whether bitter taste is perceived at the antennal level in honeybees, Apis mellifera. Our behavioural studies showed that neither quinine nor salicin delivered at one antenna at different concentrations induced a retraction of the proboscis once it was extended in response to 1 M sucrose solution delivered to the opposite antenna. Bees that extended massively their proboscis to 1 M sucrose responded only partially when stimulated with a mixture of 1 M sucrose and 100 mM quinine. The mixture of 1 m sucrose and 100 mM salicin had no such suppressive effect. No behavioural suppression was found for mixtures of salt solution and either bitter substance. Electrophysiological recordings of taste sensillae at the antennal tip revealed sensillae that responded specifically either to sucrose or salt solutions, but none responded to the bitter substances quinine and salicin at the different concentrations tested. The electrophysiological responses of sensillae to 15 mM sucrose solution were inhibited by a mixture of 15 mM sucrose and 0.1 mM quinine, but not by a mixture of 15 mM sucrose and 0.1 mM salicin. The responses of sensillae to 50 mM NaCl were reduced by a mixture of 50 mm NaCl and 1 mM quinine but not by a mixture of 50 mM NaCl and 1 mM salicin. We concluded that no receptor cells for the bitter substances tested, exist at the level of the antennal tip of the honeybee and that antennal bitter taste is not represented as a separate perceptual quality. PMID:16367782

  9. Aversive reinforcement improves visual discrimination learning in free-flying honeybees.

    Aurore Avarguès-Weber

    Full Text Available BACKGROUND: Learning and perception of visual stimuli by free-flying honeybees has been shown to vary dramatically depending on the way insects are trained. Fine color discrimination is achieved when both a target and a distractor are present during training (differential conditioning, whilst if the same target is learnt in isolation (absolute conditioning, discrimination is coarse and limited to perceptually dissimilar alternatives. Another way to potentially enhance discrimination is to increase the penalty associated with the distractor. Here we studied whether coupling the distractor with a highly concentrated quinine solution improves color discrimination of both similar and dissimilar colors by free-flying honeybees. As we assumed that quinine acts as an aversive stimulus, we analyzed whether aversion, if any, is based on an aversive sensory input at the gustatory level or on a post-ingestional malaise following quinine feeding. METHODOLOGY/PRINCIPAL FINDINGS: We show that the presence of a highly concentrated quinine solution (60 mM acts as an aversive reinforcer promoting rejection of the target associated with it, and improving discrimination of perceptually similar stimuli but not of dissimilar stimuli. Free-flying bees did not use remote cues to detect the presence of quinine solution; the aversive effect exerted by this substance was mediated via a gustatory input, i.e. via a distasteful sensory experience, rather than via a post-ingestional malaise. CONCLUSION: The present study supports the hypothesis that aversion conditioning is important for understanding how and what animals perceive and learn. By using this form of conditioning coupled with appetitive conditioning in the framework of a differential conditioning procedure, it is possible to uncover discrimination capabilities that may remain otherwise unsuspected. We show, therefore, that visual discrimination is not an absolute phenomenon but can be modulated by experience.

  10. Spectral inputs and ocellar contributions to a pitch-sensitive descending neuron in the honeybee.

    Hung, Y-S; van Kleef, J P; Stange, G; Ibbotson, M R

    2013-02-01

    By measuring insect compensatory optomotor reflexes to visual motion, researchers have examined the computational mechanisms of the motion processing system. However, establishing the spectral sensitivity of the neural pathways that underlie this motion behavior has been difficult, and the contribution of the simple eyes (ocelli) has been rarely examined. In this study we investigate the spectral response properties and ocellar inputs of an anatomically identified descending neuron (DNII(2)) in the honeybee optomotor pathway. Using a panoramic stimulus, we show that it responds selectively to optic flow associated with pitch rotations. The neuron is also stimulated with a custom-built light-emitting diode array that presented moving bars that were either all-green (spectrum 500-600 nm, peak 530 nm) or all-short wavelength (spectrum 350-430 nm, peak 380 nm). Although the optomotor response is thought to be dominated by green-sensitive inputs, we show that DNII(2) is equally responsive to, and direction selective to, both green- and short-wavelength stimuli. The color of the background image also influences the spontaneous spiking behavior of the cell: a green background produces significantly higher spontaneous spiking rates. Stimulating the ocelli produces strong modulatory effects on DNII(2), significantly increasing the amplitude of its responses in the preferred motion direction and decreasing the response latency by adding a directional, short-latency response component. Our results suggest that the spectral sensitivity of the optomotor response in honeybees may be more complicated than previously thought and that ocelli play a significant role in shaping the timing of motion signals. PMID:23197452

  11. Sex and caste-specific variation in compound eye morphology of five honeybee species.

    Streinzer, Martin; Brockmann, Axel; Nagaraja, Narayanappa; Spaethe, Johannes

    2013-01-01

    Ranging from dwarfs to giants, the species of honeybees show remarkable differences in body size that have placed evolutionary constrains on the size of sensory organs and the brain. Colonies comprise three adult phenotypes, drones and two female castes, the reproductive queen and sterile workers. The phenotypes differ with respect to tasks and thus selection pressures which additionally constrain the shape of sensory systems. In a first step to explore the variability and interaction between species size-limitations and sex and caste-specific selection pressures in sensory and neural structures in honeybees, we compared eye size, ommatidia number and distribution of facet lens diameters in drones, queens and workers of five species (Apis andreniformis, A. florea, A. dorsata, A. mellifera, A. cerana). In these species, male and female eyes show a consistent sex-specific organization with respect to eye size and regional specialization of facet diameters. Drones possess distinctly enlarged eyes with large dorsal facets. Aside from these general patterns, we found signs of unique adaptations in eyes of A. florea and A. dorsata drones. In both species, drone eyes are disproportionately enlarged. In A. dorsata the increased eye size results from enlarged facets, a likely adaptation to crepuscular mating flights. In contrast, the relative enlargement of A. florea drone eyes results from an increase in ommatidia number, suggesting strong selection for high spatial resolution. Comparison of eye morphology and published mating flight times indicates a correlation between overall light sensitivity and species-specific mating flight times. The correlation suggests an important role of ambient light intensities in the regulation of species-specific mating flight times and the evolution of the visual system. Our study further deepens insights into visual adaptations within the genus Apis and opens up future perspectives for research to better understand the timing mechanisms

  12. Honeybee drones are attracted by groups of consexuals in a walking simulator.

    Brandstaetter, Andreas Simon; Bastin, Florian; Sandoz, Jean-Christophe

    2014-04-15

    During the mating season, honeybee males, the drones, gather in congregation areas 10-40 m above ground. When a receptive female, a queen, enters the congregation, drones are attracted to her by queen-produced pheromones and visual cues and attempt to mate with the queen in mid-air. It is still unclear how drones and queens find the congregations. Visual cues on the horizon are most probably used for long-range orientation. For shorter-range orientation, however, attraction by a drone-produced aggregation pheromone has been proposed, yet so far its existence has not been confirmed conclusively. The low accessibility of congregation areas high up in the air is a major hurdle and precise control of experimental conditions often remains unsatisfactory in field studies. Here, we used a locomotion compensator-based walking simulator to investigate drones' innate odor preferences under controlled laboratory conditions. We tested behavioral responses of drones to 9-oxo-2-decenoic acid (9-ODA), the major queen-produced sexual attractant, and to queen mandibular pheromone (QMP), an artificial blend of 9-ODA and several other queen-derived components. While 9-ODA strongly dominates the odor bouquet of virgin queens, QMP rather resembles the bouquet of mated queens. In our assay, drones were attracted by 9-ODA, but not by QMP. We also investigated the potential attractiveness of male-derived odors by testing drones' orientation responses to the odor bouquet of groups of 10 living drones or workers. Our results demonstrate that honeybee drones are attracted by groups of other drones (but not by workers), which may indicate a role of drone-emitted cues for the formation of congregations. PMID:24436379

  13. Sex and caste-specific variation in compound eye morphology of five honeybee species.

    Martin Streinzer

    Full Text Available Ranging from dwarfs to giants, the species of honeybees show remarkable differences in body size that have placed evolutionary constrains on the size of sensory organs and the brain. Colonies comprise three adult phenotypes, drones and two female castes, the reproductive queen and sterile workers. The phenotypes differ with respect to tasks and thus selection pressures which additionally constrain the shape of sensory systems. In a first step to explore the variability and interaction between species size-limitations and sex and caste-specific selection pressures in sensory and neural structures in honeybees, we compared eye size, ommatidia number and distribution of facet lens diameters in drones, queens and workers of five species (Apis andreniformis, A. florea, A. dorsata, A. mellifera, A. cerana. In these species, male and female eyes show a consistent sex-specific organization with respect to eye size and regional specialization of facet diameters. Drones possess distinctly enlarged eyes with large dorsal facets. Aside from these general patterns, we found signs of unique adaptations in eyes of A. florea and A. dorsata drones. In both species, drone eyes are disproportionately enlarged. In A. dorsata the increased eye size results from enlarged facets, a likely adaptation to crepuscular mating flights. In contrast, the relative enlargement of A. florea drone eyes results from an increase in ommatidia number, suggesting strong selection for high spatial resolution. Comparison of eye morphology and published mating flight times indicates a correlation between overall light sensitivity and species-specific mating flight times. The correlation suggests an important role of ambient light intensities in the regulation of species-specific mating flight times and the evolution of the visual system. Our study further deepens insights into visual adaptations within the genus Apis and opens up future perspectives for research to better understand the

  14. An agent framework for dynamic agent retraining: Agent academy

    Mitkas, P.; A. Symeonidis; Kechagias, D.; Athanasiadis, I.N.; Laleci, G.; KURT, G.; Kabak, Y.; Acar, A.; Dogac, A.

    2004-01-01

    Agent Academy (AA) aims to develop a multi-agent society that can train new agents for specific or general tasks, while constantly retraining existing agents in a recursive mode. The system is based on collecting information both from the environment and the behaviors of the acting agents and their related successes/failures to generate a body of data, stored in the Agent Use Repository, which is mined by the Data Miner module, in order to generate useful knowledge about the application domai...

  15. High-performance liquid chromatography combined with intrinsic fluorescence detection to analyse melittin in individual honeybee (Apis mellifera) venom sac.

    Dong, Jiangtao; Ying, Bihua; Huang, Shaokang; Ma, Shuangqin; Long, Peng; Tu, Xijuan; Yang, Wenchao; Wu, Zhenhong; Chen, Wenbin; Miao, Xiaoqing

    2015-10-01

    Melittin is the major toxin peptide in bee venom, which has diverse biological effects. In the present study, melittin was separated by reverse-phase high-performance liquid chromatography, and was then detected using intrinsic fluorescence signal of tryptophan residue. The accuracy, linearity, limit of quantitation (LOQ), intra-day and inter-day precision of the method were carefully validated in this study. Results indicate that the intrinsic fluorescence signal of melittin has linear range from 0.04μg/mL to 20μg/mL with LOQ of 0.04μg/mL. The recovery range of spiked samples is between 81.93% and 105.25%. The precision results are expressed as relative standard deviation (RSD), which is in the range of 2.1-7.4% for intra-day precision and 6.2-10.8% for inter-day precision. Because of the large linear dynamic range and the high sensitivity, intrinsic fluorescence detection (IFD) can be used for analyzing melittin contents in individual venom sac of honeybee (Apis mellifera). The detected contents of melittin in individual bee venom sac are 0.18±0.25μg for one-day old honeybees (n=30), and 114.98±43.51μg for 25-day old (n=30) honeybees, respectively. Results indicate that there is large bee-to-bee difference in melittin contents. The developed method can be useful for discovering the melittin related honeybee biology information, which might be covered in the complex samples. PMID:26319802

  16. Assessing honeybee and wasp thermoregulation and energetics-New insights by combination of flow-through respirometry with infrared thermography

    Stabentheiner, Anton, E-mail: anton.stabentheiner@uni-graz.at [Institut fuer Zoologie, Karl-Franzens-Universitaet Graz, Universitaetsplatz 2, A-8010 Graz (Austria); Kovac, Helmut, E-mail: he.kovac@uni-graz.at [Institut fuer Zoologie, Karl-Franzens-Universitaet Graz, Universitaetsplatz 2, A-8010 Graz (Austria); Hetz, Stefan K. [Department of Animal Physiology/Systems Neurobiology and Neural Computation, Philippstrasse 13-Leonor Michaelis Haus, Humboldt-Universitaet zu Berlin, 10115 Berlin (Germany); Kaefer, Helmut; Stabentheiner, Gabriel [Institut fuer Zoologie, Karl-Franzens-Universitaet Graz, Universitaetsplatz 2, A-8010 Graz (Austria)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer We demonstrate the benefits of a combined use of infrared thermography with respiratory measurements in insect ecophysiological research. Black-Right-Pointing-Pointer Infrared thermography enables repeated investigation of behaviour and thermoregulation without behavioural impairment. Black-Right-Pointing-Pointer Comparison with respirometry brings new insights into the mechanisms of energetic optimisation of bee and wasp foraging. Black-Right-Pointing-Pointer Combination of methods improves interpretation of respiratory traces in determinations of insect critical thermal limits. - Abstract: Endothermic insects like honeybees and some wasps have to cope with an enormous heat loss during foraging because of their small body size in comparison to endotherms like mammals and birds. The enormous costs of thermoregulation call for optimisation. Honeybees and wasps differ in their critical thermal maximum, which enables the bees to kill the wasps by heat. We here demonstrate the benefits of a combined use of body temperature measurement with infrared thermography, and respiratory measurements of energy turnover (O{sub 2} consumption or CO{sub 2} production via flow-through respirometry) to answer questions of insect ecophysiological research, and we describe calibrations to receive accurate results. To assess the question of what foraging honeybees optimise, their body temperature was compared with their energy turnover. Honeybees foraging from an artificial flower with unlimited sucrose flow increased body surface temperature and energy turnover with profitability of foraging (sucrose content of the food; 0.5 or 1.5 mol/L). Costs of thermoregulation, however, were rather independent of ambient temperature (13-30 Degree-Sign C). External heat gain by solar radiation was used to increase body temperature. This optimised foraging energetics by increasing suction speed. In determinations of insect respiratory critical thermal limits

  17. Genetic characterization of the honeybee (Apis mellifera) population of Rodrigues Island, based on microsatellite and mitochondrial DNA

    Techer, Maéva Angélique; Clémencet, Johanna; Turpin, Patrick; Volbert, Nicolas; Reynaud, Bernard; Delatte, Hélène

    2015-01-01

    International audience AbstractApis mellifera is present in Rodrigues, an island in the South-West Indian Ocean. The history of the established honeybee population is poorly known, and its biodiversity has never been studied. In this study, maternal origins of A. mellifera in Rodrigues have been assessed with the DraI test and sequencing of the mitochondrial COI-COII region. Nuclear genetic diversity was investigated with 18 microsatellite markers. A total of 524 colonies were sampled from...

