WorldWideScience

Sample records for aflp transcriptional profiling

  1. Real-imaging cDNA-AFLP transcript profiling of pancreatic cancer patients: Egr-1 as a potential key regulator of muscle cachexia

    Energy Technology Data Exchange (ETDEWEB)

    Skorokhod, Alexander [Division of Preventive Oncology, National Center for Tumor Diseases (NCT) Heidelberg, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg (Germany); Institute of Molecular Biology and Genetics, Ukrainian Academy of Sciences, Zabolotnogo str. 150, 03143, Kiev (Ukraine); Bachmann, Jeannine [Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich (Germany); Giese, Nathalia A [Department of General Surgery, University of Heidelberg, ImNeuenheimer Feld, 110 69120, Heidelberg (Germany); Martignoni, Marc E [Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich (Germany); Krakowski-Roosen, Holger [Division of Preventive Oncology, National Center for Tumor Diseases (NCT) Heidelberg, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg (Germany)

    2012-06-21

    Cancer cachexia is a progressive wasting syndrome and the most prevalent characteristic of cancer in patients with advanced pancreatic adenocarcinoma. We hypothesize that genes expressed in wasted skeletal muscle of pancreatic cancer patients may determine the initiation and severity of cachexia syndrome. We studied gene expression in skeletal muscle biopsies from pancreatic cancer patients with and without cachexia utilizing Real-Imaging cDNA-AFLP-based transcript profiling for genome-wide expression analysis. Our approach yielded 183 cachexia-associated genes. Ontology analysis revealed characteristic changes for a number of genes involved in muscle contraction, actin cytoskeleton rearrangement, protein degradation, tissue hypoxia, immediate early response and acute-phase response. We demonstrate that Real-Imaging cDNA-AFLP analysis is a robust method for high-throughput gene expression studies of cancer cachexia syndrome in patients with pancreatic cancer. According to quantitative RT-PCR validation, the expression levels of genes encoding the acute-phase proteins α-antitrypsin and fibrinogen α and the immediate early response genes Egr-1 and IER-5 were significantly elevated in the skeletal muscle of wasted patients. By immunohistochemical and Western immunoblotting analysis it was shown, that Egr-1 expression is significantly increased in patients with cachexia and cancer. This provides new evidence that chronic activation of systemic inflammatory response might be a common and unifying factor of muscle cachexia.

  2. Real-imaging cDNA-AFLP transcript profiling of pancreatic cancer patients: Egr-1 as a potential key regulator of muscle cachexia

    International Nuclear Information System (INIS)

    Skorokhod, Alexander; Bachmann, Jeannine; Giese, Nathalia A; Martignoni, Marc E; Krakowski-Roosen, Holger

    2012-01-01

    Cancer cachexia is a progressive wasting syndrome and the most prevalent characteristic of cancer in patients with advanced pancreatic adenocarcinoma. We hypothesize that genes expressed in wasted skeletal muscle of pancreatic cancer patients may determine the initiation and severity of cachexia syndrome. We studied gene expression in skeletal muscle biopsies from pancreatic cancer patients with and without cachexia utilizing Real-Imaging cDNA-AFLP-based transcript profiling for genome-wide expression analysis. Our approach yielded 183 cachexia-associated genes. Ontology analysis revealed characteristic changes for a number of genes involved in muscle contraction, actin cytoskeleton rearrangement, protein degradation, tissue hypoxia, immediate early response and acute-phase response. We demonstrate that Real-Imaging cDNA-AFLP analysis is a robust method for high-throughput gene expression studies of cancer cachexia syndrome in patients with pancreatic cancer. According to quantitative RT-PCR validation, the expression levels of genes encoding the acute-phase proteins α-antitrypsin and fibrinogen α and the immediate early response genes Egr-1 and IER-5 were significantly elevated in the skeletal muscle of wasted patients. By immunohistochemical and Western immunoblotting analysis it was shown, that Egr-1 expression is significantly increased in patients with cachexia and cancer. This provides new evidence that chronic activation of systemic inflammatory response might be a common and unifying factor of muscle cachexia

  3. Distribution of Penicillium commune isolates in cheese dairies mapped using secondary metabolite profiles, morphotypes, RAPD and AFLP fingerprinting

    DEFF Research Database (Denmark)

    Lund, Flemming; Nielsen, A.B.; Skouboe, P.

    2003-01-01

    ) and amplified fragment length polymorphism, (AFLP). For a sub-set of 272 P. commune isolates RAPD analysis generated 33 RAPD groups whereas AFLP profiling revealed 55 AFLP groups. This study conclusively showed that the discriminatory power of AFLP was high compared to RAPD and that AFLP fingerprinting matched...... morphotyping, P. commune isolates with identical profiles using all four typing techniques were interpreted as closely related isolates with a common origin and the distribution of these isolates in the processing environment indicated possible contamination points in the cheese dairies. The coating process...... and unpacking of cheeses with growth of P. commune seemed to cause the contamination problems. Several identical P. commune isolates remained present in the processing environment for more than 7 years in both dairies....

  4. Metabolic profiles and cDNA-AFLP analysis of Salvia miltiorrhiza and Salvia castanea Diel f. tomentosa Stib.

    Directory of Open Access Journals (Sweden)

    Dongfeng Yang

    Full Text Available Plants of the genus Salvia produce various types of phenolic compounds and tanshinones which are effective for treatment of coronary heart disease. Salvia miltiorrhiza and S. castanea Diels f. tomentosa Stib are two important members of the genus. In this study, metabolic profiles and cDNA-AFLP analysis of four samples were employed to identify novel genes potentially involved in phenolic compounds and tanshinones biosynthesis, including the red roots from the two species and two tanshinone-free roots from S. miltiorrhiza. The results showed that the red roots of S. castanea Diels f. tomentosa Stib produced high contents of rosmarinic acid (21.77 mg/g and tanshinone IIA (12.60 mg/g, but low content of salvianolic acid B (1.45 mg/g. The red roots of S. miltiorrhiza produced high content of salvianolic acid B (18.69 mg/g, while tanshinones accumulation in this sample was much less than that in S. castanea Diels f. tomentosa Stib. Tanshinones were not detected in the two tanshinone-free samples, which produced high contents of phenolic compounds. A cDNA-AFLP analysis with 128 primer pairs revealed that 2300 transcript derived fragments (TDFs were differentially expressed among the four samples. About 323 TDFs were sequenced, of which 78 TDFs were annotated with known functions through BLASTX searching the Genbank database and 14 annotated TDFs were assigned into secondary metabolic pathways through searching the KEGGPATHWAY database. The quantitative real-time PCR analysis indicated that the expression of 9 TDFs was positively correlated with accumulation of phenolic compounds and tanshinones. These TDFs additionally showed coordinated transcriptional response with 6 previously-identified genes involved in biosynthesis of tanshinones and phenolic compounds in S. miltiorrhiza hairy roots treated with yeast extract. The sequence data in the present work not only provided us candidate genes involved in phenolic compounds and tanshinones biosynthesis

  5. AFLP

    African Journals Online (AJOL)

    AJL

    2012-05-29

    May 29, 2012 ... 3Institute of Medicinal Plants (IMP), Tehran, Iran. 4Agricultural Biotechnology Research Institute, ... Hyoscyamus sp. is one of the most important medicinal plants belonging to the Solanaceae family. ..... et al., 2006) and Matricaria chamomilla (Solouki et al.,. 2008). In conclusion, AFLP and retro/AFLP data ...

  6. Toxigenic profile and AFLP variability of Alternaria alternata and Alternaria infectoria occurring on wheat

    Directory of Open Access Journals (Sweden)

    María Silvina Oviedo

    2013-01-01

    Full Text Available The objectives of this study were to evaluate the ability to produce alternariol (AOH, alternariol monomethyl ether (AME and tenuazonic acid (TA by A. alternata and A. infectoria strains recovered from wheat kernels obtained from one of the main production area in Argentina; to confirm using AFLPs molecular markers the identify of the isolates up to species level, and to evaluate the intra and inter-specific genetic diversity of these two Alternaria species. Among all the Alternaria strains tested (254, 84% of them were able to produce mycotoxins. The most frequent profile of toxin production found was the co-production of AOH and AME in both species tested. TA was only produced by strains of A. alternata. Amplified fragment polymorphism (AFLPs analysis was applied to a set of 89 isolates of Alternaria spp (40 were A. infectoria and 49 were A. alternata in order to confirm the morphological identification. The results showed that AFLPs are powerful diagnostic tool for differentiating between A. alternata and A. infectoria. Indeed, in the current study the outgroup strains, A. tenuissima was consistently classified. Characteristic polymorphic bands separated these two species regardless of the primer combination used. Related to intraspecific variability, A. alternata and A. infectoria isolates evaluated seemed to form and homogeneous group with a high degree of similarity among the isolates within each species. However, there was more scoreable polymorphism within A. alternata than within A. infectoria isolates. There was a concordance between morphological identification and separation up to species level using molecular markers. Clear polymorphism both within and between species showed that AFLP can be used to asses genetic variation in A. alternata and A. infectoria. The most important finding of the present study was the report on AOH and AME production by A. infectoria strains isolated from wheat kernels in Argentina on a semisynthetic

  7. Transcriptional responses in honey bee larvae infected with chalkbrood fungus.

    Science.gov (United States)

    Aronstein, Katherine A; Murray, Keith D; Saldivar, Eduardo

    2010-06-21

    Diseases and other stress factors working synergistically weaken honey bee health and may play a major role in the losses of bee populations in recent years. Among a large number of bee diseases, chalkbrood has been on the rise. We present here the experimental identification of honey bee genes that are differentially expressed in response to infection of honey bee larvae with the chalkbrood fungus, Ascosphaera apis. We used cDNA-AFLP Technology to profile transcripts in infected and uninfected bee larvae. From 64 primer combinations, over 7,400 transcriptionally-derived fragments were obtained A total of 98 reproducible polymorphic cDNA-AFLP fragments were excised and sequenced, followed by quantitative real-time RT-PCR (qRT-PCR) analysis of these and additional samples.We have identified a number of differentially-regulated transcripts that are implicated in general mechanisms of stress adaptation, including energy metabolism and protein transport. One of the most interesting differentially-regulated transcripts is for a chitinase-like enzyme that may be linked to anti-fungal activities in the honey bee larvae, similarly to gut and fat-body specific chitinases found in mosquitoes and the red flour beetle. Surprisingly, we did not find many components of the well-characterized NF-kappaB intracellular signaling pathways to be differentially-regulated using the cDNA-AFLP approach. Therefore, utilizing qRT-PCR, we probed some of the immune related genes to determine whether the lack of up-regulation of their transcripts in our analysis can be attributed to lack of immune activation or to limitations of the cDNA-AFLP approach. Using a combination of cDNA-AFLP and qRT-PCR analyses, we were able to determine several key transcriptional events that constitute the overall effort in the honey bee larvae to fight natural fungal infection. Honey bee transcripts identified in this study are involved in critical functions related to transcriptional regulation, apoptotic

  8. Gene expression profiling of a Zn-tolerant and a Zn-sensitive Suillus luteus isolate exposed to increased external zinc concentrations

    OpenAIRE

    MULLER, Ludo; Craciun, A. R.; RUYTINX, Joske; LAMBAERTS, Marc; Verbruggen, N.; VANGRONSVELD, Jaco; COLPAERT, Jan

    2007-01-01

    Complementary DNA (cDNA)-amplified fragment-length polymorphism (AFLP) was applied to analyze transcript profiles of a Zn-tolerant and a Zn-sensitive isolate of the ectomycorrhizal basidiomycete Suillus luteus, both cultured with and without increased external zinc concentrations. From the obtained transcript profiles that covered approximately 2% of the total expected complement of genes in S. luteus, 144 nonredundant, differentially expressed transcript-derived fragments (TDFs), falling in ...

  9. Methylated site display (MSD)-AFLP, a sensitive and affordable method for analysis of CpG methylation profiles.

    Science.gov (United States)

    Aiba, Toshiki; Saito, Toshiyuki; Hayashi, Akiko; Sato, Shinji; Yunokawa, Harunobu; Maruyama, Toru; Fujibuchi, Wataru; Kurita, Hisaka; Tohyama, Chiharu; Ohsako, Seiichiroh

    2017-03-09

    It has been pointed out that environmental factors or chemicals can cause diseases that are developmental in origin. To detect abnormal epigenetic alterations in DNA methylation, convenient and cost-effective methods are required for such research, in which multiple samples are processed simultaneously. We here present methylated site display (MSD), a unique technique for the preparation of DNA libraries. By combining it with amplified fragment length polymorphism (AFLP) analysis, we developed a new method, MSD-AFLP. Methylated site display libraries consist of only DNAs derived from DNA fragments that are CpG methylated at the 5' end in the original genomic DNA sample. To test the effectiveness of this method, CpG methylation levels in liver, kidney, and hippocampal tissues of mice were compared to examine if MSD-AFLP can detect subtle differences in the levels of tissue-specific differentially methylated CpGs. As a result, many CpG sites suspected to be tissue-specific differentially methylated were detected. Nucleotide sequences adjacent to these methyl-CpG sites were identified and we determined the methylation level by methylation-sensitive restriction endonuclease (MSRE)-PCR analysis to confirm the accuracy of AFLP analysis. The differences of the methylation level among tissues were almost identical among these methods. By MSD-AFLP analysis, we detected many CpGs showing less than 5% statistically significant tissue-specific difference and less than 10% degree of variability. Additionally, MSD-AFLP analysis could be used to identify CpG methylation sites in other organisms including humans. MSD-AFLP analysis can potentially be used to measure slight changes in CpG methylation level. Regarding the remarkable precision, sensitivity, and throughput of MSD-AFLP analysis studies, this method will be advantageous in a variety of epigenetics-based research.

  10. Eukaryotic transcriptomics in silico: Optimizing cDNA-AFLP efficiency

    NARCIS (Netherlands)

    Stölting, K.N.; Gort, G.; Wüst, C.; Wilson, A.B.

    2009-01-01

    Background - Complementary-DNA based amplified fragment length polymorphism (cDNA-AFLP) is a commonly used tool for assessing the genetic regulation of traits through the correlation of trait expression with cDNA expression profiles. In spite of the frequent application of this method, studies on

  11. Characterization of Streptococcus suis through serotyping, SE-AFLP and virulence profile

    Directory of Open Access Journals (Sweden)

    Franco F. Calderaro

    Full Text Available Abstract: Streptococcus suis is one of most important pathogens in the swine industry worldwide. Despite its importance, studies of S. suis characterization in South America are still rare. This study evaluates S. suis isolates from distinct Brazilian states, from 1999 to 2004, and its molecular and serological characterization. A total of 174 isolates were studied. S. suis identification was confirmed by PCR and isolates were further serotyped and genotyped by SE-AFLP and amplification of virulence markers. Serotype 1, 2, 3, 4, 7, 18, 22 and 32 were identified among the studied isolates, and only 4% were characterized as non-typeable. The mrp+/epf+/sly+ genotype was the most frequent. The SE-AFLP analysis resulted in 29 patterns distributed in three main clusters with over 65% of genetic similarity. Isolates presented a slight tendency to cluster according to serotype and origin; however, no further correlation with virulence genotypes was observed.

  12. Methylation-Sensitive Amplification Length Polymorphism (MS-AFLP) Microarrays for Epigenetic Analysis of Human Genomes.

    Science.gov (United States)

    Alonso, Sergio; Suzuki, Koichi; Yamamoto, Fumiichiro; Perucho, Manuel

    2018-01-01

    Somatic, and in a minor scale also germ line, epigenetic aberrations are fundamental to carcinogenesis, cancer progression, and tumor phenotype. DNA methylation is the most extensively studied and arguably the best understood epigenetic mechanisms that become altered in cancer. Both somatic loss of methylation (hypomethylation) and gain of methylation (hypermethylation) are found in the genome of malignant cells. In general, the cancer cell epigenome is globally hypomethylated, while some regions-typically gene-associated CpG islands-become hypermethylated. Given the profound impact that DNA methylation exerts on the transcriptional profile and genomic stability of cancer cells, its characterization is essential to fully understand the complexity of cancer biology, improve tumor classification, and ultimately advance cancer patient management and treatment. A plethora of methods have been devised to analyze and quantify DNA methylation alterations. Several of the early-developed methods relied on the use of methylation-sensitive restriction enzymes, whose activity depends on the methylation status of their recognition sequences. Among these techniques, methylation-sensitive amplification length polymorphism (MS-AFLP) was developed in the early 2000s, and successfully adapted from its original gel electrophoresis fingerprinting format to a microarray format that notably increased its throughput and allowed the quantification of the methylation changes. This array-based platform interrogates over 9500 independent loci putatively amplified by the MS-AFLP technique, corresponding to the NotI sites mapped throughout the human genome.

  13. Transcriptome analysis by cDNA-AFLP of Suillus luteus Cd-tolerant and Cd-sensitive isolates.

    Science.gov (United States)

    Ruytinx, Joske; Craciun, Adrian R; Verstraelen, Karen; Vangronsveld, Jaco; Colpaert, Jan V; Verbruggen, Nathalie

    2011-04-01

    The ectomycorrhizal basidiomycete Suillus luteus (L.:Fr.), a typical pioneer species which associates with young pine trees colonizing disturbed sites, is a common root symbiont found at heavy metal contaminated sites. Three Cd-sensitive and three Cd-tolerant isolates of S. luteus, isolated respectively from non-polluted and a heavy metal-polluted site in Limburg (Belgium), were used for a transcriptomic analysis. We identified differentially expressed genes by cDNA-AFLP analysis. The possible roles of some of the encoded proteins in heavy metal (Cd) accumulation and tolerance are discussed. Despite the high conservation of coding sequences in S. luteus, a large intraspecific variation in the transcript profiles was observed. This variation was as large in Cd-tolerant as in sensitive isolates and may help this pioneer species to adapt to novel environments.

  14. Phylogenetic Signal in AFLP Data Sets

    NARCIS (Netherlands)

    Koopman, W.J.M.

