Interacting Agegraphic Dark Energy
Wei, Hao; Cai, Rong-Gen
2007-01-01
A new dark energy model, named "agegraphic dark energy", has been proposed recently, based on the so-called K\\'{a}rolyh\\'{a}zy uncertainty relation, which arises from quantum mechanics together with general relativity. In this note, we extend the original agegraphic dark energy model by including the interaction between agegraphic dark energy and pressureless (dark) matter. In the interacting agegraphic dark energy model, there are many interesting features different from the original agegrap...
Agegraphic Chaplygin gas model of dark energy
Sheykhi, Ahmad
2010-01-01
We establish a connection between the agegraphic models of dark energy and Chaplygin gas energy density in non-flat universe. We reconstruct the potential of the agegraphic scalar field as well as the dynamics of the scalar field according to the evolution of the agegraphic dark energy. We also extend our study to the interacting agegraphic generalized Chaplygin gas dark energy model.
Instability of agegraphic dark energy models
Kim, Kyoung Yee; Lee, Hyung Won; Myung, Yun Soo
2007-01-01
We investigate the agegraphic dark energy models which were recently proposed to explain the dark energy-dominated universe. For this purpose, we calculate their equation of states and squared speeds of sound. We find that the squared speed for agegraphic dark energy is always negative. This means that the perfect fluid for agegraphic dark energy is classically unstable. Furthermore, it is shown that the new agegraphic dark energy model could describe the matter (radiation)-dominated universe...
Agegraphic dark energy as a quintessence
Zhang, Jingfei; Zhang, Xin; Liu, Hongya
2008-01-01
Recently, a dark energy model characterized by the age of the universe, dubbed ``agegraphic dark energy'', was proposed by Cai. In this paper, a connection between the quintessence scalar-field and the agegraphic dark energy is established, and accordingly, the potential of the agegraphic quintessence field is constructed.
Restoring New Agegraphic Dark Energy in RS II Braneworld
Jamil, Mubasher; Karami, Kayoomars; Sheykhi, Ahmad
2010-01-01
Motivated by recent works [1,2], we investigate new agegraphic model of dark energy in the framework of RS II braneworld. We also include the case of variable gravitational constant in our model. Furthermore, we establish correspondence between the new agegraphic dark energy with other dark energy candidates based on scalar fields.
Cosmological constraints on Agegraphic dark energy in DGP braneworld gravity
Farajollahi, H; Fadakar, G F
2016-01-01
A proposal to study the original and new agegraphic dark energy in DGP braneworld cosmology is presented in this work. To verify our model with the observational data, the model is constrained by a variety of independent measurements such as Hubble parameter, cosmic microwave background anisotropies, and baryon acoustic oscillation peaks. The best fitting procedure shows the effectiveness of agegraphic parameter $n$ in distinguishing between the original and new agegraphic dark energy scenarios and subsequent cosmological findings. In particular, the result shows that in both scenarios, our universe enters an agegraphic dark energy dominated phase.
Cosmological constraints on Agegraphic dark energy in DGP braneworld gravity
Farajollahi, H.; Ravanpak, A.; Fadakar, G. F.
2016-01-01
A proposal to study the original and new agegraphic dark energy in DGP braneworld cosmology is presented in this work. To verify our model with the observational data, the model is constrained by a variety of independent measurements such as Hubble parameter, cosmic microwave background anisotropies, and baryon acoustic oscillation peaks. The best fitting procedure shows the effectiveness of agegraphic parameter $n$ in distinguishing between the original and new agegraphic dark energy scenari...
Interacting agegraphic dark energy models in non-flat universe
Sheykhi, Ahmad
2009-01-01
A so-called "agegraphic dark energy" was recently proposed to explain the dark energy-dominated universe. In this Letter, we generalize the agegraphic dark energy models to the universe with spatial curvature in the presence of interaction between dark matter and dark energy. We show that these models can accommodate $w_D = -1 $ crossing for the equation of state of dark energy. In the limiting case of a flat universe, i.e. $k = 0$, all previous results of agegraphic dark energy in flat unive...
New agegraphic dark energy as a rolling tachyon
Combining the general relativity and the uncertainty relation in quantum mechanics, the energy density of quantum fluctuations of space-time can be viewed as dark energy. The so-called agegraphic dark energy model is just based on this viewpoint, in which the age of the universe is introduced as the length measure. Recently, the new agegraphic dark energy model was proposed, where the dynamical dark energy is measured by the conformal age of the universe. On the other hand, scalar-field dark energy models like tachyons are often regarded as an effective description of some underlying theory of dark energy. In this paper, we show that the new agegraphic dark energy can be described completely by a tachyon scalar-field. We thus reconstruct the potential and the dynamics of the tachyon scalar-field, according to the evolution of the new agegraphic dark energy. (geophysics, astronomy and astrophysics)
Agegraphic dark energy: growth index and cosmological implications
Malekjani, M; Davari, Z; Mehrabi, A; Rezaei, M
2016-01-01
We study the main cosmological properties of the agegraphic dark energy model at the expansion and perturbation levels. Initially, using the latest cosmological data we implement a joint likelihood analysis in order to constrain the cosmological parameters. Then we test the performance of the agegraphic dark energy model at the perturbation level and we define its difference from the usual $\\Lambda$CDM model. Within this context, we verify that the growth index of matter fluctuations depends on the choice of the considered agegraphic dark energy (homogeneous or clustered). In particular, assuming a homogeneous agegraphic dark energy we find, for the first time, that the asymptotic value of the growth index is $\\gamma \\approx 5/9$, which is close to that of the usual $\\Lambda$ cosmology, $\\gamma^{(\\Lambda)} \\approx 6/11$. Finally, if the distribution of dark energy is clustered then we obtain $\\gamma \\approx 1/2$ which is $\\sim 8\\%$ smaller than that of the $\\Lambda$CDM model.
Evolution of spherical overdensities in new agegraphic dark energy model
Setare, M R; Darabi, F
2016-01-01
We study the structure formation by investigating the spherical collapse model in the context of new agegraphic dark energy model in flat FRW cosmology. We compute the perturbational quantities $g(a)$, $\\delta_{c}(z_{c})$, $\\lambda(z_{c})$, $\\xi(z_{c})$, $\\Delta_{vir}(z_{c})$, $\\log[\
Holographic, new agegraphic and ghost dark energy models in fractal cosmology
Karami, K.; Jamil, Mubasher; Ghaffari, S.; Fahimi, K.
2012-01-01
We investigate the holographic, new agegraphic and ghost dark energy models in the framework of fractal cosmology. We consider a fractal FRW universe filled with the dark energy and dark matter. We obtain the equation of state parameters of the selected dark energy models in the ultraviolet regime and discuss on their implications.
On initial condition of the new agegraphic dark energy model
Li, Yun-He; Zhang, Xin
2012-01-01
The initial condition $\\Omega_{\\rm de}(z_{\\rm ini})=n^2(1+z_{\\rm ini})^{-2}/4$ at $z_{\\rm ini}=2000$ widely used to solve the differential equation of $\\Omega_{\\rm de}$, the density of the new agegraphic dark energy (NADE), makes the NADE model be a single-parameter dark-energy cosmological model. However, this initial condition, we find, is only applicable in a flat universe with only dark energy and pressureless matter. In fact, in order to obtain more information from current observational data, such as cosmic microwave background (CMB) and baryon acoustic oscillations (BAO), it often needs us to consider the contribution of radiation. For this situation, the initial condition mentioned above becomes invalid. To overcome this shortage, we deeply investigate the evolution of NADE in the matter-dominated and radiation-dominated epochs, and obtain a new initial condition $\\Omega_{\\rm de}(z_{\\rm ini}) = \\frac{n^2(1+z_{\\rm ini})^{-2}}{4} (1+\\sqrt{F(z_{\\rm ini})})^2$ at $z_{\\rm ini}=2000$. Here $F(z)\\equiv\\frac{...
New initial condition of the new agegraphic dark energy model
Li Yun-He; Zhang Jing-Fei; Zhang Xin
2013-01-01
The initial condition Ωde (zini) =n2(1 + Zini)-2/4 at Zini =2000,widely used to solve the differential equation of the density of the new agegraphic dark energy (NADE) Ωde,makes the NADE model a single-parameter dark-energy cosmological model.However,we find that this initial condition is only applicable in a fiat universe with only dark energy and pressureless matter.In fact,in order to obtain more information from current observational data,such as the cosmic microwave background (CMB) and the baryon acoustic oscillations (BAO),we need to consider the contribution of radiation.For this situation,the initial condition mentioned above becomes invalid.To overcome this shortcoming,we investigate the evolutions of dark energy in matter-dominated and radiation-dominated epochs,and obtain a new initial condition Ωde(Zini) =n2(1 + zini)-2(1+ √F(Zini))2/4 at zini =2000,where F(z) ≡ Ωr0(1+z)/[Ωm0 + Ωr0(1 +z)] with Ωr0 and Ωm0 being the current density parameters of radiation and pressureless matter,respectively.This revised initial condition is applicable for the differential equation of Ωde obtained in the standard Friedmann-Robertson-Walker (FRW) universe with dark energy,pressureless matter,radiation,and even spatial curvature,and can still keep the NADE model as a single-parameter model.With the revised initial condition and the observational data of type Ia supernova (SNIa),CMB,and BAO,we finally constrain the NADE model.The results show that the single free parameter n of the NADE model can be constrained tightly.
Bianchi type I Universe and instability of new agegraphic dark energy in Brans-Dicke theories
Fayaz, V.
2016-02-01
In this paper, we consider the new agegraphic dark energy (NADE) in a Bianchi type-I metric (which is a spatially homogeneous and anisotropic) in the framework of Brans-Dicke theory. For this purpose, we use the squared sound speed vs2 whose sign determines the stability of the model. We explore the stability of this model in the presence/absence of interaction between dark energy and dark matter in both flat and non-isotropic geometry. The equation of state and the deceleration parameter of the new agegraphic dark energy in a anisotropic Universe is obtained. We show that the combination of Brans-Dicke field and new agegraphic dark energy can accommodate ω_{\\varLambda}=-1 crossing for the equation of state of noninteracting dark energy. When an interaction between dark energy and dark matter is taken into account, the transition of ω_{\\varLambda} to phantom regime can be more easily accounted when the Einstein field equations is being resort. In conclusion, we find evidences that the new agegraphic dark energy in BD theory can not lead to a stable Universe favored by observations at the present time. The anisotropy of the Universe decreases and the Universe transits to an isotropic flat FRW Universe accommodating the present acceleration.
Interacting agegraphic dark energy model in tachyon cosmology coupled to matter
Farajollahi, H.; Ravanpak, A.; Fadakar, G. F.
2012-01-01
Scalar-field dark energy models for tachyon fields are often regarded as an effective description of an underlying theory of dark energy. In this paper, we propose the agegraphic dark energy model in tachyon cosmology by interaction between the components of the dark sectors. In the formalism, the interaction term emerges from the tachyon field nonminimally coupled to the matter Lagrangian in the model rather than being inserted into the formalism as an external source. The model is constrain...
Interacting entropy-corrected new agegraphic dark energy in the non-flat universe
Karami, Kayoomars [Department of Physics, University of Kurdistan, Pasdaran Street, Sanandaj (Iran, Islamic Republic of); Sorouri, Arash, E-mail: KKarami@uok.ac.i [Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of)
2010-08-15
Here, we consider the entropy-corrected version of the new agegraphic dark energy (NADE) model in the non-flat Friedmann-Robertson-Walker universe. We derive the exact differential equation that determines the evolution of the entropy-corrected NADE density parameter in the presence of interaction with dark matter. We also obtain the equation of state and deceleration parameters and present a necessary condition for the selected model to cross the phantom divide. Moreover, we reconstruct the potential and the dynamics of the phantom scalar field according to the evolutionary behavior of the interacting entropy-corrected new agegraphic model.
Setare, M R
2010-01-01
Recently one of us derived the action of modified gravity consistent with the holographic and new-agegraphic dark energy. In this paper, we investigate the stability of the Lagrangians of the modified gravity as discussed in [M. R. Setare, Int. J. Mod. Phys. D 17 (2008) 2219; M. R. Setare, Astrophys. Space Sci. 326 (2010) 27]. We also calculate the statefinder parameters which classify our dark energy model.
Karami, K.; Abdolmaleki, A.
2010-01-01
In the present work, we reconstruct different f(T)-gravity models corresponding to the original and entropy-corrected version of the holographic and new agegraphic dark energy models. We also obtain the equation of state parameters of the corresponding f(T)-gravity models. We conclude that the holographic and new agegraphic f(T)-gravity models behave like phantom or quintessence model. Whereas in the entropy-corrected models, the equation of state parameter can justify the transition from the...
Interacting entropy-corrected new agegraphic dark energy in Brans-Dicke cosmology
Karami, Kayoomars; Sheykhi, Ahmad; Jamil, Mubasher; Azarmi, Z.; Soltanzadeh, M. M.
2010-01-01
Motivated by a recent work of one of us [1], we extend it by using quantum (or entropy) corrected new agegraphic dark energy in the Brans-Dicke cosmology. The correction terms are motivated from the loop quantum gravity which is one of the competitive theories of quantum gravity. Taking the non-flat background spacetime along with the conformal age of the universe as the length scale, we derive the dynamical equation of state of dark energy and the deceleration parameter. An important consequ...
Li, Yun-He; Cui, Jing-Lei; Wang, Zhuo; Zhang, Xin
2010-01-01
Many dark energy models fail to pass the cosmic age test via the old quasar APM 08279+5255 at redshift $z=3.91$, even the $\\Lambda$CDM model and the holographic dark energy model are not exception. In this paper, we focus on the topic of age problem in the new agegraphic dark energy (NADE) model. We determine the age of the universe in the NADE model by using the fitting result of observational data including type Ia supernovae (SNIa), baryon acoustic oscillation (BAO) and cosmic microwave background (CMB). It is shown that the NADE model also faces the challenge of the age problem caused by the old quasar APM 08279+5255. In order to overcome such a difficulty, we consider the possible interaction between dark energy and matter. We show that the old quasar APM 08279+5255 at redshift $z=3.91$ can be successfully accommodated in the interacting new agegraphic dark energy (INADE) model at $2\\sigma$ level under the current observational constraints.
Karami, K
2010-01-01
Here we peruse cosmological usage of the most promising candidates of dark energy in the framework of $f(R)$-gravity. We reconstruct the $f(R)$ theory in the spatially-flat FRW universe according to the ordinary and entropy-corrected versions of the holographic and new agegraphic dark energy models, which describe accelerated expansion of the universe.
f(R) in Holographic and Agegraphic Dark Energy Models and the Generalized Uncertainty Principle
Majumder, Barun
2013-01-01
We studied a unified approach with the holographic, new agegraphic and the $f(R)$ dark energy model to construct the form of $f(R)$ which in general responsible for the curvature driven explanation of the very early inflation along with presently observed late time acceleration. We considered the generalized uncertainty principle in our approach which incorporated the corrections in the entropy area relation and thereby modified the energy densities for the cosmological dark energy models considered. We found that holographic and new agegraphic $f(R)$ gravity models can behave like phantom or quintessence models in the spatially flat FRW universe. We also found a distinct term in the form of $f(R)$ which goes as $R^{\\frac{3}{2}}$ due to the consideration of the GUP modified energy densities. Although the presence of this term in the action can have its importance in explaining the early inflationary scenario but Capozziello {\\it et.al.} recently showed that $f(R) \\sim R^{\\frac{3}{2}}$ leads to an accelerated ...
Karami, K., E-mail: KKarami@uok.ac.i [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Khaledian, M.S.; Felegary, F.; Azarmi, Z. [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of)
2010-03-29
We study the correspondence between the tachyon, K-essence and dilaton scalar field models with the interacting new agegraphic dark energy model in the non-flat FRW universe. We reconstruct the potentials and the dynamics for these scalar field models, which describe accelerated expansion of the universe.
In the present work, we reconstruct different f(T)-gravity models corresponding to the original and entropy-corrected versions of the holographic and new agegraphic dark energy models. We also obtain the equation of state parameters of the corresponding f(T)-gravity models. We conclude that the original holographic and new agegraphic f(T)-gravity models behave like the phantom or quintessence model, whereas in the entropy-corrected models, the equation of state parameter can justify the transition from the quintessence state to the phantom regime as indicated by the recent observations.
Karami, Kayoomars; Abdolmaleki, Asrin
2013-07-01
In the present work, we reconstruct different f(T)-gravity models corresponding to the original and entropy-corrected versions of the holographic and new agegraphic dark energy models. We also obtain the equation of state parameters of the corresponding f(T)-gravity models. We conclude that the original holographic and new agegraphic f(T)-gravity models behave like the phantom or quintessence model, whereas in the entropy-corrected models, the equation of state parameter can justify the transition from the quintessence state to the phantom regime as indicated by the recent observations.
Kayoomars Karami; Asrin Abdolmaleki
2013-01-01
In the present work,we reconstruct different f(T)-gravity models corresponding to the original and entropy-corrected versions of the holographic and new agegraphic dark energy models.We also obtain the equation of state parameters of the corresponding f(T)-gravity models.We conclude that the original holographic and new agegraphic f(T)-gravity models behave like the phantom or quintessence model,whereas in the entropy-corrected models,the equation of state parameter can justify the transition from the quintessence state to the phantom regime as indicated by the recent observations.
Agegraphic Dark Energy with the Sign-Changeable Interaction in Non-Flat Universe
You-Dong, Xu; Dong-Qing, Yuan
2016-04-01
In this paper, we investigate the agegraphic dark energy (ADE) model by including the sign-changeable interaction between ADE and dark matter in non-flat universe. The interaction Q can change its sign from Q 0 as the universe expands. This indicates that at first dark matter decays to ADE, and then ADE decays to dark matter. We study the dynamical behavior of the model by using the phase-plane analysis. It is shown numerically that the coupling constant β plays an important role in the evolution of the universe. The equation of state (EoS) of ADE with the sign-changeable interaction is more likely to cross the phantom divide wd = ‑1 from top to bottom with the increasing of the |β|. Whereas in ADE model with usual interaction, wd can cross the phantom divide from bottom to top. We also find that our model is consistent with the observational data. Supported by National Nature Science Foundation of China under Grant No. 51405181, Natural Science Foundation for Youths of Jiangsu Province under Grant No. BK20130407, and Colleges and Universities Natural Science Fundation of Jiangsu Province under Grant No. 13KJB460001
New agegraphic dark energy in Brans-Dicke theory with logarithmic form of scalar field
Kumar, Pankaj
2016-01-01
In a very recent paper, the current authors (arXiv:gr-qc/1609.01477) have proposed and analyzed in detail the logarithmic form of Brans-Dicke scalar field $\\phi$ as $\\phi \\propto ln(\\alpha+\\beta a)$, where $\\alpha$ and $\\beta$ are positive constants, to alleviate the problems of interacting holographic dark energy models in Brans-Dicke theory. In this paper, the cosmological evolution of a new agegraphic dark energy (NADE) model within the framework of Friedmann-Robertson-Walker Universe is analyzed with the same form of scalar field in Brans-Dicke theory. We derive the equation of state parameter $w_D$ and deceleration parameter $q$ of NADE model. It is observed that $w_D\\rightarrow -1$ when $a\\rightarrow \\infty$, i.e., the NADE mimics cosmological constant in the late time evolution. Indeed, due to the assumption of logarithmic form of Brans-Dicke scalar field the NADE in Brans-Dicke theory behaves like NADE in general relativity in the late time evolution. The NADE model shows a phase transition from matte...
The newly released observational H(z) data (OHD) is used to constrain Λ(t)CDM models as holographic and agegraphic dark energy. By the use of the length scale and time scale as the IR cut-off including Hubble horizon (HH), future event horizon (FEH), age of the universe (AU), and conformal time (CT), we achieve four different Λ(t)CDM models which can describe the present cosmological acceleration respectively. In order to get a comparison between such Λ(t)CDM models and standard ΛCDM model, we use the information criteria (IC), Om(z) diagnostic, and statefinder diagnostic to measure the deviations. Furthermore, by simulating a larger Hubble parameter data sample in the redshift range of 0.1 < z < 2.0, we get the improved constraints and more sufficient comparison. We show that OHD is not only able to play almost the same role in constraining cosmological parameters as SNe Ia does but also provides the effective measurement of the deviation of the DE models from standard ΛCDM model. In the holographic and agegraphic scenarios, the results indicate that the FEH is more preferable than HH scenario. However, both two time scenarios show better approximations to ΛCDM model than the length scenarios
Karami, K.; Khaledian, M. S.
2010-01-01
Here, we peruse cosmological usage of the most promising candidates of dark energy in the framework of f(R) theory. We reconstruct the different f(R) modified gravity models in the spatially flat FRW universe according to the ordinary and entropy-corrected versions of the holographic and new agegraphic dark energy models, which describe accelerated expansion of the universe. We also obtain the equation of state parameter of the corresponding f(R)-gravity models. We conclude that the holograph...
