WorldWideScience

Sample records for age-related molecular genetic

  1. The molecular genetic basis of age-related macular degeneration ...

    Indian Academy of Sciences (India)

    2009-12-10

    Dec 10, 2009 ... this review, we have provided an overview on the underlying molecular genetic mechanisms in AMD worldwide and highlight ..... eases like diabetes (Scott et al. ...... 2006 Systematic review and meta-analysis of.

  2. Genetics of healthy aging in Europe: the EU-integrated project GEHA (GEnetics of Healthy Aging)

    DEFF Research Database (Denmark)

    Franceschi, Claudio; Bezrukov, Vladyslav; Blanché, Hélène

    2007-01-01

    The aim of the 5-year European Union (EU)-Integrated Project GEnetics of Healthy Aging (GEHA), constituted by 25 partners (24 from Europe plus the Beijing Genomics Institute from China), is to identify genes involved in healthy aging and longevity, which allow individuals to survive to advanced old......DNA). The genetic analysis will be performed by 9 high-throughput platforms, within the framework of centralized databases for phenotypic, genetic, and mtDNA data. Additional advanced approaches (bioinformatics, advanced statistics, mathematical modeling, functional genomics and proteomics, molecular biology...... age in good cognitive and physical function and in the absence of major age-related diseases. To achieve this aim a coherent, tightly integrated program of research that unites demographers, geriatricians, geneticists, genetic epidemiologists, molecular biologists, bioinfomaticians, and statisticians...

  3. <Symposium I>Genetic dissection of age-related memory impairment in Drosophila

    OpenAIRE

    Yamazaki, Daisuke; Horiuchi, Junjiro; Saitoe, Minoru

    2010-01-01

    Age-related memory impairment (AMI) is an important phenotype of brain aging. Understandingthe molecular mechanisms underlying AMI is important not only from a scientific viewpoint but also for thedevelopment of therapeutics that may eventually lead to developing drugs to combat memory loss. AMI has beengenerally considered to be an overall or nonspecifi c decay of memory processes that results from dysfunction ofneural networks. However, extensive behavioral genetic characterization of AMI w...

  4. Genetic influences on attention deficit hyperactivity disorder symptoms from age 2 to 3: A quantitative and molecular genetic investigation

    Directory of Open Access Journals (Sweden)

    Saudino Kimberly J

    2010-12-01

    Full Text Available Abstract Background A twin study design was used to assess the degree to which additive genetic variance influences ADHD symptom scores across two ages during infancy. A further objective in the study was to observe whether genetic association with a number of candidate markers reflects results from the quantitative genetic analysis. Method We have studied 312 twin pairs at two time-points, age 2 and age 3. A composite measure of ADHD symptoms from two parent-rating scales: The Child Behavior Checklist/1.5 - 5 years (CBCL hyperactivity scale and the Revised Rutter Parent Scale for Preschool Children (RRPSPC was used for both quantitative and molecular genetic analyses. Results At ages 2 and 3 ADHD symptoms are highly heritable (h2 = 0.79 and 0.78, respectively with a high level of genetic stability across these ages. However, we also observe a significant level of genetic change from age 2 to age 3. There are modest influences of non-shared environment at each age independently (e2 = 0.22 and 0.21, respectively, with these influences being largely age-specific. In addition, we find modest association signals in DAT1 and NET1 at both ages, along with suggestive specific effects of 5-HTT and DRD4 at age 3. Conclusions ADHD symptoms are heritable at ages 2 and 3. Additive genetic variance is largely shared across these ages, although there are significant new effects emerging at age 3. Results from our genetic association analysis reflect these levels of stability and change and, more generally, suggest a requirement for consideration of age-specific genotypic effects in future molecular studies.

  5. Molecular genetics of aging in the fly: is this the end of the beginning?

    Science.gov (United States)

    Helfand, Stephen L; Rogina, Blanka

    2003-02-01

    How we age and what we can do about it have been uppermost in human thought since antiquity. The many false starts have frustrated experimentalists and theoretical arguments pronouncing the inevitability of the process have created a nihilistic climate among scientists and the public. The identification of single gene alterations that substantially extend life span in nematodes and flies however, have begun to reinvigorate the field. Drosophila's long history of contributions to aging research, rich storehouse of genetic information, and powerful molecular techniques make it an excellent system for studying the molecular mechanisms underlying the process of aging. In recent years, Drosophila has been used to test current theories on aging and explore new directions of potential importance to the biology of aging. One such example is the surprising finding that, as opposed to the commonly held assumption that adult life is a period of random passive decline in which all things are thought to fall apart, the molecular life of the adult fly appears to be a state of dynamic well-regulated change. In the fly, the level of expression of many different genes changes in an invariant, often age-dependent, manner. These as well as other molecular genetic studies and demographic analyses using the fly have begun to challenge widely held ideas about aging providing evidence that aging may be a much more dynamic and malleable process than anticipated. With the enormous success that Drosophila molecular genetics has demonstrated in helping understand complex biological phenomena such as development there is much optimism that similar approaches can be adapted to assist in understanding the process of aging. Copyright 2003 Wiley Periodicals, Inc.

  6. Changes in cytogenetics and molecular genetics in acute myeloid leukemia from childhood to adult age groups.

    Science.gov (United States)

    Creutzig, Ursula; Zimmermann, Martin; Reinhardt, Dirk; Rasche, Mareike; von Neuhoff, Christine; Alpermann, Tamara; Dworzak, Michael; Perglerová, Karolína; Zemanova, Zuzana; Tchinda, Joelle; Bradtke, Jutta; Thiede, Christian; Haferlach, Claudia

    2016-12-15

    To obtain better insight into the biology of acute myeloid leukemia (AML) in various age groups, this study focused on the genetic changes occurring during a lifetime. This study analyzed the relation between age and genetics from birth to 100 years in 5564 patients with de novo AML diagnosed from 1998 to 2012 (1192 patients from nationwide pediatric studies [AML Berlin-Frankfurt-Münster studies 98 and 2004] and 4372 adults registered with the Munich Leukemia Laboratory). The frequencies of cytogenetic subgroups were age-dependent. Favorable subtypes (t(8;21), inv(16)/t(16;16), and t(15;17)) decreased in general from the pediatric age group (2 to groups ( 70 years; P age-specific incidence with age. Interestingly, the frequency of 11q23 abnormalities decreased from infants to older patients. The proportion of clinically relevant molecular aberrations of CCAAT/enhancer binding protein α, nucleophosmin (NPM1), and NPM1/fms-related tyrosine kinase 3-internal tandem duplication increased with age. Altogether, with the exclusion of infants, a significant decrease in the proportion of favorable cytogenetic subtypes and an increase in unfavorable cytogenetics were observed with increasing age. These findings indicate different mechanisms for the pathogenesis of AML; these different mechanisms also suggest directions for etiological research and contribute to the more unfavorable prognosis with increasing age. Cancer 2016;122:3821-3830. © 2016 American Cancer Society. © 2016 American Cancer Society.

  7. Molecular and Chemical Genetic Approaches to Developmental Origins of Aging and Disease in Zebrafish

    Science.gov (United States)

    Sasaki, Tomoyuki; Kishi, Shuji

    2013-01-01

    The incidence of diseases increases rapidly with age, accompanied by progressive deteriorations of physiological functions in organisms. Aging-associated diseases are sporadic but mostly inevitable complications arising from senescence. Senescence is often considered the antithesis of early development, but yet there may be factors and mechanisms in common between these two phenomena over the dynamic process of aging. The association between early development and late-onset disease with advancing age is thought to come from a consequence of developmental plasticity, the phenomenon by which one genotype can give rise to a range of physiologically and/or morphologically adaptive states in response to different environmental or genetic perturbations. On the one hand, we hypothesized that the future aging process can be predictive based on adaptivity during the early developmental period. Modulating the thresholds of adaptive plasticity by chemical genetic approaches, we have been investigating whether any relationship exists between the regulatory mechanisms that function in early development and in senescence using the zebrafish (Danio rerio), a small freshwater fish and a useful model animal for genetic studies. We have successfully conducted experiments to isolate zebrafish mutants expressing apparently altered senescence phenotypes during embryogenesis (“embryonic senescence”), subsequently showing shortened lifespan in adulthoods. We anticipate that previously uncharacterized developmental genes may mediate the aging process and play a pivotal role in senescence. On the other hand, unexpected senescence-related genes might also be involved in the early developmental process and regulation. The ease of manipulation using the zebrafish system allows us to conduct an exhaustive exploration of novel genes and small molecular compounds that can be linked to the senescence phenotype, and thereby facilitates searching for the evolutionary and developmental origins

  8. Modelling the genetic risk in age-related macular degeneration.

    Directory of Open Access Journals (Sweden)

    Felix Grassmann

    Full Text Available Late-stage age-related macular degeneration (AMD is a common sight-threatening disease of the central retina affecting approximately 1 in 30 Caucasians. Besides age and smoking, genetic variants from several gene loci have reproducibly been associated with this condition and likely explain a large proportion of disease. Here, we developed a genetic risk score (GRS for AMD based on 13 risk variants from eight gene loci. The model exhibited good discriminative accuracy, area-under-curve (AUC of the receiver-operating characteristic of 0.820, which was confirmed in a cross-validation approach. Noteworthy, younger AMD patients aged below 75 had a significantly higher mean GRS (1.87, 95% CI: 1.69-2.05 than patients aged 75 and above (1.45, 95% CI: 1.36-1.54. Based on five equally sized GRS intervals, we present a risk classification with a relative AMD risk of 64.0 (95% CI: 14.11-1131.96 for individuals in the highest category (GRS 3.44-5.18, 0.5% of the general population compared to subjects with the most common genetic background (GRS -0.05-1.70, 40.2% of general population. The highest GRS category identifies AMD patients with a sensitivity of 7.9% and a specificity of 99.9% when compared to the four lower categories. Modeling a general population around 85 years of age, 87.4% of individuals in the highest GRS category would be expected to develop AMD by that age. In contrast, only 2.2% of individuals in the two lowest GRS categories which represent almost 50% of the general population are expected to manifest AMD. Our findings underscore the large proportion of AMD cases explained by genetics particularly for younger AMD patients. The five-category risk classification could be useful for therapeutic stratification or for diagnostic testing purposes once preventive treatment is available.

  9. Age-Related Macular Degeneration: Insights into Inflammatory Genes

    Directory of Open Access Journals (Sweden)

    Raffaella Cascella

    2014-01-01

    Full Text Available Age-related macular degeneration (AMD is a progressive neurodegenerative disease that affects approximately 8.7% of elderly people worldwide (>55 years old. AMD is characterized by a multifactorial aetiology that involves several genetic and environmental risk factors (genes, ageing, smoking, family history, dietary habits, oxidative stress, and hypertension. In particular, ageing and cigarette smoking (including oxidative compounds and reactive oxygen species have been shown to significantly increase susceptibility to the disease. Furthermore, different genes (CFH, CFI, C2, C3, IL-6, IL-8, and ARMS2 that play a crucial role in the inflammatory pathway have been associated with AMD risk. Several genetic and molecular studies have indicated the participation of inflammatory molecules (cytokines and chemokines, immune cells (macrophages, and complement proteins in the development and progression of the disease. Taking into consideration the genetic and molecular background, this review highlights the genetic role of inflammatory genes involved in AMD pathogenesis and progression.

  10. Molecular Population Genetics.

    Science.gov (United States)

    Casillas, Sònia; Barbadilla, Antonio

    2017-03-01

    Molecular population genetics aims to explain genetic variation and molecular evolution from population genetics principles. The field was born 50 years ago with the first measures of genetic variation in allozyme loci, continued with the nucleotide sequencing era, and is currently in the era of population genomics. During this period, molecular population genetics has been revolutionized by progress in data acquisition and theoretical developments. The conceptual elegance of the neutral theory of molecular evolution or the footprint carved by natural selection on the patterns of genetic variation are two examples of the vast number of inspiring findings of population genetics research. Since the inception of the field, Drosophila has been the prominent model species: molecular variation in populations was first described in Drosophila and most of the population genetics hypotheses were tested in Drosophila species. In this review, we describe the main concepts, methods, and landmarks of molecular population genetics, using the Drosophila model as a reference. We describe the different genetic data sets made available by advances in molecular technologies, and the theoretical developments fostered by these data. Finally, we review the results and new insights provided by the population genomics approach, and conclude by enumerating challenges and new lines of inquiry posed by increasingly large population scale sequence data. Copyright © 2017 Casillas and Barbadilla.

  11. Genetics of Unilateral and Bilateral Age-Related Macular Degeneration Severity Stages

    NARCIS (Netherlands)

    Schick, T.; Altay, L.; Viehweger, E.; Hoyng, C.B.; Hollander, A.I. den; Felsch, M.; Fauser, S.

    2016-01-01

    BACKGROUND: Age-related macular degeneration (AMD) is a common disease causing visual impairment and blindness. Various gene variants are strongly associated with late stage AMD, but little is known about the genetics of early forms of the disease. This study evaluated associations of genetic

  12. Molecular Age-Related Changes in the Anterior Segment of the Eye

    Directory of Open Access Journals (Sweden)

    Luis Fernando Hernandez-Zimbron

    2017-01-01

    Full Text Available Purpose. To examine the current knowledge about the age-related processes in the anterior segment of the eye at a biological, clinical, and molecular level. Methods. We reviewed the available published literature that addresses the aging process of the anterior segment of the eye and its associated molecular and physiological events. We performed a search on PubMed, CINAHL, and Embase using the MeSH terms “eye,” “anterior segment,” and “age.” We generated searches to account for synonyms of these keywords and MESH headings as follows: (1 “Eye” AND “ageing process” OR “anterior segment ageing” and (2 “Anterior segment” AND “ageing process” OR “anterior segment” AND “molecular changes” AND “age.” Results. Among the principal causes of age-dependent alterations in the anterior segment of the eye, we found the mutation of the TGF-β gene and loss of autophagy in addition to oxidative stress, which contributes to the pathogenesis of degenerative diseases. Conclusions. In this review, we summarize the current knowledge regarding some of the molecular mechanisms related to aging in the anterior segment of the eye. We also introduce and propose potential roles of autophagy, an important mechanism responsible for maintaining homeostasis and proteostasis under stress conditions in the anterior segment during aging.

  13. Age-related decline in brain resources modulates genetic effects on cognitive functioning

    Directory of Open Access Journals (Sweden)

    Ulman Lindenberger

    2008-12-01

    Full Text Available Individual differences in cognitive performance increase from early to late adulthood, likely reflecting influences of a multitude of factors. We hypothesize that losses in neurochemical and anatomical brain resources in normal aging modulate the effects of common genetic variations on cognitive functioning. Our hypothesis is based on the assumption that the function relating brain resources to cognition is nonlinear, so that genetic differences exert increasingly large effects on cognition as resources recede from high to medium levels in the course of aging.Direct empirical support for this hypothesis comes from a study by Nagel et al. (2008, who reported that the effects of the Catechol-O-Methyltransferase (COMT gene on cognitive performance are magnified in old age and interacted with the Brain-Derived Neurotrophic Factor (BDNF gene. We conclude that common genetic polymorphisms contribute to the increasing heterogeneity of cognitive functioning in old age. Extensions of the hypothesis to other polymorphisms are discussed.

  14. Genome and Epigenome Editing in Mechanistic Studies of Human Aging and Aging-Related Disease.

    Science.gov (United States)

    Lau, Cia-Hin; Suh, Yousin

    2017-01-01

    The recent advent of genome and epigenome editing technologies has provided a new paradigm in which the landscape of the human genome and epigenome can be precisely manipulated in their native context. Genome and epigenome editing technologies can be applied to many aspects of aging research and offer the potential to develop novel therapeutics against age-related diseases. Here, we discuss the latest technological advances in the CRISPR-based genome and epigenome editing toolbox, and provide insight into how these synthetic biology tools could facilitate aging research by establishing in vitro cell and in vivo animal models to dissect genetic and epigenetic mechanisms underlying aging and age-related diseases. We discuss recent developments in the field with the aims to precisely modulate gene expression and dynamic epigenetic landscapes in a spatial and temporal manner in cellular and animal models, by complementing the CRISPR-based editing capability with conditional genetic manipulation tools including chemically inducible expression systems, optogenetics, logic gate genetic circuits, tissue-specific promoters, and the serotype-specific adeno-associated virus. We also discuss how the combined use of genome and epigenome editing tools permits investigators to uncover novel molecular pathways involved in the pathophysiology and etiology conferred by risk variants associated with aging and aging-related disease. A better understanding of the genetic and epigenetic regulatory mechanisms underlying human aging and age-related disease will significantly contribute to the developments of new therapeutic interventions for extending health span and life span, ultimately improving the quality of life in the elderly populations. © 2016 S. Karger AG, Basel.

  15. Molecular pathology and age estimation.

    Science.gov (United States)

    Meissner, Christoph; Ritz-Timme, Stefanie

    2010-12-15

    Over the course of our lifetime a stochastic process leads to gradual alterations of biomolecules on the molecular level, a process that is called ageing. Important changes are observed on the DNA-level as well as on the protein level and are the cause and/or consequence of our 'molecular clock', influenced by genetic as well as environmental parameters. These alterations on the molecular level may aid in forensic medicine to estimate the age of a living person, a dead body or even skeletal remains for identification purposes. Four such important alterations have become the focus of molecular age estimation in the forensic community over the last two decades. The age-dependent accumulation of the 4977bp deletion of mitochondrial DNA and the attrition of telomeres along with ageing are two important processes at the DNA-level. Among a variety of protein alterations, the racemisation of aspartic acid and advanced glycation endproducs have already been tested for forensic applications. At the moment the racemisation of aspartic acid represents the pinnacle of molecular age estimation for three reasons: an excellent standardization of sampling and methods, an evaluation of different variables in many published studies and highest accuracy of results. The three other mentioned alterations often lack standardized procedures, published data are sparse and often have the character of pilot studies. Nevertheless it is important to evaluate molecular methods for their suitability in forensic age estimation, because supplementary methods will help to extend and refine accuracy and reliability of such estimates. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  16. Molecular and physiological manifestations and measurement of aging in humans.

    Science.gov (United States)

    Khan, Sadiya S; Singer, Benjamin D; Vaughan, Douglas E

    2017-08-01

    Biological aging is associated with a reduction in the reparative and regenerative potential in tissues and organs. This reduction manifests as a decreased physiological reserve in response to stress (termed homeostenosis) and a time-dependent failure of complex molecular mechanisms that cumulatively create disorder. Aging inevitably occurs with time in all organisms and emerges on a molecular, cellular, organ, and organismal level with genetic, epigenetic, and environmental modulators. Individuals with the same chronological age exhibit differential trajectories of age-related decline, and it follows that we should assess biological age distinctly from chronological age. In this review, we outline mechanisms of aging with attention to well-described molecular and cellular hallmarks and discuss physiological changes of aging at the organ-system level. We suggest methods to measure aging with attention to both molecular biology (e.g., telomere length and epigenetic marks) and physiological function (e.g., lung function and echocardiographic measurements). Finally, we propose a framework to integrate these molecular and physiological data into a composite score that measures biological aging in humans. Understanding the molecular and physiological phenomena that drive the complex and multifactorial processes underlying the variable pace of biological aging in humans will inform how researchers assess and investigate health and disease over the life course. This composite biological age score could be of use to researchers seeking to characterize normal, accelerated, and exceptionally successful aging as well as to assess the effect of interventions aimed at modulating human aging. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  17. Management of insect pests: Nuclear and related molecular and genetic techniques

    International Nuclear Information System (INIS)

    1993-01-01

    The conference was organized in eight sessions: opening, genetic engineering and molecular biology, genetics, operational programmes, F 1 sterility and insect behaviour, biocontrol, research and development on the tsetse fly, and quarantine. The 64 individual contributions have been indexed separately for INIS. Refs, figs and tabs

  18. Bioactive Nutrients and Nutrigenomics in Age-Related Diseases

    Directory of Open Access Journals (Sweden)

    Tania Rescigno

    2017-01-01

    Full Text Available The increased life expectancy and the expansion of the elderly population are stimulating research into aging. Aging may be viewed as a multifactorial process that results from the interaction of genetic and environmental factors, which include lifestyle. Human molecular processes are influenced by physiological pathways as well as exogenous factors, which include the diet. Dietary components have substantive effects on metabolic health; for instance, bioactive molecules capable of selectively modulating specific metabolic pathways affect the development/progression of cardiovascular and neoplastic disease. As bioactive nutrients are increasingly identified, their clinical and molecular chemopreventive effects are being characterized and systematic analyses encompassing the “omics” technologies (transcriptomics, proteomics and metabolomics are being conducted to explore their action. The evolving field of molecular pathological epidemiology has unique strength to investigate the effects of dietary and lifestyle exposure on clinical outcomes. The mounting body of knowledge regarding diet-related health status and disease risk is expected to lead in the near future to the development of improved diagnostic procedures and therapeutic strategies targeting processes relevant to nutrition. The state of the art of aging and nutrigenomics research and the molecular mechanisms underlying the beneficial effects of bioactive nutrients on the main aging-related disorders are reviewed herein.

  19. Biosystems Study of the Molecular Networks Underlying Hippocampal Aging Progression and Anti-aging Treatment in Mice

    Directory of Open Access Journals (Sweden)

    Jiao Wang

    2017-12-01

    Full Text Available Aging progression is a process that an individual encounters as they become older, and usually results from a series of normal physiological changes over time. The hippocampus, which contributes to the loss of spatial and episodic memory and learning in older people, is closely related to the detrimental effects of aging at the morphological and molecular levels. However, age-related genetic changes in hippocampal molecular mechanisms are not yet well-established. To provide additional insight into the aging process, differentially-expressed genes of 3- versus 24- and 29-month old mice were re-analyzed. The results revealed that a large number of immune and inflammatory response-related genes were up-regulated in the aged hippocampus, and membrane receptor-associated genes were down-regulated. The down-regulation of transmembrane receptors may indicate the weaker perception of environmental exposure in older people, since many transmembrane proteins participate in signal transduction. In addition, molecular interaction analysis of the up-regulated immune genes indicated that the hub gene, Ywhae, may play essential roles in immune and inflammatory responses during aging progression, as well as during hippocampal development. Our biological experiments confirmed the conserved roles of Ywhae and its partners between human and mouse. Furthermore, comparison of microarray data between advanced-age mice treated with human umbilical cord blood plasma protein and the phosphate-buffered saline control showed that the genes that contribute to the revitalization of advanced-age mice are different from the genes induced by aging. These results implied that the revitalization of advanced-age mice is not a simple reverse process of normal aging progression. Our data assigned novel roles of genes during aging progression and provided further theoretic evidence for future studies exploring the underlying mechanisms of aging and anti-aging-related disease

  20. Molecular mechanisms of aging and immune system regulation in Drosophila.

    Science.gov (United States)

    Eleftherianos, Ioannis; Castillo, Julio Cesar

    2012-01-01

    Aging is a complex process that involves the accumulation of deleterious changes resulting in overall decline in several vital functions, leading to the progressive deterioration in physiological condition of the organism and eventually causing disease and death. The immune system is the most important host-defense mechanism in humans and is also highly conserved in insects. Extensive research in vertebrates has concluded that aging of the immune function results in increased susceptibility to infectious disease and chronic inflammation. Over the years, interest has grown in studying the molecular interaction between aging and the immune response to pathogenic infections. The fruit fly Drosophila melanogaster is an excellent model system for dissecting the genetic and genomic basis of important biological processes, such as aging and the innate immune system, and deciphering parallel mechanisms in vertebrate animals. Here, we review the recent advances in the identification of key players modulating the relationship between molecular aging networks and immune signal transduction pathways in the fly. Understanding the details of the molecular events involved in aging and immune system regulation will potentially lead to the development of strategies for decreasing the impact of age-related diseases, thus improving human health and life span.

  1. Genetic variants and cognitive aging: destiny or a nudge?

    Science.gov (United States)

    Raz, Naftali; Lustig, Cindy

    2014-06-01

    One would be hard-pressed to find a human trait that is not heritable at least to some extent, and genetics have played an important role in behavioral science for more than half a century. With the advent of high-throughput molecular methods and the increasing availability of genomic analyses, genetics have acquired a firm foothold in public discourse. However, although the proliferation of genetic association studies and ever-expanding library of single-nucleotide polymorphisms have generated some fascinating results, they have thus far fallen short of delivering the anticipated dramatic breakthroughs. In this collection of eight articles, we present a spectrum of efforts aimed at finding more nuanced and meaningful ways of integrating genomic findings into the study of cognitive aging. The articles present examples of Mendelian randomization in the service of investigating difficult-to-manipulate biochemical properties of human participants. Furthermore, in an important step forward, they acknowledge the interactive effects of genes and physiological risk factors on age-related difference and change in cognitive performance, as well as the possibility of modifying the negative effect of genetic variants by lifestyle changes. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  2. Progress and Prospects in Human Genetic Research into Age-Related Hearing Impairment

    Directory of Open Access Journals (Sweden)

    Yasue Uchida

    2014-01-01

    Full Text Available Age-related hearing impairment (ARHI is a complex, multifactorial disorder that is attributable to confounding intrinsic and extrinsic factors. The degree of impairment shows substantial variation between individuals, as is also observed in the senescence of other functions. This individual variation would seem to refute the stereotypical view that hearing deterioration with age is inevitable and may indicate that there is ample scope for preventive intervention. Genetic predisposition could account for a sizable proportion of interindividual variation. Over the past decade or so, tremendous progress has been made through research into the genetics of various forms of hearing impairment, including ARHI and our knowledge of the complex mechanisms of auditory function has increased substantially. Here, we give an overview of recent investigations aimed at identifying the genetic risk factors involved in ARHI and of what we currently know about its pathophysiology. This review is divided into the following sections: (i genes causing monogenic hearing impairment with phenotypic similarities to ARHI; (ii genes involved in oxidative stress, biologic stress responses, and mitochondrial dysfunction; and (iii candidate genes for senescence, other geriatric diseases, and neurodegeneration. Progress and prospects in genetic research are discussed.

  3. Molecular Diagnostics of Ageing and Tackling Age-related Disease.

    Science.gov (United States)

    Timmons, James A

    2017-01-01

    As average life expectancy increases there is a greater focus on health-span and, in particular, how to treat or prevent chronic age-associated diseases. Therapies which were able to control 'biological age' with the aim of postponing chronic and costly diseases of old age require an entirely new approach to drug development. Molecular technologies and machine-learning methods have already yielded diagnostics that help guide cancer treatment and cardiovascular procedures. Discovery of valid and clinically informative diagnostics of human biological age (combined with disease-specific biomarkers) has the potential to alter current drug-discovery strategies, aid clinical trial recruitment and maximize healthy ageing. I will review some basic principles that govern the development of 'ageing' diagnostics, how such assays could be used during the drug-discovery or development process. Important logistical and statistical considerations are illustrated by reviewing recent biomarker activity in the field of Alzheimer's disease, as dementia represents the most pressing of priorities for the pharmaceutical industry, as well as the chronic disease in humans most associated with age. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Age trends in Douglas-fir genetic parameters and implications for optimum selection age.

    Science.gov (United States)

    G.R. Johnson; R.A. Sniezko; N.L. Mandel

    1997-01-01

    rends in genetic variation were examined over 51 progeny test sites throughout western Oregon. Narrow sense heritabilities for height and diameter showed an increasing trend to age 25, the oldest age examined. Before age 10, height heritabilities were relatively unstable. Type B site-site genetic correlations increased slowly with age for height and remained relatively...

  5. Molecular genetics

    International Nuclear Information System (INIS)

    Parkinson, D.R.; Krontiris, T.G.

    1986-01-01

    In this chapter the authors review new findings concerning the molecular genetics of malignant melanoma in the context of other information obtained from clinical, epidemiologic, and cytogenetic studies in this malignancy. These new molecular approaches promise to provide a more complete understanding of the mechanisms involved in the development of melanoma, thereby suggesting new methods for its treatment and prevention

  6. Pleiotropic Meta-Analyses of Longitudinal Studies Discover Novel Genetic Variants Associated with Age-Related Diseases

    Directory of Open Access Journals (Sweden)

    Liang He

    2016-10-01

    Full Text Available Age-related diseases may result from shared biological mechanisms in intrinsic processes of aging. Genetic effects on age-related diseases are often modulated by environmental factors due to their little contribution to fitness or are mediated through certain endophenotypes. Identification of genetic variants with pleiotropic effects on both common complex diseases and endophenotypes may reveal potential conflicting evolutionary pressures and deliver new insights into shared genetic contribution to healthspan and lifespan. Here, we performed pleiotropic meta-analyses of genetic variants using five NIH-funded datasets by integrating univariate summary statistics for age-related diseases and endophenotypes. We investigated three groups of traits: (1 endophenotypes such as blood glucose, blood pressure, lipids, hematocrit, and body mass index, (2 time-to-event outcomes such as the age-at-onset of diabetes mellitus (DM, cancer, cardiovascular diseases (CVDs and neurodegenerative diseases (NDs, and (3 both combined. In addition to replicating previous findings, we identify seven novel genome-wide significant loci (< 5e-08, out of which five are low-frequency variants. Specifically, from Group 2, we find rs7632505 on 3q21.1 in SEMA5B, rs460976 on 21q22.3 (1 kb from TMPRSS2 and rs12420422 on 11q24.1 predominantly associated with a variety of CVDs, rs4905014 in ITPK1 associated with stroke and heart failure, rs7081476 on 10p12.1 in ANKRD26 associated with multiple diseases including DM, CVDs, and NDs. From Group 3, we find rs8082812 on 18p11.22 and rs1869717 on 4q31.3 associated with both endophenotypes and CVDs. Our follow-up analyses show that rs7632505, rs4905014, and rs8082812 have age-dependent effects on coronary heart disease or stroke. Functional annotation suggests that most of these SNPs are within regulatory regions or DNase clusters and in linkage disequilibrium with expression quantitative trait loci, implying their potential regulatory

  7. Genetics and pharmacology of longevity: the road to therapeutics for healthy aging.

    Science.gov (United States)

    Castillo-Quan, Jorge Iván; Kinghorn, Kerri J; Bjedov, Ivana

    2015-01-01

    Aging can be defined as the progressive decline in tissue and organismal function and the ability to respond to stress that occurs in association with homeostatic failure and the accumulation of molecular damage. Aging is the biggest risk factor for human disease and results in a wide range of aging pathologies. Although we do not completely understand the underlying molecular basis that drives the aging process, we have gained exceptional insights into the plasticity of life span and healthspan from the use of model organisms such as the worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster. Single-gene mutations in key cellular pathways that regulate environmental sensing, and the response to stress, have been identified that prolong life span across evolution from yeast to mammals. These genetic manipulations also correlate with a delay in the onset of tissue and organismal dysfunction. While the molecular genetics of aging will remain a prosperous and attractive area of research in biogerontology, we are moving towards an era defined by the search for therapeutic drugs that promote healthy aging. Translational biogerontology will require incorporation of both therapeutic and pharmacological concepts. The use of model organisms will remain central to the quest for drug discovery, but as we uncover molecular processes regulated by repurposed drugs and polypharmacy, studies of pharmacodynamics and pharmacokinetics, drug-drug interactions, drug toxicity, and therapeutic index will slowly become more prevalent in aging research. As we move from genetics to pharmacology and therapeutics, studies will not only require demonstration of life span extension and an underlying molecular mechanism, but also the translational relevance for human health and disease prevention. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Best practice guidelines for the molecular genetic diagnosis of Type 1 (HFE-related hereditary haemochromatosis

    Directory of Open Access Journals (Sweden)

    Barton David E

    2006-11-01

    Full Text Available Abstract Background Hereditary haemochromatosis (HH is a recessively-inherited disorder of iron over-absorption prevalent in Caucasian populations. Affected individuals for Type 1 HH are usually either homozygous for a cysteine to tyrosine amino acid substitution at position 282 (C282Y of the HFE gene, or compound heterozygotes for C282Y and for a histidine to aspartic acid change at position 63 (H63D. Molecular genetic testing for these two mutations has become widespread in recent years. With diverse testing methods and reporting practices in use, there was a clear need for agreed guidelines for haemochromatosis genetic testing. The UK Clinical Molecular Genetics Society has elaborated a consensus process for the development of disease-specific best practice guidelines for genetic testing. Methods A survey of current practice in the molecular diagnosis of haemochromatosis was conducted. Based on the results of this survey, draft guidelines were prepared using the template developed by UK Clinical Molecular Genetics Society. A workshop was held to develop the draft into a consensus document. The consensus document was then posted on the Clinical Molecular Genetics Society website for broader consultation and amendment. Results Consensus or near-consensus was achieved on all points in the draft guidelines. The consensus and consultation processes worked well, and outstanding issues were documented in an appendix to the guidelines. Conclusion An agreed set of best practice guidelines were developed for diagnostic, predictive and carrier testing for hereditary haemochromatosis and for reporting the results of such testing.

  9. [Presbycusis - Age Related Hearing Loss].

    Science.gov (United States)

    Fischer, N; Weber, B; Riechelmann, H

    2016-07-01

    Presbycusis or age related hearing loss can be defined as a progressive, bilateral and symmetrical sensorineural hearing loss due to age related degeneration of inner ear structures. It can be considered a multifactorial complex disorder with environmental and genetic factors. The molecular, electrophysiological and histological damage at different levels of the inner ear cause a progressive hearing loss, which usually affects the high frequencies of hearing. The resulting poor speech recognition has a negative impact on cognitive, emotional and social function in older adults. Recent investigations revealed an association between hearing impairment and social isolation, anxiety, depression and cognitive decline in elderly. These findings emphasize the importance of diagnosis and treating hearing loss in the elderly population. Hearing aids are the most commonly used devices for treating presbycusis. The technical progress of implantable hearing devices allows an effective hearing rehabilitation even in elderly with severe hearing loss. However, most people with hearing impairments are not treated adequately. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Molecular genetics of dyslexia: an overview.

    Science.gov (United States)

    Carrion-Castillo, Amaia; Franke, Barbara; Fisher, Simon E

    2013-11-01

    Dyslexia is a highly heritable learning disorder with a complex underlying genetic architecture. Over the past decade, researchers have pinpointed a number of candidate genes that may contribute to dyslexia susceptibility. Here, we provide an overview of the state of the art, describing how studies have moved from mapping potential risk loci, through identification of associated gene variants, to characterization of gene function in cellular and animal model systems. Work thus far has highlighted some intriguing mechanistic pathways, such as neuronal migration, axon guidance, and ciliary biology, but it is clear that we still have much to learn about the molecular networks that are involved. We end the review by highlighting the past, present, and future contributions of the Dutch Dyslexia Programme to studies of genetic factors. In particular, we emphasize the importance of relating genetic information to intermediate neurobiological measures, as well as the value of incorporating longitudinal and developmental data into molecular designs. Copyright © 2013 John Wiley & Sons, Ltd.

  11. Genetics of Age-Related Macular Degeneration: Current Concepts, Future Directions

    Science.gov (United States)

    DeAngelis, Margaret M.; Silveira, Alexandra C.; Carr, Elizabeth A.; Kim, Ivana K.

    2014-01-01

    Age-related macular degeneration (AMD) is a progressive degenerative disease which leads to blindness, affecting the quality of life of millions of Americans. More than 1.75 million individuals in the United States are affected by the advanced form of AMD. The etiological pathway of AMD is not yet fully understood, but there is a clear genetic influence on disease risk. To date, the 1q32 (CFH) and 10q26 (PLEKHA1/ARMS2/HTRA1) loci are the most strongly associated with disease; however, the variation in these genomic regions alone is unable to predict disease development with high accuracy. Therefore, current genetic studies are aimed at identifying new genes associated with AMD and their modifiers, with the goal of discovering diagnostic or prognostic biomarkers. Moreover, these studies provide the foundation for further investigation into the pathophysiology of AMD by utilizing a systems-biology-based approach to elucidate underlying mechanistic pathways. PMID:21609220

  12. Teaching molecular genetics: Chapter 1--Background principles and methods of molecular biology.

    NARCIS (Netherlands)

    Knoers, N.V.A.M.; Monnens, L.A.H.

    2006-01-01

    In this first chapter of the series "Teaching molecular genetics," an introduction to molecular genetics is presented. We describe the structure of DNA and genes and explain in detail the central dogma of molecular biology, that is, the flow of genetic information from DNA via RNA to polypeptide

  13. Nature Versus Nurture: Does Proteostasis Imbalance Underlie the Genetic, Environmental, and Age-Related Risk Factors for Alzheimer's Disease?

    Science.gov (United States)

    Kikis, Elise A

    2017-08-22

    Aging is a risk factor for a number of "age-related diseases", including Alzheimer's disease (AD). AD affects more than a third of all people over the age of 85, and is the leading cause of dementia worldwide. Symptoms include forgetfulness, memory loss, and cognitive decline, ultimately resulting in the need for full-time care. While there is no cure for AD, pharmacological approaches to alleviate symptoms and target underlying causes of the disease have been developed, albeit with limited success. This review presents the age-related, genetic, and environmental risk factors for AD and proposes a hypothesis for the mechanistic link between genetics and the environment. In short, much is known about the genetics of early-onset familial AD (EO-FAD) and the central role played by the Aβ peptide and protein misfolding, but late-onset AD (LOAD) is not thought to have direct genetic causes. Nonetheless, genetic risk factors such as isoforms of the protein ApoE have been identified. Additional findings suggest that air pollution caused by the combustion of fossil fuels may be an important environmental risk factor for AD. A hypothesis suggesting that poor air quality might act by disrupting protein folding homeostasis (proteostasis) is presented.

  14. Molecular and genetic mechanisms of environmental mutagens

    International Nuclear Information System (INIS)

    Kubitschek, H.E.; Derstine, P.L.; Griego, V.M.; Matsushita, T.; Peak, J.G.; Peak, M.J.; Reynolds, P.R.; Webb, R.B.; Williams-Hill, D.

    1981-01-01

    This program is primarily concerned with elucidation of the nature of DNA lesions produced by environmental and energy related mutagens, their mechanisms of action, and their repair. The main focus is on actions of chemical mutagens and electromagnetic radiations. Synergistic interactions between mutagens and the mutational processes that lead to synergism are being investigated. Mutagens are chosen for study on the basis of their potential for analysis of mutation (as genetic probes), for development of procedures for reducing mutational damage, for their potential importance to risk assessment, and for development of improved mutagen testing systems. Bacterial cells are used because of the rapidity and clarity of scientific results that can be obtained, the detailed genetic maps, and the many well-defined mutand strains available. The conventional tools of microbial and molecular genetics are used, along with intercomparison of genetically related strains. Advantage is taken of tcollective dose commitment will result in more attention being paid to potential releases of radionuclides at relatively short times after disposal

  15. Genetic background influences age-related decline in visual and nonvisual retinal responses, circadian rhythms, and sleep☆

    Science.gov (United States)

    Banks, Gareth; Heise, Ines; Starbuck, Becky; Osborne, Tamzin; Wisby, Laura; Potter, Paul; Jackson, Ian J.; Foster, Russell G.; Peirson, Stuart N.; Nolan, Patrick M.

    2015-01-01

    The circadian system is entrained to the environmental light/dark cycle via retinal photoreceptors and regulates numerous aspects of physiology and behavior, including sleep. These processes are all key factors in healthy aging showing a gradual decline with age. Despite their importance, the exact mechanisms underlying this decline are yet to be fully understood. One of the most effective tools we have to understand the genetic factors underlying these processes are genetically inbred mouse strains. The most commonly used reference mouse strain is C57BL/6J, but recently, resources such as the International Knockout Mouse Consortium have started producing large numbers of mouse mutant lines on a pure genetic background, C57BL/6N. Considering the substantial genetic diversity between mouse strains we expect there to be phenotypic differences, including differential effects of aging, in these and other strains. Such differences need to be characterized not only to establish how different mouse strains may model the aging process but also to understand how genetic background might modify age-related phenotypes. To ascertain the effects of aging on sleep/wake behavior, circadian rhythms, and light input and whether these effects are mouse strain-dependent, we have screened C57BL/6J, C57BL/6N, C3H-HeH, and C3H-Pde6b+ mouse strains at 5 ages throughout their life span. Our data show that sleep, circadian, and light input parameters are all disrupted by the aging process. Moreover, we have cataloged a number of strain-specific aging effects, including the rate of cataract development, decline in the pupillary light response, and changes in sleep fragmentation and the proportion of time spent asleep. PMID:25179226

  16. Genetic background influences age-related decline in visual and nonvisual retinal responses, circadian rhythms, and sleep.

    Science.gov (United States)

    Banks, Gareth; Heise, Ines; Starbuck, Becky; Osborne, Tamzin; Wisby, Laura; Potter, Paul; Jackson, Ian J; Foster, Russell G; Peirson, Stuart N; Nolan, Patrick M

    2015-01-01

    The circadian system is entrained to the environmental light/dark cycle via retinal photoreceptors and regulates numerous aspects of physiology and behavior, including sleep. These processes are all key factors in healthy aging showing a gradual decline with age. Despite their importance, the exact mechanisms underlying this decline are yet to be fully understood. One of the most effective tools we have to understand the genetic factors underlying these processes are genetically inbred mouse strains. The most commonly used reference mouse strain is C57BL/6J, but recently, resources such as the International Knockout Mouse Consortium have started producing large numbers of mouse mutant lines on a pure genetic background, C57BL/6N. Considering the substantial genetic diversity between mouse strains we expect there to be phenotypic differences, including differential effects of aging, in these and other strains. Such differences need to be characterized not only to establish how different mouse strains may model the aging process but also to understand how genetic background might modify age-related phenotypes. To ascertain the effects of aging on sleep/wake behavior, circadian rhythms, and light input and whether these effects are mouse strain-dependent, we have screened C57BL/6J, C57BL/6N, C3H-HeH, and C3H-Pde6b+ mouse strains at 5 ages throughout their life span. Our data show that sleep, circadian, and light input parameters are all disrupted by the aging process. Moreover, we have cataloged a number of strain-specific aging effects, including the rate of cataract development, decline in the pupillary light response, and changes in sleep fragmentation and the proportion of time spent asleep. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Update on the role of genetics in the onset of age-related macular degeneration

    Science.gov (United States)

    Francis, Peter James; Klein, Michael L

    2011-01-01

    Age-related macular degeneration (AMD), akin to other common age-related diseases, has a complex pathogenesis and arises from the interplay of genes, environmental factors, and personal characteristics. The past decade has seen very significant strides towards identification of those precise genetic variants associated with disease. That genes encoding proteins of the (alternative) complement pathway (CFH, C2, CFB, C3, CFI) are major players in etiology came as a surprise to many but has already lead to the development of therapies entering human clinical trials. Other genes replicated in many populations ARMS2, APOE, variants near TIMP3, and genes involved in lipid metabolism have also been implicated in disease pathogenesis. The genes discovered to date can be estimated to account for approximately 50% of the genetic variance of AMD and have been discovered by candidate gene approaches, pathway analysis, and latterly genome-wide association studies. Next generation sequencing modalities and meta-analysis techniques are being employed with the aim of identifying the remaining rarer but, perhaps, individually more significant sequence variations, linked to disease status. Complementary studies have also begun to utilize this genetic information to develop clinically useful algorithms to predict AMD risk and evaluate pharmacogenetics. In this article, contemporary commentary is provided on rapidly progressing efforts to elucidate the genetic pathogenesis of AMD as the field stands at the end of the first decade of the 21st century. PMID:21887094

  18. Molecular genetic studies on obligate anaerobic bacteria

    International Nuclear Information System (INIS)

    Woods, D.R.

    1982-01-01

    Molecular genetic studies on obligate anaerobic bacteria have lagged behind similar studies in aerobes. However, the current interest in biotechnology, the involvement of anaerobes in disease and the emergence of antibioticresistant strains have focused attention on the genetics of anaerobes. This article reviews molecular genetic studies in Bacteroides spp., Clostridium spp. and methanogens. Certain genetic systems in some anaerobes differ from those in aerobes and illustrate the genetic diversity among bacteria

  19. Associations between genetic polymorphisms of insulin-like growth factor axis genes and risk for age-related macular degeneration

    Science.gov (United States)

    Purpose: Our objective was to investigate if insulin-like growth factor (IGF) axis genes affect the risk for age-related macular degeneration (AMD). Methods: 864 Caucasian non-diabetic participants from the Age-Related Eye Disease Study (AREDS) Genetic Repository were used in this case control st...

  20. Teaching molecular genetics: Chapter 1--Background principles and methods of molecular biology.

    Science.gov (United States)

    Knoers, Nine V A M; Monnens, Leo A H

    2006-02-01

    In this first chapter of the series "Teaching molecular genetics," an introduction to molecular genetics is presented. We describe the structure of DNA and genes and explain in detail the central dogma of molecular biology, that is, the flow of genetic information from DNA via RNA to polypeptide (protein). In addition, several basic and frequently used general molecular tools, such as restriction enzymes, Southern blotting, DNA amplification and sequencing are discussed, in order to lay the foundations for the forthcoming chapters.

  1. Intelligent DNA-based molecular diagnostics using linked genetic markers

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, D.K.; Perlin, M.W.; Hoffman, E.P.

    1994-12-31

    This paper describes a knowledge-based system for molecular diagnostics, and its application to fully automated diagnosis of X-linked genetic disorders. Molecular diagnostic information is used in clinical practice for determining genetic risks, such as carrier determination and prenatal diagnosis. Initially, blood samples are obtained from related individuals, and PCR amplification is performed. Linkage-based molecular diagnosis then entails three data analysis steps. First, for every individual, the alleles (i.e., DNA composition) are determined at specified chromosomal locations. Second, the flow of genetic material among the individuals is established. Third, the probability that a given individual is either a carrier of the disease or affected by the disease is determined. The current practice is to perform each of these three steps manually, which is costly, time consuming, labor-intensive, and error-prone. As such, the knowledge-intensive data analysis and interpretation supersede the actual experimentation effort as the major bottleneck in molecular diagnostics. By examining the human problem solving for the task, we have designed and implemented a prototype knowledge-based system capable of fully automating linkage-based molecular diagnostics in X-linked genetic disorders, including Duchenne Muscular Dystrophy (DMD). Our system uses knowledge-based interpretation of gel electrophoresis images to determine individual DNA marker labels, a constraint satisfaction search for consistent genetic flow among individuals, and a blackboard-style problem solver for risk assessment. We describe the system`s successful diagnosis of DMD carrier and affected individuals from raw clinical data.

  2. Genetic Breeding and Diversity of the Genus Passiflora: Progress and Perspectives in Molecular and Genetic Studies

    Directory of Open Access Journals (Sweden)

    Carlos Bernard M. Cerqueira-Silva

    2014-08-01

    Full Text Available Despite the ecological and economic importance of passion fruit (Passiflora spp., molecular markers have only recently been utilized in genetic studies of this genus. In addition, both basic genetic researches related to population studies and pre-breeding programs of passion fruit remain scarce for most Passiflora species. Considering the number of Passiflora species and the increasing use of these species as a resource for ornamental, medicinal, and food purposes, the aims of this review are the following: (i to present the current condition of the passion fruit crop; (ii to quantify the applications and effects of using molecular markers in studies of Passiflora; (iii to present the contributions of genetic engineering for passion fruit culture; and (iv to discuss the progress and perspectives of this research. Thus, the present review aims to summarize and discuss the relationship between historical and current progress on the culture, breeding, and molecular genetics of passion fruit.

  3. Investigation of Molecular Structure and Thermal Properties of Thermo-Oxidative Aged SBS in Blends and Their Relations.

    Science.gov (United States)

    Xu, Xiong; Yu, Jianying; Xue, Lihui; Zhang, Canlin; Zha, Yagang; Gu, Yi

    2017-07-07

    Tri-block copolymer styrene-butadiene (SBS) is extensively applied in bituminous highway construction due to its high elasticity and excellent weather resistance. With the extension of time, tri-block structural SBS automatically degrades into bi-block structural SB- with some terminal oxygen-containing groups under the comprehensive effects of light, heat, oxygen, etc. In this paper, the effects of aging temperature, aging time and oxygen concentration on the molecular structure of thermo-oxidative aged SBS were mainly investigated using Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS), and the correlation between oxygen-containing groups and thermal properties (TG-DTG) was further discussed. The FTIR and XPS results show that rapid decomposition of SBS will occur with increments of aging temperature, aging time and oxygen concentration, and a large number of oxygen-containing groups such as -OH, C=O, -COOH, etc. will be formed during thermo-oxidative aging. In short-term aging, changes in aging temperature and oxygen concentration have a significant impact on the structural damage of SBS. However, in long-term aging, it has no further effect on the molecular structure of SBS or on increasing oxygen concentration. The TG and DTG results indicate that the concentration of substances with low molecular weight gradually increases with the improvement of the degree of aging of the SBS, while the initial decomposition rate increases at the beginning of thermal weightlessness and the decomposition rate slows down in comparison with neat SBS. From the relation between the XPS and TG results, it can be seen that the initial thermal stability of SBS rapidly reduces as the relative concentration of the oxygen-containing groups accumulates around 3%, while the maximum decomposition temperature slowly decreases when the relative concentration of the oxygen-containing groups is more than 3%, due to the difficult damage to strong bonds

  4. Molecular genetic researches on the radiation genetics of Drosophila in JINR

    International Nuclear Information System (INIS)

    Afanas'eva, K.P.; Aleksandrova, M.V.; Aleksandrov, I.D.

    2016-01-01

    Molecular genetic studies of radiation-induced heritable DNA lesions are carried out by the genetic group of Laboratory of nuclear problem in Joint Institute for Nuclear Research. The first results of molecular analysis of γ –ray- and neutron-induced vestigial mutations using PCR and sequencing will be presented. (authors)

  5. Genetics of healthy aging and longevity.

    Science.gov (United States)

    Brooks-Wilson, Angela R

    2013-12-01

    Longevity and healthy aging are among the most complex phenotypes studied to date. The heritability of age at death in adulthood is approximately 25 %. Studies of exceptionally long-lived individuals show that heritability is greatest at the oldest ages. Linkage studies of exceptionally long-lived families now support a longevity locus on chromosome 3; other putative longevity loci differ between studies. Candidate gene studies have identified variants at APOE and FOXO3A associated with longevity; other genes show inconsistent results. Genome-wide association scans (GWAS) of centenarians vs. younger controls reveal only APOE as achieving genome-wide significance (GWS); however, analyses of combinations of SNPs or genes represented among associations that do not reach GWS have identified pathways and signatures that converge upon genes and biological processes related to aging. The impact of these SNPs, which may exert joint effects, may be obscured by gene-environment interactions or inter-ethnic differences. GWAS and whole genome sequencing data both show that the risk alleles defined by GWAS of common complex diseases are, perhaps surprisingly, found in long-lived individuals, who may tolerate them by means of protective genetic factors. Such protective factors may 'buffer' the effects of specific risk alleles. Rare alleles are also likely to contribute to healthy aging and longevity. Epigenetics is quickly emerging as a critical aspect of aging and longevity. Centenarians delay age-related methylation changes, and they can pass this methylation preservation ability on to their offspring. Non-genetic factors, particularly lifestyle, clearly affect the development of age-related diseases and affect health and lifespan in the general population. To fully understand the desirable phenotypes of healthy aging and longevity, it will be necessary to examine whole genome data from large numbers of healthy long-lived individuals to look simultaneously at both common and

  6. Molecular markers: a potential resource for ginger genetic diversity studies.

    Science.gov (United States)

    Ismail, Nor Asiah; Rafii, M Y; Mahmud, T M M; Hanafi, M M; Miah, Gous

    2016-12-01

    Ginger is an economically important and valuable plant around the world. Ginger is used as a food, spice, condiment, medicine and ornament. There is available information on biochemical aspects of ginger, but few studies have been reported on its molecular aspects. The main objective of this review is to accumulate the available molecular marker information and its application in diverse ginger studies. This review article was prepared by combing material from published articles and our own research. Molecular markers allow the identification and characterization of plant genotypes through direct access to hereditary material. In crop species, molecular markers are applied in different aspects and are useful in breeding programs. In ginger, molecular markers are commonly used to identify genetic variation and classify the relatedness among varieties, accessions, and species. Consequently, it provides important input in determining resourceful management strategies for ginger improvement programs. Alternatively, a molecular marker could function as a harmonizing tool for documenting species. This review highlights the application of molecular markers (isozyme, RAPD, AFLP, SSR, ISSR and others such as RFLP, SCAR, NBS and SNP) in genetic diversity studies of ginger species. Some insights on the advantages of the markers are discussed. The detection of genetic variation among promising cultivars of ginger has significance for ginger improvement programs. This update of recent literature will help researchers and students select the appropriate molecular markers for ginger-related research.

  7. Molecular mechanisms of renal aging.

    Science.gov (United States)

    Schmitt, Roland; Melk, Anette

    2017-09-01

    Epidemiologic, clinical, and molecular evidence suggest that aging is a major contributor to the increasing incidence of acute kidney injury and chronic kidney disease. The aging kidney undergoes complex changes that predispose to renal pathology. The underlying molecular mechanisms could be the target of therapeutic strategies in the future. Here, we summarize recent insight into cellular and molecular processes that have been shown to contribute to the renal aging phenotype.The main clinical finding of renal aging is the decrease in glomerular filtration rate, and its structural correlate is the loss of functioning nephrons. Mechanistically, this has been linked to different processes, such as podocyte hypertrophy, glomerulosclerosis, tubular atrophy, and gradual microvascular rarefaction. Renal functional recovery after an episode of acute kidney injury is significantly worse in elderly patients. This decreased regenerative potential, which is a hallmark of the aging process, may be caused by cellular senescence. Accumulation of senescent cells could explain insufficient repair and functional loss, a view that has been strengthened by recent studies showing that removal of senescent cells results in attenuation of renal aging. Other potential mechanisms are alterations in autophagy as an important component of a disturbed renal stress response and functional differences in the inflammatory system. Promising therapeutic measures to counteract these age-related problems include mimetics of caloric restriction, pharmacologic renin-angiotensin-aldosterone system inhibition, and novel strategies of senotherapy with the goal of reducing the number of senescent cells to decrease aging-related disease in the kidney. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  8. The Developing, Aging Neocortex: How genetics and epigenetics influence early developmental patterning and age-related change.

    Directory of Open Access Journals (Sweden)

    Kelly J. Huffman

    2012-10-01

    Full Text Available A hallmark of mammalian development is the generation of functional subdivisions within the nervous system. In humans, this regionalization creates a complex system that regulates behavior, cognition, memory and emotion. During development, specification of neocortical tissue that leads to functional sensory and motor regions results from an interplay between cortically intrinsic, molecular processes, such as gene expression, and extrinsic processes regulated by sensory input. Cortical specification in mice occurs pre- and perinatally, when gene expression is robust and various anatomical distinctions are observed alongside an emergence of physiological function. After patterning, gene expression continues to shift and axonal connections mature into an adult form. The function of adult cortical gene expression may be to maintain neocortical subdivisions that were established during early patterning. As some changes in neocortical gene expression have been observed past early development into late adulthood, gene expression may also play a role in the altered neocortical function observed in age-related cognitive decline and brain dysfunction. This review provides a discussion of how neocortical gene expression and specific patterns of neocortical sensori-motor axonal connections develop and change throughout the lifespan of the animal. We posit that a role of neocortical gene expression in neocortex is to regulate plasticity mechanisms that impact critical periods for sensory and motor plasticity in aging. We describe results from several studies in aging brain that detail changes in gene expression that may relate to microstructural changes observed in brain anatomy. We discuss the role of altered glucocorticoid signaling in age-related cognitive and functional decline, as well as how aging in the brain may result from immune system activation. We describe how caloric restriction or reduction of oxidative stress may ameliorate effects of aging

  9. How Genes Modulate Patterns of Aging-Related Changes on the Way to 100: Biodemographic Models and Methods in Genetic Analyses of Longitudinal Data

    Science.gov (United States)

    Yashin, Anatoliy I.; Arbeev, Konstantin G.; Wu, Deqing; Arbeeva, Liubov; Kulminski, Alexander; Kulminskaya, Irina; Akushevich, Igor; Ukraintseva, Svetlana V.

    2016-01-01

    Background and Objective To clarify mechanisms of genetic regulation of human aging and longevity traits, a number of genome-wide association studies (GWAS) of these traits have been performed. However, the results of these analyses did not meet expectations of the researchers. Most detected genetic associations have not reached a genome-wide level of statistical significance, and suffered from the lack of replication in the studies of independent populations. The reasons for slow progress in this research area include low efficiency of statistical methods used in data analyses, genetic heterogeneity of aging and longevity related traits, possibility of pleiotropic (e.g., age dependent) effects of genetic variants on such traits, underestimation of the effects of (i) mortality selection in genetically heterogeneous cohorts, (ii) external factors and differences in genetic backgrounds of individuals in the populations under study, the weakness of conceptual biological framework that does not fully account for above mentioned factors. One more limitation of conducted studies is that they did not fully realize the potential of longitudinal data that allow for evaluating how genetic influences on life span are mediated by physiological variables and other biomarkers during the life course. The objective of this paper is to address these issues. Data and Methods We performed GWAS of human life span using different subsets of data from the original Framingham Heart Study cohort corresponding to different quality control (QC) procedures and used one subset of selected genetic variants for further analyses. We used simulation study to show that approach to combining data improves the quality of GWAS. We used FHS longitudinal data to compare average age trajectories of physiological variables in carriers and non-carriers of selected genetic variants. We used stochastic process model of human mortality and aging to investigate genetic influence on hidden biomarkers of aging

  10. Molecular & Genetic Investigation of Tau in Chronic Traumatic Encephalopathy

    Science.gov (United States)

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0399 TITLE: Molecular & Genetic Investigation of Tau in Chronic Traumatic Encephalopathy PRINCIPAL INVESTIGATOR: John F...Include area code) October 2015 Annual Report 30 Sep 2014 - 29 Sep 2015 Molecular & Genetic Investigation of Tau in Chronic Traumatic Encephalopathy John... encephalopathy (CTE), but the underlying molecular changes remain unclear. Here, biochemical and genetic studies that deepen our understanding of the

  11. Genetic mouse models of brain ageing and Alzheimer's disease.

    Science.gov (United States)

    Bilkei-Gorzo, Andras

    2014-05-01

    Progression of brain ageing is influenced by a complex interaction of genetic and environmental factors. Analysis of genetically modified animals with uniform genetic backgrounds in a standardised, controlled environment enables the dissection of critical determinants of brain ageing on a molecular level. Human and animal studies suggest that increased load of damaged macromolecules, efficacy of DNA maintenance, mitochondrial activity, and cellular stress defences are critical determinants of brain ageing. Surprisingly, mouse lines with genetic impairment of anti-oxidative capacity generally did not show enhanced cognitive ageing but rather an increased sensitivity to oxidative challenge. Mouse lines with impaired mitochondrial activity had critically short life spans or severe and rapidly progressing neurodegeneration. Strains with impaired clearance in damaged macromolecules or defects in the regulation of cellular stress defences showed alterations in the onset and progression of cognitive decline. Importantly, reduced insulin/insulin-like growth factor signalling generally increased life span but impaired cognitive functions revealing a complex interaction between ageing of the brain and of the body. Brain ageing is accompanied by an increased risk of developing Alzheimer's disease. Transgenic mouse models expressing high levels of mutant human amyloid precursor protein showed a number of symptoms and pathophysiological processes typical for early phase of Alzheimer's disease. Generally, therapeutic strategies effective against Alzheimer's disease in humans were also active in the Tg2576, APP23, APP/PS1 and 5xFAD lines, but a large number of false positive findings were also reported. The 3xtg AD model likely has the highest face and construct validity but further studies are needed. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Premature hippocampus-dependent memory decline in middle-aged females of a genetic rat model of depression.

    Science.gov (United States)

    Lim, Patrick H; Wert, Stephanie L; Tunc-Ozcan, Elif; Marr, Robert; Ferreira, Adriana; Redei, Eva E

    2018-02-25

    Aging and major depressive disorder are risk factors for dementia, including Alzheimer's Disease (AD), but the mechanism(s) linking depression and dementia are not known. Both AD and depression show greater prevalence in women. We began to investigate this connection using females of the genetic model of depression, the inbred Wistar Kyoto More Immobile (WMI) rat. These rats consistently display depression-like behavior compared to the genetically close control, the Wistar Kyoto Less Immobile (WLI) strain. Hippocampus-dependent contextual fear memory did not differ between young WLI and WMI females, but, by middle-age, female WMIs showed memory deficits compared to same age WLIs. This deficit, measured as duration of freezing in the fear provoking-context was not related to activity differences between the strains prior to fear conditioning. Hippocampal expression of AD-related genes, such as amyloid precursor protein, amyloid beta 42, beta secretase, synucleins, total and dephosphorylated tau, and synaptophysin, did not differ between WLIs and WMIs in either age group. However, hippocampal transcript levels of catalase (Cat) and hippocampal and frontal cortex expression of insulin-like growth factor 2 (Igf2) and Igf2 receptor (Igf2r) paralleled fear memory differences between middle-aged WLIs and WMIs. This data suggests that chronic depression-like behavior that is present in this genetic model is a risk factor for early spatial memory decline in females. The molecular mechanisms of this early memory decline likely involve the interaction of aging processes with the genetic components responsible for the depression-like behavior in this model. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Genetics of Unilateral and Bilateral Age-Related Macular Degeneration Severity Stages.

    Science.gov (United States)

    Schick, Tina; Altay, Lebriz; Viehweger, Eva; Hoyng, Carel B; den Hollander, Anneke I; Felsch, Moritz; Fauser, Sascha

    2016-01-01

    Age-related macular degeneration (AMD) is a common disease causing visual impairment and blindness. Various gene variants are strongly associated with late stage AMD, but little is known about the genetics of early forms of the disease. This study evaluated associations of genetic factors and different AMD stages depending on unilateral and bilateral disease severity. In this case-control study, participants were assigned to nine AMD severity stages based on the characteristics of each eye. 18 single nucleotide polymorphisms (SNPs) were genotyped and attempted to correlate with AMD severity stages by uni- and multivariate logistic regression analyses and trend analyses. Area under the receiver operating characteristic curves (AUC) were calculated. Of 3444 individuals 1673 were controls, 379 had early AMD, 333 had intermediate AMD and 989 showed late AMD stages. With increasing severity of disease and bilateralism more SNPs with significant associations were found. Odds ratios, especially for the main risk polymorphisms in ARMS2 (rs10490924) and CFH (rs1061170), gained with increasing disease severity and bilateralism (exemplarily: rs1061170: unilateral early AMD: OR = 1.18; bilateral early AMD: OR = 1.20; unilateral intermediate AMD: OR = 1.28; bilateral intermediate AMD: OR = 1.39, unilateral geographic atrophy (GA): OR = 1.50; bilateral GA: OR = 1.71). Trend analyses showed pstages was lowest for unilateral early AMD (AUC = 0.629) and showed higher values in more severely and bilaterally affected individuals being highest for late AMD with GA in one eye and neovascular AMD in the other eye (AUC = 0.957). The association of known genetic risk factors with AMD became stronger with increasing disease severity, which also led to an increasing discriminative ability of AMD cases and controls. Genetic predisposition was also associated with the disease severity of the fellow-eye, highlighting the importance of both eyes in AMD patients.

  14. Moderation of genetic and environmental influences on diurnal preference by age in adult twins.

    Science.gov (United States)

    Barclay, Nicola L; Watson, Nathaniel F; Buchwald, Dedra; Goldberg, Jack

    2014-03-01

    Diurnal preference changes across the lifespan. However, the mechanisms underlying this age-related shift are poorly understood. The aim of this twin study was to determine the extent to which genetic and environmental influences on diurnal preference are moderated by age. Seven hundred and sixty-eight monozygotic and 674 dizygotic adult twin pairs participating in the University of Washington Twin Registry completed the reduced Morningness-Eveningness Questionnaire as a measure of diurnal preference. Participants ranged in age from 19 to 93 years (mean = 36.23, SD = 15.54) and were categorized on the basis of age into three groups: younger adulthood (19-35 years, n = 1715 individuals), middle adulthood (36-64 years, n = 1003 individuals) and older adulthood (65+ years, n = 168 individuals). Increasing age was associated with an increasing tendency towards morningness (r = 0.42, p influences for the total sample as well as for each age group separately. Additive genetic influences accounted for 52%[46-57%], and non-shared environmental influences 48%[43-54%], of the total variance in diurnal preference. In comparing univariate genetic models between age groups, the best-fitting model was one in which the parameter estimates for younger adults and older adults were equated, in comparison with middle adulthood. For younger and older adulthood, additive genetic influences accounted for 44%[31-49%] and non-shared environmental influences 56%[49-64%] of variance in diurnal preference, whereas for middle adulthood these estimates were 34%[21-45%] and 66%[55-79%], respectively. Therefore, genetic influences on diurnal preference are attenuated in middle adulthood. Attenuation is likely driven by the increased importance of work and family responsibilities during this life stage, in comparison with younger and older adulthood when these factors may be less influential in determining sleep-wake timing. These findings have implications for studies

  15. Genetic mechanisms and age-related macular degeneration: common variants, rare variants, copy number variations, epigenetics, and mitochondrial genetics

    Directory of Open Access Journals (Sweden)

    Liu Melissa M

    2012-08-01

    Full Text Available Abstract Age-related macular degeneration (AMD is a complex and multifaceted disease involving contributions from both genetic and environmental influences. Previous work exploring the genetic contributions of AMD has implicated numerous genomic regions and a variety of candidate genes as modulators of AMD susceptibility. Nevertheless, much of this work has revolved around single-nucleotide polymorphisms (SNPs, and it is apparent that a significant portion of the heritability of AMD cannot be explained through these mechanisms. In this review, we consider the role of common variants, rare variants, copy number variations, epigenetics, microRNAs, and mitochondrial genetics in AMD. Copy number variations in regulators of complement activation genes (CFHR1 and CFHR3 and glutathione S transferase genes (GSTM1 and GSTT1 have been associated with AMD, and several additional loci have been identified as regions of potential interest but require further evaluation. MicroRNA dysregulation has been linked to the retinal pigment epithelium degeneration in geographic atrophy, ocular neovascularization, and oxidative stress, all of which are hallmarks in the pathogenesis of AMD. Certain mitochondrial DNA haplogroups and SNPs in mitochondrially encoded NADH dehydrogenase genes have also been associated with AMD. The role of these additional mechanisms remains only partly understood, but the importance of their further investigation is clear to elucidate more completely the genetic basis of AMD.

  16. Buffering mechanisms in aging: a systems approach toward uncovering the genetic component of aging.

    Directory of Open Access Journals (Sweden)

    Aviv Bergman

    2007-08-01

    Full Text Available An unrealized potential to understand the genetic basis of aging in humans, is to consider the immense survival advantage of the rare individuals who live 100 years or more. The Longevity Gene Study was initiated in 1998 at the Albert Einstein College of Medicine to investigate longevity genes in a selected population: the "oldest old" Ashkenazi Jews, 95 years of age and older, and their children. The study proved the principle that some of these subjects are endowed with longevity-promoting genotypes. Here we reason that some of the favorable genotypes act as mechanisms that buffer the deleterious effect of age-related disease genes. As a result, the frequency of deleterious genotypes may increase among individuals with extreme lifespan because their protective genotype allows disease-related genes to accumulate. Thus, studies of genotypic frequencies among different age groups can elucidate the genetic determinants and pathways responsible for longevity. Borrowing from evolutionary theory, we present arguments regarding the differential survival via buffering mechanisms and their target age-related disease genes in searching for aging and longevity genes. Using more than 1,200 subjects between the sixth and eleventh decades of life (at least 140 subjects in each group, we corroborate our hypotheses experimentally. We study 66 common allelic site polymorphism in 36 candidate genes on the basis of their phenotype. Among them we have identified a candidate-buffering mechanism and its candidate age-related disease gene target. Previously, the beneficial effect of an advantageous cholesteryl ester transfer protein (CETP-VV genotype on lipoprotein particle size in association with decreased metabolic and cardiovascular diseases, as well as with better cognitive function, have been demonstrated. We report an additional advantageous effect of the CETP-VV (favorable genotype in neutralizing the deleterious effects of the lipoprotein(a (LPA gene

  17. Individual genetic variations related to satiety and appetite control increase risk of obesity in preschool-age children in the STRONG kids program.

    Science.gov (United States)

    Wang, Yingying; Wang, Anthony; Donovan, Sharon M; Teran-Garcia, Margarita

    2013-01-01

    The burden of the childhood obesity epidemic is well recognized; nevertheless, the genetic markers and gene-environment interactions associated with the development of common obesity are still unknown. In this study, candidate genes associated to satiety and appetite control pathways with obesity-related traits were tested in Caucasian preschoolers from the STRONG Kids project. Eight genetic variants in genes related to obesity (BDNF, LEPR, FTO, PCSK1, POMC, TUB, LEP, and MC4R) were genotyped in 128 children from the STRONG Kids project (mean age 39.7 months). Data were analyzed for individual associations and to test for genetic predisposition scores (GPSs) with body mass index (BMI) and anthropometric traits (Z-scores, e.g. height-for-age Z-score, HAZ). Covariates included age, sex, and breastfeeding (BF) duration. Obesity and overweight prevalence was 6.3 and 19.5%, respectively, according to age- and sex-specific BMI percentiles. Individual genetic associations of MC4R and LEPR markers with HAZ were strengthened when BF duration was included as a covariate. Our GPSs show that, as the number of risk alleles increased, the risk of higher BMI and HAZ also increased. Overall, the GPSs assembled were able to explain 2-3% of the variability in BMI and HAZ phenotypes. Genetic associations with common obesity-related phenotypes were found in the STRONG Kids project. GPSs assembled for specific candidate genes were associated with BMI and HAZ phenotypes. © 2013 S. Karger AG, Basel.

  18. A roadmap for the genetic analysis of renal aging.

    Science.gov (United States)

    Noordmans, Gerda A; Hillebrands, Jan-Luuk; van Goor, Harry; Korstanje, Ron

    2015-10-01

    Several studies show evidence for the genetic basis of renal disease, which renders some individuals more prone than others to accelerated renal aging. Studying the genetics of renal aging can help us to identify genes involved in this process and to unravel the underlying pathways. First, this opinion article will give an overview of the phenotypes that can be observed in age-related kidney disease. Accurate phenotyping is essential in performing genetic analysis. For kidney aging, this could include both functional and structural changes. Subsequently, this article reviews the studies that report on candidate genes associated with renal aging in humans and mice. Several loci or candidate genes have been found associated with kidney disease, but identification of the specific genetic variants involved has proven to be difficult. CUBN, UMOD, and SHROOM3 were identified by human GWAS as being associated with albuminuria, kidney function, and chronic kidney disease (CKD). These are promising examples of genes that could be involved in renal aging, and were further mechanistically evaluated in animal models. Eventually, we will provide approaches for performing genetic analysis. We should leverage the power of mouse models, as testing in humans is limited. Mouse and other animal models can be used to explain the underlying biological mechanisms of genes and loci identified by human GWAS. Furthermore, mouse models can be used to identify genetic variants associated with age-associated histological changes, of which Far2, Wisp2, and Esrrg are examples. A new outbred mouse population with high genetic diversity will facilitate the identification of genes associated with renal aging by enabling high-resolution genetic mapping while also allowing the control of environmental factors, and by enabling access to renal tissues at specific time points for histology, proteomics, and gene expression. © 2015 The Authors. Aging Cell published by the Anatomical Society and John

  19. Mechanism of Inflammation in Age-Related Macular Degeneration: An Up-to-Date on Genetic Landmarks

    Directory of Open Access Journals (Sweden)

    Francesco Parmeggiani

    2013-01-01

    Full Text Available Age-related macular degeneration (AMD is the most common cause of irreversible visual impairment among people over 50 years of age, accounting for up to 50% of all cases of legal blindness in Western countries. Although the aging represents the main determinant of AMD, it must be considered a multifaceted disease caused by interactions among environmental risk factors and genetic backgrounds. Mounting evidence and/or arguments document the crucial role of inflammation and immune-mediated processes in the pathogenesis of AMD. Proinflammatory effects secondary to chronic inflammation (e.g., alternative complement activation and heterogeneous types of oxidative stress (e.g., impaired cholesterol homeostasis can result in degenerative damages at the level of crucial macular structures, that is photoreceptors, retinal pigment epithelium, and Bruch’s membrane. In the most recent years, the association of AMD with genes, directly or indirectly, involved in immunoinflammatory pathways is increasingly becoming an essential core for AMD knowledge. Starting from the key basic-research notions detectable at the root of AMD pathogenesis, the present up-to-date paper reviews the best-known and/or the most attractive genetic findings linked to the mechanisms of inflammation of this complex disease.

