WorldWideScience

Sample records for agent-enhanced mri measuring

  1. Correlation of contrast agent kinetics between iodinated contrast-enhanced spectral tomosynthesis and gadolinium-enhanced MRI of breast lesions

    International Nuclear Information System (INIS)

    Froeling, Vera; Diekmann, Felix; Renz, Diane M.; Fallenberg, Eva M.; Steffen, Ingo G.; Diekmann, Susanne; Schmitzberger, Florian F.; Lawaczeck, Ruediger

    2013-01-01

    Assessment of contrast agent kinetics in contrast-enhanced MRI (CE-MRI) with gadolinium-containing contrast agents offers the opportunity to predict breast lesion malignancy. The goal of our study was to determine if similar patterns exist for spectral contrast-enhanced digital breast tomosynthesis (CE-DBT) using an iodinated contrast agent. The protocol of our prospective study was approved by the relevant institutional review board and the German Federal Office for Radiation Protection. All patients provided written informed consent. We included 21 women with a mean age of 62.4 years. All underwent ultrasound-guided biopsy of a suspect breast lesion, spectral CE-DBT and CE-MRI. For every breast lesion, contrast agent kinetics was assessed by signal intensity-time curves for spectral CE-DBT and CE-MRI. Statistical comparison used Cohen's kappa and Spearman's rho test. Spearman's rho of 0.49 showed significant (P = 0.036) correlation regarding the contrast agent kinetics in signal intensity-time curves for spectral CE-DBT and CE-MRI. Cohen's kappa indicated moderate agreement (kappa = 0.438). There is a statistically significant correlation between contrast agent kinetics in the signal intensity-time curves for spectral CE-DBT and CE-MRI. Observing intralesional contrast agent kinetics in spectral CE-DBT may aid evaluation of malignant breast lesions. (orig.)

  2. Elemental imaging of MRI contrast agents: benchmarking of LA-ICP-MS to MRI

    Energy Technology Data Exchange (ETDEWEB)

    Pugh, J.A.T. [University of Sheffield, Centre for Analytical Sciences, Sheffield (United Kingdom); University of Sheffield, Department of Chemical and Biological Engineering, Sheffield (United Kingdom); Cox, A.G.; McLeod, C.W. [University of Sheffield, Centre for Analytical Sciences, Sheffield (United Kingdom); Bunch, J. [University of Birmingham, School of Chemistry, Birmingham (United Kingdom); Writer, M.J.; Hart, S.L. [UCL Institute of Child Health, Wolfson Centre for Gene Therapy of Childhood Disease, London (United Kingdom); Bienemann, A.; White, E. [University of Bristol, School of Clinical Sciences, Southmead Hospital, Bristol (United Kingdom); Bell, J. [Hammersmith Hospital, Metabolic and Molecular Imaging Group, MRC Clinical Sciences Centre, Imperial College London, London (United Kingdom)

    2012-06-15

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been used to map the spatial distribution of magnetic resonance imaging (MRI) contrast agents (Gd-based) in histological sections in order to explore synergies with in vivo MRI. Images from respective techniques are presented for two separate studies namely (1) convection enhanced delivery of a Gd nanocomplex (developmental therapeutic) into rat brain and (2) convection enhanced delivery, with co-infusion of Magnevist (commercial Gd contrast agent) and Carboplatin (chemotherapy drug), into pig brain. The LA technique was shown to be a powerful compliment to MRI not only in offering improved sensitivity, spatial resolution and signal quantitation but also in giving added value regarding the fate of administered agents (Gd and Pt agents). Furthermore simultaneous measurement of Fe enabled assignment of an anomalous contrast enhancement region in rat brain to haemorrhage at the infusion site. (orig.)

  3. Contrast enhancement by lipid-based MRI contrast agents in mouse atherosclerotic plaques; a longitudinal study

    NARCIS (Netherlands)

    den Adel, Brigit; van der Graaf, Linda M.; Que, Ivo; Strijkers, Gustav J.; Löwik, Clemens W.; Poelmann, Robert E.; van der Weerd, Louise

    2013-01-01

    The use of contrast-enhanced MRI to enable in vivo specific characterization of atherosclerotic plaques is increasing. In this study the intrinsic ability of two differently sized gadolinium-based contrast agents to enhance atherosclerotic plaques in ApoE(-/-) mice was evaluated with MRI. We

  4. Nanodiamond-Manganese dual mode MRI contrast agents for enhanced liver tumor detection.

    Science.gov (United States)

    Hou, Weixin; Toh, Tan Boon; Abdullah, Lissa Nurrul; Yvonne, Tay Wei Zheng; Lee, Kuan J; Guenther, Ilonka; Chow, Edward Kai-Hua

    2017-04-01

    Contrast agent-enhanced magnetic resonance (MR) imaging is critical for the diagnosis and monitoring of a number of diseases, including cancer. Certain clinical applications, including the detection of liver tumors, rely on both T1 and T2-weighted images even though contrast agent-enhanced MR imaging is not always reliable. Thus, there is a need for improved dual mode contrast agents with enhanced sensitivity. We report the development of a nanodiamond-manganese dual mode contrast agent that enhanced both T1 and T2-weighted MR imaging. Conjugation of manganese to nanodiamonds resulted in improved longitudinal and transverse relaxivity efficacy over unmodified MnCl 2 as well as clinical contrast agents. Following intravenous administration, nanodiamond-manganese complexes outperformed current clinical contrast agents in an orthotopic liver cancer mouse model while also reducing blood serum concentration of toxic free Mn 2+ ions. Thus, nanodiamond-manganese complexes may serve as more effective dual mode MRI contrast agent, particularly in cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Improved evaluation of antivascular cancer therapy using constrained tracer-kinetic modeling for multi-agent dynamic contrast-enhanced MRI

    NARCIS (Netherlands)

    Hectors, Stefanie; Jacobs, Igor; Lok, Jasper; Peters, Johannes; Bussink, Johan; Hoeben, Freek J. M.; Keizer, Henk; Janssen, Henk M.; Nicolay, Klaas; Schabel, Matthias; Strijkers, Gustav

    2018-01-01

    Dynamic contrast-enhanced MRI (DCE-MRI) is a promising technique for assessing the response of tumor vasculature to anti-vascular therapies. Multi-agent DCE-MRI employs a combination of low and high molecular weight contrast agents, which potentially improves the accuracy of estimation of tumor

  6. A novel nitroreductase-enhanced MRI contrast agent and its potential application in bacterial imaging

    Directory of Open Access Journals (Sweden)

    Yun Liu

    2018-05-01

    Full Text Available Nitroreductases (NTRs are known to be able to metabolize nitro-substituted compounds in the presence of reduced nicotinamide adenine dinucleotide (NADH as an electron donor. NTRs are present in a wide range of bacterial genera and, to a lesser extent, in eukaryotes hypoxic tumour cells and tumorous tissues, which makes it an appropriate biomarker for an imaging target to detect the hypoxic status of cancer cells and potential bacterial infections. To evaluate the specific activation level of NTR, great efforts have been devoted to the development of fluorescent probes to detect NTR activities using fluorogenic methods to probe its behaviour in a cellular context; however, NTR-responsive MRI contrast agents are still by far underexplored. In this study, para-nitrobenzyl substituted T1-weighted magnetic resonance imaging (MRI contrast agent Gd-DOTA-PNB (probe 1 has been designed and explored for the possible detection of NTR. Our experimental results show that probe 1 could serve as an MRI-enhanced contrast agent for monitoring NTR activity. The in vitro response and mechanism of the NTR catalysed reduction of probe 1 have been investigated through LC–MS and MRI. Para-nitrobenzyl substituted probe 1 was catalytically reduced by NTR to the intermediate para-aminobenzyl substituted probe which then underwent a rearrangement elimination reaction to Gd-DOTA, generating the enhanced T1-weighted MR imaging. Further, LC–MS and MRI studies of living Escherichia coli have confirmed the NTR activity detection ability of probe 1 at a cellular level. This method may potentially be used for the diagnosis of bacterial infections. KEY WORDS: Nitroreductase, MRI contrast agent, Smart imaging probes, Bacterial imaging, Bacterial infection

  7. Measuring SPIO and Gd contrast agent magnetization using 3 T MRI

    Science.gov (United States)

    Cantillon-Murphy, Pádraig; Wald, Lawrence L.; Zahn, Markus; Adalsteinsson, Elfar

    2011-01-01

    Traditional methods of measuring magnetization in magnetic fluid samples, such as vibrating sample magnetometry (VSM), are typically limited to maximum field strengths of about 1 T. This work demonstrates the ability of MRI to measure the magnetization associated with two commercial MRI contrast agents at 3 T by comparing analytical solutions to experimental imaging results for the field pattern associated with agents in cylindrical vials. The results of the VSM and fitted MRI data match closely. The method represents an improvement over VSM measurements since results are attainable at imaging field strengths. The agents investigated are Feridex, a superparamagnetic iron oxide suspension used primarily for liver imaging, and Magnevist, a paramagnetic, gadolinium-based compound used for tumors, inflammation and vascular lesions. MR imaging of the agents took place in sealed cylindrical vials in the presence of a surrounding volume of deionized water where the effects of the contrast agents had a measurable effect on the water's magnetization in the vicinity of the compartment of contrast agent. A pair of phase images were used to reconstruct a B0 fieldmap. The resultant B0 maps in the water region, corrected for shimming and container edge effects, were used to predict the agent's magnetization at 3 T. The results were compared with the results from VSM measurements up to 1.2 T and close correlation was observed. The technique should be of interest to those seeking quantification of the magnetization associated with magnetic suspensions beyond the traditional scope of VSM. The magnetization needs to be sufficiently strong (Ms≳50 Am2/kg Fe for Feridex and χm≳5 × 10−5 m3/kg Gd for Magnevist) for a measurable dipole field in the surrounding water. For this reason, the technique is mostly suitable for undiluted agents. PMID:19588450

  8. Comparison of arterial input functions measured from ultra-fast dynamic contrast enhanced MRI and dynamic contrast enhanced computed tomography in prostate cancer patients

    Science.gov (United States)

    Wang, Shiyang; Lu, Zhengfeng; Fan, Xiaobing; Medved, Milica; Jiang, Xia; Sammet, Steffen; Yousuf, Ambereen; Pineda, Federico; Oto, Aytekin; Karczmar, Gregory S.

    2018-02-01

    The purpose of this study was to evaluate the accuracy of arterial input functions (AIFs) measured from dynamic contrast enhanced (DCE) MRI following a low dose of contrast media injection. The AIFs measured from DCE computed tomography (CT) were used as ‘gold standard’. A total of twenty patients received CT and MRI scans on the same day. Patients received 120 ml Iohexol in DCE-CT and a low dose of (0.015 mM kg-1) of gadobenate dimeglumine in DCE-MRI. The AIFs were measured in the iliac artery and normalized to the CT and MRI contrast agent doses. To correct for different temporal resolution and sampling periods of CT and MRI, an empirical mathematical model (EMM) was used to fit the AIFs first. Then numerical AIFs (AIFCT and AIFMRI) were calculated based on fitting parameters. The AIFMRI was convolved with a ‘contrast agent injection’ function (AIFMRICON ) to correct for the difference between MRI and CT contrast agent injection times (~1.5 s versus 30 s). The results show that the EMMs accurately fitted AIFs measured from CT and MRI. There was no significant difference (p  >  0.05) between the maximum peak amplitude of AIFs from CT (22.1  ±  4.1 mM/dose) and MRI after convolution (22.3  ±  5.2 mM/dose). The shapes of the AIFCT and AIFMRICON were very similar. Our results demonstrated that AIFs can be accurately measured by MRI following low dose contrast agent injection.

  9. Hepatobiliary contrast agents for contrast-enhanced MRI of the liver: properties, clinical development and applications

    International Nuclear Information System (INIS)

    Reimer, Peter; Schneider, Guenter; Schima, Wolfgang

    2004-01-01

    Hepatobiliary contrast agents with uptake into hepatocytes followed by variable biliary excretion represent a unique class of cell-specific MR contrast agents. Two hepatobiliary contrast agents, mangafodipir trisodium and gadobenate dimeglumine, are already clinically approved. A third hepatobiliary contrast agent, Gd-EOB-DTPA, is under consideration. The purpose of this review is to provide an overview on the properties, clinical development and application of these three hepatobiliary contrast agents. Bolus injectable paramagnetic hepatobiliary contrast agents combine established features of extracellular agents with the advantages of hepatocyte specificity. The detection and characterisation of focal liver disease appears to be improved compared to unenhanced MRI, MRI with unspecific contrast agents and contrast-enhanced CT. To decrease the total time spent by a patient in the MR scanner, it is advisable to administer the agent immediately after acquisition of unenhanced T1-w MRI. After infusion or bolus injection (with dynamic FS-T1-w 2D or 3D GRE) of the contrast agent, moderately and heavily T2w images are acquired. Post-contrast T1-w MRI is started upon completion of T2-w MRI for mangafodipir trisodium and Gd-EOB-DTPA as early as 20 min following injection, while gadobenate dimeglumine scans are obtained >60 min following injection. Post-contrast acquisition techniques with near isotropic 3D pulse sequences with fat saturation parallel the technical progress made by MSCT combined with an unparalleled improvement in tumour-liver contrast. The individual decision that hepatobiliary contrast agent one uses is partly based on personal preferences. No comparative studies have been conducted comparing the advantages or disadvantages of all three agents directly against each other. (orig.)

  10. Contrast enhancement by differently sized paramagnetic MRI contrast agents in mice with two phenotypes of atherosclerotic plaque

    NARCIS (Netherlands)

    van Bochove, Glenda S.; Paulis, Leonie E. M.; Segers, Dolf; Mulder, Willem J. M.; Krams, Rob; Nicolay, Klaas; Strijkers, Gustav J.

    2011-01-01

    Interest in the use of contrast-enhanced MRI to enable in vivo specific characterization of atherosclerotic plaques is increasing. In this study the intrinsic ability of three differently sized gadolinium-based contrast agents to permeate different mouse plaque phenotypes was evaluated with MRI. A

  11. Characterization of D-maltose as a T2 -exchange contrast agent for dynamic contrast-enhanced MRI.

    Science.gov (United States)

    Goldenberg, Joshua M; Pagel, Mark D; Cárdenas-Rodríguez, Julio

    2018-09-01

    We sought to investigate the potential of D-maltose, D-sorbitol, and D-mannitol as T 2 exchange magnetic resonance imaging (MRI) contrast agents. We also sought to compare the in vivo pharmacokinetics of D-maltose with D-glucose with dynamic contrast enhancement (DCE) MRI. T 1 and T 2 relaxation time constants of the saccharides were measured using eight pH values and nine concentrations. The effect of echo spacing in a multiecho acquisition sequence used for the T 2 measurement was evaluated for all samples. Finally, performances of D-maltose and D-glucose during T 2 -weighted DCE-MRI were compared in vivo. Estimated T 2 relaxivities (r 2 ) of D-glucose and D-maltose were highly and nonlinearly dependent on pH and echo spacing, reaching their maximum at pH = 7.0 (∼0.08 mM -1 s -1 ). The r 2 values of D-sorbitol and D-mannitol were estimated to be ∼0.02 mM -1 s -1 and were invariant to pH and echo spacing for pH ≤7.0. The change in T 2 in tumor and muscle tissues remained constant after administration of D-maltose, whereas the change in T 2 decreased in tumor and muscle after administration of D-glucose. Therefore, D-maltose has a longer time window for T 2 -weighted DCE-MRI in tumors. We have demonstrated that D-maltose can be used as a T 2 exchange MRI contrast agent. The larger, sustained T 2 -weighted contrast from D-maltose relative to D-glucose has practical advantages for tumor diagnoses during T 2 -weighted DCE-MRI. Magn Reson Med 80:1158-1164, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  12. Use of contrast agents for liver MRI

    International Nuclear Information System (INIS)

    Ward, Janice

    2007-01-01

    Contrast-enhanced MRI is recognised as one of the most accurate imaging methods for investigating diseases of the liver. Uniquely several different types of contrast agents are available for liver MRI. They can be divided into non-specific extracellular fluid space (ECF), hepatocyte specific and reticulo-endothelial system (RES) specific agents. They are used to improve the detection of focal liver lesions by increasing normal-abnormal tissue contrast and to assist in lesion characterisation by demonstrating tissue perfusion and cellular function. ECF-gadolinium (Gd) chelates have been widely used in abdominal MRI for many years. They provide valuable information regarding the vascularisation and perfusion characteristics of lesions and assist in lesion detection, particularly of hypervascular lesions. The hepatocyte and RES-specific agents further improve lesion detection, provide important functional information and allow the distinction between hepatocellular and non-hepatocellular tumours. This article describes the different MR contrast agents and discusses their current status for diagnosing focal liver lesions. The importance of optimised technique and appropriate selection of contrast agent is emphasised

  13. Dynamic contrast-enhanced MRI using a macromolecular MR contrast agent (P792): Evaluation of antivascular drug effect in a rabbit VX2 liver tumor model

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hee Sun [Dept. of Radiology, Konkuk University School of Medicine, Seoul (Korea, Republic of); Han, Joon Koo; Lee, Jeong Min; Woo, Sung Min; Choi, Byung Ihn [Seoul National University Hospital, Seoul (Korea, Republic of); Kim, Young Il [Dept. of Radiology, Sheikh Khalifa Specialty Hospital, Ras Al Khaimah (United Arab Emirates); Choi, Jin Young [Dept. of Radiology, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2015-10-15

    To evaluate the utility of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) using macromolecular contrast agent (P792) for assessment of vascular disrupting drug effect in rabbit VX2 liver tumor models. This study was approved by our Institutional Animal Care and Use Committee. DCE-MRI was performed with 3-T scanner in 13 VX2 liver tumor-bearing rabbits, before, 4 hours after, and 24 hours after administration of vascular disrupting agent (VDA), using gadomelitol (P792, n = 7) or low molecular weight contrast agent (gadoterate meglumine [Gd-DOTA], n = 6). P792 was injected at a of dose 0.05 mmol/kg, while that of Gd-DOTA was 0.2 mmol/kg. DCE-MRI parameters including volume transfer coefficient (Ktrans) and initial area under the gadolinium concentration-time curve until 60 seconds (iAUC) of tumors were compared between the 2 groups at each time point. DCE-MRI parameters were correlated with tumor histopathology. Reproducibility in measurement of DCE-MRI parameters and image quality of source MR were compared between groups. P792 group showed a more prominent decrease in Ktrans and iAUC at 4 hours and 24 hours, as compared to the Gd-DOTA group. Changes in DCE-MRI parameters showed a weak correlation with histologic parameters (necrotic fraction and microvessel density) in both groups. Reproducibility of DCE-MRI parameters and overall image quality was not significantly better in the P792 group, as compared to the Gd-DOTA group. Dynamic contrast-enhanced magnetic resonance imaging using a macromolecular contrast agent shows changes of hepatic perfusion more clearly after administration of the VDA. Gadolinium was required at smaller doses than a low molecular contrast agent.

  14. Dynamic contrast-enhanced MRI using a macromolecular MR contrast agent (P792): Evaluation of antivascular drug effect in a rabbit VX2 liver tumor model

    International Nuclear Information System (INIS)

    Park, Hee Sun; Han, Joon Koo; Lee, Jeong Min; Woo, Sung Min; Choi, Byung Ihn; Kim, Young Il; Choi, Jin Young

    2015-01-01

    To evaluate the utility of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) using macromolecular contrast agent (P792) for assessment of vascular disrupting drug effect in rabbit VX2 liver tumor models. This study was approved by our Institutional Animal Care and Use Committee. DCE-MRI was performed with 3-T scanner in 13 VX2 liver tumor-bearing rabbits, before, 4 hours after, and 24 hours after administration of vascular disrupting agent (VDA), using gadomelitol (P792, n = 7) or low molecular weight contrast agent (gadoterate meglumine [Gd-DOTA], n = 6). P792 was injected at a of dose 0.05 mmol/kg, while that of Gd-DOTA was 0.2 mmol/kg. DCE-MRI parameters including volume transfer coefficient (Ktrans) and initial area under the gadolinium concentration-time curve until 60 seconds (iAUC) of tumors were compared between the 2 groups at each time point. DCE-MRI parameters were correlated with tumor histopathology. Reproducibility in measurement of DCE-MRI parameters and image quality of source MR were compared between groups. P792 group showed a more prominent decrease in Ktrans and iAUC at 4 hours and 24 hours, as compared to the Gd-DOTA group. Changes in DCE-MRI parameters showed a weak correlation with histologic parameters (necrotic fraction and microvessel density) in both groups. Reproducibility of DCE-MRI parameters and overall image quality was not significantly better in the P792 group, as compared to the Gd-DOTA group. Dynamic contrast-enhanced magnetic resonance imaging using a macromolecular contrast agent shows changes of hepatic perfusion more clearly after administration of the VDA. Gadolinium was required at smaller doses than a low molecular contrast agent

  15. Patients' oral hydration levels and incidence of immediate to short-term mild side-effects in contrast agent enhanced MRI diagnostics

    International Nuclear Information System (INIS)

    Jonker, Leon; Fallahi, Farshid

    2015-01-01

    Aim: Gadolinium-based contrast agents for radiodiagnostic purposes can lead to side effects, including nephrotoxicity in patients with renal insufficiency. This study evaluated whether the occurrence of mild side effects from gadolinium-based contrast enhanced magnetic resonance imaging (MRI) correlates to patients' oral hydration levels. Methods: Oral fluid intake levels 24 h pre- and 24 h post-MRI, as well as incidence of mild side-effects experienced 30 min and 24 h post-MRI were recorded by using a patient self-reporting questionnaire. Results: A total of 174 patients, 29 controls, 98 administered Prohance and 47 receiving Dotarem, were enrolled. Overall, the most frequently reported side-effect was headache; nausea only occurred in patients receiving contrast agent. One or more side-effects experienced 24 h following the MRI scan were reported by 10% (controls), 24% (Prohance) and 22% (Dotarem) of patients, respectively. Multivariate ordinal regression analysis showed that only male gender (OR 0.24, 95% CI 0.11–0.53) was statistically significantly associated with a decreased incidence of side-effects 30 min after MRI. At 24-h post MRI, a lack of contrast agent (OR 0.40, 95% CI 0.09–1.74) and male gender (OR 0.46, 95% CI 0.19–1.09) were associated with fewer side-effects. Conclusions: The level oral fluid intake before and after undergoing gadolinium-based contrast-enhanced MRI does not appear to markedly affect the incidence of common undesirable mild symptoms experienced shortly after the procedure. Confounding differences between patients in reporting side-effects may contribute to these findings. - Highlights: • We assess the incidence of patient-reported side-effects after contrast-enhanced MRI. • We examine the potential impact of oral hydration levels on side-effects. • Patient reported side-effects are high compared to those reported by clinicians. • Female gender and contrast agent itself are associated with increased side

  16. Synthesis, structural characterization and in vitro testing of dysprosium containing silica particles as potential MRI contrast enhancing agents

    International Nuclear Information System (INIS)

    Chiriac, L.B.; Trandafir, D.L.; Turcu, R.V.F.; Todea, M.; Simon, S.

    2016-01-01

    Highlights: • Dysprosium containing silica microparticles obtained by freeze and spray drying. • Higher structural units interconnection achieved in freeze vs. spray dried samples. • Dy occurance on the outermost layer of the microparticles evidenced by XPS. • Enhanced MRI contrast observed for freeze dried samples with 5% mol Dy_2O_3. - Abstract: The work is focused on synthesis and structural characterization of novel dysprosium-doped silica particles which could be considered as MRI contrast agents. Sol-gel derived silica rich particles obtained via freeze-drying and spray-drying processing methods were structurally characterized by XRD, "2"9Si MAS-NMR and XPS methods. The occurrence of dysprosium on the outermost layer of dysprosium containing silica particles was investigated by XPS analysis. The MRI contrast agent characteristics have been tested using RARE-T_1 and RARE-T_2 protocols. The contrast of MRI images delivered by the investigated samples was correlated with their local structure. Dysprosium disposal on microparticles with surface structure characterised by decreased connectivity of the silicate network units favours dark T_2-weighted MRI contrast properties.

  17. [Utilization of polymeric micelle magnetic resonance imaging (MRI) contrast agent for theranostic system].

    Science.gov (United States)

    Shiraishi, Kouichi

    2013-01-01

    We applied a polymeric micelle carrier system for the targeting of a magnetic resonance imaging (MRI) contrast agent. Prepared polymeric micelle MRI contrast agent exhibited a long circulation characteristic in blood, and considerable amount of the contrast agent was found to accumulate in colon 26 solid tumor by the EPR effect. The signal intensities of tumor area showed 2-folds increase in T1-weighted images at 24 h after i.v. injection. To observe enhancement of the EPR effect by Cderiv pretreatment on tumor targeting, we used the contrast agent for the evaluation by means of MRI. Cderiv pretreatment significantly enhanced tumor accumulation of the contrast agent. Interestingly, very high signal intensity in tumor region was found at 24 h after the contrast agent injection in Cderiv pretreated mice. The contrast agent visualized a microenvironmental change in tumor. These results indicate that the contrast agent exhibits potential use for tumor diagnostic agent. To combine with a polymeric micelle carrier system for therapeutic agent, the usage of the combination makes a new concept of "theranostic" for a better cancer treatment.

  18. Synthesis, structural characterization and in vitro testing of dysprosium containing silica particles as potential MRI contrast enhancing agents

    Energy Technology Data Exchange (ETDEWEB)

    Chiriac, L.B.; Trandafir, D.L. [Faculty of Physics & National Magnetic Resonance Center, Babeş-Bolyai University, Cluj-Napoca, RO-400084 (Romania); Interdisciplinary Research Institute on Bio-Nano-Sciences & Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, RO-400084 (Romania); Turcu, R.V.F. [Faculty of Physics & National Magnetic Resonance Center, Babeş-Bolyai University, Cluj-Napoca, RO-400084 (Romania); Todea, M. [Interdisciplinary Research Institute on Bio-Nano-Sciences & Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, RO-400084 (Romania); Simon, S., E-mail: simons@phys.ubbcluj.ro [Faculty of Physics & National Magnetic Resonance Center, Babeş-Bolyai University, Cluj-Napoca, RO-400084 (Romania); Interdisciplinary Research Institute on Bio-Nano-Sciences & Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, RO-400084 (Romania)

    2016-11-01

    Highlights: • Dysprosium containing silica microparticles obtained by freeze and spray drying. • Higher structural units interconnection achieved in freeze vs. spray dried samples. • Dy occurance on the outermost layer of the microparticles evidenced by XPS. • Enhanced MRI contrast observed for freeze dried samples with 5% mol Dy{sub 2}O{sub 3}. - Abstract: The work is focused on synthesis and structural characterization of novel dysprosium-doped silica particles which could be considered as MRI contrast agents. Sol-gel derived silica rich particles obtained via freeze-drying and spray-drying processing methods were structurally characterized by XRD, {sup 29}Si MAS-NMR and XPS methods. The occurrence of dysprosium on the outermost layer of dysprosium containing silica particles was investigated by XPS analysis. The MRI contrast agent characteristics have been tested using RARE-T{sub 1} and RARE-T{sub 2} protocols. The contrast of MRI images delivered by the investigated samples was correlated with their local structure. Dysprosium disposal on microparticles with surface structure characterised by decreased connectivity of the silicate network units favours dark T{sub 2}-weighted MRI contrast properties.

  19. Dynamic contrast-enhanced quantitative perfusion measurement of the brain using T-1-weighted MRI at 3T

    DEFF Research Database (Denmark)

    Larsson, H.B.W.; Hansen, A.E.; Berg, H.K.

    2008-01-01

    Purpose: To develop a method for the measurement of brain perfusion based on dynamic contrast-enhanced T-1-weighted MR imaging. Materials and Methods: Dynamic imaging of the first pass of a bolus of a paramagnetic contrast agent was performed using a 3T whole-body magnet and a T-1-weighted fast...... field echo sequence. The input function was obtained from the internal carotid artery. An initial T-1 measurement was performed in order to convert the MR signal to concentration of the contrast agent. Pixelwise and region of interest (ROI)based calculation of cerebral perfusion (CBF) was performed...... inside the infarct core was, 9 mL/100g/min in one of the stroke patients. The other stroke patient had postischemic hyperperfusion and CBF was 140 mL/100g/min. Conclusion: Absolute values of brain perfusion can be obtained using dynamic contrast-enhanced MRI. These values correspond,to expected values...

  20. MRI contrast agent for targeting glioma: interleukin-13 labeled liposome encapsulating gadolinium-DTPA.

    Science.gov (United States)

    Liu, Xiaoli; Madhankumar, Achuthamangalam B; Miller, Patti A; Duck, Kari A; Hafenstein, Susan; Rizk, Elias; Slagle-Webb, Becky; Sheehan, Jonas M; Connor, James R; Yang, Qing X

    2016-05-01

    Detection of glioma with MRI contrast agent is limited to cases in which the blood-brain barrier (BBB) is compromised as contrast agents cannot cross the BBB. Thus, an early-stage infiltrating tumor is not detectable. Interleukin-13 receptor alpha 2 (IL-13Rα2), which has been shown to be overexpressed in glioma, can be used as a target moiety. We hypothesized that liposomes conjugated with IL-13 and encapsulating MRI contrast agent are capable of passing through an intact BBB and producing MRI contrast with greater sensitivity. The targeted MRI contrast agent was created by encapsulating Magnevist (Gd-DTPA) into liposomes conjugated with IL-13 and characterized by particle size distribution, cytotoxicity, and MRI relaxivity. MR image intensity was evaluated in the brain in normal mice post injection of Gd-DTPA and IL-13-liposome-Gd-DTPA one day apart. The specificity for glioma detection by IL-13-liposome-Gd-DTPA was demonstrated in an intracranial glioma mouse model and validated histologically. The average size of IL-13-liposome-Gd-DTPA was 137 ± 43 nm with relaxivity of 4.0 ± 0.4 L/mmole-s at 7 Tesla. No significant cytotoxicity was observed with MTS assay and serum chemistry in mice. The MRI signal intensity was enhanced up to 15% post injection of IL-13-liposome-Gd-DTPA in normal brain tissue following a similar time course as that for the pituitary gland outside of the BBB. MRI enhanced by IL-13-liposome-Gd-DTPA detected small tumor masses in addition to those seen with Magnevist-enhanced MRI. IL-13-liposome-Gd-DTPA is able to pass through the uncompromised BBB and detect an early stage glioma that cannot be seen with conventional contrast-enhanced MRI. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. MRI contrast agent concentration and tumor interstitial fluid pressure.

    Science.gov (United States)

    Liu, L J; Schlesinger, M

    2016-10-07

    The present work describes the relationship between tumor interstitial fluid pressure (TIFP) and the concentration of contrast agent for dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). We predict the spatial distribution of TIFP based on that of contrast agent concentration. We also discuss the cases for estimating tumor interstitial volume fraction (void fraction or porosity of porous medium), ve, and contrast volume transfer constant, K(trans), by measuring the ratio of contrast agent concentration in tissue to that in plasma. A linear fluid velocity distribution may reflect a quadratic function of TIFP distribution and lead to a practical method for TIFP estimation. To calculate TIFP, the parameters or variables should preferably be measured along the direction of the linear fluid velocity (this is in the same direction as the gray value distribution of the image, which is also linear). This method may simplify the calculation for estimating TIFP. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  2. Dendrimer-based Macromolecular MRI Contrast Agents: Characteristics and Application

    Directory of Open Access Journals (Sweden)

    Hisataka Kobayashi

    2003-01-01

    Full Text Available Numerous macromolecular MRI contrast agents prepared employing relatively simple chemistry may be readily available that can provide sufficient enhancement for multiple applications. These agents operate using a ~100-fold lower concentration of gadolinium ions in comparison to the necessary concentration of iodine employed in CT imaging. Herein, we describe some of the general potential directions of macromolecular MRI contrast agents using our recently reported families of dendrimer-based agents as examples. Changes in molecular size altered the route of excretion. Smaller-sized contrast agents less than 60 kDa molecular weight were excreted through the kidney resulting in these agents being potentially suitable as functional renal contrast agents. Hydrophilic and larger-sized contrast agents were found better suited for use as blood pool contrast agents. Hydrophobic variants formed with polypropylenimine diaminobutane dendrimer cores created liver contrast agents. Larger hydrophilic agents are useful for lymphatic imaging. Finally, contrast agents conjugated with either monoclonal antibodies or with avidin are able to function as tumor-specific contrast agents, which also might be employed as therapeutic drugs for either gadolinium neutron capture therapy or in conjunction with radioimmunotherapy.

  3. Contrast agents for MRI

    International Nuclear Information System (INIS)

    Bonnemain, B.

    1994-01-01

    Contrast agents MRI (Magnetic Resonance Imaging) have been developed to improve the diagnostic information obtained by this technic. They mainly interact on T1 and T2 parameters and increase consequently normal to abnormal tissues contrast. The paramagnetic agents which mainly act on longitudinal relaxation rate (T1) are gadolinium complexes for which stability is the main parameter to avoid any release of free gadolinium. The superparamagnetic agents that decrease signal intensity by an effect on transversal relaxation rate (T2) are developed for liver, digestive and lymph node imaging. Many area of research are now opened for optimal use of present and future contrast agents in MRI. (author). 28 refs., 4 tabs

  4. Comparison of two brain tumor-localizing MRI agent. GD-BOPTA and GD-DTPA. MRI and ICP study of rat brain tumor model

    International Nuclear Information System (INIS)

    Zhang, T.; Matsumura, A.; Yamamoto, T.; Yoshida, F.; Nose, T.

    2000-01-01

    In this study, we compared the behavior of Gd-BOPTA as a brain tumor selective contrast agent with Gd-DTPA in a common dose of 0.1 mmol/kg. We performed a MRI study using those two agent as contrast material, and we measured tissue Gd-concentrations by ICP-AES. As a result, Gd-BOPTA showed a better MRI enhancement in brain tumor. ICP showed significantly greater uptake of Gd-BOPTA in tumor samples, at all time course peaked at 5 minutes after administration, Gd being retained for a longer time in brain tumor till 2 hours, without rapid elimination as Gd-DTPA. We conclude that Gd-BOPTA is a new useful contrast material for MR imaging in brain tumor and an effective absorption agent for neutron capture therapy for further research. (author)

  5. Oxidative stress measured in vivo without an exogenous contrast agent using QUEST MRI

    Science.gov (United States)

    Berkowitz, Bruce A.

    2018-06-01

    Decades of experimental studies have implicated excessive generation of reactive oxygen species (ROS) in the decline of tissue function during normal aging, and as a pathogenic factor in a vast array of fatal or debilitating morbidities. This massive body of work has important clinical implications since many antioxidants are FDA approved, readily cross blood-tissue barriers, and are effective at improving disease outcomes. Yet, the potential benefits of antioxidants have remained largely unrealized in patients because conventional methods cannot determine the dose, timing, and drug combinations to be used in clinical trials to localize and decrease oxidative stress. To address this major problem and improve translational success, new methods are urgently needed that non-invasively measure the same ROS biomarker both in animal models and patients with high spatial resolution. Here, we summarize a transformative solution based on a novel method: QUEnch-assiSTed MRI (QUEST MRI). The QUEST MRI index is a significant antioxidant-induced improvement in pathophysiology, or a reduction in 1/T1 (i.e., R1). The latter form of QUEST MRI provides a unique measure of uncontrolled production of endogenous, paramagnetic reactive oxygen species (ROS). QUEST MRI results to-date have been validated by gold standard oxidative stress assays. QUEST MRI has high translational potential because it does not use an exogenous contrast agent and requires only standard MRI equipment. Summarizing, QUEST MRI is a powerful non-invasive approach with unprecedented potential for (i) bridging antioxidant treatment in animal models and patients, (ii) identifying tissue subregions exhibiting oxidative stress, and (iii) coupling oxidative stress localization with behavioral dysfunction, disease pathology, and genetic vulnerabilities to serve as a marker of susceptibility.

  6. Polydisulfide Manganese(II) Complexes as Non-Gadolinium Biodegradable Macromolecular MRI Contrast Agents

    Science.gov (United States)

    Ye, Zhen; Jeong, Eun-Kee; Wu, Xueming; Tan, Mingqian; Yin, Shouyu; Lu, Zheng-Rong

    2011-01-01

    Purpose To develop safe and effective manganese(II) based biodegradable macromolecular MRI contrast agents. Materials and Methods In this study, we synthesized and characterized two polydisulfide manganese(II) complexes, Mn-DTPA cystamine copolymers and Mn-EDTA cystamine copolymers, as new biodegradable macromolecular MRI contrast agents. The contrast enhancement of the two manganese based contrast agents were evaluated in mice bearing MDA-MB-231 human breast carcinoma xenografts, in comparison with MnCl2. Results The T1 and T2 relaxivities were 4.74 and 10.38 mM−1s−1 per manganese at 3T for Mn-DTPA cystamine copolymers (Mn=30.50 kDa) and 6.41 and 9.72 mM−1s−1 for Mn-EDTA cystamine copolymers (Mn= 61.80 kDa). Both polydisulfide Mn(II) complexes showed significant liver, myocardium and tumor enhancement. Conclusion The manganese based polydisulfide contrast agents have a potential to be developed as alternative non-gadolinium contrast agents for MR cancer and myocardium imaging. PMID:22031457

  7. Carboxylated magnetic nanoparticles as MRI contrast agents: Relaxation measurements at different field strengths

    Energy Technology Data Exchange (ETDEWEB)

    Jedlovszky-Hajdu, Angela, E-mail: angela.hajdu@net.sote.hu [Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Nagyvarad Sq 4, H-1089 Budapest (Hungary); Tombacz, Etelka, E-mail: tombacz@chem.u-szeged.hu [Department of Physical Chemistry and Material Science, University of Szeged, Aradi Vt. Sq 1, Szeged 6720 (Hungary); Banyai, Istvan, E-mail: banyai.istvan@science.unideb.hu [Department of Colloid and Environmental Chemistry, University of Debrecen (Hungary); Babos, Magor, E-mail: babosmagor@yahoo.com [Euromedic Diagnostics Szeged Ltd., Semmelweis St 6, Szeged 6720 (Hungary); Palko, Andras, E-mail: palko@radio.szote.u-szeged.hu [Faculty of Medicine, Department of Radiology, University of Szeged (Hungary)

    2012-09-15

    At the moment the biomedical applications of magnetic fluids are the subject of intensive scientific interest. In the present work, magnetite nanoparticles (MNPs) were synthesized and stabilized in aqueous medium with different carboxylic compounds (citric acid (CA), polyacrylic acid (PAA), and sodium oleate (NaOA)), in order to prepare well stabilized magnetic fluids (MFs). The magnetic nanoparticles can be used in the magnetic resonance imaging (MRI) as contrast agents. Magnetic resonance relaxation measurements of the above MFs were performed at different field strengths (i.e., 0.47, 1.5 and 9.4 T) to reveal the field strength dependence of their magnetic responses, and to compare them with that of ferucarbotran, a well-known superparamagnetic contrast agent. The measurements showed characteristic differences between the tested magnetic fluids stabilized by carboxylic compounds and ferucarbotran. It is worthy of note that our magnetic fluids have the highest r2 relaxivities at the field strength of 1.5 T, where the most of the MRI works in worldwide. - Highlights: Black-Right-Pointing-Pointer Magnetic resonance relaxation measurements were done at different field strengths. Black-Right-Pointing-Pointer Results show characteristic differences between the tested carboxylated MFs. Black-Right-Pointing-Pointer r1 and r2 relaxivities depend on the thickness of the protecting layer. Black-Right-Pointing-Pointer MFs have high r2/r1 ratios at each magnetic field.

  8. Non-radiological contrast agents (MRI)

    International Nuclear Information System (INIS)

    Bonnemain, B.; Lautrou, J.; Meyer, D.; Doucet, D.

    1987-01-01

    Over the past few years, extensive research has been carried out in an attempt to develop contrast agents that could help improve both the performance (acquisition times) and the diagnostic efficacy of Magnetic Resonance Imaging (MRI) techniques. On the basis of physicochemical and pharmacological criteria discussed in this presentation, a few efficacious, well-tolerated compounds could be developed. Two of them, the gadolinium complexes Gd-DOTA and Gd-DTPA, are currently being tried in man. This first generation of contrast agents, which are aspecific markers of the intravascular space, has been shown to have good diagnostic potential in conventional MRI procedures. The diagnostic contribution of these contrast agents will probably be a most essential factor in new MRI techniques using low field strengh or fast imaging sequences [fr

  9. Scopolamine provocation-based pharmacological MRI model for testing procognitive agents.

    Science.gov (United States)

    Hegedűs, Nikolett; Laszy, Judit; Gyertyán, István; Kocsis, Pál; Gajári, Dávid; Dávid, Szabolcs; Deli, Levente; Pozsgay, Zsófia; Tihanyi, Károly

    2015-04-01

    There is a huge unmet need to understand and treat pathological cognitive impairment. The development of disease modifying cognitive enhancers is hindered by the lack of correct pathomechanism and suitable animal models. Most animal models to study cognition and pathology do not fulfil either the predictive validity, face validity or construct validity criteria, and also outcome measures greatly differ from those of human trials. Fortunately, some pharmacological agents such as scopolamine evoke similar effects on cognition and cerebral circulation in rodents and humans and functional MRI enables us to compare cognitive agents directly in different species. In this paper we report the validation of a scopolamine based rodent pharmacological MRI provocation model. The effects of deemed procognitive agents (donepezil, vinpocetine, piracetam, alpha 7 selective cholinergic compounds EVP-6124, PNU-120596) were compared on the blood-oxygen-level dependent responses and also linked to rodent cognitive models. These drugs revealed significant effect on scopolamine induced blood-oxygen-level dependent change except for piracetam. In the water labyrinth test only PNU-120596 did not show a significant effect. This provocational model is suitable for testing procognitive compounds. These functional MR imaging experiments can be paralleled with human studies, which may help reduce the number of false cognitive clinical trials. © The Author(s) 2015.

  10. Saline as the Sole Contrast Agent for Successful MRI-guided Epidural Injections

    International Nuclear Information System (INIS)

    Deli, Martin; Fritz, Jan; Mateiescu, Serban; Busch, Martin; Carrino, John A.; Becker, Jan; Garmer, Marietta; Grönemeyer, Dietrich

    2013-01-01

    Purpose. To assess the performance of sterile saline solution as the sole contrast agent for percutaneous magnetic resonance imaging (MRI)-guided epidural injections at 1.5 T. Methods. A retrospective analysis of two different techniques of MRI-guided epidural injections was performed with either gadolinium-enhanced saline solution or sterile saline solution for documentation of the epidural location of the needle tip. T1-weighted spoiled gradient echo (FLASH) images or T2-weighted single-shot turbo spin echo (HASTE) images visualized the test injectants. Methods were compared by technical success rate, image quality, table time, and rate of complications. Results. 105 MRI-guided epidural injections (12 of 105 with gadolinium-enhanced saline solution and 93 of 105 with sterile saline solution) were performed successfully and without complications. Visualization of sterile saline solution and gadolinium-enhanced saline solution was sufficient, good, or excellent in all 105 interventions. For either test injectant, quantitative image analysis demonstrated comparable high contrast-to-noise ratios of test injectants to adjacent body substances with reliable statistical significance levels (p < 0.001). The mean table time was 22 ± 9 min in the gadolinium-enhanced saline solution group and 22 ± 8 min in the saline solution group (p = 0.75). Conclusion. Sterile saline is suitable as the sole contrast agent for successful and safe percutaneous MRI-guided epidural drug delivery at 1.5 T.

  11. Assessment of MRI Contrast Agent Kinetics via Retro-Orbital Injection in Mice: Comparison with Tail Vein Injection.

    Science.gov (United States)

    Wang, Fang; Nojima, Masanori; Inoue, Yusuke; Ohtomo, Kuni; Kiryu, Shigeru

    2015-01-01

    It is not known whether administration of contrast agent via retro-orbital injection or the tail vein route affects the efficiency of dynamic contrast-enhanced magnetic resonance imaging (MRI). Therefore, we compared the effects of retro-orbital and tail vein injection on the kinetics of the contrast agent used for MRI in mice. The same group of nine healthy female mice received contrast agent via either route. An extracellular contrast agent was infused via the tail vein and retro-orbital vein, in random order. Dynamic contrast-enhanced MRI was performed before and after administering the contrast agent. The contrast effects in the liver, kidney, lung, and myocardium were assessed. The average total times of venous puncture and mounting of the injection system were about 10 and 4 min for the tail vein and retro-orbital route, respectively. For all organs assessed, the maximum contrast ratio occurred 30 s after administration and the time course of the contrast ratio was similar with either routes. For each organ, the contrast ratios correlated strongly; the contrast ratios were similar. The retro-orbital and tail vein routes afforded similar results in terms of the kinetics of the contrast agent. The retro-orbital route can be used as a simple efficient alternative to tail vein injection for dynamic contrast-enhanced MRI of mice.

  12. Manganese-Enhanced MRI for Preclinical Evaluation of Retinal Degeneration Treatments.

    Science.gov (United States)

    Schur, Rebecca M; Sheng, Li; Sahu, Bhubanananda; Yu, Guanping; Gao, Songqi; Yu, Xin; Maeda, Akiko; Palczewski, Krzysztof; Lu, Zheng-Rong

    2015-07-01

    Apply manganese-enhanced magnetic resonance imaging (MEMRI) to assess ion channel activity and structure of retinas from mice subject to light-induced retinal degeneration treated with prophylactic agents. Abca4(-/-)Rdh8(-/-) double knockout mice with and without prophylactic retinylamine (Ret-NH2) treatment were illuminated with strong light. Manganese-enhanced MRI was used to image the retina 2 hours after intravitreous injection of MnCl2 into one eye. Contrast-enhanced MRIs of the retina and vitreous humor in each experimental group were assessed and correlated with the treatment. Findings were compared with standard structural and functional assessments of the retina by optical coherence tomography (OCT), histology, and electroretinography (ERG). Manganese-enhanced MRI contrast in the retina was high in nonilluminated and illuminated Ret-NH2-treated mice, whereas no enhancement was evident in the retina of the light-illuminated mice without Ret-NH2 treatment (P treatment based on the measurement of ion channel activity. This approach could be used as a complementary tool in preclinical development of new prophylactic therapies for retinopathies.

  13. A theranostic dental pulp capping agent with improved MRI and CT contrast and biological properties.

    Science.gov (United States)

    Mastrogiacomo, S; Güvener, N; Dou, W; Alghamdi, H S; Camargo, W A; Cremers, J G O; Borm, P J A; Heerschap, A; Oosterwijk, E; Jansen, J A; Walboomers, X F

    2017-10-15

    Different materials have been used for vital dental pulp treatment. Preferably a pulp capping agent should show appropriate biological performance, excellent handling properties, and a good imaging contrast. These features can be delivered into a single material through the combination of therapeutic and diagnostic agents (i.e. theranostic). Calcium phosphate based composites (CPCs) are potentially ideal candidate for pulp treatment, although poor imaging contrast and poor dentino-inductive properties are limiting their clinical use. In this study, a theranostic dental pulp capping agent was developed. First, imaging properties of the CPC were improved by using a core-shell structured dual contrast agent (csDCA) consisting of superparamagnetic iron oxide (SPIO) and colloidal gold, as MRI and CT contrast agent respectively. Second, biological properties were implemented by using a dentinogenic factor (i.e. bone morphogenetic protein 2, BMP-2). The obtained CPC/csDCA/BMP-2 composite was tested in vivo, as direct pulp capping agent, in a male Habsi goat incisor model. Our outcomes showed no relevant alteration of the handling and mechanical properties (e.g. setting time, injectability, and compressive strength) by the incorporation of csDCA particles. In vivo results proved MRI contrast enhancement up to 7weeks. Incisors treated with BMP-2 showed improved tertiary dentin deposition as well as faster cement degradation as measured by µCT assessment. In conclusion, the presented theranostic agent matches the imaging and regenerative requirements for pulp capping applications. In this study, we combined diagnostic and therapeutic agents in order to developed a theranostic pulp capping agent with enhanced MRI and CT contrast and improved dentin regeneration ability. In our study we cover all the steps from material preparation, mechanical and in vitro characterization, to in vivo study in a goat dental model. To the best of our knowledge, this is the first time that a

  14. Self-gated CINE MRI for combined contrast-enhanced imaging and wall-stiffness measurements of murine aortic atherosclerotic lesions

    NARCIS (Netherlands)

    den Adel, Brigit; van der Graaf, Linda M.; Strijkers, Gustav J.; Lamb, Hildo J.; Poelmann, Robert E.; van der Weerd, Louise

    2013-01-01

    High-resolution contrast-enhanced imaging of the murine atherosclerotic vessel wall is difficult due to unpredictable flow artifacts, motion of the thin artery wall and problems with flow suppression in the presence of a circulating contrast agent. We applied a 2D-FLASH retrospective-gated CINE MRI

  15. Development of organic MRI contrast agents

    International Nuclear Information System (INIS)

    Hayashi, Hiroyuki; Sato, Yuichiro; Karasawa, Satoru; Koga, Noboru

    2008-01-01

    Described are trends of the development in the title since those agents with target properties are awaited for specific organ and regional MRI. The contrast agents alter the relaxation time of water proton to yield the enhanced contrast between organs and tissues with different water volumes. Nowadays Gd-complexes and nano-particle of superparamagnetic iron oxide (Fe(III)) are widely used for enhancing in clinic. Among organic compounds with paramagnetic spin, those possessing nitroxide radical like TEMPO- and PROXYL-radicals have been subject to development by their derivatization. High spin molecules conceivably affect the relaxivity, which, however, is found smaller per spin of synthesized triplet complexes than doublet ones. This has lead to basic approach for molecules restricting water movement due to their hydrogen bond like DNA as a model, for introducing many radicals in high molecular weight compounds, and their polymer, as one of which authors have developed a derivative of hyperbranched polymer (HPS)-TEMPO having the similar relaxivity to gadolinium-diethylenetiamine pentaacetid acid (Gd-DTPA) (R.T.)

  16. Self-Assembled Nanomicelles as MRI Blood-Pool Contrast Agent.

    Science.gov (United States)

    Babič, Andrej; Vorobiev, Vassily; Xayaphoummine, Céline; Lapicorey, Gaëlle; Chauvin, Anne-Sophie; Helm, Lothar; Allémann, Eric

    2018-01-26

    Gadolinium-loaded nanomicelles show promise as future magnetic resonance imaging (MRI) contrast agents (CAs). Their increased size and high gadolinium (Gd) loading gives them an edge in proton relaxivity over smaller molecular Gd-complexes. Their size and stealth properties are fundamental for their long blood residence time, opening the possibility for use as blood-pool contrast agents. Using l-tyrosine as a three-functional scaffold we synthesized a nanostructure building block 8. The double C18 aliphatic chain on one side, Gd-1,4,7,10-tetraazacyclododecane-1-4-7-triacetic acid (Gd-DO3A) with access to bulk water in the center and 2 kDa PEG on the hydrophilic side gave the amphiphilic properties required for the core-shell nanomicellar architecture. The self-assembly into Gd-loaded monodispersed 10-20 nm nanomicelles occurred spontaneously in water. These nanomicelles (Tyr-MRI) display very high relaxivity at 29 mm -1  s -1 at low field strength and low cytotoxicity. Good contrast enhancement of the blood vessels and the heart together with prolonged circulation time in vivo, makes Tyr-MRI an excellent candidate for a new supramolecular blood-pool MRI CA. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Contrast enhanced liver MRI in patients with primary sclerosing cholangitis: inverse appearance of focal confluent fibrosis on delayed phase MR images with hepatocyte specific versus extracellular gadolinium based contrast agents.

    Science.gov (United States)

    Husarik, Daniela B; Gupta, Rajan T; Ringe, Kristina I; Boll, Daniel T; Merkle, Elmar M

    2011-12-01

    To assess the enhancement pattern of focal confluent fibrosis (FCF) on contrast-enhanced hepatic magnetic resonance imaging (MRI) using hepatocyte-specific (Gd-EOB-DTPA) and extracellular (ECA) gadolinium-based contrast agents in patients with primary sclerosing cholangitis (PSC). After institutional review board approval, 10 patients with PSC (6 male, 4 female; 33-61 years) with 13 FCF were included in this retrospective study. All patients had a Gd-EOB-DTPA-enhanced liver MRI exam, and a comparison ECA-enhanced MRI. On each T1-weighted dynamic dataset, the signal intensity (SI) of FCF and the surrounding liver as well as the paraspinal muscle (M) were measured. In the Gd-EOB-DTPA group, hepatocyte phase images were also included. SI FCF/SI M, SI liver/SI M, and [(SI liver - SI FCF)/SI liver] were compared between the different contrast agents for each dynamic phase using the paired Student's t-test. There was no significant difference in SI FCF/SI M in all imaging phases. SI liver/SI M was significantly higher for the Gd-EOB-DTPA group in the delayed phase (P DTPA group, mean [(SI liver - SI FCF)/SI liver] were as follows (values for ECA group in parentheses): unenhanced phase: 0.26 (0.26); arterial phase: 0.01 (-0.31); portal venous phase (PVP): -0.05 (-0.26); delayed phase (DP): 0.14 (-0.54); and hepatocyte phase: 0.26. Differences were significant for the DP (P DTPA-enhanced images. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.

  18. Synergistic enhancement of iron oxide nanoparticle and gadolinium for dual-contrast MRI

    International Nuclear Information System (INIS)

    Zhang, Fan; Huang, Xinglu; Qian, Chunqi; Zhu, Lei; Hida, Naoki; Niu, Gang; Chen, Xiaoyuan

    2012-01-01

    Highlights: ► MR contrast agents exert influence on T 1 or T 2 relaxation time of the surrounding tissue. ► Combined use of iron oxide and Gd-DTPA can improve the sensitivity/specificity of lesion detection. ► Dual contrast MRI enhances the delineation of tumor borders and small lesions. ► The effect of DC-MRI can come from the high paramagnetic susceptibility of Gd 3+ . ► The effect of DC-MRI can also come from the distinct pharmacokinetic distribution of SPIO and Gd-DTPA. -- Abstract: Purpose: The use of MR contrast agents allows accurate diagnosis by exerting an influence on the longitudinal (T 1 ) or transverse (T 2 ) relaxation time of the surrounding tissue. In this study, we combined the use of iron oxide (IO) particles and nonspecific extracellular gadolinium chelate (Gd) in order to further improve the sensitivity and specificity of lesion detection. Procedures: With a 7-Tesla scanner, pre-contrasted, IO-enhanced and dual contrast agent enhanced MRIs were performed in phantom, normal animals, and animal models of lymph node tumor metastases and orthotopic brain tumor. For the dual-contrast (DC) MRI, we focused on the evaluation of T 2 weighted DC MRI with IO administered first, then followed by the injection of a bolus of gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA). Results: Based on the C/N ratios and MRI relaxometry, the synergistic effect of coordinated administration of Gd-DTPA and IO was observed and confirmed in phantom, normal liver and tumor models. At 30 min after administration of Feridex, Gd-DTPA further decreased T 2 relaxation in liver immediately after the injection. Additional administration of Gd-DTPA also immediately increased the signal contrast between tumor and brain parenchyma and maximized the C/N ratio to −4.12 ± 0.71. Dual contrast MRI also enhanced the delineation of tumor borders and small lesions. Conclusions: DC-MRI will be helpful to improve diagnostic accuracy and decrease the threshold size for

  19. Contrast-enhanced peripheral MRA. Technique and contrast agents

    International Nuclear Information System (INIS)

    Nielsen, Yousef W.; Thomsen, Henrik S.

    2012-01-01

    In the last decade contrast-enhanced magnetic resonance angiography (CE-MRA) has gained wide acceptance as a valuable tool in the diagnostic work-up of patients with peripheral arterial disease. This review presents current concepts in peripheral CE-MRA with emphasis on MRI technique and contrast agents. Peripheral CE-MRA is defined as an MR angiogram of the arteries from the aortic bifurcation to the feet. Advantages of CE-MRA include minimal invasiveness and lack of ionizing radiation. The basic technique employed for peripheral CE-MRA is the bolus-chase method. With this method a paramagnetic MRI contrast agent is injected intravenously and T1-weighted images are acquired in the subsequent arterial first-pass phase. In order to achieve high quality MR angiograms without interfering venous contamination or artifacts, a number of factors need to be taken into account. This includes magnetic field strength of the MRI system, receiver coil configuration, use of parallel imaging, contrast bolus timing technique, and k-space filling strategies. Furthermore, it is possible to optimize peripheral CE-MRA using venous compression techniques, hybrid scan protocols, time-resolved imaging, and steady-state MRA. Gadolinium(Gd)-based contrast agents are used for CE-MRA of the peripheral arteries. Extracellular Gd agents have a pharmacokinetic profile similar to iodinated contrast media. Accordingly, these agents are employed for first-pass MRA. Blood-pool Gd-based agents are characterized by prolonged intravascular stay, due to macromolecular structure or protein binding. These agents can be used for first-pass, as well as steady-state MRA. Some Gd-based contrast agents with low thermodynamic stability have been linked to development of nephrogenic systemic fibrosis in patients with severe renal insufficiency. Using optimized technique and a stable MRI contrast agent, peripheral CE-MRA is a safe procedure with diagnostic accuracy close to that of conventional catheter X

  20. Preclinical evaluation of Gd-DTPA and gadomelitol as contrast agents in DCE-MRI of cervical carcinoma interstitial fluid pressure

    Directory of Open Access Journals (Sweden)

    Hompland Tord

    2012-11-01

    Full Text Available Abstract Background High interstitial fluid pressure (IFP in the primary tumor is associated with poor disease-free survival in locally advanced cervical carcinoma. A noninvasive assay is needed to identify cervical cancer patients with highly elevated tumor IFP because these patients may benefit from particularly aggressive treatment. It has been suggested that dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI with gadolinium diethylene-triamine penta-acetic acid (Gd-DTPA as contrast agent may provide useful information on the IFP of cervical carcinomas. In this preclinical study, we investigated whether DCE-MRI with contrast agents with higher molecular weights (MW than Gd-DTPA would be superior to Gd-DTPA-based DCE-MRI. Methods CK-160 human cervical carcinoma xenografts were subjected to DCE-MRI with Gd-DTPA (MW of 0.55 kDa or gadomelitol (MW of 6.5 kDa as contrast agent before tumor IFP was measured invasively with a Millar SPC 320 catheter. The DCE-MRI was carried out at a spatial resolution of 0.23 × 0.23 × 2.0 mm3 and a time resolution of 14 s by using a 1.5-T whole-body scanner and a slotted tube resonator transceiver coil constructed for mice. Parametric images were derived from the DCE-MRI recordings by using the Tofts iso-directional transport model and the Patlak uni-directional transport model. Results When gadomelitol was used as contrast agent, significant positive correlations were found between the parameters of both pharmacokinetic models and tumor IFP. On the other hand, significant correlations between DCE-MRI-derived parameters and IFP could not be detected with Gd-DTPA as contrast agent. Conclusion Gadomelitol is a superior contrast agent to Gd-DTPA in DCE-MRI of the IFP of CK-160 cervical carcinoma xenografts. Clinical studies attempting to develop DCE-MRI-based assays of the IFP of cervical carcinomas should involve contrast agents with higher MW than Gd-DTPA.

  1. Preclinical evaluation of Gd-DTPA and gadomelitol as contrast agents in DCE-MRI of cervical carcinoma interstitial fluid pressure.

    Science.gov (United States)

    Hompland, Tord; Ellingsen, Christine; Rofstad, Einar K

    2012-11-22

    High interstitial fluid pressure (IFP) in the primary tumor is associated with poor disease-free survival in locally advanced cervical carcinoma. A noninvasive assay is needed to identify cervical cancer patients with highly elevated tumor IFP because these patients may benefit from particularly aggressive treatment. It has been suggested that dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with gadolinium diethylene-triamine penta-acetic acid (Gd-DTPA) as contrast agent may provide useful information on the IFP of cervical carcinomas. In this preclinical study, we investigated whether DCE-MRI with contrast agents with higher molecular weights (MW) than Gd-DTPA would be superior to Gd-DTPA-based DCE-MRI. CK-160 human cervical carcinoma xenografts were subjected to DCE-MRI with Gd-DTPA (MW of 0.55 kDa) or gadomelitol (MW of 6.5 kDa) as contrast agent before tumor IFP was measured invasively with a Millar SPC 320 catheter. The DCE-MRI was carried out at a spatial resolution of 0.23 × 0.23 × 2.0 mm³ and a time resolution of 14 s by using a 1.5-T whole-body scanner and a slotted tube resonator transceiver coil constructed for mice. Parametric images were derived from the DCE-MRI recordings by using the Tofts iso-directional transport model and the Patlak uni-directional transport model. When gadomelitol was used as contrast agent, significant positive correlations were found between the parameters of both pharmacokinetic models and tumor IFP. On the other hand, significant correlations between DCE-MRI-derived parameters and IFP could not be detected with Gd-DTPA as contrast agent. Gadomelitol is a superior contrast agent to Gd-DTPA in DCE-MRI of the IFP of CK-160 cervical carcinoma xenografts. Clinical studies attempting to develop DCE-MRI-based assays of the IFP of cervical carcinomas should involve contrast agents with higher MW than Gd-DTPA.

  2. Preclinical evaluation of Gd-DTPA and gadomelitol as contrast agents in DCE-MRI of cervical carcinoma interstitial fluid pressure

    International Nuclear Information System (INIS)

    Hompland, Tord; Ellingsen, Christine; Rofstad, Einar K

    2012-01-01

    High interstitial fluid pressure (IFP) in the primary tumor is associated with poor disease-free survival in locally advanced cervical carcinoma. A noninvasive assay is needed to identify cervical cancer patients with highly elevated tumor IFP because these patients may benefit from particularly aggressive treatment. It has been suggested that dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with gadolinium diethylene-triamine penta-acetic acid (Gd-DTPA) as contrast agent may provide useful information on the IFP of cervical carcinomas. In this preclinical study, we investigated whether DCE-MRI with contrast agents with higher molecular weights (MW) than Gd-DTPA would be superior to Gd-DTPA-based DCE-MRI. CK-160 human cervical carcinoma xenografts were subjected to DCE-MRI with Gd-DTPA (MW of 0.55 kDa) or gadomelitol (MW of 6.5 kDa) as contrast agent before tumor IFP was measured invasively with a Millar SPC 320 catheter. The DCE-MRI was carried out at a spatial resolution of 0.23 × 0.23 × 2.0 mm 3 and a time resolution of 14 s by using a 1.5-T whole-body scanner and a slotted tube resonator transceiver coil constructed for mice. Parametric images were derived from the DCE-MRI recordings by using the Tofts iso-directional transport model and the Patlak uni-directional transport model. When gadomelitol was used as contrast agent, significant positive correlations were found between the parameters of both pharmacokinetic models and tumor IFP. On the other hand, significant correlations between DCE-MRI-derived parameters and IFP could not be detected with Gd-DTPA as contrast agent. Gadomelitol is a superior contrast agent to Gd-DTPA in DCE-MRI of the IFP of CK-160 cervical carcinoma xenografts. Clinical studies attempting to develop DCE-MRI-based assays of the IFP of cervical carcinomas should involve contrast agents with higher MW than Gd-DTPA

  3. Multiwalled carbon nanotube hybrids as MRI contrast agents

    Directory of Open Access Journals (Sweden)

    Nikodem Kuźnik

    2016-07-01

    Full Text Available Magnetic resonance imaging (MRI is one of the most commonly used tomography techniques in medical diagnosis due to the non-invasive character, the high spatial resolution and the possibility of soft tissue imaging. Contrast agents, such as gadolinium complexes and superparamagnetic iron oxides, are administered to spotlight certain organs and their pathologies. Many new models have been proposed that reduce side effects and required doses of these already clinically approved contrast agents. These new candidates often possess additional functionalities, e.g., the possibility of bioactivation upon action of particular stimuli, thus serving as smart molecular probes, or the coupling with therapeutic agents and therefore combining both a diagnostic and therapeutic role. Nanomaterials have been found to be an excellent scaffold for contrast agents, among which carbon nanotubes offer vast possibilities. The morphology of multiwalled carbon nanotubes (MWCNTs, their magnetic and electronic properties, the possibility of different functionalization and the potential to penetrate cell membranes result in a unique and very attractive candidate for a new MRI contrast agent. In this review we describe the different issues connected with MWCNT hybrids designed for MRI contrast agents, i.e., their synthesis and magnetic and dispersion properties, as well as both in vitro and in vivo behavior, which is important for diagnostic purposes. An introduction to MRI contrast agent theory is elaborated here in order to point to the specific expectations regarding nanomaterials. Finally, we propose a promising, general model of MWCNTs as MRI contrast agent candidates based on the studies presented here and supported by appropriate theories.

  4. Improved wrist pannus volume measurement from contrast-enhanced MRI in rheumatoid arthritis using shuffle transform.

    Science.gov (United States)

    Xanthopoulos, Emily; Hutchinson, Charles E; Adams, Judith E; Bruce, Ian N; Nash, Anthony F P; Holmes, Andrew P; Taylor, Christopher J; Waterton, John C

    2007-01-01

    Contrast-enhanced MRI is of value in assessing rheumatoid pannus in the hand, but the images are not always easy to quantitate. To develop and evaluate an improved measurement of volume of enhancing pannus (VEP) in the hand in human rheumatoid arthritis (RA). MR images of the hand and wrist were obtained for 14 patients with RA at 0, 1 and 13 weeks. Volume of enhancing pannus was measured on images created by subtracting precontrast T1-weighted images from contrast-enhanced T1-weighted images using a shuffle transformation technique. Maximum intensity projection (MIP) and 3D volume rendering of the images were used as a guide to identify the pannus and any contrast-enhanced veins. Visualisation of pannus was much improved following the shuffle transform. Between 0 weeks and 1 week, the mean value of the within-subject coefficient of variation (CoV) was 0.13 and the estimated total CoV was 0.15. There was no evidence of significant increased variability within the 13-week interval for the complete sample of patients. Volume of enhancing pannus can be measured reproducibly in the rheumatoid hand using 3D contrast-enhanced MRI and shuffle transform.

  5. Contrast agent enhanced pQCT of articular cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Kallioniemi, A S [Department of Physics, University of Kuopio, POB 1627, 70211 Kuopio (Finland); Jurvelin, J S [Department of Physics, University of Kuopio, POB 1627, 70211 Kuopio (Finland); Nieminen, M T [Department of Diagnostic Radiology, POB 50, 90029 OYS, Oulu University Hospital, Oulu (Finland); Lammi, M J [Department of Anatomy, Institute of Biomedicine, University of Kuopio, POB 1627, 70211 Kuopio (Finland); Toeyraes, J [Department of Physics, University of Kuopio, POB 1627, 70211 Kuopio (Finland)

    2007-02-21

    The delayed gadolinium enhanced MRI of cartilage (dGEMRIC) technique is the only non-invasive means to estimate proteoglycan (PG) content in articular cartilage. In dGEMRIC, the anionic paramagnetic contrast agent gadopentetate distributes in inverse relation to negatively charged PGs, leading to a linear relation between T{sub 1,Gd} and spatial PG content in tissue. In the present study, for the first time, contrast agent enhanced peripheral quantitative computed tomography (pQCT) was applied, analogously to dGEMRIC, for the quantitative detection of spatial PG content in cartilage. The suitability of two anionic radiographic contrast agents, gadopentetate and ioxaglate, to detect enzymatically induced PG depletion in articular cartilage was investigated. First, the interrelationships of x-ray absorption, as measured with pQCT, and the contrast agent solution concentration were investigated. Optimal contrast agent concentrations for the following experiments were selected. Second, diffusion rates for both contrast agents were investigated in intact (n = 3) and trypsin-degraded (n 3) bovine patellar cartilage. The contrast agent concentration of the cartilaginous layer was measured prior to and 2-27 h after immersion. Optimal immersion time for the further experiments was selected. Third, the suitability of gadopentetate and ioxaglate enhanced pQCT to detect the enzymatically induced specific PG depletion was investigated by determining the contrast agent concentrations and uronic acid and water contents in digested and intact osteochondral samples (n = 16). After trypsin-induced PG loss (-70%, p < 0.05) the penetration of gadopentetate and ioxaglate increased (p < 0.05) by 34% and 48%, respectively. Gadopentetate and ioxaglate concentrations both showed strong correlation (r = -0.95, r -0.94, p < 0.01, respectively) with the uronic acid content. To conclude, contrast agent enhanced pQCT provides a technique to quantify PG content in normal and experimentally

  6. Contrast agent enhanced pQCT of articular cartilage

    Science.gov (United States)

    Kallioniemi, A. S.; Jurvelin, J. S.; Nieminen, M. T.; Lammi, M. J.; Töyräs, J.

    2007-02-01

    The delayed gadolinium enhanced MRI of cartilage (dGEMRIC) technique is the only non-invasive means to estimate proteoglycan (PG) content in articular cartilage. In dGEMRIC, the anionic paramagnetic contrast agent gadopentetate distributes in inverse relation to negatively charged PGs, leading to a linear relation between T1,Gd and spatial PG content in tissue. In the present study, for the first time, contrast agent enhanced peripheral quantitative computed tomography (pQCT) was applied, analogously to dGEMRIC, for the quantitative detection of spatial PG content in cartilage. The suitability of two anionic radiographic contrast agents, gadopentetate and ioxaglate, to detect enzymatically induced PG depletion in articular cartilage was investigated. First, the interrelationships of x-ray absorption, as measured with pQCT, and the contrast agent solution concentration were investigated. Optimal contrast agent concentrations for the following experiments were selected. Second, diffusion rates for both contrast agents were investigated in intact (n = 3) and trypsin-degraded (n = 3) bovine patellar cartilage. The contrast agent concentration of the cartilaginous layer was measured prior to and 2-27 h after immersion. Optimal immersion time for the further experiments was selected. Third, the suitability of gadopentetate and ioxaglate enhanced pQCT to detect the enzymatically induced specific PG depletion was investigated by determining the contrast agent concentrations and uronic acid and water contents in digested and intact osteochondral samples (n = 16). After trypsin-induced PG loss (-70%, p < 0.05) the penetration of gadopentetate and ioxaglate increased (p < 0.05) by 34% and 48%, respectively. Gadopentetate and ioxaglate concentrations both showed strong correlation (r = -0.95, r = -0.94, p < 0.01, respectively) with the uronic acid content. To conclude, contrast agent enhanced pQCT provides a technique to quantify PG content in normal and experimentally

  7. Contrast agent enhanced pQCT of articular cartilage

    International Nuclear Information System (INIS)

    Kallioniemi, A S; Jurvelin, J S; Nieminen, M T; Lammi, M J; Toeyraes, J

    2007-01-01

    The delayed gadolinium enhanced MRI of cartilage (dGEMRIC) technique is the only non-invasive means to estimate proteoglycan (PG) content in articular cartilage. In dGEMRIC, the anionic paramagnetic contrast agent gadopentetate distributes in inverse relation to negatively charged PGs, leading to a linear relation between T 1,Gd and spatial PG content in tissue. In the present study, for the first time, contrast agent enhanced peripheral quantitative computed tomography (pQCT) was applied, analogously to dGEMRIC, for the quantitative detection of spatial PG content in cartilage. The suitability of two anionic radiographic contrast agents, gadopentetate and ioxaglate, to detect enzymatically induced PG depletion in articular cartilage was investigated. First, the interrelationships of x-ray absorption, as measured with pQCT, and the contrast agent solution concentration were investigated. Optimal contrast agent concentrations for the following experiments were selected. Second, diffusion rates for both contrast agents were investigated in intact (n = 3) and trypsin-degraded (n 3) bovine patellar cartilage. The contrast agent concentration of the cartilaginous layer was measured prior to and 2-27 h after immersion. Optimal immersion time for the further experiments was selected. Third, the suitability of gadopentetate and ioxaglate enhanced pQCT to detect the enzymatically induced specific PG depletion was investigated by determining the contrast agent concentrations and uronic acid and water contents in digested and intact osteochondral samples (n = 16). After trypsin-induced PG loss (-70%, p < 0.05) the penetration of gadopentetate and ioxaglate increased (p < 0.05) by 34% and 48%, respectively. Gadopentetate and ioxaglate concentrations both showed strong correlation (r = -0.95, r -0.94, p < 0.01, respectively) with the uronic acid content. To conclude, contrast agent enhanced pQCT provides a technique to quantify PG content in normal and experimentally degraded

  8. Quantitative evaluation of contrast agent uptake in standard fat-suppressed dynamic contrast-enhanced MRI examinations of the breast.

    Science.gov (United States)

    Kousi, Evanthia; Smith, Joely; Ledger, Araminta E; Scurr, Erica; Allen, Steven; Wilson, Robin M; O'Flynn, Elizabeth; Pope, Romney J E; Leach, Martin O; Schmidt, Maria A

    2018-01-01

    To propose a method to quantify T 1 and contrast agent uptake in breast dynamic contrast-enhanced (DCE) examinations undertaken with standard clinical fat-suppressed MRI sequences and to demonstrate the proposed approach by comparing the enhancement characteristics of lobular and ductal carcinomas. A standard fat-suppressed DCE of the breast was performed at 1.5 T (Siemens Aera), followed by the acquisition of a proton density (PD)-weighted sequence, also fat suppressed. Both sequences were characterized with test objects (T 1 ranging from 30 ms to 2,400 ms) and calibration curves were obtained to enable T 1 calculation. The reproducibility and accuracy of the calibration curves were also investigated. Healthy volunteers and patients were scanned with Ethics Committee approval. The effect of B 0 field inhomogeneity was assessed in test objects and healthy volunteers. The T 1 of breast tumors was calculated at different time points (pre-, peak-, and post-contrast agent administration) for 20 patients, pre-treatment (10 lobular and 10 ductal carcinomas) and the two cancer types were compared (Wilcoxon rank-sum test). The calibration curves proved to be highly reproducible (coefficient of variation under 10%). T 1 measurements were affected by B 0 field inhomogeneity, but frequency shifts below 50 Hz introduced only 3% change to fat-suppressed T 1 measurements of breast parenchyma in volunteers. The values of T 1 measured pre-, peak-, and post-contrast agent administration demonstrated that the dynamic range of the DCE sequence was correct, that is, image intensity is approximately directly proportional to 1/T 1 for that range. Significant differences were identified in the width of the distributions of the post-contrast T 1 values between lobular and ductal carcinomas (P contrast T 1 values, potentially related to their infiltrative growth pattern. This work has demonstrated the feasibility of fat-suppressed T 1 measurements as a tool for clinical studies. The

  9. A biomarker-responsive T2ex MRI contrast agent.

    Science.gov (United States)

    Daryaei, Iman; Randtke, Edward A; Pagel, Mark D

    2017-04-01

    This study investigated a fundamentally new type of responsive MRI contrast agent for molecular imaging that alters T 2 exchange (T 2ex ) properties after interacting with a molecular biomarker. The contrast agent Tm-DO3A-oAA was treated with nitric oxide (NO) and O 2 . The R 1 and R 2 relaxation rates of the reactant and product were measured with respect to concentration, temperature, and pH. Chemical exchange saturation transfer (CEST) spectra of the reactant and product were acquired using a 7 Tesla (T) MRI scanner and analyzed to estimate the chemical exchange rates and r 2ex relaxivities. The reaction of Tm-DO3A-oAA with NO and O 2 caused a 6.4-fold increase in the r 2 relaxivity of the agent, whereas r 1 relaxivity remained unchanged, which demonstrated that Tm-DO3A-oAA is a responsive T 2ex agent. The effects of pH and temperature on the r 2 relaxivities of the reactant and product supported the conclusion that the product's benzimidazole ligand caused the agent to have a fast chemical exchange rate relative to the slow exchange rate of the reactant's ortho-aminoanilide ligand. T 2ex MRI contrast agents are a new type of responsive agent that have good detection sensitivity and specificity for detecting a biomarker, which can serve as a new tool for molecular imaging. Magn Reson Med 77:1665-1670, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  10. Design, synthesis, and evaluation of VEGFR-targeted macromolecular MRI contrast agent based on biotin–avidin-specific binding

    Science.gov (United States)

    Liu, Yongjun; Wu, Xiaoyun; Sun, Xiaohe; Wang, Dan; Zhong, Ying; Jiang, Dandan; Wang, Tianqi; Yu, Dexin; Zhang, Na

    2017-01-01

    Developing magnetic resonance imaging (MRI) contrast agents with high relaxivity and specificity was essential to increase MRI diagnostic sensitivity and accuracy. In this study, the MRI contrast agent, vascular endothelial growth factor receptor (VEGFR)-targeted poly (l-lysine) (PLL)-diethylene triamine pentacetate acid (DTPA)-gadolinium (Gd) (VEGFR-targeted PLL-DTPA-Gd, VPDG), was designed and prepared to enhance the MRI diagnosis capacity of tumor. Biotin-PLL-DTPA-Gd was synthesized first, then, VEGFR antibody was linked to biotin-PLL-DTPA-Gd using biotin–avidin reaction. In vitro cytotoxicity study results showed that VPDG had low toxicity to MCF-7 cells and HepG2 cells at experimental concentrations. In cell uptake experiments, VPDG could significantly increase the internalization rates (61.75%±5.22%) in VEGFR-positive HepG2 cells compared to PLL-DTPA-Gd (PDG) (25.16%±4.71%, P<0.05). In MRI studies in vitro, significantly higher T1 relaxivity (14.184 mM−1 s−1) was observed compared to Magnevist® (4.9 mM−1 s−1; P<0.01). Furthermore, in vivo MRI study results showed that VPDG could significantly enhance the tumor signal intensity and prolong the diagnostic time (from <1 h to 2.5 h). These results indicated that macromolecular VPDG was a promising MRI contrast agent and held great potential for molecular diagnosis of tumor. PMID:28765707

  11. Dual Contrast - Magnetic Resonance Fingerprinting (DC-MRF): A Platform for Simultaneous Quantification of Multiple MRI Contrast Agents.

    Science.gov (United States)

    Anderson, Christian E; Donnola, Shannon B; Jiang, Yun; Batesole, Joshua; Darrah, Rebecca; Drumm, Mitchell L; Brady-Kalnay, Susann M; Steinmetz, Nicole F; Yu, Xin; Griswold, Mark A; Flask, Chris A

    2017-08-16

    Injectable Magnetic Resonance Imaging (MRI) contrast agents have been widely used to provide critical assessments of disease for both clinical and basic science imaging research studies. The scope of available MRI contrast agents has expanded over the years with the emergence of molecular imaging contrast agents specifically targeted to biological markers. Unfortunately, synergistic application of more than a single molecular contrast agent has been limited by MRI's ability to only dynamically measure a single agent at a time. In this study, a new Dual Contrast - Magnetic Resonance Fingerprinting (DC - MRF) methodology is described that can detect and independently quantify the local concentration of multiple MRI contrast agents following simultaneous administration. This "multi-color" MRI methodology provides the opportunity to monitor multiple molecular species simultaneously and provides a practical, quantitative imaging framework for the eventual clinical translation of molecular imaging contrast agents.

  12. Fe Core–Carbon Shell Nanoparticles as Advanced MRI Contrast Enhancer

    Directory of Open Access Journals (Sweden)

    Rakesh P. Chaudhary

    2017-10-01

    Full Text Available The aim of this study is to fabricate a hybrid composite of iron (Fe core–carbon (C shell nanoparticles with enhanced magnetic properties for contrast enhancement in magnetic resonance imaging (MRI. These new classes of magnetic core–shell nanoparticles are synthesized using a one-step top–down approach through the electric plasma discharge generated in the cavitation field in organic solvents by an ultrasonic horn. Transmission electron microscopy (TEM observations revealed the core–shell nanoparticles with 10–85 nm in diameter with excellent dispersibility in water without any agglomeration. TEM showed the structural confirmation of Fe nanoparticles with body centered cubic (bcc crystal structure. Magnetic multi-functional hybrid composites of Fe core–C shell nanoparticles were then evaluated as negative MRI contrast agents, displaying remarkably high transverse relaxivity (r2 of 70 mM−1·S−1 at 7 T. This simple one-step synthesis procedure is highly versatile and produces desired nanoparticles with high efficacy as MRI contrast agents and potential utility in other biomedical applications.

  13. Biocompatible Nanocomplexes for Molecular Targeted MRI Contrast Agent

    Science.gov (United States)

    Chen, Zhijin; Yu, Dexin; Wang, Shaojie; Zhang, Na; Ma, Chunhong; Lu, Zaijun

    2009-07-01

    Accurate diagnosis in early stage is vital for the treatment of Hepatocellular carcinoma. The aim of this study was to investigate the potential of poly lactic acid-polyethylene glycol/gadolinium-diethylenetriamine-pentaacetic acid (PLA-PEG/Gd-DTPA) nanocomplexes using as biocompatible molecular magnetic resonance imaging (MRI) contrast agent. The PLA-PEG/Gd-DTPA nanocomplexes were obtained using self-assembly nanotechnology by incubation of PLA-PEG nanoparticles and the commercial contrast agent, Gd-DTPA. The physicochemical properties of nanocomplexes were measured by atomic force microscopy and photon correlation spectroscopy. The T1-weighted MR images of the nanocomplexes were obtained in a 3.0 T clinical MR imager. The stability study was carried out in human plasma and the distribution in vivo was investigated in rats. The mean size of the PLA-PEG/Gd-DTPA nanocomplexes was 187.9 ± 2.30 nm, and the polydispersity index was 0.108, and the zeta potential was -12.36 ± 3.58 mV. The results of MRI test confirmed that the PLA-PEG/Gd-DTPA nanocomplexes possessed the ability of MRI, and the direct correlation between the MRI imaging intensities and the nano-complex concentrations was observed ( r = 0.987). The signal intensity was still stable within 2 h after incubation of the nanocomplexes in human plasma. The nanocomplexes gave much better image contrast effects and longer stagnation time than that of commercial contrast agent in rat liver. A dose of 0.04 mmol of gadolinium per kilogram of body weight was sufficient to increase the MRI imaging intensities in rat livers by five-fold compared with the commercial Gd-DTPA. PLA-PEG/Gd-DTPA nanocomplexes could be prepared easily with small particle sizes. The nanocomplexes had high plasma stability, better image contrast effect, and liver targeting property. These results indicated that the PLA-PEG/Gd-DTPA nanocomplexes might be potential as molecular targeted imaging contrast agent.

  14. Biocompatible Nanocomplexes for Molecular Targeted MRI Contrast Agent

    Directory of Open Access Journals (Sweden)

    Yu Dexin

    2009-01-01

    Full Text Available Abstract Accurate diagnosis in early stage is vital for the treatment of Hepatocellular carcinoma. The aim of this study was to investigate the potential of poly lactic acid–polyethylene glycol/gadolinium–diethylenetriamine-pentaacetic acid (PLA–PEG/Gd–DTPA nanocomplexes using as biocompatible molecular magnetic resonance imaging (MRI contrast agent. The PLA–PEG/Gd–DTPA nanocomplexes were obtained using self-assembly nanotechnology by incubation of PLA–PEG nanoparticles and the commercial contrast agent, Gd–DTPA. The physicochemical properties of nanocomplexes were measured by atomic force microscopy and photon correlation spectroscopy. The T1-weighted MR images of the nanocomplexes were obtained in a 3.0 T clinical MR imager. The stability study was carried out in human plasma and the distribution in vivo was investigated in rats. The mean size of the PLA–PEG/Gd–DTPA nanocomplexes was 187.9 ± 2.30 nm, and the polydispersity index was 0.108, and the zeta potential was −12.36 ± 3.58 mV. The results of MRI test confirmed that the PLA–PEG/Gd–DTPA nanocomplexes possessed the ability of MRI, and the direct correlation between the MRI imaging intensities and the nano-complex concentrations was observed (r = 0.987. The signal intensity was still stable within 2 h after incubation of the nanocomplexes in human plasma. The nanocomplexes gave much better image contrast effects and longer stagnation time than that of commercial contrast agent in rat liver. A dose of 0.04 mmol of gadolinium per kilogram of body weight was sufficient to increase the MRI imaging intensities in rat livers by five-fold compared with the commercial Gd–DTPA. PLA–PEG/Gd–DTPA nanocomplexes could be prepared easily with small particle sizes. The nanocomplexes had high plasma stability, better image contrast effect, and liver targeting property. These results indicated that the PLA–PEG/Gd–DTPA nanocomplexes might be potential as molecular

  15. An open source, 3D printed preclinical MRI phantom for repeated measures of contrast agents and reference standards.

    Science.gov (United States)

    Cox, B L; Ludwig, K D; Adamson, E B; Eliceiri, K W; Fain, S B

    2018-03-01

    In medical imaging, clinicians, researchers and technicians have begun to use 3D printing to create specialized phantoms to replace commercial ones due to their customizable and iterative nature. Presented here is the design of a 3D printed open source, reusable magnetic resonance imaging (MRI) phantom, capable of flood-filling, with removable samples for measurements of contrast agent solutions and reference standards, and for use in evaluating acquisition techniques and image reconstruction performance. The phantom was designed using SolidWorks, a computer-aided design software package. The phantom consists of custom and off-the-shelf parts and incorporates an air hole and Luer Lock system to aid in flood filling, a marker for orientation of samples in the filled mode and bolt and tube holes for assembly. The cost of construction for all materials is under $90. All design files are open-source and available for download. To demonstrate utility, B 0 field mapping was performed using a series of gadolinium concentrations in both the unfilled and flood-filled mode. An excellent linear agreement (R 2 >0.998) was observed between measured relaxation rates (R 1 /R 2 ) and gadolinium concentration. The phantom provides a reliable setup to test data acquisition and reconstruction methods and verify physical alignment in alternative nuclei MRI techniques (e.g. carbon-13 and fluorine-19 MRI). A cost-effective, open-source MRI phantom design for repeated quantitative measurement of contrast agents and reference standards in preclinical research is presented. Specifically, the work is an example of how the emerging technology of 3D printing improves flexibility and access for custom phantom design.

  16. MRI contrast enhancement using Magnetic Carbon Nanoparticles

    Science.gov (United States)

    Chaudhary, Rakesh P.; Kangasniemi, Kim; Takahashi, Masaya; Mohanty, Samarendra K.; Koymen, Ali R.; Department of Physics, University of Texas at Arlington Team; University of Texas Southwestern Medical Center Team

    2014-03-01

    In recent years, nanotechnology has become one of the most exciting forefront fields in cancer diagnosis and therapeutics such as drug delivery, thermal therapy and detection of cancer. Here, we report development of core (Fe)-shell (carbon) nanoparticles with enhanced magnetic properties for contrast enhancement in MRI imaging. These new classes of magnetic carbon nanoparticles (MCNPs) are synthesized using a bottom-up approach in various organic solvents, using the electric plasma discharge generated in the cavitation field of an ultrasonic horn. Gradient echo MRI images of well-dispersed MCNP-solutions (in tube) were acquired. For T2 measurements, a multi echo spin echo sequence was performed. From the slope of the 1/T2 versus concentration plot, the R2 value for different CMCNP-samples was measured. Since MCNPs were found to be extremely non-reactive, and highly absorbing in NIR regime, development of carbon-based MRI contrast enhancement will allow its simultaneous use in biomedical applications. We aim to localize the MCNPs in targeted tissue regions by external DC magnetic field, followed by MRI imaging and subsequent photothermal therapy.

  17. Superparamagnetic Bifunctional Bisphosphonates Nanoparticles: A Potential MRI Contrast Agent for Osteoporosis Therapy and Diagnostic

    Directory of Open Access Journals (Sweden)

    Y. Lalatonne

    2010-01-01

    Full Text Available A bone targeting nanosystem is reported here which combined magnetic contrast agent for Magnetic Resonance Imaging (MRI and a therapeutic agent (bisphosphonates into one drug delivery system. This new targeting nanoplatform consists of superparamagnetic γFe2O3 nanoparticles conjugated to 1,5-dihydroxy-1,5,5-tris-phosphono-pentyl-phosphonic acid (di-HMBPs molecules with a bisphosphonate function at the outer of the nanoparticle surface for bone targeting. The as-synthesized nanoparticles were evaluated as a specific MRI contrast agent by adsorption study onto hydroxyapatite and MRI measurment. The strong adsorption of the bisphosphonates nanoparticles to hydroxyapatite and their use as MRI T2∗ contrast agent were demonstrated. Cellular tests performed on human osteosarcoma cells (MG63 show that γFe2O3@di-HMBP hybrid nanomaterial has no citoxity effect in cell viability and may act as a diagnostic and therapeutic system.

  18. A Functional Iron Oxide Nanoparticles Modified with PLA-PEG-DG as Tumor-Targeted MRI Contrast Agent.

    Science.gov (United States)

    Xiong, Fei; Hu, Ke; Yu, Haoli; Zhou, Lijun; Song, Lina; Zhang, Yu; Shan, Xiuhong; Liu, Jianping; Gu, Ning

    2017-08-01

    Tumor targeting could greatly promote the performance of magnetic nanomaterials as MRI (Magnetic Resonance Imaging) agent for tumor diagnosis. Herein, we reported a novel magnetic nanoparticle modified with PLA (poly lactic acid)-PEG (polyethylene glycol)-DG (D-glucosamine) as Tumor-targeted MRI Contrast Agent. In this work, we took use of the D-glucose passive targeting on tumor cells, combining it on PLA-PEG through amide reaction, and then wrapped the PLA-PEG-DG up to the Fe 3 O 4 @OA NPs. The stability and anti phagocytosis of Fe 3 O 4 @OA@PLA-PEG-DG was tested in vitro; the MRI efficiency and toxicity was also detected in vivo. These functional magnetic nanoparticles demonstrated good biocompatibility and stability both in vitro and in vivo. Cell experiments showed that Fe 3 O 4 @OA@PLA-PEG-DG nanoparticles exist good anti phagocytosis and high targetability. In vivo MRI images showed that the contrast effect of Fe 3 O 4 @OA@PLA-PEG-DG nanoparticles prevailed over the commercial non tumor-targeting magnetic nanomaterials MRI agent at a relatively low dose. The DG can validly enhance the tumor-targetting effect of Fe 3 O 4 @OA@PLA-PEG nanoparticle. Maybe MRI agents with DG can hold promise as tumor-targetting development in the future.

  19. Design, synthesis, and evaluation of VEGFR-targeted macromolecular MRI contrast agent based on biotin–avidin-specific binding

    Directory of Open Access Journals (Sweden)

    Liu YJ

    2017-07-01

    Full Text Available Yongjun Liu,1 Xiaoyun Wu,1 Xiaohe Sun,1 Dan Wang,1 Ying Zhong,1 Dandan Jiang,1 Tianqi Wang,1 Dexin Yu,2 Na Zhang1 1School of Pharmaceutical Science, Shandong University, 2Department of Radiology Medicine, Qilu Hospital, Jinan, People’s Republic of China Abstract: Developing magnetic resonance imaging (MRI contrast agents with high relaxivity and specificity was essential to increase MRI diagnostic sensitivity and accuracy. In this study, the MRI contrast agent, vascular endothelial growth factor receptor (VEGFR-targeted poly (l-lysine (PLL-diethylene triamine pentacetate acid (DTPA-gadolinium (Gd (VEGFR-targeted PLL-DTPA-Gd, VPDG, was designed and prepared to enhance the MRI diagnosis capacity of tumor. Biotin-PLL-DTPA-Gd was synthesized first, then, VEGFR antibody was linked to biotin-PLL-DTPA-Gd using biotin–avidin reaction. In vitro cytotoxicity study results showed that VPDG had low toxicity to MCF-7 cells and HepG2 cells at experimental concentrations. In cell uptake experiments, VPDG could significantly increase the internalization rates (61.75%±5.22% in VEGFR-positive HepG2 cells compared to PLL-DTPA-Gd (PDG (25.16%±4.71%, P<0.05. In MRI studies in vitro, significantly higher T1 relaxivity (14.184 mM-1 s-1 was observed compared to Magnevist® (4.9 mM-1 s-1; P<0.01. Furthermore, in vivo MRI study results showed that VPDG could significantly enhance the tumor signal intensity and prolong the diagnostic time (from <1 h to 2.5 h. These results indicated that macromolecular VPDG was a promising MRI contrast agent and held great potential for molecular diagnosis of tumor. Keywords: MRI, contrast agent, VEGFR, biotin–avidin reaction, relaxivity

  20. Ex vivo assessment of polyol coated-iron oxide nanoparticles for MRI diagnosis applications: toxicological and MRI contrast enhancement effects

    Science.gov (United States)

    Bomati-Miguel, Oscar; Miguel-Sancho, Nuria; Abasolo, Ibane; Candiota, Ana Paula; Roca, Alejandro G.; Acosta, Milena; Schwartz, Simó; Arus, Carles; Marquina, Clara; Martinez, Gema; Santamaria, Jesus

    2014-03-01

    Polyol synthesis is a promising method to obtain directly pharmaceutical grade colloidal dispersion of superparamagnetic iron oxide nanoparticles (SPIONs). Here, we study the biocompatibility and performance as T2-MRI contrast agents (CAs) of high quality magnetic colloidal dispersions (average hydrodynamic aggregate diameter of 16-27 nm) consisting of polyol-synthesized SPIONs (5 nm in mean particle size) coated with triethylene glycol (TEG) chains (TEG-SPIONs), which were subsequently functionalized to carboxyl-terminated meso-2-3-dimercaptosuccinic acid (DMSA) coated-iron oxide nanoparticles (DMSA-SPIONs). Standard MTT assays on HeLa, U87MG, and HepG2 cells revealed that colloidal dispersions of TEG-coated iron oxide nanoparticles did not induce any loss of cell viability after 3 days incubation with dose concentrations below 50 μg Fe/ml. However, after these nanoparticles were functionalized with DMSA molecules, an increase on their cytotoxicity was observed, so that particles bearing free terminal carboxyl groups on their surface were not cytotoxic only at low concentrations (MRI studies in mice indicated that both types of coated-iron oxide nanoparticles produced higher negative T2-MRI contrast enhancement than that measured for a similar commercial T2-MRI CAs consisting in dextran-coated ultra-small iron oxide nanoparticles (Ferumoxtran-10). In conclusion, the above attributes make both types of as synthesized coated-iron oxide nanoparticles, but especially DMSA-SPIONs, promising candidates as T2-MRI CAs for nanoparticle-enhanced MRI diagnosis applications.

  1. Clinical evaluation of contrast-enhanced digital mammography and contrast enhanced tomosynthesis--Comparison to contrast-enhanced breast MRI.

    Science.gov (United States)

    Chou, Chen-Pin; Lewin, John M; Chiang, Chia-Ling; Hung, Bao-Hui; Yang, Tsung-Lung; Huang, Jer-Shyung; Liao, Jia-Bin; Pan, Huay-Ben

    2015-12-01

    To compare the diagnostic accuracy of contrast-enhanced digital mammography (CEDM) and contrast-enhanced tomosynthesis (CET) to dynamic contrast enhanced breast MRI (DCE-MRI) using a multireader-multicase study. Institutional review board approval and informed consents were obtained. Total 185 patients (mean age 51.3) with BI-RADS 4 or 5 lesions were evaluated before biopsy with mammography, tomosynthesis, CEDM, CET and DCE-MRI. Mediolateral-oblique and cranio-caudal views of the target breast CEDM and CET were acquired at 2 and 4 min after contrast agent injection. A mediolateral-oblique view of the non-target breast was taken at 6 min. Each lesion was scored with forced BI-RADS categories by three readers. Each reader interpreted lesions in the following order: mammography, tomosynthesis, CEDM, CET, and DCE-MRI during a single reading session. Histology showed 81 cancers and 144 benign lesions in the study. Of the 81 malignant lesions, 44% (36/81) were invasive and 56% (45/81) were non-invasive. Areas under the ROC curve, averaged for the 3 readers, were as follows: 0.897 for DCE-MRI, 0.892 for CET, 0.878 for CEDM, 0.784 for tomosynthesis and 0.740 for mammography. Significant differences in AUC were found between the group of contrast enhanced modalities (CEDM, CET, DCE-MRI) and the unenhanced modalities (all p0.05). CET and CEDM may be considered as an alternative modality to MRI for following up women with abnormal mammography. All three contrast modalities were superior in accuracy to conventional digital mammography with or without tomosynthesis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. New nontoxic double information magnetic and fluorescent MRI agent

    Energy Technology Data Exchange (ETDEWEB)

    Kublickas, Augustinas; Rastenien, Loreta; Bloznelytė-Plėšnienė, Laima; Karalius, Nerijus [Liquid Crystals Laboratory, Institute of Science and Technology, Lithuanian University of Educational Sciences (Lithuania); Franckevinius, Marius [Institute of Physics, Center for Physical Sciences and Technology (Lithuania); Loudos, George [Technological Educational Institute of Athens (Greece); Fahmi, Amir [Materials Science, Rhein-Waal University of Applied Sciences (Germany); Vaisnoras, Rimas [Liquid Crystals Laboratory, Institute of Science and Technology, Lithuanian University of Educational Sciences (Lithuania)

    2015-05-18

    Today sensitivity of the MRI is not enough compared to the nuclear methods, such as positron emission tomography and single photon emission computed tomography. Challenging its extension to the nanometre scale could provide a powerful new tool for the nanosciences and nanomedicine. To achieve this potential, innovative new detection strategies are required to overcome the severe sensitivity limitations of conventional inductive detection techniques. In this regard, we perform embodiment of nanodiamonds in dendrimer matrix as additional fluorescent optical and magnetic (together with Gd (III)) imaging modalities of the MRI. New hybrid system composed of dendrimer-gadolinium Gd (III) - nanodiamond as a new contrast agent for MRI was studied. Poly(propilene-imine) PPI and poly(amidoamine) PAMAM dendrimers with fixed size of nanocavities will be used as host material to protect organism against the toxicity and also to increase relaxivity of contrast agent (resulting in the increases MRI resolution). Nanodiamond as biocompatible platform to functionalize the contrast agent will be used. This bimodal hybrid system enables to use smaller amount of the contrast agent and could permit the decrease of the lateral toxicity. This bimodal hybrid system as MRI agent is providing double information (magnetic and fluorescent) about the damaged cell.