Karami, K.; Khaledian, M. S.
2011-03-01
Here, we peruse cosmological usage of the most promising candidates of dark energy in the framework of f( R) theory. We reconstruct the different f( R) modified gravity models in the spatially flat FRW universe according to the ordinary and entropy-corrected versions of the holographic and new agegraphic dark energy models, which describe accelerated expansion of the universe. We also obtain the equation of state parameter of the corresponding f( R)-gravity models. We conclude that the holographic and new agegraphic f( R)-gravity models can behave like phantom or quintessence models. Whereas the equation of state parameter of the entropy-corrected models can transit from quintessence state to phantom regime as indicated by recent observations.
Saha, Pameli
2016-01-01
Here, we peruse cosmological usage of the most promising candidates of dark energy in the framework of $f(T)$ gravity theory. We reconstruct the different $f(T)$ modifed gravity models in the spatially flat FRW universe according to entropy-corrected versions of the holographic and new agegraphic dark energy models in power-law and logarithmic corrections, which describe accelerated expansion history of the universe. We conclude that the equation of state parameter of the entropy-corrected models can transit from quintessence state to phantom regime as indicated by recent observations or can lie entirely in the phantom region. Also, using these models, we investigate the different erase of the stability with the help of the squared speed of sound.
Debnath, Ujjal
2013-01-01
Here we briefly discuss the Einstein-Aether gravity theory by modification of Einstein-Hilbert action. We find the modified Friedmann equations and then from the equations we find the effective density and pressure for Einstein-Aether gravity sector. These can be treated as dark energy provided some restrictions on the free function $F(K)$, where $K$ is proportional to $H^{2}$. Assuming two types of the power law solutions of the scale factor, we have reconstructed the unknown function $F(K)$...
Debnath, Ujjal
2013-01-01
Here we briefly discuss the Einstein-Aether gravity theory by modification of Einstein-Hilbert action. We find the modified Friedmann equations and then from the equations we find the effective density and pressure for Einstein-Aether gravity sector. These can be treated as dark energy provided some restrictions on the free function $F(K)$, where $K$ is proportional to $H^{2}$. Assuming two types of the power law solutions of the scale factor, we have reconstructed the unknown function $F(K)$ from HDE and NADE and their entropy-corrected versions (ECHDE and ECNADE). We also obtain the EoS parameter for Einstein-Aether gravity dark energy. For HDE and NADE, we have shown that the type I scale factor generates the quintessence scenario only and type II scale factor generates phantom scenario. But for ECHDE and ECNADE, the both types of scale factors can accommodate the transition from quintessence to phantom stages i.e., phantom crossing is possible for entropy corrected terms of HDE and NADE models. Finally, w...
2014-01-01
Here we briefly discuss the Einstein-Aether gravity theory by modification of Einstein-Hilbert action. We find the modified Friedmann equations and then from the equations we find the effective density and pressure for Einstein-Aether gravity sector. These can be treated as if dark energy provided some restrictions on the free function F(K) where K is proportional to H2 . Assuming two types of the power law solutions of the scale factor, we have reconstructed the unknown function F(K) from HD...
Ujjal Debnath
2014-01-01
Full Text Available Here we briefly discuss the Einstein-Aether gravity theory by modification of Einstein-Hilbert action. We find the modified Friedmann equations and then from the equations we find the effective density and pressure for Einstein-Aether gravity sector. These can be treated as if dark energy provided some restrictions on the free function F(K, where K is proportional to H2. Assuming two types of the power law solutions of the scale factor, we have reconstructed the unknown function F(K from HDE and NADE and their entropy-corrected versions (ECHDE and ECNADE. We also obtain the EoS parameter for Einstein-Aether gravity dark energy. For HDE and NADE, we have shown that the type I scale factor generates the quintessence scenario only and type II scale factor generates phantom scenario. But for ECHDE and ECNADE, both types of scale factors can accommodate the transition from quintessence to phantom stages; that is, phantom crossing is possible for entropy-corrected terms of HDE and NADE models. Finally, we show that the models are classically unstable.
Variable G correction to statefinder parameters of dark energy
Jamil, Mubasher
2010-01-01
Motivated by several observational and theoretical developments concerning the variability of Newton's gravitational constant with time $G(t)$, we calculate the varying $G$ correction to the statefinder parameters for four models of dark energy namely interacting dark energy, holographic dark energy, new-agegraphic dark energy and generalized Chaplygin gas.
Variable G Corrections to Statefinder Parameters of Dark Energy
Jamil, Mubasher
2010-11-01
Motivated by several observational and theoretical developments concerning the variability of Newton’s gravitational constant with time G( t), we calculate the varying G correction to the statefinder parameters for four models of dark energy namely interacting dark energy holographic dark energy, new-agegraphic dark energy and generalized Chaplygin gas.
Loop Quantum Corrections to Statefinder Parameters of Dark Energy
Jamil, Mubasher; Momeni, D.; Myrzakulov, Ratbay
2013-09-01
In this paper, we have calculated the statefinder parameters for the Friedmann-Robertson-Walker (FRW) Universe in the gravitational framework of loop quantum cosmology (LQC). As examples, we study two types of dark energy models namely Holographic dark energy and New-Agegraphic dark energy.
Loop Quantum Corrections to Statefinder Parameters of Dark Energy
Jamil, Mubasher; Myrzakulov, Ratbay
2013-01-01
In this short letter, we presented the explicit forms of the statefinder parameters for the Friedmann-Robertson-Walker (FRW) Universe in the loop quantum cosmology (LQC) for Holographic dark energy and New-Agegraphic dark energy. Numerically we investigated cosmological implications of these parameters for models of dark energy.
Entropy-Corrected Holographic Dark Energy
Wei, Hao
2009-01-01
The holographic dark energy (HDE) is now an interesting candidate of dark energy, which has been studied extensively in the literature. In the derivation of HDE, the black hole entropy plays an important role. In fact, the entropy-area relation can be modified due to quantum gravity or other reason. With the modified entropy-area relation, we propose the so-called "entropy-corrected holographic dark energy" (ECHDE) in this note. We consider many aspects of ECHDE and find some interesting results. In addition, we also consider the so-called "entropy-corrected agegraphic dark energy" (ECADE) briefly.
Entropy-Corrected Holographic Dark Energy
The holographic dark energy (HDE) is now an interesting candidate of dark energy, which has been studied extensively in the literature. In the derivation of HDE, the black hole entropy plays an important role. In fact, the entropy-area relation can be modified due to loop quantum gravity or other reasons. With the modified entropy-area relation, we propose the so-called 'entropy-corrected holographic dark energy' (ECHDE) in the present work. We consider many aspects of ECHDE and find some interesting results. In addition, we briefly consider the so-called 'entropy-corrected agegraphic dark energy' (ECADE). (geophysics, astronomy, and astrophysics)
Entropy-Corrected Holographic Dark Energy
Wei, Hao
2009-10-01
The holographic dark energy (HDE) is now an interesting candidate of dark energy, which has been studied extensively in the literature. In the derivation of HDE, the black hole entropy plays an important role. In fact, the entropy-area relation can be modified due to loop quantum gravity or other reasons. With the modified entropy-area relation, we propose the so-called “entropy-corrected holographic dark energy" (ECHDE) in the present work. We consider many aspects of ECHDE and find some interesting results. In addition, we briefly consider the so-called “entropy-corrected agegraphic dark energy" (ECADE).
Original and entropy-corrected versions of the holographic and new agegraphic f(T)-gravity models
Karami, K
2013-01-01
In the present work we obtain the different $f(T)$-gravity models corresponding to the original and entropy-corrected versions of the holographic and new agegraphic dark energy models. We conclude that the equation of state parameter of the holographic and new agegraphic $f(T)$-gravity models always crosses the phantom-divide line. Whereas for the entropy-corrected models, crossing the phantom-divide line depends on the constant parameters of the models.
Entropy In The Present And Early Universe: New Small Parameters And Dark Energy Problem
Alexander Shalyt-Margolin
2009-01-01
It is demonstrated that entropy and its density play a significant role in solving the problem of the vacuum energy density (cosmolog- ical constant) of the Universe and hence the dark energy problem. Taking this in mind, two most popular models for dark energy - Holo- graphic Dark Energy Model and Agegraphic Dark Energy Model - are analyzed. It is shown that the fundamental quantities in the first of these models may be expressed in terms of a new small dimensionless par...
Holographic and new agegraphic f(T)-gravity models with power-law entropy correction
Karami, K
2013-01-01
Using a correspondence between the f(T)-gravity with the power-law entropy corrected versions of the holographic and new agegraphic dark energy models, we reconstruct the holographic and new agegraphic f(T)-gravity models with power-law entropy correction. We also obtain the equation of state parameters of the selected models due to torsion contribution. Our results show that the equation of state parameters can accommodate the transition from the quintessence state to the phantom regime at recent stage.
Power-law entropy corrected holographic and new agegraphic f(R)-gravity models
Karami, K.; Khaledian, M. S.
2011-01-01
Motivated by the recent works of us [1], we establish a correspondence between f(R)-gravity with the power-law entropy corrected holographic dark energy (PLECHDE) and new agegraphic dark energy (PLECNADE) models. We reconstruct corresponding f(R)-gravities and obtain the equation of state parameters. We show that the selected f(R)-gravity models can accommodate the transition from the quintessence state to the phantom regime as indicated by the recent observations.
Chakraborty, Shuvendu; Jamil, Mubasher; Myrzakulov, Ratbay
2011-01-01
In this work, we have calculated the deceleration parameter, statefinder parameters and EoS parameters for different dark energy models with variable G correction in homogeneous, isotropic and non-flat universe for Kaluza-Klein Cosmology. The statefinder parameters have been obtained in terms of some observable parameters like dimensionless density parameter, EoS parameter and Hubble parameter for holographic dark energy, new agegraphic dark energy and generalized Chaplygin gas models.
Chakraborty, Shuvendu; Debnath, Ujjal; Jamil, Mubasher; Myrzakulov, Ratbay
2012-07-01
In this work, we have calculated the deceleration parameter, statefinder parameters and EoS parameters for different dark energy models with variable G correction in homogeneous, isotropic and non-flat universe for Kaluza-Klein Cosmology. The statefinder parameters have been obtained in terms of some observable parameters like dimensionless density parameter, EoS parameter and Hubble parameter for holographic dark energy, new agegraphic dark energy and generalized Chaplygin gas models.
Debnath, Ujjal
2015-12-01
In this work, we have studied accretion of the dark matter and dark energy onto of (n+2)-dimensional Schwarzschild black hole and Morris-Thorne wormhole. The mass and the rate of change of mass for (n+2)-dimensional Schwarzschild black hole and Morris-Thorne wormhole have been found. We have assumed some candidates of dark energy like holographic dark energy, new agegraphic dark energy, quintessence, tachyon, DBI-essence, etc. The black hole mass and the wormhole mass have been calculated in term of redshift when dark matter and above types of dark energies accrete onto them separately. We have shown that the black hole mass increases and wormhole mass decreases for holographic dark energy, new agegraphic dark energy, quintessence, tachyon accretion and the slope of increasing/decreasing of mass sensitively depends on the dimension. But for DBI-essence accretion, the black hole mass first increases and then decreases and the wormhole mass first decreases and then increases and the slope of increasing/decreasing of mass not sensitively depends on the dimension.
Caldwell, Robert
2009-01-01
"Observations continue to indicate that the Universe is dominated by invisible components - dark matter and dark energy. Shedding light on this cosmic darkness is a priority for astronomers and physicists" (3 pages)
Dark group: dark energy and dark matter
We study the possibility that a dark group, a gauge group with particles interacting with the standard model particles only via gravity, is responsible for containing the dark energy and dark matter required by present day observations. We show that it is indeed possible and we determine the constrains for the dark group. The non-perturbative effects generated by a strong gauge coupling constant can de determined and a inverse power law scalar potential IPL for the dark meson fields is generated parameterizing the dark energy. On the other hand it is the massive particles, e.g., dark baryons, of the dark gauge group that give the corresponding dark matter. The mass of the dark particles is of the order of the condensation scale Λc and the temperature is smaller then the photon's temperature. The dark matter is of the warm matter type. The only parameters of the model are the number of particles of the dark group. The allowed values of the different parameters are severely restricted. The dark group energy density at Λc must be ΩDGc≤0.17 and the evolution and acceptable values of dark matter and dark energy leads to a constrain of Λc and the IPL parameter n giving Λc=O(1-103) eV and 0.28≤n≤1.04
Olive, Keith A.
2010-01-01
A brief overview of our current understanding of abundance and properties of dark energy and dark matter is presented. A more focused discussion of supersymmetric dark matter follows. Included is a frequentist approach to the supersymmetric parameter space and consequences for the direct detection of dark matter.
Dark Group: Dark Energy and Dark Matter
de la Macorra, Axel
2002-01-01
We study the possibility that a dark group, a gauge group with particles interacting with the standard model particles only via gravity, is responsible for containing the dark energy and dark matter required by present day observations. We show that it is indeed possible and we determine the constrains for the dark group. The non-perturbative effects generated by a strong gauge coupling constant can de determined and a inverse power law scalar potential IPL for the dark meson fields is genera...
Comparing holographic dark energy models with statefinder
We apply the statefinder diagnostic to the holographic dark energy models, including the original holographic dark energy (HDE) model, the new holographic dark energy model, the new agegraphic dark energy (NADE) model, and the Ricci dark energy model. In the low-redshift region the holographic dark energy models are degenerate with each other and with the ΛCDM model in the H(z) and q(z) evolutions. In particular, the HDE model is highly degenerate with the ΛCDM model, and in the HDE model the cases with different parameter values are also in strong degeneracy. Since the observational data are mainly within the low-redshift region, it is very important to break this lowredshift degeneracy in the H(z) and q(z) diagnostics by using some quantities with higher order derivatives of the scale factor. It is shown that the statefinder diagnostic r(z) is very useful in breaking the low-redshift degeneracies. By employing the statefinder diagnostic the holographic dark energy models can be differentiated efficiently in the low-redshift region. The degeneracy between the holographic dark energy models and the ΛCDM model can also be broken by this method. Especially for the HDE model, all the previous strong degeneracies appearing in the H(z) and q(z) diagnostics are broken effectively. But for the NADE model, the degeneracy between the cases with different parameter values cannot be broken, even though the statefinder diagnostic is used. A direct comparison of the holographic dark energy models in the r-s plane is also made, in which the separations between the models (including the ΛCDM model) can be directly measured in the light of the current values {r0, s0} of the models. (orig.)
Comelli, D.; Pietroni, M.; Riotto, A.
2003-01-01
It is a puzzle why the densities of dark matter and dark energy are nearly equal today when they scale so differently during the expansion of the universe. This conundrum may be solved if there is a coupling between the two dark sectors. In this paper we assume that dark matter is made of cold relics with masses depending exponentially on the scalar field associated to dark energy. Since the dynamics of the system is dominated by an attractor solution, the dark matter particle mass is forced ...
Power-Law Entropy Corrected Holographic Dark Energy
Sheykhi, Ahmad
2010-01-01
Among various scenarios to explain the acceleration of the universe expansion, the holographic dark energy (HDE) model has got a lot of enthusiasm recently. In the derivation of holographic energy density, the area relation of the black hole entropy plays a crucial role. Indeed, the power-law corrections to entropy appear in dealing with the entanglement of quantum fields in and out the horizon. Inspired by the power-law corrected entropy, we propose the so-called "power-law entropy-corrected holographic dark energy" (PLECHDE) in this Letter. We investigate the cosmological implications of this model and calculate some relevant cosmological parameters and their evolution. We also briefly study the so-called "power-law entropy-corrected agegraphic dark energy" (PLECADE).
Power-Law entropy corrected holographic dark energy model
Sheykhi, Ahmad; Jamil, Mubasher
2011-10-01
Among various scenarios to explain the acceleration of the universe expansion, the holographic dark energy (HDE) model has got a lot of enthusiasm recently. In the derivation of holographic energy density, the area relation of the black hole entropy plays a crucial role. Indeed, the power-law corrections to entropy appear in dealing with the entanglement of quantum fields in and out the horizon. Inspired by the power-law corrected entropy, we propose the so-called "power-law entropy-corrected holographic dark energy" (PLECHDE) in this Letter. We investigate the cosmological implications of this model and calculate some relevant cosmological parameters and their evolution. We also briefly study the so-called "power-law entropy-corrected agegraphic dark energy" (PLECADE).
Diagnosing holographic dark energy models with statefinder hierarchy
We apply a series of null diagnostics based on the statefinder hierarchy to diagnose different holographic dark energy models including the original holographic dark energy, the new holographic dark energy, the new agegraphic dark energy, and the Ricci dark energy models. We plot the curves of statefinders S3(1) and S4(1) versus redshift z and the evolutionary trajectories of {S3(1), element of } and {S4(1), element of } for these models, where is the fractional growth parameter. Combining the evolution curves with the current values of S3(1), S4(1), and element of, we find that the statefinder S4(1) performs better than S3(1) for diagnosing the holographic dark energy models. In addition, the conjunction of the statefinder hierarchy and the fractional growth parameter is proven to be a useful method to diagnose the holographic dark energy models, especially for breaking the degeneracy of the newagegraphic dark energy model with different parameter values. (orig.)
Dark Energy Models and Cosmic Acceleration with Anisotropic Universe in f(T) Gravity
Sharif, M.; Sehrish, Azeem
2014-04-01
This paper is devoted to studing the accelerated expansion of the universe in context of f(T) theory of gravity. For this purpose, we construct different f(T) models and investigate their cosmological behavior through equation of state parameter by using holographic, new agegraphic and their power-law entropy corrected dark energy models. We discuss the graphical behavior of this parameter versus redshift for particular values of constant parameters in Bianchi type I universe model. It is shown that the universe lies in different forms of dark energy, namely quintessence, phantom, and quintom corresponding to the chosen scale factors, which depend upon the constant parameters of the models.
Dark Energy Models and Cosmic Acceleration with Anisotropic Universe in f(T) Gravity
This paper is devoted to studing the accelerated expansion of the universe in context of f(T) theory of gravity. For this purpose, we construct different f(T) models and investigate their cosmological behavior through equation of state parameter by using holographic, new agegraphic and their power-law entropy corrected dark energy models. We discuss the graphical behavior of this parameter versus redshift for particular values of constant parameters in Bianchi type I universe model. It is shown that the universe lies in different forms of dark energy, namely quintessence, phantom, and quintom corresponding to the chosen scale factors, which depend upon the constant parameters of the models
Durrer, Ruth
2007-01-01
Observations provide increasingly strong evidence that the universe is accelerating. This revolutionary advance in cosmological observations confronts theoretical cosmology with a tremendous challenge, which it has so far failed to meet. Explanations of cosmic acceleration within the framework of general relativity are plagued by difficulties. General relativistic models are nearly all based on a dark energy field with fine-tuned, unnatural properties. There is a great variety of models, but all share one feature in common -- an inability to account for the gravitational properties of the vacuum energy. Speculative ideas from string theory may hold some promise, but it is fair to say that no convincing model has yet been proposed. An alternative to dark energy is that gravity itself may behave differently from general relativity on the largest scales, in such a way as to produce acceleration. The alternative approach of modified gravity (or dark gravity) provides a new angle on the problem, but also faces ser...
Entropy In The Present And Early Universe, New Small Parameters And Dark Energy Problem
Shalyt-Margolin, A E
2009-01-01
It is demonstrated that entropy and its density play a significant role in solving the problem of the vacuum energy density (cosmological constant) of the Universe and hence the dark energy problem. Taking this in mind, two most popular models for dark energy - Holographic Dark Energy Model and Agegraphic Dark Energy Model - are analyzed. It is shown that the fundamental quantities in the first of these models may be expressed in terms of a new small dimensionless parameter. It is revealed that this parameter is naturally occurring in High Energy Gravitational Thermodynamics and Gravitational Holography (UV-limit). On this basis the possibility of a new approach to the problem of Quantum Gravity is discussed. Besides, the results obtained on the uncertainty relation of the pair "cosmological constant - volume of space-time", where the cosmological constant is a dynamic quantity, are reconsidered and generalized up to the Generalized Uncertainty Relation
Entropy in the Present and Early Universe: New Small Parameters and Dark Energy Problem
Alexander Shalyt-Margolin
2010-04-01
Full Text Available It is demonstrated that entropy and its density play a significant role in solving the problem of the vacuum energy density (cosmological constant of the Universe and hence the dark energy problem. Taking this in mind, two most popular models for dark energy—Holographic Dark Energy Model and Agegraphic Dark Energy Model—are analysed. It is shown that the fundamental quantities in the first of these models may be expressed in terms of a new small dimensionless parameter that is naturally occurring in High Energy Gravitational Thermodynamics and Gravitational Holography (UV-limit. On this basis, the possibility of a new approach to the problem of Quantum Gravity is discussed. Besides, the results obtained on the uncertainty relation of the pair “cosmological constant–volume of space-time”, where the cosmological constant is a dynamic quantity, are reconsidered and generalized up to the Generalized Uncertainty Relation.