  20. Guidelines on the use of molecular genetics in reintroduction programs

    Science.gov (United States)

    Michael K. Schwartz

    2005-01-01

    The use of molecular genetics can play a key role in reintroduction efforts. Prior to the introduction of any individuals, molecular genetics can be used to identify the most appropriate source population for the reintroduction, ensure that no relic populations exist in the reintroduction area, and guide captive breeding programs. The use of molecular genetics post-...

  1. Application of molecular genetic tools for forest pathology

    Science.gov (United States)

    Mee-Sook Kim; John Hanna; Amy Ross-Davis; Ned Klopfenstein

    2012-01-01

    In recent years, advances in molecular genetics have provided powerful tools to address critical issues in forest pathology to help promote resilient forests. Although molecular genetic tools are initially applied to understand individual components of forest pathosystems, forest pathosystems involve dynamic interactions among biotic and abiotic components of the...

  2. Molecular genetic gene-environment studies using candidate genes in schizophrenia: a systematic review.

    Science.gov (United States)

    Modinos, Gemma; Iyegbe, Conrad; Prata, Diana; Rivera, Margarita; Kempton, Matthew J; Valmaggia, Lucia R; Sham, Pak C; van Os, Jim; McGuire, Philip

    2013-11-01

    The relatively high heritability of schizophrenia suggests that genetic factors play an important role in the etiology of the disorder. On the other hand, a number of environmental factors significantly influence its incidence. As few direct genetic effects have been demonstrated, and there is considerable inter-individual heterogeneity in the response to the known environmental factors, interactions between genetic and environmental factors may be important in determining whether an individual develops the disorder. To date, a considerable number of studies of gene-environment interactions (G×E) in schizophrenia have employed a hypothesis-based molecular genetic approach using candidate genes, which have led to a range of different findings. This systematic review aims to summarize the results from molecular genetic candidate studies and to review challenges and opportunities of this approach in psychosis research. Finally, we discuss the potential of future prospects, such as new studies that combine hypothesis-based molecular genetic candidate approaches with agnostic genome-wide association studies in determining schizophrenia risk. © 2013 Elsevier B.V. All rights reserved.

  3. A roadmap for the genetic analysis of renal aging

    Science.gov (United States)

    Noordmans, Gerda A; Hillebrands, Jan-Luuk; van Goor, Harry; Korstanje, Ron

    2015-01-01

    Several studies show evidence for the genetic basis of renal disease, which renders some individuals more prone than others to accelerated renal aging. Studying the genetics of renal aging can help us to identify genes involved in this process and to unravel the underlying pathways. First, this opinion article will give an overview of the phenotypes that can be observed in age-related kidney disease. Accurate phenotyping is essential in performing genetic analysis. For kidney aging, this could include both functional and structural changes. Subsequently, this article reviews the studies that report on candidate genes associated with renal aging in humans and mice. Several loci or candidate genes have been found associated with kidney disease, but identification of the specific genetic variants involved has proven to be difficult. CUBN, UMOD, and SHROOM3 were identified by human GWAS as being associated with albuminuria, kidney function, and chronic kidney disease (CKD). These are promising examples of genes that could be involved in renal aging, and were further mechanistically evaluated in animal models. Eventually, we will provide approaches for performing genetic analysis. We should leverage the power of mouse models, as testing in humans is limited. Mouse and other animal models can be used to explain the underlying biological mechanisms of genes and loci identified by human GWAS. Furthermore, mouse models can be used to identify genetic variants associated with age-associated histological changes, of which Far2, Wisp2, and Esrrg are examples. A new outbred mouse population with high genetic diversity will facilitate the identification of genes associated with renal aging by enabling high-resolution genetic mapping while also allowing the control of environmental factors, and by enabling access to renal tissues at specific time points for histology, proteomics, and gene expression. PMID:26219736

  4. Molecular marker systems for Oenothera genetics.

    Science.gov (United States)

    Rauwolf, Uwe; Golczyk, Hieronim; Meurer, Jörg; Herrmann, Reinhold G; Greiner, Stephan

    2008-11-01

    The genus Oenothera has an outstanding scientific tradition. It has been a model for studying aspects of chromosome evolution and speciation, including the impact of plastid nuclear co-evolution. A large collection of strains analyzed during a century of experimental work and unique genetic possibilities allow the exchange of genetically definable plastids, individual or multiple chromosomes, and/or entire haploid genomes (Renner complexes) between species. However, molecular genetic approaches for the genus are largely lacking. In this study, we describe the development of efficient PCR-based marker systems for both the nuclear genome and the plastome. They allow distinguishing individual chromosomes, Renner complexes, plastomes, and subplastomes. We demonstrate their application by monitoring interspecific exchanges of genomes, chromosome pairs, and/or plastids during crossing programs, e.g., to produce plastome-genome incompatible hybrids. Using an appropriate partial permanent translocation heterozygous hybrid, linkage group 7 of the molecular map could be assigned to chromosome 9.8 of the classical Oenothera map. Finally, we provide the first direct molecular evidence that homologous recombination and free segregation of chromosomes in permanent translocation heterozygous strains is suppressed.

  5. Age at natural menopause genetic risk score in relation to age at natural menopause and primary open-angle glaucoma in a US-based sample.

    Science.gov (United States)

    Pasquale, Louis R; Aschard, Hugues; Kang, Jae H; Bailey, Jessica N Cooke; Lindström, Sara; Chasman, Daniel I; Christen, William G; Allingham, R Rand; Ashley-Koch, Allison; Lee, Richard K; Moroi, Sayoko E; Brilliant, Murray H; Wollstein, Gadi; Schuman, Joel S; Fingert, John; Budenz, Donald L; Realini, Tony; Gaasterland, Terry; Gaasterland, Douglas; Scott, William K; Singh, Kuldev; Sit, Arthur J; Igo, Robert P; Song, Yeunjoo E; Hark, Lisa; Ritch, Robert; Rhee, Douglas J; Gulati, Vikas; Havens, Shane; Vollrath, Douglas; Zack, Donald J; Medeiros, Felipe; Weinreb, Robert N; Pericak-Vance, Margaret A; Liu, Yutao; Kraft, Peter; Richards, Julia E; Rosner, Bernard A; Hauser, Michael A; Haines, Jonathan L; Wiggs, Janey L

    2017-02-01

    Several attributes of female reproductive history, including age at natural menopause (ANM), have been related to primary open-angle glaucoma (POAG). We assembled 18 previously reported common genetic variants that predict ANM to determine their association with ANM or POAG. Using data from the Nurses' Health Study (7,143 women), we validated the ANM weighted genetic risk score in relation to self-reported ANM. Subsequently, to assess the relation with POAG, we used data from 2,160 female POAG cases and 29,110 controls in the National Eye Institute Glaucoma Human Genetics Collaboration Heritable Overall Operational Database (NEIGHBORHOOD), which consists of 8 datasets with imputed genotypes to 5.6+ million markers. Associations with POAG were assessed in each dataset, and site-specific results were meta-analyzed using the inverse weighted variance method. The genetic risk score was associated with self-reported ANM (P = 2.2 × 10) and predicted 4.8% of the variance in ANM. The ANM genetic risk score was not associated with POAG (Odds Ratio (OR) = 1.002; 95% Confidence Interval (CI): 0.998, 1.007; P = 0.28). No single genetic variant in the panel achieved nominal association with POAG (P ≥0.20). Compared to the middle 80 percent, there was also no association with the lowest 10 percentile or highest 90 percentile of genetic risk score with POAG (OR = 0.75; 95% CI: 0.47, 1.21; P = 0.23 and OR = 1.10; 95% CI: 0.72, 1.69; P = 0.65, respectively). A genetic risk score predicting 4.8% of ANM variation was not related to POAG; thus, genetic determinants of ANM are unlikely to explain the previously reported association between the two phenotypes.

  6. Molecular genetic markers for thyroid FNAB. Established assays and future perspective.

    Science.gov (United States)

    Musholt, Thomas J; Musholt, P B

    2015-01-01

    Thyroid nodules > 1 cm are observed in about 12% of unselected adult employees aged 18-65 years screened by ultrasound scan (40). While intensive ultrasound screening leads to early detection of thyroid diseases, the determination of benign or malignant behaviour remains uncertain and may trigger anxieties in many patients and their physicians. A considerable number of thyroid resections are consecutively performed due to suspicion of malignancy in the detected nodes. Fine needle aspiration biopsy (FNAB) has been recommended for the assessment of thyroid nodules to facilitate detection of thyroid carcinomas but also to rule out malignancy and thereby avoid unnecessary thyroid resections. However, cytology results are dependent on experience of the respective cytologist and unfortunately inconclusive in many cases. Molecular genetic markers are already used nowadays to enhance sensitivity and specificity of FNAB cytology in some centers in Germany. The most clinically relevant molecular genetic markers as pre-operative diagnostic tools and the clinical implications for the intraoperative and postoperative management were reviewed. Molecular genetic markers predominantly focus on the preoperative detection of thyroid malignancies rather than the exclusion of thyroid carcinomas. While some centers routinely assess FNABs, other centers concentrate on FNABs with cytology results of follicular neoplasia or suspicion of thyroid carcinoma. Predominantly mutations of BRAF, RET/PTC, RAS, and PAX8/PPARγ or expression of miRNAs are analyzed. However, only the detection of BRAF mutations predicts the presence of (papillary) thyroid malignancy with almost 98% probability, indicating necessity of oncologic thyroid resections irrespective of the cytology result. Other genetic alterations are associated with thyroid malignancy with varying frequency and achieve less impact on the clinical management. Molecular genetic analysis of FNABs is increasingly performed in Germany

  7. Child Development and Molecular Genetics: 14 Years Later

    Science.gov (United States)

    Plomin, Robert

    2013-01-01

    Fourteen years ago, the first article on molecular genetics was published in this journal: "Child Development, Molecular Genetics, and What to Do With Genes Once They Are Found" (R. Plomin & M. Rutter, 1998). The goal of the article was to outline what developmentalists can do with genes once they are found. These new directions for developmental…

  8. Supplementary data: The m olecular genetic basis of age-related ...

    Indian Academy of Sciences (India)

    Supplementary data, J. Genet. 88, 425–449. Ta b le. 1. (contd. ) S tudy. Age g roup. All. E arly. Intermediate. Advanced. Associated. P opulatio n. S ub groups. L o catio n. (T ime frame). P articip ants. (N. ) (Y r). A. MD. A. M. D. A. MD. A. M. D risk factor. P valu e. O. R. (95%CI). R eference. Icelandic. Iceland. R eykjav ik ey e.

  9. Molecular Genetics of Beauveria bassiana Infection of Insects.

    Science.gov (United States)

    Ortiz-Urquiza, A; Keyhani, N O

    2016-01-01

    Research on the insect pathogenic filamentous fungus, Beauveria bassiana has witnessed significant growth in recent years from mainly physiological studies related to its insect biological control potential, to addressing fundamental questions regarding the underlying molecular mechanisms of fungal development and virulence. This has been in part due to a confluence of robust genetic tools and genomic resources for the fungus, and recognition of expanded ecological interactions with which the fungus engages. Beauveria bassiana is a broad host range insect pathogen that has the ability to form intimate symbiotic relationships with plants. Indeed, there is an increasing realization that the latter may be the predominant environmental interaction in which the fungus participates, and that insect parasitism may be an opportunist lifestyle evolved due to the carbon- and nitrogen-rich resources present in insect bodies. Here, we will review progress on the molecular genetics of B. bassiana, which has largely been directed toward identifying genetic pathways involved in stress response and virulence assumed to have practical applications in improving the insect control potential of the fungus. Important strides have also been made in understanding aspects of B. bassiana development. Finally, although increasingly apparent in a number of studies, there is a need for progressing beyond phenotypic mutant characterization to sufficiently investigate the molecular mechanisms underlying B. bassiana's unique and diverse lifestyles as saprophyte, insect pathogen, and plant mutualist. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Heritability of Age-Related Hearing Loss in Middle-Aged and Elderly Chinese

    DEFF Research Database (Denmark)

    Duan, Haiping; Zhang, Dongfeng; Liang, Yajun

    2018-01-01

    OBJECTIVES: The heritability of age-related hearing loss has been studied mostly in developed countries. The authors aimed to estimate the heritability of better ear hearing level (BEHL), defined as hearing level of the better ear at a given frequency, and pure-tone averages at the middle (0.5, 1.......0, and 2.0 kHz) and high (4.0, 8.0, and 12.5 kHz) frequencies among middle-aged and elderly Chinese twins, and to explore their genetic correlations. DESIGN: This population-based twin study included 226 monozygotic and 132 dizygotic twin-pairs and 1 triplet (age range, 33 to 80 years; mean age, 51.......75 at high frequencies. CONCLUSIONS: This population-based twin study suggests that genetic factors are associated with age-related hearing loss at middle and high frequencies among middle-aged and elderly Chinese....

  11. Incorporating personalized gene sequence variants, molecular genetics knowledge, and health knowledge into an EHR prototype based on the Continuity of Care Record standard

    Science.gov (United States)

    Jing, Xia; Kay, Stephen; Marley, Tom; Hardiker, Nicholas R.; Cimino, James J.

    2011-01-01

    Summary Objectives The current volume and complexity of genetic tests, and the molecular genetics knowledge and health knowledge related to interpretation of the results of those tests, are rapidly outstripping the ability of individual clinicians to recall, understand and convey to their patients information relevant to their care. The tailoring of molecular genetics knowledge and health knowledge in clinical settings is important both for the provision of personalized medicine and to reduce clinician information overload. In this paper we describe the incorporation, customization and demonstration of molecular genetic data (mainly sequence variants), molecular genetics knowledge and health knowledge into a standards-based electronic health record (EHR) prototype developed specifically for this study. Methods We extended the CCR (Continuity of Care Record), an existing EHR standard for representing clinical data, to include molecular genetic data. An EHR prototype was built based on the extended CCR and designed to display relevant molecular genetics knowledge and health knowledge from an existing knowledge base for cystic fibrosis (OntoKBCF). We reconstructed test records from published case reports and represented them in the CCR schema. We then used the EHR to dynamically filter molecular genetics knowledge and health knowledge from OntoKBCF using molecular genetic data and clinical data from the test cases. Results The molecular genetic data were successfully incorporated in the CCR by creating a category of laboratory results called “Molecular Genetics ” and specifying a particular class of test (“Gene Mutation Test”) in this category. Unlike other laboratory tests reported in the CCR, results of tests in this class required additional attributes (“Molecular Structure” and “Molecular Position”) to support interpretation by clinicians. These results, along with clinical data (age, sex, ethnicity, diagnostic procedures, and therapies) were used

  12. Genetic variants of age at menopause are not related to timing of ovarian failure in breast cancer survivors.

    Science.gov (United States)

    Homer, Michael V; Charo, Lindsey M; Natarajan, Loki; Haunschild, Carolyn; Chung, Karine; Mao, Jun J; DeMichele, Angela M; Su, H Irene

    2017-06-01

    To determine if interindividual genetic variation in single-nucleotide polymorphisms (SNPs) related to age at natural menopause is associated with risk of ovarian failure in breast cancer survivors. A prospective cohort of 169 premenopausal breast cancer survivors recruited at diagnosis with stages 0 to III disease were followed longitudinally for menstrual pattern via self-reported daily menstrual diaries. Participants were genotyped for 13 SNPs previously found to be associated with age at natural menopause: EXO1, TLK1, HELQ, UIMC1, PRIM1, POLG, TMEM224, BRSK1, and MCM8. A risk variable summed the total number of risk alleles in each participant. The association between individual genotypes, and also the risk variable, and time to ovarian failure (>12 months of amenorrhea) was tested using time-to-event methods. Median age at enrollment was 40.5 years (range 20.6-46.1). The majority of participants were white (69%) and underwent chemotherapy (76%). Thirty-eight participants (22%) experienced ovarian failure. None of the candidate SNPs or the summary risk variable was significantly associated with time to ovarian failure. Sensitivity analysis restricted to whites or only to participants receiving chemotherapy yielded similar findings. Older age, chemotherapy exposure, and lower body mass index were related to shorter time to ovarian failure. Thirteen previously identified genetic variants associated with time to natural menopause were not related to timing of ovarian failure in breast cancer survivors.

  13. Molecular aging and rejuvenation of human muscle stem cells

    DEFF Research Database (Denmark)

    Carlson, Morgan E; Suetta, Charlotte; Conboy, Michael J

    2009-01-01

    . Our findings establish key evolutionarily conserved mechanisms of human stem cell aging. We find that satellite cells are maintained in aged human skeletal muscle, but fail to activate in response to muscle attrition, due to diminished activation of Notch compounded by elevated transforming growth...... factor beta (TGF-beta)/phospho Smad3 (pSmad3). Furthermore, this work reveals that mitogen-activated protein kinase (MAPK)/phosphate extracellular signal-regulated kinase (pERK) signalling declines in human muscle with age, and is important for activating Notch in human muscle stem cells. This molecular......Very little remains known about the regulation of human organ stem cells (in general, and during the aging process), and most previous data were collected in short-lived rodents. We examined whether stem cell aging in rodents could be extrapolated to genetically and environmentally variable humans...

  14. Advances in genetics. Volume 22: Molecular genetics of plants

    International Nuclear Information System (INIS)

    Scandalios, J.G.; Caspari, E.W.

    1984-01-01

    This book contains the following four chapters: Structural Variation in Mitochondrial DNA; The Structure and Expression of Nuclear Genes in Higher Plants; Chromatin Structure and Gene Regulation in Higher Plants; and The Molecular Genetics of Crown Gall Tumorigenesis

  15. The Molecular Genetics of von Willebrand Disease

    Directory of Open Access Journals (Sweden)

    Ergül Berber

    2012-12-01

    Full Text Available Quantitative and/or qualitative deficiency of von Willebrand factor (vWF is associated with the most common inherited bleeding disease von Willebrand disease (vWD. vWD is a complex disease with clinical and genetic heterogeneity. Incomplete penetrance and variable expression due to genetic and environmental factors contribute to its complexity. vWD also has a complex molecular pathogenesis. Some vWF gene mutations are associated with the affected vWF biosynthesis and multimerization, whereas others are associated with increased clearance and functional impairment. Moreover, in addition to a particular mutation, type O blood may result in the more severe phenotype. The present review aimed to provide a summary of the current literature on the molecular genetics of vWD.

  16. The molecular genetics of von Willebrand disease.

    Science.gov (United States)

    Berber, Ergül

    2012-12-01

    Quantitative and/or qualitative deficiency of von Willebrand factor (vWF) is associated with the most common inherited bleeding disease von Willebrand disease (vWD). vWD is a complex disease with clinical and genetic heterogeneity. Incomplete penetrance and variable expression due to genetic and environmental factors contribute to its complexity. vWD also has a complex molecular pathogenesis. Some vWF gene mutations are associated with the affected vWF biosynthesis and multimerization, whereas others are associated with increased clearance and functional impairment. Moreover, in addition to a particular mutation, type O blood may result in the more severe phenotype. The present review aimed to provide a summary of the current literature on the molecular genetics of vWD. None declared.

  17. Genetics Home Reference: age-related hearing loss

    Science.gov (United States)

    ... quality of life. Because affected individuals have trouble understanding speech, the condition affects their ability to communicate. It can contribute to social isolation, depression, and loss of self-esteem. Age-related hearing loss also causes safety issues if individuals become ...

  18. Genetic contributions to age-related decline in executive function: a 10-year longitudinal study of COMT and BDNF polymorphisms

    Directory of Open Access Journals (Sweden)

    Kirk I Erickson

    2008-09-01

    Full Text Available Genetic variability in the dopaminergic and neurotrophic systems could contribute to age-related impairments in executive control and memory function. In this study we examined whether genetic polymorphisms for catechol-O-methyltransferase (COMT and brain-derived neurotrophic factor (BDNF were related to the trajectory of cognitive decline occurring over a 10-year period in older adults. A single-nucleotide polymorphism (SNP in the COMT (Val158/108Met gene affects the concentration of dopamine in the prefrontal cortex. In addition, a Val/Met substitution in the pro-domain for BDNF (Val66Met affects the regulated secretion and trafficking of BDNF with Met carriers showing reduced secretion and poorer cognitive function. We found that impairments over the 10-year span on a task-switching paradigm did not vary as a function of the COMT polymorphism. However, for the BDNF polymorphism the Met carriers performed worse than Val homozygotes at the first testing session but only the Val homozygotes demonstrated a significant reduction in performance over the 10-year span. Our results argue that the COMT polymorphism does not affect the trajectory of age-related executive control decline, whereas the Val/Val polymorphism for BDNF may promote faster rates of cognitive decay in old age. These results are discussed in relation to the role of BDNF in senescence and the transforming impact of the Met allele on cognitive function in old age.

  19. Molecular genetic studies in flax (Linum usitatissimum L.)

    NARCIS (Netherlands)

    Vromans, J.

    2006-01-01

    In this thesis five molecular genetic studies on flax ( Linum usitatissimum L.) are described, of which two chapters aim to characterize the genetic structure and the amount of genetic diversity in the primary and secondary gene pool of the crop species. Three chapters describe the development of

  20. Assessing Date Palm Genetic Diversity Using Different Molecular Markers.

    Science.gov (United States)

    Atia, Mohamed A M; Sakr, Mahmoud M; Adawy, Sami S

    2017-01-01

    Molecular marker technologies which rely on DNA analysis provide powerful tools to assess biodiversity at different levels, i.e., among and within species. A range of different molecular marker techniques have been developed and extensively applied for detecting variability in date palm at the DNA level. Recently, the employment of gene-targeting molecular marker approaches to study biodiversity and genetic variations in many plant species has increased the attention of researchers interested in date palm to carry out phylogenetic studies using these novel marker systems. Molecular markers are good indicators of genetic distances among accessions, because DNA-based markers are neutral in the face of selection. Here we describe the employment of multidisciplinary molecular marker approaches: amplified fragment length polymorphism (AFLP), start codon targeted (SCoT) polymorphism, conserved DNA-derived polymorphism (CDDP), intron-targeted amplified polymorphism (ITAP), simple sequence repeats (SSR), and random amplified polymorphic DNA (RAPD) to assess genetic diversity in date palm.

  1. Genetic Variability in DNA Repair Proteins in Age-Related Macular Degeneration

    Directory of Open Access Journals (Sweden)

    Janusz Blasiak

    2012-10-01

    Full Text Available The pathogenesis of age-related macular degeneration (AMD is complex and involves interactions between environmental and genetic factors, with oxidative stress playing an important role inducing damage in biomolecules, including DNA. Therefore, genetic variability in the components of DNA repair systems may influence the ability of the cell to cope with oxidative stress and in this way contribute to the pathogenesis of AMD. However, few reports have been published on this subject so far. We demonstrated that the c.977C>G polymorphism (rs1052133 in the hOGG1 gene and the c.972G>C polymorphism (rs3219489 in the MUTYH gene, the products of which play important roles in the repair of oxidatively damaged DNA, might be associated with the risk of AMD. Oxidative stress may promote misincorporation of uracil into DNA, where it is targeted by several DNA glycosylases. We observed that the g.4235T>C (rs2337395 and c.−32A>G (rs3087404 polymorphisms in two genes encoding such glycosylases, UNG and SMUG1, respectively, could be associated with the occurrence of AMD. Polymorphisms in some other DNA repair genes, including XPD (ERCC2, XRCC1 and ERCC6 (CSB have also been reported to be associated with AMD. These data confirm the importance of the cellular reaction to DNA damage, and this may be influenced by variability in DNA repair genes, in AMD pathogenesis.

  2. Aging and a genetic KIBRA polymorphism interactively affect feedback- and observation-based probabilistic classification learning.

    Science.gov (United States)

    Schuck, Nicolas W; Petok, Jessica R; Meeter, Martijn; Schjeide, Brit-Maren M; Schröder, Julia; Bertram, Lars; Gluck, Mark A; Li, Shu-Chen

    2018-01-01

    Probabilistic category learning involves complex interactions between the hippocampus and striatum that may depend on whether acquisition occurs via feedback or observation. Little is known about how healthy aging affects these processes. We tested whether age-related behavioral differences in probabilistic category learning from feedback or observation depend on a genetic factor known to influence individual differences in hippocampal function, the KIBRA gene (single nucleotide polymorphism rs17070145). Results showed comparable age-related performance impairments in observational as well as feedback-based learning. Moreover, genetic analyses indicated an age-related interactive effect of KIBRA on learning: among older adults, the beneficial T-allele was positively associated with learning from feedback, but negatively with learning from observation. In younger adults, no effects of KIBRA were found. Our results add behavioral genetic evidence to emerging data showing age-related differences in how neural resources relate to memory functions, namely that hippocampal and striatal contributions to probabilistic category learning may vary with age. Our findings highlight the effects genetic factors can have on differential age-related decline of different memory functions. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Nasopharyngeal angiofibroma: review of the genetic and molecular aspects

    Directory of Open Access Journals (Sweden)

    Oliveira, Viviane Boaventura de

    2008-09-01

    Full Text Available Introduction: Juvenile nasopharyngeal angiofibroma (JNA is a rare fibrovascular tumor of unknown etiology, with few studies analyzing its pathogenesis. Objective: Reviewing JNA's pathogenesis, emphasizing genetic and molecular aspects. Method: All the relevant articles indexed in PUBMED and LILACS, besides reference book chapters, published between 1959 and 2007 were reviewed. Results: The sex selectivity seen in JNA may be explained by intranuclear accumulation of androgen receptor and beta-catenin, a co-activator which increases the tumor sensitivity to androgynous. The genetic alterations seen in JNA are most frequently located in sexual chromosomes. A number of growth factors seem to be related to the tumor pathogenesis. The insulin-like growth factor II is highly expressed while the vascular endothelial growth factor and the transforming growth factor beta are released by stromal cells and may influence the JNA's growth and vascularization. Conclusion: In spite of the scarce data describing the JNA etiology and pathogenesis, genetic and molecular factors seem to collaborate to the understanding of the disease's many clinical and morphological features. Knowledge regarding these specific issues could contribute for the establishment of potential therapeutic targets in the future.

  4. Molecular characterization and assessment of genetic diversity of ...

    African Journals Online (AJOL)

    R Madhusudhana

    genetic diversity available at molecular level among a set of phenotypically different ... allele matching and cluster analysis based on unweighted neighbor- joining (Gascuel, 1997) ..... on isozyme data-a simulation study. Theor. Appl. Genet.

  5. Improving Molecular Genetic Test Utilization through Order Restriction, Test Review, and Guidance.

    Science.gov (United States)

    Riley, Jacquelyn D; Procop, Gary W; Kottke-Marchant, Kandice; Wyllie, Robert; Lacbawan, Felicitas L

    2015-05-01

    The ordering of molecular genetic tests by health providers not well trained in genetics may have a variety of untoward effects. These include the selection of inappropriate tests, the ordering of panels when the assessment of individual or fewer genes would be more appropriate, inaccurate result interpretation and inappropriate patient guidance, and significant unwarranted cost expenditure. We sought to improve the utilization of molecular genetic tests by requiring providers without specialty training in genetics to use genetic counselors and molecular genetic pathologists to assist in test selection. We used a genetic and genomic test review process wherein the laboratory-based genetic counselor performed the preanalytic assessment of test orders and test triage. Test indication and clinical findings were evaluated against the test panel composition, methods, and test limitations under the supervision of the molecular genetic pathologist. These test utilization management efforts resulted in a decrease in genetic test ordering and a gross cost savings of $1,531,913 since the inception of these programs in September 2011 through December 2013. The combination of limiting the availability of complex genetic tests and providing guidance regarding appropriate test strategies is an effective way to improve genetic tests, contributing to judicious use of limited health care resources. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  6. Reno-endocrinal disorders: A basic understanding of the molecular genetics

    Directory of Open Access Journals (Sweden)

    Sukhminder Jit Singh Bajwa

    2012-01-01

    Full Text Available The successful management of endocrine diseases is greatly helped by the complete understanding of the underlying pathology. The knowledge about the molecular genetics contributes immensely in the appropriate identification of the causative factors of the diseases and their subsequent management. The fields of nephrology and endocrinology are also interrelated to a large extent. Besides performing the secretory functions, the renal tissue also acts as target organ for many hormones such as antidiuretic hormone (ADH, atrial natriuretic peptides (ANP, and aldosterone. Understanding the molecular genetics of these hormones is important because the therapeutic interventions in many of these conditions is related to shared renal and endocrine functions, including the anemia of renal disease, chronic kidney disease, mineral bone disorders, and hypertension related to chronic kidney disease. Their understanding and in-depth knowledge is very essential in designing and formulating the therapeutic plans and innovating new management strategies. However, we still have to go a long way in order to completely understand the various confounding causative relationships between the pathology and disease of these reno-endocrinal manifestations.

  7. Antagonistic pleiotropy and mutation accumulation contribute to age-related decline in stress response.

    Science.gov (United States)

    Everman, Elizabeth R; Morgan, Theodore J

    2018-02-01

    As organisms age, the effectiveness of natural selection weakens, leading to age-related decline in fitness-related traits. The evolution of age-related changes associated with senescence is likely influenced by mutation accumulation (MA) and antagonistic pleiotropy (AP). MA predicts that age-related decline in fitness components is driven by age-specific sets of alleles, nonnegative genetic correlations within trait across age, and an increase in the coefficient of genetic variance. AP predicts that age-related decline in a trait is driven by alleles with positive effects on fitness in young individuals and negative effects in old individuals, and is expected to lead to negative genetic correlations within traits across age. We build on these predictions using an association mapping approach to investigate the change in additive effects of SNPs across age and among traits for multiple stress-response fitness-related traits, including cold stress with and without acclimation and starvation resistance. We found support for both MA and AP theories of aging in the age-related decline in stress tolerance. Our study demonstrates that the evolution of age-related decline in stress tolerance is driven by a combination of alleles that have age-specific additive effects, consistent with MA, as well as nonindependent and antagonistic genetic architectures characteristic of AP. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  8. The complement system in age-related macular degeneration: A review of rare genetic variants and implications for personalized treatment

    NARCIS (Netherlands)

    Geerlings, M.J.; Jong, E.K.; Hollander, A.I. den

    2017-01-01

    Age-related macular degeneration (AMD) is a progressive retinal disease and the major cause of irreversible vision loss in the elderly. Numerous studies have found both common and rare genetic variants in the complement pathway to play a role in the pathogenesis of AMD. In this review we provide an

  9. Genetic insights into age-related macular degeneration: Controversies addressing Risk, Causality, and Therapeutics

    Science.gov (United States)

    Gorin, Michael B.

    2012-01-01

    Age-related macular degeneration (AMD) is a common condition among the elderly population that leads to the progressive central vision loss and serious compromise of quality of life for its sufferers. It is also one of the few disorders for whom the investigation of its genetics has yielded rich insights into its diversity and causality and holds the promise of enabling clinicians to provide better risk assessments for individuals as well as to develop and selectively deploy new therapeutics to either prevent or slow the development of disease and lessen the threat of vision loss. The genetics of AMD began initially with the appreciation of familial aggregation and increase risk and expanded with the initial association of APOE variants with the disease. The first major breakthroughs came with family-based linkage studies of affected (and discordant) sibs, which identified a number of genetic loci and led to the targeted search of the 1q31 and 10q26 loci for associated variants. Three of the initial four reports for the CFH variant, Y402H, were based on regional candidate searches, as were the two initial reports of the ARMS2/HTRA1 locus variants. Case-control association studies initially also played a role in discovering the major genetic variants for AMD, and the success of those early studies have been used to fuel enthusiasm for the methodology for a number of diseases. Until 2010, all of the subsequent genetic variants associated with AMD came from candidate gene testing based on the complement factor pathway. In 2010, several large-scale genome-wide association studies (GWAS) identified genes that had not been previously identified. Much of this historical information is available in a number of recent reviews.(Chen et al., 2010b; Deangelis et al., 2011; Fafowora and Gorin, 2012b; Francis and Klein, 2011; Kokotas et al., 2011) Large meta analysis of AMD GWAS has added new loci and variants to this collection.(Chen et al., 2010a; Kopplin et al., 2010; Yu et

  10. NEW MOLECULAR TECHNOLOGIES IN GENETIC DIAGNOSIS OF MALE INFERTILITY

    Directory of Open Access Journals (Sweden)

    V. B. Chernykh

    2017-01-01

    Full Text Available In recent years, the accelerated development of technologies in the field of molecular genetics and cytogenetics has led to significant opportunities of the research and diagnosis of mutations and variations of the genome. This article provides a brief review of new molecular technology, also as the results of their use in reproductive medicine and their perspectives in the genetic diagnosis of male infertility. 

  11. Development of age-related maculopathy: a histochemical and molecular approach

    NARCIS (Netherlands)

    A.C. Lambooij (Antoinette)

    2002-01-01

    textabstractAge-related maculopathy (ARM) is a severe threat to the visual ability of people over 65 years of age. In the late stages of ARM, called age-related macular degeneration (AMD), photoreceptor cells gradually disappear. New vessels growing beneath the retina may complicateb the disease;

  12. Molecular diversity and genetic relationships in Secale

    Indian Academy of Sciences (India)

    Molecular diversity and genetic relationships in Secale. E. Santos, M. Matos, P. Silva, A. M. Figueiras, C. Benito and O. Pinto-Carnide. J. Genet. 95, 273–281. Table 1. RAPD and ISSR primers used in this study. Primer. 5 –3. Primer. 5 –3. RAPDs (Operon). A1. CAGGCCCTTC. C5. CATGACCGCC. A4. AATCGGGCTG. C6.

  13. MOLECULAR GENETIC MARKERS AND METHODS OF THEIR IDENTIFICATION IN MODERN FISH-FARMING

    Directory of Open Access Journals (Sweden)

    I. Hrytsyniak

    2014-03-01

    Full Text Available Purpose. The application of molecular genetic markers has been widely used in modern experimental fish-farming in recent years. This methodology is currently presented by a differentiated approach with individual mechanisms and clearly defined possibilities. Numerous publications in the scientific literature that are dedicated to molecular genetic markers for the most part offer purely practical data. Thus, the synthesis and analysis of existing information on the general principles of action and the limits of the main methods of using molecular genetic markers is an actual problem. In particular, such a description will make it possible to plan more effectively the experiment and to obtain the desired results with high reliability. Findings. The main types of variable parts of DNA that can be used as molecular genetic markers in determining the level of stock hybridization, conducting genetic inventory of population and solving other problems in modern fish-farming are described in this paper. Also, the article provides an overview of principal modern methods that can be used to identify molecular genetic markers. Originality. This work is a generalization of modern ideas about the mechanisms of experiments with molecular genetic markers in fish-farming. Information is provided in the form of consistent presentation of the principles and purpose of each method, as well as significant advances during their practical application. Practical value. The proposed review of classic and modern literature data on molecular genetic markers can be used for planning, modernization and correction of research activity in modern fish-farming.

  14. Heart Failure as an Aging-Related Phenotype.

    Science.gov (United States)

    Morita, Hiroyuki; Komuro, Issei

    2018-01-27

    The molecular pathophysiology of heart failure, which is one of the leading causes of mortality, is not yet fully understood. Heart failure can be regarded as a systemic syndrome of aging-related phenotypes. Wnt/β-catenin signaling and the p53 pathway, both of which are key regulators of aging, have been demonstrated to play a critical role in the pathogenesis of heart failure. Circulating C1q was identified as a novel activator of Wnt/β-catenin signaling, promoting systemic aging-related phenotypes including sarcopenia and heart failure. On the other hand, p53 induces the apoptosis of cardiomyocytes in the failing heart. In these molecular mechanisms, the cross-talk between cardiomyocytes and non-cardiomyocytes (e,g,. endothelial cells, fibroblasts, smooth muscle cells, macrophages) deserves mentioning. In this review, we summarize recent advances in the understanding of the molecular pathophysiology underlying heart failure, focusing on Wnt/β-catenin signaling and the p53 pathway.

  15. RESEARCH NOTE Molecular genetic analysis of consanguineous ...

    Indian Academy of Sciences (India)

    Navya

    Molecular genetic analysis of consanguineous families with primary microcephaly ... Translational Research Institute, Academic Health System, Hamad Medical ..... bridging the gap between homozygosity mapping and deep sequencing.

  16. Genetic dissimilarity among sweet potato genotypes using morphological and molecular descriptors

    Directory of Open Access Journals (Sweden)

    Elisângela Knoblauch Viega de Andrade

    2017-08-01

    Full Text Available This study aimed to evaluate the genetic dissimilarity among sweet potato genotypes using morphological and molecular descriptors. The experiment was conducted in the Olericulture Sector at Federal University of Jequitinhonha and Mucuri Valleys (UFVJM and evaluated 60 sweet potato genotypes. For morphological characterization, 24 descriptors were used. For molecular characterization, 11 microsatellite primers specific for sweet potatoes were used, obtaining 210 polymorphic bands. Morphological and molecular diversity was obtained by dissimilarity matrices based on the coefficient of simple matching and the Jaccard index for morphological and molecular data, respectively. From these matrices, dendrograms were built. There is a large amount of genetic variability among sweet potato genotypes of the germplasm bank at UFVJM based on morphological and molecular characterizations. There was no duplicate suspicion or strong association between morphological and molecular analyses. Divergent accessions have been identified by molecular and morphological analyses, which can be used as parents in breeding programmes to produce progenies with high genetic variability.

  17. A methodological overview on molecular preimplantation genetic diagnosis and screening: a genomic future?

    Science.gov (United States)

    Vendrell, Xavier; Bautista-Llácer, Rosa

    2012-12-01

    The genetic diagnosis and screening of preimplantation embryos generated by assisted reproduction technology has been consolidated in the prenatal care framework. The rapid evolution of DNA technologies is tending to molecular approaches. Our intention is to present a detailed methodological view, showing different diagnostic strategies based on molecular techniques that are currently applied in preimplantation genetic diagnosis. The amount of DNA from one single, or a few cells, obtained by embryo biopsy is a limiting factor for the molecular analysis. In this sense, genetic laboratories have developed molecular protocols considering this restrictive condition. Nevertheless, the development of whole-genome amplification methods has allowed preimplantation genetic diagnosis for two or more indications simultaneously, like the selection of histocompatible embryos plus detection of monogenic diseases or aneuploidies. Moreover, molecular techniques have permitted preimplantation genetic screening to progress, by implementing microarray-based comparative genome hybridization. Finally, a future view of the embryo-genetics field based on molecular advances is proposed. The normalization, cost-effectiveness analysis, and new technological tools are the next topics for preimplantation genetic diagnosis and screening. Concomitantly, these additions to assisted reproduction technologies could have a positive effect on the schedules of preimplantation studies.

  18. Molecular research and genetic engineering of resistance to ...

    African Journals Online (AJOL)

    This paper reviews the recent research progress on genetic methods of resistance, the status and existing problems, traditional breeding, the main resistance mechanism, molecular markers and genetic engineering of resistance genes. It is hoped that new breeding methods and new varieties resistant to Verticillium wilt will ...

  19. Molecular Genetic Studies of Some Eye Diseases Affecting the ...

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Molecular Genetic Studies of Some Eye Diseases Affecting the Indian Population. Single gene disorders. Complex eye diseases. Genotype-phenotype correlation. Molecular diagnostics.

  20. Molecular and Genetic Determinants of Glioma Cell Invasion

    Directory of Open Access Journals (Sweden)

    Kenta Masui

    2017-12-01

    Full Text Available A diffusely invasive nature is a major obstacle in treating a malignant brain tumor, “diffuse glioma”, which prevents neurooncologists from surgically removing the tumor cells even in combination with chemotherapy and radiation. Recently updated classification of diffuse gliomas based on distinct genetic and epigenetic features has culminated in a multilayered diagnostic approach to combine histologic phenotypes and molecular genotypes in an integrated diagnosis. However, it is still a work in progress to decipher how the genetic aberrations contribute to the aggressive nature of gliomas including their highly invasive capacity. Here we depict a set of recent discoveries involving molecular genetic determinants of the infiltrating nature of glioma cells, especially focusing on genetic mutations in receptor tyrosine kinase pathways and metabolic reprogramming downstream of common cancer mutations. The specific biology of glioma cell invasion provides an opportunity to explore the genotype-phenotype correlation in cancer and develop novel glioma-specific therapeutic strategies for this devastating disease.

  1. Genetic Complexity of Episodic Memory: A Twin Approach to Studies of Aging

    Science.gov (United States)

    Kremen, William S.; Spoon, Kelly M.; Jacobson, Kristen C.; Vasilopoulos, Terrie; McCaffery, Jeanne M.; Panizzon, Matthew S.; Franz, Carol E.; Vuoksimaa, Eero; Xian, Hong; Rana, Brinda K.; Toomey, Rosemary; McKenzie, Ruth; Lyons, Michael J.

    2016-01-01

    Episodic memory change is a central issue in cognitive aging, and understanding that process will require elucidation of its genetic underpinnings. A key limiting factor in genetically informed research on memory has been lack of attention to genetic and phenotypic complexity, as if “memory is memory” and all well-validated assessments are essentially equivalent. Here we applied multivariate twin models to data from late-middle-aged participants in the Vietnam Era Twin Study of Aging to examine the genetic architecture of 6 measures from 3 standard neuropsychological tests: the California Verbal Learning Test-2, and Wechsler Memory Scale-III Logical Memory (LM) and Visual Reproductions (VR). An advantage of the twin method is that it can estimate the extent to which latent genetic influences are shared or independent across different measures before knowing which specific genes are involved. The best-fitting model was a higher order common pathways model with a heritable higher order general episodic memory factor and three test-specific subfactors. More importantly, substantial genetic variance was accounted for by genetic influences that were specific to the latent LM and VR subfactors (28% and 30%, respectively) and independent of the general factor. Such unique genetic influences could partially account for replication failures. Moreover, if different genes influence different memory phenotypes, they could well have different age-related trajectories. This approach represents an important step toward providing critical information for all types of genetically informative studies of aging and memory. PMID:24956007

  2. Molecular characterization of genetic diversity in some durum wheat ...

    African Journals Online (AJOL)

    Molecular characterization of genetic diversity in some durum wheat ... African Journal of Biotechnology ... Thus, RAPD offer a potentially simple, rapid and reliable method to evaluate genetic variation and relatedness among ten wheat ...

  3. ROS, Cell Senescence, and Novel Molecular Mechanisms in Aging and Age-Related Diseases

    Directory of Open Access Journals (Sweden)

    Pierpaola Davalli

    2016-01-01

    Full Text Available The aging process worsens the human body functions at multiple levels, thus causing its gradual decrease to resist stress, damage, and disease. Besides changes in gene expression and metabolic control, the aging rate has been associated with the production of high levels of Reactive Oxygen Species (ROS and/or Reactive Nitrosative Species (RNS. Specific increases of ROS level have been demonstrated as potentially critical for induction and maintenance of cell senescence process. Causal connection between ROS, aging, age-related pathologies, and cell senescence is studied intensely. Senescent cells have been proposed as a target for interventions to delay the aging and its related diseases or to improve the diseases treatment. Therapeutic interventions towards senescent cells might allow restoring the health and curing the diseases that share basal processes, rather than curing each disease in separate and symptomatic way. Here, we review observations on ROS ability of inducing cell senescence through novel mechanisms that underpin aging processes. Particular emphasis is addressed to the novel mechanisms of ROS involvement in epigenetic regulation of cell senescence and aging, with the aim to individuate specific pathways, which might promote healthy lifespan and improve aging.

  4. Micropropagation, genetic engineering, and molecular biology of Populus

    Science.gov (United States)

    N. B. Klopfenstein; Y. W. Chun; M. -S. Kim; M. A. Ahuja; M. C. Dillon; R. C. Carman; L. G. Eskew

    1997-01-01

    Thirty-four Populus biotechnology chapters, written by 85 authors, are comprised in 5 sections: 1) in vitro culture (micropropagation, somatic embryogenesis, protoplasts, somaclonal variation, and germplasm preservation); 2) transformation and foreign gene expression; 3) molecular biology (molecular/genetic characterization); 4) biotic and abiotic resistance (disease,...

  5. Molecular Darwinism: The Contingency of Spontaneous Genetic Variation

    OpenAIRE

    Arber, Werner

    2011-01-01

    The availability of spontaneously occurring genetic variants is an important driving force of biological evolution. Largely thanks to experimental investigations by microbial geneticists, we know today that several different molecular mechanisms contribute to the overall genetic variations. These mechanisms can be assigned to three natural strategies to generate genetic variants: 1) local sequence changes, 2) intragenomic reshuffling of DNA segments, and 3) acquisition of a segment of foreign...

  6. Molecular and genetic insights into an infantile epileptic encephalopathy-CDKL5 disorder

    Institute of Scientific and Technical Information of China (English)

    Ailing Zhou; Song Han; Zhaolan Joe Zhou

    2017-01-01

    BACKGROUND:The discovery that mutations in cyclin-dependent kinase-like 5 (CDKL5) gene are associated with infantile epileptic encephalopathy has stimulated world-wide research effort to understand the molecular and genetic basis of CDKL5 disorder.Given the large number of literature published thus far,this review aims to summarize current genetic studies,draw a consensus on proposed molecular functions,and point to gaps of knowledge in CDKL5 research.METHODS:A systematic review process was conducted using the PubMed search engine focusing on CDKL5 studies in the recent ten years.We analyzed these publications and summarized the findings into four sections:genetic studies,CDKL5 expression pattems,molecular functions,and animal models.We also discussed challenges and future directions in each section.RESULTS:On the clinical side,CDKL5 disorder is characterized by early onset epileptic seizures,intellectual disability,and stereotypical behaviors.On the research side,a series of molecular and genetic studies in human patients,cell cultures and animal models have established the causality of CDKL5 to the infantile epileptic encephalopathy,and pointed to a key role for CDKL5 in regulating neuronal function in the brain.Mouse models of CDKL5 disorder have also been developed,and notably,manifest behavioral phenotypes,mimicking numerous clinical symptoms of CDKL5 disorder and advancing CDKL5 research to the preclinical stage.CONCLUSIONS:Given what we have leamed thus far,future identification of robust,quantitative,and sensitive outcome measures would be the key in animal model studies,particularly in heterozygous females.In the meantime,molecular and cellular studies of CDKL5 should focus on mechanism-based investigation and aim to uncover druggable targets that offer the potential to rescue or ameliorate CDKL5 disorder-related phenotypes.

  7. Molecular and genetic insights into an infantile epileptic encephalopathy - CDKL5 disorder.

    Science.gov (United States)

    Zhou, Ailing; Han, Song; Zhou, Zhaolan Joe

    2017-02-01

    The discovery that mutations in cyclin-dependent kinase-like 5 ( CDKL5 ) gene are associated with infantile epileptic encephalopathy has stimulated world-wide research effort to understand the molecular and genetic basis of CDKL5 disorder. Given the large number of literature published thus far, this review aims to summarize current genetic studies, draw a consensus on proposed molecular functions, and point to gaps of knowledge in CDKL5 research. A systematic review process was conducted using the PubMed search engine focusing on CDKL5 studies in the recent ten years. We analyzed these publications and summarized the findings into four sections: genetic studies, CDKL5 expression patterns, molecular functions, and animal models. We also discussed challenges and future directions in each section. On the clinical side, CDKL5 disorder is characterized by early onset epileptic seizures, intellectual disability, and stereotypical behaviors. On the research side, a series of molecular and genetic studies in human patients, cell cultures and animal models have established the causality of CDKL5 to the infantile epileptic encephalopathy, and pointed to a key role for CDKL5 in regulating neuronal function in the brain. Mouse models of CDKL5 disorder have also been developed, and notably, manifest behavioral phenotypes, mimicking numerous clinical symptoms of CDKL5 disorder and advancing CDKL5 research to the preclinical stage. Given what we have learned thus far, future identification of robust, quantitative, and sensitive outcome measures would be the key in animal model studies, particularly in heterozygous females. In the meantime, molecular and cellular studies of CDKL5 should focus on mechanism-based investigation and aim to uncover druggable targets that offer the potential to rescue or ameliorate CDKL5 disorder-related phenotypes.

  8. Long noncoding RNAs(lncRNAs) and the molecular hallmarks of aging.

    Science.gov (United States)

    Grammatikakis, Ioannis; Panda, Amaresh C; Abdelmohsen, Kotb; Gorospe, Myriam

    2014-12-01

    During aging, progressive deleterious changes increase the risk of disease and death. Prominent molecular hallmarks of aging are genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, cellular senescence, stem cell exhaustion, and altered intercellular communication. Long noncoding RNAs (lncRNAs) play important roles in a wide range of biological processes, including age-related diseases like cancer, cardiovascular pathologies, and neurodegenerative disorders. Evidence is emerging that lncRNAs influence the molecular processes that underlie age-associated phenotypes. Here, we review our current understanding of lncRNAs that control the development of aging traits.

  9. Molecular networks of human muscle adaptation to exercise and age.

    Directory of Open Access Journals (Sweden)

    Bethan E Phillips

    2013-03-01

    Full Text Available Physical activity and molecular ageing presumably interact to precipitate musculoskeletal decline in humans with age. Herein, we have delineated molecular networks for these two major components of sarcopenic risk using multiple independent clinical cohorts. We generated genome-wide transcript profiles from individuals (n = 44 who then undertook 20 weeks of supervised resistance-exercise training (RET. Expectedly, our subjects exhibited a marked range of hypertrophic responses (3% to +28%, and when applying Ingenuity Pathway Analysis (IPA up-stream analysis to ~580 genes that co-varied with gain in lean mass, we identified rapamycin (mTOR signaling associating with growth (P = 1.4 × 10(-30. Paradoxically, those displaying most hypertrophy exhibited an inhibited mTOR activation signature, including the striking down-regulation of 70 rRNAs. Differential analysis found networks mimicking developmental processes (activated all-trans-retinoic acid (ATRA, Z-score = 4.5; P = 6 × 10(-13 and inhibited aryl-hydrocarbon receptor signaling (AhR, Z-score = -2.3; P = 3 × 10(-7 with RET. Intriguingly, as ATRA and AhR gene-sets were also a feature of endurance exercise training (EET, they appear to represent "generic" physical activity responsive gene-networks. For age, we found that differential gene-expression methods do not produce consistent molecular differences between young versus old individuals. Instead, utilizing two independent cohorts (n = 45 and n = 52, with a continuum of subject ages (18-78 y, the first reproducible set of age-related transcripts in human muscle was identified. This analysis identified ~500 genes highly enriched in post-transcriptional processes (P = 1 × 10(-6 and with negligible links to the aforementioned generic exercise regulated gene-sets and some overlap with ribosomal genes. The RNA signatures from multiple compounds all targeting serotonin, DNA topoisomerase antagonism, and RXR activation were significantly related to

  10. Genetics and molecular biology of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    King, M.C. [California Univ., Berkeley, CA (United States); Lippman, M. [Georgetown Univ. Medical Center, Washington, DC (United States)] [comps.

    1992-12-31

    This volume contains the abstracts of oral presentations and poster sessions presented at the Cold Springs Harbor Meeting on Cancer Cells, this meeting entitled Genetics and Molecular Biology of Breast Cancer.

  11. Supplementary data: Molecular assessment of genetic diversity in ...

    Indian Academy of Sciences (India)

    Molecular assessment of genetic diversity in cluster bean. (Cyamopsis tetragonoloba) genotypes. Rakesh Pathak, S. K. Singh, Manjit Singh and A. Henry. J. Genet. 89, 243–246. Figure 1. RAPD profile of 1–16 Cyamopsis tetragonoloba genotypes amplified with arbitrary primer OPA-16. Figure 2. RAPD profile of 17–32 ...

  12. The Zebrafish Models to Explore Genetic and Epigenetic Impacts on Evolutionary Developmental Origins of Aging

    Science.gov (United States)

    Kishi, Shuji

    2014-01-01

    Can we reset, reprogram, rejuvenate or reverse the organismal aging process? Certain genetic manipulations could at least reset and reprogram epigenetic dynamics beyond phenotypic plasticity and elasticity in cells, which can be further manipulated into organisms. However, in a whole complex aging organism, how can we rejuvenate intrinsic resources and infrastructures in an intact/noninvasive manner? The incidence of diseases increases exponentially with age, accompanied by progressive deteriorations of physiological functions in organisms. Aging-associated diseases are sporadic but essentially inevitable complications arising from senescence. Senescence is often considered the antithesis of early development, but yet there may be factors and mechanisms in common between these two phenomena to rejuvenate over the dynamic process of aging. The association between early development and late-onset disease with advancing age is thought to come from a consequence of developmental plasticity, the phenomenon by which one genotype can give rise to a range of physiologically and/or morphologically adaptive states based on diverse epigenotypes, in response to intrinsic or extrinsic environmental cues and genetic perturbations. We hypothesized that the future aging process can be predictive based on adaptivity during the early developmental period. Modulating the thresholds and windows of plasticity and its robustness by molecular genetic and chemical epigenetic approaches, we have successfully conducted experiments to isolate zebrafish mutants expressing apparently altered senescence phenotypes during their embryonic and/or larval stages (“embryonic/larval senescence”). Subsequently, at least some of these mutant animals were found to show shortened lifespan, while some others would be expected to live longer in adulthoods. We anticipate that previously uncharacterized developmental genes may mediate the aging process and play a pivotal role in senescence. On the other

  13. [Molecular genetic analysis and clinical aspects of patients with hereditary hemochromatosis].

    Science.gov (United States)

    Lange, U; Teichmann, J; Dischereit, G

    2014-08-01

    The purpose of the study was to perform a molecular genetic analysis and to document clinical aspects in patients with hereditary hemochromatosis. The study included 33 outpatients (23 males average age 50.6 years and 10 females average age 60.6 years) with a disorder of iron metabolism (transferrin saturation > 75 %) as confirmation of hemochromatosis who were subjected to molecular genetic and clinical analyses. A homozygous mutation of the hemochromatosis (HFE) gene (C282YY) was detected in 63.6 %, a compound heterozygous mutation (C282Y/H63D) in 30.3% and no mutation of the HFE gene was detected in 6.1 %. The following organ manifestations could be objectified: arthralgia (78.8 %), liver disease (39.9 %), skin hyperpigmentation (30.3 %), osteoporosis (24.2 %), diabetes mellitus (24.2 %) and cardiomyopathy (12.1 %). Comparison between patients with heterozygous and homozygous hemochromatosis revealed the following differences: compound heterozygote patients presented less frequently with osteoarthritis of the metacarpophalangeal (MCP) joints and hands (85.7 %/71.4 % homozygotes vs. 60 %/60 % heterozygotes). Osteoarthritis of the shoulder joints and osteoporosis as well as hypothyroidism were more frequent in compound heterozygote patients, whereas osteoarthritis of the knee and hip joints as well as liver disease were more common in homozygote patients. No differences between both groups were seen with respect to the clinical manifestations of cardiomyopathy and diabetes mellitus. Prevalent causes of death in hereditary hemochromatosis are heart failure, liver disease (cirrhosis and hepatocellular carcinoma) and portal hypertension. Therefore, an early diagnosis, adequate therapy and genetic screening of family members are of great importance. Medicinal treatment will only effectively prevent deleterious organ involvement and subsequent complications if initiated at an early stage. Furthermore, an overview of the current data is given.

  14. Quality control in mutation analysis: the European Molecular Genetics Quality Network (EMQN).

    Science.gov (United States)

    Müller, C R

    2001-08-01

    The demand for clinical molecular genetics testing has steadily grown since its introduction in the 1980s. In order to reach and maintain the agreed quality standards of laboratory medicine, the same internal and external quality assurance (IQA/EQA) criteria have to be applied as for "conventional" clinical chemistry or pathology. In 1996 the European Molecular Genetics Quality Network (EMQN) was established in order to spread QA standards across Europe and to harmonise the existing national activities. EMQN is operated by a central co-ordinator and 17 national partners from 15 EU countries; since 1998 it is being funded by the EU commission for a 3-year period. EMQN promotes QA by two tools: by providing disease-specific best practice meetings (BPM) and EQA schemes. A typical BPM is focussed on one disease or group of related disorders. International experts report on the latest news of gene characterisation and function and the state-of-the-art techniques for mutation detection. Disease-specific EQA schemes are provided by experts in the field. DNA samples are sent out together with mock clinical referrals and a diagnostic question is asked. Written reports must be returned which are marked for genotyping and interpretation. So far, three BPMs have been held and six EQA schemes are in operation at various stages. Although mutation types and diagnostic techniques varied considerably between schemes, the overall technical performance showed a high diagnostic standard. Nevertheless, serious genotyping errors have been occurred in some schemes which underline the necessity of quality assurance efforts. The European Molecular Genetics Quality Network provides a necessary platform for the internal and external quality assurance of molecular genetic testing.

  15. The molecular genetic architecture of self-employment.

    Science.gov (United States)

    van der Loos, Matthijs J H M; Rietveld, Cornelius A; Eklund, Niina; Koellinger, Philipp D; Rivadeneira, Fernando; Abecasis, Gonçalo R; Ankra-Badu, Georgina A; Baumeister, Sebastian E; Benjamin, Daniel J; Biffar, Reiner; Blankenberg, Stefan; Boomsma, Dorret I; Cesarini, David; Cucca, Francesco; de Geus, Eco J C; Dedoussis, George; Deloukas, Panos; Dimitriou, Maria; Eiriksdottir, Guðny; Eriksson, Johan; Gieger, Christian; Gudnason, Vilmundur; Höhne, Birgit; Holle, Rolf; Hottenga, Jouke-Jan; Isaacs, Aaron; Järvelin, Marjo-Riitta; Johannesson, Magnus; Kaakinen, Marika; Kähönen, Mika; Kanoni, Stavroula; Laaksonen, Maarit A; Lahti, Jari; Launer, Lenore J; Lehtimäki, Terho; Loitfelder, Marisa; Magnusson, Patrik K E; Naitza, Silvia; Oostra, Ben A; Perola, Markus; Petrovic, Katja; Quaye, Lydia; Raitakari, Olli; Ripatti, Samuli; Scheet, Paul; Schlessinger, David; Schmidt, Carsten O; Schmidt, Helena; Schmidt, Reinhold; Senft, Andrea; Smith, Albert V; Spector, Timothy D; Surakka, Ida; Svento, Rauli; Terracciano, Antonio; Tikkanen, Emmi; van Duijn, Cornelia M; Viikari, Jorma; Völzke, Henry; Wichmann, H-Erich; Wild, Philipp S; Willems, Sara M; Willemsen, Gonneke; van Rooij, Frank J A; Groenen, Patrick J F; Uitterlinden, André G; Hofman, Albert; Thurik, A Roy

    2013-01-01

    Economic variables such as income, education, and occupation are known to affect mortality and morbidity, such as cardiovascular disease, and have also been shown to be partly heritable. However, very little is known about which genes influence economic variables, although these genes may have both a direct and an indirect effect on health. We report results from the first large-scale collaboration that studies the molecular genetic architecture of an economic variable-entrepreneurship-that was operationalized using self-employment, a widely-available proxy. Our results suggest that common SNPs when considered jointly explain about half of the narrow-sense heritability of self-employment estimated in twin data (σ(g)(2)/σ(P)(2) = 25%, h(2) = 55%). However, a meta-analysis of genome-wide association studies across sixteen studies comprising 50,627 participants did not identify genome-wide significant SNPs. 58 SNPs with pself-employment in an independent sample (p≥0.039). Our results are consistent with a highly polygenic molecular genetic architecture of self-employment, with many genetic variants of small effect. Although self-employment is a multi-faceted, heavily environmentally influenced, and biologically distal trait, our results are similar to those for other genetically complex and biologically more proximate outcomes, such as height, intelligence, personality, and several diseases.

  16. Causes and consequences of maternal age-related aneuploidy in oocytes: a review

    Czech Academy of Sciences Publication Activity Database

    Danylevska, Anna; Šebestová, Jaroslava

    2013-01-01

    Roč. 58, č. 2 (2013), s. 65-72 ISSN 0375-8427 R&D Projects: GA ČR GA523/09/0743; GA ČR GAP502/12/2201 Institutional support: RVO:67985904 Keywords : aneuploidy * oocyte * maternal age Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.756, year: 2013

  17. Genetic and Molecular Mechanisms of Quantitative Trait Loci Controlling Maize Inflorescence Architecture.

    Science.gov (United States)

    Li, Manfei; Zhong, Wanshun; Yang, Fang; Zhang, Zuxin

    2018-03-01

    The establishment of inflorescence architecture is critical for the reproduction of flowering plant species. The maize plant generates two types of inflorescences, the tassel and the ear, and their architectures have a large effect on grain yield and yield-related traits that are genetically controlled by quantitative trait loci (QTLs). Since ear and tassel architecture are deeply affected by the activity of inflorescence meristems, key QTLs and genes regulating meristematic activity have important impacts on inflorescence development and show great potential for optimizing grain yield. Isolation of yield trait-related QTLs is challenging, but these QTLs have direct application in maize breeding. Additionally, characterization and functional dissection of QTLs can provide genetic and molecular knowledge of quantitative variation in inflorescence architecture. In this review, we summarize currently identified QTLs responsible for the establishment of ear and tassel architecture and discuss the potential genetic control of four ear-related and four tassel-related traits. In recent years, several inflorescence architecture-related QTLs have been characterized at the gene level. We review the mechanisms of these characterized QTLs.

  18. Advances in molecular genetic studies of primary dystonia

    Directory of Open Access Journals (Sweden)

    MA Ling-yan

    2013-07-01

    Full Text Available Dystonias are heterogeneous hyperkinetic movement disorders characterized by involuntary muscle contractions which result in twisting, repetitive movements and abnormal postures. In recent years, there was a great advance in molecular genetic studies of primary dystonia. This paper will review the clinical characteristics and molecular genetic studies of primary dystonia, including early-onset generalized torsion dystonia (DYT1, whispering dysphonia (DYT4, dopa-responsive dystonia (DYT5, mixed-type dystonia (DYT6, paroxysmal kinesigenic dyskinesia (DYT10, myoclonus-dystonia syndrome (DYT11, rapid-onset dystonia parkinsonism (DYT12, adult-onset cervical dystonia (DYT23, craniocervical dystonia (DYT24 and primary torsion dystonia (DYT25.

  19. Age-related maculopathy: A genetic and epidemiological approach

    NARCIS (Netherlands)

    J.J.M. Willemse-Assink (Jacqueline)

    2000-01-01

    textabstractIn the 19th century, age-related maculopathy (ARM) was described for the first time as an agerelated abnormality of the macula lutea. ARM consists of a variety of clinical signs, from the early stages with soft distinct drusen, indistinct drusen and pigment alterations up to the late

  20. The Molecular Genetic Architecture of Self-Employment

    Science.gov (United States)

    van der Loos, Matthijs J. H. M.; Rietveld, Cornelius A.; Eklund, Niina; Koellinger, Philipp D.; Rivadeneira, Fernando; Abecasis, Gonçalo R.; Ankra-Badu, Georgina A.; Baumeister, Sebastian E.; Benjamin, Daniel J.; Biffar, Reiner; Blankenberg, Stefan; Boomsma, Dorret I.; Cesarini, David; Cucca, Francesco; de Geus, Eco J. C.; Dedoussis, George; Deloukas, Panos; Dimitriou, Maria; Eiriksdottir, Guðny; Eriksson, Johan; Gieger, Christian; Gudnason, Vilmundur; Höhne, Birgit; Holle, Rolf; Hottenga, Jouke-Jan; Isaacs, Aaron; Järvelin, Marjo-Riitta; Johannesson, Magnus; Kaakinen, Marika; Kähönen, Mika; Kanoni, Stavroula; Laaksonen, Maarit A.; Lahti, Jari; Launer, Lenore J.; Lehtimäki, Terho; Loitfelder, Marisa; Magnusson, Patrik K. E.; Naitza, Silvia; Oostra, Ben A.; Perola, Markus; Petrovic, Katja; Quaye, Lydia; Raitakari, Olli; Ripatti, Samuli; Scheet, Paul; Schlessinger, David; Schmidt, Carsten O.; Schmidt, Helena; Schmidt, Reinhold; Senft, Andrea; Smith, Albert V.; Spector, Timothy D.; Surakka, Ida; Svento, Rauli; Terracciano, Antonio; Tikkanen, Emmi; van Duijn, Cornelia M.; Viikari, Jorma; Völzke, Henry; Wichmann, H. -Erich; Wild, Philipp S.; Willems, Sara M.; Willemsen, Gonneke; van Rooij, Frank J. A.; Groenen, Patrick J. F.; Uitterlinden, André G.; Hofman, Albert; Thurik, A. Roy

    2013-01-01

    Economic variables such as income, education, and occupation are known to affect mortality and morbidity, such as cardiovascular disease, and have also been shown to be partly heritable. However, very little is known about which genes influence economic variables, although these genes may have both a direct and an indirect effect on health. We report results from the first large-scale collaboration that studies the molecular genetic architecture of an economic variable–entrepreneurship–that was operationalized using self-employment, a widely-available proxy. Our results suggest that common SNPs when considered jointly explain about half of the narrow-sense heritability of self-employment estimated in twin data (σg 2/σP 2 = 25%, h 2 = 55%). However, a meta-analysis of genome-wide association studies across sixteen studies comprising 50,627 participants did not identify genome-wide significant SNPs. 58 SNPs with pentrepreneurship reveal significant associations. Finally, SNP-based genetic scores that use results from the meta-analysis capture less than 0.2% of the variance in self-employment in an independent sample (p≥0.039). Our results are consistent with a highly polygenic molecular genetic architecture of self-employment, with many genetic variants of small effect. Although self-employment is a multi-faceted, heavily environmentally influenced, and biologically distal trait, our results are similar to those for other genetically complex and biologically more proximate outcomes, such as height, intelligence, personality, and several diseases. PMID:23593239

  1. Risk factors for age-related maculopathy.

    Science.gov (United States)

    Connell, Paul P; Keane, Pearse A; O'Neill, Evelyn C; Altaie, Rasha W; Loane, Edward; Neelam, Kumari; Nolan, John M; Beatty, Stephen

    2009-01-01

    Age-related maculopathy (ARM) is the leading cause of blindness in the elderly. Although beneficial therapeutic strategies have recently begun to emerge, much remains unclear regarding the etiopathogenesis of this disorder. Epidemiologic studies have enhanced our understanding of ARM, but the data, often conflicting, has led to difficulties with drawing firm conclusions with respect to risk for this condition. As a consequence, we saw a need to assimilate the published findings with respect to risk factors for ARM, through a review of the literature appraising results from published cross-sectional studies, prospective cohort studies, case series, and case control studies investigating risk for this condition. Our review shows that, to date, and across a spectrum of epidemiologic study designs, only age, cigarette smoking, and family history of ARM have been consistently demonstrated to represent risk for this condition. In addition, genetic studies have recently implicated many genes in the pathogenesis of age-related maculopathy, including Complement Factor H, PLEKHA 1, and LOC387715/HTRA1, demonstrating that environmental and genetic factors are important for the development of ARM suggesting that gene-environment interaction plays an important role in the pathogenesis of this condition.

  2. Risk Factors for Age-Related Maculopathy

    Directory of Open Access Journals (Sweden)

    Paul P. Connell

    2009-01-01

    Full Text Available Age-related maculopathy (ARM is the leading cause of blindness in the elderly. Although beneficial therapeutic strategies have recently begun to emerge, much remains unclear regarding the etiopathogenesis of this disorder. Epidemiologic studies have enhanced our understanding of ARM, but the data, often conflicting, has led to difficulties with drawing firm conclusions with respect to risk for this condition. As a consequence, we saw a need to assimilate the published findings with respect to risk factors for ARM, through a review of the literature appraising results from published cross-sectional studies, prospective cohort studies, case series, and case control studies investigating risk for this condition. Our review shows that, to date, and across a spectrum of epidemiologic study designs, only age, cigarette smoking, and family history of ARM have been consistently demonstrated to represent risk for this condition. In addition, genetic studies have recently implicated many genes in the pathogenesis of age-related maculopathy, including Complement Factor H, PLEKHA 1, and LOC387715/HTRA1, demonstrating that environmental and genetic factors are important for the development of ARM suggesting that gene-environment interaction plays an important role in the pathogenesis of this condition.

  3. Risk factors for age-related maculopathy.

    LENUS (Irish Health Repository)

    Connell, Paul P

    2012-02-01

    Age-related maculopathy (ARM) is the leading cause of blindness in the elderly. Although beneficial therapeutic strategies have recently begun to emerge, much remains unclear regarding the etiopathogenesis of this disorder. Epidemiologic studies have enhanced our understanding of ARM, but the data, often conflicting, has led to difficulties with drawing firm conclusions with respect to risk for this condition. As a consequence, we saw a need to assimilate the published findings with respect to risk factors for ARM, through a review of the literature appraising results from published cross-sectional studies, prospective cohort studies, case series, and case control studies investigating risk for this condition. Our review shows that, to date, and across a spectrum of epidemiologic study designs, only age, cigarette smoking, and family history of ARM have been consistently demonstrated to represent risk for this condition. In addition, genetic studies have recently implicated many genes in the pathogenesis of age-related maculopathy, including Complement Factor H, PLEKHA 1, and LOC387715\\/HTRA1, demonstrating that environmental and genetic factors are important for the development of ARM suggesting that gene-environment interaction plays an important role in the pathogenesis of this condition.

  4. The genetics of age-related macular degeneration (AMD)--Novel targets for designing treatment options?

    Science.gov (United States)

    Grassmann, Felix; Fauser, Sascha; Weber, Bernhard H F

    2015-09-01

    Age-related macular degeneration (AMD) is a progressive disease of the central retina and the main cause of legal blindness in industrialized countries. Risk to develop the disease is conferred by both individual as well as genetic factors with the latter being increasingly deciphered over the last decade. Therapeutically, striking advances have been made for the treatment of the neovascular form of late stage AMD while for the late stage atrophic form of the disease, which accounts for almost half of the visually impaired, there is currently no effective therapy on the market. This review highlights our current knowledge on the genetic architecture of early and late stage AMD and explores its potential for the discovery of novel, target-guided treatment options. We reflect on current clinical and experimental therapies for all forms of AMD and specifically note a persisting lack of efficacy for treatment in atrophic AMD. We further explore the current insight in AMD-associated genes and pathways and critically question whether this knowledge is suited to design novel treatment options. Specifically, we point out that known genetic factors associated with AMD govern the risk to develop disease and thus may not play a role in its severity or progression. Treatments based on such knowledge appear appropriate rather for prevention than treatment of manifest disease. As a consequence, future research in AMD needs to be greatly focused on approaches relevant to the patients and their medical needs. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. New insights on molecular mechanisms of renal aging.

    Science.gov (United States)

    Schmitt, R; Melk, A

    2012-11-01

    Long-term transplant outcome is importantly influenced by the age of the organ donor. The mechanisms how age carries out its pathophysiological impact on graft survival are still not understood. One major contributing factor for the observed poor performance of old donor kidneys seems in particular the age-related loss in renal regenerative capacity. In this review, we will summarize recent findings about the molecular basis of renal aging with specific focus on the potential role of somatic cellular senescence and mitochondrial aging in renal transplant outcome. © Copyright 2012 The American Society of Transplantation and the American Society of Transplant Surgeons.