  3. New nontoxic double information magnetic and fluorescent MRI agent

    International Nuclear Information System (INIS)

    Kublickas, Augustinas; Rastenien, Loreta; Bloznelytė-Plėšnienė, Laima; Karalius, Nerijus; Franckevinius, Marius; Loudos, George; Fahmi, Amir; Vaisnoras, Rimas

    2015-01-01

    Today sensitivity of the MRI is not enough compared to the nuclear methods, such as positron emission tomography and single photon emission computed tomography. Challenging its extension to the nanometre scale could provide a powerful new tool for the nanosciences and nanomedicine. To achieve this potential, innovative new detection strategies are required to overcome the severe sensitivity limitations of conventional inductive detection techniques. In this regard, we perform embodiment of nanodiamonds in dendrimer matrix as additional fluorescent optical and magnetic (together with Gd (III)) imaging modalities of the MRI. New hybrid system composed of dendrimer-gadolinium Gd (III) - nanodiamond as a new contrast agent for MRI was studied. Poly(propilene-imine) PPI and poly(amidoamine) PAMAM dendrimers with fixed size of nanocavities will be used as host material to protect organism against the toxicity and also to increase relaxivity of contrast agent (resulting in the increases MRI resolution). Nanodiamond as biocompatible platform to functionalize the contrast agent will be used. This bimodal hybrid system enables to use smaller amount of the contrast agent and could permit the decrease of the lateral toxicity. This bimodal hybrid system as MRI agent is providing double information (magnetic and fluorescent) about the damaged cell.

  4. MRI-CEST assessment of tumour perfusion using X-ray iodinated agents: comparison with a conventional Gd-based agent

    Energy Technology Data Exchange (ETDEWEB)

    Anemone, Annasofia; Consolino, Lorena [Universita degli Studi di Torino, Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Torino (Italy); Longo, Dario Livio [Universita degli Studi di Torino, Istituto di Biostrutture e Bioimmagini (CNR) c/o Centro di Biotecnologie Molecolari, Torino (Italy)

    2017-05-15

    X-ray iodinated contrast media have been shown to generate contrast in MR images when used with the chemical exchange saturation transfer (CEST) approach. The aim of this study is to compare contrast enhancement (CE) capabilities and perfusion estimates between radiographic molecules and a Gd-based contrast agent in two tumour murine models with different vascularization patterns. MRI-CEST and MRI-CE T{sub 1w} images were acquired in murine TS/A and 4 T1 breast tumours upon sequential i.v. injection of iodinated contrast media (iodixanol, iohexol, and iopamidol) and of gadoteridol. The signal enhancements observed in the two acquisition modalities were evaluated using Pearson's correlation, and the correspondence in the spatial distribution was assessed by a voxelwise comparison. A significant, positive correlation was observed between iodinated contrast media and gadoteridol for tumour contrast enhancement and perfusion values for both tumour models (r = 0.51-0.62). High spatial correlations were observed in perfusion maps between iodinated molecules and gadoteridol (r = 0.68-0.86). Tumour parametric maps derived by iodinated contrast media and gadoteridol showed high spatial similarities. A good to strong spatial correlation between tumour perfusion parameters derived from MRI-CEST and MRI-CE modalities indicates that the two procedures provide similar information. (orig.)

  5. Accumulation of MRI contrast agents in malignant fibrous histiocytoma for gadolinium neutron capture therapy

    International Nuclear Information System (INIS)

    Fujimoto, T.; Ichikawa, H.; Akisue, T.; Fujita, I.; Kishimoto, K.; Hara, H.; Imabori, M.; Kawamitsu, H.; Sharma, P.; Brown, S.C.; Moudgil, B.M.; Fujii, M.; Yamamoto, T.; Kurosaka, M.; Fukumori, Y.

    2009-01-01

    Neutron-capture therapy with gadolinium (Gd-NCT) has therapeutic potential, especially that gadolinium is generally used as a contrast medium in magnetic resonance imaging (MRI). The accumulation of gadolinium in a human sarcoma cell line, malignant fibrosis histiocytoma (MFH) Nara-H, was visualized by the MRI system. The commercially available MRI contrast medium Gd-DTPA (Magnevist, dimeglumine gadopentetate aqueous solution) and the biodegradable and highly gadopentetic acid (Gd-DTPA)-loaded chitosan nanoparticles (Gd-nanoCPs) were prepared as MRI contrast agents. The MFH cells were cultured and collected into three falcon tubes that were set into the 3-tesra MRI system to acquire signal intensities from each pellet by the spin echo method, and the longitudinal relaxation time (T1) was calculated. The amount of Gd in the sample was measured by inductively coupled plasma atomic emission spectrography (ICP-AES). The accumulation of gadolinium in cells treated with Gd-nanoCPs was larger than that in cells treated with Gd-DTPA. In contrast, and compared with the control, Gd-DTPA was more effective than Gd-nanoCPs in reducing T1, suggesting that the larger accumulation exerted the adverse effect of lowering the enhancement of MRI. Further studies are warranted to gain insight into the therapeutic potential of Gd-NCT.

  6. EXCI-CEST: Exploiting pharmaceutical excipients as MRI-CEST contrast agents for tumor imaging.

    Science.gov (United States)

    Longo, Dario Livio; Moustaghfir, Fatima Zzahra; Zerbo, Alexandre; Consolino, Lorena; Anemone, Annasofia; Bracesco, Martina; Aime, Silvio

    2017-06-15

    Chemical Exchange Saturation Transfer (CEST) approach is a novel tool within magnetic resonance imaging (MRI) that allows visualization of molecules possessing exchangeable protons with water. Many molecules, employed as excipients for the formulation of finished drug products, are endowed with hydroxyl, amine or amide protons, thus can be exploitable as MRI-CEST contrast agents. Their high safety profiles allow them to be injected at very high doses. Here we investigated the MRI-CEST properties of several excipients (ascorbic acid, sucrose, N-acetyl-d-glucosamine, meglumine and 2-pyrrolidone) and tested them as tumor-detecting agents in two different murine tumor models (breast and melanoma cancers). All the investigated molecules showed remarkable CEST contrast upon i.v. administration in the range 1-3ppm according to the type of mobile proton groups. A marked increase of CEST contrast was observed in tumor regions up to 30min post injection. The combination of marked tumor contrast enhancement and lack of toxicity make these molecules potential candidates for the diagnosis of tumors within the MRI-CEST approach. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Connexin 43-targeted T1 contrast agent for MRI diagnosis of glioma.

    Science.gov (United States)

    Abakumova, Tatiana; Abakumov, Maxim; Shein, Sergey; Chelushkin, Pavel; Bychkov, Dmitry; Mukhin, Vladimir; Yusubalieva, Gaukhar; Grinenko, Nadezhda; Kabanov, Alexander; Nukolova, Natalia; Chekhonin, Vladimir

    2016-01-01

    Glioblastoma multiforme is the most aggressive form of brain tumor. Early and accurate diagnosis of glioma and its borders is an important step for its successful treatment. One of the promising targets for selective visualization of glioma and its margins is connexin 43 (Cx43), which is highly expressed in reactive astrocytes and migrating glioma cells. The purpose of this study was to synthesize a Gd-based contrast agent conjugated with specific antibodies to Cx43 for efficient visualization of glioma C6 in vivo. We have prepared stable nontoxic conjugates of monoclonal antibody to Cx43 and polylysine-DTPA ligands complexed with Gd(III), which are characterized by higher T1 relaxivity (6.5 mM(-1) s(-1) at 7 T) than the commercial agent Magnevist® (3.4 mM(-1) s(-1)). Cellular uptake of Cx43-specific T1 contrast agent in glioma C6 cells was more than four times higher than the nonspecific IgG-contrast agent, as detected by flow cytometry and confocal analysis. MRI experiments showed that the obtained agents could markedly enhance visualization of glioma C6 in vivo after their intravenous administration. Significant accumulation of Cx43-targeted contrast agents in glioma and the peritumoral zone led not only to enhanced contrast but also to improved detection of the tumor periphery. Fluorescence imaging confirmed notable accumulation of Cx43-specific conjugates in the peritumoral zone compared with nonspecific IgG conjugates at 24 h after intravenous injection. All these features of Cx43-targeted contrast agents might be useful for more precise diagnosis of glioma and its borders by MRI. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Diffusion properties of conventional and calcium-sensitive MRI contrast agents in the rat cerebral cortex.

    Science.gov (United States)

    Hagberg, Gisela E; Mamedov, Ilgar; Power, Anthony; Beyerlein, Michael; Merkle, Hellmut; Kiselev, Valerij G; Dhingra, Kirti; Kubìček, Vojtĕch; Angelovski, Goran; Logothetis, Nikos K

    2014-01-01

    Calcium-sensitive MRI contrast agents can only yield quantitative results if the agent concentration in the tissue is known. The agent concentration could be determined by diffusion modeling, if relevant parameters were available. We have established an MRI-based method capable of determining diffusion properties of conventional and calcium-sensitive agents. Simulations and experiments demonstrate that the method is applicable both for conventional contrast agents with a fixed relaxivity value and for calcium-sensitive contrast agents. The full pharmacokinetic time-course of gadolinium concentration estimates was observed by MRI before, during and after intracerebral administration of the agent, and the effective diffusion coefficient D* was determined by voxel-wise fitting of the solution to the diffusion equation. The method yielded whole brain coverage with a high spatial and temporal sampling. The use of two types of MRI sequences for sampling of the diffusion time courses was investigated: Look-Locker-based quantitative T(1) mapping, and T(1) -weighted MRI. The observation times of the proposed MRI method is long (up to 20 h) and consequently the diffusion distances covered are also long (2-4 mm). Despite this difference, the D* values in vivo were in agreement with previous findings using optical measurement techniques, based on observation times of a few minutes. The effective diffusion coefficient determined for the calcium-sensitive contrast agents may be used to determine local tissue concentrations and to design infusion protocols that maintain the agent concentration at a steady state, thereby enabling quantitative sensing of the local calcium concentration. Copyright © 2014 John Wiley & Sons, Ltd.

  9. Measurement of Murine Single-Kidney Glomerular Filtration Rate Using Dynamic Contrast-Enhanced MRI.

    Science.gov (United States)

    Jiang, Kai; Tang, Hui; Mishra, Prasanna K; Macura, Slobodan I; Lerman, Lilach O

    2018-06-01

    To develop and validate a method for measuring murine single-kidney glomerular filtration rate (GFR) using dynamic contrast-enhanced MRI (DCE-MRI). This prospective study was approved by the Institutional Animal Care and Use Committee. A fast longitudinal relaxation time (T 1 ) measurement method was implemented to capture gadolinium dynamics (1 s/scan), and a modified two-compartment model was developed to quantify GFR as well as renal perfusion using 16.4T MRI in mice 2 weeks after unilateral renal artery stenosis (RAS, n = 6) or sham (n = 8) surgeries. This approach was validated by comparing model-derived GFR and perfusion to those obtained by fluorescein isothiocyanante (FITC)-inulin clearance and arterial spin labeling (ASL), respectively, using the Pearson's and Spearman's rank correlations and Bland-Altman analysis. The compartmental model provided a good fitting to measured gadolinium dynamics in both normal and RAS kidneys. The proposed DCE-MRI method offered assessment of single-kidney GFR and perfusion, comparable to the FITC-inulin clearance (Pearson's correlation coefficient r = 0.95 and Spearman's correlation coefficient ρ = 0.94, P < 0.0001, and mean difference -7.0 ± 11.0 μL/min) and ASL (r = 0.92 and ρ = 0.84, P < 0.0001, and mean difference 4.4 ± 66.1 mL/100 g/min) methods. The proposed DCE-MRI method may be useful for reliable noninvasive measurements of single-kidney GFR and perfusion in mice. Magn Reson Med 79:2935-2943, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  10. Gadolinium-conjugated PLA-PEG nanoparticles as liver targeted molecular MRI contrast agent.

    Science.gov (United States)

    Chen, Zhijin; Yu, Dexin; Liu, Chunxi; Yang, Xiaoyan; Zhang, Na; Ma, Chunhong; Song, Jibin; Lu, Zaijun

    2011-09-01

    A nanoparticle magnetic resonance imaging (MRI) contrast agent targeted to liver was developed by conjugation of gadolinium (Gd) chelate groups onto the biocompatible poly(l-lactide)-block-poly (ethylene glycol) (PLA-PEG) nanoparticles. PLA-PEG conjugated with diethylenetriaminopentaacetic acid (DTPA) was used to formulate PLA-PEG-DTPA nanoparticles by solvent diffusion method, and then Gd was loaded onto the nanoparticles by chelated with the unfolding DTPA on the surface of the PLA-PEG-DTPA nanoparticles. The mean size of the nanoparticles was 265.9 ± 6.7 nm. The relaxivity of the Gd-labeled nanoparticles was measured, and the distribution in vivo was evaluated in rats. Compared with conventional contrast agent (Magnevist), the Gd-labeled PLA-PEG nanoparticles showed significant enhancement both on liver targeting ability and imaging signal intensity. The T(1) and T(2) relaxivities per [Gd] of the Gd-labeled nanoparticles was 18.865 mM(-1) s(-1) and 24.863 mM(-1) s(-1) at 3 T, respectively. In addition, the signal intensity in vivo was stronger comparing with the Gd-DTPA and the T(1) weight time was lasting for 4.5 h. The liver targeting efficiency of the Gd-labeled PLA-PEG nanoparticles in rats was 14.57 comparing with Magnevist injection. Therefore, the Gd-labeled nanoparticles showed the potential as targeting molecular MRI contrast agent for further clinical utilization.

  11. Design, synthesis, and evaluation of VEGFR-targeted macromolecular MRI contrast agent based on biotin-avidin-specific binding.

    Science.gov (United States)

    Liu, Yongjun; Wu, Xiaoyun; Sun, Xiaohe; Wang, Dan; Zhong, Ying; Jiang, Dandan; Wang, Tianqi; Yu, Dexin; Zhang, Na

    2017-01-01

    Developing magnetic resonance imaging (MRI) contrast agents with high relaxivity and specificity was essential to increase MRI diagnostic sensitivity and accuracy. In this study, the MRI contrast agent, vascular endothelial growth factor receptor (VEGFR)-targeted poly (l-lysine) (PLL)-diethylene triamine pentacetate acid (DTPA)-gadolinium (Gd) (VEGFR-targeted PLL-DTPA-Gd, VPDG), was designed and prepared to enhance the MRI diagnosis capacity of tumor. Biotin-PLL-DTPA-Gd was synthesized first, then, VEGFR antibody was linked to biotin-PLL-DTPA-Gd using biotin-avidin reaction. In vitro cytotoxicity study results showed that VPDG had low toxicity to MCF-7 cells and HepG2 cells at experimental concentrations. In cell uptake experiments, VPDG could significantly increase the internalization rates (61.75%±5.22%) in VEGFR-positive HepG2 cells compared to PLL-DTPA-Gd (PDG) (25.16%±4.71%, P contrast agent and held great potential for molecular diagnosis of tumor.

  12. Fabrication and evaluation of tumor-targeted positive MRI contrast agent based on ultrasmall MnO nanoparticles.

    Science.gov (United States)

    Huang, Haitao; Yue, Tao; Xu, Ke; Golzarian, Jafar; Yu, Jiahui; Huang, Jin

    2015-07-01

    Gd(III) chelate is currently used as positive magnetic resonance imaging (MRI) contrast agent in clinical diagnosis, but generally induces the risk of nephrogenic systemic fibrosis (NSF) due to the dissociated Gd(3+) from Gd(III) chelates. To develop a novel positive MRI contrast agent with low toxicity and high sensitivity, ultrasmall MnO nanoparticles were PEGylated via catechol-Mn chelation and conjugated with cRGD as active targeting function to tumor. Particularly, the MnO nanoparticles with a size of ca. 5nm were modified by α,β-poly(aspartic acid)-based graft polymer containing PEG and DOPA moieties and, meanwhile, conjugated with cRGD to produce the contrast agent with a size of ca. 100nm and a longitudinal relaxivity (r1) of 10.2mM(-1)S(-1). Such nanoscaled contrast agent integrated passive- and active-targeting function to tumor, and its efficient accumulation behavior in tumor was verified by in vivo distribution study. At the same time, the PEG moiety played a role of hydrophilic coating to improve the biocompatibility and stability under storing and physiological conditions, and especially might guarantee enough circulation time in blood. Moreover, in vivo MRI revealed a good and long-term effect of enhancing MRI signal for as-fabricated contrast agent while cell viability assay proved its acceptable cytotoxicity for MRI application. On the whole, the as-fabricated PEGylated and cRGD-functionalized contrast agent based on ultrasmall MnO nanoparticles showed a great potential to the T1-weighted MRI diagnosis of tumor. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  13. Micro-MRI at 11.7 T of a Murine Brain Tumor Model Using Delayed Contrast Enhancement

    Directory of Open Access Journals (Sweden)

    Rex A. Moats

    2003-07-01

    Full Text Available In vivo imaging methodologies allow for serial measurement of tumor size, circumventing the need for sacrificing mice at given time points. In orthotopically transplanted murine models of brain tumors, cross-section micro-MRI allows for visualization and measurement of the physically inaccessible tumors. To allow for long resident times of a contrast agent in the tumor, intraperitoneal administration was used as a route of injection for contrast-enhanced micro-MRI, and a simple method for relative tumor volume measurements was examined. A strategy for visualizing the variability of the delayed tumor enhancement was developed. These strategies were applied to monitor the growth of brain tumors xenotransplanted into nude mice and either treated with the antiangiogenic peptide EMD 121974 or an inactive control peptide. Each mouse was used as its own control. Serial imaging was done weekly, beginning at Day 7 after tumor cell implantation and continued for 7 weeks. Images obtained were reconstructed on the MRI instrument. The image files were transferred off line to be postprocessed to assess tumor growth (volume and variability in enhancement (three-dimensional [3-D] intensity models. In a small study, tumor growth and response to treatment were followed using this methodology and the high-resolution images displayed in 3-D allowed for straightforward qualitative assessment of variable enhancement related to vascular factors and tumor age.

  14. Multiple renal aspergillus abscesses in an AIDS patient: contrast-enhanced helical CT and MRI findings

    International Nuclear Information System (INIS)

    Heussel, C.P.; Kauczor, H.U.; Thelen, M.; Heussel, G.; Jahn, B.

    1999-01-01

    Renal insufficiency or allergic reactions for X-ray contrast agents are frequent limitations in immunocompromised hosts such as neutropenic or AIDS patients. Due to a better tolerance of contrast agents in MRI, this technique is well suited for investigation of parenchymal organs. We demonstrate an allergic AIDS patient who presented with fever and flank pain. At sonography, anechoic renal lesions were supposed to be non-complicated cysts; however, on T2-weighted MRI, the center was of high signal. Dynamic contrast-enhanced MRI of the kidneys demonstrated an enhancing rim with ill-defined margins. The lesions were supposed to be multiple bilateral abscesses. Due to the multiple dynamic contrast series, a delayed enhancement of renal parenchyma was detectable adjacent to the lesion. This was suggested as accompanying local pyelonephritis and an infectious etiology became more reliable. Aspergillus fumigatus was identified by CT-guided biopsy as the underlying microorganism. The MR appearance of this manifestation has not been described previously. (orig.)

  15. Gadolinium-Hematoporphyrin: new potential MRI contrast agent for detection of breast cancer cell line (MCF-7

    Directory of Open Access Journals (Sweden)

    D Shahbazi Gahrouei

    2005-09-01

    Full Text Available Background: Gadolinium-porphyrins have been synthesized and are currently being investigated as magnetic resonance imaging (MRI contrast agents. This study aimed to synthesize Gd-hematoporphyrin and applicate it for in vitro detection of breast cancer cell line (MCF-7. Methods: The naturally occurring porphyrin (hematoporphyrin was inserted with gadolinium (III nitrate hexahydrate to yield Gd-H. T1 relaxation times and signal enhancement of the contrast agents were presented, and the results were compared. UV spectrophotometer measured the attachment of Gd to the cell membrane of MCF-7. Results: Most of gadolinium chloride (GdCl3 was found in the washing solution, indicate that it didn`t fixed to the breast cell membranes during incubation. Gd-DTPA showed some uptake into the MCF-7 cell membranes with incubation, however, its uptake was significantly lower than Gd-H. Conclusion: Good cell memberan uptake of Gd-porphyrin is comparable to controls, indicating selective delivery it to the breast cell line and considerable potency in diagnostic MR imaging for detection of breast cancer. Key Words: Porphyrin, Contrast agent, MRI, Hematoporphyrin, Breast cancer cell (MCF-7

  16. Gadolinium-DTPA enhanced MRI of the brain

    International Nuclear Information System (INIS)

    Hosten, N.; Felix, R.

    1994-01-01

    The text reviews MRI findings in a variety of cerebral diseases. Advantages of Gadolinium-DTPA (Gd-DTPA) enhanced MRI over plain MRI and enhanced CT are discussed. Enhanced MRI is far superior to enhanced CT in the detection of meningeal tumor spread, meningeal inflammation, inflammatory lesions of the optic nerve, brain lesions in multiple sclerosis and infarction. Enhanced MRI is today the most sensitive diagnostic tool in hypophaseal adenomas. Also enhancement of gliomas is detected by MRI with higher sensitivity than by CT. Use Gd-DTPA allow to separate of vital tumor tissue from necrosis and edema, improve delineation of tumor extension and improve detection of lesions localized in gray matter

  17. DCE-MRI using small-molecular and albumin-binding contrast agents in experimental carcinomas with different stromal content

    Energy Technology Data Exchange (ETDEWEB)

    Farace, Paolo; Merigo, Flavia; Fiorini, Silvia; Nicolato, Elena; Tambalo, Stefano; Daducci, Alessandro [Department of Morphological-Biomedical Sciences, Section of Anatomy and Histology, University of Verona, Verona (Italy); Degrassi, Anna [Nerviano Medical Sciences Institute, Milan (Italy); Sbarbati, Andrea [Department of Morphological-Biomedical Sciences, Section of Anatomy and Histology, University of Verona, Verona (Italy); Rubello, Domenico, E-mail: domenico.rubello@libero.it [Department of Radiology, Nuclear Medicine, Medical Physics, Services of Radiology and Nuclear Medicine, ' S. Maria della Misericordia' Hospital, Viale Tre Martiri 140, 45100 Rovigo (Italy); Marzola, Pasquina [Department of Morphological-Biomedical Sciences, Section of Anatomy and Histology, University of Verona, Verona (Italy)

    2011-04-15

    Objectives: To compare DCE-MRI experiments performed using a standard small-molecular (Gd-DTPA) and an albumin-binding (MS-325) contrast agent in two carcinoma models with different stromal content. Materials and methods: DU-145 or BXPC-3 cancer cells were subcutaneously injected into nude mice. DCE-MRI was performed by a bolus injection of Gd-DTPA or MS-325 about 2 weeks after inoculation. For quantitative analysis a volume of interest was manually drawn over each tumor. To address the heterogeneous enhancement, each tumor volume was then divided into the 20% most-enhancing and the remaining 80% least-enhancing fractions. Mean tumor enhancement was calculated over these selected tumor volumes and compared between tumor groups and contrast agents. Maps of differential enhancement, peak enhancement and time-to-peak were used for visual evaluation. CD31 and VEGF immunohistochemistry were performed in excised tumors. Results: In the 80% least-enhancing volume, at late time points of the dynamic scan, the mean enhancement elicited by MS-325 was higher in BXPC-3 than in DU-145 tumors. In the 20% most-enhancing volume, using either contrast agents, significant difference between the two tumors types were observed only early, while at later time points of the dynamic scan the difference were obscured by the faster washout observed in the BXPC-3 tumors. Enhancement maps confirmed that BXPC-3 tumors were characterized by marked washout rate using either contrast agent, particularly in the higher enhancing peripheral rim. With MS-325 this washout pattern appeared to be specific to the BXPC-3 carcinomas, since it was not observed in the DU-145 tumors. Finally, in both tumor types, MS-325 produced significantly higher enhancement than Gd-DTPA in the late phase of the dynamic scan. Ex vivo analysis confirmed the marked presence of aberrant infiltrative stroma in BXPC-3 tumors, in which tumor vessels were embedded. In all tumors the central portion was less viable and less

  18. DCE-MRI using small-molecular and albumin-binding contrast agents in experimental carcinomas with different stromal content.

    Science.gov (United States)

    Farace, Paolo; Merigo, Flavia; Fiorini, Silvia; Nicolato, Elena; Tambalo, Stefano; Daducci, Alessandro; Degrassi, Anna; Sbarbati, Andrea; Rubello, Domenico; Marzola, Pasquina

    2011-04-01

    To compare DCE-MRI experiments performed using a standard small-molecular (Gd-DTPA) and an albumin-binding (MS-325) contrast agent in two carcinoma models with different stromal content. DU-145 or BXPC-3 cancer cells were subcutaneously injected into nude mice. DCE-MRI was performed by a bolus injection of Gd-DTPA or MS-325 about 2 weeks after inoculation. For quantitative analysis a volume of interest was manually drawn over each tumor. To address the heterogeneous enhancement, each tumor volume was then divided into the 20% most-enhancing and the remaining 80% least-enhancing fractions. Mean tumor enhancement was calculated over these selected tumor volumes and compared between tumor groups and contrast agents. Maps of differential enhancement, peak enhancement and time-to-peak were used for visual evaluation. CD31 and VEGF immunohistochemistry were performed in excised tumors. In the 80% least-enhancing volume, at late time points of the dynamic scan, the mean enhancement elicited by MS-325 was higher in BXPC-3 than in DU-145 tumors. In the 20% most-enhancing volume, using either contrast agents, significant difference between the two tumors types were observed only early, while at later time points of the dynamic scan the difference were obscured by the faster washout observed in the BXPC-3 tumors. Enhancement maps confirmed that BXPC-3 tumors were characterized by marked washout rate using either contrast agent, particularly in the higher enhancing peripheral rim. With MS-325 this washout pattern appeared to be specific to the BXPC-3 carcinomas, since it was not observed in the DU-145 tumors. Finally, in both tumor types, MS-325 produced significantly higher enhancement than Gd-DTPA in the late phase of the dynamic scan. Ex vivo analysis confirmed the marked presence of aberrant infiltrative stroma in BXPC-3 tumors, in which tumor vessels were embedded. In all tumors the central portion was less viable and less infiltrated by stromal tissue then the peripheral

  19. DCE-MRI using small-molecular and albumin-binding contrast agents in experimental carcinomas with different stromal content

    Energy Technology Data Exchange (ETDEWEB)

    Farace, Paolo; Merigo, Flavia; Fiorini, Silvia; Nicolato, Elena; Tambalo, Stefano; Daducci, Alessandro [Department of Morphological-Biomedical Sciences, Section of Anatomy and Histology, University of Verona, Verona (Italy); Degrassi, Anna [Nerviano Medical Sciences Institute, Milan (Italy); Sbarbati, Andrea [Department of Morphological-Biomedical Sciences, Section of Anatomy and Histology, University of Verona, Verona (Italy); Rubello, Domenico [Department of Radiology, Nuclear Medicine, Medical Physics, Services of Radiology and Nuclear Medicine, ' S. Maria della Misericordia' Hospital, Viale Tre Martiri 140, 45100 Rovigo (Italy); Marzola, Pasquina [Department of Morphological-Biomedical Sciences, Section of Anatomy and Histology, University of Verona, Verona (Italy)

    2011-04-15

    Objectives: To compare DCE-MRI experiments performed using a standard small-molecular (Gd-DTPA) and an albumin-binding (MS-325) contrast agent in two carcinoma models with different stromal content. Materials and methods: DU-145 or BXPC-3 cancer cells were subcutaneously injected into nude mice. DCE-MRI was performed by a bolus injection of Gd-DTPA or MS-325 about 2 weeks after inoculation. For quantitative analysis a volume of interest was manually drawn over each tumor. To address the heterogeneous enhancement, each tumor volume was then divided into the 20% most-enhancing and the remaining 80% least-enhancing fractions. Mean tumor enhancement was calculated over these selected tumor volumes and compared between tumor groups and contrast agents. Maps of differential enhancement, peak enhancement and time-to-peak were used for visual evaluation. CD31 and VEGF immunohistochemistry were performed in excised tumors. Results: In the 80% least-enhancing volume, at late time points of the dynamic scan, the mean enhancement elicited by MS-325 was higher in BXPC-3 than in DU-145 tumors. In the 20% most-enhancing volume, using either contrast agents, significant difference between the two tumors types were observed only early, while at later time points of the dynamic scan the difference were obscured by the faster washout observed in the BXPC-3 tumors. Enhancement maps confirmed that BXPC-3 tumors were characterized by marked washout rate using either contrast agent, particularly in the higher enhancing peripheral rim. With MS-325 this washout pattern appeared to be specific to the BXPC-3 carcinomas, since it was not observed in the DU-145 tumors. Finally, in both tumor types, MS-325 produced significantly higher enhancement than Gd-DTPA in the late phase of the dynamic scan. Ex vivo analysis confirmed the marked presence of aberrant infiltrative stroma in BXPC-3 tumors, in which tumor vessels were embedded. In all tumors the central portion was less viable and less

  20. DCE-MRI using small-molecular and albumin-binding contrast agents in experimental carcinomas with different stromal content

    International Nuclear Information System (INIS)

    Farace, Paolo; Merigo, Flavia; Fiorini, Silvia; Nicolato, Elena; Tambalo, Stefano; Daducci, Alessandro; Degrassi, Anna; Sbarbati, Andrea; Rubello, Domenico; Marzola, Pasquina

    2011-01-01

    Objectives: To compare DCE-MRI experiments performed using a standard small-molecular (Gd-DTPA) and an albumin-binding (MS-325) contrast agent in two carcinoma models with different stromal content. Materials and methods: DU-145 or BXPC-3 cancer cells were subcutaneously injected into nude mice. DCE-MRI was performed by a bolus injection of Gd-DTPA or MS-325 about 2 weeks after inoculation. For quantitative analysis a volume of interest was manually drawn over each tumor. To address the heterogeneous enhancement, each tumor volume was then divided into the 20% most-enhancing and the remaining 80% least-enhancing fractions. Mean tumor enhancement was calculated over these selected tumor volumes and compared between tumor groups and contrast agents. Maps of differential enhancement, peak enhancement and time-to-peak were used for visual evaluation. CD31 and VEGF immunohistochemistry were performed in excised tumors. Results: In the 80% least-enhancing volume, at late time points of the dynamic scan, the mean enhancement elicited by MS-325 was higher in BXPC-3 than in DU-145 tumors. In the 20% most-enhancing volume, using either contrast agents, significant difference between the two tumors types were observed only early, while at later time points of the dynamic scan the difference were obscured by the faster washout observed in the BXPC-3 tumors. Enhancement maps confirmed that BXPC-3 tumors were characterized by marked washout rate using either contrast agent, particularly in the higher enhancing peripheral rim. With MS-325 this washout pattern appeared to be specific to the BXPC-3 carcinomas, since it was not observed in the DU-145 tumors. Finally, in both tumor types, MS-325 produced significantly higher enhancement than Gd-DTPA in the late phase of the dynamic scan. Ex vivo analysis confirmed the marked presence of aberrant infiltrative stroma in BXPC-3 tumors, in which tumor vessels were embedded. In all tumors the central portion was less viable and less

  1. Quantification of the effect of water exchange in dynamic contrast MRI perfusion measurements in the brain and heart

    DEFF Research Database (Denmark)

    Larsson, H B; Rosenbaum, S; Fritz-Hansen, T

    2001-01-01

    Measurement of myocardial and brain perfusion when using exogenous contrast agents (CAs) such as gadolinium-DTPA (Gd-DTPA) and MRI is affected by the diffusion of water between compartments. This water exchange may have an impact on signal enhancement, or, equivalently, on the longitudinal...... exchange can have a significant effect on perfusion estimation (F) in the brain when using Gd-DTPA, where it acts as an intravascular contrast agent....

  2. Improved tumor-targeting MRI contrast agents: Gd(DOTA) conjugates of a cycloalkane-based RGD peptide

    International Nuclear Information System (INIS)

    Park, Ji-Ae; Lee, Yong Jin; Ko, In Ok; Kim, Tae-Jeong; Chang, Yongmin; Lim, Sang Moo; Kim, Kyeong Min; Kim, Jung Young

    2014-01-01

    Highlights: • Development of improved tumor-targeting MRI contrast agents. • To increase the targeting ability of RGD, we developed cycloalkane-based RGD peptides. • Gd(DOTA) conjugates of cycloalkane-based RGD peptide show improved tumor signal enhancement in vivo MR images. - Abstract: Two new MRI contrast agents, Gd-DOTA-c(RGD-ACP-K) (1) and Gd-DOTA-c(RGD-ACH-K) (2), which were designed by incorporating aminocyclopentane (ACP)- or aminocyclohexane (ACH)-carboxylic acid into Gd-DOTA (gadolinium-tetraazacyclo dodecanetetraacetic acid) and cyclic RGDK peptides, were synthesized and evaluated for tumor-targeting ability in vitro and in vivo. Binding affinity studies showed that both 1 and 2 exhibited higher affinity for integrin receptors than cyclic RGDyK peptides, which were used as a reference. These complexes showed high relaxivity and good stability in human serum and have the potential to improve target-specific signal enhancement in vivo MR images

  3. Improved tumor-targeting MRI contrast agents: Gd(DOTA) conjugates of a cycloalkane-based RGD peptide

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji-Ae, E-mail: jpark@kirams.re.kr [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Lee, Yong Jin; Ko, In Ok [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Tae-Jeong; Chang, Yongmin [Institute of Biomedical Engineering, Kyungpook National University, Daegu (Korea, Republic of); Lim, Sang Moo [Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Kyeong Min [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Jung Young, E-mail: jykim@kirams.re.kr [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2014-12-12

    Highlights: • Development of improved tumor-targeting MRI contrast agents. • To increase the targeting ability of RGD, we developed cycloalkane-based RGD peptides. • Gd(DOTA) conjugates of cycloalkane-based RGD peptide show improved tumor signal enhancement in vivo MR images. - Abstract: Two new MRI contrast agents, Gd-DOTA-c(RGD-ACP-K) (1) and Gd-DOTA-c(RGD-ACH-K) (2), which were designed by incorporating aminocyclopentane (ACP)- or aminocyclohexane (ACH)-carboxylic acid into Gd-DOTA (gadolinium-tetraazacyclo dodecanetetraacetic acid) and cyclic RGDK peptides, were synthesized and evaluated for tumor-targeting ability in vitro and in vivo. Binding affinity studies showed that both 1 and 2 exhibited higher affinity for integrin receptors than cyclic RGDyK peptides, which were used as a reference. These complexes showed high relaxivity and good stability in human serum and have the potential to improve target-specific signal enhancement in vivo MR images.

  4. Trends and developments in MRI contrast agent research

    International Nuclear Information System (INIS)

    Cavagna, F.M.; Dapra, M.; Castelli, P.M.; Maggioni, F.; Kirchin, M.A.

    1997-01-01

    The currently prevailing trends in industrial contrast agent research for MRI are discussed. Specific mention is made of contrast agents for liver imaging using both static and delayed procedures, of the potential for blood pool agents and the form such agents may take, and of the ultimate challenge for contrast agent R and D: tissue-targeting in a wider sense to both normal and pathologic tissues. (orig.)

  5. Hyaluronic acid-functionalized single-walled carbon nanotubes as tumor-targeting MRI contrast agent

    Directory of Open Access Journals (Sweden)

    Hou L

    2015-07-01

    Full Text Available Lin Hou,* Huijuan Zhang,* Yating Wang, Lili Wang, Xiaomin Yang, Zhenzhong ZhangSchool of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China*These authors contributed equally to this workAbstract: A tumor-targeting carrier, hyaluronic acid (HA-functionalized single-walled carbon nanotubes (SWCNTs, was explored to deliver magnetic resonance imaging (MRI contrast agents (CAs targeting to the tumor cells specifically. In this system, HA surface modification for SWCNTs was simply accomplished by amidation process and could make this nanomaterial highly hydrophilic. Cellular uptake was performed to evaluate the intracellular transport capabilities of HA-SWCNTs for tumor cells and the uptake rank was HA-SWCNTs> SWCNTs owing to the presence of HA, which was also evidenced by flow cytometry. The safety evaluation of this MRI CAs was investigated in vitro and in vivo. It revealed that HA-SWCNTs could stand as a biocompatible nanocarrier and gadolinium (Gd/HA-SWCNTs demonstrated almost no toxicity compared with free GdCl3. Moreover, GdCl3 bearing HA-SWCNTs could significantly increase the circulation time for MRI. Finally, to investigate the MRI contrast enhancing capabilities of Gd/HA-SWCNTs, T1-weighted MR images of tumor-bearing mice were acquired. The results suggested Gd/HA-SWCNTs had the highest tumor-targeting efficiency and T1-relaxivity enhancement, indicating HA-SWCNTs could be developed as a tumor-targeting carrier to deliver the CAs, GdCl3, for the identifiable diagnosis of tumor.Keywords: gadolinium, magnetic resonance, SWCNTs, hyaluronic acid, contrast agent

  6. Preparation and Evaluation of Multiple Nanoemulsions Containing Gadolinium (III) Chelate as a Potential Magnetic Resonance Imaging (MRI) Contrast Agent.

    Science.gov (United States)

    Sigward, Estelle; Corvis, Yohann; Doan, Bich-Thuy; Kindsiko, Kadri; Seguin, Johanne; Scherman, Daniel; Brossard, Denis; Mignet, Nathalie; Espeau, Philippe; Crauste-Manciet, Sylvie

    2015-09-01

    The objective was to develop, characterize and assess the potentiality of W1/O/W2 self-emulsifying multiple nanoemulsions to enhance signal/noise ratio for Magnetic Resonance Imaging (MRI). For this purpose, a new formulation, was designed for encapsulation efficiency and stability. Various methods were used to characterize encapsulation efficiency ,in particular calorimetric methods (Differential Scanning Calorimetry (DSC), thermogravimetry analysis) and ultrafiltration. MRI in vitro relaxivities were assessed on loaded DTPA-Gd multiple nanoemulsions. Characterization of the formulation, in particular of encapsulation efficiency was a challenge due to interactions found with ultrafiltration method. Thanks to the specifically developed DSC protocol, we were able to confirm the formation of multiple nanoemulsions, differentiate loaded from unloaded nanoemulsions and measure the encapsulation efficiency which was found to be quite high with a 68% of drug loaded. Relaxivity studies showed that the self-emulsifying W/O/W nanoemulsions were positive contrast agents, exhibiting higher relaxivities than those of the DTPA-Gd solution taken as a reference. New self-emulsifying multiple nanoemulsions that were able to load satisfactory amounts of contrasting agent were successfully developed as potential MRI contrasting agents. A specific DSC protocol was needed to be developed to characterize these complex systems as it would be useful to develop these self-formation formulations.

  7. Quantitative analysis of contrast enhanced MRI of the inferior alveolar nerve in inflammatory changes of the mandible

    International Nuclear Information System (INIS)

    Gottschalk, G.; Gerber, S.; Solbach, T.; Baehren, W.; Anders, L.; Kress, B.

    2003-01-01

    Purpose: To evaluate the role of contrast enhanced MRI in quantifying signal changes of the inferior alveolar nerve following inflammatory changes of the mandible. Material and methods: 30 patients with inflammatory changes of the mandible underwent MRI of the face. Both sides of the mandible, the affected as well as the unaffected healthy side were evaluated retrospectively. Regions of interest were placed at 5 defined placed on both sides to assess signal intensity before and after intravenous application of paramagnetic contrast agent. The results of the measurements were compared between the healthy and the affected side (t-test, p [de

  8. Estimating the arterial input function from dynamic contrast-enhanced MRI data with compensation for flow enhancement (I): Theory, method, and phantom experiments

    NARCIS (Netherlands)

    van Schie, Jeroen J. N.; Lavini, Cristina; van Vliet, Lucas J.; Vos, Frans M.

    2017-01-01

    The arterial input function (AIF) represents the time-dependent arterial contrast agent (CA) concentration that is used in pharmacokinetic modeling. To develop a novel method for estimating the AIF from dynamic contrast-enhanced (DCE-) MRI data, while compensating for flow enhancement. Signal

  9. Avascular necrosis (AVN) of the proximal fragment in scaphoid nonunion: Is intravenous contrast agent necessary in MRI?

    International Nuclear Information System (INIS)

    Schmitt, R.; Christopoulos, G.; Wagner, M.; Krimmer, H.; Fodor, S.; Schoonhoven, J. van; Prommersberger, K.J.

    2011-01-01

    Purpose: The purpose of this prospective study is to assess the diagnostic value of intravenously applied contrast agent for diagnosing osteonecrosis of the proximal fragment in scaphoid nonunion, and to compare the imaging results with intraoperative findings. Materials and methods: In 88 patients (7 women, 81 men) suffering from symptomatic scaphoid nonunion, preoperative MRI was performed (coronal PD-w FSE fs, sagittal-oblique T1-w SE nonenhanced and T1-w SE fs contrast-enhanced, sagittal T2*-w GRE). MRI interpretation was based on the intensity of contrast enhancement: 0 = none, 1 = focal, 2 = diffuse. Intraoperatively, the osseous viability was scored by means of bleeding points on the osteotomy site of the proximal scaphoid fragment: 0 = absent, 1 = moderate, 2 = good. Results: Intraoperatively, 17 necrotic, 29 compromised, and 42 normal proximal fragments were found. In nonenhanced MRI, bone viability was judged necrotic in 1 patient, compromised in 20 patients, and unaffected in 67 patients. Contrast-enhanced MRI revealed 14 necrotic, 21 compromised, and 53 normal proximal fragments. Judging surgical findings as the standard of reference, statistical analysis for nonenhanced MRI was: sensitivity 6.3%, specificity 100%, positive PV 100%, negative PV 82.6%, and accuracy 82.9%; statistics for contrast-enhanced MRI was: sensitivity 76.5%, specificity 98.6%, positive PV 92.9%, negative PV 94.6%, and accuracy 94.3%. Sensitivity for detecting avascular proximal fragments was significantly better (p < 0.001) in contrast-enhanced MRI in comparison to nonenhanced MRI. Conclusion: Viability of the proximal fragment in scaphoid nonunion can be significantly better assessed with the use of contrast-enhanced MRI as compared to nonenhanced MRI. Bone marrow edema is an inferior indicator of osteonecrosis. Application of intravenous gadolinium is recommended for imaging scaphoid nonunion.

  10. Avascular necrosis (AVN) of the proximal fragment in scaphoid nonunion: Is intravenous contrast agent necessary in MRI?

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, R., E-mail: schmitt.radiologie@herzchirurgie.de [Department of Diagnostic and Interventional Radiology, Cardiovascular Center, Bad Neustadt an der Saale (Germany); Christopoulos, G.; Wagner, M. [Department of Diagnostic and Interventional Radiology, Cardiovascular Center, Bad Neustadt an der Saale (Germany); Krimmer, H. [Department of Hand Surgery, Cardiovascular Center, Bad Neustadt an der Saale (Germany); Fodor, S. [Department of Diagnostic and Interventional Radiology, Cardiovascular Center, Bad Neustadt an der Saale (Germany); Schoonhoven, J. van; Prommersberger, K.J. [Department of Hand Surgery, Cardiovascular Center, Bad Neustadt an der Saale (Germany)

    2011-02-15

    Purpose: The purpose of this prospective study is to assess the diagnostic value of intravenously applied contrast agent for diagnosing osteonecrosis of the proximal fragment in scaphoid nonunion, and to compare the imaging results with intraoperative findings. Materials and methods: In 88 patients (7 women, 81 men) suffering from symptomatic scaphoid nonunion, preoperative MRI was performed (coronal PD-w FSE fs, sagittal-oblique T1-w SE nonenhanced and T1-w SE fs contrast-enhanced, sagittal T2*-w GRE). MRI interpretation was based on the intensity of contrast enhancement: 0 = none, 1 = focal, 2 = diffuse. Intraoperatively, the osseous viability was scored by means of bleeding points on the osteotomy site of the proximal scaphoid fragment: 0 = absent, 1 = moderate, 2 = good. Results: Intraoperatively, 17 necrotic, 29 compromised, and 42 normal proximal fragments were found. In nonenhanced MRI, bone viability was judged necrotic in 1 patient, compromised in 20 patients, and unaffected in 67 patients. Contrast-enhanced MRI revealed 14 necrotic, 21 compromised, and 53 normal proximal fragments. Judging surgical findings as the standard of reference, statistical analysis for nonenhanced MRI was: sensitivity 6.3%, specificity 100%, positive PV 100%, negative PV 82.6%, and accuracy 82.9%; statistics for contrast-enhanced MRI was: sensitivity 76.5%, specificity 98.6%, positive PV 92.9%, negative PV 94.6%, and accuracy 94.3%. Sensitivity for detecting avascular proximal fragments was significantly better (p < 0.001) in contrast-enhanced MRI in comparison to nonenhanced MRI. Conclusion: Viability of the proximal fragment in scaphoid nonunion can be significantly better assessed with the use of contrast-enhanced MRI as compared to nonenhanced MRI. Bone marrow edema is an inferior indicator of osteonecrosis. Application of intravenous gadolinium is recommended for imaging scaphoid nonunion.

  11. Avascular necrosis (AVN) of the proximal fragment in scaphoid nonunion: is intravenous contrast agent necessary in MRI?

    Science.gov (United States)

    Schmitt, R; Christopoulos, G; Wagner, M; Krimmer, H; Fodor, S; van Schoonhoven, J; Prommersberger, K J

    2011-02-01

    The purpose of this prospective study is to assess the diagnostic value of intravenously applied contrast agent for diagnosing osteonecrosis of the proximal fragment in scaphoid nonunion, and to compare the imaging results with intraoperative findings. In 88 patients (7 women, 81 men) suffering from symptomatic scaphoid nonunion, preoperative MRI was performed (coronal PD-w FSE fs, sagittal-oblique T1-w SE nonenhanced and T1-w SE fs contrast-enhanced, sagittal T2*-w GRE). MRI interpretation was based on the intensity of contrast enhancement: 0 = none, 1 = focal, 2 = diffuse. Intraoperatively, the osseous viability was scored by means of bleeding points on the osteotomy site of the proximal scaphoid fragment: 0=absent, 1 = moderate, 2 = good. Intraoperatively, 17 necrotic, 29 compromised, and 42 normal proximal fragments were found. In nonenhanced MRI, bone viability was judged necrotic in 1 patient, compromised in 20 patients, and unaffected in 67 patients. Contrast-enhanced MRI revealed 14 necrotic, 21 compromised, and 53 normal proximal fragments. Judging surgical findings as the standard of reference, statistical analysis for nonenhanced MRI was: sensitivity 6.3%, specificity 100%, positive PV 100%, negative PV 82.6%, and accuracy 82.9%; statistics for contrast-enhanced MRI was: sensitivity 76.5%, specificity 98.6%, positive PV 92.9%, negative PV 94.6%, and accuracy 94.3%. Sensitivity for detecting avascular proximal fragments was significantly better (p<0.001) in contrast-enhanced MRI in comparison to nonenhanced MRI. Viability of the proximal fragment in scaphoid nonunion can be significantly better assessed with the use of contrast-enhanced MRI as compared to nonenhanced MRI. Bone marrow edema is an inferior indicator of osteonecrosis. Application of intravenous gadolinium is recommended for imaging scaphoid nonunion. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  12. Strategies for sensing neurotransmitters with responsive MRI contrast agents.

    Science.gov (United States)

    Angelovski, Goran; Tóth, Éva

    2017-01-23

    A great deal of research involving multidisciplinary approaches is currently dedicated to the understanding of brain function. The complexity of physiological processes that underlie neural activity is the greatest hurdle to faster advances. Among imaging techniques, MRI has great potential to enable mapping of neural events with excellent specificity, spatiotemporal resolution and unlimited tissue penetration depth. To this end, molecular imaging approaches using neurotransmitter-sensitive MRI agents have appeared recently to study neuronal activity, along with the first successful in vivo MRI studies. Here, we review the pioneering steps in the development of molecular MRI methods that could allow functional imaging of the brain by sensing the neurotransmitter activity directly. We provide a brief overview of other imaging and analytical methods to detect neurotransmitter activity, and describe the approaches to sense neurotransmitters by means of molecular MRI agents. Based on these initial steps, further progress in probe chemistry and the emergence of innovative imaging methods to directly monitor neurotransmitters can be envisaged.

  13. Modeling Dynamic Contrast-Enhanced MRI Data with a Constrained Local AIF

    DEFF Research Database (Denmark)

    Duan, Chong; Kallehauge, Jesper F.; Pérez-Torres, Carlos J

    2018-01-01

    PURPOSE: This study aims to develop a constrained local arterial input function (cL-AIF) to improve quantitative analysis of dynamic contrast-enhanced (DCE)-magnetic resonance imaging (MRI) data by accounting for the contrast-agent bolus amplitude error in the voxel-specific AIF. PROCEDURES....... RESULTS: When the data model included the cL-AIF, tracer kinetic parameters were correctly estimated from in silico data under contrast-to-noise conditions typical of clinical DCE-MRI experiments. Considering the clinical cervical cancer data, Bayesian model selection was performed for all tumor voxels...

  14. MRI contrast agent for molecular imaging of the HER2/neu receptor using targeted magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Rasaneh, Samira; Rajabi, Hossein, E-mail: hrajabi@modares.ac.ir [Tarbiat Modares University, Department of Medical Physics (Iran, Islamic Republic of); Babaei, Mohammad Hossein [Nuclear Science and Technology Research Institute, Department of Radioisotope (Iran, Islamic Republic of); Akhlaghpoor, Shahram [Sina Hospital, Tehran Medical University, Noor Medical Imaging Center (Iran, Islamic Republic of)

    2011-06-15

    In this study, Trastuzumab modified Magnetic Nanoparticles (TMNs) were prepared as a new contrast agent for detecting HER2 (Human epidermal growth factor receptor-2) expression tumors by magnetic resonance imaging (MRI). TMNs were prepared based on iron oxide nanoparticles core and Trastuzumab modified dextran coating. The TMNs core and hydrodynamic size were determined by transmission electron microscopy and dynamic light scattering. TMNs stability and cytotoxicity were investigated. The ability of TMNs for HER2 detection were evaluated in breast carcinoma cell lines (SKBr3 and MCF7 cells) and tumor-bearing mice by MRI and iron uptake determination. The particles core and hydrodynamic size were 9 {+-} 2.5 and 41 {+-} 15 nm (size range: 15-87 nm), respectively. The molar antibody/nanoparticle ratio was 3.1-3.5. TMNs were non-toxic to the cells below the 30 {mu}g (Fe)/mL concentration and good stable up to 8 weeks in PBS buffer. TMNs could detect HER2 oncogenes in the cells surface with imagable contrast by MRI. The invivo study in mice bearing tumors indicated that TMNs possessed a good diagnostic ability as HER2 specific contrast agent by MRI. TMNs were demonstrated to be able to selectively accumulate in the tumor cells, with a proper signal enhancement in MRI T2 images. So, the complex may be considered for further investigations as an MRI contrast agent for detection of HER2 expression tumors in human.

  15. Bell's palsy: what is the prognostic value of measurements of signal intensity increases with contrast enhancement on MRI?

    International Nuclear Information System (INIS)

    Kress, B.P.J.; Efinger, K.; Solbach, T.; Gottschalk, A.; Baehren, W.; Griesbeck, F.; Kornhuber, A.W.

    2002-01-01

    Our objective was to assess the prognostic value of measurements of the degree of contrast enhancement of the intratemporal segments of the facial nerve. We prospectively obtained MRI, slice thickness <1 mm of 20 patients with a facial palsy on the first day of inpatient treatment, and measured contrast enhancement of the nerve. The data were compared with compound muscle action potential (CMAP) measurements and the clinical course. Analysis of the initial enabled differentiation of three patients whose palsy was to show no improvement from 17 whose palsy was to resolve as expected. No patient with a poor outcome showed lesser increase in signal in the internal auditory canal, pars tympanica and pars mastoidea than patients who fully recovered. In no patient who had been diagnosed on the basis of the initial MRI as having a ''normal'' palsy was the amplitude of the (CMAP) reduced to less than 20% that of the normal side. Measurement of contrast enhancement was thus shown to be a prognostic indicator and may provide a basis for a differential treatment of facial palsy. (orig.)

  16. Brain capillary transit time heterogeneity in healthy volunteers measured by dynamic contrast-enhanced T1-weighted perfusion MRI

    DEFF Research Database (Denmark)

    Larsson, Henrik B.W.; Vestergaard, Mark B.; Lindberg, Ulrich

    2017-01-01

    Purpose: Capillary transit time heterogeneity, measured as CTH, may set the upper limit for extraction of substances in brain tissue, e.g., oxygen. The purpose of this study was to investigate the feasibility of dynamic contrast-enhanced T1 weighted MRI (DCE-MRI) at 3 Tesla (T), in estimating CTH...

  17. Tracer kinetic modelling of tumour angiogenesis based on dynamic contrast-enhanced CT and MRI measurements

    Energy Technology Data Exchange (ETDEWEB)

    Brix, Gunnar [Federal Office for Radiation Protection, Department of Medical and Occupational Radiation Protection, Oberschleissheim (Germany); Bundesamt fuer Strahlenschutz (BfS), Abteilung fuer medizinischen und beruflichen Strahlenschutz, Oberschleissheim (Germany); Griebel, Juergen [Federal Office for Radiation Protection, Department of Medical and Occupational Radiation Protection, Oberschleissheim (Germany); Kiessling, Fabian [RWTH-Aachen University, Department of Experimental Molecular Imaging, Aachen (Germany); Wenz, Frederik [University Medical Center Mannheim, University of Heidelberg, Department of Radiation Oncology, Mannheim (Germany)

    2010-08-15

    Technical developments in both magnetic resonance imaging (MRI) and computed tomography (CT) have helped to reduce scan times and expedited the development of dynamic contrast-enhanced (DCE) imaging techniques. Since the temporal change of the image signal following the administration of a diffusible, extracellular contrast agent (CA) is related to the local blood supply and the extravasation of the CA into the interstitial space, DCE imaging can be used to assess tissue microvasculature and microcirculation. It is the aim of this review to summarize the biophysical and tracer kinetic principles underlying this emerging imaging technique offering great potential for non-invasive characterization of tumour angiogenesis. In the first part, the relevant contrast mechanisms are presented that form the basis to relate signal variations measured by serial CT and MRI to local tissue concentrations of the administered CA. In the second part, the concepts most widely used for tracer kinetic modelling of concentration-time courses derived from measured DCE image data sets are described in a consistent and unified manner to highlight their particular structure and assumptions as well as the relationships among them. Finally, the concepts presented are exemplified by the analysis of representative DCE data as well as discussed with respect to present and future applications in cancer diagnosis and therapy. Depending on the specific protocol used for the acquisition of DCE image data and the particular model applied for tracer kinetic analysis of the derived concentration-time courses, different aspects of tumour angiogenesis can be quantified in terms of well-defined physiological tissue parameters. DCE imaging offers promising prospects for improved tumour diagnosis, individualization of cancer treatment as well as the evaluation of novel therapeutic concepts in preclinical and early-stage clinical trials. (orig.)

  18. Patients with liver FNH and HCC patients with negative AFP: plain and dynamic enhanced MRI and CT findings

    Directory of Open Access Journals (Sweden)

    LI Mingtong

    2015-05-01

    Full Text Available ObjectiveTo investigate plain and dynamic enhanced magnetic resonance imaging (MRI and computed tomography (CT findings in patients with focal nodular hyperplasia (FNH of the liver and hepatocellular carcinoma (HCC patients with negative alpha-fetoprotein (AFP. MethodsA statistical analysis was performed on the clinical data of 124 cases of liver tumor admitted to Beijing Miyun County Hospital from April 2012 to April 2014. ResultsFifty-five of the 74 patients with FNH underwent CT examination, among whom 38 patients received three-phase dynamic enhanced scan and 16 received only plain scan; 62 cases had plain and enhanced MRI with the application of contrast agent Gd-BOPTA in 42 patients. Among the 50 HCC patients with negative AFP, CT examination was performed in 40 and 10 only had plain scan; 46 patients received plain and enhanced MRI with the use of contrast agent Gd-BOPTA in 30. Delayed scan after 1-2 h demonstrated low signal in 30 lesions of the 30 cases. ConclusionFor patients with liver FNH and AFP-negative HCC patients, their plain and dynamic enhanced MRI and CT scan have respective characteristics. A combination of multiple examination methods can significantly improve diagnostic yield of the two diseases.

  19. In Vivo Evaluation of the Visual Pathway in Streptozotocin-Induced Diabetes by Diffusion Tensor MRI and Contrast Enhanced MRI.

    Directory of Open Access Journals (Sweden)

    Swarupa Kancherla

    Full Text Available Visual function has been shown to deteriorate prior to the onset of retinopathy in some diabetic patients and experimental animal models. This suggests the involvement of the brain's visual system in the early stages of diabetes. In this study, we tested this hypothesis by examining the integrity of the visual pathway in a diabetic rat model using in vivo multi-modal magnetic resonance imaging (MRI. Ten-week-old Sprague-Dawley rats were divided into an experimental diabetic group by intraperitoneal injection of 65 mg/kg streptozotocin in 0.01 M citric acid, and a sham control group by intraperitoneal injection of citric acid only. One month later, diffusion tensor MRI (DTI was performed to examine the white matter integrity in the brain, followed by chromium-enhanced MRI of retinal integrity and manganese-enhanced MRI of anterograde manganese transport along the visual pathway. Prior to MRI experiments, the streptozotocin-induced diabetic rats showed significantly smaller weight gain and higher blood glucose level than the control rats. DTI revealed significantly lower fractional anisotropy and higher radial diffusivity in the prechiasmatic optic nerve of the diabetic rats compared to the control rats. No apparent difference was observed in the axial diffusivity of the optic nerve, the chromium enhancement in the retina, or the manganese enhancement in the lateral geniculate nucleus and superior colliculus between groups. Our results suggest that streptozotocin-induced diabetes leads to early injury in the optic nerve when no substantial change in retinal integrity or anterograde transport along the visual pathways was observed in MRI using contrast agent enhancement. DTI may be a useful tool for detecting and monitoring early pathophysiological changes in the visual system of experimental diabetes non-invasively.

  20. Pharmacokinetics of Chiral Dendrimer-Triamine-Coordinated Gd-MRI Contrast Agents Evaluated by in Vivo MRI and Estimated by in Vitro QCM

    Directory of Open Access Journals (Sweden)

    Yuka Miyake

    2015-12-01

    Full Text Available Recently, we developed novel chiral dendrimer-triamine-coordinated Gd-MRI contrast agents (Gd-MRI CAs, which showed longitudinal relaxivity (r1 values about four times higher than that of clinically used Gd-DTPA (Magnevist®, Bayer. In our continuing study of pharmacokinetic differences derived from both the chirality and generation of Gd-MRI CAs, we found that the ability of chiral dendrimer Gd-MRI CAs to circulate within the body can be directly evaluated by in vitro MRI (7 T. In this study, the association constants (Ka of chiral dendrimer Gd-MRI CAs to bovine serum albumin (BSA, measured and calculated with a quartz crystal microbalance (QCM in vitro, were found to be an extremely easy means for evaluating the body-circulation ability of chiral dendrimer Gd-MRI CAs. The Ka values of S-isomeric dendrimer Gd-MRI CAs were generally greater than those of R-isomeric dendrimer Gd-MRI CAs, which is consistent with the results of our previous MRI study in vivo.

  1. Theoretical considerations in measurement of time discrepancies between input and myocardial time-signal intensity curves in estimates of regional myocardial perfusion with first-pass contrast-enhanced MRI.

    Science.gov (United States)

    Natsume, Takahiro; Ishida, Masaki; Kitagawa, Kakuya; Nagata, Motonori; Sakuma, Hajime; Ichihara, Takashi

    2015-11-01

    The purpose of this study was to develop a method to determine time discrepancies between input and myocardial time-signal intensity (TSI) curves for accurate estimation of myocardial perfusion with first-pass contrast-enhanced MRI. Estimation of myocardial perfusion with contrast-enhanced MRI using kinetic models requires faithful recording of contrast content in the blood and myocardium. Typically, the arterial input function (AIF) is obtained by setting a region of interest in the left ventricular cavity. However, there is a small delay between the AIF and the myocardial curves, and such time discrepancies can lead to errors in flow estimation using Patlak plot analysis. In this study, the time discrepancies between the arterial TSI curve and the myocardial tissue TSI curve were estimated based on the compartment model. In the early phase after the arrival of the contrast agent in the myocardium, the relationship between rate constant K1 and the concentrations of Gd-DTPA contrast agent in the myocardium and arterial blood (LV blood) can be described by the equation K1={dCmyo(tpeak)/dt}/Ca(tpeak), where Cmyo(t) and Ca(t) are the relative concentrations of Gd-DTPA contrast agent in the myocardium and in the LV blood, respectively, and tpeak is the time corresponding to the peak of Ca(t). In the ideal case, the time corresponding to the maximum upslope of Cmyo(t), tmax, is equal to tpeak. In practice, however, there is a small difference in the arrival times of the contrast agent into the LV and into the myocardium. This difference was estimated to correspond to the difference between tpeak and tmax. The magnitudes of such time discrepancies and the effectiveness of the correction for these time discrepancies were measured in 18 subjects who underwent myocardial perfusion MRI under rest and stress conditions. The effects of the time discrepancies could be corrected effectively in the myocardial perfusion estimates. Copyright © 2015 Elsevier Inc. All rights

  2. The interaction of MRI contrast agents with phospholipids

    International Nuclear Information System (INIS)

    Jendrasiak, Gordon L.; Smith, Ralph L.; Ribeiro, Anthony A.

    2000-01-01

    The molecular interactions of three clinically used MRI contrast agents with lipid vesicles, consisting of egg phosphatidylcholine (EPC), have been studied using high-field NMR techniques. At a molar ratio of one contrast agent molecule to five phospholipid molecules, a significant increase in the proton resonance line width occurred for certain lipid head group moieties. A large decrease in the T 1 relaxation times for the head group moieties was also observed. These two effects occurred regardless of the ionic status and the chelate structure of the three contrast agents. The structure of the contrast agents did, however, affect the magnitude of the two NMR parameter changes. These NMR effects also differed in magnitude amongst the various head group entities. The NMR effects were greatest for the head group moieties at or near the vesicle-water interface. The results are discussed in terms of the structure of the phospholipid-water interface. Since the use of contrast agents has become routine in clinical MRI, our results are of importance in terms of the interaction of the agents with physiological surfaces, many of which contain phospholipids. The understanding of such interactions should be of value not only for improved diagnostics, but also in the development of new contrast agents. (author)

  3. Lymph node enhancement at MRI with MnDPDP in primary hepatic carcinoma. Technical report

    International Nuclear Information System (INIS)

    Burkill, Guy J.C.; Mannion, Ethna M.; Healy, Jeremiah C.

    2001-01-01

    AIMS: To report two cases of lymph node enhancement in primary hepatic carcinoma following the administration of Mangafodipir trisodium (MnDPDP, Teslascan[reg ], Nycomed Amersham U.K.), an hepatocyte specific magnetic resonance imaging (MRI) contrast agent. To review our experience with this contrast agent and the literature to establish if such enhancement occurs in normal lymph nodes or has been previously described in hepatocellular carcinoma (HCC) or other lesions. MATERIALS AND METHODS: The radiological reports of all MnDPDP enhanced abdominal MRI examinations were reviewed for lymph node enlargement. The MR images from examinations with reported nodal enlargement were re-evaluated for evidence of nodal enhancement and the hospital notes and histological reports were reviewed. Nodal enhancement was considered present if lymph node signal intensity was greater than that of the spleen following MnDPDP. Literature searches were performed on Medline and PubMed for previous descriptions of lymph node enhancement following MnDPDP. RESULTS: The reports of 90 MnDPDP abdominal MRI examinations were reviewed. Of 18 cases of lymph node enlargement, two had evidence of lymph node enhancement following MnDPDP. These two cases had hepatocellular carcinoma and fibrolamellar hepatocellular carcinoma, respectively, confirmed on liver biopsy. No reports of lymph node enhancement following MnDPDP were identified in the literature. CONCLUSION: Two cases of lymph node enhancement following MnDPDP have been presented. Although histological confirmation of the lymph nodes was not obtained, the authors propose that the lymph node enhancement was due to functioning hepatocytes in lymph node metastases from the patients' histologically confirmed hepatocellular carcinomas. Burkill, G.J.C., Mannion, E.M. and Healy, J.C. (2001)

  4. Assessment of ameloblastomas using MRI and dynamic contrast-enhanced MRI

    International Nuclear Information System (INIS)

    Asaumi, Jun-ichi; Hisatomi, Miki; Yanagi, Yoshinobu; Matsuzaki, Hidenobu; Choi, Yong Suk; Kawai, Noriko; Konouchi, Hironobu; Kishi, Kanji

    2005-01-01

    We retrospectively evaluated magnetic resonance images (MRI) and dynamic contrast-enhanced MRI (DCE-MRI) of ameloblastomas. MRI and DCE-MRI were performed for 10 ameloblastomas. We obtained the following results from the MRI and DCE-MRI. (a) Ameloblastomas can be divided into solid and cystic portions on the basis of MR signal intensities. (b) Ameloblastomas show a predilection for intermediate signal intensity on T1WI, high signal intensity on T2WI, and well enhancement in the solid portion; they also show a homogeneous intermediate signal intensity on T1WI and homogeneous high signal intensity on T2WI, and no enhancement in the cystic portion. (c) The mural nodule or thick wall can be detected in ameloblastomas lesions. (d) CI curves of ameloblastomas show two patterns: the first pattern increases, reaches a plateau at 100-300 s, then sustains the plateau or decreases gradually to 600-900 s, while the other increases relatively rapidly, reaches a plateau at 90-120 s, then decreases relatively rapidly to 300 s, and decreases gradually thereafter. There was no difference in the CI curve patterns among primary and recurrent cases, a case with glandular odontogenic tumor in ameloblastoma or among histopathological types such as plexiform, follicular, mixed, desmoplastic, and unicystic type

  5. Safety of meglumine gadoterate (Gd-DOTA)-enhanced MRI compared to unenhanced MRI in patients with chronic kidney disease (RESCUE study)

    Energy Technology Data Exchange (ETDEWEB)

    Deray, Gilbert [Pitie Salpetriere Hospital, Department of Nephrology, Paris cedex 13 (France); Rouviere, Olivier [Hopital E. Herriot, Universite de Lyon, Hospices Civils de Lyon, Department of Urinary and Vascular Imaging, Lyon (France); Universite Lyon 1, faculte de medecine Lyon Est, Lyon (France); Bacigalupo, Lorenzo [E.O. Ospedali Galliera, Radiology Department, Genova (Italy); Maes, Bart [Heilig Hartziekenhuis Roeselare, Department of Nephrology, Roeselare (Belgium); Hannedouche, Thierry [University Hospitals, Department of Nephrology, Strasbourg (France); Vrtovsnik, Francois [Bichat Hospital, Department of Nephrology, Paris (France); Rigothier, Claire [Pellegrin Hospital, Department of Nephrology Transplantation Dialysis, Bordeaux (France); Billiouw, Jean-Marie [Onze Lieve Vrouw Ziekenhuis, Department of Nephrology, Aalst (Belgium); Campioni, Paolo [Azienda Ospedaliero-Universitaria Sant' Anna, Ferrara (Italy); Ferreiros, Joaquin [Hospital Clinico de San Carlos, Servicio de Radiodiagnostico, Madrid (Spain); Devos, Daniel [Gent University Hospital, Department of Radiology, Gent (Belgium); Alison, Daniel [Trousseau Hospital, Department of Radiology, Tours (France); Glowacki, Francois [University Hospitals, Department of Nephrology, Lille (France); Boffa, Jean-Jacques [Tenon Hospital, Department of Nephrology and Dialysis, Paris (France); Marti-Bonmati, Luis [University of Valencia, Department of Radiology, Valencia (Spain)

    2013-05-15

    To prospectively compare the renal safety of meglumine gadoterate (Gd-DOTA)-enhanced magnetic resonance imaging (MRI) to a control group (unenhanced MRI) in high-risk patients. Patients with chronic kidney disease (CKD) scheduled for MRI procedures were screened. The primary endpoint was the percentage of patients with an elevation of serum creatinine levels, measured 72 {+-} 24 h after the MRI procedure, by at least 25 % or 44.2 {mu}mol/l (0.5 mg/dl) from baseline. A non-inferiority margin of the between-group difference was set at -15 % for statistical analysis of the primary endpoint. Main secondary endpoints were the variation in serum creatinine and eGFR values between baseline and 72 {+-} 24 h after MRI and the percentage of patients with a decrease in eGFR of at least 25 % from baseline. Patients were screened for signs of nephrogenic systemic fibrosis (NSF) at 3-month follow-up. Among the 114 evaluable patients, one (1.4 %) in the Gd-DOTA-MRI group and none in the control group met the criteria of the primary endpoint [{Delta} = -1.4 %, 95%CI = (-7.9 %; 6.7 %)]. Non-inferiority was therefore demonstrated (P = 0.001). No clinically significant differences were observed between groups for the secondary endpoints. No serious safety events (including NSF) were noted. Meglumine gadoterate did not affect renal function and was a safe contrast agent in patients with CKD. (orig.)

  6. Safety of meglumine gadoterate (Gd-DOTA)-enhanced MRI compared to unenhanced MRI in patients with chronic kidney disease (RESCUE study)

    International Nuclear Information System (INIS)

    Deray, Gilbert; Rouviere, Olivier; Bacigalupo, Lorenzo; Maes, Bart; Hannedouche, Thierry; Vrtovsnik, Francois; Rigothier, Claire; Billiouw, Jean-Marie; Campioni, Paolo; Ferreiros, Joaquin; Devos, Daniel; Alison, Daniel; Glowacki, Francois; Boffa, Jean-Jacques; Marti-Bonmati, Luis

    2013-01-01

    To prospectively compare the renal safety of meglumine gadoterate (Gd-DOTA)-enhanced magnetic resonance imaging (MRI) to a control group (unenhanced MRI) in high-risk patients. Patients with chronic kidney disease (CKD) scheduled for MRI procedures were screened. The primary endpoint was the percentage of patients with an elevation of serum creatinine levels, measured 72 ± 24 h after the MRI procedure, by at least 25 % or 44.2 μmol/l (0.5 mg/dl) from baseline. A non-inferiority margin of the between-group difference was set at -15 % for statistical analysis of the primary endpoint. Main secondary endpoints were the variation in serum creatinine and eGFR values between baseline and 72 ± 24 h after MRI and the percentage of patients with a decrease in eGFR of at least 25 % from baseline. Patients were screened for signs of nephrogenic systemic fibrosis (NSF) at 3-month follow-up. Among the 114 evaluable patients, one (1.4 %) in the Gd-DOTA-MRI group and none in the control group met the criteria of the primary endpoint [Δ = -1.4 %, 95%CI = (-7.9 %; 6.7 %)]. Non-inferiority was therefore demonstrated (P = 0.001). No clinically significant differences were observed between groups for the secondary endpoints. No serious safety events (including NSF) were noted. Meglumine gadoterate did not affect renal function and was a safe contrast agent in patients with CKD. (orig.)

  7. MRI contrast agents from molecules to particles

    CERN Document Server

    Laurent, Sophie; Stanicki, Dimitri; Boutry, Sébastien; Lipani, Estelle; Belaid, Sarah; Muller, Robert N; Vander Elst, Luce

    2017-01-01

    This book describes the multiple aspects of (i) preparation of the magnetic core, (ii) the stabilization with different coatings, (iii) the physico-chemical characterization and (iv) the vectorization to obtain specific nanosystems. Several bio-applications are also presented in this book. In the early days of Magnetic Resonance Imaging (MRI), paramagnetic ions were proposed as contrast agents to enhance the diagnostic quality of MR images. Since then, academic and industrial efforts have been devoted to the development of new and more efficient molecular, supramolecular and nanoparticular systems. Old concepts and theories, like paramagnetic relaxation, were revisited and exploited, leading to new scientific tracks. With their high relaxivity payload, the superparamagnetic nanoparticles are very appealing in the context of molecular imaging but challenges are still numerous: absence of toxicity, specificity, ability to cross the biological barriers, etc. .

  8. Neuroimaging: do we really need new contrast agents for MRI?

    International Nuclear Information System (INIS)

    Roberts, T.P.L.; Chuang, N.; Roberts, H.C.

    2000-01-01

    The use of exogenous contrast media in magnetic resonance imaging of the brain has brought dramatic improvement in the sensitivity of detection and delineation of pathological structures, such as primary and metastatic brain tumors, inflammation and ischemia. Disruption of the blood brain barrier leads to accumulation of the intravenously injected contrast material in the extravascular space, leading to signal enhancement. Magnetic resonance angiography benefits from T 1 -shortening effects of contrast agent, improving small vessel depiction and providing vascular visualization even in situations of slow flow. High speed dynamic MRI after bolus injection of contrast media allows tracer kinetic modeling of cerebral perfusion. Progressive enhancement over serial post-contrast imaging allows modeling of vascular permeability and thus quantitative estimation of the severity of blood brain barrier disruption. With such an array of capabilities and ever improving technical abilities, it seems that the role of contrast agents in MR neuroimaging is established and the development of new agents may be superfluous. However, new agents are being developed with prolonged intravascular residence times, and with in-vivo binding of ever-increasing specificity. Intravascular, or blood pool, agents are likely to benefit magnetic resonance angiography of the carotid and cerebral vessels; future agents may allow the visualization of therapeutic drug delivery, the monitoring of, for example, gene expression, and the imaging evaluation of treatment efficacy. So while there is a substantial body of work that can be performed with currently available contrast agents, especially in conjunction with optimized image acquisition strategies, post processing, and mathematical analysis, there are still unrealized opportunities for novel contrast agent introduction, particularly those exploiting biological specificity. This article reviews the current use of contrast media in magnetic resonance

  9. Three-dimensional contrast-enhanced MRI using an intravascular contrast agent for detection of traumatic intra-abdominal hemorrhage and abdominal parenchymal injuries: an experimental study

    International Nuclear Information System (INIS)

    Weishaupt, D.; Ruehm, S.G.; Patak, M.A.; Schmidt, M.; Debatin, J.F.; Hetzer, F.H.

    2000-01-01

    The aim of this study was to compare the performance of 3D MRI in conjunction with an intravascular contrast agent to spiral contrast-enhanced CT, regarding the detection of abdominal parenchymal injuries as well as peritoneal hemorrhage in an animal model. Liver and kidney injuries were created surgically in six female pigs under general anesthesia. All pigs underwent contrast-enhanced spiral CT and 3D MR imaging following administration of an intravascular contrast agent (NC100150 Injection). Two readers rated their confidence independently on MR and CT data sets using a five-point scale for the presence of organ injury and hemoperitoneum. Autopsy findings served as standard of reference. Sensitivity and specificity for MR in detecting hepatic and renal injuries as well as hemoperitoneum was 100 %. Computed tomography was less accurate with sensitivity and specificity values of 90 and 94 %, respectively. Receiver operating characteristics (ROC) analysis revealed a higher confidence when interpretation was based on MR images. In an animal model 3D MR imaging in conjunction with an intravascular contrast agent proved highly accurate in detecting and localizing parenchymal injuries to the upper abdomen as well as in detecting intraperitoneal blood collections. (orig.)

  10. Bifunctional Agents for MRI, PET and Fluorescence Imaging and Study of Nanoparticles Formed from Water Oxidation Catalysts /

    OpenAIRE

    Abadjian, Marie-Caline Z.

    2014-01-01

    The work is divided into four parts : (1) MRI contrast agents are designed to enhance T₁ relaxivity by coupling them to dendrimers, the precise structure of which can be controlled through synthesis. Cyclen is used as a starting scaffold for the synthesis of bifunctional Gd-DOTA and Gd- DOTMA analogues. One unique side chain on the macrocycle contains an azide moiety that can be clicked to an alkyne- containing core, making a first-generation dendrimer with the potential to improve MRI effici...

  11. The synthesis of a D-glucosamine contrast agent, Gd-DTPA-DG, and its application in cancer molecular imaging with MRI

    International Nuclear Information System (INIS)

    Zhang Wei; Chen Yue; Guo Dajing; Huang Zhanwen; Cai Liang; He Ling

    2011-01-01

    Objective: The purpose of this study is to describe the synthesis of Gadolinium-diethylenetriamine pentaacetic acid-deoxyglucosamine (Gd-DTPA-DG) which is a D-glucosamine metabolic MR imaging contrast agent. We will also discuss its use in a pilot MRI study using a xenograft mouse model of human adenocarcinoma. Methods: This novel contrast agent was specifically studied because of its ability to 'target' metabolically active tumor tissues. In this study Gd-DTPA-DG is used to investigate how tumor tissues would react to a dose of 0.2 mmol Gd/kg over a 120 min exposure in a xenograft mouse model. These experiments used athymic mice implanted with human pulmonary adenocarcinoma (A549) as demonstrated by dynamic MRI. Alternately, another contrast agent that is not specific for targeting, Gd-DTPA, was used as the control at a similar dose of gadolinium. Efficacy of the targeted contrast agent was assessed by measuring relaxation rate in vitro and signal intensity (SI) in vivo. Statistical differences were calculated using one-way analysis of variance. Results: The synthesized Gd-DTPA-DG was shown to improve the contrast of tumor tissue in this model. Gd-DTPA-DG was also shown to have a similar pharmacokinetic rate but generated a higher relaxation rate in tumor tissues relative to the control contrast Gd-DTPA. In comparison to the pre-contrast imaging, the SI of tumor tissue in the experimental group was shown to be significantly increased at 15 min after injection of Gd-DTPA-DG (p < 0.001). The enhanced signal intensity spread from the edge of the tumor to the center and seemed to strengthen the idea that MRI performance would be useful in different tumor tissues. Conclusion: This preliminary study shows that this new chelated contrast agent, Gd-DTPA-DG, can be specifically targeted to accumulation in tumor tissue as compared to normal tissues. This targeted paramagnetic contrast agent has potential for specific cancer molecular imaging with MRI.

  12. Prostate-specific membrane antigen targeted protein contrast agents for molecular imaging of prostate cancer by MRI

    Science.gov (United States)

    Pu, Fan; Salarian, Mani; Xue, Shenghui; Qiao, Jingjuan; Feng, Jie; Tan, Shanshan; Patel, Anvi; Li, Xin; Mamouni, Kenza; Hekmatyar, Khan; Zou, Juan; Wu, Daqing; Yang, Jenny J.

    2016-06-01

    Prostate-specific membrane antigen (PSMA) is one of the most specific cell surface markers for prostate cancer diagnosis and targeted treatment. However, achieving molecular imaging using non-invasive MRI with high resolution has yet to be achieved due to the lack of contrast agents with significantly improved relaxivity for sensitivity, targeting capabilities and metal selectivity. We have previously reported our creation of a novel class of protein Gd3+ contrast agents, ProCA32, which displayed significantly improved relaxivity while exhibiting strong Gd3+ binding selectivity over physiological metal ions. In this study, we report our effort in further developing biomarker-targeted protein MRI contrast agents for molecular imaging of PSMA. Among three PSMA targeted contrast agents engineered with addition of different molecular recognition sequences, ProCA32.PSMA exhibits a binding affinity of 1.1 +/- 0.1 μM for PSMA while the metal binding affinity is maintained at 0.9 +/- 0.1 × 10-22 M. In addition, ProCA32.PSMA exhibits r1 of 27.6 mM-1 s-1 and r2 of 37.9 mM-1 s-1 per Gd (55.2 and 75.8 mM-1 s-1 per molecule r1 and r2, respectively) at 1.4 T. At 7 T, ProCA32.PSMA also has r2 of 94.0 mM-1 s-1 per Gd (188.0 mM-1 s-1 per molecule) and r1 of 18.6 mM-1 s-1 per Gd (37.2 mM-1 s-1 per molecule). This contrast capability enables the first MRI enhancement dependent on PSMA expression levels in tumor bearing mice using both T1 and T2-weighted MRI at 7 T. Further development of these PSMA-targeted contrast agents are expected to be used for the precision imaging of prostate cancer at an early stage and to monitor disease progression and staging, as well as determine the effect of therapeutic treatment by non-invasive evaluation of the PSMA level using MRI.Prostate-specific membrane antigen (PSMA) is one of the most specific cell surface markers for prostate cancer diagnosis and targeted treatment. However, achieving molecular imaging using non-invasive MRI with high

  13. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI.

    Science.gov (United States)

    Iliff, Jeffrey J; Lee, Hedok; Yu, Mei; Feng, Tian; Logan, Jean; Nedergaard, Maiken; Benveniste, Helene

    2013-03-01

    The glymphatic system is a recently defined brain-wide paravascular pathway for cerebrospinal fluid (CSF) and interstitial fluid (ISF) exchange that facilitates efficient clearance of solutes and waste from the brain. CSF enters the brain along para-arterial channels to exchange with ISF, which is in turn cleared from the brain along para-venous pathways. Because soluble amyloid β clearance depends on glymphatic pathway function, we proposed that failure of this clearance system contributes to amyloid plaque deposition and Alzheimer's disease progression. Here we provide proof of concept that glymphatic pathway function can be measured using a clinically relevant imaging technique. Dynamic contrast-enhanced MRI was used to visualize CSF-ISF exchange across the rat brain following intrathecal paramagnetic contrast agent administration. Key features of glymphatic pathway function were confirmed, including visualization of para-arterial CSF influx and molecular size-dependent CSF-ISF exchange. Whole-brain imaging allowed the identification of two key influx nodes at the pituitary and pineal gland recesses, while dynamic MRI permitted the definition of simple kinetic parameters to characterize glymphatic CSF-ISF exchange and solute clearance from the brain. We propose that this MRI approach may provide the basis for a wholly new strategy to evaluate Alzheimer's disease susceptibility and progression in the live human brain.

  14. Assessing the efficacy of nano- and micro-sized magnetic particles as contrast agents for MRI cell tracking.

    Directory of Open Access Journals (Sweden)

    Arthur Taylor

    Full Text Available Iron-oxide based contrast agents play an important role in magnetic resonance imaging (MRI of labelled cells in vivo. Currently, a wide range of such contrast agents is available with sizes varying from several nanometers up to a few micrometers and consisting of single or multiple magnetic cores. Here, we evaluate the effectiveness of these different particles for labelling and imaging stem cells, using a mouse mesenchymal stem cell line to investigate intracellular uptake, retention and processing of nano- and microsized contrast agents. The effect of intracellular confinement on transverse relaxivity was measured by MRI at 7 T and in compliance with the principles of the '3Rs', the suitability of the contrast agents for MR-based cell tracking in vivo was tested using a chick embryo model. We show that for all particles tested, relaxivity was markedly reduced following cellular internalisation, indicating that contrast agent relaxivity in colloidal suspension does not accurately predict performance in MR-based cell tracking studies. Using a bimodal imaging approach comprising fluorescence and MRI, we demonstrate that labelled MSC remain viable following in vivo transplantation and can be tracked effectively using MRI. Importantly, our data suggest that larger particles might confer advantages for longer-term imaging.

  15. The optimal use of contrast agents at high field MRI

    International Nuclear Information System (INIS)

    Trattnig, Siegfried; Pinker, Kathia; Ba-Ssalamah, Ahmed; Noebauer-Huhmann, Iris-Melanie

    2006-01-01

    The intravenous administration of a standard dose of conventional gadolinium-based contrast agents produces higher contrast between the tumor and normal brain at 3.0 Tesla (T) than at 1.5 T, which allows reducing the dose to half of the standard one to produce similar contrast at 3.0 T compared to 1.5 T. The assessment of cumulative triple-dose 3.0 T images obtained the best results in the detection of brain metastases compared to other sequences. The contrast agent dose for dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging at 3.0 T can be reduced to 0.1 mmol compared to 0.2 mmol at 1.5 T due to the increased susceptibility effects at higher magnetic field strengths. Contrast agent application makes susceptibility-weighted imaging (SWI) at 3.0 T clinically attractive, with an increase in spatial resolution within the same scan time. Whereas a double dose of conventional gadolinium-based contrast agents was optimal in SWI with respect to sensitivity and image quality, a standard dose of gadobenate dimeglumine, which has a two-fold higher T1-relaxivity in blood, produced the same effect. For MR-arthrography, optimized concentrations of gadolinium-based contrast agents are similar at 3.0 and 1.5 T. In summary, high field MRI requires the optimization of the contrast agent dose in different clinical applications. (orig.)

  16. Bell's palsy: what is the prognostic value of measurements of signal intensity increases with contrast enhancement on MRI?

    Energy Technology Data Exchange (ETDEWEB)

    Kress, B.P.J.; Efinger, K.; Solbach, T.; Gottschalk, A.; Baehren, W. [Department of Radiology, Armed Forces Hospital, Deutsche Bundeswehr, Ulm (Germany); Griesbeck, F.; Kornhuber, A.W. [Department of Neurology/Psychiatry, Armed Forces Hospital, Deutsche Bundeswehr, Ulm (Germany)

    2002-05-01

    Our objective was to assess the prognostic value of measurements of the degree of contrast enhancement of the intratemporal segments of the facial nerve. We prospectively obtained MRI, slice thickness <1 mm of 20 patients with a facial palsy on the first day of inpatient treatment, and measured contrast enhancement of the nerve. The data were compared with compound muscle action potential (CMAP) measurements and the clinical course. Analysis of the initial enabled differentiation of three patients whose palsy was to show no improvement from 17 whose palsy was to resolve as expected. No patient with a poor outcome showed lesser increase in signal in the internal auditory canal, pars tympanica and pars mastoidea than patients who fully recovered. In no patient who had been diagnosed on the basis of the initial MRI as having a ''normal'' palsy was the amplitude of the (CMAP) reduced to less than 20% that of the normal side. Measurement of contrast enhancement was thus shown to be a prognostic indicator and may provide a basis for a differential treatment of facial palsy. (orig.)

  17. Increase in tumour permeability following TGF-? type I receptor-inhibitor treatment observed by dynamic contrast-enhanced MRI

    OpenAIRE

    Minowa, T; Kawano, K; Kuribayashi, H; Shiraishi, K; Sugino, T; Hattori, Y; Yokoyama, M; Maitani, Y

    2009-01-01

    Background: To enhance the success rate of nanocarrier-mediated chemotherapy combined with an anti-angiogenic agent, it is crucial to identify parameters for tumour vasculature that can predict a response to the treatment of the anti-angiogenic agent. Methods: To apply transforming growth factor (TGF)-? type I receptor (T?R-I) inhibitor, A-83-01, to combined therapy, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was carried out in mice bearing colon 26 cells using gadolinium ...

  18. Blocked-micropores, surface functionalized, bio-compatible and silica-coated iron oxide nanocomposites as advanced MRI contrast agent

    International Nuclear Information System (INIS)

    Darbandi, Masih; Laurent, Sophie; Busch, Martin; Li Zian; Yuan Ying; Krüger, Michael; Farle, Michael; Winterer, Markus; Vander Elst, Luce; Muller, Robert N.; Wende, Heiko

    2013-01-01

    Biocompatible magnetic nanoparticles have been found promising in several biomedical applications for tagging, imaging, sensing and separation in recent years. In this article, a systematic study of the design and development of surface-modification schemes for silica-coated iron oxide nanoparticles (IONP) via a one-pot, in situ method at room temperature is presented. Silica-coated IONP were prepared in a water-in-oil microemulsion, and subsequently the surface was modified via addition of organosilane reagents to the microemulsion system. The structure and the morphology of the as synthesized nanoparticles have been investigated by means of transmission electron microscopy (TEM) and measurement of N 2 adsorption–desorption. Electron diffraction and high-resolution transmission electron microscopic (TEM) images of the nanoparticles showed the highly crystalline nature of the IONP structures. Nitrogen adsorption indicates microporous and blocked-microporous structures for the silica-coated and amine functionalized silica-coated IONP, respectively which could prove less cytotoxicity of the functionalized final product. Besides, the colloidal stability of the final product and the presence of the modified functional groups on top of surface layer have been proven by zeta-potential measurements. Owing to the benefit from the inner IONP core and the hydrophilic silica shell, the as-synthesized nanocomposites were exploited as an MRI contrast enhancement agent. Relaxometric results prove that the surface functionalized IONP have also signal enhancement properties. These surface functionalized nanocomposites are not only potential candidates for highly efficient contrast agents for MRI, but could also be used as ultrasensitive biological-magnetic labels, because they are in nanoscale size, having magnetic properties, blocked-microporous and are well dispersible in biological environment.

  19. Which factors influence MRI-pathology concordance of tumour size measurements in breast cancer?

    Energy Technology Data Exchange (ETDEWEB)

    Rominger, M.; Frauenfelder, T. [University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland); Berg, D. [Urbankrankenhaus Berlin, Anesthesiology, Berlin (Germany); Ramaswamy, A. [University Hospital Marburg, Pathology, Marburg (Germany); Timmesfeld, N. [Philipps University Marburg, Institute for Medical Biometry and Epidemiology, Marburg (Germany)

    2016-05-15

    To assess MRI-pathology concordance and factors influencing tumour size measurement in breast cancer. MRI tumour size (greatest diameter in anatomical planes (MRI-In-Plane) and greatest diameter along main tumour axis (MRI-MPR)) of 115 consecutive breast lesions (59 invasive lobular carcinoma, 46 invasive ductal carcinoma, and 10 ductal carcinoma in situ) was retrospectively compared to size measured at histopathology (pT size (Path-TNM) and greatest tumour diameter as relevant for excision (Path-Diameter; reference standard)). Histopathological tumour types, preoperative palpability, surgical management, additional high-risk lesions, and BI-RADS lesion type (mass versus non-mass enhancements) were assessed as possible influencing factors. Systematic errors were most pronounced between MRI-MPR and Path-TNM (7.1 mm, limits of agreement (LoA) [-21.7; 35.9]), and were lowest between MRI-In-Plane and Path-Diameter (0.2 mm, LoA [-19.7; 20.1]). Concordance rate of MRI-In-Plane with Path-Diameter was 86 % (97/113), overestimation 9 % (10/113) and underestimation 5 % (6/113); BI-RADS mass lesions were overestimated in 7 % (6/81) versus 41 % (13/32) for non-mass enhancements. On multivariate analysis only BI-RADS lesion type significantly influenced MRI-pathology concordance (p < 0.001). 2/59 (3 %) ILC did not enhance. Concordance rate varies according to the execution of MRI and histopathological measurements. Beyond this only non-mass enhancement significantly predicted discordance. (orig.)

  20. Synthetic Ni3S2/Ni hybrid architectures as potential contrast agents in MRI

    International Nuclear Information System (INIS)

    Ma, J; Chen, K

    2016-01-01

    Traditional magnetic resonance imaging (MRI) contrast agents mainly include superparamagnetic (SPM) iron oxide nanoparticle as T 2 contrast agent for liver and paramagnetic Gd (III)-chelate as T 1 contrast agent for all organs. In this work, weak ferromagnetic kale-like and SPM cabbage-like Ni 3 S 2 @Ni hybrid architectures were synthesized and evaluated as potential T 1 MRI contrast agents. Their relatively small r 2 /r 1 ratios of 2.59 and 2.38, and high r 1 values of 11.27 and 4.89 mmol −1 L s −1 (for the kale-like and cabbage-like Ni 3 S 2 @Ni, respectively) will shed some light on the development of new-type MRI contrast agents. (paper)

  1. Enhanced MRI in patients with facial palsy

    International Nuclear Information System (INIS)

    Yanagida, Masahiro; Kato, Tsutomu; Ushiro, Koichi; Kitajiri, Masanori; Yamashita, Toshio; Kumazawa, Tadami; Tanaka, Yoshimasa

    1991-01-01

    We performed Gd-DTPA-enhanced magnetic resonance imaging (MRI) examinations at several stages in 40 patients with peripheral facial nerve palsy (Bell's palsy and Ramsay-Hunt syndrome). In 38 of the 40 patients, one and more enhanced region could be seen in certain portion of the facial nerve in the temporal bone on the affected side, whereas no enhanced regions were seen on the intact side. Correlations between the timing of the MRI examination and the location of the enhanced regions were analysed. In all 6 patients examined by MRI within 5 days after the onset of facial nerve palsy, enhanced regions were present in the meatal portion. In 3 of the 8 patients (38%) examined by MRI 6 to 10 days after the onset of facial palsy, enhanced areas were seen in both the meatal and labyrinthine portions. In 8 of the 9 patients (89%) tested 11 to 20 days after the onset of palsy, the vertical portion was enhanced. In the 12 patients examined by MRI 21 to 40 days after the onset of facial nerve palsy, the meatal portion was not enhanced while the labyrinthine portion, the horizontal portion and the vertical portion were enhanced in 5 (42%), 8 (67%) and 11 (92%), respectively. Enhancement in the vertical portion was observed in all 5 patients examined more than 41 days after the onset of facial palsy. These results suggest that the central portion of the facial nerve in the temporal bone tends to be enhanced in the early stage of facial nerve palsy, while the peripheral portion is enhanced in the late stage. These changes of Gd-DTPA enhanced regions in the facial nerve may suggest dromic degeneration of the facial nerve in peripheral facial nerve palsy. (author)

  2. Differentiation of focal liver lesions by contrast-enhanced MRI

    International Nuclear Information System (INIS)

    Heintz, P.; Ehrenheim, C.

    1989-01-01

    47 patients with liver tumours (haemangioma, focal nodular hyperplasia, hepatocellular carcinoma) underwent MRI of the liver before and after i.v. injection of 0.2 ml./kg. gadolinium-DTPA in addition to other imaging methods. The demarcation of focal nodular hyperplasia is not influenced by use of the contrast agent as it almost behaves like surrounding normal liver tissue, thus only indirectly facilitating its identification. With regard to liver haemangiomas that show the most intensive uptake of gadolinium-DTPA, the contrast enhanced image does not reach to contrast and sensitivity of a native T 2 -weighted SE image, especially in cases of small haemangiomas. The contrast agent is helpful, however, in the recognition of large cavernous haemangiomas that are partially fibrotic or thrombotic. Emphasis is given to the contrast agent in hepatomas: gadolinium-DTPA presents a pattern of uptake and distribution frequently found in hepatocellular carcinoma providing additional information on the delineation of internal tumour details. (orig.) [de

  3. Can unenhanced multiparametric MRI substitute gadolinium-enhanced MRI in the characterization of vertebral marrow infiltrative lesions?

    Directory of Open Access Journals (Sweden)

    Dalia Z. Zidan

    2014-06-01

    Conclusion: Unenhanced-multiparametric MRI is compatible with gadolinium-enhanced MRI in reliable characterization of marrow infiltrative lesions. The routine MRI protocol of cancer patients should be altered to accommodate the evolving MRI technology and cost effectively substitute the need for a gadolinium enhanced scan.

  4. 3D pulmonary perfusion MRI and MR angiography of pulmonary embolism in pigs after a single injection of a blood pool MR contrast agent

    International Nuclear Information System (INIS)

    Fink, Christian; Ley, Sebastian; Puderbach, Michael; Plathow, Christian; Kauczor, Hans-Ulrich; Bock, Michael

    2004-01-01

    The purpose of this study was to assess the feasibility of contrast-enhanced 3D perfusion MRI and MR angiography (MRA) of pulmonary embolism (PE) in pigs using a single injection of the blood pool contrast Gadomer. PE was induced in five domestic pigs by injection of autologous blood thrombi. Contrast-enhanced first-pass 3D perfusion MRI (TE/TR/FA: 1.0 ms/2.2 ms/40 ; voxel size: 1.3 x 2.5 x 4.0 mm 3 ; TA: 1.8 s per data set) and high-resolution 3D MRA (TE/TR/FA: 1.4 ms/3.4 ms/40 ; voxel size: 0.8 x 1.0 x 1.6 mm 3 ) was performed during and after a single injection of 0.1 mmol/kg body weight of Gadomer. Image data were compared to pre-embolism Gd-DTPA-enhanced MRI and post-embolism thin-section multislice CT (n=2). SNR measurements were performed in the pulmonary arteries and lung. One animal died after induction of PE. In all other animals, perfusion MRI and MRA could be acquired after a single injection of Gadomer. At perfusion MRI, PE could be detected by typical wedge-shaped perfusion defects. While the visualization of central PE at MRA correlated well with the CT, peripheral PE were only visualized by CT. Gadomer achieved a higher peak SNR of the lungs compared to Gd-DTPA (21±8 vs. 13±3). Contrast-enhanced 3D perfusion MRI and MRA of PE can be combined using a single injection of the blood pool contrast agent Gadomer. (orig.)

  5. Structural and functional MRI in children with renal disease. First experience

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, Bettina; Froekiaer, Joergen [Aarhus Univ. Hospital (Denmark). Inst. of Clinical Medicine; Karstoft, Kristian; Pedersen, Michael [Aarhus Univ. Hospital (Denmark). Inst. of Clinical Medicine; Aarhus Univ. Hospital (Denmark). MR Research Centre; Joergensen, Troels Munch [Aarhus Univ. Hospital (Denmark). Dept. of Urology; Rittig, Soeren [Aarhus Univ. Hospital (Denmark). Dept. of Paediatrics

    2010-07-01

    This MRI study demonstrates our first clinical experiences with structural and functional evaluation in children with renal dysfunction, and communicates our experience with quantitative measurements of renal function compared to reference values found employing radionucleotides. We included renal impaired children who were recruited for clinical radioisotopic GFR measurements (n=8). MRI was performed 2 hours after Cr-EDTA measurements and was conducted using a protocol involving both anatomical/structural sequences and a dynamic contrast-enhanced sequence. Data obtained with the dynamic MRI sequence were processed using the graphical Patlak approach to obtain estimates of GFR. We were able to characterize the intrarenal configuration (cortex, medulla, pelvicalyceal arrangement) in all cases. Functional analyses of dynamic contrast-enhanced MRI revealed an overall underestimation of GFR measured by MRI compared to Cr-EDTPA measures (range: -2% to -43%). We advocate the use of MRI as a single-modality approach in the structural and functional evaluation of impaired kidneys in children, and concurrently, we presented a clinically available strategy for estimations of renal cortical volume and single kidney function. However, the use of MRI contrast agents have recently become controversial in renal patients due to the risk of NSF. (orig.)