    2005-01-01

    AFLP markers provide a potential source of phylogenetic information for molecular systematic studies. However, there are properties of restriction fragment data that limit phylogenetic interpretation of AFLPs. These are (a) possible nonindependence of fragments, (b) problems of homology assignment

  15. On some surprising statistical properties of a DNA fingerprinting technique called AFLP

    NARCIS (Netherlands)

    Gort, G.

    2010-01-01

    AFLP is a widely used DNA fingerprinting technique, resulting in band absence - presence profiles, like a bar code. Bands represent DNA fragments, sampled from the genome of an individual plant or other organism. The DNA fragments travel through a lane of an electrophoretic gel or microcapillary

  16. Genotyping and genetic diversity of Arcobacter butzleri by amplified fragment length polymorphism (AFLP) analysis

    DEFF Research Database (Denmark)

    On, Stephen L.W.; Atabay, H.I.; Amisu, K.O.

    2004-01-01

    Aims: To investigate the potential of amplified fragment length polymorphism (AFLP) profiling for genotyping Arcobacter butzleri and to obtain further data on the genetic diversity of this organism. Methods and Results: Seventy-three isolates of Danish, British, Turkish, Swedish, Nigerian and Nor...

  17. AFLP analysis among Ethiopian arabica coffee genotypes

    African Journals Online (AJOL)

    STORAGESEVER

    2008-09-17

    Sep 17, 2008 ... AFLP analysis. AFLP analysis was performed following the protocol of Vos et al. ... 72oC. All polymerase chain reactions (PCR) were perform- ... ACT/MseI-CAG showed the highest value for MI ..... WL, Lee M, Porter K (2000).

  18. Insight into the genomic diversity and relationship of Astragalus glycyphyllos symbionts by RAPD, ERIC-PCR, and AFLP fingerprinting.

    Science.gov (United States)

    Gnat, Sebastian; Małek, Wanda; Oleńska, Ewa; Trościańczyk, Aleksandra; Wdowiak-Wróbel, Sylwia; Kalita, Michał; Wójcik, Magdalena

    2015-11-01

    We assessed the genomic diversity and genomic relationship of 28 Astragalus glycyphyllos symbionts by three methodologies based on PCR reaction, i.e., RAPD, ERIC-PCR, and AFLP. The AFLP method with one PstI restriction enzyme and selective PstI-GC primer pair had a comparable discriminatory power as ERIC-PCR one and these fingerprinting techniques distinguished among the studied 28 A. glycyphyllos symbionts 18 and 17 genomotypes, respectively. RAPD method was less discriminatory in the genomotyping of rhizobia analyzed and it efficiently resolved nine genomotypes. The cluster analysis of RAPD, ERIC-PCR, and AFLP profiles resulted in a generally similar grouping of the test strains on generated dendrograms supporting a great potential of these DNA fingerprinting techniques for study of genomic polymorphism and evolutionary relationship of A. glycyphyllos nodulators. The RAPD, ERIC-PCR, and AFLP pattern similarity coefficients between A. glycyphyllos symbionts studied was in the ranges 8-100, 18-100, and 23-100%, respectively.

  19. Distinct colonization patterns and cDNA-AFLP transcriptome profiles in compatible and incompatible interactions between melon and different races of Fusarium oxysporum f. sp. melonis

    Science.gov (United States)

    2011-01-01

    Background Fusarium oxysporum f. sp. melonis Snyd. & Hans. (FOM) causes Fusarium wilt, the most important infectious disease of melon (Cucumis melo L.). The four known races of this pathogen can be distinguished only by infection on appropriate cultivars. No molecular tools are available that can discriminate among the races, and the molecular basis of compatibility and disease progression are poorly understood. Resistance to races 1 and 2 is controlled by a single dominant gene, whereas only partial polygenic resistance to race 1,2 has been described. We carried out a large-scale cDNA-AFLP analysis to identify host genes potentially related to resistance and susceptibility as well as fungal genes associated with the infection process. At the same time, a systematic reisolation procedure on infected stems allowed us to monitor fungal colonization in compatible and incompatible host-pathogen combinations. Results Melon plants (cv. Charentais Fom-2), which are susceptible to race 1,2 and resistant to race 1, were artificially infected with a race 1 strain of FOM or one of two race 1,2 w strains. Host colonization of stems was assessed at 1, 2, 4, 8, 14, 16, 18 and 21 days post inoculation (dpi), and the fungus was reisolated from infected plants. Markedly different colonization patterns were observed in compatible and incompatible host-pathogen combinations. Five time points from the symptomless early stage (2 dpi) to obvious wilting symptoms (21 dpi) were considered for cDNA-AFLP analysis. After successful sequencing of 627 transcript-derived fragments (TDFs) differentially expressed in infected plants, homology searching retrieved 305 melon transcripts, 195 FOM transcripts expressed in planta and 127 orphan TDFs. RNA samples from FOM colonies of the three strains grown in vitro were also included in the analysis to facilitate the detection of in planta-specific transcripts and to identify TDFs differentially expressed among races/strains. Conclusion Our data

  20. Genetic relationships among Arachis species based on AFLP

    Directory of Open Access Journals (Sweden)

    Gimenes Marcos A.

    2002-01-01

    Full Text Available Amplified Fragment Length Polymorphism (AFLP was used to establish the genetic relationships among 20 species from seven of the nine sections of genus Arachis. The level of polymorphism among nine accessions of the cultivated peanut, A. hypogaea L., was also evaluated. Three combinations of primers were used to amplify the AFLPs. The fragments were separated in 6% denaturing acrylamide gels. A total of 408 fragments were analyzed. An average of 135.3 fragments per primer combination were scored, and the largest number of fragments was 169 using primer combination Eco RI - ACC / Mse I - CTG, while the lowest was 108, with Eco RI - ACT / Mse I - CTT. In general, the genetic relationships established using AFLPs agreed with the classification established using morphology and crossability data. The results indicated that AFLPs are good markers for establishing the relationships among Arachis species. The polymorphism detected in A. hypogaea by this method was higher than the one found with other markers, like RAPDs and RFLPs. However, our data suggest that the polymorphism detected be using AFLP with only three primer combinations is still too low to be used for any kind of genetic study in this species.

  1. Salmonella Typhimurium transcription profiles in space flight

    Data.gov (United States)

    National Aeronautics and Space Administration — Salmonella transcription profiles were obtained from samples flown on space shuttle mission STS-115 and compared to profiles from Salmonella grown under identical...

  2. Association of AFLP and SSR markers with agronomic and fibre ...

    Indian Academy of Sciences (India)

    We have attempted to tag yield and fibre quality traits with AFLP and SSR markers using F2 and F3 populations of a cross between two Gossypium hirsutum varieties, PS56-4 and RS2013. Out of 50 AFLP primer combinations and 177 SSR primer pairs tested, 32 AFLP and four SSR primers were chosen for genotyping F2 ...

  3. Molecular phylogeny of Fusarium species by AFLP fingerprint ...

    African Journals Online (AJOL)

    The high-resolution genotyping method of amplified fragment length polymorphism (AFLP) analysis was used to study the genetic relationships within and between natural populations of five Fusarium spp. AFLP templates were prepared by the digestion of Fusarium DNA with EcoRI and MseI restriction endonucleases and ...

  4. AFLP and MS-AFLP analysis of the variation within saffron crocus (Crocus sativus L. germplasm.

    Directory of Open Access Journals (Sweden)

    Matteo Busconi

    Full Text Available The presence and extent of genetic variation in saffron crocus are still debated, as testified by several contradictory articles providing contrasting results about the monomorphism or less of the species. Remarkably, phenotypic variations have been frequently observed in the field, such variations are usually unstable and can change from one growing season to another. Considering that gene expression can be influenced both by genetic and epigenetic changes, epigenetics could be a plausible cause of the alternative phenotypes. In order to obtain new insights into this issue, we carried out a molecular marker analysis of 112 accessions from the World Saffron and Crocus Collection. The accessions were grown for at least three years in the same open field conditions. The same samples were analysed using Amplified Fragment Length Polymorphism (AFLP and Methyl Sensitive AFLP in order to search for variation at the genetic (DNA sequence and epigenetic (cytosine methylation level. While the genetic variability was low (4.23% polymorphic peaks and twelve (12 effective different genotypes, the methyl sensitive analysis showed the presence of high epigenetic variability (33.57% polymorphic peaks and twenty eight (28 different effective epigenotypes. The pattern obtained by Factorial Correspondence Analysis of AFLP and, in particular, of MS-AFLP data was consistent with the geographical provenance of the accessions. Very interestingly, by focusing on Spanish accessions, it was observed that the distribution of the accessions in the Factorial Correspondence Analysis is not random but tends to reflect the geographical origin. Two clearly defined clusters grouping accessions from the West (Toledo and Ciudad Real and accessions from the East (Cuenca and Teruel were clearly recognised.

  5. Genetic differentiation in Pyrenophora teres f. teres populations from Syria and Tunisia as assessed by AFLP markers.

    Science.gov (United States)

    Bouajila, A; Zoghlami, N; Murad, S; Baum, M; Ghorbel, A; Nazari, K

    2013-06-01

    To investigate the level of genetic differentiation and diversity among Pyrenophora teres isolate populations originating from different agro-ecological areas of Syria and Tunisia and to determine the potential of AFLP profiling in genotyping Pyrenophora teres f. teres. In this study, AFLP markers have been employed to identify patterns of population structure in 20 Pyrenophora teres f. teres populations from Syria and Tunisia. Ninety-four isolates were studied by the use of a protocol that involved stringent PCR amplification of fragments derived from digestion of genomic DNA with restriction enzymes EcoRI and MesI. Based on 401 amplified polymorphic DNA markers (AFLP), variance analyses indicated that most of the variation was partitioned within rather than between populations. Genotypic diversity (GD) was high for populations from Rihane, local landraces and different agro-ecological zones (GD = 0·75-0·86). There was high genetic differentiation among pathogen populations from different host populations in Syria (Gst  = 0·31, ht = 0·190) and Tunisia (Gst  = 0·39, ht = 0·263), which may be partly explained by the low gene flow around the areas sampled. A phenetic tree revealed three groups with high bootstrap values (55, 68, 76) and reflected the grouping of isolates based on host, or agro-ecological areas. AFLP profiling is an effective method for typing the genetically diverse pathogen Pyrenophora teres f. teres. The study represents a comparative analysis of the genetic diversity in P. teres isolates from two countries spanning two continents and also shows that several distinct P. teres genotypes may be found in a given environment. The implications of these findings for Pyrenophora teres f. teres evolutionary potential and net blotch-resistance breeding in Syria and Tunisia were also discussed. © 2012 The Society for Applied Microbiology.

  6. Genetic diversity and identification of variety-specific AFLP markers ...

    African Journals Online (AJOL)

    In all the fenugreek varieties, a total of 25 variety-specific AFLP markers were found. Phylogenetic trees among 5 plant varieties were constructed based on Nei's coefficient standard genetic distances using unweighted pair group method with arithmetic mean (UPGMA) method. For RAPD and AFLP analysis, Gujarat Methi-1 ...

  7. Non PCR-amplified Transcripts and AFLP fragments as reduced representations of the quail genome for 454 Titanium sequencing

    Directory of Open Access Journals (Sweden)

    Leterrier Christine

    2010-07-01

    Full Text Available Abstract Background SNP (Single Nucleotide Polymorphism discovery is now routinely performed using high-throughput sequencing of reduced representation libraries. Our objective was to adapt 454 GS FLX based sequencing methodologies in order to obtain the largest possible dataset from two reduced representations libraries, produced by AFLP (Amplified Fragment Length Polymorphism for genomic DNA, and EST (Expressed Sequence Tag for the transcribed fraction of the genome. Findings The expressed fraction was obtained by preparing cDNA libraries without PCR amplification from quail embryo and brain. To optimize the information content for SNP analyses, libraries were prepared from individuals selected in three quail lines and each individual in the AFLP library was tagged. Sequencing runs produced 399,189 sequence reads from cDNA and 373,484 from genomic fragments, covering close to 250 Mb of sequence in total. Conclusions Both methods used to obtain reduced representations for high-throughput sequencing were successful after several improvements. The protocols may be used for several sequencing applications, such as de novo sequencing, tagged PCR fragments or long fragment sequencing of cDNA.

  8. Transcriptional profiling of putative human epithelial stem cells

    Directory of Open Access Journals (Sweden)

    Koçer Salih S

    2008-07-01

    Full Text Available Abstract Background Human interfollicular epidermis is sustained by the proliferation of stem cells and their progeny, transient amplifying cells. Molecular characterization of these two cell populations is essential for better understanding of self renewal, differentiation and mechanisms of skin pathogenesis. The purpose of this study was to obtain gene expression profiles of alpha 6+/MHCI+, transient amplifying cells and alpha 6+/MHCI-, putative stem cells, and to compare them with existing data bases of gene expression profiles of hair follicle stem cells. The expression of Major Histocompatibility Complex (MHC class I, previously shown to be absent in stem cells in several tissues, and alpha 6 integrin were used to isolate MHCI positive basal cells, and MHCI low/negative basal cells. Results Transcriptional profiles of the two cell populations were determined and comparisons made with published data for hair follicle stem cell gene expression profiles. We demonstrate that presumptive interfollicular stem cells, alpha 6+/MHCI- cells, are enriched in messenger RNAs encoding surface receptors, cell adhesion molecules, extracellular matrix proteins, transcripts encoding members of IFN-alpha family proteins and components of IFN signaling, but contain lower levels of transcripts encoding proteins which take part in energy metabolism, cell cycle, ribosome biosynthesis, splicing, protein translation, degradation, DNA replication, repair, and chromosome remodeling. Furthermore, our data indicate that the cell signaling pathways Notch1 and NF-κB are downregulated/inhibited in MHC negative basal cells. Conclusion This study demonstrates that alpha 6+/MHCI- cells have additional characteristics attributed to stem cells. Moreover, the transcription profile of alpha 6+/MHCI- cells shows similarities to transcription profiles of mouse hair follicle bulge cells known to be enriched for stem cells. Collectively, our data suggests that alpha 6+/MHCI- cells

  9. Characterization of Betula platyphylla gene transcripts associated with early development of male inflorescence.

    Science.gov (United States)

    Xing, Lei; Liu, Xue-Mei

    2012-02-01

    Birch (Betula platyphylla), an eminent tree species in Northeast and Inner Mongolia of China, has been widely used in architecture, furniture, and paper making in recent years. In order to retrieve genes involved in early development of B. platyphylla male inflorescence, RNA populations extracted from early and late developmental stage were analyzed by cDNA-Amplified Fragment Length Polymorphism (cDNA-AFLP) technique. Following amplification of 256 pairs of primer combinations, ~7000 fragments were generated, of which 350 transcripts expressing more in early stage than late. Of 350 specific transcripts, 198 clear and reproducible electrophoresis bands were retrieved and sequenced successfully, 74 of them (37%) showing significant homologies to known genes after GO annotation. Majority of the predicted gene products were involved in metabolism (24.56%), cellular process (27.19%), response to stimulus (11.4%) and cell growth (8.7%). Transcripts ME56, ME108, ME206 and ME310, representing metabolism, cellular process, response to stimulus and cell growth, respectively, were selected for further study to validate cDNA-AFLP expression patterns via RT-PCR and qRT-PCR analysis. RT-PCR and qRT-PCR expression pattern results were consistent with cDNA-AFLP analysis results.

  10. Evaluating the relationship between evolutionary divergence and phylogenetic accuracy in AFLP data sets.

    Science.gov (United States)

    García-Pereira, María Jesús; Caballero, Armando; Quesada, Humberto

    2010-05-01

    Using in silico amplified fragment length polymorphism (AFLP) fingerprints, we explore the relationship between sequence similarity and phylogeny accuracy to test when, in terms of genetic divergence, the quality of AFLP data becomes too low to be informative for a reliable phylogenetic reconstruction. We generated DNA sequences with known phylogenies using balanced and unbalanced trees with recent, uniform and ancient radiations, and average branch lengths (from the most internal node to the tip) ranging from 0.02 to 0.4 substitutions per site. The resulting sequences were used to emulate the AFLP procedure. Trees were estimated by maximum parsimony (MP), neighbor-joining (NJ), and minimum evolution (ME) methods from both DNA sequences and virtual AFLP fingerprints. The estimated trees were compared with the reference trees using a score that measures overall differences in both topology and relative branch length. As expected, the accuracy of AFLP-based phylogenies decreased dramatically in the more divergent data sets. Above a divergence of approximately 0.05, AFLP-based phylogenies were largely inaccurate irrespective of the distinct topology, radiation model, or phylogenetic method used. This value represents an upper bound of expected tree accuracy for data sets with a simple divergence history; AFLP data sets with a similar divergence but with unbalanced topologies and short ancestral branches produced much less accurate trees. The lack of homology of AFLP bands quickly increases with divergence and reaches its maximum value (100%) at a divergence of only 0.4. Low guanine-cytosine (GC) contents increase the number of nonhomologous bands in AFLP data sets and lead to less reliable trees. However, the effect of the lack of band homology on tree accuracy is surprisingly small relative to the negative impact due to the low information content of AFLP characters. Tree-building methods based on genetic distance displayed similar trends and outperformed parsimony

  11. The relative contribution of band number to phylogenetic accuracy in AFLP data sets.

    Science.gov (United States)

    García-Pereira, M J; Caballero, A; Quesada, H

    2011-11-01

    We examined the effect of increasing the number of sampled amplified fragment length polymorphism (AFLP) bands to reconstruct an accurate and well-supported AFLP-based phylogeny. In silico AFLP was performed using simulated DNA sequences evolving along balanced and unbalanced model trees with recent, uniform and ancient radiations and average branch lengths (from the most internal node to the tip) ranging from 0.02 to 0.05 substitutions per site. Trees were estimated by minimum evolution (ME) and maximum parsimony (MP) methods from both DNA sequences and virtual AFLP fingerprints. The comparison of the true tree with the estimated AFLP trees suggests that moderate numbers of AFLP bands are necessary to recover the correct topology with high bootstrap support values (i.e. >70%). Fewer numbers of bands are necessary for shorter tree lengths and for balanced than for unbalanced tree topologies. However, branch length estimation was rather unreliable and did not improve substantially after a certain number of bands were sampled. These results hold for different levels of genome coverage and number of taxa analysed. In silico AFLP using bacterial genomic DNA sequences recovered a well-supported tree topology that mirrored an empirical phylogeny based on a set of 31 orthologous gene sequences when as few as 263 AFLP bands were scored. These results suggest that AFLPs may be an efficient alternative to traditional DNA sequencing for accurate topology reconstruction of shallow trees when not very short ancestral branches exist. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  12. cDNA-AFLP analysis reveals differential gene expression in response to salt stress in foxtail millet (Setaria italica L.).