  6. MODY in Siberia – molecular genetics and clinical characteristics

    Directory of Open Access Journals (Sweden)

    Alla Konstantinovna Ovsyannikova

    2017-05-01

    Full Text Available The diagnosis of maturity onset diabetes of the young (MODY has high clinical significance in young patients (no absolute need for exogenous insulin; normoglycaemia in most patients achieved by dieting or taking oral hypoglycaemic agents and their relatives (high probability of first-degree relatives being carriers of mutations, which requires a thorough collection of family history and determination of the parameters of carbohydrate metabolism. Aim. This study aimed was to determine the clinical characteristics of different subtypes of MODY in a Siberian region. Materials and Methods. We performed an examination, biochemical and hormonal blood tests, ultrasound and molecular genetic testing of 20 patients with a clinical diagnosis of MODY. Results. Four subtypes of MODY were verified: MODY2 in 11 patients, MODY3 in two, MODY8 in one and MODY12 in two. Eleven patients (69% exhibited no clinical manifestations of carbohydrate metabolism disorders, and one patient showed weight loss during early stage of the disease. Comorbidities included dyslipidemia, thyroid gland disorders and arterial hypertension. One patient (6% exhibited diabetic nephropathy; two (13%, diabetic retinopathy and three (19%, peripheral neuropathy of lower legs. All patients achieved the target carbohydrate metabolism; the level of C-peptide was within the reference range. Conclusion. Four different subtypes of MODY (2, 3, 8, 12 were diagnosed in the present study, which differed in their clinical characteristics, presence of complications and treatment strategies. Our knowledge of monogenic forms of diabetes is expanding with the development in molecular genetics, but several aspects related to them require further study.

  7. Molecular and biological hallmarks of ageing.

    Science.gov (United States)

    Aunan, J R; Watson, M M; Hagland, H R; Søreide, K

    2016-01-01

    Ageing is the inevitable time-dependent decline in physiological organ function that eventually leads to death. Age is a major risk factor for many of the most common medical conditions, such as cardiovascular disease, cancer, diabetes and Alzheimer's disease. This study reviews currently known hallmarks of ageing and their clinical implications. A literature search of PubMed/MEDLINE was conducted covering the last decade. Average life expectancy has increased dramatically over the past century and is estimated to increase even further. Maximum longevity, however, appears unchanged, suggesting a universal limitation to the human organism. Understanding the underlying molecular processes of ageing and health decline may suggest interventions that, if used at an early age, can prevent, delay, alleviate or even reverse age-related diseases. Hallmarks of ageing can be grouped into three main categories. The primary hallmarks cause damage to cellular functions: genomic instability, telomere attrition, epigenetic alterations and loss of proteostasis. These are followed by antagonistic responses to such damage: deregulated nutrient sensing, altered mitochondrial function and cellular senescence. Finally, integrative hallmarks are possible culprits of the clinical phenotype (stem cell exhaustion and altered intercellular communication), which ultimately contribute to the clinical effects of ageing as seen in physiological loss of reserve, organ decline and reduced function. The sum of these molecular hallmarks produces the clinical picture of the elderly surgical patient: frailty, sarcopenia, anaemia, poor nutrition and a blunted immune response system. Improved understanding of the ageing processes may give rise to new biomarkers of risk or prognosis, novel treatment targets and translational approaches across disciplines that may improve outcomes. © 2016 BJS Society Ltd Published by John Wiley & Sons Ltd.

  8. [Colorectal cancer (CCR): genetic and molecular alterations].

    Science.gov (United States)

    Juárez-Vázquez, Clara Ibet; Rosales-Reynoso, Mónica Alejandra

    2014-01-01

    The aim of this review is to present a genetic and molecular overview of colorectal carcinogenesis (sporadic and hereditary origin) as a multistage process, where there are a number of molecular mechanisms associated with the development of colorectal cancer and genomic instability that allows the accumulation of mutations in proto-oncogenes and tumor suppressor genes, chromosomal instability, and methylation and microsatellite instability, and the involvement of altered expression of microRNAs' prognosis factors.

  9. Molecular mechanisms of the genetic risk factors in pathogenesis of Alzheimer disease.

    Science.gov (United States)

    Kanatsu, Kunihiko; Tomita, Taisuke

    2017-01-01

    Alzheimer disease (AD) is a neurodegenerative disease characterized by the extensive deposition of senile plaques and neurofibrillary tangles. Until recently, only the APOE gene had been known as a genetic risk factor for late-onset AD (LOAD), which accounts for more than 95% of all AD cases. However, in addition to this well-established genetic risk factor, genome-wide association studies have identified several single nucleotide polymorphisms as genetic risk factors of LOAD, such as PICALM and BIN1 . In addition, whole genome sequencing and exome sequencing have identified rare variants associated with LOAD, including TREM2 . We review the recent findings related to the molecular mechanisms by which these genetic risk factors contribute to AD, and our perspectives regarding the etiology of AD for the development of therapeutic agents.

  10. Human fertility, molecular genetics, and natural selection in modern societies.

    Directory of Open Access Journals (Sweden)

    Felix C Tropf

    Full Text Available Research on genetic influences on human fertility outcomes such as number of children ever born (NEB or the age at first childbirth (AFB has been solely based on twin and family-designs that suffer from problematic assumptions and practical limitations. The current study exploits recent advances in the field of molecular genetics by applying the genomic-relationship-matrix based restricted maximum likelihood (GREML methods to quantify for the first time the extent to which common genetic variants influence the NEB and the AFB of women. Using data from the UK and the Netherlands (N = 6,758, results show significant additive genetic effects on both traits explaining 10% (SE = 5 of the variance in the NEB and 15% (SE = 4 in the AFB. We further find a significant negative genetic correlation between AFB and NEB in the pooled sample of -0.62 (SE = 0.27, p-value = 0.02. This finding implies that individuals with genetic predispositions for an earlier AFB had a reproductive advantage and that natural selection operated not only in historical, but also in contemporary populations. The observed postponement in the AFB across the past century in Europe contrasts with these findings, suggesting an evolutionary override by environmental effects and underscoring that evolutionary predictions in modern human societies are not straight forward. It emphasizes the necessity for an integrative research design from the fields of genetics and social sciences in order to understand and predict fertility outcomes. Finally, our results suggest that we may be able to find genetic variants associated with human fertility when conducting GWAS-meta analyses with sufficient sample size.

  11. Age-related inflammatory bone marrow microenvironment induces ineffective erythropoiesis mimicking del(5q) MDS.

    Science.gov (United States)

    Mei, Y; Zhao, B; Basiorka, A A; Yang, J; Cao, L; Zhang, J; List, A; Ji, P

    2018-04-01

    Anemia is characteristic of myelodysplastic syndromes (MDS). The mechanisms of anemia in MDS are unclear. Using a mouse genetic approach, here we show that dual deficiency of mDia1 and miR-146a, encoded on chromosome 5q and commonly deleted in MDS (del(5q) MDS), causes an age-related anemia and ineffective erythropoiesis mimicking human MDS. We demonstrate that the ageing bone marrow microenvironment is important for the development of ineffective erythropoiesis in these mice. Damage-associated molecular pattern molecules (DAMPs), whose levels increase in ageing bone marrow, induced TNFα and IL-6 upregulation in myeloid-derived suppressor cells (MDSCs) in mDia1/miR-146a double knockout mice. Mechanistically, we reveal that pathologic levels of TNFα and IL-6 inhibit erythroid colony formation and differentially affect terminal erythropoiesis through reactive oxygen species-induced caspase-3 activation and apoptosis. Treatment of the mDia1/miR-146a double knockout mice with all-trans retinoic acid, which promoted the differentiation of MDSCs and ameliorated the inflammatory bone marrow microenvironment, significantly rescued anemia and ineffective erythropoiesis. Our study underscores the dual roles of the ageing microenvironment and genetic abnormalities in the pathogenesis of ineffective erythropoiesis in del(5q) MDS.

  12. Molecular and genetic insights into an infantile epileptic encephalopathy – CDKL5 disorder

    Science.gov (United States)

    Zhou, Ailing; Han, Song

    2017-01-01

    Background The discovery that mutations in cyclin-dependent kinase-like 5 (CDKL5) gene are associated with infantile epileptic encephalopathy has stimulated world-wide research effort to understand the molecular and genetic basis of CDKL5 disorder. Given the large number of literature published thus far, this review aims to summarize current genetic studies, draw a consensus on proposed molecular functions, and point to gaps of knowledge in CDKL5 research. Methods A systematic review process was conducted using the PubMed search engine focusing on CDKL5 studies in the recent ten years. We analyzed these publications and summarized the findings into four sections: genetic studies, CDKL5 expression patterns, molecular functions, and animal models. We also discussed challenges and future directions in each section. Results On the clinical side, CDKL5 disorder is characterized by early onset epileptic seizures, intellectual disability, and stereotypical behaviors. On the research side, a series of molecular and genetic studies in human patients, cell cultures and animal models have established the causality of CDKL5 to the infantile epileptic encephalopathy, and pointed to a key role for CDKL5 in regulating neuronal function in the brain. Mouse models of CDKL5 disorder have also been developed, and notably, manifest behavioral phenotypes, mimicking numerous clinical symptoms of CDKL5 disorder and advancing CDKL5 research to the preclinical stage. Conclusions Given what we have learned thus far, future identification of robust, quantitative, and sensitive outcome measures would be the key in animal model studies, particularly in heterozygous females. In the meantime, molecular and cellular studies of CDKL5 should focus on mechanism-based investigation and aim to uncover druggable targets that offer the potential to rescue or ameliorate CDKL5 disorder-related phenotypes. PMID:28580010

  13. [Current concepts in pathogenesis of age-related macular degeneration].

    Science.gov (United States)

    Kubicka-Trząska, Agnieszka; Karska-Basta, Izabella; Romanowska-Dixon, Bożena

    2014-01-01

    Age-related macular degeneration is the leading cause of central blindness in elderly population of the western world. The pathogenesis of this disease, likely multifactorial, is not well known, although a number of theories have been put forward, including oxidative stress, genetic interactions, hemodynamic imbalance, immune and inflammatory processes. The understanding of age-related macular degeneration pathogenesis will give rise to new approaches in prevention and treatment of the early and late stages of both atrophic and neovascular age-related macular degeneration.

  14. Genetic diversity of popcorn genotypes using molecular analysis.

    Science.gov (United States)

    Resh, F S; Scapim, C A; Mangolin, C A; Machado, M F P S; do Amaral, A T; Ramos, H C C; Vivas, M

    2015-08-19

    In this study, we analyzed dominant molecular markers to estimate the genetic divergence of 26 popcorn genotypes and evaluate whether using various dissimilarity coefficients with these dominant markers influences the results of cluster analysis. Fifteen random amplification of polymorphic DNA primers produced 157 amplified fragments, of which 65 were monomorphic and 92 were polymorphic. To calculate the genetic distances among the 26 genotypes, the complements of the Jaccard, Dice, and Rogers and Tanimoto similarity coefficients were used. A matrix of Dij values (dissimilarity matrix) was constructed, from which the genetic distances among genotypes were represented in a more simplified manner as a dendrogram generated using the unweighted pair-group method with arithmetic average. Clusters determined by molecular analysis generally did not group material from the same parental origin together. The largest genetic distance was between varieties 17 (UNB-2) and 18 (PA-091). In the identification of genotypes with the smallest genetic distance, the 3 coefficients showed no agreement. The 3 dissimilarity coefficients showed no major differences among their grouping patterns because agreement in determining the genotypes with large, medium, and small genetic distances was high. The largest genetic distances were observed for the Rogers and Tanimoto dissimilarity coefficient (0.74), followed by the Jaccard coefficient (0.65) and the Dice coefficient (0.48). The 3 coefficients showed similar estimations for the cophenetic correlation coefficient. Correlations among the matrices generated using the 3 coefficients were positive and had high magnitudes, reflecting strong agreement among the results obtained using the 3 evaluated dissimilarity coefficients.

  15. Risk assessment model for development of advanced age-related macular degeneration.

    Science.gov (United States)

    Klein, Michael L; Francis, Peter J; Ferris, Frederick L; Hamon, Sara C; Clemons, Traci E

    2011-12-01

    To design a risk assessment model for development of advanced age-related macular degeneration (AMD) incorporating phenotypic, demographic, environmental, and genetic risk factors. We evaluated longitudinal data from 2846 participants in the Age-Related Eye Disease Study. At baseline, these individuals had all levels of AMD, ranging from none to unilateral advanced AMD (neovascular or geographic atrophy). Follow-up averaged 9.3 years. We performed a Cox proportional hazards analysis with demographic, environmental, phenotypic, and genetic covariates and constructed a risk assessment model for development of advanced AMD. Performance of the model was evaluated using the C statistic and the Brier score and externally validated in participants in the Complications of Age-Related Macular Degeneration Prevention Trial. The final model included the following independent variables: age, smoking history, family history of AMD (first-degree member), phenotype based on a modified Age-Related Eye Disease Study simple scale score, and genetic variants CFH Y402H and ARMS2 A69S. The model did well on performance measures, with very good discrimination (C statistic = 0.872) and excellent calibration and overall performance (Brier score at 5 years = 0.08). Successful external validation was performed, and a risk assessment tool was designed for use with or without the genetic component. We constructed a risk assessment model for development of advanced AMD. The model performed well on measures of discrimination, calibration, and overall performance and was successfully externally validated. This risk assessment tool is available for online use.

  16. Molecular evaluation of genetic diversity and association studies in ...

    Indian Academy of Sciences (India)

    Molecular evaluation of genetic diversity and association studies in rice. (Oryza sativa L.) C. Vanniarajan, K. K. Vinod and Andy Pereira. J. Genet. 91, 9–19. Table 1. Chromosome-wise distribution of SSR alleles and their number (k), polymorphic information content (PIC) and allele discrimination index (Dm). Chromosome.

  17. Empirical Refinements of a Molecular Genetics Learning Progression: The Molecular Constructs

    Science.gov (United States)

    Todd, Amber; Kenyon, Lisa

    2016-01-01

    This article describes revisions to four of the eight constructs of the Duncan molecular genetics learning progression [Duncan, Rogat, & Yarden, (2009)]. As learning progressions remain hypothetical models until validated by multiple rounds of empirical studies, these revisions are an important step toward validating the progression. Our…

  18. Age-Related Changes in the Central Nervous System in Selected Domestic Mammals and Primates

    Directory of Open Access Journals (Sweden)

    Maciej Firląg

    2013-04-01

    Full Text Available Aging is a process which operates at many levels of physiological, genetic and molecular organizationand leads inevitably to death [18]. Brain macroscopic changes by MRI investigation during aging were observed in humans and dogs but chimpanzees did not display significant changes. This suggestion led to the statement that brain aging is different in various species. Although human brain changes, e.g. β-amyloid storage, neurofibrillary tangle formation, lipofuscin, are relatively well known, we are still looking for a suitable animal model to study the mechanisms of aging and neurodegenerative diseases. Therefore, this paper presents a comparative analysis of the changes described in the brains of senile dog, horse and gorilla. In addition we present the latest, non-invasive methods that can be applied in the diagnosisof old age in mammals. Our considerations have shown that the best animal model for further studies and observations on aging is the dog. 

  19. A low molecular weight urinary proteome profile of human kidney aging

    OpenAIRE

    Zürbig, Petra; Decramer, Stéphane; Dakna, Mohammed; Jantos, Justyna; Good, David M.; Coon, Joshua J.; Bandin, Flavio; Mischak, Harald; Bascands, Jean-Loup; Schanstra, Joost P

    2009-01-01

    Aging induces morphological changes of the kidney and reduces renal function. We analyzed the low molecular weight urinary proteome of 324 healthy individuals from 2-73 years of age to gain insight on renal aging in humans. We observed age-related modification of secretion of 325 out of 5000 urinary peptides. The majority of these changes was associated with renal development before and during puberty, while 49 peptides were related to aging in adults. Of these 49 peptides, the majority were ...

  20. [Molecular mechanisms of autophagy in regulating renal aging and interventional effects of Chinese herbal medicine].

    Science.gov (United States)

    Tu, Yue; Sun, Wei; Chen, Di-Ping; Wan, Yi-Gang; Wu, Wei; Yao, Jian

    2016-11-01

    Aging is the gradual functional recession of the living tissues or organs caused by a variety of genetic and environmental factors together. Autophagy is a process of degrading cytoplasmic components mediated by lysosomes in eukaryotic cells. Kidney is a typical target organ of aging. Autophagy regulates renal aging. Decrease in autophagy can accelerate renal aging,whereas,increase in autophagy can delay renal aging. During the process of regulating renal aging,the mammalian target of rapamycin (mTOR) and its related signaling pathways including the adenosine monophosphate activated protein kinase (AMPK)/mTOR,the phosphatidylinositol 3-kinase (PI3K)/ serine-threonine kinase(Akt)/mTOR,the AMPK/silent information regulation 1 (Sirt1) and transforming growth factor β (TGF-β) play the important roles in renal aging. Regulating the key signaling molecules in these pathways in vivo can control renal aging. Some Chinese herbal medicine (CHM) and their extracts with the effects of nourishing kidney or activating stasis, such as Cordyceps sinensis, curcumin and resveratrol have the beneficial effects on renal aging and/or autophagy. Therefore,revealing the pharmacological effects of CHM in anti-renal aging based on the molecular mechanisms of autophagy will become one of the development trends in the future study. Copyright© by the Chinese Pharmaceutical Association.

  1. Red blood cell distribution width: Genetic evidence for aging pathways in 116,666 volunteers.

    Directory of Open Access Journals (Sweden)

    Luke C Pilling

    Full Text Available Variability in red blood cell volumes (distribution width, RDW increases with age and is strongly predictive of mortality, incident coronary heart disease and cancer. We investigated inherited genetic variation associated with RDW in 116,666 UK Biobank human volunteers.A large proportion RDW is explained by genetic variants (29%, especially in the older group (60+ year olds, 33.8%, <50 year olds, 28.4%. RDW was associated with 194 independent genetic signals; 71 are known for conditions including autoimmune disease, certain cancers, BMI, Alzheimer's disease, longevity, age at menopause, bone density, myositis, Parkinson's disease, and age-related macular degeneration. Exclusion of anemic participants did not affect the overall findings. Pathways analysis showed enrichment for telomere maintenance, ribosomal RNA, and apoptosis. The majority of RDW-associated signals were intronic (119 of 194, including SNP rs6602909 located in an intron of oncogene GAS6, an eQTL in whole blood.Although increased RDW is predictive of cardiovascular outcomes, this was not explained by known CVD or related lipid genetic risks, and a RDW genetic score was not predictive of incident disease. The predictive value of RDW for a range of negative health outcomes may in part be due to variants influencing fundamental pathways of aging.

  2. Macular xanthophylls, lipoprotein-related genes, and age-related macular degeneration.

    Science.gov (United States)

    Koo, Euna; Neuringer, Martha; SanGiovanni, John Paul

    2014-07-01

    Plant-based macular xanthophylls (MXs; lutein and zeaxanthin) and the lutein metabolite meso-zeaxanthin are the major constituents of macular pigment, a compound concentrated in retinal areas that are responsible for fine-feature visual sensation. There is an unmet need to examine the genetics of factors influencing regulatory mechanisms and metabolic fates of these 3 MXs because they are linked to processes implicated in the pathogenesis of age-related macular degeneration (AMD). In this work we provide an overview of evidence supporting a molecular basis for AMD-MX associations as they may relate to DNA sequence variation in AMD- and lipoprotein-related genes. We recognize a number of emerging research opportunities, barriers, knowledge gaps, and tools offering promise for meaningful investigation and inference in the field. Overviews on AMD- and high-density lipoprotein (HDL)-related genes encoding receptors, transporters, and enzymes affecting or affected by MXs are followed with information on localization of products from these genes to retinal cell types manifesting AMD-related pathophysiology. Evidence on the relation of each gene or gene product with retinal MX response to nutrient intake is discussed. This information is followed by a review of results from mechanistic studies testing gene-disease relations. We then present findings on relations of AMD with DNA sequence variants in MX-associated genes. Our conclusion is that AMD-associated DNA variants that influence the actions and metabolic fates of HDL system constituents should be examined further for concomitant influence on MX absorption, retinal tissue responses to MX intake, and the capacity to modify MX-associated factors and processes implicated in AMD pathogenesis. © 2014 American Society for Nutrition.

  3. Primer on molecular genetics. DOE Human Genome Program

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This report is taken from the April 1992 draft of the DOE Human Genome 1991--1992 Program Report, which is expected to be published in May 1992. The primer is intended to be an introduction to basic principles of molecular genetics pertaining to the genome project. The material contained herein is not final and may be incomplete. Techniques of genetic mapping and DNA sequencing are described.

  4. EMQN/CMGS best practice guidelines for the molecular genetic testing of Huntington disease.

    Science.gov (United States)

    Losekoot, Monique; van Belzen, Martine J; Seneca, Sara; Bauer, Peter; Stenhouse, Susan A R; Barton, David E

    2013-05-01

    Huntington disease (HD) is caused by the expansion of an unstable polymorphic trinucleotide (CAG)n repeat in exon 1 of the HTT gene, which translates into an extended polyglutamine tract in the protein. Laboratory diagnosis of HD involves estimation of the number of CAG repeats. Molecular genetic testing for HD is offered in a wide range of laboratories both within and outside the European community. In order to measure the quality and raise the standard of molecular genetic testing in these laboratories, the European Molecular Genetics Quality Network has organized a yearly external quality assessment (EQA) scheme for molecular genetic testing of HD for over 10 years. EQA compares a laboratory's output with a fixed standard both for genotyping and reporting of the results to the referring physicians. In general, the standard of genotyping is very high but the clarity of interpretation and reporting of the test result varies more widely. This emphasizes the need for best practice guidelines for this disorder. We have therefore developed these best practice guidelines for genetic testing for HD to assist in testing and reporting of results. The analytical methods and the potential pitfalls of molecular genetic testing are highlighted and the implications of the different test outcomes for the consultand and his or her family members are discussed.

  5. The putative role of lutein and zeaxanthin as protective agents against age-related macular degeneration: promise of molecular genetics for guiding mechanistic and translational research in the field1234

    Science.gov (United States)

    Neuringer, Martha

    2012-01-01

    Age-related macular degeneration (AMD) is the primary cause of vision loss in elderly people of western European ancestry. Genetic, dietary, and environmental factors affect tissue concentrations of macular xanthophylls (MXs) within retinal cell types manifesting AMD pathology. In this article we review the history and state of science on the putative role of the MXs (lutein, zeaxanthin, and meso-zeaxanthin) in AMD and report findings on AMD-associated genes encoding enzymes, transporters, ligands, and receptors affecting or affected by MXs. We then use this context to discuss emerging research opportunities that offer promise for meaningful investigation and inference in the field. PMID:23053548

  6. Medulloblastoma: Molecular Genetics and Animal Models

    Directory of Open Access Journals (Sweden)

    Corey Raffel

    2004-07-01

    Full Text Available Medulloblastoma is a primary brain tumor found in the cerebellum of children. The tumor occurs in association with two inherited cancer syndromes: Turcot syndrome and Gorlin syndrome. Insights into the molecular biology of the tumor have come from looking at alterations in the genes altered in these syndromes, PTC and APC, respectively. Murine models of medulloblastoma have been constructed based on these alterations. Additional murine models that, while mimicking the appearance of the human tumor, seem unrelated to the human tumor's molecular alterations have been made. In this review, the clinical picture, origin, molecular biology, murine models of medulloblastoma are discussed. Although a great deal has been discovered about this tumor, the genetic alterations responsible for tumor development in a majority of patients have yet to be described.

  7. GENETICS AND MOLECULAR BIOLOGY AND PIG MEAT QUALITY IMPROVEMENT

    Directory of Open Access Journals (Sweden)

    J. BULLA

    2007-05-01

    Full Text Available The main goals in pig breeding have for many years been to improve growth rate, feedconversion and carcass composition. There have been less efforts to improve meat qualityparameters (WHC, pH, tenderness, colour etc. but the main contribution has been areduction of stress susceptibility and PSE meat. Unfortunately, the quantitative geneticapproach has yielded few clues regarding the fundamental genetic changes that accompaniedthe selection of animal for superior carcass attributes. While mapping efforts are makingsignificant major effects on carcass and his quality composition DNA test would be availableto detect some positive or negative alleles. There are clear breed effects on meat quality,which in some cases are fully related to the presence of a single gene with major effect (RYR1,MYF4, H-FABP, LEPR, IGF2. Molecular biology methods provides excellent opportunitiesto improve meat quality in selection schemes within breeds and lines. Selection on majorgenes will not only increase average levels of quality but also decrease variability (ei increaseuniformity. The aim of this paper is to discuss there genetic and non-genetic opportunities.

  8. GENETICS AND MOLECULAR BIOLOGY AND PIG MEAT QUALITY IMPROVEMENT

    Directory of Open Access Journals (Sweden)

    BULLA, J.

    2007-01-01

    Full Text Available The main goals in pig breeding have for many years been to improve growth rate, feedconversion and carcass composition. There have been less efforts to improve meat qualityparameters (WHC, pH, tenderness, colour etc. but the main contribution has been areduction of stress susceptibility and PSE meat. Unfortunately, the quantitative geneticapproach has yielded few clues regarding the fundamental genetic changes that accompaniedthe selection of animal for superior carcass attributes. While mapping efforts are makingsignificant major effects on carcass and his quality composition DNA test would be availableto detect some positive or negative alleles. There are clear breed effects on meat quality,which in some cases are fully related to the presence of a single gene with major effect (RYR1,MYF4, H-FABP, LEPR, IGF2. Molecular biology methods provides excellent opportunitiesto improve meat quality in selection schemes within breeds and lines. Selection on majorgenes will not only increase average levels of quality but also decrease variability (ei increaseuniformity. The aim of this paper is to discuss there genetic and non-genetic opportunities.

  9. Progress in the molecular and genetic modification breeding of beef cattle in China.

    Science.gov (United States)

    Tong, Bin; Zhang, Li; Li, Guang-Peng

    2017-11-20

    The studies of beef cattle breeding in China have been greatly improved with the rapid development of the international beef cattle industrialization. The beef cattle breeding technologies have rapidly transformed from traditional breeding to molecular marker-assisted breeding, genomic selection and genetic modification breeding. Hundreds of candidate genes and molecular markers associated with growth, meat quality, reproduction performance and diseases resistance have been identified, and some of them have already been used in cattle breeding. Genes and molecular markers associated with growth and development are focused on the growth hormone, muscle regulatory factors, myostatin and insulin-like growth factors. Meat quality is mediated by fatty acid transport and deposition related signals, calpains and calpain system, muscle regulatory factors and muscle growth regulation pathways. Reproduction performance is regulated by GnRH-FSH-LH, growth differentiation factor 9, prolactin receptor and forkhead box protein O1. Disease resistance is modulated by the major histocompatibility complex gene family, toll-like receptors, mannose-binding lectin and interferon gene signals. In this review, we summarize the most recent progress in beef cattle breeding in marker-assisted selection, genome-wide selection and genetic modification breeding, aiming to provide a reference for further genetic breeding research of beef cattle in China.

  10. Molecular diversity among wild relatives of Cajanus cajan (L.) Millsp ...

    African Journals Online (AJOL)

    In the present study, four wild relatives of pigeonpea were evaluated using 24 simple sequence repeat (SSR) markers to assess their genetic diversity at molecular level. Each marker, on average, amplified 3.3 alleles with polymorphic information content (PIC) value of 0.53. The dendrogram pattern revealed two distinct ...

  11. Chondrosarcoma: With Updates on Molecular Genetics

    Directory of Open Access Journals (Sweden)

    Mi-Jung Kim

    2011-01-01

    Full Text Available Chondrosarcoma (CHS is a malignant cartilage-forming tumor and usually occurs within the medullary canal of long bones and pelvic bones. Based on the morphologic feature alone, a correct diangosis of CHS may be difficult, Therefore, correlation of radiological and clinicopathological features is mandatory in the diagnosis of CHS. The prognosis of CHS is closely related to histologic grading, however, histologic grading may be subjective with high inter-observer variability. In this paper, we present histologic grading system and clinicopathological and radiological findings of conventional CHS. Subtypes of CHSs, such as dedifferentiated, mesenchymal, and clear cell CHSs are also presented. In addition, we introduce updated cytogenetic and molecular genetic findings to expand our understanding of CHS biology. New markers of cell differentiation, proliferation, and cell signaling might offer important therapeutic and prognostic information in near future.

  12. Molecular genetic analysis of a cattle population to reconstitute the extinct Algarvia breed

    Directory of Open Access Journals (Sweden)

    Rangel-Figueiredo Teresa

    2010-06-01

    Full Text Available Abstract Background Decisions to initiate conservation programmes need to account for extant variability, diversity loss and cultural and economic aspects. Molecular markers were used to investigate if putative Algarvia animals could be identified for use as progenitors in a breeding programme to recover this nearly extinct breed. Methods 46 individuals phenotypically representative of Algarvia cattle were genotyped for 27 microsatellite loci and compared with 11 Portuguese autochthonous and three imported breeds. Genetic distances and factorial correspondence analyses (FCA were performed to investigate the relationship among Algarvia and related breeds. Assignment tests were done to identify representative individuals of the breed. Y chromosome and mtDNA analyses were used to further characterize Algarvia animals. Gene- and allelic-based conservation analyses were used to determine breed contributions to overall genetic diversity. Results Genetic distance and FCA results confirmed the close relationship between Algarvia and southern Portuguese breeds. Assignment tests without breed information classified 17 Algarvia animals in this cluster with a high probability (q > 0.95. With breed information, 30 cows and three bulls were identified (q > 0.95 that could be used to reconstitute the Algarvia breed. Molecular and morphological results were concordant. These animals showed intermediate levels of genetic diversity (MNA = 6.0 ± 1.6, Rt = 5.7 ± 1.4, Ho = 0.63 ± 0.19 and He = 0.69 ± 0.10 relative to other Portuguese breeds. Evidence of inbreeding was also detected (Fis = 0.083, P st = 0.028, P > 0.05. Algarvia cattle provide an intermediate contribution (CB = 6.18, CW = -0.06 and D1 = 0.50 to the overall gene diversity of Portuguese cattle. Algarvia and seven other autochthonous breeds made no contribution to the overall allelic diversity. Conclusions Molecular analyses complemented previous morphological findings to identify 33 animals that

  13. Age-related changes of monoaminooxidases in rat cerebellar cortex

    Directory of Open Access Journals (Sweden)

    FM Tranquilli Leali

    2009-06-01

    Full Text Available Age-related changes of the monoaminoxidases, evaluated by enzymatic staining, quantitative analysis of images, biochemical assay and statistical analysis of data were studied in cerebellar cortex of young (3-month-old and aged (26- month-old male Sprague-Dawley rats. The enzymatic staining shows the presence of monoamino-oxidases within the molecular and granular layers as well as within the Purkinje neurons of the cerebellum of young and aged animals. In molecular layer, and in Purkinje neurons the levels of monoaminooxidases were strongly increased in old rats. The granular layer showed, on the contrary, an age-dependent loss of enzymatic staining. These morphological findings were confirmed by biochemical results. The possibility that age-related changes in monoaminooxidase levels may be due to impaired energy production mechanisms and/or represent the consequence of reduced energetic needs is discussed.

  14. Genetic variation in glia-neuron signalling modulates ageing rate.

    Science.gov (United States)

    Yin, Jiang-An; Gao, Ge; Liu, Xi-Juan; Hao, Zi-Qian; Li, Kai; Kang, Xin-Lei; Li, Hong; Shan, Yuan-Hong; Hu, Wen-Li; Li, Hai-Peng; Cai, Shi-Qing

    2017-11-08

    The rate of behavioural decline in the ageing population is remarkably variable among individuals. Despite the considerable interest in studying natural variation in ageing rate to identify factors that control healthy ageing, no such factor has yet been found. Here we report a genetic basis for variation in ageing rates in Caenorhabditis elegans. We find that C. elegans isolates show diverse lifespan and age-related declines in virility, pharyngeal pumping, and locomotion. DNA polymorphisms in a novel peptide-coding gene, named regulatory-gene-for-behavioural-ageing-1 (rgba-1), and the neuropeptide receptor gene npr-28 influence the rate of age-related decline of worm mating behaviour; these two genes might have been subjected to recent selective sweeps. Glia-derived RGBA-1 activates NPR-28 signalling, which acts in serotonergic and dopaminergic neurons to accelerate behavioural deterioration. This signalling involves the SIR-2.1-dependent activation of the mitochondrial unfolded protein response, a pathway that modulates ageing. Thus, natural variation in neuropeptide-mediated glia-neuron signalling modulates the rate of ageing in C. elegans.

  15. A molecular genetic toolbox for Yarrowia lipolytica

    DEFF Research Database (Denmark)

    Bredeweg, Erin L.; Pomraning, Kyle R.; Dai, Ziyu

    2017-01-01

    used these tools to build the "Yarrowia lipolytica Cell Atlas," a collection of strains with endogenous fluorescently tagged organelles in the same genetic background, in order to define organelle morphology in live cells. Conclusions: These molecular and isogenetic tools are useful for live assessment...

  16. Insights into the genetic architecture of early stage age-related macular degeneration: a genome-wide association study meta-analysis.

    Directory of Open Access Journals (Sweden)

    Elizabeth G Holliday

    Full Text Available Genetic factors explain a majority of risk variance for age-related macular degeneration (AMD. While genome-wide association studies (GWAS for late AMD implicate genes in complement, inflammatory and lipid pathways, the genetic architecture of early AMD has been relatively under studied. We conducted a GWAS meta-analysis of early AMD, including 4,089 individuals with prevalent signs of early AMD (soft drusen and/or retinal pigment epithelial changes and 20,453 individuals without these signs. For various published late AMD risk loci, we also compared effect sizes between early and late AMD using an additional 484 individuals with prevalent late AMD. GWAS meta-analysis confirmed previously reported association of variants at the complement factor H (CFH (peak P = 1.5×10(-31 and age-related maculopathy susceptibility 2 (ARMS2 (P = 4.3×10(-24 loci, and suggested Apolipoprotein E (ApoE polymorphisms (rs2075650; P = 1.1×10(-6 associated with early AMD. Other possible loci that did not reach GWAS significance included variants in the zinc finger protein gene GLI3 (rs2049622; P = 8.9×10(-6 and upstream of GLI2 (rs6721654; P = 6.5×10(-6, encoding retinal Sonic hedgehog signalling regulators, and in the tyrosinase (TYR gene (rs621313; P = 3.5×10(-6, involved in melanin biosynthesis. For a range of published, late AMD risk loci, estimated effect sizes were significantly lower for early than late AMD. This study confirms the involvement of multiple established AMD risk variants in early AMD, but suggests weaker genetic effects on the risk of early AMD relative to late AMD. Several biological processes were suggested to be potentially specific for early AMD, including pathways regulating RPE cell melanin content and signalling pathways potentially involved in retinal regeneration, generating hypotheses for further investigation.

  17. DataGenno: building a new tool to bridge molecular and clinical genetics

    Directory of Open Access Journals (Sweden)

    Fabricio F Costa

    2011-03-01

    Full Text Available Fabricio F Costa1,2, Luciano S Foly1, Marcelo P Coutinho11DataGenno Interactive Research Ltd., Itaperuna, Rio de Janeiro, Brazil; 2Cancer Biology and Epigenomics Program, Children's Memorial Research Center, Northwestern University's Feinberg School of Medicine, Chicago, IL, USAAbstract: Clinical genetics is one of the most challenging fields in medicine, with thousands of children born every year with congenital defects that have no satisfactory diagnosis. There are more than 6,000 known single-gene disorders that can cause birth defects or diseases in approximately 1 in every 200 births. Clinical and molecular information on genetic diseases and syndromes are widespread in the literature, and there are few databases combining this information. Therefore, it is very challenging for health care professionals and researchers to translate the latest advances in science and medicine into effective clinical interventions and new treatments. In order to overcome this obstacle and promote networking, we are building DataGenno, an online medical and scientific portal. DataGenno has been developed to be a source of information on genetic diseases and syndromes for the needs of all heath care professionals and researchers. Our database will be able to integrate both clinical and molecular aspects of genetic diseases in a fully interactive environment. DataGenno’s system already contains clinical and molecular information for 300 diseases, with approximately 6,000 signs and symptoms of these diseases in a database combined with a search engine. Our main goal is to cover all genetic diseases described to date, providing not only clinical information such as morphological and anatomical features but also the most comprehensive molecular genetics/genomics features and available testing information. We are also developing ways to connect DataGenno’s portal with Electronic Health Records in order to improve the efficiency of patient care. Additionally

  18. Complement pathway biomarkers and age-related macular degeneration

    Science.gov (United States)

    Gemenetzi, M; Lotery, A J

    2016-01-01

    In the age-related macular degeneration (AMD) ‘inflammation model', local inflammation plus complement activation contributes to the pathogenesis and progression of the disease. Multiple genetic associations have now been established correlating the risk of development or progression of AMD. Stratifying patients by their AMD genetic profile may facilitate future AMD therapeutic trials resulting in meaningful clinical trial end points with smaller sample sizes and study duration. PMID:26493033

  19. Genetic variability of hull-less barley accessions based on molecular and quantitative data

    Directory of Open Access Journals (Sweden)

    Ricardo Meneses Sayd

    2015-02-01

    Full Text Available The objective of this work was to characterize and quantify the genetic, molecular, and agronomic variability of hull-less barley genotypes, for the selection of parents and identification of genotypes adapted to the irrigated production system in the Brazilian Cerrado. Eighteen hull-less barley accessions were evaluated, and three covered barley accessions served as reference. The characterization was based on 157 RAPD molecular markers and ten agronomic traits. Genetic distance matrices were obtained based on molecular markers and quantitative traits. Graphic grouping and dispersion analyses were performed. Genetic, molecular, and agronomic variability was high among genotypes. Ethiopian accessions were genetically more similar, and the Brazilian ones were genetically more distant. For agronomic traits, two more consistent groupings were obtained, one with the most two-rowed materials, and the other with six-rowed materials. The more diverging materials were the two-rowed CI 13453, CN Cerrado 5, CN Cerrado 1, and CN Cerrado 2. The PI 356466, CN Cerrado 1, PI 370799, and CI 13453 genotypes show agronomic traits of interest and, as genetically different genotypes, they are indicated for crossing, in breeding programs.

  20. Molecular and genetic aspects of odontogenic tumors: a review.

    Science.gov (United States)

    Garg, Kavita; Chandra, Shaleen; Raj, Vineet; Fareed, Wamiq; Zafar, Muhammad

    2015-06-01

    Odontogenic tumors contain a heterogeneous collection of lesions that are categorized from hamartomas to benign and malignant neoplasms of inconstant aggressiveness. Odontogenic tumors are usually extraordinary with assessed frequency of short of 0.5 cases/100,000 population for every year. The lesions such as odontogenic tumors are inferred from the components of the tooth-structuring contraption. They are discovered solely inside the maxillary and mandibular bones. This audit speaks to experiences and cooperation of the molecular and genetic variations connected to the development and movement of odontogenic tumors which incorporate oncogenes, tumor-silencer genes, APC gene, retinoblastoma genes, DNA repair genes, onco-viruses, development components, telomerase, cell cycle controllers, apoptosis-related elements, and regulators/conttrollers of tooth development. The reasonable and better understanding of the molecular components may prompt new ideas for their detection and administrating a better prognosis of odontogenic tumors.

  1. Testicular germ cell tumors: Molecular genetic and clinicomorphological aspects

    Directory of Open Access Journals (Sweden)

    M. V. Nemtsova

    2015-03-01

    Full Text Available Testicular tumors are the most common form of solid cancer in young men. According to the 2004 WHO classification, testicular germ cell tumors (TGCT may present with different histological types. Embryonic cells of varying grade may be a source of TGCT and the occurrence of this type of tumors is directly related to the formation of a pool of male sex cells and gametogenesis. The paper gives information on mo- lecular stages for the process of formation of male sex cells in health, as well as ways of their impairments leading to TGCT. An investigation of the profiles of gene expression and the spectrum of molecular damages revealed genes responsible for a predisposition to the sporadic and hereditary forms of TGCT. The paper presents the current molecular genetic and clinicomorphological characteristics of TGCT. 

  2. The Role of Insulin-Like Growth Factor 1 in the Progression of Age-Related Hearing Loss

    Directory of Open Access Journals (Sweden)

    Lourdes Rodríguez-de la Rosa

    2017-12-01

    Full Text Available Aging is associated with impairment of sensorial functions and with the onset of neurodegenerative diseases. As pari passu circulating insulin-like growth factor 1 (IGF-1 bioavailability progressively decreases, we see a direct correlation with sensory impairment and cognitive performance in older humans. Age-related sensory loss is typically caused by the irreversible death of highly differentiated neurons and sensory receptor cells. Among sensory deficits, age-related hearing loss (ARHL, also named presbycusis, affects one third of the population over 65 years of age and is a major factor in the progression of cognitive problems in the elderly. The genetic and molecular bases of ARHL are largely unknown and only a few genes related to susceptibility to oxidative stress, excitotoxicity, and cell death have been identified. IGF-1 is known to be a neuroprotective agent that maintains cellular metabolism, activates growth, proliferation and differentiation, and limits cell death. Inborn IGF-1 deficiency leads to profound sensorineural hearing loss both in humans and mice. IGF-1 haploinsufficiency has also been shown to correlate with ARHL. There is not much information available on the effect of IGF-1 deficiency on other human sensory systems, but experimental models show a long-term impact on the retina. A secondary action of IGF-1 is the control of oxidative stress and inflammation, thus helping to resolve damage situations, acute or made chronic by aging. Here we will review the primary actions of IGF-1 in the auditory system and the underlying molecular mechanisms.

  3. Molecular genetics of pancreatic neoplasms and their morphologic correlates: an update on recent advances and potential diagnostic applications.

    Science.gov (United States)

    Reid, Michelle D; Saka, Burcu; Balci, Serdar; Goldblum, Andrew S; Adsay, N Volkan

    2014-02-01

    To summarize the most clinically and biologically relevant advances in molecular/genetic characteristics of various pancreatic neoplasms, with morphologic correlation. Whole-exome sequencing of numerous benign and malignant pancreatic tumors, along with the plethora of highly sensitive molecular studies now available for analyzing these tumors, provide mounting evidence to support the long-held belief that cancer is essentially a genetic disease. These genetic discoveries have not only helped to confirm the age-old, morphology-based classifications of pancreatic neoplasia but have shed new light on their mechanisms. Many of these molecular discoveries are currently being used in preoperative diagnosis. Mutations in KRAS, P16/CDKN2A, TP53, and SMAD4/DPC4 are commonly seen in ductal neoplasia but not in nonductal tumors; ductal adenocarcinomas with SMAD4/DPC4 loss are associated with widespread metastasis and poor prognosis. GNAS and RNF43 mutations have been discovered in most intraductal pancreatic mucinous neoplasms, providing critical molecular fingerprints for their diagnosis. Mutation in DAXX/ATRX is only seen in pancreatic neuroendocrine tumors, making it a useful potential marker in distinguishing these tumors from mimics. When combined with morphologic observations, molecular studies will increase our understanding of the pathogenesis and morphomolecular signatures associated with specific neoplasms and provide new horizons for precision medicine and targeted therapies.

  4. Molecular-level insights into aging processes of skin elastin

    DEFF Research Database (Denmark)

    Mora Huertas, Angela C; Schmelzer, Christian E H; Hoehenwarter, Wolfgang

    2016-01-01

    Skin aging is characterized by different features including wrinkling, atrophy of the dermis and loss of elasticity associated with damage to the extracellular matrix protein elastin. The aim of this study was to investigate the aging process of skin elastin at the molecular level by evaluating...... the influence of intrinsic (chronological aging) and extrinsic factors (sun exposure) on the morphology and susceptibility of elastin towards enzymatic degradation. Elastin was isolated from biopsies derived from sun-protected or sun-exposed skin of differently aged individuals. The morphology of the elastin...... pronounced in sun-exposed tissue. Marker peptides were identified, which showed an age-related increase or decrease in their abundances and provide insights into the progression of the aging process of elastin fibers. Strong age-related cleavage occurs in hydrophobic tropoelastin domains 18, 20, 24 and 26...

  5. Catecholaminergic systems in stress: structural and molecular genetic approaches.

    Science.gov (United States)

    Kvetnansky, Richard; Sabban, Esther L; Palkovits, Miklos

    2009-04-01

    Stressful stimuli evoke complex endocrine, autonomic, and behavioral responses that are extremely variable and specific depending on the type and nature of the stressors. We first provide a short overview of physiology, biochemistry, and molecular genetics of sympatho-adrenomedullary, sympatho-neural, and brain catecholaminergic systems. Important processes of catecholamine biosynthesis, storage, release, secretion, uptake, reuptake, degradation, and transporters in acutely or chronically stressed organisms are described. We emphasize the structural variability of catecholamine systems and the molecular genetics of enzymes involved in biosynthesis and degradation of catecholamines and transporters. Characterization of enzyme gene promoters, transcriptional and posttranscriptional mechanisms, transcription factors, gene expression and protein translation, as well as different phases of stress-activated transcription and quantitative determination of mRNA levels in stressed organisms are discussed. Data from catecholamine enzyme gene knockout mice are shown. Interaction of catecholaminergic systems with other neurotransmitter and hormonal systems are discussed. We describe the effects of homotypic and heterotypic stressors, adaptation and maladaptation of the organism, and the specificity of stressors (physical, emotional, metabolic, etc.) on activation of catecholaminergic systems at all levels from plasma catecholamines to gene expression of catecholamine enzymes. We also discuss cross-adaptation and the effect of novel heterotypic stressors on organisms adapted to long-term monotypic stressors. The extra-adrenal nonneuronal adrenergic system is described. Stress-related central neuronal regulatory circuits and central organization of responses to various stressors are presented with selected examples of regulatory molecular mechanisms. Data summarized here indicate that catecholaminergic systems are activated in different ways following exposure to distinct

  6. Analyzing age-specific genetic effects on human extreme age survival in cohort-based longitudinal studies

    DEFF Research Database (Denmark)

    Tan, Qihua; Jacobsen, Rune; Sørensen, Mette

    2013-01-01

    The analysis of age-specific genetic effects on human survival over extreme ages is confronted with a deceleration pattern in mortality that deviates from traditional survival models and sparse genetic data available. As human late life is a distinct phase of life history, exploring the genetic...... effects on extreme age survival can be of special interest to evolutionary biology and health science. We introduce a non-parametric survival analysis approach that combines population survival information with individual genotype data in assessing the genetic effects in cohort-based longitudinal studies...

  7. Phenotypic and molecular genetic analysis of Pyruvate Kinase ...

    African Journals Online (AJOL)

    Phenotypic and molecular genetic analysis of Pyruvate Kinase deficiency in a Tunisian family. Jaouani Mouna, Hamdi Nadia, Chaouch Leila, Kalai Miniar, Mellouli Fethi, Darragi Imen, Boudriga Imen, Chaouachi Dorra, Bejaoui Mohamed, Abbes Salem ...

  8. Classical and molecular genetics of malignant melanoma and dysplastic naevi

    International Nuclear Information System (INIS)

    Traupe, H.; Macher, E.

    1988-01-01

    The authors conclude that the prevailing concept of monogenic autosomaldominant inheritance of dysplastic naevi and familial melanoma is not compatible with the principles of formal (Mendelian) genetics. The concept of polygenic inheritance offers instead a sound basis to explain familial aggregation of dysplastic naevi and melanoma. The various genes involved have not yet been identified at the molecular level. The recent advances made possible by modern DNA technology have given us a new view of carcinogenesis. In human malignant melanoma, chromosomes 1, 6, 7 are of particular interest and oncogenes located on these chromosomes may be involved with the initiation, promotion and progression of melanoma. Carcinogenesis is viewed as a multistep process and even tumour initiation requires the input of at least two independent oncogenes. Molecular genetics thus adds an important argument for the existence of a polygenic predisposition to melanoma. The concept of polygenic inheritance is not restricted to familial melanoma, but implies that all melanomas basically share the same predisposition and are due to similar genetic mechanisms. In some patients an inherited genetic predisposition is of great importance, whereas in others (the majority) environmental factors (e.g. UV-light-induced mutations) will be the cause of initial steps in the malignant transformation. The concept of polygenic inheritance has consequences for the management of our patients. In contrast to simple Mendelian inheritance, the risk for dysplastic naevi and melanoma is not constantly 50%, but increases with the number of family members already affected. Persons belonging to families with more that 2 affected close relatives should be considered at high risk regardless of the dysplastic naevus status. Strict surveillance of this patient group is warranted for melanoma prevention

  9. Novel gene function revealed by mouse mutagenesis screens for models of age-related disease.

    Science.gov (United States)

    Potter, Paul K; Bowl, Michael R; Jeyarajan, Prashanthini; Wisby, Laura; Blease, Andrew; Goldsworthy, Michelle E; Simon, Michelle M; Greenaway, Simon; Michel, Vincent; Barnard, Alun; Aguilar, Carlos; Agnew, Thomas; Banks, Gareth; Blake, Andrew; Chessum, Lauren; Dorning, Joanne; Falcone, Sara; Goosey, Laurence; Harris, Shelley; Haynes, Andy; Heise, Ines; Hillier, Rosie; Hough, Tertius; Hoslin, Angela; Hutchison, Marie; King, Ruairidh; Kumar, Saumya; Lad, Heena V; Law, Gemma; MacLaren, Robert E; Morse, Susan; Nicol, Thomas; Parker, Andrew; Pickford, Karen; Sethi, Siddharth; Starbuck, Becky; Stelma, Femke; Cheeseman, Michael; Cross, Sally H; Foster, Russell G; Jackson, Ian J; Peirson, Stuart N; Thakker, Rajesh V; Vincent, Tonia; Scudamore, Cheryl; Wells, Sara; El-Amraoui, Aziz; Petit, Christine; Acevedo-Arozena, Abraham; Nolan, Patrick M; Cox, Roger; Mallon, Anne-Marie; Brown, Steve D M

    2016-08-18

    Determining the genetic bases of age-related disease remains a major challenge requiring a spectrum of approaches from human and clinical genetics to the utilization of model organism studies. Here we report a large-scale genetic screen in mice employing a phenotype-driven discovery platform to identify mutations resulting in age-related disease, both late-onset and progressive. We have utilized N-ethyl-N-nitrosourea mutagenesis to generate pedigrees of mutagenized mice that were subject to recurrent screens for mutant phenotypes as the mice aged. In total, we identify 105 distinct mutant lines from 157 pedigrees analysed, out of which 27 are late-onset phenotypes across a range of physiological systems. Using whole-genome sequencing we uncover the underlying genes for 44 of these mutant phenotypes, including 12 late-onset phenotypes. These genes reveal a number of novel pathways involved with age-related disease. We illustrate our findings by the recovery and characterization of a novel mouse model of age-related hearing loss.

  10. Use of molecular genetics and historical records to reconstruct the ...

    African Journals Online (AJOL)

    Recent advances in molecular genetics made the inference of past demographic events through the analysis of gene pools from modern populations possible. The technology uses genetic markers to provide previously unavailable resolution into questions of human evolution, migration and the historical relationship of ...

  11. Genetic factors and molecular mechanisms in dry eye disease.

    Science.gov (United States)

    Lee, Ling; Garrett, Qian; Flanagan, Judith; Chakrabarti, Subhabrata; Papas, Eric

    2018-04-01

    Dry eye disease (DED) is a complex condition with a multifactorial etiology that can be difficult to manage successfully. While external factors are modifiable, treatment success is limited if genetic factors contribute to the disease. The purpose of this review is to compile research describing normal and abnormal ocular surface function on a molecular level, appraise genetic studies involving DED or DED-associated diseases, and introduce the basic methods used for conducting genetic epidemiology studies. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Molecular species identification and population genetics of ...

    African Journals Online (AJOL)

    Molecular genetic techniques, such as DNA barcoding and genotyping, are increasingly being used to assist with the conservation and management of chondrichthyans worldwide. Southern Africa is a shark biodiversity hotspot, with a large number of endemic species. According to the IUCN Red List, a quarter of South ...

  13. Molecular diversity and genetic relationships in Secale

    Indian Academy of Sciences (India)

    The objective of this study was to quantify the molecular diversity and to determine the genetic relationships amongSecalespp. and among cultivars ofSecale ... Faculty of Sciences, Campo Grande, Lisboa, Portugal; Departamento de Genética, Facultad de Biologia, Universidad Complutense, C/ José Antonio Novais, 12, ...

  14. Molecular Genetic of Atopic dermatitis: An Update

    Science.gov (United States)

    Al-Shobaili, Hani A.; Ahmed, Ahmed A.; Alnomair, Naief; Alobead, Zeiad Abdulaziz; Rasheed, Zafar

    2016-01-01

    Atopic dermatitis (AD) is a chronic multifactorial inflammatory skin disease. The pathogenesis of AD remains unclear, but the disease results from dysfunctions of skin barrier and immune response, where both genetic and environmental factors play a key role. Recent studies demonstrate the substantial evidences that show a strong genetic association with AD. As for example, AD patients have a positive family history and have a concordance rate in twins. Moreover, several candidate genes have now been suspected that play a central role in the genetic background of AD. In last decade advanced procedures similar to genome-wide association (GWA) and single nucleotide polymorphism (SNP) have been applied on different population and now it has been clarified that AD is significantly associated with genes of innate/adaptive immune systems, human leukocyte antigens (HLA), cytokines, chemokines, drug-metabolizing genes or various other genes. In this review, we will highlight the recent advancements in the molecular genetics of AD, especially on possible functional relevance of genetic variants discovered to date. PMID:27004062

  15. Molecular genetic analysis of activation-tagged transcription factors thought to be involved in photomorphogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Neff, Michael M.

    2011-06-23

    This is a final report for Department of Energy Grant No. DE-FG02-08ER15927 entitled “Molecular Genetic Analysis of Activation-Tagged Transcription Factors Thought to be Involved in Photomorphogenesis”. Based on our preliminary photobiological and genetic analysis of the sob1-D mutant, we hypothesized that OBP3 is a transcription factor involved in both phytochrome and cryptochrome-mediated signal transduction. In addition, we hypothesized that OBP3 is involved in auxin signaling and root development. Based on our preliminary photobiological and genetic analysis of the sob2-D mutant, we also hypothesized that a related gene, LEP, is involved in hormone signaling and seedling development.

  16. Macular xanthophylls, lipoprotein-related genes, and age-related macular degeneration1234

    Science.gov (United States)

    Koo, Euna; Neuringer, Martha; SanGiovanni, John Paul

    2014-01-01

    Plant-based macular xanthophylls (MXs; lutein and zeaxanthin) and the lutein metabolite meso-zeaxanthin are the major constituents of macular pigment, a compound concentrated in retinal areas that are responsible for fine-feature visual sensation. There is an unmet need to examine the genetics of factors influencing regulatory mechanisms and metabolic fates of these 3 MXs because they are linked to processes implicated in the pathogenesis of age-related macular degeneration (AMD). In this work we provide an overview of evidence supporting a molecular basis for AMD-MX associations as they may relate to DNA sequence variation in AMD- and lipoprotein-related genes. We recognize a number of emerging research opportunities, barriers, knowledge gaps, and tools offering promise for meaningful investigation and inference in the field. Overviews on AMD- and high-density lipoprotein (HDL)–related genes encoding receptors, transporters, and enzymes affecting or affected by MXs are followed with information on localization of products from these genes to retinal cell types manifesting AMD-related pathophysiology. Evidence on the relation of each gene or gene product with retinal MX response to nutrient intake is discussed. This information is followed by a review of results from mechanistic studies testing gene-disease relations. We then present findings on relations of AMD with DNA sequence variants in MX-associated genes. Our conclusion is that AMD-associated DNA variants that influence the actions and metabolic fates of HDL system constituents should be examined further for concomitant influence on MX absorption, retinal tissue responses to MX intake, and the capacity to modify MX-associated factors and processes implicated in AMD pathogenesis. PMID:24829491

  17. The Fruit Fly Drosophila melanogaster as a Model for Aging Research.

    Science.gov (United States)

    Brandt, Annely; Vilcinskas, Andreas

    2013-01-01

    : Average human life expectancy is increasing and so is the impact on society of aging and age-related diseases. Here we highlight recent advances in the diverse and multidisciplinary field of aging research, focusing on the fruit fly Drosophila melanogaster, an excellent model system in which to dissect the genetic and molecular basis of the aging processes. The conservation of human disease genes in D. melanogaster allows the functional analysis of orthologues implicated in human aging and age-related diseases. D. melanogaster models have been developed for a variety of age-related processes and disorders, including stem cell decline, Alzheimer's disease, and cardiovascular deterioration. Understanding the detailed molecular events involved in normal aging and age-related diseases could facilitate the development of strategies and treatments that reduce their impact, thus improving human health and increasing longevity.

  18. Molecular markers unravel intraspecific and interspecific genetic ...

    Indian Academy of Sciences (India)

    [Kotwal S., Dhar M. K., Kour B., Raj K. and Kaul S. 2013 Molecular markers unravel intraspecific and interspecific genetic variability in ... of bowel problems including chronic constipation, amoebic ..... while to select parents from accessions, Pov80 and Pov79 ... nology (DBT), Govt. of India, for financial assistance in the form.

  19. Deterioration of the Medial Olivocochlear Efferent System Accelerates Age-Related Hearing Loss in Pax2-Isl1 Transgenic Mice

    Czech Academy of Sciences Publication Activity Database

    Chumak, Tetyana; Bohuslavová, Romana; Mácová, Iva; Dodd, Nicole; Buckiová, Daniela; Fritzsch, B.; Syka, Josef; Pavlínková, Gabriela

    2016-01-01

    Roč. 53, č. 4 (2016), s. 2368-2383 ISSN 0893-7648 R&D Projects: GA ČR(CZ) GA13-07996S; GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk(CZ) EE2.3.30.0020 Institutional support: RVO:68378041 ; RVO:86652036 Keywords : medial olivocochlear efferent system * islet1 transcription factor * age-related hearing loss * outer hair cells Subject RIV: FH - Neurology; EB - Genetics ; Molecular Biology (BTO-N) Impact factor: 6.190, year: 2016

  20. Molecular and genetic aspects of odontogenic tumors: a review

    Directory of Open Access Journals (Sweden)

    Kavita Garg

    2015-06-01

    Full Text Available Odontogenic tumors contain a heterogeneous collection of lesions that are categorized from hamartomas to benign and malignant neoplasms of inconstant aggressiveness. Odontogenic tumors are usually extraordinary with assessed frequency of short of 0.5 cases/100,000 population for every year. The lesions such as odontogenic tumors are inferred from the components of the tooth-structuring contraption. They are discovered solely inside the maxillary and mandibular bones. This audit speaks to experiences and cooperation of the molecular and genetic variations connected to the development and movement of odontogenic tumors which incorporate oncogenes, tumor-silencer genes, APC gene, retinoblastoma genes, DNA repair genes, onco-viruses, development components, telomerase, cell cycle controllers, apoptosis-related elements, and regulators/controllers of tooth development. The reasonable and better understanding of the molecular components may prompt new ideas for their detection and administrating a better prognosis of odontogenic tumors.

  1. [Malignant Melanoma - from Classical Histology towards Molecular Genetic Testing].

    Science.gov (United States)

    Ryška, A; Horký, O; Berkovcová, J; Tichá, I; Kalinová, M; Matějčková, M; Bóday, Á; Drábek, J; Martínek, P; Šimová, J; Sieglová, K; Vošmiková, H

    Malignant melanoma is - in comparison with other skin tumors - a relatively rare malignant neoplasm with highly aggressive biologic behavior and variable prognosis. Recent data in pathology and molecular diagnostics indicate that malignant melanoma is in fact not a single entity but a group of different neoplasms with variable etiopathogenesis, biologic behavior and prognosis. New therapeutic options using targeted treatment blocking MAPK signaling pathway require testing of BRAF gene mutation status. This helps to select patients with highest probability of benefit from this treatment. This article summarizes information on the correlation of morphological findings with genetic changes, discusses the representation of individual genetic types in various morphological subgroups and deals with the newly proposed genetic classification of melanoma and the current possibilities, pitfalls and challenges in BRAF testing of malignant melanoma. It also describes the current testing situation in the Czech Republic - the methods used, the representation of BRAF mutations in the tested population and the future of testing. It also shows the limitations of the BRAF and MEK targeted treatment concept resulting from the heterogeneity of the tumor population. Mechanisms of acquired resistance to MAPK pathway inhibitors, possibilities of their detection, and issues of combination of targeted therapy and immunotherapy are discussed.Key words: malignant melanoma - BRAF - mutation - molecular targeted therapy - tumor microenvironment - tumor heterogeneity This work was supported by projects PROGRES Q40/11, BBMRICZ LM2015089, SVV 260398 and GACR 17-10331S. The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study. The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers.Submitted: 28. 3. 2017Accepted: 16. 5. 2017.

  2. Genetic characterization, species differentiation and detection of Fasciola spp. by molecular approaches.

    Science.gov (United States)

    Ai, Lin; Chen, Mu-Xin; Alasaad, Samer; Elsheikha, Hany M; Li, Juan; Li, Hai-Long; Lin, Rui-Qing; Zou, Feng-Cai; Zhu, Xing-Quan; Chen, Jia-Xu

    2011-06-10

    Liver flukes belonging to the genus Fasciola are among the causes of foodborne diseases of parasitic etiology. These parasites cause significant public health problems and substantial economic losses to the livestock industry. Therefore, it is important to definitively characterize the Fasciola species. Current phenotypic techniques fail to reflect the full extent of the diversity of Fasciola spp. In this respect, the use of molecular techniques to identify and differentiate Fasciola spp. offer considerable advantages. The advent of a variety of molecular genetic techniques also provides a powerful method to elucidate many aspects of Fasciola biology, epidemiology, and genetics. However, the discriminatory power of these molecular methods varies, as does the speed and ease of performance and cost. There is a need for the development of new methods to identify the mechanisms underpinning the origin and maintenance of genetic variation within and among Fasciola populations. The increasing application of the current and new methods will yield a much improved understanding of Fasciola epidemiology and evolution as well as more effective means of parasite control. Herein, we provide an overview of the molecular techniques that are being used for the genetic characterization, detection and genotyping of Fasciola spp..

  3. Genetic Diversity Analysis in 27 Tomato Accessions Using Morphological and Molecular Markers

    Directory of Open Access Journals (Sweden)

    Catur Herison

    2018-02-01

    Full Text Available Genetic diversity is the most important aspect in tomato breeding activities. Better assessment on the diversity of the collected accessions will come up with better result of the cultivar development. This study aimed at analyzing the genetic diversity of 27 tomato accessions by morphological and molecular markers. Twenty seven accessions collected from various regions of Indonesia were planted in the field and evaluated for their morphological traits, and RAPD analyzed for their molecular markers. The UPGMA clustering analyzes, elaborating the combination of morphological and molecular data, indicated that the tomato accessions could be grouped into 5 major groups with 70 % genetic similarity levels. Current study indicated that although many accessions came from different locations, they congregated into the same group. Cherry, Kudamati 1 and Lombok 3 were the farthest genetic distant accessions to the others. Those three genotypes will be the most valuable accessions, when they were crossed with other accessions, for designing a prospective breeding program in the future.

  4. eNOS-uncoupling in age-related erectile dysfunction

    OpenAIRE

    Johnson, JM; Bivalacqua, TJ; Lagoda, GA; Burnett, AL; Musicki, B

    2011-01-01

    Aging is associated with ED. Although age-related ED is attributed largely to increased oxidative stress and endothelial dysfunction in the penis, the molecular mechanisms underlying this effect are not fully defined. We evaluated whether endothelial nitric oxide synthase (eNOS) uncoupling in the aged rat penis is a contributing mechanism. Correlatively, we evaluated the effect of replacement with eNOS cofactor tetrahydrobiopterin (BH4) on erectile function in the aged rats. Male Fischer 344 ...

  5. A Baseline Algorithm for Molecular Diagnosis of Genetic Eye Diseases: Ophthalmologist’s Perspective

    Directory of Open Access Journals (Sweden)

    Hande Taylan Şekeroğlu

    2016-12-01

    microscopically visible abnormalities in chromosome number and structure, as well as translocations and large indels, and is appropriate as the first-tier test in multisystemic congenital abnormalities. Although conventional cytogenetic analysis may be considered as a screening test in such patients, microscopic diagnosis sometimes requires preliminary clinical diagnosis, designed in order to unveil specific deletions or duplications. A classic example is the small 11p interstitial deletion in Wilms tumor and aniridia, which could only be shown via fluorescence in situ hybridization or multiplex ligation-dependent probe amplification. Array comparative genomic hybridization methods are preferred for genetic eye diseases involving copy number variations. One such example is congenital cataract, which has a very complicated phenotype-genotype correlation and shows clinical heterogeneity. Responsible mutations in crystallins, transcription factors and membrane proteins have been reported.3 Furthermore, single nucleotide polymorphism array may enable the detection of disease predisposition or drug resistance (e.g. age-related macular degeneration. Next generation sequencing is the most current technology allowing parallel sequencing of many genes and may cover either a spectrum of known genes or all exons of all genes, allowing the discovery of new causative genes. The latter is called whole exome sequencing, and is a popular and practical investigation tool for developmental diseases.1 Genetic testing, theoretically, can also reveal the underlying ocular problem in cases with subnormal vision but otherwise normal ophthalmological examination (i.e. inherited retinal dystrophies, or it can define the high-risk group for an ocular disease and factors that prevent/delay any poor prognosis (i.e. early-onset glaucoma.4 The ultimate aim is to treat the condition. This is crucial in genetic disorders, in which modern treatment suggestions involve replacement of the missing molecular element

  6. Gene-diet interactions in age-related macular degeneration

    Science.gov (United States)

    Age-related macular degeneration (AMD) is a prevalent blinding disease, accounting for roughly 50% of blindness in developed nations. Very significant advances have been made in terms of discovering genetic susceptibilities to AMD as well as dietary risk factors. To date, nutritional supplementation...

  7. Genetic diversity in cultivated carioca common beans based on molecular marker analysis

    Directory of Open Access Journals (Sweden)

    Juliana Morini Küpper Cardoso Perseguini

    2011-01-01

    Full Text Available A wide array of molecular markers has been used to investigate the genetic diversity among common bean species. However, the best combination of markers for studying such diversity among common bean cultivars has yet to be determined. Few reports have examined the genetic diversity of the carioca bean, commercially one of the most important common beans in Brazil. In this study, we examined the usefulness of two molecular marker systems (simple sequence repeats - SSRs and amplified fragment length polymorphisms - AFLPs for assessing the genetic diversity of carioca beans. The amount of information provided by Roger's modified genetic distance was used to analyze SSR data and Jaccards similarity coefficient was used for AFLP data. Seventy SSRs were polymorphic and 20 AFLP primer combinations produced 635 polymorphic bands. Molecular analysis showed that carioca genotypes were quite diverse. AFLPs revealed greater genetic differentiation and variation within the carioca genotypes (Gst = 98% and Fst = 0.83, respectively than SSRs and provided better resolution for clustering the carioca genotypes. SSRs and AFLPs were both suitable for assessing the genetic diversity of Brazilian carioca genotypes since the number of markers used in each system provided a low coefficient of variation. However, fingerprint profiles were generated faster with AFLPs, making them a better choice for assessing genetic diversity in the carioca germplasm.

  8. Current research in aging: a report from the 2015 Ageing Summit.

    Science.gov (United States)

    Moyse, Emmanuel; Lahousse, Lies; Krantic, Slavica

    2015-01-01

    Ageing Summit, London, UK, 10-12 February 2015 The Ageing Summit 2015 held on 10-12 February 2015 in London (UK) provided an extensive update to our knowledge of the 'Biology of Ageing' and a forum to discuss the participants' latest research progress. The meeting was subdivided into four thematic sessions: cellular level research including the aging brain; slowing down progression, rejuvenation and self-repair; genetic and epigenetic regulation; and expression and pathology of age-related diseases. Each session included multiple key presentations, three to five short research communications and ongoing poster presentations. The meeting provided an exciting multidisciplinary overview of the aging process from cellular and molecular mechanisms to medico-social aspects of human aging.

  9. [The development of molecular human genetics and its significance for perspectives of modern medicine].

    Science.gov (United States)

    Coutelle, C; Speer, A; Grade, K; Rosenthal, A; Hunger, H D

    1989-01-01

    The introduction of molecular human genetics has become a paradigma for the application of genetic engineering in medicine. The main principles of this technology are the isolation of molecular probes, their application in hybridization reactions, specific gene-amplification by the polymerase chain reaction, and DNA sequencing reactions. These methods are used for the analysis of monogenic diseases by linkage studies and the elucidation of the molecular defect causing these conditions, respectively. They are also the basis for genomic diagnosis of monogenic diseases, introduced into the health care system of the GDR by a national project on Duchenne/Becker muscular dystrophy, Cystic Fibrosis and Phenylketonuria. The rapid development of basic research on the molecular analysis of the human genome and genomic diagnosis indicates, that human molecular genetics is becoming a decisive basic discipline of modern medicine.

  10. Pathogenesis of Gastric Cancer: Genetics and Molecular Classification.

    Science.gov (United States)

    Figueiredo, Ceu; Camargo, M C; Leite, Marina; Fuentes-Pananá, Ezequiel M; Rabkin, Charles S; Machado, José C

    Gastric cancer is the fifth most incident and the third most common cause of cancer-related death in the world. Infection with Helicobacter pylori is the major risk factor for this disease. Gastric cancer is the final outcome of a cascade of events that takes decades to occur and results from the accumulation of multiple genetic and epigenetic alterations. These changes are crucial for tumor cells to expedite and sustain the array of pathways involved in the cancer development, such as cell cycle, DNA repair, metabolism, cell-to-cell and cell-to-matrix interactions, apoptosis, angiogenesis, and immune surveillance. Comprehensive molecular analyses of gastric cancer have disclosed the complex heterogeneity of this disease. In particular, these analyses have confirmed that Epstein-Barr virus (EBV)-positive gastric cancer is a distinct entity. The identification of gastric cancer subtypes characterized by recognizable molecular profiles may pave the way for a more personalized clinical management and to the identification of novel therapeutic targets and biomarkers for screening, prognosis, prediction of response to treatment, and monitoring of gastric cancer progression.

  11. Prediction model for prevalence and incidence of advanced age-related macular degeneration based on genetic, demographic, and environmental variables.

    Science.gov (United States)

    Seddon, Johanna M; Reynolds, Robyn; Maller, Julian; Fagerness, Jesen A; Daly, Mark J; Rosner, Bernard

    2009-05-01

    The joint effects of genetic, ocular, and environmental variables were evaluated and predictive models for prevalence and incidence of AMD were assessed. Participants in the multicenter Age-Related Eye Disease Study (AREDS) were included in a prospective evaluation of 1446 individuals, of which 279 progressed to advanced AMD (geographic atrophy or neovascular disease) and 1167 did not progress during 6.3 years of follow-up. For prevalent AMD, 509 advanced cases were compared with 222 controls. Covariates for the incidence analysis included age, sex, education, smoking, body mass index (BMI), baseline AMD grade, and the AREDS vitamin-mineral treatment assignment. DNA specimens were evaluated for six variants in five genes related to AMD. Unconditional logistic regression analyses were performed for prevalent and incident advanced AMD. An algorithm was developed and receiver operating characteristic curves and C statistics were calculated to assess the predictive ability of risk scores to discriminate progressors from nonprogressors. All genetic polymorphisms were independently related to prevalence of advanced AMD, controlling for genetic factors, smoking, BMI, and AREDS treatment. Multivariate odds ratios (ORs) were 3.5 (95% confidence interval [CI], 1.7-7.1) for CFH Y402H; 3.7 (95% CI, 1.6-8.4) for CFH rs1410996; 25.4 (95% CI, 8.6-75.1) for LOC387715 A69S (ARMS2); 0.3 (95% CI, 0.1-0.7) for C2 E318D; 0.3 (95% CI, 0.1-0.5) for CFB; and 3.6 (95% CI, 1.4-9.4) for C3 R102G, comparing the homozygous risk/protective genotypes to the referent genotypes. For incident AMD, all these variants except CFB were significantly related to progression to advanced AMD, after controlling for baseline AMD grade and other factors, with ORs from 1.8 to 4.0 for presence of two risk alleles and 0.4 for the protective allele. An interaction was seen between CFH402H and treatment, after controlling for all genotypes. Smoking was independently related to AMD, with a multiplicative joint

  12. Molecular genetics and genomics generate new insights into invertebrate pest invasions.

    Science.gov (United States)

    Kirk, Heather; Dorn, Silvia; Mazzi, Dominique

    2013-07-01

    Invertebrate pest invasions and outbreaks are associated with high social, economic, and ecological costs, and their significance will intensify with an increasing pressure on agricultural productivity as a result of human population growth and climate change. New molecular genetic and genomic techniques are available and accessible, but have been grossly underutilized in studies of invertebrate pest invasions, despite that they are useful tools for applied pest management and for understanding fundamental features of pest invasions including pest population demographics and adaptation of pests to novel and/or changing environments. Here, we review current applications of molecular genetics and genomics in the study of invertebrate pest invasions and outbreaks, and we highlight shortcomings from the current body of research. We then discuss recent conceptual and methodological advances in the areas of molecular genetics/genomics and data analysis, and we highlight how these advances will further our understanding of the demographic, ecological, and evolutionary features of invertebrate pest invasions. We are now well equipped to use molecular data to understand invertebrate dispersal and adaptation, and this knowledge has valuable applications in agriculture at a time when these are critically required.