Cosmology: Dark matter and dark energy
Caldwell, Robert; Kamionkowski, Marc
2009-01-01
Observations continue to indicate that the Universe is dominated by invisible components — dark matter and dark energy. Shedding light on this cosmic darkness is a priority for astronomers and physicists.
Wei, Hao
2012-01-01
In the present work, we reconsider the idea of holographic dark energy. One of its key points is the formation of the black hole. And then, we propose the so-called "pilgrim dark energy" based on the speculation that the repulsive force contributed by the phantom-like dark energy ($w
The dark universe dark matter and dark energy
CERN. Geneva
2008-01-01
According to the standard cosmological model, 95% of the present mass density of the universe is dark: roughly 70% of the total in the form of dark energy and 25% in the form of dark matter. In a series of four lectures, I will begin by presenting a brief review of cosmology, and then I will review the observational evidence for dark matter and dark energy. I will discuss some of the proposals for dark matter and dark energy, and connect them to high-energy physics. I will also present an overview of an observational program to quantify the properties of dark energy.
Scott, Douglas; Frolop, Ali
2007-01-01
It is now well accepted that both Dark Matter and Dark Energy are required in any successful cosmological model. Although there is ample evidence that both Dark components are necessary, the conventional theories make no prediction for the contributions from each of them. Moreover, there is usually no intrinsic relationship between the two components, and no understanding of the nature of the mysteries of the Dark Sector. Here we suggest that if the Dark Side is so seductive then we should no...
Zhang, Xinmin
2004-01-01
In this paper I discuss some of the phenomenologies of models of the dark energy interacting with the ordinary matter. After a very brief review about the current constraint on the equation of the state of the dark energy from the SN and a new scenario of dark energy {\\it the Quintom}, I present models of Quintessential Baryo(Lepto)genesis, Quintessino dark matter and mass varying neutrinos in details.
Chamseddine, Ali H
2016-01-01
We modify Einstein General Relativity by adding non-dynamical scalar fields to account simultaneously for both dark matter and dark energy. The dark energy in this case can be distributed in-homogeneously even within horizon scales. Its inhomogeneities can contribute to the late time integrated Sachs-Wolfe effect, possibly removing some of the low multipole anomalies in the temperature fluctuations of the CMB spectrum. The presence of the inhomogeneous dark matter also influences structure formation in the universe.
Chamseddine, Ali H.; Mukhanov, Viatcheslav
2016-02-01
We modify Einstein General Relativity by adding non-dynamical scalar fields to account simultaneously for both dark matter and dark energy. The dark energy in this case can be distributed in-homogeneously even within horizon scales. Its inhomogeneities can contribute to the late time integrated Sachs-Wolfe effect, possibly removing some of the low multipole anomalies in the temperature fluctuations of the CMB spectrum. The presence of the inhomogeneous dark matter also influences structure formation in the universe.
Chamseddine, Ali H.; Mukhanov, Viatcheslav(Theoretical Physics, Ludwig Maxmillians University, Theresienstr. 37, 80333, Munich, Germany)
2016-01-01
We modify Einstein General Relativity by adding non-dynamical scalar fields to account simultaneously for both dark matter and dark energy. The dark energy in this case can be distributed in-homogeneously even within horizon scales. Its inhomogeneities can contribute to the late time integrated Sachs-Wolfe effect, possibly removing some of the low multipole anomalies in the temperature fluctuations of the CMB spectrum. The presence of the inhomogeneous dark matter also influences structure fo...
Kunz, Martin; Amendola, Luca; Sapone, Domenico
2008-01-01
We discuss the phenomenology of the dark energy in first order perturbation theory, demonstrating that the dark energy cannot be fully constrained unless the dark matter is found, and that there are two functions that characterise the observational properties of the dark sector for cosmological probes. We argue that measuring these two functions should be an important goal for observational cosmology in the next decades.
Weak lensing: Dark Matter, Dark Energy and Dark Gravity
Heavens, Alan
2009-01-01
In this non-specialist review I look at how weak lensing can provide information on the dark sector of the Universe. The review concentrates on what can be learned about Dark Matter, Dark Energy and Dark Gravity, and why. On Dark Matter, results on the confrontation of theoretical profiles with observation are reviewed, and measurements of neutrino masses discussed. On Dark Energy, the interest is whether this could be Einstein's cosmological constant, and prospects for high-precision studies...
Analysis of dark matter and dark energy
Yongquan, Han
2016-05-01
As the law of unity of opposites of the Philosophy tells us, the bright material exists, the dark matter also exists. Dark matter and dark energy should allow the law of unity of opposites. The Common attributes of the matter is radiation, then common attributes of dark matter must be absorb radiation. Only the rotation speed is lower than the speed of light radiation, can the matter radiate, since the speed of the matter is lower than the speed of light, so the matter is radiate; The rotate speed of the dark matter is faster than the light , so the dark matter doesn't radiate, it absorbs radiation. The energy that the dark matter absorb radiation produced (affect the measurement of time and space distribution of variations) is dark energy, so the dark matter produce dark energy only when it absorbs radiation. Dark matter does not radiate, two dark matters does not exist inevitably forces, and also no dark energy. Called the space-time ripples, the gravitational wave is bent radiation, radiation particles should be graviton, graviton is mainly refers to the radiation particles whose wavelength is small. Dark matter, dark energy also confirms the existence of the law of symmetry.
Can Dark Matter Decay in Dark Energy?
Pereira, S. H.; Jesus, J. F.
2008-01-01
We analyze the interaction between Dark Energy and Dark Matter from a thermodynamical perspective. By assuming they have different temperatures, we study the possibility of occurring a decay from Dark Matter into Dark Energy, characterized by a negative parameter $Q$. We find that, if at least one of the fluids has non vanishing chemical potential, for instance $\\mu_x0$, the decay is possible, where $\\mu_x$ and $\\mu_{dm}$ are the chemical potentials of Dark Energy and Dark Matter, respectivel...
Holographic dark energy reexamined
We have reexamined the holographic dark energy model by considering the spatial curvature. We have refined the model parameter and observed that the holographic dark energy model does not behave as phantom model. Comparing the holographic dark energy model to the supernova observation alone, we found that the closed Universe is favored. Combining with the Wilkinson microwave anisotropy probe (WMAP) data, we obtained the reasonable value of the spatial curvature of our Universe
Liang, Shi-Dong; Harko, Tiberiu
2015-01-01
Based on the analogy with superconductor physics we consider a scalar-vector-tensor gravitational model, in which the dark energy action is described by a gauge invariant electromagnetic type functional. By assuming that the ground state of the dark energy is in a form of a condensate with the U(1) symmetry spontaneously broken, the gauge invariant electromagnetic dark energy can be described in terms of the combination of a vector and of a scalar field (corresponding to the Goldstone boson),...
Bilic, Neven
2008-01-01
Thermodynamic properties of dark energy are discussed assuming that dark energy is described in terms of a selfinteracting complex scalar. We first show that, under certain assumptions, selfinteracting complex scalar field theories are equivalent to purely kinetic k-essence models. Then we analyze the themal properties of k-essence and in particular we show that dark-energy in the phantom regime does not necessarily yield negative entropy.
Introduction to Dark Energy and Dark Matter
Frampton, Paul H.
2005-01-01
In an introductory manner, the nature of dark energy is addressed, how it is observed and what further tests are needed to reconstruct its properties. Several theoretical approaches to dark energy will be discussed. Finally, the dark matter, especially WIMPs, is introduced.
Weak lensing: Dark Matter, Dark Energy and Dark Gravity
Heavens, Alan
2009-01-01
In this non-specialist review I look at how weak lensing can provide information on the dark sector of the Universe. The review concentrates on what can be learned about Dark Matter, Dark Energy and Dark Gravity, and why. On Dark Matter, results on the confrontation of theoretical profiles with observation are reviewed, and measurements of neutrino masses discussed. On Dark Energy, the interest is whether this could be Einstein's cosmological constant, and prospects for high-precision studies of the equation of state are considered. On Dark Gravity, we consider the exciting prospects for future weak lensing surveys to distinguish General Relativity from extra-dimensional or other gravity theories.
Weak lensing, dark matter and dark energy
Huterer, Dragan
2010-01-01
Weak gravitational lensing is rapidly becoming one of the principal probes of dark matter and dark energy in the universe. In this brief review we outline how weak lensing helps determine the structure of dark matter halos, measure the expansion rate of the universe, and distinguish between modified gravity and dark energy explanations for the acceleration of the universe. We also discuss requirements on the control of systematic errors so that the systematics do not appreciably degrade the p...
Unification of Dark Energy and Dark Matter
Takahashi, Fuminobu; Yanagida, T. T.
2005-01-01
We propose a scenario in which dark energy and dark matter are described in a unified manner. The ultralight pseudo-Nambu-Goldstone (pNG) boson, A, naturally explains the observed magnitude of dark energy, while the bosonic supersymmetry partner of the pNG boson, B, can be a dominant component of dark matter. The decay of B into a pair of electron and positron may explain the 511 keV gamma ray from the Galactic Center.
Extended Holographic dark energy
Gong, Yungui
2004-01-01
The idea of relating the infrared and ultraviolet cutoffs is applied to Brans-Dicke theory of gravitation. We find that extended holographic dark energy from the Hubble scale or the particle horizon as the infrared cutoff will not give accelerating expansion. The dynamical cosmological constant with the event horizon as the infrared cutoff is a viable dark energy model.
Though the concept of a dark energy driven accelerating universe was introduced by the author in 1997, to date dark energy itself, as described below has remained a paradigm. We quickly review these and find a second cosmological signature of the 1997 model, consistent with latest observations. (author)
Song, Yong-Seon; Knox, Lloyd
2003-01-01
We study how parameter error forecasts for tomographic cosmic shear observations are affected by sky coverage, density of source galaxies, inclusion of CMB experiments, simultaneou fitting of non--dark energy parameters, and the parametrization of the history of the dark energy equation-of-state parameter w(z). We find tomographic shear-shear power spectra on large angular scales (l
Liang, Shi-Dong
2015-01-01
Based on the analogy with superconductor physics we consider a scalar-vector-tensor gravitational model, in which the dark energy action is described by a gauge invariant electromagnetic type functional. By assuming that the ground state of the dark energy is in a form of a condensate with the U(1) symmetry spontaneously broken, the gauge invariant electromagnetic dark energy can be described in terms of the combination of a vector and of a scalar field (corresponding to the Goldstone boson), respectively. The gravitational field equations are obtained by also assuming the possibility of a non-minimal coupling between the cosmological mass current and the superconducting dark energy. The cosmological implications of the dark energy model are investigated for a Friedmann-Robertson-Walker homogeneous and isotropic geometry for two particular choices of the electromagnetic type potential, corresponding to a pure electric type field, and to a pure magnetic field, respectively. The time evolution of the scale fact...
Sapone, Domenico
2009-01-01
Dark energy perturbations are normally either neglected or else included in a purely numerical way, obscuring their dependence on underlying parameters like the equation of state or the sound speed. However, while many different explanations for the dark energy can have the same equation of state, they usually differ in their perturbations so that these provide a fingerprint for distinguishing between different models with the same equation of state. In this paper we derive simple yet accurate approximations that are able to characterize a specific class of models (encompassing most scalar field models) which is often generically called "dark energy". We then use the approximate solutions to look at the impact of the dark energy perturbations on the dark matter power spectrum and on the integrated Sachs-Wolfe effect in the cosmic microwave background radiation.
Gibson, Carl H
2011-01-01
Is the accelerating expansion of the Universe true, inferred through observations of distant supernovae, and is the implied existence of an enormous amount of anti-gravitational dark energy material driving the accelerating expansion of the universe also true? To be physically useful these propositions must be falsifiable; that is, subject to observational tests that could render them false, and both fail when viscous, diffusive, astro-biological and turbulence effects are included in the interpretation of observations. A more plausible explanation of negative stresses producing the big bang is turbulence at Planck temperatures. Inflation results from gluon viscous stresses at the strong force transition. Anti-gravitational (dark energy) turbulence stresses are powerful but only temporary. No permanent dark energy is needed. At the plasma-gas transition, viscous stresses cause fragmentation of plasma proto-galaxies into dark matter clumps of primordial gas planets, each of which falsifies dark-energy cold-dar...
Dynamical Mutation of Dark Energy
Abramo, L. R.; Batista, R. C.; Liberato, L.; Rosenfeld, R.
2007-01-01
We discuss the intriguing possibility that dark energy may change its equation of state in situations where large dark energy fluctuations are present. We show indications of this dynamical mutation in some generic models of dark energy.
Cold Dark Matter from Dark Energy
Davidson, Aharon; Karasik, David; Lederer, Yoav
2001-01-01
Dark energy/matter unification is first demonstrated within the framework of a simplified model. Geodetic evolution of a cosmological constant dominated bubble Universe, free of genuine matter, is translated into a specific FRW cosmology whose effectively induced dark component highly resembles the cold dark matter ansatz. The realistic extension constitutes a dark soliton which bridges past (radiation and/or matter dominated) and future (cosmological constant dominated) Einstein regimes; its...
Dark matter superfluid and DBI dark energy
Cai, Rong-Gen
2016-01-01
It was shown recently that, without jeopardizing the success of the $\\Lambda$CDM model on cosmic scales, the MOdified Newtonian Dynamics (MOND) can be derived as an emergent phenomenon when axion-like dark matter particles condense into superfluid on galactic scales. We propose in this letter a Dirac-Born-Infeld (DBI) dark energy conformally coupled to local matter components to solve both galactic and cosmic coincidences that the MOND critical acceleration coincides with present Hubble scale and the matter energy density coincides with dark energy density today. The cosmological evolution of DBI dark energy behaves as a freezing Chaplygin gas and approaches to a cosmological constant in the asymptotic future.
Interactions in Dark Energy Models
Zhang, Yi; Hui LI; Gong, Yungui; Zhu, Zong-Hong
2011-01-01
We perform a full dynamical analysis by considering the interactions between dark energy and radiation, and dark energy and dark matter. We find that the interaction helps alleviate the coincidence problem for the quintessence model.
Science rarely overturns existing paradigms, so why was the astonishing announcement that a mysterious ''dark energy'' was accelerating the expansion of the universe so quickly accepted by cosmologists?
Couplings between holographic dark energy and dark matter
Ma, Yin-Zhe; Gong, Yan; Chen, Xuelei
2009-01-01
We consider the interaction between dark matter and dark energy in the framework of holographic dark energy, and propose a natural and physically plausible form of interaction, in which the interacting term is proportional to the product of the powers of the dark matter and dark energy densities. We investigate the cosmic evolution in such models. The impact of the coupling on the dark matter and dark energy components may be asymmetric. While the dark energy decouples from the dark matter at...
Song, Y S; Song, Yong-Seon; Knox, Lloyd
2003-01-01
We study how parameter error forecasts for tomographic cosmic shear observations are affected by sky coverage, density of source galaxies, inclusion of CMB experiments, simultaneou fitting of non--dark energy parameters, and the parametrization of the history of the dark energy equation-of-state parameter w(z). We find tomographic shear-shear power spectra on large angular scales (l0.04.
Conformal Gravity: Dark Matter and Dark Energy
Nesbet, Robert K
2012-01-01
This short review examines recent progress in understanding dark matter, dark energy, and galactic halos using theory that departs minimally from standard particle physics and cosmology. Postulated strict conformal symmetry (local Weyl scaling covariance) for all elementary massless fields retains standard theory for fermions and gauge bosons but modifies Einstein-Hilbert general relativity and the Higgs scalar field model, introducing no new physical fields. Subgalactic phenomenology is retained. Without invoking dark matter, conformal gravity and a conformal Higgs model fit empirical data on galactic rotational velocities, galactic halos, and Hubble expansion including dark energy.
Conformal Gravity: Dark Matter and Dark Energy
Robert K. Nesbet
2013-01-01
Full Text Available This short review examines recent progress in understanding dark matter, dark energy, and galactic halos using theory that departs minimally from standard particle physics and cosmology. Strict conformal symmetry (local Weyl scaling covariance, postulated for all elementary massless fields, retains standard fermion and gauge boson theory but modifies Einstein–Hilbert general relativity and the Higgs scalar field model, with no new physical fields. Subgalactic phenomenology is retained. Without invoking dark matter, conformal gravity and a conformal Higgs model fit empirical data on galactic rotational velocities, galactic halos, and Hubble expansion including dark energy.
Coupling dark energy to dark matter perturbations
Marra, Valerio
2015-01-01
This Letter proposes that dark energy in the form of a scalar field could effectively couple to dark matter perturbations. The idea is that dark matter particles could annihilate/interact inside dense clumps and transfer energy to the scalar field, which would then enter an accelerated regime. This hypothesis is interesting as it provides a natural trigger for the onset of the acceleration of the universe, since dark energy starts driving the expansion of the universe when matter perturbations become sufficiently dense. Here we study a possible realization of this general idea by coupling dark energy to dark matter via the linear growth function of matter perturbations. The numerical results show that it is indeed possible to obtain a viable cosmology with the expected series of radiation, matter and dark-energy dominated eras. Moreover, the current density of dark energy is given by the value of the coupling parameters rather than by very special initial conditions for the scalar field. In other words, this ...
The gravastar picture is an alternative model to the concept of a black hole, where there is an effective phase transition at or near where the event horizon is expected to form, and the interior is replaced by a de Sitter condensate. In this work a generalization of the gravastar picture is explored by considering matching of an interior solution governed by the dark energy equation of state, ω ≡ p/ρ < -1/3, to an exterior Schwarzschild vacuum solution at a junction interface. The motivation for implementing this generalization arises from the fact that recent observations have confirmed an accelerated cosmic expansion, for which dark energy is a possible candidate. Several relativistic dark energy stellar configurations are analysed by imposing specific choices for the mass function. The first case considered is that of a constant energy density, and the second choice that of a monotonic decreasing energy density in the star's interior. The dynamical stability of the transition layer of these dark energy stars to linearized spherically symmetric radial perturbations about static equilibrium solutions is also explored. It is found that large stability regions exist that are sufficiently close to where the event horizon is expected to form, so that it would be difficult to distinguish the exterior geometry of the dark energy stars, analysed in this work, from an astrophysical black hole
Harney M.
2008-10-01
Full Text Available The proposal for dark energy based on Type Ia Supernovae redshift is examined. It is found that the linear and non-Linear portions in the Hubble Redshift are easily explained by the use of the Hubble Sphere model, where two interacting Hubble spheres sharing a common mass-energy density result in a decrease in energy as a function of distance from the object being viewed. Interpreting the non-linear portion of the redshift curve as a decrease in interacting volume between neighboring Hubble Spheres removes the need for a dark energy.
Comparison of dark energy models:A perspective from the latest observational data
无
2010-01-01
We compare some popular dark energy models under the assumption of a flat universe by using the latest observational data including the type Ia supernovae Constitution compilation,the baryon acoustic oscillation measurement from the Sloan Digital Sky Survey,the cosmic microwave background measurement given by the seven-year Wilkinson Microwave Anisotropy Probe observations and the determination of H0 from the Hubble Space Telescope.Model comparison statistics such as the Bayesian and Akaike information criteria are applied to assess the worth of the models.These statistics favor models that give a good fit with fewer parameters.Based on this analysis,we find that the simplest cosmological constant model that has only one free parameter is still preferred by the current data.For other dynamical dark energy models,we find that some of them,such as the αdark energy,constant w,generalized Chaplygin gas,Chevalliear-Polarski-Linder parametrization,and holographic dark energy models,can provide good fits to the current data,and three of them,namely,the Ricci dark energy,agegraphic dark energy,and Dvali-Gabadadze-Porrati models,are clearly disfavored by the data.
Dark Energy, Dark Matter and Gravity
Bertolami, Orfeu
2006-01-01
We discuss the motivation for high accuracy relativistic gravitational experiments in the Solar System and complementary cosmological tests. We focus our attention on the issue of distinguishing a generic scalar-theory of gravity as the underlying physical theory from the usual general relativistic picture, where one expects the presence of fundamental scalar fields associated, for instance, to inflation, dark matter and dark energy.