  6. Evaluating automated dynamic contrast enhanced wrist 3T MRI in healthy volunteers

    DEFF Research Database (Denmark)

    Rastogi, Anshul; Kubassova, Olga; Krasnosselskaia, Lada V

    2013-01-01

    Dynamic contrast enhanced (DCE)-MRI has great potential to provide quantitative measure of inflammatory activity in rheumatoid arthritis. There is no current benchmark to establish the stability of signal in the joints of healthy subjects when imaged with DCE-MRI longitudinally, which is crucial so...

  7. Towards MRI T2 contrast agents of increased efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Branca, Marlène [CNRS, LCC (Laboratoire de Chimie de Coordination), 205, route de Narbonne, F-31077 Toulouse (France); Université de Toulouse, UPS, INPT, LCC, F-31077 Toulouse (France); Marciello, Marzia, E-mail: marziamarciello@icmm.csic.es [Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz, 3, Cantoblanco, 28049 Madrid (Spain); Ciuculescu-Pradines, Diana [CNRS, LCC (Laboratoire de Chimie de Coordination), 205, route de Narbonne, F-31077 Toulouse (France); Université de Toulouse, UPS, INPT, LCC, F-31077 Toulouse (France); Respaud, Marc [LPCNO, INSA, 135 Avenue de Rangueil, 31077 Toulouse Cedex 4 (France); Morales, Maria del Puerto [Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz, 3, Cantoblanco, 28049 Madrid (Spain); Serra, Raphael; Casanove, Marie-José [CNRS, CEMES (Centre d' Elaboration des Matériaux et d' Etudes Structurales) (France); Amiens, Catherine, E-mail: catherine.amiens@lcc-toulouse.fr [CNRS, LCC (Laboratoire de Chimie de Coordination), 205, route de Narbonne, F-31077 Toulouse (France); Université de Toulouse, UPS, INPT, LCC, F-31077 Toulouse (France)

    2015-03-01

    Magnetic nanoparticles can be efficient contrast agents for T2 weighted magnetic resonance imaging (MRI) after tuning of some key parameters such as size, surface state, colloidal stability and magnetization, thus motivating the development of new synthetic pathways. In this paper we report the effects of surface coating on the efficiency of two different types of iron based nanoparticles (NPs) as MRI contrast agents. Starting from well-defined hydrophobic iron oxide nanospheres and iron nanocubes of 13 nm size, we have used three methods to increase their hydrophilicity and transfer them into water: surface ligand modification, ligand exchange or encapsulation. The NPs obtained have been characterized by dynamic light scattering and transmission electron microscopy, and the relaxivities of their stable colloidal solutions in water have been determined. Among all samples prepared, iron nanocubes coated by silica display the highest relaxivity (r{sub 2}) value: 628 s{sup −1} mM{sup −1}. - Highlights: • Surface coating effect on the efficiency of iron based nanoparticles (NPs) as MRI contrast agents. • Synthesis of 2 different types of hydrophobic iron based NPs: iron oxide nanospheres and iron nanocubes (13 nm). • Development of three different procedures to stabilize iron based NPs in water. • Iron nanocubes coated by silica displayed the highest r{sub 2} value (628 s{sup −1} mM{sup −1})

  8. Enhancement MRI evaluation of neuroblastoma staging in children

    International Nuclear Information System (INIS)

    Li Xin; Wang Chunxiang; Zhao Bin; Liu Peifang

    2002-01-01

    Objective: To evaluate the value and limitation of Gd-DTPA enhanced MRI for neuroblastoma staging in children. Methods: Twelve cases of neuroblastoma proved by operation or bone marrow aspiration were examined by gadolinium-enhanced MRI. The age ranged from seven months to five years, mean 3.7 years. Eight tumors originated from adrenal, and four from posterior mediastinum. Conventional sequences, double dose gadolinium-enhanced MRI, and 3D CEMRA were used in all patients. Six cases were examined by CT in same time. Imaging staging on surgic-histopathological-based International Neuroblastoma Staging System (INSS) was performed. Results: Six patients were staged by CT, including stage I-II in 2 cases, stage III in 4 cases, and stage IV in none. Twelve patients were staged by conventional MRI, including stage I-II in 2 cases, stage III in 9 cases, and stage IV in 1 case. Twelve patients were staged by double dose gadolinium-enhanced MRI, including stage I-II in 1 case, stage III in 1 case, and stage IV in 10 cases. Conclusion: Gadolinium-enhanced MRI was a single best imaging modality for neuroblastoma, most useful for distal to diaphragm metastasis, dumbbell tumor intraspinal extension, and bone marrow metastasis that was not detected by aspirate examination. Enhancement MRI was important in evaluating the therapy and was also helpful in assessing the therapeutic efficacy and relapse. 3D CEMRA helps demonstrate large vascular encasement and tumor erosion into important organs, and it is useful in assessing the respectability. Long examination time and lack in showing the characteristic calcium were the limitations

  9. The behavior after intravenous injection in mice of multiwalled carbon nanotube / Fe3O4 hybrid MRI contrast agents.

    Science.gov (United States)

    Wu, Huixia; Liu, Gang; Zhuang, Yeming; Wu, Dongmei; Zhang, Haoqiang; Yang, Hong; Hu, He; Yang, Shiping

    2011-07-01

    Fe(3)O(4) nanoparticles were in situ loaded on the surface of multiwalled carbon nanotubes (MWCNTs) by a solvothermal method using diethylene glycol and diethanolamine as solvents and complexing agents. The as-prepared MWCNT/Fe(3)O(4) hybrids exhibited excellent hydrophilicity, superparamagnetic property at room temperature, and a high T(2) relaxivity of 175.5 mM(-1) s(-1) in aqueous solutions. In vitro experiments revealed that MWCNT/Fe(3)O(4) had an excellent magnetic resonance imaging (MRI) enhancement effect on cancer cells, and importantly, they displayed low cytotoxicity and neglectable hemolytic activity. After intravenous administration, the T(2)-weighted MRI signal in the liver and spleen of mice decreased significantly, suggesting the potential application of the hybrids as MRI contrast agents. The organ biodistribution studies, histological analyses and elimination investigations showed that the hybrids were uptaken by the liver, lung and spleen after intravenous injection, and could be excreted from the liver and kidney. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. MRI

    DEFF Research Database (Denmark)

    Schroeter, Aileen; Rudin, Markus; Gianolio, Eliana

    2017-01-01

    This chapter discusses principles of nuclear magnetic resonance (NMR) and MRI followed by a survey on the major classes of MRI contrast agents (CA), their modes of action, and some of the most significative applications. The two more established classes of MRI-CA are represented by paramagnetic...... been attained that markedly increase the number and typology of systems with CEST properties. Currently much attention is also devoted to hyperpolarized molecules that display a sensitivity enhancement sufficient for their direct exploitation for the formation of the MR image. A real breakthrough...

  11. Enhanced MRI in patients with facial palsy; Study of time-related enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Yanagida, Masahiro; Kato, Tsutomu; Ushiro, Koichi; Kitajiri, Masanori; Yamashita, Toshio; Kumazawa, Tadami; Tanaka, Yoshimasa (Kansai Medical School, Moriguchi, Osaka (Japan))

    1991-03-01

    We performed Gd-DTPA-enhanced magnetic resonance imaging (MRI) examinations at several stages in 40 patients with peripheral facial nerve palsy (Bell's palsy and Ramsay-Hunt syndrome). In 38 of the 40 patients, one and more enhanced region could be seen in certain portion of the facial nerve in the temporal bone on the affected side, whereas no enhanced regions were seen on the intact side. Correlations between the timing of the MRI examination and the location of the enhanced regions were analysed. In all 6 patients examined by MRI within 5 days after the onset of facial nerve palsy, enhanced regions were present in the meatal portion. In 3 of the 8 patients (38%) examined by MRI 6 to 10 days after the onset of facial palsy, enhanced areas were seen in both the meatal and labyrinthine portions. In 8 of the 9 patients (89%) tested 11 to 20 days after the onset of palsy, the vertical portion was enhanced. In the 12 patients examined by MRI 21 to 40 days after the onset of facial nerve palsy, the meatal portion was not enhanced while the labyrinthine portion, the horizontal portion and the vertical portion were enhanced in 5 (42%), 8 (67%) and 11 (92%), respectively. Enhancement in the vertical portion was observed in all 5 patients examined more than 41 days after the onset of facial palsy. These results suggest that the central portion of the facial nerve in the temporal bone tends to be enhanced in the early stage of facial nerve palsy, while the peripheral portion is enhanced in the late stage. These changes of Gd-DTPA enhanced regions in the facial nerve may suggest dromic degeneration of the facial nerve in peripheral facial nerve palsy. (author).

  12. High-dose contrast-enhanced MRI in multiple sclerosis

    International Nuclear Information System (INIS)

    Koudriavtseva, T.; Pozzilli, C.; Di Biasi, C.; Iannilli, M.; Trasimeni, G.; Gasperini, C.; Argentino, C.; Gualdi, G.F.

    1996-01-01

    Contrast-enhanced MRI is effective for assessing disease activity in multiple sclerosis (MS) and may provide an outcome measure for testing the efficacy of treatment in clinical trials. To compare the sensitivity of high-dose gadolinium-HP-DO3A with that of a standard dose of gadolinium-DTPA, we studied 16 patients with relapsing-remitting MS in the acute phase of the disease. Each underwent two MRI examinations within at most 48 h. The initial MRI study was with a standard dose of gadolinium-DTPA (0.1 mmol/kg), and the second one an experimental dose of gadolinium-HP-DO3A (0.3 mmol/kg). No adverse effects were attributed to the contrast media. The high-dose study revealed more enhancing lesions than the standard-dose study (56 vs 38). This difference was found to be more relevant for infratentorial and small lesions. Furthermore, with the higher dose, there was a marked qualitative improvement in the visibility and delineation of the lesions. (orig.). With 4 figs., 2 tabs

  13. High-dose contrast-enhanced MRI in multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Koudriavtseva, T. [Department of Neurosciences, University of Rome ``La Sapienza`` Rome (Italy); Pozzilli, C. [Department of Neurosciences, University of Rome ``La Sapienza`` Rome (Italy); Di Biasi, C. [MR Unit, Clinica Medica 1, University of Rome ``La Sapienza``, Rome (Italy); Iannilli, M. [MR Unit, Clinica Medica 1, University of Rome ``La Sapienza``, Rome (Italy); Trasimeni, G. [MR Unit, Clinica Medica 1, University of Rome ``La Sapienza``, Rome (Italy); Gasperini, C. [Department of Neurosciences, University of Rome ``La Sapienza`` Rome (Italy); Argentino, C. [Department of Neurosciences, University of Rome ``La Sapienza`` Rome (Italy); Gualdi, G.F. [MR Unit, Clinica Medica 1, University of Rome ``La Sapienza``, Rome (Italy)

    1996-05-01

    Contrast-enhanced MRI is effective for assessing disease activity in multiple sclerosis (MS) and may provide an outcome measure for testing the efficacy of treatment in clinical trials. To compare the sensitivity of high-dose gadolinium-HP-DO3A with that of a standard dose of gadolinium-DTPA, we studied 16 patients with relapsing-remitting MS in the acute phase of the disease. Each underwent two MRI examinations within at most 48 h. The initial MRI study was with a standard dose of gadolinium-DTPA (0.1 mmol/kg), and the second one an experimental dose of gadolinium-HP-DO3A (0.3 mmol/kg). No adverse effects were attributed to the contrast media. The high-dose study revealed more enhancing lesions than the standard-dose study (56 vs 38). This difference was found to be more relevant for infratentorial and small lesions. Furthermore, with the higher dose, there was a marked qualitative improvement in the visibility and delineation of the lesions. (orig.). With 4 figs., 2 tabs.

  14. Quantitation of MRI sensitivity to quasi-monodisperse microbubble contrast agents for spatially resolved manometry.

    Science.gov (United States)

    Bencsik, Martin; Al-Rwaili, Amgad; Morris, Robert; Fairhurst, David J; Mundell, Victoria; Cave, Gareth; McKendry, Jonathan; Evans, Stephen

    2013-11-01

    The direct in-vivo measurement of fluid pressure cannot be achieved with MRI unless it is done with the contribution of a contrast agent. No such contrast agents are currently available commercially, whilst those demonstrated previously only produced qualitative results due to their broad size distribution. Our aim is to quantitate then model the MR sensitivity to the presence of quasi-monodisperse microbubble populations. Lipid stabilised microbubble populations with mean radius 1.2 ± 0.8 μm have been produced by mechanical agitation. Contrast agents with increasing volume fraction of bubbles up to 4% were formed and the contribution the bubbles bring to the relaxation rate was quantitated. A periodic pressure change was also continuously applied to the same contrast agent, until MR signal changes were only due to bubble radius change and not due to a change in bubble density. The MR data compared favourably with the prediction of an improved numerical simulation. An excellent MR sensitivity of 23 % bar(-1) has been demonstrated. This work opens up the possibility of generating microbubble preparations tailored to specific applications with optimised MR sensitivity, in particular MRI based in-vivo manometry. Copyright © 2012 Wiley Periodicals, Inc.

  15. Dynamic glucose enhanced (DGE) MRI for combined imaging of blood-brain barrier break down and increased blood volume in brain cancer.

    Science.gov (United States)

    Xu, Xiang; Chan, Kannie W Y; Knutsson, Linda; Artemov, Dmitri; Xu, Jiadi; Liu, Guanshu; Kato, Yoshinori; Lal, Bachchu; Laterra, John; McMahon, Michael T; van Zijl, Peter C M

    2015-12-01

    Recently, natural d-glucose was suggested as a potential biodegradable contrast agent. The feasibility of using d-glucose for dynamic perfusion imaging was explored to detect malignant brain tumors based on blood brain barrier breakdown. Mice were inoculated orthotopically with human U87-EGFRvIII glioma cells. Time-resolved glucose signal changes were detected using chemical exchange saturation transfer (glucoCEST) MRI. Dynamic glucose enhanced (DGE) MRI was used to measure tissue response to an intravenous bolus of d-glucose. DGE images of mouse brains bearing human glioma showed two times higher and persistent changes in tumor compared with contralateral brain. Area-under-curve (AUC) analysis of DGE delineated blood vessels and tumor and had contrast comparable to the AUC determined using dynamic contrast enhanced (DCE) MRI with GdDTPA, both showing a significantly higher AUC in tumor than in brain (P blood volume and permeability with respect to normal brain. We expect DGE will provide a low-risk and less expensive alternative to DCE MRI for imaging cancer in vulnerable populations, such as children and patients with renal impairment. © 2015 Wiley Periodicals, Inc.

  16. Dynamic Glucose Enhanced (DGE) MRI for Combined Imaging of Blood Brain Barrier Break Down and Increased Blood Volume in Brain Cancer

    Science.gov (United States)

    Xu, Xiang; Chan, Kannie WY; Knutsson, Linda; Artemov, Dmitri; Xu, Jiadi; Liu, Guanshu; Kato, Yoshinori; Lal, Bachchu; Laterra, John; McMahon, Michael T.; van Zijl, Peter C.M.

    2015-01-01

    Purpose Recently, natural d-glucose was suggested as a potential biodegradable contrast agent. The feasibility of using d-glucose for dynamic perfusion imaging was explored to detect malignant brain tumors based on blood brain barrier breakdown. Methods Mice were inoculated orthotopically with human U87-EGFRvIII glioma cells. Time-resolved glucose signal changes were detected using chemical exchange saturation transfer (glucoCEST) MRI. Dynamic glucose enhanced (DGE) MRI was used to measure tissue response to an intravenous bolus of d-glucose. Results DGE images of mouse brains bearing human glioma showed two times higher and persistent changes in tumor compared to contralateral brain. Area-under-curve (AUC) analysis of DGE delineated blood vessels and tumor and had contrast comparable to the AUC determined using dynamic contrast enhanced (DCE) MRI with GdDTPA, both showing a significantly higher AUC in tumor than in brain (pblood volume and permeability with respect to normal brain. We expect DGE will provide a low-risk and less expensive alternative to DCE MRI for imaging cancer in vulnerable populations, such as children and patients with renal impairment. PMID:26404120

  17. Evaluation of oral abdominal contrast agent containing ferric ammonium citrate

    International Nuclear Information System (INIS)

    Shiga, Toshiko; Kawamura, Yasutaka; Iwasaki, Toshiko

    1991-01-01

    We evaluated the effectiveness of oral MRI contrast agent containing ferric ammonium citrate. Twenty patients were arbitrarily divided into 2 groups according to the given dose of 100 and 200 mg Fe of oral MRI contrast agent. MRI was performed before and immediately after ingesting 300 ml solution of oral MRI contrast agent using a 1.5 T superconducting system (GE: Signa). Each dose of 100 and 200 mg Fe of oral MRI contrast agent produced sufficient enhancement of gastrointestinal tract, enough to make clear the pancreatic contour and porta hepatis. There was no significant change in blood and urine analysis observed after taking oral MRI contrast agent. The use of ferric ammonium citrate as an oral MRI contrast agent seems to add valuable information in performing upper abdominal MRI imaging. (author)

  18. Model-based characterization of the transpulmonary circulation by DCE-MRI

    NARCIS (Netherlands)

    Saporito, S.; Herold, I.H.F.; Houthuizen, P.; den Boer, J.; Van Den Bosch, H.; Korsten, H.; van Assen, H.C.; Mischi, M.

    2016-01-01

    Objective measures to assess pulmonary circulation status would improve heart failure patient care. We propose a method for the characterization of the transpulmonary circulation by DCE-MRI. Parametric deconvolution was performed between contrast agent fifirst passage time-enhancement curves derived

  19. Enhancement patterns and pseudo-washout of hepatic haemangiomas on gadoxetate disodium-enhanced liver MRI

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bohyun [University of Ulsan College of Medicine, Asan Medical Center, Department of Radiology and Research Institute of Radiology, Seoul (Korea, Republic of); Ajou University School of Medicine, Department of Radiology, Suwon (Korea, Republic of); Byun, Jae Ho; Kim, Hyoung Jung; Won, Hyung Jin; Kim, So Yeon; Shin, Yong Moon; Kim, Pyo Nyun [University of Ulsan College of Medicine, Asan Medical Center, Department of Radiology and Research Institute of Radiology, Seoul (Korea, Republic of)

    2016-01-15

    To compare the enhancement patterns and prevalence of pseudo-washout between rapidly and slowly enhancing hepatic haemangiomas on gadoxetate disodium-enhanced MRI in patients with chronic liver disease (CLD) and healthy liver (HL). On gadoxetate disodium-enhanced MRI, the extent of intralesional arterial enhancement >50 % and ≤50 % of lesions was defined as rapid and slow enhancement, respectively. The enhancement patterns and presence of pseudo-washout during the portal venous phase (PVP) and transitional phase (TP) of 74 hepatic haemangiomas were retrospectively evaluated in the CLD and HL groups. Sequential changes of signal-to-noise ratio (SNR) were measured in unenhanced phase, PVP and TP. Irrespective of hepatic health status, pseudo-washout in TP was significantly more common in the rapidly enhancing haemangiomas (p ≤ 0.026). In both groups, rapidly enhancing haemangiomas showed complete or progressive incomplete enhancement in PVP, which either lasted or transformed to pseudo-washout in TP, whereas slowly enhancing haemangiomas showed progressive incomplete enhancement in PVP and TP. SNR of hepatic parenchyma continued to rise until TP, whereas that of portal vein and haemangioma falls in TP. Regardless of CLD, pseudo-washout in TP was more common in rapidly than in slowly enhancing haemangiomas, with enhancement patterns differing in the two subgroups. (orig.)

  20. Enhancement patterns and pseudo-washout of hepatic haemangiomas on gadoxetate disodium-enhanced liver MRI

    International Nuclear Information System (INIS)

    Kim, Bohyun; Byun, Jae Ho; Kim, Hyoung Jung; Won, Hyung Jin; Kim, So Yeon; Shin, Yong Moon; Kim, Pyo Nyun

    2016-01-01

    To compare the enhancement patterns and prevalence of pseudo-washout between rapidly and slowly enhancing hepatic haemangiomas on gadoxetate disodium-enhanced MRI in patients with chronic liver disease (CLD) and healthy liver (HL). On gadoxetate disodium-enhanced MRI, the extent of intralesional arterial enhancement >50 % and ≤50 % of lesions was defined as rapid and slow enhancement, respectively. The enhancement patterns and presence of pseudo-washout during the portal venous phase (PVP) and transitional phase (TP) of 74 hepatic haemangiomas were retrospectively evaluated in the CLD and HL groups. Sequential changes of signal-to-noise ratio (SNR) were measured in unenhanced phase, PVP and TP. Irrespective of hepatic health status, pseudo-washout in TP was significantly more common in the rapidly enhancing haemangiomas (p ≤ 0.026). In both groups, rapidly enhancing haemangiomas showed complete or progressive incomplete enhancement in PVP, which either lasted or transformed to pseudo-washout in TP, whereas slowly enhancing haemangiomas showed progressive incomplete enhancement in PVP and TP. SNR of hepatic parenchyma continued to rise until TP, whereas that of portal vein and haemangioma falls in TP. Regardless of CLD, pseudo-washout in TP was more common in rapidly than in slowly enhancing haemangiomas, with enhancement patterns differing in the two subgroups. (orig.)

  1. Late Adverse Events after Enhanced and Unenhanced MRI and CT

    DEFF Research Database (Denmark)

    Azzouz, Manal; Rømsing, Janne; Thomsen, Henrik S.

    2014-01-01

    Prospective evaluation of frequency of late and very late adverse events in patients undergoing enhanced or unenhanced magnetic resonance imaging (MRI) or computed tomography (CT). The imaging procedure was performed according to the protocols of the department. All patients were contacted three...... of LAEs was significantly higher in the enhanced MRI (38%) and CT (27%) groups than unenhanced MRI (20%) and CT (16%) groups. The frequency of nausea, dizziness, abdominal pain and diarrhoea was significantly higher in the enhanced MRI group than in the MRI control group, while taste sensation...

  2. A new manganese-based oral contrast agent (CMC-001) for liver MRI. Pharmacological and pharmaceutical aspects

    International Nuclear Information System (INIS)

    Joergensen, Jan Troest; Rief, Matthias; Wagner, Moritz; Brismar, Torkel B.; Albiin, Nils

    2012-01-01

    Manganese is one of the most abundant metals on earth and is found as a component of more than 100 different minerals. Besides being an essential trace element in relation to the metabolic processes in the body, manganese is also a paramagnetic metal that possesses similar characteristics to gadolinium with regards to T1-weighted (T1-w) magnetic resonance imaging (MRI). Manganese, in the form of manganese (II) chloride tetrahydrate, is the active substance in a new targeted oral contrast agent, currently known as CMC-001, indicated for hepatobiliary MRI. Under physiological circumstances manganese is poorly absorbed from the intestine after oral intake, but by the use of specific absorption promoters, L-alanine and vitamin D3, it is possible to obtain a sufficiently high concentration in the liver in order to achieve a significant signal enhancing effect. In the liver manganese is exposed to a very high first-pass effect, up to 98 %, which prevents the metal from reaching the systemic circulation, thereby reducing the number of systemic side-effects. Manganese is one of the least toxic trace elements, and due to its favorable safety profile it may be an attractive alternative to gadolinium-based contrast agents for patients undergoing an MRI evaluation for liver metastases in the future. In this review the basic pharmacological and pharmaceutical aspects of this new targeted oral hepatobiliary specific contrast agent will be discussed

  3. MRI ductography of contrast agent distribution and leakage in normal mouse mammary ducts and ducts with in situ cancer.

    Science.gov (United States)

    Markiewicz, Erica; Fan, Xiaobing; Mustafi, Devkumar; Zamora, Marta; Conzen, Suzanne D; Karczmar, Gregory S

    2017-07-01

    High resolution 3D MRI was used to study contrast agent distribution and leakage in normal mouse mammary glands and glands containing in situ cancer after intra-ductal injection. Five female FVB/N mice (~19weeks old) with no detectable mammary cancer and eight C3(1) SV40 Tag virgin female mice (~15weeks old) with extensive in situ cancer were studied. A 34G, 45° tip Hamilton needle with a 25μL Hamilton syringe was inserted into the tip of the nipple and approximately 15μL of a Gadodiamide was injected slowly over 1min into the nipple and throughout the duct on one side of the inguinal gland. Following injection, the mouse was placed in a 9.4T MRI scanner, and a series of high resolution 3D T1-weighted images was acquired with a temporal resolution of 9.1min to follow contrast agent leakage from the ducts. The first image was acquired at about 12min after injection. Ductal enhancement regions detected in images acquired between 12 and 21min after contrast agent injection was five times smaller in SV40 mouse mammary ducts (pcontrast agent from the SV40 ducts. The contrast agent washout rate measured between 12min and 90min after injection was ~20% faster (p<0.004) in SV40 mammary ducts than in FVB/N mammary ducts. These results may be due to higher permeability of the SV40 ducts, likely due to the presence of in situ cancers. Therefore, increased permeability of ducts may indicate early stage breast cancers. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Multivariable analysis of clinical influence factors on liver enhancement of Gd-EOB-DTPA-enhanced 3T MRI

    International Nuclear Information System (INIS)

    Verloh, N.; Haimerl, M.; Stroszczynski, C.; Fellner, C.; Wiggermann, P.; Zeman, F.; Teufel, A.; Lang, S.

    2015-01-01

    The purpose of this study was to identify clinical factors influencing Gd-EOB-DTPA liver uptake in patients with healthy liver parenchyma. A total of 124 patients underwent contrast-enhanced MRI with a hepatocyte-specific contrast agent at 3T. T1-weighted volume interpolated breath-hold examination (VIBE) sequences with fat suppression were acquired before and 20 minutes after contrast injection. The relative enhancement (RE) between plain and contrast-enhanced signal intensity was calculated. Simple and multiple linear regression analyses were performed to evaluate clinical factors influencing the relative enhancement. Patients were subdivided into three groups according to their relative liver enhancement (HRE, RE ≥ 100 %; MRE, 100 % > RE > 50 %; NRE, RE ≤ 50 %) and were analyzed according to the relevant risk factors. Simple regression analyses revealed patient age, transaminases (AST, ALT, GGT), liver, spleen and delta-liver volume (the difference between the volumetrically measured liver volume and the estimated liver volume based on body weight) as significant factors influencing relative enhancement. In the multiple analysis the transaminase AST, spleen and delta liver volume remained significant factors influencing relative enhancement. Delta liver volume showed a significant difference between all analyzed groups. Liver enhancement in the hepatobiliary phase depends on a variety of factors. Body weight-adapted administration of Gd-EOB-DTPA may lead to inadequate liver enhancement after 20 minutes especially when the actual liver volume differs from the expected volume.

  5. Delayed enhanced MRI in intraparenchymal tumors

    International Nuclear Information System (INIS)

    Eguchi, Takahiko; Morimoto, Tetsuya; Takeshima, Toshikazu

    1991-01-01

    Delayed enhanced MRI was performed on 20 intraparenchymal tumors, and these findings were compared with those of early enhanced MRI. Using the spin-echo technique (SE: 400-500/20 msec), early scans were obtained 5 minutes, and delayed scans were obtained 60 minutes, after the intravenous injection of 0.1 nmol of gadolinium-DTPA/Kg. We discussed the changes in the delayed scan with regard to the change in the pattern of enhancement and the boundary of enhancement. In these twenty intraparenchymal tumors, there were three low-grade astrocytomas, two anaplastic astrocytomas, seven glioblastomas, and eight metastatic tumors. The changes in the enhanced pattern showed three types as follows: Type I: heterogeneous enhancement in both early and delayed scans; Type II: heterogeneous enhancement in early scan and homogeneous enhancement in delayed scan; Type III: homogeneous enhancement in both early and delayed scans. Most malignant tumors, such as glioblastomas (6/8), anaplastic astrocytomas (2/2), and metastatic tumors (7/8), revealed Type I, although low-grade astrocytomas showed Type II (3/2) and Type III (1/3). The heterogeneous enhancement in delayed scan was found in malignant tumors and in low-grade astrocytoma; even if the early scan revealed heterogeneous enhancement, the delayed scan showed homogeneous enhancement. In the delayed scan, most enhanced boundaries spread out of the boundaries in the early scan. Glioblastomas spread markedly in the delayed scan, although none of the low-grade astrocytomas, anaplastic astrocytomas, or metastases revealed marked spreading. We called these marked increases in the delayed scan a 'spreading sign' and thought that this sign was specific to glioblastomas. Recently some authors have emphasized the usefulness of serial scans. Delayed enhanced MRI 60 minutes after the administration of a contrast medium was here found also to be useful for the accurate diagnosis for brain tumors. (author)

  6. Renal Cell Carcinoma Perfusion before and after Radiofrequency Ablation Measured with Dynamic Contrast Enhanced MRI: A Pilot Study.

    Science.gov (United States)

    Wah, Tze Min; Sourbron, Steven; Wilson, Daniel Jonathan; Magee, Derek; Gregory, Walter Martin; Selby, Peter John; Buckley, David L

    2018-01-08

    To investigate if the early treatment effects of radiofrequency ablation (RFA) on renal cell carcinoma (RCC) can be detected with dynamic contrast enhanced (DCE)-MRI and to correlate RCC perfusion with RFA treatment time. 20 patients undergoing RFA of their 21 RCCs were evaluated with DCE-MRI before and at one month after RFA treatment. Perfusion was estimated using the maximum slope technique at two independent sittings. Total RCC blood flow was correlated with total RFA treatment time, tumour location, size and histology. DCE-MRI examinations were successfully evaluated for 21 RCCs (size from 1.3 to 4 cm). Perfusion of the RCCs decreased significantly ( p measuring RCC perfusion before and after RFA. Perfusion significantly decreases in the zone of ablation, suggesting that it may be useful for the assessment of treatment efficacy. Pre-RFA RCC blood flow may be used to predict RFA treatment time.

  7. All-phase MR angiography using independent component analysis of dynamic contrast enhanced MRI time series. φ-MRA

    International Nuclear Information System (INIS)

    Suzuki, Kiyotaka; Matsuzawa, Hitoshi; Watanabe, Masaki; Nakada, Tsutomu; Nakayama, Naoki; Kwee, I.L.

    2003-01-01

    Dynamic contrast enhanced magnetic resonance imaging (dynamic MRI) represents a MRI version of non-diffusible tracer methods, the main clinical use of which is the physiological construction of what is conventionally referred to as perfusion images. The raw data utilized for constructing MRI perfusion images are time series of pixel signal alterations associated with the passage of a gadolinium containing contrast agent. Such time series are highly compatible with independent component analysis (ICA), a novel statistical signal processing technique capable of effectively separating a single mixture of multiple signals into their original independent source signals (blind separation). Accordingly, we applied ICA to dynamic MRI time series. The technique was found to be powerful, allowing for hitherto unobtainable assessment of regional cerebral hemodynamics in vivo. (author)

  8. Use of trimetasphere metallofullerene MRI contrast agent for the non-invasive longitudinal tracking of stem cells in the lung.

    Science.gov (United States)

    Murphy, Sean V; Hale, Austin; Reid, Tanya; Olson, John; Kidiyoor, Amritha; Tan, Josh; Zhou, Zhiguo; Jackson, John; Atala, Anthony

    2016-04-15

    Magnetic Resonance Imaging (MRI) is a commonly used, non-invasive imaging technique that provides visualization of soft tissues with high spatial resolution. In both a research and clinical setting, the major challenge has been identifying a non-invasive and safe method for longitudinal tracking of delivered cells in vivo. The labeling and tracking of contrast agent labeled cells using MRI has the potential to fulfill this need. Contrast agents are often used to enhance the image contrast between the tissue of interest and surrounding tissues with MRI. The most commonly used MRI contrast agents contain Gd(III) ions. However, Gd(III) ions are highly toxic in their ionic form, as they tend to accumulate in the liver, spleen, kidney and bones and block calcium channels. Endohedral metallofullerenes such as trimetallic nitride endohedral metallofullerenes (Trimetasphere®) are one unique class of fullerene molecules where a Gd3N cluster is encapsulated inside a C80 carbon cage referred to as Gd3N@C80. These endohedral metallofullerenes have several advantages over small chelated Gd(III) complexes such as increased stability of the Gd(III) ion, minimal toxic effects, high solubility in water and high proton relativity. In this study, we describe the evaluation of gadolinium-based Trimetasphere® positive contrast agent for the ​in vitro labeling and in vivo tracking of human amniotic fluid-derived stem cells within lung tissue. In addition, we conducted a 'proof-of-concept' experiment demonstrating that this methodology can be used to track the homing of stem cells to injured lung tissue and provide longitudinal analysis of cell localization over an extended time course. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Early detection of osteoarthritis in rabbits using MRI with a double-contrast agent.

    Science.gov (United States)

    Onishi, Okihiro; Ikoma, Kazuya; Kido, Masamitsu; Kabuto, Yukichi; Ueshima, Keiichiro; Matsuda, Ken-Ichi; Tanaka, Masaki; Kubo, Toshikazu

    2018-03-13

    Articular cartilage degeneration has been evaluated by magnetic resonance imaging (MRI). However, this method has several problems, including its time-consuming nature and the requirement of a high magnetic field or specialized hardware. The purpose of this study was to sequentially assess early degenerative changes in rabbit knee articular cartilage using MRI with a new double-contrast agent. We induced osteoarthritis (OA) in the right knee of rabbits by anterior cruciate ligament transection and partial medial meniscectomy. Proton density-weighted images and T 2 -calculated images were obtained before and after contrast agent injection into the knee. The signal intensity ratio (SIR) values on the proton density-weighted images were calculated by dividing the signal intensity of the articular cartilage by that of joint fluid. Six rabbits were examined using MRI at 2 (designated 2-w OA) and 4 weeks (4-w OA) after the operation. Histological examination was performed 4 weeks after the operation. One rabbit was histologically examined 2 weeks after the operation. The control consisted of six rabbits that were not subjected to the operation. The SIR values, T 2 values and the thicknesses of the cartilage of the 2-w OA, 4-w OA and the control before and after contrast agent injection were analyzed. The Mankin score and OARSI (Osteoarthritis Research Society International) score were used for the histological evaluation. Significant differences in the SIR and T 2 values of the medial and lateral condyles of the femur were found between the control and the 4-w OA only after contrast agent injection. No significant differences were found in the SIR and T 2 values before contrast agent injection between the control, the 2-w OA and 4-w OA. The thickness of the articular cartilage revealed no significant differences. In the histological assessment, the Mankin score and OARSI score sequentially increased from the control to the 4-w OA. We evaluated the SIR and T 2 values

  10. Examining multi-component DNA-templated nanostructures as imaging agents

    Science.gov (United States)

    Jaganathan, Hamsa

    2011-12-01

    Magnetic resonance imaging (MRI) is the leading non-invasive tool for disease imaging and diagnosis. Although MRI exhibits high spatial resolution for anatomical features, the contrast resolution is low. Imaging agents serve as an aid to distinguish different types of tissues within images. Gadolinium chelates, which are considered first generation designs, can be toxic to health, while ultra-small, superparamagnetic nanoparticles (NPs) have low tissue-targeting efficiency and rapid bio-distribution, resulting to an inadequate detection of the MRI signal and enhancement of image contrast. In order to improve the utility of MRI agents, the challenge in composition and structure needs to be addressed. One-dimensional (1D), superparamagnetic nanostructures have been reported to enhance magnetic and in vivo properties and therefore has a potential to improve contrast enhancement in MRI images. In this dissertation, the structure of 1D, multi-component NP chains, scaffolded on DNA, were pre-clinically examined as potential MRI agents. First, research was focused on characterizing and understanding the mechanism of proton relaxation for DNA-templated NP chains using nuclear magnetic resonance (NMR) spectrometry. Proton relaxation and transverse relaxivity were higher in multi-component NP chains compared to disperse NPs, indicating the arrangement of NPs on a 1D structure improved proton relaxation sensitivity. Second, in vitro evaluation for potential issues in toxicity and contrast efficiency in tissue environments using a 3 Tesla clinical MRI scanner was performed. Cell uptake of DNA-templated NP chains was enhanced after encapsulating the nanostructure with layers of polyelectrolytes and targeting ligands. Compared to dispersed NPs, DNA-templated NP chains improved MRI contrast in both the epithelial basement membrane and colon cancer tumors scaffolds. The last part of the project was focused on developing a novel MRI agent that detects changes in DNA methylation

  11. Value of contrast enhancement with Gd-DTPA in MRI of brain tumors. A comparison with X-ray CT

    Energy Technology Data Exchange (ETDEWEB)

    Tsuji, Takehisa; Kishikawa, Takashi; Ikezaki, Kiyonobu; Fujii, Kiyotaka; Matsumoto, Shunichi; Koga, Toshihiko.

    1987-12-01

    Value of administration of Gadolinium-DTPA dimeglumine (Gd-DTPA), a magnetic resonance contrast agent, in MRI was evaluated in 17 patients of primary brain tumors and 3 metastatic tumors with known pathology, comparing with CT findings. MRI was performed with T/sub 1/-weighted spin echo pulse sequence (SE 50030) prior to and following the intravenous injection of 0.10 mmolkg Gd-DTPA. All, but one pituitary microadenoma, the tumors including meningiomas, pituitary adenomas, gliomas, intraventricular craniopharyngioma and acoustic neurinoma and metastatic lung adenocarcinomas, were enhanced by Gd-DTPA on T/sub 1/-weighted images. Good definition of the exact boundaries and extent of the mass to the surrounding structures were obtained in all these cases. Especially, the invasion of meningioma to the dura mater or to the venous sinus, and that of cerebellopontine angle tumor to the internal auditory meatus or to the jugular foramen, were better delineated on MRI as compared with CT. The anatomical relationship to the surrounding structures in the sellar or parasellar tumors were also clearly demonstrated on MRI. Thus, MRI with Gd-DTPA administration was useful for the preoperative assessment and Gd-DTPA appears to be a safe contrast agent for MRI since there were no significant untoward reactions in our series.

  12. Manganese–gold nanoparticles as an MRI positive contrast agent in mesenchymal stem cell labeling

    International Nuclear Information System (INIS)

    Hunyadi Murph, Simona E.; Jacobs, Stephanie; Liu Jimei; Hu, Tom C.-C.; Siegfired, Matthew; Serkiz, Steven M.; Hudson, Joan

    2012-01-01

    We report a straightforward approach to prepare multifunctional manganese–gold nanoparticles by attaching Mn(II) ions onto the surface of 20 nm citrate-capped gold nanoparticles. In vitro MRI measurements made in agarose gel phantoms exhibited high relaxivity (18.26 ± 1.04 mmol −1 s −1 ). Controlled incubation of the nanoparticles with mesenchymal stem cells (MSCs) was used to study cellular uptake of these particles and this process appeared to be controlled by the size of the nanoparticle aggregates in the extracellular solution. SEM images of live MSCs showed an increased concentration of particles near the cell membrane and a distribution of the size of particles within the cells. Survivability for MSCs in contact with Mn–Au NPs was greater than 97% over the 3-day period and up to the 1 mM Mn used in this study. The high relaxivity and low cell mortality are suggestive of an enhanced positive contrast agent for in vitro or in vivo applications.

  13. Dynamic gadolinium-enhanced MRI evaluation of porcine femoral head ischemia and reperfusion

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, T. [Clinic for Orthopaedics and Sports Traumatology, Dreifaltigkeits-Krankenhaus GmbH, Aachener Str. 445-449, 50933 Koeln (Germany); Drescher, W. [Department of Orthopaedics, Christian Albrechts University, Kiel (Germany); Becker, C. [Department of Orthopaedics, Heinrich Heine University, Duesseldorf (Germany); Sangill, R.; Stoedkilde-Joergensen, H. [Institute for Magnetic Resonance Imaging Tomography, University of Aarhus, Skejby Hospital, Aarhus (Denmark); Heydthausen, M. [Computing Center, Heinrich Heine University, Duesseldorf (Germany); Hansen, E.S.; Buenger, C. [Spine Section, Department of Orthopaedics, University of Aarhus (Denmark)

    2003-02-01

    To examine the potential of gadolinium (Gd)-enhanced dynamic MRI in the detection of early femoral head ischemia. Furthermore, to apply a three-compartment model to achieve a clinically applicable MR index for femoral head perfusion during the steady state and arterial hip joint tamponade.Design and materials In a porcine model femoral head perfusion was measured by radioactive tracer microspheres and by using a dynamic Gd-enhanced MRI protocol. Femoral head perfusion measurements and MRI tests were performed unilaterally before, during and after the experimentally induced ischemia of one of the hip joints. Ischemia was induced by increasing intra-articular pressure to 250 mmHg. All pigs showed ischemia of the femoral head epiphysis under hip joint tamponade followed by reperfusion to the same level as before joint tamponade. In two cases perfusion after removal of tamponade continued to be low. In dynamic MRI measurements increases in signal intensity were seen after intravenous infusion of Gd-DTPA, followed by a slow decrease in signal intensity. The signal-intensity curve during femoral head ischemia had a minor increase. Also the coefficient determined was a helpful indicator of femoral head ischemia. Femoral head blood flow as measured by microspheres fell significantly under joint tamponade. Early detection of this disturbed regional blood flow was possible using a dynamic MRI procedure. A biomathematical model resulted from the evaluation of the intervals of signal intensity over time which allows detection of bone blood flow changes at a very early stage. Using this new method earlier detection of femoral head necrosis may be possible. (orig.)

  14. Magnetic resonance imaging contrast agents: Overview and perspectives

    International Nuclear Information System (INIS)

    Yan Guoping; Robinson, Leslie; Hogg, Peter

    2007-01-01

    Magnetic resonance imaging (MRI) is a non-invasive clinical imaging modality, which has become widely used in the diagnosis and/or staging of human diseases around the world. Some MRI examinations include the use of contrast agents. The categorizations of currently available contrast agents have been described according to their effect on the image, magnetic behavior and biodistribution in the body, respectively. In this field, superparamagnetic iron oxide particles and soluble paramagnetic metal chelates are two main classes of contrast agents for MRI. This review outlines the research and development of MRI contrast agents. In future, the ideal MRI contrast agent will be focused on the neutral tissue- or organ-targeting materials with high relaxivity and specificity, low toxicity and side effects, suitable long intravascular duration and excretion time, high contrast enhancement with low dose in vivo, and with minimal cost

  15. Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI.

    Science.gov (United States)

    Gong, Enhao; Pauly, John M; Wintermark, Max; Zaharchuk, Greg

    2018-02-13

    There are concerns over gadolinium deposition from gadolinium-based contrast agents (GBCA) administration. To reduce gadolinium dose in contrast-enhanced brain MRI using a deep learning method. Retrospective, crossover. Sixty patients receiving clinically indicated contrast-enhanced brain MRI. 3D T 1 -weighted inversion-recovery prepped fast-spoiled-gradient-echo (IR-FSPGR) imaging was acquired at both 1.5T and 3T. In 60 brain MRI exams, the IR-FSPGR sequence was obtained under three conditions: precontrast, postcontrast images with 10% low-dose (0.01mmol/kg) and 100% full-dose (0.1 mmol/kg) of gadobenate dimeglumine. We trained a deep learning model using the first 10 cases (with mixed indications) to approximate full-dose images from the precontrast and low-dose images. Synthesized full-dose images were created using the trained model in two test sets: 20 patients with mixed indications and 30 patients with glioma. For both test sets, low-dose, true full-dose, and the synthesized full-dose postcontrast image sets were compared quantitatively using peak-signal-to-noise-ratios (PSNR) and structural-similarity-index (SSIM). For the test set comprised of 20 patients with mixed indications, two neuroradiologists scored blindly and independently for the three postcontrast image sets, evaluating image quality, motion-artifact suppression, and contrast enhancement compared with precontrast images. Results were assessed using paired t-tests and noninferiority tests. The proposed deep learning method yielded significant (n = 50, P 5 dB PSNR gains and >11.0% SSIM). Ratings on image quality (n = 20, P = 0.003) and contrast enhancement (n = 20, P deep learning method, gadolinium dose can be reduced 10-fold while preserving contrast information and avoiding significant image quality degradation. 3 Technical Efficacy: Stage 5 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.

  16. Value of Gd-EOB-DTPA-enhanced MRI in assessing liver function

    Directory of Open Access Journals (Sweden)

    WANG Lili

    2015-05-01

    Full Text Available ObjectiveTo explore the value of magnetic resonance imaging (MRI specifically enhanced with gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA in assessing the liver function in general population. MethodsUpper abdominal MRI images and Gd-EOB-DTPA-enhanced images, as well as some clinical information, were collected from 41 cases meeting the inclusion and exclusion criteria. Taking the spleen as the control organ, liver-spleen signal intensity contrast (SIliver/spleen and relative liver enhancement (RLE were calculated at 10 min and 20 min after injecting Gd-EOB-DTPA. Differences were evaluated using the independent-samples t-test or Mann-Whitney U test. Corrections were analyzed via Spearman’s rank correlation. ResultsBoth SIliver/spleen at 10 min and 20 min after injection of contrast agent were correlated with Child classification (P<0.05. SIliver/spleen at 20 min had a greater correlation coefficient (r=-0.526 than that at 10 min. The SIliver/spleen with plain scan had no significant correlation with Child classification (P>0.05. RLE at 20 min, but not at 10 min, was correlated with Child classification (r=-0.362, P=0049. Between the cirrhotic and non-cirrhotic groups, SIliver/spleen showed no significant difference (P>0.05. However, SIliver/spleen at 10 min and 20 min, as well as RLE20 min, showed significant differences between the cirrhotic and non-cirrhotic groups (P<0.05. SIliver/spleen at 20 min also exhibited a significant difference between the elevated and normal ALT and TBil groups (both P<0.05. ConclusionGd-EOB-DTPA-enhanced MRI can monitor liver function changes, and SIliver/spleen at 20 min may have an important value in assessing the liver function in general population.

  17. Giant cisterna chyli: MRI depiction with gadolinium-DTPA enhancement

    International Nuclear Information System (INIS)

    Lee, K.C.Y.; Cassar-Pullicino, V.N.

    2000-01-01

    AIM: To demonstrate the use of MRI with Gadolinium-DTPA enhancement in the diagnosis of giant cisterna chyli. MATERIALS AND METHODS: The study consisted of contrast enhanced MRI with ultrasound and CT correlation in three patients with a giant cisterna chyli. An analysis of the morphology, location and post-contrast MR signal characteristics in relation to time was performed. RESULTS: Cisterna chyli has a characteristic lobulated morphology and location but the unenhanced MRI appearances are not specific. The post-Gadolinium-DTPA MRI appearances are critically dependent on the time elapsed after injection of contrast medium. Within the first 5 min, there is no enhancement at all, but by 10 min there is early layering of contrast medium evident, which by 30 min produces a clear fluid-fluid level. Delayed images at 4-5 h demonstrate a uniform enhancement of the cisternal contents producing a homogeneous intermediate signal. All of these features are best visualized on T1 fast saturation sequences. CONCLUSION: MRI with Gadolinium-DTPA enhancement is valuable in confirming the nature of the lymphatic ducts in the retroperitoneal space and helps to differentiate these normal structures from alternative lesions such as lymphadenopathy and tumour recurrence. Lee, K.C.Y., Cassar-Pullicino, V.N. (2000)

  18. Dynamic contrast-enhanced MRI and sonography in patients receiving primary chemotherapy for breast cancer

    International Nuclear Information System (INIS)

    Montemurro, Filippo; Aglietta, Massimo; Martincich, Laura; Rosa, Giovanni De; Cirillo, Stefano; Marra, Vincenzo; Regge, Daniele; Biglia, Nicoletta; Sismondi, Piero; Gatti, Marco

    2005-01-01

    We compared dynamic contrast-enhanced MRI (DCE-MRI) and sonography (US) for monitoring tumour size in 21 patients with breast cancer undergoing primary chemotherapy (PCT) followed by surgery. The correlation between DCE-MRI and US measurements of tumour size, defined as the product of the two major diameters, was 0.555 (P=0.009), 0.782 (P 2 , P 2 , P=0.009). After PCT, the median tumour size measured by the two techniques was similar (256 vs 289 mm 2 for DCE-MRI and US, respectively, P=0.859). The correlation with the histopathological major tumour diameter was 0.824 (P<0.001) and 0.705 (P<0.001) for post-treatment DCE-MRI and US, respectively. Measurements of the final major tumour diameter by DCE-MRI tended to be more precise, including cases achieving a pathological complete response. Randomized trials are warranted to establish the clinical impact of the initial discrepancy in tumour size estimates between DCE-MRI and US, and the trend towards a better definition of the final tumour size provided by DCE-MRI in this clinical setting. (orig.)

  19. Diagnostic usefulness of segmental and linear enhancement in dynamic breast MRI

    International Nuclear Information System (INIS)

    Morakkabati-Spitz, N.; Leutner, C.; Schild, H.; Traeber, F.; Kuhl, C.

    2005-01-01

    The aim of this study was the evaluation of the diagnostic usefulness of ductal or segmental enhancement in dynamic breast MRI. Segmental and ductal enhancement have been established as the breast MRI hallmarks of intraductal breast cancer (DCIS); however, the positive predictive value of this imaging finding is still unknown. In our study, we analysed the overall prevalence of a segmental or a linear enhancement pattern on breast MRI for an unselected cohort of patients. The aim was to evaluate the diagnostic usefulness of segmental or linear enhancement. Second, we asked whether biopsy was necessary also in the absence of mammographic findings suggestive of DCIS. Prospective, consecutive evaluation of 1,003 patients undergoing bilateral dynamic breast MRI. Studies were interpreted by two experienced breast radiologists. A diagnostic or screening two-view mammogram was available for all patients. Biopsy or short-term breast MRI follow-up was recommended for patients showing a segmental or a linear enhancement pattern on breast MRI. The patients' final diagnoses were established by imaging guided excisional or core biopsy or by clinical plus conventional imaging follow-up for a period of 2 years. The prevalence of segmental or linear enhancement was determined for patients with a final diagnosis of benign breast disease compared with those with a diagnosis of breast cancer. One hundred twenty patients had invasive breast cancer, 24 patients had DCIS and 859 patients had unsuspicious breast MRI or benign breast disease. A segmental or a linear enhancement pattern was found for 50/1,003 (5%) patients (17 DCIS, 33 benign breast diseases). Accordingly, the positive predictive value of segmental and linear enhancement is 34% (17/50); the specificity of this criterion is 96% (826/859). For 4/24 (17%) patients, DCIS was visible as segmental or linear enhancement on dynamic breast MRI, whereas no abnormalities were visible on the corresponding mammogram. The overall

  20. Safety assessment of nanoparamagnetic contrast agents with different coatings for molecular MRI

    Science.gov (United States)

    Azizian, Gholamreza; Riyahi-Alam, Nader; Haghgoo, Soheila; Saffari, Mojtaba; Zohdiaghdam, Reza; Gorji, Ensieh

    2013-04-01

    Despite the wide application of gadolinium as a contrast agent for magnetic resonance imaging (MRI), there is a serious lack of information on its toxicity. Gadolinium and gadolinium oxide (Gd-oxide) are used as contrast agents for magnetic resonance imaging (MRI). There are methods for reducing toxicity of these materials, such as core nanoparticles coating or conjugating. Therefore, for toxicity evaluation, we compared the viability of commercial contrast agents in MRI (Gd-DTPA) and three nanoparticles with the same core Gd2O3 and small particulate gadolinium oxide or SPGO (DTPA. The MTT and LDH assay results showed that Gd2O3-DEG nanoparticles were more toxic than Gd-DTPA and other nanoparticles. Also, SPGO-mPEG-silane2000 was more biocompatible than other nanoparticles. The obtained results did not show any significant increase in cytotoxicity of the nanoparticles and Gd-DTPA, neither dose-dependent nor time-dependent. Therefore, DEG and PEG, due to their considerable properties and irregular sizes (different molecular weights), were selected as the useful surface covering materials of nanomagnetic particles that could reveal noticeable relaxivity and biocompatibility characteristics.

  1. Contrast Agent in Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Vu-Quang, Hieu

    2015-01-01

    Nanoparticles have been employed as contrast agent in magnetic resonance imaging (MRI) in order to improve sensitivity and accuracy in diagnosis. In addition, these contrast agents are potentially combined with other therapeutic compounds or near infrared bio-imaging (NIR) fluorophores to obtain...... theranostic or dual imaging purposes, respectively. There were two main types of MRI contrast agent that were synthesized during this PhD project including fluorine containing nanoparticles and magnetic nanoparticles. In regard of fluorine containing nanoparticles, there were two types contrast agent...... cancer cells for cancer diagnosis in MRI. F127-Folate coated SPION were stable in various types of suspension medium for over six months. They could specifically target folate receptor of cancer cells in vitro and in vivo thus enhancing the contrast in MRI T2/T2* weighted images. These are preliminary...

  2. Agreement of mammographic measures of volumetric breast density to MRI.

    Directory of Open Access Journals (Sweden)

    Jeff Wang

    Full Text Available Clinical scores of mammographic breast density are highly subjective. Automated technologies for mammography exist to quantify breast density objectively, but the technique that most accurately measures the quantity of breast fibroglandular tissue is not known.To compare the agreement of three automated mammographic techniques for measuring volumetric breast density with a quantitative volumetric MRI-based technique in a screening population.Women were selected from the UCSF Medical Center screening population that had received both a screening MRI and digital mammogram within one year of each other, had Breast Imaging Reporting and Data System (BI-RADS assessments of normal or benign finding, and no history of breast cancer or surgery. Agreement was assessed of three mammographic techniques (Single-energy X-ray Absorptiometry [SXA], Quantra, and Volpara with MRI for percent fibroglandular tissue volume, absolute fibroglandular tissue volume, and total breast volume.Among 99 women, the automated mammographic density techniques were correlated with MRI measures with R(2 values ranging from 0.40 (log fibroglandular volume to 0.91 (total breast volume. Substantial agreement measured by kappa statistic was found between all percent fibroglandular tissue measures (0.72 to 0.63, but only moderate agreement for log fibroglandular volumes. The kappa statistics for all percent density measures were highest in the comparisons of the SXA and MRI results. The largest error source between MRI and the mammography techniques was found to be differences in measures of total breast volume.Automated volumetric fibroglandular tissue measures from screening digital mammograms were in substantial agreement with MRI and if associated with breast cancer could be used in clinical practice to enhance risk assessment and prevention.

  3. Agreement of mammographic measures of volumetric breast density to MRI.

    Science.gov (United States)

    Wang, Jeff; Azziz, Ania; Fan, Bo; Malkov, Serghei; Klifa, Catherine; Newitt, David; Yitta, Silaja; Hylton, Nola; Kerlikowske, Karla; Shepherd, John A

    2013-01-01

    Clinical scores of mammographic breast density are highly subjective. Automated technologies for mammography exist to quantify breast density objectively, but the technique that most accurately measures the quantity of breast fibroglandular tissue is not known. To compare the agreement of three automated mammographic techniques for measuring volumetric breast density with a quantitative volumetric MRI-based technique in a screening population. Women were selected from the UCSF Medical Center screening population that had received both a screening MRI and digital mammogram within one year of each other, had Breast Imaging Reporting and Data System (BI-RADS) assessments of normal or benign finding, and no history of breast cancer or surgery. Agreement was assessed of three mammographic techniques (Single-energy X-ray Absorptiometry [SXA], Quantra, and Volpara) with MRI for percent fibroglandular tissue volume, absolute fibroglandular tissue volume, and total breast volume. Among 99 women, the automated mammographic density techniques were correlated with MRI measures with R(2) values ranging from 0.40 (log fibroglandular volume) to 0.91 (total breast volume). Substantial agreement measured by kappa statistic was found between all percent fibroglandular tissue measures (0.72 to 0.63), but only moderate agreement for log fibroglandular volumes. The kappa statistics for all percent density measures were highest in the comparisons of the SXA and MRI results. The largest error source between MRI and the mammography techniques was found to be differences in measures of total breast volume. Automated volumetric fibroglandular tissue measures from screening digital mammograms were in substantial agreement with MRI and if associated with breast cancer could be used in clinical practice to enhance risk assessment and prevention.

  4. MRI enhancing patterns of non-meningioma meningeal lesions

    International Nuclear Information System (INIS)

    Tao Xiaofeng; Ding Juan; Xiao Xiangsheng; Shi Zengru; Yu Hong; Gu Qian

    2004-01-01

    Objective: To analyze the MRI appearances of meningeal diseases and to study MRI diagnostic value of enhancing patterns in different meningeal processes. Methods: Sixty-one patients with integrated clinical data, including 27 infectious meningitis, 4 inflammatory meningitis (2 eosinophilic granuloma, 1 Wegener granuloma, and 1 unknown etiological factor), 12 meningeal metastasis, 2 meningeal lymphoma, 8 cerebrovascular disease, and 8 postoperative changes, were reviewed retrospectively. All patients were examined on MRI before and after contrast administration. Results: (1) MR plain scan: positive findings of plain scan were revealed in only 3 cases, including 1 linear meningeal thickening pattern and 2 nodular pattern. (2) MR enhancement: All cases showed 3 kinds of enhancing patterns: 19 dural-arachnoid pattern, 32 pia-arachnoid pattern, and 10 total meninges pattern, respectively. Conclusion: Different meningeal diseases have different MR imaging manifestations. Creating the enhancement patterns of various diseases can have great clinical significance. (authors)

  5. Contrast-enhanced breast MRI: factors affecting sensitivity and specificity

    Energy Technology Data Exchange (ETDEWEB)

    Piccoli, C.W. [Department of Radiology, Jefferson Medical College, Thomas Jefferson University Hospital, 132 South 10th Street, 7th floor, Philadelphia, PA 19107-5244 (United States)

    1997-12-31

    Contrast-enhanced MRI (CE-MRI) of the breast has been investigated for over 10 years. The reports of sensitivity for cancer detection have generally been greater than 90 %. However, estimates of specificity have varied greatly. Differing results are due to differences in study populations, technical methods and criteria for interpretation. Early and marked signal rise, detected using dynamic imaging technique following contrast administration, is the MRI hallmark of cancer. However, some malignant lesions may enhance slowly or minimally, and a variety of benign lesions may enhance rapidly with marked signal intensity. High resolution techniques generally requiring longer acquisition times are more likely to depict the slowly enhancing malignancies at the cost of a decrease in specificity due to lack of temporal resolution. This disadvantage may be offset by the improved visualization of lesion morphology with high resolution images. This report reviews the methods and results of the leading investigators of breast MRI. (orig.) With 3 figs., 70 refs.

  6. Contrast-enhanced breast MRI: factors affecting sensitivity and specificity

    International Nuclear Information System (INIS)

    Piccoli, C.W.

    1997-01-01

    Contrast-enhanced MRI (CE-MRI) of the breast has been investigated for over 10 years. The reports of sensitivity for cancer detection have generally been greater than 90 %. However, estimates of specificity have varied greatly. Differing results are due to differences in study populations, technical methods and criteria for interpretation. Early and marked signal rise, detected using dynamic imaging technique following contrast administration, is the MRI hallmark of cancer. However, some malignant lesions may enhance slowly or minimally, and a variety of benign lesions may enhance rapidly with marked signal intensity. High resolution techniques generally requiring longer acquisition times are more likely to depict the slowly enhancing malignancies at the cost of a decrease in specificity due to lack of temporal resolution. This disadvantage may be offset by the improved visualization of lesion morphology with high resolution images. This report reviews the methods and results of the leading investigators of breast MRI. (orig.)

  7. Medial tibial pain: a dynamic contrast-enhanced MRI study.

    Science.gov (United States)

    Mattila, K T; Komu, M E; Dahlström, S; Koskinen, S K; Heikkilä, J

    1999-09-01

    The purpose of this study was to compare the sensitivity of different magnetic resonance imaging (MRI) sequences to depict periosteal edema in patients with medial tibial pain. Additionally, we evaluated the ability of dynamic contrast-enhanced imaging (DCES) to depict possible temporal alterations in muscular perfusion within compartments of the leg. Fifteen patients with medial tibial pain were examined with MRI. T1-, T2-weighted, proton density axial images and dynamic and static phase post-contrast images were compared in ability to depict periosteal edema. STIR was used in seven cases to depict bone marrow edema. Images were analyzed to detect signs of compartment edema. Region-of-interest measurements in compartments were performed during DCES and compared with controls. In detecting periosteal edema, post-contrast T1-weighted images were better than spin echo T2-weighted and proton density images or STIR images, but STIR depicted the bone marrow edema best. DCES best demonstrated the gradually enhancing periostitis. Four subjects with severe periosteal edema had visually detectable pathologic enhancement during DCES in the deep posterior compartment of the leg. Percentage enhancement in the deep posterior compartment of the leg was greater in patients than in controls. The fast enhancement phase in the deep posterior compartment began slightly slower in patients than in controls, but it continued longer. We believe that periosteal edema in bone stress reaction can cause impairment of venous flow in the deep posterior compartment. MRI can depict both these conditions. In patients with medial tibial pain, MR imaging protocol should include axial STIR images (to depict bone pathology) with T1-weighted axial pre and post-contrast images, and dynamic contrast enhanced imaging to show periosteal edema and abnormal contrast enhancement within a compartment.

  8. Voluntary Enhancement of Neural Signatures of Affiliative Emotion Using fMRI Neurofeedback

    Science.gov (United States)

    Moll, Jorge; Weingartner, Julie H.; Bado, Patricia; Basilio, Rodrigo; Sato, João R.; Melo, Bruno R.; Bramati, Ivanei E.; de Oliveira-Souza, Ricardo; Zahn, Roland

    2014-01-01

    In Ridley Scott’s film “Blade Runner”, empathy-detection devices are employed to measure affiliative emotions. Despite recent neurocomputational advances, it is unknown whether brain signatures of affiliative emotions, such as tenderness/affection, can be decoded and voluntarily modulated. Here, we employed multivariate voxel pattern analysis and real-time fMRI to address this question. We found that participants were able to use visual feedback based on decoded fMRI patterns as a neurofeedback signal to increase brain activation characteristic of tenderness/affection relative to pride, an equally complex control emotion. Such improvement was not observed in a control group performing the same fMRI task without neurofeedback. Furthermore, the neurofeedback-driven enhancement of tenderness/affection-related distributed patterns was associated with local fMRI responses in the septohypothalamic area and frontopolar cortex, regions previously implicated in affiliative emotion. This demonstrates that humans can voluntarily enhance brain signatures of tenderness/affection, unlocking new possibilities for promoting prosocial emotions and countering antisocial behavior. PMID:24847819

  9. Comparison between breast MRI and contrast-enhanced spectral mammography.

    Science.gov (United States)

    Łuczyńska, Elżbieta; Heinze-Paluchowska, Sylwia; Hendrick, Edward; Dyczek, Sonia; Ryś, Janusz; Herman, Krzysztof; Blecharz, Paweł; Jakubowicz, Jerzy

    2015-05-12

    The main goal of this study was to compare contrast-enhanced spectral mammography (CESM) and breast magnetic resonance imaging (MRI) with histopathological results and to compare the sensitivity, accuracy, and positive and negative predictive values for both imaging modalities. After ethics approval, CESM and MRI examinations were performed in 102 patients who had suspicious lesions described in conventional mammography. All visible lesions were evaluated independently by 2 experienced radiologists using BI-RADS classifications (scale 1-5). Dimensions of lesions measured with each modality were compared to postoperative histopathology results. There were 102 patients entered into CESM/MRI studies and 118 lesions were identified by the combination of CESM and breast MRI. Histopathology confirmed that 81 of 118 lesions were malignant and 37 were benign. Of the 81 malignant lesions, 72 were invasive cancers and 9 were in situ cancers. Sensitivity was 100% with CESM and 93% with breast MRI. Accuracy was 79% with CESM and 73% with breast MRI. ROC curve areas based on BI-RADS were 0.83 for CESM and 0.84 for breast MRI. Lesion size estimates on CESM and breast MRI were similar, both slightly larger than those from histopathology. Our results indicate that CESM has the potential to be a valuable diagnostic method that enables accurate detection of malignant breast lesions, has high negative predictive value, and a false-positive rate similar to that of breast MRI.

  10. Contrast-enhanced ultra-high-field liver MRI: A feasibility trial

    Energy Technology Data Exchange (ETDEWEB)

    Umutlu, Lale, E-mail: Lale.Umutlu@uk-essen.de [Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen (Germany); Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); Bitz, Andreas K.; Maderwald, Stefan; Orzada, Stephan; Kinner, Sonja; Kraff, Oliver; Brote, Irina; Ladd, Susanne C.; Schroeder, Tobias; Forsting, Michael; Antoch, Gerald; Ladd, Mark E. [Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen (Germany); Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); Quick, Harald H. [Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); Institute of Medical Physics, University Nuernberg-Erlangen (Germany); Lauenstein, Thomas C. [Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen (Germany); Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany)

    2013-05-15

    The aim of this study was to investigate the feasibility of dynamic contrast-enhanced 7 T MRI of the liver using an eight-channel radiofrequency (RF) transmit/receive body-coil. 16 healthy subjects were examined on a 7 T MR system utilizing a custom-built eight-channel RF body-coil suitable for RF-shimming. The following data were acquired: (1) steady state free precession imaging, (2) T2w turbo spin echo imaging, (3) T1w in and opposed-phase imaging, (4) T1w 3D FLASH images pre-contrast and in arterial, portal-venous and venous phase and (5) a fat-saturated pre- and post-contrast 2D FLASH sequence. Visual evaluation of (1) the delineation of liver vasculature, (2) the overall image quality, and (3) artifact presence and consequent image impairment was performed. SNR of the liver parenchyma was measured for the contrast-enhanced 2D and 3D FLASH sequences. For statistical analysis, a Wilcoxon-Rank Test was used. Best delineation of non-enhanced liver vasculature and overall image quality was found for 2D FLASH MRI, with only slight improvement in vessel conspicuity after the application of contrast media. T2-weighted TSE imaging remained strongly impaired, falling short of diagnostic relevance and precluding a clinical application. Our results demonstrate the feasibility and diagnostic potential of dedicated contrast-enhanced 7 T liver MRI as well as the potential for non-contrast-enhanced angiographic application.

  11. Evaluation of sacroiliitis: contrast-enhanced MRI with subtraction technique

    Energy Technology Data Exchange (ETDEWEB)

    Algin, Oktay; Gokalp, Gokhan; Baran, Bulent; Ocakoglu, Gokhan; Yazici, Zeynep [Uludag University, Medical Faculty, Department of Radiology, Gorukle, Bursa (Turkey)

    2009-10-15

    The purpose of the study was to investigate the diagnostic value of contrast-enhanced MRI using the subtraction technique in the detection of active sacroiliitis. Magnetic resonance imaging was performed in 8 asymptomatic volunteers and 50 patients with clinically suspected active sacroiliitis. On precontrast MR images, T1-weighted spin-echo images with and without fat saturation (T1WFS and T1W), STIR and 3D-FLASH images with fat saturation were obtained in the semicoronal plane using a 1.5 Tesla imager. Postcontrast MRI was performed using the same T1WFS sequence as before contrast injection for all volunteers and patients. Postcontrast images were subtracted from fat-suppressed precontrast images. Enhancement within the joint space and bone marrow was considered to demonstrate active sacroiliitis. In 50 patients (100 sacroiliac joints [SIJs]), 40 (76 SIJs) were considered to have active sacroiliitis based on MR images. Bone marrow edema was present in 33 patients (62 SIJs) on STIR images. Routine MRI allowed identification of contrast enhancement in SIJs on postcontrast T1WFS images in 31 patients (49 SIJs). Contrast enhancement was observed in 40 patients (76 SIJs) who were examined by MRI using the subtraction technique. Contrast enhancement was significantly more conspicuous on subtraction images than on non-subtracted postcontrast T1WFS images (Mann-Whitney U test, p<0.001). Contrast-enhanced MRI with subtraction technique may be useful for early detection of active sacroiliitis. (orig.)

  12. Synthesis of functionalized magnetite nanoparticles to use as liver targeting MRI contrast agent

    International Nuclear Information System (INIS)

    Yazdani, Farshad; Fattahi, Bahare; Azizi, Najmodin

    2016-01-01

    The aim of this research was the preparation of functionalized magnetite nanoparticles to use as a liver targeting contrast agent in magnetic resonance imaging (MRI). For this purpose, Fe_3O_4 nanoparticles were synthesized via the co-precipitation method. The synthesized nanoparticles were coated with silica via the Stober method and finally the coated nanoparticles were functionalized with mebrofenin. Formation of crystalline magnetite particles was confirmed by X-ray diffraction (XRD) analysis. The Fourier transform infrared spectroscopy (FTIR) and energy dispersive X-ray analyzer (EDX) of the final product showed that silica had been effectively bonded onto the surface of the magnetite nanoparticles and the coated nanoparticles functionalized with mebrofenin. The magnetic resonance imaging of the functional nanoparticles showed that the Fe_3O_4–SiO_2-mebrofenin composite is an effective MRI contrast agent for liver targeting. - Highlights: • Superparamagnetic magnetite nanoparticles have been synthesized by simple and economical method. • Preperation of functional MNPs as a MRI contrast agent for liver targeting. • Gaining a good r_2 relaxivity of the coated functional nanoparticles.

  13. High-Relaxivity MRI Contrast Agents: Where Coordination Chemistry Meets Medical Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Eric J.; Datta, Ankona; Jocher, Christoph J.; Raymond, Kenneth N.

    2008-01-15

    The desire to improve and expand the scope of clinical magnetic resonance imaging (MRI) has prompted the search for contrast agents of higher efficiency. The development of better agents requires consideration of the fundamental coordination chemistry of the gadolinium(III) ion and the parameters that affect its efficacy as a proton relaxation agent. In optimizing each parameter, other practical issues such as solubility and in vivo toxicity must also be addressed, making the attainment of safe, high-relaxivity agents a challenging goal. Here we present recent advances in the field, with an emphasis on the hydroxypyridinone family of Gd{sup III} chelates.

  14. Subcellular SIMS imaging of gadolinium isotopes in human glioblastoma cells treated with a gadolinium containing MRI agent

    Science.gov (United States)

    Smith, Duane R.; Lorey, Daniel R.; Chandra, Subhash

    2004-06-01

    Neutron capture therapy is an experimental binary radiotherapeutic modality for the treatment of brain tumors such as glioblastoma multiforme. Recently, neutron capture therapy with gadolinium-157 has gained attention, and techniques for studying the subcellular distribution of gadolinium-157 are needed. In this preliminary study, we have been able to image the subcellular distribution of gadolinium-157, as well as the other six naturally abundant isotopes of gadolinium, with SIMS ion microscopy. T98G human glioblastoma cells were treated for 24 h with 25 mg/ml of the metal ion complex diethylenetriaminepentaacetic acid Gd(III) dihydrogen salt hydrate (Gd-DTPA). Gd-DTPA is a contrast enhancing agent used for MRI of brain tumors, blood-brain barrier impairment, diseases of the central nervous system, etc. A highly heterogeneous subcellular distribution was observed for gadolinium-157. The nuclei in each cell were distinctly lower in gadolinium-157 than in the cytoplasm. Even within the cytoplasm the gadolinium-157 was heterogeneously distributed. The other six naturally abundant isotopes of gadolinium were imaged from the same cells and exhibited a subcellular distribution consistent with that observed for gadolinium-157. These observations indicate that SIMS ion microscopy may be a viable approach for subcellular studies of gadolinium containing neutron capture therapy drugs and may even play a major role in the development and validation of new gadolinium contrast enhancing agents for diagnostic MRI applications.

  15. Microarray Gene Expression Analysis of Murine Tumor Heterogeneity Defined by Dynamic Contrast-Enhanced MRI

    Directory of Open Access Journals (Sweden)

    Nick G. Costouros

    2002-07-01

    Full Text Available Current methods of studying angiogenesis are limited in their ability to serially evaluate in vivo function throughout a target tissue. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI and pharmacokinetic modeling provide a useful method for evaluating tissue vasculature based on contrast accumulation and washout. While it is often assumed that areas of high contrast enhancement and washout comprise areas of increased angiogenesis and tumor activity, the actual molecular pathways that are active in such areas are poorly understood. Using DCE-MRI in a murine subcutaneous tumor model, we were able to perform pharmacokinetic functional analysis of a tumor, coregistration of MRI images with histological cross-sections, immunohistochemistry, laser capture microdissection, and genetic profiling of tumor heterogeneity based on pharmacokinetic parameters. Using imaging as a template for biologic investigation, we have not found evidence of increased expression of proangiogenic modulators at the transcriptional level in either distinct pharmacokinetic region. Furthermore, these regions show no difference on histology and CD31 immunohistochemistry. However, the expression of ribosomal proteins was greatly increased in high enhancement and washout regions, implying increased protein translation and consequent increased cellular activity. Together, these findings point to the potential importance of posttranscriptional regulation in angiogenesis and the need for the development of angiogenesis-specific contrast agents to evaluate in vivo angiogenesis at a molecular level.

  16. Magnetic and relaxometric properties of polyethylenimine-coated superparamagnetic MRI contrast agents

    International Nuclear Information System (INIS)

    Corti, M.; Lascialfari, A.; Marinone, M.; Masotti, A.; Micotti, E.; Orsini, F.; Ortaggi, G.; Poletti, G.; Innocenti, C.; Sangregorio, C.

    2008-01-01

    Novel systems to be employed as superparamagnetic contrast agents (CA) for magnetic resonance imaging (MRI) have been synthesized. These compounds are composed of an iron oxide magnetic core coated by polyethylenimine (PEI) or carboxylated polyethylenimine (PEI-COOH). The aim of the present work was to prepare and study new nanostructured systems (with better or at least comparable relaxivities, R 1 and R 2 , with respect to the commercial ones) with controlled, almost monodisperse average dimensions and shape, as candidates for molecular targeting. By means of atomic force microscopy (AFM) measurements we determined the average diameter, of the order of 200 nm, and the shape of the particles. The superparamagnetic behavior was assessed by SQUID measurements. From X-ray data the estimated average diameters of the magnetic cores were found to be ∼5.8 nm for PEI-COOH60 and ∼20 nm for the compound named PEI25. By NMR-dispersion (NMRD), we found that PEI-COOH60 presents R 1 and R 2 relaxivities slightly lower than Endorem. The experimental results suggest that these novel compounds can be used as MRI CA

  17. Synthesis and characterization of superparamagnetic iron oxide nanoparticles as calcium-responsive MRI contrast agents

    International Nuclear Information System (INIS)

    Xu, Pengfei; Shen, Zhiwei; Zhang, Baolin; Wang, Jun; Wu, Renhua

    2016-01-01

    Highlights: • SPIONs were conjugated with EGTA by EDC/sulfo-NHS method. • The presence of Ca"2"+ induced the aggregation of EGTA-SPIONs. • The aggregation of EGTA-SPIONs increased the T2 relaxation time. • EGTA-SPIONs can be used for the calcium imaging with MRI. - Abstract: Superparamagnetic iron oxide nanoparticles (SPIONs) as T2 contrast agents have great potential to sense calcium ion (Ca"2"+) using magnetic resonance imaging (MRI). Here we prepared calcium-responsive SPIONs for MRI, formed by combining poly(ethylene glycol) (PEG) and polyethylenimine (PEI) coated iron oxide nanoparticle (PEI/PEG-SPIONs) contrast agents with the straightforward calcium-sensing compound EGTA (ethylene glycol tetraacetic acid). EGTA was conjugated onto PEI/PEG-SPIONs using EDC/sulfo-NHS method. EGTA-SPIONs were characterized using TEM, XPS, DSL, TGA and SQUIID. DSL results show that the SPIONs aggregate in the presence of Ca"2"+. MRI analyses indicate that the water proton T2 relaxation rates in HEPES suspensions of the EGTA-SPIONs significantly increase with the calcium concentration because the SPIONs aggregate in the presence of Ca"2"+. The T2 values decreased 25% when Ca"2"+ concentration decreased from 1.2 to 0.8 mM. The aggregation of EGTA-SPIONs could be reversed by EDTA. EGTA-SPIONs have potential as smart contrast agents for Ca"2"+-sensitive MRI.

  18. Synthesis and characterization of superparamagnetic iron oxide nanoparticles as calcium-responsive MRI contrast agents

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Pengfei [State Key Laboratory Breeding Base of Nonferrous Metals and Specific Materials Processing, School of Materials Science and Engineering, Guilin University of Technology, Jian Gan Road 12, Guilin 541004 (China); Shen, Zhiwei [Second Affiliated Hospital of Shantou University Medical College, Dong Xia North Road, Shantou 515041,China (China); Zhang, Baolin, E-mail: baolinzhang@ymail.com [State Key Laboratory Breeding Base of Nonferrous Metals and Specific Materials Processing, School of Materials Science and Engineering, Guilin University of Technology, Jian Gan Road 12, Guilin 541004 (China); Wang, Jun [State Key Laboratory Breeding Base of Nonferrous Metals and Specific Materials Processing, School of Materials Science and Engineering, Guilin University of Technology, Jian Gan Road 12, Guilin 541004 (China); Wu, Renhua, E-mail: rhwu@stu.edu.cn [Second Affiliated Hospital of Shantou University Medical College, Dong Xia North Road, Shantou 515041,China (China)

    2016-12-15

    Highlights: • SPIONs were conjugated with EGTA by EDC/sulfo-NHS method. • The presence of Ca{sup 2+} induced the aggregation of EGTA-SPIONs. • The aggregation of EGTA-SPIONs increased the T2 relaxation time. • EGTA-SPIONs can be used for the calcium imaging with MRI. - Abstract: Superparamagnetic iron oxide nanoparticles (SPIONs) as T2 contrast agents have great potential to sense calcium ion (Ca{sup 2+}) using magnetic resonance imaging (MRI). Here we prepared calcium-responsive SPIONs for MRI, formed by combining poly(ethylene glycol) (PEG) and polyethylenimine (PEI) coated iron oxide nanoparticle (PEI/PEG-SPIONs) contrast agents with the straightforward calcium-sensing compound EGTA (ethylene glycol tetraacetic acid). EGTA was conjugated onto PEI/PEG-SPIONs using EDC/sulfo-NHS method. EGTA-SPIONs were characterized using TEM, XPS, DSL, TGA and SQUIID. DSL results show that the SPIONs aggregate in the presence of Ca{sup 2+}. MRI analyses indicate that the water proton T2 relaxation rates in HEPES suspensions of the EGTA-SPIONs significantly increase with the calcium concentration because the SPIONs aggregate in the presence of Ca{sup 2+}. The T2 values decreased 25% when Ca{sup 2+} concentration decreased from 1.2 to 0.8 mM. The aggregation of EGTA-SPIONs could be reversed by EDTA. EGTA-SPIONs have potential as smart contrast agents for Ca{sup 2+}-sensitive MRI.

  19. Gadolinium-DTPA enhanced MRI in myocardial infarction

    International Nuclear Information System (INIS)

    Dijkman, P.R.M. van.

    1991-01-01

    This thesis focuses on one aspect of cardiac magnetic resonance imaging (MRI) for noninvasive screening of ischemic heart disease: the identification and quantification of acutely infarcted myocardium using gadolineum-diethylene triamine pentaacetic acid (Gd-DTPA) enhanced T1-weighted MRI in a clinical and experimental setting. (author). 296 refs.; 34 figs.; 4 tabs

  20. Assessment of Myocardial Remodeling Using an Elastin/Tropoelastin Specific Agent with High Field Magnetic Resonance Imaging (MRI).

    Science.gov (United States)

    Protti, Andrea; Lavin, Begoña; Dong, Xuebin; Lorrio, Silvia; Robinson, Simon; Onthank, David; Shah, Ajay M; Botnar, Rene M

    2015-08-13

    Well-defined inflammation, proliferation, and maturation phases orchestrate the remodeling of the injured myocardium after myocardial infarction (MI) by controlling the formation of new extracellular matrix. The extracellular matrix consists mainly of collagen but also fractions of elastin. It is thought that elastin is responsible for maintaining elastic properties of the myocardium, thus reducing the risk of premature rupture. An elastin/tropoelastin-specific contrast agent (Gd-ESMA) was used to image tropoelastin and mature elastin fibers for in vivo assessment of extracellular matrix remodeling post-MI. Gd-ESMA enhancement was studied in a mouse model of myocardial infarction using a 7 T MRI scanner and results were compared to those achieved after injection of a nonspecific control contrast agent, gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA). In the infarcted tissue, Gd-ESMA uptake (measured as R1 relaxation rate) steadily increased from day 3 to day 21 as a result of the synthesis of elastin/tropoelastin. R1 values were in good agreement with histological findings. A similar R1 behavior was observed in the remote myocardium. No mature cross-linked elastin was found at any time point. In contrast, Gd-DTPA uptake was only observed in the infarct with no changes in R1 values between 3 and 21 days post-MI. We demonstrate the feasibility of in vivo imaging of extracellular matrix remodeling post-MI using a tropoelastin/elastin binding MR contrast agent, Gd-ESMA. We found that tropoelastin is the main contributor to the increased MRI signal at late stages of MI where its augmentation in areas of infarction was in good agreement with the R1 increase. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  1. Ferrimagnetic ferritin cage nanoparticles used as MRI contrast agent

    Science.gov (United States)

    Cai, Y.; Cao, C.; Zhang, T.; Xu, H.; Pan, Y.

    2017-12-01

    The nano-sized ferrimagnetic ferritin cage nanoparticles are ideal materials for understanding of superparamagnetism, biomimetic synthesis of ultrafine magnetic particles and their application in biomedicine. Ferrimagnetic M-HFn nanoparticles with size of magnetite cores in a mean size ranges from 2.7 nm to 5.3 nm were synthesized through loading different amount of iron into recombinant human H chain ferritin (HFn) shells. Both the saturation magnetization (Ms) and blocking temperature (Tb) were increased with the size of ferrimagnetic cores. In essence, magnetic resonance imaging (MRI) analysis showed that the synthesized M-HFn nanoparticles (5.3 nm magnetite core) has extremely high transverse relaxivity (r2) values up to 320.9 mM-1S-1, which indicate that M-HFn nanoparticles are promising negative contrast agent in early detection of tumors. In addition, the longitudinal relaxivity (r1) (10.4 mM-1S-1) and r2/r1 ratio ( 2.2) of M-HFn nanoparticles ( 2.7 nm magnetite core in diameter) will make it a considerable potential as a positive contrast agent in MRI. This means the M-HFn nanoparticles can be used as dual functional MR contrast agent. Acute toxicity study of M-HFn in rats showed that a dosage of 20 mg Fe/kg makes no abnormalities by serum biochemical and hematological analysis as well as histopathological examination. Compared with a similar commercial contrast agent, combidex (with a clinical dosage of 2.7 mg Fe/kg), it indicates that M-HFn nanoparticle is of a relative safe ferrimagnetic nanoparticle when used in vivo.

  2. Biliary cystadenoma with bile duct communication depicted on liver-specific contrast agent-enhanced MRI in a child

    Energy Technology Data Exchange (ETDEWEB)

    Marrone, Gianluca; Carollo, Vincenzo; Luca, Angelo [Mediterranean Institute of Transplantation and High Specialization Therapy (ISMETT), Diagnostic and Interventional Radiology, Palermo (Italy); Maggiore, Giuseppe [University Hospital S. Chiara, Gastroenterology and Hepatology, Department of Paediatrics, Pisa (Italy); Sonzogni, Aurelio [Riuniti Hospital, Pathology Department, Bergamo (Italy)

    2011-01-15

    Biliary cystadenoma is a benign, but potentially malignant, cystic neoplasm of the biliary ducts occurring most commonly in middle-aged females and very rarely in children. We present a 9-year-old boy with biliary cystadenoma, diagnosed by MRI using a new liver-specific contrast agent (gadoxetic acid) that is eliminated by the biliary system. The images clearly demonstrate the communication between the multiloculated cystic mass and the biliary tree, suggesting the possibility of biliary cystadenoma. Due to the malignant potential of a cystadenoma, the lesion was resected. The resection was complete and the postoperative course was uneventful. (orig.)

  3. Studies of MRI relaxivities of gadolinium-labeled dendrons

    Science.gov (United States)

    Pan, Hongmu; Daniel, Marie-Christine

    2011-05-01

    In cancer detection, imaging techniques have a great importance in early diagnosis. The more sensitive the imaging technique and the earlier the tumor can be detected. Contrast agents have the capability to increase the sensitivity in imaging techniques such as magnetic resonance imaging (MRI). Until now, gadolinium-based contrast agents are mainly used for MRI, and show good enhancement. But improvement is needed for detection of smaller tumors at the earliest stage possible. The dendrons complexed with Gd(DOTA) were synthesized and evaluated as a new MRI contrast agent. The longitudinal and transverse relaxation effects were tested and compared with commercial drug Magnevist, Gd(DTPA).

  4. Design, synthesis, and evaluation of VEGFR-targeted macromolecular MRI contrast agent based on biotin?avidin-specific binding

    OpenAIRE

    Liu, Yongjun; Wu, Xiaoyun; Sun, Xiaohe; Wang, Dan; Zhong, Ying; Jiang, Dandan; Wang, Tianqi; Yu, Dexin; Zhang, Na

    2017-01-01

    Yongjun Liu,1 Xiaoyun Wu,1 Xiaohe Sun,1 Dan Wang,1 Ying Zhong,1 Dandan Jiang,1 Tianqi Wang,1 Dexin Yu,2 Na Zhang1 1School of Pharmaceutical Science, Shandong University, 2Department of Radiology Medicine, Qilu Hospital, Jinan, People’s Republic of China Abstract: Developing magnetic resonance imaging (MRI) contrast agents with high relaxivity and specificity was essential to increase MRI diagnostic sensitivity and accuracy. In this study, the MRI contrast agent, vascular endotheli...

  5. Assessment of the coronary venous system in heart failure patients by blood pool agent enhanced whole-heart MRI

    Energy Technology Data Exchange (ETDEWEB)

    Manzke, Robert [University Hospital of Ulm, Department of Internal Medicine II, Ulm (Germany); Philips Research Europe, Clinical Sites Research, Hamburg (Germany); Binner, Ludwig; Bornstedt, Axel; Merkle, Nico; Lutz, Anja; Gradinger, Robert [University Hospital of Ulm, Department of Internal Medicine II, Ulm (Germany); Rasche, Volker [University Hospital of Ulm, Department of Internal Medicine II, Ulm (Germany); Experimental Cardiovascular Imaging, Internal Medicine II, Ulm (Germany)

    2011-04-15

    To investigate the feasibility of MRI for non-invasive assessment of the coronary sinus (CS) and the number and course of its major tributaries in heart failure patients. Fourteen non-ischaemic heart failure patients scheduled for cardiac resynchronisation therapy (CRT) underwent additional whole-heart coronary venography. MRI was performed 1 day before device implantation. The visibility, location and dimensions of the CS and its major tributaries were assessed and the number of potential implantation sites identified. The MRI results were validated by X-ray venography conventionally acquired during the device implantation procedure. The right atrium (RA), CS and mid-cardiac vein (MCV) could be visualised in all patients. 36% of the identified candidate branches were located posterolaterally, 48% laterally and 16% anterolaterally. The average diameter of the CS was quantified as 9.8 mm, the posterior interventricular vein (PIV) 4.6 mm, posterolateral segments 3.3 mm, lateral 2.9 mm and anterolateral 2.9 mm. Concordance with X-ray in terms of number and location of candidate branches was given in most cases. Contrast-enhanced MRI venography appears feasible for non-invasive pre-interventional assessment of the course of the CS and its major tributaries. (orig.)

  6. Assessment of the coronary venous system in heart failure patients by blood pool agent enhanced whole-heart MRI

    International Nuclear Information System (INIS)

    Manzke, Robert; Binner, Ludwig; Bornstedt, Axel; Merkle, Nico; Lutz, Anja; Gradinger, Robert; Rasche, Volker

    2011-01-01

    To investigate the feasibility of MRI for non-invasive assessment of the coronary sinus (CS) and the number and course of its major tributaries in heart failure patients. Fourteen non-ischaemic heart failure patients scheduled for cardiac resynchronisation therapy (CRT) underwent additional whole-heart coronary venography. MRI was performed 1 day before device implantation. The visibility, location and dimensions of the CS and its major tributaries were assessed and the number of potential implantation sites identified. The MRI results were validated by X-ray venography conventionally acquired during the device implantation procedure. The right atrium (RA), CS and mid-cardiac vein (MCV) could be visualised in all patients. 36% of the identified candidate branches were located posterolaterally, 48% laterally and 16% anterolaterally. The average diameter of the CS was quantified as 9.8 mm, the posterior interventricular vein (PIV) 4.6 mm, posterolateral segments 3.3 mm, lateral 2.9 mm and anterolateral 2.9 mm. Concordance with X-ray in terms of number and location of candidate branches was given in most cases. Contrast-enhanced MRI venography appears feasible for non-invasive pre-interventional assessment of the course of the CS and its major tributaries. (orig.)

  7. Gd-functionalised Au nanoparticles as targeted contrast agents in MRI: relaxivity enhancement by polyelectrolyte coating.

    Science.gov (United States)

    Warsi, Muhammad Farooq; Adams, Ralph W; Duckett, Simon B; Chechik, Victor

    2010-01-21

    Monolayer-protected, Gd(3+)-functionalised gold nanoparticles with enhanced spin-lattice relaxivity (r(1)) were prepared; adsorption of polyelectrolytes on these materials further increased r(1) and ligand exchange with a biotin-derivatised disulfide led to a prototype avidin-targeted contrast agent.

  8. A neutral polydisulfide containing Gd(III) DOTA monoamide as a redox-sensitive biodegradable macromolecular MRI contrast agent.

    Science.gov (United States)

    Ye, Zhen; Zhou, Zhuxian; Ayat, Nadia; Wu, Xueming; Jin, Erlei; Shi, Xiaoyue; Lu, Zheng-Rong

    2016-01-01

    This work aims to develop safe and effective gadolinium (III)-based biodegradable macromolecular MRI contrast agents for blood pool and cancer imaging. A neutral polydisulfide containing macrocyclic Gd-DOTA monoamide (GOLS) was synthesized and characterized. In addition to studying the in vitro degradation of GOLS, its kinetic stability was also investigated in an in vivo model. The efficacy of GOLS for contrast-enhanced MRI was examined with female BALB/c mice bearing 4T1 breast cancer xenografts. The pharmacokinetics, biodistribution, and metabolism of GOLS were also determined in mice. GOLS has an apparent molecular weight of 23.0 kDa with T1 relaxivities of 7.20 mM(-1) s(-1) per Gd at 1.5 T, and 6.62 mM(-1) s(-1) at 7.0 T. GOLS had high kinetic inertness against transmetallation with Zn(2+) ions, and its polymer backbone was readily cleaved by L-cysteine. The agent showed improved efficacy for blood pool and tumor MR imaging. The structural effect on biodistribution and in vivo chelation stability was assessed by comparing GOLS with Gd(HP-DO3A), a negatively charged polydisulfide containing Gd-DOTA monoamide GODC, and a polydisulfide containing Gd-DTPA-bisamide (GDCC). GOLS showed high in vivo chelation stability and minimal tissue deposition of gadolinium. The biodegradable macromolecular contrast agent GOLS is a promising polymeric contrast agent for clinical MR cardiovascular imaging and cancer imaging. Copyright © 2015 John Wiley & Sons, Ltd.

  9. The advantage of high relaxivity contrast agents in brain perfusion

    International Nuclear Information System (INIS)

    Cotton, F.; Hermier, M.

    2006-01-01

    Accurate MRI characterization of brain lesions is critical for planning therapeutic strategy, assessing prognosis and monitoring response to therapy. Conventional MRI with gadolinium-based contrast agents is useful for the evaluation of brain lesions, but this approach primarily depicts areas of disruption of the blood-brain barrier (BBB) rather than tissue perfusion. Advanced MR imaging techniques such as dynamic contrast agent-enhanced perfusion MRI provide physiological information that complements the anatomic data available from conventional MRI. We evaluated brain perfusion imaging with gadobenate dimeglumine (Gd-BOPTA, MultiHance; Bracco Imaging, Milan, Italy). The contrast-enhanced perfusion technique was performed on a Philips Intera 1.5-T MR system. The technique used to obtain perfusion images was dynamic susceptibility contrast-enhanced MRI, which is highly sensitive to T2* changes. Combined with PRESTO perfusion imaging, SENSE is applied to double the temporal resolution, thereby improving the signal intensity curve fit and, accordingly, the accuracy of the derived parametric images. MultiHance is the first gadolinium MR contrast agent with significantly higher T1 and T2 relaxivities than conventional MR contrast agents. The higher T1 relaxivity, and therefore better contrast-enhanced T1-weighted imaging, leads to significantly improved detection of BBB breakdown and hence improved brain tumor conspicuity and delineation. The higher T2 relaxivity allows high-quality T2*-weighted perfusion MRI and the derivation of good quality relative cerebral blood volume (rCBV) maps. We determined the value of MultiHance for enhanced T2*-weighted perfusion imaging of histologically proven (by surgery or stereotaxic biopsy) intraaxial brain tumors (n=80), multiple sclerosis lesions (n=10), abscesses (n=4), neurolupus (n=15) and stroke (n=16). All the procedures carried out were safe and no adverse events occurred. The acquired perfusion images were of good quality in

  10. The cerebral intravascular enhancement sign is not specific: a contrast-enhanced MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Bakshi, R.; Kinkel, W.R.; Bates, V.E.; Mechtler, L.L.; Kinkel, P.R. [Lucy Dent Imaging Center, University at Buffalo, NY (United States)

    1999-02-01

    The intravascular enhancement (IVE) sign, also known as the ``arterial enhancement sign``, is an abnormal finding in the brain on contrast-enhanced MRI studies. IVE has been described in arterial cerebrovascular disorders, most commonly in acute or subacute arterial ischemic infarcts. However, the specificity of this sign has not been established. We describe four patients with disorders other than arterial strokes in whom gadolinium-enhanced high-field (1.5 T) MRI suggested IVE. The conditions were herpes simplex viral encephalitis, idiopathic cerebellitis, pneumococcal meningitis, and superior sagittal sinus thrombosis with venous infarction. IVE in these cases may be due to multiple factors, including arterial, venous, perivascular, and leptomeningeal or sulcal contrast medium accumulation. Our observations suggest that arterial ischemia, previously described as the cardinal cause of IVE, probably does not explain all instances, and urge caution in interpreting this sign as a specific MRI manifestation of acute arterial infarction or ischemia. (orig.) With 4 figs., 1 tab., 44 refs.

  11. Liposomes Loaded with Hydrophobic Iron Oxide Nanoparticles: Suitable T2 Contrast Agents for MRI

    Directory of Open Access Journals (Sweden)

    Raquel Martínez-González

    2016-07-01

    Full Text Available There has been a recent surge of interest in the use of superparamagnetic iron oxide nanoparticles (SPIONs as contrast agents (CAs for magnetic resonance imaging (MRI, due to their tunable properties and their low toxicity compared with other CAs such as gadolinium. SPIONs exert a strong influence on spin-spin T2 relaxation times by decreasing the MR signal in the regions to which they are delivered, consequently yielding darker images or negative contrast. Given the potential of these nanoparticles to enhance detection of alterations in soft tissues, we studied the MRI response of hydrophobic or hydrophilic SPIONs loaded into liposomes (magnetoliposomes of different lipid composition obtained by sonication. These hybrid nanostructures were characterized by measuring several parameters such as size and polydispersity, and number of SPIONs encapsulated or embedded into the lipid systems. We then studied the influence of acyl chain length as well as its unsaturation, charge, and presence of cholesterol in the lipid bilayer at high field strength (7 T to mimic the conditions used in preclinical assays. Our results showed a high variability depending on the nature of the magnetic particles. Focusing on the hydrophobic SPIONs, the cholesterol-containing samples showed a slight reduction in r2, while unsaturation of the lipid acyl chain and inclusion of a negatively charged lipid into the bilayer appeared to yield a marked increase in negative contrast, thus rendering these magnetoliposomes suitable candidates as CAs, especially as a liver CA.

  12. Tracer kinetic model-driven registration for dynamic contrast-enhanced MRI time-series data.

    Science.gov (United States)

    Buonaccorsi, Giovanni A; O'Connor, James P B; Caunce, Angela; Roberts, Caleb; Cheung, Sue; Watson, Yvonne; Davies, Karen; Hope, Lynn; Jackson, Alan; Jayson, Gordon C; Parker, Geoffrey J M

    2007-11-01

    Dynamic contrast-enhanced MRI (DCE-MRI) time series data are subject to unavoidable physiological motion during acquisition (e.g., due to breathing) and this motion causes significant errors when fitting tracer kinetic models to the data, particularly with voxel-by-voxel fitting approaches. Motion correction is problematic, as contrast enhancement introduces new features into postcontrast images and conventional registration similarity measures cannot fully account for the increased image information content. A methodology is presented for tracer kinetic model-driven registration that addresses these problems by explicitly including a model of contrast enhancement in the registration process. The iterative registration procedure is focused on a tumor volume of interest (VOI), employing a three-dimensional (3D) translational transformation that follows only tumor motion. The implementation accurately removes motion corruption in a DCE-MRI software phantom and it is able to reduce model fitting errors and improve localization in 3D parameter maps in patient data sets that were selected for significant motion problems. Sufficient improvement was observed in the modeling results to salvage clinical trial DCE-MRI data sets that would otherwise have to be rejected due to motion corruption. Copyright 2007 Wiley-Liss, Inc.

  13. Assessment of left ventricular hemodynamics by Gd-DTPA enhanced high speed cine MRI

    International Nuclear Information System (INIS)

    Matsumura, Kentaro; Nakase, Emiko; Kawai, Ichiro

    1992-01-01

    To assess the validity of Gd-DTPA enhanced high speed cine MRI in left ventricular (LV) volumes and ejection fraction (EF), high speed cine MRI was compared with intra-venous digital subtraction left ventriculography (IV-DSA) in 14 patients. All patients underwent conventional cine MRI and Gd-DTPA enhanced high speed MRI, simultaneously. The pulse sequences of high speed MRI were TR 8 ms (TR 6 ms plus rewind pulse 2 ms), TE 3.2 ms, matrix 128, phase encode 8 or 6 and NEX 1. Comparison with LV-volume showed a high correlation (y = 0.854x + 1,699, r = 0.985) between high speed cine MRI and VI-DSA. To make left ventricular volume curve by area-length method in cine MRI, manual tracing of LV-cavity was more difficult in conventional cine MRI-method than enhanced high speed cine MRI-method. In conclusion, first pass-Gd-DTPA enhanced high speed cine MRI, using the horizontal long axis approach and the multiphase study, is a highly, accurate reproducible method of evaluating LV-volumetry. (author)

  14. Value of contrast-enhanced MRI of breast after silicone implant

    International Nuclear Information System (INIS)

    Heinig, A.; Heywang-Koebrunner, S.H.; Viehweg, P.; Spielmann, R.P.; Lampe, D.; Buchmann, J.