  13. Genetic characterization, molecular epidemiology, and phylogenetic relationships of insect-specific viruses in the taxon Negevirus.

    Science.gov (United States)

    Nunes, Marcio R T; Contreras-Gutierrez, María Angélica; Guzman, Hilda; Martins, Livia C; Barbirato, Mayla Feitoza; Savit, Chelsea; Balta, Victoria; Uribe, Sandra; Vivero, Rafael; Suaza, Juan David; Oliveira, Hamilton; Nunes Neto, Joaquin P; Carvalho, Valeria L; da Silva, Sandro Patroca; Cardoso, Jedson F; de Oliveira, Rodrigo Santo; da Silva Lemos, Poliana; Wood, Thomas G; Widen, Steven G; Vasconcelos, Pedro F C; Fish, Durland; Vasilakis, Nikos; Tesh, Robert B

    2017-04-01

    The recently described taxon Negevirus is comprised of a diverse group of insect-specific viruses isolated from mosquitoes and phlebotomine sandflies. In this study, a comprehensive genetic characterization, molecular, epidemiological and evolutionary analyses were conducted on nearly full-length sequences of 91 new negevirus isolates obtained in Brazil, Colombia, Peru, Panama, USA and Nepal. We demonstrated that these arthropod restricted viruses are clustered in two major phylogenetic groups with origins related to three plant virus genera (Cilevirus, Higrevirus and Blunevirus). Molecular analyses demonstrated that specific host correlations are not present with most negeviruses; instead, high genetic variability, wide host-range, and cross-species transmission were noted. The data presented here also revealed the existence of five novel insect-specific viruses falling into two arthropod-restrictive virus taxa, previously proposed as distinct genera, designated Nelorpivirus and Sandewavirus. Our results provide a better understanding of the molecular epidemiology, evolution, taxonomy and stability of this group of insect-restricted viruses. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Molecular Darwinism: the contingency of spontaneous genetic variation.

    Science.gov (United States)

    Arber, Werner

    2011-01-01

    The availability of spontaneously occurring genetic variants is an important driving force of biological evolution. Largely thanks to experimental investigations by microbial geneticists, we know today that several different molecular mechanisms contribute to the overall genetic variations. These mechanisms can be assigned to three natural strategies to generate genetic variants: 1) local sequence changes, 2) intragenomic reshuffling of DNA segments, and 3) acquisition of a segment of foreign DNA. In these processes, specific gene products are involved in cooperation with different nongenetic elements. Some genetic variations occur fully at random along the DNA filaments, others rather with a statistical reproducibility, although at many possible sites. We have to be aware that evolution in natural ecosystems is of higher complexity than under most laboratory conditions, not at least in view of symbiotic associations and the occurrence of horizontal gene transfer. The encountered contingency of genetic variation can possibly best ensure a long-term persistence of life under steadily changing living conditions.

  15. The genetic history of Ice Age Europe.

    Science.gov (United States)

    Fu, Qiaomei; Posth, Cosimo; Hajdinjak, Mateja; Petr, Martin; Mallick, Swapan; Fernandes, Daniel; Furtwängler, Anja; Haak, Wolfgang; Meyer, Matthias; Mittnik, Alissa; Nickel, Birgit; Peltzer, Alexander; Rohland, Nadin; Slon, Viviane; Talamo, Sahra; Lazaridis, Iosif; Lipson, Mark; Mathieson, Iain; Schiffels, Stephan; Skoglund, Pontus; Derevianko, Anatoly P; Drozdov, Nikolai; Slavinsky, Vyacheslav; Tsybankov, Alexander; Cremonesi, Renata Grifoni; Mallegni, Francesco; Gély, Bernard; Vacca, Eligio; Morales, Manuel R González; Straus, Lawrence G; Neugebauer-Maresch, Christine; Teschler-Nicola, Maria; Constantin, Silviu; Moldovan, Oana Teodora; Benazzi, Stefano; Peresani, Marco; Coppola, Donato; Lari, Martina; Ricci, Stefano; Ronchitelli, Annamaria; Valentin, Frédérique; Thevenet, Corinne; Wehrberger, Kurt; Grigorescu, Dan; Rougier, Hélène; Crevecoeur, Isabelle; Flas, Damien; Semal, Patrick; Mannino, Marcello A; Cupillard, Christophe; Bocherens, Hervé; Conard, Nicholas J; Harvati, Katerina; Moiseyev, Vyacheslav; Drucker, Dorothée G; Svoboda, Jiří; Richards, Michael P; Caramelli, David; Pinhasi, Ron; Kelso, Janet; Patterson, Nick; Krause, Johannes; Pääbo, Svante; Reich, David

    2016-06-09

    Modern humans arrived in Europe ~45,000 years ago, but little is known about their genetic composition before the start of farming ~8,500 years ago. Here we analyse genome-wide data from 51 Eurasians from ~45,000-7,000 years ago. Over this time, the proportion of Neanderthal DNA decreased from 3-6% to around 2%, consistent with natural selection against Neanderthal variants in modern humans. Whereas there is no evidence of the earliest modern humans in Europe contributing to the genetic composition of present-day Europeans, all individuals between ~37,000 and ~14,000 years ago descended from a single founder population which forms part of the ancestry of present-day Europeans. An ~35,000-year-old individual from northwest Europe represents an early branch of this founder population which was then displaced across a broad region, before reappearing in southwest Europe at the height of the last Ice Age ~19,000 years ago. During the major warming period after ~14,000 years ago, a genetic component related to present-day Near Easterners became widespread in Europe. These results document how population turnover and migration have been recurring themes of European prehistory.

  16. A roadmap for the genetic analysis of renal aging

    NARCIS (Netherlands)

    Noordmans, Gerda A.; van Goor, Harry; Hillebrands, Jan-Luuk; Korstanje, Ron

    2015-01-01

    Several studies show evidence for the genetic basis of renal disease, which renders some individuals more prone than others to accelerated renal aging. Studying the genetics of renal aging can help us to identify genes involved in this process and to unravel the underlying pathways. First, this

  17. Genetic characterization, species differentiation and detection of Fasciola spp. by molecular approaches

    Directory of Open Access Journals (Sweden)

    Li Hai-Long

    2011-06-01

    Full Text Available Abstract Liver flukes belonging to the genus Fasciola are among the causes of foodborne diseases of parasitic etiology. These parasites cause significant public health problems and substantial economic losses to the livestock industry. Therefore, it is important to definitively characterize the Fasciola species. Current phenotypic techniques fail to reflect the full extent of the diversity of Fasciola spp. In this respect, the use of molecular techniques to identify and differentiate Fasciola spp. offer considerable advantages. The advent of a variety of molecular genetic techniques also provides a powerful method to elucidate many aspects of Fasciola biology, epidemiology, and genetics. However, the discriminatory power of these molecular methods varies, as does the speed and ease of performance and cost. There is a need for the development of new methods to identify the mechanisms underpinning the origin and maintenance of genetic variation within and among Fasciola populations. The increasing application of the current and new methods will yield a much improved understanding of Fasciola epidemiology and evolution as well as more effective means of parasite control. Herein, we provide an overview of the molecular techniques that are being used for the genetic characterization, detection and genotyping of Fasciola spp..

  18. The Continuum of Aging and Age-Related Diseases: Common Mechanisms but Different Rates

    Directory of Open Access Journals (Sweden)

    Claudio Franceschi

    2018-03-01

    Full Text Available Geroscience, the new interdisciplinary field that aims to understand the relationship between aging and chronic age-related diseases (ARDs and geriatric syndromes (GSs, is based on epidemiological evidence and experimental data that aging is the major risk factor for such pathologies and assumes that aging and ARDs/GSs share a common set of basic biological mechanisms. A consequence is that the primary target of medicine is to combat aging instead of any single ARD/GSs one by one, as favored by the fragmentation into hundreds of specialties and sub-specialties. If the same molecular and cellular mechanisms underpin both aging and ARDs/GSs, a major question emerges: which is the difference, if any, between aging and ARDs/GSs? The hypothesis that ARDs and GSs such as frailty can be conceptualized as accelerated aging will be discussed by analyzing in particular frailty, sarcopenia, chronic obstructive pulmonary disease, cancer, neurodegenerative diseases such as Alzheimer and Parkinson as well as Down syndrome as an example of progeroid syndrome. According to this integrated view, aging and ARDs/GSs become part of a continuum where precise boundaries do not exist and the two extremes are represented by centenarians, who largely avoided or postponed most ARDs/GSs and are characterized by decelerated aging, and patients who suffered one or more severe ARDs in their 60s, 70s, and 80s and show signs of accelerated aging, respectively. In between these two extremes, there is a continuum of intermediate trajectories representing a sort of gray area. Thus, clinically different, classical ARDs/GSs are, indeed, the result of peculiar combinations of alterations regarding the same, limited set of basic mechanisms shared with the aging process. Whether an individual will follow a trajectory of accelerated or decelerated aging will depend on his/her genetic background interacting lifelong with environmental and lifestyle factors. If ARDs and GSs are

  19. Age-related hair pigment loss.

    Science.gov (United States)

    Tobin, Desmond J

    2015-01-01

    Humans are social animals that communicate disproportionately via potent genetic signals imbued in the skin and hair, including racial, ethnic, health, gender, and age status. For the vast majority of us, age-related hair pigment loss becomes the inescapable signal of our disappearing youth. The hair follicle (HF) pigmentary unit is a wonderful tissue for studying mechanisms generally regulating aging, often before this becomes evident elsewhere in the body. Given that follicular melanocytes (unlike those in the epidermis) are regulated by the hair growth cycle, this cycle is likely to impact the process of aging in the HF pigmentary unit. The formal identification of melanocyte stem cells in the mouse skin has spurred a flurry of reports on the potential involvement of melanocyte stem cell depletion in hair graying (i.e., canities). Caution is recommended, however, against simple extrapolation of murine data to humans. Regardless, hair graying in both species is likely to involve an age-related imbalance in the tissue's oxidative stress handling that will impact not only melanogenesis but also melanocyte stem cell and melanocyte homeostasis and survival. There is some emerging evidence that the HF pigmentary unit may have regenerative potential, even after it has begun to produce white hair fibers. It may therefore be feasible to develop strategies to modulate some aging-associated changes to maintain melanin production for longer. © 2015 S. Karger AG, Basel.

  20. Molecular Insights into the Genetic Diversity of Garcinia cambogia Germplasm Accessions

    Directory of Open Access Journals (Sweden)

    C Tharachand

    2015-10-01

    Full Text Available ABSTRACTIn this work, the genetic relationship among twelveGarcinia cambogia (Gaertn. Desr. accessions were evaluated using Random Amplified Polymorphic DNA markers. The samples were part of the germplasm collected and maintained at NBPGR Regional station, Thrissur, India. Out of thirty RAPD primers used for screening, seven primers produced a total of 128 polymorphic markers in twelve accessions. The Polymorphic Information Content (PIC ranged from 0.28 (OPA18 to 0.37 (OPA9 and Marker Index (MI ranged between 3.61 (OPA12 and 5.93 (OPA3 among the primers used. Jaccard's coefficient of genetic similarity ranged between 0.07 and 0.64. The dendrogram constructed based on the similarity matrix generated from the molecular and morphological data showed the genetic relationship among the sampled accessions. Mantel matrix test showed a positive correlation (r = 0.49 between the cluster analysis of RAPD data and morphological data. The clustering pattern in the molecular dendrogram and Principle Coordinate Analysis (PCoA showed that the genotypes were diverse, which was in congruence with the similarity index values and morphological dendrogram. High frequency of similarity values in the range of 0.11 to 0.17 suggested the existence of high genetic diversity among the accessions. The high level of genetic diversity among the studied accessions ofG.cambogia was also supported by the large variation in the morphological characters observed in the flowers, leaves, fruits and seeds of these sampled accessions. This is the first report for the molecular based genetic diversity studies for these accessions.

  1. Congruence between morphological and molecular markers inferred from the analysis of the intra-morphotype genetic diversity and the spatial structure of Oxalis tuberosa Mol.

    Science.gov (United States)

    Pissard, Audrey; Arbizu, Carlos; Ghislain, Marc; Faux, Anne-Michèle; Paulet, Sébastien; Bertin, Pierre

    2008-01-01

    Oxalis tuberosa is an important crop cultivated in the highest Andean zones. A germplasm collection is maintained ex situ by CIP, which has developed a morphological markers system to classify the accessions into morphotypes, i.e. groups of morphologically identical accessions. However, their genetic uniformity is currently unknown. The ISSR technique was used in two experiments to determine the relationships between both morphological and molecular markers systems. The intra-morphotype genetic diversity, the spatial structures of the diversity and the congruence between both markers systems were determined. In the first experience, 44 accessions representing five morphotypes, clearly distinct from each other, were analyzed. At the molecular level, the accessions exactly clustered according to their morphotypes. However, a genetic variability was observed inside each morphotype. In the second experiment, 34 accessions gradually differing from each other on morphological base were analyzed. The morphological clustering showed no geographical structure. On the opposite, the molecular analysis showed that the genetic structure was slightly related to the collection site. The correlation between both markers systems was weak but significant. The lack of perfect congruence between morphological and molecular data suggests that the morphological system may be useful for the morphotypes management but is not appropriate to study the genetic structure of the oca. The spatial structure of the genetic diversity can be related to the evolution of the species and the discordance between the morphological and molecular structures may result from similar selection pressures at different places leading to similar forms with a different genetic background.

  2. Genetic diversity analysis of common beans based on molecular markers

    Directory of Open Access Journals (Sweden)

    Homar R. Gill-Langarica

    2011-01-01

    Full Text Available A core collection of the common bean (Phaseolus vulgaris L., representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each, as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP +3/+3 primer combinations and seven simple sequence repeats (SSR loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA and molecular variance (AMOVA analyses. AFLP analysis produced 530 bands (88.5% polymorphic while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus. AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation.

  3. Genetic diversity analysis of common beans based on molecular markers

    Directory of Open Access Journals (Sweden)

    Homar R. Gill-Langarica

    Full Text Available A core collection of the common bean (Phaseolus vulgaris L., representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each, as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP +3/+3 primer combinations and seven simple sequence repeats (SSR loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA and molecular variance (AMOVA analyses. AFLP analysis produced 530 bands (88.5% polymorphic while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus. AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation.

  4. Genetic diversity analysis of common beans based on molecular markers.

    Science.gov (United States)

    Gill-Langarica, Homar R; Muruaga-Martínez, José S; Vargas-Vázquez, M L Patricia; Rosales-Serna, Rigoberto; Mayek-Pérez, Netzahualcoyotl

    2011-10-01

    A core collection of the common bean (Phaseolus vulgaris L.), representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico) Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions) was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each), as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP) +3/+3 primer combinations and seven simple sequence repeats (SSR) loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA) and molecular variance (AMOVA) analyses. AFLP analysis produced 530 bands (88.5% polymorphic) while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus). AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation.

  5. A genetic analysis of segregation distortion revealed by molecular ...

    Indian Academy of Sciences (India)

    Journal of Genetics, Vol. 90, No. ... Segregation analysis was based on 64 molecular markers, including 26 .... FHB of RIL populations was controlled by quantitative trait ... The authors acknowledge financial support by the National Basic.

  6. Pathophysiology of Age-Related Hearing Loss (Peripheral and Central)

    OpenAIRE

    Lee, Kyu-Yup

    2013-01-01

    Age-related hearing loss (presbycusis) refers to bilaterally symmetrical hearing loss resulting from aging process. Presbycusis is a complex phenomenon characterized by audiometric threshold shift, deterioration in speech-understanding and speech-perception difficulties in noisy environments. Factors contributing to presbycusis include mitochondria DNA mutation, genetic disorders including Ahl, hypertension, diabetes, metabolic disease and other systemic diseases in the intrinsic aspects. Ext...

  7. CREB Overexpression Ameliorates Age-related Behavioral and Biophysical Deficits

    Science.gov (United States)

    Yu, Xiao-Wen

    Age-related cognitive deficits are observed in both humans and animals. Yet, the molecular mechanisms underlying these deficits are not yet fully elucidated. In aged animals, a decrease in intrinsic excitability of pyramidal neurons from the CA1 sub-region of hippocampus is believed to contribute to age-related cognitive impairments, but the molecular mechanism(s) that modulate both these factors has yet to be identified. Increasing activity of the transcription factor cAMP response element-binding protein (CREB) in young adult rodents has been shown to facilitate cognition, and increase intrinsic excitability of their neurons. However, how CREB changes with age, and how that impacts cognition in aged animals, is not clear. Therefore, we first systematically characterized age- and training-related changes in CREB levels in dorsal hippocampus. At a remote time point after undergoing behavioral training, levels of total CREB and activated CREB (phosphorylated at S133, pCREB) were measured in both young and aged rats. We found that pCREB, but not total CREB was significantly reduced in dorsal CA1 of aged rats. Importantly, levels of pCREB were found to be positively correlated with short-term spatial memory in both young and aged rats i.e. higher pCREB in dorsal CA1 was associated with better spatial memory. These findings indicate that an age-related deficit in CREB activity may contribute to the development of age-related cognitive deficits. However, it was still unclear if increasing CREB activity would be sufficient to ameliorate age-related cognitive, and biophysical deficits. To address this question, we virally overexpressed CREB in CA1, where we found the age-related deficit. Young and aged rats received control or CREB virus, and underwent water maze training. While control aged animals exhibited deficits in long-term spatial memory, aged animals with CREB overexpression performed at levels comparable to young animals. Concurrently, aged neurons

  8. Genetic disorders affecting white matter in the pediatric age.

    Science.gov (United States)

    Di Rocco, Maja; Biancheri, Roberta; Rossi, Andrea; Filocamo, Mirella; Tortori-Donati, Paolo

    2004-08-15

    Pediatric white matter disorders can be distinguished into well-defined leukoencephalopathies, and undefined leukoencephalopathies. The first category may be subdivided into: (a) hypomyelinating disorders; (b) dysmyelinating disorders; (c) leukodystrophies; (d) disorders related to cystic degeneration of myelin; and (e) disorders secondary to axonal damage. The second category, representing up to 50% of leukoencephalopathies in childhood, requires a multidisciplinar approach in order to define novel homogeneous subgroups of patients, possibly representing "new genetic disorders" (such as megalencephalic leukoencepahlopathy with subcortical cysts and vanishing white matter disease that have recently been identified). In the majority of cases, pediatric white matter disorders are inherited diseases. An integrated description of the clinical, neuroimaging and pathophysiological features is crucial for categorizing myelin disorders and better understanding their genetic basis. A review of the genetic disorders affecting white matter in the pediatric age, including some novel entities, is provided. Copyright 2004 Wiley-Liss, Inc.

  9. Relative profile analysis of molecular markers for identification and genetic discrimination of loaches (Pisces, Nemacheilidae).

    Science.gov (United States)

    Patil, Tejas Suresh; Tamboli, Asif Shabodin; Patil, Swapnil Mahadeo; Bhosale, Amrut Ravindra; Govindwar, Sanjay Prabhu; Muley, Dipak Vishwanathrao

    2016-01-01

    Genus Nemacheilus, Nemachilichthys and Schistura belong to the family Nemacheilidae of the order Cypriniformes. The present investigation was undertaken to observe genetic diversity, phylogenetic relationship and to develop a molecular-based tool for taxonomic identification. For this purpose, four different types of molecular markers were utilized in which 29 random amplified polymorphic DNA (RAPD), 25 inter-simple sequence repeat (ISSR) markers, and 10 amplified fragment length polymorphism (AFLP) marker sets were screened and mitochondrial COI gene was sequenced. This study added COI barcodes for the identification of Nemacheilus anguilla, Nemachilichthys rueppelli and Schistura denisoni. RAPD showed higher polymorphism (100%) than the ISSR (93.75-100%) and AFLP (93.86-98.96%). The polymorphic information content (PIC), heterozygosity, multiplex ratio, and gene diversity was observed highest for AFLP primers, whereas the major allele frequency was observed higher for RAPD (0.5556) and lowest for AFLP (0.1667). The COI region of all individuals was successfully amplified and sequenced, which gave a 100% species resolution. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  10. AMD and the alternative complement pathway: genetics and functional implications.

    Science.gov (United States)

    Tan, Perciliz L; Bowes Rickman, Catherine; Katsanis, Nicholas

    2016-06-21

    Age-related macular degeneration (AMD) is an ocular neurodegenerative disorder and is the leading cause of legal blindness in Western societies, with a prevalence of up to 8 % over the age of 60, which continues to increase with age. AMD is characterized by the progressive breakdown of the macula (the central region of the retina), resulting in the loss of central vision including visual acuity. While its molecular etiology remains unclear, advances in genetics and genomics have illuminated the genetic architecture of the disease and have generated attractive pathomechanistic hypotheses. Here, we review the genetic architecture of AMD, considering the contribution of both common and rare alleles to susceptibility, and we explore the possible mechanistic links between photoreceptor degeneration and the alternative complement pathway, a cascade that has emerged as the most potent genetic driver of this disorder.

  11. Autophagy and exosomes in the aged retinal pigment epithelium: possible relevance to drusen formation and age-related macular degeneration.

    Directory of Open Access Journals (Sweden)

    Ai Ling Wang

    Full Text Available Age-related macular degeneration (AMD is a major cause of loss of central vision in the elderly. The formation of drusen, an extracellular, amorphous deposit of material on Bruch's membrane in the macula of the retina, occurs early in the course of the disease. Although some of the molecular components of drusen are known, there is no understanding of the cell biology that leads to the formation of drusen. We have previously demonstrated increased mitochondrial DNA (mtDNA damage and decreased DNA repair enzyme capabilities in the rodent RPE/choroid with age. In this study, we found that drusen in AMD donor eyes contain markers for autophagy and exosomes. Furthermore, these markers are also found in the region of Bruch's membrane in old mice. By in vitro modeling increased mtDNA damage induced by rotenone, an inhibitor of mitochondrial complex I, in the RPE, we found that the phagocytic activity was not altered but that there were: 1 increased autophagic markers, 2 decreased lysosomal activity, 3 increased exocytotic activity and 4 release of chemoattractants. Exosomes released by the stressed RPE are coated with complement and can bind complement factor H, mutations of which are associated with AMD. We speculate that increased autophagy and the release of intracellular proteins via exosomes by the aged RPE may contribute to the formation of drusen. Molecular and cellular changes in the old RPE may underlie susceptibility to genetic mutations that are found in AMD patients and may be associated with the pathogenesis of AMD in the elderly.

  12. The Molecular Epidemiology and Genetic Environment of Carbapenemases Detected in Africa.

    Science.gov (United States)

    Sekyere, John Osei; Govinden, Usha; Essack, Sabiha

    2016-01-01

    Research articles describing carbapenemases and their genetic environments in Gram-negative bacteria were reviewed to determine the molecular epidemiology of carbapenemases in Africa. The emergence of resistance to the carbapenems, the last resort antibiotic for difficult to treat bacterial infections, affords clinicians few therapeutic options, with a resulting increase in morbidities, mortalities, and healthcare costs. However, the molecular epidemiology of carbapenemases throughout Africa is less described. Research articles and conference proceedings describing the genetic environment and molecular epidemiology of carbapenemases in Africa were retrieved from Google Scholar, Scifinder, Pubmed, Web of Science, and Science Direct databases. Predominant carbapenemase genes so far described in Africa include the blaOXA-48 type, blaIMP, blaVIM, and blaNDM in Acinetobacter baumannii, Klebsiella pneumoniae, Enterobacter cloacae, Citrobacter spp., and Escherichia coli carried on various plasmid types and sizes, transposons, and integrons. Class D and class B carbapenemases, mainly prevalent in A. baumannii, K. pneumoniae, E. cloacae, Citrobacter spp., and E. coli were the commonest carbapenemases. Carbapenemases are mainly reported in North and South Africa as under-resourced laboratories, lack of awareness and funding preclude the detection and reporting of carbapenemase-mediated resistance. Consequently, the true molecular epidemiology of carbapenemases and their genetic environment in Africa is still unknown.

  13. 76 FR 18227 - Molecular and Clinical Genetics Panel of the Medical Devices Advisory Committee; Notice of...

    Science.gov (United States)

    2011-04-01

    ...] Molecular and Clinical Genetics Panel of the Medical Devices Advisory Committee; Notice of Meeting... comment period for the notice announcing a meeting of the Molecular and Clinical Genetics Panel (the panel... Clinical Genetics Panel of the Medical Devices Advisory Committee, and the opening of a public docket to...

  14. Nuances of Morphology in Myelodysplastic Diseases in the Age of Molecular Diagnostics.

    Science.gov (United States)

    Shaver, Aaron C; Seegmiller, Adam C

    2017-10-01

    Morphologic dysplasia is an important factor in diagnosis of myelodysplastic syndrome (MDS). However, the role of dysplasia is changing as new molecular genetic and genomic technologies take a more prominent place in diagnosis. This review discusses the role of morphology in the diagnosis of MDS and its interactions with cytogenetic and molecular testing. Recent changes in diagnostic criteria have attempted to standardize approaches to morphologic diagnosis of MDS, recognizing significant inter-observer variability in assessment of dysplasia. Definitive correlates between cytogenetic/molecular and morphologic findings have been described in only a small set of cases. However, these genetic and morphologic tools do play a complementary role in the diagnosis of both MDS and other myeloid neoplasms. Diagnosis of MDS requires a multi-factorial approach, utilizing both traditional morphologic as well as newer molecular genetic techniques. Understanding these tools, and the interplay between them, is crucial in the modern diagnosis of myeloid neoplasms.

  15. Molecular markers to assess genetic diversity and mutant identifications in Jatropha curcas

    International Nuclear Information System (INIS)

    Azhar Mohamad; Yie Min Kwan; Fatin Mastura Derani; Abdul Rahim Harun

    2010-01-01

    Jatropha curcas (Linnaeus) belongs to the Euphorbiaceae family, is a multipurpose use, drought resistant and perennial plant. It is an economic important crop, which generates wide interest in understanding the genetic diversity of the species towards selection and breeding of superior genotypes. Jatropha accessions are closely related family species. Thus, better understanding of the effectiveness of the different DNA-based markers is an important step towards plant germplasm characterization and evaluation. It is becoming a prerequisite for more effective application of marker techniques in breeding programs. Inter-simple sequence repeats (ISSRs) has shown rapid, simple, reproducible and inexpensive means in molecular taxonomy, conservation breeding and genetic diversity analysis. These markers were used to understand diversity and differentiate amongst accessions of Jatropha population and mutant lines generated by acute gamma radiation. The ISSR for marker applications are essential to facilitate management, conservation and genetic improvement programs towards improvement of bio-diesel production and medication substances. A total of 62 ISSR primers were optimized for polymorphism evaluations on five foreign accessions (Africa, India, Myanmar, Indonesia, Thailand), nine local accessions and two mutants of Jatropha. Optimization was resulted 54 ISSR primers affirmative for the polymorphism evaluation study, which encountered 12 ISSR primers, showed significance polymorphism amongst the accessions and mutants. Marker derived from ISSR profiling is a powerful method for identification and molecular classification of Jatropha from accession to generated mutant varieties. (author)

  16. Molecular genetic studies of bacteroides fragilis

    International Nuclear Information System (INIS)

    Southern, J.A.

    1986-03-01

    This study aimed at providing a means for probing the molecular genetic organization of B.fragilis, particularly those strains where the DNA repair mechanisms had been described. The following routes of investigation were followed: the bacteriocin of B.fragilis BF-1; the investigation of any plasmids which might be discovered, with the aim of constructing a hybrid plasmid which might replicate in both E.coli and B.fragilis; and the preparation of a genetic library which could be screened for Bacteroides genes which might function in E.coli. Should any genes be isolated by screening the library they were to be studied with regard to their expression and regulation in E.coli. The above assays make use of radioactive markers such as 14 C, 35 S, 32 P, and 3 H in the labelling of RNA, plasmids and probes

  17. Genetic divergence through joint analysis of morphoagronomic and molecular characters in accessions of Jatropha curcas.

    Science.gov (United States)

    Pestana-Caldas, C N; Silva, S A; Machado, E L; de Souza, D R; Cerqueira-Pereira, E C; Silva, M S

    2016-10-05

    The aim of this study was to investigate the genetic divergence between accessions of Jatropha curcas through joint analysis of morphoagronomic and molecular characters. To this end, we investigated 11 morphoagronomic characters and performed molecular genotyping, using 23 inter-simple sequence repeat (ISSR) primers in 46 accessions of J. curcas. We calculated the contribution of each character on divergence using analysis of variance. The grouping among accessions was performed using the Ward-MLM (modified location model) method, using morphoagronomic and molecular data, whereas the cophenetic correlation was obtained based on Gower's algorithm. There were significant differences in all growth-related characteristics: number of primary and secondary branches per plant, plant height, and stem diameter. For characters related to grain production, differences were found for number of fruit clusters per plant and number of inflorescence clusters per plant and average number of seeds per fruit. The greatest phenotypic variation was found in plant height (59.67- 222.33 cm), whereas the smallest variation was found in average number of seeds per fruit (0-2.90), followed by the number of fruit clusters per plant (0-8.67). In total, 94 polymorphic ISSR fragments were obtained. The genotypic grouping identified six groups, indicating that there is genetic divergence among the accessions. The most promising crossings for future hybridization were identified among accessions UFRB60 and UFVJC45, and UFRB61 and UFVJC18. In conclusion, the joint analysis of morphoagronomic characters and ISSR markers is an efficient method to assess the genetic divergence in J. curcas.

  18. Molecular approaches for genetic improvement of seed quality and characterization of genetic diversity in soybean: a critical review.

    Science.gov (United States)

    Tripathi, Niraj; Khare, Dhirendra

    2016-10-01

    Soybean is an economically important leguminous crop. Genetic improvements of soybeans have focused on enhancement of seed and oil yield, development of varieties suited to different cropping systems, and breeding resistant/tolerant varieties for various biotic and abiotic stresses. Plant breeders have used conventional breeding techniques for the improvement of these traits in soybean. The conventional breeding process can be greatly accelerated through the application of molecular and genomic approaches. Molecular markers have proved to be a new tool in soybean breeding by enhancing selection efficiency in a rapid and time-bound manner. An overview of molecular approaches for the genetic improvement of soybean seed quality parameters, considering recent applications of marker-assisted selection and 'omics' research, is provided in this article.

  19. Panel 4: Recent Advances in Otitis Media in Molecular Biology, Biochemistry, Genetics, and Animal Models

    Science.gov (United States)

    Li, Jian-Dong; Hermansson, Ann; Ryan, Allen F.; Bakaletz, Lauren O.; Brown, Steve D.; Cheeseman, Michael T.; Juhn, Steven K.; Jung, Timothy T. K.; Lim, David J.; Lim, Jae Hyang; Lin, Jizhen; Moon, Sung-Kyun; Post, J. Christopher

    2014-01-01

    Background Otitis media (OM) is the most common childhood bacterial infection and also the leading cause of conductive hearing loss in children. Currently, there is an urgent need for developing novel therapeutic agents for treating OM based on full understanding of molecular pathogenesis in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. Objective To provide a state-of-the-art review concerning recent advances in OM in the areas of molecular biology, biochemistry, genetics, and animal model studies and to discuss the future directions of OM studies in these areas. Data Sources and Review Methods A structured search of the current literature (since June 2007). The authors searched PubMed for published literature in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. Results Over the past 4 years, significant progress has been made in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. These studies brought new insights into our understanding of the molecular and biochemical mechanisms underlying the molecular pathogenesis of OM and helped identify novel therapeutic targets for OM. Conclusions and Implications for Practice Our understanding of the molecular pathogenesis of OM has been significantly advanced, particularly in the areas of inflammation, innate immunity, mucus overproduction, mucosal hyperplasia, middle ear and inner ear interaction, genetics, genome sequencing, and animal model studies. Although these studies are still in their experimental stages, they help identify new potential therapeutic targets. Future preclinical and clinical studies will help to translate these exciting experimental research findings into clinical applications. PMID:23536532

  20. Molecular research on the genetic diversity of Tunisian date palm ...

    African Journals Online (AJOL)

    Molecular research on the genetic diversity of Tunisian date palm ( Phoenix dactylifera L.) using the random amplified microsatellite polymorphism (RAMPO) and amplified fragment length polymorphism (AFLP) methods.

  1. [Genetic polymorphism of flax Linum usitatissimum based on use of molecular cytogenetic markers].

    Science.gov (United States)

    Rachinskaia, O A; Lemesh, V A; Muravenko, O V; Iurkevich, O Iu; Guzenko, E V; Bol'sheva, N L; Bogdanova, M V; Samatadze, T E; Popov, K V; Malyshev, S V; Shostak, N G; Heller, K; Khotyleva, L V; Zelenin, A V

    2011-01-01

    Using a set of approaches based on the use of molecular cytogenetic markers (DAPI/C-banding, estimation of the total area of DAPI-positive regions in prophase nuclei, FISH with 26S and 5S rDNA probes) and the microsatellite (SSR-PCR) assay, we studied genomic polymorphism in 15 flax (Linum usitatissimum L.) varieties from different geographic regions belonging to three directions of selection (oil, fiber, and intermediate flaxes) and in the k-37 x Viking hybrid. All individual chromosomes have been identified in the karyotypes of these varieties on the basis of the patterns of differential DAPI/C-banding and the distribution of 26S and 5S rDNA, and idiograms of the chromosomes have been generated. Unlike the oil flax varieties, the chromosomes in the karyotypes of the fiber flax varieties have, as a rule, pericentromeric and telomeric DAPI-positive bands of smaller size, but contain larger intercalary regions. Two chromosomal rearrangements (chromosome 3 inversions) were discovered in the variety Luna and in the k-37 x Viking hybrid. In both these forms, no colocalization of 26S rDNA and 5S rDNA on the satellite chromosome was detected. The SSR assay with the use of 20 polymorphic pairs of primers revealed 22 polymorphic loci. Based on the SSR data, we analyzed genetic similarity of the flax forms studied and constructed a genetic similarity dendrogram. The genotypes studied here form three clusters. The oil varieties comprise an independent cluster. The genetically related fiber flax varieties Vita and Luna, as well as the landrace Lipinska XIII belonging to the intermediate type, proved to be closer to the oil varieties than the remaining fiber flax varieties. The results of the molecular chromosomal analysis in the fiber and oil flaxes confirm their very close genetic similarity. In spite of this, the combined use of the chromosomal and molecular markers has opened up unique possibilities for describing the genotypes of flax varieties and creating their genetic

  2. Genetic association of apolipoprotein E with age-related macular degeneration

    NARCIS (Netherlands)

    M. Kliffen (Mike); C.M. van Duijn (Cornelia); M. Cruts (Marc); D.E. Grobbee (Diederick); P.T.V.M. de Jong (Paulus); C.C.W. Klaver (Caroline); C. van Broeckhoven (Christine); A. Hofman (Albert)

    1998-01-01

    textabstractAge-related macular degeneration (AMD) is the most common geriatric eye disorder leading to blindness and is characterized by degeneration of the neuroepithelium in the macular area of the eye. Apolipoprotein E (apoE), the major apolipoprotein of the CNS and an

  3. Molecular genetic diversity in populations of the stingless bee Plebeia remota: A case study

    Directory of Open Access Journals (Sweden)

    Flávio de Oliveira Francisco

    2013-01-01

    Full Text Available Genetic diversity is a major component of the biological diversity of an ecosystem. The survival of a population may be seriously threatened if its genetic diversity values are low. In this work, we measured the genetic diversity of the stingless bee Plebeia remota based on molecular data obtained by analyzing 15 microsatellite loci and sequencing two mitochondrial genes. Population structure and genetic diversity differed depending on the molecular marker analyzed: microsatellites showed low population structure and moderate to high genetic diversity, while mitochondrial DNA (mtDNA showed high population structure and low diversity in three populations. Queen philopatry and male dispersal behavior are discussed as the main reasons for these findings.

  4. Enhancing genetic gain in the era of molecular breeding.

    Science.gov (United States)

    Xu, Yunbi; Li, Ping; Zou, Cheng; Lu, Yanli; Xie, Chuanxiao; Zhang, Xuecai; Prasanna, Boddupalli M; Olsen, Michael S

    2017-05-17

    As one of the important concepts in conventional quantitative genetics and breeding, genetic gain can be defined as the amount of increase in performance that is achieved annually through artificial selection. To develop pro ducts that meet the increasing demand of mankind, especially for food and feed, in addition to various industrial uses, breeders are challenged to enhance the potential of genetic gain continuously, at ever higher rates, while they close the gaps that remain between the yield potential in breeders' demonstration trials and the actual yield in farmers' fields. Factors affecting genetic gain include genetic variation available in breeding materials, heritability for traits of interest, selection intensity, and the time required to complete a breeding cycle. Genetic gain can be improved through enhancing the potential and closing the gaps, which has been evolving and complemented with modern breeding techniques and platforms, mainly driven by molecular and genomic tools, combined with improved agronomic practice. Several key strategies are reviewed in this article. Favorable genetic variation can be unlocked and created through molecular and genomic approaches including mutation, gene mapping and discovery, and transgene and genome editing. Estimation of heritability can be improved by refining field experiments through well-controlled and precisely assayed environmental factors or envirotyping, particularly for understanding and controlling spatial heterogeneity at the field level. Selection intensity can be significantly heightened through improvements in the scale and precision of genotyping and phenotyping. The breeding cycle time can be shortened by accelerating breeding procedures through integrated breeding approaches such as marker-assisted selection and doubled haploid development. All the strategies can be integrated with other widely used conventional approaches in breeding programs to enhance genetic gain. More transdisciplinary

  5. Introductory guide to the statistics of molecular genetics.

    Science.gov (United States)

    Eley, Thalia C; Rijsdijk, Frühling

    2005-10-01

    This introductory guide presents the main two analytical approaches used by molecular geneticists: linkage and association. Traditional linkage and association methods are described, along with more recent advances in methodologies such as those using a variance components approach. New methods are being developed all the time but the core principles of linkage and association remain the same. The basis of linkage is the transmission of a marker along with a disease within families, whereas association is based on the comparison of marker frequencies in case and control groups. It is becoming increasingly clear that effect sizes of individual markers on diseases and traits are likely to be very small. As such, much greater power is needed, and correspondingly greater sample sizes. Although non-replication is still a problem, molecular genetic studies in some areas such as attention deficit/hyperactivity disorder (ADHD) are starting to show greater convergence. Epidemiologists and other researchers with large well-characterized samples will be well placed to use these methods. Inter-disciplinary studies can then ask far more interesting questions such as those relating to developmental, multivariate and gene-environment interaction hypotheses.

  6. Congenital heart disease and genetic syndromes: new insights into molecular mechanisms.

    Science.gov (United States)

    Calcagni, Giulio; Unolt, Marta; Digilio, Maria Cristina; Baban, Anwar; Versacci, Paolo; Tartaglia, Marco; Baldini, Antonio; Marino, Bruno

    2017-09-01

    Advances in genetics allowed a better definition of the role of specific genetic background in the etiology of syndromic congenital heart defects (CHDs). The identification of a number of disease genes responsible for different syndromes have led to the identification of several transcriptional regulators and signaling transducers and modulators that are critical for heart morphogenesis. Understanding the genetic background of syndromic CHDs allowed a better characterization of the genetic basis of non-syndromic CHDs. In this sense, the well-known association of typical CHDs in Down syndrome, 22q11.2 microdeletion and Noonan syndrome represent paradigms as chromosomal aneuploidy, chromosomal microdeletion and intragenic mutation, respectively. Area covered: For each syndrome the anatomical features, distinctive cardiac phenotype and molecular mechanisms are discussed. Moreover, the authors include recent genetic findings that may shed light on some aspects of still unclear molecular mechanisms of these syndromes. Expert commentary: Further investigations are needed to enhance the translational approach in the field of genetics of CHDs. When there is a well-established definition of genotype-phenotype (reverse medicine) and genotype-prognosis (predictive and personalized medicine) correlations, hopefully preventive medicine will make its way in this field. Subsequently a reduction will be achieved in the morbidity and mortality of children with CHDs.

  7. Current concepts in age-related hearing loss: Epidemiology and mechanistic pathways

    Science.gov (United States)

    Yamasoba, Tatsuya; Lin, Frank R.; Someya, Shinichi; Kashio, Akinori; Sakamoto, Takashi; Kondo, Kenji

    2013-01-01

    Age-related hearing loss (AHL), also known as presbycusis, is a universal feature of mammalian aging and is characterized by a decline of auditory function, such as increased hearing thresholds and poor frequency resolution. The primary pathology of AHL includes the hair cells, stria vascularis, and afferent spiral ganglion neurons as well as the central auditory pathways. A growing body of evidence in animal studies has suggested that cumulative effect of oxidative stress could induce damage to macromolecules such as mitochondrial DNA (mtDNA) and that the resulting accumulation of mtDNA mutations/deletions and decline of mitochondrial function play an important role in inducing apoptosis of the cochlear cells, thereby the development of AHL. Epidemiological studies have demonstrated four categories of risk factors of AHL in humans: cochlear aging, environment such as noise exposure, genetic predisposition, and health co-morbidities such as cigarette smoking and atherosclerosis. Genetic investigation has identified several putative associating genes, including those related to antioxidant defense and atherosclerosis. Exposure to noise is known to induce excess generation of reactive oxygen species (ROS) in the cochlea, and cumulative oxidative stress can be enhanced by relatively hypoxic situations resulting from the impaired homeostasis of cochlear blood supply due to atherosclerosis, which could be accelerated by genetic and co-morbidity factors. Antioxidant defense system may also be influenced by genetic backgrounds. These may explain the large variations of the onset and extent of AHL among elderly subjects. PMID:23422312

  8. New research progress on the epidemiology of age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    Ming-Xing Wu

    2015-02-01

    Full Text Available Age-related macular degeneration(AMDis a kind of age-related blinding degenerative fundus lesions, totally about 30 million patients suffering from AMD all over the world, with about 500 000 people blind for it yearly. As the development of economy and the aging of the population intensified, incidence of AMD indicates a trend of rising year by year, being the third major cause of blindness in our country. At present, the pathogenesis of AMD is not fully clear, as reported it may be related to oxidative stress, inflammatory immune response, VEGF and genetic manipulation. Clinical treatments mainly include photodynamic therapy, drug therapy, radiation therapy, laser photocoagulaory operation, the pupil warm treatments, Chinese medicine and intravitreous injection VEGF antagonists such as Ranibizumab, Conbercept and so on. In this issue, we mainly expound on the progress in the epidemiological studies of AMD, especially elaborate the progress made on genetic manipulation in recent years.

  9. Update on the Cytogenetics and Molecular Genetics of Chordoma

    Directory of Open Access Journals (Sweden)

    Larizza Lidia

    2005-02-01

    Full Text Available Abstract Chordoma is a rare mesenchymal tumour of complex biology for which only histologic and immunohistochemical criteria have been defined, but no biomarkers predicting the clinical outcome and response to treatment have yet been recognised. We herein review the interdisciplinary information achieved by epidemiologists, neurosurgeons and basic scientists on chordoma, usually a sporadic tumour, which also includes a small fraction of familial cases. Main focus is on the current knowledge of the genetic alterations which might pinpoint candidate genes and molecular mechanisms shared by sporadic and familiar chordomas. Due to the scarcity of the investigated tumour specimens and the multiple chromosome abnormalities found in tumours with aberrant karyotypes, conventional cytogenetics and Fluorescence In Situ Hybridization failed to detect recurrent chordoma-specific chromosomal rearrangements. Genome-wide approaches such as Comparative Genomic Hybridization (CGH are yet at an initial stage of application and should be implemented using BAC arrays either genome-wide or targeting selected genomic regions, disclosed by Loss of Heterozygosity (LOH studies. An LOH region was shown by a systematic study on a consistent number of chordomas to encompass 1p36, a genomic interval where a candidate gene was suggested to reside. Despite the rarity of multiplex families with chordoma impaired linkage studies, a chordoma locus could be mapped to chromosome 7q33 by positive lod score in three independent families. The role in chordomagenesis of the Tuberous Sclerosis Complex (TSC genes has been proved, but the extent of involvement of TSC1 and TSC2 oncosuppressors in chordoma remains to be assessed. In spite of the scarce knowledge on the genetics and molecular biology of chordoma, recent initiation of clinical trials using molecular-targeted therapy, should validate new molecular targets and predict the efficacy of a given therapy. Comparative genetic and

  10. Colorectal Cancer in Iran: Molecular Epidemiology and Screening Strategies

    Directory of Open Access Journals (Sweden)

    Roya Dolatkhah

    2015-01-01

    Full Text Available Purpose. The increasing incidence of colorectal cancer (CRC in the past three decades in Iran has made it a major public health burden. This study aimed to report its epidemiologic features, molecular genetic aspects, survival, heredity, and screening pattern in Iran. Methods. A comprehensive literature review was conducted to identify the relevant published articles. We used medical subject headings, including colorectal cancer, molecular genetics, KRAS and BRAF mutations, screening, survival, epidemiologic study, and Iran. Results. Age standardized incidence rate of Iranian CRCs was 11.6 and 10.5 for men and women, respectively. Overall five-year survival rate was 41%, and the proportion of CRC among the younger age group was higher than that of western countries. Depending on ethnicity, geographical region, dietary, and genetic predisposition, mutation genes were considerably diverse and distinct among CRCs across Iran. The high occurrence of CRC in records of relatives of CRC patients showed that family history of CRC was more common among young CRCs. Conclusion. Appropriate screening strategies for CRC which is amenable to early detection through screening, especially in relatives of CRCs, should be considered as the first step in CRC screening programs.

  11. Colorectal Cancer in Iran: Molecular Epidemiology and Screening Strategies

    International Nuclear Information System (INIS)

    Dolatkhah, R.; Somi, M. H.; Dolatkhah, R.; Kermani, I. A.; Dastgiri, S.

    2015-01-01

    The increasing incidence of colorectal cancer (CRC) in the past three decades in Iran has made it a major public health burden. This study aimed to report its epidemiologic features, molecular genetic aspects, survival, heredity, and screening pattern in Iran. Methods. A comprehensive literature review was conducted to identify the relevant published articles. We used medical subject headings, including colorectal cancer, molecular genetics, KRAS and BRAF mutations, screening, survival, epidemiologic study, and Iran. Results. Age standardized incidence rate of Iranian CRCs was 11.6 and 10.5 for men and women, respectively. Overall five-year survival rate was 41%, and the proportion of CRC among the younger age group was higher than that of western countries. Depending on ethnicity, geographical region, dietary, and genetic predisposition, mutation genes were considerably diverse and distinct among CRCs across Iran. The high occurrence of CRC in records of relatives of CRC patients showed that family history of CRC was more common among young CRCs. Conclusion. Appropriate screening strategies for CRC which is amenable to early detection through screening, especially in relatives of CRCs, should be considered as the first step in CRC screening programs.

  12. Genetic and environmental sources of individual differences in views on aging.

    Science.gov (United States)

    Kornadt, Anna E; Kandler, Christian

    2017-06-01

    Views on aging are central psychosocial variables in the aging process, but knowledge about their determinants is still fragmental. Thus, the authors investigated the degree to which genetic and environmental factors contribute to individual differences in various domains of views on aging (wisdom, work, fitness, and family), and whether these variance components vary across ages. They analyzed data from 350 monozygotic and 322 dizygotic twin pairs from the Midlife Development in the U.S. (MIDUS) study, aged 25-74. Individual differences in views on aging were mainly due to individual-specific environmental and genetic effects. However, depending on the domain, genetic and environmental contributions to the variance differed. Furthermore, for some domains, variability was larger for older participants; this was attributable to increases in environmental components. This study extends research on genetic and environmental sources of psychosocial variables and stimulates future studies investigating the etiology of views on aging across the life span. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  13. Molecular genetics of hemophilia A: Clinical perspectives | Tantawy ...

    African Journals Online (AJOL)

    Since the publication of the sequence of the factor VIII (F8) gene in 1984, a large number of mutations that cause hemophilia A have been identified and a significant progress has been made in translating this knowledge for clinical diagnostic and therapeutic purposes. Molecular genetic testing is used to determine the ...

  14. Small effect of genetic factors on neck pain in old age: a study of 2,108 Danish twins 70 years of age and older

    DEFF Research Database (Denmark)

    Hartvigsen, Jan; Petersen, Hans Christian; Frederiksen, Henrik

    2005-01-01

    STUDY DESIGN: Classic twin study. OBJECTIVES: To determine the heritability of neck pain in persons 70 years of age and older. SUMMARY OF BACKGROUND DATA: Previous studies have shown a moderate effect of genetic factors on back pain in the elderly. Genetic influence on neck pain in old age...... calculated and compared for monozygotic and dizygotic twins. Further, heritability estimates were calculated using bivariate probit estimation. RESULTS: A total of 2,108 twin individuals, including 1,054 complete twin pairs, answered the question related to neck pain at intake into the Longitudinal Study...... environmental risk factors (rheumatoid arthritis, osteoarthritis, disc prolapse, and coronary heart disease) showed no significant additive genetic, dominant genetic, or common environmental effects. CONCLUSION: Genetic factors do not play an important role in the liability to neck pain in persons 70 years...

  15. Relationship between HTRA1 polymorphism and genetic susceptibility of wet age-related macular degeneration in Han population

    Directory of Open Access Journals (Sweden)

    Nan Yang

    2018-05-01

    Full Text Available AIM: To investigate the relationship between high temperature essential factor A-1(HTRA1polymorphism and genetic susceptibility of wet age-related macular degeneration(AMDin Han population. METHODS: Totally 201 patients of wet AMD in Han population were selected from May 2014 to January 2017 in our hospital as disease group, and 201 healthy persons of Han were selected as health group. Blood samples of peripheral vein were collected and genomic DNA was extracted. HTRA1 polymorphism loci were detected, and the rs11200638 and rs2248799 loci of HTRA1 gene were detected by Sequenom mass spectrometry platform. Then the relationship between HTRA1 polymorphism and genetic susceptibility of wet AMD were analyzed. RESULTS: The grade distributions of the genotype of the rs11200638 and rs2248799 loci in the two groups subjects had significant differences(PPPOR values of rs11200638 genotype AA and AG were respectively 5.36 and 3.45, which were the risk factors of wet AMD(POR values of rs2248799 genotype TT and TC were respectively 2.36 and 1.98, which were the risk factors of wet AMD(PCONCLUSION: The rs11200638 and rs2248799 polymorphisms of HTRA1 gene are associated with the incidence of wet AMD, and the genotype AA and TT are closely related to the risk of wet AMD in Han population, of which the higher frequencies can increase the risk of wet AMD.

  16. Perceived age as clinically useful biomarker of ageing: cohort study

    DEFF Research Database (Denmark)

    Christensen, Kaare; Thinggaard, Mikael; McGue, Matt

    2009-01-01

    OBJECTIVE: To determine whether perceived age correlates with survival and important age related phenotypes. DESIGN: Follow-up study, with survival of twins determined up to January 2008, by which time 675 (37%) had died. SETTING: Population based twin cohort in Denmark. PARTICIPANTS: 20 nurses, 10...... young men, and 11 older women (assessors); 1826 twins aged >or=70. MAIN OUTCOME MEASURES: Assessors: perceived age of twins from photographs. Twins: physical and cognitive tests and molecular biomarker of ageing (leucocyte telomere length). RESULTS: For all three groups of assessors, perceived age...... increased with increasing discordance in perceived age within the twin pair-that is, the bigger the difference in perceived age within the pair, the more likely that the older looking twin died first. Twin analyses suggested that common genetic factors influence both perceived age and survival. Perceived...

  17. Netrin-1 - DCC Signaling Systems and Age-Related Macular Degeneration.

    Directory of Open Access Journals (Sweden)

    John Paul SanGiovanni

    Full Text Available We conducted a nested candidate gene study and pathway-based enrichment analysis on data from a multi-national 77,000-person project on the molecular genetics of age-related macular degeneration (AMD to identify AMD-associated DNA-sequence variants in genes encoding constituents of a netrin-1 (NTN1-based signaling pathway that converges on DNA-binding transcription complexes through a 3'-5'-cyclic adenosine monophosphate-calcineurin (cAMP-CN-dependent axis. AMD-associated single nucleotide polymorphisms (SNPs existed in 9 linkage disequilibrium-independent genomic regions; these included loci overlapping NTN1 (rs9899630, P ≤ 9.48 x 10(-5, DCC (Deleted in Colorectal Cancer--the gene encoding a primary NTN1 receptor (rs8097127, P ≤ 3.03 x 10(-5, and 6 other netrin-related genes. Analysis of the NTN1-DCC pathway with exact methods demonstrated robust enrichment with AMD-associated SNPs (corrected P-value = 0.038, supporting the idea that processes driven by NTN1-DCC signaling systems operate in advanced AMD. The NTN1-DCC pathway contains targets of FDA-approved drugs and may offer promise for guiding applied clinical research on preventive and therapeutic interventions for AMD.

  18. Genetic and Environmental Architecture of Changes in Episodic Memory from Middle to Late Middle Age

    Science.gov (United States)

    Panizzon, Matthew S.; Neale, Michael C.; Docherty, Anna R.; Franz, Carol E.; Jacobson, Kristen C.; Toomey, Rosemary; Xian, Hong; Vasilopoulos, Terrie; Rana, Brinda K.; McKenzie, Ruth M.; Lyons, Michael J.; Kremen, William S.

    2015-01-01

    Episodic memory is a complex construct at both the phenotypic and genetic level. Ample evidence supports age-related cognitive stability and change being accounted for by general and domain-specific factors. We hypothesized that general and specific factors would underlie change even within this single cognitive domain. We examined six measures from three episodic memory tests in a narrow age cohort at middle and late middle age. The factor structure was invariant across occasions. At both timepoints two of three test-specific factors (story recall, design recall) had significant genetic influences independent of the general memory factor. Phenotypic stability was moderate to high, and primarily accounted for by genetic influences, except for one test-specific factor (list learning). Mean change over time was nonsignificant for one test-level factor; one declined; one improved. The results highlight the phenotypic and genetic complexity of memory and memory change, and shed light on an understudied period of life. PMID:25938244

  19. The age-dependency of genetic and environmental influences on serum cytokine levels : A twin study

    NARCIS (Netherlands)

    Sas, Arthur A.; Jamshidi, Yalda; Zheng, Dongling; Wu, Ting; Korf, Jakob; Alizadeh, Behrooz Z.; Snieder, Harold; Spector, Timothy D.

    2012-01-01

    Previous epidemiologic studies have evaluated the use of immunological markers as possible tools for measuring ageing and predicting age-related pathology. The importance of both genetic and environmental influences in regulation of these markers has been emphasized. In order to further evaluate

  20. Cystic fibrosis, molecular genetics for all life

    Directory of Open Access Journals (Sweden)

    Ausilia Elce

    2015-10-01

    Full Text Available Cystic fibrosis (CF is the most frequent lethal autosomal recessive disorder among Caucasians (incidence: 1:2,500 newborn. In the last two decades CF prognosis considerably improved and many patients well survive into their adulthood. Furthermore, milder CF with a late onset was described. CF is a challenge for laboratory of molecular genetics that greatly contributes to the natural history of the disease since fetal age. Carrier screening and prenatal diagnosis, also by non-invasive analysis of maternal blood fetal DNA, are now available, and many labs offer preimplantation diagnosis. The major criticism in prenatal medicine is the lack of an effective multidisciplinary counseling that helps the couples to plan their reasoned reproductive choice. Most countries offer newborn screening that significantly reduce CF morbidity but different protocols based on blood trypsin, molecular analysis and sweat chloride cause a variable efficiency of the screening programs. Again, laboratory is crucial for CF diagnosis in symptomatic patients: sweat chloride is the diagnostic golden standard, but different methodologies and the lack of quality control in most labs reduce its effectiveness. Molecular analysis contributes to confirm diagnosis in symptomatic subjects; furthermore, it helps to predict the disease outcome on the basis of the mutation (genotype-phenotype correlation and mutations in a myriad of genes, inherited independently by CF transmembrane conductance regulator (CFTR, which may modulate the clinical expression of the disease in each single patient (modifier genes. More recently, the search of the CFTR mutations gained a role in selecting CF patients that may benefit from biological therapy based on correctors and potentiators that are effective in patients bearing specific mutations (personalized therapy. All such applications of molecular diagnostics confirm the “uniqueness” of each CF patient, offering to laboratory medicine the

  1. Molecular Markers for Genetic Diversity Studies of European Hare (Lepus europaeus Pallas, 1778 Populations

    Directory of Open Access Journals (Sweden)

    Noémi Soós

    2015-05-01

    Full Text Available The purpose of this article is to give an overview of different molecular techniques which have been used in studies concerning population genetic issues of Lepus species and specifically of L. europaeus. The importance of these researches is ever-growing as the European populations of the brown hare have suffered several falloffs as a consequent upon both natural and anthropogenic effects. With developing tools and techniques molecular genetics have become the centrepiece of population genetics and conservation biology. Nucleic acid methods based on both bi- and uniparentally inherited DNA (allozymes, microsatellites, Y chromosome, mtDNA are often used to study genetic structure, diversity and phylogeography of different species’ populations due to their effectiveness in identifying genetic variability

  2. Construction of intergeneric conjugal transfer for molecular genetic ...

    African Journals Online (AJOL)

    SAM

    2014-03-26

    Mar 26, 2014 ... The attB integration site in the S. mobaraensis genome was detected as a single attB ... present study, to promote the molecular genetic study of. S. mobaraensis .... further increase in the number of E. coli donor cells. (≥1.25 × 108) (Choi et .... rational mutagenesis and random mutagenesis. Appl. Microbiol.

  3. EMQN best practice guidelines for the molecular genetic diagnosis of hereditary hemochromatosis (HH)

    Science.gov (United States)

    Porto, Graça; Brissot, Pierre; Swinkels, Dorine W; Zoller, Heinz; Kamarainen, Outi; Patton, Simon; Alonso, Isabel; Morris, Michael; Keeney, Steve

    2016-01-01

    Molecular genetic testing for hereditary hemochromatosis (HH) is recognized as a reference test to confirm the diagnosis of suspected HH or to predict its risk. The vast majority (typically >90%) of patients with clinically characterized HH are homozygous for the p.C282Y variant in the HFE gene, referred to as HFE-related HH. Since 1996, HFE genotyping was implemented in diagnostic algorithms for suspected HH, allowing its early diagnosis and prevention. However, the penetrance of disease in p.C282Y homozygotes is incomplete. Hence, homozygosity for p.C282Y is not sufficient to diagnose HH. Neither is p.C282Y homozygosity required for diagnosis as other rare forms of HH exist, generally referred to as non-HFE-related HH. These pose significant challenges when defining criteria for referral, testing protocols, interpretation of test results and reporting practices. We present best practice guidelines for the molecular genetic diagnosis of HH where recommendations are classified, as far as possible, according to the level and strength of evidence. For clarification, the guidelines' recommendations are preceded by a detailed description of the methodology and results obtained with a series of actions taken in order to achieve a wide expert consensus, namely: (i) a survey on the current practices followed by laboratories offering molecular diagnosis of HH; (ii) a systematic literature search focused on some identified controversial topics; (iii) an expert Best Practice Workshop convened to achieve consensus on the practical recommendations included in the guidelines. PMID:26153218

  4. A molecular, genetic and physiological analysis of plant aluminum tolerance (abstract)

    International Nuclear Information System (INIS)

    Pineros, M.

    2005-01-01

    Aluminum (Al) toxicity is an important agronomic trait, limiting crop production on acid soils that comprise up to 50% of the world's potentially arable lands. A significant genetic variation in Al tolerance exists in both crop plants and Arabidopsis. The exploitation of this genetic variation to breed crops with increased Al tolerance has been a productive and active area of research, however, the underlying molecular, genetic and physiological bases are still not well understood. Only very recently was the first Al tolerance gene, ALMT1, isolated in wheat and shown to be a novel Al-activated malate transporter. Work in our laboratory has focused on using integrated genomic (gene and protein expression profiling), molecular genetic and physiological approaches to identify novel Al tolerance genes and the physiological mechanisms they control in the cereal crops maize and sorghum, and also in arabidopsis. In sorghum we had previously shown that Al tolerance is the result of a single locus, Alt/sub SB/ which maps to the top of sorghum chromosome 3 in a region totally distinct from where the major Al tolerance maps in wheat and other related members of the Triticeae. Very recently, we have used map-based cloning techniques in sorghum to clone Alt/sub SB/ and have found it is a novel Al tolerance gene. Here we will present a molecular characterization of the Alt/sub SB/ gene and also the physiological mechanism of sorghum Al tolerance it controls. In arabidopsis, we have previously shown that Al tolerance is a quantitative trait and have identified two major Al tolerance QTL on chromosomes 1 and 5. These genes function to confer tolerance via Al via activated root malate release. We found that a member of the arabidopsis gene family that is a close homolog to wheat ALMT1 maps near the largest tolerance QTL on chromosome 1 and have also found this gene encodes the Al-activated malate transport involved in arabidopsis Al tolerance. However, we have clear molecular

  5. Targeted association mapping demonstrating the complex molecular genetics of fatty acid formation in soybean.

    Science.gov (United States)

    Li, Ying-hui; Reif, Jochen C; Ma, Yan-song; Hong, Hui-long; Liu, Zhang-xiong; Chang, Ru-zhen; Qiu, Li-juan

    2015-10-23

    The relative abundance of five dominant fatty acids (FAs) (palmitic, stearic, oleic, linoleic and linolenic acids) is a major factor determining seed quality in soybean. To clarify the currently poorly understood genetic architecture of FAs in soybean, targeted association analysis was conducted in 421 diverse accessions phenotyped in three environments and genotyped using 1536 pre-selected SNPs. The population of 421 soybean accessions displayed significant genetic variation for each FA. Analysis of the molecular data revealed three subpopulations, which reflected a trend depending on latitude of cultivation. A total of 37 significant (p seed quality of soybean with benefits for human health and for food processing.

  6. The Digital Ageing Atlas: integrating the diversity of age-related changes into a unified resource.

    Science.gov (United States)

    Craig, Thomas; Smelick, Chris; Tacutu, Robi; Wuttke, Daniel; Wood, Shona H; Stanley, Henry; Janssens, Georges; Savitskaya, Ekaterina; Moskalev, Alexey; Arking, Robert; de Magalhães, João Pedro

    2015-01-01

    Multiple studies characterizing the human ageing phenotype have been conducted for decades. However, there is no centralized resource in which data on multiple age-related changes are collated. Currently, researchers must consult several sources, including primary publications, in order to obtain age-related data at various levels. To address this and facilitate integrative, system-level studies of ageing we developed the Digital Ageing Atlas (DAA). The DAA is a one-stop collection of human age-related data covering different biological levels (molecular, cellular, physiological, psychological and pathological) that is freely available online (http://ageing-map.org/). Each of the >3000 age-related changes is associated with a specific tissue and has its own page displaying a variety of information, including at least one reference. Age-related changes can also be linked to each other in hierarchical trees to represent different types of relationships. In addition, we developed an intuitive and user-friendly interface that allows searching, browsing and retrieving information in an integrated and interactive fashion. Overall, the DAA offers a new approach to systemizing ageing resources, providing a manually-curated and readily accessible source of age-related changes. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability.

    Science.gov (United States)

    Colotta, Francesco; Allavena, Paola; Sica, Antonio; Garlanda, Cecilia; Mantovani, Alberto

    2009-07-01

    Inflammatory conditions in selected organs increase the risk of cancer. An inflammatory component is present also in the microenvironment of tumors that are not epidemiologically related to inflammation. Recent studies have begun to unravel molecular pathways linking inflammation and cancer. In the tumor microenvironment, smoldering inflammation contributes to proliferation and survival of malignant cells, angiogenesis, metastasis, subversion of adaptive immunity, reduced response to hormones and chemotherapeutic agents. Recent data suggest that an additional mechanism involved in cancer-related inflammation (CRI) is induction of genetic instability by inflammatory mediators, leading to accumulation of random genetic alterations in cancer cells. In a seminal contribution, Hanahan and Weinberg [(2000) Cell, 100, 57-70] identified the six hallmarks of cancer. We surmise that CRI represents the seventh hallmark.

  8. Identifying genetic relatives without compromising privacy.

    Science.gov (United States)

    He, Dan; Furlotte, Nicholas A; Hormozdiari, Farhad; Joo, Jong Wha J; Wadia, Akshay; Ostrovsky, Rafail; Sahai, Amit; Eskin, Eleazar

    2014-04-01

    The development of high-throughput genomic technologies has impacted many areas of genetic research. While many applications of these technologies focus on the discovery of genes involved in disease from population samples, applications of genomic technologies to an individual's genome or personal genomics have recently gained much interest. One such application is the identification of relatives from genetic data. In this application, genetic information from a set of individuals is collected in a database, and each pair of individuals is compared in order to identify genetic relatives. An inherent issue that arises in the identification of relatives is privacy. In this article, we propose a method for identifying genetic relatives without compromising privacy by taking advantage of novel cryptographic techniques customized for secure and private comparison of genetic information. We demonstrate the utility of these techniques by allowing a pair of individuals to discover whether or not they are related without compromising their genetic information or revealing it to a third party. The idea is that individuals only share enough special-purpose cryptographically protected information with each other to identify whether or not they are relatives, but not enough to expose any information about their genomes. We show in HapMap and 1000 Genomes data that our method can recover first- and second-order genetic relationships and, through simulations, show that our method can identify relationships as distant as third cousins while preserving privacy.

  9. Hamartomatous polyps - a clinical and molecular genetic study

    DEFF Research Database (Denmark)

    Jelsig, Anne Marie

    2016-01-01

    the knowledge on clinical course and molecular genetics in patients with HPs and HPS, and to investigate research participants' attitude towards the results of extensive genetic testing. Paper I: In the first paper we investigated the occurrence, anatomic distribution, and other demographics of juvenile polyps...... appearance. Patients with one or a few juvenile polyps are usually not offered clinical follow-up as the polyp(s) are considered not to harbour any malignant potential. Nevertheless, it is important to note that juvenile polyps and HPs are also found in patients with hereditary hamartomatous polyposis......-Jeghers syndrome, and the PTEN hamartoma tumour syndrome. Currently, the HPS diagnoses are based on clinical criteria and are often assisted with genetic testing as candidate genes have been described for each syndrome. This thesis is based on six scientific papers. The overall aim of the studies was to expand...

  10. Implementation of molecular karyotyping in clinical genetics

    Directory of Open Access Journals (Sweden)

    Luca Lovrecic

    2013-11-01

    Full Text Available Rapid development of technologies for the study of the human genome is an expected step after the discovery and sequencing of the entire human genome. Chromosomal microarrays, which allow us to perform tens of thousands of previously individual experiments simultaneously, are being utilized in all areas of human genetics and genomics. Initially, this was applicable only for research purposes, but in the last few years their clinical diagnostic purposes are becoming more and more relevant. Using molecular karyotyping (also chromosomal microarray, comparative genomic hybridization with microarray, aCGH, one can analyze microdeletions / microduplications in the whole human genome at once. It is a first-tier cytogenetic diagnostic test instead of G-banded karyotyping in patients with developmental delay and/or congenital anomalies. Molecular karyotyping is used as a diagnostic test in patients with unexplained developmental delay and/or idiopathic intellectual disability and/or dysmorphic features and/or multiple congenital anomalies (DD/ID/DF/MCA. In addition, the method is used in prenatal diagnostics and in some centres also in preimplantation genetic diagnosis.The aim of this paper is to inform the professional community in the field about this new diagnostic method and its implementation in Slovenia, and to define the clinical situations where the method is appropriate.

  11. Strengthening molecular genetics and training in craniosynostosis: The need of the hour

    Science.gov (United States)

    Barik, Mayadhar; Bajpai, Minu; Panda, Shasanka Shekhar; Malhotra, Arun; Samantaray, Jyotish Chandra; Dwivedi, Sada Nanda

    2014-01-01

    Craniosynostosis (CS) is premature fusion of skull. It is divided into two groups: Syndromic craniosynostosis (SCS) and non-syndromic craniosynostosis (NSC). Its incidence in Indian population is 1:1000 live births where as in the USA it is 1:2500 live births. Its incidence varies from country to country. Molecular genetics having great interest and relevance in medical students, faculty, scientist, pediatric neurosurgeon and staff nurses, our objective was to educate the medical students, residents, researchers, clinicians, pediatric neurosurgeon, anesthetists, pediatricians, staff nurses and paramedics. We summarized here including with diagnosis, investigations, surgical therapy, induction therapy, and molecular therapy. Molecular genetics training is needed to know the information regarding development of skull, cranial connective tissue, craniofacial dysplasia, frame work, network of receptors and its etiopathogenesis. The important part is clinically with molecular therapy (MT) how to manage CS in rural sector and metropolitan cities need a special attention. PMID:25288859

  12. Strengthening molecular genetics and training in craniosynostosis: The need of the hour

    Directory of Open Access Journals (Sweden)

    Mayadhar Barik

    2014-01-01

    Full Text Available Craniosynostosis (CS is premature fusion of skull. It is divided into two groups: Syndromic craniosynostosis (SCS and non-syndromic craniosynostosis (NSC. Its incidence in Indian population is 1:1000 live births where as in the USA it is 1:2500 live births. Its incidence varies from country to country. Molecular genetics having great interest and relevance in medical students, faculty, scientist, pediatric neurosurgeon and staff nurses, our objective was to educate the medical students, residents, researchers, clinicians, pediatric neurosurgeon, anesthetists, pediatricians, staff nurses and paramedics. We summarized here including with diagnosis, investigations, surgical therapy, induction therapy, and molecular therapy. Molecular genetics training is needed to know the information regarding development of skull, cranial connective tissue, craniofacial dysplasia, frame work, network of receptors and its etiopathogenesis. The important part is clinically with molecular therapy (MT how to manage CS in rural sector and metropolitan cities need a special attention.

  13. Quality assurance practices in Europe: a survey of molecular genetic testing laboratories

    Science.gov (United States)

    Berwouts, Sarah; Fanning, Katrina; Morris, Michael A; Barton, David E; Dequeker, Elisabeth

    2012-01-01

    In the 2000s, a number of initiatives were taken internationally to improve quality in genetic testing services. To contribute to and update the limited literature available related to this topic, we surveyed 910 human molecular genetic testing laboratories, of which 291 (32%) from 29 European countries responded. The majority of laboratories were in the public sector (81%), affiliated with a university hospital (60%). Only a minority of laboratories was accredited (23%), and 26% was certified. A total of 22% of laboratories did not participate in external quality assessment (EQA) and 28% did not use reference materials (RMs). The main motivations given for accreditation were to improve laboratory profile (85%) and national recognition (84%). Nearly all respondents (95%) would prefer working in an accredited laboratory. In accredited laboratories, participation in EQA (Pquality assurance (Pquality implementation score (QIS), we showed that accredited laboratories (average score 92) comply better than certified laboratories (average score 69, Pquality indicators. We conclude that quality practices vary widely in European genetic testing laboratories. This leads to a potentially dangerous situation in which the quality of genetic testing is not consistently assured. PMID:22739339

  14. Molecular genetics and livestock selection. Approaches, opportunities and risks

    International Nuclear Information System (INIS)

    Williams, J.L.