Coupling dark energy to dark matter inhomogeneities
Marra, Valerio
2016-09-01
We propose that dark energy in the form of a scalar field could effectively couple to dark matter inhomogeneities. Through this coupling energy could be transferred to/from the scalar field, which could possibly enter an accelerated regime. Though phenomenological, this scenario is interesting as it provides a natural trigger for the onset of the acceleration of the universe, since dark energy starts driving the expansion of the universe when matter inhomogeneities become sufficiently strong. Here we study a possible realization of this idea by coupling dark energy to dark matter via the linear growth function of matter perturbations. The numerical results show that it is indeed possible to obtain a viable cosmology with the expected series of radiation, matter and dark-energy dominated eras. In particular, the current density of dark energy is given by the value of the coupling parameters rather than by very special initial conditions for the scalar field. In other words, this model-unlike standard models of cosmic late acceleration-does not suffer from the so-called "coincidence problem" and its related fine tuning of initial conditions.
Coupled Dark Energy field variation
García-Zúñiga, Roberto Carlos; Izquierdo, Germán
2014-01-01
The variation of the dark energy field is found under the assumption that the dark energy is parametric and interacts with the cold dark matter. Considering that the variation of the field could not exceed the Planck mass, we obtain bounds on the coupling and adiabatic coefficients. Three parameterizations of the adiabatic coefficients are considered and two coupling terms where the energy flows from dark energy to dark matter, or the other way around.
Interactions between dark energy and dark matter
Baldi, Marco
2009-03-20
We have investigated interacting dark energy cosmologies both concerning their impact on the background evolution of the Universe and their effects on cosmological structure growth. For the former aspect, we have developed a cosmological model featuring a matter species consisting of particles with a mass that increases with time. In such model the appearance of a Growing Matter component, which is negligible in early cosmology, dramatically slows down the evolution of the dark energy scalar field at a redshift around six, and triggers the onset of the accelerated expansion of the Universe, therefore addressing the Coincidence Problem. We propose to identify this Growing Matter component with cosmic neutrinos, in which case the present dark energy density can be related to the measured average mass of neutrinos. For the latter aspect, we have implemented the new physical features of interacting dark energy models into the cosmological N-body code GADGET-2, and we present the results of a series of high-resolution simulations for a simple realization of dark energy interaction. As a consequence of the new physics, cold dark matter and baryon distributions evolve differently both in the linear and in the non-linear regime of structure formation. Already on large scales, a linear bias develops between these two components, which is further enhanced by the non-linear evolution. We also find, in contrast with previous work, that the density profiles of cold dark matter halos are less concentrated in coupled dark energy cosmologies compared with {lambda}{sub CDM}. Also, the baryon fraction in halos in the coupled models is significantly reduced below the universal baryon fraction. These features alleviate tensions between observations and the {lambda}{sub CDM} model on small scales. Our methodology is ideally suited to explore the predictions of coupled dark energy models in the fully non-linear regime, which can provide powerful constraints for the viable parameter
Interactions between dark energy and dark matter
We have investigated interacting dark energy cosmologies both concerning their impact on the background evolution of the Universe and their effects on cosmological structure growth. For the former aspect, we have developed a cosmological model featuring a matter species consisting of particles with a mass that increases with time. In such model the appearance of a Growing Matter component, which is negligible in early cosmology, dramatically slows down the evolution of the dark energy scalar field at a redshift around six, and triggers the onset of the accelerated expansion of the Universe, therefore addressing the Coincidence Problem. We propose to identify this Growing Matter component with cosmic neutrinos, in which case the present dark energy density can be related to the measured average mass of neutrinos. For the latter aspect, we have implemented the new physical features of interacting dark energy models into the cosmological N-body code GADGET-2, and we present the results of a series of high-resolution simulations for a simple realization of dark energy interaction. As a consequence of the new physics, cold dark matter and baryon distributions evolve differently both in the linear and in the non-linear regime of structure formation. Already on large scales, a linear bias develops between these two components, which is further enhanced by the non-linear evolution. We also find, in contrast with previous work, that the density profiles of cold dark matter halos are less concentrated in coupled dark energy cosmologies compared with ΛCDM. Also, the baryon fraction in halos in the coupled models is significantly reduced below the universal baryon fraction. These features alleviate tensions between observations and the ΛCDM model on small scales. Our methodology is ideally suited to explore the predictions of coupled dark energy models in the fully non-linear regime, which can provide powerful constraints for the viable parameter space of such scenarios
Dark Energy Scaling from Dark Matter to Acceleration
Bielefeld, Jannis; Caldwell, Robert R.; Linder, Eric V.
2014-01-01
The dark sector of the Universe need not be completely separable into distinct dark matter and dark energy components. We consider a model of early dark energy in which the dark energy mimics a dark matter component in both evolution and perturbations at early times. Barotropic aether dark energy scales as a fixed fraction, possibly greater than one, of the dark matter density and has vanishing sound speed at early times before undergoing a transition. This gives signatures not only in cosmic...
Scattering of Dark Matter and Dark Energy
Simpson, Fergus
2010-01-01
We demonstrate how the two dominant constituents of the Universe, dark energy and dark matter, could possess a large scattering cross-section without considerably impacting observations. Unlike models involving energy exchange between the two fluids, the background cosmology remains unaltered, leaving fewer observational signatures. Following a brief review of the scattering cross-sections between cosmologically significant particles, we explore the implications of an elastic interaction betw...
Extended holographic dark energy
The idea of relating the infrared and ultraviolet cutoffs is applied to the Brans-Dicke theory of gravitation. We find that the Hubble scale or the particle horizon as the infrared cutoff will not give accelerating expansion. The dynamical cosmological constant with the event horizon as the infrared cutoff is a viable dark energy model
In the Randall-Sundrum scenario, we analyse the dynamics of an AdS5 braneworld when conformal matter fields propagate in five dimensions. We show that conformal fields of weight -4 are associated with stable geometries which describe the dynamics of inhomogeneous dust, generalized dark radiation and homogeneous polytropic dark energy on a spherically symmetric 3-brane embedded in the compact AdS5 orbifold. We discuss aspects of the radion stability conditions and of the localization of gravity in the vicinity of the brane
From the observed late-time acceleration of cosmic expansion arises the quest for the nature of Dark Energy. As has been widely discussed, the cosmic neutrino background naturally qualifies for a connection with the Dark Energy sector and as a result could play a key role for the origin of cosmic acceleration. In this thesis we explore various theoretical aspects and phenomenological consequences arising from non-standard neutrino interactions, which dynamically link the cosmic neutrino background and a slowly-evolving scalar field of the dark sector. In the considered scenario, known as Neutrino Dark Energy, the complex interplay between the neutrinos and the scalar field not only allows to explain cosmic acceleration, but intriguingly, as a distinct signature, also gives rise to dynamical, time-dependent neutrino masses. In a first analysis, we thoroughly investigate an astrophysical high energy neutrino process which is sensitive to neutrino masses. We work out, both semi-analytically and numerically, the generic clear-cut signatures arising from a possible time variation of neutrino masses which we compare to the corresponding results for constant neutrino masses. Finally, we demonstrate that even for the lowest possible neutrino mass scale, it is feasible for the radio telescope LOFAR to reveal a variation of neutrino masses and therefore to probe the nature of Dark Energy within the next decade. A second independent analysis deals with the recently challenged stability of Neutrino Dark Energy against the strong growth of hydrodynamic perturbations, driven by the new scalar force felt between neutrinos. Within the framework of linear cosmological perturbation theory, we derive the equation of motion of the neutrino perturbations in a model-independent way. This equation allows to deduce an analytical stability condition which translates into a comfortable upper bound on the scalar-neutrino coupling which is determined by the ratio of the densities in cold dark
Schrempp, L.
2008-02-15
From the observed late-time acceleration of cosmic expansion arises the quest for the nature of Dark Energy. As has been widely discussed, the cosmic neutrino background naturally qualifies for a connection with the Dark Energy sector and as a result could play a key role for the origin of cosmic acceleration. In this thesis we explore various theoretical aspects and phenomenological consequences arising from non-standard neutrino interactions, which dynamically link the cosmic neutrino background and a slowly-evolving scalar field of the dark sector. In the considered scenario, known as Neutrino Dark Energy, the complex interplay between the neutrinos and the scalar field not only allows to explain cosmic acceleration, but intriguingly, as a distinct signature, also gives rise to dynamical, time-dependent neutrino masses. In a first analysis, we thoroughly investigate an astrophysical high energy neutrino process which is sensitive to neutrino masses. We work out, both semi-analytically and numerically, the generic clear-cut signatures arising from a possible time variation of neutrino masses which we compare to the corresponding results for constant neutrino masses. Finally, we demonstrate that even for the lowest possible neutrino mass scale, it is feasible for the radio telescope LOFAR to reveal a variation of neutrino masses and therefore to probe the nature of Dark Energy within the next decade. A second independent analysis deals with the recently challenged stability of Neutrino Dark Energy against the strong growth of hydrodynamic perturbations, driven by the new scalar force felt between neutrinos. Within the framework of linear cosmological perturbation theory, we derive the equation of motion of the neutrino perturbations in a model-independent way. This equation allows to deduce an analytical stability condition which translates into a comfortable upper bound on the scalar-neutrino coupling which is determined by the ratio of the densities in cold dark
Dark Mass Creation During EWPT Via Dark Energy Interaction
Kisslinger, Leonard S.; Casper, Steven
2013-01-01
We add Dark Matter Dark Energy terms with a quintessence field interacting with a Dark Matter field to a MSSM EW Lagrangian previously used to calculate the magnetic field created during the EWPT. From the expectation value of the quintessence field we estimate the Dark Matter mass for parameters used in previous work on Dark Matter-Dark Energy interactions.
Conformal Gravity: Dark Matter and Dark Energy
Nesbet, Robert K.
2013-01-01
This short review examines recent progress in understanding dark matter, dark energy, and galactic halos using theory that departs minimally from standard particle physics and cosmology. Strict conformal symmetry (local Weyl scaling covariance), postulated for all elementary massless fields, retains standard fermion and gauge boson theory but modifies Einstein–Hilbert general relativity and the Higgs scalar field model, with no new physical fields. Subgalactic phenomenology is retai...
Cosmological Evolution With Interaction Between Dark Energy And Dark Matter
Bolotin, Yu. L.; Kostenko, A.; Lemets, O. A.; Yerokhin, D. A.
2013-01-01
In this review we consider in detail different theoretical topics associated with interaction in the dark sector. We study linear and nonlinear interactions which depend on the dark matter and dark energy densities. We consider a number of different models (including the holographic dark energy and dark energy in a fractal universe) with interacting dark energy (DE) and dark matter (DM), have done a thorough analysis of these models. The main task of this review was not only to give an idea a...
The dark side of cosmology: dark matter and dark energy.
Spergel, David N
2015-03-01
A simple model with only six parameters (the age of the universe, the density of atoms, the density of matter, the amplitude of the initial fluctuations, the scale dependence of this amplitude, and the epoch of first star formation) fits all of our cosmological data . Although simple, this standard model is strange. The model implies that most of the matter in our Galaxy is in the form of "dark matter," a new type of particle not yet detected in the laboratory, and most of the energy in the universe is in the form of "dark energy," energy associated with empty space. Both dark matter and dark energy require extensions to our current understanding of particle physics or point toward a breakdown of general relativity on cosmological scales. PMID:25745164
Dark energy: myths and reality
Lukash, V N
2008-01-01
We discuss the questions related to dark energy in the Universe. We note that in spite of the effect of dark energy, large-scale structure is still being generated in the Universe and this will continue for about ten billion years. We also comment on some statements in the paper ``Dark energy and universal antigravitation'' by A.D. Chernin [4].
Li, Miao; Li, Xiao-Dong; Wang, Shuang; Wang, Yi
2012-01-01
The problem of dark energy is briefly reviewed in both theoretical and observational aspects. In the theoretical aspect, dark energy scenarios are classified into symmetry, anthropic principle, tuning mechanism, modified gravity, quantum cosmology, holographic principle, back-reaction and phenomenological types. In the observational aspect, we introduce cosmic probes, dark energy related projects, observational constraints on theoretical models and model independent reconstructions.
Dark Matter and Dark Energy Explained
Aisenberg, Sol
2006-03-01
The standard model of the universe has many mysteries and defects requiring the use of large fudge factors such as Dark Matter and Dark Energy. We will show that Dark Matter is needed when we try to extend Newton's law of gravity (based upon observations in our solar system) to galactic distances. Dark Matter was introduced to explain the observed flat velocity rotation curves of the outer parts of spiral galaxies, as observed by Vera. Rubin. Much earlier, the (under appreciated) Fritz Zwicky introduced the need for large amounts of missing invisible matter to explain the surprising observed motion of groups of remote galaxies. In our hypothesis, the modification of Newton's laws by the addition of a linear term to the gravitational constant that increases with distance will eliminate the need for dark matter. Our hypothesis is different from the MOND theory of Milgrom, which depends upon acceleration. The Red shift observations by Hubble as a function of distance, and interpreted as ``apparent Doppler effect'' led to the unproven belief that the universe is expanding, and thus to the Big Bang. In turn the apparent acceleration of the expansion required the introduction of Dark Energy. Actually there are three additional components of the red shift that are solely due to gravity and distance and can be larger than the Doppler contribution.
Dark matter superfluid and DBI dark energy
Cai, Rong-Gen; Wang, Shao-Jiang
2016-01-01
It was shown recently that, without jeopardizing the success of the Λ cold dark matter model on cosmic scales, the modified Newtonian dynamics (MOND) can be derived as an emergent phenomenon when axionlike dark matter particles condense into superfluid on the galactic scales. We propose in this paper a Dirac-Born-Infeld (DBI) scalar field conformally coupled to the matter components. To maintain the success of MOND phenomenon of dark matter superfluid on the galactic scales, the fifth force introduced by the DBI scalar should be screened on the galactic scales. It turns out that the screening effect naturally leads to a simple explanation for a longstanding puzzle that the MOND critical acceleration coincides with present Hubble scale. This galactic coincidence problem is solved, provided that the screened DBI scalar also plays the role of dark energy on the cosmic scales.
Padmanabhan, T
2007-01-01
I review the problem of dark energy focusing on the cosmological constant as the candidate and discuss its implications for the nature of gravity. Part 1 briefly overviews the currently popular `concordance cosmology' and summarises the evidence for dark energy. It also provides the observational and theoretical arguments in favour of the cosmological constant as the candidate and emphasises why no other approach really solves the conceptual problems usually attributed to the cosmological constant. Part 2 describes some of the approaches to understand the nature of the cosmological constant and attempts to extract the key ingredients which must be present in any viable solution. I argue that (i)the cosmological constant problem cannot be satisfactorily solved until gravitational action is made invariant under the shift of the matter lagrangian by a constant and (ii) this cannot happen if the metric is the dynamical variable. Hence the cosmological constant problem essentially has to do with our (mis)understan...
Global cosmological parameters are now known to an accuracy totally unexpected ten years ago, and considerable improvements are expected in the next decade both from space missions and ground-based facilities. Although there were some early indications, convincing evidences of the existence of dark energy appeared in the late 90's. This definitely makes the measurement of cosmological parameters more complicated, because the nature of this component of the universe is totally unknown, and present data only constraints the simplest scenarios. We will review here how dark energy existence was established and confirmed, and the current observational constraints we can place. We will also describe the observational approaches expected to provide new cosmological constrains over approximately the next decade
Harney M.; Haranas I. I.
2008-01-01
The proposal for dark energy based on Type Ia Supernovae redshift is examined. It is found that the linear and non-Linear portions in the Hubble Redshift are easily explained by the use of the Hubble Sphere model, where two interacting Hubble spheres sharing a common mass-energy density result in a decrease in energy as a function of distance from the object being viewed. Interpreting the non-linear portion of the redshift curve as a decrease in interacting volume between nei...
Dodelson, S; Abazajian, K; Carlstrom, J; Huterer, D; Jain, B; Kim, A; Kirkby, D; Lee, A; Padmanabhan, N; Rhodes, J; Weinberg, D
2013-01-01
The American Physical Society's Division of Particles and Fields initiated a long-term planning exercise over 2012-13, with the goal of developing the community's long term aspirations. The sub-group "Dark Energy and CMB" prepared a series of papers explaining and highlighting the physics that will be studied with large galaxy surveys and cosmic microwave background experiments. This paper summarizes the findings of the other papers, all of which have been submitted jointly to the arXiv.
Domínguez, Inmaculada; Bravo Guil, Eduardo; Piersanti, Luciano; Straniero, Oscar; Tornambé, Amedeo
2008-01-01
A decade ago the observations of thermonuclear supernovae at high-redhifts showed that the expansion rate of the Universe is accelerating and since then, the evidence for cosmic acceleration has gotten stronger. This acceleration requires that the Universe is dominated by dark energy, an exotic component characterized by its negative pressure. Nowadays all the available astronomical data (i.e. thermonuclear supernovae, cosmic microwave background, barionic acoustic oscillations, large scal...
NASA's Dark Matter and Dark Energy Programs
We present an overview of selected high value scientific results and prospects for future advances from NASA's “Dark” missions, i.e., those covering dark matter (DM) and dark energy (DE). This includes current missions HST, Chandra, Swift, GALEX, Suzaku, Fermi, and future missions JWST and WFIRST. These missions and earlier ones, such as WMAP, have brought about a revolution in our understanding of the fundamental properties of the universe – its age, rate of expansion, deceleration history, and composition (i.e., relative mix of luminous matter, dark matter, and dark energy). The next chapters in this story will be written by JWST and WFIRST. JWST was the highest priority of the 2000 Decadal Survey. It will observe in the near and medium infrared, and revolutionize our understanding of the high redshift universe. WFIRST is the highest ranked large space mission of the 2010 Decadal Survey. It is a NASA observatory designed to perform wide-field imaging and slitless spectroscopic surveys of the NIR sky (0.7 – 2.5μ). WFIRST will: (i) measure the expansion history of the universe, and thereby constrain dark energy, (ii) find Earth-like planets around other stars using microlensing, and (iii) perform surveys that are ∼100 times more sensitive than current NIR surveys
Baldi, Marco
2012-01-01
(Abridged) The growing role played by numerical N-body simulations in cosmological studies as a fundamental connection between theoretical modeling and direct observations has led to impressive advancements also in the development and application of specific algorithms designed to probe a wide range of Dark Energy scenarios. Over the last decade, a large number of independent and complementary investigations have been carried out in the field of Dark Energy N-body simulations, starting from the simplest case of homogeneous Dark Energy models up to the recent development of highly sophisticated iterative solvers for a variety of Modified Gravity theories. In this Review - which is meant to be complementary to the general Review by Kuhlen et al. published in this Volume - I will discuss the range of scenarios for the cosmic acceleration that have been successfully investigated by means of dedicated N-body simulations, and I will provide a broad summary of the main results that have been obtained in this rather ...
Interacting Dark Matter and Dark Energy
Farrar, G R; Farrar, Glennys R.
2004-01-01
We discuss models for the cosmological dark sector in which the energy density of a scalar field approximates Einstein's cosmological constant and the scalar field value determines the dark matter particle mass by a Yukawa coupling. A model with one dark matter family can be adjusted so the observational constraints on the cosmological parameters are close to but different from what is predicted by the Lambda CDM model. This may be a useful aid to judging how tightly the cosmological parameters are constrained by the new generation of cosmological tests that depend on the theory of structure formation. In a model with two families of dark matter particles the scalar field may be locked to near zero mass for one family. This can suppress the long-range scalar force in the dark sector and eliminate evolution of the effective cosmological constant and the mass of the nonrelativistic dark matter particles, making the model close to Lambda CDM, until the particle number density becomes low enough to allow the scal...
Bozek, Brandon
This dissertation describes three research projects on the topic of dark energy. The first project is an analysis of a scalar field model of dark energy with an exponential potential using the Dark Energy Task Force (DETF) simulated data models. Using Markov Chain Monte Carlo sampling techniques we examine the ability of each simulated data set to constrain the parameter space of the exponential potential for data sets based on a cosmological constant and a specific exponential scalar field model. We compare our results with the constraining power calculated by the DETF using their "w 0--wa" parameterization of the dark energy. We find that respective increases in constraining power from one stage to the next produced by our analysis give results consistent with DETF results. To further investigate the potential impact of future experiments, we also generate simulated data for an exponential model background cosmology which can not be distinguished from a cosmological constant at DETF Stage 2, and show that for this cosmology good DETF Stage 4 data would exclude a cosmological constant by better than 3sigma. The second project details this analysis on a Inverse Power Law (IPL) or "Ratra-Peebles" (RP) model. This model is a member of a popular subset of scalar field quintessence models that exhibit "tracking" behavior that make this model particularly theoretically interesting. We find that the relative increase in constraining power on the parameter space of this model is consistent to what was found in the first project and the DETF report. We also show, using a background cosmology based on an IPL scalar field model that is consistent with a cosmological constant with Stage 2 data, that good DETF Stage 4 data would exclude a cosmological constant by better than 3sigma. The third project extends the Causal Entropic Principle to predict the preferred curvature within the "multiverse". The Causal Entropic Principle (Bousso, et al.) provides an alternative approach
From Dark Energy and Dark Matter to Dark Metric
Capozziello, S.; De Laurentis, M.; Francaviglia, M.; Mercadante, S
2008-01-01
It is nowadays clear that General Relativity cannot be the definitive theory of Gravitation due to several shortcomings that come out both from theoretical and experimental viewpoints. At large scales (astrophysical and cosmological) the attempts to match it with the latest observational data lead to invoke Dark Energy and Dark Matter as the bulk components of the cosmic fluid. Since no final evidence, at fundamental level, exists for such ingredients, it is clear that General Relativity pres...