  18. Honeybee-collected pollen from five Portuguese Natural Parks: palynological origin, phenolic content, antioxidant properties and antimicrobial activity

    Morais, Margarida; Moreira, Leandro; Feás, Xesús; Leticia M. Estevinho

    2011-01-01

    The aim of this study was to determine the palynological origin, phenolic content, antioxidant properties and antibacterial activity of honeybee- collected pollen from five Portuguese Natural-Parks [Parque Nacional Peneda Geres (PNPG); Parque Natural do Montesinho (PNM); Parque Natural do Alvao (PNA); Parque Natural da Serra da Estrela (PNSE) and Parque Natural do Douro Internacional (PNDI)]. Eight families were found in the mixture of bee pollen: Rosaceae, Cistaceae, Bor...

  19. Potential impacts of synergism in honeybees (Apis mellifera) of exposure to neonicotinoids and sprayed fungicides in crops

    Thompson, Helen; Fryday, Steven; Harkin, Sarah; Milner, Sarah

    2014-01-01

    International audience Assessment of the toxicity of individual pesticides to honeybees is routinely assessed. However, few data have been generated for realistic mixtures of neonicotinoid insecticides and fungicides particularly with regard to exposure levels used. Assessment of the effects of exposure of bees to predicted residues following sprayed applications of ergosterol biosynthesis inhibitor fungicides on the contact and oral toxicity of a range of neonicotinoid insecticides (thiam...

  20. Abundance of phosphorylated Apis mellifera CREB in the honeybee's mushroom body inner compact cells varies with age.

    Gehring, Katrin B; Heufelder, Karin; Kersting, Isabella; Eisenhardt, Dorothea

    2016-04-15

    Hymenopteran eusociality has been proposed to be associated with the activity of the transcription factor CREB (cAMP-response element binding protein). The honeybee (Apis mellifera) is a eusocial insect displaying a pronounced age-dependent division of labor. In honeybee brains, CREB-dependent genes are regulated in an age-dependent manner, indicating that there might be a role for neuronal honeybee CREB (Apis mellifera CREB, or AmCREB) in the bee's division of labor. In this study, we further explore this hypothesis by asking where in the honeybee brain AmCREB-dependent processes might take place and whether they vary with age in these brain regions. CREB is activated following phosphorylation at a conserved serine residue. An increase of phosphorylated CREB is therefore regarded as an indicator of CREB-dependent transcriptional activation. Thus, we here examine the localization of phosphorylated AmCREB (pAmCREB) in the brain and its age-dependent variability. We report prominent pAmCREB staining in a subpopulation of intrinsic neurons of the mushroom bodies. In these neurons, the inner compact cells (IC), pAmCREB is located in the nuclei, axons, and dendrites. In the central bee brain, the IC somata and their dendritic region, we observed an age-dependent increase of pAmCREB. Our results demonstrate the IC to be candidate neurons involved in age-dependent division of labor. We hypothesize that the IC display a high level of CREB-dependent transcription that might be related to neuronal and behavioral plasticity underlying a bee's foraging behavior. PMID:26355639

  1. The cyanobacterial neurotoxin beta-N-methylamino-l-alanine (BMAA) induces neuronal and behavioral changes in honeybees

    Okle, Oliver; Rath, Lisa; Galizia, C Giovanni; Dietrich, Daniel R.

    2013-01-01

    The cyanobacterially produced neurotoxin beta-N-methylamino-l-alanine (BMAA) is thought to induce amyotrophic lateral sclerosis/Parkinsonism dementia complex (ALS/PDC)-like symptoms. However, its mechanism of action and its pathway of intoxication are yet unknown. In vivo animal models suitable for investigating the neurotoxic effect of BMAA with applicability to the human are scarce. Hence, we used the honeybee (Apis mellifera) since its nervous system is relatively simple, yet having cognit...

  2. Assessing honeybee and wasp thermoregulation and energetics—New insights by combination of flow-through respirometry with infrared thermography

    Highlights: ► We demonstrate the benefits of a combined use of infrared thermography with respiratory measurements in insect ecophysiological research. ► Infrared thermography enables repeated investigation of behaviour and thermoregulation without behavioural impairment. ► Comparison with respirometry brings new insights into the mechanisms of energetic optimisation of bee and wasp foraging. ► Combination of methods improves interpretation of respiratory traces in determinations of insect critical thermal limits. - Abstract: Endothermic insects like honeybees and some wasps have to cope with an enormous heat loss during foraging because of their small body size in comparison to endotherms like mammals and birds. The enormous costs of thermoregulation call for optimisation. Honeybees and wasps differ in their critical thermal maximum, which enables the bees to kill the wasps by heat. We here demonstrate the benefits of a combined use of body temperature measurement with infrared thermography, and respiratory measurements of energy turnover (O2 consumption or CO2 production via flow-through respirometry) to answer questions of insect ecophysiological research, and we describe calibrations to receive accurate results. To assess the question of what foraging honeybees optimise, their body temperature was compared with their energy turnover. Honeybees foraging from an artificial flower with unlimited sucrose flow increased body surface temperature and energy turnover with profitability of foraging (sucrose content of the food; 0.5 or 1.5 mol/L). Costs of thermoregulation, however, were rather independent of ambient temperature (13–30 °C). External heat gain by solar radiation was used to increase body temperature. This optimised foraging energetics by increasing suction speed. In determinations of insect respiratory critical thermal limits, the combined use of respiratory measurements and thermography made possible a more conclusive interpretation of

  3. Response of the small hive beetle (Aethina tumida) to a blend of chemicals identified from honeybee (Apis mellifera) volatiles

    Torto, Baldwyn; Suazo, Alonso; Alborn, Hans; H. Tumlinson, James; E.A. Teal, Peter

    2005-01-01

    International audience Coupled gas chromatographic-electroantennographic detection (GC-EAD) analyses of Super Q collected worker honey bee volatiles revealed several components that elicited antennal responses by the small hive beetle Aethina tumida. However, GC-MS analysis showed that eight of these EAD-active components dominated the volatile profile released into a wind tunnel by living adult worker honeybees and rubber septa impregnated with a Super Q extract of the volatiles of the be...

  4. Aspects of neuronal plasticity in the mushroom body calyx during adult maturation in the honeybee Apis mellifera

    Münz, Thomas Sebastian

    2015-01-01

    Division of labor represents a major advantage of social insect communities that accounts for their enormous ecological success. In colonies of the honeybee, Apis mellifera, division of labor comprises different tasks of fertile queens and drones (males) and, in general, sterile female workers. Division of labor also occurs among workers in form of an age-related polyethism. This helps them to deal with the great variety of tasks within the colony. After adult eclosion, workers spend around t...

  5. Expert explanations of honeybee losses in areas of extensive agriculture in France: Gaucho compared with other supposed causal factors

    Maxim, L [Institut des Sciences de la Communication, CNRS UPS 3088, 27 Rue Damesme, 75013 Paris (France); Van der Sluijs, J P, E-mail: laura.maxim@iscc.cnrs.f, E-mail: J.P.vanderSluijs@uu.n [Copernicus Institute for Sustainable Development and Innovation, Department of Science, Technology and Society, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht (Netherlands)

    2010-01-15

    Debates on causality are at the core of controversies as regards environmental changes. The present paper presents a new method for analyzing controversies on causality in a context of social debate and the results of its empirical testing. The case study used is the controversy as regards the role played by the insecticide Gaucho, compared with other supposed causal factors, in the substantial honeybee (Apis mellifera L.) losses reported to have occurred in France between 1994 and 2004. The method makes use of expert elicitation of the perceived strength of evidence regarding each of Bradford Hill's causality criteria, as regards the link between each of eight possible causal factors identified in attempts to explain each of five signs observed in honeybee colonies. These judgments are elicited from stakeholders and experts involved in the debate, i.e., representatives of Bayer Cropscience, of the Ministry of Agriculture, of the French Food Safety Authority, of beekeepers and of public scientists. We show that the intense controversy observed in confused and passionate public discourses is much less salient when the various arguments are structured using causation criteria. The contradictions between the different expert views have a triple origin: (1) the lack of shared definition and quantification of the signs observed in colonies; (2) the lack of specialist knowledge on honeybees; and (3) the strategic discursive practices associated with the lack of trust between experts representing stakeholders having diverging stakes in the case.

  6. Characterization of royal jelly proteins in both Africanized and European honeybees (Apis mellifera) by two-dimensional gel electrophoresis.

    Sano, Osamu; Kunikata, Toshio; Kohno, Keizo; Iwaki, Kanso; Ikeda, Masao; Kurimoto, Masashi

    2004-01-14

    In this study, the proteins contained in royal jelly (RJ) produced by Africanized honeybees and European honeybees (Apis mellifera) haven been analyzed in detail and compared using two-dimensional gel electrophoresis, and the N-terminal amino acid sequence of each spot has been determined. Most spots were assigned to major royal jelly proteins (MRJPs). Remarkable differences were found in the heterogeneity of the MRJPs, in particular MRJP3, in terms of molecular weights and isoelectric points between the two species of RJ. Furthermore, during the determination of the N-terminal amino acid sequence of each spot, for the first time, MRJP4 protein has been identified, the existence of which had been only implied by cloning of its cDNA sequence. The presence of heterogeneous bands of glucose oxidase was also identified. Thus, the results suggest that two-dimensional gel electrophoresis provides a suitable method for the qualitative analysis of the proteins contained in RJ derived from different honeybee species. PMID:14709007

  7. Expert explanations of honeybee losses in areas of extensive agriculture in France: Gaucho compared with other supposed causal factors

    Debates on causality are at the core of controversies as regards environmental changes. The present paper presents a new method for analyzing controversies on causality in a context of social debate and the results of its empirical testing. The case study used is the controversy as regards the role played by the insecticide Gaucho, compared with other supposed causal factors, in the substantial honeybee (Apis mellifera L.) losses reported to have occurred in France between 1994 and 2004. The method makes use of expert elicitation of the perceived strength of evidence regarding each of Bradford Hill's causality criteria, as regards the link between each of eight possible causal factors identified in attempts to explain each of five signs observed in honeybee colonies. These judgments are elicited from stakeholders and experts involved in the debate, i.e., representatives of Bayer Cropscience, of the Ministry of Agriculture, of the French Food Safety Authority, of beekeepers and of public scientists. We show that the intense controversy observed in confused and passionate public discourses is much less salient when the various arguments are structured using causation criteria. The contradictions between the different expert views have a triple origin: (1) the lack of shared definition and quantification of the signs observed in colonies; (2) the lack of specialist knowledge on honeybees; and (3) the strategic discursive practices associated with the lack of trust between experts representing stakeholders having diverging stakes in the case.

  8. Feverish honeybees

    Borges, Renee M.

    2000-01-01

    The therapeutic benefits of fever have been recorded since the time of Hippocrates. At the turn of the 20th century, syphilis was a dreaded disease whose neuro-degenerative effects were terrible and many mental institutions were occupied with patients suffering from it; there was no effective treatment available then.

  9. SECOND BUYING AGENT

    SPL - SERVICES ACHATS

    2000-01-01

    Last year the buying agent LOGITRADE started operations on the CERN site, processing purchasing requests for well-defined families of products up to a certain value. It was planned from the outset that a second buying agent would be brought in to handle the remaining product families. So, according to that plan, the company CHARLES KENDALL will be commencing operations at CERN on 8 May 2000 in Building 73, 1st floor, offices 31 and 35 (phone and fax numbers to be announced).Each buying agent will have its own specific list of product families and will handle purchasing requests up to 10'000 CHF.Whenever possible they will provide the requested supplies at a price (including the cost of their own services) which must be equivalent to or lower than the price mentioned on the purchasing request, changing the supplier if necessary. If a lower price cannot be obtained, agents will provide the necessary administrative support free of charge.To ensure that all orders are processed in the best possible conditions, us...

  10. Agent-based Modeling and Mapping of Manufacturing System

    Z; Zhang

    2002-01-01

    Considering the gent-based modeling and mapping in m anufacturing system, in this paper, some system models are described, which are including: Domain Based Hierarchical Structure (DBHS), Cascading Agent Struc ture (CAS), Proximity Relation structure (PRS), and Bus-based network structure (BNS). In DBHS, one sort of agent individually delegates Domain Agents, Res ources Agents, UserInterface Agents and Gateway Agents and the other one is a br oker of tasks and process flow. Static agents representing...

  11. A Locomotor Deficit Induced by Sublethal Doses of Pyrethroid and Neonicotinoid Insecticides in the Honeybee Apis mellifera.