    2005-01-01

    Following domestication, livestock were selected both naturally through adaptation to their environments and by man so that they would fulfil a particular use. As selection methods have become more sophisticated, rapid progress has been made in improving those traits that are easily measured. However, selection has also resulted in decreased diversity. In some cases, improved breeds have replaced local breeds, risking the loss of important survival traits. The advent of molecular genetics provides the opportunity to identify the genes that control particular traits by a gene mapping approach. However, as with selection, the early mapping studies focused on traits that are easy to measure. Where molecular genetics can play a valuable role in livestock production is by providing the means to select effectively for traits that are difficult to measure. Identifying the genes underpinning particular traits requires a population in which these traits are segregating. Fortunately, several experimental populations have been created that have allowed a wide range of traits to be studied. Gene mapping work in these populations has shown that the role of particular genes in controlling variation in a given trait can depend on the genetic background. A second finding is that the most favourable alleles for a trait may in fact. be present in animals that perform poorly for the trait. In the long term, knowledge of -the genes controlling particular traits, and the way they interact with the genetic background, will allow introgression between breeds and the assembly of genotypes that are best suited to particular environments, producing animals with the desired characteristics. If used wisely, this approach will maintain genetic diversity while improving performance over a wide range of desired traits. (author)

  15. Towards the application of precision medicine in Age-Related Macular Degeneration.

    Science.gov (United States)

    Cascella, Raffaella; Strafella, Claudia; Caputo, Valerio; Errichiello, Valeria; Zampatti, Stefania; Milano, Filippo; Potenza, Saverio; Mauriello, Silvestro; Novelli, Giuseppe; Ricci, Federico; Cusumano, Andrea; Giardina, Emiliano

    2018-03-01

    The review essentially describes genetic and non-genetic variables contributing to the onset and progression of exudative Age-related Macular Degeneration (AMD) in Italian population. In particular, AMD susceptibility within Italian population is contributed to by genetic variants, accounting for 23% of disease and non-genetic variants, accounting for 10% of AMD. Our data highlighted prominent differences concerning genetic and non-genetic contributors to AMD in our cohort with respect to worldwide populations. Among genetic variables, SNPs of CFH, ARMS2, IL-8, TIMP3, SLC16A8, RAD51B, VEGFA and COL8A1 were significantly associated with the risk of AMD in the Italian cohort. Surprisingly, other susceptibility variants described in European, American and Asiatic populations, did not reach the significance threshold in our cohort. As expected, advanced age, smoking and dietary habits were associated with the disease. In addition, we also describe a number of gene-gene and gene-phenotype interactions. In fact, AMD-associated genes may be involved in the alteration of Bruch's membrane and induction of angiogenesis, contributing to exacerbate the damage caused by aging and environmental factors. Our review provides an overview of genetic and non-genetic factors characterizing AMD susceptibility in Italian population, outlining the differences with respect to the worldwide populations. Altogether, these data reflect historical, geographic, demographic and lifestyle peculiarities of Italian population. The role of epigenetics, pharmacogenetics, comorbities and genetic counseling in the management of AMD patients have been described, in the perspective of the application of a "population-specific precision medicine" approach addressed to prevent AMD onset and improve patients' quality of life. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Molecular Genetic and Gene Therapy Studies of the Musculoskeletal System

    National Research Council Canada - National Science Library

    Baylink, David

    2004-01-01

    The primary goal of the proposed work is to apply several state of the art molecular genetic and gene therapy technologies to address fundamental questions in bone biology with a particular emphasis on attempting: l...

  17. Children's History of Speech-Language Difficulties: Genetic Influences and Associations with Reading-Related Measures

    Science.gov (United States)

    DeThorne, Laura Segebart; Hart, Sara A.; Petrill, Stephen A.; Deater-Deckard, Kirby; Thompson, Lee Anne; Schatschneider, Chris; Davison, Megan Dunn

    2006-01-01

    Purpose: This study examined (a) the extent of genetic and environmental influences on children's articulation and language difficulties and (b) the phenotypic associations between such difficulties and direct assessments of reading-related skills during early school-age years. Method: Behavioral genetic analyses focused on parent-report data…

  18. EMQN/CMGS best practice guidelines for the molecular genetic testing of Huntington disease

    OpenAIRE

    Losekoot, Monique; van Belzen, Martine J; Seneca, Sara; Bauer, Peter; Stenhouse, Susan A R; Barton, David E

    2012-01-01

    Huntington disease (HD) is caused by the expansion of an unstable polymorphic trinucleotide (CAG)n repeat in exon 1 of the HTT gene, which translates into an extended polyglutamine tract in the protein. Laboratory diagnosis of HD involves estimation of the number of CAG repeats. Molecular genetic testing for HD is offered in a wide range of laboratories both within and outside the European community. In order to measure the quality and raise the standard of molecular genetic testing in these ...

  19. Molecular Mechanisms Responsible for Increased Vulnerability of the Ageing Oocyte to Oxidative Damage

    Science.gov (United States)

    Redgrove, Kate A.; McLaughlin, Eileen A.

    2017-01-01

    In their midthirties, women experience a decline in fertility, coupled to a pronounced increase in the risk of aneuploidy, miscarriage, and birth defects. Although the aetiology of such pathologies are complex, a causative relationship between the age-related decline in oocyte quality and oxidative stress (OS) is now well established. What remains less certain are the molecular mechanisms governing the increased vulnerability of the aged oocyte to oxidative damage. In this review, we explore the reduced capacity of the ageing oocyte to mitigate macromolecular damage arising from oxidative insults and highlight the dramatic consequences for oocyte quality and female fertility. Indeed, while oocytes are typically endowed with a comprehensive suite of molecular mechanisms to moderate oxidative damage and thus ensure the fidelity of the germline, there is increasing recognition that the efficacy of such protective mechanisms undergoes an age-related decline. For instance, impaired reactive oxygen species metabolism, decreased DNA repair, reduced sensitivity of the spindle assembly checkpoint, and decreased capacity for protein repair and degradation collectively render the aged oocyte acutely vulnerable to OS and limits their capacity to recover from exposure to such insults. We also highlight the inadequacies of our current armoury of assisted reproductive technologies to combat age-related female infertility, emphasising the need for further research into mechanisms underpinning the functional deterioration of the ageing oocyte. PMID:29312475

  20. Stress responses during ageing: molecular pathways regulating protein homeostasis.

    Science.gov (United States)

    Kyriakakis, Emmanouil; Princz, Andrea; Tavernarakis, Nektarios

    2015-01-01

    The ageing process is characterized by deterioration of physiological function accompanied by frailty and ageing-associated diseases. The most broadly and well-studied pathways influencing ageing are the insulin/insulin-like growth factor 1 signaling pathway and the dietary restriction pathway. Recent studies in diverse organisms have also delineated emerging pathways, which collectively or independently contribute to ageing. Among them the proteostatic-stress-response networks, inextricably affect normal ageing by maintaining or restoring protein homeostasis to preserve proper cellular and organismal function. In this chapter, we survey the involvement of heat stress and endoplasmic reticulum stress responses in the regulation of longevity, placing emphasis on the cross talk between different response mechanisms and their systemic effects. We further discuss novel insights relevant to the molecular pathways mediating these stress responses that may facilitate the development of innovative interventions targeting age-related pathologies such as diabetes, cancer, cardiovascular and neurodegenerative diseases.

  1. Population genetic structure of rare and endangered plants using molecular markers

    Science.gov (United States)

    Raji, Jennifer; Atkinson, Carter T.

    2013-01-01

    This study was initiated to assess the levels of genetic diversity and differentiation in the remaining populations of Phyllostegia stachyoides and Melicope zahlbruckneri in Hawai`i Volcanoes National Park and determine the extent of gene flow to identify genetically distinct individuals or groups for conservation purposes. Thirty-six Amplified Fragment Length Polymorphic (AFLP) primer combinations generated a total of 3,242 polymorphic deoxyribonucleic acid (DNA) fragments in the P. stachyoides population with a percentage of polymorphic bands (PPB) ranging from 39.3 to 65.7% and 2,780 for the M. zahlbruckneri population with a PPB of 18.8 to 64.6%. Population differentiation (Fst) of AFLP loci between subpopulations of P. stachyoides was low (0.043) across populations. Analysis of molecular variance of P. stachyoides showed that 4% of the observed genetic differentiation occurred between populations in different kīpuka and 96% when individuals were pooled from all kīpuka. Moderate genetic diversity was detected within the M. zahlbruckneri population. Bayesian and multivariate analyses both classified the P. stachyoides and M. zahlbruckneri populations into genetic groups with considerable sub-structuring detected in the P. stachyoides population. The proportion of genetic differentiation among populations explained by geographical distance was estimated by Mantel tests. No spatial correlation was found between genetic and geographic distances in both populations. Finally, a moderate but significant gene flow that could be attributed to insect or bird-mediated dispersal of pollen across the different kīpuka was observed. The results of this study highlight the utility of a multi-allelic DNA-based marker in screening a large number of polymorphic loci in small and closely related endangered populations and revealed the presence of genetically unique groups of individuals in both M. zahlbruckneri and P. stachyoides populations. Based on these findings

  2. Molecular profiling of aged neural progenitors identifies Dbx2 as a candidate regulator of age-associated neurogenic decline.

    Science.gov (United States)

    Lupo, Giuseppe; Nisi, Paola S; Esteve, Pilar; Paul, Yu-Lee; Novo, Clara Lopes; Sidders, Ben; Khan, Muhammad A; Biagioni, Stefano; Liu, Hai-Kun; Bovolenta, Paola; Cacci, Emanuele; Rugg-Gunn, Peter J

    2018-06-01

    Adult neurogenesis declines with aging due to the depletion and functional impairment of neural stem/progenitor cells (NSPCs). An improved understanding of the underlying mechanisms that drive age-associated neurogenic deficiency could lead to the development of strategies to alleviate cognitive impairment and facilitate neuroregeneration. An essential step towards this aim is to investigate the molecular changes that occur in NSPC aging on a genomewide scale. In this study, we compare the transcriptional, histone methylation and DNA methylation signatures of NSPCs derived from the subventricular zone (SVZ) of young adult (3 months old) and aged (18 months old) mice. Surprisingly, the transcriptional and epigenomic profiles of SVZ-derived NSPCs are largely unchanged in aged cells. Despite the global similarities, we detect robust age-dependent changes at several hundred genes and regulatory elements, thereby identifying putative regulators of neurogenic decline. Within this list, the homeobox gene Dbx2 is upregulated in vitro and in vivo, and its promoter region has altered histone and DNA methylation levels, in aged NSPCs. Using functional in vitro assays, we show that elevated Dbx2 expression in young adult NSPCs promotes age-related phenotypes, including the reduced proliferation of NSPC cultures and the altered transcript levels of age-associated regulators of NSPC proliferation and differentiation. Depleting Dbx2 in aged NSPCs caused the reverse gene expression changes. Taken together, these results provide new insights into the molecular programmes that are affected during mouse NSPC aging, and uncover a new functional role for Dbx2 in promoting age-related neurogenic decline. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  3. The genetic basis for cognitive ability, memory, and depression symptomatology in middle-aged and elderly chinese twins

    DEFF Research Database (Denmark)

    Xu, Chunsheng; Sun, Jianping; Ji, Fuling

    2015-01-01

    The genetic influences on aging-related phenotypes, including cognition and depression, have been well confirmed in the Western populations. We performed the first twin-based analysis on cognitive performance, memory and depression status in middle-aged and elderly Chinese twins, representing...... the world's largest and most rapidly aging population. The sample consisted of 384 twin pairs with a median age of 50 years. Cognitive function was measured using the Montreal Cognitive Assessment (MoCA) scale; memory was assessed using the revised Wechsler Adult Intelligence scale; depression...... with heritability 0.44 for cognition and 0.56 for memory. Multivariate analysis by the reduced Cholesky model estimated significant genetic (rG = 0.69) and unique environmental (rE = 0.25) correlation between cognitive ability and memory. The model also estimated weak but significant inverse genetic correlation...

  4. Genetics in Relation to Biology.

    Science.gov (United States)

    Stewart, J. Bird

    1987-01-01

    Claims that most instruction dealing with genetics is limited to sex education and personal hygiene. Suggests that the biology curriculum should begin to deal with other issues related to genetics, including genetic normality, prenatal diagnoses, race, and intelligence. Predicts these topics will begin to appear in British examination programs.…

  5. Molecular markers for genetic diversity and phylogeny research of ...

    African Journals Online (AJOL)

    Brazilian sheep descended from several breeds brought to the New World by Portuguese and Spanish colonists, and they have evolved and adapted to local climatic variations and acquired tolerance or resistance to many diseases. Molecular markers are widely used in analyzing genetic variability, and markers such as ...

  6. Cytogenetics and molecular genetics of Wilms' tumor of childhood

    NARCIS (Netherlands)

    Slater, R. M.; Mannens, M. M.

    1992-01-01

    We describe the way in which application of cytogenetic and molecular genetic techniques to the study of Wilms' tumor (WT) of the kidney and the associated congenital disorders, such as sporadic aniridia and the Beckwith-Wiedemann syndrome, has led to identification of two regions on the short arm

  7. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms.

    Science.gov (United States)

    Kumar, Sudhir; Stecher, Glen; Li, Michael; Knyaz, Christina; Tamura, Koichiro

    2018-06-01

    The Molecular Evolutionary Genetics Analysis (Mega) software implements many analytical methods and tools for phylogenomics and phylomedicine. Here, we report a transformation of Mega to enable cross-platform use on Microsoft Windows and Linux operating systems. Mega X does not require virtualization or emulation software and provides a uniform user experience across platforms. Mega X has additionally been upgraded to use multiple computing cores for many molecular evolutionary analyses. Mega X is available in two interfaces (graphical and command line) and can be downloaded from www.megasoftware.net free of charge.

  8. Genética molecular: avanços e problemas Molecular genetics: advances and problems

    Directory of Open Access Journals (Sweden)

    Eloi S. Garcia

    1996-03-01

    Full Text Available Este artigo traz a discussão sobre genética molecular em saúde ao campo da saúde pública. Com a revolução produzida pela chegada da engenharia genética, é importante discutir alguns dos avanços e problemas desta tecnologia para a sociedade. Está na hora de se fazer uma avaliação clara e bem informada acerca do que já se conseguiu e do que ainda podemos conseguir através desta tecnologia. A sociedade precisa compreender as implicações éticas e práticas de uma tecnologia capaz de produzir drogas milagrosas, dagnósticos modernos e a cura de todas as doenças. Alguns pontos particularmente delicados pertinentes às questões sociais ligadas à biologia molecular e ao projeto genoma humano são discutidos.This article is an attempt to draw the discussion on molecular genetics in health into the public health domain. Now that the genetic engineering revolution has arrived, it is important to point out the advances and problems this technology poses for society. It is time for a clear, informed assessment of what we have already achieved and may soon achieve using this technology. Clearly, society needs to understand the ethical and practical implications of a technology which can produce miracle drugs and modern diagnoses and cure virtually every disease. Important points from sensitive social issues raised by molecular biology and the human genome project are discussed.

  9. Aging Is Not a Disease: Distinguishing Age-Related Macular Degeneration from Aging

    Science.gov (United States)

    Ardeljan, Daniel; Chan, Chi-Chao

    2013-01-01

    Age-related macular degeneration (AMD) is a disease of the outer retina, characterized most significantly by atrophy of photoreceptors and retinal pigment epithelium accompanied with or without choroidal neovascularization. Development of AMD has been recognized as contingent on environmental and genetic risk factors, the strongest being advanced age. In this review, we highlight pathogenic changes that destabilize ocular homeostasis and promote AMD development. With normal aging, photoreceptors are steadily lost, Bruch's membrane thickens, the choroid thins, and hard drusen may form in the periphery. In AMD, many of these changes are exacerbated in addition to the development of disease-specific factors such as soft macular drusen. Para-inflammation, which can be thought of as an intermediate between basal and robust levels of inflammation, develops within the retina in an attempt to maintain ocular homeostasis, reflected by increased expression of the anti-inflammatory cytokine IL-10 coupled with shifts in macrophage plasticity from the pro-inflammatory M1 to the anti-inflammatory M2 polarization. In AMD, imbalances in the M1 and M2 populations together with activation of retinal microglia are observed and potentially contribute to tissue degeneration. Nonetheless, the retina persists in a state of chronic inflammation and increased expression of certain cytokines and inflammasomes is observed. Since not everyone develops AMD, the vital question to ask is how the body establishes a balance between normal age-related changes and the pathological phenotypes in AMD. PMID:23933169

  10. Molecular characterization and genetic diversity of Jatropha curcas L. in Costa Rica

    Science.gov (United States)

    Vásquez-Mayorga, Marcela; Fuchs, Eric J.; Hernández, Eduardo J.; Herrera, Franklin; Hernández, Jesús; Moreira, Ileana; Arnáez, Elizabeth

    2017-01-01

    We estimated the genetic diversity of 50 Jatropha curcas samples from the Costa Rican germplasm bank using 18 EST-SSR, one G-SSR and nrDNA-ITS markers. We also evaluated the phylogenetic relationships among samples using nuclear ribosomal ITS markers. Non-toxicity was evaluated using G-SSRs and SCARs markers. A Neighbor-Joining (NJ) tree and a Maximum Likelihood (ML) tree were constructed using SSR markers and ITS sequences, respectively. Heterozygosity was moderate (He = 0.346), but considerable compared to worldwide values for J. curcas. The PIC (PIC = 0.274) and inbreeding coefficient (f =  − 0.102) were both low. Clustering was not related to the geographical origin of accessions. International accessions clustered independently of collection sites, suggesting a lack of genetic structure, probably due to the wide distribution of this crop and ample gene flow. Molecular markers identified only one non-toxic accession (JCCR-24) from Mexico. This work is part of a countrywide effort to characterize the genetic diversity of the Jatropha curcas germplasm bank in Costa Rica. PMID:28289556

  11. Molecular characterization and genetic diversity of Jatropha curcas L. in Costa Rica

    Directory of Open Access Journals (Sweden)

    Marcela Vásquez-Mayorga

    2017-02-01

    Full Text Available We estimated the genetic diversity of 50 Jatropha curcas samples from the Costa Rican germplasm bank using 18 EST-SSR, one G-SSR and nrDNA-ITS markers. We also evaluated the phylogenetic relationships among samples using nuclear ribosomal ITS markers. Non-toxicity was evaluated using G-SSRs and SCARs markers. A Neighbor-Joining (NJ tree and a Maximum Likelihood (ML tree were constructed using SSR markers and ITS sequences, respectively. Heterozygosity was moderate (He = 0.346, but considerable compared to worldwide values for J. curcas. The PIC (PIC = 0.274 and inbreeding coefficient (f =  − 0.102 were both low. Clustering was not related to the geographical origin of accessions. International accessions clustered independently of collection sites, suggesting a lack of genetic structure, probably due to the wide distribution of this crop and ample gene flow. Molecular markers identified only one non-toxic accession (JCCR-24 from Mexico. This work is part of a countrywide effort to characterize the genetic diversity of the Jatropha curcas germplasm bank in Costa Rica.

  12. Genetic basis of a cognitive complexity metric.

    Directory of Open Access Journals (Sweden)

    Narelle K Hansell

    Full Text Available Relational complexity (RC is a metric reflecting capacity limitation in relational processing. It plays a crucial role in higher cognitive processes and is an endophenotype for several disorders. However, the genetic underpinnings of complex relational processing have not been investigated. Using the classical twin model, we estimated the heritability of RC and genetic overlap with intelligence (IQ, reasoning, and working memory in a twin and sibling sample aged 15-29 years (N = 787. Further, in an exploratory search for genetic loci contributing to RC, we examined associated genetic markers and genes in our Discovery sample and selected loci for replication in four independent samples (ALSPAC, LBC1936, NTR, NCNG, followed by meta-analysis (N>6500 at the single marker level. Twin modelling showed RC is highly heritable (67%, has considerable genetic overlap with IQ (59%, and is a major component of genetic covariation between reasoning and working memory (72%. At the molecular level, we found preliminary support for four single-marker loci (one in the gene DGKB, and at a gene-based level for the NPS gene, having influence on cognition. These results indicate that genetic sources influencing relational processing are a key component of the genetic architecture of broader cognitive abilities. Further, they suggest a genetic cascade, whereby genetic factors influencing capacity limitation in relational processing have a flow-on effect to more complex cognitive traits, including reasoning and working memory, and ultimately, IQ.

  13. M(o)TOR of aging: MTOR as a universal molecular hypothalamus.

    Science.gov (United States)

    Blagosklonny, Mikhail V

    2013-07-01

    A recent ground-breaking publication described hypothalamus-driven programmatic aging. As a Russian proverb goes "everything new is well-forgotten old". In 1958, Dilman proposed that aging and its related diseases are programmed by the hypothalamus. This theory, supported by beautiful experiments, remained unnoticed just to be re-discovered recently. Yet, it does not explain all manifestations of aging. And would organism age without hypothalamus? Do sensing pathways such as MTOR (mechanistic Target of Rapamycin) and IKK-beta play a role of a "molecular hypothalamus" in every cell? Are hypothalamus-driven alterations simply a part of quasi-programmed aging manifested by hyperfunction and secondary signal-resistance? Here are some answers.

  14. The Genetics of Stress-Related Disorders: PTSD, Depression, and Anxiety Disorders

    Science.gov (United States)

    Smoller, Jordan W

    2016-01-01

    Research into the causes of psychopathology has largely focused on two broad etiologic factors: genetic vulnerability and environmental stressors. An important role for familial/heritable factors in the etiology of a broad range of psychiatric disorders was established well before the modern era of genomic research. This review focuses on the genetic basis of three disorder categories—posttraumatic stress disorder (PTSD), major depressive disorder (MDD), and the anxiety disorders—for which environmental stressors and stress responses are understood to be central to pathogenesis. Each of these disorders aggregates in families and is moderately heritable. More recently, molecular genetic approaches, including genome-wide studies of genetic variation, have been applied to identify specific risk variants. In this review, I summarize evidence for genetic contributions to PTSD, MDD, and the anxiety disorders including genetic epidemiology, the role of common genetic variation, the role of rare and structural variation, and the role of gene–environment interaction. Available data suggest that stress-related disorders are highly complex and polygenic and, despite substantial progress in other areas of psychiatric genetics, few risk loci have been identified for these disorders. Progress in this area will likely require analysis of much larger sample sizes than have been reported to date. The phenotypic complexity and genetic overlap among these disorders present further challenges. The review concludes with a discussion of prospects for clinical translation of genetic findings and future directions for research. PMID:26321314

  15. Molecular genetics

    International Nuclear Information System (INIS)

    Kubitschek, H.E.

    1975-01-01

    Progress is reported on studies on the nature and action of lethal and mutagenic lesions in DNA and the mechanisms by which these are produced in bacteria by ionizing radiation or by decay of radioisotopes incorporated in DNA. Studies of radioisotope decay provide the advantages that the original lesion is localized in the genetic material and the immediate physical and chemical changes that occur at decay are known. Specific types of DNA damage were related to characteristic decay properties of several radioisotopes. Incorporated 125 I, for example, induces a double-stranded break in DNA with almost every decay, but causes remarkably little damage of any other kind to the DNA. (U.S.)

  16. Isolation and molecular genetic characterization of a yeast strain ...

    African Journals Online (AJOL)

    The yeast was identified by molecular genetics technique based on sequence analysis of the variable D1/D2 domain of the large subunit (26S) ribosomal DNA. Subsequent 26S rRNA gene sequencing showed 100% base sequence homology and it was identified as Candida viswanathii. The degradation of PAHs

  17. Assessing the Molecular Genetics of the Development of Executive Attention in Children: Focus on Genetic Pathways Related to the Anterior Cingulate Cortex and Dopamine

    Science.gov (United States)

    Brocki, Karin; Clerkin, Suzanne M.; Guise, Kevin G.; Fan, Jin; Fossella, John A.

    2009-01-01

    It is well-known that children show gradual and protracted improvement in an array of behaviors involved in the conscious control of thought and emotion. Non-invasive neuroimaging in developing populations has revealed many neural correlates of behavior, particularly in the developing cingulate cortex and fronto-striatal circuits. These brain regions, themselves, undergo protracted molecular and cellular change in the first two decades of human development and, as such, are ideal regions of interest for cognitive- and imaging-genetic studies that seek to link processes at the biochemical and synaptic levels to brain activity and behavior. We review our research to-date that employs both adult and child-friendly versions of the Attention Network Task (ANT) in an effort to begin to describe the role of specific genes in the assembly of a functional attention system. Presently, we constrain our predictions for genetic association studies by focusing on the role of the anterior cingulate cortex (ACC) and of dopamine in the development of executive attention. PMID:19344637

  18. The molecular genetics of inflammatory, autoimmune, and infectious diseases of the sinonasal tract: a review.

    Science.gov (United States)

    Montone, Kathleen T

    2014-06-01

    The sinonasal tract is frequently affected by a variety of nonneoplastic inflammatory disease processes that are often multifactorial in their etiology but commonly have a molecular genetic component. To review the molecular genetics of a variety of nonneoplastic inflammatory diseases of the sinonasal tract. Inflammatory lesions of the sinonasal tract can be divided into 3 main categories: (1) chronic rhinosinusitis, (2) infectious diseases, and (3) autoimmune diseases/vasculitides. The molecular diagnosis and pathways of a variety of these inflammatory lesions are currently being elucidated and will shed light on disease pathogenesis and treatment. The sinonasal tract is frequently affected by inflammatory lesions that arise through complex interactions of environmental, infectious, and genetic factors. Because these lesions are all inflammatory in nature, the molecular pathology surrounding them is most commonly due to upregulation and down-regulation of genes that affect inflammatory responses and immune regulation.

  19. Heritability of brain activity related to response inhibition: a longitudinal genetic study in adolescent twins

    Science.gov (United States)

    Anokhin, Andrey P.; Golosheykin, Simon; Grant, Julia D.; Heath, Andrew C.

    2017-01-01

    The ability to inhibit prepotent but context- or goal-inappropriate responses is essential for adaptive self-regulation of behavior. Deficits in response inhibition, a key component of impulsivity, have been implicated as a core dysfunction in a range of neuropsychiatric disorders such as ADHD and addictions. Identification of genetically transmitted variation in the neural underpinnings of response inhibition can help to elucidate etiological pathways to these disorders and establish the links between genes, brain, and behavior. However, little is known about genetic influences on the neural mechanisms of response inhibition during adolescence, a developmental period characterized by weak self-regulation of behavior. Here we investigated heritability of ERPs elicited in a Go/No-Go task in a large sample of adolescent twins assessed longitudinally at ages 12, 14, and 16. Genetic analyses showed significant heritability of inhibition-related frontal N2 and P3 components at all three ages, with 50 to 60% of inter-individual variability being attributable to genetic factors. These genetic influences included both common genetic factors active at different ages and novel genetic influences emerging during development. Finally, individual differences in the rate of developmental changes from age 12 to age 16 were significantly influenced by genetic factors. In conclusion, the present study provides the first evidence for genetic influences on neural correlates of response inhibition during adolescence and suggests that ERPs elicited in the Go/No-Go task can serve as intermediate neurophysiological phenotypes (endophenotypes) for the study of disinhibition and impulse control disorders. PMID:28300615

  20. Role of antioxidant enzymes and small molecular weight antioxidants in the pathogenesis of age-related macular degeneration (AMD).

    Science.gov (United States)

    Tokarz, Paulina; Kaarniranta, Kai; Blasiak, Janusz

    2013-10-01

    Cells in aerobic condition are constantly exposed to reactive oxygen species (ROS), which may induce damage to biomolecules, including proteins, nucleic acids and lipids. In normal circumstances, the amount of ROS is counterbalanced by cellular antioxidant defence, with its main components-antioxidant enzymes, DNA repair and small molecular weight antioxidants. An imbalance between the production and neutralization of ROS by antioxidant defence is associated with oxidative stress, which plays an important role in the pathogenesis of many age-related and degenerative diseases, including age-related macular degeneration (AMD), affecting the macula-the central part of the retina. The retina is especially prone to oxidative stress due to high oxygen pressure and exposure to UV and blue light promoting ROS generation. Because oxidative stress has an established role in AMD pathogenesis, proper functioning of antioxidant defence may be crucial for the occurrence and progression of this disease. Antioxidant enzymes play a major role in ROS scavenging and changes of their expression or/and activity are reported to be associated with AMD. Therefore, the enzymes in the retina along with their genes may constitute a perspective target in AMD prevention and therapy.

  1. Genetic Diversity Analysis of Tagetes Species Using PCR Based Molecular Markers

    International Nuclear Information System (INIS)

    Shahzadi, I.; Ahmad, R.; Waheed, U.; Shah, M. F.

    2016-01-01

    Tagetes is a genus of medicinally important wild and cultivated plants containing several chemical compounds. Lack of information on variation at molecular level present in Tagetes species is paramount to understand the genetic basis of medicinally important compounds. Current study aims at finding genetic variability in Tagetes species using random and specific molecular markers. Two primer systems including 25 RAPD and 3 STS (limonene gene) were used to ascertain genetic diversity of 15 Tagetes genotypes belonging to different species. We found that 20 of the 25 tested RAPD primers generated stable band patterns with 167 loci of amplification products. The proportion of polymorphic bands was 95.21 percent for RAPD primers. Three STS primers generated a total of 29 amplification products, of which 96.55 percent were polymorphic. Homology of genotypes was 53.18 percent and 51.11 percent with RAPD and STS primers respectively. The dendrogram obtained revealed that the range of overall genetic distances estimated was 22 percent to 100 percent through RAPD and 9 percent to 100 percent through STS markers. The findings help to establish that PCR-based assay such as RAPD and STS could be used successfully for estimation of genetic diversity of different genotypes of Tagetes that can be used for selection of parents for improvement of the species. (author)

  2. Shared molecular and cellular mechanisms of premature ageing and ageing-associated diseases.

    Science.gov (United States)

    Kubben, Nard; Misteli, Tom

    2017-10-01

    Ageing is the predominant risk factor for many common diseases. Human premature ageing diseases are powerful model systems to identify and characterize cellular mechanisms that underpin physiological ageing. Their study also leads to a better understanding of the causes, drivers and potential therapeutic strategies of common diseases associated with ageing, including neurological disorders, diabetes, cardiovascular diseases and cancer. Using the rare premature ageing disorder Hutchinson-Gilford progeria syndrome as a paradigm, we discuss here the shared mechanisms between premature ageing and ageing-associated diseases, including defects in genetic, epigenetic and metabolic pathways; mitochondrial and protein homeostasis; cell cycle; and stem cell-regenerative capacity.

  3. How old are you? Genet age estimates in a clonal animal.

    Science.gov (United States)

    Devlin-Durante, M K; Miller, M W; Precht, W F; Baums, I B

    2016-11-01

    Foundation species such as redwoods, seagrasses and corals are often long-lived and clonal. Genets may consist of hundreds of members (ramets) and originated hundreds to thousands of years ago. As climate change and other stressors exert selection pressure on species, the demography of populations changes. Yet, because size does not indicate age in clonal organisms, demographic models are missing data necessary to predict the resilience of many foundation species. Here, we correlate somatic mutations with genet age of corals and provide the first, preliminary estimates of genet age in a colonial animal. We observed somatic mutations at five microsatellite loci in rangewide samples of the endangered coral, Acropora palmata (n = 3352). Colonies harboured 342 unique mutations in 147 genets. Genet age ranged from 30 to 838 years assuming a mutation rate of 1.195 -04 per locus per year based on colony growth rates and 236 to 6500 years assuming a mutation rate of 1.542 -05 per locus per year based on sea level changes to habitat availability. Long-lived A. palmata genets imply a large capacity to tolerate past environmental change, and yet recent mass mortality events in A. palmata suggest that capacity is now being frequently exceeded. © 2016 John Wiley & Sons Ltd.

  4. Molecular genetic identification of some wheat cultivars in the sudan

    International Nuclear Information System (INIS)

    Mekki, I. I; El Amin, H. B.

    2002-01-01

    Four wheat (Triticum aestivum L.) cultivars, namely condor, El-Nellene, Wadi El Neil and Debeira were characterized on biochemical and molecular bases. The biochemical ones were protein-banding patterns, using sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and isozymes to identify the biochemical genetic fingerprint of the four cultivars. Water-soluble protein-banding pattern showed no polymorphisms among the tested cultivars. The data from starch gel electrophoresis of enzymes, malate dehydrogenase (MDH), esterase (EST) and acid phosphate (ACPH) showed that the cultivars are monomorphic. Further trials to identify the molecular genetic fingerprints of the studied cultivars were carried out using RAPD-PCR twenty-five primers were tested to perform. RAPD-PCR analysis. From the PCR products, a phylogenetic map, i.e, dendrogram, was constructed for the studied cultivars which depicted tow groups. The first group contained Wadi El Neil and Deberia with 48.4% similarity, and the second group contained Condor and El Neileen with 100% similarity. There was no similarity between Condor and Debeira (100% dissimilarity). Therefor, these data can be used subsequently for genetic engineering research and for wheat breeding programmes in the Sudan.(Author)

  5. Molecular and Genetic Basis of Stress

    Directory of Open Access Journals (Sweden)

    Bakir Mehić

    2012-05-01

    Full Text Available A person’s reaction to trauma depends on the traumatic situation itself, personality characteristics of the person exposed to trauma, and posttraumatic social environment. Stressor must be extreme event that is extremely dangerous or fatal nature, and which is outside normal human experience [1].Studies investigating psychological consequences of military and civil trauma confirmed the correlation between the nature and intensity of trauma, previous traumatic experience, and psychological consequences. Stress causes the autonomic nervous system hyperactivity. If the stress is extreme or constant symptoms of hyperactivity, increased heart rate, increased respiration, sweating, muscle tension, insomnia and increased anxiety are becoming significant for the prolonging the symptoms of PTSD. Our cells are well adapted to exposure to a mild stress for a short time. In contrast there are potentially serious consequences of exposure to the prolonged stress[2].Various damages arising from the war in Bosnia (1992 - 1995 are almost undetectable, and the consequences for the mental health of the population of Bosnia and Herzegovina are long and painful. It is estimated that in Bosnia and Herzegovina there are 1.75 million people who have some stress-related mental disorders, of which 1 million in the Federation.PTSD may be represented by mutations that must be carried by many genes. There may even be epigenetic reasons for the disorder that have nothing to do with heritable mutations per se. Epigenetic means related to functional changes in the genome that can be regulated by external environmental events that do not involve alterations in the genetic code. One epigenetic mechanism is called “methylation,” a molecular process that affects the activity of a large percentage of genes. Epigenetic investigations say that methylation may be involved in the development of stress regulation in early life[3].A number of longitudinal studies have looked at

  6. Genetic disorders as collective phenomena

    International Nuclear Information System (INIS)

    Chela-Flores, J.

    1987-05-01

    Genetic disorders due to human chromosome aberrations in number are discussed from the point of view of Molecular Genetics. The etiology of trisomy is discussed in the light of the collective variables recently introduced and an age-dependent metabolic disorder is suggested as a possible etiological factor. (author). 11 refs

  7. Age-related macular degeneration.

    Science.gov (United States)

    Cheung, Lily K; Eaton, Angie

    2013-08-01

    Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly, and the prevalence of the disease increases exponentially with every decade after age 50 years. It is a multifactorial disease involving a complex interplay of genetic, environmental, metabolic, and functional factors. Besides smoking, hypertension, obesity, and certain dietary habits, a growing body of evidence indicates that inflammation and the immune system may play a key role in the development of the disease. AMD may progress from the early form to the intermediate form and then to the advanced form, where two subtypes exist: the nonneovascular (dry) type and the neovascular (wet) type. The results from the Age-Related Eye Disease Study have shown that for the nonneovascular type of AMD, supplementation with high-dose antioxidants (vitamin C, vitamin E, and β-carotene) and zinc is recommended for those with the intermediate form of AMD in one or both eyes or with advanced AMD or vision loss due to AMD in one eye. As for the neovascular type of the advanced AMD, the current standard of therapy is intravitreal injections of vascular endothelial growth factor inhibitors. In addition, lifestyle and dietary modifications including improved physical activity, reduced daily sodium intake, and reduced intake of solid fats, added sugars, cholesterol, and refined grain foods are recommended. To date, no study has demonstrated that AMD can be cured or effectively prevented. Clearly, more research is needed to fully understand the pathophysiology as well as to develop prevention and treatment strategies for this devastating disease. © 2013 Pharmacotherapy Publications, Inc.

  8. Neurogenetic effects on cognition in aging brains: A window of opportunity for intervention?

    Directory of Open Access Journals (Sweden)

    Ivar Reinvang

    2010-11-01

    Full Text Available Knowledge of genetic influences on cognitive aging can constrain and guide interventions aimed at limiting age-related cognitive decline in older adults. Progress in understanding the neural basis of cognitive aging also requires a better understanding of the neurogenetics of cognition. This selective review article describes studies aimed at deriving specific neurogenetic information from three parallel and interrelated phenotype based approaches: psychometric constructs, cognitive neuroscience based processing measures, and brain imaging morphometric data. Developments in newer genetic analysis tools, including genome wide association, are also described. In particular, we focus on models for establishing genotype-phenotype associations within an explanatory framework linking molecular, brain, and cognitive levels of analysis. Such multiple-phenotype approaches indicate that individual variation in genes central to maintaining synaptic integrity, neurotransmitter function, and synaptic plasticity are important in affecting age-related changes in brain structure and cognition. Investigating phenotypes at multiple levels is recommended as a means to advance understanding of the neural impact of genetic variants relevant to cognitive aging. Further knowledge regarding the mechanisms of interaction between genetic and preventative procedures will in turn help in understanding the ameliorative effect of various experiential and lifestyle factors on age-related cognitive decline.

  9. The genetic history of Ice Age Europe

    Science.gov (United States)

    Fu, Qiaomei; Posth, Cosimo; Hajdinjak, Mateja; Petr, Martin; Mallick, Swapan; Fernandes, Daniel; Furtwängler, Anja; Haak, Wolfgang; Meyer, Matthias; Mittnik, Alissa; Nickel, Birgit; Peltzer, Alexander; Rohland, Nadin; Slon, Viviane; Talamo, Sahra; Lazaridis, Iosif; Lipson, Mark; Mathieson, Iain; Schiffels, Stephan; Skoglund, Pontus; Derevianko, Anatoly P.; Drozdov, Nikolai; Slavinsky, Vyacheslav; Tsybankov, Alexander; Cremonesi, Renata Grifoni; Mallegni, Francesco; Gély, Bernard; Vacca, Eligio; González Morales, Manuel R.; Straus, Lawrence G.; Neugebauer-Maresch, Christine; Teschler-Nicola, Maria; Constantin, Silviu; Moldovan, Oana Teodora; Benazzi, Stefano; Peresani, Marco; Coppola, Donato; Lari, Martina; Ricci, Stefano; Ronchitelli, Annamaria; Valentin, Frédérique; Thevenet, Corinne; Wehrberger, Kurt; Grigorescu, Dan; Rougier, Hélène; Crevecoeur, Isabelle; Flas, Damien; Semal, Patrick; Mannino, Marcello A.; Cupillard, Christophe; Bocherens, Hervé; Conard, Nicholas J.; Harvati, Katerina; Moiseyev, Vyacheslav; Drucker, Dorothée G.; Svoboda, Jiří; Richards, Michael P.; Caramelli, David; Pinhasi, Ron; Kelso, Janet; Patterson, Nick; Krause, Johannes; Pääbo, Svante; Reich, David

    2016-01-01

    Modern humans arrived in Europe ~45,000 years ago, but little is known about their genetic composition before the start of farming ~8,500 years ago. We analyze genome-wide data from 51 Eurasians from ~45,000-7,000 years ago. Over this time, the proportion of Neanderthal DNA decreased from 3–6% to around 2%, consistent with natural selection against Neanderthal variants in modern humans. Whereas the earliest modern humans in Europe did not contribute substantially to present-day Europeans, all individuals between ~37,000 and ~14,000 years ago descended from a single founder population which forms part of the ancestry of present-day Europeans. A ~35,000 year old individual from northwest Europe represents an early branch of this founder population which was then displaced across a broad region, before reappearing in southwest Europe during the Ice Age ~19,000 years ago. During the major warming period after ~14,000 years ago, a new genetic component related to present-day Near Easterners appears in Europe. These results document how population turnover and migration have been recurring themes of European pre-history. PMID:27135931

  10. Reliable prediction of adsorption isotherms via genetic algorithm molecular simulation.

    Science.gov (United States)

    LoftiKatooli, L; Shahsavand, A

    2017-01-01

    Conventional molecular simulation techniques such as grand canonical Monte Carlo (GCMC) strictly rely on purely random search inside the simulation box for predicting the adsorption isotherms. This blind search is usually extremely time demanding for providing a faithful approximation of the real isotherm and in some cases may lead to non-optimal solutions. A novel approach is presented in this article which does not use any of the classical steps of the standard GCMC method, such as displacement, insertation, and removal. The new approach is based on the well-known genetic algorithm to find the optimal configuration for adsorption of any adsorbate on a structured adsorbent under prevailing pressure and temperature. The proposed approach considers the molecular simulation problem as a global optimization challenge. A detailed flow chart of our so-called genetic algorithm molecular simulation (GAMS) method is presented, which is entirely different from traditions molecular simulation approaches. Three real case studies (for adsorption of CO 2 and H 2 over various zeolites) are borrowed from literature to clearly illustrate the superior performances of the proposed method over the standard GCMC technique. For the present method, the average absolute values of percentage errors are around 11% (RHO-H 2 ), 5% (CHA-CO 2 ), and 16% (BEA-CO 2 ), while they were about 70%, 15%, and 40% for the standard GCMC technique, respectively.

  11. Molecular genetics: Step by step implementation in maize breeding

    Directory of Open Access Journals (Sweden)

    Konstantinov Kosana

    2007-01-01

    Full Text Available Efficiency in plant breeding is determined primarily by the ability to screen for genetic polymorphism, productivity and yield stability early in program. Dependent on the knowledge about the biochemical bases of the trait and nature of its genetic control, trait could be modified either through mutagenesis of genes controlling it or through the transfer of already existing mutant genes, controlling desired trait to different plant genotypes by classic crossing. Objective of this report is to present partly results on the investigation of the possibilities to apply ionizing radiations (fast neutrons, γ -rays and chemical mutagens (EI, iPMS, EMS, ENU to get maize and wheat mutants with increased amount and improved protein quality. Besides this approach in mutation breeding, results on the very early investigation of biochemical background of opaque -2 mutation including use of coupled cell - free RNA and protein synthesis containing components from both wild and opaque - 2 maize genotypes (chromatin, RNA polymerase, microsomall fraction, protein bodies will be presented. Partial results on opaque - 2 gene incorporation in different genetic background are reviewed. Part of report is dealing with different classes of molecular markers (proteins, RFLP, AFLP, RAPD, and SSR application in maize genome polymorphism investigation. Besides application of different molecular markers classes in the investigation of heterosis phenomena they are useful in biochemical pathway of important traits control determination as well. .

  12. Estimating the relative contributions of maternal genetic, paternal genetic and intrauterine factors to offspring birth weight and head circumference.

    Science.gov (United States)

    Rice, Frances; Thapar, Anita

    2010-07-01

    Genetic factors and the prenatal environment contribute to birth weight. However, very few types of study design can disentangle their relative contribution. To examine maternal genetic and intrauterine contributions to offspring birth weight and head circumference. To compare the contribution of maternal and paternal genetic effects. Mothers and fathers were either genetically related or unrelated to their offspring who had been conceived by in vitro fertilization. 423 singleton full term offspring, of whom 262 were conceived via homologous IVF (both parents related), 66 via sperm donation (mother only related) and 95 via egg donation (father only related). Maternal weight at antenatal booking, current weight and maternal height. Paternal current weight and height were all predictors. Infant birth weight and head circumference were outcomes. Genetic relatedness was the main contributing factor between measures of parental weight and offspring birth weight as correlations were only significant when the parent was related to the child. However, there was a contribution of the intrauterine environment to the association between maternal height and both infant birth weight and infant head circumference as these were significant even when mothers were unrelated to their child. Both maternal and paternal genes made contributions to infant birth weight. Maternal height appeared to index a contribution of the intrauterine environment to infant growth and gestational age. Results suggested a possible biological interaction between the intrauterine environment and maternal inherited characteristics which suppresses the influence of paternal genes. 2010 Elsevier Ltd. All rights reserved.

  13. GRM7 variants confer susceptibility to age-related hearing impairment

    DEFF Research Database (Denmark)

    Friedman, Rick A; Van Laer, Lut; Huentelman, Matthew J

    2009-01-01

    Age-related hearing impairment (ARHI), or presbycusis, is the most prevalent sensory impairment in the elderly. ARHI is a complex disease caused by an interaction between environmental and genetic factors. Here we describe the results of the first whole genome association study for ARHI. The stud...

  14. Lead-Related Genetic Loci, Cumulative Lead Exposure and Incident Coronary Heart Disease: The Normative Aging Study

    Science.gov (United States)

    Weisskopf, Marc G.; Sparrow, David; Schwartz, Joel; Hu, Howard; Park, Sung Kyun

    2016-01-01

    Background Cumulative exposure to lead is associated with cardiovascular outcomes. Polymorphisms in the δ-aminolevulinic acid dehydratase (ALAD), hemochromatosis (HFE), heme oxygenase-1 (HMOX1), vitamin D receptor (VDR), glutathione S-transferase (GST) supergene family (GSTP1, GSTT1, GSTM1), apolipoprotein E (APOE),angiotensin II receptor-1 (AGTR1) and angiotensinogen (AGT) genes, are believed to alter toxicokinetics and/or toxicodynamics of lead. Objectives We assessed possible effect modification by genetic polymorphisms in ALAD, HFE, HMOX1, VDR, GSTP1, GSTT1, GSTM1, APOE, AGTR1 and AGT individually and as the genetic risk score (GRS) on the association between cumulative lead exposure and incident coronary heart disease (CHD) events. Methods We used K-shell-X-ray fluorescence to measure bone lead levels. GRS was calculated on the basis of 22 lead-related loci. We constructed Cox proportional hazard models to compute adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) for incident CHD. We applied inverse probability weighting to account for potential selection bias due to recruitment into the bone lead sub-study. Results Significant effect modification was found by VDR, HMOX1, GSTP1, APOE, and AGT genetic polymorphisms when evaluated individually. Further, the bone lead-CHD associations became larger as GRS increases. After adjusting for potential confounders, a HR of CHD was 2.27 (95%CI: 1.50–3.42) with 2-fold increase in patella lead levels, among participants in the top tertile of GRS. We also detected an increasing trend in HRs across tertiles of GRS (p-trend = 0.0063). Conclusions Our findings suggest that lead-related loci as a whole may play an important role in susceptibility to lead-related CHD risk. These findings need to be validated in a separate cohort containing bone lead, lead-related genetic loci and incident CHD data. PMID:27584680

  15. The impact of advances in human molecular biology on radiation genetic risk estimation in man

    International Nuclear Information System (INIS)

    Sankaranarayanan, K.

    1996-01-01

    This paper provides an overview of the conceptual framework, the data base, methods and assumptions used thus far to assess the genetic risks of exposure of human populations to ionising radiation. These are then re-examined in the contemporary context of the rapidly expanding knowledge of the molecular biology of human mendelian diseases. This re-examination reveals that (i) many of the assumptions used thus far in radiation genetic risk estimation may not be fully valid and (ii) the current genetic risk estimates are probably conservative, but provide an adequate margin of safety for radiological protection. The view is expressed that further advances in the field of genetic risk estimation will be largely driven by advances in the molecular biology of human genetic diseases. (author). 37 refs., 5 tabs

  16. Molecular-level insights into aging processes of skin elastin.

    Science.gov (United States)

    Mora Huertas, Angela C; Schmelzer, Christian E H; Hoehenwarter, Wolfgang; Heyroth, Frank; Heinz, Andrea

    2016-01-01

    Skin aging is characterized by different features including wrinkling, atrophy of the dermis and loss of elasticity associated with damage to the extracellular matrix protein elastin. The aim of this study was to investigate the aging process of skin elastin at the molecular level by evaluating the influence of intrinsic (chronological aging) and extrinsic factors (sun exposure) on the morphology and susceptibility of elastin towards enzymatic degradation. Elastin was isolated from biopsies derived from sun-protected or sun-exposed skin of differently aged individuals. The morphology of the elastin fibers was characterized by scanning electron microscopy. Mass spectrometric analysis and label-free quantification allowed identifying differences in the cleavage patterns of the elastin samples after enzymatic digestion. Principal component analysis and hierarchical cluster analysis were used to visualize differences between the samples and to determine the contribution of extrinsic and intrinsic aging to the proteolytic susceptibility of elastin. Moreover, the release of potentially bioactive peptides was studied. Skin aging is associated with the decomposition of elastin fibers, which is more pronounced in sun-exposed tissue. Marker peptides were identified, which showed an age-related increase or decrease in their abundances and provide insights into the progression of the aging process of elastin fibers. Strong age-related cleavage occurs in hydrophobic tropoelastin domains 18, 20, 24 and 26. Photoaging makes the N-terminal and central parts of the tropoelastin molecules more susceptible towards enzymatic cleavage and, hence, accelerates the age-related degradation of elastin. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  17. Genes, Demography, and Life Span: The Contribution of Demographic Data in Genetic Studies on Aging and Longevity

    DEFF Research Database (Denmark)

    Yashin, AI; De Benedictis, G; Vaupel, JW

    1999-01-01

    In population studies on aging, the data on genetic markers are often collected for individuals from different age groups. The purpose of such studies is to identify, by comparison of the frequencies of selected genotypes, “longevity” or “frailty” genes in the oldest and in younger groups...... of individuals. To address questions about more-complicated aspects of genetic influence on longevity, additional information must be used. In this article, we show that the use of demographic information, together with data on genetic markers, allows us to calculate hazard rates, relative risks, and survival...... functions for respective genes or genotypes. New methods of combining genetic and demographic information are discussed. These methods are tested on simulated data and then are applied to the analysis of data on genetic markers for two haplogroups of human mtDNA. The approaches suggested in this article...

  18. Molecular and phenotypic biomarkers of aging [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Xian Xia

    2017-06-01

    Full Text Available Individuals of the same age may not age at the same rate. Quantitative biomarkers of aging are valuable tools to measure physiological age, assess the extent of ‘healthy aging’, and potentially predict health span and life span for an individual. Given the complex nature of the aging process, the biomarkers of aging are multilayered and multifaceted. Here, we review the phenotypic and molecular biomarkers of aging. Identifying and using biomarkers of aging to improve human health, prevent age-associated diseases, and extend healthy life span are now facilitated by the fast-growing capacity of multilevel cross-sectional and longitudinal data acquisition, storage, and analysis, particularly for data related to general human populations. Combined with artificial intelligence and machine learning techniques, reliable panels of biomarkers of aging will have tremendous potential to improve human health in aging societies.

  19. Cancer genetics meets biomolecular mechanism-bridging an age-old gulf.

    Science.gov (United States)

    González-Sánchez, Juan Carlos; Raimondi, Francesco; Russell, Robert B

    2018-02-01

    Increasingly available genomic sequencing data are exploited to identify genes and variants contributing to diseases, particularly cancer. Traditionally, methods to find such variants have relied heavily on allele frequency and/or familial history, often neglecting to consider any mechanistic understanding of their functional consequences. Thus, while the set of known cancer-related genes has increased, for many, their mechanistic role in the disease is not completely understood. This issue highlights a wide gap between the disciplines of genetics, which largely aims to correlate genetic events with phenotype, and molecular biology, which ultimately aims at a mechanistic understanding of biological processes. Fortunately, new methods and several systematic studies have proved illuminating for many disease genes and variants by integrating sequencing with mechanistic data, including biomolecular structures and interactions. These have provided new interpretations for known mutations and suggested new disease-relevant variants and genes. Here, we review these approaches and discuss particular examples where these have had a profound impact on the understanding of human cancers. © 2018 Federation of European Biochemical Societies.

  20. Facial averageness and genetic quality: Testing heritability, genetic correlation with attractiveness, and the paternal age effect.

    Science.gov (United States)

    Lee, Anthony J; Mitchem, Dorian G; Wright, Margaret J; Martin, Nicholas G; Keller, Matthew C; Zietsch, Brendan P

    2016-01-01

    Popular theory suggests that facial averageness is preferred in a partner for genetic benefits to offspring. However, whether facial averageness is associated with genetic quality is yet to be established. Here, we computed an objective measure of facial averageness for a large sample ( N = 1,823) of identical and nonidentical twins and their siblings to test two predictions from the theory that facial averageness reflects genetic quality. First, we use biometrical modelling to estimate the heritability of facial averageness, which is necessary if it reflects genetic quality. We also test for a genetic association between facial averageness and facial attractiveness. Second, we assess whether paternal age at conception (a proxy of mutation load) is associated with facial averageness and facial attractiveness. Our findings are mixed with respect to our hypotheses. While we found that facial averageness does have a genetic component, and a significant phenotypic correlation exists between facial averageness and attractiveness, we did not find a genetic correlation between facial averageness and attractiveness (therefore, we cannot say that the genes that affect facial averageness also affect facial attractiveness) and paternal age at conception was not negatively associated with facial averageness. These findings support some of the previously untested assumptions of the 'genetic benefits' account of facial averageness, but cast doubt on others.

  1. 76 FR 6623 - Molecular and Clinical Genetics Panel of the Medical Devices Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-02-07

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0066] Molecular and Clinical Genetics Panel of the Medical Devices Advisory Committee; Notice of Meeting AGENCY... public. Name of Committee: Molecular and Clinical Genetics Panel of the Medical Devices Advisory...

  2. Molecular and genetic epidemiology of cancer in low- and medium-income countries.

    Science.gov (United States)

    Malhotra, Jyoti

    2014-01-01

    Genetic and molecular factors can play an important role in an individual's cancer susceptibility and response to carcinogen exposure. Cancer susceptibility and response to carcinogen exposure can be either through inheritance of high penetrance but rare germline mutations that constitute heritable cancer syndromes, or it can be inherited as common genetic variations or polymorphisms that are associated with low to moderate risk for development of cancer. These polymorphisms can interact with environmental exposures and can influence an individual's cancer risk through multiple pathways, including affecting the rate of metabolism of carcinogens or the immune response to these toxins. Thus, these genetic polymorphisms can account for some of the geographical differences seen in cancer prevalence between different populations. This review explores the role of molecular epidemiology in the field of cancer prevention and control in low- and medium-income countries. Using data from Human Genome Project and HapMap Project, genome-wide association studies have been able to identify multiple susceptibility loci for different cancers. The field of genetic and molecular epidemiology has been further revolutionized by the discovery of newer, faster, and more efficient DNA-sequencing technologies including next-generation sequencing. The new DNA-sequencing technologies can play an important role in planning and implementation of cancer prevention and screening strategies. More research is needed in this area, especially in investigating new biomarkers and measuring gene-environment interactions. Copyright © 2014 Icahn School of Medicine at Mount Sinai. Published by Elsevier Inc. All rights reserved.

  3. A mosaic genetic structure of the human population living in the South Baltic region during the Iron Age.

    Science.gov (United States)

    Stolarek, Ireneusz; Juras, Anna; Handschuh, Luiza; Marcinkowska-Swojak, Malgorzata; Philips, Anna; Zenczak, Michal; Dębski, Artur; Kóčka-Krenz, Hanna; Piontek, Janusz; Kozlowski, Piotr; Figlerowicz, Marek

    2018-02-06

    Despite the increase in our knowledge about the factors that shaped the genetic structure of the human population in Europe, the demographic processes that occurred during and after the Early Bronze Age (EBA) in Central-East Europe remain unclear. To fill the gap, we isolated and sequenced DNAs of 60 individuals from Kowalewko, a bi-ritual cemetery of the Iron Age (IA) Wielbark culture, located between the Oder and Vistula rivers (Kow-OVIA population). The collected data revealed high genetic diversity of Kow-OVIA, suggesting that it was not a small isolated population. Analyses of mtDNA haplogroup frequencies and genetic distances performed for Kow-OVIA and other ancient European populations showed that Kow-OVIA was most closely linked to the Jutland Iron Age (JIA) population. However, the relationship of both populations to the preceding Late Neolithic (LN) and EBA populations were different. We found that this phenomenon is most likely the consequence of the distinct genetic history observed for Kow-OVIA women and men. Females were related to the Early-Middle Neolithic farmers, whereas males were related to JIA and LN Bell Beakers. In general, our findings disclose the mechanisms that could underlie the formation of the local genetic substructures in the South Baltic region during the IA.

  4. Telomerase RNA Component (TERC) genetic variants interact with the mediterranean diet modifying the inflammatory status and its relationship with aging: CORDIOPREV study

    Science.gov (United States)

    Background: Leukocyte telomere length (LTL) attrition has been associated with age-related diseases. Telomerase RNA Component (TERC) genetic variants have been associated with LTL; whereas fatty acids (FAs) can interact with genetic factors and influence in aging. We explore whether variability at t...

  5. Genetics and molecular biology of hypotension

    Science.gov (United States)

    Robertson, D.

    1994-01-01

    Major strides in the molecular biology of essential hypertension are currently underway. This has tended to obscure the fact that a number of inherited disorders associated with low blood pressure exist and that these diseases may have milder and underrecognized phenotypes that contribute importantly to blood pressure variation in the general population. This review highlights some of the gene products that, if abnormal, could cause hypotension in some individuals. Diseases due to abnormalities in the catecholamine enzymes are discussed in detail. It is likely that genetic abnormalities with hypotensive phenotypes will be as interesting and diverse as those that give rise to hypertensive disorders.

  6. Expression levels of the BAK1 and BCL2 genes highlight the role of apoptosis in age-related hearing impairment

    Directory of Open Access Journals (Sweden)

    Falah M

    2016-07-01

    Full Text Available Masoumeh Falah,1,2 Mohammad Najafi,2 Massoud Houshmand,3 Mohammad Farhadi1 1ENT and Head & Neck Research Center and Department, Iran University of Medical Sciences, Tehran, Iran; 2Cellular and Molecular Research Center, Biochemistry Department, Iran University of Medical Sciences, Tehran, Iran; 3Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran Abstract: Age-related hearing impairment (ARHI is a progressive and a common sensory disorder in the elderly and will become an increasingly important clinical problem given the growing elderly population. Apoptosis of cochlear cells is an important factor in animal models of ARHI. As these cells cannot regenerate, their loss leads to irreversible hearing impairment. Identification of molecular mechanisms can facilitate disease prevention and effective treatment. In this study, we compared the expression of the genes BAK1 and BCL2 as two arms of the intrinsic apoptosis pathway between patients with ARHI and healthy subjects. ARHI and healthy subjects were selected after an ear nose throat examination, otoscopic investigation, and pure tone audiometry. RNA was extracted from peripheral blood samples, and relative gene expression levels were measured using quantitative real-time polymerase chain reaction. BAK1 and the BAK1/BCL2 ratio were statistically significantly upregulated in the ARHI subjects. The BAK1/BCL2 ratio was positively correlated with the results of the audiometric tests. Our results indicate that BAK-mediated apoptosis may be a core mechanism in the progression of ARHI in humans, similar to finding in animal models. Moreover, the gene expression changes in peripheral blood samples could be used as a rapid and simple biomarker for early detection of ARHI. Keywords: age-related hearing impairment (ARHI, presbycusis, biomarker, treatment

  7. Molecular phylogeny of Toxoplasmatinae: comparison between inferences based on mitochondrial and apicoplast genetic sequences

    Directory of Open Access Journals (Sweden)

    Michelle Klein Sercundes

    2016-03-01

    Full Text Available Abstract Phylogenies within Toxoplasmatinae have been widely investigated with different molecular markers. Here, we studied molecular phylogenies of the Toxoplasmatinae subfamily based on apicoplast and mitochondrial genes. Partial sequences of apicoplast genes coding for caseinolytic protease (clpC and beta subunit of RNA polymerase (rpoB, and mitochondrial gene coding for cytochrome B (cytB were analyzed. Laboratory-adapted strains of the closely related parasites Sarcocystis falcatula and Sarcocystis neurona were investigated, along with Neospora caninum, Neospora hughesi, Toxoplasma gondii (strains RH, CTG and PTG, Besnoitia akodoni, Hammondia hammondiand two genetically divergent lineages of Hammondia heydorni. The molecular analysis based on organellar genes did not clearly differentiate between N. caninum and N. hughesi, but the two lineages of H. heydorni were confirmed. Slight differences between the strains of S. falcatula and S. neurona were encountered in all markers. In conclusion, congruent phylogenies were inferred from the three different genes and they might be used for screening undescribed sarcocystid parasites in order to ascertain their phylogenetic relationships with organisms of the family Sarcocystidae. The evolutionary studies based on organelar genes confirm that the genusHammondia is paraphyletic. The primers used for amplification of clpC and rpoB were able to amplify genetic sequences of organisms of the genus Sarcocystisand organisms of the subfamily Toxoplasmatinae as well.

  8. Genetic and Environmental Influences on Individual Differences in Frequency of Play with Pets among Middle-Aged Men: A Behavioral Genetic Analysis.

    Science.gov (United States)

    Jacobson, Kristen C; Hoffman, Christy L; Vasilopoulos, Terrie; Kremen, William S; Panizzon, Matthew S; Grant, Michael D; Lyons, Michael J; Xian, Hong; Franz, Carol E

    2012-12-01

    There is growing evidence that pet ownership and human-animal interaction (HAI) have benefits for human physical and psychological well-being. However, there may be pre-existing characteristics related to patterns of pet ownership and interactions with pets that could potentially bias results of research on HAI. The present study uses a behavioral genetic design to estimate the degree to which genetic and environmental factors contribute to individual differences in frequency of play with pets among adult men. Participants were from the ongoing longitudinal Vietnam Era Twin Study of Aging (VETSA), a population-based sample of 1,237 monozygotic (MZ) and dizygotic (DZ) twins aged 51-60 years. Results demonstrate that MZ twins have higher correlations than DZ twins on frequency of pet play, suggesting that genetic factors play a role in individual differences in interactions with pets. Structural equation modeling revealed that, according to the best model, genetic factors accounted for as much as 37% of the variance in pet play, although the majority of variance (63-71%) was due to environmental factors that are unique to each twin. Shared environmental factors, which would include childhood exposure to pets, overall accounted for influenced characteristics.

  9. Age-related synaptic loss of the medial olivocochlear efferent innervation

    Directory of Open Access Journals (Sweden)

    Schrader Angela

    2010-11-01

    Full Text Available Abstract Age-related functional decline of the nervous system is consistently observed, though cellular and molecular events responsible for this decline remain largely unknown. One of the most prevalent age-related functional declines is age-related hearing loss (presbycusis, a major cause of which is the loss of outer hair cells (OHCs and spiral ganglion neurons. Previous studies have also identified an age-related functional decline in the medial olivocochlear (MOC efferent system prior to age-related loss of OHCs. The present study evaluated the hypothesis that this functional decline of the MOC efferent system is due to age-related synaptic loss of the efferent innervation of the OHCs. To this end, we used a recently-identified transgenic mouse line in which the expression of yellow fluorescent protein (YFP, under the control of neuron-specific elements from the thy1 gene, permits the visualization of the synaptic connections between MOC efferent fibers and OHCs. In this model, there was a dramatic synaptic loss between the MOC efferent fibers and the OHCs in older mice. However, age-related loss of efferent synapses was independent of OHC status. These data demonstrate for the first time that age-related loss of efferent synapses may contribute to the functional decline of the MOC efferent system and that this synaptic loss is not necessary for age-related loss of OHCs.

  10. Molecular genetics of breast cancer

    International Nuclear Information System (INIS)

    Radice, P.; Pierotti, M. A.

    1997-01-01

    In the last two decades, molecular studies have enlightened the complexity of the genetic alterations that occur in breast cancer cells. To date, more than 40 different genes or loci have been found to be altered in breast carcinomas. Although some of these genes, as for example ERBB2, appear to be mutated in a high proportion of cases, their mechanism of action and their role in the different stages of cancer development are still poorly understood. More recently, two major determinants of the inherited predisposition to breast cancer, BRCA1 and BRCA2, have been isolated. As a consequence, it is now possible to screen families with a positive history of breast carcinomas for the identification of mutations carriers, in order to address these individuals into adequate programs of cancer surveillance and prevention

  11. Sarcopenia and Age-Related Endocrine Function

    Directory of Open Access Journals (Sweden)

    Kunihiro Sakuma

    2012-01-01

    Full Text Available Sarcopenia, the age-related loss of skeletal muscle, is characterized by a deterioration of muscle quantity and quality leading to a gradual slowing of movement, a decline in strength and power, and an increased risk of fall-related injuries. Since sarcopenia is largely attributed to various molecular mediators affecting fiber size, mitochondrial homeostasis, and apoptosis, numerous targets exist for drug discovery. In this paper, we summarize the current understanding of the endocrine contribution to sarcopenia and provide an update on hormonal intervention to try to improve endocrine defects. Myostatin inhibition seems to be the most interesting strategy for attenuating sarcopenia other than resistance training with amino acid supplementation. Testosterone supplementation in large amounts and at low frequency improves muscle defects with aging but has several side effects. Although IGF-I is a potent regulator of muscle mass, its therapeutic use has not had a positive effect probably due to local IGF-I resistance. Treatment with ghrelin may ameliorate the muscle atrophy elicited by age-dependent decreases in growth hormone. Ghrelin is an interesting candidate because it is orally active, avoiding the need for injections. A more comprehensive knowledge of vitamin-D-related mechanisms is needed to utilize this nutrient to prevent sarcopenia.

  12. Molecular markers for analyses of intraspecific genetic diversity in the Asian Tiger mosquito, Aedes albopictus.

    Science.gov (United States)

    Manni, Mosè; Gomulski, Ludvik M; Aketarawong, Nidchaya; Tait, Gabriella; Scolari, Francesca; Somboon, Pradya; Guglielmino, Carmela R; Malacrida, Anna R; Gasperi, Giuliano

    2015-03-28

    The dramatic worldwide expansion of Aedes albopictus (the Asian tiger mosquito) and its vector competence for numerous arboviruses represent a growing threat to public health security. Molecular markers are crucially needed for tracking the rapid spread of this mosquito and to obtain a deeper knowledge of population structure. This is a fundamental requirement for the development of strict monitoring protocols and for the improvement of sustainable control measures. Wild population samples from putative source areas and from newly colonised regions were analysed for variability at the ribosomal DNA internal transcribed spacer 2 (ITS2). Moreover, a new set of 23 microsatellite markers (SSR) was developed. Sixteen of these SSRs were tested in an ancestral (Thailand) and two adventive Italian populations. Seventy-six ITS2 sequences representing 52 unique haplotypes were identified, and AMOVA indicated that most of their variation occurred within individuals (74.36%), while only about 8% was detected among populations. Spatial analyses of molecular variance revealed that haplotype genetic similarity was not related to the geographic proximity of populations and the haplotype phylogeny clearly indicated that highly related sequences were distributed across populations from different geographical regions. The SSR markers displayed a high level of polymorphism both in the ancestral and in adventive populations, and F ST estimates suggested the absence of great differentiation. The ancestral nature of the Thai population was corroborated by its higher level of variability. The two types of genetic markers here implemented revealed the distribution of genetic diversity within and between populations and provide clues on the dispersion dynamics of this species. It appears that the diffusion of this mosquito does not conform to a progressive expansion from the native Asian source area, but to a relatively recent and chaotic propagule distribution mediated by human activities

  13. Partial Results Regarding the Genetic Analysis of Thoroughbred Horse from Cislău Studfarm: Reproductive Isolation and Age Structure

    Directory of Open Access Journals (Sweden)

    Marius Maftei

    2011-05-01

    Full Text Available This study is a part of an ample research concerning the genetic analysis (history of Thoroughbred horses from Cislău studfarm. The genetic analysis studies are a part of Animal Genetic Resources Management because just start of them we elaborate the strategies for inbreeding management. This study has as purpose to present two important aspects of genetic analysis: reproductive isolation level and age structure.This parameters has a capital importance in animal breeding because there has a directly influence in animal population evolution. The reproductive isolation situation was quantified using the relation elaborated by S. Wright in 1921. The age structure situation is based on the age distribution histogram. The analysis showed that the Nonius horse from Izvin stud is a reproductively isolated population and have its own evolutionary path. Age structure is not balanced with negative repercurssions on generation interval.

  14. Molecular Genetic Identification Of Some Flax Mutants

    International Nuclear Information System (INIS)

    AMER, I.M.; MOUSTAFA, H.A.M.

    2009-01-01

    Five flax genotypes (Linum usitatissimum L.) i.e., commercial cultivar Sakha 2, the mother variety Giza 4 and three mutant types induced by gamma rays, were screened for their salinity tolerance in field experiments (salinity concentration was 8600 and 8300 ppm for soil and irrigation water, respectively). Mutation 6 was the most salt tolerant as compared to the other four genotypes.RAPD technique was used to detect some molecular markers associated with salt tolerance in flax (Mut 6), RAPD-PCR results using 12 random primers exhibited 149 amplified fragments; 91.9% of them were polymorphic and twelve molecular markers (8.1%) for salt tolerant (mutant 6) were identified with molecular size ranged from 191 to 4159 bp and only eight primers successes to amplify these specific markers. Concerning the other mutants, Mut 15 and Mut 25 exhibited 4.3% and 16.2% specific markers, respectively. The induced mutants exhibited genetic similarity to the parent variety were about 51%, 58.3% and 61.1% for Mut 25, Mut 6 and Mut 15, respectively. These specific markers (SM) are used for identification of the induced mutations and it is important for new variety registration.

  15. Genetic studies and a search for molecular markers that are linked ...

    African Journals Online (AJOL)

    SERVER

    Instead, linkage analysis resulted in the construction of a molecular marker linkage map consisting of 45 ..... This limits the application of this marker type, particularly in ... primer design when one uses RAPDs. .... Concepts of Genetics. Fourth.

  16. Cfh genotype interacts with dietary glycemic index to modulate age-related macular degeneration-like features in mice

    Science.gov (United States)

    Age-related macular degeneration (AMD) is a leading cause of visual impairment worldwide. Genetics and diet contribute to the relative risk for developing AMD, but their interactions are poorly understood. Genetic variations in Complement Factor H (CFH), and dietary glycemic index (GI) are major ris...

  17. Parainflammation, chronic inflammation and age-related macular degeneration

    Science.gov (United States)

    Chen, Mei; Xu, Heping

    2016-01-01

    Inflammation is an adaptive response of the immune system to noxious insults to maintain homeostasis and restore functionality. The retina is considered an immune privileged tissue due to its unique anatomical and physiological properties. During aging, the retina suffers from a low-grade chronic oxidative insult, which sustains for decades and increases in level with advancing age. As a result, the retinal innate immune system, particularly microglia and the complement system, undergo low levels of activation (para-inflammation). In many cases, this para-inflammatory response can maintain homeostasis in the healthy aging eye. However, in patients with age-related macular degeneration (AMD), this para-inflammatory response becomes dysregulated and contributes to macular damage. Factors contributing to the dysregulation of age-related retinal para-inflammation include genetic predisposition, environmental risk factors and old age. Dysregulated para-inflammation (chronic inflammation) in AMD damages the blood retina barrier (BRB), resulting in the breach of retinal immune privilege leading to the development of retinal lesions. This review discusses the basic principles of retinal innate immune responses to endogenous chronic insults in normal aging and in AMD, and explores the difference between beneficial para-inflammation and the detrimental chronic inflammation in the context of AMD. PMID:26292978

  18. Targeted Cancer Therapy: Vital Oncogenes and a New Molecular Genetic Paradigm for Cancer Initiation Progression and Treatment

    Science.gov (United States)

    Willis, Rudolph E.