Dark Energy and Structure Formation
We study the gravitational dynamics of dark energy configurations. We report on the time evolution of the dark energy field configurations as well as the time evolution of the energy density to demonstrate the gravitational collapse of dark energy field configurations. We live in a Universe which is dominated by Dark Energy. According to current estimates about 75% of the Energy Density is in the form of Dark Energy. Thus when we consider gravitational dynamics and Structure Formation we expect Dark Energy to play an important role. The most promising candidate for dark energy is the energy density of fields in curved space-time. It therefore become a pressing need to understand the gravitational dynamics of dark energy field configurations. We develop and describe the formalism to study the gravitational collapse of fields given any general potential for the fields. We apply this formalism to models of dark energy motivated by particle physics considerations. We solve the resulting evolution equations which determine the time evolution of field configurations as well as the dynamics of space-time. Our results show that gravitational collapse of dark energy field configurations occurs and must be considered in any complete picture of our universe.
Dark Energy and Structure Formation
Singh, Anupam, E-mail: morisi@ific.uv.es [Physics Department, L.N. Mittal I.I.T, Jaipur, Rajasthan (India)
2010-11-01
We study the gravitational dynamics of dark energy configurations. We report on the time evolution of the dark energy field configurations as well as the time evolution of the energy density to demonstrate the gravitational collapse of dark energy field configurations. We live in a Universe which is dominated by Dark Energy. According to current estimates about 75% of the Energy Density is in the form of Dark Energy. Thus when we consider gravitational dynamics and Structure Formation we expect Dark Energy to play an important role. The most promising candidate for dark energy is the energy density of fields in curved space-time. It therefore become a pressing need to understand the gravitational dynamics of dark energy field configurations. We develop and describe the formalism to study the gravitational collapse of fields given any general potential for the fields. We apply this formalism to models of dark energy motivated by particle physics considerations. We solve the resulting evolution equations which determine the time evolution of field configurations as well as the dynamics of space-time. Our results show that gravitational collapse of dark energy field configurations occurs and must be considered in any complete picture of our universe.
Dark energy and extended dark matter halos
Chernin, A. D.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.
2012-03-01
The cosmological mean matter (dark and baryonic) density measured in the units of the critical density is Ωm = 0.27. Independently, the local mean density is estimated to be Ωloc = 0.08-0.23 from recent data on galaxy groups at redshifts up to z = 0.01-0.03 (as published by Crook et al. 2007, ApJ, 655, 790 and Makarov & Karachentsev 2011, MNRAS, 412, 2498). If the lower values of Ωloc are reliable, as Makarov & Karachentsev and some other observers prefer, does this mean that the Local Universe of 100-300 Mpc across is an underdensity in the cosmic matter distribution? Or could it nevertheless be representative of the mean cosmic density or even be an overdensity due to the Local Supercluster therein. We focus on dark matter halos of groups of galaxies and check how much dark mass the invisible outer layers of the halos are able to host. The outer layers are usually devoid of bright galaxies and cannot be seen at large distances. The key factor which bounds the size of an isolated halo is the local antigravity produced by the omnipresent background of dark energy. A gravitationally bound halo does not extend beyond the zero-gravity surface where the gravity of matter and the antigravity of dark energy balance, thus defining a natural upper size of a system. We use our theory of local dynamical effects of dark energy to estimate the maximal sizes and masses of the extended dark halos. Using data from three recent catalogs of galaxy groups, we show that the calculated mass bounds conform with the assumption that a significant amount of dark matter is located in the invisible outer parts of the extended halos, sufficient to fill the gap between the observed and expected local matter density. Nearby groups of galaxies and the Virgo cluster have dark halos which seem to extend up to their zero-gravity surfaces. If the extended halo is a common feature of gravitationally bound systems on scales of galaxy groups and clusters, the Local Universe could be typical or even
Dark Energy - Dark Matter Unification: Generalized Chaplygin Gas Model
Bertolami, Orfeu
2005-01-01
We review the main features of the generalized Chaplygin gas (GCG) proposal for unification of dark energy and dark matter and discuss how it admits an unique decomposition into dark energy and dark matter components once phantom-like dark energy is excluded. In the context of this approach we consider structure formation and show that unphysical oscillations or blow-up in the matter power spectrum are not present. Moreover, we demonstrate that the dominance of dark energy occurs about the ti...
Holographic dark energy models: a comparison from the latest observational data
The holographic principle of quantum gravity theory has been applied to the dark energy (DE) problem, and so far three holographic DE models have been proposed: the original holographic dark energy (HDE) model, the agegraphic dark energy (ADE) model, and the holographic Ricci dark energy (RDE) model. In this work, we perform the best-fit analysis on these three models, by using the latest observational data including the Union+CFA3 sample of 397 Type Ia supernovae (SNIa), the shift parameter of the cosmic microwave background (CMB) given by the five-year Wilkinson Microwave Anisotropy Probe (WMAP5) observations, and the baryon acoustic oscillation (BAO) measurement from the Sloan Digital Sky Survey (SDSS). The analysis shows that for HDE, χmin2 = 465.912; for RDE, χmin2 = 483.130; for ADE, χmin2 = 481.694. Among these models, HDE model can give the smallest χ2min. Besides, we also use the Bayesian evidence (BE) as a model selection criterion to make a comparison. It is found that for HDE, ADE, and RDE, Δln BE = −0.86, −5.17, and −8.14, respectively. So, it seems that the HDE model is more favored by the observational data
Dark matter, dark energy and gravity
Robson, B. A.
2015-02-01
Within the framework of the Generation Model (GM) of particle physics, gravity is identified with the very weak, universal and attractive residual color interactions acting between the colorless particles of ordinary matter (electrons, neutrons and protons), which are composite structures. This gravitational interaction is mediated by massless vector bosons (hypergluons), which self-interact so that the interaction has two additional features not present in Newtonian gravitation: (i) asymptotic freedom and (ii) color confinement. These two additional properties of the gravitational interaction negate the need for the notions of both dark matter and dark energy.
Weak Lensing: Dark Matter, Dark Energy
The light rays from distant galaxies are deflected by massive structures along the line of sight, causing the galaxy images to be distorted. Measurements of these distortions, known as weak lensing, provide a way of measuring the distribution of dark matter as well as the spatial geometry of the universe. I will describe the ideas underlying this approach to cosmology. With planned large imaging surveys, weak lensing is a powerful probe of dark energy. I will discuss the observational challenges ahead and recent progress in developing multiple, complementary approaches to lensing measurements.
Unravelling the Dark Matter - Dark Energy Paradigm
Cahill, Reginald T.
2009-01-01
The standard LambdaCDM model of cosmology is usually understood to arise from demanding that the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric satisfy the General Relativity dynamics for spacetime metrics. The FLRW data-based dominant parameter values, Omega_Lambda=0.73 and Omega_m=0.27 for the dark energy and dark matter+matter, respectively, are then determined by fitting the supernova red-shift data. However in the pressure-less flat-space case the LambdaCDM model is most easily derive...
Dark matter, dark energy and gravity
Within the framework of the Generation Model (GM) of particle physics, gravity is identified with the very weak, universal and attractive residual color interactions acting between the colorless particles of ordinary matter (electrons, neutrons and protons), which are composite structures. This gravitational interaction is mediated by massless vector bosons (hypergluons), which self-interact so that the interaction has two additional features not present in Newtonian gravitation: (i) asymptotic freedom and (ii) color confinement. These two additional properties of the gravitational interaction negate the need for the notions of both dark matter and dark energy. (author)
Theoretical Models of Dark Energy
Yoo, Jaewon; Watanabe, Yuki
2012-01-01
Mounting observational data confirm that about 73% of the energy density consists of dark energy which is responsible for the current accelerated expansion of the Universe. We present observational evidences and dark energy projects. We then review various theoretical ideas that have been proposed to explain the origin of dark energy; they contain the cosmological constant, modified matter models, modified gravity models and the inhomogeneous model. The cosmological constant suffers from two ...
Dark energy: investigation and modeling
Tsujikawa, Shinji
2010-01-01
Constantly accumulating observational data continue to confirm that about 70% of the energy density today consists of dark energy responsible for the accelerated expansion of the Universe. We present recent observational bounds on dark energy constrained by the type Ia supernovae, cosmic microwave background, and baryon acoustic oscillations. We review a number of theoretical approaches that have been adopted so far to explain the origin of dark energy. This includes the cosmological constant...
Virialization in Dark Energy Cosmology
Wang, Peng
2005-01-01
We discuss the issue of energy nonconservation in the virialzation process of spherical collapse model with homogeneous dark energy. We propose an approximation scheme to find the virialization radius. By comparing various schemes and estimating the parameter characterizing the ratio of dark energy to dark matter at the turn-around time, we conclude that the problem of energy nonconservation may have sizable effects in fitting models to observations.
Models of Interacting Dark Energy
Zimdahl, W
2012-01-01
Any non-gravitational coupling between dark matter and dark energy modifies the cosmological dynamics. Interactions in the dark sector are considered to be relevant to address the coincidence problem. Moreover, in various models the observed accelerated expansion of the Universe is a pure interaction phenomenon. Here we review recent approaches in which a coupling between both dark components is crucial for the evolution of the Universe.
Cosmic Visions Dark Energy: Science
Dodelson, Scott; Heitmann, Katrin; Hirata, Chris; Honscheid, Klaus; Roodman, Aaron; Seljak, Uroš; Slosar, Anže; Trodden, Mark
2016-01-01
Cosmic surveys provide crucial information about high energy physics including strong evidence for dark energy, dark matter, and inflation. Ongoing and upcoming surveys will start to identify the underlying physics of these new phenomena, including tight constraints on the equation of state of dark energy, the viability of modified gravity, the existence of extra light species, the masses of the neutrinos, and the potential of the field that drove inflation. Even after the Stage IV experiment...
Linder, Eric V.
2004-01-01
The physical process leading to the acceleration of the expansion of the universe is unknown. It may involve new high energy physics or extensions to gravitation. Calling this generically dark energy, we examine the consistencies and relations between these two approaches, showing that an effective equation of state function w(z) is broadly useful in describing the properties of the dark energy. A variety of cosmological observations can provide important information on the dynamics of dark e...
Flaugher, B. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States). et al.
2015-04-11
The Dark Energy Camera is a new imager with a 2.2-degree diameter field of view mounted at the prime focus of the Victor M. Blanco 4-meter telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaboration, and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it. The camera consists of a five element optical corrector, seven filters, a shutter with a 60 cm aperture, and a CCD focal plane of 250-μm thick fully depleted CCDs cooled inside a vacuum Dewar. The 570 Mpixel focal plane comprises 62 2k x 4k CCDs for imaging and 12 2k x 2k CCDs for guiding and focus. The CCDs have 15μm x 15μm pixels with a plate scale of 0.263" per pixel. A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 seconds with 6-9 electrons readout noise. This paper provides a technical description of the camera's engineering, construction, installation, and current status.
Flaugher, B; Honscheid, K; Abbott, T M C; Alvarez, O; Angstadt, R; Annis, J T; Antonik, M; Ballester, O; Beaufore, L; Bernstein, G M; Bernstein, R A; Bigelow, B; Bonati, M; Boprie, D; Brooks, D; Buckley-Geer, E J; Campa, J; Cardiel-Sas, L; Castander, F J; Castilla, J; Cease, H; Cela-Ruiz, J M; Chappa, S; Chi, E; Cooper, C; da Costa, L N; Dede, E; Derylo, G; DePoy, D L; de Vicente, J; Doel, P; Drlica-Wagner, A; Eiting, J; Elliott, A E; Emes, J; Estrada, J; Neto, A Fausti; Finley, D A; Flores, R; Frieman, J; Gerdes, D; Gladders, M D; Gregory, B; Gutierrez, G R; Hao, J; Holland, S E; Holm, S; Huffman, D; Jackson, C; James, D J; Jonas, M; Karcher, A; Karliner, I; Kent, S; Kessler, R; Kozlovsky, M; Kron, R G; Kubik, D; Kuehn, K; Kuhlmann, S; Kuk, K; Lahav, O; Lathrop, A; Lee, J; Levi, M E; Lewis, P; Li, T S; Mandrichenko, I; Marshall, J L; Martinez, G; Merritt, K W; Miquel, R; Munoz, F; Neilsen, E H; Nichol, R C; Nord, B; Ogando, R; Olsen, J; Palio, N; Patton, K; Peoples, J; Plazas, A A; Rauch, J; Reil, K; Rheault, J -P; Roe, N A; Rogers, H; Roodman, A; Sanchez, E; Scarpine, V; Schindler, R H; Schmidt, R; Schmitt, R; Schubnell, M; Schultz, K; Schurter, P; Scott, L; Serrano, S; Shaw, T M; Smith, R C; Soares-Santos, M; Stefanik, A; Stuermer, W; Suchyta, E; Sypniewski, A; Tarle, G; Thaler, J; Tighe, R; Tran, C; Tucker, D; Walker, A R; Wang, G; Watson, M; Weaverdyck, C; Wester, W; Woods, R; Yanny, B
2015-01-01
The Dark Energy Camera is a new imager with a 2.2-degree diameter field of view mounted at the prime focus of the Victor M. Blanco 4-meter telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaboration, and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it. The camera consists of a five element optical corrector, seven filters, a shutter with a 60 cm aperture, and a CCD focal plane of 250 micron thick fully-depleted CCDs cooled inside a vacuum Dewar. The 570 Mpixel focal plane comprises 62 2kx4k CCDs for imaging and 12 2kx2k CCDs for guiding and focus. The CCDs have 15 microns x15 microns pixels with a plate scale of 0.263 arc sec per pixel. A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 seconds with 6-9 electrons readout noise. This paper provides a technical description of the camera's engineering, construct...
Dark Energy vs. Dark Matter: Towards a Unifying Scalar Field?
Arbey, A.
2008-01-01
The standard model of cosmology suggests the existence of two components, "dark matter" and "dark energy", which determine the fate of the Universe. Their nature is still under investigation, and no direct proof of their existences has emerged yet. There exist alternative models which reinterpret the cosmological observations, for example by replacing the dark energy/dark matter hypothesis by the existence of a unique dark component, the dark fluid, which is able to mimic the behaviour of bot...
Vacuum Pressure, Dark Energy, and Dark Matter
Bogusław Broda; Michał Szanecki
2011-01-01
It has been argued that the correct, that is, positive, sign of quantum vacuum energy density, or, more properly, negative sign of quantum vacuum pressure, requires not a very large, and to some extent model-independent, number, for example, ∼100, of additional, undiscovered fundamental bosonic particle species, absent in the standard model. Interpretation of the new particle species in terms of dark matter ones permits to qualitatively, and even quantitatively, connect all the three concepts...
Linder, Eric V.
2004-04-01
The physical process leading to the acceleration of the expansion of the universe is unknown. It may involve new high energy physics or extensions to gravitation. Calling this generically dark energy, we examine the consistencies and relations between these two approaches, showing that an effective equation of state function w(z) is broadly useful in describing the properties of the dark energy. A variety of cosmological observations can provide important information on the dynamics of dark energy and the future looks bright for constraining dark energy, though both the measurements and the interpretation will be challenging. We also discuss a more direct relation between the spacetime geometry and acceleration, via ''geometric dark energy'' from the Ricci scalar, and superacceleration or phantom energy where the fate of the universe may be more gentle than the Big Rip.
Astrophysical constraints on dark energy
Ho, Chiu Man; Hsu, Stephen D. H.
2016-02-01
Dark energy (i.e., a cosmological constant) leads, in the Newtonian approximation, to a repulsive force which grows linearly with distance and which can have astrophysical consequences. For example, the dark energy force overcomes the gravitational attraction from an isolated object (e.g., dwarf galaxy) of mass 107M⊙ at a distance of 23 kpc. Observable velocities of bound satellites (rotation curves) could be significantly affected, and therefore used to measure or constrain the dark energy density. Here, isolated means that the gravitational effect of large nearby galaxies (specifically, of their dark matter halos) is negligible; examples of isolated dwarf galaxies include Antlia or DDO 190.
Quantum Field Theory of Interacting Dark Matter/Dark Energy: Dark Monodromies
D'Amico, Guido; Hamill, Teresa; Kaloper, Nemanja
2016-01-01
We discuss how to formulate a quantum field theory of dark energy interacting with dark matter. We show that the proposals based on the assumption that dark matter is made up of heavy particles with masses which are very sensitive to the value of dark energy are strongly constrained. Quintessence-generated long range forces and radiative stability of the quintessence potential require that such dark matter and dark energy are completely decoupled. However, if dark energy and a fraction of dar...
Dark energy and dark matter from cosmological observations
Hannestad, Steen
2005-01-01
The present status of our knowledge about the dark matter and dark energy is reviewed. Bounds on the content of cold and hot dark matter from cosmological observations are discussed in some detail. I also review current bounds on the physical properties of dark energy, mainly its equation of state and effective speed of sound.
Inflation, dark matter and dark energy in the string landscape
Liddle, A. R.; Ureña-López, L. A.
2006-01-01
We consider the conditions needed to unify the description of dark matter, dark energy and inflation in the context of the string landscape. We find that incomplete decay of the inflaton field gives the possibility that a single field is responsible for all three phenomena. By contrast, unifying dark matter and dark energy into a single field, separate from the inflaton, appears rather difficult.
Trout, Aaron
2012-01-01
In this paper, we give a conceptual explanation of dark energy as a small negative residual scalar curvature present even in empty spacetime. This curvature ultimately results from postulating a discrete spacetime geometry, very closely related to that used in the dynamical triangulations approach to quantum gravity. In this model, there are no states which have total scalar curvature exactly zero. Moreover, numerical evidence in dimension three suggests that, at a fixed volume, the number of discrete-spacetime microstates strongly increases with decreasing curvature. Because of the resulting entropic force, any dynamics which push empty spacetime strongly toward zero scalar curvature would instead produce typically observed states with a small negative curvature. This provides a natural explanation for the empirically observed small positive value for the cosmological constant (Lambda is about 10^(-121) in Planck units.) In fact, we derive the very rough estimate Lambda=6x10^(-118) from a simple model contai...
Dynamics of dark energy with a coupling to dark matter
Bohmer, C.; Calderacabral, Gaby; Lazkoz, R.; Maartens, Roy
2008-01-01
Dark energy and dark matter are the dominant sources in the evolution of the late universe. They are currently only indirectly detected via their gravitational effects, and there could be a coupling between them without violating observational constraints. We investigate the background dynamics when dark energy is modelled as exponential quintessence, and is coupled to dark matter via simple models of energy exchange. We introduce a new form of dark sector coupling, which leads to a more comp...
Correspondence between Generalized Dark Energy and Scalar Field Dark Energies
Maity, Sayani; Debnath, Ujjal
2015-07-01
In this work, we have considered non-flat FRW universe filled with dark matter (with non-zero pressure) and generalized dark energy (GDE) as motivated by the work of Sharif et al. (Mod. Phys. Lett. A 28, 1350180, 2013). Also the dark matter and the dark energy are considered to be interacting. The energy density, pressure and the EoS of the GDE have been calculated for the interacting scenario. For stability analysis of this model, we have also analyzed the sign of square speed of sound. Next we investigate the correspondence between GDE and different other candidates of dark energies such as DBI-essence, tachyonic field, hessenc and electromagnetic field. Also we have reconstructed the potential functions and the scalar fields in this scenario.
Early dark energy and its interaction with dark matter
Pu, Bo-Yu; Xu, Xiao-Dong; Bin WANG; Abdalla, Elcio
2014-01-01
We study a class of early dark energy models which has substantial amount of dark energy in the early epoch of the universe. We examine the impact of the early dark energy fluctuations on the growth of structure and the CMB power spectrum in the linear approximation. Furthermore we investigate the influence of the interaction between the early dark energy and the dark matter and its effect on the structure growth and CMB. We finally constrain the early dark energy model parameters and the cou...