    Science.gov (United States)

    Jayaraman, Ananthi; Puranik, Swati; Rai, Neeraj Kumar; Vidapu, Sudhakar; Sahu, Pranav Pankaj; Lata, Charu; Prasad, Manoj

    2008-11-01

    Plant growth and productivity are affected by various abiotic stresses such as heat, drought, cold, salinity, etc. The mechanism of salt tolerance is one of the most important subjects in plant science as salt stress decreases worldwide agricultural production. In our present study we used cDNA-AFLP technique to compare gene expression profiles of a salt tolerant and a salt-sensitive cultivar of foxtail millet (Seteria italica) in response to salt stress to identify early responsive differentially expressed transcripts accumulated upon salt stress and validate the obtained result through quantitative real-time PCR (qRT-PCR). The expression profile was compared between a salt tolerant (Prasad) and susceptible variety (Lepakshi) of foxtail millet in both control condition (L0 and P0) and after 1 h (L1 and P1) of salt stress. We identified 90 transcript-derived fragments (TDFs) that are differentially expressed, out of which 86 TDFs were classified on the basis of their either complete presence or absence (qualitative variants) and 4 on differential expression pattern levels (quantitative variants) in the two varieties. Finally, we identified 27 non-redundant differentially expressed cDNAs that are unique to salt tolerant variety which represent different groups of genes involved in metabolism, cellular transport, cell signaling, transcriptional regulation, mRNA splicing, seed development and storage, etc. The expression patterns of seven out of nine such genes showed a significant increase of differential expression in tolerant variety after 1 h of salt stress in comparison to salt-sensitive variety as analyzed by qRT-PCR. The direct and indirect relationship of identified TDFs with salinity tolerance mechanism is discussed.

  13. Evaluation of interspecific DNA variability in poplars using AFLP and ...

    African Journals Online (AJOL)

    The objective of this paper was to examine interspecific DNA variation in poplars using AFLP and SSR markers. The AFLP and SSR markers polymorphism and its power of discrimination were determined within 13 genotypes of different genetic background (clones, cultivars, hybrids) of two sections (Aigeiros and ...

  14. Identification of genes related to Paulownia witches' broom by AFLP and MSAP.

    Science.gov (United States)

    Cao, Xibing; Fan, Guoqiang; Deng, Minjie; Zhao, Zhenli; Dong, Yanpeng

    2014-08-21

    DNA methylation is believed to play important roles in regulating gene expression in plant growth and development. Paulownia witches' broom (PaWB) infection has been reported to be related to gene expression changes in paulownia plantlets. To determine whether DNA methylation is associated with gene expression changes in response to phytoplasma, we investigated variations in genomic DNA sequence and methylation in PaWB plantlets treated with methyl methane sulfonate (MMS) using amplified fragment length polymorphism (AFLP) and methylation-sensitive amplification polymorphism (MSAP) techniques, respectively. The results indicated that PaWB seedings recovered a normal morphology after treatment with more than 15 mg·L(-1) MMS. PaWB infection did not cause changes of the paulownia DNA sequence at the AFLP level; However, DNA methylation levels and patterns were altered. Quantitative real-time PCR (qRT-PCR) showed that three of the methylated genes were up-regulated and three were down-regulated in the MMS-treated PaWB plantlets that had regained healthy morphology. These six genes might be involved in transcriptional regulation, plant defense, signal transduction and energy. The possible roles of these genes in PaWB are discussed. The results showed that changes of DNA methylation altered gene expression levels, and that MSAP might help identify genes related to PaWB.

  15. Identification of Genes Related to Paulownia Witches’ Broom by AFLP and MSAP

    Science.gov (United States)

    Cao, Xibing; Fan, Guoqiang; Deng, Minjie; Zhao, Zhenli; Dong, Yanpeng

    2014-01-01

    DNA methylation is believed to play important roles in regulating gene expression in plant growth and development. Paulownia witches’ broom (PaWB) infection has been reported to be related to gene expression changes in paulownia plantlets. To determine whether DNA methylation is associated with gene expression changes in response to phytoplasma, we investigated variations in genomic DNA sequence and methylation in PaWB plantlets treated with methyl methane sulfonate (MMS) using amplified fragment length polymorphism (AFLP) and methylation-sensitive amplification polymorphism (MSAP) techniques, respectively. The results indicated that PaWB seedings recovered a normal morphology after treatment with more than 15 mg·L−1 MMS. PaWB infection did not cause changes of the paulownia DNA sequence at the AFLP level; However, DNA methylation levels and patterns were altered. Quantitative real-time PCR (qRT-PCR) showed that three of the methylated genes were up-regulated and three were down-regulated in the MMS-treated PaWB plantlets that had regained healthy morphology. These six genes might be involved in transcriptional regulation, plant defense, signal transduction and energy. The possible roles of these genes in PaWB are discussed. The results showed that changes of DNA methylation altered gene expression levels, and that MSAP might help identify genes related to PaWB. PMID:25196603

  16. Molecular variation of Trypanosoma brucei subspecies as revealed by AFLP fingerprinting

    NARCIS (Netherlands)

    Agbo, E.E.C.; Majiwa, P.A.O.; Claassen, H.J.H.M.; Pas, te M.F.W.

    2002-01-01

    Genetic analysis of Trypanosoma spp. depends on the detection of variation between strains. We have used the amplified fragment length polymorphism (AFLP) technique to develop a convenient and reliable method for genetic characterization of Trypanosome (sub)species. AFLP accesses multiple

  17. Genetics and phylogeny of genus Coilia in China based on AFLP markers

    Science.gov (United States)

    Yang, Qiaoli; Han, Zhiqiang; Sun, Dianrong; Xie, Songguang; Lin, Longshan; Gao, Tianxiang

    2010-07-01

    The taxonomy of Coilia has been extensively studied in China, and yet phylogenetic relationships among component taxa remain controversial. We used a PCR-based fingerprinting technique, amplified fragment length polymorphism (AFLP) to characterize and identify all four species of Coilia in China. We examined the genetic relationships of the four species of Coilia and a subspecies of Coilia nasus with AFLP. A total of 180 AFLP loci were generated from six primer combinations, of which 76.11% were polymorphic. The mean genetic distance between pairs of taxa ranged from 0.047 to 0.596. The neighbor-joining tree and UPGMA dendrogram resolved the investigated species into three separate lineages: (1) C. mystus, (2) C. grayii and (3) C. brachygnathus, C. nasus, and C. nasus taihuensis. Phylogenetic analysis of the AFLP data is inconsistent with current morphological taxonomic systems. The AFLP data indicated a close relationship among C. brachygnathus, C. nasus taihuensis, and C. nasus. Therefore, the two species described under Coilia ( C. brachygnathus and C. nasus taihuensis) are treated as synonyms of C. nasus.

  18. AFLP marker linked to water-stress-tolerant bulks in barley (Hordeum vulgare L.

    Directory of Open Access Journals (Sweden)

    A. Altinkut

    2003-01-01

    Full Text Available The amplified fragment length polymorphism (AFLP assay is an efficient method for the identification of molecular markers, useful in the improvement of numerous crop species. Bulked Segregant Analysis (BSA was used to identify AFLP markers associated with water-stress tolerance in barley, as this would permit rapid selection of water-stress tolerant genotypes in breeding programs. AFLP markers linked to water-stress tolerance was identified in two DNA pools (tolerant and sensitive, which were established using selected F2 individuals resulting from a cross between water-stress-tolerant and sensitive barley parental genotypes, based on their paraquat (PQ tolerance, leaf size, and relative water content (RWC. All these three traits were previously shown to be associated with water-stress tolerance in segregating F2 progeny of the barley cross used in a previous study. AFLP analysis was then performed on these DNA pools, using 40 primer pairs to detect AFLP fragments that are present/absent, respectively, in the two pools and their parental lines. One separate AFLP fragment, which was present in the tolerant parent and in the tolerant bulk, but absent in the sensitive parent and in the sensitive bulk, was identified. Polymorphism of the AFLP marker was tested among tolerant and sensitive F2 individuals. The presence of this marker that is associated with water-stress tolerance will greatly enhance selection for paraquat and water-stress tolerant genotypes in future breeding programs.

  19. The uses of AFLP for detecting DNA polymorphism, genotype identification and genetic diversity between yeasts isolated from Mexican agave-distilled beverages and from grape musts.

    Science.gov (United States)

    Flores Berrios, E P; Alba González, J F; Arrizon Gaviño, J P; Romano, P; Capece, A; Gschaedler Mathis, A

    2005-01-01

    The objectives were to determine the variability and to compare the genetic diversity obtained using amplified fragment length polymorphism (AFLP) markers in analyses of wine, tequila, mezcal, sotol and raicilla yeasts. A molecular characterization of yeasts isolated from Mexican agave musts, has been performed by AFLP marker analysis, using reference wine strains from Italian and South African regions. A direct co-relation between genetic profile, origin and fermentation process of strains was found especially in strains isolated from agave must. In addition, unique molecular markers were obtained for all the strains using six combination primers, confirming the discriminatory power of AFLP markers. This is the first report of molecular characterization between yeasts isolated from different Mexican traditional agave-distilled beverages, which shows high genetic differences with respect to wine strains.

  20. Identification of Genes Related to Paulownia Witches’ Broom by AFLP and MSAP

    Directory of Open Access Journals (Sweden)

    Xibing Cao

    2014-08-01

    Full Text Available DNA methylation is believed to play important roles in regulating gene expression in plant growth and development. Paulownia witches’ broom (PaWB infection has been reported to be related to gene expression changes in paulownia plantlets. To determine whether DNA methylation is associated with gene expression changes in response to phytoplasma, we investigated variations in genomic DNA sequence and methylation in PaWB plantlets treated with methyl methane sulfonate (MMS using amplified fragment length polymorphism (AFLP and methylation-sensitive amplification polymorphism (MSAP techniques, respectively. The results indicated that PaWB seedings recovered a normal morphology after treatment with more than 15 mg·L−1 MMS. PaWB infection did not cause changes of the paulownia DNA sequence at the AFLP level; However, DNA methylation levels and patterns were altered. Quantitative real-time PCR (qRT-PCR showed that three of the methylated genes were up-regulated and three were down-regulated in the MMS-treated PaWB plantlets that had regained healthy morphology. These six genes might be involved in transcriptional regulation, plant defense, signal transduction and energy. The possible roles of these genes in PaWB are discussed. The results showed that changes of DNA methylation altered gene expression levels, and that MSAP might help identify genes related to PaWB.

  1. A first linkage map of globe artichoke (Cynara cardunculus var. scolymus L.) based on AFLP, S-SAP, M-AFLP and microsatellite markers.

    Science.gov (United States)

    Lanteri, S; Acquadro, A; Comino, C; Mauro, R; Mauromicale, G; Portis, E

    2006-05-01

    We present the first genetic maps of globe artichoke (Cynara cardunculus var. scolymus L. 2n=2x=34), constructed with a two-way pseudo-testcross strategy. A F1 mapping population of 94 individuals was generated between a late-maturing, non-spiny type and an early-maturing spiny type. The 30 AFLP, 13 M-AFLP and 9 S-SAP primer combinations chosen identified, respectively, 352, 38 and 41 polymorphic markers. Of 32 microsatellite primer pairs tested, 12 identified heterozygous loci in one or other parent, and 7 were fully informative as they segregated in both parents. The female parent map comprised 204 loci, spread over 18 linkage groups and spanned 1330.5 cM with a mean marker density of 6.5 cM. The equivalent figures for the male parent map were 180 loci, 17 linkage groups, 1239.4 and 6.9 cM. About 3% of the AFLP and AFLP-derived markers displayed segregation distortion with a P value below 0.01, and were not used for map construction. All the SSR loci were included in the linkage analysis, although one locus did show some segregation distortion. The presence of 78 markers in common to both maps allowed the alignment of 16 linkage groups. The maps generated provide a firm basis for the mapping of agriculturally relevant traits, which will then open the way for the application of a marker-assisted selection breeding strategy in this species.

  2. Gene expression profiling of a Zn-tolerant and a Zn-sensitive Suillus luteus isolate exposed to increased external zinc concentrations.

    Science.gov (United States)

    Muller, L A H; Craciun, A R; Ruytinx, J; Lambaerts, M; Verbruggen, N; Vangronsveld, J; Colpaert, J V

    2007-10-01

    Complementary DNA (cDNA)-amplified fragment-length polymorphism (AFLP) was applied to analyze transcript profiles of a Zn-tolerant and a Zn-sensitive isolate of the ectomycorrhizal basidiomycete Suillus luteus, both cultured with and without increased external zinc concentrations. From the obtained transcript profiles that covered approximately 2% of the total expected complement of genes in S. luteus, 144 nonredundant, differentially expressed transcript-derived fragments (TDFs), falling in different classes of expression pattern, were isolated and sequenced. Thirty-six of the represented genes showed homology to function-known genes, whereas 6 matched unknown protein coding sequences, and 102 were possibly novel. Although relatively few TDFs were found to be responsive to the different zinc treatments, their modulated expression levels may suggest a different transcriptional response to zinc treatments in both isolates. Among the identified genes that could be related to heavy-metal detoxification or the tolerance trait were genes encoding for homologues of a heat-shock protein, a putative metal transporter, a hydrophobin, and several proteins involved in ubiquitin-dependent proteolysis.

  3. An AFLP marker linked to turnip mosaic virus resistance gene in pak ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... polymorphism (AFLP) technique and bulked segregant analysis (BSA) method were used to study the. F2 population. An AFLP marker ... TuRB03 (Hughes et al., 2003), TuRB04-05 (Jenner et al.,. 2002), ConTR01 ... The resistance evaluation was done by visual observation and direct enzyme-linked ...

  4. A DNA microarray-based methylation-sensitive (MS)-AFLP hybridization method for genetic and epigenetic analyses.

    Science.gov (United States)

    Yamamoto, F; Yamamoto, M

    2004-07-01

    We previously developed a PCR-based DNA fingerprinting technique named the Methylation Sensitive (MS)-AFLP method, which permits comparative genome-wide scanning of methylation status with a manageable number of fingerprinting experiments. The technique uses the methylation sensitive restriction enzyme NotI in the context of the existing Amplified Fragment Length Polymorphism (AFLP) method. Here we report the successful conversion of this gel electrophoresis-based DNA fingerprinting technique into a DNA microarray hybridization technique (DNA Microarray MS-AFLP). By performing a total of 30 (15 x 2 reciprocal labeling) DNA Microarray MS-AFLP hybridization experiments on genomic DNA from two breast and three prostate cancer cell lines in all pairwise combinations, and Southern hybridization experiments using more than 100 different probes, we have demonstrated that the DNA Microarray MS-AFLP is a reliable method for genetic and epigenetic analyses. No statistically significant differences were observed in the number of differences between the breast-prostate hybridization experiments and the breast-breast or prostate-prostate comparisons.

  5. Characterization of four salsola species and their genetic relationship by aflp

    International Nuclear Information System (INIS)

    Amal, M.E.; Hamid, A.

    2016-01-01

    Amplified length polymorphism (AFLP) technique was used to characterize and detect molecular genetic markers for four Salsola species collected from Al Jouf region in the northern of Saudi Arabia and to shed light on their genetic relationships. Three primer combinations were used for AFLP analysis of the four Salsola species, they generated a total of 181 fragments of which 133 were species specific markers scored across Salsola species. The dendogram produced by Jaccard's coefficient and the UPGMA clustering method showed one main cluster, subdivided into two subclusters. The first sub cluster included Salsola schweinfurthii and Salsola tetrandra. The second sub cluster included Salsola villosa and Salsola cyclophylla. It is worth mentioning that this is the first study to use AFLP markers to characterize and detect molecular genetic markers for the four Salsola species and their genetic relationships. (author)

  6. (L.) Dunal using RAPD and AFLP markers

    African Journals Online (AJOL)

    ajl yemi

    2011-10-26

    Oct 26, 2011 ... Fragment Length Polymorphism (AFLP) markers. Eighteen ... importance due to its simplicity, efficiency, relative ease .... nation, number of polymorphic bands, percentage polymorphism .... roots, stems, leaves, flowers, pollen grains, mature fruits ... genetic changes that isolated it from the wild species.