    1997-01-01

    Early recognition of recurrence and work-up of clinically indeterminate lesions may be impaired after reconstruction with silicone implants due to superimposition of the implant or to scarring. This study was undertaken to evaluate the use of contrast-enhanced MRI in patients with silicone implant after breast cancer. Contrast-enhanded MRI was offered to 169 patients. Comparative two- to three-view mammography was also performed in 169 patients, as well as comparative sonography in 144 patients. Conventional imaging and clinical examination detected only 8/13 recurrences, whereas 12/13 were detected by MRI. One recurrence had been visible as a strongly enhancing 2-mm dot in a previous examination (2 years before), but was not called. It was therefore counted as false negative. In addition, multicentricity was detected by MRI alone in two of three cases. MRI correctly diagnosed scar tissue in all cases with indeterminate findings. However, due to false-positive calls caused by enhancing granulomas specificity could not be improved. Contrast-enhanded MRI allowed decisive additional information in our study group and improved the sensitivity significantly (concerning all diagnoses). Contrast-enhanded MRI allowed decisive additional information in our study group and improved the sensitivity significantly (concerning all diagnoses). Contrast-enhanded MRI is recommended in patients with diagnostic problems or high risk of recurrence after silicone implants. (orig.) [de

  15. Gadodiamide injection for enhancement of MRI in the CNS. Applications, dose, field and time dependence

    Energy Technology Data Exchange (ETDEWEB)

    Aakeson, P

    1996-10-01

    Gadodiamide injection was comparable to Gd-DTPA with regard to both safety and diagnostic efficiency in the central nervous system. The contrast effect of Gd contrast agents is higher at 1.5 T than at 0.3 T both in phantoms and patients with a maximum ratio (signal lesion/signal grey matter) more than 50% higher at 1.5 T. To achieve high contrast effect, heavily T1-weighted images are important. Prolonging the TR from 400 ms to 600 ms reduced the ratio by 15-45% depending on concentration. The effective time window for imaging of BBB (Blood-Brain Barrier) damage is between 2-5 and 25-30 minutes after injection and several scans can be performed without loss of enhancement. To provide maximum detectability of BBB damage in patients, higher doses of Gd contrast media should be useful, especially at low field strengths, as the doses used clinically today do not utilize the maximum contrast effect. High-dose (0.3 mmol/kg b.w.) contrast enhanced MRI (0.3 T) with Gadodiamide injection allowed detection of significantly more and smaller metastases (i.e. BBB damage) than standard dose (0.1 mmol/kg b.w.) High dose contrast-enhanced MRI (0.3 T) did not increase the diagnostic information for the evaluation of patients with failed back surgery syndrome compared to standard dose MRI. 55 refs, 9 figs, 10 tabs.

  16. Gadodiamide injection for enhancement of MRI in the CNS. Applications, dose, field and time dependence

    International Nuclear Information System (INIS)

    Aakeson, P.

    1996-01-01

    Gadodiamide injection was comparable to Gd-DTPA with regard to both safety and diagnostic efficiency in the central nervous system. The contrast effect of Gd contrast agents is higher at 1.5 T than at 0.3 T both in phantoms and patients with a maximum ratio (signal lesion/signal grey matter) more than 50% higher at 1.5 T. To achieve high contrast effect, heavily T1-weighted images are important. Prolonging the TR from 400 ms to 600 ms reduced the ratio by 15-45% depending on concentration. The effective time window for imaging of BBB (Blood-Brain Barrier) damage is between 2-5 and 25-30 minutes after injection and several scans can be performed without loss of enhancement. To provide maximum detectability of BBB damage in patients, higher doses of Gd contrast media should be useful, especially at low field strengths, as the doses used clinically today do not utilize the maximum contrast effect. High-dose (0.3 mmol/kg b.w.) contrast enhanced MRI (0.3 T) with Gadodiamide injection allowed detection of significantly more and smaller metastases (i.e. BBB damage) than standard dose (0.1 mmol/kg b.w.) High dose contrast-enhanced MRI (0.3 T) did not increase the diagnostic information for the evaluation of patients with failed back surgery syndrome compared to standard dose MRI. 55 refs, 9 figs, 10 tabs

  17. TMJ disorders and pain: Assessment by contrast-enhanced MRI

    International Nuclear Information System (INIS)

    Farina, Davide; Bodin, Christiane; Gandolfi, Silvia; De Gasperi, Werner; Borghesi, Andrea; Maroldi, Roberto

    2009-01-01

    Though magnetic resonance (MRI) is a widely accepted standard for the assessment of patients with temporomandibular joint (TMJ) disorders, efforts to correlate symptoms to MRI findings have often given controversial results. Aim of this study was to investigate the correlation between TMJ pain and findings of contrast-enhanced MRI. Thirty-eight consecutive patients with TMJ dysfunction syndrome (study group) were examined with MRI. Protocol included T2 turbo spin-echo sequence, T1 spin-echo sequence, and T2 gradient-echo (acquired with closed jaw, at intermediate and maximal opening). Post-contrast phase was obtained through a fat sat 3D T1 gradient-echo sequence (VIBE). Post-contrast findings in the study group were matched with those obtained in a control group of 33 patients submitted to MRI of the paranasal sinuses. Statistically significant difference was found between condylar medullary bone enhancement in painful TMJ, in painless TMJ and control group. In addition the average thickness of joint soft tissue enhancement in painful TMJ was superior to painless TMJ (p < 0.0001) and to control group. On multivariate logistic regression analysis, the odds ratio that a painful TMJ showed disk displacement, osteoarthrosis, effusion and JST enhancement were 3.05, 3.18, 1.2 and 11.36, respectively. Though not histologically proven, TMJ enhancement could reflect the presence of inflammation in painful joints. Furthermore, the administration of contrast could be of help for the assessment of patients with orofacial pain, particularly when clinical exploration is insufficient to ascribe the pain to TMJ.

  18. TMJ disorders and pain: Assessment by contrast-enhanced MRI

    Energy Technology Data Exchange (ETDEWEB)

    Farina, Davide [Department of Radiology (School of Medicine), University of Brescia, Piazzale Spedali Civili 1, 25123 Brescia (Italy); Bodin, Christiane [Division of Gnathology (School of Dentistry), University of Brescia, Piazzale Spedali Civili 1, 25123 Brescia (Italy); Gandolfi, Silvia [Department of Radiology (School of Medicine), University of Brescia, Piazzale Spedali Civili 1, 25123 Brescia (Italy); De Gasperi, Werner [Division of Gnathology (School of Dentistry), University of Brescia, Piazzale Spedali Civili 1, 25123 Brescia (Italy); Borghesi, Andrea; Maroldi, Roberto [Department of Radiology (School of Medicine), University of Brescia, Piazzale Spedali Civili 1, 25123 Brescia (Italy)

    2009-04-15

    Though magnetic resonance (MRI) is a widely accepted standard for the assessment of patients with temporomandibular joint (TMJ) disorders, efforts to correlate symptoms to MRI findings have often given controversial results. Aim of this study was to investigate the correlation between TMJ pain and findings of contrast-enhanced MRI. Thirty-eight consecutive patients with TMJ dysfunction syndrome (study group) were examined with MRI. Protocol included T2 turbo spin-echo sequence, T1 spin-echo sequence, and T2 gradient-echo (acquired with closed jaw, at intermediate and maximal opening). Post-contrast phase was obtained through a fat sat 3D T1 gradient-echo sequence (VIBE). Post-contrast findings in the study group were matched with those obtained in a control group of 33 patients submitted to MRI of the paranasal sinuses. Statistically significant difference was found between condylar medullary bone enhancement in painful TMJ, in painless TMJ and control group. In addition the average thickness of joint soft tissue enhancement in painful TMJ was superior to painless TMJ (p < 0.0001) and to control group. On multivariate logistic regression analysis, the odds ratio that a painful TMJ showed disk displacement, osteoarthrosis, effusion and JST enhancement were 3.05, 3.18, 1.2 and 11.36, respectively. Though not histologically proven, TMJ enhancement could reflect the presence of inflammation in painful joints. Furthermore, the administration of contrast could be of help for the assessment of patients with orofacial pain, particularly when clinical exploration is insufficient to ascribe the pain to TMJ.

  19. Dynamic contrast-enhanced MRI in patients with luminal Crohn's disease

    NARCIS (Netherlands)

    Ziech, M. L. W.; Lavini, C.; Caan, M. W. A.; Nio, C. Y.; Stokkers, P. C. F.; Bipat, S.; Ponsioen, C. Y.; Nederveen, A. J.; Stoker, J.

    2012-01-01

    Objectives: To prospectively assess dynamic contrast-enhanced (DCE-)MRI as compared to conventional sequences in patients with luminal Crohn's disease. Methods: Patients with Crohn's disease undergoing MRI and ileocolonoscopy within 1 month had DCE-MRI (3T) during intravenous contrast injection of

  20. Whole-body MRI, dynamic contrast-enhanced MRI, and diffusion-weighted imaging for the staging of multiple myeloma

    Energy Technology Data Exchange (ETDEWEB)

    Dutoit, Julie C.; Verstraete, Koenraad L. [Ghent University Hospital, Department of Radiology, Ghent (Belgium)

    2017-06-15

    Magnetic resonance imaging (MRI) is the most sensitive imaging technique for the detection of bone marrow infiltration, and has therefore recently been included in the new diagnostic myeloma criteria, as proposed by the International Myeloma Working Group. Nevertheless, conventional MRI only provides anatomical information and is therefore only of limited use in the response assessment of patients with multiple myeloma. The additional information from functional MRI techniques, such as diffusion-weighted imaging and dynamic contrast-enhanced MRI, can improve the detection rate of bone marrow infiltration and the assessment of response. This can further enhance the sensitivity and specificity of MRI in the staging of multiple myeloma patients. This article provides an overview of the technical aspects of conventional and functional MRI techniques with practical recommendations. It reviews the diagnostic performance, prognostic value, and role in therapy assessment in multiple myeloma and its precursor stages. (orig.)

  1. Evaluating automated dynamic contrast enhanced wrist 3 T MRI in healthy volunteers: One-year longitudinal observational study

    Energy Technology Data Exchange (ETDEWEB)

    Rastogi, Anshul, E-mail: anshul.rastogi@bartshealth.nhs.uk [Kennedy Institute of Rheumatology, Imperial College London (United Kingdom); Kubassova, Olga, E-mail: olga@imageanalysis.org.uk [Image Analysis, Leeds (United Kingdom); Krasnosselskaia, Lada V., E-mail: solaguz@yahoo.com [Imaging Sciences Department, Imperial College London (United Kingdom); Lim, Adrian K.P., E-mail: a.lim@imperial.ac.uk [Department of Radiology, Imperial College Healthcare NHS Trust, London (United Kingdom); Satchithananda, Keshthra, E-mail: keshthra.satchithananda@imperial.nhs.uk [Department of Radiology, Imperial College Healthcare NHS Trust, London (United Kingdom); Boesen, Mikael, E-mail: mikael.boesen@gmail.com [Department of Radiology and the Parker Institute, Frederiksberg and Bispebjerg Hospitals (Denmark); Binks, Michael, E-mail: michael.h.binks@gsk.com [GlaxoSmithKline, Stevenage, SG1 2NY (United Kingdom); Hajnal, Joseph V., E-mail: jo.hajnal@kcl.ac.uk [Imaging Sciences Department, Imperial College London (United Kingdom); Taylor, Peter C., E-mail: peter.taylor@kennedy.ox.ac.uk [Kennedy Institute of Rheumatology, Imperial College London (United Kingdom)

    2013-08-15

    Rational and Objective: Dynamic contrast enhanced (DCE)-MRI has great potential to provide quantitative measure of inflammatory activity in rheumatoid arthritis. There is no current benchmark to establish the stability of signal in the joints of healthy subjects when imaged with DCE-MRI longitudinally, which is crucial so as to differentiate changes induced by treatment from the inherent variability of perfusion measures. The objective of this study was to test a pixel-by-pixel parametric map based approach for analysis of DCE-MRI (Dynamika) and to investigate the variability in signal characteristics over time in healthy controls using longitudinally acquired images. Materials and Methods: 10 healthy volunteers enrolled, dominant wrists were imaged with contrast enhanced 3T MRI at baseline, week 12, 24 and 52 and scored with RAMRIS, DCE-MRI was analysed using a novel quantification parametric map based approach. Radiographs were obtained at baseline and week 52 and scored using modified Sharp van der Heidje method. RAMRIS scores and dynamic MRI measures were correlated. Results: No erosions were seen on radiographs, whereas MRI showed erosion-like changes, low grade bone marrow oedema and low-moderate synovial enhancement. The DCE-MRI parameters were stable (baseline scores, variability) (mean ± st.dev); in whole wrist analysis, ME{sub mean} (1.3 ± 0.07, −0.08 ± 0.1 at week 24) and IRE{sub mean} (0.008 ± 0.004, −0.002 ± 0.005 at week 12 and 24). In the rough wrist ROI, ME{sub mean} (1.2 ± 0.07, 0.04 ± 0.02 at week 52) and IRE{sub mean} (0.001 ± 0.0008, 0.0006 ± 0.0009 at week 52) and precise wrist ROI, ME{sub mean} (1.2 ± 0.09, 0.04 ± 0.04 at week 52) and IRE{sub mean} (0.001 ± 0.0008, 0.0008 ± 0.001 at week 24 and 52). The Dynamic parameters obtained using fully automated analysis demonstrated strong, statistically significant correlations with RAMRIS synovitis scores. Conclusion: The study demonstrated that contrast enhancement does occur in

  2. Delayed contrast-enhanced MRI: use in myocardial viability assessment and other cardiac pathology

    International Nuclear Information System (INIS)

    Bogaert, J.; Dymarkowski, S.

    2005-01-01

    As in other organs, tissue characterization is important for many cardiac diseases. For example, in ischemic heart disease, differentiation between reversibly and irreversibly damaged myocardium in patients with a prior myocardial infarction is crucial in determining disease severity, functional recovery and patient outcome. With the recent advent of the single inversion-recovery contrast-enhanced magnetic resonance imaging (MRI) sequence (delayed contrast-enhanced MRI), contrast between normal and abnormal tissues could be significantly enhanced compared with the conventional cardiac MRI sequences, enabling even subtle abnormalities to be visualized. Together with other advances in cardiac MRI (e.g. functional imaging, coronary artery imaging), MRI has become one of the preferred non-invasive modalities to study cardiac diseases. In this paper an overview of the versatility of delayed contrast-enhanced MRI for investigating cardiac diseases is given. (orig.)

  3. Is dynamic contrast-enhanced MRI useful for assessing proximal fragment vascularity in scaphoid fracture delayed and non-union?

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Alex W.H.; Griffith, James F.; Li, Alvin [The Chinese University of Hong Kong, Department of Imaging and Interventional Radiology, Prince of Wales Hospital, Hong Kong, SAR (China); Taljanovic, Mihra S. [The University of Arizona Health Network, Department of Medical Imaging, 1501 N. Campbell Ave., P.O. Box 245067, Tucson, AZ (United States); Tse, W.L.; Ho, P.C. [The Chinese University of Hong Kong, Department of Orthopedics and Traumatology, Prince of Wales Hospital, Hong Kong (China)

    2013-07-15

    To assess dynamic contrast-enhanced magnetic resonance imaging (DCE MRI) as a measure of vascularity in scaphoid delayed-union or non-union. Thirty-five patients (34 male, one female; mean age, 27.4 {+-} 9.4 years; range, 16-51 years) with scaphoid delayed-union and non-union who underwent DCE MRI of the scaphoid between September 2002 and October 2012 were retrospectively reviewed. Proximal fragment vascularity was classified as good, fair, or poor on unenhanced MRI, contrast-enhanced MRI, and DCE MRI. For DCE MRI, enhancement slope, E{sub slope} comparison of proximal and distal fragments was used to classify the proximal fragment as good, fair, or poor vascularity. Proximal fragment vascularity was similarly graded at surgery in all patients. Paired t test and McNemar test were used for data comparison. Kappa value was used to assess level of agreement between MRI findings and surgical findings. Twenty-five (71 %) of 35 patients had good vascularity, four (11 %) had fair vascularity, and six (17 %) had poor vascularity of the proximal scaphoid fragment at surgery. DCE MRI parameters had the highest correlation with surgical findings (kappa = 0.57). Proximal scaphoid fragments with surgical poor vascularity had a significantly lower E{sub max} and E{sub slope} than those with good vascularity (p = 0.0043 and 0.027). The sensitivity, specificity, positive and negative predictive value and accuracy of DCE MRI in predicting impaired vascularity was 67, 86, 67, 86, and 80 %, respectively, which was better than that seen with unenhanced and post-contrast MRI. Flattened time intensity curves in both proximal and distal fragments were a feature of protracted non-union with a mean time interval of 101.6 {+-} 95.5 months between injury and MRI. DCE MRI has a higher diagnostic accuracy than either non-enhanced MRI or contrast enhanced MRI for assessing proximal fragment vascularity in scaphoid delayed-union and non-union. For proper interpretation of contrast-enhanced

  4. Value of fusion of PET and MRI for staging of endometrial cancer: Comparison with 18F-FDG contrast-enhanced PET/CT and dynamic contrast-enhanced pelvic MRI

    International Nuclear Information System (INIS)

    Kitajima, Kazuhiro; Suenaga, Yuko; Ueno, Yoshiko; Kanda, Tomonori; Maeda, Tetsuo; Takahashi, Satoru; Ebina, Yasuhiko; Miyahara, Yoshiya; Yamada, Hideto; Sugimura, Kazuro

    2013-01-01

    Purpose: To investigate the diagnostic value of retrospective fusion of pelvic MRI and 18 F-fluorodeoxyglucose ( 18 F-FDG) PET images for assessment of locoregional extension and nodal staging of endometrial cancer. Materials and methods: Thirty patients with biopsy-proven endometrial cancer underwent preoperative contrast-enhanced PET/CT (PET/ceCT) and pelvic dynamic contrast-enhanced MRI for initial staging. Diagnostic performance of PET/ceCT, contrast-enhanced MRI, and retrospective image fusion from PET and MRI (fused PET/MRI) for assessing the extent of the primary tumor (T stage) and metastasis to regional LNs (N stage) was evaluated by two experienced readers. Histopathological and follow-up imaging results were used as the gold standard. The McNemar test was employed for statistical analysis. Results: Fused PET/MRI and MRI detected 96.7% of the primary tumors, whereas PET/ceCT detected 93.3%. Accuracy for T status was 80.0% for fused PET/MRI, and MRI proved significantly more accurate than PET/ceCT, which had an accuracy of 60.0% (p = 0.041). Patient-based sensitivity, specificity and accuracy for detecting pelvic nodal metastasis were 100%, 96.3% and 96.7% for both fused PET/MRI and PET/ceCT, and 66.7%, 100% and 96.7% for MRI, respectively. These three parameters were not statistically significant (p = 1). Conclusion: Fused PET/MRI, which complements the individual advantages of MRI and PET, is a valuable technique for assessment of the primary tumor and nodal staging in patients with endometrial cancer

  5. Ultrashort Echo Time Magnetic Resonance Imaging of the Lung Using a High-Relaxivity T1 Blood-Pool Contrast Agent

    Directory of Open Access Journals (Sweden)

    Joris Tchouala Nofiele

    2014-10-01

    Full Text Available The lung remains one of the most challenging organs to image using magnetic resonance imaging (MRI due to intrinsic rapid signal decay. However, unlike conventional modalities such as computed tomography, MRI does not involve radiation and can provide functional and morphologic information on a regional basis. Here we demonstrate proof of concept for a new MRI approach to achieve substantial gains in a signal to noise ratio (SNR in the lung parenchyma: contrast-enhanced ultrashort echo time (UTE imaging following intravenous injection of a high-relaxivity blood-pool manganese porphyrin T1 contrast agent. The new contrast agent increased relative enhancement of the lung parenchyma by over 10-fold compared to gadolinium diethylene triamine pentaacetic acid (Gd-DTPA, and the use of UTE boosted the SNR by a factor of 4 over conventional T1-weighted gradient echo acquisitions. The new agent also maintains steady enhancement over at least 60 minutes, thus providing a long time window for obtaining high-resolution, high-quality images and the ability to measure a number of physiologic parameters.

  6. Pharmacokinetic changes induced by focused ultrasound in glioma-bearing rats as measured by dynamic contrast-enhanced MRI.

    Directory of Open Access Journals (Sweden)

    Feng-Yi Yang

    Full Text Available Focused ultrasound (FUS combined with microbubbles has been shown to be a noninvasive and targeted drug delivery technique for brain tumor treatment. The purpose of this study was to measure the kinetics of Gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA in glioma-bearing rats in the presence of FUS-induced blood-brain barrier disruption (BBB-D by magnetic resonance imaging (MRI. A total of ten glioma-bearing rats (9-12 weeks, 290-340 g were used in this study. Using dynamic contrast-enhanced (DCE-MRI, the spatial permeability of FUS-induced BBB-D was evaluated and the kinetic parameters were calculated by a general kinetic model (GKM. The results demonstrate that the mean Ktrans of the sonicated tumor (0.128±0.019 at 20 min and 0.103±0.023 at 24 h after sonication, respectively was significantly higher than (2.46-fold at 20 min and 1.78-fold at 24 h that of the contralateral (non-sonicated tumor (0.052±0.019 at 20 min and 0.058±0.012 at 24 h after sonication, respectively. In addition, the transfer constant Ktrans in the sonicated tumor correlated strongly with tissue EB extravasation (R = 0.95, which suggests that DCE-MRI may reflect drug accumulation in the brain. Histological observations showed no macroscopic damage except for a few small erythrocyte extravasations. The current study demonstrates that DCE-MRI can monitor the dynamics of the FUS-induced BBB-D process and constitutes a useful tool for quantifying BBB permeability in tumors.

  7. Postoperative enhancement on breast MRI: Time course and pattern of changes.

    Science.gov (United States)

    Mahoney, Mary C; Sharda, Radhika G

    2018-04-23

    Expected postoperative enhancement on breast MRI can appear similar to enhancement seen in recurrent or residual malignancy. Our aim was to assess the time course and patterns of enhancement at the surgical site, thereby helping to distinguish between benign and malignant postoperative enhancement. In 200 MRI scans performed in 153 patients after breast conservation treatment, 43 after surgical excision of atypia, and 4 patients after benign excisional biopsy were categorized by postoperative time interval. We defined 4 patterns of morphologic enhancement on MRI: cavity wall/seroma (Pattern I); thin linear (Pattern II); mass (Pattern III); and fat necrosis (Pattern IV). Of 200 MRI scans, 66 (33%) demonstrated enhancement at the surgical site. Enhancement typically decreased through the postoperative follow-up period. Enhancement was observed in 41% (28/68) of cases beyond the 18-month interval but was uncommon after 5 years. Pattern III enhancement was the morphologic pattern seen most commonly with malignancy (5/19 cases, 26%). When associated with delayed washout kinetics, it was even more strongly predictive of malignancy (4/5 cases, 80%). In patients with a history of excisional biopsy and no prior radiation treatment, the percentage of MRI scans showing enhancement was significantly lower than (21% vs 49% with P-value .0027) in patients who had undergone radiation. Enhancement at the surgical site occurred in one-third of cases up to 5 years after surgery, particularly in patients who underwent both radiation and surgery. Mass enhancement, particularly in conjunction with delayed washout kinetics, is most predictive of malignancy and should prompt biopsy or re-excision. © 2018 Wiley Periodicals, Inc.

  8. Human cerebral blood volume measurements using dynamic contrast enhancement in comparison to dynamic susceptibility contrast MRI

    Energy Technology Data Exchange (ETDEWEB)

    Artzi, Moran [Tel Aviv Sourasky Medical Center, Functional Brain Center, The Wohl Institute for Advanced Imaging, Tel Aviv (Israel); Tel Aviv University, Sackler Faculty of Medicine, Tel Aviv (Israel); Liberman, Gilad; Vitinshtein, Faina; Aizenstein, Orna [Tel Aviv Sourasky Medical Center, Functional Brain Center, The Wohl Institute for Advanced Imaging, Tel Aviv (Israel); Nadav, Guy [Tel Aviv Sourasky Medical Center, Functional Brain Center, The Wohl Institute for Advanced Imaging, Tel Aviv (Israel); Tel Aviv University, Faculty of Engineering, Tel Aviv (Israel); Blumenthal, Deborah T.; Bokstein, Felix [Tel Aviv Sourasky Medical Center, Neuro-Oncology Service, Tel Aviv (Israel); Bashat, Dafna Ben [Tel Aviv Sourasky Medical Center, Functional Brain Center, The Wohl Institute for Advanced Imaging, Tel Aviv (Israel); Tel Aviv University, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv (Israel)

    2015-07-15

    Cerebral blood volume (CBV) is an important parameter for the assessment of brain tumors, usually obtained using dynamic susceptibility contrast (DSC) MRI. However, this method often suffers from low spatial resolution and high sensitivity to susceptibility artifacts and usually does not take into account the effect of tissue permeability. The plasma volume (v{sub p}) can also be extracted from dynamic contrast enhancement (DCE) MRI. The aim of this study was to investigate whether DCE can be used for the measurement of cerebral blood volume in place of DSC for the assessment of patients with brain tumors. Twenty-eight subjects (17 healthy subjects and 11 patients with glioblastoma) were scanned using DCE and DSC. v{sub p} and CBV values were measured and compared in different brain components in healthy subjects and in the tumor area in patients. Significant high correlations were detected between v{sub p} and CBV in healthy subjects in the different brain components; white matter, gray matter, and arteries, correlating with the known increased tissue vascularity, and within the tumor area in patients. This work proposes the use of DCE as an alternative method to DSC for the assessment of blood volume, given the advantages of its higher spatial resolution, its lower sensitivity to susceptibility artifacts, and its ability to provide additional information regarding tissue permeability. (orig.)

  9. Measurement of extracellular volume and transit time heterogeneity using contrast-enhanced myocardial perfusion MRI in patients after acute myocardial infarction.

    Science.gov (United States)

    Kunze, Karl P; Rischpler, Christoph; Hayes, Carmel; Ibrahim, Tareq; Laugwitz, Karl-Ludwig; Haase, Axel; Schwaiger, Markus; Nekolla, Stephan G

    2017-06-01

    To assess the ability of dynamic contrast-enhanced myocardial perfusion MRI to measure extracellular volume (ECV) and to investigate the possibility of estimating capillary transit time heterogeneity (CTH) in patients after myocardial infarction and successful revascularization. Twenty-four perfusion data sets were acquired on a 3 Tesla positron emission tomography (PET)/MRI scanner. Three perfusion models of different complexity were implemented in a hierarchical fashion with an Akaike information criterion being used to determine the number of fit parameters supported by the data. Results were compared sector-wise to ECV from an equilibrium T 1 mapping method (modified look-locker inversion recovery (MOLLI)). ECV derived from the perfusion analysis correlated well with equilibrium measurements (R² = 0.76). Estimation of CTH was supported in 16% of sectors (mostly remote). Inclusion of a nonzero CTH parameter usually led to lower estimates of first-pass extraction and slightly higher estimates of blood volume and flow. Estimation of the capillary permeability-surface area product was feasible in 81% of sectors. Transit time heterogeneity has a measurable effect on the kinetic analysis of myocardial perfusion MRI data, and Gd-DTPA extravasation in the myocardium is usually not flow-limited in infarct-related pathology. Measurement of myocardial ECV using perfusion imaging could provide a scan-time efficient alternative to methods based on T 1 mapping. Magn Reson Med 77:2320-2330, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  10. Gadolinium heteropoly complex K 17[Gd(P 2W 17O 61) 2] as a potential MRI contrast agent

    Science.gov (United States)

    Sun, Guoying; Feng, Jianghua; Wu, Huifeng; Pei, Fengkui; Fang, Ke; Lei, Hao

    2004-10-01

    Gadolinium heteropoly complex K17[Gd(P2W17O61)2] has been evaluated by in vitro and in vivo experiments as a potential contrast agent for magnetic resonance imaging (MRI). The thermal analysis and conductivity study indicate that this complex has good thermal stability and wide pH stability range. The T1 relaxivity is 7.59 mM-1 s-1 in aqueous solution and 7.97 mM-1 s-1 in 0.725 mmol l-1 bovine serum albumin (BSA) solution at 25 °C and 9.39 T, respectively. MR imaging of three male Sprague-Dawley rats showed remarkable enhancement in rat liver after intravenous injection, which persisted longer than with Gd-DTPA. The signal intensity increased by 57.1±16.9% during the whole imaging period at 0.082 mmol kg-1dose. Our preliminary in vitro and in vivo studies indicate that K17[Gd(P2W17O61)2] is a potential liver-specific MRI contrast agent.

  11. Incorporating Oxygen-Enhanced MRI into Multi-Parametric Assessment of Human Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Heling Zhou

    2017-08-01

    Full Text Available Hypoxia is associated with prostate tumor aggressiveness, local recurrence, and biochemical failure. Magnetic resonance imaging (MRI offers insight into tumor pathophysiology and recent reports have related transverse relaxation rate (R2* and longitudinal relaxation rate (R1 measurements to tumor hypoxia. We have investigated the inclusion of oxygen-enhanced MRI for multi-parametric evaluation of tumor malignancy. Multi-parametric MRI sequences at 3 Tesla were evaluated in 10 patients to investigate hypoxia in prostate cancer prior to radical prostatectomy. Blood oxygen level dependent (BOLD, tissue oxygen level dependent (TOLD, dynamic contrast enhanced (DCE, and diffusion weighted imaging MRI were intercorrelated and compared with the Gleason score. The apparent diffusion coefficient (ADC was significantly lower in tumor than normal prostate. Baseline R2* (BOLD-contrast was significantly higher in tumor than normal prostate. Upon the oxygen breathing challenge, R2* decreased significantly in the tumor tissue, suggesting improved vascular oxygenation, however changes in R1 were minimal. R2* of contralateral normal prostate decreased in most cases upon oxygen challenge, although the differences were not significant. Moderate correlation was found between ADC and Gleason score. ADC and R2* were correlated and trends were found between Gleason score and R2*, as well as maximum-intensity-projection and area-under-the-curve calculated from DCE. Tumor ADC and R2* have been associated with tumor hypoxia, and thus the correlations are of particular interest. A multi-parametric approach including oxygen-enhanced MRI is feasible and promises further insights into the pathophysiological information of tumor microenvironment.

  12. Safety and adverse effects during 24 hours after contrast-enhanced MRI with gadobenate dimeglumine (MultiHance {sup registered}) in children

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Guenther; Schuerholz, Hellmut; Buecker, Arno; Fries, Peter [Homburg University Hospital, Homburg, Saar (Germany); Kirchin, Miles A. [Bracco Imaging SpA, Milan (Italy)

    2013-02-15

    Gadolinium-based MR contrast agents have long been considered safe for routine diagnostic imaging. However, the advent of nephrogenic systemic fibrosis (NSF) among certain patients with severe renal insufficiency has brought the issue of safety into question. Nowhere is safety of greater concern than among children who frequently require multiple contrast-enhanced MRI examinations over an extended period of time. To retrospectively evaluate the safety of gadobenate dimeglumine for contrast-enhanced (CE) MRI across a range of indications. Two hundred pediatric inpatients (age: 4 days to 15 years) underwent CE MRI as part of clinical routine. The children received a gadobenate dimeglumine dose of either 0.05 mmol/kg body weight (liver, abdominal imaging, musculoskeletal imaging, brain and other rare indications) or 0.1 mmol/kg bodyweight (cardiovascular imaging, MR-urography). Young (< 8 years) children with congenital heart disease were intubated and underwent MRA evaluation with controlled ventilation. Monitoring for adverse events was performed for at least 24 h after each gadobenate dimeglumine injection. Depending on clinical necessity, laboratory measurements and, in some cases, vital sign and ECG determinations were made before and after contrast injection. Safety was evaluated by age group, indication and dose administered. No clinically adverse events were reported among children who had one MRI scan only or among children who had several examinations. There were no changes in creatinine or bilirubin levels even in very young children. No adverse events were recorded during the first 24 h following administration of gadobenate dimeglumine in 200 children. (orig.)

  13. Construction of 0.15 Tesla Overhauser Enhanced MRI.

    Science.gov (United States)

    Tokunaga, Yuumi; Nakao, Motonao; Naganuma, Tatsuya; Ichikawa, Kazuhiro

    2017-01-01

    Overhauser enhanced MRI (OMRI) is one of the free radical imaging technologies and has been used in biomedical research such as for partial oxygen measurements in tumor, and redox status in acute oxidative diseases. The external magnetic field of OMRI is frequently in the range of 5-10 mTesla to ensure microwave penetration into small animals, and the S/N ratio is limited. In this study, a 0.15 Tesla OMRI was constructed and tested to improve the S/N ratio for a small sample, or skin measurement. Specification of the main magnet was as follows: 0.15 Tesla permanent magnet; gap size 160 mm; homogenous spherical volume of 80 mm in diameter. The OMRI resonator was designed based on TE 101 cavity mode and machined from a phosphorus deoxidized copper block for electron spin resonance (ESR) excitation and a solenoid transmission/receive resonator for NMR detection. The resonant frequencies and Q values were 6.38 MHz/150 and 4.31-4.41 GHz/120 for NMR and ESR, respectively. The Q values were comparable to those of conventional low field OMRI resonators at 15 mTesla. As expected, the MRI S/N ratio was improved by a factor of 30. Triplet dynamic nuclear polarization spectra were observed for 14 N carboxy-PROXYL, along the excitation microwave sweep. In the current setup, the enhancement factor was ca. 0.5. In conclusion, the results of this preliminary evaluation indicate that the 0.15 Tesla OMRI could be useful for free radical measurement for small samples.

  14. Renal Cell Carcinoma Perfusion before and after Radiofrequency Ablation Measured with Dynamic Contrast Enhanced MRI: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Tze Min Wah

    2018-01-01

    Full Text Available Aim: To investigate if the early treatment effects of radiofrequency ablation (RFA on renal cell carcinoma (RCC can be detected with dynamic contrast enhanced (DCE-MRI and to correlate RCC perfusion with RFA treatment time. Materials and methods: 20 patients undergoing RFA of their 21 RCCs were evaluated with DCE-MRI before and at one month after RFA treatment. Perfusion was estimated using the maximum slope technique at two independent sittings. Total RCC blood flow was correlated with total RFA treatment time, tumour location, size and histology. Results: DCE-MRI examinations were successfully evaluated for 21 RCCs (size from 1.3 to 4 cm. Perfusion of the RCCs decreased significantly (p < 0.0001 from a mean of 203 (±80 mL/min/100 mL before RFA to 8.1 (±3.1 mL/min/100 mL after RFA with low intra-observer variability (r ≥ 0.99, p < 0.0001. There was an excellent correlation (r = 0.95 between time to complete ablation and pre-treatment total RCC blood flow. Tumours with an exophytic location exhibit the lowest mean RFA treatment time. Conclusion: DCE-MRI can detect early treatment effects by measuring RCC perfusion before and after RFA. Perfusion significantly decreases in the zone of ablation, suggesting that it may be useful for the assessment of treatment efficacy. Pre-RFA RCC blood flow may be used to predict RFA treatment time.

  15. Abducens nerve enhancement demonstrated by multiplanar reconstruction of contrast-enhanced three-dimensional MRI

    International Nuclear Information System (INIS)

    Hosoya, T.; Adachi, M.; Sugai, Y.; Yamaguchi, K.; Yamaguchi, K.; Kato, T.

    2001-01-01

    We describe contrast enhancement of the cisternal portion of the abducens nerve and discuss its clinical significance. We examined 67 patients with ophthalmoplegia using contrast-enhanced 3-dimensional (3D) MRI with multiplanar reconstruction along the nerves and found 16 patients (ten men, six women), aged 10-73 years (mean 34.4 years), with contrast enhancement of the abducens nerve. Of the 36 patients who had an abducens palsy, 14 (39 %) showed contrast enhancement. In the 16 patients, 23 abducens nerves enhanced; 13 were symptomatic and 10 asymptomatic at the time. The causes were disseminated tumour (1), an inflammatory process (3), trauma (2), ischaemia (2) and autoimmune diseases (8), such as the Miller Fisher syndrome, acute ophthalmoparesis, polyneuropathy and multiple sclerosis. Abducens and/or oculomotor nerve enhancement was the only abnormality on MRI in the patients with traumatic or ischaemic neuropathy or autoimmune diseases. There were 14 patients who recovered fully within 1-6 months after treatment, and resolution of the enhancement correlated well with recovery. (orig.)

  16. Abducens nerve enhancement demonstrated by multiplanar reconstruction of contrast-enhanced three-dimensional MRI

    Energy Technology Data Exchange (ETDEWEB)

    Hosoya, T.; Adachi, M.; Sugai, Y. [Dept. of Radiology, Yamagata University School of Medicine (Japan); Yamaguchi, K.; Yamaguchi, K. [Dept. of Ophthalmology, Yamagata University School of Medicine (Japan); Kato, T. [3. Dept. of Internal Medicine, Yamagata University School of Medicine (Japan)

    2001-04-01

    We describe contrast enhancement of the cisternal portion of the abducens nerve and discuss its clinical significance. We examined 67 patients with ophthalmoplegia using contrast-enhanced 3-dimensional (3D) MRI with multiplanar reconstruction along the nerves and found 16 patients (ten men, six women), aged 10-73 years (mean 34.4 years), with contrast enhancement of the abducens nerve. Of the 36 patients who had an abducens palsy, 14 (39 %) showed contrast enhancement. In the 16 patients, 23 abducens nerves enhanced; 13 were symptomatic and 10 asymptomatic at the time. The causes were disseminated tumour (1), an inflammatory process (3), trauma (2), ischaemia (2) and autoimmune diseases (8), such as the Miller Fisher syndrome, acute ophthalmoparesis, polyneuropathy and multiple sclerosis. Abducens and/or oculomotor nerve enhancement was the only abnormality on MRI in the patients with traumatic or ischaemic neuropathy or autoimmune diseases. There were 14 patients who recovered fully within 1-6 months after treatment, and resolution of the enhancement correlated well with recovery. (orig.)

  17. Surface Modification of Gd Nanoparticles with pH-Responsive Block Copolymers for Use As Smart MRI Contrast Agents.

    Science.gov (United States)

    Zhu, Liping; Yang, Yuan; Farquhar, Kirsten; Wang, Jingjing; Tian, Chixia; Ranville, James; Boyes, Stephen G

    2016-02-01

    Despite recent advances in the understanding of fundamental cancer biology, cancer remains the second most common cause of death in the United States. One of the primary factors indicative of high cancer morbidity and mortality and aggressive cancer phenotypes is tumors with a low extracellular pH (pHe). Thus, the ability to measure tumor pHe in vivo using noninvasive and accurate techniques that also provide high spatiotemporal resolution has become increasingly important and is of great interest to researchers and clinicians. In an effort to develop a pH-responsive magnetic resonance imaging (MRI) contrast agent (CA) that has the potential to be used to measure tumor pHe, well-defined pH-responsive polymers, synthesized via reversible addition-fragmentation chain transfer polymerization, were attached to the surface of gadolinium-based nanoparticles (GdNPs) via a "grafting to" method after reduction of the thiocarbonylthio end groups. The successful modification of the GdNPs was verified by transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis and dynamic light scattering. The performance of the pH-responsive polymer modified GdNPs was then evaluated for potential use as smart MRI CAs via monitoring the relaxivity changes with changing environmental pH. The results suggested that the pH-responsive polymers can be used to effectively modify the GdNPs surface to prepare a smart contrast agent for MRI.

  18. Dynamic oxygen-enhanced MRI of cerebrospinal fluid.

    Directory of Open Access Journals (Sweden)

    Taha M Mehemed

    Full Text Available Oxygen causes an increase in the longitudinal relaxation rate of tissues through its T1-shortening effect owing to its paramagnetic properties. Due to such effects, MRI has been used to study oxygen-related signal intensity changes in various body parts including cerebrospinal fluid (CSF space. Oxygen enhancement of CSF has been mainly studied using MRI sequences with relatively longer time resolution such as FLAIR, and T1 value calculation. In this study, fifteen healthy volunteers were scanned using fast advanced spin echo MRI sequence with and without inversion recovery pulse in order to dynamically track oxygen enhancement of CSF. We also focused on the differences of oxygen enhancement at sulcal and ventricular CSF. Our results revealed that CSF signal after administration of oxygen shows rapid signal increase in both sulcal CSF and ventricular CSF on both sequences, with statistically significant predominant increase in sulcal CSF compared with ventricular CSF. CSF is traditionally thought to mainly form from the choroid plexus in the ventricles and is absorbed at the arachnoid villi, however, it is also believed that cerebral arterioles contribute to the production and absorption of CSF, and controversy remains in terms of the precise mechanism. Our results demonstrated rapid oxygen enhancement in sulcal CSF, which may suggest inhaled oxygen may diffuse into sulcal CSF space rapidly probably due to the abundance of pial arterioles on the brain sulci.

  19. Preoperative evaluation of colorectal liver metastases: comparison between gadoxetic acid-enhanced 3.0-T MRI and contrast-enhanced MDCT with histopathological correlation

    Energy Technology Data Exchange (ETDEWEB)

    Scharitzer, M.; Ba-Ssalamah, A.; Ringl, H.; Koelblinger, C.; Weber, M. [Medical University of Vienna, Department of Radiology, Vienna (Austria); Gruenberger, T. [Medical University of Vienna, Department of Surgery, Vienna (Austria); Schima, W. [Department of Radiology, KH Goettlicher Heiland, KH der Barmherzigen Schwestern and St Josef-Krankenhaus, Vienna (Austria)

    2013-08-15

    The aim of this prospective study was to compare the diagnostic performance of 64-row MDCT and gadoxetic-acid-enhanced MRI at 3.0 T in patients with colorectal liver metastases in correlation with histopathological findings. Lesions detected at MDCT and MRI were interpreted by three blinded readers and compared with histopathological workup as the term of reference. Two subgroups of lesions were additionally evaluated: (1) metastases smaller than 10 mm and (2) lesions in patients with and without steatosis of the liver, assessed histopathologically. Surgery and histopathological workup revealed 81 colorectal liver metastases in 35 patients and diffuse metastatic involvement in 3 patients. In a lesion-by-lesion analysis, significant sensitivity differences could only be found for reader 1 (P = 0.035) and reader 3 (P = 0.003). For segment-based evaluation, MRI was more sensitive only for reader 3 (P = 0.012). The number of false-positive results ranged from 3 to 12 for MDCT and 8 to 11 for MRI evaluation. In the group of small lesions, the sensitivity differed significantly between both methods (P = 0.003). In patients with hepatic steatosis, MRI showed a trend toward better performance than MDCT, but without statistical performance. The 3.0-T MRI with liver-specific contrast agents is the preferred investigation in the preoperative setting, especially for the assessment of small colorectal liver metastases. (orig.)

  20. Value of fusion of PET and MRI for staging of endometrial cancer: Comparison with {sup 18}F-FDG contrast-enhanced PET/CT and dynamic contrast-enhanced pelvic MRI

    Energy Technology Data Exchange (ETDEWEB)

    Kitajima, Kazuhiro, E-mail: kitajima@med.kobe-u.ac.jp [Department of Radiology, Kobe University School of Medicine, Kobe (Japan); Suenaga, Yuko; Ueno, Yoshiko [Department of Radiology, Kobe University School of Medicine, Kobe (Japan); Kanda, Tomonori [Department of Obsterics and Gynecology of Kobe University School of Medicine, Kobe (Japan); Department of Radiology, Hyogo Cancer Center, Hyogo (Japan); Maeda, Tetsuo; Takahashi, Satoru [Department of Radiology, Kobe University School of Medicine, Kobe (Japan); Ebina, Yasuhiko; Miyahara, Yoshiya; Yamada, Hideto [Department of Obsterics and Gynecology of Kobe University School of Medicine, Kobe (Japan); Department of Radiology, Hyogo Cancer Center, Hyogo (Japan); Sugimura, Kazuro [Department of Radiology, Kobe University School of Medicine, Kobe (Japan)

    2013-10-01

    Purpose: To investigate the diagnostic value of retrospective fusion of pelvic MRI and {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) PET images for assessment of locoregional extension and nodal staging of endometrial cancer. Materials and methods: Thirty patients with biopsy-proven endometrial cancer underwent preoperative contrast-enhanced PET/CT (PET/ceCT) and pelvic dynamic contrast-enhanced MRI for initial staging. Diagnostic performance of PET/ceCT, contrast-enhanced MRI, and retrospective image fusion from PET and MRI (fused PET/MRI) for assessing the extent of the primary tumor (T stage) and metastasis to regional LNs (N stage) was evaluated by two experienced readers. Histopathological and follow-up imaging results were used as the gold standard. The McNemar test was employed for statistical analysis. Results: Fused PET/MRI and MRI detected 96.7% of the primary tumors, whereas PET/ceCT detected 93.3%. Accuracy for T status was 80.0% for fused PET/MRI, and MRI proved significantly more accurate than PET/ceCT, which had an accuracy of 60.0% (p = 0.041). Patient-based sensitivity, specificity and accuracy for detecting pelvic nodal metastasis were 100%, 96.3% and 96.7% for both fused PET/MRI and PET/ceCT, and 66.7%, 100% and 96.7% for MRI, respectively. These three parameters were not statistically significant (p = 1). Conclusion: Fused PET/MRI, which complements the individual advantages of MRI and PET, is a valuable technique for assessment of the primary tumor and nodal staging in patients with endometrial cancer.

  1. Synthesis and characterization of Bombesin-superparamagnetic iron oxide nanoparticles as a targeted contrast agent for imaging of breast cancer using MRI

    International Nuclear Information System (INIS)

    Jafari, Atefeh; Shayesteh, Saber Farjami; Salouti, Mojtaba; Heidari, Zahra; Rajabi, Ahmad Bitarafan; Boustani, Komail; Nahardani, Ali

    2015-01-01

    The targeted delivery of superparamagnetic iron oxide nanoparticles (SPIONs) as a contrast agent may facilitate their accumulation in cancer cells and enhance the sensitivity of MR imaging. In this study, SPIONs coated with dextran (DSPIONs) were conjugated with bombesin (BBN) to produce a targeting contrast agent for detection of breast cancer using MRI. X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer analyses indicated the formation of dextran-coated superparamagnetic iron oxide nanoparticles with an average size of 6.0 ± 0.5 nm. Fourier transform infrared spectroscopy confirmed the conjugation of the BBN with the DSPIONs. A stability study proved the high optical stability of DSPION–BBN in human blood serum. DSPION–BBN biocompatibility was confirmed by cytotoxicity evaluation. A binding study showed the targeting ability of DSPION–BBN to bind to T47D breast cancer cells overexpressing gastrin-releasing peptide (GRP) receptors. T 2 -weighted and T 2 *-weighted color map MR images were acquired. The MRI study indicated that the DSPION–BBN possessed good diagnostic ability as a GRP-specific contrast agent, with appropriate signal reduction in T 2 *-weighted color map MR images in mice with breast tumors. (paper)

  2. Modified Gadonanotubes as a Promising Novel MRI Contrasting Agent

    OpenAIRE

    Rouzbeh Jahanbakhsh; Fatemeh Atyabi; Saeed Shanehsazzadeh; Zahra Sobhani; Mohsen Adeli; Rassoul Dinarvand

    2013-01-01

    Background and purpose of the study Carbon nanotubes (CNTs) are emerging drug and imaging carrier systems which show significant versatility. One of the extraordinary characteristics of CNTs as Magnetic Resonance Imaging (MRI) contrasting agent is the extremely large proton relaxivities when loaded with gadolinium ion (Gdn 3+) clusters. Methods In this study equated Gdn 3+ clusters were loaded in the sidewall defects of oxidized multiwalled (MW) CNTs. The amount of loaded gadolinium ion into ...

  3. Gd-EOB-DTPA enhanced MRI of the liver: Correlation of relative hepatic enhancement, relative renal enhancement, and liver to kidneys enhancement ratio with serum hepatic enzyme levels and eGFR

    Energy Technology Data Exchange (ETDEWEB)

    Talakic, Emina; Steiner, Jürgen; Kalmar, Peter; Lutfi, Andre [Division of General Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 9, 8036 Graz (Austria); Quehenberger, Franz [Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz (Austria); Reiter, Ursula; Fuchsjäger, Michael [Division of General Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 9, 8036 Graz (Austria); Schöllnast, Helmut, E-mail: helmut.schoellnast@medunigraz.at [Division of General Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 9, 8036 Graz (Austria)

    2014-04-15

    Objectives: To assess the correlation of relative hepatic enhancement (RHE), relative renal enhancement (RRE) and liver to kidneys enhancement ratio (LKR) with serum hepatic enzyme levels and eGFR in Gd-EOB-DTPA enhanced MRI of the liver and to assess threshold levels for predicting enhancement of the liver parenchyma. Methods: Data of 75 patients who underwent Gd-EOB-DTPA enhanced MRI of the liver were collected. Images were obtained before contrast injection, during the early arterial phase, late arterial phase, venous phase, delayed phase, and hepatobiliary phase which was 20 min after Gd-EOB-DTPA administration. Signal intensity of the liver and the kidneys in all phases was defined using region-of-interest measurements for relative enhancement calculation. Serum hepatic enzyme levels and eGFR were available in all patients. Spearman correlation test was used to test the correlation of RHE, RRE and LKR with serum hepatic enzyme levels and eGFR. Results: In the hepatobiliary phase all serum hepatic enzymes were significantly correlated with RHE; total bilirubin (TBIL) and cholin esterase (CHE) showed strongest correlations. TBIL and CHE were significantly correlated with RRE in the arterial phases. TBIL and CHE were significantly correlated with LKR in the arterial phase and hepatobiliary phase. eGFR showed no correlation. Conclusions: In Gd-EOB-DTPA enhanced MRI, TBIL and CHE levels may predict RHE, RRE and LKR.

  4. Contrasts agents in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Bonnet, P.A.; Fernandez, J.P.; Milhavet, J.C.; Chapat, J.P.; Almes, C.; Bruel, J.M.; Rouanet, J.P.; Lamarque, J.L.

    1984-01-01

    Changing different parameters involved in imaging procedures, paramagnetic substances provide contrast enhancement in MRI. Contrast agents presently studied in animals and clinical trials, are either salts or complexes of mineral ions either nitroxide stable free radicals. Their development should extend the possibilities of tissular characterization and fonctional or metabolic evaluation of the MRI [fr

  5. Quantitative evaluation of enhancement patterns in focal solid liver lesions with Gd-EOB-DTPA-enhanced MRI.

    Directory of Open Access Journals (Sweden)

    Michael Haimerl

    Full Text Available PURPOSE: The objective was to investigate the dynamic enhancement patterns in focal solid liver lesions after the administration of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA by means of dynamic magnetic resonance imaging (MRI including hepatobiliary phase (HP images 20 min after Gd-EOB-DTPA administration. MATERIALS AND METHODS: Non-enhanced T1/T2-weighted as well as dynamic magnetic resonance (MR images during the arterial phase (AP, the portal venous phase (PVP, the late phase (LP, and the HP (20 min were obtained from 83 patients (54 male, 29 female, mean age 62.01 years with focal solid liver lesions. MRI was conducted by means of a 1.5-T system for 63 patients with malignant liver lesions (HCCs: n = 34, metastases: n = 29 and for 20 patients with benign liver lesions (FNH lesions: n = 14, hemangiomas: n = 3, adenomas: n = 3. For quantitative analysis, signal-to-noise ratios (SNR, contrast enhancement ratios (CER, lesion-to-liver contrast ratios (LLC, and signal intensity (SI ratios were measured. RESULTS: The SNR of liver parenchyma significantly increased in each dynamic phase after Gd-EOB-DTPA administration compared to the SNR of non-enhanced images (p<0.001. The CER of HCCs and metastases significantly decreased between LP and HP images (p = 0.0011, p<0.0001. However, FNH lesions did not show any significant difference, whereas an increased CER was found in hemangiomas. The mean LLCs of FNH lesions were significantly higher than those of HCCs and metastases. The LLC values of hemangiomas remained negative during the entire time course, whereas the LLC of adenomas indicated hyperintensity from the AP to the LP. Furthermore, adenomas showed hypointensity in HP images. CONCLUSION: Gd-EOB-DTPA-enhanced MRI may help diagnose focal solid liver lesions by evaluating their enhancement patterns.

  6. Gd-DTPA enhanced MRI of the brain infarction: correlation between onset of infarction and enhancing patterns

    International Nuclear Information System (INIS)

    Joo, An Young; Kim, Myung Soon; Lee, Sung Soo

    1994-01-01

    To evaluate the correlation between onset of brain infarction and Gd-DTPA enhancing patterns on MRI. We reviewed MRI of 58 lesions in 45 patients with clinically documented brain infarction retrospectively. Axial, coronal and sagittal T1WI (TR/TE 450-520/20), T2WI (TR/TE 2190/90) and Gd-DTPA enhanced T1WI were performed with a 0.5T superconductive MR system. We analyzed Gd-enhancing patterns that were divided into intravascular, meningeal, and parenchymal enhancement. Parenchymal pattern was subdivided into mottled, partial ring like and dense enhancement. Intravascular enhancement was seen at 1-10 days in 30(53%) of 58 infarctions. Meningeal enhancement (13%) was noted at 1-6 days. Parenchymal enhancement (50%) was seen at 2-28 days and subdividing patterns are as follows: The mottled enhancement pattern was seen earlier at 2-8 days and partial ring like or dense enhancement patterns at 5-28 days. After reviewing Gd-enhanced MRI of infarction, the intravascular and meningeal enhancement patterns were earlier than parenchymal enhancement. Among parenchymal patterns, the mottled pattern was seen earlier than partial ring like or dense patterns. In conclusion, Gd-enhancing patterns of brain infarction are useful in estimating the age of infarction including acute infarction

  7. Background parenchymal enhancement in preoperative breast MRI.

    Science.gov (United States)

    Kohara, Satoko; Ishigaki, Satoko; Satake, Hiroko; Kawamura, Akiko; Kawai, Hisashi; Kikumori, Toyone; Naganawa, Shinji

    2015-08-01

    We aimed to assess the influence of background parenchymal enhancement (BPE) on surgical planning performed using preoperative MRI for breast cancer evaluation. Between January 2009 and December 2010, 91 newly diagnosed breast cancer patients (mean age, 55.5 years; range, 30-88 years) who underwent preoperative bilateral breast MRI followed by planned breast conservation therapy were retrospectively enrolled. MRI was performed to assess the tumor extent in addition to mammography and breast ultrasonography. BPE in the contralateral normal breast MRI at the early dynamic phase was visually classified as follows: minimal (n=49), mild (n=27), moderate (n=7), and marked (n=8). The correlations between the BPE grade and age, menopausal status, index tumor size, changes in surgical management based on MRI results, positive predictive value (PPV) of MRI, and surgical margins were assessed. Patients in the strong BPE groups were significantly younger (p=0.002) and generally premenopausal (p<0.001). Surgical treatment was not changed in 67 cases (73.6%), while extended excision and mastectomy were performed in 12 cases (13.2%), each based on additional lesions on MRI. Six of 79 (7.6%) patients who underwent breast conservation therapy had tumor-positive resection margins. In cases where surgical management was changed, the PPV for MRI-detected foci was high in the minimal (91.7%) and mild groups (66.7%), and 0% in the moderate and marked groups (p=0.002). Strong BPE causes false-positive MRI findings and may lead to overly extensive surgery, whereas MRI may be beneficial in select patients with weak BPE.

  8. Values of kinetic features measured by computer-aided for breast MRI

    International Nuclear Information System (INIS)

    Zhang Lina; Zhao Zuowei; Song Qingwei; Wang Shaowu; Miao Yanwei

    2012-01-01

    Objective: To investigate the value of kinetic features measured by computer-aided diagnosis (CAD) for breast MRI. Methods: One hundred and sixty four lesions diagnosed pathologically by operation or biopsy comprised the analysis set. Automated lesion kinetic information from CADStream programs for breast MRI was identified. Three CAD variables were compared for benign and malignant lesions: initial phase peak enhancement (greatest percentage of signal intensity increase on first contrast enhanced sequence), delayed phase enhancement categorized by a single type of kinetics comprising the largest percentage of enhancement (washout, plateau, or persistent), and delayed phase enhancement categorized by single most suspicious type of kinetics (any washout > any plateau > any persistent). Morphological characteristics of breast lesions were described according to breast imaging and reporting data system (BI-RADS). Initial phase peak enhancement mean values between benign and malignant breast lesions were compared by using Wilcoxon rank-sum test, delayed phase enhancement categorized by a single type of kinetics comprising the largest percentage of enhancement or by single most suspicious type of kinetics between benign and malignant breast lesions were compared by using Chi-square test. Results: There were 72 benign and 92 malignant breast lesions. A total of 123 (75.0%) mass lesions were identified,and the other 41 (25.0%) lesions showed no mass. Thirty lesions were BI-RADS-MRI 2, 68 lesions were BI-RADS-MRI 3, 43 lesions were BI-RADS-MRI 4, 23 lesions were BI-RADS-MRI 5. Initial phase peak enhancement mean values of benign and malignant lesions were 237% (69% to 629%) and 336% (86% to 793%), respectively. There was no significant difference between benign and malignant lesions in initial peak enhancement mean value (Z=-1.626, P=0.104). Delayed phase enhancement categorized by single most suspicious type of kinetics (any washout > any plateau > any persistent) for

  9. A smart T(1)-weighted MRI contrast agent for uranyl cations based on a DNAzyme-gadolinium conjugate.

    Science.gov (United States)

    Xu, Weichen; Xing, Hang; Lu, Yi

    2013-11-07

    Rational design of smart MRI contrast agents with high specificity for metal ions remains a challenge. Here, we report a general strategy for the design of smart MRI contrast agents for detecting metal ions based on conjugation of a DNAzyme with a gadolinium complex. The 39E DNAzyme, which has high selectivity for UO2(2+), was conjugated to Gd(III)-DOTA and streptavidin. The binding of UO2(2+) to its 39E DNAzyme resulted in the dissociation of Gd(III)-DOTA from the large streptavidin, leading to a decrease of the T1 correlation time, and a change in the MRI signal.

  10. An analysis of the uncertainty and bias in DCE-MRI measurements using the spoiled gradient-recalled echo pulse sequence

    International Nuclear Information System (INIS)

    Subashi, Ergys; Choudhury, Kingshuk R.; Johnson, G. Allan

    2014-01-01

    Purpose: The pharmacokinetic parameters derived from dynamic contrast-enhanced (DCE) MRI have been used in more than 100 phase I trials and investigator led studies. A comparison of the absolute values of these quantities requires an estimation of their respective probability distribution function (PDF). The statistical variation of the DCE-MRI measurement is analyzed by considering the fundamental sources of error in the MR signal intensity acquired with the spoiled gradient-echo (SPGR) pulse sequence. Methods: The variance in the SPGR signal intensity arises from quadrature detection and excitation flip angle inconsistency. The noise power was measured in 11 phantoms of contrast agent concentration in the range [0–1] mM (in steps of 0.1 mM) and in onein vivo acquisition of a tumor-bearing mouse. The distribution of the flip angle was determined in a uniform 10 mM CuSO 4 phantom using the spin echo double angle method. The PDF of a wide range of T1 values measured with the varying flip angle (VFA) technique was estimated through numerical simulations of the SPGR equation. The resultant uncertainty in contrast agent concentration was incorporated in the most common model of tracer exchange kinetics and the PDF of the derived pharmacokinetic parameters was studied numerically. Results: The VFA method is an unbiased technique for measuringT1 only in the absence of bias in excitation flip angle. The time-dependent concentration of the contrast agent measured in vivo is within the theoretically predicted uncertainty. The uncertainty in measuring K trans with SPGR pulse sequences is of the same order, but always higher than, the uncertainty in measuring the pre-injection longitudinal relaxation time (T1 0 ). The lowest achievable bias/uncertainty in estimating this parameter is approximately 20%–70% higher than the bias/uncertainty in the measurement of the pre-injection T1 map. The fractional volume parameters derived from the extended Tofts model were found to be

  11. Gadolinium chloride as a contrast agent for imaging wood composite components by magnetic resonance

    Science.gov (United States)

    Thomas L. Eberhardt; Chi-Leung So; Andrea Protti; Po-Wah So

    2009-01-01

    Although paramagnetic contrast agents have an established track record in medical uses of magnetic resonance imaging (MRI), only recently has a contrast agent been used for enhancing MRI images of solid wood specimens. Expanding on this concept, wood veneers were treated with a gadolinium-based contrast agent and used in a model system comprising three-ply plywood...

  12. Identifying Triple-Negative Breast Cancer Using Background Parenchymal Enhancement Heterogeneity on Dynamic Contrast-Enhanced MRI: A Pilot Radiomics Study.

    Directory of Open Access Journals (Sweden)

    Jeff Wang

    Full Text Available To determine the added discriminative value of detailed quantitative characterization of background parenchymal enhancement in addition to the tumor itself on dynamic contrast-enhanced (DCE MRI at 3.0 Tesla in identifying "triple-negative" breast cancers.In this Institutional Review Board-approved retrospective study, DCE-MRI of 84 women presenting 88 invasive carcinomas were evaluated by a radiologist and analyzed using quantitative computer-aided techniques. Each tumor and its surrounding parenchyma were segmented semi-automatically in 3-D. A total of 85 imaging features were extracted from the two regions, including morphologic, densitometric, and statistical texture measures of enhancement. A small subset of optimal features was selected using an efficient sequential forward floating search algorithm. To distinguish triple-negative cancers from other subtypes, we built predictive models based on support vector machines. Their classification performance was assessed with the area under receiver operating characteristic curve (AUC using cross-validation.Imaging features based on the tumor region achieved an AUC of 0.782 in differentiating triple-negative cancers from others, in line with the current state of the art. When background parenchymal enhancement features were included, the AUC increased significantly to 0.878 (p<0.01. Similar improvements were seen in nearly all subtype classification tasks undertaken. Notably, amongst the most discriminating features for predicting triple-negative cancers were textures of background parenchymal enhancement.Considering the tumor as well as its surrounding parenchyma on DCE-MRI for radiomic image phenotyping provides useful information for identifying triple-negative breast cancers. Heterogeneity of background parenchymal enhancement, characterized by quantitative texture features on DCE-MRI, adds value to such differentiation models as they are strongly associated with the triple-negative subtype

  13. Parameter estimation and change-point detection from Dynamic Contrast Enhanced MRI data using stochastic differential equations.

    Science.gov (United States)

    Cuenod, Charles-André; Favetto, Benjamin; Genon-Catalot, Valentine; Rozenholc, Yves; Samson, Adeline

    2011-09-01

    Dynamic Contrast Enhanced imaging (DCE-imaging) following a contrast agent bolus allows the extraction of information on tissue micro-vascularization. The dynamic signals obtained from DCE-imaging are modeled by pharmacokinetic compartmental models which integrate the Arterial Input Function. These models use ordinary differential equations (ODEs) to describe the exchanges between the arterial and capillary plasma and the extravascular-extracellular space. Their least squares fitting takes into account measurement noises but fails to deal with unpredictable fluctuations due to external/internal sources of variations (patients' anxiety, time-varying parameters, measurement errors in the input function, etc.). Adding Brownian components to the ODEs leads to stochastic differential equations (SDEs). In DCE-imaging, SDEs are discretely observed with an additional measurement noise. We propose to estimate the parameters of these noisy SDEs by maximum likelihood, using the Kalman filter. In DCE-imaging, the contrast agent injected in vein arrives in plasma with an unknown time delay. The delay parameter induces a change-point in the drift of the SDE and ODE models, which is estimated also. Estimations based on the SDE and ODE pharmacokinetic models are compared to real DCE-MRI data. They show that the use of SDE provides robustness in the estimation results. A simulation study confirms these results. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Contrast-enhanced MRI features in the early diagnosis of Juvenile Idiopathic Arthritis

    International Nuclear Information System (INIS)

    Hemke, Robert; Maas, Mario; Kuijpers, Taco W.; Schonenberg-Meinema, Dieneke; Nusman, Charlotte M.; Rossum, Marion A.J. van; Berg, J.M. van den; Dolman, Koert M.

    2015-01-01

    To determine whether clinical, laboratory or Magnetic Resonance Imaging (MRI) measures differentiate Juvenile Idiopathic Arthritis (JIA) from other forms of active childhood arthritis. We prospectively collected data of 80 treatment-naive patients clinically suspected of JIA with active non-infectious arthritis of (at least) one knee for <12 months duration. Upon presentation patients underwent clinical and laboratory assessments and contrast-enhanced MRI. MRI was not used as a diagnostic criterion. Forty-four (55 %) patients were clinically diagnosed with JIA, whereas in 36 (45 %) patients the diagnosis of JIA was discarded on clinical or laboratory findings. MRI-based synovitis was present in 27 (61.4 %) JIA patients and in 7 (19.4 %) non-JIA patients (P < 0.001). Five factors (male gender, physician's global assessment of overall disease activity, joints with limited range of motion, HLA-B27, MRI-based synovitis) were associated with the onset of JIA. In multivariate analysis MRI-based synovitis proved to be independently associated with JIA (OR 6.58, 95 % CI 2.36-18.33). In patients with MRI-based synovitis, the RR of having JIA was 3.16 (95 % CI 1.6-6.4). The presence of MRI-based synovitis is associated with the clinical onset of JIA. Physical examination could be supported by MRI, particularly to contribute in the early differentiation of different forms of non-infectious childhood arthritis. (orig.)

  15. Contrast-enhanced MRI features in the early diagnosis of Juvenile Idiopathic Arthritis

    Energy Technology Data Exchange (ETDEWEB)

    Hemke, Robert; Maas, Mario [University of Amsterdam, Department of Radiology Academic Medical Center, Amsterdam (Netherlands); Kuijpers, Taco W.; Schonenberg-Meinema, Dieneke [University of Amsterdam, Department of Pediatric Hematology, Immunology, Rheumatology and Infectious Disease, Emma Children' s Hospital AMC, Amsterdam (Netherlands); Nusman, Charlotte M. [University of Amsterdam, Department of Radiology Academic Medical Center, Amsterdam (Netherlands); University of Amsterdam, Department of Pediatric Hematology, Immunology, Rheumatology and Infectious Disease, Emma Children' s Hospital AMC, Amsterdam (Netherlands); Rossum, Marion A.J. van; Berg, J.M. van den [University of Amsterdam, Department of Pediatric Hematology, Immunology, Rheumatology and Infectious Disease, Emma Children' s Hospital AMC, Amsterdam (Netherlands); Department of Pediatric Rheumatology, Reade, Amsterdam (Netherlands); Dolman, Koert M. [Department of Pediatric Rheumatology, Reade, Amsterdam (Netherlands); St. Lucas Andreas Hospital, Department of Pediatrics, Amsterdam (Netherlands)

    2015-11-15

    To determine whether clinical, laboratory or Magnetic Resonance Imaging (MRI) measures differentiate Juvenile Idiopathic Arthritis (JIA) from other forms of active childhood arthritis. We prospectively collected data of 80 treatment-naive patients clinically suspected of JIA with active non-infectious arthritis of (at least) one knee for <12 months duration. Upon presentation patients underwent clinical and laboratory assessments and contrast-enhanced MRI. MRI was not used as a diagnostic criterion. Forty-four (55 %) patients were clinically diagnosed with JIA, whereas in 36 (45 %) patients the diagnosis of JIA was discarded on clinical or laboratory findings. MRI-based synovitis was present in 27 (61.4 %) JIA patients and in 7 (19.4 %) non-JIA patients (P < 0.001). Five factors (male gender, physician's global assessment of overall disease activity, joints with limited range of motion, HLA-B27, MRI-based synovitis) were associated with the onset of JIA. In multivariate analysis MRI-based synovitis proved to be independently associated with JIA (OR 6.58, 95 % CI 2.36-18.33). In patients with MRI-based synovitis, the RR of having JIA was 3.16 (95 % CI 1.6-6.4). The presence of MRI-based synovitis is associated with the clinical onset of JIA. Physical examination could be supported by MRI, particularly to contribute in the early differentiation of different forms of non-infectious childhood arthritis. (orig.)

  16. Enhanced MRI in patients with Ramsay-Hunt's syndrome

    International Nuclear Information System (INIS)

    Yanagida, Masahiro; Ushiro, Koichi; Yamashita, Toshio; Kumazawa, Tadami; Katoh, Tsutomu

    1993-01-01

    Enhanced MRI was performed in 14 patients with Ramsay-Hunt,s syndrome to investigate the pathogenesis of this syndrome. All MRI studies were performed on a 0.5T superconductivity MRI system using a head coil with Gd-DTPA. Enhancement was observed in the areas of the distal internal auditory canal and labyrinthine segment in many patients, and was especially prominent in patients suffering from vertigo, tinnitus, and hearing loss. In some patients it involved not only the facial nerve of the internal auditory canal but also the cochlear nerve and vestibular nerves. Since histological changes of the facial nerve in patients with Ramsay-Hunt's syndrome are assumed to occur in the distal internal auditory canal and labyrinthine segment, which is more proximal than the geniculate ganglion, and the possibility is suggested that inflammation may be spread to the vestibular and cochlear nerve via the internal auditory canal. (14 refs., 2 figs.)

  17. Enhanced MRI in patients with Ramsay-Hunt's syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Yanagida, Masahiro; Ushiro, Koichi; Yamashita, Toshio; Kumazawa, Tadami [Kansai Medical Univ., Osaka (Japan). Dept. of Otolaryngology; Katoh, Tsutomu [Kansai Medical Univ., Osaka (Japan). Dept. of Radiology

    1993-01-01

    Enhanced MRI was performed in 14 patients with Ramsay-Hunt,s syndrome to investigate the pathogenesis of this syndrome. All MRI studies were performed on a 0.5T superconductivity MRI system using a head coil with Gd-DTPA. Enhancement was observed in the areas of the distal internal auditory canal and labyrinthine segment in many patients, and was especially prominent in patients suffering from vertigo, tinnitus, and hearing loss. In some patients it involved not only the facial nerve of the internal auditory canal but also the cochlear nerve and vestibular nerves. Since histological changes of the facial nerve in patients with Ramsay-Hunt's syndrome are assumed to occur in the distal internal auditory canal and labyrinthine segment, which is more proximal than the geniculate ganglion, and the possibility is suggested that inflammation may be spread to the vestibular and cochlear nerve via the internal auditory canal. (14 refs., 2 figs.).

  18. Contrast-enhanced spectral mammography versus MRI: Initial results in the detection of breast cancer and assessment of tumour size.

    Science.gov (United States)

    Fallenberg, E M; Dromain, C; Diekmann, F; Engelken, F; Krohn, M; Singh, J M; Ingold-Heppner, B; Winzer, K J; Bick, U; Renz, D M

    2014-01-01

    To compare mammography (MG), contrast-enhanced spectral mammography (CESM), and magnetic resonance imaging (MRI) in the detection and size estimation of histologically proven breast cancers using postoperative histology as the gold standard. After ethical approval, 80 women with newly diagnosed breast cancer underwent MG, CESM, and MRI examinations. CESM was reviewed by an independent experienced radiologist, and the maximum dimension of suspicious lesions was measured. For MG and MRI, routine clinical reports of breast specialists, with judgment based on the BI-RADS lexicon, were used. Results of each imaging technique were correlated to define the index cancer. Fifty-nine cases could be compared to postoperative histology for size estimation. Breast cancer was visible in 66/80 MG, 80/80 CESM, and 77/79 MRI examinations. Average lesion largest dimension was 27.31 mm (SD 22.18) in MG, 31.62 mm (SD 24.41) in CESM, and 27.72 mm (SD 21.51) in MRI versus 32.51 mm (SD 29.03) in postoperative histology. No significant difference was found between lesion size measurement on MRI and CESM compared with histopathology. Our initial results show a better sensitivity of CESM and MRI in breast cancer detection than MG and a good correlation with postoperative histology in size assessment. • Contrast-enhanced spectral mammography (CESM) is slowly being introduced into clinical practice. • Access to breast MRI is limited by availability and lack of reimbursement. • Initial results show a better sensitivity of CESM and MRI than conventional mammography. • CESM showed a good correlation with postoperative histology in size assessment. • Contrast-enhanced spectral mammography offers promise, seemingly providing information comparable to MRI.

  19. The quality of tumor size assessment by contrast-enhanced spectral mammography and the benefit of additional breast MRI.

    Science.gov (United States)

    Lobbes, Marc B I; Lalji, Ulrich C; Nelemans, Patty J; Houben, Ivo; Smidt, Marjolein L; Heuts, Esther; de Vries, Bart; Wildberger, Joachim E; Beets-Tan, Regina G

    2015-01-01

    Background - Contrast-enhanced spectral mammography (CESM) is a promising new breast imaging modality that is superior to conventional mammography for breast cancer detection. We aimed to evaluate correlation and agreement of tumor size measurements using CESM. As additional analysis, we evaluated whether measurements using an additional breast MRI exam would yield more accurate results. Methods - Between January 1(st) 2013 and April 1(st) 2014, 87 consecutive breast cancer cases that underwent CESM were collected and data on maximum tumor size measurements were gathered. In 57 cases, tumor size measurements were also available for breast MRI. Histopathological results of the surgical specimen served as gold standard in all cases. Results - The Pearson's correlation coefficients (PCC) of CESM versus histopathology and breast MRI versus histopathology were all >0.9, p1 cm between the two imaging modalities and histopathological results, we did not observe any advantage of performing an additional breast MRI after CESM in any of the cases. Conclusion - Quality of tumor size measurement using CESM is good and matches the quality of these measurement assessed by breast MRI. Additional measurements using breast MRI did not improve the quality of tumor size measurements.

  20. Gadolinium Contrast Agent is of Limited Value for Magnetic Resonance Imaging Assessment of Synovial Hypertrophy in Hemophiliacs

    Energy Technology Data Exchange (ETDEWEB)

    Lundin, B.; Berntorp, E.; Pettersson, H.; Wirestam, R.; Jonsson, K.; Staahlberg, F.; Ljung, R. [Dept. of Radiology, Univ Hospital of Lund, Lund (Sweden)

    2007-07-15

    Purpose: To examine the influence of different doses of gadolinium contrast agent on synovial enhancement, to compare magnetic resonance imaging (MRI) findings of synovial hypertrophy and radiographic joint changes in hemophiliacs, and to investigate the value of gadolinium in MRI assessment of synovial hypertrophy in hemophiliacs using dynamic MRI and MRI scoring. Material and Methods: Twenty-one hemophiliacs on prophylactic factor treatment without recent bleeds were subjected to radiography and gadolinium contrast-enhanced dynamic and static MRI of the knee using a standard dose of 0.1 mmol/kg b.w. gadoteridol. In 17 of the patients, the MRI procedure was repeated after a triple dose of gadoteridol. Results: MRI findings of synovial hypertrophy were significantly correlated with Pettersson radiographic scores. In 19 of the 21 MRI investigated joints, administration of contrast agent did not alter the result of the evaluation of synovial hypertrophy. Conclusion: The optimal time interval for volume assessment of synovial hypertrophy after injection of gadolinium contrast agent is dose dependent. Hemophiliacs without recent bleeds have minor to abundant synovial hypertrophy in joints with pronounced radiographic changes. Dynamic MRI is not useful for evaluating hemophilic arthropathy, and gadolinium contrast agent is not routinely indicated for MRI scoring of joints in hemophiliacs.

  1. Gadolinium Contrast Agent is of Limited Value for Magnetic Resonance Imaging Assessment of Synovial Hypertrophy in Hemophiliacs

    International Nuclear Information System (INIS)

    Lundin, B.; Berntorp, E.; Pettersson, H.; Wirestam, R.; Jonsson, K.; Staahlberg, F.; Ljung, R.

    2007-01-01

    Purpose: To examine the influence of different doses of gadolinium contrast agent on synovial enhancement, to compare magnetic resonance imaging (MRI) findings of synovial hypertrophy and radiographic joint changes in hemophiliacs, and to investigate the value of gadolinium in MRI assessment of synovial hypertrophy in hemophiliacs using dynamic MRI and MRI scoring. Material and Methods: Twenty-one hemophiliacs on prophylactic factor treatment without recent bleeds were subjected to radiography and gadolinium contrast-enhanced dynamic and static MRI of the knee using a standard dose of 0.1 mmol/kg b.w. gadoteridol. In 17 of the patients, the MRI procedure was repeated after a triple dose of gadoteridol. Results: MRI findings of synovial hypertrophy were significantly correlated with Pettersson radiographic scores. In 19 of the 21 MRI investigated joints, administration of contrast agent did not alter the result of the evaluation of synovial hypertrophy. Conclusion: The optimal time interval for volume assessment of synovial hypertrophy after injection of gadolinium contrast agent is dose dependent. Hemophiliacs without recent bleeds have minor to abundant synovial hypertrophy in joints with pronounced radiographic changes. Dynamic MRI is not useful for evaluating hemophilic arthropathy, and gadolinium contrast agent is not routinely indicated for MRI scoring of joints in hemophiliacs

  2. Easy access to heterobimetallic complexes for medical imaging applications via microwave-enhanced cycloaddition

    Directory of Open Access Journals (Sweden)

    Nicolas Desbois

    2015-11-01

    Full Text Available The Cu(I-catalysed Huisgen cycloaddition, known as “click” reaction, has been applied to the synthesis of a range of triazole-linked porphyrin/corrole to DOTA/NOTA derivatives. Microwave irradiation significantly accelerates the reaction. The synthesis of heterobimetallic complexes was easily achieved in up to 60% isolated yield. Heterobimetallic complexes were easily prepared as potential MRI/PET (SPECT bimodal contrast agents incorporating one metal (Mn, Gd for the enhancement of contrast for MRI applications and one “cold” metal (Cu, Ga, In for future radionuclear imaging applications. Preliminary relaxivity measurements showed that the reported complexes are promising contrast agents (CA in MRI.

  3. Dynamic and delayed contrast enhancement in upper abdominal MRI studies: Comparison of gadoxetic acid and gadobutrol

    Energy Technology Data Exchange (ETDEWEB)

    Zizka, Jan [Department of Radiology, Charles University Hospital, Sokolska 581, CZ-500 05 Hradec Kralove (Czech Republic)]. E-mail: zizka@fnhk.cz; Klzo, Ludovit [Department of Radiology, Charles University Hospital, Sokolska 581, CZ-500 05 Hradec Kralove (Czech Republic); Ferda, Jiri [Department of Radiology, Charles University Hospital, Alej Svobody 80, CZ-306 40 Plzen (Czech Republic); Mrklovsky, Milan [Department of Radiology and Imaging Centre Pardubice, Regional Hospital, Kyjevska 44, CZ-530 01 Pardubice (Czech Republic); Bukac, Josef [Department of Biophysics, Medical Faculty, Charles University, Simkova 870, CZ-500 38 Hradec Kralove (Czech Republic)

    2007-05-15

    Objective: To prospectively compare contrast properties of extracelullar (gadobutrol) and hepatospecific (gadoxetic acid) contrast agents in upper abdominal MRI studies. Materials and methods: Standardized (0.1 ml/kg) dose of gadobutrol (56 subjects) and gadoxetic acid (51 subjects) was administered intravenously by MRI-compatible injector at 2 ml/s, followed by 20 ml saline flush. MR signal intensity changes (SIC) between precontrast scans and arterial phase, portal venous phase, equilibrium, and delayed scans at 10 and 20 min were measured in abdominal aorta, portal vein, common bile duct, liver, and spleen. Mean SIC values for gadobutrol and gadoxetic acid were compared by a two-sample t-test with p-value <0.05 considered significant. Results: In abdominal aorta, the mean SIC in the arterial phase did not significantly differ between gadobutrol (330%) and gadoxetic acid (295%). In portal vein, the mean SIC in the portal venous phase significantly differed between gadobutrol (267%) and gadoxetic acid (176%). Liver parenchyma enhancement was significantly higher for gadobutrol than for gadoxetic acid in both arterial phase (28 versus 13%) and portal venous phase (81 versus 46%). On the contrary, gadobutrol reached significantly lower mean SIC in the liver on delayed scans at 10 min (47 versus 59%) and 20 min (40 versus 67%), as well as in common bile duct at 10 min (54 versus 133%) and 20 min (57 versus 457%), respectively. In the spleen, mean SIC for gadobutrol was significantly higher at all phases. Conclusion: Gadobutrol showed superior enhancement of upper abdominal structures in the dynamic phases whereas gadoxetic acid showed better enhancement of the hepatobiliary structures on delayed scans.

  4. Monitoring of arterial wall remodelling in atherosclerotic rabbits with a magnetic resonance imaging contrast agent binding to matrix metalloproteinases

    Science.gov (United States)

    Hyafil, Fabien; Vucic, Esad; Cornily, Jean-Christophe; Sharma, Rahul; Amirbekian, Vardan; Blackwell, Francis; Lancelot, Eric; Corot, Claire; Fuster, Valentin; Galis, Zorina S.; Feldman, Laurent J.; Fayad, Zahi A.

    2011-01-01

    Aims P947 is a gadolinium-based magnetic resonance imaging (MRI) contrast agent with high affinity for several matrix metalloproteinases (MMPs) involved in arterial wall remodelling. We tested whether the intensity of enhancement detected in vivo in the arterial wall with P947 and MRI correlates with actual tissue MMP-related enzymatic activity measured in a rabbit atherosclerotic model subjected to dietary manipulations. Methods and results Aortas of 15 rabbits in which atherosclerotic lesions were induced by balloon angioplasty and 4 months of hypercholesterolaemic diet were imaged at ‘baseline’ with P947-enhanced MRI. Atherosclerotic rabbits were divided into three groups: five rabbits were sacrificed (‘baseline’ group); five rabbits continued to be fed a lipid-supplemented diet (‘high-fat’ group); and five rabbits were switched from atherogenic to a purified chow diet (‘low-fat’ group). Four months later, a second P947-enhanced MRI was acquired in the 10 remaining rabbits. A significantly lower signal was detected in the aortic wall of rabbits from the ‘low-fat’ group as compared with rabbits from the ‘high-fat’ group (21 ± 6 vs. 46 ± 3%, respectively; P = 0.04). Such differences were not detected with the contrast agent P1135, which lacks the MMP-specific peptide sequence. In addition, the intensity of aortic wall enhancement detected with MRI after injection of P947 strongly correlated with actual MMP-2 gelatinolytic activity measured in corresponding aortic segments using zymography (r = 0.87). Conclusion P947-enhanced MRI can distinguish dietary-induced variations in MMP-related enzymatic activity within plaques in an experimental atherosclerotic model, supporting its utility as a clinical imaging tool for in vivo detection of arterial wall remodelling. PMID:21118852

  5. Early-enhancing non-neoplastic lesions on gadolinium-enhanced MRI of the liver

    Energy Technology Data Exchange (ETDEWEB)

    Kanematsu, M. E-mail: masa-gif@umin.ac.jp; Kondo, H.; Semelka, R.C.; Matsuo, M.; Goshima, S.; Hoshi, H.; Moriyama, N.; Itai, Y

    2003-10-01

    AIM: To assess the frequency, cause, and significance of early-enhancing, non-neoplastic (EN) lesions on gadolinium-enhanced magnetic resonance imaging (MRI) of the liver performed for the detection of malignant hepatic tumours. MATERIALS AND METHODS: From September 1997 to September 2000, we reviewed the images of 125 patients, suspected of having hepatic tumours, in whom (1) gadolinium-enhanced triphasic dynamic gradient-recalled-echo (GRE) imaging in addition to unenhanced T1- and T2-weighted MRI was performed, (2) conventional angiography and combination computed tomography (CT) hepatic arteriography and CT during arterial portography were performed within 2 weeks of the MRI, and (3) definitive surgery within 2 weeks of the MRI or follow-up study by means of intravenously contrast-enhanced CT or MRI in 10 months or more was performed. Angiographic studies were correlated to determine the underlying causes of the EN lesions. RESULTS: We found 78 EN lesions in 36 patients (29%), ranging in size from 4 and 50 mm (mean, 12.2 mm). From the MR reports, our radiologists had prospectively diagnosed EN lesions as probable malignant tumours in eight (10%), possible malignant tumours in 36 (46%), and probable non-neoplastic lesion in 34 (44%). EN lesions were found in 27 of 81 (33%) cirrhotic patients and in nine of 44 (20%) non-cirrhotic patients. Fifty-one EN lesions (65%) were located along the liver edge. The shape was circular in 42 (54%), oval in 14 (18%), irregular in 12 (15%), wedge-shaped in seven (9%), and fan-shaped in three (4%). Twenty EN lesions (26%) appeared slightly hyperintense on T2-weighted images. The causes were non-neoplastic arterio-portal shunting in 48 (62%), cystic venous drainage in four (5%), rib compression in four (5%), aberrant right gastric venous drainage in two (3%), and unknown in 20 (26%). CONCLUSION: Over half the number of EN lesions were caused by non-neoplastic arterio-portal shunting, occasionally showing slight hyperintensity on

  6. Enhanced MRI in lumbar disc herniation. Study on the types of herniation and histological findings

    International Nuclear Information System (INIS)

    Koh, Sadao; Okamura, Yuji; Honda, Eiichiro; Takazawa, Shunji; Ohno, Ryuichi; Yasuma, Tsuguo

    1999-01-01

    In the cases which had surgery after enhanced MRI, prolapsed form of hernia and the usefulness of enhanced MRI were examined. The patients were 13 males (14 intervertebral discs) and 5 females (6 intervertebral discs) with lumber disc herniation. The lumber disc herniation was classified into 3 types reference to Macnab's classification; SE (protrusion and subligamentous extrusion), TE (transligamentous extrusion) and SEQ (sequestration). Prolapsed forms were identified in 20 intervertebral discs. Enhanced MRI showed positive in 9 intervertebral discs (SE 1, TE 4 and SEQ 4) and showed negative in 11 discs (SE 10 and TE 1). As for the period from development to enhanced MRI, the significant difference wasn't recognized between positive group and negative group. The diagnostic rate of enhanced MRI was 88.9% (8/9) in sensitivity, 90.9% (10/11) in specificity and 90.0% (18/20) in accuracy. In enhanced MRI, engorged epidural venous plexus was also imaged, and minute change as only annular tear couldn't be detected. Looking from 2 directions crossing at right angles, the effect of contrast enhancement should be judged. (K.H.)

  7. Enhancement pattern of small hepatic hemangioma: findings on multiphase spiral CT and dynamic MRI

    International Nuclear Information System (INIS)

    Choi, Byung In; Lee, Seung Koo; Kim, Myeong Jin; Chung, Jae Joon; Yoo, Hyung Sik; Lee, Jong Tae

    1999-01-01

    To compare the enhancement characteristics of small hemangiomas seen on multiphase spiral CT and dynamic MR imaging. Thirteen patients with 20 hepatic hemangiomas less than 25mm in diameter underwent both multiphase spiral CT and dynamic MR imaging. All lesions were assigned to one of three classified into 3 categories according to the enhancement pattern seen on multiphase spiral CT : typical delayed pooling, atypical early enhancement, or continuous low attenuation. The enhancement patterns seen on spiral CT and on dynamic MRI were correlated. On CT scans, ten lesions (50%) showed delayed pooling. Six (30%) showed early arterial enhancement and four (20%) showed continuous low attenuation. On delayed-phase MRI, all lesions showed delayed high signal intensity compared to adjacent liver parenchyma. Four of six lesions with early enhancement on CT showed peripheral globular enhancement on early arterial-phase MRI. On multiphase spiral CT scans, small hemangiomas can show variable atypical enhancement features. In this situation, contrast-enhanced dynamic MRI is helpful for the diagnosis of hemangiomas

  8. Breast Dynamic Contrast Enhanced MRI: Fibrocystic Changes Presenting as a Non-mass Enhancement Mimicking Malignancy.

    Science.gov (United States)

    Milosevic, Zorica C; Nadrljanski, Mirjan M; Milovanovic, Zorka M; Gusic, Nina Z; Vucicevic, Slavko S; Radulovic, Olga S

    2017-06-01

    We aimed to analyse the morphokinetic features of breast fibrocystic changes (nonproliferative lesions, proliferative lesions without atypia and proliferative lesions with atypia) presenting as a non-mass enhancement (NME)in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) examination. Forty-six patients with histologically proven fibrocystic changes (FCCs) were retrospectively reviewed, according to Breast Imaging Reporting and Data System (BI-RADS) lexicon. Prior to DCE-MRI examination, a unilateral breast lesion suspicious of malignancy was detected clinically, on mammography or breast ultrasonography. The predominant features of FCCs presenting as NME in DCE-MRI examination were: unilateral regional or diffuse distribution (in 35 patients or 76.1%), heterogeneous or clumped internal pattern of enhancement (in 36 patients or 78.3%), plateau time-intensity curve (in 25 patients or 54.3%), moderate or fast wash-in (in 31 patients or 67.4%).Nonproliferative lesions were found in 11 patients (24%), proliferative lesions without atypia in 29 patients (63%) and lesions with atypia in six patients (13%), without statistically significant difference of morphokinetic features, except of the association of clustered microcysts with proliferative dysplasia without atypia. FCCs presenting as NME in DCE-MRI examination have several morphokinetic features suspicious of malignancy, therefore requiring biopsy (BI-RADS 4). Nonproliferative lesions, proliferative lesions without atypia and proliferative lesions with atypia predominantly share the same predefined DCE-MRI morphokinetic features.

  9. Oxygen-enhanced MRI vs. quantitatively assessed thin-section CT: Pulmonary functional loss assessment and clinical stage classification of asthmatics

    International Nuclear Information System (INIS)

    Ohno, Yoshiharu; Koyama, Hisanobu; Matsumoto, Keiko; Onishi, Yumiko; Nogami, Munenobu; Takenaka, Daisuke; Matsumoto, Sumiaki; Sugimura, Kazuro

    2011-01-01

    Purpose: The purpose of this study was to prospectively compare the efficacy of oxygen-enhanced MR imaging (O 2 -enhanced MRI) and CT for pulmonary functional loss assessment and clinical stage classification of asthmatics. Materials and methods: O 2 -enhanced MRI, CT and %FEV 1 measurement were used 34 consecutive asthmatics classified into four stages ('Mild Intermittent [n = 7]', 'Mild Persistent [n = 8], 'Moderate Persistent [n = 14]' and 'Severe Persistent [n = 5]'). Relative enhancement ratio maps for every subject were generated, and determine mean relative enhancement ratios (MRERs). Mean lung density (MLD) and the airway wall area (WA) corrected by body surface area (WA/BSA) were also measured on CT. To compare the efficacy of the two methods for pulmonary functional loss assessment, all indexes were correlated with %FEV 1 . To determine the efficacy of the two methods for clinical stage classification, all parameters for the four clinical stages were statistically compared. Results: %FEV 1 showed fair or moderate correlation with all parameters (0.15 ≤ r 2 ≤ 0.30, p 2 -enhanced MRI is as effective as CT for pulmonary functional loss assessment and clinical stage classification of asthmatics.

  10. Advantages of paramagnetic chemical exchange saturation transfer (CEST) complexes having slow to intermediate water exchange properties as responsive MRI agents.

    Science.gov (United States)

    Soesbe, Todd C; Wu, Yunkou; Dean Sherry, A

    2013-07-01

    Paramagnetic chemical exchange saturation transfer (PARACEST) complexes are exogenous contrast agents that have great potential to further extend the functional and molecular imaging capabilities of magnetic resonance. As a result of the presence of a central paramagnetic lanthanide ion (Ln(3+) ≠ La(3+) , Gd(3+) , Lu(3+) ) within the chelate, the resonance frequencies of exchangeable protons bound to the PARACEST agent are shifted far away from the bulk water frequency. This large chemical shift, combined with an extreme sensitivity to the chemical exchange rate, make PARACEST agents ideally suited for the reporting of significant biological metrics, such as temperature, pH and the presence of metabolites. In addition, the ability to turn PARACEST agents 'off' and 'on' using a frequency-selective saturation pulse gives them a distinct advantage over Gd(3+) -based contrast agents. A current challenge for PARACEST research is the translation of the promising in vitro results into in vivo systems. This short review article first describes the basic theory behind PARACEST contrast agents, their benefits over other contrast agents and their applications to MRI. It then describes some of the recent PARACEST research results: specifically, pH measurements using water molecule exchange rate modulation, T2 exchange contrast caused by water molecule exchange, the use of ultrashort TEs (TE < 10 µs) to overcome T2 exchange line broadening and the potential application of T2 exchange as a new contrast mechanism for MRI. Copyright © 2012 John Wiley & Sons, Ltd.

  11. Effect of carbogen on tumor oxygenation: combined fluorine-19 and proton MRI measurements

    International Nuclear Information System (INIS)

    Fan Xiaobing; River, Jonathan N.; Zamora, Marta; Al-Hallaq, Hania A.; Karczmar, Gregory S.

    2002-01-01

    Purpose: Blood oxygen level dependent (BOLD) contrast in magnetic resonance imaging (MRI) has been widely used for noninvasive evaluation of the effects of tumor-oxygenating agents. However, there have been few tests of the validity of this method. The goal of the present work was to use the T 1 of fluorine-19 in perfluorocarbon (PFC) emulsions as a 'gold standard' for comparison with BOLD MRI. Methods and Materials: Rats bearing R3230AC tumors implanted in the hind limb were injected with an emulsion of perfluoro-15-crown-5-ether for 2-3 days before experiments, which ensured that the PFC emulsion concentrated in the tumors. We correlated changes in tumor oxygenation caused by carbogen inhalation measured by 1 H BOLD MRI with quantitative 19 F measurements. The 19 F spin-lattice relaxation rate R 1 (= 1/T 1 ) was measured to determine initial oxygen tension (pO 2 ) in each image pixel containing the PFC, and changes in pO 2 during carbogen (95% O 2 , 5% CO 2 ) breathing. In a second carbogen breathing period, changes in water signal linewidth were measured using high spectral and spatial resolution imaging. 19 F and 1 H measurements were used to classify pixels as responders to carbogen (pixels where oxygen increased significantly) or nonresponders (no significant change in tumor oxygenation). Results: The 19 F and 1 H measurements agreed in 65% ± 11% of pixels (n = 14). Agreement was even stronger among pixels where 1 H showed increased oxygenation; 19 F measurements agreed with 1 H measurements in over 79% ± 11% of these pixels. Similarly, there was strong agreement between the two modalities in pixels where 19 F reported no change in pO 2 ; 1 H also showed no changes in 76% ± 18% of these pixels. Quantitative correlation of changes T 2 * (ΔT 2 *) in 1 H and changes R 1 (ΔR 1 ) in 19 F was weak during carbogen breathing, and averaged over the whole tumor was ∼0.40 for 14 experiments. However, the spatial patterns of 1 H and 19 F changes were qualitatively

  12. Oxygen-enhanced MRI of the lungs. Intraindividual comparison between 1.5 and 3 Tesla

    International Nuclear Information System (INIS)

    Dietrich, Olaf; Thieme, S.F.; Maxien, D.; Nikolaou, K.; Reiser, M.; Schoenberg, S.O.; Fink, C.

    2011-01-01

    Purpose: To assess the feasibility of oxygen-enhanced MRI of the lung at 3 Tesla and to compare signal characteristics with 1.5 Tesla. Materials and Methods: 13 volunteers underwent oxygen-enhanced lung MRI at 1.5 and 3 T with a T 1-weighted single-slice non-selective inversion-recovery single-shot half-Fourier fast-spin-echo sequence with simultaneous respiratory and cardiac triggering in coronal orientation. 40 measurements were acquired during room air breathing and subsequently during oxygen breathing (15 L/min, close-fitting face-mask). The signal-to-noise ratio (SNR) of the lung tissue was determined with a difference image method. The image quality of all acquisitions was visually assessed. The mean values of the oxygen-induced relative signal enhancement and its regional coefficient of variation were calculated and the signal enhancement was displayed as color-coded parameter maps. Oxygen-enhancement maps were visually assessed with respect to the distribution and heterogeneity of the oxygen-related signal enhancement at both field strengths. Results: The mean relative signal enhancement due to oxygen breathing was 13 % (± 5.6 %) at 1.5 T and of 9.0 % (± 8.0 %) at 3 T. The regional coefficient of variation was significantly higher at 3 T. Visual and quantitative assessment of the enhancement maps showed considerably less homogeneous distribution of the signal enhancement at 3 T. The SNR was not significantly different but showed a trend to slightly higher values (increase of about 10 %) at 3 T. Conclusion: Oxygen-enhanced pulmonary MRI is feasible at 3 Tesla. However, signal enhancement is currently more heterogeneous and slightly lower at 3 T. (orig.)

  13. Diagnostic value of dynamic contrast-enhanced MRI for submucosal palatal tumors

    International Nuclear Information System (INIS)

    Matsuzaki, Hidenobu; Yanagi, Yoshinobu; Hara, Marina; Katase, Naoki; Hisatomi, Miki; Unetsubo, Teruhisa; Konouchi, Hironobu; Takenobu, Toshihiko

    2012-01-01

    Objectives: To evaluate the diagnostic value of dynamic contrast-enhanced MRI (DCE-MRI) for differentiating between benign and malignant tumors in the palate. Materials and methods: 26 patients with submucosal palatal tumors were preoperatively examined using DCE-MRI. Their maximum contrast index (CImax), time of CImax (Tmax), and washout ratios (WR300 and WR600) were determined from contrast index curves. The submucosal palatal tumors were divided into two groups according to their Tmax values: the early enhancement group (Tmax 2 = 0.92, P < 0.001). Conclusions: Tmax is a useful parameter for distinguishing between benign and malignant submucosal palatal tumors.