    2016-01-01

    It has been declared repeatedly that cancer is a result of molecular genetic abnormalities. However, there has been no working model describing the specific functional consequences of the deranged genomic processes that result in the initiation and propagation of the cancer process during carcinogenesis. We no longer need to question whether or not cancer arises as a result of a molecular genetic defect within the cancer cell. The legitimate questions are: how and why? This article reviews the preeminent data on cancer molecular genetics and subsequently proposes that the sentinel event in cancer initiation is the aberrant production of fused transcription activators with new molecular properties within normal tissue stem cells. This results in the production of vital oncogenes with dysfunctional gene activation transcription properties, which leads to dysfunctional gene regulation, the aberrant activation of transduction pathways, chromosomal breakage, activation of driver oncogenes, reactivation of stem cell transduction pathways and the activation of genes that result in the hallmarks of cancer. Furthermore, a novel holistic molecular genetic model of cancer initiation and progression is presented along with a new paradigm for the approach to personalized targeted cancer therapy, clinical monitoring and cancer diagnosis. PMID:27649156

  19. Protective role of the apolipoprotein E2 allele in age-related disease traits and survival

    DEFF Research Database (Denmark)

    Kulminski, Alexander M; Raghavachari, Nalini; Arbeev, Konstantin G

    2016-01-01

    , which can link this allele with age-related phenotypes. We focused on age-related macular degeneration, bronchitis, asthma, pneumonia, stroke, creatinine, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol, diseases of heart (HD), cancer, and survival. Our analysis......-related mechanism is also sensitive to gender. The LDL-C-related mechanism appears to be independent of these factors. Insights into mechanisms linking ε2 allele with age-related phenotypes given biodemographic structure of the population studied may benefit translation of genetic discoveries to health care...

  20. [Molecular biology of renal cancer: bases for genetic directed therapy in advanced disease].

    Science.gov (United States)

    Maroto Rey, José Pablo; Cillán Narvaez, Elena

    2013-06-01

    There has been expansion of therapeutic options in the management of metastatic renal cell carcinoma due to a better knowledge of the molecular biology of kidney cancers. There are different tumors grouped under the term renal cell carcinoma, being clear cell cancer the most frequent and accounting for 80% of kidney tumors. Mutations in the Von Hippel-Lindau gene can be identified in up to 80% of sporadic clear cell cancer, linking a genetically inheritable disease where vascular tumors are frequent, with renal cell cancer. Other histologic types present specific alterations in molecular pathways, like c-MET in papillary type I tumors, and Fumarase Hydratase in papillary type II tumors. Identification of the molecular alteration for a specific tumor may offer an opportunity for treatment selection based on biomarkers, and, in the future, for developing an engineering designed genetic treatment.

  1. Molecular marker studies in riverine buffaloes, for characterization and diagnosis of genetic defects

    International Nuclear Information System (INIS)

    Yadav, B.R.

    2005-01-01

    The buffalo is probably the last livestock species to have been domesticated, with many genetic, physiological and behavioural traits not yet well understood. Molecular markers have been used for characterizing animals and breeds, diagnosing diseases and identifying anatomical and physiological anomalies. RFLP studies showed low heterozygosity, but genomic and oligonucleotide probes showed species-specific bands useful for identification of carcass or other unknown samples. Use of RAPD revealed band frequencies, band sharing frequencies, genetic distances, and genetic and identity indexes in different breeds. Bovine microsatellite primers indicate that 70.9% of bovine loci were conserved in buffalo. Allele numbers, sizes, frequencies, heterozygosity and polymorphism information content showed breed-specific patterns. Different marker types - genomic and oligonucleotide probes, RAPD and microsatellites - are useful in parent identification. Individual specific DNA fingerprinting techniques were applied with twin-born animal (XX/XY) chimerism, sex identification, anatomically defective and XO individuals. Molecular markers are a potential tool for geneticists and breeders to evaluate existing germplasm and to manipulate it to develop character-specific strains and to provide the basis for effective genetic conservation. (author)

  2. Exploring the Role of Genetic Variability and Lifestyle in Oxidative Stress Response for Healthy Aging and Longevity

    Directory of Open Access Journals (Sweden)

    Giuseppe Passarino

    2013-08-01

    Full Text Available Oxidative stress is both the cause and consequence of impaired functional homeostasis characterizing human aging. The worsening efficiency of stress response with age represents a health risk and leads to the onset and accrual of major age-related diseases. In contrast, centenarians seem to have evolved conservative stress response mechanisms, probably derived from a combination of a diet rich in natural antioxidants, an active lifestyle and a favorable genetic background, particularly rich in genetic variants able to counteract the stress overload at the level of both nuclear and mitochondrial DNA. The integration of these factors could allow centenarians to maintain moderate levels of free radicals that exert beneficial signaling and modulator effects on cellular metabolism. Considering the hot debate on the efficacy of antioxidant supplementation in promoting healthy aging, in this review we gathered the existing information regarding genetic variability and lifestyle factors which potentially modulate the stress response at old age. Evidence reported here suggests that the integration of lifestyle factors (moderate physical activity and healthy nutrition and genetic background could shift the balance in favor of the antioxidant cellular machinery by activating appropriate defense mechanisms in response to exceeding external and internal stress levels, and thus possibly achieving the prospect of living a longer life.

  3. Permanent Genetic Resources added to Molecular Ecology Resources Database 1 December 2012 - 31 January 2013

    Czech Academy of Sciences Publication Activity Database

    Mendel, Jan; Urbánková, Soňa; Vyskočilová, M.

    2013-01-01

    Roč. 13, č. 3 (2013), s. 546-549 ISSN 1755-098X Institutional support: RVO:68081766 Keywords : genetic database * microsatellite marker loci Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.626, year: 2013

  4. [Clinical genealogical and molecular genetic study of patients with mental retardation].

    Science.gov (United States)

    Hryshchenko, N V; B'ichkova, A M; Lyvshyts, A B; Kravchenko, S A; Pampukha, V N; Solov'ev, A A; Kucherenko, A M; Tatarskiĭ, P F; Afanas'eva, N A; Dubrovskaia, E V; Patskun, Ie Y; Zymak-Zakutnaia, N O; Nykytchina, T V; Lohysh, S Iu; Lyvshyts, L A

    2012-01-01

    The results of clinical, genealogical, cytogenetic and molecular genetic studies of 113 patients from 96 families with different forms of mental retardation from Ukraine are presented. This study was held as part of the CHERISH project of the 7-th Framework Program. The aim of the project is to improve diagnostics of mental retardation in children in Eastern Europe and Central Asia through detailed analysis of known chromosomal and gene's aberrations and to find the new gene-candidates that cause mental retardation. All patients have normal chromosome number (46XY or 46XX). The cases with fragile-X syndrome were eliminated using molecular genetic methods. Genome rearrangements were found among 28 patients using cytogenetic analysis, multiplex ligation-dependent probe amplification (MLPA analysis) ofsubtelomeric regions and array-based comparative genomic hybridisation (array CGH screening). In 10 cases known pathogenic CNV's were identified, 11 cases are unknown aberrations; their pathogenicity is being determined. The rest cases are known nonpathogenic gene rearrangements. Obtained results show the strong genetic heterogeneity of hereditary forms of mental retardation. The further studies will allow to identificate genes candidates and certain mutations in these genes that may be associated with this pathology.

  5. Study designs to enhance identification of genetic factors in healthy aging.

    Science.gov (United States)

    Manolio, Teri A

    2007-12-01

    The sequencing of the human genome and the growing understanding of its function are providing powerful new research tools for identifying genetic variants that are associated with complex diseases and traits. Somewhat less emphasis has been given to genes related to healthy aging, although the approaches for studying health-related traits are analogous to those used for disease-related studies. A critical step prior to the design of such studies is to define a healthy aging phenotype, which should be standardized to permit comparisons across studies and should involve more than simple longevity. Phenotypes of particular value for genetic research are those with high heritability and close relationships to gene products or pathways, preferably with minimal or at least measurable environmental influences. Appropriate study designs to identify genotype-phenotype associations include family-based linkage studies, candidate gene association analyses, and genome-wide association studies. Advances in genotyping and sequencing technologies, and the generation of the human haplotype map database, now permit the cost-effective investigation of the very large sample sizes needed for genome-wide association studies in unrelated individuals. Challenges in interpretation and translation of such studies include assessing the potential for bias and confounding, as well as determining the clinical validity and utility of findings proposed for wider application. Many such studies are currently supported or being planned across the National Institutes of Health (NIH), and lend themselves to the kind of coordinated clinical research envisioned in programs such as the NIH Roadmap.

  6. Age-related variation in genetic control of height growth in Douglas-fir.

    Science.gov (United States)

    Namkoong, G; Usanis, R A; Silen, R R

    1972-01-01

    The development of genetic variances in height growth of Douglas-fir over a 53-year period is analyzed and found to fall into three periods. In the juvenile period, variances in environmental error increase logarithmically, genetic variance within populations exists at moderate levels, and variance among populations is low but increasing. In the early reproductive period, the response to environmental sources of error variance is restricted, genetic variance within populations disappears, and populational differences strongly emerge but do not increase as expected. In the later period, environmental error again increases rapidly, but genetic variance within populations does not reappear and population differences are maintained at about the same level as established in the early reproductive period. The change between the juvenile and early reproductive periods is perhaps associated with the onset of ecological dominance and significant allocations of energy to reproduction.

  7. A novel heat shock protein alpha 8 (Hspa8) molecular network mediating responses to stress- and ethanol-related behaviors.

    Science.gov (United States)

    Urquhart, Kyle R; Zhao, Yinghong; Baker, Jessica A; Lu, Ye; Yan, Lei; Cook, Melloni N; Jones, Byron C; Hamre, Kristin M; Lu, Lu

    2016-04-01

    Genetic differences mediate individual differences in susceptibility and responses to stress and ethanol, although, the specific molecular pathways that control these responses are not fully understood. Heat shock protein alpha 8 (Hspa8) is a molecular chaperone and member of the heat shock protein family that plays an integral role in the stress response and that has been implicated as an ethanol-responsive gene. Therefore, we assessed its role in mediating responses to stress and ethanol across varying genetic backgrounds. The hippocampus is an important mediator of these responses, and thus, was examined in the BXD family of mice in this study. We conducted bioinformatic analyses to dissect genetic factors modulating Hspa8 expression, identify downstream targets of Hspa8, and examined its role. Hspa8 is trans-regulated by a gene or genes on chromosome 14 and is part of a molecular network that regulates stress- and ethanol-related behaviors. To determine additional components of this network, we identified direct or indirect targets of Hspa8 and show that these genes, as predicted, participate in processes such as protein folding and organic substance metabolic processes. Two phenotypes that map to the Hspa8 locus are anxiety-related and numerous other anxiety- and/or ethanol-related behaviors significantly correlate with Hspa8 expression. To more directly assay this relationship, we examined differences in gene expression following exposure to stress or alcohol and showed treatment-related differential expression of Hspa8 and a subset of the members of its network. Our findings suggest that Hspa8 plays a vital role in genetic differences in responses to stress and ethanol and their interactions.

  8. The Aging of Iron Man

    Directory of Open Access Journals (Sweden)

    Azhaar Ashraf

    2018-03-01

    Full Text Available Brain iron is tightly regulated by a multitude of proteins to ensure homeostasis. Iron dyshomeostasis has become a molecular signature associated with aging which is accompanied by progressive decline in cognitive processes. A common theme in neurodegenerative diseases where age is the major risk factor, iron dyshomeostasis coincides with neuroinflammation, abnormal protein aggregation, neurodegeneration, and neurobehavioral deficits. There is a great need to determine the mechanisms governing perturbations in iron metabolism, in particular to distinguish between physiological and pathological aging to generate fruitful therapeutic targets for neurodegenerative diseases. The aim of the present review is to focus on the age-related alterations in brain iron metabolism from a cellular and molecular biology perspective, alongside genetics, and neuroimaging aspects in man and rodent models, with respect to normal aging and neurodegeneration. In particular, the relationship between iron dyshomeostasis and neuroinflammation will be evaluated, as well as the effects of systemic iron overload on the brain. Based on the evidence discussed here, we suggest a synergistic use of iron-chelators and anti-inflammatories as putative anti-brain aging therapies to counteract pathological aging in neurodegenerative diseases.

  9. The Aging of Iron Man.

    Science.gov (United States)

    Ashraf, Azhaar; Clark, Maryam; So, Po-Wah

    2018-01-01

    Brain iron is tightly regulated by a multitude of proteins to ensure homeostasis. Iron dyshomeostasis has become a molecular signature associated with aging which is accompanied by progressive decline in cognitive processes. A common theme in neurodegenerative diseases where age is the major risk factor, iron dyshomeostasis coincides with neuroinflammation, abnormal protein aggregation, neurodegeneration, and neurobehavioral deficits. There is a great need to determine the mechanisms governing perturbations in iron metabolism, in particular to distinguish between physiological and pathological aging to generate fruitful therapeutic targets for neurodegenerative diseases. The aim of the present review is to focus on the age-related alterations in brain iron metabolism from a cellular and molecular biology perspective, alongside genetics, and neuroimaging aspects in man and rodent models, with respect to normal aging and neurodegeneration. In particular, the relationship between iron dyshomeostasis and neuroinflammation will be evaluated, as well as the effects of systemic iron overload on the brain. Based on the evidence discussed here, we suggest a synergistic use of iron-chelators and anti-inflammatories as putative anti-brain aging therapies to counteract pathological aging in neurodegenerative diseases.

  10. Familial Aggregation of Age-Related Hearing Loss in an Epidemiological Study of Older Adults

    Science.gov (United States)

    Raynor, Laura A.; Pankow, James S.; Miller, Michael B.; Huang, Guan-Hua; Dalton, Dayna; Klein, Ronald; Klein, Barbara E. K.; Cruickshanks, Karen J.

    2010-01-01

    Purpose To estimate the genetic contributions to presbycusis Method Presbycusis was assessed by audiometric measurements at three waves of the population-based Epidemiology of Hearing Loss Study (EHLS). Measurements from the most recent hearing examination were used, at which time subjects were between 48 and 100 years of age. Heritability of presbycusis was estimated using maximum likelihood methods in 973 biological relative pairs from 376 families. Familial aggregation was also evaluated by tetrachoric correlations, odds ratios, and lambda statistics in 594 sibling pairs from 373 sibships. Subjects 3,510 participants from the EHLS study Results The prevalence of presbycusis conformed to previous research, increasing with age and male sex. Heritability estimates for presbycusis adjusted for age, sex, education level, and exposure to work noise exceeded 50%, and siblings of an affected relative were at 30% higher risk. When stratified by sex, estimates of familial aggregation were higher in women than men. Conclusions There is evidence that genetic factors contribute to age-related hearing loss in this population-based sample. The familial aggregation is stronger in women than in men. PMID:19474454

  11. Proteomic analysis reveals age-related changes in tendon matrix composition, with age- and injury-specific matrix fragmentation.

    Science.gov (United States)

    Peffers, Mandy J; Thorpe, Chavaunne T; Collins, John A; Eong, Robin; Wei, Timothy K J; Screen, Hazel R C; Clegg, Peter D

    2014-09-12

    Energy storing tendons, such as the human Achilles and equine superficial digital flexor tendon (SDFT), are highly prone to injury, the incidence of which increases with aging. The cellular and molecular mechanisms that result in increased injury in aged tendons are not well established but are thought to result in altered matrix turnover. However, little attempt has been made to fully characterize the tendon proteome nor determine how the abundance of specific tendon proteins changes with aging and/or injury. The aim of this study was, therefore, to assess the protein profile of normal SDFTs from young and old horses using label-free relative quantification to identify differentially abundant proteins and peptide fragments between age groups. The protein profile of injured SDFTs from young and old horses was also assessed. The results demonstrate distinct proteomic profiles in young and old tendon, with alterations in the levels of proteins involved in matrix organization and regulation of cell tension. Furthermore, we identified several new peptide fragments (neopeptides) present in aged tendons, suggesting that there are age-specific cleavage patterns within the SDFT. Proteomic profile also differed between young and old injured tendon, with a greater number of neopeptides identified in young injured tendon. This study has increased the knowledge of molecular events associated with tendon aging and injury, suggesting that maintenance and repair of tendon tissue may be reduced in aged individuals and may help to explain why the risk of injury increases with aging. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Catechol-O-methyltransferase (COMT Genotype Affects Age-Related Changes in Plasticity in Working Memory: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Stephan Heinzel

    2014-01-01

    Full Text Available Objectives. Recent work suggests that a genetic variation associated with increased dopamine metabolism in the prefrontal cortex (catechol-O-methyltransferase Val158Met; COMT amplifies age-related changes in working memory performance. Research on younger adults indicates that the influence of dopamine-related genetic polymorphisms on working memory performance increases when testing the cognitive limits through training. To date, this has not been studied in older adults. Method. Here we investigate the effect of COMT genotype on plasticity in working memory in a sample of 14 younger (aged 24–30 years and 25 older (aged 60–75 years healthy adults. Participants underwent adaptive training in the n-back working memory task over 12 sessions under increasing difficulty conditions. Results. Both younger and older adults exhibited sizeable behavioral plasticity through training (P<.001, which was larger in younger as compared to older adults (P<.001. Age-related differences were qualified by an interaction with COMT genotype (P<.001, and this interaction was due to decreased behavioral plasticity in older adults carrying the Val/Val genotype, while there was no effect of genotype in younger adults. Discussion. Our findings indicate that age-related changes in plasticity in working memory are critically affected by genetic variation in prefrontal dopamine metabolism.

  13. Impact of Professional Learning on Teachers' Representational Strategies and Students' Cognitive Engagement with Molecular Genetics Concepts

    Science.gov (United States)

    Nichols, Kim

    2018-01-01

    A variety of practices and specialised representational systems are required to understand, communicate and construct molecular genetics knowledge. This study describes teachers' use of multimodal representations of molecular genetics concepts and how their strategies and choice of resources were interpreted, understood and used by students to…

  14. Aging, Genetic Variations, and Ethnopharmacology: Building Cultural Competence Through Awareness of Drug Responses in Ethnic Minority Elders.

    Science.gov (United States)

    Woods, Diana Lynn; Mentes, Janet C; Cadogan, Mary; Phillips, Linda R

    2017-01-01

    Unique drug responses that may result in adverse events are among the ethnocultural differences described by the Agency for Healthcare Research and Quality. These differences, often attributed to a lack of adherence on the part of the older adult, may be linked to genetic variations that influence drug responses in different ethnic groups. The paucity of research coupled with a lack of knowledge among health care providers compound the problem, contributing to further disparities, especially in this era of personalized medicine and pharmacogenomics. This article examines how age-related changes and genetic differences influence variations in drug responses among older adults in unique ethnocultural groups. The article starts with an overview of age-related changes and ethnopharmacology, moves to describing genetic differences that affect drug responses, with a focus on medications commonly prescribed for older adults, and ends with application of these issues to culturally congruent health care. © The Author(s) 2015.

  15. Exploring Genetic Factors Involved in Huntington Disease Age of Onset

    DEFF Research Database (Denmark)

    Valcárcel-Ocete, Leire; Alkorta-Aranburu, Gorka; Iriondo, Mikel

    2015-01-01

    age (motor AO or mAO). Multiple linear regression analyses were performed between genetic variation within 20 candidate genes and eAO or mAO, using DNA and clinical information of 253 HD patients from REGISTRY project. Gene expression analyses were carried out by RT-qPCR with an independent sample......Age of onset (AO) of Huntington disease (HD) is mainly determined by the length of the CAG repeat expansion (CAGexp) in exon 1 of the HTT gene. Additional genetic variation has been suggested to contribute to AO, although the mechanism by which it could affect AO is presently unknown. The aim...... of this study is to explore the contribution of candidate genetic factors to HD AO in order to gain insight into the pathogenic mechanisms underlying this disorder. For that purpose, two AO definitions were used: the earliest age with unequivocal signs of HD (earliest AO or eAO), and the first motor symptoms...

  16. Using Genetic Buffering Relationships Identified in Fission Yeast To Elucidate the Molecular Pathology of Tuberous Sclerosis

    Science.gov (United States)

    2016-07-01

    tsc1 and tsc2 loss of function mutations in Schizosaccharomyces pombe. Northeast Regional Yeast Meeting, June 16-17, University at Buffalo, The State...AWARD NUMBER: W81XWH-14-1-0169 TITLE: Using Genetic Buffering Relationships Identified in Fission Yeast To Elucidate the Molecular Pathology of...SUBTITLE Using Genetic Buffering Relationships Identified in Fission 5a. CONTRACT NUMBER W81XWH-14-1-0169 Yeast to Elucidate the Molecular Pathology

  17. Deciphering molecular circuits from genetic variation underlying transcriptional responsiveness to stimuli.

    Science.gov (United States)

    Gat-Viks, Irit; Chevrier, Nicolas; Wilentzik, Roni; Eisenhaure, Thomas; Raychowdhury, Raktima; Steuerman, Yael; Shalek, Alex K; Hacohen, Nir; Amit, Ido; Regev, Aviv

    2013-04-01

    Individual genetic variation affects gene responsiveness to stimuli, often by influencing complex molecular circuits. Here we combine genomic and intermediate-scale transcriptional profiling with computational methods to identify variants that affect the responsiveness of genes to stimuli (responsiveness quantitative trait loci or reQTLs) and to position these variants in molecular circuit diagrams. We apply this approach to study variation in transcriptional responsiveness to pathogen components in dendritic cells from recombinant inbred mouse strains. We identify reQTLs that correlate with particular stimuli and position them in known pathways. For example, in response to a virus-like stimulus, a trans-acting variant responds as an activator of the antiviral response; using RNA interference, we identify Rgs16 as the likely causal gene. Our approach charts an experimental and analytic path to decipher the mechanisms underlying genetic variation in circuits that control responses to stimuli.

  18. Preimplantation genetic diagnosis: does age of onset matter (anymore)?

    Science.gov (United States)

    Krahn, Timothy

    2009-06-01

    The identification and avoidance of disease susceptibility in embryos is the most common goal of preimplantation genetic diagnosis (PGD). Most jurisdictions that accept but regulate the availability of PGD restrict it to what are characterized as 'serious' conditions. Line-drawing around seriousness is not determined solely by the identification of a genetic mutation. Other factors seen to be relevant include: impact on health or severity of symptoms; degree of penetrance (probability of genotype being expressed as a genetic disorder); potential for therapy; rate of progression; heritability; and age of onset. In the original applications of PGD, most, if not all of these factors were seen as necessary but none was seen as sufficient for determining whether a genetic condition was labelled 'serious'. This, however, is changing as impact on health or severity of symptoms is coming to eclipse the other considerations. This paper investigates how age of onset (primarily in the context of the United Kingdom (UK)) has become considerably less significant as a criterion for determining ethically acceptable applications of PGD. Having moved off the threshold of permitting PGD testing for only fatal (or seriously debilitating), early-onset diseases, I will investigate reasons for why age of onset will not do any work to discriminate between which adult-onset diseases should be considered serious or not. First I will explain the rationale underpinning age of onset as a factor to be weighed in making determinations of seriousness. Next I will challenge the view that later-onset conditions are less serious for being later than earlier-onset conditions. The final section of the paper will discuss some of the broader disability concerns at stake in limiting access to PGD based upon determinations of the 'seriousness' of genetic conditions. Instead of advocating a return to limiting PGD to only early-onset conditions, I conclude that the whole enterprise of trying to draw lines

  19. A novel multiplex PCR discriminates Bacillus anthracis and its genetically related strains from other Bacillus cereus group species.

    Directory of Open Access Journals (Sweden)

    Hirohito Ogawa

    Full Text Available Anthrax is an important zoonotic disease worldwide that is caused by Bacillus anthracis, a spore-forming pathogenic bacterium. A rapid and sensitive method to detect B. anthracis is important for anthrax risk management and control in animal cases to address public health issues. However, it has recently become difficult to identify B. anthracis by using previously reported molecular-based methods because of the emergence of B. cereus, which causes severe extra-intestinal infection, as well as the human pathogenic B. thuringiensis, both of which are genetically related to B. anthracis. The close genetic relation of chromosomal backgrounds has led to complexity of molecular-based diagnosis. In this study, we established a B. anthracis multiplex PCR that can screen for the presence of B. anthracis virulent plasmids and differentiate B. anthracis and its genetically related strains from other B. cereus group species. Six sets of primers targeting a chromosome of B. anthracis and B. anthracis-like strains, two virulent plasmids, pXO1 and pXO2, a bacterial gene, 16S rRNA gene, and a mammalian gene, actin-beta gene, were designed. The multiplex PCR detected approximately 3.0 CFU of B. anthracis DNA per PCR reaction and was sensitive to B. anthracis. The internal control primers also detected all bacterial and mammalian DNAs examined, indicating the practical applicability of this assay as it enables monitoring of appropriate amplification. The assay was also applied for detection of clinical strains genetically related to B. anthracis, which were B. cereus strains isolated from outbreaks of hospital infections in Japan, and field strains isolated in Zambia, and the assay differentiated B. anthracis and its genetically related strains from other B. cereus group strains. Taken together, the results indicate that the newly developed multiplex PCR is a sensitive and practical method for detecting B. anthracis.

  20. The genetic basis for cognitive ability, memory, and depression symptomatology in middle-aged and elderly chinese twins.

    Science.gov (United States)

    Xu, Chunsheng; Sun, Jianping; Ji, Fuling; Tian, Xiaocao; Duan, Haiping; Zhai, Yaoming; Wang, Shaojie; Pang, Zengchang; Zhang, Dongfeng; Zhao, Zhongtang; Li, Shuxia; Hjelmborg, Jacob V B; Christensen, Kaare; Tan, Qihua

    2015-02-01

    The genetic influences on aging-related phenotypes, including cognition and depression, have been well confirmed in the Western populations. We performed the first twin-based analysis on cognitive performance, memory and depression status in middle-aged and elderly Chinese twins, representing the world's largest and most rapidly aging population. The sample consisted of 384 twin pairs with a median age of 50 years. Cognitive function was measured using the Montreal Cognitive Assessment (MoCA) scale; memory was assessed using the revised Wechsler Adult Intelligence scale; depression symptomatology was evaluated by the self-reported 30-item Geriatric Depression (GDS-30)scale. Both univariate and multivariate twin models were fitted to the three phenotypes with full and nested models and compared to select the best fitting models. Univariate analysis showed moderate-to-high genetic influences with heritability 0.44 for cognition and 0.56 for memory. Multivariate analysis by the reduced Cholesky model estimated significant genetic (rG = 0.69) and unique environmental (rE = 0.25) correlation between cognitive ability and memory. The model also estimated weak but significant inverse genetic correlation for depression with cognition (-0.31) and memory (-0.28). No significant unique environmental correlation was found for depression with other two phenotypes. In conclusion, there can be a common genetic architecture for cognitive ability and memory that weakly correlates with depression symptomatology, but in the opposite direction.

  1. Klotho, stem cells, and aging.

    Science.gov (United States)

    Bian, Ao; Neyra, Javier A; Zhan, Ming; Hu, Ming Chang

    2015-01-01

    Aging is an inevitable and progressive biological process involving dysfunction and eventually destruction of every tissue and organ. This process is driven by a tightly regulated and complex interplay between genetic and acquired factors. Klotho is an antiaging gene encoding a single-pass transmembrane protein, klotho, which serves as an aging suppressor through a wide variety of mechanisms, such as antioxidation, antisenescence, antiautophagy, and modulation of many signaling pathways, including insulin-like growth factor and Wnt. Klotho deficiency activates Wnt expression and activity contributing to senescence and depletion of stem cells, which consequently triggers tissue atrophy and fibrosis. In contrast, the klotho protein was shown to suppress Wnt-signaling transduction, and inhibit cell senescence and preserve stem cells. A better understanding of the potential effects of klotho on stem cells could offer novel insights into the cellular and molecular mechanisms of klotho deficiency-related aging and disease. The klotho protein may be a promising therapeutic agent for aging and aging-related disorders.

  2. Molecular profiling techniques as tools to detect potential unintended effects in genetically engineered maize

    CSIR Research Space (South Africa)

    Barros, E

    2010-05-01

    Full Text Available Molecular Profiling Techniques as Tools to Detect Potential Unintended Effects in Genetically Engineered Maize Eugenia Barros Introduction In the early stages of production and commercialization of foods derived from genetically engineered (GE) plants... systems. In a recent paper published in Plant Biotechnology Journal,4 we compared two transgenic white maize lines with the non-transgenic counterpart to investigate two possible sources of variation: genetic engineering and environmental variation...

  3. Molecular Relationship Between BALADI And Crossbred Bovine Female Calves Using AP-PCR And Its Relation To Body Weight

    International Nuclear Information System (INIS)

    EL-FOOLY, H.A.; EL-MASRY, K.A.; TEAMA, F.E.

    2009-01-01

    This experiment was conducted in the bovine farm of Experimental Farms Project of Nuclear Research Centre, Atomic Energy Authority of Egypt, which is located in the desert area of Inshas. DNA fingerprinting analysis using arbitrarily primed-polymerase chain reaction (AP-PCR) is a powerful technique for detecting markers that can be used for establishment of genetic variations, molecular relationships and taxonomy identifications between different animal breeds. In the present study, for detecting the genetic relationship between Egyptian bovine Baladi female and crossbred calves (Brown Swiss Baladi) previously imported, blood samples were collected from 10 animals (5 for each breed), DNA was isolated and AP-PCR technique was applied using four random primers to establish fingerprinting and molecular relationship between the two breeds using radioactive 32 P-dCTP for labelling the fragments amplified in PCR.. The band sharing coefficient between the two groups was calculated, and the quantity of DNA was correlated with average daily gain (ADG). The data showed non- significant correlation between the quantity of DNA and average daily gain. Also, data showed the powerful of the technique for detecting the molecular variations and there is a specific pattern for certain breeds especially when using the Knp-X primer. The present study also revealed that there was a close genetic relationship between the Egyptian Baladi breed and the crossbred calves (Brown Swiss Baladi) in about seventy percent of the genetic materials as represented by band-sharing (BS) = 0.7. In conclusion, the AP-PCR technique is effective in detecting the molecular variations between different breeds and provides a potential tool for studying the molecular relationships. The native Egyptian calves are genetically closely related to crossbred (Brown Swiss Baladi) by about 70%. Further studies on the large scale are needed using different primers for detecting patterns specific for each breed and

  4. Molecular genetic insights on cheetah (Acinonyx jubatus) ecology and conservation in Namibia.

    Science.gov (United States)

    Marker, Laurie L; Pearks Wilkerson, Alison J; Sarno, Ronald J; Martenson, Janice; Breitenmoser-Würsten, Christian; O'Brien, Stephen J; Johnson, Warren E

    2008-01-01

    The extent and geographic patterns of molecular genetic diversity of the largest remaining free-ranging cheetah population were described in a survey of 313 individuals from throughout Namibia. Levels of relatedness, including paternity/maternity (parentage), were assessed across all individuals using 19 polymorphic microsatellite loci, and unrelated cheetahs (n = 89) from 7 regions were genotyped at 38 loci to document broad geographical patterns. There was limited differentiation among regions, evidence that this is a generally panmictic population. Measures of genetic variation were similar among all regions and were comparable with Eastern African cheetah populations. Parentage analyses confirmed several observations based on field studies, including 21 of 23 previously hypothesized family groups, 40 probable parent/offspring pairs, and 8 sibling groups. These results also verified the successful integration and reproduction of several cheetahs following natural dispersal or translocation. Animals within social groups (family groups, male coalitions, or sibling groups) were generally related. Within the main study area, radio-collared female cheetahs were more closely interrelated than similarly compared males, a pattern consistent with greater male dispersal. The long-term maintenance of current patterns of genetic variation in Namibia depends on retaining habitat characteristics that promote natural dispersal and gene flow of cheetahs.

  5. Molecular genetics made simple

    Directory of Open Access Journals (Sweden)

    Heba Sh. Kassem

    2012-07-01

    Full Text Available Genetics have undoubtedly become an integral part of biomedical science and clinical practice, with important implications in deciphering disease pathogenesis and progression, identifying diagnostic and prognostic markers, as well as designing better targeted treatments. The exponential growth of our understanding of different genetic concepts is paralleled by a growing list of genetic terminology that can easily intimidate the unfamiliar reader. Rendering genetics incomprehensible to the clinician however, defeats the very essence of genetic research: its utilization for combating disease and improving quality of life. Herein we attempt to correct this notion by presenting the basic genetic concepts along with their usefulness in the cardiology clinic. Bringing genetics closer to the clinician will enable its harmonious incorporation into clinical care, thus not only restoring our perception of its simple and elegant nature, but importantly ensuring the maximal benefit for our patients.

  6. Molecular genetics made simple

    Science.gov (United States)

    Kassem, Heba Sh.; Girolami, Francesca; Sanoudou, Despina

    2012-01-01

    Abstract Genetics have undoubtedly become an integral part of biomedical science and clinical practice, with important implications in deciphering disease pathogenesis and progression, identifying diagnostic and prognostic markers, as well as designing better targeted treatments. The exponential growth of our understanding of different genetic concepts is paralleled by a growing list of genetic terminology that can easily intimidate the unfamiliar reader. Rendering genetics incomprehensible to the clinician however, defeats the very essence of genetic research: its utilization for combating disease and improving quality of life. Herein we attempt to correct this notion by presenting the basic genetic concepts along with their usefulness in the cardiology clinic. Bringing genetics closer to the clinician will enable its harmonious incorporation into clinical care, thus not only restoring our perception of its simple and elegant nature, but importantly ensuring the maximal benefit for our patients. PMID:25610837

  7. Telomere in Aging and Age-Related Diseases

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2017-12-01

    Full Text Available BACKGROUND: The number of elderly population in the world keep increasing. In their advanced ages, many elderly face years of disability because of multiple chronic diseases, frailty, making them lost their independence. Consequently, this could have impacts on social and economic stability. A huge challenge has been sent for biomedical researchers to compress or at least eliminate this period of disability and increase the health span. CONTENT: Over the past decades, many studies of telomere biology have demonstrated that telomeres and telomere-associated proteins are implicated in human diseases. Accelerated telomere erosion was clearly correlated with a pack of metabolic and inflammatory diseases. Critically short telomeres or the unprotected end, are likely to form telomeric fusion, generating genomic instability, the cornerstone for carcinogenesis. Enlightening how telomeres involved in the mechanisms underlying the diseases’ pathogenesis was expected to uncover new molecular targets for any important diagnosis or therapeutic implications. SUMMARY: Telomere shortening was foreseen as an imporant mechanism to supress tumor by limiting cellular proliferative capacity by regulating senescence check point activation. Many human diseases and carcinogenesis are causally related to defective telomeres, asserting the importance of telomeres sustainment. Thus, telomere length assessment might serve as an important tool for clinical prognostic, diagnostic, monitoring and management. KEYWORDS: telomerase, cellular senescence, aging, cancer

  8. Association of age-related macular degeneration and reticular macular disease with cardiovascular disease.

    Science.gov (United States)

    Rastogi, Neelesh; Smith, R Theodore

    2016-01-01

    Age-related macular degeneration is the leading cause of adult blindness in the developed world. Thus, major endeavors to understand the risk factors and pathogenesis of this disease have been undertaken. Reticular macular disease is a proposed subtype of age-related macular degeneration correlating histologically with subretinal drusenoid deposits located between the retinal pigment epithelium and the inner segment ellipsoid zone. Reticular lesions are more prevalent in females and in older age groups and are associated with a higher mortality rate. Risk factors for developing age-related macular degeneration include hypertension, smoking, and angina. Several genes related to increased risk for age-related macular degeneration and reticular macular disease are also associated with cardiovascular disease. Better understanding of the clinical and genetic risk factors for age-related macular degeneration and reticular macular disease has led to the hypothesis that these eye diseases are systemic. A systemic origin may help to explain why reticular disease is diagnosed more frequently in females as males suffer cardiovascular mortality at an earlier age, before the age of diagnosis of reticular macular disease and age-related macular degeneration. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. [Use of archival formalin-fixed, paraffin-embedded (FFPE) tissue samples for molecular genetic analysis in diffuse large B-cell lymphoma (DLBCL)].

    Science.gov (United States)

    Jarošová, Marie; Kučerová, Jana; Flodr, Patrik; Mikešová, Michaela; Procházka, Vít; Papajík, Tomáš

    2014-04-01

    The currently valid molecular genetic subclassification of patients with diffuse large B-cell lymphoma (DLBCL) into three prognostic subgroups based on expression profiling has been the objective of numerous genetic studies. In routine clinical practice, however, expression profiling technology remains unavailable for the most of centers. Apart from the technology, in some cases molecular genetic laboratories have problems obtaining high-quality material, i.e. fresh tissues, for RNA isolation to determine gene expression. One possibility is to determine the gene expression from RNA obtained by isolation from formalin-fixed, paraffin-embedded (FFPE) tissue. This pilot study aimed at isolating RNA from FFPE in patients diagnosed with DLBCL and verifying the potential use of such RNA for the expression analysis of 7 selected genes. Although the study showed that it is possible to isolate RNA and determine the expression of the selected genes from archival material, the values of relative expression of some genes in the set were too variable to be used for unambiguous prognostic classification. It was confirmed that retrospective analyses of selected genes may be performed with sufficient material obtained, and that properly archived blocks may be used for molecular biology analyses even after 8 years.

  10. Genetic diversity and molecular characterization of Saccharomyces cerevisiae strains from winemaking environments

    OpenAIRE

    Schuller, Dorit Elisabeth

    2004-01-01

    Tese de doutoramento em Ciências The principal aim of the present work is to assess the genetic diversity of fermenting Saccharomyces cerevisiae strains found in vineyards belonging to the Vinho Verde Region in order to create a strain collection representing the region’s biodiversity wealth as a basis for future strain selection and improvement programs. Validation of molecular techniques for accurate genotyping is an indispensable prerequisite for biogeographical surveys. Molecular ty...

  11. Molecular and cellular mechanisms of the age-dependency of opioid analgesia and tolerance

    Directory of Open Access Journals (Sweden)

    Zhao Jing

    2012-05-01

    Full Text Available Abstract The age-dependency of opioid analgesia and tolerance has been noticed in both clinical observation and laboratory studies. Evidence shows that many molecular and cellular events that play essential roles in opioid analgesia and tolerance are actually age-dependent. For example, the expression and functions of endogenous opioid peptides, multiple types of opioid receptors, G protein subunits that couple to opioid receptors, and regulators of G protein signaling (RGS proteins change with development and age. Other signaling systems that are critical to opioid tolerance development, such as N-methyl-D-aspartic acid (NMDA receptors, also undergo age-related changes. It is plausible that the age-dependent expression and functions of molecules within and related to the opioid signaling pathways, as well as age-dependent cellular activity such as agonist-induced opioid receptor internalization and desensitization, eventually lead to significant age-dependent changes in opioid analgesia and tolerance development.

  12. Recent advances in the study of age-related hearing loss - A Mini-Review

    Science.gov (United States)

    Kidd, Ambrose R; Bao, Jianxin

    2013-01-01

    Hearing loss is a common age-associated affliction that can result from the loss of hair cells and spiral ganglion neurons (SGNs) in the cochlea. Although hair cells and SGNs are typically lost in the same cochlea, recent analysis suggests that they can occur independently, via unique mechanisms. Research has identified both environmental and genetic factors that contribute to degeneration of cochlear cells. Additionally, molecular analysis has identified multiple cell signaling mechanisms that likely contribute to pathological changes that result in hearing deficiencies. These analyses should serve as useful primers for future work, including genomic and proteomic analysis, to elucidate the mechanisms driving cell loss in the aging cochlea. Significant progress in this field has occurred in the past decade. As our understanding of aging-induced cochlear changes continues to improve, our ability to offer medical intervention will surely benefit the growing elderly population. PMID:22710288

  13. Genetic and clinical characteristics of primary and secondary glioblastoma is associated with differential molecular subtype distribution

    OpenAIRE

    Li, Rui; Li, Hailin; Yan, Wei; Yang, Pei; Bao, Zhaoshi; Zhang, Chuanbao; Jiang, Tao; You, Yongping

    2015-01-01

    Glioblastoma multiforme (GBM) is classified into primary (pGBM) or secondary (sGBM) based on clinical progression. However, there are some limits to this classification for insight into genetically and clinically distinction between pGBM and sGBM. The aim of this study is to characterize pGBM and sGBM associating with differential molecular subtype distribution. Whole transcriptome sequencing data was used to assess the distribution of molecular subtypes and genetic alterations in 88 pGBM and...

  14. A Report on Molecular Diagnostic Testing for Inherited Retinal Dystrophies by Targeted Genetic Analyses.

    Science.gov (United States)

    Ramkumar, Hema L; Gudiseva, Harini V; Kishaba, Kameron T; Suk, John J; Verma, Rohan; Tadimeti, Keerti; Thorson, John A; Ayyagari, Radha

    2017-02-01

    To test the utility of targeted sequencing as a method of clinical molecular testing in patients diagnosed with inherited retinal degeneration (IRD). After genetic counseling, peripheral blood was drawn from 188 probands and 36 carriers of IRD. Single gene testing was performed on each patient in a Clinical Laboratory Improvement Amendment (CLIA) certified laboratory. DNA was isolated, and all exons in the gene of interest were analyzed along with 20 base pairs of flanking intronic sequence. Genetic testing was most often performed on ABCA4, CTRP5, ELOV4, BEST1, CRB1, and PRPH2. Pathogenicity of novel sequence changes was predicted by PolyPhen2 and sorting intolerant from tolerant (SIFT). Of the 225 genetic tests performed, 150 were for recessive IRD, and 75 were for dominant IRD. A positive molecular diagnosis was made in 70 (59%) of probands with recessive IRD and 19 (26%) probands with dominant IRD. Analysis confirmed 12 (34%) of individuals as carriers of familial mutations associated with IRD. Thirty-two novel variants were identified; among these, 17 sequence changes in four genes were predicted to be possibly or probably damaging including: ABCA4 (14), BEST1 (2), PRPH2 (1), and TIMP3 (1). Targeted analysis of clinically suspected genes in 225 subjects resulted in a positive molecular diagnosis in 26% of patients with dominant IRD and 59% of patients with recessive IRD. Novel damaging mutations were identified in four genes. Single gene screening is not an ideal method for diagnostic testing given the phenotypic and genetic heterogeneity among IRD cases. High-throughput sequencing of all genes associated with retinal degeneration may be more efficient for molecular diagnosis.

  15. the genetic and molecular basis of bacterial invasion of epithelial cells

    African Journals Online (AJOL)

    DR. AMINU

    The pathogenic species of bacteria are of great medical importance as causative agents of infectious diseases. Moreover, as the condition of human existence have changed, so have the bacterial species that produce diseases. It is against this background that molecular genetics have now entered the field of microbial ...

  16. Can innate and autoimmune reactivity forecast early and advance stages of age-related macular degeneration?

    Science.gov (United States)

    Adamus, Grazyna

    2017-03-01

    Age-related macular degeneration (AMD) is a major cause of central vision loss in persons over 55years of age in developed countries. AMD is a complex disease in which genetic, environmental and inflammatory factors influence its onset and progression. Elevation in serum anti-retinal autoantibodies, plasma and local activation of complement proteins of the alternative pathway, and increase in secretion of proinflammatory cytokines have been seen over the course of disease. Genetic studies of AMD patients confirmed that genetic variants affecting the alternative complement pathway have a major influence on AMD risk. Because the heterogeneity of this disease, there is no sufficient strategy to identify the disease onset and progression sole based eye examination, thus identification of reliable serological biomarkers for diagnosis, prognosis and response to treatment by sampling patient's blood is necessary. This review provides an outline of the current knowledge on possible serological (autoantibodies, complement factors, cytokines, chemokines) and related genetic biomarkers relevant to the pathology of AMD, and discusses their application for prediction of disease activity and prognosis in AMD. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Permanent genetic resources added to molecular ecology resources database 1 February 2013-31 March 2013

    Czech Academy of Sciences Publication Activity Database

    Arias, M. C.; Atteke, C.; Augusto, S. C.; Bailey, J.; Bazaga, P.; Beheregaray, L. B.; Benoit, L.; Blatrix, R.; Born, C.; Brito, R. M.; Chen, H.-K.; Covarrubias, S.; de Vega, C.; Djiéto-Lordon, C.; Dubois, M.-P.; Francisco, F. O.; García, C.; Concalves, P. H. P.; González, C.; Gutiérrez-Rodríguez, C.; Hammer, M. P.; Herrera, C. M.; Itoh, H.; Kamimura, S.; Karaoglu, H.; Kojima, S.; Li, S.-L.; Ling, H. J.; Matos Maravi, Pavel F.; McKey, D.; Mezui-M’Eko, J.; Ornelas, J. F.; Park, R. F.; Pozo, M. I.; Ramula, S.; Rigueiro, C.; Sandoval-Castillo, J.; Santiago, L. R.; Seino, M. M.; Song, C.-B.; Takeshima, H.; Vasemägi, A.; Wellings, C. R.; Yan, J.; Du, Y.-Z.; Zhang, C.-R.; Zhang, T.-Y.

    2013-01-01

    Roč. 13, č. 4 (2013), s. 760-762 ISSN 1755-098X Institutional support: RVO:60077344 Keywords : molecular ecology Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.626, year: 2013 http://onlinelibrary.wiley.com/doi/10.1111/1755-0998.12121/pdf

  18. Molecular evaluation of genetic variability of wheat elite breeding material

    Directory of Open Access Journals (Sweden)

    Brbaklić Ljiljana

    2009-01-01

    Full Text Available Estimation of genetic variability of breeding material is essential for yield improvement in wheat cultivars. Modern techniques based on molecular markers application are more efficient and precise in genetic variability evaluation then conventional methods. Variability of 96 wheat cultivars and lines was analyzed using four microsatellite markers (Gwm11, Gwm428, Psp3200, Psp3071. The markers were chosen according to their potential association with important agronomical traits indicated in the literature. Total of 31 alleles were detected with maximum number of alleles (11 in Xgwm11 locus. The highest polymorphism information content (PIC value (0,831 was found in the locus Xpsp3071. The genotypes were grouped into three subpopulations based on their similarity in the analyzed loci. The results have indicated wide genetic variability of the studied material and possibility of its application in further breeding process after validation of marker-trait association. .

  19. Age differences in genetic effect of radiation

    International Nuclear Information System (INIS)

    Ohanjanian, E.E.; Sahakian, D.G.; Khachatrian, G.A.; Mkrtichian, S.A.

    1975-01-01

    The age differences in the radiosensitivity of the genetic apparatus of spleen cells, lymphatic ganglion and the epithelium of the mucous uterus have been revealed. In mice not having reached puberty the chromosomes of the cells of the above-mentioned organs are more sensitive to a single radiation dose of 100 R than in mice having reached puberty. (author)

  20. Epigenetic drift in the aging genome

    DEFF Research Database (Denmark)

    Tan, Qihua; Heijmans, Bastiaan T; Hjelmborg, Jacob V B

    2016-01-01

    for 10 years (age at intake 73-82 years). Biological pathway analysis and survival analysis were also conducted on CpGs showing longitudinal change in their DNA-methylation levels. Classical twin models were fitted to each CpG site to estimate the genetic and environmental effects on DNA...... × 10-07. Pathway analysis of genes linked to these CpGs identified biologically meaningful gene-sets involved in cellular-signalling events and in transmission across chemical synapses, which are important molecular underpinnings of aging-related degenerative disorders. CONCLUSION: Our epigenome......BACKGROUND: Current epigenetic studies on aging are dominated by the cross-sectional design that correlates subjects' ages or age groups with their measured epigenetic profiles. Such studies have been more aimed at age prediction or building up the epigenetic clock of age rather than focusing...

  1. Assessing Age-Related Etiologic Heterogeneity in the Onset of Islet Autoimmunity

    Directory of Open Access Journals (Sweden)

    Brittni N. Frederiksen

    2015-01-01

    Full Text Available Type 1 diabetes (T1D, a chronic autoimmune disease, is often preceded by a preclinical phase of islet autoimmunity (IA where the insulin-producing beta cells of the pancreas are destroyed and circulating autoantibodies can be detected. The goal of this study was to demonstrate methods for identifying exposures that differentially influence the disease process at certain ages by assessing age-related heterogeneity. The Diabetes Autoimmunity Study in the Young (DAISY has followed 2,547 children at increased genetic risk for T1D from birth since 1993 in Denver, Colorado, 188 of whom developed IA. Using the DAISY population, we evaluated putative determinants of IA, including non-Hispanic white (NHW ethnicity, maternal age at birth, and erythrocyte membrane n-3 fatty acid (FA levels, for age-related heterogeneity. A supremum test, weighted Schoenfeld residuals, and restricted cubic splines were used to assess nonproportional hazards, that is, an age-related association of the exposure with IA risk. NHW ethnicity, maternal age, and erythrocyte membrane n-3 FA levels demonstrated a significant age-related association with IA risk. Assessing heterogeneity in disease etiology enables researchers to identify associations that may lead to better understanding of complex chronic diseases.

  2. Molecular genetics of early-onset Alzheimer's disease revisited.

    Science.gov (United States)

    Cacace, Rita; Sleegers, Kristel; Van Broeckhoven, Christine

    2016-06-01

    As the discovery of the Alzheimer's disease (AD) genes, APP, PSEN1, and PSEN2, in families with autosomal dominant early-onset AD (EOAD), gene discovery in familial EOAD came more or less to a standstill. Only 5% of EOAD patients are carrying a pathogenic mutation in one of the AD genes or a apolipoprotein E (APOE) risk allele ε4, most of EOAD patients remain unexplained. Here, we aimed at summarizing the current knowledge of EOAD genetics and its role in ongoing approaches to understand the biology of AD and disease symptomatology as well as developing new therapeutics. Next, we explored the possible molecular mechanisms that might underlie the missing genetic etiology of EOAD and discussed how the use of massive parallel sequencing technologies triggered novel gene discoveries. To conclude, we commented on the relevance of reinvestigating EOAD patients as a means to explore potential new avenues for translational research and therapeutic discoveries. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. The genetics of aging in optimal and stressful environments

    International Nuclear Information System (INIS)

    Parsons, P.A.

    1978-01-01

    The genetic basis of aging in Drosophila varies according to environment, as shown by variations in temperatures and levels of 60 Co-γ irradiation. Under conditions of extreme stress large additive differences occur not found under less acute stresses. In addition, longevities of strains are not necessarily correlated across levels of 60 C0-γ irradiation or temperatures, so that studies of the genetics of aging are not only relevant to the environment selected. Given these results on experimental animals, it appears impossible to separate clearly genetic and environmental factors determining longevity in man - a conclusion that in any case appears likely from human studies. In experimental organisms such as Drosophila, differences between genotypes for longevity are magnified under stress compared with optimal environments. Hybrid and heterozygote superiority frequently occur for density-independent physical stresses of the environment as well as density-dependent behavioral stresses due to crowding levels. It is argued that these conclusions apply to man, so that for maximum longevity genotypes are likely to be highly heterozygous. (author)

  4. Mechanism of Inflammation in Age-Related Macular Degeneration

    Directory of Open Access Journals (Sweden)

    Francesco Parmeggiani

    2012-01-01

    Full Text Available Age-related macular degeneration (AMD is a multifactorial disease that represents the most common cause of irreversible visual impairment among people over the age of 50 in Europe, the United States, and Australia, accounting for up to 50% of all cases of central blindness. Risk factors of AMD are heterogeneous, mainly including increasing age and different genetic predispositions, together with several environmental/epigenetic factors, that is, cigarette smoking, dietary habits, and phototoxic exposure. In the aging retina, free radicals and oxidized lipoproteins are considered to be major causes of tissue stress resulting in local triggers for parainflammation, a chronic status which contributes to initiation and/or progression of many human neurodegenerative diseases such as AMD. Experimental and clinical evidences strongly indicate the pathogenetic role of immunologic processes in AMD occurrence, consisting of production of inflammatory related molecules, recruitment of macrophages, complement activation, microglial activation and accumulation within those structures that compose an essential area of the retina known as macula lutea. This paper reviews some attractive aspects of the literature about the mechanisms of inflammation in AMD, especially focusing on those findings or arguments more directly translatable to improve the clinical management of patients with AMD and to prevent the severe vision loss caused by this disease.

  5. Mechanism of Inflammation in Age-Related Macular Degeneration

    Science.gov (United States)

    Parmeggiani, Francesco; Romano, Mario R.; Costagliola, Ciro; Semeraro, Francesco; Incorvaia, Carlo; D'Angelo, Sergio; Perri, Paolo; De Palma, Paolo; De Nadai, Katia; Sebastiani, Adolfo

    2012-01-01

    Age-related macular degeneration (AMD) is a multifactorial disease that represents the most common cause of irreversible visual impairment among people over the age of 50 in Europe, the United States, and Australia, accounting for up to 50% of all cases of central blindness. Risk factors of AMD are heterogeneous, mainly including increasing age and different genetic predispositions, together with several environmental/epigenetic factors, that is, cigarette smoking, dietary habits, and phototoxic exposure. In the aging retina, free radicals and oxidized lipoproteins are considered to be major causes of tissue stress resulting in local triggers for parainflammation, a chronic status which contributes to initiation and/or progression of many human neurodegenerative diseases such as AMD. Experimental and clinical evidences strongly indicate the pathogenetic role of immunologic processes in AMD occurrence, consisting of production of inflammatory related molecules, recruitment of macrophages, complement activation, microglial activation and accumulation within those structures that compose an essential area of the retina known as macula lutea. This paper reviews some attractive aspects of the literature about the mechanisms of inflammation in AMD, especially focusing on those findings or arguments more directly translatable to improve the clinical management of patients with AMD and to prevent the severe vision loss caused by this disease. PMID:23209345

  6. Review of Mechanisms and Theories of Aging

    Directory of Open Access Journals (Sweden)

    Gholam Reza Azari

    2006-10-01

    Full Text Available Several factors have incentive role for study of aging which includes increasing of the average and maximum of human life span, the increase in percentage of elderly in the societies and proportion of the national expenditure utilized by them. The Recent views of aging indicating that aging is extremely a complex multifactorial process despite of earlier views about definite cause aging like gene or decline of a key factor(1. This brief review tries to inspect aging at the molecular, cellular, and systemic levels; and consider interaction between genetic and environmental factors. Evolutionary theories argue that aging results from a decline in the force of natural selection. On the other hand, molecular theories emphasis on the genetically regulation of aging and argue that aging results from changing in genes. There are cellular theories that telomere theory is most famous. Stress induced aging is in this group too. free radical theory is next known way for cellular damages. Finally, we see systemic theories that contain two main groups, neuroendocrine and immunologic theories.

  7. Redox proteomics and the dynamic molecular landscape of the aging brain.

    Science.gov (United States)

    Perluigi, Marzia; Swomley, Aaron M; Butterfield, D Allan

    2014-01-01

    It is well established that the risk to develop neurodegenerative disorders increases with chronological aging. Accumulating studies contributed to characterize the age-dependent changes either at gene and protein expression level which, taken together, show that aging of the human brain results from the combination of the normal decline of multiple biological functions with environmental factors that contribute to defining disease risk of late-life brain disorders. Finding the "way out" of the labyrinth of such complex molecular interactions may help to fill the gap between "normal" brain aging and development of age-dependent diseases. To this purpose, proteomics studies are a powerful tool to better understand where to set the boundary line of healthy aging and age-related disease by analyzing the variation of protein expression levels and the major post translational modifications that determine "protein" physio/pathological fate. Increasing attention has been focused on oxidative modifications due to the crucial role of oxidative stress in aging, in addition to the fact that this type of modification is irreversible and may alter protein function. Redox proteomics studies contributed to decipher the complexity of brain aging by identifying the proteins that were increasingly oxidized and eventually dysfunctional as a function of age. The purpose of this review is to summarize the most important findings obtained by applying proteomics approaches to murine models of aging with also a brief overview of some human studies, in particular those related to dementia. Copyright © 2014. Published by Elsevier B.V.

  8. Hot Topics in Pharmacogenetics of Age-Related Macular Degeneration.

    Science.gov (United States)

    Schwartz, Stephen G; Brantley, Milam A; Kovach, Jaclyn L; Grzybowski, Andrzej

    2017-01-01

    Age-related macular degeneration (AMD) is a leading cause of irreversible visual loss and is primarily treated with nutritional supplementation as well as with anti-vascular endothelial growth factor (VEGF) agents for certain patients with neovascular disease. AMD is a complex disease with both genetic and environmental risk factors. In addition, treatment outcomes from nutritional supplementation and anti-VEGF agents vary considerably. Therefore, it is reasonable to suspect that there may be pharmacogenetic influences on these treatments. Many series have reported individual associations with variants in complement factor H (CFH), age-related maculopathy susceptibility 2 (ARMS2), and other loci. However, at this time there are no validated associations. With respect to AMD, pharmacogenetics remains an intriguing area of research but is not helpful for routine clinical management. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Molecular characterization and genetic diversity of different genotypes of Oryza sativa and Oryza glaberrima

    Directory of Open Access Journals (Sweden)

    Caijin Chen

    2017-11-01

    Conclusions: Genetic diversity studies revealed that 50 rice types were clustered into different subpopulations whereas three genotypes were admixtures. Molecular fingerprinting and 10 specific markers were obtained to identify the 53 rice genotypes. These results can facilitate the potential utilization of sibling species in rice breeding and molecular classification of O. sativa and O. glaberrima germplasms.

  10. Ageing in relation to skeletal muscle dysfunction: redox homoeostasis to regulation of gene expression.

    Science.gov (United States)

    Goljanek-Whysall, Katarzyna; Iwanejko, Lesley A; Vasilaki, Aphrodite; Pekovic-Vaughan, Vanja; McDonagh, Brian

    2016-08-01

    Ageing is associated with a progressive loss of skeletal muscle mass, quality and function-sarcopenia, associated with reduced independence and quality of life in older generations. A better understanding of the mechanisms, both genetic and epigenetic, underlying this process would help develop therapeutic interventions to prevent, slow down or reverse muscle wasting associated with ageing. Currently, exercise is the only known effective intervention to delay the progression of sarcopenia. The cellular responses that occur in muscle fibres following exercise provide valuable clues to the molecular mechanisms regulating muscle homoeostasis and potentially the progression of sarcopenia. Redox signalling, as a result of endogenous generation of ROS/RNS in response to muscle contractions, has been identified as a crucial regulator for the adaptive responses to exercise, highlighting the redox environment as a potentially core therapeutic approach to maintain muscle homoeostasis during ageing. Further novel and attractive candidates include the manipulation of microRNA expression. MicroRNAs are potent gene regulators involved in the control of healthy and disease-associated biological processes and their therapeutic potential has been researched in the context of various disorders, including ageing-associated muscle wasting. Finally, we discuss the impact of the circadian clock on the regulation of gene expression in skeletal muscle and whether disruption of the peripheral muscle clock affects sarcopenia and altered responses to exercise. Interventions that include modifying altered redox signalling with age and incorporating genetic mechanisms such as circadian- and microRNA-based gene regulation, may offer potential effective treatments against age-associated sarcopenia.

  11. Molecular genetics of follicular cell thyroid carcinoma

    Directory of Open Access Journals (Sweden)

    Valentina D. Yakushina

    2016-09-01

    Full Text Available Thyroid cancer is the most frequent endocrine malignancy. In the most cases thyroid cancer arises from follicular cells. Diagnosis of the cancer is based on the cytological analysis of fine needle aspiration biopsy of thyroid nodes. But the accuracy of the cytological diagnosis is about 80% that leads to the false positive and false negative cases and wrong strategy of treatment. Identification of genetic and epigenetic markers in the biopsies will allow to improve diagnostic accuracy. This article describes mutations, aberrant DNA methylation and abnormal microRNA expression constituting the core of molecular genetics of follicular cell thyroid cancer. The mutations given in the article includes point mutations, fusions and copy number variation. Besides frequent and well described driver mutations in genes of МАРK, PI3K/Akt and Wnt signaling pathways, as well as TP53 and TERT genes, we introduce here less frequent mutations appeared in the literature during the past two years. In addition the article contains examples of diagnostic panels applying these markers.

  12. Genome-wide analysis of disease progression in age-related macular degeneration.

    Science.gov (United States)

    Yan, Qi; Ding, Ying; Liu, Yi; Sun, Tao; Fritsche, Lars G; Clemons, Traci; Ratnapriya, Rinki; Klein, Michael L; Cook, Richard J; Liu, Yu; Fan, Ruzong; Wei, Lai; Abecasis, Gonçalo R; Swaroop, Anand; Chew, Emily Y; Weeks, Daniel E; Chen, Wei

    2018-03-01

    Family- and population-based genetic studies have successfully identified multiple disease-susceptibility loci for Age-related macular degeneration (AMD), one of the first batch and most successful examples of genome-wide association study. However, most genetic studies to date have focused on case-control studies of late AMD (choroidal neovascularization or geographic atrophy). The genetic influences on disease progression are largely unexplored. We assembled unique resources to perform a genome-wide bivariate time-to-event analysis to test for association of time-to-late-AMD with ∼9 million variants on 2721 Caucasians from a large multi-center randomized clinical trial, the Age-Related Eye Disease Study. To our knowledge, this is the first genome-wide association study of disease progression (bivariate survival outcome) in AMD genetic studies, thus providing novel insights to AMD genetics. We used a robust Cox proportional hazards model to appropriately account for between-eye correlation when analyzing the progression time in the two eyes of each participant. We identified four previously reported susceptibility loci showing genome-wide significant association with AMD progression: ARMS2-HTRA1 (P = 8.1 × 10-43), CFH (P = 3.5 × 10-37), C2-CFB-SKIV2L (P = 8.1 × 10-10) and C3 (P = 1.2 × 10-9). Furthermore, we detected association of rs58978565 near TNR (P = 2.3 × 10-8), rs28368872 near ATF7IP2 (P = 2.9 × 10-8) and rs142450006 near MMP9 (P = 0.0006) with progression to choroidal neovascularization but not geographic atrophy. Secondary analysis limited to 34 reported risk variants revealed that LIPC and CTRB2-CTRB1 were also associated with AMD progression (P < 0.0015). Our genome-wide analysis thus expands the genetics in both development and progression of AMD and should assist in early identification of high risk individuals.

  13. Individual radiation sensitivity (gender, age, genetic disposition). Consequences for radiation protection

    International Nuclear Information System (INIS)

    Streffer, C.

    2013-01-01

    The effects of ionising radiation on human health is influenced by a number of physiological and molecular biological factors. This is also valid for the causation of stochastic radiation effects especially the causation of cancer. Several epidemiological studies have resulted with respect to the total rate of solid cancers that women are more sensitive than men by a factor of 1.6 to 2.0. For leukaemia this is not the case. The largest studies come from the investigations on the survivors of the atomic bombs in Hiroshima and Nagasaki. But also studies on the population of the Techa River (Southeast Urals) yield such data. The analyses of single cancer localizations come to different results with respect to the dependence on the sex. Secondary cancers after radiotherapy for cancer treatment show also higher rates in women than in men. A similar situation is observed with respect to the dependence of cancer rate on age. The total rate of solid cancers is highest with children and decreases with increasing age. The effects are very different again with single cancer localizations. An especially strong age dependence was observed for thyroid cancer. Increasingly individuals have been found who are especially radiosensitive on the basis of their genetic disposition also with respect to the causation of cancer. Mechanisms and possibilities to trace these individuals are discussed. It is also discussed whether and to which extent these data should have consequences for the practical radiological protection. (orig.)

  14. Genetic and environmental effects of mortality before age 70 years

    DEFF Research Database (Denmark)

    Petersen, Liselotte; Andersen, Per Kragh; Sørensen, Thorkild I.A.

    2008-01-01

    BACKGROUND:: There is a familial influence on risk of many diseases and on mortality in general, which, according to studies of twins, is due to a combination of genetic and environmental effects. Adoption studies, which rest on different assumptions, may also be used to estimate separately...... the genetic and environmental effects on rate of dying. METHODS:: The genetic influence on the rate of dying before age 70 years was investigated by estimation of the associations in total and cause-specific mortality of Danish adoptees and their biologic full and half siblings. Familial environmental...

  15. Common variants near FRK/COL10A1 and VEGFA are associated with advanced age-related macular degeneration

    NARCIS (Netherlands)

    Y. Yu (Yi); T. Bhangale (Tushar); J. Fagerness (Jesen); S. Ripke (Stephan); G. Thorleifsson (Gudmar); P.L. Tan (Perciliz); E.H. Souied (Eric); A.J. Richardson (Andrea); J.E. Merriam (Joanna); G.H.S. Buitendijk (Gabrielle); R. Reynolds (Robyn); S. Raychaudhuri (Soumya); K.A. Chin (Kimberly); L. Sobrin (Lucia); E. Evangelou (Evangelos); P.H. Lee (Phil); N. Leveziel (Nicolas); D.J. Zack (Donald); B. Campochiaro (Betsy); R.T. Smith (Theodore); G.R. Barile (Gaetano); R.H. Guymer (Robyn); R. Hogg (Ruth); U. Chakravarthy (Usha); L.D. Robman (Luba); O. Gustafsson (Omar); H. Sigurdsson (Haraldur); W. Ortmann (Ward); T.W. Behrens (Timothy); K. Stefansson (Kari); A.G. Uitterlinden (André); P. Tikka-Kleemola (Päivi); J.R. Vingerling (Hans); C.C.W. Klaver (Caroline); R. Allikmets (Rando); M.A. Brantley (Milam); P.N. Baird (Paul); N. Katsanis (Nicholas); U. Thorsteinsdottir (Unnur); J.P.A. Ioannidis (John); M.J. Daly (Mark); R.R. Graham (Robert); J.M. Seddon (Johanna)

    2011-01-01

    textabstractDespite significant progress in the identification of genetic loci for age-related macular degeneration (AMD), not all of the heritability has been explained. To identify variants which contribute to the remaining genetic susceptibility, we performed the largest meta-analysis of

  16. Diet, ageing and genetic factors in the pathogenesis of diverticular disease

    Science.gov (United States)

    Commane, Daniel Martin; Arasaradnam, Ramesh Pulendran; Mills, Sarah; Mathers, John Cummings; Bradburn, Mike

    2009-01-01

    Diverticular disease (DD) is an age-related disorder of the large bowel which may affect half of the population over the age of 65 in the UK. This high prevalence ranks it as one of the most common bowel disorders in western nations. The majority of patients remain asymptomatic but there are associated life-threatening co-morbidities, which, given the large numbers of people with DD, translates into a considerable number of deaths per annum. Despite this public health burden, relatively little seems to be known about either the mechanisms of development or causality. In the 1970s, a model of DD formulated the concept that diverticula occur as a consequence of pressure-induced damage to the colon wall amongst those with a low intake of dietary fiber. In this review, we have examined the evidence regarding the influence of ageing, diet, inflammation and genetics on DD development. We argue that the evidence supporting the barotrauma hypothesis is largely anecdotal. We have also identified several gaps in the knowledge base which need to be filled before we can complete a model for the etiology of diverticular disease. PMID:19468998

  17. Genetic diversity assessment of sesame core collection in China by phenotype and molecular markers and extraction of a mini-core collection

    Directory of Open Access Journals (Sweden)

    Zhang Yanxin

    2012-11-01

    Full Text Available Abstract Background Sesame (Sesamum indicum L. is one of the four major oil crops in China. A sesame core collection (CC was established in China in 2000, but no complete study on its genetic diversity has been carried out at either the phenotypic or molecular level. To provide technical guidance, a theoretical basis for further collection, effective protection, reasonable application, and a complete analysis of sesame genetic resources, a genetic diversity assessment of the sesame CC in China was conducted using phenotypic and molecular data and by extracting a sesame mini-core collection (MC. Results Results from a genetic diversity assessment of sesame CC in China were significantly inconsistent at the phenotypic and molecular levels. A Mantel test revealed the insignificant correlation between phenotype and molecular marker information (r = 0.0043, t = 0.1320, P = 0.5525. The Shannon-Weaver diversity index (I and Nei genetic diversity index (h were higher (I = 0.9537, h = 0.5490 when calculated using phenotypic data from the CC than when using molecular data (I = 0.3467, h = 0.2218. A mini-core collection (MC containing 184 accessions was extracted based on both phenotypic and molecular data, with a low mean difference percentage (MD, 1.64%, low variance difference percentage (VD, 22.58%, large variable rate of coefficient of variance (VR, 114.86%, and large coincidence rate of range (CR, 95.76%. For molecular data, the diversity indices and the polymorphism information content (PIC for the MC were significantly higher than for the CC. Compared to an alternative random sampling strategy, the advantages of capturing genetic diversity and validation by extracting a MC using an advanced maximization strategy were proven. Conclusions This study provides a comprehensive characterization of the phenotypic and molecular genetic diversities of the sesame CC in China. A MC was extracted using both phenotypic and molecular data. Low MD% and VD%, and

  18. Genetic diversity assessment of sesame core collection in China by phenotype and molecular markers and extraction of a mini-core collection

    Science.gov (United States)

    2012-01-01

    Background Sesame (Sesamum indicum L.) is one of the four major oil crops in China. A sesame core collection (CC) was established in China in 2000, but no complete study on its genetic diversity has been carried out at either the phenotypic or molecular level. To provide technical guidance, a theoretical basis for further collection, effective protection, reasonable application, and a complete analysis of sesame genetic resources, a genetic diversity assessment of the sesame CC in China was conducted using phenotypic and molecular data and by extracting a sesame mini-core collection (MC). Results Results from a genetic diversity assessment of sesame CC in China were significantly inconsistent at the phenotypic and molecular levels. A Mantel test revealed the insignificant correlation between phenotype and molecular marker information (r = 0.0043, t = 0.1320, P = 0.5525). The Shannon-Weaver diversity index (I) and Nei genetic diversity index (h) were higher (I = 0.9537, h = 0.5490) when calculated using phenotypic data from the CC than when using molecular data (I = 0.3467, h = 0.2218). A mini-core collection (MC) containing 184 accessions was extracted based on both phenotypic and molecular data, with a low mean difference percentage (MD, 1.64%), low variance difference percentage (VD, 22.58%), large variable rate of coefficient of variance (VR, 114.86%), and large coincidence rate of range (CR, 95.76%). For molecular data, the diversity indices and the polymorphism information content (PIC) for the MC were significantly higher than for the CC. Compared to an alternative random sampling strategy, the advantages of capturing genetic diversity and validation by extracting a MC using an advanced maximization strategy were proven. Conclusions This study provides a comprehensive characterization of the phenotypic and molecular genetic diversities of the sesame CC in China. A MC was extracted using both phenotypic and molecular data. Low MD% and VD%, and large VR% and CR

  19. A Molecular Genetic Lab to Generate Inclusive and Exclusive Forensic Evidence: Two Suspects, a Victim, and a Bloodstained T-Shirt

    Science.gov (United States)

    Smit, Julie; Heath, Daniel D.; Walter, Ryan P.

    2014-01-01

    Molecular genetic laboratory exercises can be ineffective due the student's lack of connection to the complex and sequential protocols. In this inquiry-based molecular genetic laboratory exercise, we harness students' fascination with human forensics and provide a real-life scenario using biomolecular techniques to identify "whose…

  20. Studying Human Disease Genes in "Caenorhabditis Elegans": A Molecular Genetics Laboratory Project

    Science.gov (United States)

    Cox-Paulson, Elisabeth A.; Grana, Theresa M.; Harris, Michelle A.; Batzli, Janet M.

    2012-01-01

    Scientists routinely integrate information from various channels to explore topics under study. We designed a 4-wk undergraduate laboratory module that used a multifaceted approach to study a question in molecular genetics. Specifically, students investigated whether "Caenorhabditis elegans" can be a useful model system for studying genes…

  1. Genetic and environmental contributions to body mass index: comparative analysis of monozygotic twins, dizygotic twins and same-age unrelated siblings.

    Science.gov (United States)

    Segal, N L; Feng, R; McGuire, S A; Allison, D B; Miller, S

    2009-01-01

    Earlier studies have established that a substantial percentage of variance in obesity-related phenotypes is explained by genetic components. However, only one study has used both virtual twins (VTs) and biological twins and was able to simultaneously estimate additive genetic, non-additive genetic, shared environmental and unshared environmental components in body mass index (BMI). Our current goal was to re-estimate four components of variance in BMI, applying a more rigorous model to biological and virtual multiples with additional data. Virtual multiples share the same family environment, offering unique opportunities to estimate common environmental influence on phenotypes that cannot be separated from the non-additive genetic component using only biological multiples. Data included 929 individuals from 164 monozygotic twin pairs, 156 dizygotic twin pairs, five triplet sets, one quadruplet set, 128 VT pairs, two virtual triplet sets and two virtual quadruplet sets. Virtual multiples consist of one biological child (or twins or triplets) plus one same-aged adoptee who are all raised together since infancy. We estimated the additive genetic, non-additive genetic, shared environmental and unshared random components in BMI using a linear mixed model. The analysis was adjusted for age, age(2), age(3), height, height(2), height(3), gender and race. Both non-additive genetic and common environmental contributions were significant in our model (P-valuesrole in BMI and that common environmental factors such as diet or exercise also affect BMI. This conclusion is consistent with our earlier study using a smaller sample and shows the utility of virtual multiples for separating non-additive genetic variance from common environmental variance.