  7. Survival-related profile, pathways, and transcription factors in ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Anne P G Crijns

    2009-02-01

    Full Text Available BACKGROUND: Ovarian cancer has a poor prognosis due to advanced stage at presentation and either intrinsic or acquired resistance to classic cytotoxic drugs such as platinum and taxoids. Recent large clinical trials with different combinations and sequences of classic cytotoxic drugs indicate that further significant improvement in prognosis by this type of drugs is not to be expected. Currently a large number of drugs, targeting dysregulated molecular pathways in cancer cells have been developed and are introduced in the clinic. A major challenge is to identify those patients who will benefit from drugs targeting these specific dysregulated pathways.The aims of our study were (1 to develop a gene expression profile associated with overall survival in advanced stage serous ovarian cancer, (2 to assess the association of pathways and transcription factors with overall survival, and (3 to validate our identified profile and pathways/transcription factors in an independent set of ovarian cancers. METHODS AND FINDINGS: According to a randomized design, profiling of 157 advanced stage serous ovarian cancers was performed in duplicate using approximately 35,000 70-mer oligonucleotide microarrays. A continuous predictor of overall survival was built taking into account well-known issues in microarray analysis, such as multiple testing and overfitting. A functional class scoring analysis was utilized to assess pathways/transcription factors for their association with overall survival. The prognostic value of genes that constitute our overall survival profile was validated on a fully independent, publicly available dataset of 118 well-defined primary serous ovarian cancers. Furthermore, functional class scoring analysis was also performed on this independent dataset to assess the similarities with results from our own dataset. An 86-gene overall survival profile discriminated between patients with unfavorable and favorable prognosis (median survival, 19

  8. Transcription profiles of mitochondrial genes correlate with mitochondrial DNA haplotypes in a natural population of Silene vulgaris

    Directory of Open Access Journals (Sweden)

    Olson Matthew S

    2010-01-01

    Full Text Available Abstract Background Although rapid changes in copy number and gene order are common within plant mitochondrial genomes, associated patterns of gene transcription are underinvestigated. Previous studies have shown that the gynodioecious plant species Silene vulgaris exhibits high mitochondrial diversity and occasional paternal inheritance of mitochondrial markers. Here we address whether variation in DNA molecular markers is correlated with variation in transcription of mitochondrial genes in S. vulgaris collected from natural populations. Results We analyzed RFLP variation in two mitochondrial genes, cox1 and atp1, in offspring of ten plants from a natural population of S. vulgaris in Central Europe. We also investigated transcription profiles of the atp1 and cox1 genes. Most DNA haplotypes and transcription profiles were maternally inherited; for these, transcription profiles were associated with specific mitochondrial DNA haplotypes. One individual exhibited a pattern consistent with paternal inheritance of mitochondrial DNA; this individual exhibited a transcription profile suggestive of paternal but inconsistent with maternal inheritance. We found no associations between gender and transcript profiles. Conclusions Specific transcription profiles of mitochondrial genes were associated with specific mitochondrial DNA haplotypes in a natural population of a gynodioecious species S. vulgaris. Our findings suggest the potential for a causal association between rearrangements in the plant mt genome and transcription product variation.

  9. Hippocampal CA1 transcriptional profile of sleep deprivation: relation to aging and stress.

    Directory of Open Access Journals (Sweden)

    Nada M Porter

    Full Text Available Many aging changes seem similar to those elicited by sleep-deprivation and psychosocial stress. Further, sleep architecture changes with age suggest an age-related loss of sleep. Here, we hypothesized that sleep deprivation in young subjects would elicit both stress and aging-like transcriptional responses.F344 rats were divided into control and sleep deprivation groups. Body weight, adrenal weight, corticosterone level and hippocampal CA1 transcriptional profiles were measured. A second group of animals was exposed to novel environment stress (NES, and their hippocampal transcriptional profiles measured. A third cohort exposed to control or SD was used to validate transcriptional results with Western blots. Microarray results were statistically contrasted with prior transcriptional studies. Microarray results pointed to sleep pressure signaling and macromolecular synthesis disruptions in the hippocampal CA1 region. Animals exposed to NES recapitulated nearly one third of the SD transcriptional profile. However, the SD-aging relationship was more complex. Compared to aging, SD profiles influenced a significant subset of genes. mRNA associated with neurogenesis and energy pathways showed agreement between aging and SD, while immune, glial, and macromolecular synthesis pathways showed SD profiles that opposed those seen in aging.We conclude that although NES and SD exert similar transcriptional changes, selective presynaptic release machinery and Homer1 expression changes are seen in SD. Among other changes, the marked decrease in Homer1 expression with age may represent an important divergence between young and aged brain response to SD. Based on this, it seems reasonable to conclude that therapeutic strategies designed to promote sleep in young subjects may have off-target effects in the aged. Finally, this work identifies presynaptic vesicular release and intercellular adhesion molecular signatures as novel therapeutic targets to counter

  10. Biochemical and genetic variation of some Syrian wheat varieties using NIR, RAPD and AFLPs techniques

    International Nuclear Information System (INIS)

    Saleh, B.

    2012-01-01

    This study was performed to assess chemical components and genetic variability of five Syrian wheat varieties using NIR, RAPD and AFLP techniques. NIR technique showed that Cham6 was the best variety in term of wheat grain quality due to their lowest protein (%), hardness, water uptake and baking volume and the highest starch (%) compared to the other tested varieties. PCR amplifications with 21 RAPD primers and 13 AFLP PCs primer combinations gave 104 and 466 discernible loci of which 24 (18.823%) and 199 (45.527%) were polymorphic for the both techniques respectively. Our data indicated that the three techniques gave similar results regarding the degree of relatedness among the tested varieties. In the present investigation, AFLP fingerprinting was more efficient than the RAPD assay. Where the letter exhibited lower Marker Index (MI) average (0.219) compared to AFLP one (3.203). The pattern generated by RAPD, AFLPs markers or by NIR separated the five wheat varieties into two groups. The first group consists of two subclusters. The first subcluster involved Cham8 and Bohous6, while the second one includes Cham6 that is very closed to precedent varieties. The second group consists of Bohous9 and Cham7 that were also closely related. Based on this study, the use of NIR, RAPD and AFLP techniques could be a powerful tool to detect the effectiveness relationships of these technologies. (author)

  11. AFLP studies on downy-mildew-resistant and downy-mildew-susceptible genotypes of opium poppy.

    Science.gov (United States)

    Dubey, Mukesh K; Shasany, Ajit K; Dhawan, Om P; Shukla, Ashutosh K; Khanuja, Suman P S

    2010-04-01

    Downy mildew (DM) caused by Peronospora arborescens, is a serious disease in opium poppy (Papaver somniferum), which has a world-wide spread. The establishment of DM-resistant cultivars appears to be a sustainable way to control the In this paper, we present the results of a study aimed at the identification of amplified fragment length polymorphism (AFLP) markers for DM-resistance in opium poppy. Three opium poppy genotypes (inbred over about 10 years): Pps-1 (DM-resistant), Jawahar-16 (DM-susceptible) and H-9 (DM-susceptible) were crossed in a diallel manner and the F(1) progeny along with the parents were subjected to AFLP analysis of chloroplast (cp) and nuclear DNA with seven and nine EcoRI / MseI primer combinations, respectively. cpDNA AFLP analysis identified 24 Pps-1 (DM-resistant)-specific unique fragments that were found to be maternally inherited in both the crosses, Pps-1 x Jawahar-16 and Pps-1 x H-9. In the case of nuclear DNA AFLP analysis, it was found that 17 fragments inherited from Pps-1 were common to the reciprocal crosses of both (i) Pps-1 and Jawahar-16 as well as (ii) Pps-1 and H-9. This is the first molecular investigation on the identification of polymorphism between DM-resistant and DM-susceptible opium poppy genotypes and development of DM-resistant opium poppy genotypespecific AFLP markers. These AFLP markers could be used in future genetic studies for analysis of linkage to the downy mildew resistance trait.

  12. Changes in gene expression during male meiosis in Petunia hybrida.

    Science.gov (United States)

    Cnudde, Filip; Hedatale, Veena; de Jong, Hans; Pierson, Elisabeth S; Rainey, Daphne Y; Zabeau, Marc; Weterings, Koen; Gerats, Tom; Peters, Janny L

    2006-01-01

    We analyzed changes in gene expression during male meiosis in Petunia by combining the meiotic staging of pollen mother cells from a single anther with cDNA-AFLP transcript profiling of mRNA from the synchronously developing sister anthers. The transcript profiling experiments focused on the identification of genes with a modulated expression profile during meiosis, while premeiotic archesporial cells and postmeiotic microspores served as a reference. About 8000 transcript tags, estimated at 30% of the total transcriptome, were generated, of which around 6% exhibited a modulated gene expression pattern at meiosis. Cluster analysis revealed a transcriptional cascade that coincides with the initiation and progression through all stages of the two meiotic divisions. Fragments that exhibited high expression specifically during meiosis I were characterized further by sequencing; 90 out of the 293 sequenced fragments showed homology with known genes, belonging to a wide range of gene classes, including previously characterized meiotic genes. In-situ hybridization experiments were performed to determine the spatial expression pattern for five selected transcript tags. Its concurrence with cDNA-AFLP transcript profiles indicates that this is an excellent approach to study genes involved in specialized processes such as meiosis. Our data set provides the potential to unravel unique meiotic genes that are as yet elusive to reverse genetics approaches.

  13. AFLP analysis of Cynodon dactylon (L.) Pers. var. dactylon genetic variation.

    Science.gov (United States)

    Wu, Y Q; Taliaferro, C M; Bai, G H; Anderson, M P

    2004-08-01

    Cynodon dactylon (L.) Pers. var. dactylon (common bermudagrass) is geographically widely distributed between about lat 45 degrees N and lat 45 degrees S, penetrating to about lat 53 degrees N in Europe. The extensive variation of morphological and adaptive characteristics of the taxon is substantially documented, but information is lacking on DNA molecular variation in geographically disparate forms. Accordingly, this study was conducted to assess molecular genetic variation and genetic relatedness among 28 C. dactylon var. dactylon accessions originating from 11 countries on 4 continents (Africa, Asia, Australia, and Europe). A fluorescence-labeled amplified fragment length polymorphism (AFLP) DNA profiling method was used to detect the genetic diversity and relatedness. On the basis of 443 polymorphic AFLP fragments from 8 primer combinations, the accessions were grouped into clusters and subclusters associating with their geographic origins. Genetic similarity coefficients (SC) for the 28 accessions ranged from 0.53 to 0.98. Accessions originating from Africa, Australia, Asia, and Europe formed major groupings as indicated by cluster and principal coordinate analysis. Accessions from Australia and Asia, though separately clustered, were relatively closely related and most distantly related to accessions of European origin. African accessions formed two distant clusters and had the greatest variation in genetic relatedness relative to accessions from other geographic regions. Sampling the full extent of genetic variation in C. dactylon var. dactylon would require extensive germplasm collection in the major geographic regions of its distributional range.

  14. Environmental sampling of Ceratonia siliqua (carob) trees in Spain reveals the presence of the rare Cryptococcus gattii genotype AFLP7/VGIV.

    Science.gov (United States)

    Linares, Carlos; Colom, María Francisca; Torreblanca, Marina; Esteban, Violeta; Romera, Álvaro; Hagen, Ferry

    2015-01-01

    Cryptococcus gattii is a pathogenic basidiomycetous yeast that is emerging in temperate climate zones worldwide. C. gattii has repetitively been isolated from numerous tree species. Ongoing environmental sampling and molecular characterization is essential to understand the presence of this primary pathogenic microorganism in the Mediterranean environment. To report the first isolation of the rare C. gattii genotype AFLP7/VGIV from the environment in Europe. Samples were collected from woody debris of carob trees (Ceratonia siliqua) and olive trees (Olea europaea) in El Perelló, Tarragona, Spain. Cryptococcus species were further characterized by using URA5-RFLP, MALDI-TOF, AFLP and MLST. The antifungal susceptibility profile to amphotericin B, 5-fluorocytosine, fluconazole, itraconazole, posaconazole and voriconazole was determined using Sensititre Yeast One and E-test. Cultures from one carob tree revealed the presence of ten Cryptococcus-like colonies. One colony was identified as C. gattii, and subsequent molecular characterization showed that it was an α mating-type that belonged to the rare genotype AFLP7/VGIV. Antifungal susceptibility testing showed values within the range of sensitivity described for other isolates of the same genotype and within the epidemiological cutoff values for this species. The isolation of the rare C. gattii genotype AFLP7/VGIV in Spain is the first report in the European environment, implying the possible presence in other regions of the Mediterranean area, and underlines that clinicians must be aware for C. gattii infections in healthy individuals. Copyright © 2014 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  15. Transcriptional profiling of the dose response: a more powerful approach for characterizing drug activities.

    Directory of Open Access Journals (Sweden)

    Rui-Ru Ji

    2009-09-01

    Full Text Available The dose response curve is the gold standard for measuring the effect of a drug treatment, but is rarely used in genomic scale transcriptional profiling due to perceived obstacles of cost and analysis. One barrier to examining transcriptional dose responses is that existing methods for microarray data analysis can identify patterns, but provide no quantitative pharmacological information. We developed analytical methods that identify transcripts responsive to dose, calculate classical pharmacological parameters such as the EC50, and enable an in-depth analysis of coordinated dose-dependent treatment effects. The approach was applied to a transcriptional profiling study that evaluated four kinase inhibitors (imatinib, nilotinib, dasatinib and PD0325901 across a six-logarithm dose range, using 12 arrays per compound. The transcript responses proved a powerful means to characterize and compare the compounds: the distribution of EC50 values for the transcriptome was linked to specific targets, dose-dependent effects on cellular processes were identified using automated pathway analysis, and a connection was seen between EC50s in standard cellular assays and transcriptional EC50s. Our approach greatly enriches the information that can be obtained from standard transcriptional profiling technology. Moreover, these methods are automated, robust to non-optimized assays, and could be applied to other sources of quantitative data.

  16. Genomic variations of Mycoplasma capricolum subsp capripneumoniae detected by amplified fragment length polymorphism (AFLP) analysis

    DEFF Research Database (Denmark)

    Kokotovic, Branko; Bolske, G.; Ahrens, Peter

    2000-01-01

    The genetic diversity of Mycoplasma capricolum subsp. capripneumoniae strains based on determination of amplified fragment length polymorphisms (AFLP) is described. AFLP fingerprints of 38 strains derived from different countries in Africa and the Middle East consisted of over 100 bands in the size...

  17. Marcadores fAFLP na caracterização de três genótipos de umezeiro selecionados como porta-enxertos para pessegueiro fAFLP markers to characterize three mume genotypes selected as rootstocks for peach tree

    Directory of Open Access Journals (Sweden)

    Ester Wickert

    2007-12-01

    Full Text Available O objetivo deste trabalho foi caracterizar a diversidade genética existente em três genótipos de umezeiro (Clone 05, cv. Rigitano e Clone 15 e identificar marcadores moleculares fAFLP (fluorescent Amplified Fragment Lenght Polymorphism passíveis de serem utilizados na discriminação dos três genótipos de umezeiro selecionados como porta-enxertos para pessegueiro. Foram utilizadas 24 diferentes combinações de primers seletivos fAFLP que geraram 648 marcas, das quais 272 foram diferenciadoras dos três genótipos entre si. As marcas diferenciadoras permitiram o agrupamento dos clones de umezeiro de acordo com sua similaridade através do Método da Distância e algorítmo Neighbour Joining. As mesmas marcas foram utilizadas para calcular a distância genética entre os clones. Com o uso de marcadores fAFLP foi possível discriminar os três genótipos de umezeiro entre si, destacando-se as combinações Fam ACT/CAT, Joe AGG/CTT e Ned AGC/CAA, que permitiram a diferenciação individual de cada um dos clones. A maior distância genética foi encontrada entre a cv. Rigitano e o Clone 15. Os marcadores fAFLP revelaram maior proximidade genética entre o Clone 05 e a cv. Rigitano.The objective of this work was the identification of fAFLP markers to be used in molecular characterization of three mume genotypes selected as rootstocks for peach tree. Twenty-four different fAFLP primer combinations were used and allowed the recognition of 648 markers, comprising 272 markers which were able to discriminate the three clones one from the other. These markers were used to calculate the groupment of the clones according to their similarities with the distance method and neighbour joining algorithm. The same markers were also used to calculate the genetic distance among the clones. The fAFLP markers were efficient to identify the clones, mainly by the combinations of selective primers Fam ACT/CAT, Joe AGG/CTT and Ned AGC/CAA. fAFLP markers allowed the

  18. Use of AFLPs to differentiate between Fusarium species causing ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-09-15

    Fusarium spp. and. Helmintosporium sativum) diseases are common. The aim of this study was to use the AFLP technique to determine variation and genetic relationships between Syrian Fusarium isolates; and compare them.

  19. cDNA-AFLP analysis reveals differential gene expression in compatible interaction of wheat challenged with Puccinia striiformis f. sp. tritici

    Directory of Open Access Journals (Sweden)

    Huang Lili

    2009-06-01

    Full Text Available Abstract Background Puccinia striiformis f. sp. tritici is a fungal pathogen causing stripe rust, one of the most important wheat diseases worldwide. The fungus is strictly biotrophic and thus, completely dependent on living host cells for its reproduction, which makes it difficult to study genes of the pathogen. In spite of its economic importance, little is known about the molecular basis of compatible interaction between the pathogen and wheat host. In this study, we identified wheat and P. striiformis genes associated with the infection process by conducting a large-scale transcriptomic analysis using cDNA-AFLP. Results Of the total 54,912 transcript derived fragments (TDFs obtained using cDNA-AFLP with 64 primer pairs, 2,306 (4.2% displayed altered expression patterns after inoculation, of which 966 showed up-regulated and 1,340 down-regulated. 186 TDFs produced reliable sequences after sequencing of 208 TDFs selected, of which 74 (40% had known functions through BLAST searching the GenBank database. Majority of the latter group had predicted gene products involved in energy (13%, signal transduction (5.4%, disease/defence (5.9% and metabolism (5% of the sequenced TDFs. BLAST searching of the wheat stem rust fungus genome database identified 18 TDFs possibly from the stripe rust pathogen, of which 9 were validated of the pathogen origin using PCR-based assays followed by sequencing confirmation. Of the 186 reliable TDFs, 29 homologous to genes known to play a role in disease/defense, signal transduction or uncharacterized genes were further selected for validation of cDNA-AFLP expression patterns using qRT-PCR analyses. Results confirmed the altered expression patterns of 28 (96.5% genes revealed by the cDNA-AFLP technique. Conclusion The results show that cDNA-AFLP is a reliable technique for studying expression patterns of genes involved in the wheat-stripe rust interactions. Genes involved in compatible interactions between wheat and the

  20. Whole Blood Transcriptional Profiling of Interferon-Inducible Genes Identifies Highly Upregulated IFI27 in Primary Myelofibrosis

    DEFF Research Database (Denmark)

    Skov, Vibe; Larsen, Thomas Stauffer; Thomassen, Mads

    2011-01-01

    focused upon the transcriptional profiling of interferon-associated genes in patients with essential thrombocythemia (ET) (n = 19), polycythemia vera (PV) (n = 41), and primary myelofibrosis (PMF) (n = 9). Using whole-blood transcriptional profiling and accordingly obtaining an integrated signature...