    Charreton, Mercédès; Decourtye, Axel; Henry, Mickaël; Rodet, Guy; Sandoz, Jean-Christophe; Charnet, Pierre; Collet, Claude

    2015-01-01

    The toxicity of pesticides used in agriculture towards non-targeted organisms and especially pollinators has recently drawn the attention from a broad scientific community. Increased honeybee mortality observed worldwide certainly contributes to this interest. The potential role of several neurotoxic insecticides in triggering or potentiating honeybee mortality was considered, in particular phenylpyrazoles and neonicotinoids, given that they are widely used and highly toxic for insects. Along with their ability to kill insects at lethal doses, they can compromise survival at sublethal doses by producing subtle deleterious effects. In this study, we compared the bee's locomotor ability, which is crucial for many tasks within the hive (e.g. cleaning brood cells, feeding larvae…), before and after an acute sublethal exposure to one insecticide belonging to the two insecticide classes, fipronil and thiamethoxam. Additionally, we examined the locomotor ability after exposure to pyrethroids, an older chemical insecticide class still widely used and known to be highly toxic to bees as well. Our study focused on young bees (day 1 after emergence) since (i) few studies are available on locomotion at this stage and (ii) in recent years, pesticides have been reported to accumulate in different hive matrices, where young bees undergo their early development. At sublethal doses (SLD48h, i.e. causing no mortality at 48 h), three pyrethroids, namely cypermethrin (2.5 ng/bee), tetramethrin (70 ng/bee), tau-fluvalinate (33 ng/bee) and the neonicotinoid thiamethoxam (3.8 ng/bee) caused a locomotor deficit in honeybees. While the SLD48h of fipronil (a phenylpyrazole, 0.5 ng/bee) had no measurable effect on locomotion, we observed high mortality several days after exposure, an effect that was not observed with the other insecticides. Although locomotor deficits observed in the sublethal range of pyrethroids and thiamethoxam would suggest deleterious effects in the field, the case of

  12. Advance in Sacbrood Virus Disease in Honeybees%蜜蜂囊状幼虫病研究进展

    李薇; 薛菲; Wubie Abebe Jenberie; 黄家兴; 国占宝; 周婷; 徐书法

    2014-01-01

    蜜蜂囊状幼虫病是由蜜蜂囊状幼虫病毒(Sacbrood virus,SBV)引起的一种病毒病,对蜂群危害极其严重,对我国本土蜂种的中华蜜蜂危害更甚。到目前为止,我国有20多个省发现中华蜜蜂感染此病,病害侵袭极其严重。由于该病无特效药物可以治疗,我国部分省份的部分地区由于囊状幼虫病的大流行已经导致该地区中华蜜蜂饲养数量几乎为零,给当地的蜂业生产带来巨大损失。论文从蜜蜂囊状幼虫病的流行规律、病毒的生物学特性、病害诊断方法和蜜蜂抗性机理四个方面对蜜蜂囊状幼虫病研究进展进行概述,旨在为今后有效防控蜜蜂囊状幼虫病提供参考。%Sacbrood virus (SBV)is a viral pathogen causing sacbrood virus disease in honeybees which has become a potential threat to honeybee colonies and even more to the Chinese native species (Apis cerana cerana ).Until now,Sacbrood Virus has been detected in more than 20 provinces of China.In certain areas of the country,SBV has seriously caused a total collapse of apiaries and huge economic losses due to ab-sence of effective treatments.As a result,in order to give important insights,herein,we summarized the evolutionary epidemiology of SBV infection in honeybees,its molecular characterization,diagnostic tech-niques for SBV detection,and honeybee resistance to SBV infections.We believe that this report provide the basis for further SBV based studies in the control of sacbrood virus disease in honeybees.

  13. Modification of the brain proteome of Africanized honeybees (Apis mellifera) exposed to a sub-lethal doses of the insecticide fipronil.

    Roat, T C; dos Santos-Pinto, J R A; Dos Santos, L D; Santos, K S; Malaspina, O; Palma, M S

    2014-11-01

    Fipronil is a phenylpyrazole insecticide that is widely used in Brazilian agriculture for pest control. Although honeybees are not targets of fipronil, studies indicate that this pesticide can be harmful to honeybees. To assess the effects of fipronil in the brain of Africanized Apis mellifera workers, this study focused on the toxico-proteome profiling of the brain of newly emerged and aged honeybee workers that were exposed to a sub-lethal dose (10 pg fipronil per day. i.e. (1)/100 of LD50/bee/day during 5 days) of the insecticide. Proteomic analysis identified 25 proteins that were differentially up-regulated or down-regulated when the fipronil-exposed and non-exposed groups were compared. These proteins are potentially related to pathogen susceptibility, neuronal chemical stress, neuronal protein misfolding, and occurrence of apoptosis, ischemia, visual impairment, damaged synapse formation, brain degeneration, memory and learning impairment. The exposure of honeybees to a very low dose of fipronil, even for a short period of time (5 days), was sufficient to cause a series of important neuroproteomic changes in the brains of honeybees. PMID:25139030

  14. Phenology of Migration and Decline in Colony Numbers and Crop Hosts of Giant Honeybee (Apis dorsata F. in Semiarid Environment of Northwest India

    Ram Chander Sihag

    2014-01-01

    Full Text Available The colonies of the giant honeybee (Apis dorsata immigrate in the semiarid environment of Northwest India in October-November with the onset of flowering on pigeon pea (Cajanus cajan/toria (Brassica campestris var. toria, stay here during the rich pollen and nectar flow period from December to mid-May, and emigrate in late May/early June when floral dearth is witnessed. This honeybee was free from any conspicuous viral, bacterial, and fungal diseases and also did not have any serious predators and enemies. However, about 20 percent of the old colonies were infested with Tropilaelaps clareae and 100 percent of the old colonies with Galleria mellonella; none of the swarm colonies had these pests. While the migration schedule of this honeybee remained similar year after year, the number of colonies immigrating in this region declined markedly over the years; the number in 2012 was even less than half of that recorded in 1984. During its stay in this region, this honeybee acted as an important pollinator of more than 30 crop plants of this region. The causes of seasonal migration and decline in the number of colonies of this honeybee and its importance in crop pollination have been discussed.

  15. The prevalence of the honeybee brood pathogens Ascosphaera apis, Paenibacillus larvae and Melissococcus plutonius in Spanish apiaries determined with a new multiplex PCR assay.

    Garrido-Bailón, Encarna; Higes, Mariano; Martínez-Salvador, Amparo; Antúnez, Karina; Botías, Cristina; Meana, Aránzazu; Prieto, Lourdes; Martín-Hernández, Raquel

    2013-11-01

    The microorganisms Ascosphaera apis, Paenibacillus larvae and Melissococcus plutonius are the three most important pathogens that affect honeybee brood. The aim of the present study was to evaluate the prevalence of these pathogens in honeybee colonies and to elucidate their role in the honeybee colony losses in Spain. In order to get it, a multiplex polymerase chain reaction (PCR) assay was developed to simultaneously amplify the16S ribosomal ribonucleic acid (rRNA) gene of P. larvae and M. plutonius, and the 5.8S rRNA gene of A. apis. The multiplex PCR assay provides a quick and specific tool that successfully detected the three infectious pathogens (P. larvae, M. plutonius and A. apis) in brood and adult honeybee samples without the need for microbiological culture. This technique was then used to evaluate the prevalence of these pathogens in Spanish honeybee colonies in 2006 and 2007, revealing our results a low prevalence of these pathogens in most of the geographic areas studied. PMID:23919248

  16. Antagonistic formation motion of cooperative agents

    卢婉婷; 代明香; 薛方正

    2015-01-01

    This paper investigates a new formation motion problem of a class of first-order multi-agent systems with antagonis-tic interactions. A distributed formation control algorithm is proposed for each agent to realize the antagonistic formation motion. A sufficient condition is derived to ensure that all agents make an antagonistic formation motion in a distributed manner. It is shown that all agents can be spontaneously divided into several groups, and agents in the same group collab-orate while agents in different groups compete. Finally, a numerical simulation is included to demonstrate our theoretical results.

  17. Agent planning in AgScala

    Tošić, Saša; Mitrović, Dejan; Ivanović, Mirjana

    2013-10-01

    Agent-oriented programming languages are designed to simplify the development of software agents, especially those that exhibit complex, intelligent behavior. This paper presents recent improvements of AgScala, an agent-oriented programming language based on Scala. AgScala includes declarative constructs for managing beliefs, actions and goals of intelligent agents. Combined with object-oriented and functional programming paradigms offered by Scala, it aims to be an efficient framework for developing both purely reactive, and more complex, deliberate agents. Instead of the Prolog back-end used initially, the new version of AgScala relies on Agent Planning Package, a more advanced system for automated planning and reasoning.

  18. A++: An Agent Oriented Programming Language

    Deyi Xue

    2004-08-01

    Full Text Available A new Agent-Oriented Programming (AOP language called A++ is introduced in this research for developing agent-based distributed systems. In this work, agent-oriented programming is defined as a programming method with characteristics of distribution, autonomy, concurrency, and mobility. Both agents and objects can be modeled in A++. In addition to data and methods that can be defined in objects including classes and instances, each agent is also associated with an independent computing process in agent-oriented programming.

  19. Agent Chameleons: Virtual Agents Real Intelligence

    O'Hare, Gregory; Duffy, Brian; Schoen-Phelan, Bianca; Martin, Alan; Bradley, John

    2003-01-01

    Agent Chameleons provides virtual agents powered by real intelligence, delivering next generation autonomic entities that can seamlessly migrate, mutate and evolve on their journey between and within physical and digital information spaces.

  20. Optical modulator including grapene

    Liu, Ming; Yin, Xiaobo; Zhang, Xiang

    2016-06-07

    The present invention provides for a one or more layer graphene optical modulator. In a first exemplary embodiment the optical modulator includes an optical waveguide, a nanoscale oxide spacer adjacent to a working region of the waveguide, and a monolayer graphene sheet adjacent to the spacer. In a second exemplary embodiment, the optical modulator includes at least one pair of active media, where the pair includes an oxide spacer, a first monolayer graphene sheet adjacent to a first side of the spacer, and a second monolayer graphene sheet adjacent to a second side of the spacer, and at least one optical waveguide adjacent to the pair.

  1. Honeybees Produce Millimolar Concentrations of Non-Neuronal Acetylcholine for Breeding: Possible Adverse Effects of Neonicotinoids

    Wessler, Ignaz; Gärtner, Hedwig-Annabel; Michel-Schmidt, Rosmarie; Brochhausen, Christoph; Schmitz, Luise; Anspach, Laura; Grünewald, Bernd; Kirkpatrick, Charles James

    2016-01-01

    The worldwide use of neonicotinoid pesticides has caused concern on account of their involvement in the decline of bee populations, which are key pollinators in most ecosystems. Here we describe a role of non-neuronal acetylcholine (ACh) for breeding of Apis mellifera carnica and a so far unknown effect of neonicotinoids on non-target insects. Royal jelly or larval food are produced by the hypopharyngeal gland of nursing bees and contain unusually high ACh concentrations (4–8 mM). ACh is extremely well conserved in royal jelly or brood food because of the acidic pH of 4.0. This condition protects ACh from degradation thus ensuring delivery of intact ACh to larvae. Raising the pH to ≥5.5 and applying cholinesterase reduced the content of ACh substantially (by 75–90%) in larval food. When this manipulated brood was tested in artificial larval breeding experiments, the survival rate was higher with food supplemented by 100% with ACh (6 mM) than with food not supplemented with ACh. ACh release from the hypopharyngeal gland and its content in brood food declined by 80%, when honeybee colonies were exposed for 4 weeks to high concentrations of the neonicotinoids clothianidin (100 parts per billion [ppb]) or thiacloprid (8,800 ppb). Under these conditions the secretory cells of the gland were markedly damaged and brood development was severely compromised. Even field-relevant low concentrations of thiacloprid (200 ppb) or clothianidin (1 and 10 ppb) reduced ACh level in the brood food and showed initial adverse effects on brood development. Our findings indicate a hitherto unknown target of neonicotinoids to induce adverse effects on non-neuronal ACh which should be considered when re-assessing the environmental risks of these compounds. To our knowledge this is a new biological mechanism, and we suggest that, in addition to their well documented neurotoxic effects, neonicotinoids may contribute to honeybee colony losses consecutive to a reduction of the ACh content

  2. ELECTRONIC EQUIPMENT TO MONITORIZE SOME BIOLOGICAL PROCESS OF ECONOMIC IMPORTANCE IN HONEYBEE COLONY AND ITS ENVIRONMENT

    A. SICEANU

    2013-12-01

    Full Text Available The electronic hive is the result of the scientific researches carried out between2003-2006 by a research project funded by MEdC through the National ProgramRELANSIN, being accomplished by Institute for Beekeeping Research andDevelopment –Bucharest in cooperation with the Polytechnics University fromBucharest –The Center for Electronic Technology and Interconnection Techniquesand the Radio Consult CompanyTo achieve the great complexity of the electronic model adapted to the hive –the“smart” hive, it was necessary to establish the all electronic details which to makepossible to monitorize some very important information from the bee colony andits environment with the help of the honeybees and which to eliminate the errorsthat may occur in the information collection process.Thus, the project aimed to conceive the electronic system in order to collectinformation from inside the hive and from environment too, to storage andtransmit it to a data basis by GSM network in order to be analyzed and processedby users.By this complex electronic system, composed by electronic equipment and thehoney bee colony, which is dynamic and strong related with natural evolution ofvegetation correlated with the climate factors, is possible to identify instantaneousor periodically a large palette of aggression factors as well naturals (acids rains,extreme temperatures, calamities as anthropic factors –accidental chemical orbiologic pollution. The obtained data, electronically quantified and taken out intothe data basis, could offer accurate information about the moisturized areas atdifferent time intervals.