Optimizing New Dark Energy Experiments
Tyson, J. Anthony [University of California, Davis
2013-08-26
Next generation “Stage IV” dark energy experiments under design during this grant, and now under construction, will enable the determination of the properties of dark energy and dark matter to unprecedented precision using multiple complementary probes. The most pressing challenge in these experiments is the characterization and understanding of the systematic errors present within any given experimental configuration and the resulting impact on the accuracy of our constraints on dark energy physics. The DETF and the P5 panel in their reports recommended “Expanded support for ancillary measurements required for the long-term program and for projects that will improve our understanding and reduction of the dominant systematic measurement errors.” Looking forward to the next generation Stage IV experiments we have developed a program to address the most important potential systematic errors within these experiments. Using data from current facilities it has been feasible and timely to undertake a detailed investigation of the systematic errors. In this DOE grant we studied of the source and impact of the dominant systematic effects in dark energy measurements, and developed new analysis tools and techniques to minimize their impact. Progress under this grant is briefly reviewed in this technical report. This work was a necessary precursor to the coming generations of wide-deep probes of the nature of dark energy and dark matter. The research has already had an impact on improving the efficiencies of all Stage III and IV dark energy experiments.
Cosmological evolution with interaction between dark energy and dark matter
Bolotin, Yuri L.; Kostenko, Alexander; Lemets, Oleg A.; Yerokhin, Danylo A.
2015-12-01
In this review we consider in detail different theoretical topics associated with interaction in the dark sector. We study linear and nonlinear interactions which depend on the dark matter and dark energy densities. We consider a number of different models (including the holographic dark energy and dark energy in a fractal universe), with interacting dark energy and dark matter, have done a thorough analysis of these models. The main task of this review was not only to give an idea about the modern set of different models of dark energy, but to show how much can be diverse dynamics of the universe in these models. We find that the dynamics of a universe that contains interaction in the dark sector can differ significantly from the Standard Cosmological Model.
Cosmological Evolution With Interaction Between Dark Energy And Dark Matter
Bolotin, Yu L; Lemets, O A; Yerokhin, D A
2013-01-01
In this review we consider in detail different theoretical topics associated with interaction in the dark sector. We study linear and nonlinear interactions which depend on the dark matter and dark energy densities. We consider a number of different models (including the holographic dark energy and dark energy in a fractal universe) with interacting dark energy (DE) and dark matter (DM), have done a thorough analysis of these models. The main task of this review was not only to give an idea about the modern set of different models of dark energy, but to show how much can be diverse dynamics of the universe in these models. We find that the dynamics of a Universe that contains interaction in the dark sector can differ significantly from the Standard Cosmological Model (SCM).
Dark Matter and Dark Energy in the Universe
Turner, M S
1998-01-01
For the first time, we have a plausible, complete accounting of matter and energy in the Universe. Expressed a fraction of the critical density it goes like this: neutrinos, between 0.3% and 15%; stars, 0.5%; baryons (total), 5%; matter (total), 40%; smooth, dark energy, 60%; adding up to the critical density. This accounting is consistent with the inflationary prediction of a flat Universe and defines three dark-matter problems: Where are the dark baryons? What is the nonbaryonic dark matter? What is the nature of the dark energy? The leading candidate for the (optically) dark baryons is diffuse hot gas; the leading candidates for the nonbaryonic dark matter are slowly moving elementary particles left over from the earliest moments (cold dark matter), such as axions or neutralinos; the leading candidates for the dark energy involve fundamental physics and include a cosmological constant (vacuum energy), a rolling scalar field (quintessence), and light, frustrated topological defects.
Cosmological constraints on a dark matter -- dark energy interaction
Hoffman, Mark B.
2003-01-01
It is generally assumed that the two dark components of the energy density of the universe, a smooth component called dark energy and a fluid of nonrelativistic weakly interacting particles called dark matter, are independent of each other and interact only through gravity. In this paper, we consider a class of models in which the dark matter and dark energy interact directly. The dark matter particle mass is proportional to the value of a scalar field, and the energy density of this scalar f...
Unified Description of Dark Energy and Dark Matter
Petry, Walter
2008-01-01
Dark energy in the universe is assumed to be vacuum energy. The energy-momentum of vacuum is described by a scale-dependent cosmological constant. The equations of motion imply for the density of matter (dust) the sum of the usual matter density (luminous matter) and an additional matter density (dark matter) similar to the dark energy. The scale-dependent cosmological constant is given up to an exponent which is approximated by the experimentally decided density parameters of dark matter and...
QHD, Dark Matter and Dark Energy
Fritzsch, Harald
2014-01-01
In QHD the weak bosons, quarks and leptons are bound states of fundamental constituents, denoted as haplons. The confinement scale of the associated gauge group SU(2)_h is of the order of $\\Lambda_h\\simeq 0.3$ TeV. One scalar state has zero haplon number and is the resonance observed at the LHC. In addition, there exist new bound states of haplons with no counterpart in the SM, having a mass of the order of 0.5 TeV up to a few TeV. In particular, a neutral scalar state with haplon number 4 is stable and can provide the dark matter in the universe. The QHD, QCD and QED couplings can unify at the Planck scale. If this scale changes slowly with cosmic time, all of the fundamental couplings, the masses of the nucleons and of the DM particles, including the cosmological term (or vacuum energy density), will evolve with time. This could explain the dark energy of the universe.
Condensate cosmology -- dark energy from dark matter
Bassett, B A; Parkinson, D; Ungarelli, C; Bassett, Bruce A.; Kunz, Martin; Parkinson, David; Ungarelli, Carlo
2003-01-01
Imagine a scenario in which the dark energy forms via the condensation of dark matter at some low redshift. The Compton wavelength therefore changes from small to very large at the transition, unlike quintessence or metamorphosis. We study CMB, large scale structure, supernova and radio galaxy constraints on condensation by performing a 4 parameter likelihood analysis over the Hubble constant and the three parameters associated with Q, the condensate field: Omega_Q, w_f and z_t (energy density and equation of state today, and redshift of transition). Condensation roughly interpolates between Lambda CDM for (large z_t) and sCDM (low z_t) and provides a slightly better fit to the data than Lambda CDM. We confirm that there is no degeneracy in the CMB between H and z_t and discuss the implications of late-time transitions for the Lyman-alpha forest. Finally we discuss the nonlinear phase of both condensation and metamorphosis, which is much more interesting than in standard quintessence models.
Condensate cosmology: Dark energy from dark matter
Imagine a scenario in which the dark energy forms via the condensation of dark matter at some low redshift. The Compton wavelength therefore changes from small to very large at the transition, unlike quintessence or metamorphosis. We study cosmic microwave background (CMB), large scale structure, supernova and radio galaxy constraints on condensation by performing a four parameter likelihood analysis over the Hubble constant and the three parameters associated with Q, the condensate field: ΩQ, wf and zt (energy density and equation of state today, and redshift of transition). Condensation roughly interpolates between ΛCDM (for large zt) and SCDM (low zt) and provides a slightly better fit to the data than ΛCDM. We confirm that there is no degeneracy in the CMB between H and zt and discuss the implications of late-time transitions for the Lyman-α forest. Finally we discuss the nonlinear phase of both condensation and metamorphosis, which is much more interesting than in standard quintessence models
Quantum Haplodynamics, Dark Matter, and Dark Energy
In quantum haplodynamics (QHD) the weak bosons, quarks, and leptons are bound states of fundamental constituents, denoted as haplons. The confinement scale of the associated gauge group SU(2)h is of the order of Λh≃0.3 TeV. One scalar state has zero haplon number and is the resonance observed at the LHC. In addition, there exist new bound states of haplons with no counterpart in the SM, having a mass of the order of 0.5 TeV up to a few TeV. In particular, a neutral scalar state with haplon number 4 is stable and can provide the dark matter in the universe. The QHD, QCD, and QED couplings can unify at the Planck scale. If this scale changes slowly with cosmic time, all of the fundamental couplings, the masses of the nucleons and of the DM particles, including the cosmological term (or vacuum energy density), will evolve with time. This could explain the dark energy of the universe
Alexander, Stephon; Yang, Zhi
2016-01-01
We account for the late time acceleration of the Universe by extending the QCD color to a $SU(3)$ invisible sector (IQCD). If the Invisible Chiral symmetry is broken in the early universe, a condensate of dark pions (dpions) and dark gluons (dgluons) forms. The condensate naturally forms due to strong dynamics similar to the Nambu--Jona-Lasinio mechanism. As the Universe evolves from early times to present times the interaction energy between the dgluon and dpion condensate dominates with a negative pressure equation of state and causes late time acceleration. We conclude with a stability analysis of the coupled perturbations of the dark pions and dark gluons.
Dark Energy and Non-linear Perturbations
BRUCK, C.; Mota, D. F.
2005-01-01
Dark energy might have an influence on the formation of non--linear structures during the cosmic history. For example, in models in which dark energy couples to dark matter, it will be non--homogeneous and will influence the collapse of a dark matter overdensity. We use the spherical collapse model to estimate how much influence dark energy might have.
Is Dark Energy Abnormally Weighting?
Fuzfa, A.; Alimi, J. -M.
2006-01-01
We present a new interpretation of dark energy in terms of an \\textit{Abnormally Weighting Energy} (AWE). This means that dark energy does not couple to gravitation in the same way as ordinary matter, yielding a violation of the weak and strong equivalence principles on cosmological scales. The resulting cosmological mechanism accounts for the Hubble diagram of type Ia supernovae in terms of both cosmic acceleration and variation of the gravitational constant while still accounting for the pr...
Dynamics of teleparallel dark energy
Recently, Geng et al. proposed to allow a non-minimal coupling between quintessence and gravity in the framework of teleparallel gravity, motivated by the similar one in the framework of General Relativity (GR). They found that this non-minimally coupled quintessence in the framework of teleparallel gravity has a richer structure, and named it “teleparallel dark energy”. In the present work, we note that there might be a deep and unknown connection between teleparallel dark energy and Elko spinor dark energy. Motivated by this observation and the previous results of Elko spinor dark energy, we try to study the dynamics of teleparallel dark energy. We find that there exist only some dark-energy-dominated de Sitter attractors. Unfortunately, no scaling attractor has been found, even when we allow the possible interaction between teleparallel dark energy and matter. However, we note that w at the critical points is in agreement with observations (in particular, the fact that w=−1 independently of ξ is a great advantage).
Inflation with holographic dark energy
Chen, Bin; Li, Miao; Wang, Yi
2007-07-01
We investigate the corrections of the holographic dark energy to inflation paradigm. We study the evolution of the holographic dark energy in the inflationary universe in detail, and carry out a model-independent analysis on the holographic dark energy corrections to the primordial scalar power spectrum. It turns out that the corrections generically make the spectrum redder. To be consistent with the experimental data, there must be a upper bound on the reheating temperature. We also discuss the corrections due to different choices of the infrared cutoff.
Inflation with holographic dark energy
We investigate the corrections of the holographic dark energy to inflation paradigm. We study the evolution of the holographic dark energy in the inflationary universe in detail, and carry out a model-independent analysis on the holographic dark energy corrections to the primordial scalar power spectrum. It turns out that the corrections generically make the spectrum redder. To be consistent with the experimental data, there must be a upper bound on the reheating temperature. We also discuss the corrections due to different choices of the infrared cutoff
Inflation with Holographic Dark Energy
Chen, B; Wang, Y; Chen, Bin; Li, Miao; Wang, Yi
2006-01-01
We investigate the corrections of the holographic dark energy to inflation paradigm. We study the evolution of the holographic dark energy in the inflationary universe in detail, and carry out a model-independent analysis on the holographic dark energy correction to the primordial scalar power spectrum. It turns out that the corrections generically make the spectrum redder. To be consistent with the experimental data, there must be a upper bound on the reheating temperature. We also discuss the corrections due to different choices of the infrared cutoff.
Holographic Dark Information Energy: Predicted Dark Energy Measurement
Michael Paul Gough
2013-01-01
Several models have been proposed to explain the dark energy that is causing universe expansion to accelerate. Here the acceleration predicted by the Holographic Dark Information Energy (HDIE) model is compared to the acceleration that would be produced by a cosmological constant. While identical to a cosmological constant at low redshifts, z 1, reaching a maximum difference of 2.6 ± 0.5% around z ~ 1.7...
Dark Matter and Dark Energy: The Critical Questions
Turner, Michael S.
2002-01-01
Stars account for only about 0.5% of the content of the Universe; the bulk of the Universe is optically dark. The dark side of the Universe is comprised of: at least 0.1% light neutrinos; 3.5% +/- 1% baryons; 29% +/- 4% cold dark matter; and 66% +/- 6% dark energy. Now that we have characterized the dark side of the Universe, the challenge is to understand it. The critical questions are: (1) What form do the dark baryons take? (2) What is (are) the constituent(s) of the cold dark matter? (3) ...
Cosmological Acceleration: Dark Energy or Modified Gravity?
Bludman, Sidney
2006-01-01
We review the evidence for recently accelerating cosmological expansion or "dark energy", either a negative pressure constituent in General Relativity (Dark Energy) or modified gravity (Dark Gravity), without any Dark Energy constituent. If constituent Dark Energy does not exist, so that our universe is now dominated by pressure-free matter, Einstein gravity must be modified at low curvature. The vacuum symmetry of any Robertson-Walker universe then characterizes Dark Gravity as low- or high-...
Interacting Induced Dark Energy Model
Bahrehbakhsh, Amir F
2016-01-01
Similar to the idea of the brane world scenarios, but based on the approach of the induced matter theory, for a non--vacuum five--dimensional version of general relativity, we propose a model in which the conventional matter sources considered as all kind of the matter (the baryonic and dark) and the induced terms emerging from the extra dimension supposed to be as dark energy. Then we investigate the FLRW type cosmological equations and illustrate that the model is capable to explain respectively the deceleration and then acceleration eras of the universe expansion with an interacting term between the matter and dark energy.
Holographic Gas as Dark Energy
Li, Miao; Li, Xiao-Dong; Lin, Chunshan; Wang, Yi
2008-01-01
We investigate the statistical nature of holographic gas, which may represent the quasi-particle excitations of a strongly correlated gravitational system. We find that the holographic entropy can be obtained by modifying degeneracy. We calculate thermodynamical quantities and investigate stability of the holographic gas. When applying to cosmology, we find that the holographic gas behaves as holographic dark energy, and the parameter $c$ in holographic dark energy can be calculated from our ...
Dark Energy vs. Modified Gravity
Joyce, Austin; Schmidt, Fabian
2016-01-01
Understanding the reason for the observed accelerated expansion of the Universe represents one of the fundamental open questions in physics. In cosmology, a classification has emerged among physical models for the acceleration, distinguishing between Dark Energy and Modified Gravity. In this review, we give a brief overview of models in both categories as well as their phenomenology and characteristic observable signatures in cosmology. We also introduce a rigorous distinction between Dark Energy and Modified Gravity based on the strong and weak equivalence principles.
Dark energy, dark matter and the Chaplygin gas
Colistete Jr., R.; Fabris, J. C.; Goncalves, S. V. B.; P.E. Souza
2002-01-01
The possibility that the dark energy may be described by the Chaplygin gas is discussed. Some observational constraints are established. These observational constraints indicate that a unified model for dark energy and dark matter through the employement of the Chaplygin gas is favored.
Dark Matter, Dark Energy and the Chaplygin Gas
Bilic, Neven; Tupper, Gary B.; Viollier, Raoul D
2002-01-01
We formulate a Zel'dovich-like approximation for the Chaplygin gas equation of state P = -A/rho, and sketch how this model unifies dark matter with dark energy in a geometric setting reminiscent of M-theory.
Greyber, Howard
2009-11-01
By careful analysis of the data from the WMAP satellite, scientists were surprised to determine that about 70% of the matter in our universe is in some unknown form, and labeled it Dark Energy. Earlier, in 1998, two separate international groups of astronomers studying Ia supernovae were even more surprised to be forced to conclude that an amazing smooth transition occurred, from the expected slowing down of the expansion of our universe (due to normal positive gravitation) to an accelerating expansion of the universe that began at at a big bang age of the universe of about nine billion years. In 1918 Albert Einstein stated that his Lambda term in his theory of general relativity was ees,``the energy of empty space,'' and represented a negative pressure and thus a negative gravity force. However my 2004 ``Strong'' Magnetic Field model (SMF) for the origin of magnetic fields at Combination Time (Astro-ph0509223 and 0509222) in our big bang universe produces a unique topology for Superclusters, having almost all the mass, visible and invisible, i.e. from clusters of galaxies down to particles with mass, on the surface of an ellipsoid surrounding a growing very high vacuum. If I hypothesize, with Einstein, that there exists a constant ees force per unit volume, then, gradually, as the universe expands from Combination Time, two effects occur (a) the volume of the central high vacuum region increases, and (b) the density of positive gravity particles in the central region of each Supercluster in our universe decreases dramatically. Thus eventually Einstein's general relativity theory's repulsive gravity of the central very high vacuum region becomes larger than the positive gravitational attraction of all the clusters of galaxies, galaxies, quasars, stars and plasma on the Supercluster shell, and the observed accelerating expansion of our universe occurs. This assumes that our universe is made up mostly of such Superclusters. It is conceivable that the high vacuum
Late Forming Dark Matter in Theories of Neutrino Dark Energy
Das, Subinoy; Weiner, Neal
2006-01-01
We study the possibility of Late Forming Dark Matter (LFDM), where a scalar field, previously trapped in a metastable state by thermal or finite density effects, begins to oscillate near the era matter-radiation equality about its true minimum. Such a theory is motivated generally if the dark energy is of a similar form, but has not yet made the transition to dark matter, and, in particular, arises automatically in recently considered theories of neutrino dark energy. If such a field comprise...
Dark energy and dark matter from primordial QGP
Vaidya, Vaishali; Upadhyaya, G. K.
2015-07-01
Coloured relics servived after hadronization might have given birth to dark matter and dark energy. Theoretical ideas to solve mystery of cosmic acceleration, its origin and its status with reference to recent past are of much interest and are being proposed by many workers. In the present paper, we present a critical review of work done to understand the earliest appearance of dark matter and dark energy in the scenario of primordial quark gluon plasma (QGP) phase after Big Bang.
Dark Matter and Dark Energy: Summary and Future Directions
Ellis, John
2003-01-01
This paper reviews the progress reported at this Royal Society Discussion Meeting and advertizes some possible future directions in our drive to understand dark matter and dark energy. Additionally, a first attempt is made to place in context the exciting new results from the WMAP satellite, which were published shortly after this Meeting. In the first part of this review, pieces of observational evidence shown here that bear on the amounts of dark matter and dark energy are reviewed. Subsequ...
Dark energy and dark matter from primordial QGP
Vaidya, Vaishali, E-mail: vaidvavaishali24@gmail.com; Upadhyaya, G. K., E-mail: gopalujiain@yahoo.co.in [School of Studies in Physics, Vikram University Ujjain (India)
2015-07-31
Coloured relics servived after hadronization might have given birth to dark matter and dark energy. Theoretical ideas to solve mystery of cosmic acceleration, its origin and its status with reference to recent past are of much interest and are being proposed by many workers. In the present paper, we present a critical review of work done to understand the earliest appearance of dark matter and dark energy in the scenario of primordial quark gluon plasma (QGP) phase after Big Bang.
Dark energy and dark matter as curvature effects
Capozziello, S.; Cardone, V F; Troisi, A.
2006-01-01
Astrophysical observations are pointing out huge amounts of dark matter and dark energy needed to explain the observed large scale structures and cosmic accelerating expansion. Up to now, no experimental evidence has been found, at fundamental level, to explain such mysterious components. The problem could be completely reversed considering dark matter and dark energy as shortcomings of General Relativity and claiming for the correct theory of gravity as that derived by matching the largest n...
Dark energy and dark matter from primordial QGP
Coloured relics servived after hadronization might have given birth to dark matter and dark energy. Theoretical ideas to solve mystery of cosmic acceleration, its origin and its status with reference to recent past are of much interest and are being proposed by many workers. In the present paper, we present a critical review of work done to understand the earliest appearance of dark matter and dark energy in the scenario of primordial quark gluon plasma (QGP) phase after Big Bang
Bose Einstein Condensation as Dark Energy and Dark Matter
Nishiyama, Masako; Morita, Masa-aki; Morikawa, Masahiro
2004-01-01
We study a cosmological model in which the boson dark matter gradually condensates into dark energy. Negative pressure associated with the condensate yields the accelerated expansion of the Universe and the rapid collapse of the smallest scale fluctuations into many black holes, which become the seeds of the first galaxies. The cycle of gradual sedimentation and rapid collapse of condensate repeats many times and self-regularizes the ratio of dark energy and dark matter to be order one.
Dark Energy and Dark Matter as Inertial Effects
Zorba, Serkan
2012-01-01
A disk-shaped universe (encompassing the observable universe) rotating globally with an angular speed equal to the Hubble constant is postulated. It is shown that dark energy and dark matter are cosmic inertial effects resulting from such a cosmic rotation, corresponding to centrifugal (dark energy), and a combination of centrifugal and the Coriolis forces (dark matter), respectively. The physics and the cosmological and galactic parameters obtained from the model closely match those attribut...