  1. Whole-blood transcriptional profiling of interferon-inducible genes identifies highly upregulated IFI27 in primary myelofibrosis

    DEFF Research Database (Denmark)

    Skov, Vibe; Larsen, Thomas Stauffer; Thomassen, Mads

    2011-01-01

    focused upon the transcriptional profiling of interferon-associated genes in patients with essential thrombocythemia (ET) (n = 19), polycythemia vera (PV) (n = 41), and primary myelofibrosis (PMF) (n = 9). Using whole-blood transcriptional profiling and accordingly obtaining an integrated signature...

  2. Phylogenic analysis in Acacia senegal using AFLP molecular ...

    African Journals Online (AJOL)

    Amplified fragment length polymorphism (AFLP) DNA markers were used to characterize the genetic diversity and relationships in gum Arabic tree (Acacia senegal). Twenty eight samples of Acacia senegal collected from populations distributed throughout the Gum Arabic belt were tested in comparison with samples of ...

  3. Amplified fragment length polymorphism (AFLP) and genealogy ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-06-07

    Jun 7, 2010 ... Pang CY, Du XM, Ma ZY (2006). Evaluation of the introgressed lines and screening for elite germplasm in Gossypium, Chin. Sci. Bull. 51(1):. 304-312. Pieter V, Rene H, Marjo B (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23(21): 4407-4414. Qian SY, Huang JQ, Zhou BL, Peng ...

  4. Genetic structure in cultivated and wild carrots (¤Daucus carota¤ L.) revealed by AFLP analysis

    DEFF Research Database (Denmark)

    Shim, S.I.; Bagger Jørgensen, Rikke

    2000-01-01

    Genetic variation within and among five Danish populations of wild carrot and five cultivated varieties was investigated using amplified fragment length polymorphism (AFLP). Ten AFLP primer combinations produced 116 polymorphic bands. Based on the marker data an UPGMA-cluster analysis and principal...

  5. Application of fluorescence-based semi-automated AFLP analysis in barley and wheat

    DEFF Research Database (Denmark)

    Schwarz, G.; Herz, M.; Huang, X.Q.

    2000-01-01

    of semi-automated codominant analysis for hemizygous AFLP markers in an F-2 population was too low, proposing the use of dominant allele-typing defaults. Nevertheless, the efficiency of genetic mapping, especially of complex plant genomes, will be accelerated by combining the presented genotyping......Genetic mapping and the selection of closely linked molecular markers for important agronomic traits require efficient, large-scale genotyping methods. A semi-automated multifluorophore technique was applied for genotyping AFLP marker loci in barley and wheat. In comparison to conventional P-33...

  6. Identification of molecular markers associated with fruit traits in olive and assessment of olive core collection with AFLP markers and fruit traits.

    Science.gov (United States)

    Ipek, M; Seker, M; Ipek, A; Gul, M K

    2015-03-31

    The purpose of this study was to characterize olive core collection with amplified fragment length polymorphism (AFLP) markers and fruit traits and to determine AFLP markers significantly associated with these fruit characters in olive. A total of 168 polymorphic AFLP markers generated by five primer combinations and nine fruit traits were used to characterize relationships between 18 olive cultivars. Although all olive cultivars were discriminated from each other by either AFLP markers (markers and fruit traits was not significantly correlated (r = 0.13). Partial clustering of olive cultivars by AFLP markers according to their geographical origin was observed. Associations of AFLP markers with fruits were determined using a multiple-regression analysis with stepwise addition of AFLP markers. Significant associations between eight AFLP markers and fruit traits were identified. While five AFLP markers demonstrated significant negative correlation with fruit and stone weight, width and length and total polyphenols (P markers displayed significant positive correlation with α-tocopherol and γ-tocopherol (P molecular markers with fruit traits in olive. Molecular markers associated with morphological and agronomic traits could be utilized for the breeding of olive cultivars. However, the association power of these markers needs to be confirmed in larger populations, and highly correlated markers should then be converted to PCR-based DNA markers such as sequence-characterized amplified region markers for better utilization.

  7. Fluorescence-labeled methylation-sensitive amplified fragment length polymorphism (FL-MS-AFLP) analysis for quantitative determination of DNA methylation and demethylation status.

    Science.gov (United States)

    Kageyama, Shinji; Shinmura, Kazuya; Yamamoto, Hiroko; Goto, Masanori; Suzuki, Koichi; Tanioka, Fumihiko; Tsuneyoshi, Toshihiro; Sugimura, Haruhiko

    2008-04-01

    The PCR-based DNA fingerprinting method called the methylation-sensitive amplified fragment length polymorphism (MS-AFLP) analysis is used for genome-wide scanning of methylation status. In this study, we developed a method of fluorescence-labeled MS-AFLP (FL-MS-AFLP) analysis by applying a fluorescence-labeled primer and fluorescence-detecting electrophoresis apparatus to the existing method of MS-AFLP analysis. The FL-MS-AFLP analysis enables quantitative evaluation of more than 350 random CpG loci per run. It was shown to allow evaluation of the differences in methylation level of blood DNA of gastric cancer patients and evaluation of hypermethylation and hypomethylation in DNA from gastric cancer tissue in comparison with adjacent non-cancerous tissue.

  8. Molecular characterization of native potato (Solanum spp. Chungui, Ayacucho, using AFLP

    Directory of Open Access Journals (Sweden)

    Juan C. Gonzales Mamani

    2014-12-01

    Full Text Available Genetic diversity of 25 morphotypes of native potatoes Solanum spp. from Chungui (La Mar, Ayacucho were assess. Morphotypes collected were micropropagated in Murashigue Skoog medium (1962. DNA extraction proceeded using the CTAB method modified from 3 weeks leaves crop, good quality and quantity of DNA was able to use the AFLP. Enzymatic digestion of the DNA was performed using EcoRI and MseI. Three combinations of AFLP primers with three selective nucleotides were used, resulting in a total of 85 clearly discernable bands, of which 63 were polymorphic. The combination E37 – M50 showed the most informative polymorphic index content of 0.43. The presence/absence of polymorphic bands was evaluated using the Simple Matching coefficient similarity and clustering analysis using the UPGMA. The dendrogram produced had a cophenetic correlation coefficient r= 0.7. At the level 0.64 of Simple Matching coefficient similarity, the dendrogram grouped the morphotypes of native potatoes in 4 genetic groups, it not found duplicated morphotypes, despite having some morphotypes very similar. Our results would be showing the highly informative power of AFLP markers for the analysis of genetic diversity of native potatoes.

  9. Using aflp to identify genetic relationships in cassia species from Thailand

    International Nuclear Information System (INIS)

    Sihanat, A.; Rungsihirunrat, K.; Chareonsap, P. P.; Ruangrungsi, N.

    2017-01-01

    Several species of Cassia are used in Thai folk medicine as a laxative and a treatment for skin infections. However, the taxonomy of the GenusCassia is quite complex and intriguing. Thus, the correct identification of the species of this genus is necessary for efficacy and safety. The phylogenetic relationships among the 16 species of Cassiagenus existing in Thailand were evaluated using Amplified Fragment Length Polymorphism (AFLP) technique. Combinations of 70 primers were screened and eleven primer combinations produced a total of 849 distinct and reproducible bands ranging from 60 to 100 bands with an average of 77.18 bands per primer combination. The genetic distances were calculated based on the AFLP bands that had been amplified using the eleven primer combinations. The similarity indices (SI) ranged from 0.25 to 0.78. The dendrogram was created using the Unweighted Pair Group Method of the Arithmetic Average (UPGMA) and the genotypes were divided into two major groups. The results indicate that the phylogenetic relationships are associated with the morphological characterization. In conclusion, an AFLP marker could be an efficient and reliable tool for the identification of a Cassia species. (author)

  10. Transcriptional profiling uncovers a network of cholesterol-responsive atherosclerosis target genes.

    Directory of Open Access Journals (Sweden)

    Josefin Skogsberg

    2008-03-01

    Full Text Available Despite the well-documented effects of plasma lipid lowering regimes halting atherosclerosis lesion development and reducing morbidity and mortality of coronary artery disease and stroke, the transcriptional response in the atherosclerotic lesion mediating these beneficial effects has not yet been carefully investigated. We performed transcriptional profiling at 10-week intervals in atherosclerosis-prone mice with human-like hypercholesterolemia and a genetic switch to lower plasma lipoproteins (Ldlr(-/-Apo(100/100Mttp(flox/flox Mx1-Cre. Atherosclerotic lesions progressed slowly at first, then expanded rapidly, and plateaued after advanced lesions formed. Analysis of lesion expression profiles indicated that accumulation of lipid-poor macrophages reached a point that led to the rapid expansion phase with accelerated foam-cell formation and inflammation, an interpretation supported by lesion histology. Genetic lowering of plasma cholesterol (e.g., lipoproteins at this point all together prevented the formation of advanced plaques and parallel transcriptional profiling of the atherosclerotic arterial wall identified 37 cholesterol-responsive genes mediating this effect. Validation by siRNA-inhibition in macrophages incubated with acetylated-LDL revealed a network of eight cholesterol-responsive atherosclerosis genes regulating cholesterol-ester accumulation. Taken together, we have identified a network of atherosclerosis genes that in response to plasma cholesterol-lowering prevents the formation of advanced plaques. This network should be of interest for the development of novel atherosclerosis therapies.

  11. Transcriptional profiling: a potential anti-doping strategy.

    Science.gov (United States)

    Rupert, J L

    2009-12-01

    Evolving challenges require evolving responses. The use of illicit performance enhancing drugs by athletes permeates the reality and the perception of elite sports. New drugs with ergogenic or masking potential are quickly adopted, driven by a desire to win and the necessity of avoiding detection. To counter this trend, anti-doping authorities are continually refining existing assays and developing new testing strategies. In the post-genome era, genetic- and molecular-based tests are being evaluated as potential approaches to detect new and sophisticated forms of doping. Transcriptome analysis, in which a tissue's complement of mRNA transcripts is characterized, is one such method. The quantity and composition of a tissue's transcriptome is highly reflective of milieu and metabolic activity. There is much interest in transcriptional profiling in medical diagnostics and, as transcriptional information can be obtained from a variety of easily accessed tissues, similar approaches could be used in doping control. This article briefly reviews current understanding of the transcriptome, common methods of global analysis of gene expression and non-invasive sample sources. While the focus of this article is on anti-doping, the principles and methodology described could be applied to any research in which non-invasive, yet biologically informative sampling is desired.

  12. Assessment of genetic diversity in Chinese eared pheasant using fluorescent-AFLP markers

    DEFF Research Database (Denmark)

    Li, Xiujuan; Zhu, Yaohong; Liu, Panqi

    2010-01-01

    on the list of the world’s threatened species. In this paper, 74 individuals from the four eared pheasant species were assessed for population genetic diversity by means of fluorescent-AFLP markers. A total of 429 AFLP peaks were amplified by 11 pairs of fluorescent EcoRI/TaqI primer combinations. Out of all...... using Jaccard’s similarity coefficients (SC) and the corresponding dendrogram. It was found that there was a moderate genetic distance between the four species (SC = 0.674–0.832). Brown eared pheasant was genetically closely related to blue eared pheasant (SC = 0.832), while white eared pheasant...

  13. RNAseq Transcriptional Profiling following Whip Development in Sugarcane Smut Disease.

    Directory of Open Access Journals (Sweden)

    Patricia D C Schaker

    Full Text Available Sugarcane smut disease is caused by the biotrophic fungus Sporisorium scitamineum. The disease is characterized by the development of a whip-like structure from the primary meristems, where billions of teliospores are produced. Sugarcane smut also causes tillering and low sucrose and high fiber contents, reducing cane productivity. We investigated the biological events contributing to disease symptoms in a smut intermediate-resistant sugarcane genotype by examining the transcriptional profiles (RNAseq shortly after inoculating the plants and immediately after whip emission. The overall picture of disease progression suggests that premature transcriptional reprogramming of the shoot meristem functions continues until the emergence of the whip. The guidance of this altered pattern is potentially primarily related to auxin mobilization in addition to the involvement of other hormonal imbalances. The consequences associated with whip emission are the modulation of typical meristematic functions toward reproductive organ differentiation, requiring strong changes in carbon partitioning and energy production. These changes include the overexpression of genes coding for invertases and trehalose-6P synthase, as well as other enzymes from key metabolic pathways, such as from lignin biosynthesis. This is the first report describing changes in the transcriptional profiles following whip development, providing a hypothetical model and candidate genes to further study sugarcane smut disease progression.

  14. RNAseq Transcriptional Profiling following Whip Development in Sugarcane Smut Disease

    Science.gov (United States)

    Taniguti, Lucas M.; Peters, Leila P.; Creste, Silvana; Aitken, Karen S.; Van Sluys, Marie-Anne; Kitajima, João P.; Vieira, Maria L. C.; Monteiro-Vitorello, Claudia B.

    2016-01-01

    Sugarcane smut disease is caused by the biotrophic fungus Sporisorium scitamineum. The disease is characterized by the development of a whip-like structure from the primary meristems, where billions of teliospores are produced. Sugarcane smut also causes tillering and low sucrose and high fiber contents, reducing cane productivity. We investigated the biological events contributing to disease symptoms in a smut intermediate-resistant sugarcane genotype by examining the transcriptional profiles (RNAseq) shortly after inoculating the plants and immediately after whip emission. The overall picture of disease progression suggests that premature transcriptional reprogramming of the shoot meristem functions continues until the emergence of the whip. The guidance of this altered pattern is potentially primarily related to auxin mobilization in addition to the involvement of other hormonal imbalances. The consequences associated with whip emission are the modulation of typical meristematic functions toward reproductive organ differentiation, requiring strong changes in carbon partitioning and energy production. These changes include the overexpression of genes coding for invertases and trehalose-6P synthase, as well as other enzymes from key metabolic pathways, such as from lignin biosynthesis. This is the first report describing changes in the transcriptional profiles following whip development, providing a hypothetical model and candidate genes to further study sugarcane smut disease progression. PMID:27583836

  15. Omic personality: implications of stable transcript and methylation profiles for personalized medicine.

    Science.gov (United States)

    Tabassum, Rubina; Sivadas, Ambily; Agrawal, Vartika; Tian, Haozheng; Arafat, Dalia; Gibson, Greg

    2015-08-13

    Personalized medicine is predicated on the notion that individual biochemical and genomic profiles are relatively constant in times of good health and to some extent predictive of disease or therapeutic response. We report a pilot study quantifying gene expression and methylation profile consistency over time, addressing the reasons for individual uniqueness, and its relation to N = 1 phenotypes. Whole blood samples from four African American women, four Caucasian women, and four Caucasian men drawn from the Atlanta Center for Health Discovery and Well Being study at three successive 6-month intervals were profiled by RNA-Seq, miRNA-Seq, and Illumina Methylation 450 K arrays. Standard regression approaches were used to evaluate the proportion of variance for each type of omic measure among individuals, and to quantify correlations among measures and with clinical attributes related to wellness. Longitudinal omic profiles were in general highly consistent over time, with an average of 67 % variance in transcript abundance, 42 % in CpG methylation level (but 88 % for the most differentiated CpG per gene), and 50 % in miRNA abundance among individuals, which are all comparable to 74 % variance among individuals for 74 clinical traits. One third of the variance could be attributed to differential blood cell type abundance, which was also fairly stable over time, and a lesser amount to expression quantitative trait loci (eQTL) effects. Seven conserved axes of covariance that capture diverse aspects of immune function explained over half of the variance. These axes also explained a considerable proportion of individually extreme transcript abundance, namely approximately 100 genes that were significantly up-regulated or down-regulated in each person and were in some cases enriched for relevant gene activities that plausibly associate with clinical attributes. A similar fraction of genes had individually divergent methylation levels, but these did not overlap with the

  16. Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles.

    Science.gov (United States)

    Cramer, Grant R; Ergül, Ali; Grimplet, Jerome; Tillett, Richard L; Tattersall, Elizabeth A R; Bohlman, Marlene C; Vincent, Delphine; Sonderegger, Justin; Evans, Jason; Osborne, Craig; Quilici, David; Schlauch, Karen A; Schooley, David A; Cushman, John C

    2007-04-01

    Grapes are grown in semiarid environments, where drought and salinity are common problems. Microarray transcript profiling, quantitative reverse transcription-PCR, and metabolite profiling were used to define genes and metabolic pathways in Vitis vinifera cv. Cabernet Sauvignon with shared and divergent responses to a gradually applied and long-term (16 days) water-deficit stress and equivalent salinity stress. In this first-of-a-kind study, distinct differences between water deficit and salinity were revealed. Water deficit caused more rapid and greater inhibition of shoot growth than did salinity at equivalent stem water potentials. One of the earliest responses to water deficit was an increase in the transcript abundance of RuBisCo activase (day 4), but this increase occurred much later in salt-stressed plants (day 12). As water deficit progressed, a greater number of affected transcripts were involved in metabolism, transport, and the biogenesis of cellular components than did salinity. Salinity affected a higher percentage of transcripts involved in transcription, protein synthesis, and protein fate than did water deficit. Metabolite profiling revealed that there were higher concentrations of glucose, malate, and proline in water-deficit-treated plants as compared to salinized plants. The metabolite differences were linked to differences in transcript abundance of many genes involved in energy metabolism and nitrogen assimilation, particularly photosynthesis, gluconeogenesis, and photorespiration. Water-deficit-treated plants appear to have a higher demand than salinized plants to adjust osmotically, detoxify free radicals (reactive oxygen species), and cope with photoinhibition.

  17. cDNA-AFLP analysis of differential gene expression related to cell chemotactic and encystment of Azospirillum brasilense.