  14. In vitro evaluation of alternative oral contrast agents for MRI of the gastrointestinal tract

    Energy Technology Data Exchange (ETDEWEB)

    Babos, Magor [University of Szeged, Faculty of Science (Hungary); Euromedic Diagnostics Szeged, 6720 Szeged, Semmelweiss u. 6 (Hungary)], E-mail: babosmagor@yahoo.com; Schwarcz, Attila [University of Pecs, Department of Neurosurgery, Pecs Diagnostic Institute, 7624 Pecs, Retu. 2 (Hungary)], E-mail: attila.schwarcz@aok.pte.hu; Randhawa, Manjit Singh [University of Szeged, Faculty of Medicine, Department of Radiology, 6720 Szeged, Semmelweiss u. 6 (Hungary)], E-mail: majyaal@hotmail.com; Marton, Balazs [University of Szeged, Faculty of Medicine, Department of Radiology, 6720 Szeged, Semmelweiss u. 6 (Hungary)], E-mail: balazsmarton@freemail.hu; Kardos, Lilla [Euromedic Diagnostics Szeged, 6720 Szeged, Semmelweiss u. 6 (Hungary)], E-mail: medlis@tiszanet.hu; Palko, Andras [Euromedic Diagnostics Szeged, 6720 Szeged, Semmelweiss u. 6 (Hungary); University of Szeged, Faculty of Medicine, Department of Radiology, 6720 Szeged, Semmelweiss u. 6 (Hungary)], E-mail: palko@radio.szote.u-szeged.hu

    2008-01-15

    Purpose: In vitro evaluation of different materials as potential alternative oral contrast agents for small bowel MRI. Materials and methods: The T1 and T2 relaxation times of rose hip syrup, black currant extract, cocoa, iron-deferoxamine solution and a commonly used oral contrast material (1 mM Gd-DTPA) were determined in vitro at different concentrations on a 1.0 T clinical MR scanner. T1 values were obtained with an inversion prepared spoiled gradient echo sequence. T2 values were obtained using multiple echo sequences. Finally the materials were visualized on T1-, T2- and T2*-weighted MR images. Results: The relaxation times of the undiluted rose hip syrup (T1 = 110 {+-} 5 ms, T2 = 86 {+-} 3 ms), black currant extract (T1 = 55 {+-} 3 ms, T2 = 39 {+-} 2 ms) and 5 mM iron-deferoxamine solution (T1 = 104 {+-} 4 ms, T2 = 87 {+-} 2 ms) were much shorter than for a 1 mM Gd-DTPA solution (T1 = 180 {+-} 8 ms, T2 = 168 {+-} 5 ms). Dilution of black currant extract to 30% or a 3 mM iron-deferoxamine solution conducted to T1 relaxation times which are quite comparable to a 1 mM Gd-DTPA solution. Despite its much lower metal content an aqueous cocoa suspension (100 g/L) produced T2 relaxation times (T1 = 360 {+-} 21 ms, T2 = 81 {+-} 3 ms) more or less in the same range like the 5 mM iron-deferoxamine solution. Imaging of our in vitro model using clinical sequences allowed to anticipate the T1-, T2- and T2*-depiction of all used substances. Cocoa differed from all other materials with its low to moderate signal intensity on T1- and T2-weighted sequences. While all substances presented a linear 1/T1 and 1/T2 relationship towards concentration, rose hip syrup broke ranks with a disproportionately high increase of relaxation at higher concentrations. Conclusions: Rose hip syrup, black currant extract and iron-deferoxamine solution due to their positive T1 enhancement characteristics and drinkability appear to be valuable oral contrast agents for T1-weighted small bowel MRI

  15. In vitro evaluation of alternative oral contrast agents for MRI of the gastrointestinal tract

    International Nuclear Information System (INIS)

    Babos, Magor; Schwarcz, Attila; Randhawa, Manjit Singh; Marton, Balazs; Kardos, Lilla; Palko, Andras

    2008-01-01

    Purpose: In vitro evaluation of different materials as potential alternative oral contrast agents for small bowel MRI. Materials and methods: The T1 and T2 relaxation times of rose hip syrup, black currant extract, cocoa, iron-deferoxamine solution and a commonly used oral contrast material (1 mM Gd-DTPA) were determined in vitro at different concentrations on a 1.0 T clinical MR scanner. T1 values were obtained with an inversion prepared spoiled gradient echo sequence. T2 values were obtained using multiple echo sequences. Finally the materials were visualized on T1-, T2- and T2*-weighted MR images. Results: The relaxation times of the undiluted rose hip syrup (T1 = 110 ± 5 ms, T2 = 86 ± 3 ms), black currant extract (T1 = 55 ± 3 ms, T2 = 39 ± 2 ms) and 5 mM iron-deferoxamine solution (T1 = 104 ± 4 ms, T2 = 87 ± 2 ms) were much shorter than for a 1 mM Gd-DTPA solution (T1 = 180 ± 8 ms, T2 = 168 ± 5 ms). Dilution of black currant extract to 30% or a 3 mM iron-deferoxamine solution conducted to T1 relaxation times which are quite comparable to a 1 mM Gd-DTPA solution. Despite its much lower metal content an aqueous cocoa suspension (100 g/L) produced T2 relaxation times (T1 = 360 ± 21 ms, T2 = 81 ± 3 ms) more or less in the same range like the 5 mM iron-deferoxamine solution. Imaging of our in vitro model using clinical sequences allowed to anticipate the T1-, T2- and T2*-depiction of all used substances. Cocoa differed from all other materials with its low to moderate signal intensity on T1- and T2-weighted sequences. While all substances presented a linear 1/T1 and 1/T2 relationship towards concentration, rose hip syrup broke ranks with a disproportionately high increase of relaxation at higher concentrations. Conclusions: Rose hip syrup, black currant extract and iron-deferoxamine solution due to their positive T1 enhancement characteristics and drinkability appear to be valuable oral contrast agents for T1-weighted small bowel MRI. Cocoa with its

  16. Contrast enhanced MRI findings of ductal carcinoma in situ

    International Nuclear Information System (INIS)

    Kang, Bong Joo; Cha, Eun Suk; Kim, Hyeon Sook; Suh, Young Jin; Choi, Hyun Joo

    2006-01-01

    The purpose of this study is to describe characteristic contrast enhanced MR mammographic findings of ductal carcinoma in situ (DCIS) and also DCIS with microinvasion. From January 2000 to July 2005, 32 women with 33 lesions affected by DCIS or DCIS with microinvasion underwent contrast enhanced MRI, and they were then retrospectively evaluated. All the patients had previously undergone mammography and ultrasonography. All the findings of mammography, ultrasonography (US), and MRI were analyzed by using an ACR BI-RADS lexicon. All 33 cases were enhanced on the enhanced MR images. A smooth margined homogeneous enhanced mass was seen in the two (2/33) cases, and nonmass enhancement was seen in 31 (31/33) cases. Among the non-mass enhancement, focal enhancement (7/31), ductal enhancement (5/31), segmental enhancement (9/31), and regional enhancement (10/31) were observed. On the kinetic study, a wash-out pattern (10/33), a plateau pattern (20/33), and a persistent pattern (3/33) were demonstrated. No significant differences were noted between the pure and microinvasive DCIS. There is no significant difference between pure and microinvasive DCIS. However, contrast enhanced MR images can demonstrate occult foci, multifocal lesion and the tumor extent of DCIS on mammogram or ultrasonogram

  17. Contrast-enhanced MRI findings of the knee in healthy children; establishing normal values

    Energy Technology Data Exchange (ETDEWEB)

    Hemke, Robert; Maas, Mario [University of Amsterdam, Department of Radiology and Nuclear Medicine, Academic Medical Center, Amsterdam (Netherlands); Berg, J.M. van den; Schonenberg-Meinema, Dieneke; Kuijpers, Taco W. [University of Amsterdam, Department of Pediatric Hematology, Immunology, Rheumatology and Infectious Diseases, Emma Children' s Hospital AMC, Amsterdam (Netherlands); Nusman, Charlotte M. [University of Amsterdam, Department of Pediatric Hematology, Immunology, Rheumatology and Infectious Diseases, Emma Children' s Hospital AMC, Amsterdam (Netherlands); Onze Lieve Vrouwe Gasthuis (OLVG), Department of Pediatrics, Amsterdam (Netherlands); Gulik, E.C. van; Barendregt, Anouk M. [University of Amsterdam, Department of Radiology and Nuclear Medicine, Academic Medical Center, Amsterdam (Netherlands); University of Amsterdam, Department of Pediatric Hematology, Immunology, Rheumatology and Infectious Diseases, Emma Children' s Hospital AMC, Amsterdam (Netherlands); Dolman, Koert M. [Onze Lieve Vrouwe Gasthuis (OLVG), Department of Pediatrics, Amsterdam (Netherlands); Reade, Department of Pediatric Rheumatology, Amsterdam (Netherlands)

    2018-03-15

    To define normative standards for the knee in healthy children using contrast-enhanced MRI, focusing on normal synovial membrane thickness. Secondly, presence of joint fluid and bone marrow oedema was evaluated. For this study, children without disorders potentially resulting in (accompanying) arthritis were included. Patients underwent clinical assessments, followed by contrast-enhanced MRI. MRI features were evaluated in consensus using the Juvenile Arthritis MRI Scoring (JAMRIS) system. Additionally, the presence of joint fluid was evaluated. No cartilage lesions or bone abnormalities were observed. We included 57 healthy children. The overall mean thickness of the normal synovial membrane was 0.4 mm (min-max; 0.0-1.8mm). The synovium was thickest around the cruciate ligaments and retropatellar and suprapatellar regions. The mean overall diameter of the largest pocket of joint fluid was 2.8 mm (min-max; 0.9-8.0mm). Bone marrow changes were observed in three children (all in the apex patellae). The normal synovial membrane was maximally 1.8 mm thick, indicating that the JAMRIS cut-off value of 2 mm can be considered a valid measure for evaluating synovial hypertrophy. Some joint fluid and bone marrow changes suggestive of bone marrow oedema in the apex patellae can be seen in healthy children. (orig.)

  18. Contrast-enhanced MRI findings of the knee in healthy children; establishing normal values

    International Nuclear Information System (INIS)

    Hemke, Robert; Maas, Mario; Berg, J.M. van den; Schonenberg-Meinema, Dieneke; Kuijpers, Taco W.; Nusman, Charlotte M.; Gulik, E.C. van; Barendregt, Anouk M.; Dolman, Koert M.

    2018-01-01

    To define normative standards for the knee in healthy children using contrast-enhanced MRI, focusing on normal synovial membrane thickness. Secondly, presence of joint fluid and bone marrow oedema was evaluated. For this study, children without disorders potentially resulting in (accompanying) arthritis were included. Patients underwent clinical assessments, followed by contrast-enhanced MRI. MRI features were evaluated in consensus using the Juvenile Arthritis MRI Scoring (JAMRIS) system. Additionally, the presence of joint fluid was evaluated. No cartilage lesions or bone abnormalities were observed. We included 57 healthy children. The overall mean thickness of the normal synovial membrane was 0.4 mm (min-max; 0.0-1.8mm). The synovium was thickest around the cruciate ligaments and retropatellar and suprapatellar regions. The mean overall diameter of the largest pocket of joint fluid was 2.8 mm (min-max; 0.9-8.0mm). Bone marrow changes were observed in three children (all in the apex patellae). The normal synovial membrane was maximally 1.8 mm thick, indicating that the JAMRIS cut-off value of 2 mm can be considered a valid measure for evaluating synovial hypertrophy. Some joint fluid and bone marrow changes suggestive of bone marrow oedema in the apex patellae can be seen in healthy children. (orig.)

  19. Comparison of dynamic contrast-enhanced MRI parameters of breast lesions at 1.5 and 3.0 T: a pilot study

    Science.gov (United States)

    Pineda, F D; Medved, M; Fan, X; Ivancevic, M K; Abe, H; Shimauchi, A; Newstead, G M

    2015-01-01

    Objective: To compare dynamic contrast-enhanced (DCE) MRI parameters from scans of breast lesions at 1.5 and 3.0 T. Methods: 11 patients underwent paired MRI examinations in both Philips 1.5 and 3.0 T systems (Best, Netherlands) using a standard clinical fat-suppressed, T1 weighted DCE-MRI protocol, with 70–76 s temporal resolution. Signal intensity vs time curves were fit with an empirical mathematical model to obtain semi-quantitative measures of uptake and washout rates as well as time-to-peak enhancement (TTP). Maximum percent enhancement and signal enhancement ratio (SER) were also measured for each lesion. Percent differences between parameters measured at the two field strengths were compared. Results: TTP and SER parameters measured at 1.5 and 3.0 T were similar; with mean absolute differences of 19% and 22%, respectively. Maximum percent signal enhancement was significantly higher at 3 T than at 1.5 T (p = 0.006). Qualitative assessment showed that image quality was significantly higher at 3 T (p = 0.005). Conclusion: Our results suggest that TTP and SER are more robust to field strength change than other measured kinetic parameters, and therefore measurements of these parameters can be more easily standardized than measurements of other parameters derived from DCE-MRI. Semi-quantitative measures of overall kinetic curve shape showed higher reproducibility than do discrete classification of kinetic curve early and delayed phases in a majority of the cases studied. Advances in knowledge: Qualitative measures of curve shape are not consistent across field strength even when acquisition parameters are standardized. Quantitative measures of overall kinetic curve shape, by contrast, have higher reproducibility. PMID:25785918

  20. Noninvasive electrical conductivity measurement by MRI. A test of its validity and the electrical conductivity characteristics of glioma

    Energy Technology Data Exchange (ETDEWEB)

    Tha, Khin Khin; Kudo, Kohsuke [Hokkaido University Hospital, Department of Diagnostic and Interventional Radiology, N-14, W-5, Kita-ku, Sapporo (Japan); Hokkaido University, Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Sapporo (Japan); Katscher, Ulrich; Stehning, Christian [Philips Research Laboratories, Hamburg (Germany); Yamaguchi, Shigeru; Terasaka, Shunsuke; Kazumata, Ken [Faculty of Medicine, Hokkaido University, Department of Neurosurgery, Sapporo (Japan); Fujima, Noriyuki [Hokkaido University Hospital, Department of Diagnostic and Interventional Radiology, N-14, W-5, Kita-ku, Sapporo (Japan); Yamamoto, Toru [Hokkaido University, Faculty of Health Sciences, Sapporo (Japan); Van Cauteren, Marc [Clinical Science Philips Healthtech Asia Pacific, Tokyo (Japan); Shirato, Hiroki [Hokkaido University, Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Sapporo (Japan); Faculty of Medicine, Hokkaido University, Department of Radiation Medicine, Sapporo (Japan)

    2018-01-15

    This study noninvasively examined the electrical conductivity (σ) characteristics of diffuse gliomas using MRI and tested its validity. MRI including a 3D steady-state free precession (3D SSFP) sequence was performed on 30 glioma patients. The σ maps were reconstructed from the phase images of the 3D SSFP sequence. The σ histogram metrics were extracted and compared among the contrast-enhanced (CET) and noncontrast-enhanced tumour components (NCET) and normal brain parenchyma (NP). Difference in tumour σ histogram metrics among tumour grades and correlation of σ metrics with tumour grades were tested. Validity of σ measurement using this technique was tested by correlating the mean tumour σ values measured using MRI with those measured ex vivo using a dielectric probe. Several σ histogram metrics of CET and NCET of diffuse gliomas were significantly higher than NP (Bonferroni-corrected p ≤.045). The maximum σ of NCET showed a moderate positive correlation with tumour grade (r =.571, Bonferroni-corrected p =.018). The mean tumour σ measured using MRI showed a moderate positive correlation with the σ measured ex vivo (r =.518, p =.040). Tissue σ can be evaluated using MRI, incorporation of which may better characterise diffuse gliomas. (orig.)

  1. Enhanced MRI in lumbar disc herniation. Study on the types of herniation and histological findings

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Sadao; Okamura, Yuji; Honda, Eiichiro; Takazawa, Shunji [Misato Junshin Hospital, Saitama (Japan); Ohno, Ryuichi; Yasuma, Tsuguo

    1999-06-01

    In the cases which had surgery after enhanced MRI, prolapsed form of hernia and the usefulness of enhanced MRI were examined. The patients were 13 males (14 intervertebral discs) and 5 females (6 intervertebral discs) with lumber disc herniation. The lumber disc herniation was classified into 3 types reference to Macnab's classification; SE (protrusion and subligamentous extrusion), TE (transligamentous extrusion) and SEQ (sequestration). Prolapsed forms were identified in 20 intervertebral discs. Enhanced MRI showed positive in 9 intervertebral discs (SE 1, TE 4 and SEQ 4) and showed negative in 11 discs (SE 10 and TE 1). As for the period from development to enhanced MRI, the significant difference wasn't recognized between positive group and negative group. The diagnostic rate of enhanced MRI was 88.9% (8/9) in sensitivity, 90.9% (10/11) in specificity and 90.0% (18/20) in accuracy. In enhanced MRI, engorged epidural venous plexus was also imaged, and minute change as only annular tear couldn't be detected. Looking from 2 directions crossing at right angles, the effect of contrast enhancement should be judged. (K.H.)

  2. Post-operative monitoring of tissue transfers: advantages using contrast enhanced ultrasound (CEUS) and contrast enhanced MRI (ceMRI) with dynamic perfusion analysis?

    Science.gov (United States)

    Lamby, P; Prantl, L; Fellner, C; Geis, S; Jung, E M

    2011-01-01

    The immediate evaluation of microvascular tissue flaps with respect to microcirculation after transplantation is crucial for optimal monitoring and outcome. The purpose of our investigation was to evaluate the clinical value of contrast-enhanced ultrasound (CEUS) and contrast-enhanced MRI (ceMRI) for monitoring the integrity of tissue flaps in plastic surgery. To this end, we investigated 10 patients (47 ± 16 a) between postoperative day 7 and 14 who underwent flap surgery in order to cover tissue defects in various body regions. For CEUS we utilized the GE LOGIQ E9 equipped with a linear transducer (6-9 MHz). After application of 2.4 ml SonoVue, the tissue perfusion was detected in Low MI-Technique (MI present, both technologies provide an optimal assessment of perfusion in cutaneous, subcutaneous and muscle tissue layers, whereby the detection of fatty tissue perfusion is currently more easily detected using CEUS compared to ceMRI.

  3. Comparison of AMI-25 enhanced MRI and helical dynamic CT in the detection of hepatic lesions

    International Nuclear Information System (INIS)

    Saitou, Kazuhiro; Matsuda, Hiromichi; Fukushima, Hiroaki; Kanzaki, Hiroshi; Hirose, Takashi; Karizaki, Dai; Abe, Kimihiko; Amino, Saburou

    1994-01-01

    We performed AMI-25 enhanced MRI and helical dynamic CT in 12 cases of hepatic lesions. Nine of these were hepatocellular carcinomas. Two cases were metastatic liver tumors (the primary lesion was gastric in one and the other was gallbladder cancer). One case was suspected to be adenomatous hyperplasia. Thirty-two lesions were detected in T2-weighted SE images before AMI-25 administration, while 46 lesions were detected in AMI-25 enhanced MRI images. In particular, AMI-25 enhanced MRI was superior to plain MRI in lesions less than 10 mm in size. A total of 48 lesions were detected in helical dynamic CT. Although AMI-25 enhanced MRI almost equaled helical dynamic CT in the detection of liver tumors, helical dynamic CT was slightly superior to AMI-25 enhanced MRI in the detection of subphrenic lesions. It was possible to know the hemodynamics in each hepatic lesion by helical dynamic CT. AMI-25 enhanced MRI was useful to know the inclusion of reticuloendothelial system, and that yielded different diagnoses in adenomatous hyperplasia and well differentiated hepatocellular carcinoma. Helical dynamic CT was useful for qualitative diagnosis. Both AMI-25 enhanced MRI and helical dynamic CT contributed to the detection of liver tumor and qualitative diagnosis. (author)

  4. Perfusion characteristics of late radiation injury of parotid glands: quantitative evaluation with dynamic contrast-enhanced MRI

    International Nuclear Information System (INIS)

    Juan, Chun-Jung; Chen, Cheng-Yu.; Hsueh, Chun-Jen; Huang, Guo-Shu; Jen, Yee-Min; Liu, Hua-Shan; Wang, Chao-Ying; Chung, Hsiao-Wen; Liu, Yi-Jui; Chou, Yu-Ching; Chai, Yao-Te

    2009-01-01

    We aimed to quantitatively investigate the alteration of parotid perfusion after irradiation using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) based on a two-compartment tracer kinetic model. This study enrolled 19 patients (53.2±14.9 years) treated by head and neck radiotherapy and 19 age-relevant and sex-matched subjects as a control group. Perfusion parameters (K el , k 21 and A) of parotid glands were analyzed based on the Brix model from T1-weighted DCE-MRI. Suitability of the Brix model was evaluated via Monte Carlo simulation for the goodness-of-fit. Analysis of nonlinear goodness-of-fit showed that the Brix model is appropriate in evaluating the parotid perfusion (R 2 = 0.938±0.050). The irradiated parotid glands showed significantly lower K el (P 21 (P < 0.05) and consequently significantly higher value of peak enhancement (P<0.0005) and time-to-peak (P<0.0005) compared with non-irradiated ones, suggestive of gradual and prolonged accumulation and delayed wash-out of contrast agent due to increased extracellular extravascular space and decreased vascular permeability in the irradiated glands. Linear regression analysis showed dose-dependent perfusion changes of the irradiated parotid glands. We conclude that quantitative DCE-MRI is a potential tool in investigating parotid gland perfusion changes after radiotherapy. (orig.)

  5. Delayed-enhancement MRI of apical hypertrophic cardiomyopathy: assessment of the intramural distribution and comparison with clinical symptoms, ventricular arrhythmias, and cine MRI

    International Nuclear Information System (INIS)

    Amano, Yasuo; Fukushima, Yoshimitsu; Kumita, Shinichiro; Takayama, Morimasa; Kitamura, Mitsunobu

    2011-01-01

    Background: Hypertrophic cardiomyopathy (HCM) is reported to show patchy midwall myocardial hyper enhancement on delayed-enhancement magnetic resonance imaging (DE-MRI). The intramural distribution of myocardial hyper enhancement and its correlation with clinical symptoms, ventricular arrhythmias, and cardiac function have not been described for symptomatic apical HCM. Purpose: To evaluate the features and significance of myocardial hyper enhancement on DE-MRI in symptomatic apical HCM. Material and Methods: Thirteen patients with symptomatic apical HCM and their 65 apical segments were investigated. Myocardial hyper enhancement and regional and global functional parameters were determined with MRI. We investigated the intramural distribution and frequencies of this myocardial hyper enhancement and compared them with the patients' clinical symptoms, the presence of ventricular arrhythmias, and cine MRI. Results: Eight (61.5%) patients with symptomatic apical HCM displayed apical myocardial hyper enhancement, and 22 (33.8%) of the 65 apical segments examined showed myocardial hyper enhancement. Of the myocardial hyper enhancement observed, 81.8% showed a subendocardial pattern.The Hyperenhanced apical myocardium had a lower percentage of systolic myocardial thickening, and was associated with serious symptoms (e.g. syncope) and ventricular arrhythmias. Conclusion: Patients with symptomatic apical HCM showed myocardial hyper enhancement involving the subendocardial layer, which might be related to regional systolic dysfunction, serious clinical symptoms, and ventricular arrhythmias

  6. Estimating the arterial input function from dynamic contrast-enhanced MRI data with compensation for flow enhancement (I): Theory, method, and phantom experiments.

    Science.gov (United States)

    van Schie, Jeroen J N; Lavini, Cristina; van Vliet, Lucas J; Vos, Frans M

    2018-05-01

    The arterial input function (AIF) represents the time-dependent arterial contrast agent (CA) concentration that is used in pharmacokinetic modeling. To develop a novel method for estimating the AIF from dynamic contrast-enhanced (DCE-) MRI data, while compensating for flow enhancement. Signal simulation and phantom measurements. Time-intensity curves (TICs) were simulated for different numbers of excitation pulses modeling flow effects. A phantom experiment was performed in which a solution (without CA) was passed through a straight tube, at constant flow velocity. Dynamic fast spoiled gradient echo (FSPGRs) at 3T MRI, both in the simulations and in the phantom experiment. TICs were generated for a duration of 373 seconds and sampled at intervals of 1.247 seconds (300 timepoints). The proposed method first estimates the number of pulses that spins have received, and then uses this knowledge to accurately estimate the CA concentration. The difference between the median of the estimated number of pulses and the true value was determined, as well as the interquartile range (IQR) of the estimations. The estimated CA concentrations were evaluated in the same way. The estimated number of pulses was also used to calculate flow velocity. The difference between the median estimated and reference number of pulses varied from -0.005 to -1.371 (corresponding IQRs: 0.853 and 48.377) at true values of 10 and 180 pulses, respectively. The difference between the median estimated CA concentration and the reference value varied from -0.00015 to 0.00306 mmol/L (corresponding IQRs: 0.01989 and 1.51013 mmol/L) at true values of 0.5 and 8.0 mmol/l, respectively, at an intermediate value of 100 pulses. The estimated flow velocities in the phantom were within 10% of the reference value. The proposed method accurately corrects the MRI signal affected by the inflow effect. 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:1190-1196. © 2017 International Society for Magnetic

  7. A fully automated system for quantification of background parenchymal enhancement in breast DCE-MRI

    Science.gov (United States)

    Ufuk Dalmiş, Mehmet; Gubern-Mérida, Albert; Borelli, Cristina; Vreemann, Suzan; Mann, Ritse M.; Karssemeijer, Nico

    2016-03-01

    Background parenchymal enhancement (BPE) observed in breast dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) has been identified as an important biomarker associated with risk for developing breast cancer. In this study, we present a fully automated framework for quantification of BPE. We initially segmented fibroglandular tissue (FGT) of the breasts using an improved version of an existing method. Subsequently, we computed BPEabs (volume of the enhancing tissue), BPErf (BPEabs divided by FGT volume) and BPErb (BPEabs divided by breast volume), using different relative enhancement threshold values between 1% and 100%. To evaluate and compare the previous and improved FGT segmentation methods, we used 20 breast DCE-MRI scans and we computed Dice similarity coefficient (DSC) values with respect to manual segmentations. For evaluation of the BPE quantification, we used a dataset of 95 breast DCE-MRI scans. Two radiologists, in individual reading sessions, visually analyzed the dataset and categorized each breast into minimal, mild, moderate and marked BPE. To measure the correlation between automated BPE values to the radiologists' assessments, we converted these values into ordinal categories and we used Spearman's rho as a measure of correlation. According to our results, the new segmentation method obtained an average DSC of 0.81 0.09, which was significantly higher (p<0.001) compared to the previous method (0.76 0.10). The highest correlation values between automated BPE categories and radiologists' assessments were obtained with the BPErf measurement (r=0.55, r=0.49, p<0.001 for both), while the correlation between the scores given by the two radiologists was 0.82 (p<0.001). The presented framework can be used to systematically investigate the correlation between BPE and risk in large screening cohorts.

  8. Role of MRI in differentiating benign from malignant breast lesions ...

    African Journals Online (AJOL)

    Mohamed Ahmed Youssef

    2017-02-15

    Feb 15, 2017 ... renal dysfunction or previous reactions to contrast agents and will relieve the cost of examination.4,5. The aim of the study was to evaluate the role of the magnetic resonance imaging in differentiation of benign from malignant breast lesions using dynamic contrast enhanced MRI (DCE-MRI) and diffusion ...

  9. Gadolinium-based contrast agents in pediatric magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gale, Eric M.; Caravan, Peter [Massachusetts General Hospital, Harvard Medical School, Department of Radiology, The Martinos Center for Biomedical Imaging, Boston, MA (United States); Rao, Anil G. [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); McDonald, Robert J. [College of Medicine, Mayo Clinic, Department of Radiology, Rochester, MN (United States); Winfeld, Matthew [University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (United States); Fleck, Robert J. [Cincinnati Children' s Hospital Medical Center, Department of Pediatric Radiology, Cincinnati, OH (United States); Gee, Michael S. [MassGeneral Hospital for Children, Harvard Medical School, Division of Pediatric Imaging, Department of Radiology, Boston, MA (United States)

    2017-05-15

    Gadolinium-based contrast agents can increase the accuracy and expediency of an MRI examination. However the benefits of a contrast-enhanced scan must be carefully weighed against the well-documented risks associated with administration of exogenous contrast media. The purpose of this review is to discuss commercially available gadolinium-based contrast agents (GBCAs) in the context of pediatric radiology. We discuss the chemistry, regulatory status, safety and clinical applications, with particular emphasis on imaging of the blood vessels, heart, hepatobiliary tree and central nervous system. We also discuss non-GBCA MRI contrast agents that are less frequently used or not commercially available. (orig.)

  10. Quantitative Molecular Imaging with a Single Gd-Based Contrast Agent Reveals Specific Tumor Binding and Retention in Vivo.

    Science.gov (United States)

    Johansen, Mette L; Gao, Ying; Hutnick, Melanie A; Craig, Sonya E L; Pokorski, Jonathan K; Flask, Chris A; Brady-Kalnay, Susann M

    2017-06-06

    Magnetic resonance imaging (MRI) has become an indispensable tool in the diagnosis and treatment of many diseases, especially cancer. However, the poor sensitivity of MRI relative to other imaging modalities, such as PET, has hindered the development and clinical use of molecular MRI contrast agents that could provide vital diagnostic information by specifically locating a molecular target altered in the disease process. This work describes the specific and sustained in vivo binding and retention of a protein tyrosine phosphatase mu (PTPμ)-targeted, molecular magnetic resonance (MR) contrast agent with a single gadolinium (Gd) chelate using a quantitative MRI T 1 mapping technique in glioma xenografts. Quantitative T 1 mapping is an imaging method used to measure the longitudinal relaxation time, the T 1 relaxation time, of protons in a magnetic field after excitation by a radiofrequency pulse. T 1 relaxation times can in turn be used to calculate the concentration of a gadolinium-containing contrast agent in a region of interest, thereby allowing the retention or clearance of an agent to be quantified. In this context, retention is a measure of molecular contrast agent binding. Using conventional peptide chemistry, a PTPμ-targeted peptide was linked to a chelator that had been conjugated to a lysine residue. Following complexation with Gd, this PTPμ-targeted molecular contrast agent containing a single Gd ion showed significant tumor enhancement and a sustained increase in Gd concentration in both heterotopic and orthotopic tumors using dynamic quantitative MRI. This single Gd-containing PTPμ agent was more effective than our previous version with three Gd ions. Differences between nonspecific and specific agents, due to specific tumor binding, can be determined within the first 30 min after agent administration by examining clearance rates. This more facile chemistry, when combined with quantitative MR techniques, allows for widespread adoption by academic

  11. 18F-Fluorodeoxyglucose PET/CT and dynamic contrast-enhanced MRI as imaging biomarkers in malignant pleural mesothelioma.

    Science.gov (United States)

    Hall, David O; Hooper, Clare E; Searle, Julie; Darby, Michael; White, Paul; Harvey, John E; Braybrooke, Jeremy P; Maskell, Nick A; Masani, Vidan; Lyburn, Iain D

    2018-02-01

    The purpose of this study was to compare the use of fluorine-18-fluorodeoxyglucose (F-FDG) PET with computed tomography (CT) and dynamic contrast-enhanced (DCE) MRI to predict prognosis and monitor treatment in malignant pleural mesothelioma. F-FDG PET/CT and DCE-MRI studies carried out as part of the South West Area Mesothelioma Pemetrexed trial were used. F-FDG PET/CT and DCE-MRI studies were carried out before treatment, and after two cycles of chemotherapy, on patients treated with pemetrexed and cisplatin. A total of 73 patients were recruited, of whom 65 had PET/CT and DCE-MRI scans. Baseline measurements from F-FDG PET/CT (maximum standardized uptake value, metabolic tumour volume and total lesion glycolysis) and DCE-MRI (integrated area under the first 90s of the curve and washout slope) were compared with overall survival (OS) using Kaplan-Meier and Cox regression analyses, and changes in imaging measurements were compared with disease progression. PET/CT and DCE-MRI measurements were not correlated with each other. Maximum standardized uptake value, metabolic tumour volume and total lesion glycolysis were significantly related to OS with Cox regression analysis and Kaplan-Meir analysis, and DCE-MRI washout curve shape was significantly related to OS. DCE-MRI curve shape can be combined with F-FDG PET/CT to give additional prognostic information. Changes in measurements were not related to progression-free survival. F-FDG PET/CT and DCE-MRI give prognostic information in malignant pleural mesothelioma. Neither PET/CT nor DCE-MRI is useful for monitoring disease progression.

  12. Noninvasive electrical conductivity measurement by MRI: a test of its validity and the electrical conductivity characteristics of glioma.

    Science.gov (United States)

    Tha, Khin Khin; Katscher, Ulrich; Yamaguchi, Shigeru; Stehning, Christian; Terasaka, Shunsuke; Fujima, Noriyuki; Kudo, Kohsuke; Kazumata, Ken; Yamamoto, Toru; Van Cauteren, Marc; Shirato, Hiroki

    2018-01-01

    This study noninvasively examined the electrical conductivity (σ) characteristics of diffuse gliomas using MRI and tested its validity. MRI including a 3D steady-state free precession (3D SSFP) sequence was performed on 30 glioma patients. The σ maps were reconstructed from the phase images of the 3D SSFP sequence. The σ histogram metrics were extracted and compared among the contrast-enhanced (CET) and noncontrast-enhanced tumour components (NCET) and normal brain parenchyma (NP). Difference in tumour σ histogram metrics among tumour grades and correlation of σ metrics with tumour grades were tested. Validity of σ measurement using this technique was tested by correlating the mean tumour σ values measured using MRI with those measured ex vivo using a dielectric probe. Several σ histogram metrics of CET and NCET of diffuse gliomas were significantly higher than NP (Bonferroni-corrected p ≤ .045). The maximum σ of NCET showed a moderate positive correlation with tumour grade (r = .571, Bonferroni-corrected p = .018). The mean tumour σ measured using MRI showed a moderate positive correlation with the σ measured ex vivo (r = .518, p = .040). Tissue σ can be evaluated using MRI, incorporation of which may better characterise diffuse gliomas. • This study tested the validity of noninvasive electrical conductivity measurements by MRI. • This study also evaluated the electrical conductivity characteristics of diffuse glioma. • Gliomas have higher electrical conductivity values than the normal brain parenchyma. • Noninvasive electrical conductivity measurement can be helpful for better characterisation of glioma.

  13. Prospective comparison of T2w-MRI and dynamic-contrast-enhanced MRI, 3D-MR spectroscopic imaging or diffusion-weighted MRI in repeat TRUS-guided biopsies

    Energy Technology Data Exchange (ETDEWEB)

    Portalez, Daniel [Clinique Pasteur, 45, Department of Radiology, Toulouse (France); Rollin, Gautier; Mouly, Patrick; Jonca, Frederic; Malavaud, Bernard [Hopital de Rangueil, Department of Urology, Toulouse Cedex 9 (France); Leandri, Pierre [Clinique Saint Jean, 20, Department of Urology, Toulouse (France); Elman, Benjamin [Clinique Pasteur, 45, Department of Urology, Toulouse (France)

    2010-12-15

    To compare T2-weighted MRI and functional MRI techniques in guiding repeat prostate biopsies. Sixty-eight patients with a history of negative biopsies, negative digital rectal examination and elevated PSA were imaged before repeat biopsies. Dichotomous criteria were used with visual validation of T2-weighted MRI, dynamic contrast-enhanced MRI and literature-derived cut-offs for 3D-spectroscopy MRI (choline-creatine-to-citrate ratio >0.86) and diffusion-weighted imaging (ADC x 10{sup 3} mm{sup 2}/s < 1.24). For each segment and MRI technique, results were rendered as being suspicious/non-suspicious for malignancy. Sextant biopsies, transition zone biopsies and at least two additional biopsies of suspicious areas were taken. In the peripheral zones, 105/408 segments and in the transition zones 19/136 segments were suspicious according to at least one MRI technique. A total of 28/68 (41.2%) patients were found to have cancer. Diffusion-weighted imaging exhibited the highest positive predictive value (0.52) compared with T2-weighted MRI (0.29), dynamic contrast-enhanced MRI (0.33) and 3D-spectroscopy MRI (0.25). Logistic regression showed the probability of cancer in a segment increasing 12-fold when T2-weighted and diffusion-weighted imaging MRI were both suspicious (63.4%) compared with both being non-suspicious (5.2%). The proposed system of analysis and reporting could prove clinically relevant in the decision whether to repeat targeted biopsies. (orig.)

  14. An albumin-based gold nanocomposites as potential dual mode CT/MRI contrast agent

    Science.gov (United States)

    Zhao, Wenjing; Chen, Lina; Wang, Zhiming; Huang, Yuankui; Jia, Nengqin

    2018-02-01

    In pursuit of the biological detection applications, recent years have witnessed the prosperity of novel multi-modal nanoprobes. In this study, biocompatible bovine serum albumin (BSA)-coated gold nanoparticles (Au NPs) containing Gd (III) as the contrast agent for both X-ray CT and T1-weighted MR imaging is reported. Firstly, the Au NPs with BSA coating (Au@BSA) was prepared through a moderate one-pot reduction route in the presence of hydrazine hydrate as reducer. Sequentially, the BSA coating enables modification of diethylenetriaminepentaacetic acid (DTPA) as well as targeting reagent hyaluronic acid (HA), and further chelation of Gd (III) ions led to the formation of biomimetic nanoagent HA-targeted Gd-Au NPs (HA-targeted Au@BSA-Gd-DTPA). Several techniques were used to thoroughly characterize the formed HA-targeted Gd-Au NPs. As expected, the as-prepared nanoagent with mean diameter of 13.82 nm exhibits not only good colloid stablility and water dispersibility, but also satisfying low cytotoxicity and hemocompatibility in the tested concentration range. Additionally, for the CT phantoms, the obtained nanocomplex shows an improved contrast in CT scanning than that of Au@BSA as well as small molecule iodine-based CT contrast agents such as iopromide. Meanwhile, for the T1-weighted MRI images, there is a linear increase of contrast with concentration of Gd for the two cases of HA-targeted Gd-Au NPs and Magnevist. Strikingly, the nanoagent we explored displays a relatively higher r1 relaxivity than that of commercial MR contrast agents. Therefore, this newly constructed nanoagent could be used as contrast agents for synergistically enhanced X-ray CT and MR phantoms, holding promising potential for future biomedical applications.

  15. Effects of gadolinium-based MRI contrast agents on liver tissue.

    Science.gov (United States)

    Mercantepe, Tolga; Tümkaya, Levent; Çeliker, Fatma Beyazal; Topal Suzan, Zehra; Çinar, Seda; Akyildiz, Kerimali; Mercantepe, Filiz; Yilmaz, Adnan

    2018-04-01

    MRI with contrast is often used clinically. However, recent studies have reported a high accumulation of gadolinium-based contrast agents (GBCAs) in kidney, liver, and spleen tissues in several mouse models. To compare the effects on liver tissue of gadolinium-based MRI contrast agents in the light of biochemical and histopathological evaluation. Institutional Review Board (IRB)-approved controlled longitudinal study. In all, 32 male Sprague-Dawley rats were divided into a healthy control group subjected to no procedure (Group 1), a sham group (Group 2), a gadodiamide group (Group 3), and a gadoteric acid group (Group 4). Not applicable. Liver tissues removed at the end of the fifth week and evaluated pathologically (scored Knodell's histological activity index [HAI] method by two histopathologists) immunohistochemical (caspase-3 and biochemical tests (AST, ALT, TAS, TOS, and OSI method by Erel et al) were obtained. Differences between groups were analyzed using the nonparametric Kruskal-Wallis test followed by the Tamhane test, and one-way analysis of variance (ANOVA) followed by Turkey's HSD test. An increase was observed in histological activity scores in sections from rats administered gadodiamide and gadoteric acid, and in caspase-3, AST and ALT values (P total antioxidant and antioxidant capacity. 1 Technical Efficacy: Stage 4 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.

  16. Dynamic contrast enhanced MRI in prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Alonzi, Roberto [Marie Curie Research Wing, Mount Vernon Cancer Centre, Rickmansworth Road, Northwood, Middlesex, HA6 2RN (United Kingdom)], E-mail: robertoalonzi@btinternet.com; Padhani, Anwar R. [Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Rickmansworth Road, Northwood, Middlesex, HA6 2RN (United Kingdom); Synarc Inc. 575 Market Street, San Francisco, CA 94105 (United States)], E-mail: anwar.padhani@paulstrickland-scannercentre.org.uk; Allen, Clare [Department of Imaging, University College Hospital, London, 235 Euston Road, NW1 2BU (United Kingdom)], E-mail: clare.allen@uclh.nhs.uk

    2007-09-15

    Angiogenesis is an integral part of benign prostatic hyperplasia (BPH), is associated with prostatic intraepithelial neoplasia (PIN) and is key to the growth and for metastasis of prostate cancer. Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) using small molecular weight gadolinium chelates enables non-invasive imaging characterization of tissue vascularity. Depending on the technique used, data reflecting tissue perfusion, microvessel permeability surface area product, and extracellular leakage space can be obtained. Two dynamic MRI techniques (T{sub 2}*-weighted or susceptibility based and T{sub 1}-weighted or relaxivity enhanced methods) for prostate gland evaluations are discussed in this review with reference to biological basis of observations, data acquisition and analysis methods, technical limitations and validation. Established clinical roles of T{sub 1}-weighted imaging evaluations will be discussed including lesion detection and localisation, for tumour staging and for the detection of suspected tumour recurrence. Limitations include inadequate lesion characterisation particularly differentiating prostatitis from cancer, and in distinguishing between BPH and central gland tumours.

  17. Subdural enhancement on postoperative spinal MRI after resection of posterior cranial fossa tumours

    Energy Technology Data Exchange (ETDEWEB)

    Warmuth-Metz, M.; Solymosi, L. [Abteilung fuer Neuroradiologie, Klinikum der Bayerischen Julius Maximilians Universitaet, Josef-Schneider-Strasse 11, 97080, Wuerzburg (Germany); Kuehl, J. [Paediatric Oncology, Klinikum der Bayerischen Julius Maximilians Universitaet, Josef-Schneider-Strasse 11, 97080, Wuerzburg (Germany); Krauss, J. [Paediatric Neurosurgery, Klinikum der Bayerischen Julius Maximilians Universitaet, Josef-Schneider-Strasse 11, 97080, Wuerzburg (Germany)

    2004-03-01

    In malignant brain tumours which may disseminate staging, usually by cranial and spinal MRI is necessary. If MRI is performed in the postoperative period pitfalls should be considered. Nonspecific subdural contrast enhancement on spinal staging MRI is rarely reported after resection of posterior fossa tumours, which may be mistaken for dissemination of malignancy. We investigated the frequency of spinal subdural enhancement after posterior cranial fossa neurosurgery in children. We reviewed 53 postoperative spinal MRI studies performed for staging of paediatric malignant brain tumours, mainly infratentorial primitive neuroectodermal tumours 2-40 days after surgery. There was contrast enhancement in the spinal subdural space in seven cases. This was not seen in any of eight patients who had been operated upon for a supratentorial tumour. After resection of 45 posterior cranial fossa tumours the frequency of subdural enhancement was 15.5%. MRI showing subdural enhancement was obtained up to 25 days postoperatively. No patient with subdural enhancement had cerebrospinal fluid (CSF) examinations positive for tumour cells or developed dissemination of disease in the CSF. Because the characteristic appearances of subdural contrast enhancement, appropriate interpretation is possible; diagnosis of neoplastic meningitis should rarely be impeded. Because of the striking similarity to that in patients with a low CSF-pressure syndrome and in view of the fact that only resection of tumours of the posterior cranial fossa, usually associated with obstructive hydrocephalus, was followed by this type of enhancement one might suggest that rapid changes in CSF pressure are implicated, rather the effects of blood introduced into the spinal canal at surgery. (orig.)

  18. Subdural enhancement on postoperative spinal MRI after resection of posterior cranial fossa tumours

    International Nuclear Information System (INIS)

    Warmuth-Metz, M.; Solymosi, L.; Kuehl, J.; Krauss, J.

    2004-01-01

    In malignant brain tumours which may disseminate staging, usually by cranial and spinal MRI is necessary. If MRI is performed in the postoperative period pitfalls should be considered. Nonspecific subdural contrast enhancement on spinal staging MRI is rarely reported after resection of posterior fossa tumours, which may be mistaken for dissemination of malignancy. We investigated the frequency of spinal subdural enhancement after posterior cranial fossa neurosurgery in children. We reviewed 53 postoperative spinal MRI studies performed for staging of paediatric malignant brain tumours, mainly infratentorial primitive neuroectodermal tumours 2-40 days after surgery. There was contrast enhancement in the spinal subdural space in seven cases. This was not seen in any of eight patients who had been operated upon for a supratentorial tumour. After resection of 45 posterior cranial fossa tumours the frequency of subdural enhancement was 15.5%. MRI showing subdural enhancement was obtained up to 25 days postoperatively. No patient with subdural enhancement had cerebrospinal fluid (CSF) examinations positive for tumour cells or developed dissemination of disease in the CSF. Because the characteristic appearances of subdural contrast enhancement, appropriate interpretation is possible; diagnosis of neoplastic meningitis should rarely be impeded. Because of the striking similarity to that in patients with a low CSF-pressure syndrome and in view of the fact that only resection of tumours of the posterior cranial fossa, usually associated with obstructive hydrocephalus, was followed by this type of enhancement one might suggest that rapid changes in CSF pressure are implicated, rather the effects of blood introduced into the spinal canal at surgery. (orig.)

  19. Angiogenesis and dynamic contrast enhanced MRI of benign and malignant breast lesions: preliminary results

    International Nuclear Information System (INIS)

    Liu Peifang; Bao Runxian; Niu Yun; Yu Yong

    2002-01-01

    Objective: To determine whether dynamic contrast enhanced MRI features of early-phase enhancement rate, enhancement amplitude, and signal intensity (SI) time course are associated with the microvessel density (MVD) and vascular endothelial growth factor (VEGF) expression of malignant and benign breast lesions. Methods: Thirty-eight patients with histopathologically verified breast lesions underwent dynamic contrast enhanced MRI. SI changes during dynamic scanning were assessed quantitatively. Early-phase enhancement rate and enhancement amplitude were calculated. Time-SI curves of the lesions were obtained and classified according to their shapes as type I (which was steady enhancement to the end of the dynamic data acquisition at 7.5 min), type II (plateau of SI after avid initial contrast enhancement), or type III (washout of SI after avid initial contrast enhancement). the mean MVD and VEGF expression of the lesions were measured with immuno-histochemical staining method in all the histologic specimens by pathologists without the knowledge of the results of the MR examination. The relationships among dynamic contrast enhanced MRI features, MVD, and VEGF expression of benign and malignant breast lesions were analyzed. Results: Histology revealed 21 malignancies and 17 benign lesions. The mean MVD and VEGF expression for 21 malignant lesions were statistically higher than the mean MVD and VEGF expression for 17 benign lesions. High VEGF expression of benign and malignant breast lesions showed an association with increased MVD. Among all 38 lesions, greater (> 60%) MR early-phase enhancement rate and time-SI curve type II and III showed an association with increased MVD and higher VEGF expression level. All the differences mentioned above showed statistical significance except that the difference between VEGF expression and the distribution of curve types had no statistical significance. No significant relationships were observed between the mean of enhancement

  20. Early perfusion changes within 1 week of systemic treatment measured by dynamic contrast-enhanced MRI may predict survival in patients with advanced hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Bang-Bin; Yu, Chih-Wei; Liang, Po-Chin [National Taiwan University College of Medicine and Hospital, Department of Medical Imaging and Radiology, Taipei City (China); Hsu, Chao-Yu [National Taiwan University College of Medicine and Hospital, Department of Medical Imaging and Radiology, Taipei City (China); Taipei Hospital, Ministry of Health and Welfare, Department of Radiology, New Taipei City (China); Hsu, Chiun; Hsu, Chih-Hung; Cheng, Ann-Lii [National Taiwan University College of Medicine and Hospital, Department of Oncology, Taipei City (China); Shih, Tiffany Ting-Fang [National Taiwan University College of Medicine and Hospital, Department of Medical Imaging and Radiology, Taipei City (China); Taipei City Hospital, Department of Medical Imaging, Taipei City (China); National Taiwan University Hospital, Department of Medical Imaging, Taipei (China)

    2017-07-15

    To correlate early changes in the parameters of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) within 1 week of systemic therapy with overall survival (OS) in patients with advanced hepatocellular carcinoma (HCC). Eighty-nine patients with advanced HCC underwent DCE-MRI before and within 1 week following systemic therapy. The relative changes of six DCE-MRI parameters (Peak, Slope, AUC, Ktrans, Kep and Ve) of the tumours were correlated with OS using the Kaplan-Meier model and the double-sided log-rank test. All patients died and the median survival was 174 days. Among the six DCE-MRI parameters, reductions in Peak, AUC, and Ktrans, were significantly correlated with one another. In addition, patients with a high Peak reduction following treatment had longer OS (P = 0.023) compared with those with a low Peak reduction. In multivariate analysis, a high Peak reduction was an independent favourable prognostic factor in all patients [hazard ratio (HR), 0.622; P = 0.038] after controlling for age, sex, treatment methods, tumour size and stage, and Eastern Cooperative Oncology Group performance status. Early perfusion changes within 1 week following systemic therapy measured by DCE-MRI may aid in the prediction of the clinical outcome in patients with advanced HCC. (orig.)

  1. Dynamic enhanced MRI of the subacromial bursa: correlation with arthroscopic and histological findings

    International Nuclear Information System (INIS)

    Matsuzaki, S.; Yoneda, M.; Kobayashi, Y.; Fukushima, S.; Wakitani, S.

    2003-01-01

    Objective: To assess dynamic MRI with Gd-DTPA enhancement for evaluating inflammatory changes in the subacromial bursa. Design and patients: We detected the signal intensity changes in dynamic MRI of the subacromial bursa, and confirmed these macroscopically by arthroscopy and histologically. The signal intensity was measured using built-in software, and the enhancement ratio (E ratio) was calculated from dynamic MR images. In addition, as a parameter of the rate of the increase in the signal intensity from 0 to 80 s, the mean increase per second in the E ratio was obtained as the coefficient of enhancement (CE). The correlation was studied of the E ratio and CE with the arthroscopic findings (redness, villous formation, thickening and adhesion), and of the E ratio and CE with the histological findings (capillary proliferation, papillary hyperplasia, fibrosis and inflammatory cell infiltration) of the subacromial bursa. Of patients with shoulder pain, this study included those with rotator cuff injury; patients with rheumatoid arthritis or pitching shoulder disorders were excluded. There were 27 patients (15 men, 12 women) ranging in age from 25 to 73 years (mean 49.1 years). Dynamic MRI of the shoulder was also performed on the healthy side of 10 patients and in five normal young volunteers. Results and conclusions: Changes in signal intensity on dynamic MRI were measured in the subacromial bursa. The E ratio (80 s) and CE (0-80 s) were significantly correlated with redness and villous formation as arthroscopic findings, positively correlated with capillary proliferation and papillary hyperplasia as histological findings (p < 0.05), and negatively correlated with fibrosis as a histological finding (p < 0.05) in the subacromial bursa. The patterns of dynamic curves were well correlated with the bursoscopic and histological findings of the synovium of the subacromial bursa. Dynamic MRI appears to correlate with inflammatory activity of synovium of the subacromial

  2. Magnetic resonance imaging after radiofrequency ablation in a rodent model of liver tumor: tissue characterization using a novel necrosis-avid contrast agent

    International Nuclear Information System (INIS)

    Ni, Yicheng; Yu, Jie; Marchal, Guy; Chen, Feng; Mulier, Stefaan; Sun, Xihe; Landuyt, Willy; Verbruggen, Alfons

    2006-01-01

    We exploited a necrosis-avid contrast agent ECIV-7 for magnetic resonance imaging (MRI) in rodent liver tumors after radiofrequency ablation (RFA). Rats bearing liver rhabdomyosarcoma (R1) were randomly allocated to three groups: group I, complete RFA, group II, incomplete RFA, and group III, sham ablation. Within 24 h after RFA, T1-weighted (T1-w) MRI was performed before and after injection of ECIV-7 at 0.05 mmol/kg and followed up from 6-24 h. Signal intensities (SIs) were measured with relative enhancement (RE) and contrast ratio (CR) calculated. The MRI findings were verified histomorphologically. On plain T1-w MRI the contrasts between normal liver, RFA lesion, residual and/or intact tumor were vague. Early after administration of ECIV-7, the liver SI was strongly enhanced (RE=40-50%), leaving the RFA lesion as a hypointense region in groups I and II. At delayed phase, two striking peri-ablational enhancement patterns appeared (RE=90% and CR=1.89%), i.e., ''O'' type of hyperintense rim in group I and ''C'' type of incomplete rim in group II. These MRI manifestations could be proven histologically. In this study, tissue components after RFA could be characterized with discernable contrasts by necrosis-avid contrast agent (NACA)-enhanced MRI, especially at delayed phase. This approach may prove useful for defining the ablated area and identifying residual tumor after RFA. (orig.)

  3. SU-F-I-16: Short Breast MRI with High-Resolution T2-Weighted and Dynamic Contrast Enhanced T1-Weighted Images

    International Nuclear Information System (INIS)

    Ma, J; Son, J; Arun, B; Hazle, J; Hwang, K; Madewell, J; Yang, W; Dogan, B; Wang, K; Bayram, E

    2016-01-01

    Purpose: To develop and demonstrate a short breast (sb) MRI protocol that acquires both T2-weighted and dynamic contrast-enhanced T1-weighted images in approximately ten minutes. Methods: The sb-MRI protocol consists of two novel pulse sequences. The first is a flexible fast spin-echo triple-echo Dixon (FTED) sequence for high-resolution fat-suppressed T2-weighted imaging, and the second is a 3D fast dual-echo spoiled gradient sequence (FLEX) for volumetric fat-suppressed T1-weighted imaging before and post contrast agent injection. The flexible FTED sequence replaces each single readout during every echo-spacing period of FSE with three fast-switching bipolar readouts to produce three raw images in a single acquisition. These three raw images are then post-processed using a Dixon algorithm to generate separate water-only and fat-only images. The FLEX sequence acquires two echoes using dual-echo readout after each RF excitation and the corresponding images are post-processed using a similar Dixon algorithm to yield water-only and fat-only images. The sb-MRI protocol was implemented on a 3T MRI scanner and used for patients who had undergone concurrent clinical MRI for breast cancer screening. Results: With the same scan parameters (eg, spatial coverage, field of view, spatial and temporal resolution) as the clinical protocol, the total scan-time of the sb-MRI protocol (including the localizer, bilateral T2-weighted, and dynamic contrast-enhanced T1-weighted images) was 11 minutes. In comparison, the clinical breast MRI protocol took 43 minutes. Uniform fat suppression and high image quality were consistently achieved by sb-MRI. Conclusion: We demonstrated a sb-MRI protocol comprising both T2-weighted and dynamic contrast-enhanced T1-weighted images can be performed in approximately ten minutes. The spatial and temporal resolution of the images easily satisfies the current breast MRI accreditation guidelines by the American College of Radiology. The protocol has the

  4. SU-F-I-16: Short Breast MRI with High-Resolution T2-Weighted and Dynamic Contrast Enhanced T1-Weighted Images

    Energy Technology Data Exchange (ETDEWEB)

    Ma, J; Son, J; Arun, B; Hazle, J; Hwang, K; Madewell, J; Yang, W; Dogan, B [UT MD Anderson Cancer Center, Houston, TX (United States); Wang, K; Bayram, E [GE Healthcare Technologies, Waukesha, Wisconsin (United States)

    2016-06-15

    Purpose: To develop and demonstrate a short breast (sb) MRI protocol that acquires both T2-weighted and dynamic contrast-enhanced T1-weighted images in approximately ten minutes. Methods: The sb-MRI protocol consists of two novel pulse sequences. The first is a flexible fast spin-echo triple-echo Dixon (FTED) sequence for high-resolution fat-suppressed T2-weighted imaging, and the second is a 3D fast dual-echo spoiled gradient sequence (FLEX) for volumetric fat-suppressed T1-weighted imaging before and post contrast agent injection. The flexible FTED sequence replaces each single readout during every echo-spacing period of FSE with three fast-switching bipolar readouts to produce three raw images in a single acquisition. These three raw images are then post-processed using a Dixon algorithm to generate separate water-only and fat-only images. The FLEX sequence acquires two echoes using dual-echo readout after each RF excitation and the corresponding images are post-processed using a similar Dixon algorithm to yield water-only and fat-only images. The sb-MRI protocol was implemented on a 3T MRI scanner and used for patients who had undergone concurrent clinical MRI for breast cancer screening. Results: With the same scan parameters (eg, spatial coverage, field of view, spatial and temporal resolution) as the clinical protocol, the total scan-time of the sb-MRI protocol (including the localizer, bilateral T2-weighted, and dynamic contrast-enhanced T1-weighted images) was 11 minutes. In comparison, the clinical breast MRI protocol took 43 minutes. Uniform fat suppression and high image quality were consistently achieved by sb-MRI. Conclusion: We demonstrated a sb-MRI protocol comprising both T2-weighted and dynamic contrast-enhanced T1-weighted images can be performed in approximately ten minutes. The spatial and temporal resolution of the images easily satisfies the current breast MRI accreditation guidelines by the American College of Radiology. The protocol has the

  5. Intra-individual, randomised comparison of the MRI contrast agents gadobutrol versus gadoteridol in patients with primary and secondary brain tumours, evaluated in a blinded read

    International Nuclear Information System (INIS)

    Koenig, M.; Schulte-Altedorneburg, G.; Piontek, M.; Heuser, L.; Hentsch, A.; Spangenberg, P.; Schwenke, C.; Harders, A.

    2013-01-01

    To prove that 1.0 M gadobutrol provides superior contrast enhancement and MRI image characteristics of primary and secondary brain tumours compared with 0.5 M gadoteridol, thereby providing superior diagnostic information. Brain MRI was performed in two separate examinations in patients scheduled for neurosurgery. Independent injections of 1.0 M gadobutrol and 0.5 M gadoteridol at doses of 0.1 mmol Gd/kg body weight were administered per patient in randomised order. Evaluation was performed in an off-site blinded read. Fifty-one patients in the full analysis set (FAS) were eligible for efficacy analysis and 44 for the per-protocol analysis. For the primary efficacy variable ''preference in contrast enhancement for one contrast agent or the other'', the rate of ''gadobutrol preferred'' was estimated at 0.73 (95 % confidence interval 0.61; 0.83), showing significant superiority of gadobutrol over gadoteridol. Calculated lesion-to-brain contrast and the results of all qualitative secondary efficacy variables were also in favour of gadobutrol. Keeping a sufficient time delay after contrast application proved to be essential to get optimal image quality. Compared with 0.5 M gadoteridol, 1.0 M gadobutrol was proven to have significantly superior contrast enhancement characteristics in a routine MRI protocol of primary and secondary brain tumours. (orig.)

  6. Gd-DTPA-Dopamine-Bisphytanyl Amphiphile: Synthesis, Characterisation and Relaxation Parameters of the Nanoassemblies and Their Potential as MRI Contrast Agents.

    Science.gov (United States)

    Gupta, Abhishek; Willis, Scott A; Waddington, Lynne J; Stait-Gardner, Tim; de Campo, Liliana; Hwang, Dennis W; Kirby, Nigel; Price, William S; Moghaddam, Minoo J

    2015-09-28

    Here, a new amphiphilic magnetic resonance imaging (MRI) contrast agent, a Gd(III)-chelated diethylenetriaminepentaacetic acid conjugated to two branched alkyl chains via a dopamine spacer, Gd-DTPA-dopamine-bisphytanyl (Gd-DTPA-Dop-Phy), which is readily capable of self-assembling into liposomal nanoassemblies upon dispersion in an aqueous solution, is reported. In vitro relaxivities of the dispersions were found to be much higher than Magnevist, a commercially available contrast agent, at 0.47 T but comparable at 9.40 T. Analysis of variable temperature (17)O NMR transverse relaxation measurements revealed the water exchange of the nanoassemblies to be faster than that previously reported for paramagnetic liposomes. Molecular reorientation dynamics were probed by (1)H NMRD profiles using a classical inner and outer sphere relaxation model and a Lipari-Szabo "model-free" approach. High payloads of Gd(III) ions in the liposomal nanoassemblies made solely from the Gd-DTPA-Dop-Phy amphiphiles, in combination with slow molecular reorientation and fast water exchange makes this novel amphiphile a suitable candidate to be investigated as an advanced MRI contrast agent. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Evaluation of the dependence of CEST-EPI measurement on repetition time, RF irradiation duty cycle and imaging flip angle for enhanced pH sensitivity

    International Nuclear Information System (INIS)

    Sun, Phillip Zhe; Lu Jie; Wu Yin; Xiao Gang; Wu Renhua

    2013-01-01

    Chemical exchange saturation transfer (CEST) is a magnetic resonance imaging (MRI) contrast mechanism that can detect dilute CEST agents and microenvironmental properties, with a host of promising applications. Experimental measurement of the CEST effect is complex, and depends on not only CEST agent concentration and exchange rate, but also experimental parameters such as RF irradiation amplitude and scheme. Although echo planar imaging (EPI) has been increasingly used for CEST MRI, the relationship between CEST effect and repetition time (TR), RF irradiation duty cycle (DC) and EPI flip angle (α) has not been fully evaluated and optimized to enhance CEST MRI sensitivity. In addition, our study evaluated gradient echo CEST-EPI by quantifying the CEST effect and its signal-to-noise ratio per unit time (SNR put ) as functions of TR, DC and α. We found that CEST effect increased with TR and DC but decreased with α. Importantly, we found that SNR put peaked at intermediate TRs of about twice the T 1 and α, at approximately 75°, and increased with RF DC. The simulation results were validated using a dual-pH creatine-gel CEST phantom. In summary, our study provides a useful framework for optimizing CEST MRI experiments. (note)

  8. Time to enhancement derived from ultrafast breast MRI as a novel parameter to discriminate benign from malignant breast lesions

    International Nuclear Information System (INIS)

    Mus, Roel D.; Borelli, Cristina; Bult, Peter; Weiland, Elisabeth; Karssemeijer, Nico; Barentsz, Jelle O.; Gubern-Mérida, Albert; Platel, Bram; Mann, Ritse M.

    2017-01-01

    Highlights: • New view-sharing sequences (e.g. TWIST) enable ultrafast dynamic breast MRI. • TWIST sequences accurately characterize the inflow of contrast in breast lesions. • TTE evaluation allows breast lesion classification with very high accuracy. • The use of TTE significantly increases the specificity of breast MRI. • TWIST imaging may increase the potential of breast MRI as screening tool. - Abstract: Objectives: To investigate time to enhancement (TTE) as novel dynamic parameter for lesion classification in breast magnetic resonance imaging (MRI). Methods: In this retrospective study, 157 women with 195 enhancing abnormalities (99 malignant and 96 benign) were included. All patients underwent a bi-temporal MRI protocol that included ultrafast time-resolved angiography with stochastic trajectory (TWIST) acquisitions (1.0 × 0.9 × 2.5 mm, temporal resolution 4.32 s), during the inflow of contrast agent. TTE derived from TWIST series and relative enhancement versus time curve type derived from volumetric interpolated breath-hold examination (VIBE) series were assessed and combined with basic morphological information to differentiate benign from malignant lesions. Receiver operating characteristic analysis and kappa statistics were applied. Results: TTE had a significantly better discriminative ability than curve type (p < 0.001 and p = 0.026 for reader 1 and 2, respectively). Including morphology, sensitivity of TWIST and VIBE assessment was equivalent (p = 0.549 and p = 0.344, respectively). Specificity and diagnostic accuracy were significantly higher for TWIST than for VIBE assessment (p < 0.001). Inter-reader agreement in differentiating malignant from benign lesions was almost perfect for TWIST evaluation (κ = 0.86) and substantial for conventional assessment (κ = 0.75). Conclusions: TTE derived from ultrafast TWIST acquisitions is a valuable parameter that allows robust differentiation between malignant and benign breast lesions with high

  9. Time to enhancement derived from ultrafast breast MRI as a novel parameter to discriminate benign from malignant breast lesions

    Energy Technology Data Exchange (ETDEWEB)

    Mus, Roel D., E-mail: aroel.mus@radboudumc.nl [Department of Radiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA Nijmegen (Netherlands); Borelli, Cristina, E-mail: cristinaborelli@hotmail.it [Department of Radiology, Scientific Institute “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013, San Giovanni Rotondo, Foggia (Italy); Department of Radiology, Radboud University Medical Center (internal address 766), Geert Grooteplein Zuid 10, 6525GA Nijmegen (Netherlands); Bult, Peter, E-mail: peter.bult@radboudumc.nl [Department of Pathology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA Nijmegen (Netherlands); Weiland, Elisabeth, E-mail: elisabeth.weiland@siemens.com [Siemens Healthcare, Erlangen (Germany); Karssemeijer, Nico, E-mail: nico.karssemeijer@radboudumc.nl [Department of Radiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA Nijmegen (Netherlands); Barentsz, Jelle O., E-mail: jelle.barentsz@radboudumc.nl [Department of Radiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA Nijmegen (Netherlands); Gubern-Mérida, Albert, E-mail: albert.gubernmerida@radboudumc.nl [Department of Radiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA Nijmegen (Netherlands); Platel, Bram, E-mail: bram.platel@radboudumc.nl [Department of Radiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA Nijmegen (Netherlands); Mann, Ritse M., E-mail: ritse.mann@radboudumc.nl [Department of Radiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA Nijmegen (Netherlands)

    2017-04-15

    Highlights: • New view-sharing sequences (e.g. TWIST) enable ultrafast dynamic breast MRI. • TWIST sequences accurately characterize the inflow of contrast in breast lesions. • TTE evaluation allows breast lesion classification with very high accuracy. • The use of TTE significantly increases the specificity of breast MRI. • TWIST imaging may increase the potential of breast MRI as screening tool. - Abstract: Objectives: To investigate time to enhancement (TTE) as novel dynamic parameter for lesion classification in breast magnetic resonance imaging (MRI). Methods: In this retrospective study, 157 women with 195 enhancing abnormalities (99 malignant and 96 benign) were included. All patients underwent a bi-temporal MRI protocol that included ultrafast time-resolved angiography with stochastic trajectory (TWIST) acquisitions (1.0 × 0.9 × 2.5 mm, temporal resolution 4.32 s), during the inflow of contrast agent. TTE derived from TWIST series and relative enhancement versus time curve type derived from volumetric interpolated breath-hold examination (VIBE) series were assessed and combined with basic morphological information to differentiate benign from malignant lesions. Receiver operating characteristic analysis and kappa statistics were applied. Results: TTE had a significantly better discriminative ability than curve type (p < 0.001 and p = 0.026 for reader 1 and 2, respectively). Including morphology, sensitivity of TWIST and VIBE assessment was equivalent (p = 0.549 and p = 0.344, respectively). Specificity and diagnostic accuracy were significantly higher for TWIST than for VIBE assessment (p < 0.001). Inter-reader agreement in differentiating malignant from benign lesions was almost perfect for TWIST evaluation (κ = 0.86) and substantial for conventional assessment (κ = 0.75). Conclusions: TTE derived from ultrafast TWIST acquisitions is a valuable parameter that allows robust differentiation between malignant and benign breast lesions with high

  10. Smart Contrast Agents for Magnetic Resonance Imaging.

    Science.gov (United States)

    Bonnet, Célia S; Tóth, Éva

    2016-01-01

    By visualizing bioactive molecules or biological parameters in vivo, molecular imaging is searching for information at the molecular level in living organisms. In addition to contributing to earlier and more personalized diagnosis in medicine, it also helps understand and rationalize the molecular factors underlying physiological and pathological processes. In magnetic resonance imaging (MRI), complexes of paramagnetic metal ions, mostly lanthanides, are commonly used to enhance the intrinsic image contrast. They rely either on the relaxation effect of these metal chelates (T(1) agents), or on the phenomenon of paramagnetic chemical exchange saturation transfer (PARACEST agents). In both cases, responsive molecular magnetic resonance imaging probes can be designed to report on various biomarkers of biological interest. In this context, we review recent work in the literature and from our group on responsive T(1) and PARACEST MRI agents for the detection of biogenic metal ions (such as calcium or zinc), enzymatic activities, or neurotransmitter release. These examples illustrate the general strategies that can be applied to create molecular imaging agents with an MRI detectable response to biologically relevant parameters.

  11. Liver hemangioma : comparison of echogenecity and contrast-enhancement on dynamic MRI

    International Nuclear Information System (INIS)

    Seong, Chang Kyu; Han, Joon Koo; Choi, Byung Ihn; Kim, Seog Joon; Yeon, Kyung Mo; Han, Man Chung

    1998-01-01

    To evaluate the differences in sonographic appearance and hemodynamics between hypoechoic and hyperechoic hemangioma Material and Method : We retrospectively reviewed the sonographic appearance and MRI findings of 23 hypoechoic hepatic hemangiomas in 16 consecutive patients. Nine were men and seven were women, witha mean age of 50 years(range, 40-72). We analyzed the sonographic appearance such as size, shape, border,echogenecity, posterior acoustic enhancement and the presence of fatty liver, and MRI findings such as signal intensity, enhancement pattern. For comparison, we also reviewed the sonographic appearance and MRI findings of 23 hyperechoic hemangiomas in 16 randomly selected patients. Results : There were no differences in size, shape,incidence of posterior acoustic enhancement, MR signal intensity or enhancement pattern between hypoechoic and hyperechoic hemangiomas(p>0.05, Chi-square). However, fatty infiltration of the liver and echogenic rim of the masses were more commonly seen in hypoechoic hemangiomas(9:1, 5:0, respectively, p<0.05). Conclusions : There we reno differences in MR enhomcement pattern or incidence of posterior acoustic enhancement between hypoechoic hyperechoic hemangioma. The vascularity of a mass therefore seems to contribute little to its echogenecity

  12. Serial MRI studies using gadolinium DTPA in active multiple sclerosis

    International Nuclear Information System (INIS)

    Miller, D.H.; Johnson, G.; Barnes, D.; Rudge, P.; McDonald, W.I.

    1988-01-01

    It has been suggested that blood brain barrier (BBB) impairment is a necessary early event in the pathogenesis of the multiple sclerosis (MS) lesions. To evaluate such an hypothesis in vivo would require: (1) serial imaging studies using a modality with high sensitivity for detecting plaques; (2) a contrast enhancing agent which demonstrates BBB impairment. A serial magnetic resonance imaging (MRI) study was undertaken of a group of MS patients using the contrast agent gadolinium-DTPA. As it has been suggested that T 1 and T 2 relaxation times are longer in acute than chronic MS lesions, these were also measured. 3 refs.; 1 figure

  13. Three-dimensional black-blood contrast-enhanced MRI improves detection of intraluminal thrombi in patients with acute ischaemic stroke.

    Science.gov (United States)

    Jang, Won; Kwak, Hyo Sung; Chung, Gyung Ho; Hwang, Seung Bae

    2018-03-19

    This study evaluated the utility of three-dimensional (3D), black-blood (BB), contrast-enhanced, magnetic resonance imaging (MRI) for the detection of intraluminal thrombi in acute stroke patients. Forty-seven patients with acute stroke involving the anterior circulation underwent MRI examination within 6 h of clinical onset. Cerebral angiography was used as the reference standard. In a blinded manner, two neuroradiologists interpreted the following three data sets: (1) diffusion-weighted imaging (DWI) + 3D BB contrast-enhanced MRI; (2) DWI + susceptibility weighted imaging (SWI); (3) DWI + 3D BB contrast-enhanced MRI + SWI. Of these patients, 47 had clots in the middle cerebral artery and four had clots in the anterior cerebral artery. For both observers, the area under the curve (Az) for data sets 1 and 3, which included 3D BB contrast-enhanced MRI, was significantly greater than it was for data set 2, which did not include 3D BB contrast-enhanced MR imaging (observer 1, 0.988 vs 0.904, p = 0.001; observer 2, 0.988 vs 0.894, p = 0.000). Three-dimensional BB contrast-enhanced MRI improves detection of intraluminal thrombi compared to conventional MRI methods in patients with acute ischaemic stroke. • BB contrast-enhanced MRI helps clinicians to assess the intraluminal clot • BB contrast-enhanced MRI improves detection of intraluminal thrombi • BB contrast-enhanced MRI for clot detection has a higher sensitivity.

  14. Magnetosomes used as biogenic MRI contrast agent for molecular imaging of glioblastoma model

    International Nuclear Information System (INIS)

    Boucher, Marianne

    2016-01-01

    This work takes place in the context of molecular imaging, which aims at tailoring medical treatments and therapies to the individual context by revealing molecular or cellular phenomenon of medical interest in the less invasive manner. In particular, it can be achieved with MRI molecular imaging using engineered iron-oxide contrast agent.This PhD thesis focuses on the study of a new class of iron-oxide contrast agent for high field MRI. Indeed, magnetosomes are natural iron-oxide vesicles produced by magneto-tactic bacteria. These bacteria synthesized such magnetic vesicles and ordered them like a nano-compass in order to facilitate their navigation in sediments. This explains why magnetosomes are awarded with tremendous magnetic properties: around 50 nm, mono-crystalline, single magnetic domain and high saturation magnetization. Furthermore, a wide variety of bacterial strains exist in nature and size and shape of magnetosomes are highly stable within strain and can be very different between strains. Finally, magnetosomes are naturally coated with a bi-lipidic membrane whose content is genetically determined. Lately, researchers have unravelled magnetosomes membrane protein contents, opening the way to create functionalized magnetosomes thanks to fusion of the gene coding for a protein of interest with the gene coding for an abundant protein at magnetosomes membrane.A new alternative path using living organisms to tackle the production of engineered high efficiency molecular imaging probes have been investigated with magneto-tactic bacteria in this PhD. The production and engineering of magnetosomes have been carried out by our partner, the Laboratoire de Bio-energetique Cellulaire (LBC, CEA Cadarache), and will be presented and discussed. We then characterized magnetosomes as contrast agent for high field MRI. We showed they present very promising contrasting properties in vitro, and assessed this observation in vivo by establishing they can be used as efficient

  15. Delayed gadolinium-enhanced MRI of the fibrocartilage disc of the temporomandibular joint--a feasibility study.

    Science.gov (United States)

    Pittschieler, Elisabeth; Szomolanyi, Pavol; Schmid-Schwap, Martina; Weber, Michael; Egerbacher, Monika; Traxler, Hannes; Trattnig, Siegfried

    2014-12-01

    To 1) test the feasibility of delayed Gadolinium-Enhanced Magnetic Resonance Imaging of Cartilage (dGEMRIC) at 3 T in the temporomandibular joint (TMJ) and 2) to determine the optimal delay for measurements of the TMJ disc after i.v. contrast agent (CA) administration. MRI of the right and left TMJ of six asymptomatic volunteers was performed at 3 T using a dedicated coil. 2D inversion recovery (2D-IR) sequences were performed at 4 time points covering 120 minutes and 3D gradient-echo (3D GRE) dual flip-angle sequences were performed at 14 time points covering 130 minutes after the administration of 0.2 mmol/kg of Gd-diethylenetriamine pentaacetic acid ion (Gd-DTPA)(2-), i.e., 0.4 mL of Magnevist™ per kg body weight. Pair-wise tests were used to assess differences between pre-and post-contrast T1 values. 2D-IR sequences showed a statistically significant drop (pfibrocartilage disc of the TMJ. The recommended measurement time for dGEMRIC in the TMJ after i.v. CA administration is from 60 to 120 minutes. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Three-dimensional evaluation of lumbar disc hernia and prediction of absorption by enhanced MRI

    International Nuclear Information System (INIS)

    Kawaji, Youichi; Uchiyama, Seiji; Yagi, Eiichi

    2001-01-01

    Both the spontaneous shrinkage and the disappearance of disc hernia have been confirmed through the use of computed tomography (CT) and magnetic resonance imaging (MRI). There is, however, no practical method to predict the likely absorption of the herniated mass. The objective of this study was to predict the spontaneous absorption of disc hernia by MRI, and to select the optimum treatment. The study involved 65 patients with lumbar disc hernias. Conservative treatment was carried out in 21 patients, while 44 patients underwent herniotomy. In the nonoperated patients, an MRI was taken both during the painful period, and shortly after pain remission. Hernial shrinkage was evaluated according to the decrease in the calculated volume, in addition to the decrease in hernial area, calculated by MRI. In the operated group, preoperative MRI enhancement, type of hernia, and invasion of granulation tissue in the histological specimens were studied. In the 21 nonoperated patients, the volume (mean ±SD) was 0.488±208 cm 3 (range, 0.197-0.931 cm 3 ) in the painful period and 0.214±0.181 cm 3 (range, 0.0-0.744 cm 3 ) in the remission period. This decrease in volume was statistically significant. There was also a greater decrease in hernias exhibiting positive enhancement by MRI. In the operated patients, hernias that penetrated the posterior longitudinal ligament (PLL) had high rates of preoperative enhancement, and these hernias showed invasion of granulation tissue with marked neovascularization. Positive enhancement by MRI confirms an ongoing absorption process. Enhanced MRI can be a good method for the prediction of spontaneous absorption of lumbar disc hernias. (author)

  17. Three-dimensional evaluation of lumbar disc hernia and prediction of absorption by enhanced MRI

    Energy Technology Data Exchange (ETDEWEB)

    Kawaji, Youichi; Uchiyama, Seiji [Niigata Univ. (Japan). School of Medicine; Yagi, Eiichi

    2001-07-01

    Both the spontaneous shrinkage and the disappearance of disc hernia have been confirmed through the use of computed tomography (CT) and magnetic resonance imaging (MRI). There is, however, no practical method to predict the likely absorption of the herniated mass. The objective of this study was to predict the spontaneous absorption of disc hernia by MRI, and to select the optimum treatment. The study involved 65 patients with lumbar disc hernias. Conservative treatment was carried out in 21 patients, while 44 patients underwent herniotomy. In the nonoperated patients, an MRI was taken both during the painful period, and shortly after pain remission. Hernial shrinkage was evaluated according to the decrease in the calculated volume, in addition to the decrease in hernial area, calculated by MRI. In the operated group, preoperative MRI enhancement, type of hernia, and invasion of granulation tissue in the histological specimens were studied. In the 21 nonoperated patients, the volume (mean {+-}SD) was 0.488{+-}208 cm{sup 3} (range, 0.197-0.931 cm{sup 3}) in the painful period and 0.214{+-}0.181 cm{sup 3} (range, 0.0-0.744 cm{sup 3}) in the remission period. This decrease in volume was statistically significant. There was also a greater decrease in hernias exhibiting positive enhancement by MRI. In the operated patients, hernias that penetrated the posterior longitudinal ligament (PLL) had high rates of preoperative enhancement, and these hernias showed invasion of granulation tissue with marked neovascularization. Positive enhancement by MRI confirms an ongoing absorption process. Enhanced MRI can be a good method for the prediction of spontaneous absorption of lumbar disc hernias. (author)

  18. A Monte Carlo Study of dose enhancement according to the enhancement agents

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Hoon; Kim, Chang Soo [Dept. of Radiological Science, College of Health Sciences, Catholic University of Pusan, Busan (Korea, Republic of); Hwang, Chul Hwan [Dept. of Radiation Oncology, Pusan National University Hospital, Busan (Korea, Republic of)

    2017-03-15

    Dose enhancement effects at megavoltage (MV) X and γ-ray energies, and the effects of different energy levels on incident energy, dose enhancement agents, and concentrations were analyzed using Monte Carlo simulations. Gold, gadolinium, Iodine, and iron oxide (Fe2O3) were compared as dose enhancement agents. For incident energy, 4, 6, 10 and 15 MV X-ray spectra produced by a linear accelerator and a Co60 γ-ray were used. The dose enhancement factor (DEF) was calculated using an ICRU Slab phantom for concentrations of 7, 18, and 30 mg/g. The DEF was higher at higher concentrations of dose enhancement agents and at lower incident energies. The calculated DEF ranged from 1.035 to 1.079, and dose enhancement effects were highest for iron oxide, followed by iodine, gadolinium, and gold. Thus, this study contributes to improving the therapeutic ratio by delivering larger doses of radiation to tumor volume, and provides data to support further in vivo and in vitro studies.

  19. Feasibility of semiautomated MR volumetry using gadoxetic acid-enhanced MRI at hepatobiliary phase for living liver donors.

    Science.gov (United States)

    Lee, Jeongjin; Kim, Kyoung Won; Kim, So Yeon; Kim, Bohyoung; Lee, So Jung; Kim, Hyoung Jung; Lee, Jong Seok; Lee, Moon Gyu; Song, Gi-Won; Hwang, Shin; Lee, Sung-Gyu

    2014-09-01

    To assess the feasibility of semiautomated MR volumetry using gadoxetic acid-enhanced MRI at the hepatobiliary phase compared with manual CT volumetry. Forty potential live liver donor candidates who underwent MR and CT on the same day, were included in our study. Semiautomated MR volumetry was performed using gadoxetic acid-enhanced MRI at the hepatobiliary phase. We performed the quadratic MR image division for correction of the bias field inhomogeneity. With manual CT volumetry as the reference standard, we calculated the average volume measurement error of the semiautomated MR volumetry. We also calculated the mean of the number and time of the manual editing, edited volume, and total processing time. The average volume measurement errors of the semiautomated MR volumetry were 2.35% ± 1.22%. The average values of the numbers of editing, operation times of manual editing, edited volumes, and total processing time for the semiautomated MR volumetry were 1.9 ± 0.6, 8.1 ± 2.7 s, 12.4 ± 8.8 mL, and 11.7 ± 2.9 s, respectively. Semiautomated liver MR volumetry using hepatobiliary phase gadoxetic acid-enhanced MRI with the quadratic MR image division is a reliable, easy, and fast tool to measure liver volume in potential living liver donors. Copyright © 2013 Wiley Periodicals, Inc.

  20. Efficacy of liver parenchymal enhancement and liver volume to standard liver volume ratio on Gd-EOB-DTPA-enhanced MRI for estimation of liver function

    Energy Technology Data Exchange (ETDEWEB)

    Yoneyama, Tomohide; Fukukura, Yoshihiko; Kamimura, Kiyohisa; Takumi, Koji; Umanodan, Aya; Nakajo, Masayuki [Kagoshima University Graduate School of Medical and Dental Sciences, Department of Radiology, Kagoshima City (Japan); Ueno, Shinichi [Kagoshima University Graduate School of Medical and Dental Sciences, Department of Surgical Oncology and Digestive Surgery, Kagoshima City (Japan)

    2014-04-15

    We aimed to develop and assess the efficacy of a liver function index that combines liver enhancement and liver volume to standard liver volume (LV/SLV) ratio on gadolinium ethoxybenzyl diethylenetriaminepentaacetic acid (Gd-EOB-DTPA)-enhanced MRI. In all, 111 patients underwent a Gd-EOB-DTPA-enhanced MRI, including T1 mapping, before and 20 min after Gd-EOB-DTPA administration. We calculated the following Gd-EOB-DTPA-enhanced MRI-based liver function indices: relative enhancement of the liver, corrected enhancement of the liver-to-spleen ratio, LSC{sub N}20, increase rate of the liver-to-muscle ratio, reduction rate of T1 relaxation time of the liver, ΔR1 of the liver and K{sub Hep}; the indices were multiplied by the LV/SLV ratio. We calculated the correlations between an indocyanine green (ICG) clearance and the Gd-EOB-DTPA-enhanced MRI-based liver function indices multiplied by the LV/SLV ratio, by using Pearson correlation analysis. There were significant correlations between all Gd-EOB-DTPA-enhanced MRI-based liver function indices and ICG clearance (r = -0.354 to -0.574, P < 0.001). All Gd-EOB-DTPA-enhanced MRI-based liver function indices multiplied by the LV/SLV ratio (r = -0.394 to -0.700, P < 0.001) were more strongly correlated with the ICG clearance than those without multiplication by the LV/SLV ratio. Gd-EOB-DTPA-enhanced MRI-based liver function indices that combine liver enhancement and the LV/SLV ratio may more reliably estimate liver function. (orig.)

  1. Breast dynamic contrast enhanced MRI: fibrocystic changes presenting as a non-mass enhancement mimicking malignancy

    Directory of Open Access Journals (Sweden)

    Milosevic Zorica C.

    2017-06-01

    Full Text Available We aimed to analyse the morphokinetic features of breast fibrocystic changes (nonproliferative lesions, proliferative lesions without atypia and proliferative lesions with atypia presenting as a non-mass enhancement (NMEin dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI examination.

  2. Technical aspects of contrast-enhanced magnetic resonance imaging of the breast: literature review

    International Nuclear Information System (INIS)

    Leopoldino, Denise de Deus; Gracio, Tatiana Schiller; D'Ippolito, Giuseppe; Bezerra, Alexandre Sergio de Araujo; Gracio, Tatiana Schiller

    2005-01-01

    With the advances in surface coil technology and the development of new imaging protocols in addition to the increase of the use of contrast agents, contrast enhanced magnetic resonance imaging (MRI) has emerged as a promising modality for detection, diagnosis and staging of breast cancer. Despite these advances, there are some unresolved issues, including no defined standard technique for contrast-enhanced breast MRI and no standard criteria of interpretation for the evaluation of such studies. In this article, we review the literature and discuss the general requirements and recommendations for contrast agent-enhanced breast MRI, including image interpretation criteria, MR equipment, dedicated radiofrequency coils, use of paramagnetic contrast agents, fat-suppression techniques, planes of acquisition, pulse sequence specifications and artifact sources. (author)

  3. Hydrothermally synthesized PEGylated calcium phosphate nanoparticles incorporating Gd-DTPA for contrast enhanced MRI diagnosis of solid tumors.

    Science.gov (United States)

    Mi, Peng; Kokuryo, Daisuke; Cabral, Horacio; Kumagai, Michiaki; Nomoto, Takahiro; Aoki, Ichio; Terada, Yasuko; Kishimura, Akihiro; Nishiyama, Nobuhiro; Kataoka, Kazunori

    2014-01-28

    Organic-inorganic hybrid nanoparticles with calcium phosphate (CaP) core and PEGylated shell were developed to incorporate magnetic resonance imaging (MRI) contrast agent diethylenetriaminepentaacetic acid gadolinium (III) (Gd-DTPA) for noninvasive diagnosis of solid tumors. A two-step preparation method was applied to elaborate hybrid nanoparticles with a z-average hydrodynamic diameter about 80nm, neutral surface ξ-potential and high colloidal stability in physiological environments by self-assembly of poly(ethylene glycol)-b-poly(aspartic acid) block copolymer, Gd-DTPA, and CaP in aqueous solution, followed with hydrothermal treatment. Incorporation into the hybrid nanoparticles allowed Gd-DTPA to show significant enhanced retention ratio in blood circulation, leading to high accumulation in tumor positions due to enhanced permeability and retention (EPR) effect. Moreover, Gd-DTPA revealed above 6 times increase of relaxivity in the nanoparticle system compared to free form, and eventually, selective and elevated contrast enhancements in the tumor positions were observed. These results indicate the high potential of Gd-DTPA-loaded PEGylated CaP nanoparticles as a novel contrast agent for noninvasive cancer diagnosis. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Gaucher disease in the liver on hepatocyte specific contrast agent enhanced MR imaging

    International Nuclear Information System (INIS)

    Ayyala, Rama S.; Teot, Lisa A.; Perez Rossello, Jeanette M.

    2017-01-01

    Gaucher disease is a hereditary lipid storage disorder that affects the enzyme beta glucocerebrosidase, causing accumulation of glucocerebroside in macrophages of the reticuloendothelial system. Accumulation can occur in the liver and spleen, manifesting as hepatosplenomegaly, as well as within the bone marrow. Hepatic involvement is usually diffuse but can occasionally manifest as focal liver lesions. We present a case of a 2-year-old boy with Gaucher disease and an infiltrating liver lesion detected on imaging, which was pathologically shown to be focal changes related to the disease. Imaging characteristics of this lesion using hepatocyte specific contrast agent enhanced MRI, which have not been previously discussed in the literature, are described. (orig.)

  5. Gaucher disease in the liver on hepatocyte specific contrast agent enhanced MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ayyala, Rama S. [Morgan Stanley Children' s Hospital, Department of Radiology, Columbia University Medical Center, New York, NY (United States); Teot, Lisa A. [Boston Children' s Hospital, Department of Pathology, Harvard Medical School, Boston, MA (United States); Perez Rossello, Jeanette M. [Boston Children' s Hospital, Department of Radiology, Harvard Medical School, Boston, MA (United States)

    2017-04-15

    Gaucher disease is a hereditary lipid storage disorder that affects the enzyme beta glucocerebrosidase, causing accumulation of glucocerebroside in macrophages of the reticuloendothelial system. Accumulation can occur in the liver and spleen, manifesting as hepatosplenomegaly, as well as within the bone marrow. Hepatic involvement is usually diffuse but can occasionally manifest as focal liver lesions. We present a case of a 2-year-old boy with Gaucher disease and an infiltrating liver lesion detected on imaging, which was pathologically shown to be focal changes related to the disease. Imaging characteristics of this lesion using hepatocyte specific contrast agent enhanced MRI, which have not been previously discussed in the literature, are described. (orig.)

  6. Preclinical animal acute toxicity studies of new developed MRI contrast agent based on gadolinium

    Science.gov (United States)

    Nam, I. F.; Zhuk, V. V.

    2015-04-01

    Acute toxicity test of new developed MRI contrast agent based on disodium salt of gadopentetic acid complex were carried out on Mus musculus and Sprague Dawley rats according to guidelines of preclinical studies [1]. Groups of six animals each were selected for experiment. Death and clinical symptoms of animals were recorded during 14 days. As a result the maximum tolerated dose (MTD) for female mice is 2.8 mM/kg of body weight, male mice - 1.4 mM/kg, female rats - 2.8 mM/kg, male rats - 5.6 mM/kg of body weight. No Observed Adverse Effect Dose (NOAEL) for female mice is 1.4 mM/kg, male mice - 0.7 mM/kg, male and female rats - 0.7 mM/kg. According to experimental data new developed MRI contrast agent based on Gd-DTPA complex is low-toxic.

  7. A choline derivate-modified nanoprobe for glioma diagnosis using MRI

    Science.gov (United States)

    Li, Jianfeng; Huang, Shixian; Shao, Kun; Liu, Yang; An, Sai; Kuang, Yuyang; Guo, Yubo; Ma, Haojun; Wang, Xuxia; Jiang, Chen

    2013-04-01

    Gadolinium (Gd) chelate contrast-enhanced magnetic resonance imaging (MRI) is a preferred method of glioma detection and preoperative localisation because it offers high spatial resolution and non-invasive deep tissue penetration. Gd-based contrast agents, such as Gd-diethyltriaminepentaacetic acid (DTPA-Gd, Magnevist), are widely used clinically for tumor diagnosis. However, the Gd-based MRI approach is limited for patients with glioma who have an uncompromised blood-brain barrier (BBB). Moreover, the rapid renal clearance and non-specificity of such contrast agents further hinders their prevalence. We present a choline derivate (CD)-modified nanoprobe with BBB permeability, glioma specificity and a long blood half-life. Specific accumulation of the nanoprobe in gliomas and subsequent MRI contrast enhancement are demonstrated in vitro in U87 MG cells and in vivo in a xenograft nude model. BBB and glioma dual targeting by this nanoprobe may facilitate precise detection of gliomas with an uncompromised BBB and may offer better preoperative and intraoperative tumor localization.

  8. MRI enhancement of the facial nerve with Gd-DTPA, 2

    International Nuclear Information System (INIS)

    Yanagida, Masahiro

    1993-01-01

    We performed enhanced MRI using Gd-DTPA in 84 patients with facial palsy. After assessing enhancement of the normal facial nerve, we examined enhancement in patients with Bell's palsy and Ramsay Hunt syndrome. In 95% of patients with Bell's palsy, enhancement was obtained in the distal IAC and labyrinthine portions. In 72%, enhancement was significant from the distal IAC portion through the vertical portion. In some of the patients who underwent enhanced MRI twice, increased signal intensity was observed in distal portions such as the vertical portion. In many cases of Ramsay Hunt syndrome, enhancement was seen extensively in the IAC portion through the vertical portion. In the subjects with internal auditory symptoms such as vertigo and tinnitus, enhancement of the IAC portion was seen not only in the facial nerve but also in the vestibular and the cochlear nerves. These results suggest that the vascular permeability of lesions in Bell's palsy may be increased from the distal IAC portion to the vertical portion. Judging from the present findings with Ramsay Hunt syndrome, symptoms related to the enhanced portions suggest that accompanying internal auditory symptoms occur due to inflammation of the IAC portions of cochlear and vestibular nerves. (author)

  9. Accuracy of enhanced and unenhanced MRI in diagnosing scaphoid proximal pole avascular necrosis and predicting surgical outcome

    Energy Technology Data Exchange (ETDEWEB)

    Fox, M.G. [University of Virginia, Department of Radiology and Medical Imaging, Charlottesville, VA (United States); Wang, D.T. [University of Virginia, Department of Radiology and Medical Imaging, Charlottesville, VA (United States); Medical College of Wisconsin, Milwaukee, WI (United States); Chhabra, A.B. [University of Virginia Health System, Department of Orthopedics, Charlottesville, VA (United States)

    2015-11-15

    Determine the sensitivity, specificity and accuracy of unenhanced and enhanced MRI in diagnosing scaphoid proximal pole (PP) avascular necrosis (AVN) and correlate whether MRI can help guide the selection of a vascularized or nonvascularized bone graft. The study was approved by the IRB. Two MSK radiologists independently performed a retrospective review of unenhanced and enhanced MRIs from 18 patients (16 males, 2 females; median age, 17.5 years) with scaphoid nonunions and surgery performed within 65 days of the MRI. AVN was diagnosed on the unenhanced MRI when a diffusely decreased T1-W signal was present in the PP and on the enhanced MRI when PP enhancement was less than distal pole enhancement. Surgical absence of PP bleeding was diagnostic of PP AVN. Postoperative osseous union (OU) was assessed with computed tomography and/or radiographs. Sensitivity, specificity and accuracy for PP AVN were 71, 82 and 78 % for unenhanced and 43, 82 and 67 % for enhanced MRI. Patients with PP AVN on unenhanced MRI had 86 % (6/7) OU; 100 % (5/5) OU with vascularized bone grafts and 50 % (1/2) OU with nonvascularized grafts. Patients with PP AVN on enhanced MRI had 80 % (4/5) OU; 100 % (3/3) OU with vascularized bone grafts and 50 % (1/2) OU with nonvascularized grafts. Patients with viable PP on unenhanced and enhanced MRI had 91 % (10/11) and 92 % (12/13) OU, respectively, all but one with nonvascularized graft. When PP AVN is evident on MRI, OU is best achieved with vascularized grafts. If PP AVN is absent, OU is successful with nonvascularized grafts. (orig.)

  10. Accuracy of enhanced and unenhanced MRI in diagnosing scaphoid proximal pole avascular necrosis and predicting surgical outcome

    International Nuclear Information System (INIS)

    Fox, M.G.; Wang, D.T.; Chhabra, A.B.

    2015-01-01

    Determine the sensitivity, specificity and accuracy of unenhanced and enhanced MRI in diagnosing scaphoid proximal pole (PP) avascular necrosis (AVN) and correlate whether MRI can help guide the selection of a vascularized or nonvascularized bone graft. The study was approved by the IRB. Two MSK radiologists independently performed a retrospective review of unenhanced and enhanced MRIs from 18 patients (16 males, 2 females; median age, 17.5 years) with scaphoid nonunions and surgery performed within 65 days of the MRI. AVN was diagnosed on the unenhanced MRI when a diffusely decreased T1-W signal was present in the PP and on the enhanced MRI when PP enhancement was less than distal pole enhancement. Surgical absence of PP bleeding was diagnostic of PP AVN. Postoperative osseous union (OU) was assessed with computed tomography and/or radiographs. Sensitivity, specificity and accuracy for PP AVN were 71, 82 and 78 % for unenhanced and 43, 82 and 67 % for enhanced MRI. Patients with PP AVN on unenhanced MRI had 86 % (6/7) OU; 100 % (5/5) OU with vascularized bone grafts and 50 % (1/2) OU with nonvascularized grafts. Patients with PP AVN on enhanced MRI had 80 % (4/5) OU; 100 % (3/3) OU with vascularized bone grafts and 50 % (1/2) OU with nonvascularized grafts. Patients with viable PP on unenhanced and enhanced MRI had 91 % (10/11) and 92 % (12/13) OU, respectively, all but one with nonvascularized graft. When PP AVN is evident on MRI, OU is best achieved with vascularized grafts. If PP AVN is absent, OU is successful with nonvascularized grafts. (orig.)

  11. Accuracy of enhanced and unenhanced MRI in diagnosing scaphoid proximal pole avascular necrosis and predicting surgical outcome.

    Science.gov (United States)

    Fox, M G; Wang, D T; Chhabra, A B

    2015-11-01

    Determine the sensitivity, specificity and accuracy of unenhanced and enhanced MRI in diagnosing scaphoid proximal pole (PP) avascular necrosis (AVN) and correlate whether MRI can help guide the selection of a vascularized or nonvascularized bone graft. The study was approved by the IRB. Two MSK radiologists independently performed a retrospective review of unenhanced and enhanced MRIs from 18 patients (16 males, 2 females; median age, 17.5 years) with scaphoid nonunions and surgery performed within 65 days of the MRI. AVN was diagnosed on the unenhanced MRI when a diffusely decreased T1-W signal was present in the PP and on the enhanced MRI when PP enhancement was less than distal pole enhancement. Surgical absence of PP bleeding was diagnostic of PP AVN. Postoperative osseous union (OU) was assessed with computed tomography and/or radiographs. Sensitivity, specificity and accuracy for PP AVN were 71, 82 and 78% for unenhanced and 43, 82 and 67% for enhanced MRI. Patients with PP AVN on unenhanced MRI had 86% (6/7) OU; 100% (5/5) OU with vascularized bone grafts and 50% (1/2) OU with nonvascularized grafts. Patients with PP AVN on enhanced MRI had 80% (4/5) OU; 100% (3/3) OU with vascularized bone grafts and 50% (1/2) OU with nonvascularized grafts. Patients with viable PP on unenhanced and enhanced MRI had 91% (10/11) and 92% (12/13) OU, respectively, all but one with nonvascularized graft. When PP AVN is evident on MRI, OU is best achieved with vascularized grafts. If PP AVN is absent, OU is successful with nonvascularized grafts.