  2. Transcriptome changes in age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    Whitmore S Scott

    2012-02-01

    Full Text Available Abstract Age-related macular degeneration (AMD is a debilitating, common cause of visual impairment. While the last decade has seen great progress in understanding the pathophysiology of AMD, the molecular changes that occur in eyes with AMD are still poorly understood. In the current issue of Genome Medicine, Newman and colleagues present the first systematic transcriptional profile analysis of AMD-affected tissues, providing a comprehensive set of expression data for different regions (macula versus periphery, tissues (retina versus retinal pigment epithelium (RPE/choroid, and disease state (control versus early or advanced AMD. Their findings will serve as a foundation for additional systems-level research into the pathogenesis of this blinding disease. Please see related article: http://genomemedicine.com/content/4/2/16

  3. Candidate gene molecular markers as tools for analyzing genetic susceptibility to morbillivirus infection in stranded Cetaceans

    Czech Academy of Sciences Publication Activity Database

    Stejskalová, K.; Bayerova, Z.; Futas, J.; Hrazdilová, K.; Klumplerova, M.; Oppelt, J.; Šplíchalová, P.; Di Guardo, G.; Mazzariol, S.; Di Francesco, C. E.; Di Francesco, G.; Terracciano, G.; Paiu, R.M.; Ursache, T. D.; Modrý, David; Horin, P.

    2017-01-01

    Roč. 90, č. 6 (2017), s. 343-353 ISSN 2059-2302 Institutional support: RVO:60077344 Keywords : Cetacea * haplotype * immunity * innate * mhc-dqb * Phocoena phocoena * polymorphism * single nucleotide * Stenella coeruleoalba Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology

  4. Impact of age-related neuroglial cell responses on hippocampal deterioration

    Directory of Open Access Journals (Sweden)

    Joseph O Ojo

    2015-04-01

    Full Text Available Aging is one of the greatest risk factors for the development of sporadic age-related neurodegenerative diseases and neuroinflammation is a common feature of this disease phenotype. In the immunoprivileged brain, neuroglial cells, which mediate neuroinflammatory responses, are influenced by the physiological factors in the microenvironment of the central nervous system (CNS. These physiological factors include but are not limited to cell-to-cell communication involving cell adhesion molecules, neuronal electrical activity and neurotransmitter and neuromodulator action. However, despite this dynamic control of neuroglial activity, in the healthy aged brain there is an alteration in the underlying neuroinflammatory response notably seen in the hippocampus, typified by astrocyte/microglia activation and increased pro-inflammatory cytokine production and signalling. Normally, these changes occur without any concurrent pathology, however, they can correlate with deteriorations in hippocampal or cognitive function. In this review we examine two important phenomenons, firstly the relationship between age-related brain deterioration (focusing on hippocampal function and underlying neuroglial response(s, and secondly how the latter affects molecular and cellular processes within the hippocampus that makes it vulnerable to age-related cognitive decline.

  5. [Molecular, genetic and physiological analysis of photoinhibition and photosynthetic

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    A major goal of this project is to use a combined molecular genetic, biochemical and physiological approach to understand the relationship between photosynthetic performance and the structure of the multifunctional D1 reaction center protein of Photosystem II encoded by the chloroplast psbA gene. Relative to other chloroplast proteins, turover of D1 is rapid and highly light dependent and de novo synthesis of D1 is required for a plant's recovery from short term exposure to irradiances which induce photoinhibitory damage. These observations have led to models for a damage/repair cycle of PSII involving the targeted degradation and replacement of photodamaged D1. To investigate the effects of perturbing the D1 cycle on photosynthesis and autotrophic growth under high and low irradiance, we have examined the consequences of site-specific mutations of the psbA and 16S rRNA genes affecting synthesis, maturation and function/stability of the D1 protein introduced into the chloroplast genome of wildtype strain of the green alga Chlamydomonas reinhardtii using biolistic transformation.

  6. Prediction and characterization of human ageing-related proteins by using machine learning.

    Science.gov (United States)

    Kerepesi, Csaba; Daróczy, Bálint; Sturm, Ádám; Vellai, Tibor; Benczúr, András

    2018-03-06

    Ageing has a huge impact on human health and economy, but its molecular basis - regulation and mechanism - is still poorly understood. By today, more than three hundred genes (almost all of them function as protein-coding genes) have been related to human ageing. Although individual ageing-related genes or some small subsets of these genes have been intensively studied, their analysis as a whole has been highly limited. To fill this gap, for each human protein we extracted 21000 protein features from various databases, and using these data as an input to state-of-the-art machine learning methods, we classified human proteins as ageing-related or non-ageing-related. We found a simple classification model based on only 36 protein features, such as the "number of ageing-related interaction partners", "response to oxidative stress", "damaged DNA binding", "rhythmic process" and "extracellular region". Predicted values of the model quantify the relevance of a given protein in the regulation or mechanisms of the human ageing process. Furthermore, we identified new candidate proteins having strong computational evidence of their important role in ageing. Some of them, like Cytochrome b-245 light chain (CY24A) and Endoribonuclease ZC3H12A (ZC12A) have no previous ageing-associated annotations.

  7. Genetic diversity analyses of Lasiodiplodia theobromae on Morus alba and Agave sisalana based on RAPD and ISSR molecular markers

    Directory of Open Access Journals (Sweden)

    Hong-hui Xie

    2016-10-01

    Full Text Available Genetic diversity of 23 Lasiodiplodia theobromae isolates on Morus alba and 6 isolates on Agave sisalana in Guangxi province, China, was studied by using random amplified polymorphic DNA and inter-simple sequence repeat molecular markers. Results of two molecular markers showed that the average percentage of polymorphic loci of all isolates was more than 93%. Both dendrograms of two molecular markers showed obvious relationship between groups and the geographical locations where those strains were collected, among which, the 23 isolates on M. alba were divided into 4 populations and the 6 isolates on A. sisalana were separated as a independent population. The average genetic identity and genetic distance of 5 populations were 0.7215, 0.3284 and 0.7915, 0.2347, respectively, which indicated that the genetic identity was high and the genetic distance was short in the 5 populations. Average value of the gene diversity index (H and the Shannon’s information index (I of 29 isolates were significantly higher than 5 populations which showed that genetic diversity of those isolates was richer than the populations and the degree of genetic differentiation of the isolates was higher. The Gst and Nm of 29 isolates were 0.4411, 0.6335 and 0.4756, 0.5513, respectively, which showed that the genetic diversity was rich in those isolates.

  8. DNA Re-EvolutioN: a game for learning molecular genetics and evolution.

    Science.gov (United States)

    Miralles, Laura; Moran, Paloma; Dopico, Eduardo; Garcia-Vazquez, Eva

    2013-01-01

    Evolution is a main concept in biology, but not many students understand how it works. In this article we introduce the game DNA Re-EvolutioN as an active learning tool that uses genetic concepts (DNA structure, transcription and translation, mutations, natural selection, etc.) as playing rules. Students will learn about molecular evolution while playing a game that mixes up theory and entertainment. The game can be easily adapted to different educational levels. The main goal of this play is to arrive at the end of the game with the longest protein. Students play with pawns and dices, a board containing hypothetical events (mutations, selection) that happen to molecules, "Evolution cards" with indications for DNA mutations, prototypes of a DNA and a mRNA chain with colored "nucleotides" (plasticine balls), and small pieces simulating t-RNA with aminoacids that will serve to construct a "protein" based on the DNA chain. Students will understand how changes in DNA affect the final protein product and may be subjected to positive or negative selection, using a didactic tool funnier than classical theory lectures and easier than molecular laboratory experiments: a flexible and feasible game to learn and enjoy molecular evolution at no-cost. The game was tested by majors and non-majors in genetics from 13 different countries and evaluated with pre- and post-tests obtaining very positive results. © 2013 by The International Union of Biochemistry and Molecular Biology.

  9. Disclosure of genetics research results after the death of the patient participant: a qualitative study of the impact on relatives.

    Science.gov (United States)

    Ormondroyd, E; Moynihan, C; Watson, M; Foster, C; Davolls, S; Ardern-Jones, A; Eeles, R

    2007-08-01

    When a gene mutation is identified in a research study following the death of the study participant, it is not clear whether such information should be made available to relatives. We report here an evaluation of the impact on relatives of being informed of study results that detected pathogenic BRCA2 mutations in a male relative, now deceased, who had early onset (under the age of 55) prostate cancer. The breast and ovarian cancer risk was unknown to the living relatives. Qualitative analysis of interviews with thirteen relatives indicated that those who had a higher risk perception, resulting from an awareness of cancer family history or experiential knowledge of cancer in their family, tended to adjust more easily to the results. All participants believed that genetics research results of clinical significance should be fed back to relatives. Those who were fully aware of the BRCA2 results and implications for themselves felt they had benefited from the information, irrespective of whether or not they had elected for genetic testing, because of the consequent availability of surveillance programs. Initial anxiety upon learning about the BRCA2 result was alleviated by genetic counselling. Factors influencing those who have not engaged with the information included scepticism related to the relative who attempted to inform them, young age and fear of cancer. Those who had not sought genetic counselling did not attempt further dissemination, and some were not undergoing regular screening. Implications for informed consent in genetics research programs, and the requirement for genetic counselling when research results are disclosed, are discussed.

  10. The Genetic Variation of Bali Cattle (Bos javanicus Based on Sex Related Y Chromosome Gene

    Directory of Open Access Journals (Sweden)

    A Winaya

    2011-09-01

    Full Text Available Bali cattle is very popular Indonesian local beef related to their status in community living process of farmers in Indonesia, especially as providers of meat and exotic animal. Bali cattle were able to adapt the limited environment and becoming local livestock that existed until recently.  In our early study by microsatellites showed that Bali cattle have specific allele. In this study we analyzed the variance of partly sex related Y (SRY gene sequence in Bali cattle bull as a source of cement for Artificial Insemination (AI.  Blood from 17 two location of AI center, Singosari, Malang and Baturiti, Bali was collected and then extracted to get the DNA genome.  PCR reaction was done to amplify partially of SRY gene segment and followed by sequencing PCR products to get the DNA sequence of SRY gene. The SRY gene sequence was used to determine the genetic variation and phylogenetic relationship.  We found that Bali cattle bull from Singosari has relatively closed genetic relationship with Baturiti. It is also supported that in early data some Bali bulls of Singosari were came from Baturiti. It has been known that Baturiti is the one source of Bali cattle bull with promising genetic potential. While, in general that Bali bull where came from two areas were not different on reproductive performances. It is important to understand about the genetic variation of Bali cattle in molecular level related to conservation effort and maintaining the genetic characters of the local cattle. So, it will not become extinct or even decreased the genetic quality of Indonesian indigenous cattle.   Key Words : Bali cattle, SRY gene, artificial insemination, phylogenetic, allele   Animal Production 13(3:150-155 (2011

  11. Relative age and age sequence of fractions of soil organic matter

    International Nuclear Information System (INIS)

    Scharpenseel, H.W.

    1975-01-01

    Natural radiocarbon measurements on soil fractions provide information regarding the chances of separating the ''old biologically inert carbon'' out of samples of recent soil material. Beyond this, the relative fraction ages are scrutinized for the sequential order of the origin of the fractions within the biosynthetic reaction chain of soil humic matter. Among all fractions compared (classic humic matter fractionation by alkali and acid treatment; successive extraction with organic solvents of increasing polarity; separation according to particle size by Sephadex gel filtration; hydrolysis residue) the 6 n HCl hydrolysis residue shows the most consistent significant age increment. Repeated exhaustive hydrolysis treatment of the same sample material is still pending. All other fraction types indicate an age pattern under strong predetermination by method of origin, e.g., existence or lack of hydromorphy, without an evident enrichment of the ''old biologically inert carbon''. Among the organic extracts, no persistent age hierarchy is noticeable, whereas the classical fractions follow an age sequence mainly parallel to an increase of the molecular weight. Hymatomelanic acids appear rejuvenated by relics of recent carbon derived from the extractant ethanol. Grey humic acids are older than the brown humic acids, humines from fully terrestrial soil environment are older than humic acids, while in hydromorphic soils, cold alkali insoluble young C-compounds seem to be conserved which are liable to falsify rejuvenation of the humines

  12. Genetics of migraine and related syndromes

    NARCIS (Netherlands)

    Stam, Anine Henrike

    2014-01-01

    In this dissertation clinical genetic investigations on migraine, related syndromes and comorbid conditions are described. The first migraine syndrome studied is Familial Hemiplegic Migraine (FHM), a monogenic migraine variant. The clinical spectrum of FHM1-3 and the relation with closely related

  13. Enhanced molecular aging in late-life depression: the Senescent Associated Secretory Phenotype

    Science.gov (United States)

    Diniz, Breno Satler; Reynolds, Charles F.; Sibille, Etienne; Lin, Chien-Wei; Tseng, George; Lotrich, Francis; Aizenstein, Howard J.; Butters, Meryl A.

    2016-01-01

    Objective This study aims to investigate whether a systemic molecular pattern associated with aging (senescent-associated secretory phenotype – SASP) is elevated in adults with late-life depression (LLD), compared to never-depressed elderly comparison participants. Design Cross-sectional study. Participants We included 111 older adults (80 with LLD and 31 comparison participants) in this study. Measurement A panel of 22 SASP-related proteins was extracted from a previous multiplex protein panel performed in these participants. We conducted a principal component analysis to create the SASP index based on individual weights of each of protein. Results Participants with LLD showed a significantly increased SASP index compared to comparison participants, after controlling for age, depressive symptoms, medical comorbidity (CIRS-G) scores, gender, and cognitive performance (F(1,98)=7.3, p=0.008). Correlation analyses revealed that the SASP index was positively correlated with age (r=0.2, p = 0.03) and CIRS score (r=0.27, p=0.005), and negatively correlated with information processing speed (r=−0.34, p=0.001), executive function (r=−0.27, p=0.004) and global cognitive performance (r=−0.28, p=0.007). Conclusions To the best of our knowledge, this is the first study to show that a set of proteins (i.e., SASP index) primarily associated with cellular aging, is abnormally regulated and elevated in LLD. These results suggest that individuals with LLD display enhanced aging-related molecular patterns that are associated with higher medical comorbidity and worse cognitive function. Finally, we provide a set of proteins that can serve as potential therapeutic targets and biomarkers to monitor the effects of therapeutic or preventative interventions in LLD. PMID:27856124

  14. CDKL5-Related Disorders: From Clinical Description to Molecular Genetics.

    Science.gov (United States)

    Bahi-Buisson, N; Bienvenu, T

    2012-04-01

    Mutations in the cyclin-dependent kinase-like 5 gene (CDKL5) have been described in girls with Rett-like features and early-onset epileptic encephalopathy including infantile spasms. To date, with more than 80 reported cases, the phenotype of CDKL5-related encephalopathy is better defined. The main features consist of early-onset seizures starting before 5 months of age, severe mental retardation with absent speech and Rett-like features such as hand stereotypies and deceleration of head growth. On the other hand, neuro-vegetative signs and developmental regression are rare in CDKL5 mutation patients. The CDKL5 gene encodes a serine threonine kinase protein which is characterized by a catalytic domain and a long C-terminal extension involved in the regulation of the catalytic activity of CDKL5 and in the sub-nuclear localization of the protein. To our knowledge, more than 70 different point mutations have been described including missense mutations within the catalytic domain, nonsense mutations causing the premature termination of the protein distributed in the entire open reading frame, splice variants, and frameshift mutations. Additionally, CDKL5 mutations have recently been described in 7 males with a more severe epileptic encephalopathy and a worse outcome compared to female patients. Finally, about 23 male and female patients have been identified with gross rearrangements encompassing all or part of the CDKL5 gene, with a phenotype reminiscent of CDKL5-related encephalopathy combined with dysmorphic features. Even if recent data clearly indicate that CDKL5 plays an important role in brain function, the protein remains largely uncharacterized. Phenotype-genotype correlation is additionally hampered by the relatively small number of patients described.

  15. A clinical and molecular-genetic analysis of Chinese patients with ...

    Indian Academy of Sciences (India)

    1Department of Medical Genetics, School of Medicine, 2Department of Ophthalmology, The First Affiliated ... method of polymerase chain reaction – single strand confor- .... Sex. Age of onset. Vision. Symptoms. Slit-lamp examination. Clinical.

  16. Molecular detection and genetic diversity of Babesia gibsoni in dogs in Bangladesh.

    Science.gov (United States)

    Terao, Masashi; Akter, Shirin; Yasin, Md Golam; Nakao, Ryo; Kato, Hirotomo; Alam, Mohammad Zahangir; Katakura, Ken

    2015-04-01

    Babesia gibsoni is a tick-borne hemoprotozoan parasite of dogs that often causes fever and hemolytic illness. Detection of B. gibsoni has been predominantly reported in Asian countries, including Japan, Korea, Taiwan, Malaysia, Bangladesh and India. The present study shows the first molecular characterization of B. gibsoni detected from dogs in Bangladesh. Blood samples were collected on FTA® Elute cards from 50 stray dogs in Mymensingh District in Bangladesh. DNA eluted from the cards was subjected to nested PCR for the 18S rRNA gene of Babesia species. Approximately 800bp PCR products were detected in 15 of 50 dogs (30%). Based on restriction fragment length polymorphism (RFLP) and direct sequencing of the PCR products, all parasite isolates were identified as B. gibsoni. Furthermore, the BgTRAP (B. gibsoni thrombospondin-related adhesive protein) gene fragments were detected in 13 of 15 18S rRNA gene PCR positive blood samples. Phylogenetic analysis of the BgTRAP gene revealed that B. gibsoni parasites in Bangladesh formed a cluster, which was genetically different from other Asian B. gibsoni isolates. In addition, tandem repeat analysis of the BgTRAP gene clearly showed considerable genetic variation among Bangladeshi isolates. These results suggested that B. gibsoni parasites in a different genetic clade are endemic in dogs in Bangladesh. Further studies are required to elucidate the origin, distribution, vector and pathogenesis of B. gibsoni parasites circulating in dogs in Bangladesh. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Joint analysis of phenotypic and molecular diversity provides new insights on the genetic variability of the Brazilian physic nut germplasm bank.

    Science.gov (United States)

    Alves, Alexandre Alonso; Bhering, Leonardo Lopes; Rosado, Tatiana Barbosa; Laviola, Bruno Galvêas; Formighieri, Eduardo Fernandes; Cruz, Cosme Damião

    2013-09-01

    The genetic variability of the Brazilian physic nut (Jatropha curcas) germplasm bank (117 accessions) was assessed using a combination of phenotypic and molecular data. The joint dissimilarity matrix showed moderate correlation with the original matrices of phenotypic and molecular data. However, the correlation between the phenotypic dissimilarity matrix and the genotypic dissimilarity matrix was low. This finding indicated that molecular markers (RAPD and SSR) did not adequately sample the genomic regions that were relevant for phenotypic differentiation of the accessions. The dissimilarity values of the joint dissimilarity matrix were used to measure phenotypic + molecular diversity. This diversity varied from 0 to 1.29 among the 117 accessions, with an average dissimilarity among genotypes of 0.51. Joint analysis of phenotypic and molecular diversity indicated that the genetic diversity of the physic nut germplasm was 156% and 64% higher than the diversity estimated from phenotypic and molecular data, respectively. These results show that Jatropha genetic variability in Brazil is not as limited as previously thought.

  18. Genetic variants of the unsaturated fatty acid receptor GPR120 relating to obesity in dogs.

    Science.gov (United States)

    Miyabe, Masahiro; Gin, Azusa; Onozawa, Eri; Daimon, Mana; Yamada, Hana; Oda, Hitomi; Mori, Akihiro; Momota, Yutaka; Azakami, Daigo; Yamamoto, Ichiro; Mochizuki, Mariko; Sako, Toshinori; Tamura, Katsutoshi; Ishioka, Katsumi

    2015-10-01

    G protein-coupled receptor (GPR) 120 is an unsaturated fatty acid receptor, which is associated with various physiological functions. It is reported that the genetic variant of GPR120, p.Arg270His, is detected more in obese people, and this genetic variation functionally relates to obesity in humans. Obesity is a common nutritional disorder also in dogs, but the genetic factors have not ever been identified in dogs. In this study, we investigated the molecular structure of canine GPR120 and searched for candidate genetic variants which may relate to obesity in dogs. Canine GPR120 was highly homologous to those of other species, and seven transmembrane domains and two N-glycosylation sites were conserved. GPR120 mRNA was expressed in lung, jejunum, ileum, colon, hypothalamus, hippocampus, spinal cord, bone marrow, dermis and white adipose tissues in dogs, as those in mice and humans. Genetic variants of GPR120 were explored in client-owned 141 dogs, resulting in that 5 synonymous and 4 non-synonymous variants were found. The variant c.595C>A (p.Pro199Thr) was found in 40 dogs, and the gene frequency was significantly higher in dogs with higher body condition scores, i.e. 0.320 in BCS4-5 dogs, 0.175 in BCS3 dogs and 0.000 in BCS2 dogs. We conclude that c.595C>A (p.Pro199Thr) is a candidate variant relating to obesity, which may be helpful for nutritional management of dogs.

  19. Evolutionary molecular medicine.

    Science.gov (United States)

    Nesse, Randolph M; Ganten, Detlev; Gregory, T Ryan; Omenn, Gilbert S

    2012-05-01

    Evolution has long provided a foundation for population genetics, but some major advances in evolutionary biology from the twentieth century that provide foundations for evolutionary medicine are only now being applied in molecular medicine. They include the need for both proximate and evolutionary explanations, kin selection, evolutionary models for cooperation, competition between alleles, co-evolution, and new strategies for tracing phylogenies and identifying signals of selection. Recent advances in genomics are transforming evolutionary biology in ways that create even more opportunities for progress at its interfaces with genetics, medicine, and public health. This article reviews 15 evolutionary principles and their applications in molecular medicine in hopes that readers will use them and related principles to speed the development of evolutionary molecular medicine.

  20. Genetic Variance in Processing Speed Drives Variation in Aging of Spatial and Memory Abilities

    Science.gov (United States)

    Finkel, Deborah; Reynolds, Chandra A.; McArdle, John J.; Hamagami, Fumiaki; Pedersen, Nancy L.

    2009-01-01

    Previous analyses have identified a genetic contribution to the correlation between declines with age in processing speed and higher cognitive abilities. The goal of the current analysis was to apply the biometric dual change score model to consider the possibility of temporal dynamics underlying the genetic covariance between aging trajectories…

  1. Three Molecular Markers Show No Evidence of Population Genetic Structure in the Gouldian Finch (Erythrura gouldiae.

    Directory of Open Access Journals (Sweden)

    Peri E Bolton

    Full Text Available Assessment of genetic diversity and connectivity between regions can inform conservation managers about risk of inbreeding, potential for adaptation and where population boundaries lie. The Gouldian finch (Erythrura gouldiae is a threatened species in northern Australia, occupying the savannah woodlands of the biogeographically complex monsoon tropics. We present the most comprehensive population genetic analysis of diversity and structure the Gouldian finch using 16 microsatellite markers, mitochondrial control region and 3,389 SNPs from genotyping-by-sequencing. Mitochondrial diversity is compared across three related, co-distributed finches with different conservation threat-statuses. There was no evidence of genetic differentiation across the western part of the range in any of the molecular markers, and haplotype diversity but not richness was lower than a common co-distributed species. Individuals within the panmictic population in the west may be highly dispersive within this wide area, and we urge caution when interpreting anecdotal observations of changes to the distribution and/or flock sizes of Gouldian finch populations as evidence of overall changes to the population size of this species.

  2. Benefits, Potential Harms, and Optimal Use of Nutritional Supplementation for Preventing Progression of Age-Related Macular Degeneration.

    Science.gov (United States)

    Rojas-Fernandez, Carlos H; Tyber, Kevin

    2017-03-01

    To briefly review age-related macular degeneration (AMD), the main findings from the Age Related Eye Disease Study (AREDS) report number 8 on the use of nutritional supplements for AMD, and to focus on data suggesting that supplement use should be guided using genetic testing of AMD risk genes. A literature search (January 2001 through October 26, 2016) was conducted using MEDLINE and the following MeSH terms: Antioxidants/therapeutic use, Genotype, Macular Degeneration/drug therapy, Macular degeneration/genetics, Dietary Supplements, Proteins/genetics, and Zinc Compounds/therapeutic use. Bibliographies of publications identified were also reviewed. English-language studies assessing AREDS supplement response in patients with AMD in relation to complement factor H gene ( CFH) and age-related maculopathy susceptibility 2 gene ( ARMS2) risk alleles were evaluated. Three of the 4 studies demonstrated a treatment interaction between ARMS2 and CFH genotypes and a differential response to supplements. The fourth study documented an interaction for the CFH genotype only. Reported response interactions included attenuated response, no response, and good response, whereas a subset showed increased progression of AMD. Conversely, one study reported no interactions between CFH and ARMS2 risk alleles and response to supplements. The weight of the evidence supports using genetic testing to guide selection of ocular vitamin use. This approach will avoid using supplements that could speed the progression of AMD in vulnerable patients, avoid using supplements that will have little to no effect in others, and result in appropriately using supplements in those that are likely to derive meaningful benefits.

  3. Plant genetic and molecular responses to water deficit

    Directory of Open Access Journals (Sweden)

    Silvio Salvi

    2011-02-01

    Full Text Available Plant productivity is severely affected by unfavourable environmental conditions (biotic and abiotic stresses. Among others, water deficit is the plant stress condition which mostly limits the quality and the quantity of plant products. Tolerance to water deficit is a polygenic trait strictly dependent on the coordinated expression of a large set of genes coding for proteins directly involved in stress-induced protection/repair mechanisms (dehydrins, chaperonins, enzymes for the synthesis of osmoprotectants and detoxifying compounds, and others as well as genes involved in transducing the stress signal and regulating gene expression (transcription factors, kinases, phosphatases. Recently, research activities in the field evolved from the study of single genes directly involved in cellular stress tolerance (functional genes to the identification and characterization of key regulatory genes involved in stress perception and transduction and able to rapidly and efficiently activate the complex gene network involved in the response to stress. The complexity of the events occurring in response to stress have been recently approached by genomics tools; in fact the analysis of transcriptome, proteome and metabolome of a plant tissue/cell in response to stress already allowed to have a global view of the cellular and molecular events occurring in response to water deficit, by the identification of genes activated and co-regulated by the stress conditions and the characterization of new signalling pathways. Moreover the recent application of forward and reverse genetic approaches, trough mutant collection development, screening and characterization, is giving a tremendous impulse to the identification of gene functions with key role in stress tolerance. The integration of data obtained by high-throughput genomic approaches, by means of powerful informatic tools, is allowing nowadays to rapidly identify of major genes/QTLs involved in stress tolerance

  4. Phenotype-driven molecular autopsy for sudden cardiac death.

    Science.gov (United States)

    Cann, F; Corbett, M; O'Sullivan, D; Tennant, S; Hailey, H; Grieve, J H K; Broadhurst, P; Rankin, R; Dean, J C S

    2017-01-01

    A phenotype-driven approach to molecular autopsy based in a multidisciplinary team comprising clinical and laboratory genetics, forensic medicine and cardiology is described. Over a 13 year period, molecular autopsy was undertaken in 96 sudden cardiac death cases. A total of 46 cases aged 1-40 years had normal hearts and suspected arrhythmic death. Seven (15%) had likely pathogenic variants in ion channelopathy genes [KCNQ1 (1), KCNH2 (4), SCN5A (1), RyR2(1)]. Fifty cases aged between 2 and 67 had a cardiomyopathy. Twenty-five had arrhythmogenic right ventricular cardiomyopathy (ARVC), 10 dilated cardiomyopathy (DCM) and 15 hypertrophic cardiomyopathy (HCM). Likely pathogenic variants were found in three ARVC cases (12%) in PKP2, DSC2 or DSP, two DCM cases (20%) in MYH7, and four HCM cases (27%) in MYBPC3 (3) or MYH7 (1). Uptake of cascade screening in relatives was higher when a molecular diagnosis was made at autopsy. In three families, variants previously published as pathogenic were detected, but clinical investigation revealed no abnormalities in carrier relatives. With a conservative approach to defining pathogenicity of sequence variants incorporating family phenotype information and population genomic data, a molecular diagnosis was made in 15% of sudden arrhythmic deaths and 18% of cardiomyopathy deaths. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Age related patterns of immunoglobulin serum levels in the Quechua Indians of Andean Mountains

    Science.gov (United States)

    Memeo, S. A.; Piantanelli, L.; Mazzufferi, G.; Guerra, L.; Nikolitz, M.; Fabris, N.

    1982-03-01

    Age-dependent changes of IgA, IgG, IgM, and IgD serum levels in a population of Quechua Indians of Peruvian Andes at 4 300 m were investigated. A first increase and a subsequent decrease in IgA and IgM levels were observed with advancing age. IgG and IgD only display an increase during development. More or less pronounced sex-related changes were also found in all Ig classes, the sex dependent pattern of IgA being the more evident one. It has been suggested that sexual, genetic and environmental influences strongly superimpose to high altitude related changes in Ig profile during ageing.

  6. Molecular farming

    NARCIS (Netherlands)

    Merck, K.B.; Vereijken, J.M.

    2006-01-01

    Molecular Farming is a new and emerging technology that promises relatively cheap and flexible production of large quantities of pharmaceuticals in genetically modified plants. Many stakeholders are involved in the production of pharmaceuticals in plants, which complicates the discussion on the

  7. Age-Related Macular Degeneration: Advances in Management and Diagnosis

    Directory of Open Access Journals (Sweden)

    Yoshihiro Yonekawa

    2015-02-01

    Full Text Available Age-related macular degeneration (AMD is the most common cause of irreversible visual impairment in older populations in industrialized nations. AMD is a late-onset deterioration of photoreceptors and retinal pigment epithelium in the central retina caused by various environmental and genetic factors. Great strides in our understanding of AMD pathogenesis have been made in the past several decades, which have translated into revolutionary therapeutic agents in recent years. In this review, we describe the clinical and pathologic features of AMD and present an overview of current diagnosis and treatment strategies.

  8. Genetics of serum carotenoid concentrations and their correlation with obesity-related traits in Mexican American children.

    Science.gov (United States)

    Farook, Vidya S; Reddivari, Lavanya; Mummidi, Srinivas; Puppala, Sobha; Arya, Rector; Lopez-Alvarenga, Juan Carlos; Fowler, Sharon P; Chittoor, Geetha; Resendez, Roy G; Kumar, Birunda Mohan; Comuzzie, Anthony G; Curran, Joanne E; Lehman, Donna M; Jenkinson, Christopher P; Lynch, Jane L; DeFronzo, Ralph A; Blangero, John; Hale, Daniel E; Duggirala, Ravindranath; Vanamala, Jairam Kp

    2017-07-01

    Background: Dietary intake of phytonutrients present in fruits and vegetables, such as carotenoids, is associated with a lower risk of obesity and related traits, but the impact of genetic variation on these associations is poorly understood, especially in children. Objective: We estimated common genetic influences on serum carotenoid concentrations and obesity-related traits in Mexican American (MA) children. Design: Obesity-related data were obtained from 670 nondiabetic MA children, aged 6-17 y. Serum α- and β-carotenoid concentrations were measured in ∼570 (α-carotene in 565 and β-carotene in 572) of these children with the use of an ultraperformance liquid chromatography-photodiode array. We determined heritabilities for both carotenoids and examined their genetic relation with 10 obesity-related traits [body mass index (BMI), waist circumference (WC), high-density lipoprotein (HDL) cholesterol, triglycerides, fat mass (FM), systolic and diastolic blood pressure, fasting insulin and glucose, and homeostasis model assessment of insulin resistance] by using family data and a variance components approach. For these analyses, carotenoid values were inverse normalized, and all traits were adjusted for significant covariate effects of age and sex. Results: Carotenoid concentrations were highly heritable and significant [α-carotene: heritability ( h 2 ) = 0.81, P = 6.7 × 10 -11 ; β-carotene: h 2 = 0.90, P = 3.5 × 10 -15 ]. After adjusting for multiple comparisons, we found significant ( P ≤ 0.05) negative phenotypic correlations between carotenoid concentrations and the following traits: BMI, WC, FM, and triglycerides (range: α-carotene = -0.19 to -0.12; β-carotene = -0.24 to -0.13) and positive correlations with HDL cholesterol (α-carotene = 0.17; β-carotene = 0.24). However, when the phenotypic correlations were partitioned into genetic and environmental correlations, we found marginally significant ( P = 0.051) genetic correlations only between

  9. Molecular markers for use in plant molecular breeding and germplasm evaluation

    International Nuclear Information System (INIS)

    Edwards, J.D.; McCouch, S.R.

    2007-01-01

    A number of molecular marker technologies exist, each with different advantages and disadvantages. When available, genome sequence allows for the development of greater numbers and higher quality molecular markers. When genome sequence is limited in the organism of interest, related species may serve as sources of molecular markers. Some molecular marker technologies combine the discovery and assay of DNA sequence variations, and therefore can be used in species without the need for prior sequence information and up-front investment in marker development. As a prerequisite for marker-assisted selection (MAS), there must be a known association between genetic markers and genes affecting the phenotype to be modified. Comparative databases can facilitate the transfer of knowledge of genetic marker-phenotype association across species so that discoveries in one species may be applied to many others. Further genomics research and reductions in the costs associated with molecular markers will continue to provide new opportunities to employ MAS. (author)

  10. Glycomics and glycoproteomics focused on aging and age-related diseases--Glycans as a potential biomarker for physiological alterations.

    Science.gov (United States)

    Miura, Yuri; Endo, Tamao

    2016-08-01

    Since glycosylation depends on glycosyltransferases, glycosidases, and sugar nucleotide donors, it is susceptible to the changes associated with physiological and pathological conditions. Therefore, alterations in glycan structures may be good targets and biomarkers for monitoring health conditions. Since human aging and longevity are affected by genetic and environmental factors such as diseases, lifestyle, and social factors, a scale that reflects various environmental factors is required in the study of human aging and longevity. We herein focus on glycosylation changes elucidated by glycomic and glycoproteomic studies on aging, longevity, and age-related diseases including cognitive impairment, diabetes mellitus, and frailty. We also consider the potential of glycan structures as biomarkers and/or targets for monitoring physiological and pathophysiological changes. Glycan structures are altered in age-related diseases. These glycans and glycoproteins may be involved in the pathophysiology of these diseases and, thus, be useful diagnostic markers. Age-dependent changes in N-glycans have been reported previously in cohort studies, and characteristic N-glycans in extreme longevity have been proposed. These findings may lead to a deeper understanding of the mechanisms underlying aging as well as the factors influencing longevity. Alterations in glycosylation may be good targets and biomarkers for monitoring health conditions, and be applicable to studies on age-related diseases and healthy aging. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Age of Onset in Concordant Twins and Other Relative Pairs With Multiple Sclerosis

    OpenAIRE

    Sadovnick, A. Dessa; Yee, Irene M.; Guimond, Colleen; Reis, Jacques; Dyment, David A.; Ebers, George C.

    2009-01-01

    The ages of onset in multiple sclerosis cases span more than 7 decades. Data are presented for affected relative pairs from a Canadian population base of 30,000 multiple sclerosis index cases (1993?2008). The effects of genetic sharing, parent of origin, intergenerational versus collinear differences, and gender on the ages of onset were evaluated in the following concordant pairs: monozygotic twins (n?=?29), dizygotic twins (n?=?10), siblings (n?=?614), first cousins (n?=?405), half siblings...

  12. Uncovering the cellular and molecular changes in tendon stem/progenitor cells attributed to tendon aging and degeneration.

    Science.gov (United States)

    Kohler, Julia; Popov, Cvetan; Klotz, Barbara; Alberton, Paolo; Prall, Wolf Christian; Haasters, Florian; Müller-Deubert, Sigrid; Ebert, Regina; Klein-Hitpass, Ludger; Jakob, Franz; Schieker, Matthias; Docheva, Denitsa

    2013-12-01

    Although the link between altered stem cell properties and tissue aging has been recognized, the molecular and cellular processes of tendon aging have not been elucidated. As tendons contain stem/progenitor cells (TSPC), we investigated whether the molecular and cellular attributes of TSPC alter during tendon aging and degeneration. Comparing TSPC derived from young/healthy (Y-TSPC) and aged/degenerated human Achilles tendon biopsies (A-TSPC), we observed that A-TSPC exhibit a profound self-renewal and clonogenic deficits, while their multipotency was still retained. Senescence analysis showed a premature entry into senescence of the A-TSPC, a finding accompanied by an upregulation of p16(INK4A). To identify age-related molecular factors, we performed microarray and gene ontology analyses. These analyses revealed an intriguing transcriptomal shift in A-TSPC, where the most differentially expressed probesets encode for genes regulating cell adhesion, migration, and actin cytoskeleton. Time-lapse analysis showed that A-TSPC exhibit decelerated motion and delayed wound closure concomitant to a higher actin stress fiber content and a slower turnover of actin filaments. Lastly, based on the expression analyses of microarray candidates, we suggest that dysregulated cell-matrix interactions and the ROCK kinase pathway might be key players in TSPC aging. Taken together, we propose that during tendon aging and degeneration, the TSPC pool is becoming exhausted in terms of size and functional fitness. Thus, our study provides the first fundamental basis for further exploration into the molecular mechanisms behind tendon aging and degeneration as well as for the selection of novel tendon-specific therapeutical targets. © 2013 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  13. Could age modify the effect of genetic variants in IL6 and TNF-α genes in multiple myeloma?

    Science.gov (United States)

    Martino, Alessandro; Buda, Gabriele; Maggini, Valentina; Lapi, Francesco; Lupia, Antonella; Di Bello, Domenica; Orciuolo, Enrico; Galimberti, Sara; Barale, Roberto; Petrini, Mario; Rossi, Anna Maria

    2012-05-01

    Cytokines play a central role in multiple myeloma (MM) pathogenesis thus genetic variations within cytokines coding genes could influence MM susceptibility and therapy outcome. We investigated the impact of 8 SNPs in these genes in 202 MM cases and 235 controls also evaluating their impact on therapy outcome in a subset of 91 patients. Despite the overall negative findings, we found a significant age-modified effect of IL6 and TNF-α SNPs, on MM risk and therapy outcome, respectively. Therefore, this observation suggests that genetic variation in inflammation-related genes could be an important mediator of the complex interplay between ageing and cancer. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Genetic Confirmation of Mungbean (Vigna radiata) and Mashbean (Vigna mungo) Interspecific Recombinants using Molecular Markers.

    Science.gov (United States)

    Abbas, Ghulam; Hameed, Amjad; Rizwan, Muhammad; Ahsan, Muhammad; Asghar, Muhammad J; Iqbal, Nayyer

    2015-01-01

    Molecular confirmation of interspecific recombinants is essential to overcome the issues like self-pollination, environmental influence, and inadequacy of morphological characteristics during interspecific hybridization. The present study was conducted for genetic confirmation of mungbean (female) and mashbean (male) interspecific crosses using molecular markers. Initially, polymorphic random amplified polymorphic DNA (RAPD), universal rice primers (URP), and simple sequence repeats (SSR) markers differentiating parent genotypes were identified. Recombination in hybrids was confirmed using these polymorphic DNA markers. The NM 2006 × Mash 88 was most successful interspecific cross. Most of true recombinants confirmed by molecular markers were from this cross combination. SSR markers were efficient in detecting genetic variability and recombination with reference to specific chromosomes and particular loci. SSR (RIS) and RAPD identified variability dispersed throughout the genome. In conclusion, DNA based marker assisted selection (MAS) efficiently confirmed the interspecific recombinants. The results provided evidence that MAS can enhance the authenticity of selection in mungbean improvement program.

  15. Difference between age-related macular degeneration and polypoidal choroidal vasculopathy in the hereditary contribution of the A69S variant of the age-related maculopathy susceptibility 2 gene (ARMS2).

    Science.gov (United States)

    Yanagisawa, Suiho; Kondo, Naoshi; Miki, Akiko; Matsumiya, Wataru; Kusuhara, Sentaro; Tsukahara, Yasutomo; Honda, Shigeru; Negi, Akira

    2011-01-01

    To investigate whether the A69S variant of the age-related maculopathy susceptibility 2 gene (ARMS2) has a different hereditary contribution in neovascular age-related macular degeneration (AMD) and polypoidal choroidal vasculopathy (PCV). We initially conducted a comparative genetic analysis of neovascular AMD and PCV, genotyping the ARMS2 A69S variant in 181 subjects with neovascular AMD, 198 subjects with PCV, and 203 controls in a Japanese population. Genotyping was conducted using TaqMan technology. Results were then integrated into a meta-analysis of previous studies representing an assessment of the association between the ARMS2 A69S variant and neovascular AMD and/or PCV, comprising a total of 3,828 subjects of Asian descent. The Q-statistic test was used to assess between-study heterogeneity. Summary odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using a fixed effects model. The genetic effect of the A69S variant was stronger in neovascular AMD (allelic summary OR=3.09 [95% CI, 2.71-3.51], fixed effects parchitecture of this phenotypically heterogeneous disorder.

  16. The Moroccan Genetic Disease Database (MGDD): a database for DNA variations related to inherited disorders and disease susceptibility.

    Science.gov (United States)

    Charoute, Hicham; Nahili, Halima; Abidi, Omar; Gabi, Khalid; Rouba, Hassan; Fakiri, Malika; Barakat, Abdelhamid

    2014-03-01

    National and ethnic mutation databases provide comprehensive information about genetic variations reported in a population or an ethnic group. In this paper, we present the Moroccan Genetic Disease Database (MGDD), a catalogue of genetic data related to diseases identified in the Moroccan population. We used the PubMed, Web of Science and Google Scholar databases to identify available articles published until April 2013. The Database is designed and implemented on a three-tier model using Mysql relational database and the PHP programming language. To date, the database contains 425 mutations and 208 polymorphisms found in 301 genes and 259 diseases. Most Mendelian diseases in the Moroccan population follow autosomal recessive mode of inheritance (74.17%) and affect endocrine, nutritional and metabolic physiology. The MGDD database provides reference information for researchers, clinicians and health professionals through a user-friendly Web interface. Its content should be useful to improve researches in human molecular genetics, disease diagnoses and design of association studies. MGDD can be publicly accessed at http://mgdd.pasteur.ma.

  17. Age-related changes in the retinal pigment epithelium (RPE.

    Directory of Open Access Journals (Sweden)

    Xiaorong Gu

    Full Text Available Age-related changes in the retina are often accompanied by visual impairment but their mechanistic details remain poorly understood.Proteomic studies were pursued toward a better molecular understanding of retinal pigment epithelium (RPE aging mechanisms. RPE cells were isolated from young adults (3-4 month-old and old (24-25 month-old F344BN rats, and separated into subcellular fractions containing apical microvilli (MV and RPE cell bodies (CB lacking their apical microvilli. Proteins were extracted in detergent, separated by SDS-PAGE, digested in situ with trypsin and analyzed by LC MS/MS. Select proteins detected in young and old rat RPE were further studied using immunofluorescence and Western blot analysis.A total of 356 proteins were identified in RPE MV from young and 378 in RPE MV from old rats, 48% of which were common to each age group. A total of 897 proteins were identified in RPE CB from young rats and 675 in old CB, 56% of which were common to each age group. Several of the identified proteins, including proteins involved in response to oxidative stress, displayed both quantitative and qualitative changes in overall abundance during RPE aging. Numerous proteins were identified for the first time in the RPE. One such protein, collectrin, was localized to the apical membrane of apical brush border of proximal tubules where it likely regulates several amino acid transporters. Elsewhere, collectrin is involved in pancreatic β cell proliferation and insulin secretion. In the RPE, collectrin expression was significantly modulated during RPE aging. Another age-regulated, newly described protein was DJ-1, a protein extensively studied in brain where oxidative stress-related functions have been described.The data presented here reveals specific changes in the RPE during aging, providing the first protein database of RPE aging, which will facilitate future studies of age-related retinal diseases.

  18. Genetic and molecular analysis of radon-induced rat lung tumours

    International Nuclear Information System (INIS)

    Guilly, M.N.; Joubert, Ch.; Levalois, C.; Dano, L.; Chevillard, S.

    2002-01-01

    We have a model of radon-induced rat lung tumours, which allow us to analyse the cytogenetic and molecular alterations of the tumours. The aim is to better understand the mechanisms of radio-induced carcinogenesis and to define if it exists a specificity of radio-induced genetic alterations as compared to the genetic alterations found in the sporadic tumours. We have started our analysis by developing global cytogenetic and molecular approaches. We have shown that some alterations are recurrent. The genes that are potentially involved are the oncogene MET and the tumour suppressor Bene p16, which are also frequently altered in human lung tumours. Simultaneously, we have focussed our analysis by targeting the search of mutation in the tumour suppressor gene TP3. We have found that 8 of 39 tumours were mutated by deletion in the coding sequence of TP53. This high frequency of deletion, which is not observed in the human p53 mutation database could constitute a signature of radio-induced alterations. On this assumption, this type of alteration should not be only found on TP53 Bene but also in other suppressor genes which are inactivated by a mutation such as p16 for example. The work we are carrying out on radio-induced tumours among humans and animals is directed to this end. (author)

  19. [Cardiofaciocutaneous syndrome, a Noonan syndrome related disorder: clinical and molecular findings in 11 patients].

    Science.gov (United States)

    Carcavilla, Atilano; García-Miñaúr, Sixto; Pérez-Aytés, Antonio; Vendrell, Teresa; Pinto, Isabel; Guillén-Navarro, Encarna; González-Meneses, Antonio; Aoki, Yoko; Grinberg, Daniel; Ezquieta, Begoña

    2015-01-20

    To describe 11 patients with cardiofaciocutaneous syndrome (CFC) and compare them with 130 patients with other RAS-MAPK syndromes (111 Noonan syndrome patients [NS] and 19 patients with LEOPARD syndrome). Clinical data from patients submitted for genetic analysis were collected. Bidirectional sequencing analysis of PTPN11, SOS1, RAF1, BRAF, and MAP2K1 focused on exons carrying recurrent mutations, and of all KRAS exons were performed. Six different mutations in BRAF were identified in 9 patients, as well as 2 MAP2K1 mutations. Short stature, developmental delay, language difficulties and ectodermal anomalies were more frequent in CFC patients when compared with other neuro-cardio-faciocutaneous syndromes (P<.05). In at least 2 cases molecular testing helped reconsider the diagnosis. CFC patients showed a rather severe phenotype but at least one patient with BRAF mutation showed no developmental delay, which illustrates the variability of the phenotypic spectrum caused by BRAF mutations. Molecular genetic testing is a valuable tool for differential diagnosis of CFC and NS related disorders. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  20. Analysis of genetic diversity among rapeseed cultivars and breeding lines by srap and ssr molecular markers

    International Nuclear Information System (INIS)

    Channa, S.A.; Tian, H.

    2016-01-01

    The knowledge of genetic diversity is very important for developing new rapeseed (Brassica napus L.) cultivars. The genetic diversity among 77 rapeseed accessions, including 22 varieties and 55 advanced breeding lines were analyzed by 47 sequence-related amplified polymorphism (SRAP) and 56 simple sequence repeat (SSR) primers. A total of 270 SRAP and 194 SSR polymorphic fragments were detected with an average of 5.74 and 3.46 for SRAP and SSR primer, respectively. The cluster analysis grouped the 77 accessions into five major clusters. Cluster I contained spring and winter type varieties from Czech Republic and semi-winter varieties and their respective breeding lines from China. The 16 elite breeding lines discovered in Cluster II, III, IV and V indicated higher genetic distance than accessions in Cluster I. The principal component analysis and structure analysis exhibited similar results to the cluster analysis. Analysis of molecular variance revealed that genetic diversity of the selected breeding lines was comparable to the rapeseed varieties, and variation among varieties and lines was significant. The diverse and unique group of 16 elite breeding lines detected in this study can be utilized in the future breeding program as a source for development of commercial varieties with more desirable characters. (author)

  1. Fanconi anaemia: genetics, molecular biology, and cancer – implications for clinical management in children and adults.

    Science.gov (United States)

    Schneider, M; Chandler, K; Tischkowitz, M; Meyer, S

    2015-07-01

    Fanconi anaemia (FA) is an inherited disease with congenital and developmental abnormalities, cross-linker hypersensitivity and extreme cancer predisposition. With better understanding of the genetic and molecular basis of the disease, and improved clinical management, FA has been transformed from a life-limiting paediatric disease to an uncommon chronic condition that needs lifelong multidisciplinary management, and a paradigm condition for the understanding of the gene-environment interaction in the aetiology of congenital anomalies, haematopoiesis and cancer development. Here we review genetic, molecular and clinical aspects of FA, and discuss current controversies and future prospects. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Synovial sarcoma with radiological appearances of primitive neuroectodermal tumour/Ewing sarcoma: differentiation by molecular genetic studies

    International Nuclear Information System (INIS)

    O'Donnell, P.; Diss, T.C.; Whelan, J.; Flanagan, A.M.

    2006-01-01

    Synovial sarcoma (SS) arises in soft tissues but may invade adjacent bone. We describe a case of SS presenting as aggressive lysis of the proximal ulna, the imaging of which suggested a primary bone lesion. Needle biopsy showed a 'small round blue cell tumour', and a primitive neuroectodermal tumour (PNET)/Ewing sarcoma was suggested on the basis of the imaging appearances. The definitive diagnosis of synovial sarcoma was made following molecular genetic studies, which demonstrated a fusion product incorporating the genes SYT and SSX1. The importance of correct diagnosis to guide appropriate management, and, therefore, the necessity for molecular genetic studies, is discussed. (orig.)

  3. Use of Curcumin, a Natural Polyphenol for Targeting Molecular Pathways in Treating Age-Related Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Panchanan Maiti

    2018-05-01

    Full Text Available Progressive accumulation of misfolded amyloid proteins in intracellular and extracellular spaces is one of the principal reasons for synaptic damage and impairment of neuronal communication in several neurodegenerative diseases. Effective treatments for these diseases are still lacking but remain the focus of much active investigation. Despite testing several synthesized compounds, small molecules, and drugs over the past few decades, very few of them can inhibit aggregation of amyloid proteins and lessen their neurotoxic effects. Recently, the natural polyphenol curcumin (Cur has been shown to be a promising anti-amyloid, anti-inflammatory and neuroprotective agent for several neurodegenerative diseases. Because of its pleotropic actions on the central nervous system, including preferential binding to amyloid proteins, Cur is being touted as a promising treatment for age-related brain diseases. Here, we focus on molecular targeting of Cur to reduce amyloid burden, rescue neuronal damage, and restore normal cognitive and sensory motor functions in different animal models of neurodegenerative diseases. We specifically highlight Cur as a potential treatment for Alzheimer’s, Parkinson’s, Huntington’s, and prion diseases. In addition, we discuss the major issues and limitations of using Cur for treating these diseases, along with ways of circumventing those shortcomings. Finally, we provide specific recommendations for optimal dosing with Cur for treating neurological diseases.

  4. Advancing ecological understandings through technological transformations in noninvasive genetics

    Science.gov (United States)

    Albano Beja-Pereira; Rita Oliveira; Paulo C. Alves; Michael K. Schwartz; Gordon Luikart

    2009-01-01

    Noninvasive genetic approaches continue to improve studies in molecular ecology, conservation genetics and related disciplines such as forensics and epidemiology. Noninvasive sampling allows genetic studies without disturbing or even seeing the target individuals. Although noninvasive genetic sampling has been used for wildlife studies since the 1990s, technological...

  5. On the relation between gene flow theory and genetic gain

    Directory of Open Access Journals (Sweden)

    Woolliams John A

    2000-01-01

    Full Text Available Abstract In conventional gene flow theory the rate of genetic gain is calculated as the summed products of genetic selection differential and asymptotic proportion of genes deriving from sex-age groups. Recent studies have shown that asymptotic proportions of genes predicted from conventional gene flow theory may deviate considerably from true proportions. However, the rate of genetic gain predicted from conventional gene flow theory was accurate. The current note shows that the connection between asymptotic proportions of genes and rate of genetic gain that is embodied in conventional gene flow theory is invalid, even though genetic gain may be predicted correctly from it.

  6. [Towards a molecular psychiatry].

    Science.gov (United States)

    de la Fuente, J R

    1988-06-01

    Recent research data from psychopharmacology, brain imaging and molecular genetics support the notion of a new psychiatric frontier: that of molecular psychiatry. Identification of different subtypes of neurotransmitter receptors and their changes in density and sensitivity in response to endogenous ligands and/or psychotropic drugs may account for the clinical expression of various behavioral phenomena, including some psychiatric disorders. Brain imaging, in particular positron-emission tomographic evaluations, are likely to change psychiatric nosology. New diagnostic elements derived from these scanners will allow to associate psychotic states to neuroreceptor changes. Molecular genetics has shown that bipolar affective disorder can be caused by a single gene. A strong linkage seems to exist between a gene locus on chromosome 11 and bipolar illness. An amyloid gene located on chromosome 21 has also been shown to be strongly related to familial Alzheimer's disease. While genetic heterogeneity limits the screening value of these findings, the powerful techniques of molecular biology have entered the field of psychiatry. Ethical issues regarding DNA immortality, gene cloning and gene therapy will strengthen this relationship.

  7. Methods for the quantitative comparison of molecular estimates of clade age and the fossil record.

    Science.gov (United States)

    Clarke, Julia A; Boyd, Clint A

    2015-01-01

    Approaches quantifying the relative congruence, or incongruence, of molecular divergence estimates and the fossil record have been limited. Previously proposed methods are largely node specific, assessing incongruence at particular nodes for which both fossil data and molecular divergence estimates are available. These existing metrics, and other methods that quantify incongruence across topologies including entirely extinct clades, have so far not taken into account uncertainty surrounding both the divergence estimates and the ages of fossils. They have also treated molecular divergence estimates younger than previously assessed fossil minimum estimates of clade age as if they were the same as cases in which they were older. However, these cases are not the same. Recovered divergence dates younger than compared oldest known occurrences require prior hypotheses regarding the phylogenetic position of the compared fossil record and standard assumptions about the relative timing of morphological and molecular change to be incorrect. Older molecular dates, by contrast, are consistent with an incomplete fossil record and do not require prior assessments of the fossil record to be unreliable in some way. Here, we compare previous approaches and introduce two new descriptive metrics. Both metrics explicitly incorporate information on uncertainty by utilizing the 95% confidence intervals on estimated divergence dates and data on stratigraphic uncertainty concerning the age of the compared fossils. Metric scores are maximized when these ranges are overlapping. MDI (minimum divergence incongruence) discriminates between situations where molecular estimates are younger or older than known fossils reporting both absolute fit values and a number score for incompatible nodes. DIG range (divergence implied gap range) allows quantification of the minimum increase in implied missing fossil record induced by enforcing a given set of molecular-based estimates. These metrics are used

  8. ["A decision meaning a new foundation...": from the Kaiser Wilhelm Institute for Anthropology, Human Genetics and Eugenics to the Max Planck Institute for Molecular Genetics].

    Science.gov (United States)

    Sachse, Carola

    2011-01-01

    The Max Planck Institute for Molecular Genetics (MPIMG) in Berlin-Dahlem dates its establishment to 1964. Its homepage makes no mention of its predecessor institutes, the Kaiser Wilhelm Institute for Anthropology, Human Genetics and Eugenics (KWIA) and the subsequent MPI for Comparative Genetics and Hereditary Pathology (MPIVEE). This article traces the two critical phases of transition regarding the constellations of academic staff, institutional and epistemic ruptures and continuities specific to the era. Only one of the five department heads from the final war years, Hans Nachtsheim, remained a researcher within the Max Planck Society (MPG); he nevertheless continued to advocate the pre-war and wartime eugenic agenda in the life sciences and social policy. The generational change of 1959/60 became a massive struggle within the institute, in which microbial genetics (with Fritz Kaudewitz) was pitted against human genetics (with Friedrich Vogel) and managed to establish itself after a fresh change in personnel in 1964/65. For the Dahlem institute, this involved a far-reaching reorientation of its research, but for the genetically oriented life sciences in the Max Planck Society as a whole it only meant that molecular biology, which was already being pursued in the West German institutes, gained an additional facility. With this realignment of research traditions, the Society was able to draw a line under the Nazi past without having to address it head-on.

  9. Systemic complement activation in age-related macular degeneration.

    Directory of Open Access Journals (Sweden)

    Hendrik P N Scholl

    Full Text Available Dysregulation of the alternative pathway (AP of complement cascade has been implicated in the pathogenesis of age-related macular degeneration (AMD, the leading cause of blindness in the elderly. To further test the hypothesis that defective control of complement activation underlies AMD, parameters of complement activation in blood plasma were determined together with disease-associated genetic markers in AMD patients. Plasma concentrations of activation products C3d, Ba, C3a, C5a, SC5b-9, substrate proteins C3, C4, factor B and regulators factor H and factor D were quantified in patients (n = 112 and controls (n = 67. Subjects were analyzed for single nucleotide polymorphisms in factor H (CFH, factor B-C2 (BF-C2 and complement C3 (C3 genes which were previously found to be associated with AMD. All activation products, especially markers of chronic complement activation Ba and C3d (p<0.001, were significantly elevated in AMD patients compared to controls. Similar alterations were observed in factor D, but not in C3, C4 or factor H. Logistic regression analysis revealed better discriminative accuracy of a model that is based only on complement activation markers Ba, C3d and factor D compared to a model based on genetic markers of the complement system within our study population. In both the controls' and AMD patients' group, the protein markers of complement activation were correlated with CFH haplotypes.This study is the first to show systemic complement activation in AMD patients. This suggests that AMD is a systemic disease with local disease manifestation at the ageing macula. Furthermore, the data provide evidence for an association of systemic activation of the alternative complement pathway with genetic variants of CFH that were previously linked to AMD susceptibility.

  10. New STS molecular markers for assessment of genetic diversity and DNA fingerprinting in hop (Humulus lupulus L.)

    Czech Academy of Sciences Publication Activity Database

    Patzak, J.; Vrba, Lukáš; Matoušek, Jaroslav

    2007-01-01

    Roč. 50, č. 1 (2007), s. 15-25 ISSN 0831-2796 R&D Projects: GA ČR GA521/03/0072 Institutional research plan: CEZ:AV0Z50510513 Keywords : hop (Humulus lupulus L.) * genetic diversity Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.785, year: 2007

  11. Genetic association analysis of vitamin D receptor gene polymorphisms and obesity-related phenotypes.

    Science.gov (United States)

    Correa-Rodríguez, M; Carrillo-Ávila, J A; Schmidt-RioValle, J; González-Jiménez, E; Vargas, S; Martín, J; Rueda-Medina, B

    2018-01-15

    Vitamin D has been established as a key factor in the development of obesity through the vitamin D receptor (VDR). The aim of this study was to investigate the contribution of the VDR gene to obesity-related phenotypes in a population of Caucasian young adults. The study population consisted of 701 healthy Spanish young adults (mean age 20.41±2.48). Three single-nucleotide polymorphisms (SNPs) of VDR (TaqI, BsmI and FokI) were selected as genetic markers. Body composition measurements including weight, body mass index (BMI), fat mass (FM), percentage of fat mass (PFM), fat-free mass (FFM) and visceral fat level (VFL) were analysed. Differences in obesity traits across the genotypes were determined using analysis of covariance (ANCOVA). The FokI polymorphism showed a significant association with PFM across the whole population after adjusting for age and sex (p=0.022). Age-adjusted analysis revealed an association between body weight and the TaqI and BsmI SNPs in males (p=0.033 and p=0.028, respectively). However, these positive findings did not remain significant after applying the Bonferroni correction for multiple testing. Our findings suggest that VDR genetic variants are unlikely to play a major role in obesity-related phenotypes in a population of Caucasian young adults. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Anti-Inflamm-Ageing and/or Anti-Age-Related Disease Emerging Treatments: A Historical Alchemy or Revolutionary Effective Procedures?

    Directory of Open Access Journals (Sweden)

    Carmela Rita Balistreri

    2018-01-01

    Full Text Available The “long-life elixir” has long represented for humans a dream, a vanity’s sin for remaining young and to long survive. Today, because of ageing population phenomenon, the research of antiageing interventions appears to be more important than ever, for preserving health in old age and retarding/or delaying the onset of age-related diseases. A hope is given by experimental data, which evidence the possibility of retarding ageing in animal models. In addition, it has been also demonstrated in animal life-extending studies not only the possibility of increasing longevity but also the ability to retard the onset of age-related diseases. Interestingly, this recent evidence is leading to promise of obtaining the same effects in humans and resulting in benefits for their health in old ages. In order to achieve this goal, different approaches have been used ranging from pharmacological targeting of ageing, basic biological assays, and big data analysis to the recent use of young blood, stem cells, cellular, genetic, and epigenetic reprogramming, or other techniques of regenerative medicine. However, only a little fraction of these approaches has the features for being tested in clinical applications. Here, new emerging molecules, drugs, and procedures will be described, by evidencing potential benefits and limitations.

  13. Evolutionary model with genetics, aging, and knowledge

    Science.gov (United States)

    Bustillos, Armando Ticona; de Oliveira, Paulo Murilo

    2004-02-01

    We represent a process of learning by using bit strings, where 1 bits represent the knowledge acquired by individuals. Two ways of learning are considered: individual learning by trial and error, and social learning by copying knowledge from other individuals or from parents in the case of species with parental care. The age-structured bit string allows us to study how knowledge is accumulated during life and its influence over the genetic pool of a population after many generations. We use the Penna model to represent the genetic inheritance of each individual. In order to study how the accumulated knowledge influences the survival process, we include it to help individuals to avoid the various death situations. Modifications in the Verhulst factor do not show any special feature due to its random nature. However, by adding years to life as a function of the accumulated knowledge, we observe an improvement of the survival rates while the genetic fitness of the population becomes worse. In this latter case, knowledge becomes more important in the last years of life where individuals are threatened by diseases. Effects of offspring overprotection and differences between individual and social learning can also be observed. Sexual selection as a function of knowledge shows some effects when fidelity is imposed.

  14. Genetic molecular analysis of Coffea arabica (Rubiaceae hybrids using SRAP markers

    Directory of Open Access Journals (Sweden)

    Manoj Kumar Mishra

    2011-06-01

    Full Text Available In Coffea arabica (arabica coffee, the phenotypic as well as genetic variability has been found low because of the narrow genetic basis and self fertile nature of the species. Because of high similarity in phenotypic appearance among the majority of arabica collections, selection of parental lines for inter-varietals hybridization and identification of resultant hybrids at an early stage of plant growth is difficult. DNA markers are known to be reliable in identifying closely related cultivars and hybrids. Sequence Related Amplified Polymorphism (SRAP is a new molecular marker technology developed based on PCR. In this paper, sixty arabica-hybrid progenies belonging to six crosses were analyzed using 31 highly polymorphic SRAP markers. The analysis revealed seven types of SRAP marker profiles which are useful in discriminating the parents and hybrids. The number of bands amplified per primer pair ranges from 6.13 to 8.58 with average number of seven bands. Among six hybrid combinations, percentage of bands shared between hybrids and their parents ranged from 66.29% to 85.71% with polymorphic bands varied from 27.64% to 60.0%. Percentage of hybrid specific fragments obtained in various hybrid combinations ranged from 0.71% to 10.86% and ascribed to the consequence of meiotic recombination. Based on the similarity index calculation, it was observed that F1 hybrids share maximum number of bands with the female parent compared to male parent. The results obtained in the present study revealed the effectiveness of SRAP technique in cultivar identification and hybrid analysis in this coffee species. Rev. Biol. Trop. 59 (2: 607-617. Epub 2011 June 01.

  15. Familial aggregation of age-related macular degeneration in the Utah population.

    Science.gov (United States)

    Luo, Ling; Harmon, Jennifer; Yang, Xian; Chen, Haoyu; Patel, Shrena; Mineau, Geraldine; Yang, Zhenglin; Constantine, Ryan; Buehler, Jeanette; Kaminoh, Yuuki; Ma, Xiang; Wong, Tien Y; Zhang, Maonian; Zhang, Kang

    2008-02-01

    We examined familial aggregation and risk of age-related macular degeneration in the Utah population using a population-based case-control study. Over one million unique patient records were searched within the University of Utah Health Sciences Center and the Utah Population Database (UPDB), identifying 4764 patients with AMD. Specialized kinship analysis software was used to test for familial aggregation of disease, estimate the magnitude of familial risks, and identify families at high risk for disease. The population-attributable risk (PAR) for AMD was calculated to be 0.34. Recurrence risks in relatives indicate increased relative risks in siblings (2.95), first cousins (1.29), second cousins (1.13), and parents (5.66) of affected cases. There were 16 extended large families with AMD identified for potential use in genetic studies. Each family had five or more living affected members. The familial aggregation of AMD shown in this study exemplifies the merit of the UPDB and supports recent research demonstrating significant genetic contribution to disease development and progression.

  16. Identification of single-copy orthologous genes between Physalis and Solanum lycopersicum and analysis of genetic diversity in Physalis using molecular markers.

    Science.gov (United States)

    Wei, Jingli; Hu, Xiaorong; Yang, Jingjing; Yang, Wencai

    2012-01-01

    The genus Physalis includes a number of commercially important edible and ornamental species. Its high nutritional value and potential medicinal properties leads to the increased commercial interest in the products of this genus worldwide. However, lack of molecular markers prevents the detailed study of genetics and phylogeny in Physalis, which limits the progress of breeding. In the present study, we compared the DNA sequences between Physalis and tomato, and attempted to analyze genetic diversity in Physalis using tomato markers. Blasting 23180 DNA sequences derived from Physalis against the International Tomato Annotation Group (ITAG) Release2.3 Predicted CDS (SL2.40) discovered 3356 single-copy orthologous genes between them. A total of 38 accessions from at least six species of Physalis were subjected to genetic diversity analysis using 97 tomato markers and 25 SSR markers derived from P. peruviana. Majority (73.2%) of tomato markers could amplify DNA fragments from at least one accession of Physalis. Diversity in Physalis at molecular level was also detected. The average Nei's genetic distance between accessions was 0.3806 with a range of 0.2865 to 0.7091. These results indicated Physalis and tomato had similarity at both molecular marker and DNA sequence levels. Therefore, the molecular markers developed in tomato can be used in genetic study in Physalis.

  17. Genetic causal beliefs about obesity, self-efficacy for weight control, and obesity-related behaviours in a middle-aged female cohort.

    Science.gov (United States)

    Knerr, Sarah; Bowen, Deborah J; Beresford, Shirley A A; Wang, Catharine

    2016-01-01

    Obesity is a heritable condition with well-established risk-reducing behaviours. Studies have shown that beliefs about the causes of obesity are associated with diet and exercise behaviour. Identifying mechanisms linking causal beliefs and behaviours is important for obesity prevention and control. Cross-sectional multi-level regression analyses of self-efficacy for weight control as a possible mediator of obesity attributions (diet, physical activity, genetic) and preventive behaviours in 487 non-Hispanic White women from South King County, Washington. Self-reported daily fruit and vegetable intake and weekly leisure-time physical activity. Diet causal beliefs were positively associated with fruit and vegetable intake, with self-efficacy for weight control partially accounting for this association. Self-efficacy for weight control also indirectly linked physical activity attributions and physical activity behaviour. Relationships between genetic causal beliefs, self-efficacy for weight control, and obesity-related behaviours differed by obesity status. Self-efficacy for weight control contributed to negative associations between genetic causal attributions and obesity-related behaviours in non-obese, but not obese, women. Self-efficacy is an important construct to include in studies of genetic causal beliefs and behavioural self-regulation. Theoretical and longitudinal work is needed to clarify the causal nature of these relationships and other mediating and moderating factors.

  18. Animal models of age related macular degeneration

    Science.gov (United States)

    Pennesi, Mark E.; Neuringer, Martha; Courtney, Robert J.

    2013-01-01

    Age related macular degeneration (AMD) is the leading cause of vision loss of those over the age of 65 in the industrialized world. The prevalence and need to develop effective treatments for AMD has lead to the development of multiple animal models. AMD is a complex and heterogeneous disease that involves the interaction of both genetic and environmental factors with the unique anatomy of the human macula. Models in mice, rats, rabbits, pigs and non-human primates have recreated many of the histological features of AMD and provided much insight into the underlying pathological mechanisms of this disease. In spite of the large number of models developed, no one model yet recapitulates all of the features of human AMD. However, these models have helped reveal the roles of chronic oxidative damage, inflammation and immune dysregulation, and lipid metabolism in the development of AMD. Models for induced choroidal neovascularization have served as the backbone for testing new therapies. This article will review the diversity of animal models that exist for AMD as well as their strengths and limitations. PMID:22705444

  19. Laboratory Information Systems in Molecular Diagnostics: Why Molecular Diagnostics Data are Different.

    Science.gov (United States)

    Lee, Roy E; Henricks, Walter H; Sirintrapun, Sahussapont J

    2016-03-01

    Molecular diagnostic testing presents new challenges to information management that are yet to be sufficiently addressed by currently available information systems for the molecular laboratory. These challenges relate to unique aspects of molecular genetic testing: molecular test ordering, informed consent issues, diverse specimen types that encompass the full breadth of specimens handled by traditional anatomic and clinical pathology information systems, data structures and data elements specific to molecular testing, varied testing workflows and protocols, diverse instrument outputs, unique needs and requirements of molecular test reporting, and nuances related to the dissemination of molecular pathology test reports. By satisfactorily addressing these needs in molecular test data management, a laboratory information system designed for the unique needs of molecular diagnostics presents a compelling reason to migrate away from the current paper and spreadsheet information management that many molecular laboratories currently use. This paper reviews the issues and challenges of information management in the molecular diagnostics laboratory.

  20. Molecular Insights into the Genetic Diversity of Hemarthria compressa Germplasm Collections Native to Southwest China

    Directory of Open Access Journals (Sweden)

    Zhi-Hui Guo

    2014-12-01

    Full Text Available Start codon targeted polymorphism (SCoT analysis was employed to distinguish 37 whipgrass (Hemarthria compressa L. clones and assess the genetic diversity and population structure among these genotypes. The informativeness of markers was also estimated using various parameters. Using 25 highly reproducible primer sets, 368 discernible fragments were generated. Of these, 282 (77.21% were polymorphic. The number of alleles per locus ranged from five to 21, and the genetic variation indices varied. The polymorphism information content (PIC was 0.358, the Shannon diversity index (H was 0.534, the marker index (MI was 4.040, the resolving power (RP was 6.108, and the genotype index (GI was 0.782. Genetic similarity coefficients (GS between the accessions ranged from 0.563 to 0.872, with a mean of 0.685. Their patterns observed in a dendrogram constructed using the unweighted pair group method with arithmetic mean analysis (UPGMA based on GS largely confirmed the results of principal coordinate analysis (PCoA. PCoA was further confirmed by Bayesian model-based STRUCTURE analysis, which revealed no direct association between genetic relationship and geographical origins as validated by Mantel’s test (r = 0.2268, p = 0.9999. In addition, high-level genetic variation within geographical groups was significantly greater than that between groups, as determined by Shannon diversity analysis, analysis of molecular variance (AMOVA and Bayesian analysis. Overall, SCoT analysis is a simple, effective and reliable technique for characterizing and maintaining germplasm collections of whipgrass and related species.

  1. Physical Activity and Telomere Biology: Exploring the Link with Aging-Related Disease Prevention

    Directory of Open Access Journals (Sweden)

    Andrew T. Ludlow

    2011-01-01

    Full Text Available Physical activity is associated with reduced risk of several age-related diseases as well as with increased longevity in both rodents and humans. Though these associations are well established, evidence of the molecular and cellular factors associated with reduced disease risk and increased longevity resulting from physical activity is sparse. A long-standing hypothesis of aging is the telomere hypothesis: as a cell divides, telomeres shorten resulting eventually in replicative senescence and an aged phenotype. Several reports have recently associated telomeres and telomere-related proteins to diseases associated with physical inactivity and aging including cardiovascular disease, insulin resistance, and hypertension. Interestingly several reports have also shown that longer telomeres are associated with higher physical activity levels, indicating a potential mechanistic link between physical activity, reduced age-related disease risk, and longevity. The primary purpose of this review is to discuss the potential importance of physical activity in telomere biology in the context of inactivity- and age-related diseases. A secondary purpose is to explore potential mechanisms and important avenues for future research in the field of telomeres and diseases associated with physical inactivity and aging.