  3. Optimal search patterns in honeybee orientation flights are robust against emerging infectious diseases.

    Wolf, Stephan; Nicholls, Elizabeth; Reynolds, Andrew M; Wells, Patricia; Lim, Ka S; Paxton, Robert J; Osborne, Juliet L

    2016-01-01

    Lévy flights are scale-free (fractal) search patterns found in a wide range of animals. They can be an advantageous strategy promoting high encounter rates with rare cues that may indicate prey items, mating partners or navigational landmarks. The robustness of this behavioural strategy to ubiquitous threats to animal performance, such as pathogens, remains poorly understood. Using honeybees radar-tracked during their orientation flights in a novel landscape, we assess for the first time how two emerging infectious diseases (Nosema sp. and the Varroa-associated Deformed wing virus (DWV)) affect bees' behavioural performance and search strategy. Nosema infection, unlike DWV, affected the spatial scale of orientation flights, causing significantly shorter and more compact flights. However, in stark contrast to disease-dependent temporal fractals, we find the same prevalence of optimal Lévy flight characteristics (μ ≈ 2) in both healthy and infected bees. We discuss the ecological and evolutionary implications of these surprising insights, arguing that Lévy search patterns are an emergent property of fundamental characteristics of neuronal and sensory components of the decision-making process, making them robust against diverse physiological effects of pathogen infection and possibly other stressors. PMID:27615605

  4. Nectar loads as fuel for collecting nectar and pollen in honeybees: adjustment by sugar concentration.

    Harano, Ken-Ichi; Nakamura, Jun

    2016-06-01

    When honeybee foragers leave the nest, they receive nectar from nest mates for use as fuel for flight or as binding material to build pollen loads. We examined whether the concentration of nectar carried from the nest changes with the need for sugar. We found that pollen foragers had more-concentrated nectar (61.8 %) than nectar foragers (43.8 %). Further analysis revealed that the sugar concentration of the crop load increased significantly with waggle duration, an indicator of food-source distance, in both groups of foragers. Crop volume also increased with waggle duration. The results support our argument that foragers use concentrated nectar when the need for sugar is high and suggest that they precisely adjust the amount of sugar in the crop by altering both volume and nectar concentrations. We also investigated the impact of the area where foragers receive nectar on the crop load concentration at departure. Although nectar and pollen foragers tend to load nectar at different areas in the nest, area did not have a significant effect on crop load concentration. Departing foragers showed an average of 2.2 momentary (begging trophallactic contacts before leaving the nest. They might be rejecting nectar with inappropriate concentrations during these contacts. PMID:27165302

  5. Physicochemical and microbiological characterization of cassava flower honey samples produced by africanized honeybees

    Lucimar Peres de Moura Pontara

    2012-09-01

    Full Text Available Cassava producers in the region of Marília-São Paulo are integrating their farming activity with beekeeping to diversify their income. The aim of this study was to evaluate the physicochemical and microbiological quality of honey samples produced by Africanized honeybees Apis mellifera from cassava flower in 2008. Analysis were carried out for pH, total soluble solids (TSS, acidity, moisture, reducing and total sugars, apparent sucrose, hydroxymethylfurfural, color, ash, proteins, water insoluble solids, diastasic activity, mineral content, microbiological evaluations, and mineral and hydrocyanic acid (HCN content. The honey samples showed physicochemical and microbiological characteristics favorable to commercialization, with the exception of apparent sucrose and acidity, which show the need for a narrow focus of attention to the honey maturation degree at the harvest time and more careful monitoring during production and processing. The commercialization of Brazilian cassava honey, still little explored, can be widely spread in the market since the levels of hydrocyanic acid (HCN showed no consumption risk; in addition the simultaneous production of honey and cassava provides an alternative to family income increase.

  6. Genotypic influence on aversive conditioning in honeybees, using a novel thermal reinforcement procedure.

    Pierre Junca

    Full Text Available In Pavlovian conditioning, animals learn to associate initially neutral stimuli with positive or negative outcomes, leading to appetitive and aversive learning respectively. The honeybee (Apis mellifera is a prominent invertebrate model for studying both versions of olfactory learning and for unraveling the influence of genotype. As a queen bee mates with about 15 males, her worker offspring belong to as many, genetically-different patrilines. While the genetic dependency of appetitive learning is well established in bees, it is not the case for aversive learning, as a robust protocol was only developed recently. In the original conditioning of the sting extension response (SER, bees learn to associate an odor (conditioned stimulus - CS with an electric shock (unconditioned stimulus - US. This US is however not a natural stimulus for bees, which may represent a potential caveat for dissecting the genetics underlying aversive learning. We thus first tested heat as a potential new US for SER conditioning. We show that thermal stimulation of several sensory structures on the bee's body triggers the SER, in a temperature-dependent manner. Moreover, heat applied to the antennae, mouthparts or legs is an efficient US for SER conditioning. Then, using microsatellite analysis, we analyzed heat sensitivity and aversive learning performances in ten worker patrilines issued from a naturally inseminated queen. We demonstrate a strong influence of genotype on aversive learning, possibly indicating the existence of a genetic determinism of this capacity. Such determinism could be instrumental for efficient task partitioning within the hive.

  7. Preparation of Antioxidant Enzymatic Hydrolysates from Honeybee-Collected Pollen Using Plant Enzymes

    Margarita D. Marinova

    2010-01-01

    Full Text Available Enzymatic hydrolysates of honeybee-collected pollen were prepared using food-grade proteinase and aminopeptidases entirely of plant origin. Bromelain from pineapple stem was applied (8 mAU/g substrate in the first hydrolysis stage. Aminopeptidase (0.05 U/g substrate and proline iminopeptidase (0.03 U/g substrate from cabbage leaves (Brassica oleracea var. capitata, and aminopeptidase (0.2 U/g substrate from chick-pea cotyledons (Cicer arietinum L. were involved in the additional hydrolysis of the peptide mixtures. The degree of hydrolysis (DH, total phenolic contents, and protein contents of these hydrolysates were as follows: DH (about 20–28%, total phenolics (15.3–27.2 μg/mg sample powder, and proteins (162.7–242.8 μg/mg sample powder, respectively. The hydrolysates possessed high antiradical scavenging activity determined with DPPH (42–46% inhibition. The prepared hydrolysates of bee-collected flower pollen may be regarded as effective natural and functional dietary food supplements due to their remarkable content of polyphenol substances and significant radical-scavenging capacity with special regard to their nutritional-physiological implications.

  8. Performance of Africanized honeybee colonies settled by queens selected for different traits

    Tânia Patrícia Schafaschek

    2016-01-01

    Full Text Available We evaluated varroa infestation and the performance of Africanized honeybee colonies with queens selected for honey and royal jelly production, and also unselected queens, correlating with climatic variables. In Campo Alegre, Santa Catarina State, Brazil, the experiment I used 10 Langstroth hives and in Mafra, Santa Catarina State, Brazil, the experiment II was performed with 15 Schenk hives. A mapping in areas of sealed and unsealed brood, honey and pollen was carried out on days zero, 45 and 90 days after the introduction of the queen. In the experiment I, there was interaction between the type of queen selection and the evaluation period for areas of sealed brood, honey, and total stored food. The group selected for royal jelly production presented larger sealed brood area and smaller honey area at 90 days. Varroa infestation was lower (p < 0.05 at 90 days. The type of queen selection and the evaluation period influenced the sealed brood area, the total brood and the total area occupied in the colony. The high relative humidity caused greater honey storage for the local group. The different groups of queens presented different behavior according to the environment in which they are settled.

  9. Genome-Wide Association Study of a Varroa-Specific Defense Behavior in Honeybees (Apis mellifera).

    Spötter, Andreas; Gupta, Pooja; Mayer, Manfred; Reinsch, Norbert; Bienefeld, Kaspar

    2016-05-01

    Honey bees are exposed to many damaging pathogens and parasites. The most devastating is Varroa destructor, which mainly affects the brood. A promising approach for preventing its spread is to breed Varroa-resistant honey bees. One trait that has been shown to provide significant resistance against the Varroa mite is hygienic behavior, which is a behavioral response of honeybee workers to brood diseases in general. Here, we report the use of an Affymetrix 44K SNP array to analyze SNPs associated with detection and uncapping of Varroa-parasitized brood by individual worker bees (Apis mellifera). For this study, 22 000 individually labeled bees were video-monitored and a sample of 122 cases and 122 controls was collected and analyzed to determine the dependence/independence of SNP genotypes from hygienic and nonhygienic behavior on a genome-wide scale. After false-discovery rate correction of the P values, 6 SNP markers had highly significant associations with the trait investigated (α < 0.01). Inspection of the genomic regions around these SNPs led to the discovery of putative candidate genes. PMID:26774061

  10. Selection on worker honeybee responses to queen pheromone (Apis mellifera L.)

    Pankiw, T.; Winston, Mark L.; Fondrk, M. Kim; Slessor, Keith N.

    Disruptive selection for responsiveness to queen mandibular gland pheromone (QMP) in the retinue bioassay resulted in the production of high and low QMP responding strains of honeybees (Apis mellifera L.). Strains differed significantly in their retinue response to QMP after one generation of selection. By the third generation the high strain was on average at least nine times more responsive than the low strain. The strains showed seasonal phenotypic plasticity such that both strains were more responsive to the pheromone in the spring than in the fall. Directional selection for low seasonal variation indicated that phenotypic plasticity was an additional genetic component to retinue response to QMP. Selection for high and low retinue responsiveness to QMP was not an artifact of the synthetic blend because both strains were equally responsive or non-responsive to whole mandibular gland extracts compared with QMP. The use of these strains clearly pointed to an extra-mandibular source of retinue pheromones (Pankiw et al. 1995; Slessor et al. 1998; Keeling et al. 1999).

  11. Complete mitochondrial genome of the Algerian honeybee, Apis mellifera intermissa (Hymenoptera: Apidae).

    Hu, Peng; Lu, Zhi-Xiang; Haddad, Nizar; Noureddine, Adjlane; Loucif-Ayad, Wahida; Wang, Yong-Zhi; Zhao, Ren-Bin; Zhang, Ai-Ling; Guan, Xin; Zhang, Hai-Xi; Niu, Hua

    2016-05-01

    In this study, the complete mitochondrial genome sequence of Algerian honeybee, Apis mellifera intermissa, is analyzed for the first time. The results show that this genome is 16,336 bp in length, and contains 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and 1 control region (D-loop). The overall base composition is A (43.2%), C (9.8%), G (5.6%), and T (41.4%), so the percentage of A and T (84.6%) is considerably higher than that of G and C. All the genes are encoded on H-strand, except for four subunit genes (ND1, ND4, ND4L, and ND5), two rRNA genes (12S and 16S rRNA), and eight tRNA genes. The complete mitochondrial genome sequence reported here would be useful for further phylogenetic analysis and conservation genetic studies in A. m. intermissa. PMID:25259457

  12. Trophallaxis in filled-crop honeybees (Apis mellifera L.): food-loading time affects unloading behaviour

    Wainselboim, A. J.; Farina, W. M.

    Honeybees ingested 50% w/w (1.8M) sucrose solution at a rate feeder offering either 16.5, 32.5 or 65 μl/min. While the time spent ingesting solution at the feeder decreased significantly with increasing flow of solution, bees attained maximum crop loads with this range of flows. Different parameters related to mouth-to-mouth food exchange (trophallaxis) showed important modulations as the offered flow of solution was incremented. Trophallactic transfer rate, i.e. the speed at which liquid food is transferred from donor to recipient bee, was found to increase along with increasing profitability at the rate feeder. In the present case, food source profitability could have been evaluated by foragers either by measuring the time invested in ingesting the solution, or by direct assessment of the flow rate of the feeder. Thus it seems that perception of profitability conditions at the food sourcesuffices for later representation in the hive through trophallactic contacts, independently of crop-filling state.

  13. Combined neonicotinoid pesticide and parasite stress alter honeybee queens' physiology and survival.

    Dussaubat, Claudia; Maisonnasse, Alban; Crauser, Didier; Tchamitchian, Sylvie; Bonnet, Marc; Cousin, Marianne; Kretzschmar, André; Brunet, Jean-Luc; Le Conte, Yves

    2016-01-01

    Honeybee colony survival strongly relies on the queen to overcome worker losses exposed to combined stressors like pesticides and parasites. Queen's capacity to withstand these stressors is however very little known. The effects of the common neonicotinoid pesticide imidacloprid in a chronic and sublethal exposure together with the wide distributed parasite Nosema ceranae have therefore been investigated on queen's physiology and survivorship in laboratory and field conditions. Early physiological changes were observed on queens, particularly the increase of enzyme activities (catalase [CAT] and glutathione-S-transferase [GST] in the heads) related to protective responses to xenobiotics and oxidative stress against pesticide and parasite alone or combined. Stressors also alter the activity of two other enzymes (carboxylesterase alpha [CaE α] and carboxylesterase para [CaE p] in the midguts) involved in metabolic and detoxification functions. Furthermore, single and combined effects of pesticide and parasite decrease survivorship of queens introduced into mating hives for three months. Because colony demographic regulation relies on queen's fertility, the compromise of its physiology and life can seriously menace colony survival under pressure of combined stressors. PMID:27578396

  14. Combined neonicotinoid pesticide and parasite stress alter honeybee queens’ physiology and survival

    Dussaubat, Claudia; Maisonnasse, Alban; Crauser, Didier; Tchamitchian, Sylvie; Bonnet, Marc; Cousin, Marianne; Kretzschmar, André; Brunet, Jean-Luc; Le Conte, Yves

    2016-01-01

    Honeybee colony survival strongly relies on the queen to overcome worker losses exposed to combined stressors like pesticides and parasites. Queen’s capacity to withstand these stressors is however very little known. The effects of the common neonicotinoid pesticide imidacloprid in a chronic and sublethal exposure together with the wide distributed parasite Nosema ceranae have therefore been investigated on queen’s physiology and survivorship in laboratory and field conditions. Early physiological changes were observed on queens, particularly the increase of enzyme activities (catalase [CAT] and glutathione-S-transferase [GST] in the heads) related to protective responses to xenobiotics and oxidative stress against pesticide and parasite alone or combined. Stressors also alter the activity of two other enzymes (carboxylesterase alpha [CaE α] and carboxylesterase para [CaE p] in the midguts) involved in metabolic and detoxification functions. Furthermore, single and combined effects of pesticide and parasite decrease survivorship of queens introduced into mating hives for three months. Because colony demographic regulation relies on queen’s fertility, the compromise of its physiology and life can seriously menace colony survival under pressure of combined stressors. PMID:27578396

  15. An alarm pheromone modulates appetitive olfactory learning in the honeybee (Apis mellifera

    Elodie Urlacher

    2010-08-01

    Full Text Available In honeybees, associative learning is embedded in a social context as bees possess a highly complex social organization in which communication among individuals is mediated by dance behavior informing about food sources, and by a high variety of pheromones that maintain the social links between individuals of a hive. Proboscis extension response (PER conditioning is a case of appetitive learning, in which harnessed bees learn to associate odor stimuli with sucrose reward in the laboratory. Despite its recurrent use as a tool for uncovering the behavioral, cellular and molecular bases underlying associative learning, the question of whether social signals (pheromones affect appetitive learning has not been addressed in this experimental framework. This situation contrasts with reports underlining that foraging activity of bees is modulated by alarm pheromones released in the presence of a potential danger. Here, we show that appetitive learning is impaired by the sting alarm pheromone (SAP which, when released by guards, recruits foragers to defend the hive. This effect is mimicked by the main component of SAP, isopentyl acetate (IPA, is dose-dependent and lasts up to 24h. Learning impairment is specific to alarm signal exposure and is independent of the odorant used for conditioning. Our results suggest that learning impairment may be a response to the biological significance of SAP as an alarm signal, which would detract bees from responding to any appetitive stimuli in a situation in which such responses would be of secondary importance.