Correspondence between Ricci and other dark energies
Chattopadhyay, Surajit; Debnath, Ujjal
2010-01-01
Purpose of the present paper is to view the correspondence between Ricci and other dark energies. We have considered the Ricci dark energy in presence of dark matter in non-interacting situation. Subsequently, we have derived the pressure and energy density for Ricci dark energy. The equation of state parameter has been generated from these pressure and energy density. Next, we have considered the correspondence between Ricci and other dark energy models, namely tachyonic field, DBI-essence a...
Unified Dark Energy-Dark Matter model with Inverse Quintessence
Ansoldi, Stefano; Guendelman, Eduardo I.
2012-01-01
We consider a model where both dark energy and dark matter originate from the coupling of a scalar field with a non-conventional kinetic term to, both, a metric measure and a non-metric measure. An interacting dark energy/dark matter scenario can be obtained by introducing an additional scalar that can produce non constant vacuum energy and associated variations in dark matter. The phenomenology is most interesting when the kinetic term of the additional scalar field is ghost-type, since in t...
Material models of dark energy.
Pearson, Jonathan A.
2014-01-01
A new class of “dark energy” models is reviewed and developed, in which the relativistic theory of solids is used to construct material models of dark energy. These are models which include the effects of a continuous medium with well defined physical properties at the level of linearized perturbations. The formalism is constructed for a medium with arbitrary symmetry, and then specialised to isotropic media (which will be the case of interest for the majority of cosmological applications). T...
Dark Energy Coupled with Dark Matter in the Accelerating Universe
ZHANG Yang
2004-01-01
@@ To model the observed Universe containing both dark energy and dark matter, we study the effective Yang-Mills condensate model of dark energy and add a non-relativistic matter component as the dark matter, which is generated out of the decaying dark energy at a constant rate Г, a parameter of our model. For the Universe driven by these two components, the dynamic evolution still has asymptotic behaviour: the expansion of the Universe is accelerating with an asymptotically constant rate H, and the densities of both components approach to finite constant values. Moreover, ΩA≈ 0.7 for dark energy and Ωm ≈ 0.3 for dark matter are achieved if the decay rate Г is chosen such that Г/H～ 1.
Thoughts on dark matter, dark energy, and inflation
Remarkable observational results and bold theoretical ideas have resulted in a standard cosmological model. This model, the 'Lambda-Cold-Dark-Matter' model seems capable of precision predictions of many cosmological observables. However the model posits the existence of dark matter, dark energy, and an early inflationary period. We know nothing about the nature of these three ingredients. (author)
Facilities for Dark Energy Investigations
Weinberg, David; Dawson, Kyle; Dore, Olivier; Frieman, Joshua; Gebhardt, Karl; Levi, Michael; Rhodes, Jason
2013-01-01
The discovery of cosmic acceleration has inspired ambitious experimental and observational efforts to understand its origin. Many of these take the form of large astronomical surveys, sometimes using new, special-purpose instrumentation, and in some cases entirely new facilities. This Report summarizes some of the major ongoing and planned dark energy experiments, focusing on those in which the U.S. community has a leading or significant supporting role. It provides background information for other Reports from the "Dark Energy and CMB" working group of the APS Division of Particles and Fields long-term planning exercise. We provide 1-2 page summaries of the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) and its SDSS-IV successor eBOSS, the Dark Energy Survey (DES), the Subaru Hyper-Suprime Camera (HSC) and Prime Focus Spectrograph (PFS), the Hobby-Eberley Telescope Dark Energy Experiment (HEDTEX), the Dark Energy Spectroscopic Instrument (DESI), the Large Synpotic Survey Telescope (LSST), and the Eu...
Laboratory tests on dark energy
The physical nature of the currently observed dark energy in the universe is completely unclear, and many different theoretical models co-exist. Nevertheless, if dark energy is produced by vacuum fluctuations then there is a chance to probe some of its properties by simple laboratory tests based on Josephson junctions. These electronic devices can be used to perform 'vacuum fluctuation spectroscopy', by directly measuring a noise spectrum induced by vacuum fluctuations. One would expect to see a cutoff near 1.7 THz in the measured power spectrum, provided the new physics underlying dark energy couples to electric charge. The effect exploited by the Josephson junction is a subtile nonlinear mixing effect and has nothing to do with the Casimir effect or other effects based on van der Waals forces. A Josephson experiment of the suggested type will now be built, and we should know the result within the next 3 years
Flaugher, Brenna
2012-03-01
The Dark Energy Survey Collaboration has built the Dark Energy Camera (DECam), a 3 square degree, 520 Megapixel CCD camera which is being mounted on the Blanco 4-meter telescope at CTIO. DECam will be used to carry out the 5000 sq. deg. Dark Energy Survey, using 30% of the telescope time over a 5 year period. During the remainder of the time, and after the survey, DECam will be available as a community instrument. Construction of DECam is complete. The final components were shipped to Chile in Dec. 2011 and post-shipping checkout is in progress in Dec-Jan. Installation and commissioning on the telescope are taking place in 2012. A summary of lessons learned and an update of the performance of DECam and the status of the DECam installation and commissioning will be presented.
Binder, Gary A.; /Caltech /SLAC
2010-08-25
In order to make accurate measurements of dark energy, a system is needed to monitor the focus and alignment of the Dark Energy Camera (DECam) to be located on the Blanco 4m Telescope for the upcoming Dark Energy Survey. One new approach under development is to fit out-of-focus star images to a point spread function from which information about the focus and tilt of the camera can be obtained. As a first test of a new algorithm using this idea, simulated star images produced from a model of DECam in the optics software Zemax were fitted. Then, real images from the Mosaic II imager currently installed on the Blanco telescope were used to investigate the algorithm's capabilities. A number of problems with the algorithm were found, and more work is needed to understand its limitations and improve its capabilities so it can reliably predict camera alignment and focus.
Laboratory tests on dark energy
Beck, C
2006-01-01
The physical nature of the currently observed dark energy in the universe is completely unclear, and many different theoretical models co-exist. Nevertheless, if dark energy is produced by vacuum fluctuations then there is a chance to probe some of its properties by simple laboratory tests based on Josephson junctions. These electronic devices can be used to perform `vacuum fluctuation spectroscopy', by directly measuring a noise spectrum induced by vacuum fluctuations. One would expect to see a cutoff near 1.7 THz in the measured power spectrum, provided the new physics underlying dark energy couples to electric charge. The effect exploited by the Josephson junction is a subtile nonlinear mixing effect and has nothing to do with the Casimir effect or other effects based on van der Waals forces. A Josephson experiment of the suggested type will now be built, and we should know the result within the next 3 years.
Wormhole solutions supported by interacting dark matter and dark energy
Folomeev, Vladimir; Dzhunushaliev, Vladimir
2013-01-01
We show that the presence of a nonminimal interaction between dark matter and dark energy may lead to a violation of the null energy condition and to the formation of a configuration with nontrivial topology (a wormhole). In this it is assumed that both dark matter and dark energy satisfy the null energy condition, a violation of which takes place only in the inner high-density regions of the configuration. This is achieved by assuming that, in a high-density environment, a nonminimal couplin...
Unified dark energy-dark matter model with inverse quintessence
Ansoldi, Stefano [ICRA — International Center for Relativistic Astrophysics, INFN — Istituto Nazionale di Fisica Nucleare, and Dipartimento di Matematica e Informatica, Università degli Studi di Udine, via delle Scienze 206, I-33100 Udine (UD) (Italy); Guendelman, Eduardo I., E-mail: ansoldi@fulbrightmail.org, E-mail: guendel@bgu.ac.il [Department of Physics, Ben-Gurion University of the Negeev, Beer-Sheva 84105 (Israel)
2013-05-01
We consider a model where both dark energy and dark matter originate from the coupling of a scalar field with a non-canonical kinetic term to, both, a metric measure and a non-metric measure. An interacting dark energy/dark matter scenario can be obtained by introducing an additional scalar that can produce non constant vacuum energy and associated variations in dark matter. The phenomenology is most interesting when the kinetic term of the additional scalar field is ghost-type, since in this case the dark energy vanishes in the early universe and then grows with time. This constitutes an ''inverse quintessence scenario'', where the universe starts from a zero vacuum energy density state, instead of approaching it in the future.
New interactions in the dark sector mediated by dark energy
Brookfield, A W; Hall, L M H
2007-01-01
Cosmological observations have revealed the existence of a dark matter sector, which is commonly assumed to be made up of one particle species only. However, this sector might be more complicated than we currently believe: there might be more than one dark matter species (for example two components of cold dark matter or a mixture of hot and cold dark matter) and there may be new interactions between these particles. In this paper we study the possibility of multiple dark matter species and interactions mediated by a dark energy field. We study both the background and the perturbation evolution in these scenarios. We find that the background evolution of a system of multiple dark matter particles (with constant couplings) mimics a single fluid with a time-varying coupling parameter. However, this is no longer true on the perturbative level. We study the case of attractive and repulsive forces as well as a mixture of cold and hot dark matter particles.
Dark energy from quantum matter
We study the backreaction of free quantum fields on a flat Robertson-Walker spacetime. Apart from renormalization freedom, the vacuum energy receives contributions from both the trace anomaly and the thermal nature of the quantum state. The former represents a dynamical realisation of dark energy, while the latter mimics an effective dark matter component. The semiclassical dynamics yield two classes of asymptotically stable solutions. The first reproduces the CDM model in a suitable regime. The second lacks a classical counterpart, but is in excellent agreement with recent observations. (orig.)
Neutron stars with dark energy
After a short review on the possible experimental observations to verify pseudocomplex General Relativity, neutron stars as a particular object of interest are investigated. Dark energy is added to the structure of a neutron star, while for the nuclear part the chiral SU(3) model is used. For the coupling of matter to dark energy a special assumption is made. The consequences are discussed. We show that neutron stars of up to six solar masses are obtained, which already behave similar to a black hole
Active galaxies can make axionic dark energy
Dimopoulos, Konstantinos; Cormack, Sam
2016-01-01
AGN jets carry helical magnetic fields, which can affect dark matter if the latter is axionic. This preliminary study shows that, in the presence of strong helical magnetic fields, the nature of the axionic condensate may change and become dark energy. Such dark energy may affect galaxy formation and galactic dynamics, so this possibility should not be ignored when considering axionic dark matter.
Albareti, F D; Maroto, A L
2014-01-01
We consider the vacuum energy of massive quantum fields in an expanding universe. We define a conserved renormalized energy-momentum tensor by means of a comoving cutoff regularization. Using exact solutions for de Sitter space-time, we show that in a certain range of mass and renormalization scales there is a contribution to the vacuum energy density that scales as non-relativistic matter and that such a contribution becomes dominant at late times. By means of the WKB approximation, we find that these results can be extended to arbitrary Robertson-Walker geometries. We study the range of parameters in which the vacuum energy density would be compatible with current limits on dark matter abundance. Finally, by calculating the vacuum energy in a perturbed Robertson-Walker background, we obtain the speed of sound of density perturbations and show that the vacuum energy density contrast can grow on sub-Hubble scales as in standard cold dark matter scenarios.
Dark energy from complementary graviton
Abe, Yugo; Kawamura, Yoshiharu
2016-01-01
Based on a new kind of complementary principle, we describe physics concerning the cosmological constant problem in the framework of effective field theory and suggest that a dominant part of dark energy can originate from the zero point energy due to another graviton that performs a complementary role vis-a-vis the ordinary one and obtains a tiny mass through the coupling to the vacuum energy of matters.
Dark matter and dark energy a challenge for modern cosmology
Gorini, Vittorio; Moschella, Ugo; Matarrese, Sabino
2011-01-01
This book brings together reviews from leading international authorities on the developments in the study of dark matter and dark energy, as seen from both their cosmological and particle physics side. Studying the physical and astrophysical properties of the dark components of our Universe is a crucial step towards the ultimate goal of unveiling their nature. The work developed from a doctoral school sponsored by the Italian Society of General Relativity and Gravitation. The book starts with a concise introduction to the standard cosmological model, as well as with a presentation of the theory of linear perturbations around a homogeneous and isotropic background. It covers the particle physics and cosmological aspects of dark matter and (dynamical) dark energy, including a discussion of how modified theories of gravity could provide a possible candidate for dark energy. A detailed presentation is also given of the possible ways of testing the theory in terms of cosmic microwave background, galaxy redshift su...
Dark energy and 3-manifold topology
Asselmeyer-Maluga, Torsten; Rose', Helge
2007-01-01
We show that the differential-geometric description of matter by differential structures of spacetime leads to a unifying model of the three types of energy in the cosmos: matter, dark matter and dark energy. Using this model we are able to calculate the ratio of dark energy to the total energy of the cosmos.
Holographic Dark Information Energy
Michael Paul Gough
2011-01-01
Landauer’s principle and the Holographic principle are used to derive the holographic information energy contribution to the Universe. Information energy density has increased with star formation until sufficient to start accelerating the expansion of the universe. The resulting reduction in the rate of star formation due to the accelerated expansion may provide a feedback that limits the information energy density to a constant level. The characteristics of the universe’s holographic informa...
Interacting Induced Dark Energy Model
Bahrehbakhsh, Amir F.
2016-01-01
Similar to the idea of the brane world scenarios, but based on the approach of the induced matter theory, for a non--vacuum five--dimensional version of general relativity, we propose a model in which the conventional matter sources considered as all kind of the matter (the baryonic and dark) and the induced terms emerging from the extra dimension supposed to be as dark energy. Then we investigate the FLRW type cosmological equations and illustrate that the model is capable to explain respect...
Holographic dark energy linearly interacting with dark matter
Chimento, Luis P; Richarte, Martín G
2012-01-01
We investigate a spatially flat Friedmann-Robertson-Walker (FRW) cosmological model with cold dark matter coupled to a modified holographic Ricci dark energy through a general interaction term linear in the energy densities of dark matter and dark energy, the total energy density and its derivative. Using the statistical method of $\\chi^2$-function for the Hubble data, we obtain $H_0=73.6$km/sMpc, $\\omega_s=-0.842$ for the asymptotic equation of state and $ z_{acc}= 0.89 $. The estimated values of $\\Omega_{c0}$ which fulfill the current observational bounds corresponds to a dark energy density varying in the range $0.25R < \\ro_x < 0.27R$.
The Dark Force: Astrophysical Repulsion from Dark Energy
Ho, Chiu Man
2016-01-01
Dark energy (i.e., a cosmological constant) leads, in the Newtonian approximation, to a repulsive force which grows linearly with distance. We discuss possible astrophysical effects of this "dark" force. For example, the dark force overcomes the gravitational attraction from an object (e.g., dwarf galaxy) of mass $10^7 M_\\odot$ at a distance of $~ 23$ kpc. It seems possible that observable velocities of bound satellites (rotation curves) could be significantly affected, and therefore used to measure the dark energy density.
Dark energy and dark matter as curvature effects
Capozziello, S; Troisi, A
2006-01-01
Astrophysical observations are pointing out huge amounts of dark matter and dark energy needed to explain the observed large scale structures and cosmic accelerating expansion. Up to now, no experimental evidence has been found, at fundamental level, to explain such mysterious components. The problem could be completely reversed considering dark matter and dark energy as shortcomings of General Relativity and claiming for the correct theory of gravity as that derived by matching the largest number of observational data. As a result, accelerating behavior of cosmic fluid and rotation curves of spiral galaxies are reproduced by means of curvature effects.
Gauge conditions in combined dark energy and dark matter systems
Christopherson, Adam J.
2010-01-01
When analysing a system consisting of both dark matter and dark energy, an often used practice in the literature is to neglect the perturbations in the dark energy component. However, it has recently been argued, through the use of numerical simulations, that one cannot do so. In this work we show that by neglecting such perturbations one is implicitly making a choice of gauge. As such, one no longer has the freedom to choose, for example, a gauge comoving with the dark matter -- in fact doin...
Cosmic Visions Dark Energy. Science
Dodelson, Scott [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Heitmann, Katrin [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Hirata, Chris [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Honscheid, Klaus [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Roodman, Aaron [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Seljak, Uroš [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Slosar, Anže [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Trodden, Mark [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
2016-04-26
Cosmic surveys provide crucial information about high energy physics including strong evidence for dark energy, dark matter, and inflation. Ongoing and upcoming surveys will start to identify the underlying physics of these new phenomena, including tight constraints on the equation of state of dark energy, the viability of modified gravity, the existence of extra light species, the masses of the neutrinos, and the potential of the field that drove inflation. Even after the Stage IV experiments, DESI and LSST, complete their surveys, there will still be much information left in the sky. This additional information will enable us to understand the physics underlying the dark universe at an even deeper level and, in case Stage IV surveys find hints for physics beyond the current Standard Model of Cosmology, to revolutionize our current view of the universe. There are many ideas for how best to supplement and aid DESI and LSST in order to access some of this remaining information and how surveys beyond Stage IV can fully exploit this regime. These ideas flow to potential projects that could start construction in the 2020's.
Cosmic Visions Dark Energy: Science
Dodelson, Scott; Hirata, Chris; Honscheid, Klaus; Roodman, Aaron; Seljak, Uroš; Slosar, Anže; Trodden, Mark
2016-01-01
Cosmic surveys provide crucial information about high energy physics including strong evidence for dark energy, dark matter, and inflation. Ongoing and upcoming surveys will start to identify the underlying physics of these new phenomena, including tight constraints on the equation of state of dark energy, the viability of modified gravity, the existence of extra light species, the masses of the neutrinos, and the potential of the field that drove inflation. Even after the Stage IV experiments, DESI and LSST, complete their surveys, there will still be much information left in the sky. This additional information will enable us to understand the physics underlying the dark universe at an even deeper level and, in case Stage IV surveys find hints for physics beyond the current Standard Model of Cosmology, to revolutionize our current view of the universe. There are many ideas for how best to supplement and aid DESI and LSST in order to access some of this remaining information and how surveys beyond Stage IV c...
Holographic dark energy from minimal supergravity
Landim, Ricardo C. G.
2015-01-01
We embed models of holographic dark energy coupled to dark matter in minimal supergravity plus matter, with one chiral superfield. We analyze two cases. The first one has the Hubble radius as the infrared cutoff and the interaction between the two fluids is proportional to the energy density of the dark energy. The second case has the future event horizon as infrared cutoff while the interaction is proportional to the energy density of both components of the dark sector.
Holographic dark energy with varying gravitational constant
Jamil, Mubasher; Saridakis, Emmanuel N.; Setare, M. R.
2009-08-01
We investigate the holographic dark energy scenario with a varying gravitational constant, in flat and non-flat background geometry. We extract the exact differential equations determining the evolution of the dark energy density-parameter, which include G-variation correction terms. Performing a low-redshift expansion of the dark energy equation of state, we provide the involved parameters as functions of the current density parameters, of the holographic dark energy constant and of the G-variation.
Holographic dark energy with varying gravitational constant
We investigate the holographic dark energy scenario with a varying gravitational constant, in flat and non-flat background geometry. We extract the exact differential equations determining the evolution of the dark energy density-parameter, which include G-variation correction terms. Performing a low-redshift expansion of the dark energy equation of state, we provide the involved parameters as functions of the current density parameters, of the holographic dark energy constant and of the G-variation.
Holographic dark energy with varying gravitational constant
Jamil, Mubasher; Setare, M R
2009-01-01
We investigate the holographic dark energy scenario with a varying gravitational constant, in flat and non-flat background geometry. We extract the exact differential equations determining the evolution of the dark energy density-parameter, which include $G$-variation correction terms. Performing a low-redshift expansion of the dark energy equation of state, we provide the involved parameters as functions of the current density parameters, of the holographic dark energy constant and of the $G$-variation.
Some issues concerning holographic dark energy
We study the perturbation of holographic dark energy and find it to be stable. We study the fate of the universe when interacting holographic dark energy is present, and discuss a simple phenomenological classification of the interacting holographic dark energy models. We also discuss the cosmic coincidence problem in the context of holographic dark energy. We find that the coincidence problem cannot be completely solved by adding an interacting term. Inflation may provide a better solution of the coincidence problem
Some Issues Concerning Holographic Dark Energy
Li, Miao; Lin, Chunshan; Wang, Yi
2008-01-01
We study perturbation of holographic dark energy and find it be stable. We study the fate of the universe when interacting holographic dark energy is present, and discuss a simple phenomenological classification of the interacting holographic dark energy models. We also discuss the cosmic coincidence problem in the context of holographic dark energy. We find that the coincidence problem can not be completely solved by adding an interacting term. Inflation may provide a better solution of the ...
Exactly solved models of interacting dark matter and dark energy
Chimento, Luis P
2012-01-01
We introduce an effective one-fluid description of the interacting dark sector in a spatially flat Friedmann-Robertson-Walker space-time and investigate the stability of the power-law solutions. We find the "source equation" for the total energy density and determine the energy density of each dark component. We study linear and nonlinear interactions which depend on the dark matter and dark energy densities, their first derivatives, the total energy density with its derivatives up to second order and the scale factor. We solve the evolution equations of the dark components for both interactions, examine exhaustively several examples and show cases where the problem of the coincidence is alleviated. We show that a generic nonlinear interaction gives rise to the "relaxed Chaplygin gas model" whose effective equation of state includes the variable modified Chaplygin gas model while some others nonlinear interactions yield de Sitter and power-law scenarios.