    Science.gov (United States)

    Li, Huamin; Cui, Yanhua; Wu, Lixian; Tu, Ran; Chen, Sanfeng

    2011-12-20

    Our previous study indicated org35 was involved in chemotaxis and interacted with nitrogen fixation transcriptional activator NifA via PAS domain. In order to reveal the role of org35 in nitrogen regulation, the downstream target genes of org35 were identified. We here report differentially expressed genes in org35 mutants comparing with wild type Sp7 by means of cDNA-AFLP. Four up-regulated transcript-derived fragments (TDFs) homologues of chemotaxis transduction proteins were found, including CheW, methyl-accepting chemotaxis protein and response regulator CheY-like receiver. Three distinct TDFs (AB46, AB58 and AB63) were similar to PHB de-polymerase C-terminus, cell shape-determining protein and flagellin domain protein. And 11 TDFs showed similarities with signal transduction proteins, including homologous protein of the nitrogen regulation protein NtrY and nitrate/nitrite response regulator protein NarL. These data suggested that the Azospirillum brasilense org35 was a multi-effecter and involved in chemotaxis, cyst development and regulation of nitrogen fixation. Copyright © 2010 Elsevier GmbH. All rights reserved.

  18. Subgroup-specific intrinsic disorder profiles of arabidopsis NAC transcription factors

    DEFF Research Database (Denmark)

    Stender, Emil G.; O'Shea, Charlotte; Skriver, Karen

    2015-01-01

    disordered but contain short, functionally important regions with structure propensities known as molecular recognition features. Here, we analyze for NAC subgroup-specific ID patterns. Some subgroups, such as the VND subgroup implicated in secondary cell wall biosynthesis, and the NAP/SHYG subgroup have...... highly conserved ID profiles. For the stress-associated ATAF1 subgroup and the CUC/ORE1 subgroup involved in development, only sub clades have similar ID patterns. For similar ID profiles, conserved molecular recognition features and sequence motifs represent likely functional determinants of e.......g. transcriptional activation and interactions. Based on our analysis, we suggest that ID profiling of regulatory proteins in general can be used to guide identification of interaction partners of network proteins....

  19. Evaluation of interspecific DNA variability in poplars using AFLP and ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... Both markers crearly separated two distinct clusters, one included Populus nigra and the other ... Species of Populus used to test SSR and AFLP primer pair utility. ..... cluster NS001 and NS002 were closely related to 0.273.

  20. First genetic linkage map of Taraxacum koksaghyz Rodin based on AFLP, SSR, COS and EST-SSR markers.

    Science.gov (United States)

    Arias, Marina; Hernandez, Monica; Remondegui, Naroa; Huvenaars, Koen; van Dijk, Peter; Ritter, Enrique

    2016-08-04

    Taraxacum koksaghyz Rodin (TKS) has been studied in many occasions as a possible alternative source for natural rubber production of good quality and for inulin production. Some tire companies are already testing TKS tire prototypes. There are also many investigations on the production of bio-fuels from inulin and inulin applications for health improvement and in the food industry. A limited amount of genomic resources exist for TKS and particularly no genetic linkage map is available in this species. We have constructed the first TKS genetic linkage map based on AFLP, COS, SSR and EST-SSR markers. The integrated linkage map with eight linkage groups (LG), representing the eight chromosomes of Russian dandelion, has 185 individual AFLP markers from parent 1, 188 individual AFLP markers from parent 2, 75 common AFLP markers and 6 COS, 1 SSR and 63 EST-SSR loci. Blasting the EST-SSR sequences against known sequences from lettuce allowed a partial alignment of our TKS map with a lettuce map. Blast searches against plant gene databases revealed some homologies with useful genes for downstream applications in the future.

  1. Breeding response of transcript profiling in developing seeds of Brassica napus

    Directory of Open Access Journals (Sweden)

    Li Xiaodan

    2009-05-01

    Full Text Available Abstract Background The upgrading of rapeseed cultivars has resulted in a substantial improvement in yield and quality in China over the past 30 years. With the selective pressure against fatty acid composition and oil content, high erucic acid- and low oil-content cultivars have been replaced by low erucic acid- and high oil-content cultivars. The high erucic acid cultivar Zhongyou 821 and its descendent, low erucic acid cultivar Zhongshuang 9, are representatives of two generations of the most outstanding Chinese rapeseed cultivars (B. napus developed the past 2 decades. This paper compares the transcriptional profiles of Zhongshuang 9 and Zhongyou 821 for 32 genes that are principally involved in lipid biosynthesis during seed development in order to elucidate how the transcriptional profiles of these genes responded to quality improvement over the past 20 years. Results Comparison of the cultivar Zhongyou 821 with its descendent, Zhongshuang 9, shows that the transcriptional levels of seven of the 32 genes were upregulated by 30% to 109%, including FAD3, ACCase, FAE1, GKTP, Caleosin, GAPDH, and PEPC. Of the 32 genes, 10 (KAS3, β-CT, BcRK6, P450, FatA, Oleosin, FAD6, FatB, α-CT and SUC1 were downregulated by at least 20% and most by 50%. The Napin gene alone accounted for over 75% of total transcription from all 32 genes assessed in both cultivars. Most of the genes showed significant correlation with fatty acid accumulation, but the correlation in ZS9 was significantly different from that in ZY821. Higher KCR2 activity is associated with higher C16:0, C18:0, and C18:2 in both cultivars, lower C22:1 and total fatty acid content in ZY821, and lower 18:1 in ZS9. Conclusion This paper illustrates the response of the transcription levels of 32 genes to breeding in developing rapeseed seeds. Both cultivars showed similar transcription profiles, with the Napin gene predominantly transcribed. Selective pressure for zero erucic acid, low

  2. Comparison of RAPD, RFLP, AFLP and SSR markers for diversity studies in tropical maize inbred lines

    Directory of Open Access Journals (Sweden)

    Antonio A. F. Garcia

    2004-01-01

    Full Text Available In order to compare their relative efficiencies as markers and to find the most suitable marker for maize diversity studies we evaluated 18 inbred tropical maize lines using a number of different loci as markers. The loci used were: 774 amplified fragment length polymorphisms (AFLPs; 262 random amplified polymorphic DNAs (RAPDs; 185 restriction fragment length polymorphisms (RFLPs; and 68 simple sequence repeats (SSR. For estimating genetic distance the AFLP and RFLP markers gave the most correlated results, with a correlation coefficient of r = 0.87. Bootstrap analysis were used to evaluate the number of loci for the markers and the coefficients of variation (CV revealed a skewed distribution. The dominant markers (AFLP and RAPD had small CV values indicating a skewed distribution while the codominant markers gave high CV values. The use of maximum values of genetic distance CVs within each sample size was efficient in determining the number of loci needed to obtain a maximum CV of 10%. The number of RFLP and AFLP loci used was enough to give CV values of below 5%, while the SSRs and RAPD loci gave higher CV values. Except for the RAPD markers, all the markers correlated genetic distance with single cross performance and heterosis which showed that they could be useful in predicting single cross performance and heterosis in intrapopulation crosses for broad-based populations. Our results indicate that AFLP seemed to be the best-suited molecular assay for fingerprinting and assessing genetic relationships among tropical maize inbred lines with high accuracy.

  3. Transcription profiling suggests that mitochondrial topoisomerase IB acts as a topological barrier and regulator of mitochondrial DNA transcription.

    Science.gov (United States)

    Dalla Rosa, Ilaria; Zhang, Hongliang; Khiati, Salim; Wu, Xiaolin; Pommier, Yves

    2017-12-08

    Mitochondrial DNA (mtDNA) is essential for cell viability because it encodes subunits of the respiratory chain complexes. Mitochondrial topoisomerase IB (TOP1MT) facilitates mtDNA replication by removing DNA topological tensions produced during mtDNA transcription, but it appears to be dispensable. To test whether cells lacking TOP1MT have aberrant mtDNA transcription, we performed mitochondrial transcriptome profiling. To that end, we designed and implemented a customized tiling array, which enabled genome-wide, strand-specific, and simultaneous detection of all mitochondrial transcripts. Our technique revealed that Top1mt KO mouse cells process the mitochondrial transcripts normally but that protein-coding mitochondrial transcripts are elevated. Moreover, we found discrete long noncoding RNAs produced by H-strand transcription and encompassing the noncoding regulatory region of mtDNA in human and murine cells and tissues. Of note, these noncoding RNAs were strongly up-regulated in the absence of TOP1MT. In contrast, 7S DNA, produced by mtDNA replication, was reduced in the Top1mt KO cells. We propose that the long noncoding RNA species in the D-loop region are generated by the extension of H-strand transcripts beyond their canonical stop site and that TOP1MT acts as a topological barrier and regulator for mtDNA transcription and D-loop formation.

  4. Transcription profile data of phorbol esters biosynthetic genes during developmental stages in Jatropha curcas.

    Science.gov (United States)

    Jadid, Nurul; Mardika, Rizal Kharisma; Purwani, Kristanti Indah; Permatasari, Erlyta Vivi; Prasetyowati, Indah; Irawan, Mohammad Isa

    2018-06-01

    Jatropha curcas is currently known as an alternative source for biodiesel production. Beside its high free fatty acid content, J. curcas also contains typical diterpenoid-toxic compounds of Euphorbiaceae plant namely phorbol esters. This article present the transcription profile data of genes involved in the biosynthesis of phorbol esters at different developmental stages of leaves, fruit, and seed in Jatropha curcas . Transcriptional profiles were analyzed using reverse transcription-polymerase chain reaction (RT-PCR). We used two genes including GGPPS (Geranylgeranyl diphospate synthase), which is responsible for the formation of common diterpenoid precursor (GGPP) and CS (Casbene Synthase), which functions in the synthesis of casbene. Meanwhile, J. curcas Actin ( ACT ) was used as internal standard. We demonstrated dynamic of GGPPS and CS expression among different stage of development of leaves, fruit and seed in Jatropha .

  5. AFLP genome scanning reveals divergent selection in natural populations of Liriodendron chinense (Magnoliaceae along a latitudinal transect

    Directory of Open Access Journals (Sweden)

    Aihong eYang

    2016-05-01

    Full Text Available Understanding adaptive genetic variation and its relation to environmental factors are important for understanding how plants adapt to climate change and for managing genetic resources. Genome scans for the loci exhibiting either notably high or low levels of population differentiation (outlier loci provide one means of identifying genomic regions possibly associated with convergent or divergent selection. In this study, we combined AFLP genome scan and environmental association analysis to test for signals of natural selection in natural populations of Liriodendron chinense (Chinese Tulip Tree; Magnoliaceae along a latitudinal transect. We genotyped 276 individuals from 11 populations of L. chinense using 987 AFLP markers. Two complementary methods (Dfdist and BayeScan and association analysis between AFLP loci and climate factors were applied to detect outlier loci. Our analyses recovered both neutral and potentially adaptive genetic differentiation among populations of L. chinense. We found moderate genetic diversity within populations and high genetic differentiation among populations with reduced genetic diversity towards the periphery of the species ranges. Nine AFLP marker loci showed evidence of being outliers for population differentiation for both detection methods. Of these, six were strongly associated with at least one climate factor. Temperature, precipitation and radiation were found to be three important factors influencing local adaptation of L. chinense. The outlier AFLP loci are likely not the target of natural selection, but the neighboring genes of these loci might be involved in local adaptation. Hence, these candidates should be validated by further studies.

  6. Sputum is a surrogate for bronchoalveolar lavage for monitoring Mycobacterium tuberculosis transcriptional profiles in TB patients.

    Science.gov (United States)

    Garcia, Benjamin J; Loxton, Andre G; Dolganov, Gregory M; Van, Tran T; Davis, J Lucian; de Jong, Bouke C; Voskuil, Martin I; Leach, Sonia M; Schoolnik, Gary K; Walzl, Gerhard; Strong, Michael; Walter, Nicholas D

    2016-09-01

    Pathogen-targeted transcriptional profiling in human sputum may elucidate the physiologic state of Mycobacterium tuberculosis (M. tuberculosis) during infection and treatment. However, whether M. tuberculosis transcription in sputum recapitulates transcription in the lung is uncertain. We therefore compared M. tuberculosis transcription in human sputum and bronchoalveolar lavage (BAL) samples from 11 HIV-negative South African patients with pulmonary tuberculosis. We additionally compared these clinical samples with in vitro log phase aerobic growth and hypoxic non-replicating persistence (NRP-2). Of 2179 M. tuberculosis transcripts assayed in sputum and BAL via multiplex RT-PCR, 194 (8.9%) had a p-value <0.05, but none were significant after correction for multiple testing. Categorical enrichment analysis indicated that expression of the hypoxia-responsive DosR regulon was higher in BAL than in sputum. M. tuberculosis transcription in BAL and sputum was distinct from both aerobic growth and NRP-2, with a range of 396-1020 transcripts significantly differentially expressed after multiple testing correction. Collectively, our results indicate that M. tuberculosis transcription in sputum approximates M. tuberculosis transcription in the lung. Minor differences between M. tuberculosis transcription in BAL and sputum suggested lower oxygen concentrations or higher nitric oxide concentrations in BAL. M. tuberculosis-targeted transcriptional profiling of sputa may be a powerful tool for understanding M. tuberculosis pathogenesis and monitoring treatment responses in vivo. Published by Elsevier Ltd.

  7. Development of a simple and powerful method, cDNA AFLP-SSPAG ...

    African Journals Online (AJOL)

    AJB SERVER

    2006-12-18

    SSPAG was descry- bed. Using this method, Differential mRNA expression was found between high and low heterosis groups of maize. Differential cDNAs were easily obtained from silver stained cDNA-AFLP separated on.

  8. Genetic diversity in natural populations of Jacaranda decurrens Cham. determined using RAPD and AFLP markers

    Directory of Open Access Journals (Sweden)

    Bianca W. Bertoni

    2010-01-01

    Full Text Available Jacaranda decurrens (Bignoniaceae is an endemic species of the Cerrado with validated antitumoral activity. The genetic diversity of six populations of J. decurrens located in the State of São Paulo was determined in this study by using molecular markers for randomly amplified polymorphic DNA (RAPD and amplified fragment length polymorphism (AFLP. Following optimization of the amplification reaction, 10 selected primers generated 78 reproducible RAPD fragments that were mostly (69.2% polymorphic. Two hundred and five reproducible AFLP fragments were generated by using four selected primer combinations; 46.3% of these fragments were polymorphic, indicating a considerable level of genetic diversity. Analysis of molecular variance (AMOVA using these two groups of markers indicated that variability was strongly structured amongst populations. The unweighted pair group method with arithmatic mean (UPGMA and Pearson's correlation coefficient (RAPD -0.16, p = 0.2082; AFLP 0.37, p = 0.1006 between genetic matrices and geographic distances suggested that the population structure followed an island model in which a single population of infinite size gave rise to the current populations of J. decurrens, independently of their spatial position. The results of this study indicate that RAPD and AFLP markers were similarly efficient in measuring the genetic variability amongst natural populations of J. decurrens. These data may be useful for developing strategies for the preservation of this medicinal species in the Cerrado.

  9. A potato tuber-expressed mNRA with homology to steroid dehydrogenases affects gibberellin levels and plant development

    NARCIS (Netherlands)

    Bachem, C.W.B.; Horvath, B.M.; Trindade, L.M.; Claassens, M.M.J.; Davelaar, E.; Jordi, W.J.R.M.; Visser, R.G.F.

    2001-01-01

    Using cDNA-AFLP RNA fingerprinting throughout potato tuber development, we have isolated a transcript-derived fragment (TDF511) with strong homology to plant steroid dehydrogenases. During in vitro tuberization, the abundance profile of the TDF shows close correlation to the process of tuber

  10. Transcriptional Profiling of Egg Allergy and Relationship to Disease Phenotype.

    Directory of Open Access Journals (Sweden)

    Roman Kosoy

    Full Text Available Egg allergy is one of the most common food allergies of childhood. There is a lack of information on the immunologic basis of egg allergy beyond the role of IgE.To use transcriptional profiling as a novel approach to uncover immunologic processes associated with different phenotypes of egg allergy.Peripheral blood mononuclear cells (PBMCs were obtained from egg-allergic children who were defined as reactive (BER or tolerant (BET to baked egg, and from food allergic controls (AC who were egg non-allergic. PBMCs were stimulated with egg white protein. Gene transcription was measured by microarray after 24 h, and cytokine secretion by multiplex assay after 5 days.The transcriptional response of PBMCs to egg protein differed between BER and BET versus AC subjects. Compared to the AC group, the BER group displayed increased expression of genes associated with allergic inflammation as well as corresponding increased secretion of IL-5, IL-9 and TNF-α. A similar pattern was observed for the BET group. Further similarities in gene expression patterns between BER and BET groups, as well as some important differences, were revealed using a novel Immune Annotation resource developed for this project. This approach identified several novel processes not previously associated with egg allergy, including positive associations with TLR4-stimulated myeloid cells and activated NK cells, and negative associations with an induced Treg signature. Further pathway analysis of differentially expressed genes comparing BER to BET subjects showed significant enrichment of IFN-α and IFN-γ response genes, as well as genes associated with virally-infected DCs.Transcriptional profiling identified several novel pathways and processes that differed when comparing the response to egg allergen in BET, BER, and AC groups. We conclude that this approach is a useful hypothesis-generating mechanism to identify novel immune processes associated with allergy and tolerance to forms

  11. Single molecule transcription profiling with AFM

    International Nuclear Information System (INIS)

    Reed, Jason; Mishra, Bud; Pittenger, Bede; Magonov, Sergei; Troke, Joshua; Teitell, Michael A; Gimzewski, James K

    2007-01-01

    Established techniques for global gene expression profiling, such as microarrays, face fundamental sensitivity constraints. Due to greatly increasing interest in examining minute samples from micro-dissected tissues, including single cells, unorthodox approaches, including molecular nanotechnologies, are being explored in this application. Here, we examine the use of single molecule, ordered restriction mapping, combined with AFM, to measure gene transcription levels from very low abundance samples. We frame the problem mathematically, using coding theory, and present an analysis of the critical error sources that may serve as a guide to designing future studies. We follow with experiments detailing the construction of high density, single molecule, ordered restriction maps from plasmids and from cDNA molecules, using two different enzymes, a result not previously reported. We discuss these results in the context of our calculations

  12. Some AFLP amplicons are highly conserved DNA sequences mapping to the same linkage groups in two F2 populations of carrot

    Directory of Open Access Journals (Sweden)

    Santos Carlos A.F.