  16. Physicochemical characteristics of organic honey samples of africanized honeybees from Parana River islands

    Eloi Machado Alves

    2011-09-01

    Full Text Available This research was carried out to evaluate the physicochemical composition of organic honey in Paraná River islands, in Porto Brasílio, State of Paraná. Honey was harvested directly from super of the colonies in three apiaries spread in the Floresta and Laranjeira Islands, from August 2005 to August 2006. Twenty-four samples of organic honey produced by Africanized honeybees were evaluated. The following parameters were analyzed: pH, acidity, formol index, hydroxymethylfurfural, ashes, color, electric conductivity and moisture. Three replications per sample were performed for laboratorial analysis, giving the means and standard deviation. Most honey samples were in conformity with the Normative Instruction 11 from October 20, 2000. However, 4.17% were not in accordance with the moisture standards, 8.33% showed high concentrations of hydroxymethylfurfural, thus, totalizing 12.50% of non-complying samples. Nevertheless, 87.50% of the analyzed honey samples are within the standards, being characterized as an organic product of excellent quality, with good commercialization perspectives in the market.

  17. Structure and function of gene regulatory networks associated with worker sterility in honeybees.

    Sobotka, Julia A; Daley, Mark; Chandrasekaran, Sriram; Rubin, Benjamin D; Thompson, Graham J

    2016-03-01

    A characteristic of eusocial bees is a reproductive division of labor in which one or a few queens monopolize reproduction, while her worker daughters take on reproductively altruistic roles within the colony. The evolution of worker reproductive altruism involves indirect selection for the coordinated expression of genes that regulate personal reproduction, but evidence for this type of selection remains elusive. In this study, we tested whether genes coexpressed under queen-induced worker sterility show evidence of adaptive organization within a model brain transcriptional regulatory network (TRN). If so, this structured pattern would imply that indirect selection on nonreproductive workers has influenced the functional organization of genes within the network, specifically to regulate the expression of sterility. We found that literature-curated sets of candidate genes for sterility, ranging in size from 18 to 267, show strong evidence of clustering within the three-dimensional space of the TRN. This finding suggests that our candidate sets of genes for sterility form functional modules within the living bee brain's TRN. Moreover, these same gene sets colocate to a single, albeit large, region of the TRN's topology. This spatially organized and convergent pattern contrasts with a null expectation for functionally unrelated genes to be haphazardly distributed throughout the network. Our meta-genomic analysis therefore provides first evidence for a truly "social transcriptome" that may regulate the conditional expression of honeybee worker sterility. PMID:26925214

  18. Raw drone milk of honeybees elicits uterotrophic effect in rats: evidence for estrogenic activity.

    Seres, Adrienn B; Ducza, Eszter; Báthori, Mária; Hunyadi, Attila; Béni, Zoltán; Dékány, Miklós; Gáspár, Róbert

    2013-05-01

    Numerous honeybee products are used in medicine, but the literature furnishes no information concerning the effects of the drone milk (DM), although drone brood, which is similar to DM, was reported to elicit a hormone-like strengthening effect. In certain countries, DM is traditionally used to treat infertility and to promote vitality in both men and women. The aim of this study was to determine the putative estrogen hormone-like effect of raw DM in rats and to identify the effective compounds. Uterotrophic assays revealed that DM increased the relative weight of the immature rat uterus. This effect was confirmed by reverse transcription polymerase chain-reaction and Western blot methods, in which the mRNA and protein expression of the estrogen-dependent peptide complement component C3 was determined. Column chromatography and uterotrophic assays were used to fractionate and check bioactivity, respectively. The active compound after the last fractionation was identified by the nuclear magnetic resonance and mass spectrometry techniques as E-dec-2-enedioic acid, which is very similar to the fatty acids with estrogenic activity that were previously isolated from royal jelly. These results lead us to suppose that E-dec-2-enedioic acid is responsible for the estrogen-like effect of DM. This appears to be the first report on the pharmacological effects of DM and E-dec-2-enedioic acid in mammals. PMID:23631495

  19. Differentially methylated obligatory epialleles modulate context-dependent LAM gene expression in the honeybee Apis mellifera.

    Wedd, Laura; Kucharski, Robert; Maleszka, Ryszard

    2016-01-01

    Differential intragenic methylation in social insects has been hailed as a prime mover of environmentally driven organismal plasticity and even as evidence for genomic imprinting. However, very little experimental work has been done to test these ideas and to prove the validity of such claims. Here we analyze in detail differentially methylated obligatory epialleles of a conserved gene encoding lysosomal α-mannosidase (AmLAM) in the honeybee. We combined genotyping of progenies derived from colonies founded by single drone inseminated queens, ultra-deep allele-specific bisulfite DNA sequencing, and gene expression to reveal how sequence variants, DNA methylation, and transcription interrelate. We show that both methylated and non-methylated states of AmLAM follow Mendelian inheritance patterns and are strongly influenced by polymorphic changes in DNA. Increased methylation of a given allele correlates with higher levels of context-dependent AmLAM expression and appears to affect the transcription of an antisense long noncoding RNA. No evidence of allelic imbalance or imprinting involved in this process has been found. Our data suggest that by generating alternate methylation states that affect gene expression, sequence variants provide organisms with a high level of epigenetic flexibility that can be used to select appropriate responses in various contexts. This study represents the first effort to integrate DNA sequence variants, gene expression, and methylation in a social insect to advance our understanding of their relationships in the context of causality. PMID:26507253

  20. Going with the flow: a brief history of the study of the honeybee's navigational 'odometer'.

    Srinivasan, Mandyam V

    2014-06-01

    Honeybees navigate to a food source using a sky-based compass to determine their travel direction, and an odometer to register how far they have travelled. The past 20 years have seen a renewed interest in understanding the nature of the odometer. Early work, pioneered by von Frisch and colleagues, hypothesized that travel distance is measured in terms of the energy that is consumed during the journey. More recent studies suggest that visual cues play a role as well. Specifically, bees appear to gauge travel distance by sensing the extent to which the image of the environment moves in the eye during the journey from the hive to the food source. Most of the evidence indicates that travel distance is measured during the outbound journey. Accumulation of odometric errors is restricted by resetting the odometer every time a prominent landmark is passed. When making detours around large obstacles, the odometer registers the total distance of the path that is flown to the destination, and not the "bee-line" distance. Finally, recent studies are revealing that bees can perform odometry in three dimensions. PMID:24740382

  1. Uncoupling fertility from fertility-associated pheromones in worker honeybees (Apis mellifera).

    Malka, Osnat; Katzav-Gozansky, Tamar; Hefetz, Abraham

    2009-03-01

    Fertility-associated pheromones, chemical signals delineating ovarian development, were favourably selected in the course of evolution because it is in the best interest of both the signallers (in recruiting help from other colony members) and the receivers (in assisting them to reach an informed decision of how to maximize fitness). Such signals therefore should constitute honest, deception-proof indicators of ovarian development, suggesting, theoretically, that the processes of ovarian development and signal production are irreversibly coupled. Here we demonstrate that these processes can be uncoupled by treating queenless (QL) honeybee callow workers with methoprene, a juvenile hormone (JH) analog. While methoprene effectively inhibited ovarian development, it neither inhibited Dufour's fertility signal nor the mandibular glands' dominance signal. In fact, there was even a slight augmentation of both in the methoprene-treated bees. Thus, although fertility and fertility signals are tightly associated, they can be uncoupled by experimental manipulation. These results are consistent with the hypothesis that ovarian development and fertility-associated signal production are triggered by a common event/signal (e.g. queen pheromone disappearance) but comprise different regulatory systems. The evolutionary implication is that these two traits have evolved independently and may have been co-opted to emphasize the reproductive status of workers in the competition for reproduction. PMID:19041321

  2. Acute contact toxicity test of insecticides (Cipermetrina 25, Lorsban 48E, Thionex 35) on honeybees in the southwestern zone of Uruguay.

    Carrasco-Letelier, Leonidas; Mendoza-Spina, Yamandú; Branchiccela, María Belén

    2012-07-01

    Glyphosate-resistant soybean cultivation is expanding rapidly in Uruguay, with its land area having increased by 95 times during the past 10 years. Because of the region's Neotropical conditions, insecticide use is required to ensure adequate soybean productivity. However, in areas shared by soybean crops and beekeepers - such as the southwestern zone of Uruguay (SWZU) - the use of insecticides can increase the risks of honeybee death and honey contamination. Uruguayan commercial and legal guidelines set out practices and field doses designed to prevent acute intoxication with insecticides. However, honeybees in the SWZU are predominantly a polyhybrid subspecies different from that used to set international reference values, and hence they may have a different acute toxicity response, thus rendering such precautions ineffective. The aim of this work was to assess the acute toxicity response of polyhybrid honeybees in the SWZU to cypermethrin (commercial formulation: Cipermetrina 25 Agrin®), chlorpyrifos (commercial formulation: Lorsban 48E®), and endosulfan (commercial formulation: Thionex 35®). Acute toxicity bioassays were conducted to determine the median lethal dose (LD(50)) of each insecticide for the honeybees. The results indicate that, compared with EU reference values, SWZU honeybees have a higher toxicological sensitivity to chlorpyrifos and endosulfan, and a lower toxicological sensitivity to cypermethrin, based on the commercial formulations tested. However, when these results were adjusted according to their field dose equivalents, only chlorpyrifos emerged as a potential problem for beekeeping, as the maximum recommended field dose of Lorsban 48E® for soybean crops in Uruguay is 23 times the corresponding LD(50) for honeybees in the SWZU. PMID:22440636

  3. Analytic device including nanostructures

    Di, Fabrizio, E.

    2015-07-02

    A device for detecting an analyte in a sample comprising: an array including a plurality of pixels, each pixel including a nanochain comprising: a first nanostructure, a second nanostructure, and a third nanostructure, wherein size of the first nanostructure is larger than that of the second nanostructure, and size of the second nanostructure is larger than that of the third nanostructure, and wherein the first nanostructure, the second nanostructure, and the third nanostructure are positioned on a substrate such that when the nanochain is excited by an energy, an optical field between the second nanostructure and the third nanostructure is stronger than an optical field between the first nanostructure and the second nanostructure, wherein the array is configured to receive a sample; and a detector arranged to collect spectral data from a plurality of pixels of the array.

  4. Perioperative allergy: uncommon agents.

    Caimmi, S; Caimmi, D; Cardinale, F; Indinnimeo, L; Crisafulli, G; Peroni, D G; Marseglia, G L

    2011-01-01

    Anesthesia may often be considered as a high-risk procedure and anaphylaxis remains a major cause of concern for anesthetists who routinely administer many potentially allergenic agents. Neuromuscular blocking agents, latex and antibiotics are the substances involved in most of the reported reactions. Besides these three agents, a wide variety of substances may cause an anaphylactic reaction during anesthesia. Basically all the administered drugs or substances may be potential causes of anaphylaxis. Among them, those reported the most in literature include hypnotics, opioids, local anesthetics, colloids, dye, Non-Steroidal Anti-Inflammatory Drugs (NSAIDs), Iodinated Contrast Media (ICM), antiseptics, aprotinin, ethylene oxyde and formaldehyde, and protamine and heparins. No premedication can effectively prevent an allergic reaction and a systematic preoperative screening is not justified for all patients; nevertheless, an allergy specialist should evaluate those patients with a history of anesthesia-related allergy. Patients must be fully informed of investigation results, and advised to provide a detailed report prior to future anesthesia. PMID:22014927

  5. Intelligent Agents: It's Nice To Get Stuff Done for You.

    Perez, Ernest

    2002-01-01

    Explains intelligent agents, special software tools that help make the Web more interactive by helping with information retrieval. Describes major types of agents, including search agents and agents for specialized tasks including monitors and knowledge management; and lists relevant Web sites. (LRW)

  6. Flight restriction prevents associative learning deficits but not changes in brain protein-adduct formation during honeybee ageing.