  12. MRI in gout

    International Nuclear Information System (INIS)

    Seidl, G.; Ullrich, R.; Trattnig, S.; Dominkus, M.; Morscher, M.; Aringer, M.; Imhof, H.

    1996-01-01

    The appearance of gouty tophus in magnetic resonance imaging (MRI) is characteristic. On T1- and T2-weighted SE images, the signal intensity of tophaceous lesions is similar to that of muscles. According to the histology, T2-weighted SE images demonstrate extremely hyperintense signals, which reflect the high protein content in the amorpheous center of the tophus. The microscopic urate crystals deposited there have no MRI signal and are of no further diagnostic impact. Vascularized granulation tissue surrounding the tophus center enhance after intervenous application of contrast agents (Gadolinium). The inflammed tophus is associated with local edema, causing high signal intensity. MRI is superior to plain radiography for early detection of intraosseous tophi. Involvement of anatomical structures such as ligaments and tendons can be evaluated sufficiently. For peripheral joints, axial slice orientation is most helpful. (orig.) [de

  13. Differences in MRI findings in cases showing ring-enhancement on a CT scan

    International Nuclear Information System (INIS)

    Tokiwa, Kaichi; Hashimoto, Takashi; Miyasaka, Yoshio; Yada, Kenzoh; Kan, Shinichi; Takagi, Hiroshi.

    1990-01-01

    It is sometimes difficult to differentiate between a brain abscess and a tumor, for both show ring-enhancement on a CT scan. The present authors have studied the benefit of MRI for the differential diagnosis of these two lesions. The subjects of this study were 6 cases of brain abscess and 10 cases of brain tumor, all of them showing ring-enhancement on a CT scan. The MRI findings were compared with those of the CT scan taken at almost the same time, especially focussing on the difference in the ring-enhancement. In 5 out of the 6 cases of brain abscess, T 2 -weighted MRI demonstrated a comparatively thin and homogeneous low-intensity, round rim. In the cases of brain tumor, however, none of the cases demonstrated this typical low-intensity, round rim; rather, in them the rim was thick and irregular. The authors can conclude that those MRI findings can serve as important differential diagnostic findings between brain abscess and tumor; also, MRI may be used as a landmark for terminating the administration of antibiotics in cases of brain abscess. (author)

  14. Paramagnetic metal complexes as potential relaxation agents for NMR imaging

    International Nuclear Information System (INIS)

    Coroiu, Ilioara; Demco, D. E.; Darabont, Al.; Bogdan, M.

    1997-01-01

    The development of nuclear magnetic resonance (NMR) imaging technique as a clinical diagnostic modality has prompted the need for a new class of pharmaceuticals. These drugs must be administered to a patient in order to enhance the image contrast between the normal and diseased tissue and/or indicate the status of organ function or blood flow. Paramagnetic compounds are presently undergoing extensive evaluation as contrast agents in magnetic resonance imaging (MRI). These agents increase contrast in MRI by differentially localizing in tissue where they increase the relaxation rates of nearby water protons. The longitudinal R 1 and transverse R 2 relaxivities were measured as a function of molar concentrations for some new paramagnetic complexes like the following: dysprosium, erbium and gadolinium citrates, gadolinium methylene diphosphonate, dysprosium and gadolinium iminodiacetate, manganese para-aminobenzoate and copper nicotinate. The available theoretical approaches for quantitative understanding are presented. (authors)

  15. A study utility of gadolinium enhanced magnetic resonance imaging (Gd-MRI) in the preoperative diagnosis of lymph node metastasis of esophageal carcinoma

    International Nuclear Information System (INIS)

    Makino, Harufumi

    1997-01-01

    We evaluated the utility of gadolinium enhanced magnetic resonance imaging (Gd-MRI) in the diagnosis of lymph node metastasis of esophageal carcinoma. Gd-MRI was performed in 42 patients with esophageal carcinoma. The intensities of 50 lymph nodes in MR imaging were measured. No differences were observed in intensity between metastatic and non-metastatic nodes. However, intensity values did overlap. Thus, the author devised a new method allowing comparison of metastatic and non-metastatic nodes on Gd-MRI utilizing an enhancement ratio (ER). ER higher than 45% reflected metastatic nodes. (author)

  16. Tumor Vessel Compression Hinders Perfusion of Ultrasonographic Contrast Agents

    Directory of Open Access Journals (Sweden)

    Mirco Galiè

    2005-05-01

    Full Text Available Contrast-enhanced ultrasound (CEUS is an advanced approach to in vivo assessment of tumor vascularity and is being increasingly adopted in clinical oncology. It is based on 1- to 10 μm-sized gas microbubbles, which can cross the capillary beds of the lungs and are effective echo enhancers. It is known that high cell density, high transendothelial fluid exchange, and poorly functioning lymphatic circulation all provoke solid stress, which compresses vessels and drastically reduces tumor blood flow. Given their size, we supposed that the perfusion of microbubbles is affected by anatomic features of tumor vessels more than are contrast agents traditionally used in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI. Here, we compared dynamic information obtained from CEUS and DCE-MRI on two experimental tumor models exhibiting notable differences in vessel anatomy. We found that tumors with small, flattened vessels show a much higher resistance to microbubble perfusion than to MRI contrast agents, and appear scarcely vascularized at CEUS examination, despite vessel volume adequate for normal function. Thus, whereas CEUS alone could induce incorrect diagnosis when tumors have small or collapsed vessels, integrated analysis using CEUS and DCE-MRI allows in vivo identification of tumors with a vascular profile frequently associated with malignant phenotypes.

  17. Differentiating between benign and malignant sinonasal lesions using dynamic contrast-enhanced MRI and intravoxel incoherent motion.

    Science.gov (United States)

    Jiang, Jingxuan; Xiao, Zebin; Tang, Zuohua; Zhong, Yufeng; Qiang, Jinwei

    2018-01-01

    To explore the value of dynamic contrast-enhanced MRI (DCE-MRI) and intravoxel incoherent motion (IVIM) for distinguishing between benign and malignant sinonasal lesions and investigate the correlations between the two methods. Patients with sinonasal lesions (42 benign and 31 malignant) who underwent DCE-MRI and IVIM before confirmation by histopathology were enrolled in this prospective study. Parameters derived from DCE-MRI and IVIM were measured, the optimal cut-off values for differential diagnosis were determined, and the correlations between the two methods were evaluated. Statistical analyses were performed using the Wilcoxon rank sum test, receiver operating characteristic (ROC) curve analysis, and Spearman's rank correlation. Significantly higher K trans and K ep values but lower D and f values were found in malignant lesions than in benign lesions (all pbenign and malignant sinonasal lesions. IVIM findings correlate with DCE-MRI results and may represent an alternative to DCE-MRI. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Biocompatible Polyhydroxyethylaspartamide-based Micelles with Gadolinium for MRI Contrast Agents

    Directory of Open Access Journals (Sweden)

    Kim Hyo Jeong

    2010-01-01

    Full Text Available Abstract Biocompatible poly-[N-(2-hydroxyethyl-d,l-aspartamide]-methoxypoly(ethyleneglycol-hexadecylamine (PHEA-mPEG-C16 conjugated with 1,4,7,10-tetraazacyclododecan-1,4,7,10-tetraacetic acid-gadolinium (DOTA-Gd via ethylenediamine (ED was synthesized as a magnetic resonance imaging (MRI contrast agent. Amphiphilic PHEA-mPEG-C16-ED-DOTA-Gd forms micelle in aqueous solution. All the synthesized materials were characterized by proton nuclear magnetic resonance (1H NMR. Micelle size and shape were examined by dynamic light scattering (DLS and atomic force microscopy (AFM. Micelles with PHEA-mPEG-C16-ED-DOTA-Gd showed higher relaxivities than the commercially available gadolinium contrast agent. Moreover, the signal intensity of a rabbit liver was effectively increased after intravenous injection of PHEA-mPEG-C16-ED-DOTA-Gd.

  19. Preparation and characterization of PVPI-coated Fe3O4 nanoparticles as an MRI contrast agent

    International Nuclear Information System (INIS)

    Wang, Guangshuo; Chang, Ying; Wang, Ling; Wei, Zhiyong; Kang, Jianyun; Sang, Lin; Dong, Xufeng; Chen, Guangyi; Wang, Hong; Qi, Min

    2013-01-01

    Polyvinylpyrrolidone-iodine (PVPI)-coated Fe 3 O 4 nanoparticles were prepared by using inverse chemical co-precipitation method, in which the PVPI serves as a stabilizer and dispersant. The wide angle X-ray diffraction (WAXD) and selected area electron diffraction (SAED) results showed that the inverse spinel structure pure phase polycrystalline Fe 3 O 4 was obtained. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results exhibited that the resulted Fe 3 O 4 nanoparticles were roughly spherical in shape with narrow size distribution and homogenous shape. Fourier transform infrared spectroscopy (FTIR) results suggested that PVPI interacted with Fe 3 O 4 via its carbonyl groups. Results of superconducting quantum interference device (SQUID) indicated prepared Fe 3 O 4 nanoparticles exhibited superparamagnetic behavior and high saturation magnetization. T 2 -weighted MRI images of PVPI-coated Fe 3 O 4 nanoparticles showed that the magnetic resonance signal was enhanced significantly with increasing nanoparticles concentration in water at room temperature. These results indicated that the PVPI-coated Fe 3 O 4 nanoparticles had great potential for application in MRI as a T 2 contrast agent. - Highlights: • PVPI-coated Fe 3 O 4 nanoparticles were prepared using inverse co-precipitation method. • Resulted Fe 3 O 4 nanoparticles were roughly spherical in shape with narrow size distribution and homogenous shape. • Prepared Fe 3 O 4 nanoparticles exhibited superparamagnetic behavior. • T 2 -weighted MRI images of PVPI-coated Fe 3 O 4 nanoparticles were obtained

  20. Pre-clinical evaluation of a nanoparticle-based blood-pool contrast agent for MR imaging of the placenta.

    Science.gov (United States)

    Ghaghada, Ketan B; Starosolski, Zbigniew A; Bhayana, Saakshi; Stupin, Igor; Patel, Chandreshkumar V; Bhavane, Rohan C; Gao, Haijun; Bednov, Andrey; Yallampalli, Chandrasekhar; Belfort, Michael; George, Verghese; Annapragada, Ananth V

    2017-09-01

    Non-invasive 3D imaging that enables clear visualization of placental margins is of interest in the accurate diagnosis of placental pathologies. This study investigated if contrast-enhanced MRI performed using a liposomal gadolinium blood-pool contrast agent (liposomal-Gd) enables clear visualization of the placental margins and the placental-myometrial interface (retroplacental space). Non-contrast MRI and contrast-enhanced MRI using a clinically approved conventional contrast agent were used as comparators. Studies were performed in pregnant rats under an approved protocol. MRI was performed at 1T using a permanent magnet small animal scanner. Pre-contrast and post-liposomal-Gd contrast images were acquired using T1-weighted and T2-weighted sequences. Dynamic Contrast enhanced MRI (DCE-MRI) was performed using gadoterate meglumine (Gd-DOTA, Dotarem ® ). Visualization of the retroplacental clear space, a marker of normal placentation, was judged by a trained radiologist. Signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were calculated for both single and averaged acquisitions. Images were reviewed by a radiologist and scored for the visualization of placental features. Contrast-enhanced CT (CE-CT) imaging using a liposomal CT agent was performed for confirmation of the MR findings. Transplacental transport of liposomal-Gd was evaluated by post-mortem elemental analysis of tissues. Ex-vivo studies in perfused human placentae from normal, GDM, and IUGR pregnancies evaluated the transport of liposomal agent across the human placental barrier. Post-contrast T1w images acquired with liposomal-Gd demonstrated significantly higher SNR (p = 0.0002) in the placenta compared to pre-contrast images (28.0 ± 4.7 vs. 6.9 ± 1.8). No significant differences (p = 0.39) were noted between SNR in pre-contrast and post-contrast liposomal-Gd images of the amniotic fluid, indicating absence of transplacental passage of the agent. The placental margins were

  1. Diffuse pachymeningeal enhancement on brain MRI: spontaneous intracranial hypotension and head trauma

    International Nuclear Information System (INIS)

    Ryu, Chang Woo; Lee, Byung Hee; Lee, Seung Ik; Kim, Young A; Kim, Hee Jin; Ko, Young Sik

    1998-01-01

    We evaluated the MRI finding of pachymeningeal enhancement in patients with intracranial hypotension and head trauma with particular attention to differential findings and change in follow-up study, and in order to support the knowledge about the pathophysiology of dural enhancement. The findings of enhanced brain MRI of fifteen patients who showed diffuse pachymeningeal enhancement were retrospectively examined. Seven of fifteen patients were finally diagnosed as spontaneous intracranial hypotension (SIH). Eight of fifteen patients had a recent history of head trauma. We analyzed the shape, thickness, continuity and extent of dural enhancement, and the others concerned with positive MR findings. We also analyzed findings suggested displacement of brain parenchyma-displacement of the iter and cerebellar tonsil, and flattening of the anterior aspect of the pons-. Four of seven patients with SIH and four of eight patients with head trauma, underwent follow-up MRI. In the follow-up study, the presence of resolving pachymeningeal enhancement and symptom improvement was investigated. In all cases of SIH, the dura showed diffuse, even 3(1mm thick, global and contiguous enhancement along both cerebral convexities, both tentoria, and the falx. Displacement of the iter was noted in six cases and flattening of the anterior aspect of the pons in five. Displacement of the cerebellar tonsil was noted in one case. Five of seven cases showed small amount of subdural fluid collection. In all cases of head trauma, the dura was enhanced diffusely and asymmetrically, and showed no contiguity. Its distribution was consistent with the locations of traumatic lesions. Displacement of the iter was noted in one case. In four cases of SIH, clinical symptoms had improved, and three showed complete resolution of dural enhancement, in one patient continuously showed partial dural enhancement. Four cases of head trauma showed complete resolution of dural enhancement. Reversible diffuse

  2. Comparison of transient severe motion in gadoxetate disodium and gadopentetate dimeglumine-enhanced MRI. Effect of modified breath-holding method

    International Nuclear Information System (INIS)

    Song, Ji Soo; Choi, Eun Jung; Park, Eun Hae; Lee, Ju-Hyung

    2018-01-01

    To compare the occurrence of transient severe motion (TSM) between gadoxetate disodium- and gadopentetate dimeglumine-enhanced MRI and between gadoxetate disodium-enhanced MRI scans obtained with and without the application of a modified breath-holding technique. We reviewed 80 patients who underwent two magnetic resonance examinations (gadoxetate disodium-enhanced MRI and gadopentetate dimeglumine-enhanced MRI) with the application of a modified breath-holding technique (dual group). This group was compared with 100 patients who underwent gadoxetate disodium-enhanced MRI without the application of the modified breath-holding technique (single group). Patient risk factors and motion scores (1 [none] to 5 [non-diagnostic]) for each dynamic-phase imaging were analysed. In the dual group, mean motion scores did not differ significantly between gadoxetate disodium- and gadopentetate dimeglumine-enhanced MRI (p=0.096-0.807) in any phase. However, in all phases except the late dynamic phase, mean motion scores of the dual group were significantly lower than those in the single group. TSM incidence did not differ significantly between gadoxetate disodium- and gadopentetate dimeglumine-enhanced MRI in the dual group (3.8% vs. 1.3%, p=0.620). With proper application of the modified breath-holding technique, TSM occurrence with gadoxetate disodium-enhanced MRI was comparable to that associated with gadopentetate dimeglumine-enhanced MRI. (orig.)

  3. Comparison of transient severe motion in gadoxetate disodium and gadopentetate dimeglumine-enhanced MRI. Effect of modified breath-holding method

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ji Soo; Choi, Eun Jung; Park, Eun Hae [Chonbuk National University Medical School and Hospital, Department of Radiology, Jeonju (Korea, Republic of); Research Institute of Clinical Medicine of Chonbuk National University, Jeonju (Korea, Republic of); Biomedical Research Institute of Chonbuk National University Hospital, Jeonju (Korea, Republic of); Lee, Ju-Hyung [Chonbuk National University Medical School, Department of Preventive Medicine, Jeonju (Korea, Republic of)

    2018-03-15

    To compare the occurrence of transient severe motion (TSM) between gadoxetate disodium- and gadopentetate dimeglumine-enhanced MRI and between gadoxetate disodium-enhanced MRI scans obtained with and without the application of a modified breath-holding technique. We reviewed 80 patients who underwent two magnetic resonance examinations (gadoxetate disodium-enhanced MRI and gadopentetate dimeglumine-enhanced MRI) with the application of a modified breath-holding technique (dual group). This group was compared with 100 patients who underwent gadoxetate disodium-enhanced MRI without the application of the modified breath-holding technique (single group). Patient risk factors and motion scores (1 [none] to 5 [non-diagnostic]) for each dynamic-phase imaging were analysed. In the dual group, mean motion scores did not differ significantly between gadoxetate disodium- and gadopentetate dimeglumine-enhanced MRI (p=0.096-0.807) in any phase. However, in all phases except the late dynamic phase, mean motion scores of the dual group were significantly lower than those in the single group. TSM incidence did not differ significantly between gadoxetate disodium- and gadopentetate dimeglumine-enhanced MRI in the dual group (3.8% vs. 1.3%, p=0.620). With proper application of the modified breath-holding technique, TSM occurrence with gadoxetate disodium-enhanced MRI was comparable to that associated with gadopentetate dimeglumine-enhanced MRI. (orig.)

  4. A comparison of non-contrast and contrast-enhanced MRI in the initial stage of Legg-Calve-Perthes disease

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Harry K.W. [Texas Scottish Rite Hospital for Children, Center of Excellence in Hip Disorders, Dallas, TX (United States); University of Texas Southwestern, Department of Orthopedic Surgery, Dallas, TX (United States); Kaste, Sue [St. Jude Children' s Research Hospital, Department of Radiological Sciences, Memphis, TN (United States); St. Jude Children' s Research Hospital, Department of Oncology, Memphis, TN (United States); University of Tennessee School of Health Sciences, Department of Radiology, Memphis, TN (United States); Dempsey, Molly; Wilkes, David [Texas Scottish Rite Hospital for Children, Department of Radiology, Dallas, TX (United States)

    2013-09-15

    A prognostic indicator of outcome for Legg-Calve-Perthes disease (LCP) is needed to guide treatment decisions during the initial stage of the disease (stage 1), before deformity occurs. Radiographic prognosticators are applicable only after fragmentation (stage II). We investigated pre- and postcontrast MRI in depicting stage I femoral head involvement. Thirty children with stage I LCP underwent non-contrast coronal T1 fast spin-echo (FSE) and corresponding postcontrast fat-suppressed T1-weighted fast spin-echo (FSE) sequences to quantify the extent of femoral head involvement. Three pediatric radiologists and one pediatric orthopedic surgeon independently measured central head involvement. Interobserver reliability of percent head involvement using non-contrasted MR images had intraclass correlation coefficient (ICC) of 0.72. Postcontrast MRI improved interobserver reliability (ICC 0.82). Qualitatively, the area of involvement was more clearly visible on contrast-enhanced MRI. A comparison of results obtained by each observer using the two MRI techniques showed no correlation. ICC ranged from -0.08 to 0.03 for each observer. Generally, greater head involvement was depicted by contrast compared with non-contrast MRI (Pearson r = -0.37, P = 0.04). Pre- and postcontrast MRI assess two different components of stage I LCP. However, contrast-enhanced MRI more clearly depicts the area of involvement. (orig.)

  5. In vivo characterization of a smart MRI agent that displays an inverse response to calcium concentration.

    Science.gov (United States)

    Mamedov, Ilgar; Canals, Santiago; Henig, Jörg; Beyerlein, Michael; Murayama, Yusuke; Mayer, Hermann A; Logothetis, Nikos K; Angelovski, Goran

    2010-12-15

    Contrast agents for magnetic resonance imaging (MRI) that exhibit sensitivity toward specific ions or molecules represent a challenging but attractive direction of research. Here a Gd(3+) complex linked to an aminobis(methylenephosphonate) group for chelating Ca(2+) was synthesized and investigated. The longitudinal relaxivity (r(1)) of this complex decreases during the relaxometric titration with Ca(2+) from 5.76 to 3.57 mM(-1) s(-1) upon saturation. The r(1) is modulated by changes in the hydration number, which was confirmed by determination of the luminescence emission lifetimes of the analogous Eu(3+) complex. The initial in vivo characterization of this responsive contrast agent was performed by means of electrophysiology and MRI experiments. The investigated complex is fully biocompatible, having no observable effect on neuronal function after administration into the brain ventricles or parenchyma. Distribution studies demonstrated that the diffusivity of this agent is significantly lower compared with that of gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA).

  6. Contrast agents for MRI based on iron oxide nanoparticles prepared by laser pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Morales, M.P. E-mail: puerto@icmm.csic.es; Bomati-Miguel, O.; Perez de Alejo, R.; Ruiz-Cabello, J.; Veintemillas-Verdaguer, S.; O' Grady, K

    2003-10-01

    Colloidal suspensions of magnetic particles with application as contrast agents in magnetic resonance imaging have been prepared by coating iron oxide nanoparticles with dextran. The particles were prepared by laser-induced pyrolysis of iron pentacarbonyl vapors. By adjusting the experimental conditions, the particle and crystal size of the iron oxide nanoparticles were varied in the range 2-7 nm with a very narrow size distribution. The suspensions consisted of dextran-coated nanoparticle aggregates with a hydrodynamic diameter of around 50 nm and unimodal size distributions. It was observed that an important enhancement of the magnetic properties of the nanoparticles and the suspensions (saturation magnetization and susceptibility values) takes place as the particle and the crystallite size increases. Consequently, the {sup 1}H NMR relaxation times of the suspensions, characterized by the longitudinal (R{sub 1}) and transversal (R{sub 2}) relaxation rates, also increase with the crystal order. This effect was more pronounced for the values of R{sub 2}. The mechanism of MRI enhancement appears to be related to water protons diffusing within the inhomogeneous magnetic field created by the magnetic clusters. The global structure of the cluster, the anisotropy and the magnetic field around it are important factors affecting the value of R{sub 2}.

  7. Contrast agents for MRI based on iron oxide nanoparticles prepared by laser pyrolysis

    International Nuclear Information System (INIS)

    Morales, M.P.; Bomati-Miguel, O.; Perez de Alejo, R.; Ruiz-Cabello, J.; Veintemillas-Verdaguer, S.; O'Grady, K.

    2003-01-01

    Colloidal suspensions of magnetic particles with application as contrast agents in magnetic resonance imaging have been prepared by coating iron oxide nanoparticles with dextran. The particles were prepared by laser-induced pyrolysis of iron pentacarbonyl vapors. By adjusting the experimental conditions, the particle and crystal size of the iron oxide nanoparticles were varied in the range 2-7 nm with a very narrow size distribution. The suspensions consisted of dextran-coated nanoparticle aggregates with a hydrodynamic diameter of around 50 nm and unimodal size distributions. It was observed that an important enhancement of the magnetic properties of the nanoparticles and the suspensions (saturation magnetization and susceptibility values) takes place as the particle and the crystallite size increases. Consequently, the 1 H NMR relaxation times of the suspensions, characterized by the longitudinal (R 1 ) and transversal (R 2 ) relaxation rates, also increase with the crystal order. This effect was more pronounced for the values of R 2 . The mechanism of MRI enhancement appears to be related to water protons diffusing within the inhomogeneous magnetic field created by the magnetic clusters. The global structure of the cluster, the anisotropy and the magnetic field around it are important factors affecting the value of R 2

  8. Assessment of brain metastases by means of dynamic susceptibility contrast enhanced MRI

    International Nuclear Information System (INIS)

    Knopp, M.; Wenz, F.; Debus, J.; Hentrich, H.R.

    2002-01-01

    Full text: To assess if pre therapeutic measurements of regional cerebral blood flow (rCBF) and volume (rCVB) are able to predict the response of brain metastases to radiation therapy and to assess the influence of radiosurgery on rCBF and rCBV on brain metastases and normal surrounding tissue. We examined 25 patients with brain metastases prior to high dose radiosurgery with conventional T1 and T2 weighted MRI and dynamic susceptibility contrast enhanced MRI (DSC MRI). For DSC MRI 55 T2*w GE images of two sections were acquired after bolus administration of 0.1 mmol/kg gadoteridol (ProHance) for the simultaneous measurement of brain feeding arteries and brain tissue. This allowed an absolute quantification of rCBF and rCBV. Follow-up examinations were performed 6 weeks and 3 months after radiotherapy and the acquired perfusion data were related to a 3 point scale of treatment outcome. Radiosurgery was performed by a linear accelerator with a 80% isodose of 18-20 Gv. For treatment planning the heads of the patients were immobilized by a cask mask to avoid head movement. DSC MRI was able to assess perfusion data in all patients. Higher pre therapeutic rCBV seems to predict a poor treatment outcome. After radiosurgery patients with tumor remission and stable disease presented a decrease of rCBV over time regardless of temporary tumor volume increase. Patients with tumor progression at the 3 month followup presented an increase of rCBV. Effects on normal surrounding tissue could not be observed. DSC MRI using Gadoteridol allows the non-invasive assessment of rCBV and rCBF of brain metastases and its changes due to radiosurgery. The method may also be able to predict treatment outcome. Furthermore radiofrequency effects on surrounding unaffected tissue can be monitored. Copyright (2002) Blackwell Science Pty Ltd

  9. Mass diffusion coefficient measurement for vitreous humor using FEM and MRI

    Science.gov (United States)

    Rattanakijsuntorn, Komsan; Penkova, Anita; Sadha, Satwindar S.

    2018-01-01

    In early studies, the ‘contour method’ for determining the diffusion coefficient of the vitreous humor was developed. This technique relied on careful injection of an MRI contrast agent (surrogate drug) into the vitreous humor of fresh bovine eyes, and tracking the contours of the contrast agent in time. In addition, an analytical solution was developed for the theoretical contours built on point source model for the injected surrogate drug. The match between theoretical and experimental contours as a least square fit, while floating the diffusion coefficient, led to the value of the diffusion coefficient. This method had its limitation that the initial injection of the surrogate had to be spherical or ellipsoidal because of the analytical result based on the point-source model. With a new finite element model for the analysis in this study, the technique is much less restrictive and handles irregular shapes of the initial bolus. The fresh bovine eyes were used for drug diffusion study in the vitreous and three contrast agents of different molecular masses: gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA, 938 Da), non-ionic gadoteridol (Prohance, 559 Da), and bovine albumin conjugated with gadolinium (Galbumin, 74 kDa) were used as drug surrogates to visualize the diffusion process by MRI. The 3D finite element model was developed to determine the diffusion coefficients of these surrogates with the images from MRI. This method can be used for other types of bioporous media provided the concentration profile can be visualized (by methods such as MRI or fluorescence).

  10. Gd enhanced MRI in sensorineural hearing loss

    International Nuclear Information System (INIS)

    Takenaka, Mika; Tono, Tetsuya; Toyama, Katsuhiro; Kano, Kiyo; Morimitsu, Tamotsu

    1996-01-01

    The enhanced MRI hearing findings of the inner ear in 124 patients with sensorineural hearing loss were evaluated. MR images were obtained before and after the intravenous administration of gadolinium (0.1 mmol/kg). In three out of seventy-nine patients with unilateral healing loss, cochlear and/or the vestibular enhancement was noted on the symptomatic side. The positive cases included those with Ramsay-Hunt syndrome, mumps and so-called sudden deafness. Forty-five patients with bilateral hearing loss showed no enhancement within the inner ear. Although positive gadolinium enhancement of the inner ear may detect inflammatory lesions due to a viral infection, its incidence in sensorineural hearing loss, including cases of sudden deafness. seems to be extremely rare. (author)

  11. Hemophilic arthropathy of the knee joint: static and dynamic Gd-DTPA - enhanced MRI

    Energy Technology Data Exchange (ETDEWEB)

    Naegele, M. [Dept. of Radiology, Univ. Bonn (Germany); Bruening, R. [Dept. of Radiology, Univ. Muenchen (Germany); Kunze, V. [Dept. of Radiology, Univ. Bonn (Germany); Eickhoff, H. [Dept. of Orthopedic Surgery, Troisdorf (Germany); Koch, W. [Dept. of Orthopedic Surgery, Troisdorf (Germany); Reiser, M. [Dept. of Radiology, Univ. Muenchen (Germany)

    1995-12-31

    A total of 17 patients with hemophilic arthropathy of the knee joint were studied with static and dynamic MRI before and after an IV bolus injection of Gadolinium-DTPA (Gd-DTPA; 0.1 mmol/kg body weight). The T1-weighted spin-echo (SE) and gradient-echo (fast-field echo [FFE]) sequences were applied. The FFE sequences of eight consecutive scans carried out over a time interval of 160 s were used in order to determine the time to signal intensity (SI) curves of the synovial proliferations surrounding soft tissue, bone marrow, and joint effusion. After the administration of a contrast agent, synovial proliferations exhibited an increase on FFE and SE images of 47.7% (SD {+-} 14.3%) and 37.4% (SD {+-} 11.2%), respectively, whereas muscle and fatty tissue, tendons, bone marrow, and joint effusion revealed only a minor increase in SI. The gradient of SI (ratio SI/time) of pannus was 39.6%/min (SD {+-} 7.7%/min) and differed significantly (P < 0.001) from that of bone marrow, fatty tissue, muscle tissue, tendons, and joint effusion (P < 0.05). In contrast to synovial proliferations in rheumatoid arthritis, no differentiation between various pannus vascularities based on the degree of enhancement was possible. The Gd-DTPA-enhanced MRI studies delineate and quantify the synovial proliferations in hemophilic arthropathy. Dynamic studies in hemophilic arthropathy do not provide qualitative assessment of the inflammatory process. (orig.)

  12. Hemophilic arthropathy of the knee joint: static and dynamic Gd-DTPA -enhanced MRI

    International Nuclear Information System (INIS)

    Naegele, M.; Bruening, R.; Kunze, V.; Eickhoff, H.; Koch, W.; Reiser, M.

    1995-01-01

    A total of 17 patients with hemophilic arthropathy of the knee joint were studied with static and dynamic MRI before and after an IV bolus injection of Gadolinium-DTPA (Gd-DTPA; 0.1 mmol/kg body weight). The T1-weighted spin-echo (SE) and gradient-echo (fast-field echo [FFE]) sequences were applied. The FFE sequences of eight consecutive scans carried out over a time interval of 160 s were used in order to determine the time to signal intensity (SI) curves of the synovial proliferations surrounding soft tissue, bone marrow, and joint effusion. After the administration of a contrast agent, synovial proliferations exhibited an increase on FFE and SE images of 47.7% (SD ± 14.3%) and 37.4% (SD ± 11.2%), respectively, whereas muscle and fatty tissue, tendons, bone marrow, and joint effusion revealed only a minor increase in SI. The gradient of SI (ratio SI/time) of pannus was 39.6%/min (SD ± 7.7%/min) and differed significantly (P < 0.001) from that of bone marrow, fatty tissue, muscle tissue, tendons, and joint effusion (P < 0.05). In contrast to synovial proliferations in rheumatoid arthritis, no differentiation between various pannus vascularities based on the degree of enhancement was possible. The Gd-DTPA-enhanced MRI studies delineate and quantify the synovial proliferations in hemophilic arthropathy. Dynamic studies in hemophilic arthropathy do not provide qualitative assessment of the inflammatory process. (orig.)

  13. Research on a new oral contrast agent for abdominal MRI using free manganese ion

    International Nuclear Information System (INIS)

    Hasegawa, Hideo; Fujita, Osamu; Hiraishi, Kumiko; Narabayashi, Isamu; Komba, Toshinori; Hamamura, Yoshinori.

    1996-01-01

    Manganese chloride (Mn: 3 mg/100 g) aqueous solution with hydragenated oligosaccharide and xanthan gum (T 1 : 0.1 sec, T 2 : 0.03 sec at 0.5T) functions in gut as a positive contrast agent on MR T 1 -weighted images and a low signal component on MR T 2 -weighted images. The manganese in the solution functions as a contrast agent under free manganese ion (Mn 2+ ). Further, the solution has special characteristics in terms of MRI signal intensity and relaxation time that are equal to those of blueberry juice, which performs as an effective contrast agent on T 1 -and T 2 -weighted images, and functions as a contrast agent in vitro and in vivo. (author)

  14. Absolute quantification of regional renal blood flow in swine by dynamic contrast-enhanced magnetic resonance imaging using a blood pool contrast agent.

    Science.gov (United States)

    Lüdemann, Lutz; Nafz, Benno; Elsner, Franz; Grosse-Siestrup, Christian; Meissler, Michael; Kaufels, Nicola; Rehbein, Hagen; Persson, Pontus B; Michaely, Henrik J; Lengsfeld, Philipp; Voth, Matthias; Gutberlet, Matthias

    2009-03-01

    To evaluate for the first time in an animal model the possibility of absolute regional quantification of renal medullary and cortical perfusion by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) using a blood pool contrast agent. A total of 18 adult female pigs (age, 16-22 weeks; body weight, 45-65 kg; no dietary restrictions) were investigated by DCE-MRI. Absolute renal blood flow (RBF) measured by an ultrasound transit time flow probe around the renal vein was used as the standard of reference. An inflatable stainless cuff placed around the renal artery near its origin from the abdominal aorta was used to reduce RBF to 60%, 40%, and 20% of the baseline flow. The last measurement was performed with the cuff fully reopened. Absolute RBF values during these 4 perfusion states were compared with the results of DCE-MRI performed on a 1.5-T scanner with an 8-channel phased-array surface coil. All scans were acquired in breath-hold technique in the coronal plane using a field of view of 460 mm.Each dynamic scan commenced with a set of five 3D T1-weighted gradient echo sequences with different flip angles (alpha = 2 degrees, 5 degrees, 10 degrees, 20 degrees, 30 degrees): TE, 0.88 milliseconds; TR, 2.65 milliseconds; slice thickness, 8.8 mm for 4 slices; acquisition matrix, 128 x 128; and acquisitions, 4. These data served to calculate 3D intrinsic longitudinal relaxation rate maps (R10) and magnetization (M0). Immediately after these images, the dynamic 3D T1-weighted gradient echo images were acquired with the same parameters and a constant alpha = 30 degrees, half Fourier, 1 acquisition, 64 frames, a time interval of 1.65 seconds between each frame, and a total duration of 105.6. Three milliliters of an albumin-binding blood pool contrast agent (0.25 mmol/mL gadofosveset trisodium, Vasovist, Bayer Schering Pharma AG, Berlin, Germany) was injected at a rate of 3 mL/s. Perfusion was calculated using the arterial input function from the aorta, which was

  15. Timed function tests, motor function measure, and quantitative thigh muscle MRI in ambulant children with Duchenne muscular dystrophy: A cross-sectional analysis.

    Science.gov (United States)

    Schmidt, Simone; Hafner, Patricia; Klein, Andrea; Rubino-Nacht, Daniela; Gocheva, Vanya; Schroeder, Jonas; Naduvilekoot Devasia, Arjith; Zuesli, Stephanie; Bernert, Guenther; Laugel, Vincent; Bloetzer, Clemens; Steinlin, Maja; Capone, Andrea; Gloor, Monika; Tobler, Patrick; Haas, Tanja; Bieri, Oliver; Zumbrunn, Thomas; Fischer, Dirk; Bonati, Ulrike

    2018-01-01

    The development of new therapeutic agents for the treatment of Duchenne muscular dystrophy has put a focus on defining outcome measures most sensitive to capture treatment effects. This cross-sectional analysis investigates the relation between validated clinical assessments such as the 6-minute walk test, motor function measure and quantitative muscle MRI of thigh muscles in ambulant Duchenne muscular dystrophy patients, aged 6.5 to 10.8 years (mean 8.2, SD 1.1). Quantitative muscle MRI included the mean fat fraction using a 2-point Dixon technique, and transverse relaxation time (T2) measurements. All clinical assessments were highly significantly inter-correlated with p muscle MRI values significantly correlated with all clinical assessments with the extensors showing the strongest correlation. In contrast to the clinical assessments, quantitative muscle MRI values were highly significantly correlated with age. In conclusion, the motor function measure and timed function tests measure disease severity in a highly comparable fashion and all tests correlated with quantitative muscle MRI values quantifying fatty muscle degeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Contrast-enhanced CT and MRI findings of atypical hepatic Echinococcus alveolarisinfestation

    International Nuclear Information System (INIS)

    Etlik, Oemer; Arslan, Halil; Harman, Mustafa; Temizoez, Osman; Bay, Ali; Koesem, Mustafa; Dogan, Ekrem

    2005-01-01

    Diagnosis of liver infestation by Echinococcus alveolaris(EA) is based on serological and radiological findings. In this report, we present a 15-year-old girl with atypical hepatic EA infestation showing central punctate calcifications and contrast enhancement on the portal and late phases of CT and MRI. CT showed a hypodense mass involving more than half of the liver with prominent central calcifications. MRI revealed hypointense signal of the infiltrative mass on both T1- and T2-weighted images. Contrast enhancement is a unique finding in hepatic EA infestation that may cause difficulties with diagnosis. MRI may provide invaluable information in the diagnosis of EA infestation of the liver, either by disclosing the infiltrative pattern of infestation without significant effect to vascular structures, or by the signal characteristics. (orig.)

  17. Contrast-enhanced CT and MRI findings of atypical hepatic Echinococcus alveolarisinfestation

    Energy Technology Data Exchange (ETDEWEB)

    Etlik, Oemer; Arslan, Halil; Harman, Mustafa; Temizoez, Osman [Yuzuncu Yil University Faculty of Medicine, Department of Radiology, Van (Turkey); Bay, Ali [Yuzuncu Yil University Faculty of Medicine, Department of Paediatrics, Van (Turkey); Koesem, Mustafa [Yuzuncu Yil University Faculty of Medicine, Department of Pathology, Van (Turkey); Dogan, Ekrem [Yuzuncu Yil University Faculty of Medicine, Department of Internal Medicine, Van (Turkey)

    2005-05-01

    Diagnosis of liver infestation by Echinococcus alveolaris(EA) is based on serological and radiological findings. In this report, we present a 15-year-old girl with atypical hepatic EA infestation showing central punctate calcifications and contrast enhancement on the portal and late phases of CT and MRI. CT showed a hypodense mass involving more than half of the liver with prominent central calcifications. MRI revealed hypointense signal of the infiltrative mass on both T1- and T2-weighted images. Contrast enhancement is a unique finding in hepatic EA infestation that may cause difficulties with diagnosis. MRI may provide invaluable information in the diagnosis of EA infestation of the liver, either by disclosing the infiltrative pattern of infestation without significant effect to vascular structures, or by the signal characteristics. (orig.)

  18. SU-D-303-03: Impact of Uncertainty in T1 Measurements On Quantification of Dynamic Contrast Enhanced MRI

    Energy Technology Data Exchange (ETDEWEB)

    Aryal, M; Cao, Y [The University of Michigan, Ann Arbor, MI (United States)

    2015-06-15

    Purpose: Quantification of dynamic contrast enhanced (DCE) MRI requires native longitudinal relaxation time (T1) measurement. This study aimed to assess uncertainty in T1 measurements using two different methods. Methods and Materials: Brain MRI scans were performed on a 3T scanner in 9 patients who had low grade/benign tumors and partial brain radiotherapy without chemotherapy at pre-RT, week-3 during RT (wk-3), end-RT, and 1, 6 and 18 months after RT. T1-weighted images were acquired using gradient echo sequences with 1) 2 different flip angles (50 and 150), and 2) 5 variable TRs (100–2000ms). After creating quantitative T1 maps, average T1 was calculated in regions of interest (ROI), which were distant from tumors and received a total of accumulated radiation doses < 5 Gy at wk-3. ROIs included left and right normal Putamen and Thalamus (gray matter: GM), and frontal and parietal white matter (WM). Since there were no significant or even a trend of T1 changes from pre-RT to wk-3 in these ROIs, a relative repeatability coefficient (RC) of T1 as a measure of uncertainty was estimated in each ROI using the data pre-RT and at wk-3. The individual T1 changes at later time points were evaluated compared to the estimated RCs. Results: The 2-flip angle method produced small RCs in GM (9.7–11.7%) but large RCs in WM (12.2–13.6%) compared to the saturation-recovery (SR) method (11.0–17.7% for GM and 7.5–11.2% for WM). More than 81% of individual T1 changes were within T1 uncertainty ranges defined by RCs. Conclusion: Our study suggests that the impact of T1 uncertainty on physiological parameters derived from DCE MRI is not negligible. A short scan with 2 flip angles is able to achieve repeatability of T1 estimates similar to a long scan with 5 different TRs, and is desirable to be integrated in the DCE protocol. Present study was supported by National Institute of Health (NIH) under grant numbers; UO1 CA183848 and RO1 NS064973.

  19. Enhanced MRI in patients with Ramsay-Hunt's syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Yanagida, Masahiro; Ushiro, Koichi; Yamashita, Toshio; Kumazawa, Tadami (Kansai Medical Univ., Osaka (Japan). Dept. of Otolaryngology); Katoh, Tsutomu (Kansai Medical Univ., Osaka (Japan). Dept. of Radiology)

    1993-01-01

    Enhanced MRI was performed in 14 patients with Ramsay-Hunt,s syndrome to investigate the pathogenesis of this syndrome. All MRI studies were performed on a 0.5T superconductivity MRI system using a head coil with Gd-DTPA. Enhancement was observed in the areas of the distal internal auditory canal and labyrinthine segment in many patients, and was especially prominent in patients suffering from vertigo, tinnitus, and hearing loss. In some patients it involved not only the facial nerve of the internal auditory canal but also the cochlear nerve and vestibular nerves. Since histological changes of the facial nerve in patients with Ramsay-Hunt's syndrome are assumed to occur in the distal internal auditory canal and labyrinthine segment, which is more proximal than the geniculate ganglion, and the possibility is suggested that inflammation may be spread to the vestibular and cochlear nerve via the internal auditory canal. (14 refs., 2 figs.).

  20. Intra-individual, randomised comparison of the MRI contrast agents gadobutrol versus gadoteridol in patients with primary and secondary brain tumours, evaluated in a blinded read

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, M. [Klinikum Luenen St. Marien-Hospital, Department of Diagnostic and Interventional Radiology and Neuroradiology, Luenen (Germany); Schulte-Altedorneburg, G. [Staedtisches Klinikum Muenchen Harlaching, Department of Diagnostic and Interventional Radiology, Neuroradiology and Nuclear Medicine, Muenchen (Germany); Piontek, M.; Heuser, L. [Universitaetsklinikum Knappschaftskrankenhaus GmbH, Department of Diagnostic and Interventional Radiology, Neuroradiology and Nuclear Medicine, Bochum (Germany); Hentsch, A. [Radiologisches Institut Hohenzollernstrasse, Koblenz (Germany); Spangenberg, P. [Universitaetsklinikum Knappschaftskrankenhaus GmbH, Department of Neurosurgery, Bochum (Germany); Schwenke, C. [SCO:SSiS, Berlin (Germany); Harders, A. [Universitaetsklinikum Knappschaftskrankenhaus GmbH, Department of Neurosurgery Knappschaftskrankenhaus, Bochum (Germany)

    2013-12-15

    To prove that 1.0 M gadobutrol provides superior contrast enhancement and MRI image characteristics of primary and secondary brain tumours compared with 0.5 M gadoteridol, thereby providing superior diagnostic information. Brain MRI was performed in two separate examinations in patients scheduled for neurosurgery. Independent injections of 1.0 M gadobutrol and 0.5 M gadoteridol at doses of 0.1 mmol Gd/kg body weight were administered per patient in randomised order. Evaluation was performed in an off-site blinded read. Fifty-one patients in the full analysis set (FAS) were eligible for efficacy analysis and 44 for the per-protocol analysis. For the primary efficacy variable ''preference in contrast enhancement for one contrast agent or the other'', the rate of ''gadobutrol preferred'' was estimated at 0.73 (95 % confidence interval 0.61; 0.83), showing significant superiority of gadobutrol over gadoteridol. Calculated lesion-to-brain contrast and the results of all qualitative secondary efficacy variables were also in favour of gadobutrol. Keeping a sufficient time delay after contrast application proved to be essential to get optimal image quality. Compared with 0.5 M gadoteridol, 1.0 M gadobutrol was proven to have significantly superior contrast enhancement characteristics in a routine MRI protocol of primary and secondary brain tumours. (orig.)

  1. Measuring cardiac efficiency using PET/MRI

    International Nuclear Information System (INIS)

    Gullberg, Grand; Aparici, Carina Mari; Brooks, Gabriel; Liu, Jing; Guccione, Julius; Saloner, David; Seo, Adam Youngho; Ordovas, Karen Gomes

    2015-01-01

    Heart failure (HF) is a complex syndrome that is projected by the American Heart Association to cost $160 billion by 2030. In HF, significant metabolic changes and structural remodeling lead to reduced cardiac efficiency. A normal heart is approximately 20-25% efficient measured by the ratio of work to oxygen utilization (1 ml oxygen = 21 joules). The heart requires rapid production of ATP where there is complete turnover of ATP every 10 seconds with 90% of ATP produced by mitochondrial oxidative metabolism requiring substrates of approximately 30% glucose and 65% fatty acids. In our preclinical PET/MRI studies in normal rats, we showed a negative correlation between work and the influx rate constant for 18FDG, confirming that glucose is not the preferred substrate at rest. However, even though fatty acid provides 9 kcal/gram compared to 4 kcal/gram for glucose, in HF the preferred energy source is glucose. PET/MRI offers the potential to study this maladapted mechanism of metabolism by measuring work in a region of myocardial tissue simultaneously with the measure of oxygen utilization, glucose, and fatty acid metabolism and to study cardiac efficiency in the etiology of and therapies for HF. MRI is used to measure strain and a finite element mechanical model using pressure measurements is used to estimate myofiber stress. The integral of strain times stress provides a measure of work which divided by energy utilization, estimated by the production of 11CO2 from intravenous injection of 11C-acetate, provides a measure of cardiac efficiency. Our project involves translating our preclinical research to the clinical application of measuring cardiac efficiency in patients. Using PET/MRI to develop technologies for studying myocardial efficiency in patients, provides an opportunity to relate cardiac work of specific tissue regions to metabolic substrates, and measure the heterogeneity of LV efficiency.

  2. Measuring cardiac efficiency using PET/MRI

    Energy Technology Data Exchange (ETDEWEB)

    Gullberg, Grand [Lawrence Berkeley National Laboratory (United States); Aparici, Carina Mari; Brooks, Gabriel [University of California San Francisco (United States); Liu, Jing; Guccione, Julius; Saloner, David; Seo, Adam Youngho; Ordovas, Karen Gomes [Lawrence Berkeley National Laboratory (United States)

    2015-05-18

    Heart failure (HF) is a complex syndrome that is projected by the American Heart Association to cost $160 billion by 2030. In HF, significant metabolic changes and structural remodeling lead to reduced cardiac efficiency. A normal heart is approximately 20-25% efficient measured by the ratio of work to oxygen utilization (1 ml oxygen = 21 joules). The heart requires rapid production of ATP where there is complete turnover of ATP every 10 seconds with 90% of ATP produced by mitochondrial oxidative metabolism requiring substrates of approximately 30% glucose and 65% fatty acids. In our preclinical PET/MRI studies in normal rats, we showed a negative correlation between work and the influx rate constant for 18FDG, confirming that glucose is not the preferred substrate at rest. However, even though fatty acid provides 9 kcal/gram compared to 4 kcal/gram for glucose, in HF the preferred energy source is glucose. PET/MRI offers the potential to study this maladapted mechanism of metabolism by measuring work in a region of myocardial tissue simultaneously with the measure of oxygen utilization, glucose, and fatty acid metabolism and to study cardiac efficiency in the etiology of and therapies for HF. MRI is used to measure strain and a finite element mechanical model using pressure measurements is used to estimate myofiber stress. The integral of strain times stress provides a measure of work which divided by energy utilization, estimated by the production of 11CO2 from intravenous injection of 11C-acetate, provides a measure of cardiac efficiency. Our project involves translating our preclinical research to the clinical application of measuring cardiac efficiency in patients. Using PET/MRI to develop technologies for studying myocardial efficiency in patients, provides an opportunity to relate cardiac work of specific tissue regions to metabolic substrates, and measure the heterogeneity of LV efficiency.

  3. Delayed gadolinium-enhanced MRI of the fibrocartilage disc of the temporomandibular joint – a feasibility study

    Science.gov (United States)

    Pittschieler, Elisabeth; Szomolanyi, Pavol; Schmid-Schwap, Martina; Weber, Michael; Egerbacher, Monika; Traxler, Hannes; Trattnig, Siegfried

    2014-01-01

    Objective To 1) test the feasibility of delayed Gadolinium-Enhanced Magnetic Resonance Imaging of Cartilage (dGEMRIC) at 3 T in the temporomandibular joint (TMJ) and 2) to determine the optimal delay for measurements of the TMJ disc after i.v. contrast agent (CA) administration. Design MRI of the right and left TMJ of six asymptomatic volunteers was performed at 3 T using a dedicated coil. 2D inversion recovery (2D-IR) sequences were performed at 4 time points covering 120 minutes and 3D gradient-echo (3D GRE) dual flip-angle sequences were performed at 14 time points covering 130 minutes after the administration of 0.2 mmol/kg of Gd-diethylenetriamine pentaacetic acid ion (Gd-DTPA)2-, i.e., 0.4 mL of Magnevist™ per kg body weight. Pair-wise tests were used to assess differences between pre-and post-contrast T1 values. Results 2D-IR sequences showed a statistically significant drop (p fibrocartilage disc of the TMJ. The recommended measurement time for dGEMRIC in the TMJ after i.v. CA administration is from 60 to 120 minutes. PMID:25131629

  4. Dynamic contrast-enhanced MRI evaluation of cerebral cavernous malformations.

    Science.gov (United States)

    Hart, Blaine L; Taheri, Saeid; Rosenberg, Gary A; Morrison, Leslie A

    2013-10-01

    The aim of this study is to quantitatively evaluate the behavior of CNS cavernous malformations (CCMs) using a dynamic contrast-enhanced MRI (DCEMRI) technique sensitive for slow transfer rates of gadolinium. The prospective study was approved by the institutional review board and was HIPPA compliant. Written informed consent was obtained from 14 subjects with familial CCMs (4 men and 10 women, ages 22-76 years, mean 48.1 years). Following routine anatomic MRI of the brain, DCEMRI was performed for six slices, using T1 mapping with partial inversion recovery (TAPIR) to calculate T1 values, following administration of 0.025 mmol/kg gadolinium DTPA. The transfer rate (Ki) was calculated using the Patlak model, and Ki within CCMs was compared to normal-appearing white matter as well as to 17 normal control subjects previously studied. All subjects had typical MRI appearance of CCMs. Thirty-nine CCMs were studied using DCEMRI. Ki was low or normal in 12 lesions and elevated from 1.4 to 12 times higher than background in the remaining 27 lesions. Ki ranged from 2.1E-6 to 9.63E-4 min(-1), mean 3.55E-4. Normal-appearing white matter in the CCM patients had a mean Ki of 1.57E-4, not statistically different from mean WM Ki of 1.47E-4 in controls. TAPIR-based DCEMRI technique permits quantifiable assessment of CCMs in vivo and reveals considerable differences not seen with conventional MRI. Potential applications include correlation with biologic behavior such as lesion growth or hemorrage, and measurement of drug effects.

  5. Tumor Vessel Compression Hinders Perfusion of Ultrasonographic Contrast Agents1

    Science.gov (United States)

    Galiè, Mirco; D'Onofrio, Mirko; Montani, Maura; Amici, Augusto; Calderan, Laura; Marzola, Pasquina; Benati, Donatella; Merigo, Flavia; Marchini, Cristina; Sbarbati, Andrea

    2005-01-01

    Abstract Contrast-enhanced ultrasound (CEUS) is an advanced approach to in vivo assessment of tumor vascularity and is being increasingly adopted in clinical oncology. It is based on 1- to 10 µm-sized gas microbubbles, which can cross the capillary beds of the lungs and are effective echo enhancers. It is known that high cell density, high transendothelial fluid exchange, and poorly functioning lymphatic circulation all provoke solid stress, which compresses vessels and drastically reduces tumor blood flow. Given their size, we supposed that the perfusion of microbubbles is affected by anatomic features of tumor vessels more than are contrast agents traditionally used in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Here, we compared dynamic information obtained from CEUS and DCE-MRI on two experimental tumor models exhibiting notable differences in vessel anatomy. We found that tumors with small, flattened vessels show a much higher resistance to microbubble perfusion than to MRI contrast agents, and appear scarcely vascularized at CEUS examination, despite vessel volume adequate for normal function. Thus, whereas CEUS alone could induce incorrect diagnosis when tumors have small or collapsed vessels, integrated analysis using CEUS and DCE-MRI allows in vivo identification of tumors with a vascular profile frequently associated with malignant phenotypes. PMID:15967105

  6. Gadolinium-DOTA enhanced MRI of painful osseous crises in children with sickle cell anemia

    International Nuclear Information System (INIS)

    Bonnerot, V.; Sebag, G.; Montalembert, M. de; Wioland, M.; Glorion, C.; Girot, R.; Lallemand, D.

    1994-01-01

    In order to evaluate the role of gadolinium-DOTA enhanced MRI in the management of painful osseous crises in children with sickle cell anemia (SCA), nine children with SCA underwent MRI, bone scans and ultrasonographic studies during 11 osseous crises. Imaging findings were compared with the final diagnosis: three acute osteomyelitis (AO) and 16 acute infarcts (AI). MRI could not differentiate AO from AI. The appearance of severe AI was very misleading and was similar to the usual appearance of AO, including soft tissue changes, periosteal reaction and patterns of enhancement. Gadolinium-DOTA enhanced MRI was useful for determining the anatomic site and extent of AO or AI and for distinguishing between necrotic material, fluid collection and vascularized inflammatory tissue. It can also help to guide the aspiration of intraosseous, subperiosteal and soft tissue fluid collections. (orig.)

  7. Dynamic contrast-enhanced MRI of benign prostatic hyperplasia and prostatic carcinoma: correlation with angiogenesis

    International Nuclear Information System (INIS)

    Ren, J.; Huan, Y.; Wang, H.; Chang, Y.-J.; Zhao, H.-T.; Ge, Y.-L.; Liu, Y.; Yang, Y.

    2008-01-01

    Aim: To investigate the diagnostic and differential diagnostic values of dynamic contrast-enhanced magnetic resonance imaging (DCE MRI) in prostatic diseases, and to investigate the correlation between the parameters of SI-T curves and angiogenesis. Materials and methods: Twenty-one patients with proven prostatic carcinoma (Pca) and 29 patients with proven benign prostatic hyperplasia (BPH) were examined using DCE MRI. Diagnostic characteristics for differentiation were examined using threshold values for maximum peak time, enhancement degree, and enhancement rate. Then, the signal intensity-time curves (SI-T curves) were analysed, and the correlations between the parameters of SI-T curves and the expression levels of vascular endothelial growth factor (VEGF) and microvascular density (MVD) were investigated. All patients underwent prostatectomy. DCE MRI and histological findings were correlated. Results: Pca showed stronger enhancement with an earlier peak time, higher enhancement, and enhancement rate (p 2 = 13.57, P < 0.005). The VEGF and MVD expression levels of Pca were higher than those of BPH. Peak time was negatively correlated with the expression levels of VEGF and MVD, whereas the enhancement degree and enhancement rate showed positive correlations (Pearson correlation, p < 0.05). Conclusion: Based on T2-weighted imaging, DCE MRI curves can help to differentiate benign from malignant prostate tissue. In the present study the type C curve was rarely seen with malignant disease, but these results need confirmation

  8. The use of contrast agents in cardiac MRI

    International Nuclear Information System (INIS)

    Maurer, A.H.; Osbakken, M.

    1988-01-01

    Inherent NMR phenomena such as T/sub 1/ and T/sub 2/, and proton density can be used to provide tissue contrast on MR images. However, there are times when this contrast is not sufficient or does not provide tissue characterization data sufficient for use in definition of a pathophysiological insult. In this later case, paramagnetic agents might be of use in enhancement of relaxation time differences in one tissue or one portion of a tissue compared to another. Although several agents have been evaluated in this regard, most have been found inadequate because of their tissue toxicity. At present, gadolinium diethylenetriamine pentaacetric acid (Gd-DTPA) (which is an agent used in nuclear medicine studies) appears to be a good agent to use to distinguish normal from ischemic tissue. This agent has been used by a number of investigators to evaluate myocardial ischemia and provides images with better sensitivity and specificity for ischemia than imaging techniques using natural tissue contrast based on T/sub 1/ and T/sub 2/ differences

  9. Usefulness of dynamic contrast-enhanced MRI in the evaluation of the viability of acute scaphoid fracture

    Energy Technology Data Exchange (ETDEWEB)

    Larribe, Maud [Hopital La Conception, Service d' imagerie medicale, Marseille (France); Hopital Sainte Marguerite, Service d' imagerie medicale, Marseille (France); Gay, Andre [Hopital La Conception, Service de chirurgie de la main, Marseille (France); Freire, Veronique [Centre hospitalier de l' Universite de Montreal, Department of Radiology, Notre-Dame Hospital, Montreal, QC (Canada); Bouvier, Corinne [Hopital La Timone, Service d' anatomopathologie, Marseille (France); Chagnaud, Christophe; Souteyrand, Philippe [Hopital La Conception, Service d' imagerie medicale, Marseille (France)

    2014-12-15

    To evaluate the usefulness of dynamic gadolinium-enhanced magnetic resonance imaging (MRI) for assessing the viability of the proximal pole of the scaphoid in patients with acute scaphoid fractures. Eighteen consecutive patients with acute scaphoid fracture who underwent dynamic gadolinium-enhanced MRI 7 days or less before surgery were prospectively included between August 2011 and December 2012. All patients underwent MR imaging with unenhanced images, enhanced images, and dynamic enhanced images. A radiologist first classified the MRI results as necrotic or viable based on T1- and T2-weighted images only, followed by a second blinded interpretation, this time including analysis of pre- and post-gadolinium administration images and a third blinded interpretation based on the time-intensity curve of the dynamic enhanced study. The standard of reference was the histologic assessment of a cylindrical specimen of the proximal pole obtained during surgery in all patients. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated for unenhanced, enhanced, and dynamic gadolinium-enhanced MRI studies. The sensitivity, specificity, PPV, and NPV were 67, 67, 50, and 80 % for unenhanced images, 83, 100, 100, and 92 for enhanced images, and 83, 92, 83, and 92 for dynamic contrast-enhanced images. Our data are consistent with previously reported data supporting contrast-enhanced MRI for assessment of viability, and showing that dynamic imaging with time-intensity curve analysis does not provide additional predictive value over standard delayed enhanced imaging for acute scaphoid fracture. (orig.)

  10. Usefulness of dynamic contrast-enhanced MRI in the evaluation of the viability of acute scaphoid fracture

    International Nuclear Information System (INIS)

    Larribe, Maud; Gay, Andre; Freire, Veronique; Bouvier, Corinne; Chagnaud, Christophe; Souteyrand, Philippe

    2014-01-01

    To evaluate the usefulness of dynamic gadolinium-enhanced magnetic resonance imaging (MRI) for assessing the viability of the proximal pole of the scaphoid in patients with acute scaphoid fractures. Eighteen consecutive patients with acute scaphoid fracture who underwent dynamic gadolinium-enhanced MRI 7 days or less before surgery were prospectively included between August 2011 and December 2012. All patients underwent MR imaging with unenhanced images, enhanced images, and dynamic enhanced images. A radiologist first classified the MRI results as necrotic or viable based on T1- and T2-weighted images only, followed by a second blinded interpretation, this time including analysis of pre- and post-gadolinium administration images and a third blinded interpretation based on the time-intensity curve of the dynamic enhanced study. The standard of reference was the histologic assessment of a cylindrical specimen of the proximal pole obtained during surgery in all patients. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated for unenhanced, enhanced, and dynamic gadolinium-enhanced MRI studies. The sensitivity, specificity, PPV, and NPV were 67, 67, 50, and 80 % for unenhanced images, 83, 100, 100, and 92 for enhanced images, and 83, 92, 83, and 92 for dynamic contrast-enhanced images. Our data are consistent with previously reported data supporting contrast-enhanced MRI for assessment of viability, and showing that dynamic imaging with time-intensity curve analysis does not provide additional predictive value over standard delayed enhanced imaging for acute scaphoid fracture. (orig.)

  11. Dynamic contrast-enhanced MRI examination of atherosclerotic plaques: an animal study using rabbit model

    International Nuclear Information System (INIS)

    Li Mingli; Sun Jie; Chang Xiaoyan; Jin Zhengyu

    2011-01-01

    Objective: The enhanced patterns of atherosclerotic plaque on dynamic contrast- enhanced MRI have not been well studied. The aim of this study was to explore the patterns of plaque enhancement and their underlying mechanism by using dynamic contrast-enhanced MRI (DCE-MRI). Methods: Atherosclerotic plaques were induced in the aorta of 12 New Zealand White rabbits by a combination of endothelial denudation and high-cholesterol diet. Ten to sixteen weeks after surgery, DCE- MRI was performed with a fast spin echo T 1 weighted sequence. Thirty-five phases of images were obtained at 71-second intervals. Gd-DTPA was injected coincident with the third scan via marginal ear vein. Specimens were harvested within 12 hours after imaging for HE staining and CD31 immunohistochemical staining which was used to highlight neo-vessels. Plaque enhancement patterns were studied and compared with histological findings. Signal intensity of each plaque section was normalized to pre-contrast signal intensity of psoas muscle, after which signal intensity versus time curve was drawn. Pearson correlation coefficient was used to reveal association between histological neo-vessel count and descriptive parameters derived from signal intensity versus time curve. Results: Plaques were significantly enhanced by Gd-DTPA. Enhancement patterns could be described as 'fast-in and slow-out'. Differences in patterns of enhancement were observed between tissues, with fibrous tissue enhanced more than lipid aggregation and leukocyte foci. Peak enhancement (1.05±0.30), initial slope (0.82±0.28) and area under the curve at early phase (4.97± 1.67) derived from signal intensity-time curve had significant correlations with neo-vessel count (117.7± 93.3) (r=0.553, 0.468, 0.554 respectively, P<0.05). Conclusions: The enhanced patterns of atherosclerotic plaque by Gd-DTPA were 'fast- in and slow-out'. Neovascularization, increased endothelial permeability and extracellular matrix may be the reasons for

  12. Gadolinium-porphyrins: new potential magnetic resonance imaging contrast agents for melanoma detection

    Directory of Open Access Journals (Sweden)

    Daryoush Shahbazi-Gahrouei

    2006-11-01

    Full Text Available BACKGROUND: Two new porphyrin-based magnetic resonance imaging (MRI contrast agents, Gd-hematoporphyrin (Gd-H and Gd-tetra-carboranylmethoxyphenyl-porphyrin (Gd-TCP were synthesized and tested in nude mice with human melanoma (MM-138 xenografts as new melanoma contrast agents. METHODS: Subcutaneous xenografts of human melanoma cells (MM-138 were studied in 30 (five groups of six nude mice. The effect of different contrast agents (Gd-TCP, Gd-H, GdCl3 and Gd-DTPA on proton relaxation times was measured in tumors and other organs. T1 values, signal enhancement and the Gd concentration for different contrast agent solutions were also investigated. RESULTS: The porphyrin agents showed higher relaxivity compared to the clincal agent, Gd-DTPA. A significant 16% and 21% modification in T1 relaxation time of the water in human melanoma tumors grafted in the nude mice was revealed 24 hours after injection of Gd-TCP and Gd-H, respectively. The percentage of injected Gd localized to the tumor measured by inductively coupled plasma atomic emission spectrometry (ICP-AES was approximately 21% for Gd-TCP and 28% for Gd-H which were higher than that of Gd-DTPA (10%. CONCLUSIONS: The high concentration of Gd in the tumor is indicative of a selective retention of the compounds and indicates that Gd-TCP and Gd-H are promising MR imaging contrast agents for melanoma detection. Gd-porphyrins have considerable promise for further diagnostic applications in magnetic resonance imaging. KEY WORDS: MRI, porphyrin-based contrast agent, hematoporphyrin, melanoma.

  13. Value of fat suppression and dynamic contrast-enhanced MRI in the diagnosis of insulinoma

    International Nuclear Information System (INIS)

    Xu Zengbin; Ruan Lingxiang; Peng Zhiyi; Zhang Minming; Xu Shunliang; Zhang Xidao

    2003-01-01

    Objective: To evaluate the value of fat suppression and dynamic contrast-enhanced MRI in the preoperative localization of insulinoma. Methods: Twelve cases with pathologically proven insulinoma were evaluated with MRI. SE T 1 WI, FSE T 2 WI, T 1 WI and T 2 WI with fat suppression, dynamic contrast-enhanced FMPSPGR sequences were used in MR scanning. Results: On SE T 1 WI, the lesions displayed hypointense in 4, isointense in 8 cases. Lesions showed hyperintense in 4, isointense in 8 cases on FSE T 2 WI. In contrast, 7 cases appeared as hypointense on T 1 WI with fat suppression and 6 cases appeared as hyperintense on T 2 WI with fat suppression. With dynamic contrast-enhanced FMPSPGR sequence 11 of 12 insulinomas were detected. In the arterial phase, the lesions presented as hyperintense with different degrees in 11 cases and isointense in 1 case. 6 cases remained hyperintense and 6 cases were isointense in pancreatic parenchymal and portal phase. 4 lesions were identified only in dynamic enhancement images. The diagnostic accuracy of insulinoma by dynamic contrast-enhanced MRI was 91.7% (11/12) as compared with histological study. Conclusion: The results indicate that dynamic contrast-enhanced MRI is an sensitive and accurate method for the preoperative localization of insulinoma

  14. Comparison of ASL and DCE MRI for the non-invasive measurement of renal blood flow: quantification and reproducibility.

    Science.gov (United States)

    Cutajar, Marica; Thomas, David L; Hales, Patrick W; Banks, T; Clark, Christopher A; Gordon, Isky

    2014-06-01

    To investigate the reproducibility of arterial spin labelling (ASL) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) and quantitatively compare these techniques for the measurement of renal blood flow (RBF). Sixteen healthy volunteers were examined on two different occasions. ASL was performed using a multi-TI FAIR labelling scheme with a segmented 3D-GRASE imaging module. DCE MRI was performed using a 3D-FLASH pulse sequence. A Bland-Altman analysis was used to assess repeatability of each technique, and determine the degree of correspondence between the two methods. The overall mean cortical renal blood flow (RBF) of the ASL group was 263 ± 41 ml min(-1) [100 ml tissue](-1), and using DCE MRI was 287 ± 70 ml min(-1) [100 ml tissue](-1). The group coefficient of variation (CVg) was 18 % for ASL and 28 % for DCE-MRI. Repeatability studies showed that ASL was more reproducible than DCE with CVgs of 16 % and 25 % for ASL and DCE respectively. Bland-Altman analysis comparing the two techniques showed a good agreement. The repeated measures analysis shows that the ASL technique has better reproducibility than DCE-MRI. Difference analysis shows no significant difference between the RBF values of the two techniques. Reliable non-invasive monitoring of renal blood flow is currently clinically unavailable. Renal arterial spin labelling MRI is robust and repeatable. Renal dynamic contrast-enhanced MRI is robust and repeatable. ASL blood flow values are similar to those obtained using DCE-MRI.

  15. Synthesis and characterization of a porphyrazine-Gd(III) MRI contrast agent and in vivo imaging of a breast cancer xenograft model.

    Science.gov (United States)

    Trivedi, Evan R; Ma, Zhidong; Waters, Emily A; Macrenaris, Keith W; Subramanian, Rohit; Barrett, Anthony G M; Meade, Thomas J; Hoffman, Brian M

    2014-01-01

    Porphyrazines (Pz), or tetraazaporphyrins, are being studied for their potential use in detection and treatment of cancer. Here, an amphiphilic Cu-Pz-Gd(III) conjugate has been prepared via azide-alkyne Huisgen cycloaddition or 'click' chemistry between an azide functionalized Pz and alkyne functionalized DOTA-Gd(III) analog for use as an MRI contrast agent. This agent, Cu-Pz-Gd(III), is synthesized in good yield and exhibits solution-phase ionic relaxivity (r1  = 11.5 mM(-1) s(-1)) that is approximately four times higher than that of a clinically used monomeric Gd(III) contrast agent, DOTA-Gd(III). Breast tumor cells (MDA-MB-231) associate with Cu-Pz-Gd(III) in vitro, where significant contrast enhancement (9.336 ± 0.335 contrast-to-noise ratio) is observed in phantom cell pellet MR images. This novel contrast agent was administered in vivo to an orthotopic breast tumor model in athymic nude mice and MR images were collected. The average T1 of tumor regions in mice treated with 50 mg kg(-1) Cu-Pz-Gd(III) decreased relative to saline-treated controls. Furthermore, the decrease in T1 was persistent relative to mice treated with the monomeric Gd(III) contrast agent. An ex vivo biodistribution study confirmed that Cu-Pz-Gd(III) accumulates in the tumors and is rapidly cleared, primarily through the kidneys. Differential accumulation and T1 enhancement by Cu-Pz-Gd(III) in the tumor's core relative to the periphery offer preliminary evidence that this agent would find application in the imaging of necrotic tissue. Copyright © 2014 John Wiley & Sons, Ltd.

  16. Contrast-enhanced color Doppler ultrasound characteristics in hypervascular breast tumors: comparison with MRI

    International Nuclear Information System (INIS)

    Alamo, L.; Fischer, U.

    2001-01-01

    The aim of this study was to evaluate the accuracy of contrast-enhanced color Doppler ultrasound (CE-US) in comparison with contrast-enhanced MR imaging (CE-MRI) in the discrimination of hypervascularized breast tumors. An additional CE-US of the breast was preoperatively performed in 40 patients with a hypervascular breast lesion detected on CE-MRI. The presence of blood flow signals and the morphological characteristics of the vessels in the breast lesions were evaluated pre- and post-contrast administration, as well as the dynamic aspects of the Doppler signal, including time interval to maximum signal enhancement and persistence of the signal enhancement. Twenty-three carcinomas and 17 fibroadenomas were explored. Considering initial signal enhancement > 100 % after the administration of contrast material as a criterion suggesting malignancy, CE-MRI showed a sensitivity of 100 % and a specificity of 76.5 % in the detection of malignant breast tumors. Color Doppler signals were consistently demonstrated in all carcinomas and in 68.7 % of fibroadenomas after the administration of Levovist, with CE-US showing a sensitivity of 95.6 % and a specificity of 5.9 %. Neither the mean number of vessels per tumor, nor the location of vessels, the time to maximum increase of the Doppler signal or the persistence of signal enhancement showed significant differences between benign and malignant lesions. Additional CE-US does not increase the low specificity of MRI in patients with hypervascularized breast tumors. (orig.)

  17. Cardiovascular MRI with ferumoxytol

    International Nuclear Information System (INIS)

    Finn, J.P.; Nguyen, K.-L.; Han, F.; Zhou, Z.; Salusky, I.; Ayad, I.; Hu, P.

    2016-01-01

    The practice of contrast-enhanced magnetic resonance angiography (CEMRA) has changed significantly in the span of a decade. Concerns regarding gadolinium (Gd)-associated nephrogenic systemic fibrosis in those with severely impaired renal function spurred developments in low-dose CEMRA and non-contrast MRA as well as efforts to seek alternative MR contrast agents. Originally developed for MR imaging use, ferumoxytol (an ultra-small superparamagnetic iron oxide nanoparticle), is currently approved by the US Food and Drug Administration for the treatment of iron deficiency anaemia in adults with renal disease. Since its clinical availability in 2009, there has been rising interest in the scientific and clinical use of ferumoxytol as an MR contrast agent. The unique physicochemical and pharmacokinetic properties of ferumoxytol, including its long intravascular half-life and high r 1 relaxivity, support a spectrum of MRI applications beyond the scope of Gd-based contrast agents. Moreover, whereas Gd is not found in biological systems, iron is essential for normal metabolism, and nutritional iron deficiency poses major public health challenges worldwide. Once the carbohydrate shell of ferumoxytol is degraded, the elemental iron at its core is incorporated into the reticuloendothelial system. These considerations position ferumoxytol as a potential game changer in the field of CEMRA and MRI. In this paper, we aim to summarise our experience with the cardiovascular applications of ferumoxytol and provide a brief synopsis of ongoing investigations on ferumoxytol-enhanced MR applications.

  18. Studies on polyaspartamide gadolinium complexes as potential magnetic resonance imaging contrast agents

    International Nuclear Information System (INIS)

    Yan Guoping; Liu Maili; Li Liyun

    2005-01-01

    Purpose: A series of polyaspartamide gadolinium complexes containing pyridoxamine groups were studied as the potential magnetic resonance imaging (MRI) contrast agents for liver enhancement. Methods: These polyaspartamide gadolinium complexes were prepared and evaluated by relaxivity, acute toxicity studies and magnetic resonance imaging of the liver in rats. Results: These polyaspartamide gadolinium complexes have higher relaxation effectiveness than that of the clinically used gadolinium diethylenetriaminepentaacetic acid and possess the low intravenous acute toxicities to Institute for Cancer Research (ICR) mice. Magnetic resonance imaging of the liver in rats indicated that they greatly enhance the contrast of magnetic resonance images and provide prolonged intravascular duration in the liver. Conclusion: These results indicated that the polyaspartamide gadolinium complexes containing pyridoxamine groups could be considered as the appropriate MRI contrast agents for liver enhancement

  19. Value of fusion of PET and MRI in the detection of intra-pelvic recurrence of gynecological tumor: comparison with 18F-FDG contrast-enhanced PET/CT and pelvic MRI.

    Science.gov (United States)

    Kitajima, Kazuhiro; Suenaga, Yuko; Ueno, Yoshiko; Kanda, Tomonori; Maeda, Tetsuo; Makihara, Natsuko; Ebina, Yasuhiko; Yamada, Hideto; Takahashi, Satoru; Sugimura, Kazuro

    2014-01-01

    To evaluate the diagnostic value of retrospective image fusion from pelvic magnetic resonance imaging (MRI) and 18F-fluorodeoxyglucose positron emission tomography (PET) in detecting intra-pelvic recurrence of gynecological tumor. Thirty patients with a suspicion of recurrence of gynecological malignancy underwent inline contrast-enhanced PET/computed tomography (CT) and pelvic contrast-enhanced MRI for restaging. Diagnostic performance about the local recurrence, pelvic lymph node and bone metastasis and peritoneal lesion of PET/low-dose non-enhanced CT (PET/ldCT), PET/full-dose contrast-enhanced CT (PET/ceCT), contrast-enhanced MRI, and retrospective image fusion from PET and MRI (fused PET/MRI) were evaluated by two experienced readers. Final diagnoses were obtained by histopathological examinations, radiological imaging and clinical follow-up for at least 6 months. McNemar test was employed for statistical analysis. Documented positive locally recurrent disease, pelvic lymph node and bone metastases, and peritoneal dissemination were present in 53.3, 26.7, 10.0, and 16.7%, respectively. Patient-based sensitivity for detecting local recurrence, pelvic lymph node and bone metastasis and peritoneal lesion were 87.5, 87.5, 100 and 80.0%, respectively, for fused PET/MRI, 87.5, 62.5, 66.7 and 60.0%, respectively, for contrast-enhanced MRI, 62.5, 87.5, 66.7 and 80.0%, respectively, for PET/ceCT, and 50.0, 87.5, 66.7 and 60.0%, respectively, for PET/ldCT. The sensitivity of diagnosing local recurrence by fused PET/MRI was significantly better than that of PET/ldCT (p=0.041). The patient-based sensitivity, specificity and accuracy for the detection of intra-pelvic recurrence/metastasis were 91.3, 100 and 93.3% for fused PET/MRI, 82.6, 100 and 86.7% for contrast-enhanced MRI, 82.6, 100 and 86.7% for PET/ceCT and 78.3, 85.7 and 80.0% for PET/ldCT. Fused PET/MRI combines the individual advantages of MRI and PET, and is a valuable technique for assessment of intra

  20. Preliminary evaluation of data mining on non-masslike enhancement of breast lesions on MRI

    International Nuclear Information System (INIS)

    Tan Hongna; Li Ruimin; Wang Peihua; Tang Feng; Mao Jian; Shen Xigang; Qian Min; Gu Yajia; Su Yi; Chen Ying

    2009-01-01

    Objective: To evaluate the diagnostic values of the breast imaging reporting and data system-MRI (BI-RADS-MRI)description about non-masslike enhancement by data mining. Methods: Fifty- five patients with non-masslike enhancement lesions showed on breast contrast-enhanced MRI were evaluated using two data mining algorithms (Logistic regression and decision tree) and 10-fold cross-validation methods. Results: There were 28 malignant and 27 benign lesions. The most frequent findings of the malignant lesions were clustered ring enhancement and clumped enhancement [12 and 4 lesions, respectively; 84.2% (16/19) in decision trees, partial regression coefficients in Logistic model were 2.128 and 1.723, respectively], whereas homogenous, stippled, reticular internal and linear ductal enhancement were the most frequent findings in benign lesions [4,9,1 and 7 lesions, respectively; 72.4% (21/29) in decision tree, partial regression coefficients in Logistic model were 0.357 (homogenous), 1.861 (stippled) and 18.870(reticular), respectively]. 10-fold cross-validation indicated that decision tree (C5.0) achieved an accuracy of 69.3% with a sensitivity of 66.7% and a specificity of 71.7% in comparison to the Logistic regression model with an accuracy of 57.0%, a sensitivity of 43.3% and a specificity of 71.7%. Conclusions: The diagnosis efficacy of non-masslike enhancement interpretation according to BI-RADS-MRI is not high. It is very important to find more potential features of non-masslike enhancement to improve the diagnosis accuracy. (authors)

  1. The role of contrast-enhanced digital subtraction MRI in the diagnosis of vertebral metastasic tumors

    International Nuclear Information System (INIS)

    Xiao Yeyu; Yang Jun; Qi Weili; Liu Qize; Hong Bikai; Wu Renhua

    2008-01-01

    Objective: To evaluate the contrast-enhanced digital subtraction MRI in the diagnosis of vertebral metastasic tumors. Methods 66 vertebral metastasic tumors in 43 patients were examined with conventional MRI (T 1 WI, STIR and Contrast-enhanced T 1 WI) and contrast-enhanced digital subtraction MR imaging. All lesions were histologically proved. The quantity and characteristic imaging signs (including spiculation, bull eye sign and irregular edge) of lesions were detected separately by different sequences. K independent samples test was used. Results: The detection rates of 35 vertebral metastasic tumors with vertebral morphological changes were same in all MR sequences. But in the other 31 lesions without vertebral morphological changes, the detection rates were different and STIR was the highest in all sequences. Contrast-enhanced digital subtraction MRI was more sensitive than all the conventional MR sequences in finding characteristic imaging signs with statistically significant differences. Conclusion: Contrast enhanced subtraction MRI is an useful and convenient technique which has great value in finding vertebral metastasic tumors and depicting the characteristic imaging signs. (authors)

  2. Experimental study of Gadofluorine M enhancement in early diagnosis of radiation brain injury by MRI in rats

    International Nuclear Information System (INIS)

    Bai Shoumin; Liao Chengde; Guo Ruomi; Huang Ying; Liang Biling; Shen Jun; Lu Taixiang

    2011-01-01

    Objective: To explore the value of Gadofluorine M, a novel MRI enhancement agent,in the diagnosis the early radiation brain injury. Methods: Seventy-two Wistar rats were randomly divided into 5 equal groups. To establish the radiation injury model, the rat's posterior brain was irradiated with 0 (blank controls), 25, 35, 45, 55, and 65 Gy, respectively. After irradiation MR plain scanning and Gadofluorine M enhancement scanning (after the T1WI and T2WI scanning Gf at the dosage of 0.1 mmol/kg was injected intravenously and scanning was performed again 12 h later) were performed once a week for 8 weeks. Another 12 rats were randomly divided into 2 equal groups to exposure to 55 and 65 Gy, respectively, and MR scanning was performed once a week for 8 weeks since the third week after MR. After T1WI and T2WI scanning Gd-DTPA was injected intravenously, MR was conducted again 30 min later, and Gf was injected intravenously (Gd-DTPA enhancement and Gf enhancement contrast). The MR image and the pixel count were compared. Since the third week 2 rats from the Gf enhancement scanning group and 1 rat from the Gd-DTPA enhancement and Gf enhancement contrast were killed after MR with their brains taken out to undergo pathological examination. Results: No abnormal signal changes were found in MRI in 25 and 35 Gy groups within 2 months after irradiation. A high signal in the Gf enhancement T1WI image was found in 45, 55, and 65 Gy groups within the period of 4-6 weeks after radiation. The signal intensity was significantly higher than that of the control, 25, and 35 Gy groups (F=2.15, P<0.05). The emerge time of this signal was negatively correlated with the dose of radiation (r =-0.62, P<0.05). When there was no obvious change was found by Gd-DTPA enhancement, a high signal representing change of injury could be found in Gf enhancement in the same rat. The signal intensity was significantly enhanced in Gf enhancement compared to the Gd-DTPA enhancement (F=2.74, P<0

  3. Hepatoblastoma imaging with gadoxetate disodium-enhanced MRI - typical, atypical, pre- and post-treatment evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, Arthur B. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); Medical College of Wisconsin, Department of Radiology, Milwaukee, WI (United States); Children' s Hospital of Wisconsin, Department of Pediatric Imaging, Milwaukee, WI (United States); Towbin, Alexander J.; Podberesky, Daniel J. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); Geller, James I. [Cincinnati Children' s Hospital Medical Center, Department of Hematology/Oncology, Cincinnati, OH (United States)

    2012-07-15

    Gadoxetate disodium (Gd-EOB-DTPA) is a hepatobiliary MRI contrast agent widely used in adults for characterization of liver tumors and increasingly used in children. Hepatoblastoma is the most common primary hepatic malignancy of childhood. In this review, we describe our experience with this agent both before and after initiating therapy in children with hepatoblastoma. (orig.)

  4. Connectivity-based fixel enhancement: Whole-brain statistical analysis of diffusion MRI measures in the presence of crossing fibres

    Science.gov (United States)

    Raffelt, David A.; Smith, Robert E.; Ridgway, Gerard R.; Tournier, J-Donald; Vaughan, David N.; Rose, Stephen; Henderson, Robert; Connelly, Alan

    2015-01-01

    In brain regions containing crossing fibre bundles, voxel-average diffusion MRI measures such as fractional anisotropy (FA) are difficult to interpret, and lack within-voxel single fibre population specificity. Recent work has focused on the development of more interpretable quantitative measures that can be associated with a specific fibre population within a voxel containing crossing fibres (herein we use fixel to refer to a specific fibre population within a single voxel). Unfortunately, traditional 3D methods for smoothing and cluster-based statistical inference cannot be used for voxel-based analysis of these measures, since the local neighbourhood for smoothing and cluster formation can be ambiguous when adjacent voxels may have different numbers of fixels, or ill-defined when they belong to different tracts. Here we introduce a novel statistical method to perform whole-brain fixel-based analysis called connectivity-based fixel enhancement (CFE). CFE uses probabilistic tractography to identify structurally connected fixels that are likely to share underlying anatomy and pathology. Probabilistic connectivity information is then used for tract-specific smoothing (prior to the statistical analysis) and enhancement of the statistical map (using a threshold-free cluster enhancement-like approach). To investigate the characteristics of the CFE method, we assessed sensitivity and specificity using a large number of combinations of CFE enhancement parameters and smoothing extents, using simulated pathology generated with a range of test-statistic signal-to-noise ratios in five different white matter regions (chosen to cover a broad range of fibre bundle features). The results suggest that CFE input parameters are relatively insensitive to the characteristics of the simulated pathology. We therefore recommend a single set of CFE parameters that should give near optimal results in future studies where the group effect is unknown. We then demonstrate the proposed method

  5. Does the degree of background enhancement in breast MRI affect the detection and staging of breast cancer?

    International Nuclear Information System (INIS)

    Uematsu, Takayoshi; Kasami, Masako; Watanabe, Junichiro

    2011-01-01

    The purpose of this study was to assess the influence of background enhancement on the detection and staging of breast cancer using MRI as an adjunct to mammography or ultrasound. One hundred forty-six bilateral breast MRI examinations were evaluated to assess the extent of a known primary tumour and to problem solve after mammography or ultrasound without adjusting for the phase in the patients' menstrual cycle. The background enhancement was classified into four categories by visual evaluation: minimal, mild, moderate and marked. In total, 131 histologically confirmed abnormal cases (104 malignant and 27 benign) and 15 normal cases were included in the analysis. There was no tumour size-related bias between the groups (p = 0.522). For the primary index tumour, the sensitivities of MRI with minimal/mild and moderate/marked background enhancement were 100% and 76% (p = 0.001), respectively. Thus, the degree of background enhancement did not affect the specificity. For evaluating tumour extent (n = 104), the accuracy of MRI with moderate/marked background enhancement (52%) was significantly lower than that with minimal/mild background enhancement (84%; p = 0.002). The degree of background enhancement affected the detection and staging of breast cancer using MRI. (orig.)

  6. Detection of hepatocellular carcinoma in gadoxetic acid-enhanced MRI and diffusion-weighted MRI with respect to the severity of liver cirrhosis

    International Nuclear Information System (INIS)

    Kim, Ah Yeong; Kim, Young Kon; Lee, Min Woo; Park, Min Jung; Hwang, Jiyoung; Lee, Mi Hee; Lee, Jae Won

    2012-01-01

    Background As gadoxetic acid-enhanced magnetic resonance imaging (MRI) and diffusion-weighted imaging (DWI) have been widely used for the evaluation of hepatocellular carcinoma (HCC), it is clinically relevant to determine the diagnostic efficacy of gadoxetic acid-enhanced MRI and DWI for detection of HCCs with respect to the severity of liver cirrhosis. Purpose To compare the diagnostic accuracy and sensitivity of gadoxetic acid-enhanced MRI and DWI for detection of HCCs with respect to the severity of liver cirrhosis. Material and Methods A total of 189 patients with 240 HCCs (≤3.0 cm) (Child-Pugh A, 81 patients with 90 HCCs; Child-Pugh B, 65 patients with 85 HCCs; Child-Pugh C, 43 patients with 65 HCCs) underwent DWI and gadoxetic acid-enhanced MRI at 3.0 T. A gadoxetic acid set (dynamic and hepatobiliary phase plus T2-weighted image) and DWI set (DWI plus unenhanced MRIs) for each Child-Pugh class were analyzed independently by two observers for detecting HCCs using receiver-operating characteristic analysis. The diagnostic accuracy and sensitivity were calculated. Results There was a trend toward decreased diagnostic accuracy for gadoxetic acid and DWI set with respect to the severity of cirrhosis (Child-Pugh A [mean 0.974, 0.961], B [mean 0.904, 0.863], C [mean 0.779, 0.760]). For both observers, the sensitivities of both image sets were highest in Child-Pugh class A (mean 95.6%, 93.9%), followed by class B (mean 83.0%, 77.1%), and class C (mean 60.6%, 60.0%) (P < 0.05). Conclusion In HCC detection, the diagnostic accuracy and sensitivity for gadoxetic acid-enhanced MRI and DWI were highest in Child-Pugh class A, followed by Child-Pugh class B, and Child-Pugh class C, indicating a tendency toward decreased diagnostic capability with the severity of cirrhosis

  7. Gadolinium-DTPA enhancement of symptomatic nerve roots in MRI of the lumbar spine

    Energy Technology Data Exchange (ETDEWEB)

    Tyrrell, P.N.M.; Cassar-Pullicino, V.N.; McCall, I.W. [Department of Diagnostic Imaging, The Institute of Orthopaedics, The Robert Jones and Agnes Hunt Orthopaedic and District Hospital NHS Trust, Oswestry, Shropshire SY10 7AG (United Kingdom)

    1998-02-01

    Disc prolapse presenting with sciatica may be associated with enhancement of the symptomatic nerve root following magnetic resonance imaging (MRI) with intravenous gadolinium (Gd)-DTPA. Previous studies have shown, however, that this does not occur in all cases. The aim of this study was to assess the incidence of nerve root enhancement in patients with sciatica and disc prolapse and to try to identify any specific features that might be associated with the phenomenon. A total of 227 patients presenting with low back pain and/or sciatica underwent a MRI study of the lumbar spine with intravenous contrast enhancement. Nineteen of 81 (23.5 %) patients with disc prolapse demonstrated nerve root enhancement. Nerve root enhancement had a highly significant association with sequestrated disc lesions (13/19, 68 %; P < 0.0005), and was primarily seen in the symptomatic ipsilateral nerve root (16/19, 84 %). The sensitivity of nerve root enhancement associated with disc prolapse was 23.5 % with a specificity of 95.9 %, a positive predictive value of 76 % and a negative predictive value of 69.3 %. Nerve root enhancement may be indicative of the symptomatic level but its poor sensitivity negates the routine use of Gd-DTPA in MRI for sciatica. (orig.) With 4 figs., 1 tab., 37 refs.

  8. Gadolinium-DTPA enhancement of symptomatic nerve roots in MRI of the lumbar spine

    International Nuclear Information System (INIS)

    Tyrrell, P.N.M.; Cassar-Pullicino, V.N.; McCall, I.W.

    1998-01-01

    Disc prolapse presenting with sciatica may be associated with enhancement of the symptomatic nerve root following magnetic resonance imaging (MRI) with intravenous gadolinium (Gd)-DTPA. Previous studies have shown, however, that this does not occur in all cases. The aim of this study was to assess the incidence of nerve root enhancement in patients with sciatica and disc prolapse and to try to identify any specific features that might be associated with the phenomenon. A total of 227 patients presenting with low back pain and/or sciatica underwent a MRI study of the lumbar spine with intravenous contrast enhancement. Nineteen of 81 (23.5 %) patients with disc prolapse demonstrated nerve root enhancement. Nerve root enhancement had a highly significant association with sequestrated disc lesions (13/19, 68 %; P < 0.0005), and was primarily seen in the symptomatic ipsilateral nerve root (16/19, 84 %). The sensitivity of nerve root enhancement associated with disc prolapse was 23.5 % with a specificity of 95.9 %, a positive predictive value of 76 % and a negative predictive value of 69.3 %. Nerve root enhancement may be indicative of the symptomatic level but its poor sensitivity negates the routine use of Gd-DTPA in MRI for sciatica. (orig.)

  9. Novel PCA-VIP scheme for ranking MRI protocols and identifying computer-extracted MRI measurements associated with central gland and peripheral zone prostate tumors.

    Science.gov (United States)

    Ginsburg, Shoshana B; Viswanath, Satish E; Bloch, B Nicolas; Rofsky, Neil M; Genega, Elizabeth M; Lenkinski, Robert E; Madabhushi, Anant

    2015-05-01

    To identify computer-extracted features for central gland and peripheral zone prostate cancer localization on multiparametric magnetic resonance imaging (MRI). Preoperative T2-weighted (T2w), diffusion-weighted imaging (DWI), and dynamic contrast-enhanced (DCE) MRI were acquired from 23 men with confirmed prostate cancer. Following radical prostatectomy, the cancer extent was delineated by a pathologist on ex vivo histology and mapped to MRI by nonlinear registration of histology and corresponding MRI slices. In all, 244 computer-extracted features were extracted from MRI, and principal component analysis (PCA) was employed to reduce the data dimensionality so that a generalizable classifier could be constructed. A novel variable importance on projection (VIP) measure for PCA (PCA-VIP) was leveraged to identify computer-extracted MRI features that discriminate between cancer and normal prostate, and these features were used to construct classifiers for cancer localization. Classifiers using features selected by PCA-VIP yielded an area under the curve (AUC) of 0.79 and 0.85 for peripheral zone and central gland tumors, respectively. For tumor localization in the central gland, T2w, DCE, and DWI MRI features contributed 71.6%, 18.1%, and 10.2%, respectively; for peripheral zone tumors T2w, DCE, and DWI MRI contributed 29.6%, 21.7%, and 48.7%, respectively. PCA-VIP identified relatively stable subsets of MRI features that performed well in localizing prostate cancer on MRI. © 2014 Wiley Periodicals, Inc.

  10. Oxygen-enhanced MRI vs. quantitatively assessed thin-section CT: Pulmonary functional loss assessment and clinical stage classification of asthmatics

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Yoshiharu, E-mail: yosirad@kobe-u.ac.jp [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017 (Japan); Koyama, Hisanobu [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017 (Japan); Matsumoto, Keiko [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017 (Japan); Department of Radiology, University of Yamanashi, 1100, Shimogatou, Chuo, Yamanashi, 409-3898 (Japan); Onishi, Yumiko [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017 (Japan); Nogami, Munenobu [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017 (Japan); Division of Image-Based Medicine, Institute of Biomedical Research and Innovation, 2-2 Minatojima Minamimachi Chuo-ku, Kobe, Hyogo, 650-0047 (Japan); Takenaka, Daisuke; Matsumoto, Sumiaki; Sugimura, Kazuro [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017 (Japan)

    2011-01-15

    Purpose: The purpose of this study was to prospectively compare the efficacy of oxygen-enhanced MR imaging (O{sub 2}-enhanced MRI) and CT for pulmonary functional loss assessment and clinical stage classification of asthmatics. Materials and methods: O{sub 2}-enhanced MRI, CT and %FEV{sub 1} measurement were used 34 consecutive asthmatics classified into four stages ('Mild Intermittent [n = 7]', 'Mild Persistent [n = 8], 'Moderate Persistent [n = 14]' and 'Severe Persistent [n = 5]'). Relative enhancement ratio maps for every subject were generated, and determine mean relative enhancement ratios (MRERs). Mean lung density (MLD) and the airway wall area (WA) corrected by body surface area (WA/BSA) were also measured on CT. To compare the efficacy of the two methods for pulmonary functional loss assessment, all indexes were correlated with %FEV{sub 1}. To determine the efficacy of the two methods for clinical stage classification, all parameters for the four clinical stages were statistically compared. Results: %FEV{sub 1} showed fair or moderate correlation with all parameters (0.15 {<=} r{sup 2} {<=} 0.30, p < 0.05). WA, WA/BSA and MRER of the 'Severe Persistent' group were significantly larger than those of 'Mild Intermittent' and 'Mild Persistent' groups (p < 0.05), and MRER of the 'Moderate Persistent' group significantly lower than that of the 'Mild Intermittent' group (p < 0.05). Conclusion: O{sub 2}-enhanced MRI is as effective as CT for pulmonary functional loss assessment and clinical stage classification of asthmatics.

  11. Gadolinium-DTPA enhanced MRI in myocardial infarction. An experimental and clinical study

    Energy Technology Data Exchange (ETDEWEB)

    Dijkman, P.R.M. van

    1991-10-30

    This thesis focuses on one aspect of cardiac magnetic resonance imaging (MRI) for noninvasive screening of ischemic heart disease: the identification and quantification of acutely infarcted myocardium using gadolineum-diethylene triamine pentaacetic acid (Gd-DTPA) enhanced T1-weighted MRI in a clinical and experimental setting. (author). 296 refs.; 34 figs.; 4 tabs.

  12. New strategies to prolong the in vivo life span of iron-based contrast agents for MRI.

    Directory of Open Access Journals (Sweden)

    Antonella Antonelli

    Full Text Available Superparamagnetic iron oxide (SPIO and ultra small superparamagnetic iron oxide (USPIO nanoparticles have been developed as magnetic resonance imaging (MRI contrast agents. Iron oxide nanoparticles, that become superparamagnetic if the core particle diameter is ~ 30 nm or less, present R1 and R2 relaxivities which are much higher than those of conventional paramagnetic gadolinium chelates. Generally, these magnetic particles are coated with biocompatible polymers that prevent the agglomeration of the colloidal suspension and improve their blood distribution profile. In spite of their potential as MRI blood contrast agents, the biomedical application of iron oxide nanoparticles is still limited because of their intravascular half-life of only few hours; such nanoparticles are rapidly cleared from the bloodstream by macrophages of the reticulo-endothelial system (RES. To increase the life span of these MRI contrast agents in the bloodstream we proposed the encapsulation of SPIO nanoparticles in red blood cells (RBCs through the transient opening of cell membrane pores. We have recently reported results obtained by applying our loading procedure to several SPIO nanoparticles with different chemical physical characteristics such as size and coating agent. In the current investigation we showed that the life span of iron-based contrast agents in the mice bloodstream was prolonged to 12 days after the intravenous injection of murine SPIO-loaded RBCs. Furthermore, we developed an animal model that implicates the pretreatment of animals with clodronate to induce a transient suppression of tissue macrophages, followed by the injection of human SPIO-loaded RBCs which make it possible to encapsulate nanoparticle concentrations (5.3-16.7 mM Fe higher than murine SPIO-loaded RBCs (1.4-3.55 mM Fe. The data showed that, when human RBCs are used as more capable SPIO nanoparticle containers combined with a depletion of tissue macrophages, Fe concentration in

  13. Function-specific and Enhanced Brain Structural Connectivity Mapping via Joint Modeling of Diffusion and Functional MRI.