    2002-01-01

    Full Text Available Amplified fragment length polymorphism (AFLP is a fast and reliable tool to generate a large number of DNA markers. In two unrelated F2 populations of carrot (Daucus carota L., Brasilia x HCM and B493 x QAL (wild carrot, it was hypothesized that DNA 1 digested with the same restriction endonuclease enzymes and amplified with the same primer combination and 2 sharing the same position in polyacrylamide gels should be conserved sequences. To test this hypothesis AFLP fragments from polyacrylamide gels were eluted, reamplified, separated in agarose gels, purified, cloned and sequenced. Among thirty-one paired fragments from each F2 population, twenty-six had identity greater than 91% and five presented identity of 24% to 44%. Among the twenty-six conserved AFLPs only one mapped to different linkage groups in the two populations while four of the five less-conserved bands mapped to different linkage groups. Of eight SCAR (sequence characterized amplified regions primers tested, one conserved AFLP resulted in co-dominant markers in both populations. Screening among 14 carrot inbreds or cultivars with three AFLP-SCAR primers revealed clear and polymorphic PCR products, with similar molecular sizes on agarose gels. The development of co-dominant markers based on conserved AFLP fragments will be useful to detect seed mixtures among hybrids, to improve and to merge linkage maps and to study diversity and phylogenetic relationships.

  13. A transcriptional profile of aging in the human kidney.

    Directory of Open Access Journals (Sweden)

    Graham E J Rodwell

    2004-12-01

    Full Text Available In this study, we found 985 genes that change expression in the cortex and the medulla of the kidney with age. Some of the genes whose transcripts increase in abundance with age are known to be specifically expressed in immune cells, suggesting that immune surveillance or inflammation increases with age. The age-regulated genes show a similar aging profile in the cortex and the medulla, suggesting a common underlying mechanism for aging. Expression profiles of these age-regulated genes mark not only age, but also the relative health and physiology of the kidney in older individuals. Finally, the set of aging-regulated kidney genes suggests specific mechanisms and pathways that may play a role in kidney degeneration with age.

  14. AFLP genetic polymorphism in wild barley (Hordeum spontaneum) populations in Israel

    NARCIS (Netherlands)

    Turpeinen, T.; Vanhala, T.; Nevo, E.; Nissila, E.

    2003-01-01

    The genetic diversity produced by the amplified fragment length polymorphism (AFLP) method was studied in 94 genotypes of wild barley, Hordeum spontaneum (C. Koch) Thell., originating from ten ecologically and geographically different locations in Israel. Eight primer pairs produced 204 discernible

  15. An integrated interspecific AFLP map of lettuce (Lactuca) based on two L. Saligna x L. sativa F2-populations

    NARCIS (Netherlands)

    Jeuken, M.; Wijk, van R.; Peleman, J.; Lindhout, P.

    2001-01-01

    AFLP markers were obtained with 12 EcoRI/ MseI primer combinations on two independent F2 populations of Lactuca sativa 2 Lactuca saligna. The polymorphism rates of the AFLP products between the two different L. saligna lines was 39°between the two different L. sativa cultivars 13 nd between the L.

  16. Identification and characterization of some aromatic rice mutants using amplified fragment length polymorphism (AFLP) technique

    International Nuclear Information System (INIS)

    Fahmy, E.M.; Sobieh, S. E. S.; Ayaad, M. H.; El-Gohary, A. A.; Rownak, A.

    2012-12-01

    Accurate identifying of the genotypes is considered one of the most important mechanisms used in the recording or the protection of plant varieties. The investigation was conducted at the experimental form belonging to the egyptian Atomic Energy Authority, Inshas. The aim was to evaluate grain quality characteristics and molecular genetic variation using Amplified Fragment Length Polymorphism (AFLP) technique among six rice genotypes, Egyptian Jasmine aromatic rice cultivar and five aromatic rice mutants in (M3 mutagenic generation). Two mutation (Egy22 and Egy24) were selected from irradiated Sakha 102 population with 200 and 400Gy of gamma rays in the M2 generation, respectively, and three mutations ( Egy32, Egy33, and Egy34) were selected from irradiated Sakha 103 population with 200, 300, 400Gy of gamma rays in the M2 generation, respectively. The obtained results showed that the strong aroma was obtained for mutant Egy22 as compared with Egyptian Jasmine rice cultivar (moderate aroma). Seven primer combinations were used through six rice genotypes on the molecular level using AFLP marker. The size of AFLP Fragments Were Ranged from 51- 494bp. The total number of amplified bands was 997 band among them 919 polymorphic bans representing 92.2%. The highest similarity index (89%) was observed between Egyptian Jasmine and Egy32 followed by (82%) observed between Egyptian Jasmine and Egy34. On the other hand, the lowest similarity index was (48%) between Egyptian Jasmine and Egy24. In six rice genotypes, Egy24 produced the highest number of the AFLP makers giving 49 unique markers (23 positive and 26 negative), then Egy22 showed 23 unique markers (27 positive and 6 negative) while Egy33 was characterized by 17 unique markers (12 positive and 5 negative). At last Egyptian Jasmine was discriminated by the lowest number of markets, 10 (6 positive and 4 negative). The study further confirmed that AFLP technique was able to differentiate rice genotypes by a higher number

  17. Transcription profile of Escherichia coli: genomic SELEX search for regulatory targets of transcription factors.

    Science.gov (United States)

    Ishihama, Akira; Shimada, Tomohiro; Yamazaki, Yukiko

    2016-03-18

    Bacterial genomes are transcribed by DNA-dependent RNA polymerase (RNAP), which achieves gene selectivity through interaction with sigma factors that recognize promoters, and transcription factors (TFs) that control the activity and specificity of RNAP holoenzyme. To understand the molecular mechanisms of transcriptional regulation, the identification of regulatory targets is needed for all these factors. We then performed genomic SELEX screenings of targets under the control of each sigma factor and each TF. Here we describe the assembly of 156 SELEX patterns of a total of 116 TFs performed in the presence and absence of effector ligands. The results reveal several novel concepts: (i) each TF regulates more targets than hitherto recognized; (ii) each promoter is regulated by more TFs than hitherto recognized; and (iii) the binding sites of some TFs are located within operons and even inside open reading frames. The binding sites of a set of global regulators, including cAMP receptor protein, LeuO and Lrp, overlap with those of the silencer H-NS, suggesting that certain global regulators play an anti-silencing role. To facilitate sharing of these accumulated SELEX datasets with the research community, we compiled a database, 'Transcription Profile of Escherichia coli' (www.shigen.nig.ac.jp/ecoli/tec/). © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. DNA-fingerprinting (AFLP and RFLP) for genotypic identification in species of the Pleurotus eryngii complex.

    Science.gov (United States)

    Urbanelli, S; Della Rosa, V; Punelli, F; Porretta, D; Reverberi, M; Fabbri, A A; Fanelli, C

    2007-03-01

    Wild populations of edible species are important source of genetic variability for cultivated lines that can undergo a drastic loss of diversity resulting from man's selection. The development of tools aimed at the clear-cut and safe identification and assessment of genetic variability of the wild and cultivated strains is thus a fundamental goal of molecular genetic research. In this study, we used two polymerase chain reaction (PCR)-based fingerprinting methods-amplified fragment length polymorphism (AFLP) and restriction fragment length polymorphism (RFLP) of laccase and manganese peroxidase genes-to assess genetic differences among strains and independently evolving lineages belonging to the Pleurotus eryngii complex. Both laccase RFLP and AFLP have been proved to distinguish unambiguously the three taxa studied: Pleurotus ferulae, P. eryngii, and P. eryngii var. nebrodensis. AFLP also showed enough sensitivity to detect polymorphisms among the strains, proving to be an efficient DNA fingerprinting tool in studies of strain assignment. The divergent RFLP laccase and manganese peroxidase patterns are also discussed in relation to the role played by these genes in the interaction between these fungi and their host plants.

  19. Genetic diversity among proso millet (Panicum miliaceum biotypes assessed by AFLP technique Diversidade genética entre biótipos de proso millet (Panicum miliaceum revelada pela técnica de AFLP

    Directory of Open Access Journals (Sweden)

    D. Karam

    2004-06-01

    Full Text Available The Amplified Fragment Length Polymorphism (AFLP technique was used to access genetic diversity between three domestic and nine wild proso millet biotypes from the United States and Canada. Eight primer combinations detected 39 polymorphic DNA fragments, with the genetic distance estimates among biotypes ranging from 0.02 to 0.04. Colorado-Weld County black seeded and Wyoming-Platte County were the most distinct biotypes according to the dissimilarity level. A UPGMA cluster analysis revealed two distinct groups of proso millet without any geographic association. Six weed biotypes exhibiting some characters of cultivated plants were grouped together with domesticated biotypes of proso millet while the three typical wild phenotypes were clearly clustered into another group according to AFLP markers.A técnica de AFLP (Amplified Fragment Length Polymorphism foi empregada para acessar a diversidade genética entre três biótipos domesticados e nove biótipos selvagens de proso millet dos Estados Unidos e do Canadá. Oito combinações de primers detectaram 39 fragmentos polimórficos de DNA, e a estimativa da distância genética entre os biótipos variou de 0,02 a 0,04. Colorado-Weld County de sementes pretas e Wyoming-Platte County foram os biótipos mais distintos de acordo com o índice de dissimilaridade. A análise de cluster por UPGMA revelou dois grupos distintos de proso millet mas sem nenhuma relação geográfica. Seis biótipos selvagens que exibiam algumas características de plantas cultivadas foram agrupados juntamente com os biótipos domesticados de proso millet, enquanto os três fenótipos tipicamente selvagens formaram outro grupo distinto por marcadores AFLP.

  20. AFLP analysis of rice transformed with maize DNA by particle beam

    International Nuclear Information System (INIS)

    Ji Shengdong; Chen Peng; Wang Jiachuan; Yuan Zhao; Yue Chunhui; Wang Zhifeng

    2009-01-01

    Many stable heritable rice lines were obtained via five years agricultural selection, which were derived from rice (oryza stative Japonica) Yujing-6 transgened with large fraction DNA of Zhengdan-14 (zea mays L.) by particle beam method. 18 pairs optimum selective primers were got by screening from 64 pairs AFLP selective primers via experiment on two mutant lines, which could amplify many DNA fingerprints and also could amplify polymorphic bands and target bands, both in this two mutant lines. Then the two mutant lines and two controls were analyzed with AFLP, the results showed that many polymorphic bands (such as novel bands, target bands, missing bands) were found in mutant lines. The discrepancy in DNA level indicated that rice, transgened with large fraction DNA of Zhengdan-14 by particle beam, might be inserted maize DNA and inherited steadily in some degree. It also indicated that it was possible to cultivate novel rice variety transformed with wide DNA by particle beam. (authors)

  1. Transcriptional profiling of the bovine hepatic response to experimentally induced E. coli mastitis

    DEFF Research Database (Denmark)

    Jørgensen, Hanne Birgitte Hede; Buitenhuis, Bart; Røntved, Christine Maria

    2012-01-01

    The mammalian liver works to keep the body in a state of homeostasis and plays an important role in systemic acute phase response to infections. In this study we investigated the bovine hepatic acute phase response at the gene transcription level in dairy cows with experimentally E. coli-induced ......The mammalian liver works to keep the body in a state of homeostasis and plays an important role in systemic acute phase response to infections. In this study we investigated the bovine hepatic acute phase response at the gene transcription level in dairy cows with experimentally E. coli......-induced mastitis. At time = 0, each of 16 periparturient dairy cows received 20-40 CFU of live E. coli in one front quarter of the udder. A time series of liver biopsies was collected at -144, 12, 24 and 192 hours relative to time of inoculation. Changes in transcription levels in response to E. coli inoculation...... were analyzed using the Bovine Genome Array and tested significant for 408 transcripts over the time series (adjusted p0.05; abs(fold-change)>2). After 2-D clustering, transcripts represented three distinct transcription profiles: 1) regulation of gene transcription and apoptosis, 2) responses...

  2. Diversidade genética entre híbridos de laranja-doce e tangor 'Murcott' avaliada por fAFLP e RAPD Genetic diversity among hybrids of sweet orange and 'Murcott' tangor evaluated by fAFLP and RAPD markers

    Directory of Open Access Journals (Sweden)

    Marinês Bastianel

    2006-05-01

    Full Text Available O objetivo deste trabalho foi avaliar a diversidade genética em uma população de 148 híbridos de tangor 'Murcott' (Citrus reticulata Blanco x C. sinensis L. Osbeck e laranja 'Pêra' (C. sinensis L. Osbeck obtidos por polinização controlada, pelo uso de marcadores fAFLP e RAPD. Marcadores polimórficos (416 marcadores fAFLP e 33 RAPD foram utilizados para avaliar a similaridade genética entre os híbridos, calculada com o coeficiente Jaccard pelo método UPGMA. A consistência de cada agrupamento foi determinada pelo programa BOOD. Houve alta similaridade genética entre os parentais. A laranja 'Pêra' apresentou maior número (132 de loci em heterozigose em relação ao tangor 'Murcott' (105, corroborando a teoria de origem híbrida para a laranja-doce. Observaram-se dois grupos distintos de plantas, e um deles abrangeu 80% dos híbridos com maior similaridade com a laranja 'Pêra'. A análise bootstrap não revelou consistência estatística entre esses grupos. Marcadores fAFLP são mais eficientes na avaliação do polimorfismo, sendo indicados para seleção de indivíduos híbridos mais próximos a um dos parentais.The objective of this work was to evaluate the genetic diversity in a population of 148 hybrids of 'Murcott' tangor (Citrus reticulata Blanco x C. sinensis L. Osbeck and 'Pêra' sweet orange (C. sinensis L. Osbeck, obtained by controlled polination, using fAFLP and RAPD markers. Polymorphic markers (416 fAFLP and 33 RAPD markers were used to evaluate genetic similarity among the hybrids, calculated by the coefficient of Jaccard, using the UPGMA method. The consistency of each group was determined by software BOOD. There was high genetic similarity within the parents. 'Pêra' sweet orange had a higher number of loci in heterozygosis (132 compared to 'Murcott' tangor (105, supporting the theory of hybrid origin for sweet oranges. Two distinct groups of plants were observed: one group had 80% of the hybrids that displayed

  3. JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles.

    Science.gov (United States)

    Mathelier, Anthony; Fornes, Oriol; Arenillas, David J; Chen, Chih-Yu; Denay, Grégoire; Lee, Jessica; Shi, Wenqiang; Shyr, Casper; Tan, Ge; Worsley-Hunt, Rebecca; Zhang, Allen W; Parcy, François; Lenhard, Boris; Sandelin, Albin; Wasserman, Wyeth W

    2016-01-04

    JASPAR (http://jaspar.genereg.net) is an open-access database storing curated, non-redundant transcription factor (TF) binding profiles representing transcription factor binding preferences as position frequency matrices for multiple species in six taxonomic groups. For this 2016 release, we expanded the JASPAR CORE collection with 494 new TF binding profiles (315 in vertebrates, 11 in nematodes, 3 in insects, 1 in fungi and 164 in plants) and updated 59 profiles (58 in vertebrates and 1 in fungi). The introduced profiles represent an 83% expansion and 10% update when compared to the previous release. We updated the structural annotation of the TF DNA binding domains (DBDs) following a published hierarchical structural classification. In addition, we introduced 130 transcription factor flexible models trained on ChIP-seq data for vertebrates, which capture dinucleotide dependencies within TF binding sites. This new JASPAR release is accompanied by a new web tool to infer JASPAR TF binding profiles recognized by a given TF protein sequence. Moreover, we provide the users with a Ruby module complementing the JASPAR API to ease programmatic access and use of the JASPAR collection of profiles. Finally, we provide the JASPAR2016 R/Bioconductor data package with the data of this release. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Comprehensive analysis of the transcriptional profile of the Mediator complex across human cancer types.

    Science.gov (United States)

    Syring, Isabella; Klümper, Niklas; Offermann, Anne; Braun, Martin; Deng, Mario; Boehm, Diana; Queisser, Angela; von Mässenhausen, Anne; Brägelmann, Johannes; Vogel, Wenzel; Schmidt, Doris; Majores, Michael; Schindler, Anne; Kristiansen, Glen; Müller, Stefan C; Ellinger, Jörg; Shaikhibrahim, Zaki; Perner, Sven

    2016-04-26

    The Mediator complex is a key regulator of gene transcription and several studies demonstrated altered expressions of particular subunits in diverse human diseases, especially cancer. However a systematic study deciphering the transcriptional expression of the Mediator across different cancer entities is still lacking.We therefore performed a comprehensive in silico cancer vs. benign analysis of the Mediator complex subunits (MEDs) for 20 tumor entities using Oncomine datasets. The transcriptional expression profiles across almost all cancer entities showed differentially expressed MEDs as compared to benign tissue. Differential expression of MED8 in renal cell carcinoma (RCC) and MED12 in lung cancer (LCa) were validated and further investigated by immunohistochemical staining on tissue microarrays containing large numbers of specimen. MED8 in clear cell RCC (ccRCC) associated with shorter survival and advanced TNM stage and showed higher expression in metastatic than primary tumors. In vitro, siRNA mediated MED8 knockdown significantly impaired proliferation and motility in ccRCC cell lines, hinting at a role for MED8 to serve as a novel therapeutic target in ccRCC. Taken together, our Mediator complex transcriptome proved to be a valid tool for identifying cancer-related shifts in Mediator complex composition, revealing that MEDs do exhibit cancer specific transcriptional expression profiles.