    Tolfsen, Christina C; Baker, Nicholas; Kreibich, Claus; Amdam, Gro V

    2011-04-15

    Honeybees (Apis mellifera) senesce within 2 weeks after they discontinue nest tasks in favour of foraging. Foraging involves metabolically demanding flight, which in houseflies (Musca domestica) and fruit flies (Drosophila melanogaster) is associated with markers of ageing such as increased mortality and accumulation of oxidative damage. The role of flight in honeybee ageing is incompletely understood. We assessed relationships between honeybee flight activity and ageing by simulating rain that confined foragers to their colonies most of the day. After 15 days on average, flight-restricted foragers were compared with bees with normal (free) flight: one group that foraged for ∼15 days and two additional control groups, for flight duration and chronological age, that foraged for ∼5 days. Free flight over 15 days on average resulted in impaired associative learning ability. In contrast, flight-restricted foragers did as well in learning as bees that foraged for 5 days on average. This negative effect of flight activity was not influenced by chronological age or gustatory responsiveness, a measure of the bees' motivation to learn. Contrasting their intact learning ability, flight-restricted bees accrued the most oxidative brain damage as indicated by malondialdehyde protein adduct levels in crude cytosolic fractions. Concentrations of mono- and poly-ubiquitinated brain proteins were equal between the groups, whereas differences in total protein amounts suggested changes in brain protein metabolism connected to forager age, but not flight. We propose that intense flight is causal to brain deficits in aged bees, and that oxidative protein damage is unlikely to be the underlying mechanism. PMID:21430210

  7. The cyanobacterial neurotoxin beta-N-methylamino-L-alanine (BMAA) induces neuronal and behavioral changes in honeybees

    The cyanobacterially produced neurotoxin beta-N-methylamino-L-alanine (BMAA) is thought to induce amyotrophic lateral sclerosis/Parkinsonism dementia complex (ALS/PDC)-like symptoms. However, its mechanism of action and its pathway of intoxication are yet unknown. In vivo animal models suitable for investigating the neurotoxic effect of BMAA with applicability to the human are scarce. Hence, we used the honeybee (Apis mellifera) since its nervous system is relatively simple, yet having cognitive capabilities. Bees fed with BMAA-spiked sugar water had an increased mortality rate and a reduced ability to learn odors in a classical conditioning paradigm. Using 14C-BMAA we demonstrated that BMAA is biologically available to the bee, and is found in the head, thorax and abdomen with little to no excretion. BMAA is also transferred from one bee to the next via trophallaxis resulting in an exposure of the whole beehive. BMAA bath application directly onto the brain leads to an altered Ca2+ homeostasis and to generation of reactive oxygen species. These behavioral and physiological observations suggest that BMAA may have effects on bee brains similar to those assumed to occur in humans. Therefore the bee could serve as a surrogate model system for investigating the neurological effects of BMAA. - Highlights: • Investigating of neurotoxic effects of BMAA in honeybees • BMAA impairs ALS markers (ROS, Ca2+, learning, memory, odor) in bees. A method for the observation of ROS development in living bees brain was established. • Honeybees are a suitable model to explore neurodegenerative processes. • Neurotoxic BMAA can be spread in bee populations by trophallaxis

  8. Proteome Analysis of the Hemolymph, Mushroom Body, and Antenna Provides Novel Insight into Honeybee Resistance against Varroa Infestation.

    Hu, Han; Bienefeld, Kaspar; Wegener, Jakob; Zautke, Fred; Hao, Yue; Feng, Mao; Han, Bin; Fang, Yu; Wubie, Abebe Jenberie; Li, Jianke

    2016-08-01

    Varroa destructor has been identified as a major culprit responsible for the losses of millions of honeybee colonies. Varroa sensitive hygiene (VSH) is a suite of behaviors from adult bees to suppress mite reproduction by uncapping and/or removing mite infested pupae from a sealed brood. Despite the efforts to elucidate the molecular underpinnings of VSH, they remain largely unknown. We investigated the proteome of mushroom bodies (MBs) and antennae of adult bees with and without VSH from a stock selected for VSH based on their response to artificially Varroa-infected brood cells by near-infrared camera observation. The pupal hemolymph proteome was also compared between the VSH-line and the line that was not selected for VSH. The identified 8609 proteins in the hemolymph, MBs, and antennae represent the most depth coverage of the honeybee proteome (>55%) to date. In the hemolymph, the VSH-line adapts a unique strategy to boost the social immunity and drive pupal organogenesis by enhancing energy metabolism and protein biosynthesis. In MBs, the up-regulated proteins implicated in neuronal sensitivity suggest their roles to promote the execution of VSH by activation of synaptic vesicles and calcium channel activities. In antennae, the highly expressed proteins associated with sensitivity of olfactory senses and signal transmissions signify their roles by inputting a strong signal to the MBs for initiating VSH. These observations illustrate that the enhanced social immunities and olfactory and neuronal sensitivity play key roles in the combat against Varroa infestation. The identified candidate markers may be useful for accelerating marker-associated selection for VSH to aid in resistance to a parasite responsible for decline in honeybee health. PMID:27384112

  9. Sensitivity of honeybee hygroreceptors to slow humidity changes and temporal humidity variation detected in high resolution by mobile measurements.

    Tichy, Harald; Kallina, Wolfgang

    2014-01-01

    The moist cell and the dry cell on the antenna of the male honeybee were exposed to humidities slowly rising and falling at rates between -1.5%/s and +1.5%/s and at varying amplitudes in the 10 to 90% humidity range. The two cells respond to these slow humidity oscillations with oscillations in impulse frequency which depend not only on instantaneous humidity but also on the rate with which humidity changes. The impulse frequency of each cell was plotted as a function of these two parameters and regression planes were fitted to the data points of single oscillation periods. The regression slopes, which estimate sensitivity, rose with the amplitude of humidity oscillations. During large-amplitude oscillations, moist and dry cell sensitivity for instantaneous humidity and its rate of change was high. During small-amplitude oscillations, their sensitivity for both parameters was low, less exactly reflecting humidity fluctuations. Nothing is known about the spatial and temporal humidity variations a honeybee may encounter when flying through natural environments. Microclimatic parameters (absolute humidity, temperature, wind speed) were measured from an automobile traveling through different landscapes of Lower Austria. Landscape type affected extremes and mean values of humidity. Differences between peaks and troughs of humidity fluctuations were generally smaller in open grassy fields or deciduous forests than in edge habitats or forest openings. Overall, fluctuation amplitudes were small. In this part of the stimulus range, hygroreceptor sensitivity is not optimal for encoding instantaneous humidity and the rate of humidity change. It seems that honeybee's hygroreceptors are specialized for detecting large-amplitude fluctuations that are relevant for a specific behavior, namely, maintaining a sufficiently stable state of water balance. The results suggest that optimal sensitivity of both hygroreceptors is shaped not only by humidity oscillation amplitudes but also

  10. The cyanobacterial neurotoxin beta-N-methylamino-L-alanine (BMAA) induces neuronal and behavioral changes in honeybees

    Okle, Oliver, E-mail: oliver.okle@uni-konstanz.de [Human and Environmental Toxicology, University of Konstanz, Jacob-Burckhardt-Strasse 25, 78457 Konstanz (Germany); Rath, Lisa; Galizia, C. Giovanni [Zoology and Neurobiology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz (Germany); Dietrich, Daniel R., E-mail: daniel.dietrich@uni-konstanz.de [Human and Environmental Toxicology, University of Konstanz, Jacob-Burckhardt-Strasse 25, 78457 Konstanz (Germany)

    2013-07-01

    The cyanobacterially produced neurotoxin beta-N-methylamino-L-alanine (BMAA) is thought to induce amyotrophic lateral sclerosis/Parkinsonism dementia complex (ALS/PDC)-like symptoms. However, its mechanism of action and its pathway of intoxication are yet unknown. In vivo animal models suitable for investigating the neurotoxic effect of BMAA with applicability to the human are scarce. Hence, we used the honeybee (Apis mellifera) since its nervous system is relatively simple, yet having cognitive capabilities. Bees fed with BMAA-spiked sugar water had an increased mortality rate and a reduced ability to learn odors in a classical conditioning paradigm. Using {sup 14}C-BMAA we demonstrated that BMAA is biologically available to the bee, and is found in the head, thorax and abdomen with little to no excretion. BMAA is also transferred from one bee to the next via trophallaxis resulting in an exposure of the whole beehive. BMAA bath application directly onto the brain leads to an altered Ca{sup 2+} homeostasis and to generation of reactive oxygen species. These behavioral and physiological observations suggest that BMAA may have effects on bee brains similar to those assumed to occur in humans. Therefore the bee could serve as a surrogate model system for investigating the neurological effects of BMAA. - Highlights: • Investigating of neurotoxic effects of BMAA in honeybees • BMAA impairs ALS markers (ROS, Ca{sup 2+}, learning, memory, odor) in bees. • A method for the observation of ROS development in living bees brain was established. • Honeybees are a suitable model to explore neurodegenerative processes. • Neurotoxic BMAA can be spread in bee populations by trophallaxis.

  11. Sensitivity of Honeybee Hygroreceptors to Slow Humidity Changes and Temporal Humidity Variation Detected in High Resolution by Mobile Measurements

    Harald Tichy; Wolfgang Kallina

    2014-01-01

    The moist cell and the dry cell on the antenna of the male honeybee were exposed to humidities slowly rising and falling at rates between -1.5%/s and +1.5%/s and at varying amplitudes in the 10 to 90% humidity range. The two cells respond to these slow humidity oscillations with oscillations in impulse frequency which depend not only on instantaneous humidity but also on the rate with which humidity changes. The impulse frequency of each cell was plotted as a function of these two parameters ...

  12. Molecular Identification and Expressive Characterization of an Olfactory Co-Receptor Gene in the Asian Honeybee, Apis cerana cerana

    Zhao, Huiting; Gao, Pengfei; Zhang, Chunxiang; Ma, Weihua; Jiang, Yusuo

    2013-01-01

    Olfaction recognition process is extraordinarily complex in insects, and the olfactory receptors play an important function in the process. In this paper, a highly conserved olfactory co-receptor gene, AcerOr2 (ortholog to the Drosophila melanogaster Or83b), cloned from the antennae of the Asian honeybee, Apis cerana cerana Fabricius (Hymenoptera: Apidae), using reverse transcriptase PCR and rapid amplification of cDNA ends. The full-length sequence of the gene was 1763 bp long, and the cDNA ...

  13. Identification and characterization of an Egr ortholog as a neural immediate early gene in the European honeybee (Apis mellifera L.).

    Ugajin, Atsushi; Kunieda, Takekazu; Kubo, Takeo

    2013-10-01

    To date, there are only few reports of immediate early genes (IEGs) available in insects. Aiming at identifying a conserved IEG in insects, we characterized an Egr homolog of the honeybee (AmEgr: Apis mellifera Egr). AmEgr was transiently induced in whole worker brains after seizure induction. In situ hybridization for AmEgr indicated that neural activity of a certain mushroom body (a higher brain center) neuron subtype, which is the same as that we previously identified using another non-coding IEG, termed kakusei, is more enhanced in forager brains. These findings suggest that Egr can be utilized as an IEG in insects. PMID:23994532

  14. INFLUENCE OF HONEYBEE QUEENS ORIGIN TO THE PRODUCTION CHARACTERISTICS OF CARNIOLAN BEES (APIS MELLIFERA CARNICA) IN SLOVENIA

    Poklukar, J

    2002-01-01

    Total amount of 4.355 records of honeybee colonies production characteristics was estimated on the 251 bee yards in Slovenia from 1993 to 2001. Queens were produced on 29 queen producing yards. The average lsmeans of honey yields increased by 0,41 kg a year. The swarming behaviour and the defensive behaviour of bees increased as well by - 0,091 points, and –0,038 points respectively. According to the last two years records, the honey yields of bee colonies were significantly influ...

  15. Anchor Toolkit - a secure mobile agent system

    Mudumbai, Srilekha S.; Johnston, William; Essiari, Abdelilah

    1999-05-19

    Mobile agent technology facilitates intelligent operation insoftware systems with less human interaction. Major challenge todeployment of mobile agents include secure transmission of agents andpreventing unauthorized access to resources between interacting systems,as either hosts, or agents, or both can act maliciously. The Anchortoolkit, designed by LBNL, handles the transmission and secure managementof mobile agents in a heterogeneous distributed computing environment. Itprovides users with the option of incorporating their security managers.This paper concentrates on the architecture, features, access control anddeployment of Anchor toolkit. Application of this toolkit in a securedistributed CVS environment is discussed as a case study.

  16. An Agent-Based Distributed Manufacturing System

    J.Li; J.Y.H.Fuh; Y.F.Zhang; A.Y.C.Nee

    2006-01-01

    Agent theories have shown their promising capability in solving distributed complex system ever since its development. In this paper, one multi-agent based distributed product design and manufacturing planning system is presented. The objective of the research is to develop a distributed collaborative design environment for supporting cooperation among the existing engineering functions. In the system, the functional agents for design, manufacturability evaluation,process planning and scheduling are efficiently integrated with a facilitator agent. This paper firstly gives an introduction to the system structure, and the definitions for each executive agent are then described and a prototype of the proposed is also included at the end part.

  17. Brain modulation of Dufour's gland ester biosynthesis in vitro in the honeybee ( Apis mellifera)

    Katzav-Gozansky, Tamar; Hefetz, Abraham; Soroker, Victoria

    2007-05-01

    Caste-specific pheromone biosynthesis is a prerequisite for reproductive skew in the honeybee. Nonetheless, this process is not hardwired but plastic, in that egg-laying workers produce a queen-like pheromone. Studies with Dufour’s gland pheromone revealed that, in vivo, workers’ gland biosynthesis matches the social status of the worker, i.e., sterile workers showed a worker-like pattern whereas fertile workers showed a queen-like pattern (production of the queen-specific esters). However, when incubated in vitro, the gland spontaneously exhibits the queen-like pattern, irrespective of its original worker type, prompting the notion that ester production in workers is under inhibitory control that is queen-dependent. We tested this hypothesis by exposing queen or worker Dufour’s glands in vitro to brain extracts of queens, queenright (sterile) workers and males. Unexpectedly, worker brain extracts activated the queen-like esters biosynthesis in workers’ Dufour’s gland. This stimulation was gender-specific; queen or worker brains demonstrated a stimulatory activity, but male brains did not. Queen gland could not be further stimulated. Bioassays with heated and filtered extracts indicate that the stimulatory brain factor is below 3,000 Da. We suggest that pheromone production in Dufour’s gland is under dual, negative positive control. Under queenright conditions, the inhibitor is released and blocks ester biosynthesis, whereas under queenless conditions, the activator is released, activating ester biosynthesis in the gland. This is consistent with the hypothesis that queenright workers are unequivocally recognized as non-fertile, whereas queenless workers try to become “false queens” as part of the reproductive competition.