    Science.gov (United States)

    Chu, Shu-Hsien; Parhi, Keshab K; Lenglet, Christophe

    2018-03-16

    A joint structural-functional brain network model is presented, which enables the discovery of function-specific brain circuits, and recovers structural connections that are under-estimated by diffusion MRI (dMRI). Incorporating information from functional MRI (fMRI) into diffusion MRI to estimate brain circuits is a challenging task. Usually, seed regions for tractography are selected from fMRI activation maps to extract the white matter pathways of interest. The proposed method jointly analyzes whole brain dMRI and fMRI data, allowing the estimation of complete function-specific structural networks instead of interactively investigating the connectivity of individual cortical/sub-cortical areas. Additionally, tractography techniques are prone to limitations, which can result in erroneous pathways. The proposed framework explicitly models the interactions between structural and functional connectivity measures thereby improving anatomical circuit estimation. Results on Human Connectome Project (HCP) data demonstrate the benefits of the approach by successfully identifying function-specific anatomical circuits, such as the language and resting-state networks. In contrast to correlation-based or independent component analysis (ICA) functional connectivity mapping, detailed anatomical connectivity patterns are revealed for each functional module. Results on a phantom (Fibercup) also indicate improvements in structural connectivity mapping by rejecting false-positive connections with insufficient support from fMRI, and enhancing under-estimated connectivity with strong functional correlation.

  14. SPIO-Enhanced MRI Findings of Well-Differentiated Hepatocellular Carcinomas: Correlation with MDCT Findings

    International Nuclear Information System (INIS)

    Kim, Seong Hyun; Lee, Won Jae; Lim, Hyo K.; Park, Cheol Keun

    2009-01-01

    This study was designed to assess superparamagnetic iron oxide (SPIO)-enhanced MRI findings of well-differentiated hepatocellular carcinomas (HCCs) correlated with their multidetector-row CT (MDCT) findings. Seventy-two patients with 84 pathologically proven well-differentiated HCCs underwent triple-phase MDCT and SPIO-enhanced MRI at a magnetic field strength of 1.5 Tesla (n = 49) and 3.0 Tesla (n = 23). Two radiologists in consensus retrospectively reviewed the CT and MR images for attenuation value and the signal intensity of each tumor. The proportion of hyperintense HCCs as depicted on SPIO-enhanced T2- or T2*-weighted images were compared in terms of tumor size ( 1 cm), five CT attenuation patterns based on arterial and equilibrium phases and magnetic field strength, by the use of univariate and multivariate analyses. Seventy-eight (93%) and 71 (85%) HCCs were identified by CT and on SPIO-enhanced T2- and T2*-weighted images, respectively. For the CT attenuation pattern, one (14%) of seven isodense-isodense, four (67%) of six hypodense- hypodense, four (80%) of five isodense-hypodense, 14 (88%) of 16 hyperdense- isodense and 48 (96%) of 50 hyperdense-hypodense HCCs were hyperintense (Cochran-Armitage test for trend, p 0.05). Most well-differentiated HCCs show hyperintensity on SPIOenhanced MRI, although the lesions show various CT attenuation patterns. The CT attenuation pattern is the main factor that affects the proportion of hyperintense well-differentiated HCCs as depicted on SPIO-enhanced MRI

  15. MRI monitoring of tumor response following angiogenesis inhibition in an experimental human breast cancer model

    International Nuclear Information System (INIS)

    Turetschek, Karl; Preda, Anda; Shames, David M.; Novikov, Viktor; Roberts, Timothy P.L.; Fu, Yanjun; Brasch, Robert C.; Floyd, Eugenia; Carter, Wayne O.; Wood, Jeanette M.

    2003-01-01

    The aim of this study was to evaluate the potential of dynamic magnetic resonance imaging (MRI) enhanced by macromolecular contrast agents to monitor noninvasively the therapeutic effect of an anti-angiogenesis VEGF receptor kinase inhibitor in an experimental cancer model. MDA-MB-435, a poorly differentiated human breast cancer cell line, was implanted into the mammary fat pad in 20 female homozygous athymic rats. Animals were assigned randomly to a control (n=10) or drug treatment group (n=10). Baseline dynamic MRI was performed on sequential days using albumin-(GdDTPA) 30 (6.0 nm diameter) and ultrasmall superparamagnetic iron oxide (USPIO) particles (30 nm diameter). Subjects were treated either with PTK787/ZK 222584, a VEGF receptor tyrosine kinase inhibitor, or saline given orally twice daily for 1 week followed by repeat MRI examinations serially using each contrast agent. Employing a unidirectional kinetic model comprising the plasma and interstitial water compartments, tumor microvessel characteristics including fractional plasma volume and transendothelial permeability (K PS ) were estimated for each contrast medium. Tumor growth and the microvascular density, a histologic surrogate of angiogenesis, were also measured. Control tumors significantly increased (P PS ) based on MRI assays using both macromolecular contrast media. In contrast, tumor growth was significantly reduced (P PS values declined slightly. Estimated values for the fractional plasma volume did not differ significantly between treatment groups or contrast agents. Microvascular density counts correlated fairly with the tumor growth rate (r=0.64) and were statistically significant higher (P PS ), using either of two macromolecular contrast media, were able to detect effects of treatment with a VEGF receptor tyrosine kinase inhibitor on tumor vascular permeability. In a clinical setting such quantitative MRI measurements could be used to monitor tumor anti-angiogenesis therapy. (orig.)

  16. Sturge-Weber syndrome with no leptomeningeal enhancement on MRI

    Energy Technology Data Exchange (ETDEWEB)

    Fischbein, N.J.; Barkovich, A.J. [Department of Radiology, San Francisco, CA (United States); Wu, Y.; Berg, B.O. [Department Pediatric Neurology, University of California, San Francisco, California (United States)

    1998-03-01

    Sturge-Weber syndrome (SWS) is a neurocutaneous syndrome characterized by a facial nevus flammeus associated with seizures, developmental delay, and, often, with hemiparesis and hemianopia. On MRI, the most characteristic finding has been reported to be leptomeningeal enhancement, believed to represent leakage of contrast medium through the anomalous pial vessels that characterize the disease. We present a case of SWS with no evidence of leptomeningeal enhancement. This case illustrates that leptomeningeal enhancement need not be present in SWS, and the absence of this characteristic finding does not preclude the diagnosis. (orig.) With 2 figs.

  17. Gd-HOPO Based High Relaxivity MRI Contrast Agents

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Ankona; Raymond, Kenneth

    2008-11-06

    Tris-bidentate HOPO-based ligands developed in our laboratory were designed to complement the coordination preferences of Gd{sup 3+}, especially its oxophilicity. The HOPO ligands provide a hexadentate coordination environment for Gd{sup 3+} in which all he donor atoms are oxygen. Because Gd{sup 3+} favors eight or nine coordination, this design provides two to three open sites for inner-sphere water molecules. These water molecules rapidly exchange with bulk solution, hence affecting the relaxation rates of bulk water olecules. The parameters affecting the efficiency of these contrast agents have been tuned to improve contrast while still maintaining a high thermodynamic stability for Gd{sup 3+} binding. The Gd- HOPO-based contrast agents surpass current commercially available agents ecause of a higher number of inner-sphere water molecules, rapid exchange of inner-sphere water molecules via an associative mechanism, and a long electronic relaxation time. The contrast enhancement provided by these agents is at least twice that of commercial contrast gents, which are based on polyaminocarboxylate ligands.

  18. Comparison of neuroendocrine tumor detection and characterization using DOTATOC-PET in correlation with contrast enhanced CT and delayed contrast enhanced MRI

    International Nuclear Information System (INIS)

    Giesel, F.L.; Kratochwil, C.; Mehndiratta, A.; Wulfert, S.; Moltz, J.H.; Zechmann, C.M.; Kauczor, H.U.; Haberkorn, U.; Ley, S.

    2012-01-01

    Purpose: We evaluated the rate of successful characterization of gastroenteropancreatic neuroendocrine tumors (NETs) present with an increased somatostatin receptor, comparing CE-CT with CE-MRI, each in correlation with DOTATOC-PET. Methods and materials: 8 patients with GEP-NET were imaged using CE-MRI (Gd-EOB-DTPA), CE-CT (Imeron 400) and DOTATOC-PET. Contrast-enhancement of normal liver-tissue and metastasis was quantified with ROI-technique. Tumor delineation was assessed with visual-score in blind-read-analysis by two experienced radiologists. Results: Out of 40 liver metastases in patients with NETs, all were detected by CE-MRI and the lesion extent could be adequately assessed, whereas CT failed to detect 20% of all metastases. The blind-read-score of CT in arterial and portal phase was median −0.65 and −1.4, respectively, and 2.7 for delayed-MRI. The quantitative ROI-analysis presented an improved contrast-enhancement-ratio with a median of 1.2, 1.6 and 3.3 for CE-CT arterial, portal-phase and delayed-MRI respectively. Conclusion: Late CE-MRI was superior to CE-CT in providing additionally morphologic characterization and exact lesion extension of hepatic metastases from neuroendocrine tumor detected with DOTATOC-PET. Therefore, late enhanced Gd-EOB-DTPA-MRI seems to be the adequate imaging modality for combination with DOTATOC-PET to provide complementary (macroscopic and molecular) tumor characterization in hepatic metastasized NETs

  19. Enhanced MRI in carpal tunnel syndrome

    International Nuclear Information System (INIS)

    Hayakawa, Katsuhiko; Nakane, Takashi; Kobayashi, Shigeru; Asai, Takahiro; Wada, Kunio; Yoshizawa, Hidezo

    1998-01-01

    In this study, we performed contrast-enhanced MRI in patients with idiopathic carpal tunnel syndrome and examined the morphologic change in the carpal tunnel. In the transverse section of the opening of carpal tunnel where scaphoid and pisiform bones are figured out, we measured and examined 4 items, viz. the soft carpal tunnel volume, flat rate of median nerve, position of median nerve and thickness of palmer ligaments composing the base of carpal tunnel, with an image analyzer attached to the MRI apparatus. Whereas the average carpal tunnel volume in 12 hands of normal controls was 166.8 mm 2 , that in 74 hands of carpal tunnel syndrome was 207.2 mm 2 , a significant increase compared with the normal controls. The flat rate of median nerve was 46% in the controls, but that was 37.5% in the carpal tunnel syndrome, a significant flattening was noted. We connected the peaks of the scaphoid node and pisiform bone with a line and named it standard line. When we observed the position of median nerve in the carpal tunnel, the nerve in 9 of 12 hands, 75%, lay below the standard line in the controls, but the nerve in 65 of 74 hands, 87.8%, lay above the standard line in the carpal tunnel syndrome, clearly showing that the median nerve had shifted to the palmar side. Regarding these morphologic changes of the carpal tunnel, the internal pressure of the carpal tunnel is considered to be raised with swelling of the soft tissues mainly composing the inside of carpal tunnel, thus the area of cross section of carpal tunnel to be increased, the median nerve to be shifted to the palmar side and the median nerve to be compressed by the transverse carpal ligament at that time. Although we can observe these morphological changes readily in MRI images, these images show only the results of carpal tunnel syndrome after all, and do not specify the direct causes. However, we believe that these facts are important factors in the manifestation of idiopathic carpal tunnel syndrome. (author)

  20. Impact of menopausal status on background parenchymal enhancement and fibroglandular tissue on breast MRI

    International Nuclear Information System (INIS)

    King, Valencia; Gu, Yajia; Kaplan, Jennifer B.; Morris, Elizabeth A.; Brooks, Jennifer D.; Pike, Malcolm C.

    2012-01-01

    To evaluate the effect of menopausal status on the background parenchymal enhancement (BPE) and amount of fibroglandular tissue (FGT) on breast MRI. Retrospective review identified 1,130 women who underwent screening breast MRI between July and November 2010. In 28 of these women, breast MRI was performed both at one time point while pre- and one time point while post-menopausal (median interval 49 months). Two independent readers blinded to menopausal status used categorical scales to rate BPE (minimal/mild/moderate/marked) and FGT (fatty/scattered/heterogeneously dense/dense). Consensus was reached when there was disagreement. The sign test was used to assess changes in rating categories, and the Spearman rank and Fisher's exact tests were used to measure correlations and associations between variables. Significant proportions of women demonstrated decreases in BPE and FGT on post-menopausal breast MRI (P = 0.0001 and P = 0.0009). BPE category was unchanged in 39 % (11/28) and decreased in 61 % (17/28) of women. FGT category was unchanged in 61 % (17/28) and decreased in 39 % (11/28) of women. Age, reason for menopause, or interval between MRIs had no significant impact on changes in BPE and FGT. On MRI, BPE, and FGT decrease after menopause in significant proportions of women; BPE decreases more than FGT. (orig.)

  1. Postoperative meningeal enhancement on MRI in children with brain neoplasms

    International Nuclear Information System (INIS)

    Lee, Min Hee; Han, Bokyung Kim; Yoon, Hye Kyung; Shin, Hyung Jin

    2000-01-01

    The meninges composed of the dura, the arachnoid and the pia are significant sites of blood-brain barrier. Physical disruption of the integrity of the meninges from a variety of causes including surgery results in various patterns of meningeal enhancement on contrast enhanced MR images. It is important to distinguish normal reactive or benign postoperative enhancement from more serious leptomeningeal metastasis or infection, particularly in children with intracranial neoplasms. We present various patterns of meningeal enhancement on MRI in children following surgery for brain neoplasms. (author)

  2. Carpal angles as measured on CT and MRI: can we simply translate radiographic measurements?

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Stephanie; Ghumman, Simranjit S.; Moser, Thomas P. [Hopital Notre-Dame (CHUM), Department of Radiology, Centre Hospitalier de l' Universite de Montreal, Montreal, QC (Canada); Ladouceur, Martin [Research Center CHUM, Montreal, QC (Canada)

    2014-12-15

    To determine the reliability of carpal angles measured on CT and MRI compared to radiography and assess if these measurements are interchangeable. Our institutional ethic research committee approved this study. For this retrospective study, two independent observers measured the scapholunate (SL), capitolunate (CL), radiolunate (RL), and radioscaphoid (RS) angles on 21 sets of exams, with each set including a radiograph, CT, and MRI of the same wrist. Inter- and intra-observer agreements were evaluated with the intraclass correlation coefficient (ICC). Linear mixed models and two-way contingency tables were used to determine if the angles measured on cross-sectional modalities were significantly different from those obtained on radiography. Inter-observer agreement was strong (ICC >0.8) for all angles, except for the RL angle measured on MRI (ICC 0.68). Intra-observer agreement was also strong for all angles, except for the CL angle measured on CT (ICC 0.66). SL angles measured on CT and MRI were not statistically different from those measured on radiographs (p = 0.37 and 0.36, respectively), unlike CL, RL, and RS angles (p < 0.05). Accuracy between modalities varied between 76 and 86 % for the SL angle and ranged between 43 and 76 % for the other angles. CL, RL, and RS angles showed large intermodality variability. Therefore, their measurements on CT or MRI could potentially lead to miscategorization. Conversely, our data showing no significant difference between modalities, SL angle could be measured on CT and MRI to assess wrist instability with a lower risk of error. (orig.)

  3. Does the degree of background enhancement in breast MRI affect the detection and staging of breast cancer?

    Energy Technology Data Exchange (ETDEWEB)

    Uematsu, Takayoshi [Shizuoka Cancer Center Hospital, Breast Imaging and Breast Intervention Section, Shizuoka (Japan); Kasami, Masako [Shizuoka Cancer Center Hospital, Department of Pathology, Naga-izumi, Shizuoka (Japan); Watanabe, Junichiro [Shizuoka Cancer Center Hospital, Division of Medical Oncology, Naga-izumi, Shizuoka (Japan)

    2011-11-15

    The purpose of this study was to assess the influence of background enhancement on the detection and staging of breast cancer using MRI as an adjunct to mammography or ultrasound. One hundred forty-six bilateral breast MRI examinations were evaluated to assess the extent of a known primary tumour and to problem solve after mammography or ultrasound without adjusting for the phase in the patients' menstrual cycle. The background enhancement was classified into four categories by visual evaluation: minimal, mild, moderate and marked. In total, 131 histologically confirmed abnormal cases (104 malignant and 27 benign) and 15 normal cases were included in the analysis. There was no tumour size-related bias between the groups (p = 0.522). For the primary index tumour, the sensitivities of MRI with minimal/mild and moderate/marked background enhancement were 100% and 76% (p = 0.001), respectively. Thus, the degree of background enhancement did not affect the specificity. For evaluating tumour extent (n = 104), the accuracy of MRI with moderate/marked background enhancement (52%) was significantly lower than that with minimal/mild background enhancement (84%; p = 0.002). The degree of background enhancement affected the detection and staging of breast cancer using MRI. (orig.)

  4. The Effect of the Degree of Luminal Contrast-Enhancement on CT Measurement of Plaque Size: A Comparison with T1-weighted Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Choi, Byoung Wook; Hur, Jin; Lee, Hye Jeong; Kim, Young Jin; Choe, Kyu Ok; Kim, Tae Hoon

    2010-01-01

    We studied early and delayed contrast-enhanced CT to determine the effects of the degree of luminal enhancement on the measurement of plaque size compared to T1-weighted MRI. T1-weighted MRI and a two-phase contrast-enhanced CT was performed in 5 New Zealand white rabbits with atherosclerosis. Early-phase images were acquired during an expected peak enhancement period of the lumen; delayed-phase images were acquired 240 sec after administration of the contrast media. Anteroposterior and lateral luminal diameters (APD, LD), luminal area (LA), total vessel area (TVA), and plaque area (PA) of the aorta were measured on MRI and CT, respectively and compared to each other. A total of 78 slices of the aorta were analyzed. PA, measured on T1-weighted MR images, was significantly greater than PA for both early-phase and delayed-phase CT (p 2 (p 2 (p 2 (p = 0.159) for MRI vs. early-phase CT, MRI vs. delayed-phase CT, and early-phase CT vs. delayed-phase CT, respectively. Different luminal densities by contrast enhancement do not affect the CT measurement of plaque area for the detection of obstructive coronary artery disease

  5. Differentiation of prostate cancer from normal prostate tissue in an animal model: conventional MRI and dynamic contrast-enhanced MRI

    International Nuclear Information System (INIS)

    Gemeinhardt, O.; Prochnow, D.; Taupitz, M.; Hamm, B.; Beyersdorff, D.; Luedemann, L.; Abramjuk, C.

    2005-01-01

    Purpose: to differentiate orthotopically implanted prostate cancer from normal prostate tissue using magnetic resonance imaging (MRI) and Gd-DTPA-BMA-enhanced dynamic MRI in the rat model. Material and methods: tumors were induced in 15 rats by orthotopic implantation of G subline Dunning rat prostatic tumor cells. MRI was performed 56 to 60 days after tumor cell implantation using T1-weighted spin-echo, T2-weighted turbo SE sequences, and a 2D FLASH sequence for the contrast medium based dynamic study. The interstitial leakage volume, normalized permeability and the permeability surface area product of tumor and healthy prostate were determined quantitatively using a pharmacokinetic model. The results were confirmed by histologic examination. Results: axial T2-weighted TSE images depicted low-intensity areas suspicious for tumor in all 15 animals. The mean tumor volume was 46.5 mm3. In the dynamic study, the suspicious areas in all animals displayed faster and more pronounced signal enhancement than surrounding prostate tissue. The interstitial volume and the permeability surface area product of the tumors increased significantly by 420% (p<0.001) and 424% (p<0.001), respectively, compared to normal prostate tissue, while no significant difference was seen for normalized permeability alone. Conclusion: the results of the present study demonstrate that quantitative analysis of contrast-enhanced dynamic MRI data enables differentiation of small, slowly growing orthotopic prostate cancer from normal prostate tissue in the rat model. (orig.)

  6. Health-economic evaluation of three imaging strategies in patients with suspected colorectal liver metastases: Gd-EOB-DTPA-enhanced MRI vs. extracellular contrast media-enhanced MRI and 3-phase MDCT in Germany, Italy and Sweden

    International Nuclear Information System (INIS)

    Zech, C.J.; Grazioli, L.; Jonas, E.; Ekman, M.; Joensson, L.; Niebecker, R.; Kienbaum, S.; Gschwend, S.; Breuer, J.

    2009-01-01

    The purpose of this study was to perform an economic evaluation of hepatocyte-specific Gd-EOB-DTPA enhanced MRI (PV-MRI) compared to extracellular contrast-media-enhanced MRI (ECCM-MRI) and three-phase-MDCT as initial modalities in the work-up of patients with metachronous colorectal liver metastases. The economic evaluation was performed with a decision-tree model designed to estimate all aggregated costs depending on the initial investigation. Probabilities on the need for further imaging to come to a treatment decision were collected through interviews with 13 pairs of each a radiologist and a liver surgeon in Germany, Italy and Sweden. The rate of further imaging needed was 8.6% after initial PV-MRI, 18.5% after ECCM-MRI and 23.5% after MDCT. Considering the cost of all diagnostic work-up, intra-operative treatment changes and unnecessary surgery, a strategy starting with PV-MRI with 959 EUR was cost-saving compared to ECCM-MRI (1,123 EUR) and MDCT (1,044 EUR) in Sweden. In Italy and Germany, PV-MRI was cost-saving compared to ECCM-MRI and had total costs similar to MDCT. In conclusion, our results indicate that PV-MRI can lead to cost savings by improving pre-operative planning and decreasing intra-operative changes. The higher cost of imaging with PV-MRI is offset in such a scenario by lower costs for additional imaging and less intra-operative changes. (orig.)

  7. Investigation of a potential macromolecular MRI contrast agent prepared from PPI (G = 2, polypropyleneimine, generation 2) dendrimer bifunctional chelates

    Science.gov (United States)

    Wang, Jianxin Steven

    The long-term objective is to develop magnetic resonance (MR) contrast agents that actively and passively target tumors for diagnosis and therapy. Many diagnostic imaging techniques for cancer lack specificity. A dendrimer based magnetic resonance imaging contrast agent has been developed with large proton relaxation enhancements and high molecular relaxivities. A new type of linear dendrimer based MRI contrast agent that is built from the polypropyleneimine and polyamidoamine dendrimers in which free amines have been conjugated to the chelate DTPA, which further formed the complex with Gadolinium (Gd) was studied. The specific research goals were to test the hypothesis that a linear chelate with macromolecular agents can be used in vitro and in vivo. This work successfully examined the adequacy and viability of the application for this agent in vitro and in vivo. A small animal whole body counter was designed and constructed to allow us to monitor biodistribution and kinetic mechanisms using a radioisotope labeled complex. The procedures of metal labeling, separation and purification have been established from this work. A biodistribution study has been performed using radioisotope induced organ/tissue counting and gamma camera imaging. The ratio of percentage of injected dose per gram organ/tissue for kidney and liver is 3.71 from whole body counter and 3.77 from the gamma camera. The results suggested that retention of Gd (III) is too high and a more kinetically stable chelate should be developed. The pharmacokinetic was evaluated in the whole animal model with the whole body clearance, and a kinetics model was developed. The pharmacokinetic results showed a bi-exponential decay in the animal model with two component excretion constants 1.43e(-5) and 0.0038511, which give half-lives of 3 hours and 33.6 days, respectively. Magnetic resonance imaging of this complex resulted in a 52% contrast enhancement in the rat kidney following the agents' administration in

  8. Association between MRI structural features and cognitive measures in pediatric multiple sclerosis

    Science.gov (United States)

    Amoroso, N.; Bellotti, R.; Fanizzi, A.; Lombardi, A.; Monaco, A.; Liguori, M.; Margari, L.; Simone, M.; Viterbo, R. G.; Tangaro, S.

    2017-09-01

    Multiple sclerosis (MS) is an inflammatory and demyelinating disease associated with neurodegenerative processes that lead to brain structural changes. The disease affects mostly young adults, but 3-5% of cases has a pediatric onset (POMS). Magnetic Resonance Imaging (MRI) is generally used for diagnosis and follow-up in MS patients, however the most common MRI measures (e.g. new or enlarging T2-weighted lesions, T1-weighted gadolinium- enhancing lesions) have often failed as surrogate markers of MS disability and progression. MS is clinically heterogenous with symptoms that can include both physical changes (such as visual loss or walking difficulties) and cognitive impairment. 30-50% of POMS experience prominent cognitive dysfunction. In order to investigate the association between cognitive measures and brain morphometry, in this work we present a fully automated pipeline for processing and analyzing MRI brain scans. Relevant anatomical structures are segmented with FreeSurfer; besides, statistical features are computed. Thus, we describe the data referred to 12 patients with early POMS (mean age at MRI: 15.5 +/- 2.7 years) with a set of 181 structural features. The major cognitive abilities measured are verbal and visuo-spatial learning, expressive language and complex attention. Data was collected at the Department of Basic Sciences, Neurosciences and Sense Organs, University of Bari, and exploring different abilities like the verbal and visuo-spatial learning, expressive language and complex attention. Different regression models and parameter configurations are explored to assess the robustness of the results, in particular Generalized Linear Models, Bayes Regression, Random Forests, Support Vector Regression and Artificial Neural Networks are discussed.

  9. Metal-oxo containing polymer nanobeads as potential contrast agents for magnetic resonance imaging

    Science.gov (United States)

    Pablico, Michele Huelar

    also directed at developing metal-oxo containing hybrid materials using first row transition metals with potential catalytic and magnetic properties as well. We report several screened metal-oxo clusters but this study has centered on the mixed-metal oxo cluster, Mn8Fe4O 12(O2CCH3)16(H2O)4 or Mn8Fe4, mainly because it is highly paramagnetic and is soluble and stable in water. The cluster was screened for potential MRI contrast and was found to be a very promising T2 contrast agent with relaxivity values of r1 = 2.3 mM-1s -1 and r2 = 29.5 mM-1s-1. Initial cell studies on two human prostate cancer cell lines, DU-145 and LNCap, reveal that the cluster has low cytotoxicity and may be potentially used in vivo. One key advantage of Mn8Fe4 is its ability to undergo ligand exchange reactions, thus providing a mechanism for grafting to a variety of supports. By substituting the acetate groups on Mn8Fe4 with polymerizable ligands, we are able to form monodisperse magnetic polymer nanobeads (˜70 nm diameter) via the miniemulsion polymerization technique. To render the nanobead suitable for future in vivo experiments, we coated the surface with biocompatible polysaccharide dextran (40 kDa). Interestingly, relaxivity measurements and MRI studies show that encapsulating the Mn8Fe4 core within a polymer matrix decreased T 2 effects resulting in a positive T1 contrast enhancement. The resulting hybrid particles have the potential for further surface functionalization (i.e., therapeutic drugs, targeting moiety, fluorescent probe, etc.) making them a promising tool for biomedicine.

  10. Background parenchymal enhancement on baseline screening breast MRI: impact on biopsy rate and short-interval follow-up.

    LENUS (Irish Health Repository)

    Hambly, Niamh M

    2011-01-01

    Background parenchymal enhancement on breast MRI refers to normal enhancement of the patient\\'s fibroglandular tissue. The aim of this study was to determine the effect of background parenchymal enhancement on short-interval follow-up, biopsy, and cancer detection rate on baseline screening MRI in a high-risk group.

  11. Hepatocellular carcinoma. Comparison between gadolinium and ironoxide enhanced MR imaging

    International Nuclear Information System (INIS)

    Castoldi, M.C.; Fauda, V.; Scaramuzza, D.; Vergnaghi, D.

    2000-01-01

    Purpose of this work is to compare prospectively dynamic gadolinium (Gd)-enhanced with superparamagnetic iron oxide (SPIO)-enhanced MRI for the detection of hepatocellular carcinoma (HCC). Twenty-five patients with histologically proven HCC and liver cirrhosis (28% of them in B or C Child class) underwent dynamic Gd-enhanced MRI and, a few days later, (mean interval: three days) SPIO-enhanced MRI. Only patients with availability of clinical and imaging follow-up for at least seven months were enrolled in this prospective study. MR images were reviewed by two independent radiologists. The readers scored each lesion for the presence of HCC and assigned confidence levels based on a five-grade scale: 1, definitely or almost definitely absent; 2, possibly present; 3, probably present; 4, definitely present; 5, definitely present with optimal liver/lesion contrast or good liver/lesion contrast and morphological signs (intact capsule, intranodular septa, extracapsular infiltration), useful for locoregional treatment planning. A positive diagnostic value was assessed for scores of 3 or higher. Gd-enhanced and SPIO-enhanced MRI found 44 lesions. Eight of twelve lesions visible with a single contrast agent measured less than 1 cm in diameter. HCC detectability was 75% with Gd-enhanced MRI and 97.7% with SPIO-enhanced MRI. SPIO-enhanced T2-weighted TSE images showed significantly higher diagnostic value than SPIO-enhanced T1-T2*GRE images only in three cases, while nodule morphological characteristics (capsule, septa, different cell differentiation components) were better depicted by TSE images. In thi study the combined use of SPIO-enhanced T2-weighted TSE and T1-T2*-weighted GRE sequences showed higher sensitivity than gadolinium-enhanced GRE dynamic imaging (97.7% versus 75%). These results are at least partly related to our study conditions, that is: 1)MRI was performed with a 1T system, 2) both axial and sagittal SPIO-enhanced imaging were performed with respiratory

  12. The utility of gadoteric acid in contrast-enhanced MRI: a review

    Directory of Open Access Journals (Sweden)

    Tartaro A

    2015-02-01

    Full Text Available Armando Tartaro, Marica Tina Maccarone Department of Neuroscience, Imaging and Clinical Sciences, and Institute for Advanced Biomedical Technologies (ITAB, “G d’Annunzio” University, Chieti-Pescara, Italy Abstract: Gadoteric acid (Dotarem® is a macrocyclic, paramagnetic, gadolinium-based contrast agent. It is used in the magnetic resonance imaging (MRI of the brain, spine, and associated tissues. Particularly, it is able to detect and visualize areas with disruption of the blood–brain barrier and/or abnormal vascularity. Gadoteric acid has been also approved for MR angiography of supraaortic vessels, cardiac MR (to detect myocardial infarctions, as well as whole-body MRI including abdominal, renal, pelvic, breast, and osteoarticular diseases. Cyclic chelates are more stable compared to linear chelates, and ionic chelates are more stable compared to nonionic chelates. Linear chelates have a greater likelihood of releasing free Gd3+ compared to cyclic chelates. Non-ionic chelates are more likely, compared to ionic chelates, to release Gd3+ from their chelates. Gadoteric acid is a cyclic ionic chelate and has the greatest kinetic stability among gadolinium-based contrast agents. In patients with chronic reduced kidney function, the use of gadolinium-based contrast agents leads to acute kidney injury and dialysis. The risk of acute kidney injury may increase with increasing dose of the contrast agents. Therefore, it is recommended to administer the lowest dose necessary for adequate imaging. The dose reduction allows protection the patients form potential risk of nephrogenic systemic fibrosis, a systemic reaction that is probably due to unbound Gd3+ ions deposited in body tissues. The dose of gadoteric acid should not exceed 0.1 mmol/kg body weight. More than one dose should not be used during a scan. Because of the lack of information on repeated administration, Dotarem® injections should not be repeated unless the interval between

  13. MRI-guided gas bubble enhanced ultrasound heating in in vivo rabbit thigh

    International Nuclear Information System (INIS)

    Sokka, S D; King, R; Hynynen, K

    2003-01-01

    In this study, we propose a focused ultrasound surgery protocol that induces and then uses gas bubbles at the focus to enhance the ultrasound absorption and ultimately create larger lesions in vivo. MRI and ultrasound visualization and monitoring methods for this heating method are also investigated. Larger lesions created with a carefully monitored single ultrasound exposure could greatly improve the speed of tumour coagulation with focused ultrasound. All experiments were performed under MRI (clinical, 1.5 T) guidance with one of two eight-sector, spherically curved piezoelectric transducers. The transducer, either a 1.1 or 1.7 MHz array, was driven by a multi-channel RF driving system. The transducer was mounted in an MRI-compatible manual positioning system and the rabbit was situated on top of the system. An ultrasound detector ring was fixed with the therapy transducer to monitor gas bubble activity during treatment. Focused ultrasound surgery exposures were delivered to the thighs of seven New Zealand white rabbits. The experimental, gas-bubble-enhanced heating exposures consisted of a high amplitude 300 acoustic watt, half second pulse followed by a 7 W, 14 W or 21 W continuous wave exposure for 19.5 s. The respective control sonications were 20 s exposures of 14 W, 21 W and 28 W. During the exposures, MR thermometry was obtained from the temperature dependency of the proton resonance frequency shift. MR T2-enhanced imaging was used to evaluate the resulting lesions. Specific metrics were used to evaluate the differences between the gas-bubble-enhanced exposures and their respective control sonications: temperatures with respect to time and space, lesion size and shape, and their agreement with thermal dose predictions. The bubble-enhanced exposures showed a faster temperature rise within the first 4 s and higher overall temperatures than the sonications without bubble formation. The spatial temperature maps and the thermal dose maps derived from the MRI

  14. Contrast-enhanced spectral mammography versus MRI: Initial results in the detection of breast cancer and assessment of tumour size

    International Nuclear Information System (INIS)

    Fallenberg, E.M.; Renz, D.M.; Dromain, C.; Diekmann, F.; Engelken, F.; Krohn, M.; Singh, J.M.; Bick, U.; Ingold-Heppner, B.; Winzer, K.J.

    2014-01-01

    To compare mammography (MG), contrast-enhanced spectral mammography (CESM), and magnetic resonance imaging (MRI) in the detection and size estimation of histologically proven breast cancers using postoperative histology as the gold standard. After ethical approval, 80 women with newly diagnosed breast cancer underwent MG, CESM, and MRI examinations. CESM was reviewed by an independent experienced radiologist, and the maximum dimension of suspicious lesions was measured. For MG and MRI, routine clinical reports of breast specialists, with judgment based on the BI-RADS lexicon, were used. Results of each imaging technique were correlated to define the index cancer. Fifty-nine cases could be compared to postoperative histology for size estimation. Breast cancer was visible in 66/80 MG, 80/80 CESM, and 77/79 MRI examinations. Average lesion largest dimension was 27.31 mm (SD 22.18) in MG, 31.62 mm (SD 24.41) in CESM, and 27.72 mm (SD 21.51) in MRI versus 32.51 mm (SD 29.03) in postoperative histology. No significant difference was found between lesion size measurement on MRI and CESM compared with histopathology. Our initial results show a better sensitivity of CESM and MRI in breast cancer detection than MG and a good correlation with postoperative histology in size assessment. (orig.)

  15. Contrast-enhanced spectral mammography versus MRI: Initial results in the detection of breast cancer and assessment of tumour size

    Energy Technology Data Exchange (ETDEWEB)

    Fallenberg, E.M.; Renz, D.M. [Charite - Universitaetsmedizin Berlin, Clinic of Radiology, Berlin (Germany); Dromain, C. [Institut Gustave Roussy, Department of Radiology, Villejuif cedex (France); Diekmann, F. [St. Joseph-Stift Bremen, Department of Medical Imaging, Bremen (Germany); Engelken, F.; Krohn, M.; Singh, J.M.; Bick, U. [Charite - Universitaetsmedizin Berlin, Department of Radiology, Berlin (Germany); Ingold-Heppner, B. [Charite - Universitaetsmedizin Berlin, Institute of Pathology, Berlin (Germany); Winzer, K.J. [Charite - Universitaetsmedizin Berlin, Breast Center, Department of Gynecology, Berlin (Germany)

    2014-01-15

    To compare mammography (MG), contrast-enhanced spectral mammography (CESM), and magnetic resonance imaging (MRI) in the detection and size estimation of histologically proven breast cancers using postoperative histology as the gold standard. After ethical approval, 80 women with newly diagnosed breast cancer underwent MG, CESM, and MRI examinations. CESM was reviewed by an independent experienced radiologist, and the maximum dimension of suspicious lesions was measured. For MG and MRI, routine clinical reports of breast specialists, with judgment based on the BI-RADS lexicon, were used. Results of each imaging technique were correlated to define the index cancer. Fifty-nine cases could be compared to postoperative histology for size estimation. Breast cancer was visible in 66/80 MG, 80/80 CESM, and 77/79 MRI examinations. Average lesion largest dimension was 27.31 mm (SD 22.18) in MG, 31.62 mm (SD 24.41) in CESM, and 27.72 mm (SD 21.51) in MRI versus 32.51 mm (SD 29.03) in postoperative histology. No significant difference was found between lesion size measurement on MRI and CESM compared with histopathology. Our initial results show a better sensitivity of CESM and MRI in breast cancer detection than MG and a good correlation with postoperative histology in size assessment. (orig.)

  16. Synthesis and evaluation of novel polysaccharide-Gd-DTPA compounds as contrast agent for MRI

    Science.gov (United States)

    Sun, Guoying; Feng, Jianghua; Jing, Fengying; Pei, Fengkui; Liu, Maili

    2003-09-01

    Macromolecular conjugates of two kinds of natural polysaccharides, that from Panax quinquefolium linn (PQPS) and Ganoderma applanatum pat (GAPS), with gadolinium-diethylenetriaminepenta-acetic acid (Gd-DTPA) have been synthesized and characterized by means of FTIR, elementary analysis and ICP-AES. Their stability was investigated by competition study with Ca 2+, EDTA (ethylenediaminetetraacetic acid) and DTPA. Polysaccharide-bound complexes exhibit T1 relaxivities of 1.5-1.7 times that of Gd-DTPA in D 2O at 25°C and 9.4 T. MR imaging of Sprague-Dawley (SD) rats showed remarkable enhancement in rat liver and kidney after i.v. injection of these two complexes: liver parenchyma 60.9±5.6%, 57.8±7.4% at 65-85 min; kidney 144.9±14.5%, 199.9±25.4% at 10-30 min for PQPS-Gd-DTPA, GAPS-Gd-DTPA at gadolinium dose of 0.083 and 0.082 mmol/kg, respectively. Our preliminary in vivo and in vitro study indicates that the two kinds of polysaccharide-bound complexes are potential tissue-specific contrast agents for MRI.

  17. Dose Tc-99m MIBI scintimammography provide more information additive to contrast enhanced MRI in highly suspected breast cancer patients?

    International Nuclear Information System (INIS)

    Kim, Seong Jang; Kim, In Ju; Kim, Yong Ki; Bae, Young Tae

    2000-01-01

    The aim of this study was to investigate whether Tc-99m MIBI scintimammography (SMM) provide more information than contrast enhanced MRI in highly suspected breast cancer patients. This study included 32 breast lesions of 29 highly suspected patients having breast cancer. All patients were performed SMM and contrast enhanced MRI. The SMMs and contrast enhanced MRI were correlated with histopathologic results. Thirty breast lesions were diagnosed malignant diseases and 2 were diagnosed benign diseases. SMM showed 29 true positives (TP), 1 true negative (TN), 1 false positive (FP), and 1 false negative (FN). The sensitivity was 96.6%. Contrast enhanced MRI revealed 24 TP, 0 TN, 1 FP, 3 FN and 4 indeterminate cases. The sensitivity was 88.8%. In the assessment of axillary lymph node metastasis, SMM showed 9 TP, 10 TN, 0 FP, and 3 FN. The sensitivity and specificity were 75% and 100%. Contrast enhanced MRI revealed 6 TP, 9 TN, 1 FP, and 6 FN. The sensitivity and specificity were 50% and 90%. Among 4 indeterminate cases with MRI findings, SMM correctly diagnosed malignant breast diseases in 3 lesions. However, SMM showed false positive in 1 lesion. SMM could correctly diagnosed malignant breast diseases more 5 lesions than contrast enhanced MRI. SMM revealed higher sensitivity in detection of primary breast cancer and axillary LN metastasis than contrast enhanced MRI. SMMs could correctly diagnosed malignant breast diseases even if the MRI showed indeterminate findings. In highly suspected patients having breast cancer, SMM may provide additive information in detection of breast cancer if contrast enhanced MRI showed indeterminate findings but this is to be determined later by large population based study

  18. Nanodiamond-enhanced MRI via in situ hyperpolarization

    Science.gov (United States)

    Waddington, David E. J.; Sarracanie, Mathieu; Zhang, Huiliang; Salameh, Najat; Glenn, David R.; Rej, Ewa; Gaebel, Torsten; Boele, Thomas; Walsworth, Ronald L.; Reilly, David J.; Rosen, Matthew S.

    2017-04-01

    Nanodiamonds are of interest as nontoxic substrates for targeted drug delivery and as highly biostable fluorescent markers for cellular tracking. Beyond optical techniques, however, options for noninvasive imaging of nanodiamonds in vivo are severely limited. Here, we demonstrate that the Overhauser effect, a proton-electron polarization transfer technique, can enable high-contrast magnetic resonance imaging (MRI) of nanodiamonds in water at room temperature and ultra-low magnetic field. The technique transfers spin polarization from paramagnetic impurities at nanodiamond surfaces to 1H spins in the surrounding water solution, creating MRI contrast on-demand. We examine the conditions required for maximum enhancement as well as the ultimate sensitivity of the technique. The ability to perform continuous in situ hyperpolarization via the Overhauser mechanism, in combination with the excellent in vivo stability of nanodiamond, raises the possibility of performing noninvasive in vivo tracking of nanodiamond over indefinitely long periods of time.

  19. Pathological mechanism for delayed hyperenhancement of chronic scarred myocardium in contrast agent enhanced magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Jian Wang

    Full Text Available OBJECTIVES: To evaluate possible mechanism for delayed hyperenhancement of scarred myocardium by investigating the relationship of contrast agent (CA first pass and delayed enhancement patterns with histopathological changes. MATERIALS AND METHODS: Eighteen pigs underwent 4 weeks ligation of 1 or 2 diagonal coronary arteries to induce chronic infarction. The hearts were then removed and perfused in a Langendorff apparatus. The hearts firstly experienced phosphorus 31 MR spectroscopy. The hearts in group I (n = 9 and II (n = 9 then received the bolus injection of Gadolinium diethylenetriamine pentaacetic acid (0.05 mmol/kg and gadolinium-based macromolecular agent (P792, 15 µmol/kg, respectively. First pass T2* MRI was acquired using a gradient echo sequence. Delayed enhanced T1 MRI was acquired with an inversion recovery sequence. Masson's trichrome and anti- von Willebrand Factor (vWF staining were performed for infarct characterization. RESULTS: Wash-in of both kinds of CA caused the sharp and dramatic T2* signal decrease of scarred myocardium similar to that of normal myocardium. Myocardial blood flow and microvessel density were significantly recovered in 4-week-old scar tissue. Steady state distribution volume (ΔR1 relaxation rate of Gd-DTPA was markedly higher in scarred myocardium than in normal myocardium, whereas ΔR1 relaxation rate of P792 did not differ significantly between scarred and normal myocardium. The ratio of extracellular volume to the total water volume was significantly greater in scarred myocardium than in normal myocardium. Scarred myocardium contained massive residual capillaries and dilated vessels. Histological stains indicated the extensively discrete matrix deposition and lack of cellular structure in scarred myocardium. CONCLUSIONS: Collateral circulation formation and residual vessel effectively delivered CA into scarred myocardium. However, residual vessel without abnormal hyperpermeability allowed Gd

  20. Synthesis of Intrinsically Disordered Fluorinated Peptides for Modular Design of High-Signal 19 F MRI Agents.

    Science.gov (United States)

    Kirberger, Steven E; Maltseva, Sofia D; Manulik, Joseph C; Einstein, Samuel A; Weegman, Bradley P; Garwood, Michael; Pomerantz, William C K

    2017-06-01

    19 F MRI is valuable for in vivo imaging due to the only trace amounts of fluorine in biological systems. Because of the low sensitivity of MRI however, designing new fluorochemicals remains a significant challenge for achieving sufficient 19 F signal. Here, we describe a new class of high-signal, water-soluble fluorochemicals as 19 F MRI imaging agents. A polyamide backbone is used for tuning the proteolytic stability to avoid retention within the body, which is a limitation of current state-of-the-art perfluorochemicals. We show that unstructured peptides containing alternating N-ϵ-trifluoroacetyllysine and lysine provide a degenerate 19 F NMR signal. 19 F MRI phantom images provide sufficient contrast at micromolar concentrations, showing promise for eventual clinical applications. Finally, the degenerate high signal characteristics were retained when conjugated to a large protein, indicating potential for in vivo targeting applications, including molecular imaging and cell tracking. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Detection of parenchymal abnormalities in experimentally induced acute pyelonephritis in rabbits using contrast-enhanced ultrasonography, CT, and MRI

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jeong Ah; Kim, Bo Hyun; Kim, Seung Kwon; Seo, Jin Won [Dept. of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Kim, Jong Sung [Laboratory Animal Research Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2016-12-15

    We evaluated the efficacy of contrast-enhanced ultrasonography (CEUS) in detecting acute pyelonephritis (APN) using the rabbit kidney model and compared it with CT and MRI. This study was approved by the Institutional Review Board. In a total of 20 New Zealand White rabbits, APN was induced experimentally. CEUS, CT, and MRI were performed on the first, third, and seventh postoperative days. After imaging studies, the subjects were sacrificed and the pathological diagnosis of APN was confirmed in each animal by a pathologist. Imaging studies were obtained in eight animals, including eight CEUS, four computed tomography (CT), and four magnetic resonance imaging (MRI) images. CEUS depicted diffuse renal enlargement (7), diffuse heterogeneous parenchymal enhancement (6), and focal areas of decreased parenchymal enhancement (6). These findings were well correlated with the CT and MRI findings in five cases in which these studies were available. CT and MRI showed diffuse renal enlargement, diffuse heterogeneous parenchymal enhancement, focal areas of decreased parenchymal enhancement, focal contour bulging, and the finding of perinephric spread of infection. In a rabbit model, CEUS could depict the parenchymal lesions of APN similar to CT or MRI; however, it was limited in depicting the perinephric extension of inflammation.

  2. Evaluation of dynamic contrast-enhanced T1-weighted perfusion MRI in the differentiation of tumor recurrence from radiation necrosis

    DEFF Research Database (Denmark)

    Larsen, Anne Vibeke Andrée; Simonsen, Helle J; Law, Ian

    2013-01-01

    INTRODUCTION: To investigate if perfusion measured with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can be used to differentiate radiation necrosis from tumor recurrence in patients with high-grade glioma. METHODS: The study was approved by the institutional review board...... to measure cerebral blood volume (CBV), blood-brain barrier (BBB) permeability and cerebral blood flow (CBF). Subjects also underwent FDG-PET and lesions were classified as either metabolically active or inactive. Follow-up clinical MRI and lesion histology in case of additional tissue resection was used...... to determine whether lesions were regressing or progressing. RESULTS: Fourteen enhancing lesions could be classified as progressing (11) or regressing (three). An empirical threshold of 2.0 ml/100 g for CBV allowed detection of regressing lesions with a sensitivity of 100 % and specificity of 100 %. FDG-PET...

  3. Correlation of MRI Biomarkers with Tumor Necrosis in Hras5 Tumor Xenograft in Athymic Rats

    Directory of Open Access Journals (Sweden)

    Daniel P. Bradley

    2007-05-01

    Full Text Available Magnetic resonance imaging (MRI can measure the effects of therapies targeting the tumor vasculature and has demonstrated that vascular-damaging agents (VDA induce acute vascular shutdown in tumors in human and animal models. However, at subtherapeutic doses, blood flow may recover before the induction of significant levels of necrosis. We present the relationship between changes in MRI biomarkers and tumor necrosis. Multiple MRI measurements were taken at 4.7 T in athymic rats (n = 24 bearing 1.94 ± 0.2-cm3 subcutaneous Hras5 tumors (ATCC 41000 before and 24 hours after clinically relevant doses of the VDA, ZD6126 (0-10 mg/kg, i.v.. We measured effective transverse relaxation rate (R2*, initial area under the gadolinium concentration-time curve (IAUGC60/150, equivalent enhancing fractions (EHF60/150, time constant (Ktrans, proportion of hypoperfused voxels as estimated from fit failures in Ktrans analysis, and signal intensity (SI in T2-weighted MRI (T2W. ZD6126 treatment induced < 90% dose-dependent tumor necrosis at 10 mg/kg; correspondingly, SI changes were evident from T2W MRI. Although R2* did not correlate, other MRI biomarkers significantly correlated with necrosis at doses of ≥ 5 mg/kg ZD6126. These data on Hras5 tumors suggest that the quantification of hypoperfused voxels might provide a useful biomarker of tumor necrosis.

  4. Mangafodipir trisodium-enhanced MRI of hepatocellular carcinoma: correlation with histological characteristics

    International Nuclear Information System (INIS)

    Kim, J.H.; Kim, M.-J.; Park, Y.N.; Lee, J.T.; Kim, B.R.; Chung, J.B.; Choi, J.S.; Kim, K.S.; Kim, K.W.

    2008-01-01

    Aim: To define histopathological factors related to the degree of mangafodipir trisodium (MnDPDP) uptake in hepatocellular carcinomas (HCCs) on magnetic resonance imaging (MRI). Materials and methods: In-phase and opposed-phase gradient-echo MRI images were obtained preoperatively in 37 patients with 38 HCCs before and 15-30 min after intravenous injection of MnDPDP. Subjective ratings of the enhancement degree, the signal-to-noise ratio (SNR) of the lesion and the liver, and the contrast enhancement ratios (CER) were compared with histopathological factors. Results: The mean SNR of HCCs increased from 59.6 to 95.0 (CER = 59.5%), whereas that of the liver increased from 75.1 to 108.7 (CER = 45.2%). Eight HCCs showed mild enhancement, 11 moderate enhancement, and 15 strong enhancement. There was no visually perceptible enhancement in four HCCs (10.3%). The degree of MnDPDP enhancement was significantly related with the cell density ratio (p < .05) and monoclonal hepatocyte antibody positivity (p < 0.005), but not with size, growth type, cell type, histological type, cytokeratin 7, or cytokeratin 19. Well-differentiated HCC showed higher MnDPDP enhancement compared with higher grade HCCs, but the differences were not statistically significant. Conclusion: The uptake of MnDPDP by HCC was correlated with hepatocyte antibody expression and the cellular density ratio. Well-differentiated HCC tended to show higher MnDPDP enhancement

  5. Surface modification of PLGA nanospheres with Gd-DTPA and Gd-DOTA for high-relaxivity MRI contrast agents

    NARCIS (Netherlands)

    Ratzinger, Gerda; Agrawal, Prashant; Körner, Wilfried; Lonkai, Julia; Sanders, Honorius M. H. F.; Terreno, Enzo; Wirth, Michael; Strijkers, Gustav J.; Nicolay, Klaas; Gabor, Franz

    2010-01-01

    The preparation of particulate contrast agents for magnetic resonance imaging (MRI) based on biodegradable poly(D,L-lactide-co-glycolide) (PLGA) nanocarriers is reported. By spacer-aided covalent surface-grafting of the prominent chelating ligands diethylenetriaminepentaacetic acid (DTPA) and

  6. Surface modification of PLGA nanospheres with Gd-DTPA and Gd-DOTA for high-relaxivity MRI contrast agents

    NARCIS (Netherlands)

    Ratzinger, G.; Agrawal, P.; Koerner, W.; Lonkai, J.; Sanders, H.M.H.F.; Terreno, E.; Wirth, M.; Strijkers, G. J.; Nicolay, K.; Gabor, F.

    2010-01-01

    The preparation of particulate contrast agents for magnetic resonance imaging (MRI) based on biodegradable poly(d,l-lactide-co-glycolide) (PLGA) nanocarriers is reported. By spacer-aided covalent surface-grafting of the prominent chelating ligands diethylenetriaminepentaacetic acid (DTPA) and

  7. Gd (III) chelates adsorbed on TiO2 nanoparticles - promising MRI contrast agent

    International Nuclear Information System (INIS)

    Rehor, Ivan; Lukes, Ivan; Peters, Joop A.; Jirak, Daniel

    2009-01-01

    Full text: The project deals with a new contrast agent (CA) for magnetic resonance imaging (MRI). The CA consists of two main parts - diamagnetic core (TiO 2 nanoparticle) and Gd (III) chelates grafted on its surface. The presence of the nanoparticle core is responsible for significant increase of r1 millimolar relaxivity (which corresponds to the efficiency of the CA) due to the slowing down the rotation of the complex in solution. It also affects the biodistribution characteristics of the CA - the ability to penetrate through cell membranes is well known for nanoparticles, making them useful for cell labeling. The structure of the chelate is derived from DOTA ligand, whose Gd (III) complexes are commercially used as MRI CA in human medicine. The connection of the complex to the surface is realized via penylphosphonate, which is attached to the pendant arm of the ligand. Strong interaction of the phosphonate with the TiO 2 surface results in the full surface coverage. The complexation and MRI properties of Gd chelate were studied and exhibit analogy to the complexes of DOTA, The millimolar relaxivity (r1) of the Gd (III) complex significantly increases upon adsorption on the TiO 2 nanoparticles. PVA was added to the colloidal solutions of CA to stabilize them under biological conditions and such stabilized CA was utilized for MRI visualization of rat pancreatic islets (P1). The labeled islets were detected on MR images as hyperintense area and therefore our CA seems to be promising material for cellular MRI

  8. Value of Gd-EOB-DTPA-enhanced MRI in diagnosis of hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    SUN Yu

    2018-01-01

    Full Text Available Objective To investigate the value of Gd-EOB-DTPA-enhanced MRI in the diagnosis of hepatocellular carcinoma (HCC. Methods A total of 40 patients with liver cirrhosis or suspected HCC who visited General Hospital of Shenyang Military Area Command from October 2016 to April 2017 were enrolled, and the data on three dynamic phases of Gd-EOB-DTPA-enhanced MRI (arterial phase, portal venous phase, and delayed phase, hepatobiliary phase (delayed for 20 minutes, and diffusion-weighted imaging (DWI (b=50,400, and 1000 s/mm2 were collected. Two radiologists made a diagnosis and gave diagnostic confidence scores based on the presence or absence of hepatobiliary phase images. Postoperative pathology or clinical diagnosis was used as the criteria for assessing the diagnostic accuracy of HCC. The t-test was used for comparison of continuous data, and the chi-square test was used for comparison of categorical data. Results A total of 42 HCC lesions and 37 cirrhotic nodules were detected. There were significant differences between HCC lesions and cirrhotic nodules in signal intensity on hepatobiliary phase and DWI (χ2=64.503 and 67.855, both P<0.001,as well as the apparent diffusion coefficient when the b-values of DWI were 400 s/mm2 and 1000 s/mm2 (t=62.75 and 75.36, both P<0.001. There was a significant difference in diagnostic confidence score given by the radiologists between the images of three dynamic phases of Gd-EOB-DTPA-enhanced MRI and those of four dynamic phases (including hepatobiliary phase (3.260±0.521 vs 4.620±0.661, t=10.67, P<0.001. With postoperative pathology and clinical diagnosis as criteria, the images of three dynamic phases of Gd-EOB-DTPA-enhanced MRI had a significantly higher diagnostic accuracy for HCC than those of four dynamic phases (including hepatobiliary phase [76.19% (32/42 vs 95.24% (40/42, χ2=6.222, P=0.013]. Conclusion Gd-EOB-DTPA-enhanced MRI may improve diagnostic accuracy and confidence for HCC and has

  9. Dynamic contrast-enhanced MRI in patients with luminal Crohn's disease

    International Nuclear Information System (INIS)

    Ziech, M.L.W.; Lavini, C.; Caan, M.W.A.; Nio, C.Y.; Stokkers, P.C.F.; Bipat, S.; Ponsioen, C.Y.; Nederveen, A.J.; Stoker, J.

    2012-01-01

    Objectives: To prospectively assess dynamic contrast-enhanced (DCE-)MRI as compared to conventional sequences in patients with luminal Crohn's disease. Methods: Patients with Crohn's disease undergoing MRI and ileocolonoscopy within 1 month had DCE-MRI (3T) during intravenous contrast injection of gadobutrol, single shot fast spin echo sequence and 3D T1-weighted spoiled gradient echo sequence, a dynamic coronal 3D T1-weighted fast spoiled gradient were performed before and after gadobutrol. Maximum enhancement (ME) and initial slope of increase (ISI) were calculated for four colon segments (ascending colon + coecum, transverse colon, descending colon + sigmoid, rectum) and (neo)terminal ileum. C-reactive protein (CRP), Crohn's disease activity index (CDAI), per patient and per segment Crohn's disease endoscopic index of severity (CDEIS) and disease duration were determined. Mean values of the (DCE-)MRI parameters in each segment from each patient were compared between four disease activity groups (normal mucosa, non-ulcerative lesions, mild ulcerative and severe ulcerative disease) with Mann–Whitney test with Bonferroni adjustment. Spearman correlation coefficients were calculated for continuous variables. Results: Thirty-three patients were included (mean age 37 years; 23 females, median CDEIS 4.4). ME and ISI correlated weakly with segmental CDEIS (r = 0.485 and r = 0.206) and ME per patient correlated moderately with CDEIS (r = 0.551). ME was significantly higher in segments with mild (0.378) or severe (0.388) ulcerative disease compared to normal mucosa (0.304) (p < 0.001). No ulcerations were identified at conventional sequences. ME correlated with disease duration in diseased segments (r = 0.492), not with CDAI and CRP. Conclusions: DCE-MRI can be used as a method for detecting Crohn's disease ulcerative lesions.

  10. Significance of Additional Non-Mass Enhancement in Patients with Breast Cancer on Preoperative 3T Dynamic Contrast Enhanced MRI of the Breast

    International Nuclear Information System (INIS)

    Cho, Yun Hee; Cho, Kyu Ran; Park, Eun Kyung; Seo, Bo Kyoung; Woo, Ok Hee; Cho, Sung Bum; Bae, Jeoung Won

    2016-01-01

    In preoperative assessment of breast cancer, MRI has been shown to identify more additional breast lesions than are detectable using conventional imaging techniques. The characterization of additional lesions is more important than detection for optimal surgical treatment. Additional breast lesions can be included in focus, mass, and non-mass enhancement (NME) on MRI. According to the fifth edition of the breast imaging reporting and data system (BI-RADS®), which includes several changes in the NME descriptors, few studies to date have evaluated NME in preoperative assessment of breast cancer. We investigated the diagnostic accuracy of BI-RADS descriptors in predicting malignancy for additional NME lesions detected on preoperative 3T dynamic contrast enhanced MRI (DCE-MRI) in patients with newly diagnosed breast cancer. Between January 2008 and December 2012, 88 patients were enrolled in our study, all with NME lesions other than the index cancer on preoperative 3T DCE-MRI and all with accompanying histopathologic examination. The MRI findings were analyzed according to the BI-RADS MRI lexicon. We evaluated the size, distribution, internal enhancement pattern, and location of NME lesions relative to the index cancer (i.e., same quadrant, different quadrant, or contralateral breast). On histopathologic analysis of the 88 NME lesions, 73 (83%) were malignant and 15 (17%) were benign. Lesion size did not differ significantly between malignant and benign lesions (P = 0.410). Malignancy was more frequent in linear (P = 0.005) and segmental (P = 0.011) distributions, and benignancy was more frequent in focal (P = 0.004) and regional (P < 0.001) NME lesions. The highest positive predictive value (PPV) for malignancy occurred in segmental (96.8%), linear (95.1%), clustered ring (100%), and clumped (92.0%) enhancement. Asymmetry demonstrated a high positive predictive value of 85.9%. The frequency of malignancy was higher for NME lesions located in the same quadrant with

  11. Part 1: MRI features of focal nodular hyperplasia with an emphasis on hepatobiliary contrast agents

    International Nuclear Information System (INIS)

    Sutherland, Tom; Seale, Melanie; Yap, Yap

    2014-01-01

    Focal nodular hyperplasia (FNH) is the second most common benign liver tumour and typically do not require any treatment. An accurate non-invasive diagnosis is therefore vital to avoid unnecessary intervention and to reassure patients. This article discusses the demographics and pathology of FNH and reviews the appearance of FNH at MRI using liver-specific contrast agents.

  12. Radiomics for ultrafast dynamic contrast-enhanced breast MRI in the diagnosis of breast cancer: a pilot study

    Science.gov (United States)

    Drukker, Karen; Anderson, Rachel; Edwards, Alexandra; Papaioannou, John; Pineda, Fred; Abe, Hiroyuke; Karzcmar, Gregory; Giger, Maryellen L.

    2018-02-01

    Radiomics for dynamic contrast-enhanced (DCE) breast MRI have shown promise in the diagnosis of breast cancer as applied to conventional DCE-MRI protocols. Here, we investigate the potential of using such radiomic features in the diagnosis of breast cancer applied on ultrafast breast MRI in which images are acquired every few seconds. The dataset consisted of 64 lesions (33 malignant and 31 benign) imaged with both `conventional' and ultrafast DCE-MRI. After automated lesion segmentation in each image sequence, we calculated 38 radiomic features categorized as describing size, shape, margin, enhancement-texture, kinetics, and enhancement variance kinetics. For each feature, we calculated the 95% confidence interval of the area under the ROC curve (AUC) to determine whether the performance of each feature in the task of distinguishing between malignant and benign lesions was better than random guessing. Subsequently, we assessed performance of radiomic signatures in 10-fold cross-validation repeated 10 times using a support vector machine with as input all the features as well as features by category. We found that many of the features remained useful (AUC>0.5) for the ultrafast protocol, with the exception of some features, e.g., those designed for latephase kinetics such as the washout rate. For ultrafast MRI, the radiomics enhancement-texture signature achieved the best performance, which was comparable to that of the kinetics signature for `conventional' DCE-MRI, both achieving AUC values of 0.71. Radiomic developed for `conventional' DCE-MRI shows promise for translation to the ultrafast protocol, where enhancement texture appears to play a dominant role.

  13. The clinical use of contrast agents in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Bydder, G.M.

    1987-01-01

    Interest in the use of external agents to increase tissue contrasts has come from many sources dating back to the earliest work in NMR, to animal studies and to the widespread use of contrast agents in conventional radiological practice. The first clinical magnetic resonance images were published in 1980 and in the following year a brief account of the use of the paramagnetic agents in human volunteers was established. It was apparent relatively early in the development of magnetic resonance imaging (MRI) that a high level of soft tissue contrast was available de novo and the need for externally administered agents might therefore be small. This observation was tempered by the fact that separation of tumour from oedema was frequently better with contrast enhanced CT X-ray than with unenhanced MRI and that of a contrast agent might therefore be needed for MRI. At the end of 1983 the first parenteral agent gadoliminum diethylene triamine pentaacetic acid (Gd-DTPA) was used in volunteers and clinical studies began in 1984. At the present time only molecular O/sub 2/, oral iron compounds and Gd-DTPA are in clinical use although there are a number of other agents which have been used in animals and some of these may become available for clinical use in the foreseeable future

  14. Non-hypervascular hypointense nodules on Gd-EOB-DTPA-enhanced MRI as a predictor of outcomes for early-stage HCC.

    Science.gov (United States)

    Toyoda, Hidenori; Kumada, Takashi; Tada, Toshifumi; Sone, Yasuhiro; Maeda, Atsuyuki; Kaneoka, Yuji

    2015-01-01

    In patients with hepatocellular carcinoma (HCC), gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) often identifies non-hypervascular hypointense hepatic nodules during the hepatobiliary phase, but their prognostic significance is unclear. We conducted a prospective observational study to investigate the impact of non-hypervascular hypointense hepatic nodules detected by Gd-EOB-DTPA-enhanced MRI on the outcome of patients with early-stage HCC. Post-treatment recurrence and survival rates were analyzed in 138 patients with non-recurrent, early-stage HCC [Barcelona Clinic Liver Cancer (BCLC) stage 0 or A] and Child-Pugh A liver function according to the presence of non-hypervascular hypointense nodules on pretreatment Gd-EOB-DTPA-enhanced MRI. Non-hypervascular hypointense hepatic nodules were detected in 51 (37.0%) patients with early-stage HCC on pretreatment Gd-EOB-DTPA-enhanced MRI. Recurrence rates were significantly higher in patients with non-hypervascular hypointense nodules (p DTPA-enhanced MRI was independently associated with an increased recurrence rate, independent of tumor progression or treatment (p = 0.0005). The survival rate was significantly lower in patients with non-hypervascular hypointense nodules on Gd-EOB-DTPA-enhanced MRI (p = 0.0108). In patients with early-stage typical HCC (BCLC 0 or A), the presence of concurrent non-hypervascular hypointense hepatic nodules in the hepatobiliary phase of pretreatment Gd-EOB-DTPA-enhanced MRI is an indicator of higher likelihood of recurrence after treatment and may be a marker for unfavorable outcome.

  15. Impact of menopausal status on background parenchymal enhancement and fibroglandular tissue on breast MRI

    Energy Technology Data Exchange (ETDEWEB)

    King, Valencia [Memorial Sloan-Kettering Cancer Center, Department of Radiology, Breast Imaging Section, New York, NY (United States); Memorial Sloan-Kettering Cancer Center, Department of Radiology, New York, NY (United States); Gu, Yajia [Fudan University Shanghai Cancer Center, Department of Radiology, Shanghai (China); Fudan University, Department of Oncology, Shanghai Medical College, Shanghai (China); Kaplan, Jennifer B.; Morris, Elizabeth A. [Memorial Sloan-Kettering Cancer Center, Department of Radiology, Breast Imaging Section, New York, NY (United States); Brooks, Jennifer D.; Pike, Malcolm C. [Memorial Sloan-Kettering Cancer Center, Department of Epidemiology and Biostatistics, New York, NY (United States)

    2012-12-15

    To evaluate the effect of menopausal status on the background parenchymal enhancement (BPE) and amount of fibroglandular tissue (FGT) on breast MRI. Retrospective review identified 1,130 women who underwent screening breast MRI between July and November 2010. In 28 of these women, breast MRI was performed both at one time point while pre- and one time point while post-menopausal (median interval 49 months). Two independent readers blinded to menopausal status used categorical scales to rate BPE (minimal/mild/moderate/marked) and FGT (fatty/scattered/heterogeneously dense/dense). Consensus was reached when there was disagreement. The sign test was used to assess changes in rating categories, and the Spearman rank and Fisher's exact tests were used to measure correlations and associations between variables. Significant proportions of women demonstrated decreases in BPE and FGT on post-menopausal breast MRI (P = 0.0001 and P = 0.0009). BPE category was unchanged in 39 % (11/28) and decreased in 61 % (17/28) of women. FGT category was unchanged in 61 % (17/28) and decreased in 39 % (11/28) of women. Age, reason for menopause, or interval between MRIs had no significant impact on changes in BPE and FGT. On MRI, BPE, and FGT decrease after menopause in significant proportions of women; BPE decreases more than FGT. (orig.)

  16. Inorganic nanocrystals as contrast agents in MRI:synthesis, coating and introducing multifunctionality

    Science.gov (United States)

    Sanchez-Gaytan, Brenda L.; Mieszawska, Aneta J.; Fayad, Zahi A.

    2013-01-01

    Inorganic nanocrystals have myriad applications in medicine, which includes their use as drug or gene delivery complexes, therapeutic hyperthermia agents, in diagnostic systems and as contrast agents in a wide range of medical imaging techniques. For MRI, nanocrystals can produce contrast themselves, of which iron oxides have been most extensively explored, or be given a coating that generates MR contrast, for example gold nanoparticles coated with gadolinium chelates. These MR-active nanocrystals can be used in imaging of the vasculature, liver and other organs, as well as molecular imaging, cell tracking and theranostics. Due to these exciting applications, synthesizing and rendering these nanocrystals water-soluble and biocompatible is therefore highly desirable. We will discuss aqueous phase and organic phase methods for synthesizing inorganic nanocrystals such as gold, iron oxides and quantum dots. The pros and cons of the various methods will be highlighted. We explore various methods for making nanocrystals biocompatible, i.e. directly synthesizing nanocrystals coated with biocompatible coatings, ligand substitution, amphiphile coating and embedding in carrier matrices that can be made biocompatible. Various examples will be highlighted and their applications explained. These examples signify that synthesizing biocompatible nanocrystals with controlled properties has been achieved by numerous research groups and can be applied for a wide range of applications. Therefore we expect to see reports of preclinical applications of ever more complex MRI-active nanoparticles and their wider exploitation, as well as in novel clinical settings. PMID:23303729

  17. Contrast medium-enhanced MRI findings and changes over time in stage I tuberculous meningitis

    Energy Technology Data Exchange (ETDEWEB)

    Oztoprak, I. [Department of Radiology Cumhuriyet University Faculty of Medicine, 58140 Sivas (Turkey)], E-mail: oztoprak@cumhuriyet.edu.tr; Guemues, C.; Oztoprak, B. [Department of Radiology Cumhuriyet University Faculty of Medicine, 58140 Sivas (Turkey); Engin, A. [Department of Infectious Diseases, Cumhuriyet University Faculty of Medicine, Sivas (Turkey)

    2007-12-15

    Aim: To demonstrate the detailed imaging characteristics of early tuberculous meningitis (TBM) and changes over time on standard gadolinium-enhanced, T1-weighted magnetic resonance imaging (MRI) images. Materials and methods: Contrast-enhanced, T1-weighted, spin-echo MRI images of 26 patients with early TBM were evaluated retrospectively. Meningeal enhancement characteristics were categorized according to distribution and pattern as diffuse, focal, linear, nodular, and mixed. Results: We found that 35% of patients had diffuse meningeal enhancement and 65% of cases had focal meningeal enhancement. There was a predilection for focal meningeal enhancement in basal pial areas, the interpeduncular fossa being the most common. In six patients with diffuse meningeal enhancement admitted to hospital relatively early after the onset of symptoms, the type of meningeal enhancement later changed to the focal form. Conclusion: Reactive diffuse meningeal enhancement occurs in the early period of TBM on contrast medium-enhanced T1-weighted MR images, but later becomes limited to basal areas.

  18. Contrast medium-enhanced MRI findings and changes over time in stage I tuberculous meningitis

    International Nuclear Information System (INIS)

    Oztoprak, I.; Guemues, C.; Oztoprak, B.; Engin, A.

    2007-01-01

    Aim: To demonstrate the detailed imaging characteristics of early tuberculous meningitis (TBM) and changes over time on standard gadolinium-enhanced, T1-weighted magnetic resonance imaging (MRI) images. Materials and methods: Contrast-enhanced, T1-weighted, spin-echo MRI images of 26 patients with early TBM were evaluated retrospectively. Meningeal enhancement characteristics were categorized according to distribution and pattern as diffuse, focal, linear, nodular, and mixed. Results: We found that 35% of patients had diffuse meningeal enhancement and 65% of cases had focal meningeal enhancement. There was a predilection for focal meningeal enhancement in basal pial areas, the interpeduncular fossa being the most common. In six patients with diffuse meningeal enhancement admitted to hospital relatively early after the onset of symptoms, the type of meningeal enhancement later changed to the focal form. Conclusion: Reactive diffuse meningeal enhancement occurs in the early period of TBM on contrast medium-enhanced T1-weighted MR images, but later becomes limited to basal areas

  19. Multivariable analysis of clinical influence factors on liver enhancement of Gd-EOB-DTPA-enhanced 3T MRI; Multivariable Analyse klinischer Einflussfaktoren auf die Signalintensitaet bei Gd-EOB-DTPA 3T-MRT der Leber

    Energy Technology Data Exchange (ETDEWEB)

    Verloh, N.; Haimerl, M.; Stroszczynski, C.; Fellner, C.; Wiggermann, P. [University Hospital Regensburg (Germany). Dept. of Radiology; Zeman, F. [University Hospital Regensburg (Germany). Center for Clinical Trials; Teufel, A. [University Hospital Regensburg (Germany). Dept. of Gastroenterology; Lang, S. [University Hospital Regensburg (Germany). Dept. of Surgery

    2015-01-15

    The purpose of this study was to identify clinical factors influencing Gd-EOB-DTPA liver uptake in patients with healthy liver parenchyma. A total of 124 patients underwent contrast-enhanced MRI with a hepatocyte-specific contrast agent at 3T. T1-weighted volume interpolated breath-hold examination (VIBE) sequences with fat suppression were acquired before and 20 minutes after contrast injection. The relative enhancement (RE) between plain and contrast-enhanced signal intensity was calculated. Simple and multiple linear regression analyses were performed to evaluate clinical factors influencing the relative enhancement. Patients were subdivided into three groups according to their relative liver enhancement (HRE, RE ≥ 100 %; MRE, 100 % > RE > 50 %; NRE, RE ≤ 50 %) and were analyzed according to the relevant risk factors. Simple regression analyses revealed patient age, transaminases (AST, ALT, GGT), liver, spleen and delta-liver volume (the difference between the volumetrically measured liver volume and the estimated liver volume based on body weight) as significant factors influencing relative enhancement. In the multiple analysis the transaminase AST, spleen and delta liver volume remained significant factors influencing relative enhancement. Delta liver volume showed a significant difference between all analyzed groups. Liver enhancement in the hepatobiliary phase depends on a variety of factors. Body weight-adapted administration of Gd-EOB-DTPA may lead to inadequate liver enhancement after 20 minutes especially when the actual liver volume differs from the expected volume.

  20. Gadolinium-enhanced MRI for evaluation of peripheral nerve neuropathy

    International Nuclear Information System (INIS)

    Hayakawa, Katsuhiko; Kobayashi, Shigeru; Suzuki, Katsuji; Yamada, Mitsuko; Kojima, Motohiro.

    1995-01-01

    We carried out enhanced MRI for the carpal tunnel syndrome, cubital tunnel syndrome, tarsal tunnel syndrome and anterior interosseous nerve palsy that is entrapment neuropathy. The affected nerve was enhanced in entrapment point. Carpal tunnel syndrome: The enhancement of affected nerve was apparent in 41 of 52 cases (79%). Cubital tunnel syndrome: The enhancement of affected nerve was apparent in 4 of 5 cases (80%). Tarsal tunnel syndrome: The enhancement of affected nerve was apparent in 1 of 1 case. Anterior interosseous nerve palsy: The enhancement of affected nerve was apparent in 3 of 4 cases (75%). The affected nerve was strongly enhanced by Gd-DTPA, indicating the blood-nerve barrier in the affected nerve to be broken and intraneural edema to be produced, e.i., the ability of Gd-DTPA to selectively contrast-enhance a pathologic focus within the peripheral nerve is perhaps its most important clinical applications. (author)

  1. Gadolinium-enhanced MRI for evaluation of peripheral nerve neuropathy

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, Katsuhiko [Aikoh Orthopaedic Hospital, Nagoya (Japan); Kobayashi, Shigeru; Suzuki, Katsuji; Yamada, Mitsuko; Kojima, Motohiro

    1995-11-01

    We carried out enhanced MRI for the carpal tunnel syndrome, cubital tunnel syndrome, tarsal tunnel syndrome and anterior interosseous nerve palsy that is entrapment neuropathy. The affected nerve was enhanced in entrapment point. Carpal tunnel syndrome: The enhancement of affected nerve was apparent in 41 of 52 cases (79%). Cubital tunnel syndrome: The enhancement of affected nerve was apparent in 4 of 5 cases (80%). Tarsal tunnel syndrome: The enhancement of affected nerve was apparent in 1 of 1 case. Anterior interosseous nerve palsy: The enhancement of affected nerve was apparent in 3 of 4 cases (75%). The affected nerve was strongly enhanced by Gd-DTPA, indicating the blood-nerve barrier in the affected nerve to be broken and intraneural edema to be produced, e.i., the ability of Gd-DTPA to selectively contrast-enhance a pathologic focus within the peripheral nerve is perhaps its most important clinical applications. (author).

  2. Contrast agents and cardiac MR imaging of myocardial ischemia: from bench to bedside

    International Nuclear Information System (INIS)

    Croisille, Pierre; Revel, Didier; Saeed, Maythem

    2006-01-01

    This review paper presents, in the first part, the different classes of contrast media that are already used or are in development for cardiac magnetic resonance imaging. A classification of the different types of contrast media is proposed based on the distribution of the compounds in the body, their type of relaxivity and their potential affinity to particular molecules. In the second part, the different uses of the extracellular type of T1-enhancing contrast agent for myocardial imaging is covered from the detection of stable coronary artery disease to the detection and characterization of chronic infarction. A particular emphasis is placed on the clinical use of gadolinium-chelates, which are the universally used type of MRI contrast agent in the clinical routine. Both approaches, first-pass magnetic resonance imaging (FP-MRI) as well as delayed-enhanced magnetic resonance imaging (DE-MRI), are covered in the different situations of acute and chronic myocardial infarction. (orig.)

  3. Attenuation of artifacts in EEG signals measured inside an MRI scanner using constrained independent component analysis

    International Nuclear Information System (INIS)

    Rasheed, Tahir; Lee, Young-Koo; Lee, Soo Yeol; Kim, Tae-Seong

    2009-01-01

    Integration of electroencephalography (EEG) and functional magnetic imaging (fMRI) resonance will allow analysis of the brain activities at superior temporal and spatial resolution. However simultaneous acquisition of EEG and fMRI is hindered by the enhancement of artifacts in EEG, the most prominent of which are ballistocardiogram (BCG) and electro-oculogram (EOG) artifacts. The situation gets even worse if the evoked potentials are measured inside MRI for their minute responses in comparison to the spontaneous brain responses. In this study, we propose a new method of attenuating these artifacts from the spontaneous and evoked EEG data acquired inside an MRI scanner using constrained independent component analysis with a priori information about the artifacts as constraints. With the proposed techniques of reference function generation for the BCG and EOG artifacts as constraints, our new approach performs significantly better than the averaged artifact subtraction (AAS) method. The proposed method could be an alternative to the conventional ICA method for artifact attenuation, with some advantages. As a performance measure we have achieved much improved normalized power spectrum ratios (INPS) for continuous EEG and correlation coefficient (cc) values with outside MRI visual evoked potentials for visual evoked EEG, as compared to those obtained with the AAS method. The results show that our new approach is more effective than the conventional methods, almost fully automatic, and no extra ECG signal measurements are involved

  4. Thermal- and pH-Dependent Size Variable Radical Nanoparticles and Its Water Proton Relaxivity for Metal-Free MRI Functional Contrast Agents.

    Science.gov (United States)

    Morishita, Kosuke; Murayama, Shuhei; Araki, Takeru; Aoki, Ichio; Karasawa, Satoru

    2016-09-16

    For development of the metal-free MRI contrast agents, we prepared the supra-molecular organic radical, TEMPO-UBD, carrying TEMPO radical, as well as the urea, alkyl group, and phenyl ring, which demonstrate self-assembly behaviors using noncovalent bonds in an aqueous solution. In addition, TEMPO-UBD has the tertiary amine and the oligoethylene glycol chains (OEGs) for the function of pH and thermal responsiveness. By dynamic light scattering and transmission electron microscopy imaging, the resulting self-assembly was seen to form the spherical nanoparticles 10-150 nm in size. On heating, interestingly, the nanoparticles showed a lower critical solution temperature (LCST) behavior having two-step variation. This double-LCST behavior is the first such example among the supra-molecules. To evaluate of the ability as MRI contrast agents, the values of proton ((1)H) longitudinal relaxivity (r1) were determined using MRI apparatus. In conditions below and above CAC at pH 7.0, the distinguishable r1 values were estimated to be 0.17 and 0.21 mM(-1) s(1), indicating the suppression of fast tumbling motion of TEMPO moiety in a nanoparticle. Furthermore, r1 values became larger in the order of pH 7.0 > 9.0 > 5.0. Those thermal and pH dependencies indicated the possibility of metal-fee MRI functional contrast agents in the future.

  5. Dynamic contrast-enhanced MRI of the prostate. Comparison of two different post-processing algorithms

    International Nuclear Information System (INIS)

    Beyersdorff, Dirk; Franiel, T.; Luedemann, L.; Dietz, E.; Galler, D.; Marchot, P.

    2011-01-01

    Purpose: To evaluate the usefulness of a commercially available post-processing software tool for detecting prostate cancer on dynamic contrast-enhanced magnetic resonance imaging (MRI) and to compare the results to those obtained with a custom-made post-processing algorithm already tested under clinical conditions. Materials and Methods: Forty-eight patients with proven prostate cancer were examined by standard MRI supplemented by dynamic contrast-enhanced dual susceptibility contrast (DCE-DSC) MRI prior to prostatectomy. A custom-made post-processing algorithm was used to analyze the MRI data sets and the results were compared to those obtained using a post-processing algorithm from Invivo Corporation (Dyna CAD for Prostate) applied to dynamic T 1-weighted images. Histology was used as the gold standard. Results: The sensitivity for prostate cancer detection was 78 % for the custom-made algorithm and 60 % for the commercial algorithm and the specificity was 79 % and 82 %, respectively. The accuracy was 79 % for our algorithm and 77.5 % for the commercial software tool. The chi-square test (McNemar-Bowker test) yielded no significant differences between the two tools (p = 0.06). Conclusion: The two investigated post-processing algorithms did not differ in terms of prostate cancer detection. The commercially available software tool allows reliable and fast analysis of dynamic contrast-enhanced MRI for the detection of prostate cancer. (orig.)

  6. Gd-EOB-DTPA-enhanced 3.0-Tesla MRI findings for the preoperative detection of focal liver lesions: Comparison with iodine-enhanced multi-detector computed tomography

    Science.gov (United States)

    Park, Hyong-Hu; Goo, Eun-Hoe; Im, In-Chul; Lee, Jae-Seung; Kim, Moon-Jib; Kwak, Byung-Joon; Chung, Woon-Kwan; Dong, Kyung-Rae

    2012-12-01

    The safety of gadolinium-ethoxybenzyl-diethylenetriamine-pentaacetic-acid (Gd-EOB-DTPA) has been confirmed, but more study is needed to assess the diagnostic accuracy of Gd-EOB-DTPA-enhanced magnetic resonance imaging (MRI) in patients with a hepatocellular carcinoma (HCC) for whom surgical treatment is considered or with a metastatic hepatoma. Research is also needed to examine the rate of detection of hepatic lesions compared to multi-detector computed tomography (MDCT), which is used most frequently to localize and characterize a HCC. Gd-EOB-DTPA-enhanced MRI and iodine-enhanced MDCT imaging were compared for the preoperative detection of focal liver lesions. The clinical usefulness of each method was examined. The current study enrolled 79 patients with focal liver lesions who preoperatively underwent MRI and MDCT. In these patients, there was less than one month between the two diagnostic modalities. Imaging data were taken before and after contrast enhancement in both methods. To evaluate the images, we analyzed the signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR) in the lesions and the liver parenchyma. To compare the sensitivity of the two methods, we performed a quantitative analysis of the percentage signal intensity of the liver (PSIL) on a high resolution picture archiving and communication system (PACS) monitor (paired-samples t-test, p DTPA-enhanced MRI findings and the iodine-enhanced MDCT by using an adjusted x2 test. The SNRs, CNRs, and PSIL all had a greater detection rate in Gd-EOB-DTPA enhanced MRI than in iodine-enhanced MDCT. Hepatocyte-selective uptake was observed 20 minutes after the injection in the focal nodular hyperplasia (FNH, 9/9), adenoma (9/10), and highly-differentiated HCC (grade G1, 27/30). Rim enhancement was detected in all metastases (30/30). During the arterial and the delayed phases, good overall agreement between the gadoxetic-acid-enhanced MR and CT was observed (x2 test, p DTPA-enhanced MRI had a higher

  7. Gadoxetic acid enhanced MRI for differentiation of FNH and HCA: a single centre experience

    Energy Technology Data Exchange (ETDEWEB)

    Grieser, Christian; Steffen, Ingo G.; Perez Fernandez, Carmen Maria; Hamm, Bernd; Denecke, Timm [Klinik fuer Radiologie, Campus Virchow-Klinikum, Charite - Universitaetsmedizin Berlin, Berlin (Germany); Kramme, Incken-Birthe; Blaeker, Hendrik; Kilic, Ergin [Institut fuer Pathologie, Campus Virchow-Klinikum, Charite - Universitaetsmedizin Berlin, Berlin (Germany); Seehofer, Daniel [Klinik fuer Allgemein, Viszeral- und Transplantationschirurgie, Campus Virchow-Klinikum, Charite - Universitaetsmedizin Berlin, Berlin (Germany); Schott, Eckart [Medizinische Klinik m.S. Hepatologie und Gastroenterologie, Campus Virchow-Klinikum, Charite - Universitaetsmedizin Berlin, Berlin (Germany)

    2014-06-15

    Evaluation of enhancement characteristics of histopathologically confirmed focal nodular hyperplasias (FNHs) and hepatocellular adenomas (HCAs) with gadoxetic acid-enhanced MRI. Sixty-eight patients with 115 histopathologically proven lesions (FNHs, n = 44; HCAs, n = 71) examined with gadoxetic acid-enhanced MRI were retrospectively enrolled (standard of reference: surgical resection, n = 53 patients (lesions: FNHs, n = 37; HCAs, n = 53); biopsy, n = 15 (lesions: FNHs, n = 7; HCAs, n = 18)). Two radiologists evaluated all MR images regarding morphological features as well as the vascular and hepatocyte-specific enhancement in consensus. For the hepatobiliary phase, relative enhancement of the lesions and lesion to liver enhancement were significantly lower for HCAs (mean, 48.7 (±48.4) % and 49.4 (±33.9) %) compared to FNHs (159.3 (±92.5) %; and 151.7 (±79) %; accuracy of 89 % and 90 %, respectively; P < 0.001). Visual strong uptake of FNHs vs. hypointensity of HCAs in the hepatobiliary phase resulted in an accuracy of 92 %. This parameter was superior to all other morphological and dynamic vascular criteria alone and in combination (accuracy, 54-85 %). For differentiation of FNHs and HCAs by means of MRI, gadoxetic acid uptake in the hepatobiliary phase was found to be superior to all other criteria alone and in combination. (orig.)

  8. Gadoxetic acid enhanced MRI for differentiation of FNH and HCA: a single centre experience

    International Nuclear Information System (INIS)

    Grieser, Christian; Steffen, Ingo G.; Perez Fernandez, Carmen Maria; Hamm, Bernd; Denecke, Timm; Kramme, Incken-Birthe; Blaeker, Hendrik; Kilic, Ergin; Seehofer, Daniel; Schott, Eckart

    2014-01-01

    Evaluation of enhancement characteristics of histopathologically confirmed focal nodular hyperplasias (FNHs) and hepatocellular adenomas (HCAs) with gadoxetic acid-enhanced MRI. Sixty-eight patients with 115 histopathologically proven lesions (FNHs, n = 44; HCAs, n = 71) examined with gadoxetic acid-enhanced MRI were retrospectively enrolled (standard of reference: surgical resection, n = 53 patients (lesions: FNHs, n = 37; HCAs, n = 53); biopsy, n = 15 (lesions: FNHs, n = 7; HCAs, n = 18)). Two radiologists evaluated all MR images regarding morphological features as well as the vascular and hepatocyte-specific enhancement in consensus. For the hepatobiliary phase, relative enhancement of the lesions and lesion to liver enhancement were significantly lower for HCAs (mean, 48.7 (±48.4) % and 49.4 (±33.9) %) compared to FNHs (159.3 (±92.5) %; and 151.7 (±79) %; accuracy of 89 % and 90 %, respectively; P < 0.001). Visual strong uptake of FNHs vs. hypointensity of HCAs in the hepatobiliary phase resulted in an accuracy of 92 %. This parameter was superior to all other morphological and dynamic vascular criteria alone and in combination (accuracy, 54-85 %). For differentiation of FNHs and HCAs by means of MRI, gadoxetic acid uptake in the hepatobiliary phase was found to be superior to all other criteria alone and in combination. (orig.)

  9. Ultrasonic-assisted synthesis of magnetite based MRI contrast agent using cysteine as the biocapping coating

    International Nuclear Information System (INIS)

    Ahmadi, Reza; Malek, Mahrooz; Hosseini, Hamid Reza Madaah; Shokrgozar, Mohammad Ali; Oghabian, Mohammad Ali; Masoudi, Afshin; Gu Ning; Zhang Yu

    2011-01-01

    Highlights: ► We used cysteine as surfactant to synthesize stable magnetite-based ferrofluids. ► pH increase from 11 to 12 led to particle size decrease from 19.58 to 10.02 nm. ► Cytotoxicity assay showed that synthesized particles were biocompatible. ► MRI results showed that magnetite particles were accumulated in lymph nodes. - Abstract: Magnetite nanoparticles (mean particle size ranging from 10 to 20 nm) were prepared by a biomolecule-assisted solution-phase approach under ultrasonic irradiation. Cysteine was used as the capping agent in the solution. The results show that cysteine could be an efficient biocapping agent in producing Fe 3 O 4 nanoparticles. The crystal structure and magnetic properties of the nanoparticles were characterized by XRD and VSM techniques, respectively. FT-IR was used to investigate the presence of cysteine on the nanoparticles surface. The influence of pH value of the solution on the size distribution and hydrodynamic size of nanoparticles were studied by TEM and DLS methods, respectively. The MTT assay performed by incubation of L929 cells, showed the good biocompability of synthesized ferrofluids. In vitro T1 and T2 relaxivity measurements along with in vivo studies, which were conducted on rats, demonstrate that synthesized nanoparticles are applicable as the contrast agents, especially for imaging of the lymphatic system.

  10. Relaxation parameter estimation and comparison of NLS and LLS methods for DCE MRI in the cervix

    DEFF Research Database (Denmark)

    Mariager, Christian; Kallehauge, Jesper; Tanderup, Kari

    Dynamic Contrast Enhanced (DCE) MRI is a promising tool for tumor treatment planning. However, prior knowledge of the T1 value within each tumor voxel is needed to utilize this technique. Therefore, a T1 relaxation measurement is performed before the DCE experiment to establish a baseline, before...... any injection of contrast agent. This T1 relaxation measurement is often performed using a variable flip angle spoiled gradient recalled echo (SPGR) sequence. T1 can then be estimated using either a linear least squares (LLS) or a non-linear least squares (NLS) fitting algorithm....

  11. Contrast-enhanced MRI of subchondral cysts in patients with or at risk for knee osteoarthritis: The MOST study

    International Nuclear Information System (INIS)

    Crema, M.D.; Roemer, F.W.; Marra, M.D.; Niu, J.; Lynch, J.A.; Felson, D.T.; Guermazi, A.

    2010-01-01

    Objective: The aim of the study was (1) to evaluate contrast enhancement patterns of subchondral cysts on magnetic resonance imaging and (2) to discuss possible radiological explanations of cyst enhancement based on existing theories of subchondral cyst formation in osteoarthritis. Materials and methods: The Multicenter Osteoarthritis Study (MOST) is a NIH-funded longitudinal observational study for individuals who have or are at high risk for knee osteoarthritis. All subjects with available non-enhanced and contrast-enhanced MRI were included. The tibiofemoral and patellofemoral joints were divided in 14 subregions. The presence and size of subchondral cysts and bone marrow edema-like lesions (BMLs) were scored semiquantitatively in each subregion on non-contrast-enhanced MRI from 0 to 3. Enhancement of subchondral cysts was evaluated on contrast-enhanced MRI as grade 0 (absent), grade 1 (partial enhancement), or grade 2 (full enhancement). The adjacent articular cartilage was scored in each subregion on non-enhanced MRI as grade 0 (intact), grade 1 (partial thickness loss), or grade 2 (full thickness loss). Results: Four hundred knees were included (1 knee per person, 5600 subregions). Subchondral cysts were detected in 260 subregions (4.6%). After intravenous contrast administration, 245 cysts (94.2%) showed full enhancement, 12 (4.6%) showed partial enhancement and 3 (1.2%) showed no enhancement. Enhancing BMLs were found in 237 (91.2%) subregions containing cysts, which were located adjacent or in the middle of BMLs. In 121 subregions (46.5%) having cysts, no adjacent full thickness cartilage loss was detected. Conclusion: Most subchondral cysts demonstrated full or partial contrast enhancement, and were located adjacent or in the midst of enhancing BMLs. As pure cystic lesions are not expected to enhance on MRI, the term 'subchondral cyst-like bone marrow lesion' might be appropriate to describe these lesions.

  12. Contrast-enhanced MRI of subchondral cysts in patients with or at risk for knee osteoarthritis: The MOST study

    Energy Technology Data Exchange (ETDEWEB)

    Crema, M.D., E-mail: michelcrema@gmail.co [Department of Radiology, Boston University School of Medicine, 820 Harrison Ave, FGH Building, 3rd Floor, Boston, MA 02118 (United States); Roemer, F.W., E-mail: frank.roemer@klinikum-augsburg.d [Department of Radiology, Boston University School of Medicine, 820 Harrison Ave, FGH Building, 3rd Floor, Boston, MA 02118 (United States); Department of Radiology, Klinikum Augsburg, Stenglinstrasse 2, Augsburg 86156 (Germany); Marra, M.D., E-mail: monicadiasmarra@gmail.co [Department of Radiology, Boston University School of Medicine, 820 Harrison Ave, FGH Building, 3rd Floor, Boston, MA 02118 (United States); Niu, J., E-mail: niujp@bu.ed [Clinical Epidemiology Research and Training Unit, Boston University School of Medicine, 650 Albany Street, X Building, Suite 200, Boston, MA 02118 (United States); Lynch, J.A., E-mail: jlynch@psg.ucsf.ed [Department of Epidemiology and Biostatistics, University of California at San Francisco, 185 Berry Street, Lobby 5, Suite 5700, San Francisco, CA 94107 (United States); Felson, D.T., E-mail: dfelson@bu.ed [Clinical Epidemiology Research and Training Unit, Boston University School of Medicine, 650 Albany Street, X Building, Suite 200, Boston, MA 02118 (United States); Guermazi, A., E-mail: ali.guermazi@bmc.or [Department of Radiology, Boston University School of Medicine, 820 Harrison Ave, FGH Building, 3rd Floor, Boston, MA 02118 (United States)

    2010-07-15

    Objective: The aim of the study was (1) to evaluate contrast enhancement patterns of subchondral cysts on magnetic resonance imaging and (2) to discuss possible radiological explanations of cyst enhancement based on existing theories of subchondral cyst formation in osteoarthritis. Materials and methods: The Multicenter Osteoarthritis Study (MOST) is a NIH-funded longitudinal observational study for individuals who have or are at high risk for knee osteoarthritis. All subjects with available non-enhanced and contrast-enhanced MRI were included. The tibiofemoral and patellofemoral joints were divided in 14 subregions. The presence and size of subchondral cysts and bone marrow edema-like lesions (BMLs) were scored semiquantitatively in each subregion on non-contrast-enhanced MRI from 0 to 3. Enhancement of subchondral cysts was evaluated on contrast-enhanced MRI as grade 0 (absent), grade 1 (partial enhancement), or grade 2 (full enhancement). The adjacent articular cartilage was scored in each subregion on non-enhanced MRI as grade 0 (intact), grade 1 (partial thickness loss), or grade 2 (full thickness loss). Results: Four hundred knees were included (1 knee per person, 5600 subregions). Subchondral cysts were detected in 260 subregions (4.6%). After intravenous contrast administration, 245 cysts (94.2%) showed full enhancement, 12 (4.6%) showed partial enhancement and 3 (1.2%) showed no enhancement. Enhancing BMLs were found in 237 (91.2%) subregions containing cysts, which were located adjacent or in the middle of BMLs. In 121 subregions (46.5%) having cysts, no adjacent full thickness cartilage loss was detected. Conclusion: Most subchondral cysts demonstrated full or partial contrast enhancement, and were located adjacent or in the midst of enhancing BMLs. As pure cystic lesions are not expected to enhance on MRI, the term 'subchondral cyst-like bone marrow lesion' might be appropriate to describe these lesions.

  13. Clinical significance of quantitative analysis of facial nerve enhancement on MRI in Bell's palsy.

    Science.gov (United States)

    Song, Mee Hyun; Kim, Jinna; Jeon, Ju Hyun; Cho, Chang Il; Yoo, Eun Hye; Lee, Won-Sang; Lee, Ho-Ki

    2008-11-01

    Quantitative analysis of the facial nerve on the lesion side as well as the normal side, which allowed for more accurate measurement of facial nerve enhancement in patients with facial palsy, showed statistically significant correlation with the initial severity of facial nerve inflammation, although little prognostic significance was shown. This study investigated the clinical significance of quantitative measurement of facial nerve enhancement in patients with Bell's palsy by analyzing the enhancement pattern and correlating MRI findings with initial severity of facial palsy and clinical outcome. Facial nerve enhancement was measured quantitatively by using the region of interest on pre- and postcontrast T1-weighted images in 44 patients diagnosed with Bell's palsy. The signal intensity increase on the lesion side was first compared with that of the contralateral side and then correlated with the initial degree of facial palsy and prognosis. The lesion side showed significantly higher signal intensity increase compared with the normal side in all of the segments except for the mastoid segment. Signal intensity increase at the internal auditory canal and labyrinthine segments showed correlation with the initial degree of facial palsy but no significant difference was found between different prognostic groups.

  14. In vitro molecular magnetic resonance imaging detection and measurement of apoptosis using superparamagnetic iron oxide + antibody as ligands for nucleosomes

    Science.gov (United States)

    Rapley, P. L.; Witiw, C.; Rich, K.; Niccoli, S.; Tassotto, M. L.; Th'ng, J.

    2012-11-01

    Recent research in cell biology as well as oncology research has focused on apoptosis or programmed cell death as a means of quantifying the induced effects of treatment. A hallmark of late-stage apoptosis is nuclear fragmentation in which DNA is degraded to release nucleosomes with their associated histones. In this work, a method was developed for detecting and measuring nucleosome concentration in vitro with magnetic resonance imaging (MRI). The indirect procedure used a commercially available secondary antibody-superparamagnetic iron oxide (SPIO) particle complex as a contrast agent that bound to primary antibodies against nucleosomal histones H4, H2A and H2B. Using a multiple-echo spin-echo sequence on a 1.5 T clinical MRI scanner, significant T2 relaxation enhancement as a function of in vitro nucleosomal concentration was measured. In addition, clustering or aggregation of the contrast agent was demonstrated with its associated enhancement in T2 effects. The T2 clustering enhancement showed a complex dependence on relative concentrations of nucleosomes, primary antibody and secondary antibody + SPIO. The technique supports the feasibility of using MRI measurements of nucleosome concentration in blood as a diagnostic, prognostic and predictive tool in the management of cancer.

  15. Transudative vs exudative pleural effusions: differentiation using Gd-DTPA-enhanced MRI

    International Nuclear Information System (INIS)

    Frola, C.; Cantoni, S.; Turtulici, I.; Leoni, C.; Loria, F.; Gaeta, M.; Derchi, L.E.