  2. Advancing ecological understandings through technological transformations in noninvasive genetics.

    Science.gov (United States)

    Beja-Pereira, Albano; Oliveira, Rita; Alves, Paulo C; Schwartz, Michael K; Luikart, Gordon

    2009-09-01

    Noninvasive genetic approaches continue to improve studies in molecular ecology, conservation genetics and related disciplines such as forensics and epidemiology. Noninvasive sampling allows genetic studies without disturbing or even seeing the target individuals. Although noninvasive genetic sampling has been used for wildlife studies since the 1990s, technological advances continue to make noninvasive approaches among the most used and rapidly advancing areas in genetics. Here, we review recent advances in noninvasive genetics and how they allow us to address important research and management questions thanks to improved techniques for DNA extraction, preservation, amplification and data analysis. We show that many advances come from the fields of forensics, human health and domestic animal health science, and suggest that molecular ecologists explore literature from these fields. Finally, we discuss how the combination of advances in each step of a noninvasive genetics study, along with fruitful areas for future research, will continually increase the power and role of noninvasive genetics in molecular ecology and conservation genetics. © 2009 Blackwell Publishing Ltd.

  3. Age-Related Effects of the Apolipoprotein E Gene on Brain Function.

    Science.gov (United States)

    Matura, Silke; Prvulovic, David; Hartmann, Daniel; Scheibe, Monika; Sepanski, Beate; Butz, Marius; Oertel-Knöchel, Viola; Knöchel, Christian; Karakaya, Tarik; Fußer, Fabian; Hattingen, Elke; Pantel, Johannes

    2016-03-16

    The apolipoprotein E (ApoE) ɛ4 allele is a well-established genetic risk factor for sporadic Alzheimer's disease. Some evidence suggests a negative role of the ApoE ɛ4 allele for cognitive performance in late life, while beneficial effects on cognition have been shown in young age. We investigated age-related effects of the ApoE gene on brain function by assessing cognitive performance, as well as functional activation patterns during retrieval of Face-Name pairs in a group of young (n = 50; age 26.4±4.6 years, 25 ɛ4 carriers) and old (n = 40; age 66.1±7.0 years, 20 ɛ4 carriers) participants. A cross-sectional factorial design was used to examine the effects of age, ApoE genotype, and their interaction on both cognitive performance and the blood oxygenation level dependent (BOLD) brain response during retrieval of Face-Name pairs. While there were no genotype-related differences in cognitive performance, we found a significant interaction of age and ApoE genotype on task-related activation bilaterally in anterior cingulate gyrus and superior frontal gyrus, as well as left and right insula. Old age was associated with increased activity in ɛ4 carriers. The increased BOLD response in old ɛ4 carriers during retrieval could indicate a neurocognitive disadvantage associated with the ɛ4 allele with increasing age. Furthermore, recruitment of neuronal resources resulted in enhanced memory performance in young ɛ4 carriers, pointing to a better neurofunctional capacity associated with the ApoE4 genotype in young age.

  4. The genetic history of Ice Age Europe

    DEFF Research Database (Denmark)

    Fu, Qiaomei; Posth, Cosimo; Hajdinjak, Mateja

    2016-01-01

    Modern humans arrived in Europe ~45,000 years ago, but little is known about their genetic composition before the start of farming ~8,500 years ago. Here we analyse genome-wide data from 51 Eurasians from ~45,000–7,000 years ago. Over this time, the proportion of Neanderthal DNA decreased from 3–...... ~19,000 years ago. During the major warming period after ~14,000 years ago, a genetic component related to present-day Near Easterners became widespread in Europe. These results document how population turnover and migration have been recurring themes of European prehistory....

  5. Molecular epidemiology and evolutionary genetics of Mycobacterium tuberculosis in Taipei

    OpenAIRE

    Su Ih-Jen; Lee Shi-Yi; Tsai Wen-Shing; Sun Jun-Ren; Chang Jia-Ru; Lin Chih-Wei; Tseng Fan-Chen; Dou Horng-Yunn; Lu Jang-Jih

    2008-01-01

    Abstract Background The control of tuberculosis in densely populated cities is complicated by close human-to-human contacts and potential transmission of pathogens from multiple sources. We conducted a molecular epidemiologic analysis of 356 Mycobacterium tuberculosis (MTB) isolates from patients presenting pulmonary tuberculosis in metropolitan Taipei. Classical antibiogram studies and genetic characterization, using mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (M...

  6. Avoiding pitfalls in molecular genetic testing: case studies of high-resolution array comparative genomic hybridization testing in the definitive diagnosis of Mowat-Wilson syndrome.

    Science.gov (United States)

    Kluk, Michael Joseph; An, Yu; James, Philip; Coulter, David; Harris, David; Wu, Bai-Lin; Shen, Yiping

    2011-05-01

    The molecular testing options available for the diagnosis of genetic disorders are numerous and include a variety of different assay platforms. The consultative input of molecular pathologists and cytogeneticists, working closely with the ordering clinicians, is often important for definitive diagnosis. Herein, we describe two patients who had long histories of unexplained signs and symptoms with a high clinical suspicion of an underlying genetic etiology. Initial molecular testing in both cases was negative, but the application of high-resolution array comparative genomic hybridization technology lead to definitive diagnosis in both cases. We summarize the clinical findings and molecular testing in each case, discuss the differential diagnoses, and review the clinical and pathological findings of Mowat-Wilson syndrome. This report highlights the importance for those involved in molecular testing to know the nature of the underlying genetic abnormalities associated with the suspected diagnosis, to recognize the limitations of each testing platform, and to persistently pursue repeat testing using high-resolution technologies when indicated. This concept is applicable to both germline and somatic molecular genetic testing. Copyright © 2011 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  7. Genome-wide SNP-based linkage scan identifies a locus on 8q24 for an age-related hearing impairment trait

    DEFF Research Database (Denmark)

    Huyghe, J.R.; Laer, L. Van; Hendrickx, J.J.

    2008-01-01

    Age-related hearing impairment (ARHI), or presbycusis, is a very common multifactorial disorder. Despite the knowledge that genetics play an important role in the etiology of human ARHI as revealed by heritability studies, to date, its precise genetic determinants remain elusive. Here we report t...

  8. Protein Carbamylation: A Marker Reflecting Increased Age-Related Cell Oxidation

    Directory of Open Access Journals (Sweden)

    Julia Carracedo

    2018-05-01

    Full Text Available Carbamylation is a post-translational modification of proteins that may partake in the oxidative stress-associated cell damage, and its increment has been recently proposed as a “hallmark of aging”. The molecular mechanisms associated with aging are related to an increased release of free radicals. We have studied whether carbamylated proteins from the peripheral blood of healthy subjects are related to oxidative damage and aging, taking into account the gender and the immune profile of the subjects. The study was performed in healthy human volunteers. The detection of protein carbamylation and malondialdehyde (MDA levels was evaluated using commercial kits. The immune profile was calculated using parameters of immune cell function. The results show that the individuals from the elderly group (60–79 years old have increased carbamylated protein and MDA levels. When considered by gender, only men between 60 and 79 years old showed significantly increased carbamylated proteins and MDA levels. When those subjects were classified by their immune profile, the carbamylated protein levels were higher in those with an older immune profile. In conclusion, the carbamylation of proteins in peripheral blood is related to age-associated oxidative damage and to an aging functional immunological signature. Our results suggest that carbamylated proteins may play an important role at the cellular level in the aging process.

  9. Genetics of human hydrocephalus

    Science.gov (United States)

    Williams, Michael A.; Rigamonti, Daniele

    2006-01-01

    Human hydrocephalus is a common medical condition that is characterized by abnormalities in the flow or resorption of cerebrospinal fluid (CSF), resulting in ventricular dilatation. Human hydrocephalus can be classified into two clinical forms, congenital and acquired. Hydrocephalus is one of the complex and multifactorial neurological disorders. A growing body of evidence indicates that genetic factors play a major role in the pathogenesis of hydrocephalus. An understanding of the genetic components and mechanism of this complex disorder may offer us significant insights into the molecular etiology of impaired brain development and an accumulation of the cerebrospinal fluid in cerebral compartments during the pathogenesis of hydrocephalus. Genetic studies in animal models have started to open the way for understanding the underlying pathology of hydrocephalus. At least 43 mutants/loci linked to hereditary hydrocephalus have been identified in animal models and humans. Up to date, 9 genes associated with hydrocephalus have been identified in animal models. In contrast, only one such gene has been identified in humans. Most of known hydrocephalus gene products are the important cytokines, growth factors or related molecules in the cellular signal pathways during early brain development. The current molecular genetic evidence from animal models indicate that in the early development stage, impaired and abnormal brain development caused by abnormal cellular signaling and functioning, all these cellular and developmental events would eventually lead to the congenital hydrocephalus. Owing to our very primitive knowledge of the genetics and molecular pathogenesis of human hydrocephalus, it is difficult to evaluate whether data gained from animal models can be extrapolated to humans. Initiation of a large population genetics study in humans will certainly provide invaluable information about the molecular and cellular etiology and the developmental mechanisms of human

  10. The National Institute on Aging Genetics of Alzheimer’s Disease Data Storage Site (NIAGADS)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The National Institute on Aging Genetics of Alzheimer's Disease Data Storage Site (NIAGADS) is a national genetics data repository facilitating access to genotypic...

  11. [Noonan syndrome can be diagnosed clinically and through molecular genetic analyses].

    Science.gov (United States)

    Henningsen, Marie Krab; Jelsig, Anne Marie; Andersen, Helle; Brusgaard, Klaus; Ousager, Lilian Bomme; Hertz, Jens Michael

    2015-08-03

    Noonan syndrome is part of the group of RASopathies caused by germ line mutations in genes involved in the RAS/MAPK pathway. There is substantial phenotypic overlap among the RASopathies. Diagnosis of Noonan syndrome is often based on clinical features including dysmorphic facial features, short stature and congenital heart disease. Rapid advances in sequencing technology have made molecular genetic analyses a helpful tool in diagnosing and distinguishing Noonan syndrome from other RASopathies.

  12. Molecular and clinical profile of von Willebrand disease in Spain (PCM-EVW-ES): comprehensive genetic analysis by next-generation sequencing of 480 patients.

    Science.gov (United States)

    Borràs, Nina; Batlle, Javier; Pérez-Rodríguez, Almudena; López-Fernández, María Fernanda; Rodríguez-Trillo, Ángela; Lourés, Esther; Cid, Ana Rosa; Bonanad, Santiago; Cabrera, Noelia; Moret, Andrés; Parra, Rafael; Mingot-Castellano, María Eva; Balda, Ignacia; Altisent, Carme; Pérez-Montes, Rocío; Fisac, Rosa María; Iruín, Gemma; Herrero, Sonia; Soto, Inmaculada; de Rueda, Beatriz; Jiménez-Yuste, Víctor; Alonso, Nieves; Vilariño, Dolores; Arija, Olga; Campos, Rosa; Paloma, María José; Bermejo, Nuria; Berrueco, Rubén; Mateo, José; Arribalzaga, Karmele; Marco, Pascual; Palomo, Ángeles; Sarmiento, Lizheidy; Iñigo, Belén; Nieto, María Del Mar; Vidal, Rosa; Martínez, María Paz; Aguinaco, Reyes; César, Jesús María; Ferreiro, María; García-Frade, Javier; Rodríguez-Huerta, Ana María; Cuesta, Jorge; Rodríguez-González, Ramón; García-Candel, Faustino; Cornudella, Rosa; Aguilar, Carlos; Vidal, Francisco; Corrales, Irene

    2017-12-01

    Molecular diagnosis of patients with von Willebrand disease is pending in most populations due to the complexity and high cost of conventional molecular analyses. The need for molecular and clinical characterization of von Willebrand disease in Spain prompted the creation of a multicenter project (PCM-EVW-ES) that resulted in the largest prospective cohort study of patients with all types of von Willebrand disease. Molecular analysis of relevant regions of the VWF , including intronic and promoter regions, was achieved in the 556 individuals recruited via the development of a simple, innovative, relatively low-cost protocol based on microfluidic technology and next-generation sequencing. A total of 704 variants (237 different) were identified along VWF , 155 of which had not been previously recorded in the international mutation database. The potential pathogenic effect of these variants was assessed by in silico analysis. Furthermore, four short tandem repeats were analyzed in order to evaluate the ancestral origin of recurrent mutations. The outcome of genetic analysis allowed for the reclassification of 110 patients, identification of 37 asymptomatic carriers (important for genetic counseling) and re-inclusion of 43 patients previously excluded by phenotyping results. In total, 480 patients were definitively diagnosed. Candidate mutations were identified in all patients except 13 type 1 von Willebrand disease, yielding a high genotype-phenotype correlation. Our data reinforce the capital importance and usefulness of genetics in von Willebrand disease diagnostics. The progressive implementation of molecular study as the first-line test for routine diagnosis of this condition will lead to increasingly more personalized and effective care for this patient population. Copyright© 2017 Ferrata Storti Foundation.

  13. Brief Communication: Quantitative- and molecular-genetic differentiation in humans and chimpanzees: implications for the evolutionary processes underlying cranial diversification.

    Science.gov (United States)

    Weaver, Timothy D

    2014-08-01

    Estimates of the amount of genetic differentiation in humans among major geographic regions (e.g., Eastern Asia vs. Europe) from quantitative-genetic analyses of cranial measurements closely match those from classical- and molecular-genetic markers. Typically, among-region differences account for ∼10% of the total variation. This correspondence is generally interpreted as evidence for the importance of neutral evolutionary processes (e.g., genetic drift) in generating among-region differences in human cranial form, but it was initially surprising because human cranial diversity was frequently assumed to show a strong signature of natural selection. Is the human degree of similarity of cranial and DNA-sequence estimates of among-region genetic differentiation unusual? How do comparisons with other taxa illuminate the evolutionary processes underlying cranial diversification? Chimpanzees provide a useful starting point for placing the human results in a broader comparative context, because common chimpanzees (Pan troglodytes) and bonobos (Pan paniscus) are the extant species most closely related to humans. To address these questions, I used 27 cranial measurements collected on a sample of 861 humans and 263 chimpanzees to estimate the amount of genetic differentiation between pairs of groups (between regions for humans and between species or subspecies for chimpanzees). Consistent with previous results, the human cranial estimates are quite similar to published DNA-sequence estimates. In contrast, the chimpanzee cranial estimates are much smaller than published DNA-sequence estimates. It appears that cranial differentiation has been limited in chimpanzees relative to humans. © 2014 Wiley Periodicals, Inc.

  14. Molecular genetic diversity of Punica granatum L. (pomegranate) as revealed by microsatellite DNA markers

    Science.gov (United States)

    Pomegranate (Punica granatum L.) is one of the oldest known edible fruits and more and more it arouse interest of scientific community given its numerous biological activities. However, information about its genetic resources and characterization using reliable molecular markers are still scarce. In...

  15. Hypoxia-Inducible Histone Lysine Demethylases: Impact on the Aging Process and Age-Related Diseases

    Science.gov (United States)

    Salminen, Antero; Kaarniranta, Kai; Kauppinen, Anu

    2016-01-01

    Hypoxia is an environmental stress at high altitude and underground conditions but it is also present in many chronic age-related diseases, where blood flow into tissues is impaired. The oxygen-sensing system stimulates gene expression protecting tissues against hypoxic insults. Hypoxia stabilizes the expression of hypoxia-inducible transcription factor-1α (HIF-1α), which controls the expression of hundreds of survival genes related to e.g. enhanced energy metabolism and autophagy. Moreover, many stress-related signaling mechanisms, such as oxidative stress and energy metabolic disturbances, as well as the signaling cascades via ceramide, mTOR, NF-κB, and TGF-β pathways, can also induce the expression of HIF-1α protein to facilitate cell survival in normoxia. Hypoxia is linked to prominent epigenetic changes in chromatin landscape. Screening studies have indicated that the stabilization of HIF-1α increases the expression of distinct histone lysine demethylases (KDM). HIF-1α stimulates the expression of KDM3A, KDM4B, KDM4C, and KDM6B, which enhance gene transcription by demethylating H3K9 and H3K27 sites (repressive epigenetic marks). In addition, HIF-1α induces the expression of KDM2B and KDM5B, which repress transcription by demethylating H3K4me2,3 sites (activating marks). Hypoxia-inducible KDMs support locally the gene transcription induced by HIF-1α, although they can also control genome-wide chromatin landscape, especially KDMs which demethylate H3K9 and H3K27 sites. These epigenetic marks have important role in the control of heterochromatin segments and 3D folding of chromosomes, as well as the genetic loci regulating cell type commitment, proliferation, and cellular senescence, e.g. the INK4 box. A chronic stimulation of HIF-1α can provoke tissue fibrosis and cellular senescence, which both are increasingly present with aging and age-related diseases. We will review the regulation of HIF-1α-dependent induction of KDMs and clarify their role in

  16. Study of inter species diversity and population structure by molecular genetic method in Iranian Artemia

    OpenAIRE

    Hajirostamloo, Mahbobeh

    2005-01-01

    Artemia is a small crustacean that adapted to live in brine water and has been seen in different brine water sources in Iran. Considering the importance of genetic studies manifest inter population differences in species, to estimate genetic structure, detect difference at molecular level and separate different Artemia populations of Iran, also study of phylogenic relationships among them, samples of Artemia were collected from nine region: Urmia lake in West Azerbaijan, Sh...

  17. Red blood cells open promising avenues for longitudinal studies of ageing in laboratory, non-model and wild animals.

    Science.gov (United States)

    Stier, Antoine; Reichert, Sophie; Criscuolo, Francois; Bize, Pierre

    2015-11-01

    Ageing is characterized by a progressive deterioration of multiple physiological and molecular pathways, which impair organismal performance and increase risks of death with advancing age. Hence, ageing studies must identify physiological and molecular pathways that show signs of age-related deterioration, and test their association with the risk of death and longevity. This approach necessitates longitudinal sampling of the same individuals, and therefore requires a minimally invasive sampling technique that provides access to the larger spectrum of physiological and molecular pathways that are putatively associated with ageing. The present paper underlines the interest in using red blood cells (RBCs) as a promising target for longitudinal studies of ageing in vertebrates. RBCs provide valuable information on the following six pathways: cell maintenance and turnover (RBC number, size, and heterogeneity), glucose homeostasis (RBC glycated haemoglobin), oxidative stress parameters, membrane composition and integrity, mitochondrial functioning, and telomere dynamics. The last two pathways are specific to RBCs of non-mammalian species, which possess a nucleus and functional mitochondria. We present the current knowledge about RBCs and age-dependent changes in these pathways in non-model and wild species that are especially suitable to address questions related to ageing using longitudinal studies. We discuss how the different pathways relate with survival and lifespan and give information on their genetic and environmental determinants to appraise their evolutionary potential. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Physical Activity and Telomere Biology: Exploring the Link with Aging-Related Disease Prevention

    OpenAIRE

    Andrew T. Ludlow; Stephen M. Roth

    2011-01-01

    Physical activity is associated with reduced risk of several age-related diseases as well as with increased longevity in both rodents and humans. Though these associations are well established, evidence of the molecular and cellular factors associated with reduced disease risk and increased longevity resulting from physical activity is sparse. A long-standing hypothesis of aging is the telomere hypothesis: as a cell divides, telomeres shorten resulting eventually in replicative senescence and...

  19. Perda auditiva genética Genetic hearing loss

    Directory of Open Access Journals (Sweden)

    Ricardo Godinho

    2003-01-01

    Full Text Available O progresso das pesquisas relacionadas à perda auditiva genética tem provocado um importante avanço do entendimento dos mecanismos moleculares que governam o desenvolvimento, a função, a resposta ao trauma e o envelhecimento do ouvido interno. Em países desenvolvidos, mais de 50% dos casos de surdez na infância é causada por alterações genéticas e as perdas auditivas relacionadas à idade têm sido associadas com mecanismos genéticos. OBJETIVO: O objetivo desta revisão é relatar as informações mais recentes relacionadas às perdas audtivas de origem genética. FORAMA DE ESTUDO: Revisão sistemática. MATERIAL E MÉTODO: A revisão da literatura inclui artigos indexados à MEDLINE (Biblioteca Nacional de Saúde, NIH-USA e publicados nos últimos 3 anos, além das informações disponíveis na Hereditary Hearing Loss Home Page. CONCLUSÃO: Os recentes avanços no entendimento das perdas auditivas de origem genética têm favorecido a nossa compreensão da função auditiva e tornado o diagnóstico mais apurado. Possivelmente, no futuro, este conhecimento também proporcionará o desenvolvimento de novas terapias para o tratamento das causas genéticas das perdas auditivas.The progress in the research of genetic hearing loss has advanced our understanding of the molecular mechanisms that govern inner ear development, function and response to injury and aging. In the developed world, over 50% of childhood deafness is attributable to genetic causes and even age-related hearing loss has been associated with genetic mechanisms. AIM: The objective of this review is to summarize recent knowledge in genetic hearing loss. STUDY DESIGN: Sistematic review. MATERIAL AND METHODS: The literature review included articles indexed at MEDLINE (The National Library of Medicine, The National Institute of Health - USA focusing on publications from the past 3 years plus the information available at the Hereditary Hearing Loss Home Page. CONCLUSION

  20. Degeneração macular relacionada à idade: novas perspectivas Age-related macular degeneration: new perspectives

    Directory of Open Access Journals (Sweden)

    Marcio Bittar Nehemy

    2006-12-01

    Full Text Available A degeneração macular relacionada à idade (DMRI é a principal causa de cegueira legal em indivíduos acima de 50 anos de idade. Embora estudos recentes tenham mostrado que o fator genético é significativo, a patogênese da degeneração macular relacionada à idade permanece obscura, e os fatores de risco não estão ainda completamente estabelecidos. Estudos multicêntricos randomizados, publicados nos últimos anos, demonstraram que uma combinação de vitaminas e minerais é eficaz na redução do risco de desenvolvimento de neovascularização e de progressão para os estágios mais avançados da degeneração macular relacionada à idade. De maneira análoga, a terapia fotodinâmica (PDT e a terapia antiangiogênica também tiveram sua eficácia comprovada no tratamento de membrana neovascular coroideana subfoveal associada à degeneração macular relacionada à idade. Ambas reduzem o risco de perda de visão e, eventualmente, permitem melhora temporária da acuidade visual. Outras modalidades de tratamento, tais como fotocoagulação a laser, remoção cirúrgica da membrana e termoterapia transpupilar (TTT, podem beneficiar apenas um pequeno subgrupo de pacientes. Uma melhor compreensão dos mecanismos fisiopatológicos e dos eventos moleculares nas diversas fases da doença deverão propiciar, em futuro próximo, melhores estratégias para o controle e tratamento da degeneração macular relacionada à idade.Age-related macular degeneration (ARMD is a major source of legal blindness in individuals older than 50 years. Even though recent reports suggest that genetics plays an important role, its pathogenesis remains puzzling and the risk factors for its occurrence are not completely established. Vitamin and mineral supplementation reduced the risk of development of choroidal neovascularization (CNV or progression to the most advanced stages of age-related macular degeneration. Photodynamic therapy (PDT and antiangiogenic therapy

  1. Age-related changes in tree growth and physiology

    Science.gov (United States)

    Andrew Groover

    2017-01-01

    Trees pass through specific developmental phases as they age, including juvenile to adult, and vegetative to reproductive phases. The timing of these transitions is regulated genetically but is also highly influenced by the environment. Tree species have evolved different strategies and life histories that affect how they age – for example some pioneer species are fast...

  2. Tet2 Rescues Age-Related Regenerative Decline and Enhances Cognitive Function in the Adult Mouse Brain

    Directory of Open Access Journals (Sweden)

    Geraldine Gontier

    2018-02-01

    Full Text Available Restoring adult stem cell function provides an exciting approach for rejuvenating the aging brain. However, molecular mechanisms mediating neurogenic rejuvenation remain elusive. Here we report that the enzyme ten eleven translocation methylcytosine dioxygenase 2 (Tet2, which catalyzes the production of 5-hydroxymethylcytosine (5hmC, rescues age-related decline in adult neurogenesis and enhances cognition in mice. We detected a decrease in Tet2 expression and 5hmC levels in the aged hippocampus associated with adult neurogenesis. Mimicking an aged condition in young adults by abrogating Tet2 expression within the hippocampal neurogenic niche, or adult neural stem cells, decreased neurogenesis and impaired learning and memory. In a heterochronic parabiosis rejuvenation model, hippocampal Tet2 expression was restored. Overexpressing Tet2 in the hippocampal neurogenic niche of mature adults increased 5hmC associated with neurogenic processes, offset the precipitous age-related decline in neurogenesis, and enhanced learning and memory. Our data identify Tet2 as a key molecular mediator of neurogenic rejuvenation.

  3. Genetic effects on information processing speed are moderated by age--converging results from three samples.

    Science.gov (United States)

    Ising, M; Mather, K A; Zimmermann, P; Brückl, T; Höhne, N; Heck, A; Schenk, L A; Rujescu, D; Armstrong, N J; Sachdev, P S; Reppermund, S

    2014-06-01

    Information processing is a cognitive trait forming the basis of complex abilities like executive function. The Trail Making Test (TMT) is a well-established test of information processing with moderate to high heritability. Age of the individual also plays an important role. A number of genetic association studies with the TMT have been performed, which, however, did not consider age as a moderating factor. We report the results of genome-wide association studies (GWASs) on age-independent and age-dependent TMT performance in two population-representative community samples (Munich Antidepressant Response Signature, MARS: N1 = 540; Ludwig Maximilians University, LMU: N2 = 350). Age-dependent genome-wide findings were then evaluated in a third sample of healthy elderly subjects (Sydney Memory and Ageing Study, Sydney MAS: N3 = 448). While a meta-analysis on the GWAS findings did not reveal age-independent TMT associations withstanding correction for multiple testing, we found a genome-wide significant age-moderated effect between variants in the DSG1 gene region and TMT-A performance predominantly reflecting visual processing speed (rs2199301, P(meta-analysis) = 1.3 × 10(-7)). The direction of the interaction suggests for the minor allele a beneficial effect in younger adults turning into a detrimental effect in older adults. The detrimental effect of the missense single nucleotide polymorphism rs1426310 within the same DSG1 gene region could be replicated in Sydney MAS participants aged 70-79, but not in those aged 80 years and older, presumably a result of survivor bias. Our findings demonstrate opposing effects of DSG1 variants on information processing speed depending on age, which might be related to the complex processes that DSG1 is involved with, including cell adhesion and apoptosis. © 2014 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  4. Age-related hearing loss

    Science.gov (United States)

    ... grow older. Your genes and loud noise (from rock concerts or music headphones) may play a large role. The following factors contribute to age-related hearing loss: Family history (age-related hearing loss tends to run in ...

  5. Implication of Gastric Cancer Molecular Genetic Markers in Surgical Practice.

    Science.gov (United States)

    Nemtsova, Marina V; Strelnikov, Vladimir V; Tanas, Alexander S; Bykov, Igor I; Zaletaev, Dmitry V; Rudenko, Viktoria V; Glukhov, Alexander I; Kchorobrich, Tatiana V; Li, Yi; Tarasov, Vadim V; Barreto, George E; Aliev, Gjumrakch

    2017-10-01

    We have investigated aberrant methylation of genes CDH1, RASSF1A, MLH1, N33, DAPK, expression of genes hTERT, MMP7, MMP9, BIRC5 (survivin), PTGS2, and activity of telomerase of 106 gastric tumor samples obtained intra-operatively and 53 gastric tumor samples from the same group of patients obtained endoscopically before surgery. Biopsy specimens obtained from 50 patients with chronic calculous cholecystitis were used as a control group. Together with tissue samples obtained from different sites remote to tumors, a total of 727 samples have been studied. The selected parameters comprise a system of molecular markers that can be used in both diagnostics of gastric cancer and in dynamic monitoring of patients after surgery. Special attention was paid to the use of molecular markers for the diagnostics of malignant process in the material obtained endoscopically since the efficacy of morphological diagnostics in biopsies is compromised by intratumoral heterogeneity, which may prevent reliable identification of tumor cells in the sampling. Our data indicated that certain molecular genetic events provided more sensitive yet specific markers of the tumor. We demonstrated that molecular profiles detected in preoperative biopsies were confirmed by the material obtained intra-operatively. The use of endoscopic material facilitates gastric tumors pre-operative diagnostics, improving early detection of gastric cancer and potential effective treatment strategies.

  6. Molecular genetic analysis of phosphomannomutase genes in Triticum monococcum

    Institute of Scientific and Technical Information of China (English)

    Chunmei; Yu; Xinyan; Liu; Qian; Zhang; Xinyu; He; Wan; Huai; Baohua; Wang; Yunying; Cao; Rong; Zhou

    2015-01-01

    In higher plants, phosphomannomutase(PMM) is essential for synthesizing the antioxidant ascorbic acid through the Smirnoff–Wheeler pathway. Previously, we characterized six PMM genes(Ta PMM-A1, A2, B1, B2, D1 and D2) in common wheat(Triticum aestivum, AABBDD).Here, we report a molecular genetic analysis of PMM genes in Triticum monococcum(AmAm), a diploid wheat species whose Amgenome is closely related to the A genome of common wheat. Two distinct PMM genes, Tm PMM-1 and Tm PMM-2, were found in T. monococcum. The coding region of Tm PMM-1 was intact and highly conserved. In contrast, two main Tm PMM-2 alleles were identified, with Tm PMM-2a possessing an intact coding sequence and Tm PMM-2b being a pseudogene. The transcript level of Tm PMM-2a was much higher than that of Tm PMM-2b, and a bacterially expressed Tm PMM-2a recombinant protein displayed relatively high PMM activity. In general, the total transcript level of PMM was substantially higher in accessions carrying Tm PMM-1 and Tm PMM-2a than those harboring Tm PMM-1 and Tm PMM-2b. However, total PMM protein and activity levels did not differ drastically between the two genotypes. This work provides new information on PMM genes in T. monococcum and expands our understanding on Triticeae PMM genes, which may aid further functional and applied studies of PMM in crop plants.

  7. Molecular mechanisms of drug resistance in natural Leishmania populations vary with genetic background.

    Directory of Open Access Journals (Sweden)

    Saskia Decuypere

    Full Text Available The evolution of drug-resistance in pathogens is a major global health threat. Elucidating the molecular basis of pathogen drug-resistance has been the focus of many studies but rarely is it known whether a drug-resistance mechanism identified is universal for the studied pathogen; it has seldom been clarified whether drug-resistance mechanisms vary with the pathogen's genotype. Nevertheless this is of critical importance in gaining an understanding of the complexity of this global threat and in underpinning epidemiological surveillance of pathogen drug resistance in the field. This study aimed to assess the molecular and phenotypic heterogeneity that emerges in natural parasite populations under drug treatment pressure. We studied lines of the protozoan parasite Leishmania (L. donovani with differential susceptibility to antimonial drugs; the lines being derived from clinical isolates belonging to two distinct genetic populations that circulate in the leishmaniasis endemic region of Nepal. Parasite pathways known to be affected by antimonial drugs were characterised on five experimental levels in the lines of the two populations. Characterisation of DNA sequence, gene expression, protein expression and thiol levels revealed a number of molecular features that mark antimonial-resistant parasites in only one of the two populations studied. A final series of in vitro stress phenotyping experiments confirmed this heterogeneity amongst drug-resistant parasites from the two populations. These data provide evidence that the molecular changes associated with antimonial-resistance in natural Leishmania populations depend on the genetic background of the Leishmania population, which has resulted in a divergent set of resistance markers in the Leishmania populations. This heterogeneity of parasite adaptations provides severe challenges for the control of drug resistance in the field and the design of molecular surveillance tools for widespread

  8. Molecular genetic approach for screening of hereditary non-polyposis colorectal cancer

    Directory of Open Access Journals (Sweden)

    Metka Ravnik-Glavač

    2005-07-01

    Full Text Available Background: The main goal of knowledge concerning human diseases is to transfer as much as possible useful information into clinical applications. Hereditary non-polyposis colorectal cancer (HNPCC is the most common autosomal dominant inherited predisposition for colorectal cancer, accounting for 1–2% of all bowel cancer. The only way to diagnose HNPCC is by a family history consistent with the disease defined by International Collaborative Group on HNPCC (Amsterdam criteria I and II. The main molecular cause of HNPCC is a constitutional mutation in one of the mismatch repair (MMR genes. Since HNPCC mutations have been detected also in families that did not fulfil the Amsterdam criteria, molecular genetic characteristics of HNPCC cancers have been proposed as valuable first step in HNPCC identification. Microsatellite instability is present in about 90% of cancers of HNPCC patients. However, of all MSI colorectal cancers 80– 90% are sporadic. Several molecular mechanisms have been uncovered that enable distinguishing to some extent between sporadic and HNPCC cancers with MSI including hypermethylation of hMLH1 promoter and frequent mutations in BAX and TGFBR2 in sporadic CRC with MSI-H.Conclusions: The determination of MSI status and careful separation of MSI positive colorectal cancer into sporadic MSIL, sporadic MSI-H, and HNPCC MSI-H followed by mutation detection in MMR genes is important for prevention, screening and management of colorectal cancer. In some studies we and others have already shown that large-scale molecular genetic analysis for HNPCC can be done and is sensitive enough to approve population screening. Population screening includes also colonoscopy which is restricted only to the obligate carriers of the mutation. This enables that the disease is detected in earlier stages which would greatly decrease medical treatment costs and most importantly decrease mortality. In Slovenia we have started population screening based

  9. Age-Based Differences in the Genetic Determinants of Glycemic Control: A Case of FOXO3 Variations.

    Directory of Open Access Journals (Sweden)

    Liang Sun

    Full Text Available Glucose homeostasis is a trait of healthy ageing and is crucial to the elderly, but less consideration has been given to the age composition in most studies involving genetics and hyperglycemia.Seven variants in FOXO3 were genotyped in three cohorts (n = 2037; LLI, MI_S and MI_N; mean age: 92.5 ± 3.6, 45.9 ± 8.2 and 46.8 ± 10.3, respectively to compare the contribution of FOXO3 to fasting hyperglycemia (FH between long-lived individuals (LLI, aged over 90 years and middle-aged subjects (aged from 35-65 years.A different genetic predisposition of FOXO3 alleles to FH was observed between LLI and both of two middle-aged cohorts. In the LLI cohort, the longevity beneficial alleles of three variants with the haplotype "AGGC" in block 1 were significantly protective to FH, fasting glucose, hemoglobin A1C and HOMA-IR. Notably, combining multifactor dimensionality reduction and logistic regression, we identified a significant 3-factor interaction model (rs2802288, rs2802292 and moderate physical activity associated with lower FH risk. However, not all of the findings were replicated in the two middle-aged cohorts.Our data provides a novel insight into the inconsistent genetic determinants between middle-aged and LLI subjects. FOXO3 might act as a shared genetic predisposition to hyperglycemia and lifespan.

  10. Age-Based Differences in the Genetic Determinants of Glycemic Control: A Case of FOXO3 Variations.

    Science.gov (United States)

    Sun, Liang; Hu, Caiyou; Qian, Yu; Zheng, Chenguang; Liang, Qinghua; Lv, Zeping; Huang, Zezhi; Qi, Keyan; Huang, Jin; Zhou, Qin; Yang, Ze

    2015-01-01

    Glucose homeostasis is a trait of healthy ageing and is crucial to the elderly, but less consideration has been given to the age composition in most studies involving genetics and hyperglycemia. Seven variants in FOXO3 were genotyped in three cohorts (n = 2037; LLI, MI_S and MI_N; mean age: 92.5 ± 3.6, 45.9 ± 8.2 and 46.8 ± 10.3, respectively) to compare the contribution of FOXO3 to fasting hyperglycemia (FH) between long-lived individuals (LLI, aged over 90 years) and middle-aged subjects (aged from 35-65 years). A different genetic predisposition of FOXO3 alleles to FH was observed between LLI and both of two middle-aged cohorts. In the LLI cohort, the longevity beneficial alleles of three variants with the haplotype "AGGC" in block 1 were significantly protective to FH, fasting glucose, hemoglobin A1C and HOMA-IR. Notably, combining multifactor dimensionality reduction and logistic regression, we identified a significant 3-factor interaction model (rs2802288, rs2802292 and moderate physical activity) associated with lower FH risk. However, not all of the findings were replicated in the two middle-aged cohorts. Our data provides a novel insight into the inconsistent genetic determinants between middle-aged and LLI subjects. FOXO3 might act as a shared genetic predisposition to hyperglycemia and lifespan.

  11. Identification of single-copy orthologous genes between Physalis and Solanum lycopersicum and analysis of genetic diversity in Physalis using molecular markers.

    Directory of Open Access Journals (Sweden)

    Jingli Wei

    Full Text Available The genus Physalis includes a number of commercially important edible and ornamental species. Its high nutritional value and potential medicinal properties leads to the increased commercial interest in the products of this genus worldwide. However, lack of molecular markers prevents the detailed study of genetics and phylogeny in Physalis, which limits the progress of breeding. In the present study, we compared the DNA sequences between Physalis and tomato, and attempted to analyze genetic diversity in Physalis using tomato markers. Blasting 23180 DNA sequences derived from Physalis against the International Tomato Annotation Group (ITAG Release2.3 Predicted CDS (SL2.40 discovered 3356 single-copy orthologous genes between them. A total of 38 accessions from at least six species of Physalis were subjected to genetic diversity analysis using 97 tomato markers and 25 SSR markers derived from P. peruviana. Majority (73.2% of tomato markers could amplify DNA fragments from at least one accession of Physalis. Diversity in Physalis at molecular level was also detected. The average Nei's genetic distance between accessions was 0.3806 with a range of 0.2865 to 0.7091. These results indicated Physalis and tomato had similarity at both molecular marker and DNA sequence levels. Therefore, the molecular markers developed in tomato can be used in genetic study in Physalis.

  12. Biochemical and molecular genetic studies on some cyanobacterial isolates

    International Nuclear Information System (INIS)

    Kamal, E.A.R.; Ebrahim, S.A.A.

    2011-01-01

    In the present study, the isolation and purification of a set of Cyanobacteria strains belonging to genus Oscillatoria was undertaken, followed by the analyses of phylogenetic relationships using different biochemical and molecular genetic techniques (SOS-PAGE and RAPO-PCR). A total of 45 protein bands were observed within the studied Osci/latoria isolates by SOS-PAGE (only three unique bands, eight monomorphic bands and 37 polymorphic bands). On the other hand, extracted ONA from isolates was used to identify the molecular fingerprints. A sum of 94 polymorphic bands was generated by these primers in the Ocsi/laloria genotypes under study. A total of 20 unique bands were identified out of the polymorphic ones. These unique bands were used to discriminate among the studied Ocsi/latoria isolates. Most isolates of Ocsi/latoria genotypes were discriminated by one or more unique bands. Numerical taxonomic using 45 protein attributes of 19 isolates and RAPO markers on five isolates. Two methods -Clustering (UPGMA) and Principal Component Analysis (PCA) were used for these analyses. The similarities and clusters produced between the studied isolates were discussed.

  13. Biochemical and molecular genetic studies on some cyanobacterial isolates

    Energy Technology Data Exchange (ETDEWEB)

    Kamal, E A.R. [Umm Al-Qura University, Makkah (Saudi Arabia). Dept. of Biology; Ebrahim, S A.A. [Ain Sham University, Cairo (Egypt). Dept. of Cytogenetic

    2011-11-15

    In the present study, the isolation and purification of a set of Cyanobacteria strains belonging to genus Oscillatoria was undertaken, followed by the analyses of phylogenetic relationships using different biochemical and molecular genetic techniques (SOS-PAGE and RAPO-PCR). A total of 45 protein bands were observed within the studied Osci/latoria isolates by SOS-PAGE (only three unique bands, eight monomorphic bands and 37 polymorphic bands). On the other hand, extracted ONA from isolates was used to identify the molecular fingerprints. A sum of 94 polymorphic bands was generated by these primers in the Ocsi/laloria genotypes under study. A total of 20 unique bands were identified out of the polymorphic ones. These unique bands were used to discriminate among the studied Ocsi/latoria isolates. Most isolates of Ocsi/latoria genotypes were discriminated by one or more unique bands. Numerical taxonomic using 45 protein attributes of 19 isolates and RAPO markers on five isolates. Two methods -Clustering (UPGMA) and Principal Component Analysis (PCA) were used for these analyses. The similarities and clusters produced between the studied isolates were discussed.

  14. Base excision repair, aging and health span

    Czech Academy of Sciences Publication Activity Database

    Xu, G.; Herzig, M.; Rotrekl, Vladimír; Walter, Ch. A.

    2008-01-01

    Roč. 129, 7-8 (2008), s. 366-382 ISSN 0047-6374 Institutional research plan: CEZ:AV0Z50390512 Keywords : base excision repair * aging * DNA damage Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.915, year: 2008

  15. Association of Aging-Related Endophenotypes With Mortality in 2 Cohort Studies: the Long Life Family Study and the Health, Aging and Body Composition Study.

    Science.gov (United States)

    Singh, Jatinder; Schupf, Nicole; Boudreau, Robert; Matteini, Amy M; Prasad, Tanushree; Newman, Anne B; Liu, YongMei; Christensen, Kaare; Kammerer, Candace M

    2015-12-01

    One method by which to identify fundamental biological processes that may contribute to age-related disease and disability, instead of disease-specific processes, is to construct endophenotypes comprising linear combinations of physiological measures. Applying factor analyses methods to phenotypic data (2006-2009) on 28 traits representing 5 domains (cognitive, cardiovascular, metabolic, physical, and pulmonary) from 4,472 US and Danish individuals in 574 pedigrees from the Long Life Family Study (United States and Denmark), we constructed endophenotypes and assessed their relationship with mortality. The most dominant endophenotype primarily reflected the physical activity and pulmonary domains, was heritable, was significantly associated with mortality, and attenuated the association of age with mortality by 24.1%. Using data (1997-1998) on 1,794 Health, Aging and Body Composition Study participants from Memphis, Tennessee, and Pittsburgh, Pennsylvania, we obtained strikingly similar endophenotypes and relationships to mortality. We also reproduced the endophenotype constructs, especially the dominant physical activity and pulmonary endophenotype, within demographic subpopulations of these 2 cohorts. Thus, this endophenotype construct may represent an underlying phenotype related to aging. Additional genetic studies of this endophenotype may help identify genetic variants or networks that contribute to the aging process. © The Author 2015. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Task Group 7B: Cellular and Molecular Mechanisms of Biological Aging: The Roles of Nature, Nurture and Chance in the Maintenance of Human Healthspan

    Energy Technology Data Exchange (ETDEWEB)

    Weier, Heinz-Ulrich; Arya, Suresh; Grant, Christine; Miller, Linda; Ono, Santa Jeremy; Patil, Chris; Shay, Jerry; Topol, Eric; Torry, Michael; Weier, Heinz-Ulrich G.; Tse, Iris; Lin, Su-Ju; Miller, Richard

    2007-11-14

    The degree to which an individual organism maintains healthspan and lifespan is a function of complex interactions between genetic inheritance ('nature'), environment, including cultural inheritance (nurture) and stochastic events ('luck' or 'chance'). This task group will focus upon the role of chance because it is so poorly understood and because it appears to be of major importance in the determination of individual variations in healthspan and lifespan within species. The major factor determining variations in healthspan and lifespan between species is genetic inheritance. Broader aspects of cellular and molecular mechanisms of biological aging will also be considered, given their importance for understanding the cellular and molecular basis of successful aging. The task force will consider the cellular and molecular basis for nature, nurture and chance in healthspan and life span determination. On the basis of comparisons between identical and non-identical twins, geneticists have estimated that genes control no more than about a quarter of the inter-individual differences in lifespan (Herskind 1996). Twin studies of very old individuals, however, show substantially greater genetic contributions to Healthspan (McClearn 2004; Reed 2003). The environment clearly plays an important role in the length and the quality of life. Tobacco smoke, for example has the potential to impact upon multiple body systems in ways that appear to accelerate the rates at which those systems age (Bernhard 2007). To document the role of chance events on aging, one must rigorously control both the genetic composition of an organism and its environment. This has been done to a remarkable degree in a species of nematodes, Caenorhabditis elegans (Vanfleteren 1998). The results confirm hundreds of previous studies with a wide range of species, especially those with inbred rodents housed under apparently identical but less well controlled environments. One

  17. DNA-Related Pathways Defective in Human Premature Aging

    OpenAIRE

    Bohr, Vilhelm A.

    2002-01-01

    One of the major issues in studies on aging is the choice of biological model system. The human premature aging disorders represent excellent model systems for the study of the normal aging process, which occurs at a much earlier stage in life in these individuals than in normals. The patients with premature aging also get the age associated diseases at an early stage in life, and thus age associated disease can be studied as well. It is thus of great interest to understand the molecular path...

  18. Effect of Bcl-2 rs956572 polymorphism on age-related gray matter volume changes.

    Directory of Open Access Journals (Sweden)

    Mu-En Liu

    Full Text Available The anti-apoptotic protein B-cell CLL/lymphoma 2 (Bcl-2 gene is a major regulator of neural plasticity and cellular resilience. Recently, the Bcl-2 rs956572 single nucleotide polymorphism was proposed to be a functional allelic variant that modulates cellular vulnerability to apoptosis. Our cross-sectional study investigated the genetic effect of this Bcl-2 polymorphism on age-related decreases in gray matter (GM volume across the adult lifespan. Our sample comprised 330 healthy volunteers (191 male, 139 female with a mean age of 56.2±22.0 years (range: 21-92. Magnetic resonance imaging and genotyping of the Bcl-2 rs956572 were performed for each participant. The differences in regional GM volumes between G homozygotes and A-allele carriers were tested using optimized voxel-based morphometry. The association between the Bcl-2 rs956572 polymorphism and age was a predictor of regional GM volumes in the right cerebellum, bilateral lingual gyrus, right middle temporal gyrus, and right parahippocampal gyrus. We found that the volume of these five regions decreased with increasing age (all P<.001. Moreover, the downward slope was steeper among the Bcl-2 rs956572 A-allele carriers than in the G-homozygous participants. Our data provide convergent evidence for the genetic effect of the Bcl-2 functional allelic variant in brain aging. The rs956572 G-allele, which is associated with significantly higher Bcl-2 protein expression and diminished cellular sensitivity to stress-induced apoptosis, conferred a protective effect against age-related changes in brain GM volume, particularly in the cerebellum.

  19. Molecular Epidemiology and Genomics of Group A Streptococcus

    Science.gov (United States)

    Bessen, Debra E.; McShan, W. Michael; Nguyen, Scott V.; Shetty, Amol; Agrawal, Sonia; Tettelin, Hervé

    2014-01-01

    Streptococcus pyogenes (group A streptococcus; GAS) is a strict human pathogen with a very high prevalence worldwide. This review highlights the genetic organization of the species and the important ecological considerations that impact its evolution. Recent advances are presented on the topics of molecular epidemiology, population biology, molecular basis for genetic change, genome structure and genetic flux, phylogenomics and closely related streptococcal species, and the long- and short-term evolution of GAS. The application of whole genome sequence data to addressing key biological questions is discussed. PMID:25460818

  20. Scarlet Fever Upsurge in England and Molecular-Genetic Analysis in North-West London, 2014

    Centers for Disease Control (CDC) Podcasts

    2016-08-16

    Sarah Gregory reads an abridged version of the article, Scarlet Fever Upsurge in England and Molecular-Genetic Analysis in North-West London, 2014.  Created: 8/16/2016 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 8/16/2016.

  1. Health-related direct-to-consumer genetic testing: a review of companies' policies with regard to genetic testing in minors.

    Science.gov (United States)

    Borry, Pascal; Howard, Heidi C; Sénécal, Karine; Avard, Denise

    2010-03-01

    More and more companies are advertising and selling genetic tests directly to consumers. Considering the ethical, legal, and psychological concerns surrounding genetic testing in minors, a study of companies' websites was performed in order to describe and analyze their policies with respect to this issue. Of the 29 companies analyzed, 13 did not provide any information about this matter, eight companies allowed genetic testing upon parental request, four companies stated that their website is not directed to children under 18 years, and four companies suggested that in order to be tested, applicants should have reached the age of legal majority. If private companies offer genetic tests which are also offered in a clinical setting, can they be expected to adhere to the existing clinical guidelines with regard to these tests? If so, a certain ambiguity exists. Many companies are emphasizing in their disclaimers that their services are not medical services and should not be used as a basis for making medical decisions. Nonetheless, it remains debatable whether genetic testing in minors would be appropriate in this context. In line with the Advisory Committee on Genetic Testing, the Human Genetics Commission addressed the problem of non-consensual testing and recommended not to supply genetic testing services directly to those under the age of 16 or to those not able to make a competent decision regarding testing.

  2. Genética, biologia molecular e ética: as relações trabalho e saúde Genetics, molecular biology and ethics: work and health connections

    Directory of Open Access Journals (Sweden)

    Gilka Jorge Figaro Gattás

    2002-01-01

    Full Text Available O artigo discute o impacto dos avanços da genética e da biologia molecular sobre a prática em saúde ocupacional. O conhecimento atual sobre o genoma humano permite, em certas circunstâncias, identificar fatores individuais de suscetibilidade a doenças em situações de exposição a substâncias químicas ou físicas, ou ainda, a doenças genéticas de manifestação tardia. Estudos epidemiológicos incorporando elementos da genética e da biologia molecular têm sido desenhados para avaliar a interação de variantes metabólicas e exposições ambientais no risco de ocorrência de diferentes doenças. Apesar desta perspectiva, considera-se que as pesquisas nesta área são ainda incipientes. A estratégia para a redução dos danos causados à saúde do trabalhador deve continuar a ter como base, prioritariamente, a modificação e a adequação dos ambientes de trabalho e não a especificação genética da força de trabalho. Introduzir a discussão sobre a necessidade de definir princípios de responsabilidade social no uso de informações genéticas e que possam reger ações éticas em saúde do trabalhador é uma das propostas principais deste artigo.This paper provides a discussion about the increasing development of genetics and molecular biomarkers technologies and consequent impact on practices of occupational health. Genetic analysis could be in specific populations at occupational, pharmacological or environmental exposures. Current knowledge of human genome open up the possibility of individual genetic screening of disease susceptibility among those exposed in workplaces to chemical or physical hazards, or for late onset hereditary disease. Epidemiological studies including genetic and molecular biology approaches have been designed to evaluate the interaction of genetically determined metabolic variants with different environmental exposures on the risk of diseases. The strategy for worker's health promotion must be

  3. Characteristics of genetics-related news content in Black weekly newspapers.

    Science.gov (United States)

    Caburnay, C A; Babb, P; Kaphingst, K A; Roberts, J; Rath, S

    2014-01-01

    BACKGROUND/AIMS/OBJECTIVES: The media are an important source of health information, especially for those with less access to regular health care. Black news outlets such as Black newspapers are a source of health information for African Americans. This study characterized media coverage of genetics-related information in Black weekly newspapers and general audience newspapers from the same communities. All health stories in a sample of 24 Black weekly newspapers and 12 general audience newspapers from January 2004 to December 2007 were reviewed for genetics-related stories. These stories were further coded for both journalistic and public health variables. Of all health-related stories identified, only 2% (n = 357) were considered genetics related. Genetics-related stories in Black newspapers - compared to those in general audience newspapers - were larger, more locally and racially relevant, and more likely to contain recommendations or action steps to improve health or reduce disease risks and to mention the importance of knowing one's family history. Stories in general audience newspapers were more likely to discuss causes of disease, mention genetic testing or therapy, and suggest a high/moderate degree of genetic determinism. Black newspapers are a viable communication channel to disseminate findings and implications of human genome research to African American audiences.

  4. Synthetic biology and molecular genetics in non-conventional yeasts: Current tools and future advances.

    Science.gov (United States)

    Wagner, James M; Alper, Hal S

    2016-04-01

    Coupling the tools of synthetic biology with traditional molecular genetic techniques can enable the rapid prototyping and optimization of yeast strains. While the era of yeast synthetic biology began in the well-characterized model organism Saccharomyces cerevisiae, it is swiftly expanding to include non-conventional yeast production systems such as Hansenula polymorpha, Kluyveromyces lactis, Pichia pastoris, and Yarrowia lipolytica. These yeasts already have roles in the manufacture of vaccines, therapeutic proteins, food additives, and biorenewable chemicals, but recent synthetic biology advances have the potential to greatly expand and diversify their impact on biotechnology. In this review, we summarize the development of synthetic biological tools (including promoters and terminators) and enabling molecular genetics approaches that have been applied in these four promising alternative biomanufacturing platforms. An emphasis is placed on synthetic parts and genome editing tools. Finally, we discuss examples of synthetic tools developed in other organisms that can be adapted or optimized for these hosts in the near future. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Association of HTRA1 rs11200638 with age-related macular degeneration (AMD) in Brazilian patients.

    Science.gov (United States)

    Lana, Tamires Prates; da Silva Costa, Sueli Matilde; Ananina, Galina; Hirata, Fábio Endo; Rim, Priscila Hae Hyun; Medina, Flávio MacCord; de Vasconcellos, José Paulo Cabral; de Melo, Mônica Barbosa

    2018-01-01

    Age-related macular degeneration is a multifactorial disease that can lead to vision impairment in older individuals. Although the etiology of age-related macular degeneration remains unknown, risk factors include age, ethnicity, smoking, hypertension, obesity, and genetic factors. Two main loci have been identified through genome-wide association studies, on chromosomes 1 and 10. Among the variants located at the 10q26 region, rs11200638, located at the HTRA1 gene promoter, has been associated with age-related macular degeneration in several populations and is considered the main polymorphism. We conducted a replication case-control study to analyze the frequency and participation of rs11200638 in the etiology of age-related macular degeneration in a sample of patients and controls from the State of São Paulo, Brazil, through polymerase chain reaction and enzymatic digestion. The frequency of the A allele was 57.60% in patients with age-related macular degeneration and 36.45% in controls (p value age-related macular degeneration group compared to the control group (p = 1.21 e-07 and 0.0357, respectively). No statistically significant results were observed after stratification in dry versus wet types or advanced versus non-advanced forms. To our knowledge, this is the first time the association between rs11200638 and overall age-related macular degeneration has been reported in South America.

  6. Insights into the genetics of gastroesophageal reflux disease (GERD) and GERD-related disorders.

    Science.gov (United States)

    Böhmer, A C; Schumacher, J

    2017-02-01

    Gastroesophageal reflux disease (GERD) is associated with obesity and hiatal hernia, and often precedes the development of Barrett's esophagus (BE) and esophageal adenocarcinoma (EA). Epidemiological studies show that the global prevalence of GERD is increasing. GERD is a multifactorial disease with a complex genetic architecture. Genome-wide association studies (GWAS) have provided initial insights into the genetic background of GERD. The present review summarizes current knowledge of the genetics of GERD and a possible genetic overlap between GERD and BE and EA. The review discusses genes and cellular pathways that have been implicated through GWAS, and provides an outlook on how future molecular research will enhance understanding of GERD pathophysiology. © 2017 John Wiley & Sons Ltd.

  7. Genetics and molecular pathology of Stargardt-like macular degeneration.

    Science.gov (United States)

    Vasireddy, Vidyullatha; Wong, Paul; Ayyagari, Radha

    2010-05-01

    Stargardt-like macular degeneration (STGD3) is an early onset, autosomal dominant macular degeneration. STGD3 is characterized by a progressive pathology, the loss of central vision, atrophy of the retinal pigment epithelium, and accumulation of lipofuscin, clinical features that are also characteristic of age-related macular degeneration. The onset of clinical symptoms in STGD3, however, is typically observed within the second or third decade of life (i.e., starting in the teenage years). The clinical profile at any given age among STGD3 patients can be variable suggesting that, although STGD3 is a single gene defect, other genetic or environmental factors may play a role in moderating the final disease phenotype. Genetic studies localized the STGD3 disease locus to a small region on the short arm of human chromosome 6, and application of a positional candidate gene approach identified protein truncating mutations in the elongation of very long chain fatty acids-4 gene (ELOVL4) in patients with this disease. The ELOVL4 gene encodes a protein homologous to the ELO group of proteins that participate in fatty acid elongation in yeast. Pathogenic mutations found in the ELOVL4 gene result in altered trafficking of the protein and behave with a dominant negative effect. Mice carrying an Elovl4 mutation developed photoreceptor degeneration and depletion of very long chain fatty acids (VLCFA). ELOVL4 protein participates in the synthesis of fatty acids with chain length longer than 26 carbons. Studies on ELOVL4 indicate that VLCFA may be necessary for normal function of the retina, and the defective protein trafficking and/or altered VLCFA elongation underlies the pathology associated with STGD3. Determining the role of VLCFA in the retina and discerning the implications of abnormal trafficking of mutant ELOVL4 and depleted VLCFA content in the pathology of STGD3 will provide valuable insight in understanding the retinal structure, function, and pathology underlying STGD3

  8. Evaluation of new and established age-related macular degeneration susceptibility genes in the Women's Health Initiative Sight Exam (WHI-SE) Study

    Science.gov (United States)

    To assess whether established and newly reported genetic variants, independent of known lifestyle factors, are associated with the risk of age-related macular degeneration (AMD) among women participating in the Women's Health Initiative Sight Exam (WHI-SE) Genetic Ancillary Study. This is a multice...

  9. Whole-Genome Sequencing of a Healthy Aging Cohort.

    Science.gov (United States)

    Erikson, Galina A; Bodian, Dale L; Rueda, Manuel; Molparia, Bhuvan; Scott, Erick R; Scott-Van Zeeland, Ashley A; Topol, Sarah E; Wineinger, Nathan E; Niederhuber, John E; Topol, Eric J; Torkamani, Ali

    2016-05-05

    Studies of long-lived individuals have revealed few genetic mechanisms for protection against age-associated disease. Therefore, we pursued genome sequencing of a related phenotype-healthy aging-to understand the genetics of disease-free aging without medical intervention. In contrast with studies of exceptional longevity, usually focused on centenarians, healthy aging is not associated with known longevity variants, but is associated with reduced genetic susceptibility to Alzheimer and coronary artery disease. Additionally, healthy aging is not associated with a decreased rate of rare pathogenic variants, potentially indicating the presence of disease-resistance factors. In keeping with this possibility, we identify suggestive common and rare variant genetic associations implying that protection against cognitive decline is a genetic component of healthy aging. These findings, based on a relatively small cohort, require independent replication. Overall, our results suggest healthy aging is an overlapping but distinct phenotype from exceptional longevity that may be enriched with disease-protective genetic factors. VIDEO ABSTRACT. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Current drug and molecular therapies for the treatment of atrophic age-related macular degeneration: phase I to phase III clinical development.

    Science.gov (United States)

    Li, Huiling; Chintalapudi, Sumana R; Jablonski, Monica M

    2017-10-01

    Age-related macular degeneration (AMD) is the leading cause of vision loss among the elderly. Atrophic AMD, including early, intermediate and geographic atrophy (GA), accounts for ~90% of all cases. It is a multifactorial degeneration characterized by chronic inflammation, oxidative stress and aging components. Although no FDA-approved treatment yet exists for the late stage of atrophic AMD, multiple pathological mechanisms are partially known and several promising therapies are in various stages of development. Areas covered: Underlying mechanisms that define atrophic AMD will help provide novel therapeutic targets that will address this largely unmet clinical need. The purpose of this paper is to review current promising drugs that are being evaluated in clinical trials. Because no pharmacological treatments are currently available for late stage of atrophic AMD, any new therapy would have extensive market potential. Expert opinion: The number of AMD patients is predicted to increase to ~30 million worldwide by 2020. In response to this enormous unmet clinical need, new promising therapies are being developed and evaluated in clinical trials. We propose that the assessment of novel interventions will also need to consider the genotypes of participants, as the benefit may be determined by polymorphisms in an individual's genetic background.

  11. Genetic influences on alcohol-related hangover.

    Science.gov (United States)

    Slutske, Wendy S; Piasecki, Thomas M; Nathanson, Lisa; Statham, Dixie J; Martin, Nicholas G

    2014-12-01

    To quantify the relative contributions of genetic and environmental factors to alcohol hangover. Biometric models were used to partition the variance in hangover phenotypes. A community-based sample of Australian twins. Members of the Australian Twin Registry, Cohort II who reported consuming alcohol in the past year when surveyed in 2004-07 (n = 4496). Telephone interviews assessed participants' frequency of drinking to intoxication and frequency of hangover the day after drinking. Analyses examined three phenotypes: hangover frequency, hangover susceptibility (i.e. residual variance in hangover frequency after accounting for intoxication frequency) and hangover resistance (a dichotomous variable defined as having been intoxicated at least once in the past year with no reported hangovers). Genetic factors accounted for 45% [95% confidence interval (CI) = 37-53%] and 40% (95% CI = 33-48%) of the variation in hangover frequency in men and women, respectively. Most of the genetic variation in hangover frequency overlapped with genetic contributions to intoxication frequency. Genetic influences accounted for 24% (95% CI = 14-35%) and 16% (95% CI = 8-25%) of the residual hangover susceptibility variance in men and women, respectively. Forty-three per cent (95% CI = 22-63%) of the variation in hangover resistance was explained by genetic influences, with no evidence for significant sex differences. There was no evidence for shared environmental influences for any of the hangover phenotypes. Individual differences in the propensity to experience a hangover and of being resistant to hangover at a given level of alcohol use are genetically influenced. © 2014 Society for the Study of Addiction.

  12. Variabilidade genética de acessos de maracujá-suspiro com base em marcadores moleculares Genetic variability of wild passion fruit determined by molecular markers

    Directory of Open Access Journals (Sweden)

    Keize Pereira Junqueira

    2007-01-01

    Full Text Available Passiflora nitida é uma espécie silvestre amplamente distribuída pelo território brasileiro, constituindo-se em fonte de resistência a doenças foliares e de raízes. O objetivo deste trabalho foi avaliar a variabilidade genética entre acessos de P. nitida procedentes de diferentes tipos fitofisionômicos de Cerrado e estados brasileiros (Goiás, Distrito Federal, Tocantins, Mato Grosso e Amazonas, usando marcadores moleculares RAPD. O DNA genômico de cada acesso foi extraído, e doze iniciadores decâmeros foram utilizados para a obtenção de marcadores moleculares RAPD, que foram convertidos em matriz de dados binários, a partir da qual foram estimadas as distâncias genéticas entre os acessos e realizadas análises de agrupamento e de dispersão gráfica. Foram obtidos 196 marcadores para P. nitida, dos quais 63,81% foram polimórficos. As distâncias genéticas entre os acessos de maracujá variaram de 0,031 a 0,614 e, considerando apenas P. nitida, de 0,031 a 0,417. Os marcadores moleculares demonstraram alta variabilidade genética dos acessos de P. nitida. Menores distâncias genéticas foram verificadas entre os acessos originados do mesmo estado. Considerando-se os acessos de um mesmo estado, menores distâncias genéticas foram verificadas entre os acessos provenientes de tipos fitofisionômicos próximos. O acesso "Manaus 2" apresentou o maior distanciamento genético em relação aos demais acessos.Passiflora nitida is a wild species widely distributed in Brazilian territory. It is a source of resistance to foliar and soil borne diseases. The objective of this work was to evaluate the genetic variability among accessions of P. nitida proceeding from different types of Cerrado (Brazilian savannah vegetation and brazilian states (Goiás, Distrito Federal, Tocantins, Mato Grosso and Amazonas using RAPD molecular markers. The genomic DNA of each origin was extracted and amplified using 12 decamer primers to obtain RAPD

  13. Age-Related Effect of Viral-Induced Wheezing in Severe Prematurity

    Directory of Open Access Journals (Sweden)

    Geovanny F. Perez

    2016-10-01

    Full Text Available Premature children are prone to severe viral respiratory infections in early life, but the age at which susceptibility peaks and disappears for each pathogen is unclear. Methods: A retrospective analysis was performed of the age distribution and clinical features of acute viral respiratory infections in full-term and premature children, aged zero to seven years. Results: The study comprised of a total of 630 hospitalizations (n = 580 children. Sixty-seven percent of these hospitalizations occurred in children born full-term (>37 weeks, 12% in preterm (32–37 weeks and 21% in severely premature children (<32 weeks. The most common viruses identified were rhinovirus (RV; 60% and respiratory syncytial virus (RSV; 17%. Age-distribution analysis of each virus identified that severely premature children had a higher relative frequency of RV and RSV in their first three years, relative to preterm or full-term children. Additionally, the probability of RV- or RSV-induced wheezing was higher overall in severely premature children less than three years old. Conclusions: Our results indicate that the vulnerability to viral infections in children born severely premature is more specific for RV and RSV and persists during the first three years of age. Further studies are needed to elucidate the age-dependent molecular mechanisms that underlie why premature infants develop RV- and RSV-induced wheezing in early life.

  14. Genetic prognostic markers in colorectal cancer.

    OpenAIRE

    Houlston, R S; Tomlinson, I P

    1997-01-01

    The contribution of molecular genetics to colorectal cancer has been restricted largely to relatively rare inherited tumours and to the detection of germline mutations predisposing to these cancers. However, much is now also known about somatic events leading to colorectal cancer. A number of studies has been undertaken examining possible relations between genetic features and prognostic indices. While many of these studies are small and inconclusive, it is clear that a number of different pa...

  15. Age-related Hearing Impairment and the Triad of Acquired Hearing Loss

    Directory of Open Access Journals (Sweden)

    Chao-Hui eYang

    2015-07-01

    Full Text Available Understanding underlying pathological mechanisms is prerequisite for a sensible design of protective therapies against hearing loss. The triad of age-related, noise-generated, and drug-induced hearing loss ¬¬displays intriguing similarities in some cellular responses of cochlear sensory cells such as a potential involvement of reactive oxygen species and apoptotic and necrotic cell death. On the other hand, detailed studies have revealed that molecular pathways are considerably complex and, importantly, it has become clear that pharmacological protection successful against one form of hearing loss will not necessarily protect against another. This review will summarize pathological and pathophysiological features of age-related hearing impairment (ARHI in human and animal models and address selected aspects of the commonality (or lack thereof of cellular responses in ARHI to drugs and noise.

  16. Mental quality of life is related to a cytokine genetic pathway.

    Directory of Open Access Journals (Sweden)

    Dounya Schoormans

    Full Text Available BACKGROUND: Quality of life (QoL in patients with chronic disease is impaired and cannot be solely explained by disease severity. We explored whether genetic variability and activity contributes to QoL in patients with Marfan syndrome (MFS, a genetic connective tissue disorder. METHODOLOGY/PRINCIPAL FINDINGS: In 121 MFS patients, patient characteristics (i.e. demographics and MFS-related symptoms were assessed. Patients completed the SF-36 to measure QoL. In addition, transcriptome wide gene expression and 484 Single Nucleotide Polymorphysms (SNPs in cytokine genes were available. QoL was first analyzed and associated with patient characteristics. Patients' physical QoL was impaired and weakly related with age and scoliosis, whereas mental quality of life (MCS was normal. To explain a largely lacking correlation between disease severity and QoL, we related genome wide gene expression to QoL. Patients with lower MCS scores had high expression levels of CXCL9 and CXCL11 cytokine-related genes (p=0.001; p=0.002; similarly, patients with low vitality scores had high expression levels of CXCL9, CXCL11 and IFNA6 cytokine-related genes (p=0.02; p=0.02; p=0.04, independent of patient characteristics. Subsequently, we associated cytokine related SNPs to mental QoL (MCS and vitality. SNP-cluster in the IL4R gene showed a weak association with MCS and vitality (strongest association p=0.0017. Although overall mental QoL was normal, >10% of patients had low scores for MCS and vitality. Post-hoc analysis of systemic inflammatory mediators showed that patients with lowest MCS and vitality scores had high levels of CCL11 cytokine (p=0.03; p=0.04. CONCLUSIONS/SIGNIFICANCE: Variation in the cytokine genetic pathway and its activation is related to mental QoL. These findings might allow us to identify and, ultimately, treat patients susceptible to poor QoL.

  17. Genetic parameters for milk yield, age at first calving and interval between first and second calving in milk buffaloes

    Directory of Open Access Journals (Sweden)

    R.R. Aspilcueta Borquis

    2010-02-01

    Full Text Available Genetic parameters for the relation between the traits of milk yield (MY, age at first calving (AFC and interval between first and second calving (IBFSC were estimated in milk buffaloes of the Murrah breed. In the study, data of 1578 buffaloes at first lactation, with calvings from 1974 to 2006 were analyzed. The MTDFREML system was used in the analyses with models for the MY, IBFSC traits which included the fixed effects of herd-year-season of calving, linear and quadratic terms of calving age as covariate and the random animal effects and error. The model for AFC consisted of the herd-year-season fixed effects of calving and the random effects of animal and error. Heritability estimates MY, AFC and IBFSC traits were 0.20, 0.07 and 0.14, respectively. Genetic and phenotypic correlations between the traits were: MY and AFC = -0.12 and -0.15, MY and IBFSC = 0.07 and 0.30, AFC and IBFSC = 0.35 and 0.37, respectively. Genetic correlation between MY and AFC traits showed desirable negative association, suggesting that the daughters of the bulls with high breeding value for MY could be physiological maturity to a precocious age. Genetic correlation between MY and IBFSC showed that the selection of the animals that increased milk yield is also those that tend to intervals of bigger calving.

  18. Joint Analysis of Nuclear and Mitochondrial Variants in Age-Related Macular Degeneration Identifies Novel Loci TRPM1 and ABHD2/RLBP1

    NARCIS (Netherlands)

    Persad, P.J.; Heid, I.M.; Weeks, D.E.; Baird, P.N.; Jong, E.K.; Haines, J.L.; Pericak-Vance, M.A.; Scott, W.K.

    2017-01-01

    Purpose: Presently, 52 independent nuclear single nucleotide polymorphisms (nSNPs) have been associated with age-related macular degeneration (AMD) but their effects do not explain all its variance. Genetic interactions between the nuclear and mitochondrial (mt) genome may unearth additional genetic

  19. [Age-related macular degeneration as a local manifestation of atherosclerosis - a novel insight into pathogenesis].

    Science.gov (United States)

    Machalińska, Anna

    2013-01-01

    Age-related macular degeneration is the leading cause of irreversible visual impairment and disability among the elderly in developed countries. There is compelling evidence that atherosclerosis and age-related macular degeneration share a similar pathogenic process. The association between atherosclerosis and age-related macular degeneration has been inferred from histological, biochemical and epidemiological studies. Many published data indicate that drusen are similar in molecular composition to plaques in atherosclerosis. Furthermore, a great body of evidence has emerged over the past decade that implicates the chronic inflammatory processes in the pathogenesis and progression of both disorders. We speculate that vascular atherosclerosis and age-related macular degeneration may represent different manifestations of the same disease induced by a pathologic tissue response to the damage caused by oxidative stress and local ischemia. In this review, we characterise in detail a strong association between age-related macular degeneration and atherosclerosis development, and we postulate the hypothesis that age-related macular degeneration is a local manifestation of a systemic disease. This provides a new approach for understanding the aspects of pathogenesis and might improve the prevention and treatment of both diseases which both result from ageing of the human body.

  20. Introduction to genetics in ophthalmology, value of family studies

    Science.gov (United States)

    Ohba

    2000-05-01

    presented with visual loss as late as 50 years of age or older due to macula-confined degenerative changes that were similar in all respects to exudative age-related macular degeneration and showed a novel mutation in the tissue inhibitor of the metalloproteinases-3 gene.Age-Related Macular Degeneration (ARMD): We have studied whether there is any association of candidate polymorphic genes involving xenobiotic or antioxidant metabolism with susceptibility to ARMD. Preliminary results suggest that the genetic polymorphism of microsomal epoxide hydrolase is related to potential risk of ARMD.