  18. Estimates of covariance components for hygienic behavior in Africanized honeybees (Apis mellifera

    Fabiana Martins Costa-Maia

    2011-09-01

    Full Text Available Genetic and phenotypic parameters considering the genetic effect on hygienic behavior of queen and workers from 40 Africanized honeybees colonies were estimated separately. Maternal origin of queens was controlled whereas the paternal was unknown, and different groups of workers were considered in three seasons, October 2006, April 2007 and August 2007, but with the same queen. Colonies were 21 honey producers and 19 royal jelly producers. After the method of freezing capped brood, hygienic behavior was determined by the ratio between the number of dead capped brood removed at 24, 48 and 72 hours and the total number of capped brood at zero hour. Data was submitted to single and three traits analyses using Bayesian inference. Estimates of direct heritability at 24, 48 and 72 hours (0.10, 0.11 and 0.11 were identical to the motherly ones. Estimates by three trait analysis of direct heritability were 0.28, 0.15, 0.24, and of maternal heritability were 0.23, 0.29, 0.27, at 24, 48 and 72 hours, respectively. Correlations between maternal and genetic effects were 0.12, 0.09 and - 0.08 at, 24, 48 and 72 hours, respectively. Correlation between 24 and 48 hours was 0.49; between 24 and 72 hours, 0.40; and between 48 and 72 hours, 0.47. Moderate genetic correlations with the number of capped brood removed until 48 and 72 hours indicate that after the selection of a few generations, these traits can become an efficient criterion for selection in 24 hours.

  19. Sensory regulation of neuroligins and neurexin I in the honeybee brain.

    Sunita Biswas

    Full Text Available BACKGROUND: Neurexins and neuroligins, which have recently been associated with neurological disorders such as autism in humans, are highly conserved adhesive proteins found on synaptic membranes of neurons. These binding partners produce a trans-synaptic bridge that facilitates maturation and specification of synapses. It is believed that there exists an optimal spatio-temporal code of neurexin and neuroligin interactions that guide synapse formation in the postnatal developing brain. Therefore, we investigated whether neuroligins and neurexin are differentially regulated by sensory input using a behavioural model system with an advanced capacity for sensory processing, learning and memory, the honeybee. METHODOLOGY/PRINCIPAL FINDINGS: Whole brain expression levels of neuroligin 1-5 (NLG1-5 and neurexin I (NrxI were estimated by qRT-PCR analysis in three different behavioural paradigms: sensory deprivation, associative scent learning, and lateralised sensory input. Sensory deprived bees had a lower level of NLG1 expression, but a generally increased level of NLG2-5 and NrxI expression compared to hive bees. Bees that had undergone associative scent training had significantly increased levels of NrxI, NLG1 and NLG3 expression compared to untrained control bees. Bees that had lateralised sensory input after antennal amputation showed a specific increase in NLG1 expression compared to control bees, which only happened over time. CONCLUSIONS/SIGNIFICANCE: Our results suggest that (1 there is a lack of synaptic pruning during sensory deprivation; (2 NLG1 expression increases with sensory stimulation; (3 concomitant changes in gene expression suggests NrxI interacts with all neuroligins; (4 there is evidence for synaptic compensation after lateralised injury.

  20. Early calcium increase triggers the formation of olfactory long-term memory in honeybees

    Matsumoto Yukihisa

    2009-06-01

    Full Text Available Abstract Background Synaptic plasticity associated with an important wave of gene transcription and protein synthesis underlies long-term memory processes. Calcium (Ca2+ plays an important role in a variety of neuronal functions and indirect evidence suggests that it may be involved in synaptic plasticity and in the regulation of gene expression correlated to long-term memory formation. The aim of this study was to determine whether Ca2+ is necessary and sufficient for inducing long-term memory formation. A suitable model to address this question is the Pavlovian appetitive conditioning of the proboscis extension reflex in the honeybee Apis mellifera, in which animals learn to associate an odor with a sucrose reward. Results By modulating the intracellular Ca2+ concentration ([Ca2+]i in the brain, we show that: (i blocking [Ca2+]i increase during multiple-trial conditioning selectively impairs long-term memory performance; (ii conversely, increasing [Ca2+]i during single-trial conditioning triggers long-term memory formation; and finally, (iii as was the case for long-term memory produced by multiple-trial conditioning, enhancement of long-term memory performance induced by a [Ca2+]i increase depends on de novo protein synthesis. Conclusion Altogether our data suggest that during olfactory conditioning Ca2+ is both a necessary and a sufficient signal for the formation of protein-dependent long-term memory. Ca2+ therefore appears to act as a switch between short- and long-term storage of learned information.

  1. Colitis associated with biological agents

    Hugh James Freeman

    2012-01-01

    Full Text Available In the past, there has been considerable focus on a host of drugs and chemicals that may produce colonic toxicity. Now, a variety of new biological monoclonal antibody agents, usually administered by infusion, have appeared in the clinical realm over the last decade or so to treat different chronic inflammatory or malignant disorders.For some of these agents, adverse effects have been documented, including apparently new forms of immune-mediated inflammatory bowel disease. In some, only limited symptoms have been recorded, but in others, severe colitis with serious complications, such as bowel perforation has been recorded. In others, adverse effects may have a direct vascular or ischemic basis, while other intestinal effects may be related to a superimposed infection. Some new onset cases of ulcerative colitis or Crohn’s disease may also be attributed to the same agents used to treat these diseases, or be responsible for disease exacerbation. Dramatic and well documented side effects have been observed with ipilimumab, a humanized monoclonal antibody developed to reduce and overcome cytotoxic T-lymphocyte antigen 4, a key negative feedback regulator of the T-cell anti-tumor response. This agent has frequently been used in the treatment of different malignancies, notably, malignant melanoma. Side effects with this agent occur in up to 40% and these are believed to be largely immune-mediated. One of these is a form of enterocolitis that may be severe, and occasionally, fatal. Other agents include rituximab (an anti-CD20 monoclonal antibody, bevacizumab (a monoclonal antibody against the vascular endothelial growth factor and anti-tumor necrosis factor agents, including infliximab, adalimumab and etanercept.

  2. Hepatocytes as Immunological Agents.

    Crispe, Ian N

    2016-01-01

    Hepatocytes are targeted for infection by a number of major human pathogens, including hepatitis B virus, hepatitis C virus, and malaria. However, hepatocytes are also immunological agents in their own right. In systemic immunity, they are central in the acute-phase response, which floods the circulation with defensive proteins during diverse stresses, including ischemia, physical trauma, and sepsis. Hepatocytes express a variety of innate immune receptors and, when challenged with pathogen- or damage-associated molecular patterns, can deliver cell-autonomous innate immune responses that may result in host defense or in immunopathology. Important human pathogens have evolved mechanisms to subvert these responses. Finally, hepatocytes talk directly to T cells, resulting in a bias toward immune tolerance. PMID:26685314

  3. Royal jelly-like protein localization reveals differences in hypopharyngeal glands buildup and conserved expression pattern in brains of bumblebees and honeybees

    Štefan Albert

    2014-03-01

    Full Text Available Royal jelly proteins (MRJPs of the honeybee bear several open questions. One of them is their expression in tissues other than the hypopharyngeal glands (HGs, the site of royal jelly production. The sole MRJP-like gene of the bumblebee, Bombus terrestris (BtRJPL, represents a pre-diversification stage of the MRJP gene evolution in bees. Here we investigate the expression of BtRJPL in the HGs and the brain of bumblebees. Comparison of the HGs of bumblebees and honeybees revealed striking differences in their morphology with respect to sex- and caste-specific appearance, number of cells per acinus, and filamentous actin (F-actin rings. At the cellular level, we found a temporary F-actin-covered meshwork in the secretory cells, which suggests a role for actin in the biogenesis of the end apparatus in HGs. Using immunohistochemical localization, we show that BtRJPL is expressed in the bumblebee brain, predominantly in the Kenyon cells of the mushroom bodies, the site of sensory integration in insects, and in the optic lobes. Our data suggest that a dual gland-brain function preceded the multiplication of MRJPs in the honeybee lineage. In the course of the honeybee evolution, HGs dramatically changed their morphology in order to serve a food-producing function.

  4. Role of the Varroa mite in honeybee (Apis mellifera) colony loss: A case study for adverse outcome pathway development with a nonchemical stressor

    Significant honeybee colony losses have been reported across North America and Europe in recent years. A number of factors, both chemical and nonchemical, have been associated with such losses. Adverse outcome pathways (AOPs) provide a conceptual framework to describe and evalu...

  5. Cloning, structural characterization and expression analysis of a novel lipid storage droplet protein-1 (LSD-1) gene in Chinese honeybee (Apis cerana cerana).

    Liu, Li; Gong, Zhihong; Guo, Xingqi; Xu, Baohua

    2012-03-01

    Lipid storage droplet 1 (LSD-1), a PAT family protein located around lipid droplets in insects, is intimately linked to lipid droplets formation and lipid metabolism. Conjugated linoleic acid (CLA) and rosiglitazone (Rosi) have previously been shown to modulate the expression of several PAT family proteins through peroxisome proliferator-activated receptor-γ (PPARγ). In the present study, we isolated and characterized a novel LSD-1 gene, referred to AccLSD-1, from Chinese honeybee (Apis cerana cerana). Sequence analysis indicated that the central region of LSD-1 protein had significant sequence similarity and a typical LSD-1 gene was composed of 8 exons and 7 introns. Interestingly, the first intron of AccLSD-1 including several PPARγ-response elements (PPREs) was located in 5' UTR. Analysis of 5'-flanking region of AccLSD-1 revealed a number of putative cis-acting elements, including three PPREs. Quantitative real-time PCR showed that AccLSD-1 expressed ubiquitously from feeding larva to adult, and its expression level was highest at brown-eyed pupae (Pb) stage. The effect of CLA, Rosi and combination on AccLSD-1 expressions indicated 1% CLA and 0.5 mg/ml Rosi were considered as the suitable diets for rearing adult workers in laboratory, and AccLSD-1 was down-regulated by CLA whereas up-regulated by Rosi. Furthermore, the combination of CLA and Rosi remarkly rescued the suppression of AccLSD-1 expression by CLA alone. These results suggest that AccLSD-1 is associated with A. cerana cerana development, especially during pupal metamorphosis, and can be regulated by CLA or Rosi possibly via activating PPARγ. PMID:21695433

  6. Efficacy of honeybees (Apis mellifera on the production of sunflower (Helianthus annus L. seeds in the Sudan

    Osman Abd Elmhmoud Altayeb

    2015-04-01

    Full Text Available Study was conducted to test the efficacy of the honeybees in the production of sunflower seeds. This experiment was conducted in Complete Randomized Block Design in the cropping season of 2011- 2012 at Sinnar region, Sudan. Three different patterns of pollination i.e. pollination with honey bee (H, open pollination (O and control without pollination (C were tested for the seed set in sun flower. Each treatments contains twenty (20 plants. Results of study revealed significant differences among the tested pollination pattern. Among these highest seed set ratios (80% and 79% were obtained in the open (O and honey bee (H pollination system. While only 45.2% seed set was reported in the control (C where plants kept in closed system and away from insect pollination. Furthermore, the mean seeds weights per head (27.65g and 26.88g were also reported higher in open and honey bee pollinated system and it was 162.3% and 155% higher than the control respectively. Similar types of trends was reported in the weight parameters of hundred seeds, the superiority was shown by open and honey bee pollination. This weight was 52% and 45% higher than the control treatment (C respectively. Therefore, the results of the study revealed that use of honeybees as pollinator for sunflower can contribute in hybrid seed production in better manner.

  7. Effect of Olfactory Stimulus on the Flight Course of a Honeybee, Apis mellifera, in a Wind Tunnel

    Hidetoshi Ikeno

    2013-12-01

    Full Text Available It is known that the honeybee, Apis mellifera, uses olfactory stimulus as important information for orienting to food sources. Several studies on olfactory-induced orientation flight have been conducted in wind tunnels and in the field. From these studies, optical sensing is used as the main information with the addition of olfactory signals and the navigational course followed by these sensory information. However, it is not clear how olfactory information is reflected in the navigation of flight. In this study, we analyzed the detailed properties of flight when oriented to an odor source in a wind tunnel. We recorded flying bees with a video camera to analyze the flight area, speed, angular velocity and trajectory. After bees were trained to be attracted to a feeder, the flight trajectories with or without the olfactory stimulus located upwind of the feeder were compared. The results showed that honeybees flew back and forth in the proximity of the odor source, and the search range corresponded approximately to the odor spread area. It was also shown that the angular velocity was different inside and outside the odor spread area, and trajectories tended to be bent or curved just outside the area.

  8. Assessment of the environmental exposure of honeybees to particulate matter containing neonicotinoid insecticides coming from corn coated seeds.

    Tapparo, Andrea; Marton, Daniele; Giorio, Chiara; Zanella, Alessandro; Soldà, Lidia; Marzaro, Matteo; Vivan, Linda; Girolami, Vincenzo

    2012-03-01

    Since seed coating with neonicotinoid insecticides was introduced in the late 1990s, European beekeepers have reported severe colony losses in the period of corn sowing (spring). As a consequence, seed-coating neonicotinoid insecticides that are used worldwide on corn crops have been blamed for honeybee decline. In view of the currently increasing crop production, and also of corn as a renewable energy source, the correct use of these insecticides within sustainable agriculture is a cause of concern. In this paper, a probable--but so far underestimated--route of environmental exposure of honeybees to and intoxication with neonicotinoid insecticides, namely, the atmospheric emission of particulate matter containing the insecticide by drilling machines, has been quantitatively studied. Using optimized analytical procedures, quantitative measurements of both the emitted particulate and the consequent direct contamination of single bees approaching the drilling machine during the foraging activity have been determined. Experimental results show that the environmental release of particles containing neonicotinoids can produce high exposure levels for bees, with lethal effects compatible with colony losses phenomena observed by beekeepers. PMID:22292570

  9. Characterization of the 5-HT1A receptor of the honeybee (Apis mellifera) and involvement of serotonin in phototactic behavior.