    1997-01-01

    The aim of this study was to investigate the capability of Gd-DTPA-enhanced MRI to differentiate between exudative and transudative pleural effusions. An MRI examination was performed on 22 patients with different types of pleural effusion (10 transudative and 12 exudative effusions). T1-weighted SE images were obtained before and 20 min after administration of Gd-DTPA (0.1 mmol/kg). The degree of enhancement of pleural effusions was evaluated both by visual assessement and by quantitative analysis of images. None of 10 transudative effusions showed significative enhancement, whereas 10 of 12 exudative effusions showed enhancement (sensitivity 83 %, specificity 100 %, positive predictive value 100 %). The postcontrast signal intensity ratios (SIRs) of exudates were significantly higher than corresponding precontrast ratios (P = 0.0109) and the postcontrast SIRs of exudates were significantly higher than those of transudates (P = 0.0300). Exudative pleural effusions show a significant enhancement following administration of Gd-DTPA. We presume that this may be caused by increased pleural permeability and more rapid passage of a large amount of Gd-DTPA from the blood into the pleural fluid in case of exudative effusions. In our limited group of patients, signal enhancement proved the presence of an exudative effusion. Absence of signal enhancement suggests a transudate, but does not exclude an exudate. (orig.). With 5 figs., 2 tabs

  16. Synthese und Charakterisierung amphiphiler Porphyrinoide als Kontrastmittel für das Magnetic Resonance Imaging (MRI)

    OpenAIRE

    Neumann, Yvonne

    2011-01-01

    Magnetic resonance imaging (MRI) is a diagnostic tool, which is commonly used in visualization of internal procedures in the living tissue. Used in visualizing procedures, MRI shows an increased contrast-enhancing effect in soft tissue in contrast to other techniques like computer tomography (CT). MRI does not need any ionizing radiation and provides three dimensional tomographic shots. One of the first commonly used porphyrin-based contrast agents was Gadophrin-2, which has a high affinity t...

  17. Evaluation of focal cartilage lesions of the knee using MRI T2 mapping and delayed Gadolinium Enhanced MRI of Cartilage (dGEMRIC).

    Science.gov (United States)

    Årøen, Asbjørn; Brøgger, Helga; Røtterud, Jan Harald; Sivertsen, Einar Andreas; Engebretsen, Lars; Risberg, May Arna

    2016-02-11

    Assessment of degenerative changes of the cartilage is important in knee cartilage repair surgery. Magnetic Resonance Imaging (MRI) T2 mapping and delayed Gadolinium Enhanced MRI of Cartilage (dGEMRIC) are able to detect early degenerative changes. The hypothesis of the study was that cartilage surrounding a focal cartilage lesion in the knee does not possess degenerative changes. Twenty-eight consecutive patients included in a randomized controlled trial on cartilage repair were evaluated using MRI T2 mapping and dGEMRIC before cartilage treatment was initiated. Inclusion was based on disabling knee problems (Lysholm score of ≤ 75) due to an arthroscopically verified focal femoral condyle cartilage lesion. Furthermore, no major malalignments or knee ligament injuries were accepted. Mean patient age was 33 ± 9.6 years, and the mean duration of knee symptoms was 49 ± 60 months. The MRI T2 mapping and the dGEMRIC measurements were performed at three standardized regions of interest (ROIs) at the medial and lateral femoral condyle, avoiding the cartilage lesion The MRI T2 mapping of the cartilage did not demonstrate significant differences between condyles with or without cartilage lesions. The dGEMRIC results did not show significantly lower values of the affected condyle compared with the opposite condyle and the contra-lateral knee in any of the ROIs. The intraclass correlation coefficient (ICC) of the dGEMRIC readings was 0.882. The MRI T2 mapping and the dGEMRIC confirmed the arthroscopic findings that normal articular cartilage surrounded the cartilage lesion, reflecting normal variation in articular cartilage quality. NCT00885729 , registered April 17 2009.

  18. Assessment of MRI and dynamic contrast-enhanced MRI in the differential diagnosis of adenomatoid odontogenic tumor

    International Nuclear Information System (INIS)

    Asaumi, Jun-ichi; Yanagi, Yoshinobu; Konouchi, Hironobu; Hisatomi, Miki; Matsuzaki, Hidenobu; Shigehara, Hiroshi; Kishi, Kanji

    2004-01-01

    The radiographical differentiation of adenomatoid odontogenic tumor (AOT) from dentigerous cysts, calcifying odontogenic cysts, calcifying epithelial odontogenic tumors, odontogenic keratocysts and amelobastomas is sometimes difficult. We attempted to differentiate AOT from other lesions similar to AOT in radiographic findings using MRI. The MRI features of AOT in our three cases included homogeneous low SI in the cystic portion and homogeneous intermediate SI in the solid portion on T1WI, homogeneous high SI in the cystic portion and intermediate to slightly high SI in the solid portion on T2WI and enhancement of only the solid portion on CE-T1WI although none of the sequences included SI of calcifications. The contrast index curves in the three cases of AOT showed a gradual increase to 300 s, which signified a benign tumor. These MRI features were characteristic features of AOT and might be a basis for differentiating AOT from the above possible lesions in radiographic examinations

  19. Gd-DTPA: a bowel contrast agent for magnetic resonance imaging of the abdomen

    International Nuclear Information System (INIS)

    Vlahos, L.; Gouliamos, A.; Clauss, W.; Kalovidouris, A.; Hadjiioannou, A.; Athanasopoulou, A.; Trakadas, S.; Papavasiliou, C.

    1992-01-01

    Forty patients with suspected pathology in the abdomen and pelvis have been investigated with MRI before and after administration of Gd-DTPA as an oral or rectal solution. The findings are analysed with respect to: (a) filling of the GI tract; (b) contrast in the region of interest, surrounding fat and vessels; (c) diagnostic yield in comparison to non-enhanced MRI and contrast CT. At a concentration of 1 mmol/l Gd-DTPA provided consistent positive contrast in the stomach and bowel in all cases. In 57.5% of cases we achieved complete filling of the GI tract. The opacification in the region of interest was good or satisfactory in 90% of cases. The diagnostic value of contrast MRI was better in 93% of cases than the non-enhanced MRI of the abdomen. In comparison with contrast CT, the contrast MRI was better or of the same value in 92% of cases. Despite the disadvantage of poor fat-to-bowel contrast (35% of cases were classified as poor), it is concluded that Gd-DTPA-enhanced MRI provides good delineation of organs adjacent to the bowel so this contrast agent has potential for a future role in abdominal MRI. (orig.)

  20. Gd-DTPA: a bowel contrast agent for magnetic resonance imaging of the abdomen

    Energy Technology Data Exchange (ETDEWEB)

    Vlahos, L. [Dept. of Radiology, Univ. of Athens, Areteion Hospital (Greece); Gouliamos, A. [Dept. of Radiology, Univ. of Athens, Areteion Hospital (Greece); Clauss, W. [Schering A. G., Berlin (Germany); Kalovidouris, A. [Dept. of Radiology, Univ. of Athens, Areteion Hospital (Greece); Hadjiioannou, A. [Dept. of Radiology, Univ. of Athens, Areteion Hospital (Greece); Athanasopoulou, A. [Dept. of Radiology, Univ. of Athens, Areteion Hospital (Greece); Trakadas, S. [Dept. of Radiology, Univ. of Athens, Areteion Hospital (Greece); Papavasiliou, C. [Dept. of Radiology, Univ. of Athens, Areteion Hospital (Greece)

    1992-08-01

    Forty patients with suspected pathology in the abdomen and pelvis have been investigated with MRI before and after administration of Gd-DTPA as an oral or rectal solution. The findings are analysed with respect to: (a) filling of the GI tract; (b) contrast in the region of interest, surrounding fat and vessels; (c) diagnostic yield in comparison to non-enhanced MRI and contrast CT. At a concentration of 1 mmol/l Gd-DTPA provided consistent positive contrast in the stomach and bowel in all cases. In 57.5% of cases we achieved complete filling of the GI tract. The opacification in the region of interest was good or satisfactory in 90% of cases. The diagnostic value of contrast MRI was better in 93% of cases than the non-enhanced MRI of the abdomen. In comparison with contrast CT, the contrast MRI was better or of the same value in 92% of cases. Despite the disadvantage of poor fat-to-bowel contrast (35% of cases were classified as poor), it is concluded that Gd-DTPA-enhanced MRI provides good delineation of organs adjacent to the bowel so this contrast agent has potential for a future role in abdominal MRI. (orig.)

  1. A targeted nanoglobular contrast agent from host-guest self-assembly for MR cancer molecular imaging.

    Science.gov (United States)

    Zhou, Zhuxian; Han, Zhen; Lu, Zheng-Rong

    2016-04-01

    The clinical application of nanoparticular Gd(III) based contrast agents for tumor molecular MRI has been hindered by safety concerns associated with prolonged tissue retention, although they can produce strong tumor enhancement. In this study, a targeted well-defined cyclodextrin-based nanoglobular contrast agent was developed through self-assembly driven by host-guest interactions for safe and effective cancer molecular MRI. Multiple β-cyclodextrins attached POSS (polyhedral oligomeric silsesquioxane) nanoglobule was used as host molecule. Adamantane-modified macrocyclic Gd(III) contrast agent, cRGD (cyclic RGDfK peptide) targeting ligand and fluorescent probe was used as guest molecules. The targeted host-guest nanoglobular contrast agent cRGD-POSS-βCD-(DOTA-Gd) specifically bond to αvβ3 integrin in malignant 4T1 breast tumor and provided greater contrast enhancement than the corresponding non-targeted agent. The agent also provided significant fluorescence signal in tumor tissue. The histological analysis of the tumor tissue confirmed its specific and effective targeting to αvβ3 integrin. The targeted imaging agent has a potential for specific cancer molecular MR and fluorescent imaging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Perfusion MRI in CNS disease: current concepts

    International Nuclear Information System (INIS)

    Essig, M.; Giesel, F.; Le-Huu, M.; Stieltjes, B.; Tengg, H. von; Weber, M.-A.

    2004-01-01

    Today there are several indications for cerebral perfusion MRI. The major indications routinely used in increasing numbers of imaging centers include cerebrovascular disease, tumor imaging and recently psychiatric disorders. Perfusion MRI is based on the injection of a gadolinium chelate and the rapid acquisition of images as the bolus of contrast agent passes through the blood vessels in the brain. The contrast agent causes a signal change; this signal change over time can be analysed to measure cerebral hemodynamics. The quality of brain perfusion studies is very dependent on the contrast agent used: a robust and strong signal decrease with a compact bolus is needed. MultiHance (gadobenate dimeglumine, Gd-BOPTA) is the first of a new class of paramagnetic MR contrast agents with a weak affinity for serum proteins. Due to the interaction of Gd-BOPTA with serum albumin, MultiHance presents with significantly higher T1- and T2-relaxivities enabling a sharper bolus profile. This article reviews the indications of perfusion MRI and the performance of MultiHance in MR perfusion of different diseases. Previous studies using perfusion MRI for a variety of purposes required the use of double dose of contrast agent to achieve a sufficiently large signal drop to enable the acquisition of a clear input function and the calculation of perfusion rCBV and rCBF maps of adequate quality. Recent studies with Multi-Hance suggest that only a single dose of this agent is needed to cause a signal drop of about 30% which is sufficient to allow the calculation of high quality rCBV and rCBF maps. (orig.)

  3. Establishment of atherosclerotic model and USPIO enhanced MRI techniques study in rabbits

    International Nuclear Information System (INIS)

    Li Yonggang; Zhu Mo; Dai Yinyu; Chen Jianhua; Guo Liang; Ni Jiankun

    2010-01-01

    Objective: To explore the methods of establishment of atherosclerotic model and USPIO enhanced MRI techniques in rabbits. Methods: Thirty New Zealand male rabbits were divided randomly into two groups: 20 animals in the experiment group, 10 animals in the control group. Animal model of atherosclerosis was induced with aortic balloon endothelial injury and high-fat diet feeding. There was no intervention with the rabbits in control group. MRI examination included plan scan, USPIO enhanced black-blood sequences and white-blood sequence. The features of the plaques was analyzed in the experimental group and the effection on the image quality of different coils, sequences and parameters and a statistical study was also analyzed. Results: Animal model of atherosclerosis was successfully made in 12 rabbits and most plaques located in the abdomen aorta. There were 86 plaques within the scanning scope among which 67 plaques were positive to the Prussian blue staining. The image quality of knee joint coil was better than that of other coils. Although there was no difference in the detection of numbers of AS plaques between USPIO enhanced black-blood sequences and white-blood sequence (P > 0.05), blackblood sequences was superior to white-blood sequence in the demonstration of the components of plaque. Conclusion: The method of aortic balloon endothelial injury and high-fat diet feeding can easily establish the AS model in rabbits with a shorter period and it may be used for controlling the location of the plaques. USPIO enhanced MRI sequences has high sensitivity in the detection of the AS plauqes and can reveal the component of AS plaques. The optimization of MRI techniques is very important in the improvement of the image quality and the detection of the plaques. (authors)

  4. Superparamagnetic iron oxides for MRI

    International Nuclear Information System (INIS)

    Weissleder, R.; Reimer, P.

    1993-01-01

    Pharmaceutical iron oxide preparations have been used as MRI contrast agents for a variety of purposes. These agents predominantly decrease T2 relaxation times and therefore cause a decrease in signal intensity of tissues that contain the agent. After intravenous administration, dextran-coated iron oxides typically accumulate in phagocytic cells in liver and spleen. Clinical trials have shown that iron oxide increases lesion/liver and lesion/spleen contrast, that more lesions can be depicted than on plain MRI or CT, and that the size threshold for lesion detection decreases. Decreased uptake of iron oxides in liver has been observed in hepatitis and cirrhosis, potentially allowing the assessment of organ function. More recently a variety of novel, target-specific monocrystalline iron oxides compounds have been used for receptor and immunospecific images. Future development of targeted MRI contrast agents is critical for organ- or tissue-specific quantitative and functional MRI. (orig.)

  5. Superparamagnetic iron oxides for MRI

    Energy Technology Data Exchange (ETDEWEB)

    Weissleder, R [MGH-NMR Center, Dept. of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Reimer, P [MGH-NMR Center, Dept. of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); [Inst. fuer Klinische Radiologie, Zentrale Roentgendiagnostik, Westfaelische-Wilhelms-Univ., Muenster (Germany)

    1993-06-01

    Pharmaceutical iron oxide preparations have been used as MRI contrast agents for a variety of purposes. These agents predominantly decrease T2 relaxation times and therefore cause a decrease in signal intensity of tissues that contain the agent. After intravenous administration, dextran-coated iron oxides typically accumulate in phagocytic cells in liver and spleen. Clinical trials have shown that iron oxide increases lesion/liver and lesion/spleen contrast, that more lesions can be depicted than on plain MRI or CT, and that the size threshold for lesion detection decreases. Decreased uptake of iron oxides in liver has been observed in hepatitis and cirrhosis, potentially allowing the assessment of organ function. More recently a variety of novel, target-specific monocrystalline iron oxides compounds have been used for receptor and immunospecific images. Future development of targeted MRI contrast agents is critical for organ- or tissue-specific quantitative and functional MRI. (orig.)

  6. Calcium-sensitive MRI contrast agents based on superparamagnetic iron oxide nanoparticles and calmodulin.

    Science.gov (United States)

    Atanasijevic, Tatjana; Shusteff, Maxim; Fam, Peter; Jasanoff, Alan

    2006-10-03

    We describe a family of calcium indicators for magnetic resonance imaging (MRI), formed by combining a powerful iron oxide nanoparticle-based contrast mechanism with the versatile calcium-sensing protein calmodulin and its targets. Calcium-dependent protein-protein interactions drive particle clustering and produce up to 5-fold changes in T2 relaxivity, an indication of the sensors' potency. A variant based on conjugates of wild-type calmodulin and the peptide M13 reports concentration changes near 1 microM Ca(2+), suitable for detection of elevated intracellular calcium levels. The midpoint and cooperativity of the response can be tuned by mutating the protein domains that actuate the sensor. Robust MRI signal changes are achieved even at nanomolar particle concentrations (calcium levels. When combined with technologies for cellular delivery of nanoparticulate agents, these sensors and their derivatives may be useful for functional molecular imaging of biological signaling networks in live, opaque specimens.

  7. In vivo MRI volumetric measurement of prostate regression and growth in mice

    Directory of Open Access Journals (Sweden)

    Nalcioglu Orhan

    2007-07-01

    Full Text Available Abstract Background Mouse models for treatment of late-stage prostate cancer are valuable tools, but assessing the extent of growth of the prostate and particularly its regression due to therapeutic intervention or castration is difficult due to the location, small size and interdigitated anatomy of the prostate gland in situ. Temporal monitoring of mouse prostate regression requires multiple animals and examination of histological sections. Methods Initially, T2-weighted magnetic resonance imaging (MRI was performed on normal year-old C57/BL6 mice. Individual mice were repeatedly imaged using inhalation anesthesia to establish the reproducibility of the method and to follow hormone manipulation of the prostate volume. Subsequently, MRI fat signal was suppressed using a chemical shift-selective (CHESS pulse to avoid signal contamination and enhance discrimination of the prostate. Results High field (7T MRI provides high resolution (117 × 117 μm in plane, highly reproducible images of the normal mouse prostate. Despite long imaging times, animals can be imaged repeatedly to establish reliability of volume measurements. Prostate volume declines following castration and subsequently returns to normal with androgen administration in the same animal. CHESS imaging allowed discrimination of both the margins of the prostate and the dorsal-lateral lobes of the prostate (DLP from the ventral lobes (VP. Castration results in a 40% reduction in the volume of the DLP and a 75% reduction in the volume of the VP. Conclusion MRI assessment of the volume of the mouse prostate is precise and reproducible. MRI improves volumetric determination of the extent of regression and monitoring of the same mouse over time during the course of treatment is possible. Since assessing groups of animals at each time point is avoided, this improves the accuracy of the measurement of any manipulation effect and reduces the number of animals required.

  8. Three-dimensional dynamic contrast-enhanced MRI for the accurate, extensive quantification of microvascular permeability in atherosclerotic plaques

    NARCIS (Netherlands)

    Calcagno, Claudia; Lobatto, Mark E.; Dyvorne, Hadrien; Robson, Philip M.; Millon, Antoine; Senders, Max L.; Lairez, Olivier; Ramachandran, Sarayu; Coolen, Bram F.; Black, Alexandra; Mulder, Willem J. M.; Fayad, Zahi A.

    2015-01-01

    Atherosclerotic plaques that cause stroke and myocardial infarction are characterized by increased microvascular permeability and inflammation. Dynamic contrast-enhanced MRI (DCE-MRI) has been proposed as a method to quantify vessel wall microvascular permeability in vivo. Until now, most DCE-MRI

  9. Enhancing Diffusion MRI Measures By Integrating Grey and White Matter Morphometry With Hyperbolic Wasserstein Distance

    Science.gov (United States)

    Zhang, Wen; Shi, Jie; Yu, Jun; Zhan, Liang; Thompson, Paul M.; Wang, Yalin

    2017-01-01

    In order to improve the preclinical diagnose of Alzheimer's disease (AD), there is a great deal of interest in analyzing the AD related brain structural changes with magnetic resonance image (MRI) analyses. As the major features, variation of the structural connectivity and the cortical surface morphometry provide different views of structural changes to determine whether AD is present on presymptomatic patients. However, the large scale tensor-valued information and relatively low imaging resolution in diffusion MRI (dMRI) have created huge challenges for analysis. In this paper, we propose a novel framework that improves dMRI analysis power by fusing cortical surface morphometry features from structural MRI (sMRI). We first compute the hyperbolic harmonic maps between cortical surfaces with the landmark constraints thus to precisely evaluate surface tensor-based morphometry. Meanwhile, the graph-based analysis of structural connectivity derived from dMRI is conducted. Next, we fuse these two features via the optimal mass transportation (OMT) and eventually the Wasserstein distance (WD) based single image index is computed as a potential clinical multimodality imaging score. We apply our framework to brain images of 20 AD patients and 20 matched healthy controls, randomly chosen from the Alzheimer's Disease Neuroimaging Initiative (AD-NI2) dataset. Our preliminary experimental results of group classification outperformed those of some other single dMRI-based features, such as regional hippocampal volume, mean scores of fractional anisotropy (FA) and mean axial (MD). The novel image fusion pipeline and simple imaging score of structural changes may benefit the preclinical AD and AD prevention research. PMID:28936280

  10. Comparison of neurite density measured by MRI and histology after TBI.

    Directory of Open Access Journals (Sweden)

    Shiyang Wang

    Full Text Available Functional recovery after brain injury in animals is improved by marrow stromal cells (MSC which stimulate neurite reorganization. However, MRI measurement of neurite density changes after injury has not been performed. In this study, we investigate the feasibility of MRI measurement of neurite density in an animal model of traumatic brain injury (TBI with and without MSC treatment.Fifteen male Wistar rats, were treated with saline (n = 6 or MSCs (n = 9 and were sacrificed at 6 weeks after controlled cortical impact (CCI. Healthy non-CCI rats (n = 5, were also employed. Ex-vivo MRI scans were performed two days after the rats were sacrificed. Multiple-shell hybrid diffusion imaging encoding scheme and spherical harmonic expansion of a two-compartment water diffusion displacement model were used to extract neurite related parameters. Bielshowski and Luxol Fast blue was used for staining axons and myelin, respectively. Modified Morris water maze and neurological severity score (mNSS test were performed for functional evaluation. The treatment effects, the correlations between neurite densities measured by MRI and histology, and the correlations between MRI and functional variables were calculated by repeated measures analysis of variance, the regression correlation analysis tests, and spearman correlation coefficients.Neurite densities exhibited a significant correlation (R(2>0.80, p<1E-20 between MRI and immuno-histochemistry measurements with 95% lower bound of the intra-correlation coefficient (ICC as 0.86. The conventional fractional anisotropy (FA correlated moderately with histological neurite density (R(2 = 0.59, P<1E-5 with 95% lower bound of ICC as 0.76. MRI data revealed increased neurite reorganization with MSC treatment compared with saline treatment, confirmed by histological data from the same animals. mNSS were significantly correlated with MRI neurite density in the hippocampus region.The present studies

  11. Sensitivity of enhanced MRI for the detection of breast cancer: new, multicentric, residual, and recurrent

    International Nuclear Information System (INIS)

    Davis, P.L.; McCarty, K.S. Jr.

    1997-01-01

    Magnetic resonance imaging (MRI) of the breast brings the advantages of high resolution cross-sectional imaging to breast cancer diagnosis, treatment and research: improved cancer detection, staging, selection of therapy, evaluation of therapeutic response in vivo, detection of recurrence, and even the development of new therapies. Until now breast cancer treatment and research has been impeded by the limited means of evaluating the breast cancer in vivo: primarily clinical palpation and mammography of the breast tumor. A review of the initial studies shows that with the use of paramagnetic contrast agents, MRI has a sensitivity of 96 % for detecting breast cancers. MRI detects multicentric disease with a sensitivity of 98 %, superior to any other modality. The ability of MRI to detect recurrent local breast cancer in the conservatively treated breast is nearly 100 %. MRI is capable of monitoring tumor response to chemotherapy and actually guiding therapeutic interventions such as interstitial laser photocoagulation. (orig.)

  12. pH-Responsive, Self-Sacrificial Nanotheranostic Agent for Potential In Vivo and In Vitro Dual Modal MRI/CT Imaging, Real-Time, and In Situ Monitoring of Cancer Therapy.

    Science.gov (United States)

    Yue, Ludan; Wang, Jinlong; Dai, Zhichao; Hu, Zunfu; Chen, Xue; Qi, Yafei; Zheng, Xiuwen; Yu, Dexin

    2017-02-15

    Multifunctional nanotheranostic agents have been highly commended due to the application to image-guided cancer therapy. Herein, based on the chemically disordered face centered cubic (fcc) FePt nanoparticles (NPs) and graphene oxide (GO), we develop a pH-responsive FePt-based multifunctional theranostic agent for potential in vivo and in vitro dual modal MRI/CT imaging and in situ cancer inhibition. The fcc-FePt will release highly active Fe ions due to the low pH in tumor cells, which would catalyze H 2 O 2 decomposition into reactive oxygen species (ROS) within the cells and further induce cancer cell apoptosis. Conjugated with folic acid (FA), the iron platinum-dimercaptosuccinnic acid/PEGylated graphene oxide-folic acid (FePt-DMSA/GO-PEG-FA) composite nanoassemblies (FePt/GO CNs) could effectively target and show significant toxicity to FA receptor-positive tumor cells, but no obvious toxicity to FA receptor-negative normal cells, which was evaluated by WST-1 assay. The FePt-based multifunctional nanoparticles allow real-time monitoring of Fe release by T 2 -weighted MRI, and the selective contrast enhancement in CT could be estimated in vivo after injection. The results showed that FePt-based NPs displayed excellent biocompatibility and favorable MRI/CT imaging ability in vivo and in vitro. Meanwhile, the decomposition of FePt will dramatically decrease the T 2 -weighted MRI signal and increase the ROS signal, which enables real-time and in situ visualized monitoring of Fe release in tumor cells. In addition, the self-sacrificial decomposition of fcc-FePt will be propitious to the self-clearance of the as-prepared FePt-based nanocomposite in vivo. Therefore, the FePt/GO CNs could serve as a potential multifunctional theranostic nanoplatform of MRI/CT imaging guided cancer diagnosis and therapy in the clinic.

  13. In-Vivo Imaging of Cell Migration Using Contrast Enhanced MRI and SVM Based Post-Processing.

    Science.gov (United States)

    Weis, Christian; Hess, Andreas; Budinsky, Lubos; Fabry, Ben

    2015-01-01

    The migration of cells within a living organism can be observed with magnetic resonance imaging (MRI) in combination with iron oxide nanoparticles as an intracellular contrast agent. This method, however, suffers from low sensitivity and specificty. Here, we developed a quantitative non-invasive in-vivo cell localization method using contrast enhanced multiparametric MRI and support vector machines (SVM) based post-processing. Imaging phantoms consisting of agarose with compartments containing different concentrations of cancer cells labeled with iron oxide nanoparticles were used to train and evaluate the SVM for cell localization. From the magnitude and phase data acquired with a series of T2*-weighted gradient-echo scans at different echo-times, we extracted features that are characteristic for the presence of superparamagnetic nanoparticles, in particular hyper- and hypointensities, relaxation rates, short-range phase perturbations, and perturbation dynamics. High detection quality was achieved by SVM analysis of the multiparametric feature-space. The in-vivo applicability was validated in animal studies. The SVM detected the presence of iron oxide nanoparticles in the imaging phantoms with high specificity and sensitivity with a detection limit of 30 labeled cells per mm3, corresponding to 19 μM of iron oxide. As proof-of-concept, we applied the method to follow the migration of labeled cancer cells injected in rats. The combination of iron oxide labeled cells, multiparametric MRI and a SVM based post processing provides high spatial resolution, specificity, and sensitivity, and is therefore suitable for non-invasive in-vivo cell detection and cell migration studies over prolonged time periods.

  14. Gd-EOB-DTPA-Enhanced MRI for Detection of Liver Metastases from Colorectal Cancer: A Surgeon’s Perspective!

    Directory of Open Access Journals (Sweden)

    Kelly J. Lafaro

    2013-01-01

    Full Text Available Colorectal cancer affects over one million people worldwide annually, with the liver being the most common site of metastatic spread. Adequate resection of hepatic metastases is the only chance for a cure in a subset of patients, and five-year survival increases to 35% with complete resection. Traditionally, computed tomographic imaging (CT was utilized for staging and to evaluate metastases in the liver. Recently, the introduction of hepatobiliary contrast-enhanced magnetic resonance imaging (MRI agents including gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Eovist in the United States, Primovist in Europe, or Gd-EOB-DTPA has proved to be a sensitive method for detection of hepatic metastases. Accurate detection of liver metastases is critical for staging of colorectal cancer as well as preoperative planning.

  15. Glucose Administration Enhances fMRI Brain Activation and Connectivity Related to Episodic Memory Encoding for Neutral and Emotional Stimuli

    Science.gov (United States)

    Parent, Marise B.; Krebs-Kraft, Desiree L.; Ryan, John P.; Wilson, Jennifer S.; Harenski, Carla; Hamann, Stephan

    2011-01-01

    Glucose enhances memory in a variety of species. In humans, glucose administration enhances episodic memory encoding, although little is known regarding the neural mechanisms underlying these effects. Here we examined whether elevating blood glucose would enhance functional MRI (fMRI) activation and connectivity in brain regions associated with…

  16. Measurement of weak electric currents in copper wire phantoms using MRI: influence of susceptibility enhancement.

    Science.gov (United States)

    Huang, Ruiwang; Posnansky, Oleg; Celik, Abdullah; Oros-Peusquens, Ana-Maria; Ermer, Veronika; Irkens, Marco; Wegener, H-Peter; Shah, N Jon

    2006-08-01

    The use of magnetic resonance imaging (MRI)-based methods for the direct detection of neuronal currents is a topic of intense investigation. Much experimental work has been carried out with the express aim of establishing detection thresholds and sensitivity to flowing currents. However, in most of these experiments, magnetic susceptibility enhancement was ignored. In this work, we present results that show the influence of a susceptibility artefact on the detection threshold and sensitivity. For this purpose, a novel phantom, consisting of a water-filled cylinder with two wires of different materials connected in series, was constructed. Magnitude MR images were acquired from a single slice using a gradient-echo echo planar imaging (EPI) sequence. The data show that the time course of the detected MR signal magnitude correlates very well with the waveform of the input current. The effect of the susceptibility artefacts arising from the two different wires was examined by comparing the magnitudes of the MR signals at different voxel locations. Our results indicate the following: (1) MR signal enhancement arising from the magnetic susceptibility effect influences the detection sensitivity of weak current; (2) the detection threshold and sensitivity are phantom-wire dependent; (3) sub-mu A electric current detection in a phantom is possible on a 1.5-T MR scanner in the presence of susceptibility enhancement.

  17. Optimized detection and characterization of liver metastases. The role of current MRI contrast agents; Optimierte Detektion und Charakterisierung von Lebermetastasen. Leistungsvermoegen aktueller MRT-Kontrastmittel

    Energy Technology Data Exchange (ETDEWEB)

    Weinrich, J.M.; Well, L.; Bannas, P. [Universitaetsklinikum Hamburg-Eppendorf, Zentrum fuer Radiologie und Endoskopie, Klinik und Poliklinik fuer diagnostische und interventionelle Radiologie und Nuklearmedizin, Hamburg (Germany)

    2017-05-15

    Metastases are the most common malignant lesions of the liver. The presence of liver metastases is an important prognostic factor and is decisive for the further management, especially in patients with colorectal cancer. Detection and characterization of liver metastases as well as differentiation from benign lesions are of high importance and a daily challenge in clinical radiology. Contrast-enhanced magnetic resonance imaging (MRI) has the highest sensitivity in detecting liver metastases. The sensitivity of MRI has been further increased due to the development of liver-specific contrast agents. This article describes the role of extracellular and hepatobiliary contrast agents for the detection and characterization of liver metastases. Moreover, the current knowledge on safety, sequence optimization, transient severe dyspnea and the combination of hepatobiliary with intravascular contrast agents for liver imaging is discussed. (orig.) [German] Metastasen sind die haeufigsten malignen Leberlaesionen. Das Vorhandensein von Lebermetastasen ist entscheidend fuer die Prognose und weitere Therapieplanung von Tumorpatienten, insbesondere von Patienten mit kolorektalen Karzinomen. Die Detektion von Lebermetastasen sowie deren Unterscheidung von anderen Leberlaesionen sind daher von hoechster Bedeutung und stellen eine alltaegliche Herausforderung fuer den Radiologen dar. Die Bildgebung mit der hoechsten Sensitivitaet fuer die Detektion von Lebermetastasen stellt die dynamische kontrastmittelgestuetzte Magnetresonanztomographie (MRT) dar. Die bereits hohe Sensitivitaet der MRT wird durch den Einsatz leberspezifischer Kontrastmittel noch weiter gesteigert. Dieser Artikel beleuchtet die Rolle der aktuellen unspezifischen und leberspezifischen MRT-Kontrastmittel fuer die Detektion und Charakterisierung von Lebermetastasen. Weiterhin werden Erkenntnisse zur Sicherheit, Sequenzoptimierung, zu transienten Atemartefakten und zur Kombination von MRT-Kontrastmitteln fuer die

  18. TU-F-CAMPUS-J-02: Evaluation of Textural Feature Extraction for Radiotherapy Response Assessment of Early Stage Breast Cancer Patients Using Diffusion Weighted MRI and Dynamic Contrast Enhanced MRI

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Y; Wang, C; Horton, J; Chang, Z [Duke University Medical Center, Durham, NC (United States)

    2015-06-15

    Purpose: To investigate the feasibility of using classic textural feature extraction in radiotherapy response assessment, we studied a unique cohort of early stage breast cancer patients with paired pre - and post-radiation Diffusion Weighted MRI (DWI-MRI) and Dynamic Contrast Enhanced MRI (DCE-MRI). Methods: 15 female patients from our prospective phase I trial evaluating preoperative radiotherapy were included in this retrospective study. Each patient received a single-fraction radiation treatment, and DWI and DCE scans were conducted before and after the radiotherapy. DWI scans were acquired using a spin-echo EPI sequence with diffusion weighting factors of b = 0 and b = 500 mm{sup 2} /s, and the apparent diffusion coefficient (ADC) maps were calculated. DCE-MRI scans were acquired using a T{sub 1}-weighted 3D SPGR sequence with a temporal resolution of about 1 minute. The contrast agent (CA) was intravenously injected with a 0.1 mmol/kg bodyweight dose at 2 ml/s. Two parameters, volume transfer constant (K{sup trans} ) and k{sub ep} were analyzed using the two-compartment Tofts kinetic model. For DCE parametric maps and ADC maps, 33 textural features were generated from the clinical target volume (CTV) in a 3D fashion using the classic gray level co-occurrence matrix (GLCOM) and gray level run length matrix (GLRLM). Wilcoxon signed-rank test was used to determine the significance of each texture feature’s change after the radiotherapy. The significance was set to 0.05 with Bonferroni correction. Results: For ADC maps calculated from DWI-MRI, 24 out of 33 CTV features changed significantly after the radiotherapy. For DCE-MRI pharmacokinetic parameters, all 33 CTV features of K{sup trans} and 33 features of k{sub ep} changed significantly. Conclusion: Initial results indicate that those significantly changed classic texture features are sensitive to radiation-induced changes and can be used for assessment of radiotherapy response in breast cancer.

  19. Tissue Border Enhancement by inversion recovery MRI at 7.0 Tesla

    International Nuclear Information System (INIS)

    Costagli, Mauro; Tiberi, Gianluigi; Kelley, Douglas A.C.; Symms, Mark R.; Biagi, Laura; Tosetti, Michela; Stara, Riccardo; Cosottini, Mirco; Maggioni, Eleonora; Barba, Carmen; Guerrini, Renzo

    2014-01-01

    This contribution presents a magnetic resonance imaging (MRI) acquisition technique named Tissue Border Enhancement (TBE), whose purpose is to produce images with enhanced visualization of borders between two tissues of interest without any post-processing. The technique is based on an inversion recovery sequence that employs an appropriate inversion time to produce images where the interface between two tissues of interest is hypo-intense; therefore, tissue borders are clearly represented by dark lines. This effect is achieved by setting imaging parameters such that two neighboring tissues of interest have magnetization with equal magnitude but opposite sign; therefore, the voxels containing a mixture of each tissue (that is, the tissue interface) possess minimal net signal. The technique was implemented on a 7.0 T MRI system. This approach can assist the definition of tissue borders, such as that between cortical gray matter and white matter; therefore, it could facilitate segmentation procedures, which are often challenging on ultra-high-field systems due to inhomogeneous radiofrequency distribution. TBE allows delineating the contours of structural abnormalities, and its capabilities were demonstrated with patients with focal cortical dysplasia, gray matter heterotopia, and polymicrogyria. This technique provides a new type of image contrast and has several possible applications in basic neuroscience, neurogenetic research, and clinical practice, as it could improve the detection power of MRI in the characterization of cortical malformations, enhance the contour of small anatomical structures of interest, and facilitate cortical segmentation. (orig.)

  20. Tissue Border Enhancement by inversion recovery MRI at 7.0 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Costagli, Mauro; Tiberi, Gianluigi [Imago7 Foundation, Pisa (Italy); IRCCS Stella Maris, Pisa (Italy); Kelley, Douglas A.C. [GE Healthcare Technologies, San Francisco, CA (United States); Symms, Mark R. [GE Applied Science Laboratory, Pisa (Italy); Biagi, Laura; Tosetti, Michela [IRCCS Stella Maris, Pisa (Italy); Stara, Riccardo; Cosottini, Mirco [Imago7 Foundation, Pisa (Italy); University of Pisa, Pisa (Italy); Maggioni, Eleonora [IRCCS Scientific Institute E. Medea, Bosisio Parini, Lecco (Italy); Politecnico di Milano, Milan (Italy); Barba, Carmen [Children' s Hospital A. Meyer - University of Florence, Neuroscience Department, Florence (Italy); Guerrini, Renzo [IRCCS Stella Maris, Pisa (Italy); Children' s Hospital A. Meyer - University of Florence, Neuroscience Department, Florence (Italy)

    2014-07-15

    This contribution presents a magnetic resonance imaging (MRI) acquisition technique named Tissue Border Enhancement (TBE), whose purpose is to produce images with enhanced visualization of borders between two tissues of interest without any post-processing. The technique is based on an inversion recovery sequence that employs an appropriate inversion time to produce images where the interface between two tissues of interest is hypo-intense; therefore, tissue borders are clearly represented by dark lines. This effect is achieved by setting imaging parameters such that two neighboring tissues of interest have magnetization with equal magnitude but opposite sign; therefore, the voxels containing a mixture of each tissue (that is, the tissue interface) possess minimal net signal. The technique was implemented on a 7.0 T MRI system. This approach can assist the definition of tissue borders, such as that between cortical gray matter and white matter; therefore, it could facilitate segmentation procedures, which are often challenging on ultra-high-field systems due to inhomogeneous radiofrequency distribution. TBE allows delineating the contours of structural abnormalities, and its capabilities were demonstrated with patients with focal cortical dysplasia, gray matter heterotopia, and polymicrogyria. This technique provides a new type of image contrast and has several possible applications in basic neuroscience, neurogenetic research, and clinical practice, as it could improve the detection power of MRI in the characterization of cortical malformations, enhance the contour of small anatomical structures of interest, and facilitate cortical segmentation. (orig.)

  1. Contrast-enhanced spectral mammography vs. mammography and MRI - clinical performance in a multi-reader evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Fallenberg, Eva M.; Schmitzberger, Florian F.; Amer, Heba; Engelken, Florian; Bick, Ulrich; Hamm, Bernd [Charite Universitaetsmedizin Berlin, Clinic of Radiology, Campus Virchow-Klinikum, Berlin (Germany); Ingold-Heppner, Barbara [Charite - Universitaetsmedizin Berlin, Institut of Pathology, Berlin (Germany); Balleyguier, Corinne; Dromain, Clarisse [Gustave Roussy Cancer Campus, Department of Radiology, Villejuif (France); Diekmann, Felix [St. Joseph-Stift Bremen, Department of Medical Imaging, Bremen (Germany); Mann, Ritse M. [Radboud University Nijmegen Medical Centre, Department of Radiology, Nijmegen (Netherlands); Renz, Diane M. [Universitaetsklinikum Jena, Department of Radiology, Jena (Germany)

    2017-07-15

    To compare the diagnostic performance of contrast-enhanced spectral mammography (CESM) to digital mammography (MG) and magnetic resonance imaging (MRI) in a prospective two-centre, multi-reader study. One hundred seventy-eight women (mean age 53 years) with invasive breast cancer and/or DCIS were included after ethics board approval. MG, CESM and CESM + MG were evaluated by three blinded radiologists based on amended ACR BI-RADS criteria. MRI was assessed by another group of three readers. Receiver-operating characteristic (ROC) curves were compared. Size measurements for the 70 lesions detected by all readers in each modality were correlated with pathology. Reading results for 604 lesions were available (273 malignant, 4 high-risk, 327 benign). The area under the ROC curve was significantly larger for CESM alone (0.84) and CESM + MG (0.83) compared to MG (0.76) (largest advantage in dense breasts) while it was not significantly different from MRI (0.85). Pearson correlation coefficients for size comparison were 0.61 for MG, 0.69 for CESM, 0.70 for CESM + MG and 0.79 for MRI. This study showed that CESM, alone and in combination with MG, is as accurate as MRI but is superior to MG for lesion detection. Patients with dense breasts benefitted most from CESM with the smallest additional dose compared to MG. (orig.)

  2. Zinc-sensitive MRI contrast agent detects differential release of Zn(II) ions from the healthy vs. malignant mouse prostate.

    Science.gov (United States)

    Clavijo Jordan, M Veronica; Lo, Su-Tang; Chen, Shiuhwei; Preihs, Christian; Chirayil, Sara; Zhang, Shanrong; Kapur, Payal; Li, Wen-Hong; De Leon-Rodriguez, Luis M; Lubag, Angelo J M; Rofsky, Neil M; Sherry, A Dean

    2016-09-13

    Many secretory tissues release Zn(II) ions along with other molecules in response to external stimuli. Here we demonstrate that secretion of Zn(II) ions from normal, healthy prostate tissue is stimulated by glucose in fasted mice and that release of Zn(II) can be monitored by MRI. An ∼50% increase in water proton signal enhancement is observed in T1-weighted images of the healthy mouse prostate after infusion of a Gd-based Zn(II) sensor and an i.p. bolus of glucose. Release of Zn(II) from intracellular stores was validated in human epithelial prostate cells in vitro and in surgically exposed prostate tissue in vivo using a Zn(II)-sensitive fluorescent probe known to bind to the extracellular surface of cells. Given the known differences in intracellular Zn(II) stores in healthy versus malignant prostate tissues, the Zn(II) sensor was then evaluated in a transgenic adenocarcinoma of the mouse prostate (TRAMP) model in vivo. The agent proved successful in detecting small malignant lesions as early as 11 wk of age, making this noninvasive MR imaging method potentially useful for identifying prostate cancer in situations where it may be difficult to detect using current multiparametric MRI protocols.

  3. MRI enhancement of the facial nerve with Gd-DTPA, 2; Investigation of enhanced nerve portions in patients with facial palsy

    Energy Technology Data Exchange (ETDEWEB)

    Yanagida, Masahiro [Kansai Medical School, Moriguchi, Osaka (Japan)

    1993-08-01

    We performed enhanced MRI using Gd-DTPA in 84 patients with facial palsy. After assessing enhancement of the normal facial nerve, we examined enhancement in patients with Bell's palsy and Ramsay Hunt syndrome. In 95% of patients with Bell's palsy, enhancement was obtained in the distal IAC and labyrinthine portions. In 72%, enhancement was significant from the distal IAC portion through the vertical portion. In some of the patients who underwent enhanced MRI twice, increased signal intensity was observed in distal portions such as the vertical portion. In many cases of Ramsay Hunt syndrome, enhancement was seen extensively in the IAC portion through the vertical portion. In the subjects with internal auditory symptoms such as vertigo and tinnitus, enhancement of the IAC portion was seen not only in the facial nerve but also in the vestibular and the cochlear nerves. These results suggest that the vascular permeability of lesions in Bell's palsy may be increased from the distal IAC portion to the vertical portion. Judging from the present findings with Ramsay Hunt syndrome, symptoms related to the enhanced portions suggest that accompanying internal auditory symptoms occur due to inflammation of the IAC portions of cochlear and vestibular nerves. (author).

  4. Contrast-enhanced spectral mammography in patients with MRI contraindications.

    Science.gov (United States)

    Richter, Vivien; Hatterman, Valerie; Preibsch, Heike; Bahrs, Sonja D; Hahn, Markus; Nikolaou, Konstantin; Wiesinger, Benjamin

    2017-01-01

    Background Contrast-enhanced spectral mammography (CESM) is a novel breast imaging technique providing comparable diagnostic accuracy to breast magnetic resonance imaging (MRI). Purpose To show that CESM in patients with MRI contraindications is feasible, accurate, and useful as a problem-solving tool, and to highlight its limitations. Material and Methods A total of 118 patients with MRI contraindications were examined by CESM. Histology was obtained in 94 lesions and used as gold standard for diagnostic accuracy calculations. Imaging data were reviewed retrospectively for feasibility, accuracy, and technical problems. The diagnostic yield of CESM as a problem-solving tool and for therapy response evaluation was reviewed separately. Results CESM was more accurate than mammography (MG) for lesion categorization (r = 0.731, P < 0.0001 vs. r = 0.279, P = 0.006) and for lesion size estimation (r = 0.738 vs. r = 0.689, P < 0.0001). Negative predictive value of CESM was significantly higher than of MG (85.71% vs. 30.77%, P < 0.0001). When used for problem-solving, CESM changed patient management in 2/8 (25%) cases. Superposition artifacts and timing problems affected diagnostic utility in 3/118 (2.5%) patients. Conclusion CESM is a feasible and accurate alternative for patients with MRI contraindications, but it is necessary to be aware of the method's technical limitations.

  5. Contrast-enhanced spectral mammography vs. mammography and MRI - clinical performance in a multi-reader evaluation.

    Science.gov (United States)

    Fallenberg, Eva M; Schmitzberger, Florian F; Amer, Heba; Ingold-Heppner, Barbara; Balleyguier, Corinne; Diekmann, Felix; Engelken, Florian; Mann, Ritse M; Renz, Diane M; Bick, Ulrich; Hamm, Bernd; Dromain, Clarisse

    2017-07-01

    To compare the diagnostic performance of contrast-enhanced spectral mammography (CESM) to digital mammography (MG) and magnetic resonance imaging (MRI) in a prospective two-centre, multi-reader study. One hundred seventy-eight women (mean age 53 years) with invasive breast cancer and/or DCIS were included after ethics board approval. MG, CESM and CESM + MG were evaluated by three blinded radiologists based on amended ACR BI-RADS criteria. MRI was assessed by another group of three readers. Receiver-operating characteristic (ROC) curves were compared. Size measurements for the 70 lesions detected by all readers in each modality were correlated with pathology. Reading results for 604 lesions were available (273 malignant, 4 high-risk, 327 benign). The area under the ROC curve was significantly larger for CESM alone (0.84) and CESM + MG (0.83) compared to MG (0.76) (largest advantage in dense breasts) while it was not significantly different from MRI (0.85). Pearson correlation coefficients for size comparison were 0.61 for MG, 0.69 for CESM, 0.70 for CESM + MG and 0.79 for MRI. This study showed that CESM, alone and in combination with MG, is as accurate as MRI but is superior to MG for lesion detection. Patients with dense breasts benefitted most from CESM with the smallest additional dose compared to MG. • CESM has comparable diagnostic performance (ROC-AUC) to MRI for breast cancer diagnostics. • CESM in combination with MG does not improve diagnostic performance. • CESM has lower sensitivity but higher specificity than MRI. • Sensitivity differences are more pronounced in dense and not significant in non-dense breasts. • CESM and MRI are significantly superior to MG, particularly in dense breasts.

  6. Manganese-enhanced magnetic resonance imaging (MEMRI).

    Science.gov (United States)

    Koretsky, Alan P; Silva, Afonso C

    2004-12-01

    Manganese ion (Mn2+) is an essential metal that participates as a cofactor in a number of critical biological functions, such as electron transport, detoxification of free radicals and synthesis of neurotransmitters. Mn2+ can enter excitable cells using some of the same transport systems as Ca2+ and it can bind to a number of intracellular sites because it has high affinity for Ca2+ and Mg2+ binding sites on proteins and nucleic acids. Paramagnetic forms of manganese ions are potent MRI relaxation agents. Indeed, Mn2+ was the first contrast agent proposed for use in MRI. Recently, there has been renewed interest in combining the strong MRI relaxation effects of Mn2+ with its unique biology, in order to further expand the already broad assortment of useful information that can be measured by MRI. Such an approach has been continuously developed in the past several years to provide unique tissue contrast, to assess tissue viability, to act as a surrogate marker of calcium influx into cells and to trace neuronal connections. This special issue of NMR in Biomedicine on manganese-enhanced MRI (MEMRI) is aimed at providing the readers of this journal with an extensive review of some of the most prominent applications of MEMRI in biological systems. Written by several of the leaders in the field, the reviews and original research articles featured in this special issue are likely to offer an exciting and inspiring view of the broad range of applications of MEMRI. Copyright 2004 John Wiley & Sons, Ltd.

  7. MRI in multiple sclerosis: an intra-individual, randomized and multicentric comparison of gadobutrol with gadoterate meglumine at 3 T

    Energy Technology Data Exchange (ETDEWEB)

    Saake, Marc; Weibart, Marina; Doerfler, Arnd [University of Erlangen-Nuremberg, Department of Neuroradiology, Erlangen (Germany); Langner, Soenke; Hosten, Norbert [University Medicine Greifswald, Institute for Diagnostic Radiology and Neuroradiology, Greifswald (Germany); Schwenke, Carsten [SCO:SSiS, Statistical Consulting, Berlin (Germany); Jansen, Olav [University of Kiel, Department of Radiology and Neuroradiology, Kiel (Germany)

    2016-03-15

    To compare contrast effects of gadobutrol with gadoterate meglumine for brain MRI in multiple sclerosis (MS) in a multicentre, randomized, prospective, intraindividual study at 3 T. Institutional review board approval was obtained. Patients with known or suspected active MS lesions were included. Two identical MRIs were performed using randomized contrast agent order. Four post-contrast T1 sequences were acquired (start time points 0, 3, 6 and 9 min). If no enhancing lesion was present in first MRI, second MRI was cancelled. Quantitative (number and signal intensity of enhancing lesions) and qualitative parameters (time points of first and all lesions enhancing; subjective preference regarding contrast enhancement and lesion delineation; global preference) were evaluated blinded. Seventy-four patients (male, 26; mean age, 35 years) were enrolled in three centres. In 45 patients enhancing lesions were found. Number of enhancing lesions increased over time for both contrast agents without significant difference (median 2 for both). Lesions signal intensity was significantly higher for gadobutrol (p < 0.05 at time points 3, 6 and 9 min). Subjective preference rating showed non-significant tendency in favour of gadobutrol. Both gadobutrol and gadoterate meglumine can be used for imaging of acute inflammatory MS lesions. However, gadobutrol generates higher lesion SI. (orig.)

  8. Utility of Gd-EOB-DTPA-Enhanced MRI in Diagnosing Small Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Soo Ryang Kim

    2009-07-01

    Full Text Available We describe an 8-mm hepatocellular carcinoma (HCC with hepatitis C virus-related cirrhosis in a 74-year-old woman. Ultrasound (US revealed an 8-mm hyperechoic nodule in segment 6 of the liver. Contrast-enhanced computed tomography (CT and US revealed no hypervascularity in the early phase and no washout in the late phase and the Kupffer phase, respectively. CT during arteriography revealed no hypervascularity and CT during arterial portography disclosed no perfusion defect. Gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA-enhanced magnetic resonance imaging (MRI revealed no hypervascularity in the early phase, but disclosed a defect in the hepatobiliary phase. Histologically, the nodule was diagnosed as well-differentiated HCC characterized by more than two-fold the cellularity of the non-tumorous area, with a high nuclear:cytoplasmic ratio, increased cytoplasmic eosinophilia, fatty change, and slight cell atypia with an irregular thin trabecular pattern. Our case demonstrates the utility of Gd-EOB-DTPA-enhanced MRI in the diagnosis of small HCC.

  9. Dynamic Contrast-Enhanced MRI of Cervical Cancers: Temporal Percentile Screening of Contrast Enhancement Identifies Parameters for Prediction of Chemoradioresistance

    International Nuclear Information System (INIS)

    Andersen, Erlend K.F.; Hole, Knut Håkon; Lund, Kjersti V.; Sundfør, Kolbein; Kristensen, Gunnar B.; Lyng, Heidi; Malinen, Eirik

    2012-01-01

    Purpose: To systematically screen the tumor contrast enhancement of locally advanced cervical cancers to assess the prognostic value of two descriptive parameters derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Methods and Materials: This study included a prospectively collected cohort of 81 patients who underwent DCE-MRI with gadopentetate dimeglumine before chemoradiotherapy. The following descriptive DCE-MRI parameters were extracted voxel by voxel and presented as histograms for each time point in the dynamic series: normalized relative signal increase (nRSI) and normalized area under the curve (nAUC). The first to 100th percentiles of the histograms were included in a log-rank survival test, resulting in p value and relative risk maps of all percentile–time intervals for each DCE-MRI parameter. The maps were used to evaluate the robustness of the individual percentile–time pairs and to construct prognostic parameters. Clinical endpoints were locoregional control and progression-free survival. The study was approved by the institutional ethics committee. Results: The p value maps of nRSI and nAUC showed a large continuous region of percentile–time pairs that were significantly associated with locoregional control (p < 0.05). These parameters had prognostic impact independent of tumor stage, volume, and lymph node status on multivariate analysis. Only a small percentile–time interval of nRSI was associated with progression-free survival. Conclusions: The percentile–time screening identified DCE-MRI parameters that predict long-term locoregional control after chemoradiotherapy of cervical cancer.

  10. Whole tissue AC susceptibility after superparamagnetic iron oxide contrast agent administration in a rat model

    International Nuclear Information System (INIS)

    Lazaro, Francisco Jose; Gutierrez, Lucia; Rosa Abadia, Ana; Soledad Romero, Maria; Lopez, Antonio; Jesus Munoz, Maria

    2007-01-01

    A magnetic AC susceptibility characterisation of rat tissues after intravenous administration of superparamagnetic iron oxide (Endorem ( R)), at the same dose as established for Magnetic Resonance Imaging (MRI) contrast enhancement in humans, has been carried out. The measurements reveal the presence of the contrast agent as well as that of physiological ferritin in liver and spleen while no traces have been magnetically detected in heart and kidney. This preliminary work opens suggestive possibilities for future biodistribution studies of any type of magnetic carriers

  11. A pilot study to investigate the effect of a hydration regime upon immediate and 24 h delayed MRI contrast agent reactions

    International Nuclear Information System (INIS)

    Bailey, William; Marshall, Gill; Coals, Jacqui

    2007-01-01

    Purpose: Adverse reaction rates to gadolinium based magnetic resonance imaging (MRI) contrast agents which occur immediately post-injection are well documented. However little research has investigated delayed reaction rates (i.e. 30 min-24 h). This study evaluated the rate of immediate and delayed adverse reaction rates to a gadolinium based MRI contrast agent (Dotarem) and investigated the effect of a hydration regime on the rate of adverse events. Method: Fifty-eight patients received no preparation, prior to administration of the contrast agent, whilst another 58 underwent a hydration protocol. The patients had their answers to a questionnaire recorded immediately after the scanning procedure and also via a follow-up telephone call 24 h later. Results: In the unprepared group 9 patients (15.5%) experienced immediate adverse events, i.e. within 0-30 min, whereas 24 (41.4%) experienced delayed reactions (30 min-24 h) after administration of the contrast agent. In the hydrated patient group 6 (10.3%) experienced an immediate adverse event, whilst 8 (13.7%) experienced delayed events post-injection. The difference in the total reaction rates for the unprepared and hydrated groups was statistically significant for immediate and delayed reactions. The difference in the rates of delayed headache, nausea, dizziness and problems with the injection site, for the unprepared and hydrated groups was statistically significant. Conclusion: An oral hydration regime administered to patients, both before and after MRI contrast agent administration significantly reduced the total number of immediate and delayed reactions. It also significantly reduced delayed headache, nausea, dizziness and problems at the injection site. Whilst this pilot study had methodological shortcomings, the strength of the relationship demonstrated are worthy of further investigation

  12. Targeting Potassium Channels for Increasing Delivery of Imaging Agents and Therapeutics to Brain Tumors

    Directory of Open Access Journals (Sweden)

    Nagendra Sanyasihally Ningaraj

    2013-05-01

    Full Text Available Every year in the US, 20,000 new primary and nearly 200,000 metastatic brain tumor cases are reported. The cerebral microvessels/ capillaries that form the blood–brain barrier (BBB not only protect the brain from toxic agents in the blood but also pose a significant hindrance to the delivery of small and large therapeutic molecules. Different strategies have been employed to circumvent the physiological barrier posed by blood-brain tumor barrier (BTB. Studies in our laboratory have identified significant differences in the expression levels of certain genes and proteins between normal and brain tumor capillary endothelial cells. In this study, we validated the non-invasive and clinically relevant Dynamic Contrast Enhancing-Magnetic Resonance Imaging (DCE-MRI method with invasive, clinically irrelevant but highly accurate Quantitative Autoradiography (QAR method using rat glioma model. We also showed that DCE-MRI metric of tissue vessel perfusion-permeability is sensitive to changes in blood vessel permeability following administration of calcium-activated potassium (BKCa channel activator NS-1619. Our results show that human gliomas and brain tumor endothelial cells that overexpress BKCa channels can be targeted for increased BTB permeability for MRI enhancing agents to brain tumors. We conclude that monitoring the outcome of increased MRI enhancing agents’ delivery to microsatellites and leading tumor edges in glioma patients would lead to beneficial clinical outcome.

  13. Neuroradiologic findings in leptomeningeal carcinomatosis: The value interest of gadolinium-enhanced MRI

    International Nuclear Information System (INIS)

    Rodesch, G.; Baleriaux, D.; Bogaert, P. van; Mavroudakis, N.; Hildebrand, J.; Parizel, P.M.; Martin, J.J.; Segebarth, C.; Vyve, M. van

    1990-01-01

    Four patients with leptomeningeal metastases documented by neuroradiological examinations are reported. All had central nervous system or systemic neoplasms and showed clinical signs of carcinomatous meningitis. Gadolinium-enhanced MRI (Gd-MRI) disclosed for each patient pathological foci, allowing delineation of the extent of meningeal disease. Although non-specific, these findings, combined with the clinical context and CSF analysis, may lead to a rapid diagnosis and treatment of carcinomatous meningitis, even when malignant cells are not detected in the cerebrospinal fluid. (orig.)

  14. In vivo imaging of stepwise vessel occlusion in cerebral photothrombosis of mice by 19F MRI.

    Directory of Open Access Journals (Sweden)

    Gesa Weise

    Full Text Available (19F magnetic resonance imaging (MRI was recently introduced as a promising technique for in vivo cell tracking. In the present study we compared (19F MRI with iron-enhanced MRI in mice with photothrombosis (PT at 7 Tesla. PT represents a model of focal cerebral ischemia exhibiting acute vessel occlusion and delayed neuroinflammation.Perfluorocarbons (PFC or superparamagnetic iron oxide particles (SPIO were injected intravenously at different time points after photothrombotic infarction. While administration of PFC directly after PT induction led to a strong (19F signal throughout the entire lesion, two hours delayed application resulted in a rim-like (19F signal at the outer edge of the lesion. These findings closely resembled the distribution of signal loss on T2-weighted MRI seen after SPIO injection reflecting intravascular accumulation of iron particles trapped in vessel thrombi as confirmed histologically. By sequential administration of two chemically shifted PFC compounds 0 and 2 hours after illumination the different spatial distribution of the (19F markers (infarct core/rim could be visualized in the same animal. When PFC were applied at day 6 the fluorine marker was only detected after long acquisition times ex vivo. SPIO-enhanced MRI showed slight signal loss in vivo which was much more prominent ex vivo indicative for neuroinflammation at this late lesion stage.Our study shows that vessel occlusion can be followed in vivo by (19F and SPIO-enhanced high-field MRI while in vivo imaging of neuroinflammation remains challenging. The timing of contrast agent application was the major determinant of the underlying processes depicted by both imaging techniques. Importantly, sequential application of different PFC compounds allowed depiction of ongoing vessel occlusion from the core to the margin of the ischemic lesions in a single MRI measurement.

  15. Experimental Influences in the Accurate Measurement of Cartilage Thickness in MRI.

    Science.gov (United States)

    Wang, Nian; Badar, Farid; Xia, Yang

    2018-01-01

    Objective To study the experimental influences to the measurement of cartilage thickness by magnetic resonance imaging (MRI). Design The complete thicknesses of healthy and trypsin-degraded cartilage were measured at high-resolution MRI under different conditions, using two intensity-based imaging sequences (ultra-short echo [UTE] and multislice-multiecho [MSME]) and 3 quantitative relaxation imaging sequences (T 1 , T 2 , and T 1 ρ). Other variables included different orientations in the magnet, 2 soaking solutions (saline and phosphate buffered saline [PBS]), and external loading. Results With cartilage soaked in saline, UTE and T 1 methods yielded complete and consistent measurement of cartilage thickness, while the thickness measurement by T 2 , T 1 ρ, and MSME methods were orientation dependent. The effect of external loading on cartilage thickness is also sequence and orientation dependent. All variations in cartilage thickness in MRI could be eliminated with the use of a 100 mM PBS or imaged by UTE sequence. Conclusions The appearance of articular cartilage and the measurement accuracy of cartilage thickness in MRI can be influenced by a number of experimental factors in ex vivo MRI, from the use of various pulse sequences and soaking solutions to the health of the tissue. T 2 -based imaging sequence, both proton-intensity sequence and quantitative relaxation sequence, similarly produced the largest variations. With adequate resolution, the accurate measurement of whole cartilage tissue in clinical MRI could be utilized to detect differences between healthy and osteoarthritic cartilage after compression.

  16. Gadolinium-enhanced MRI in central nervous system Behcet's disease

    Energy Technology Data Exchange (ETDEWEB)

    Erdem, E. (Dept. of Radiology (Neuroradiology), Hopital de Bicetre, Paris-Sud Univ. (France)); Carlier, R. (Dept. of Radiology (Neuroradiology), Hopital de Bicetre, Paris-Sud Univ. (France)); Idir, A.B.C. (Dept. of Radiology (Neuroradiology), Hopital de Bicetre, Paris-Sud Univ. (France)); Masnou, P.O. (Dept. of Neurology, Hopital de Bicetre, Paris-Sud Univ. (France)); Moulonguet, A. (Dept. of Neurology, Hopital de Bicetre, Paris-Sud Univ. (France)); Adams, D. (Dept. of Neurology, Hopital de Bicetre, Paris-Sud Univ. (France)); Doyon, D. (Dept. of Radiology (Neuroradiology), Hopital de Bicetre, Paris-Sud Univ. (France))

    1993-02-01

    Two cases of central nervous system Behcet's disease, studied by gadolinium-enhanced MRI, are presented. In one patient, whose clinical picture was dominated by a brain stem syndrome, the gadolinium enhancement resolved with clinical improvement, although the hyperintense areas in the mesencephalon on T2-weighted images persisted. In the second, who had a pseudobulbar palsy and a mild right hemiparesis, there were many abnormal areas, but an enhancing focus in the posterior limb of the left internal capsule was probably the lesion responsible for the hemiparesis. (orig.)

  17. Gd2O3 nanoparticles in hematopoietic cells for MRI contrast enhancement

    Directory of Open Access Journals (Sweden)

    Hedlund A

    2011-12-01

    Full Text Available Anna Hedlund1,2, Maria Ahrén3, Håkan Gustafsson1,2, Natalia Abrikossova3, Marcel Warntjes2,4, Jan-Ingvar Jönsson5, Kajsa Uvdal3, Maria Engström1,21Division of Radiology, Department of Medical and Health Sciences, 2Center for Medical Image Science and Visualization, 3Division of Molecular Surface Physics and Nanoscience, Department of Physics, Chemistry, and Biology, 4Division of Clinical Physiology, Department of Medicine and Health Sciences, 5Department of Clinical and Experimental Medicine, Experimental Hematology Unit, Linköping University, Linköping, SwedenAbstract: As the utility of magnetic resonance imaging (MRI broadens, the importance of having specific and efficient contrast agents increases and in recent time there has been a huge development in the fields of molecular imaging and intracellular markers. Previous studies have shown that gadolinium oxide (Gd2O3 nanoparticles generate higher relaxivity than currently available Gd chelates: In addition, the Gd2O3 nanoparticles have promising properties for MRI cell tracking. The aim of the present work was to study cell labeling with Gd2O3 nanoparticles in hematopoietic cells and to improve techniques for monitoring hematopoietic stem cell migration by MRI. Particle uptake was studied in two cell lines: the hematopoietic progenitor cell line Ba/F3 and the monocytic cell line THP-1. Cells were incubated with Gd2O3 nanoparticles and it was investigated whether the transfection agent protamine sulfate increased the particle uptake. Treated cells were examined by electron microscopy and MRI, and analyzed for particle content by inductively coupled plasma sector field mass spectrometry. Results showed that particles were intracellular, however, sparsely in Ba/F3. The relaxation times were shortened with increasing particle concentration. Relaxivities, r1 and r2 at 1.5 T and 21°C, for Gd2O3 nanoparticles in different cell samples were 3.6–5.3 s-1 mM-1 and 9.6–17.2 s-1 mM-1

  18. Comparison of gadolinium-EOB-DTPA-enhanced and diffusion-weighted liver MRI for detection of small hepatic metastases.

    Science.gov (United States)

    Shimada, Kotaro; Isoda, Hiroyoshi; Hirokawa, Yuusuke; Arizono, Shigeki; Shibata, Toshiya; Togashi, Kaori

    2010-11-01

    To compare the accuracy of gadolinium ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced MRI with that of diffusion-weighted MRI (DWI) in the detection of small hepatic metastases (2 cm or smaller). Forty-five patients underwent abdominal MRI at 3 T, including T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), heavily T2WI (HASTE), DWI with a b-value of 500 s/mm(2) and contrast-enhanced MRI with Gd-EOB-DTPA. Two groups were assigned and compared: group A (T1WI, T2WI, HASTE and contrast-enhanced study with Gd-EOB-DTPA), and group B (T1WI, T2WI, HASTE and DWI). Two observers independently interpreted the images obtained in a random order. For all hepatic metastases, the diagnostic performance using each imaging set was evaluated by receiver-operating characteristic (ROC) curve analysis. A total of 51 hepatic metastases were confirmed. The area under the ROC curve (Az) of group A was larger than that of group B, and the difference in the mean Az values between the two image sets was statistically significant, whereas, there were three metastases that lay near thin vessels or among multiple cysts and were better visualised in group B than in group A. Gd-EOB-DTPA-enhanced MRI showed higher accuracy in the detection of small metastases than DWI.

  19. Liposomes Loaded with Hydrophobic Iron Oxide Nanoparticles: Suitable T2 Contrast Agents for MRI

    OpenAIRE

    Raquel Martínez-González; Joan Estelrich; Maria Antònia Busquets

    2016-01-01

    There has been a recent surge of interest in the use of superparamagnetic iron oxide nanoparticles (SPIONs) as contrast agents (CAs) for magnetic resonance imaging (MRI), due to their tunable properties and their low toxicity compared with other CAs such as gadolinium. SPIONs exert a strong influence on spin-spin T 2 relaxation times by decreasing the MR signal in the regions to which they are delivered, consequently yielding darker images or negative contrast. Given the potential of these na...

  20. Does the MRI or MRI contrast medium gadopentetate dimeglumine change the oxidant and antioxidant status in humans?

    International Nuclear Information System (INIS)

    Olmaz, Refik; Oguz, Ebru Gok; Kiykim, Ahmet; Turgutalp, Kenan; Horoz, M.; Ozhan, Onur; Muslu, Necati; Sungur, Mehmet

    2013-01-01

    Background: It has become evident that gadolinium-based contrast agents (GBCA) may have nephrotoxic potential. Oxidative stress is one of the most important pathways in the pathogenesis of iodinated contrast-induced nephropathy. Purpose: To investigate the effects of static magnetic fields and gadopentetate dimeglumine (Magnevist) on oxidant/antioxidant status via measurement of total antioxidant capacity (TAC), total oxidant status (TOS), and serum malondialdehide (MDA). Material and Methods: Two age- and sex-matched groups of patients not under oxidative stress conditions that underwent magnetic resonance imaging (MRI) were recruited to this study. While contrast-enhanced (Magnevist, 0.2 mmol/kg) MRI was performed in group 1, MRI without GBCA was performed in group 2. Fasting blood glucose, C-reactive protein, serum creatinine, liver enzymes, uric acid, and lipid parameters were examined in all patients. Peripheral venous blood samples in order to determine TAC, TOS, and MDA were collected before and 6, 24, and 72 h after the MRI procedures. The TOS:TAC ratio was used as the oxidative stress index (OSI). Patients were followed up to 72 h. Results: There were no significant changes in serum TAC, TOS, and MDA levels (Δ s erum T AC, Δ s erum T OS, and Δ M DA) in either group 6, 24, or 72 h after the procedures (P > 0.05). Furthermore, OSI did not change after the procedures in either group (P > 0.05). Conclusion: Magnetic field and gadopentetate dimeglumine (Magnevist) do not change the oxidant or antioxidant status at a dose of 0.2 mmol/kg

  1. Does the MRI or MRI contrast medium gadopentetate dimeglumine change the oxidant and antioxidant status in humans?

    Energy Technology Data Exchange (ETDEWEB)

    Olmaz, Refik; Oguz, Ebru Gok; Kiykim, Ahmet; Turgutalp, Kenan [Dept. of Internal Medicine, Div. of Nephrology, School of Medicine, Mersin Univ., Mersin (Turkey)], e-mail: k.turgutalp@hotmail.com; Horoz, M. [Dept. of Internal Medicine, Div. of Nephrology, School of Medicine, Harran Univ., Sanliurfa (Turkey); Ozhan, Onur [Dept. of Internal Medicine, Div. of Endocrinology and Metabolism, School of Medicine, Mersin Univ., Mersin (Turkey); Muslu, Necati [Dept. of Biochemistry, School of Medicine, Mersin Univ., Mersin (Turkey); Sungur, Mehmet [Dept. of Biostatistics, School of Medicine, Mersin Univ., Mersin (Turkey)

    2013-02-15

    Background: It has become evident that gadolinium-based contrast agents (GBCA) may have nephrotoxic potential. Oxidative stress is one of the most important pathways in the pathogenesis of iodinated contrast-induced nephropathy. Purpose: To investigate the effects of static magnetic fields and gadopentetate dimeglumine (Magnevist) on oxidant/antioxidant status via measurement of total antioxidant capacity (TAC), total oxidant status (TOS), and serum malondialdehide (MDA). Material and Methods: Two age- and sex-matched groups of patients not under oxidative stress conditions that underwent magnetic resonance imaging (MRI) were recruited to this study. While contrast-enhanced (Magnevist, 0.2 mmol/kg) MRI was performed in group 1, MRI without GBCA was performed in group 2. Fasting blood glucose, C-reactive protein, serum creatinine, liver enzymes, uric acid, and lipid parameters were examined in all patients. Peripheral venous blood samples in order to determine TAC, TOS, and MDA were collected before and 6, 24, and 72 h after the MRI procedures. The TOS:TAC ratio was used as the oxidative stress index (OSI). Patients were followed up to 72 h. Results: There were no significant changes in serum TAC, TOS, and MDA levels ({Delta}{sub s}erum{sub T}AC, {Delta}{sub s}erum{sub T}OS, and {Delta}{sub M}DA) in either group 6, 24, or 72 h after the procedures (P > 0.05). Furthermore, OSI did not change after the procedures in either group (P > 0.05). Conclusion: Magnetic field and gadopentetate dimeglumine (Magnevist) do not change the oxidant or antioxidant status at a dose of 0.2 mmol/kg.

  2. Diagnosis of Popliteal Venous Entrapment Syndrome by Magnetic Resonance Imaging Using Blood-Pool Contrast Agents

    International Nuclear Information System (INIS)

    Beitzke, Dietrich; Wolf, Florian; Juelg, Gregor; Lammer, Johannes; Loewe, Christian

    2011-01-01

    Popliteal vascular entrapment syndrome is caused by aberrations or hypertrophy of the gastrocnemius muscles, which compress the neurovascular structures of the popliteal fossa, leading to symptoms of vascular and degeneration as well as aneurysm formation. Imaging of popliteal vascular entrapment may be performed with ultrasound, magnetic resonance imaging (MRI), computed tomography angiography, and conventional angiography. The use of blood-pool contrast agents in MRI when popliteal vascular entrapment is suspected offers the possibility to perform vascular imaging with first-pass magnetic resonance angiographic, high-resolution, steady-state imaging and allows functional tests all within one examination with a single dose of contrast agent. We present imaging findings in a case of symptomatic popliteal vein entrapment diagnosed by the use of blood pool contrast-enhanced MRI.

  3. Quantitative estimation of renal function with dynamic contrast-enhanced MRI using a modified two-compartment model.

    Directory of Open Access Journals (Sweden)

    Bin Chen

    Full Text Available To establish a simple two-compartment model for glomerular filtration rate (GFR and renal plasma flow (RPF estimations by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI.A total of eight New Zealand white rabbits were included in DCE-MRI. The two-compartment model was modified with the impulse residue function in this study. First, the reliability of GFR measurement of the proposed model was compared with other published models in Monte Carlo simulation at different noise levels. Then, functional parameters were estimated in six healthy rabbits to test the feasibility of the new model. Moreover, in order to investigate its validity of GFR estimation, two rabbits underwent acute ischemia surgical procedure in unilateral kidney before DCE-MRI, and pixel-wise measurements were implemented to detect the cortical GFR alterations between normal and abnormal kidneys.The lowest variability of GFR and RPF measurements were found in the proposed model in the comparison. Mean GFR was 3.03±1.1 ml/min and mean RPF was 2.64±0.5 ml/g/min in normal animals, which were in good agreement with the published values. Moreover, large GFR decline was found in dysfunction kidneys comparing to the contralateral control group.Results in our study demonstrate that measurement of renal kinetic parameters based on the proposed model is feasible and it has the ability to discriminate GFR changes in healthy and diseased kidneys.

  4. Demonstration of multiple neurofibromas in gadolinium-DTPA enhanced MRI - a case report

    International Nuclear Information System (INIS)

    Kaminsky, S.; Schulz, B.

    1988-01-01

    Although magnetic resonance imaging has a high sensitivity for cerebral and spinal tumors, demonstration of small lesions can be difficult. In a patient with multiple extra- and intraspinal tumors due to neurofibromatosis generalisata, the use of the MRI contrast agent gadolinium-DTPA resulted in a better differentiation especially of small lesions. High tumor contrast facilitated a safe localisation of the widespread disease using a fast imaging sequence (FLASH). (orig.) [de

  5. Application of High-Resolution Magic-Angle Spinning NMR Spectroscopy to Define the Cell Uptake of MRI Contrast Agents

    Science.gov (United States)

    Calabi, Luisella; Alfieri, Goffredo; Biondi, Luca; De Miranda, Mario; Paleari, Lino; Ghelli, Stefano

    2002-06-01

    A new method, based on proton high-resolution magic-angle spinning ( 1H HR-MAS) NMR spectroscopy, has been employed to study the cell uptake of magnetic resonance imaging contrast agents (MRI-CAs). The method was tested on human red blood cells (HRBC) and white blood cells (HWBC) by using three gadolinium complexes, widely used in diagnostics, Gd-BOPTA, Gd-DTPA, and Gd-DOTA, and the analogous complexes obtained by replacing Gd(III) with Dy(III), Nd(III), and Tb(III) (i.e., complexes isostructural to the ones of gadolinium but acting as shift agents). The method is based on the evaluation of the magnetic effects, line broadening, or induced lanthanide shift (LIS) caused by these complexes on NMR signals of intra- and extracellular water. Since magnetic effects are directly linked to permeability, this method is direct. In all the tests, these magnetic effects were detected for the extracellular water signal only, providing a direct proof that these complexes are not able to cross the cell membrane. Line broadening effects (i.e., the use of gadolinium complexes) only allow qualitative evaluations. On the contrary, LIS effects can be measured with high precision and they can be related to the concentration of the paramagnetic species in the cellular compartments. This is possible because the HR-MAS technique provides the complete elimination of bulk magnetic susceptibility (BMS) shift and the differentiation of extra- and intracellular water signals. Thus with this method, the rapid quantification of the MRI-CA amount inside and outside the cells is actually feasible.

  6. MRI enhancement of the facial nerve with Gd-DTPA, 2; Investigation of enhanced nerve portions in patients with facial palsy

    Energy Technology Data Exchange (ETDEWEB)

    Yanagida, Masahiro (Kansai Medical School, Moriguchi, Osaka (Japan))

    1993-08-01

    We performed enhanced MRI using Gd-DTPA in 84 patients with facial palsy. After assessing enhancement of the normal facial nerve, we examined enhancement in patients with Bell's palsy and Ramsay Hunt syndrome. In 95% of patients with Bell's palsy, enhancement was obtained in the distal IAC and labyrinthine portions. In 72%, enhancement was significant from the distal IAC portion through the vertical portion. In some of the patients who underwent enhanced MRI twice, increased signal intensity was observed in distal portions such as the vertical portion. In many cases of Ramsay Hunt syndrome, enhancement was seen extensively in the IAC portion through the vertical portion. In the subjects with internal auditory symptoms such as vertigo and tinnitus, enhancement of the IAC portion was seen not only in the facial nerve but also in the vestibular and the cochlear nerves. These results suggest that the vascular permeability of lesions in Bell's palsy may be increased from the distal IAC portion to the vertical portion. Judging from the present findings with Ramsay Hunt syndrome, symptoms related to the enhanced portions suggest that accompanying internal auditory symptoms occur due to inflammation of the IAC portions of cochlear and vestibular nerves. (author).

  7. Multifunctional nanoparticle platforms for in vivo MRI enhancement and photodynamic therapy of a rat brain cancer

    International Nuclear Information System (INIS)

    Kopelman, Raoul; Lee Koo, Yong-Eun; Philbert, Martin; Moffat, Bradford A.; Ramachandra Reddy, G.; McConville, Patrick; Hall, Daniel E.; Chenevert, Thomas L.; Bhojani, Mahaveer Swaroop; Buck, Sarah M.; Rehemtulla, Alnawaz; Ross, Brian D.

    2005-01-01

    A paradigm for brain cancer detection, treatment, and monitoring is established. Multifunctional biomedical nanoparticles (30-60 nm) containing photosensitizer externally deliver reactive oxygen species (ROS) to cancer cells while simultaneously enhancing magnetic resonance imaging (MRI) contrast providing real-time tumor kill measurement. Plasma residence time control and specific cell targeting are achieved. A 5 min treatment in rats halted and even reversed in vivo tumor growth after 3-4 days post-treatment

  8. Multifunctional nanoparticle platforms for in vivo MRI enhancement and photodynamic therapy of a rat brain cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kopelman, Raoul [Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor MI 48109 (United States)]. E-mail: kopelman@umich.edu; Lee Koo, Yong-Eun [Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor MI 48109 (United States); Philbert, Martin [Environmental Health Sciences, niversity of Michigan (United States); Moffat, Bradford A. [Department of Radiology, The University of Michigan (United States); Ramachandra Reddy, G. [Molecular Therapeutics, Inc., Ann Arbor, MI 48104 (United States); McConville, Patrick [Molecular Therapeutics, Inc., Ann Arbor, MI 48104 (United States); Hall, Daniel E. [Department of Radiology, University of Michigan (United States); Chenevert, Thomas L. [Department of Radiology, University of Michigan (United States); Bhojani, Mahaveer Swaroop [Department of Radiation Oncology, University of Michigan (United States); Buck, Sarah M. [Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor MI 48109 (United States); Rehemtulla, Alnawaz [Department of Radiation Oncology, University of Michigan (United States); Ross, Brian D. [Department of Radiology, University of Michigan (United States)

    2005-05-15

    A paradigm for brain cancer detection, treatment, and monitoring is established. Multifunctional biomedical nanoparticles (30-60 nm) containing photosensitizer externally deliver reactive oxygen species (ROS) to cancer cells while simultaneously enhancing magnetic resonance imaging (MRI) contrast providing real-time tumor kill measurement. Plasma residence time control and specific cell targeting are achieved. A 5 min treatment in rats halted and even reversed in vivo tumor growth after 3-4 days post-treatment.

  9. Multifunctional nanoparticle platforms for in vivo MRI enhancement and photodynamic therapy of a rat brain cancer

    Science.gov (United States)

    Kopelman, Raoul; Lee Koo, Yong-Eun; Philbert, Martin; Moffat, Bradford A.; Ramachandra Reddy, G.; McConville, Patrick; Hall, Daniel E.; Chenevert, Thomas L.; Bhojani, Mahaveer Swaroop; Buck, Sarah M.; Rehemtulla, Alnawaz; Ross, Brian D.

    2005-05-01

    A paradigm for brain cancer detection, treatment, and monitoring is established. Multifunctional biomedical nanoparticles (30-60 nm) containing photosensitizer externally deliver reactive oxygen species (ROS) to cancer cells while simultaneously enhancing magnetic resonance imaging (MRI) contrast providing real-time tumor kill measurement. Plasma residence time control and specific cell targeting are achieved. A 5 min treatment in rats halted and even reversed in vivo tumor growth after 3-4 days post-treatment.

  10. Measurement of perfusion using the first-pass dynamic susceptibility-weighted contrast-enhanced (DSC) MRI in neurooncology. Physical basics and clinical applications; Perfusionsmessung mit der T2*-Kontrastmitteldynamik in der Neuroonkologie. Physikalische Grundlagen und klinische Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Weber, M.-A.; Giesel, F.L.; Kauczor, H.-U.; Essig, M. [Deutsches Krebsforschungszentrum (DKFZ) Heidelberg (Germany). Abteilung Radiologie; Risse, F.; Schad, L.R. [Deutsches Krebsforschungszentrum (DKFZ) Heidelberg (Germany). Abteilung Medizinische Physik in der Radiologie

    2005-07-01

    Perfusion imaging in the central nervous system (CNS) is mostly performed using the first-pass dynamic susceptibility-weighted contrast-enhanced (DSC) MRI. The first-pass of a contrast bolus in brain tissue is monitored by a series of T2*-weighted MR images. The susceptibility effect of the paramagnetic contrast agent leads to a signal loss that can be converted, using the principles of the indicator dilution theory, into an increase of the contrast agent concentration. From these data, parameter maps of cerebral blood volume (CBV) and flow (CBF) can be derived. Regional CBF and CBV values can be obtained by region-of-interest analysis. This review article describes physical basics of DSC MRI and summarizes the literature of DSC MRI in neurooncological issues. Studies, all with relatively limited patient numbers, report that DSC MRI is useful in the preoperative diagnosis of gliomas, CNS-lymphomas, and solitary metastases, as well as in the differentiation of these neoplastic lesions from infections and tumor-like manifestations of demyelinating disease. Additionally, DSC MRI is suitable for determining glioma grade and regions of active tumor growth which should be the target of stereotactic biopsy. After therapy, DSC MRI helps better assessing the tumor response to therapy, residual tumor after therapy, and possible treatment failure and therapy-related complications, such as radiation necrosis. The preliminary results show that DSC MRI is a diagnostic tool depicting regional variations in microvasculature of normal and diseased brains. (orig.) [German] Die MRT-Perfusionsmessungen im Zentralnervensystem (ZNS) werden derzeit hauptsaechlich mit der kontrastmittelverstaerkten T2*-Dynamik durchgefuehrt, die die Passage eines schnellen Kontrastmittelbolus mit einer Serie von T2*-gewichteten MRT-Aufnahmen verfolgt und charakterisiert. Dabei wird der Signalabfall, bedingt durch den Suszeptibilitaetseffekt des paramagnetischen Kontrastmittels, mittels geeigneter

  11. Comparison of semi-quantitative and quantitative dynamic contrast-enhanced MRI evaluations of vertebral marrow perfusion in a rat osteoporosis model.

    Science.gov (United States)

    Zhu, Jingqi; Xiong, Zuogang; Zhang, Jiulong; Qiu, Yuyou; Hua, Ting; Tang, Guangyu

    2017-11-14

    This study aims to investigate the technical feasibility of semi-quantitative and quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in the assessment of longitudinal changes of marrow perfusion in a rat osteoporosis model, using bone mineral density (BMD) measured by micro-computed tomography (micro-CT) and histopathology as the gold standards. Fifty rats were randomly assigned to the control group (n=25) and ovariectomy (OVX) group whose bilateral ovaries were excised (n=25). Semi-quantitative and quantitative DCE-MRI, micro-CT, and histopathological examinations were performed on lumbar vertebrae at baseline and 3, 6, 9, and 12 weeks after operation. The differences between the two groups in terms of semi-quantitative DCE-MRI parameter (maximum enhancement, E max ), quantitative DCE-MRI parameters (volume transfer constant, K trans ; interstitial volume, V e ; and efflux rate constant, K ep ), micro-CT parameter (BMD), and histopathological parameter (microvessel density, MVD) were compared at each of the time points using an independent-sample t test. The differences in these parameters between baseline and other time points in each group were assessed via Bonferroni's multiple comparison test. A Pearson correlation analysis was applied to assess the relationships between DCE-MRI, micro-CT, and histopathological parameters. In the OVX group, the E max values decreased significantly compared with those of the control group at weeks 6 and 9 (p=0.003 and 0.004, respectively). The K trans values decreased significantly compared with those of the control group from week 3 (pquantitative DCE-MRI, the quantitative DCE-MRI parameter K trans is a more sensitive and accurate index for detecting early reduced perfusion in osteoporotic bone.

  12. Combined 3 Tesla MRI Biomarkers Improve the Differentiation between Benign vs Malignant Single Ring Enhancing Brain Masses.

    Directory of Open Access Journals (Sweden)

    Simone Salice

    Full Text Available To evaluate whether the combination of imaging biomarkers obtained by means of different 3 Tesla (3T Magnetic Resonance Imaging (MRI advanced techniques can improve the diagnostic accuracy in the differentiation between benign and malignant single ring-enhancing brain masses.14 patients presenting at conventional 3T MRI single brain mass with similar appearance as regard ring enhancement, presence of peri-lesional edema and absence of hemorrhage signs were included in the study. All lesions were histologically proven: 5 pyogenic abscesses, 6 glioblastomas, and 3 metastases. MRI was performed at 3 Tesla and included Diffusion Weighted Imaging (DWI, Dynamic Susceptibility Contrast -Perfusion Weighted Imaging (DSC-PWI, Magnetic Resonance Spectroscopy (MRS, and Diffusion Tensor Imaging (DTI. Imaging biomarkers derived by those advanced techniques [Cerebral Blood Flow (CBF, relative Cerebral Blood Volume (rCBV, relative Main Transit Time (rMTT, Choline (Cho, Creatine (Cr, Succinate, N-Acetyl Aspartate (NAA, Lactate (Lac, Lipids, relative Apparent Diffusion Coefficient (rADC, and Fractional Anisotropy (FA] were detected by two experienced neuroradiologists in joint session in 4 areas: Internal Cavity (IC, Ring Enhancement (RE, Peri-Lesional edema (PL, and Contralateral Normal Appearing White Matter (CNAWM. Significant differences between benign (n = 5 and malignant (n = 9 ring enhancing lesions were tested with Mann-Withney U test. The diagnostic accuracy of MRI biomarkers taken alone and MRI biomarkers ratios were tested with Receiver Operating Characteristic (ROC analysis with an Area Under the Curve (AUC ≥ 0.9 indicating a very good diagnostic accuracy of the variable.Five MRI biomarker ratios achieved excellent accuracy: IC-rADC/PL-NAA (AUC = 1, IC-rADC/IC-FA (AUC = 0.978, RE-rCBV/RE-FA (AUC = 0.933, IC-rADC/RE-FA (AUC = 0.911, and IC-rADC/PL-FA (AUC = 0.911. Only IC-rADC achieved a very good diagnostic accuracy (AUC = 0.909 among MRI biomarkers

  13. Contrast Agent-Enhanced Computed Tomography of Articular Cartilage: Association with Tissue Composition and Properties

    International Nuclear Information System (INIS)

    Silvast, T. S.; Jurvelin, J.S.; Aula, A.S.; Lammi, M.J.; Toeyraes, J.

    2009-01-01

    Background: Contrast agent-enhanced computed tomography may enable the noninvasive quantification of glycosaminoglycan (GAG) content of articular cartilage. It has been reported that penetration of the negatively charged contrast agent ioxaglate (Hexabrix) increases significantly after enzymatic degradation of GAGs. However, it is not known whether spontaneous degradation of articular cartilage can be quantitatively detected with this technique. Purpose: To investigate the diagnostic potential of contrast agent-enhanced cartilage tomography (CECT) in quantification of GAG concentration in normal and spontaneously degenerated articular cartilage by means of clinical peripheral quantitative computed tomography (pQCT). Material and Methods: In this in vitro study, normal and spontaneously degenerated adult bovine cartilage (n=32) was used. Bovine patellar cartilage samples were immersed in 21 mM contrast agent (Hexabrix) solution for 24 hours at room temperature. After immersion, the samples were scanned with a clinical pQCT instrument. From pQCT images, the contrast agent concentration in superficial as well as in full-thickness cartilage was calculated. Histological and functional integrity of the samples was quantified with histochemical and mechanical reference measurements extracted from our earlier study. Results: Full diffusion of contrast agent into the deep cartilage was found to take over 8 hours. As compared to normal cartilage, a significant increase (11%, P 0.5, P<0.01). Further, pQCT could be used to measure the thickness of patellar cartilage. Conclusion: The present results suggest that CECT can be used to diagnose proteoglycan depletion in spontaneously degenerated articular cartilage with a clinical pQCT scanner. Possibly, the in vivo use of clinical pQCT for CECT arthrography of human joints is feasible

  14. Contrast enhanced ultrasound in liver imaging

    International Nuclear Information System (INIS)

    Nielsen, Michael Bachmann; Bang, Nanna

    2004-01-01

    Ultrasound contrast agents were originally introduced to enhance the Doppler signals when detecting vessels with low velocity flow or when imaging conditions were sub-optimal. Contrast agents showed additional properties, it was discovered that a parenchymal enhancement phase in the liver followed the enhancement of the blood pool. Contrast agents have made ultrasound scanning more accurate in detection and characterization of focal hepatic lesions and the sensitivity is now comparable with CT and MRI scanning. Further, analysis of the transit time of contrast agent through the liver seems to give information on possible hepatic involvement, not only from focal lesions but also from diffuse benign parenchymal disease. The first ultrasound contrast agents were easily destroyed by the energy from the sound waves but newer agents have proved to last for longer time and hereby enable real-time scanning and make contrast enhancement suitable for interventional procedures such as biopsies and tissue ablation. Also, in monitoring the effect of tumour treatment contrast agents have been useful. A brief overview is given on some possible applications and on different techniques using ultrasound contrast agents in liver imaging. At present, the use of an ultrasound contrast agent that allows real-time scanning with low mechanical index is to be preferred

  15. Comparison of ASL and DCE MRI for the non-invasive measurement of renal blood flow: quantification and reproducibility

    Energy Technology Data Exchange (ETDEWEB)

    Cutajar, Marica; Hales, Patrick W.; Clark, Christopher A.; Gordon, Isky [UCL Institute of Child Health, Imaging and Biophysics Unit, London (United Kingdom); Thomas, David L. [UCL Institute of Neurology, Department of Brain Repair and Rehabilitation, London (United Kingdom); Banks, T. [Great Ormond Street Hospital, Department of Radiology, London (United Kingdom)

    2014-06-15

    To investigate the reproducibility of arterial spin labelling (ASL) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) and quantitatively compare these techniques for the measurement of renal blood flow (RBF). Sixteen healthy volunteers were examined on two different occasions. ASL was performed using a multi-TI FAIR labelling scheme with a segmented 3D-GRASE imaging module. DCE MRI was performed using a 3D-FLASH pulse sequence. A Bland-Altman analysis was used to assess repeatability of each technique, and determine the degree of correspondence between the two methods. The overall mean cortical renal blood flow (RBF) of the ASL group was 263 ± 41 ml min{sup -1} [100 ml tissue]{sup -1}, and using DCE MRI was 287 ± 70 ml min{sup -1} [100 ml tissue]{sup -1}. The group coefficient of variation (CV{sub g}) was 18 % for ASL and 28 % for DCE-MRI. Repeatability studies showed that ASL was more reproducible than DCE with CV{sub g}s of 16 % and 25 % for ASL and DCE respectively. Bland-Altman analysis comparing the two techniques showed a good agreement. The repeated measures analysis shows that the ASL technique has better reproducibility than DCE-MRI. Difference analysis shows no significant difference between the RBF values of the two techniques. (orig.)

  16. FDG uptake on PET and enhancement on CT or MRI in hepatocellular carcinoma (HCC)

    International Nuclear Information System (INIS)

    Ko, K. H.; Yun, M.; Kim, M. J.; Ryu, Y. H.; Lee, J. D.

    2002-01-01

    To correlate between FDG PET and enhancement pattern on CT and MRI and assess the factors affecting FDG uptake in HCC. Thirty seven nontreated HCC from 34 pts (M:F=30:4, mean age 53) were enrolled. All cases were histologically diagnosed and classified according to Edmonson and Steiner's grading. Tumor FDG uptake was visually assessed on a scale of 0 to 3 compared to the adjacent liver. (0 liver and 3>>liver) and was semi-quantitatively analyzed using SUV. Enhancement pattern on CT and MRI was classified into 3 groups according to signal intensity or density in arterial and portal phase (GroupI: hyperintense-hypointense, GroupII: isointense-hypointense, GroupIII: hypointense-hypointense). Tumor FDG uptake was correlated with enhancement pattern, grade, size and serum aFP level. The tumor ranged from 1.5cm to 20cm. Of the 37 cases, 19(51%) had positive FDG uptake (2 or 3), while 18(49%) were negative (0 or 1). The correlation between FDG uptake and enhancement pattern was statistically insignificant. Lower FDG uptake was associated with lower tumor grade and/or smaller tumor size (P<0.005). FDG uptake of HCC seems to be useful in predicting the differentiation of the tumor and may be prognostic. Although the significance of dynamic enhancement pattern on CT or MRI is yet controversial, it has no specific correlation with FDG uptake and grade on the tumor in this study

  17. Dynamic contrast-enhanced, extremity-dedicated MRI identifies synovitis changes in the follow-up of rheumatoid arthritis patients treated with rituximab

    DEFF Research Database (Denmark)

    Cimmino, Marco A; Parodi, Massimiliano; Zampogna, Giuseppe

    2014-01-01

    according to the 1987 ACR criteria were treated with a single course of RTX (2 infusions of 1000 mg, 15 days apart). MRI of the dominant hand was performed with a 0.2T extremity-dedicated machine using pre and post contrast T1 weighted SE, turbo 3D, and STIR sequences at baseline, and after 4 and 24 weeks....... MRI was analysed using the OMERACT-RAMRIS score and the dynamic contrast-enhanced (DCE-MRI) technique for wrist synovitis, which calculates the enhancement ratio as both rate of early enhancement (REE) and relative enhancement (RE). The corresponding ME and IRE parameters were calculated also through...

  18. Penetration depth measurement of a 6 MeV electron beam in water by magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    B. E. Hammer

    2011-11-01

    Full Text Available We demonstrate magnetic resonance imaging (MRI visualization of a 6 MeV electron beam in ferrous-doped water; a 25 mm penetration depth was measured. Time domain nuclear magnetic resonance was used to investigate the effect of generated free radicals on the free induction decay (FID in nondoped water; no apparent effects to the FID were observed. We show that MRI visualization of charged particle beams used in medical applications will require exogenous agents to provide contrast enhancement.

  19. Breast MRI of ductal carcinoma in situ. Is there MRI role?

    International Nuclear Information System (INIS)

    Francescutti, G.E.; Londero, V.; Berra, I.; Del Frate, C.; Zuiani, C.; Bazzocchi, M.

    2002-01-01

    Background. The purpose of this study is to report our personal experience of 22 cases of ductal carcinoma in situ (DCIS) studied with magnetic resonance imaging (MRI). Patients and methods. From September 1995 to December 2001, 22 women diagnosed with DCIS lesions underwent contrast enhanced MRI within 7 days after mammographic examination. Dynamic MRI was performed with a 1 T system, using a three dimensional fast low angle shot (FLASH) pulse sequence before and after contrast media administration. We evaluated the morphologic features of the enhancement, the enhancement rate and the signal time intensity curve. Pathology was obtained in all cases. Results. The results of histopatological examination included: 15 DCIS and 7 DCIS with associated microinvasive component or microfoci of invasive ductal carcinoma (IDC). On MRI, 21 of 22 (95%) DCIS lesions showed contrast enhancement. Fourteen out of 15 pure DCIS lesions demonstrated respectively a low (3), undeterminate (5), and strong (6) enhancement. Morphologically, the enhancing lesion was focal in 7, segmental in 4, and with linear branching in 3 cases. Wash out was found in 4 cases, plateau curve in 8 and Type I curve in 2 cases. Multifocality was present in 5 cases. All DCIS with associated microinvasion demonstrated contrast enhancement: 1/7 cases showed a low enhancement, 2/7 showed an indeterminate enhancement and 4/7 showed a strong enhancement. Morphologically, the enhancing lesion was focal in 3/9, segmental in 5 and with linear branching in 1 case. The wash out was demonstrated in 3/7 cases, plateau curve in 3 and Type 1 curve in 1 case. Multifocality was present in 3 cases. Conclusions. In conclusion, the sensitivity of MRI for DCIS detection is lower than that achieved for invasive breast cancer; however, contrast-enhanced MRI can depict foci of DCIS that are mammographically occult. The MRI technique is of complementary value for a better description of tumor size and detection of additional

  20. MRI findings of extramedullary haemopoiesis

    International Nuclear Information System (INIS)

    Chourmouzi, D.; Pistevou-Gompaki, K.; Plataniotis, G.; Skaragas, G.; Papadopoulos, L.; Drevelegas, A.

    2001-01-01

    Extramedullary haemopoiesis (EH) is a compensatory process associated with chronic haemolytic anaemia. It is rare, however, for such an abnormality to cause spinal cord compression. We present two patients with known beta-thalassaemia intermedia who developed spinal cord compression due to masses of extramedullary haematopoietic tissue in the epidural space of the thoracic spine. The EH masses were diagnosed by MRI as an isointense epidural lesion on both T1- and T2-weighted images, compressing severely the spinal cord. After administration of a paramagnetic agent, an intermediate enhancement of the masses was evident. All the vertebral bodies had low to intermediate signal intensity as a result of displacement of fatty marrow by haematopoietic marrow. Expansion of thoracic ribs with bilateral paravertebral masses were characteristic. A small dose of radiotherapy was given and marked improvement in neurological symptoms was evident. An MRI examination established shrinkage of the mass and decompression of spinal cord. The role of MRI in diagnosis of EH masses is essential and radiation therapy is a very effective treatment for this rare complication. (orig.)