Dark energy from discrete spacetime.
Trout, Aaron D
2013-01-01
Dark energy accounts for most of the matter-energy content of our universe, yet current theories of its origin rely on radical physical assumptions such as the holographic principle or controversial anthropic arguments. We give a better motivated explanation for dark energy, claiming that it arises from a small negative scalar-curvature present even in empty spacetime. The vacuum has this curvature because spacetime is fundamentally discrete and there are more ways for a discrete geometry to have negative curvature than positive. We explicitly compute this effect using a variant of the well known dynamical-triangulations (DT) model for quantum gravity. Our model predicts a time-varying non-zero cosmological constant with a current value, [Formula: see text] in natural units, in agreement with observation. This calculation is made possible by a novel characterization of the possible DT action values combined with numerical evidence concerning their degeneracies. PMID:24312502
Observational approaches to understanding dark energy
Wang, Yun
2007-01-01
Illuminating the nature of dark energy is one of the most important challenges in cosmology today. In this review I discuss several promising observational approaches to understanding dark energy, in the context of the recommendations by the U.S. Dark Energy Task Force and the ESA-ESO Working Group on Fundamental Cosmology.
Fixed points in interacting dark energy models
Chen, Xi-ming; Gong, Yungui
2008-01-01
The dynamical behaviors of two interacting dark energy models are considered. In addition to the scaling attractors found in the non-interacting quintessence model with exponential potential, new accelerated scaling attractors are also found in the interacting dark energy models. The coincidence problem is reduced to the choice of parameters in the interacting dark energy models.
Anthropic Principle Favors the Holographic Dark Energy
Huang, Qing-Guo; Li, Miao
2004-01-01
We discuss the anthropic principle when applied to the holographic dark energy. We find that if the amplitude of the density fluctution is variable, the holographic dark energy fares better than the cosmological constant. More generally, the anthropic predictions agree better with observation for dark energy with $w_\\d=p_\\d/\\rho_\\d$ decreasing over time.
On the Ricci dark energy model
Kim, Kyoung Yee; Lee, Hyung Won; Myung, Yun Soo
2008-01-01
We study the Ricci dark energy model (RDE) which was introduced as an alternative to the holographic dark energy model. We point out that an accelerating phase of the RDE is that of a constant dark energy model. This implies that the RDE may not be a new model of explaining the present accelerating universe.
Dark Energy Coupled with Relativistic Dark Matter in Accelerating Universe
张杨
2003-01-01
Recent observations favour an accelerating Universe dominated by the dark energy. We take the effective YangMills condensate as the dark energy and couple it to a relativistic matter which is created by the decaying condensate. The dynamic evolution has asymptotic behaviour with finite constant energy densities, and the fractional densities Ω∧～ 0.7 for dark energy and Ωm ～ 0.3 for relativistic matter are achieved at proper values of the decay rate. The resulting expansion of the Universe is in the de Sitter acceleration.
Quantum Field Theory of Interacting Dark Matter/Dark Energy: Dark Monodromies
D'Amico, Guido; Kaloper, Nemanja
2016-01-01
We discuss how to formulate a quantum field theory of dark energy interacting with dark matter. We show that the proposals based on the assumption that dark matter is made up of heavy particles with masses which are very sensitive to the value of dark energy are strongly constrained. Quintessence-generated long range forces and radiative stability of the quintessence potential require that such dark matter and dark energy are completely decoupled. However, if dark energy and a fraction of dark matter are very light axions, they can have significant mixings which are radiatively stable and perfectly consistent with quantum field theory. Such models can naturally occur in multi-axion realizations of monodromies. The mixings yield interesting signatures which are observable and are within current cosmological limits but could be constrained further by future observations.
Chaplygin Gas Cosmology - Unification of Dark Matter and Dark Energy
Bilic, Neven; Tupper, Gary B.; Viollier, Raoul D
2006-01-01
The models that unify dark matter and dark energy based upon the Chaplygin gas fail owing to the suppression of structure formation by the adiabatic speed of sound. Including string theory effects, in particular the Kalb-Ramond field, we show how nonadiabatic perturbations allow a successful structure formation.
Abdalla, Elcio; Graef, Leila; Wang, Bin
2012-01-01
We discuss a model of non perturbative decay of dark energy into hot and cold dark matter. This model provides a mechanism from the field theory to realize the energy transfer from dark energy into dark matter, which is the requirement to alleviate the coincidence problem. The advantage of the model is the fact that we accommodate a mean life compatible with the age of the universe. We also argue that supersymmetry is a natural set up, though not essential.
Quantum mechanical theory behind "dark energy"?
Colin Johnson, R
2007-01-01
"The mysterious increase in the acceleration of the universe, when intuition says it should be slowing down, is postulated to be caused by dark energy - "dark" because it is undetected. Now a group of scientists in the international collaboration Essence has suggested that a quantum mechanical interpretation of Einstein's proposed "cosmological constant" is the simplest explanation for dark energy. The group measured dark energy to within 10 percent." (1,5 page)
The Dark Energy Survey: more than dark energy - an overview
Abbott, T; Allam, S; Aleksic, J; Amara, A; Bacon, D; Balbinot, E; Banerji, M; Bechtol, K; Benoit-Levy, A; Bernstein, G M; Bertin, E; Blazek, J; Dodelson, S; Bonnett, C; Brooks, D; Bridle, S; Brunner, R J; Buckley-Geer, E; Burke, D L; Capozzi, D; Caminha, G B; Carlsen, J; Carnero-Rosell, A; Carollo, M; Carrasco-Kind, M; Carretero, J; Castander, F J; Clerkin, L; Collett, T; Conselice, C; Crocce, M; Cunha, C E; D'Andrea, C B; da Costa, L N; Davis, T M; Desai, S; Diehl, H T; Dietrich, J P; Doel, P; Drlica-Wagner, A; Etherington, J; Estrada, J; Evrard, A E; Finley, D A; Flaugher, B; Fosalba, P; Foley, R J; Frieman, J; Garcia-Bellido, J; Gaztanaga, E; Gerdes, D W; Giannantonio, T; Goldstein, D A; Gruen, D; Gruendl, R A; Guarnieri, P; Gutierrez, G; Hartley, W; Honscheid, K; Jain, B; James, D J; Jeltema, T; Jouvel, S; Kessler, R; King, A; Kirk, D; Kron, R; Kuehn, K; Kuropatkin, N; Lahav, O; Li, T S; Lima, M; Lin, H; Maia, M A G; Manera, M; Maraston, C; Marshall, J L; Martini, P; McMahon, R G; Melchior, P; Merson, A; Miller, C J; Miquel, R; Mohr, J J; Morice-Atkinson, X; Naidoo, K; Neilsen, E; Nichol, R C; Nord, B; Ogando, R; Ostrovski, F; Palmese, A; Papadopoulos, A; Peiris, H; Peoples, J; Plazas, A A; Percival, W J; Reed, S L; Romer, A K; Roodman, A; Ross, A; Rozo, E; Rykoff, E S; Sadeh, I; Sako, M; Sanchez, C; Sanchez, E; Santiago, B; Scarpine, V; Schubnell, M; Sevilla-Noarbe, I; Sheldon, E; Smith, R C; Soares-Santos, M; Sobreira, F; Soumagnac, M; Suchyta, E; Sullivan, M; Tarle, G; Thaler, J; Thomas, D; Thomas, R C; Tucker, D; Vieira, J D; Vikram, V; Walker, A R; Wechsler, R H; Wester, W; Weller, J; Whiteway, L; Wilcox, H; Yanny, B; Zhang, Y; Zuntz, J
2016-01-01
This overview article describes the legacy prospect and discovery potential of the Dark Energy Survey (DES) beyond cosmological studies, illustrating it with examples from the DES early data. DES is using a wide-field camera (DECam) on the 4m Blanco Telescope in Chile to image 5000 sq deg of the sky in five filters (grizY). By its completion the survey is expected to have generated a catalogue of 300 million galaxies with photometric redshifts and 100 million stars. In addition, a time-domain survey search over 27 sq deg is expected to yield a sample of thousands of Type Ia supernovae and other transients. The main goals of DES are to characterise dark energy and dark matter, and to test alternative models of gravity; these goals will be pursued by studying large scale structure, cluster counts, weak gravitational lensing and Type Ia supernovae. However, DES also provides a rich data set which allows us to study many other aspects of astrophysics. In this paper we focus on additional science with DES, emphasi...
Material models of dark energy
Pearson, Jonathan A
2014-01-01
We review and develop a new class of "dark energy" models, in which the relativistic theory of solids is used to construct material models of dark energy. These are models which include the effects of a continuous medium with well defined physical properties at the level of linearized perturbations. The formalism is constructed for a medium with arbitrary symmetry, and then specialised to isotropic media (which will be the case of interest for the majority of cosmological applications). We develop the theory of relativistic isotropic viscoelastic media whilst keeping in mind that we ultimately want to observationally constrain the allowed properties of the material model. We do this by obtaining the viscoelastic equations of state for perturbations (the entropy and anisotropic stress), as well as identifying the consistent corner of the theory which has constant equation of state parameter $\\dot{w}=0$. We also connect to the non-relativistic theory of solids, by identifying the two quadratic invariants that a...
Gravitation and regular Universe without dark energy and dark matter
Minkevich, A. V.
2011-01-01
It is shown that isotropic cosmology in the Riemann-Cartan spacetime allows to solve the problem of cosmological singularity as well as the problems of invisible matter components - dark energy and dark matter. All cosmological models filled with usual gravitating matter satisfying energy dominance conditions are regular with respect to energy density, spacetime metrics and the Hubble parameter. At asymptotics cosmological solutions of spatially flat models describe accelerating Universe with...
Dark Energy, Gravitation and Electromagnetism
B. G. Sidharth
2004-01-01
In the context of the fact that the existence of dark energy causing the accelerated expansion of the universe has been confirmed by the WMAP and the Sloan Digital Sky Survey, we re-examine gravitation itself, starting with the formulation of Sakharov and show that it is possible to obtain gravitation in terms of the electromagnetic charge of elementary particles, once the ZPF and its effects at the Compton scale are taken into account.
Alvarenga, F G; Tadaiesky, G
2002-01-01
A cosmological model with pressurelless matter and a fluid of negative pressure is studied. At perturbative level, fluctuations of both fluids are considered. It is shown that at least at very large scales, the fluid of negative pressure, which represents the dark energy content of the universe, clusters like the dust fluid. Numerical integration reveals that this behaviour may also occur at scales smaller than the Hubble radius.
LHC Signatures Of Scalar Dark Energy
Brax, Philippe; Englert, Christoph; Spannowsky, Michael
2016-01-01
Scalar dark energy fields that couple to the Standard Model can give rise to observable signatures at the LHC. In this work we show that $t\\bar t+$missing energy and mono-jet searches are suitable probes in the limit where the dark energy scalar is stable on collider distances. We discuss the prospects of distinguishing the dark energy character of new physics signals from dark matter signatures and the possibility of probing the self-interactions of the dark energy sector.
The Dark Energy Survey: more than dark energy - an overview
Dark Energy Survey Collaboration; Abbott, T.; Abdalla, F. B.; Allam, S.; Aleksić, J.; Amara, A.; Bacon, D.; Balbinot, E.; Banerji, M.; Bechtol, K.; Benoit-Lévy, A.; Bernstein, G. M.; Bertin, E.; Blazek, J.; Dodelson, S.; Bonnett, C.; Brooks, D.; Bridle, S.; Brunner, R. J.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Caminha, G. B.; Carlsen, J.; Carnero-Rosell, A.; Carollo, M.; Carrasco-Kind, M.; Carretero, J.; Castander, F. J.; Clerkin, L.; Collett, T.; Conselice, C.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Davis, T. M.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Drlica-Wagner, A.; Etherington, J.; Estrada, J.; Evrard, A. E.; Fabbri, J.; Finley, D. A.; Flaugher, B.; Fosalba, P.; Foley, R. J.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Giannantonio, T.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Guarnieri, P.; Gutierrez, G.; Hartley, W.; Honscheid, K.; Jain, B.; James, D. J.; Jeltema, T.; Jouvel, S.; Kessler, R.; King, A.; Kirk, D.; Kron, R.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; Lin, H.; Maia, M. A. G.; Makler, M.; Manera, M.; Maraston, C.; Marshall, J. L.; Martini, P.; McMahon, R. G.; Melchior, P.; Merson, A.; Miller, C. J.; Miquel, R.; Mohr, J. J.; Morice-Atkinson, X.; Naidoo, K.; Neilsen, E.; Nichol, R. C.; Nord, B.; Ogando, R.; Ostrovski, F.; Palmese, A.; Papadopoulos, A.; Peiris, H.; Peoples, J.; Plazas, A. A.; Percival, W. J.; Reed, S. L.; Romer, A. K.; Roodman, A.; Ross, A.; Rozo, E.; Rykoff, E. S.; Sadeh, I.; Sako, M.; Sánchez, C.; Sanchez, E.; Santiago, B.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Soumagnac, M.; Suchyta, E.; Sullivan, M.; Swanson, M.; Tarle, G.; Thaler, J.; Thomas, D.; Thomas, R. C.; Tucker, D.; Vieira, J. D.; Vikram, V.; Walker, A. R.; Wechsler, R. H.; Wester, W.; Weller, J.; Whiteway, L.; Wilcox, H.; Yanny, B.; Zhang, Y.; Zuntz, J.
2016-03-01
This overview article describes the legacy prospect and discovery potential of the Dark Energy Survey (DES) beyond cosmological studies, illustrating it with examples from the DES early data. DES is using a wide-field camera (DECam) on the 4m Blanco Telescope in Chile to image 5000 sq deg of the sky in five filters (grizY). By its completion the survey is expected to have generated a catalogue of 300 million galaxies with photometric redshifts and 100 million stars. In addition, a time-domain survey search over 27 sq deg is expected to yield a sample of thousands of Type Ia supernovae and other transients. The main goals of DES are to characterise dark energy and dark matter, and to test alternative models of gravity; these goals will be pursued by studying large scale structure, cluster counts, weak gravitational lensing and Type Ia supernovae. However, DES also provides a rich data set which allows us to study many other aspects of astrophysics. In this paper we focus on additional science with DES, emphasizing areas where the survey makes a difference with respect to other current surveys. The paper illustrates, using early data (from `Science Verification', and from the first, second and third seasons of observations), what DES can tell us about the solar system, the Milky Way, galaxy evolution, quasars, and other topics. In addition, we show that if the cosmological model is assumed to be Λ + Cold Dark Matter (LCDM) then important astrophysics can be deduced from the primary DES probes. Highlights from DES early data include the discovery of 34 Trans Neptunian Objects, 17 dwarf satellites of the Milky Way, one published z > 6 quasar (and more confirmed) and two published superluminous supernovae (and more confirmed).
The Dark Energy Survey: more than dark energy - an overview
Dark Energy Survey Collaboration; Abbott, T.; Abdalla, F. B.; Aleksić, J.; Allam, S.; Amara, A.; Bacon, D.; Balbinot, E.; Banerji, M.; Bechtol, K.; Benoit-Lévy, A.; Bernstein, G. M.; Bertin, E.; Blazek, J.; Bonnett, C.; Bridle, S.; Brooks, D.; Brunner, R. J.; Buckley-Geer, E.; Burke, D. L.; Caminha, G. B.; Capozzi, D.; Carlsen, J.; Carnero-Rosell, A.; Carollo, M.; Carrasco-Kind, M.; Carretero, J.; Castander, F. J.; Clerkin, L.; Collett, T.; Conselice, C.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Davis, T. M.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Dodelson, S.; Doel, P.; Drlica-Wagner, A.; Estrada, J.; Etherington, J.; Evrard, A. E.; Fabbri, J.; Finley, D. A.; Flaugher, B.; Foley, R. J.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Giannantonio, T.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Guarnieri, P.; Gutierrez, G.; Hartley, W.; Honscheid, K.; Jain, B.; James, D. J.; Jeltema, T.; Jouvel, S.; Kessler, R.; King, A.; Kirk, D.; Kron, R.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; Lin, H.; Maia, M. A. G.; Makler, M.; Manera, M.; Maraston, C.; Marshall, J. L.; Martini, P.; McMahon, R. G.; Melchior, P.; Merson, A.; Miller, C. J.; Miquel, R.; Mohr, J. J.; Morice-Atkinson, X.; Naidoo, K.; Neilsen, E.; Nichol, R. C.; Nord, B.; Ogando, R.; Ostrovski, F.; Palmese, A.; Papadopoulos, A.; Peiris, H. V.; Peoples, J.; Percival, W. J.; Plazas, A. A.; Reed, S. L.; Refregier, A.; Romer, A. K.; Roodman, A.; Ross, A.; Rozo, E.; Rykoff, E. S.; Sadeh, I.; Sako, M.; Sánchez, C.; Sanchez, E.; Santiago, B.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Soumagnac, M.; Suchyta, E.; Sullivan, M.; Swanson, M.; Tarle, G.; Thaler, J.; Thomas, D.; Thomas, R. C.; Tucker, D.; Vieira, J. D.; Vikram, V.; Walker, A. R.; Wechsler, R. H.; Weller, J.; Wester, W.; Whiteway, L.; Wilcox, H.; Yanny, B.; Zhang, Y.; Zuntz, J.
2016-08-01
This overview paper describes the legacy prospect and discovery potential of the Dark Energy Survey (DES) beyond cosmological studies, illustrating it with examples from the DES early data. DES is using a wide-field camera (DECam) on the 4 m Blanco Telescope in Chile to image 5000 sq deg of the sky in five filters (grizY). By its completion, the survey is expected to have generated a catalogue of 300 million galaxies with photometric redshifts and 100 million stars. In addition, a time-domain survey search over 27 sq deg is expected to yield a sample of thousands of Type Ia supernovae and other transients. The main goals of DES are to characterize dark energy and dark matter, and to test alternative models of gravity; these goals will be pursued by studying large-scale structure, cluster counts, weak gravitational lensing and Type Ia supernovae. However, DES also provides a rich data set which allows us to study many other aspects of astrophysics. In this paper, we focus on additional science with DES, emphasizing areas where the survey makes a difference with respect to other current surveys. The paper illustrates, using early data (from `Science Verification', and from the first, second and third seasons of observations), what DES can tell us about the Solar system, the Milky Way, galaxy evolution, quasars and other topics. In addition, we show that if the cosmological model is assumed to be Λ+cold dark matter, then important astrophysics can be deduced from the primary DES probes. Highlights from DES early data include the discovery of 34 trans-Neptunian objects, 17 dwarf satellites of the Milky Way, one published z > 6 quasar (and more confirmed) and two published superluminous supernovae (and more confirmed).
Dark energy interacting with two fluids
Cruz, Norman [Departamento de Fisica, Facultad de Ciencia, Universidad de Santiago, Casilla 307, Santiago (Chile)], E-mail: ncruz@lauca.usach.cl; Lepe, Samuel [Instituto de Fisica, Facultad de Ciencias Basicas y Matematicas, Universidad Catolica de Valparaiso, Avenida Brasil 2950, Valparaiso (Chile)], E-mail: slepe@ucv.cl; Pena, Francisco [Departamento de Ciencias Fisicas, Facultad de Ingenieria, Ciencias y Administracion, Universidad de La Frontera, Avda. Francisco Salazar 01145, Casilla 54-D Temuco (Chile)], E-mail: fcampos@ufro.cl
2008-05-29
A cosmological model of dark energy interacting with dark matter and another general component of the universe is investigated. We found general constraints on these models imposing an accelerated expansion. The same is also studied in the case for holographic dark energy.
Dark energy interacting with two fluids
Cruz, Norman; Lepe, Samuel; Pena, Francisco
2008-01-01
A cosmological model of dark energy interacting with dark matter and another general component of the universe is investigated. We found general constraints on these models imposing an accelerated expansion. The same is also studied in the case for holographic dark energy.
Clustering properties of dynamical dark energy models
We provide a generic but physically clear discussion of the clustering properties of dark energy models. We explicitly show that in quintessence-type models the dark energy fluctuations, on scales smaller than the Hubble radius, are of the order of the perturbations to the Newtonian gravitational potential, hence necessarily small on cosmological scales. Moreover, comparable fluctuations are associated with different gauge choices. We also demonstrate that the often used homogeneous approximation is unrealistic, and that the so-called dark energy mutation is a trivial artifact of an effective, single fluid description. Finally, we discuss the particular case where the dark energy fluid is nonminimally coupled to dark matter