    Thamm, Markus; Balfanz, Sabine; Scheiner, Ricarda; Baumann, Arnd; Blenau, Wolfgang

    2010-07-01

    Serotonin plays a key role in modulating various physiological and behavioral processes in both protostomes and deuterostomes. The vast majority of serotonin receptors belong to the superfamily of G-protein-coupled receptors. We report the cloning of a cDNA from the honeybee (Am5-ht1A) sharing high similarity with members of the 5-HT(1) receptor class. Activation of Am5-HT(1A) by serotonin inhibited the production of cAMP in a dose-dependent manner (EC(50) = 16.9 nM). Am5-HT(1A) was highly expressed in brain regions known to be involved in visual information processing. Using in vivo pharmacology, we could demonstrate that Am5-HT(1A) receptor ligands had a strong impact on the phototactic behavior of individual bees. The data presented here mark the first comprehensive study-from gene to behavior-of a 5-HT(1A) receptor in the honeybee, paving the way for the eventual elucidation of additional roles of this receptor subtype in the physiology and behavior of this social insect. PMID:20349263

  10. Application of the Honeybee Mating Optimization Algorithm to Patent Document Classification in Combination with the Support Vector Machine

    Chui-Yu Chiu

    2013-08-01

    Full Text Available Patent rights have the property of exclusiveness. Inventors can protect their rights in the legal range and have monopoly for their open inventions. People are not allowed to use an invention before the inventors permit them to use it. Companies try to avoid the research and development investment in inventions that have been protected by patent. Patent retrieval and categorization technologies are used to uncover patent information to reduce the cost of torts. In this research, we propose a novel method which integrates the Honey-Bee Mating Optimization algorithm with Support Vector Machines for patent categorization. First, the CKIP method is utilized to extract phrases of the patent summary and title. Then we calculate the probability that a specific key phrase contains a certain concept based on Term Frequency - Inverse Document Frequency (TF-IDF methods. By combining frequencies and the probabilities of key phases generated by using the Honey-Bee Mating Optimization algorithm, our proposed method is expected to obtain better representative input values for the SVM model. Finally, this research uses patents from Chemical Mechanical Polishing (CMP as case examples to illustrate and demonstrate the superior results produced by the proposed methodology.

  11. Effect of a thymol application on olfactory memory and gene expression levels in the brain of the honeybee Apis mellifera.

    Bonnafé, Elsa; Drouard, Florian; Hotier, Lucie; Carayon, Jean-Luc; Marty, Pierre; Treilhou, Michel; Armengaud, Catherine

    2015-06-01

    Essential oils are used by beekeepers to control the Varroa mites that infest honeybee colonies. So, bees can be exposed to thymol formulations in the hive. The effects of the monoterpenoid thymol were explored on olfactory memory and gene expression in the brain of the honeybee. In bees previously exposed to thymol (10 or 100 ng/bee), the specificity of the response to the conditioned stimulus (CS) was lost 24 h after learning. Besides, the octopamine receptor OA1 gene Amoa1 showed a significant decrease of expression 3 h after exposure with 10 or 100 ng/bee of thymol. With the same doses, expression of Rdl gene, coding for a GABA receptor subunit, was not significantly modified but the trpl gene was upregulated 1 and 24 h after exposure to thymol. These data indicated that the genes coding for the cellular targets of thymol could be rapidly regulated after exposure to this molecule. Memory and sensory processes should be investigated in bees after chronic exposure in the hive to thymol-based preparations. PMID:24590599

  12. South American native bumblebees (Hymenoptera: Apidae) infected by Nosema ceranae (Microsporidia), an emerging pathogen of honeybees (Apis mellifera).

    Plischuk, Santiago; Martín-Hernández, Raquel; Prieto, Lourdes; Lucía, Mariano; Botías, Cristina; Meana, Aránzazu; Abrahamovich, Alberto H; Lange, Carlos; Higes, Mariano

    2009-04-01

    As pollination is a critical process in both human-managed and natural terrestrial ecosystems, pollinators provide essential services to both nature and humans. Pollination is mainly due to the action of different insects, such as the bumblebee and the honeybee. These important ecological and economic roles have led to widespread concern over the recent decline in pollinator populations that has been detected in many regions of the world. While this decline has been attributed in some cases to changes in the use of agricultural land, the effects of parasites could play a significant role in the reduction of these populations. For the first time, we describe here the presence of Nosema ceranae, an emerging honeybee pathogen, in three species of Argentine native bumblebees. A total of 455 bumblebees belonging to six species of genus Bombus were examined. PCR results showed that three of the species are positive to N. ceranae (Bombus atratus, Bombus morio and Bombus bellicosus). We discuss the appearance of this pathogen in the context of the population decline of this pollinators. PMID:23765744

  13. Proteome Analysis Unravels Mechanism Underling the Embryogenesis of the Honeybee Drone and Its Divergence with the Worker (Apis mellifera lingustica).

    Fang, Yu; Feng, Mao; Han, Bin; Qi, Yuping; Hu, Han; Fan, Pei; Huo, Xinmei; Meng, Lifeng; Li, Jianke

    2015-09-01

    The worker and drone bees each contain a separate diploid and haploid genetic makeup, respectively. Mechanisms regulating the embryogenesis of the drone and its mechanistic difference with the worker are still poorly understood. The proteomes of the two embryos at three time-points throughout development were analyzed by applying mass spectrometry-based proteomics. We identified 2788 and 2840 proteins in the worker and drone embryos, respectively. The age-dependent proteome driving the drone embryogenesis generally follows the worker's. The two embryos however evolve a distinct proteome setting to prime their respective embryogenesis. The strongly expressed proteins and pathways related to transcriptional-translational machinery and morphogenesis at 24 h drone embryo relative to the worker, illustrating the earlier occurrence of morphogenesis in the drone than worker. These morphogenesis differences remain through to the middle-late stage in the two embryos. The two embryos employ distinct antioxidant mechanisms coinciding with the temporal-difference organogenesis. The drone embryo's strongly expressed cytoskeletal proteins signify key roles to match its large body size. The RNAi induced knockdown of the ribosomal protein offers evidence for the functional investigation of gene regulating of honeybee embryogenesis. The data significantly expand novel regulatory mechanisms governing the embryogenesis, which is potentially important for honeybee and other insects. PMID:26260241

  14. Nectar and Pollen Sources for Honeybee (Apis cerana cerana Fabr.) in Qinglan Mangrove Area, Hainan Island, China

    Yi-Feng Yao; Subir Bera; Yu-Fei Wang; Cheng-Sen Li

    2006-01-01

    In the present study, nectar and pollen sources for honeybee (Apis cerana cerana Fabr.) were studied in Qinglan mangrove area, Hainan Island, China, based on microscopic analysis of honey and pollen load (corbicular and gut contents) from honeybees collected in October and November 2004. Qualitative and quantitative melittopalynological analysis of the natural honey sample showed that the honey is of unifloral type with Mimosa pudica L. (Mimosaceae) as the predominant (89.14%) source of nectar and pollen for A.cerana cerana in October. Members of Araceae are an important minor (3%-15%) pollen type, whereas those of Arecaceae are a minor (<3%) pollen type. Pollen grains of Nypa fruticans Wurmb., Rhizophora spp.,Excoecaria agallocha L., Lumnitzera spp., Bruguiera spp., Kandelia candel Druce, and Ceriops tagal (Perr.)C. B. Rob. are among the notable mangrove taxa growing in Qinglan mangrove area recorded as minor taxa in the honey, The absolute pollen count (i.e. the number of pollen grains/10 g honey sample) suggests that the honey belongs to Group Ⅴ (>1 000 000). Pollen analysis from the corbicular and gut contents of A. cerana cerana revealed the highest representation (95.60%) of members of Sonneratia spp. (Sonneratiaceae),followed by Bruguiera spp. (Rhizophoraceae), Euphorbiaceae, Poaceae, Fabaceae, Arecaceae, Araceae,Anacardiaceae, and Rubiaceae. Of these plants, those belonging to Sonneratia plants are the most important nectar and pollen sources for A. cerana cerana and are frequently foraged and pollinated by these bees in November.

  15. Sensors for detecting biological agents

    Kim E. Sapsford

    2008-03-01

    Full Text Available Biological agents including viruses, bacteria, and other naturally occurring pathogenic organisms, along with the toxins they produce, are considered far harder to detect and defend against than chemical agents. Here we provide an overview of the predominant molecular sensing technologies for the detection of these agents. This includes biosensing strategies based upon use of antibodies, genomic analysis, biochemical testing, other recognition interactions, and cellular-based responses. We survey some popular sensing approaches, illustrate them with current examples showing how they have been applied, and discuss their intrinsic benefits and potential liabilities. Lastly, within the context of security applications, some approaches for integrating sensing technologies into field-portable devices are discussed.

  16. 2015 Special Sessions of the 13th International Conference on Practical Applications of Agents and Multi-Agent Systems

    Hernández, Josefa; Mathieu, Philippe; Campbell, Andrew; Fernández-Caballero, Antonio; Moreno, María; Julián, Vicente; Alonso-Betanzos, Amparo; Jiménez-López, María; Botti, Vicente; Trends in Practical Applications of Agents, Multi-Agent Systems and Sustainability : the PAAMS Collection

    2015-01-01

    This volume presents the papers that have been accepted for the 2015 special sessions of the 13th International Conference on Practical Applications of Agents and Multi-Agent Systems, held at University of Salamanca, Spain, at 3rd-5th June, 2015: Agents Behaviours and Artificial Markets (ABAM); Agents and Mobile Devices (AM); Multi-Agent Systems and Ambient Intelligence (MASMAI); Web Mining and Recommender systems (WebMiRes); Learning, Agents and Formal Languages (LAFLang); Agent-based Modeling of Sustainable Behavior and Green Economies (AMSBGE); Emotional Software Agents (SSESA) and Intelligent Educational Systems (SSIES). The volume also includes the paper accepted for the Doctoral Consortium in PAAMS 2015. PAAMS, the International Conference on Practical Applications of Agents and Multi-Agent Systems is an evolution of the International Workshop on Practical Applications of Agents and Multi-Agent Systems. PAAMS is an international yearly tribune to present, to discuss, and to disseminate the latest develo...

  17. 12 CFR 612.2260 - Standards of conduct for agents.

    2010-01-01

    ... investigative and corrective action in the case of a breach of fiduciary duties by the agent or failure of the agent to carry out other agent duties as required by contract, FCA regulations, or law. (c) System... real or perceived. These areas include the employment of agents who are related to directors...

  18. Advance on the Main Compositions and the Functions of Honeybee Venom%蜜蜂蜂毒主要成分与功能研究进展

    高丽娇; 吴杰

    2013-01-01

      蜜蜂蜂毒(honeybee venom)作为重要的蜂产品之一,其中的很多蛋白在抗炎、抗癌、抗菌、抗辐射和杀虫等方面具有很好的效果.20世纪40年代以来,国内外在蜂毒活性成分分析、作用机理、重要基因克隆和毒蛋白功能等方面进行广泛地研究,取得了重要的进展.本文的目的是总结蜜蜂蜂毒主要成分磷脂酶A2、透明质酸酶、蜂毒肽、蜂毒明肽、肥大细胞脱粒肽和镇静肽等毒蛋白的基因结构、生化特性及功能等方面的研究进展,为蜂毒基因的研究和利用提供一定的理论基础.%Honeybee venom is one of important bee products, of which many proteins were identified to play a role in anti-inflammatory, anti-cancer, antimicrobial, anti-radiation, insect disinfestation, and so on. Since 1940s, there had made many significant advances in component analysis, action mechanisms, gene cloning, and protein function analysis of honeybee's venom. The aim of present review was to summarize the gene structure, biochemical characteristics and function of the main components in honeybee venom, such as phospholipase A2, hyaluronidase, melittin, apamin, mast cell degranulating peptides and secapin. It would will provide the theoretical basis for the research and utilization of honeybee venom.

  19. Hyphenated LC-MALDI-ToF/ToF and LC-ESI-QToF approach in proteomic characterization of honeybee venom.

    Matysiak, Jan; Hajduk, Joanna; Mayer, Franz; Hebeler, Romano; Kokot, Zenon J

    2016-03-20

    To increase in the depth characterization of venom proteome of Apis mellifera the hyphenated LC-MALDI-ToF/ToF-MS (liquid chromatography-matrix-assisted laser desorption/ionization-time of flight/time of flight tandem mass spectrometry) and LC-ESI-QToF-MS (liquid chromatography-electrospray ionization-quadrupole time of flight tandem mass spectrometry) techniques combined with combinatorial peptide ligand library enrichment method is proposed in this study. The novel approach simplifies pretreatment protocol in venom investigation. By using the protein preparation kit with sequential multi-step elution, the honeybee venom was dispensed into four different fractions. In total 269 proteins were detected, among these 49 honeybee toxins, allergens and components involved in mechanism of envenoming belonging to venom enzyme classes of esterases, proteases/peptidases, protease inhibitors, hydrolases and major royal jelly proteins. Moreover 5 additional putative toxins were identified. Their role in envenoming process was discussed. We concluded that different mass spectrometry techniques increased the detection of the honeybee venom proteins, underscoring the complementary character of analytical methods. The combination of MALDI and ESI ionization has resulted in numerous proteins identifications, not possible to reach with single proteomic technique. The study will contribute to broadening the knowledge about the complexity of honeybee venom. The newly identified proteins may serve not only as toxins and allergens, but also as substances with potential pharmacological activity. Although, the most detected proteins belong to trace elements of honeybee venom without toxic activity or action on vital system of victims, they should be taken into account in characterization of living organism response on Apis mellifera sting. PMID:26780156

  20. AgentChess : An Agent Chess Approach

    Fransson, Henric

    2003-01-01

    The game of chess has many times been discussed and used for test purpose by science departments of Artificial Intelligence (AI). Although the technique of agent and as well multi-agent systems is quite old, the use of these offspring of AI within chess is limited. This report describes the project performed applying the use of agents to a chess program. To measure the performance of the logic has tests between the developed program main parts been performed. Further tests against a tradition...