  5. Transcriptional profiling of endocrine cerebro-osteodysplasia using microarray and next-generation sequencing.

    Directory of Open Access Journals (Sweden)

    Piya Lahiry

    Full Text Available BACKGROUND: Transcriptome profiling of patterns of RNA expression is a powerful approach to identify networks of genes that play a role in disease. To date, most mRNA profiling of tissues has been accomplished using microarrays, but next-generation sequencing can offer a richer and more comprehensive picture. METHODOLOGY/PRINCIPAL FINDINGS: ECO is a rare multi-system developmental disorder caused by a homozygous mutation in ICK encoding intestinal cell kinase. We performed gene expression profiling using both cDNA microarrays and next-generation mRNA sequencing (mRNA-seq of skin fibroblasts from ECO-affected subjects. We then validated a subset of differentially expressed transcripts identified by each method using quantitative reverse transcription-polymerase chain reaction (qRT-PCR. Finally, we used gene ontology (GO to identify critical pathways and processes that were abnormal according to each technical platform. Methodologically, mRNA-seq identifies a much larger number of differentially expressed genes with much better correlation to qRT-PCR results than the microarray (r² = 0.794 and 0.137, respectively. Biologically, cDNA microarray identified functional pathways focused on anatomical structure and development, while the mRNA-seq platform identified a higher proportion of genes involved in cell division and DNA replication pathways. CONCLUSIONS/SIGNIFICANCE: Transcriptome profiling with mRNA-seq had greater sensitivity, range and accuracy than the microarray. The two platforms generated different but complementary hypotheses for further evaluation.

  6. Genetic diversity of Chilean and Brazilian Alstroemeria species assessed by AFLP analysis

    NARCIS (Netherlands)

    Han, T.H.; Jeu, de M.J.; Eck, van H.J.; Jacobsen, E.

    2000-01-01

    One to three accessions of 22 Alstroemeria species, an interspecific hybrid (A. aurea ́ A. inodora), and single accessions of Bomarea salsilla and Leontochir ovallei were evaluated using the AFLP-marker technique to estimate the genetic diversity within the genus Alstroemeria. Three primer

  7. DNA Methylation and Methylation Polymorphism in Genetically Stable In vitro Regenerates of Jatropha curcas L. Using Methylation-Sensitive AFLP Markers.

    Science.gov (United States)

    Rathore, Mangal S; Jha, Bhavanath

    2016-03-01

    The present investigation aimed to evaluate the degree and pattern of DNA methylation using methylation-sensitive AFLP (MS-AFLP) markers in genetically stable in vitro regenerates of Jatropha curcas L.. The genetically stable in vitro regenerates were raised through direct organogenesis via enhanced axillary shoot bud proliferation (Protocol-1) and in vitro-derived leaf regeneration (Protocol-2). Ten selective combinations of MS-AFLP primers produced 462 and 477 MS-AFLP bands in Protocol-1 (P-1) and Protocol-2 (P-2) regenerates, respectively. In P-1 regenerates, 15.8-31.17 % DNA was found methylated with an average of 25.24 %. In P-2 regenerates, 15.93-32.7 % DNA was found methylated with an average of 24.11 %. Using MS-AFLP in P-1 and P-2 regenerates, 11.52-25.53 % and 13.33-25.47 % polymorphism in methylated DNA was reported, respectively. Compared to the mother plant, P-1 regenerates showed hyper-methylation while P-2 showed hypo-methylation. The results clearly indicated alternation in degree and pattern of DNA methylation; hence, epigenetic instability in the genetically stable in vitro regenerates of J. curcas, developed so far using two different regeneration systems and explants of two different origins. The homologous nucleotide fragments in genomes of P-1 and P-2 regenerates showing methylation re-patterning might be involved in immediate adaptive responses and developmental processes through differential regulation of transcriptome under in vitro conditions.

  8. Transcriptional Profiling of Biofilm Regulators Identified by an Overexpression Screen in Saccharomyces cerevisiae

    Science.gov (United States)

    Cromie, Gareth A.; Tan, Zhihao; Hays, Michelle; Sirr, Amy; Jeffery, Eric W.; Dudley, Aimée M.

    2017-01-01

    Biofilm formation by microorganisms is a major cause of recurring infections and removal of biofilms has proven to be extremely difficult given their inherent drug resistance . Understanding the biological processes that underlie biofilm formation is thus extremely important and could lead to the development of more effective drug therapies, resulting in better infection outcomes. Using the yeast Saccharomyces cerevisiae as a biofilm model, overexpression screens identified DIG1, SFL1, HEK2, TOS8, SAN1, and ROF1/YHR177W as regulators of biofilm formation. Subsequent RNA-seq analysis of biofilm and nonbiofilm-forming strains revealed that all of the overexpression strains, other than DIG1 and TOS8, were adopting a single differential expression profile, although induced to varying degrees. TOS8 adopted a separate profile, while the expression profile of DIG1 reflected the common pattern seen in most of the strains, plus substantial DIG1-specific expression changes. We interpret the existence of the common transcriptional pattern seen across multiple, unrelated overexpression strains as reflecting a transcriptional state, that the yeast cell can access through regulatory signaling mechanisms, allowing an adaptive morphological change between biofilm-forming and nonbiofilm states. PMID:28673928

  9. In vivo transcriptional profile analysis reveals RNA splicing and chromatin remodeling as prominent processes for adult neurogenesis.

    Science.gov (United States)

    Lim, Daniel A; Suárez-Fariñas, Mayte; Naef, Felix; Hacker, Coleen R; Menn, Benedicte; Takebayashi, Hirohide; Magnasco, Marcelo; Patil, Nila; Alvarez-Buylla, Arturo

    2006-01-01

    Neural stem cells and neurogenesis persist in the adult mammalian brain subventricular zone (SVZ). Cells born in the rodent SVZ migrate to the olfactory bulb (Ob) where they differentiate into interneurons. To determine the gene expression and functional profile of SVZ neurogenesis, we performed three complementary sets of transcriptional analysis experiments using Affymetrix GeneChips: (1) comparison of adult mouse SVZ and Ob gene expression profiles with those of the striatum, cerebral cortex, and hippocampus; (2) profiling of SVZ stem cells and ependyma isolated by fluorescent-activated cell sorting (FACS); and (3) analysis of gene expression changes during in vivo SVZ regeneration after anti-mitotic treatment. Gene Ontology (GO) analysis of data from these three separate approaches showed that in adult SVZ neurogenesis, RNA splicing and chromatin remodeling are biological processes as statistically significant as cell proliferation, transcription, and neurogenesis. In non-neurogenic brain regions, RNA splicing and chromatin remodeling were not prominent processes. Fourteen mRNA splicing factors including Sf3b1, Sfrs2, Lsm4, and Khdrbs1/Sam68 were detected along with 9 chromatin remodeling genes including Mll, Bmi1, Smarcad1, Baf53a, and Hat1. We validated the transcriptional profile data with Northern blot analysis and in situ hybridization. The data greatly expand the catalogue of cell cycle components, transcription factors, and migration genes for adult SVZ neurogenesis and reveal RNA splicing and chromatin remodeling as prominent biological processes for these germinal cells.

  10. Differentiation of species of the family Acetobacteraceae by AFLP DNA fingerprinting: Gluconacetobacter kombuchae is a later heterotypic synonym of Gluconacetobacter hansenii.

    Science.gov (United States)

    Cleenwerck, Ilse; De Wachter, Marjan; González, Angel; De Vuyst, Luc; De Vos, Paul

    2009-07-01

    Amplified fragment length polymorphism (AFLP) DNA fingerprinting was investigated as a tool for fast and accurate identification of acetic acid bacteria (AAB) to the species level. One hundred and thirty five reference strains and 15 additional strains, representing 50 recognized species of the family Acetobacteraceae, were subjected to AFLP analysis using the restriction enzyme combination ApaI/TaqI and the primer combination A03/T03. The reference strains had been previously subjected to either DNA-DNA hybridization or 16S-23S rRNA spacer region gene sequence analysis and were regarded as being accurately classified at the species level. The present study revealed that six of these strains should be reclassified, namely Gluconacetobacter europaeus LMG 1518 and Gluconacetobacter xylinus LMG 1510 as Gluconacetobacter xylinus and Gluconacetobacter europaeus, respectively; Gluconacetobacter kombuchae LMG 23726(T) as Gluconacetobacter hansenii; and Acetobacter orleanensis strains LMG 1545, LMG 1592 and LMG 1608 as Acetobacter cerevisiae. Cluster analysis of the AFLP DNA fingerprints of the reference strains revealed one cluster for each species, showing a linkage level below 50 % with other clusters, except for Acetobacter pasteurianus, Acetobacter indonesiensis and Acetobacter cerevisiae. These three species were separated into two, two, and three clusters, respectively. At present, confusion exists regarding the taxonomic status of Gluconacetobacter oboediens and Gluconacetobacter intermedius; the AFLP data from this study supported their classification as separate taxa. The 15 additional strains could all be identified at the species level. AFLP analysis further revealed that some species harboured genetically diverse strains, whereas other species consisted of strains showing similar banding patterns, indicating a more limited genetic diversity. It can be concluded that AFLP DNA fingerprinting is suitable for accurate identification and classification of a broad

  11. AFLP markers for the assessment of genetic diversity in european and North American potato varieties cultivated in Iran

    Directory of Open Access Journals (Sweden)

    Saeed Tarkesh Esfahani

    2009-01-01

    Full Text Available Information about the genetic diversity of potato germplasm in Iran is important for variety identification andto enhance the classification of germplasm collections and exploit them in breeding programs and for the development andintroduction of new varieties. AFLP fingerprinting was applied to a group of cultivated potato varieties to find if there is anygeographical differentiation in potato diversity from Europe and North America. The high level of polymorphism within potatovarieties and the high number of variety-specific bands suggest that AFLPs are powerful markers for diversity analysis inpotato varieties. No region-specific AFLP markers were found (present in varieties from the same origin and absent inothers. The UPGMA dendrogram revealed four distinct clusters corresponding almost to the geographical origin of thevarieties. However, the bootstrap support for branches was rather weak. No clusters clearly distinguished varieties fromEurope and North America. Varieties from the same geographical origins however tended to group together within eachcluster. The mean similarity and the UPGMA dendrogram both suggest that North American varieties have nearly identicalgenetic diversity to European varieties. The results of AMOVA revealed large within-region variations which accounted for94.5% of the total molecular variance. The between-region variation, although accounting for only 5.5% of the total variation,was statistically significant. AFLP technology was successfully used to evaluate diversity between different geographicalgroups of potatoes and is recommended for potato genetic studies.

  12. Transcriptional profiling reveals gland-specific differential expression in the three major salivary glands of the adult mouse.

    Science.gov (United States)

    Gao, Xin; Oei, Maria S; Ovitt, Catherine E; Sincan, Murat; Melvin, James E

    2018-04-01

    RNA-Seq was used to better understand the molecular nature of the biological differences among the three major exocrine salivary glands in mammals. Transcriptional profiling found that the adult murine parotid, submandibular, and sublingual salivary glands express greater than 14,300 protein-coding genes, and nearly 2,000 of these genes were differentially expressed. Principle component analysis of the differentially expressed genes revealed three distinct clusters according to gland type. The three salivary gland transcriptomes were dominated by a relatively few number of highly expressed genes (6.3%) that accounted for more than 90% of transcriptional output. Of the 912 transcription factors expressed in the major salivary glands, greater than 90% of them were detected in all three glands, while expression for ~2% of them was enriched in an individual gland. Expression of these unique transcription factors correlated with sublingual and parotid specific subsets of both highly expressed and differentially expressed genes. Gene ontology analyses revealed that the highly expressed genes common to all glands were associated with global functions, while many of the genes expressed in a single gland play a major role in the function of that gland. In summary, transcriptional profiling of the three murine major salivary glands identified a limited number of highly expressed genes, differentially expressed genes, and unique transcription factors that represent the transcriptional signatures underlying gland-specific biological properties.

  13. Spatial and Single-Cell Transcriptional Profiling Identifies Functionally Distinct Human Dermal Fibroblast Subpopulations.

    Science.gov (United States)

    Philippeos, Christina; Telerman, Stephanie B; Oulès, Bénédicte; Pisco, Angela O; Shaw, Tanya J; Elgueta, Raul; Lombardi, Giovanna; Driskell, Ryan R; Soldin, Mark; Lynch, Magnus D; Watt, Fiona M

    2018-04-01

    Previous studies have shown that mouse dermis is composed of functionally distinct fibroblast lineages. To explore the extent of fibroblast heterogeneity in human skin, we used a combination of comparative spatial transcriptional profiling of human and mouse dermis and single-cell transcriptional profiling of human dermal fibroblasts. We show that there are at least four distinct fibroblast populations in adult human skin, not all of which are spatially segregated. We define markers permitting their isolation and show that although marker expression is lost in culture, different fibroblast subpopulations retain distinct functionality in terms of Wnt signaling, responsiveness to IFN-γ, and ability to support human epidermal reconstitution when introduced into decellularized dermis. These findings suggest that ex vivo expansion or in vivo ablation of specific fibroblast subpopulations may have therapeutic applications in wound healing and diseases characterized by excessive fibrosis. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Genetic Diversity of Hibiscus tiliaceus (Malvaceae) in China Assessed using AFLP Markers

    Science.gov (United States)

    TANG, TIAN; ZHONG, YANG; JIAN, SHUGUANG; SHI, SUHUA

    2003-01-01

    Amplified fragment length polymorphism (AFLP) markers were used to investigate the genetic variations within and among nine natural populations of Hibiscus tiliaceus in China. DNA from 145 individuals was amplified with eight primer pairs. No polymorphisms were found among the 20 samples of a marginal population of recent origin probably due to a founder effect. Across the other 125 individuals, 501 of 566 bands (88·5 %) were polymorphic, and 125 unique AFLP phenotypes were observed. Estimates of genetic diversity agreed with life history traits of H. tiliaceus and geographical distribution. AMOVA analysis revealed that most genetic diversity resided within populations (84·8 %), which corresponded to results reported for outcrossing plants. The indirect estimate of gene flow based on ϕST was moderate (Nm = 1·395). Long-distance dispersal of floating seeds and local environments may play an important role in shaping the genetic diversity of the population and the genetic structure of this species. PMID:12930729

  15. AFLP/SSR mapping of resistance genes to Alectra vogelii in cowpea ...

    African Journals Online (AJOL)

    To find and map the resistance gene to A. vogelii in cowpea, a F2 population from a cross involving a resistant parent IT81D-994 and a susceptible TVX3236 was screened. Amplified fragment length polymorphism (AFLP) in combination with Single Sequence Repeat (SSR) analysis was used to identify markers that may be ...

  16. Berry flesh and skin ripening features in Vitis vinifera as assessed by transcriptional profiling.

    Directory of Open Access Journals (Sweden)

    Diego Lijavetzky

    Full Text Available BACKGROUND: Ripening of fleshy fruit is a complex developmental process involving the differentiation of tissues with separate functions. During grapevine berry ripening important processes contributing to table and wine grape quality take place, some of them flesh- or skin-specific. In this study, transcriptional profiles throughout flesh and skin ripening were followed during two different seasons in a table grape cultivar 'Muscat Hamburg' to determine tissue-specific as well as common developmental programs. METHODOLOGY/PRINCIPAL FINDINGS: Using an updated GrapeGen Affymetrix GeneChip® annotation based on grapevine 12×v1 gene predictions, 2188 differentially accumulated transcripts between flesh and skin and 2839 transcripts differentially accumulated throughout ripening in the same manner in both tissues were identified. Transcriptional profiles were dominated by changes at the beginning of veraison which affect both pericarp tissues, although frequently delayed or with lower intensity in the skin than in the flesh. Functional enrichment analysis identified the decay on biosynthetic processes, photosynthesis and transport as a major part of the program delayed in the skin. In addition, a higher number of functional categories, including several related to macromolecule transport and phenylpropanoid and lipid biosynthesis, were over-represented in transcripts accumulated to higher levels in the skin. Functional enrichment also indicated auxin, gibberellins and bHLH transcription factors to take part in the regulation of pre-veraison processes in the pericarp, whereas WRKY and C2H2 family transcription factors seems to more specifically participate in the regulation of skin and flesh ripening, respectively. CONCLUSIONS/SIGNIFICANCE: A transcriptomic analysis indicates that a large part of the ripening program is shared by both pericarp tissues despite some components are delayed in the skin. In addition, important tissue differences are

  17. Molecular characterization and identification of markers for toxic and non-toxic varieties of Jatropha curcas L. using RAPD, AFLP and SSR markers.

    Science.gov (United States)

    Sudheer Pamidimarri, D V N; Singh, Sweta; Mastan, Shaik G; Patel, Jalpa; Reddy, Muppala P

    2009-07-01

    Jatropha curcas L., a multipurpose shrub has acquired significant economic importance for its seed oil which can be converted to biodiesel, is emerging as an alternative to petro-diesel. The deoiled seed cake remains after oil extraction is toxic and cannot be used as a feed despite having best nutritional contents. No quantitative and qualitative differences were observed between toxic and non-toxic varieties of J. curcas except for phorbol esters content. Development of molecular marker will enable to differentiate non-toxic from toxic variety in a mixed population and also help in improvement of the species through marker assisted breeding programs. The present investigation was undertaken to characterize the toxic and non-toxic varieties at molecular level and to develop PCR based molecular markers for distinguishing non-toxic from toxic or vice versa. The polymorphic markers were successfully identified specific to non-toxic and toxic variety using RAPD and AFLP techniques. Totally 371 RAPD, 1,442 AFLP markers were analyzed and 56 (15.09%) RAPD, 238 (16.49%) AFLP markers were found specific to either of the varieties. Genetic similarity between non-toxic and toxic verity was found to be 0.92 by RAPD and 0.90 by AFLP fingerprinting. In the present study out of 12 microsatellite markers analyzed, seven markers were found polymorphic. Among these seven, jcms21 showed homozygous allele in the toxic variety. The study demonstrated that both RAPD and AFLP techniques were equally competitive in identifying polymorphic markers and differentiating both the varieties of J. curcas. Polymorphism of SSR markers prevailed between the varieties of J. curcas. These RAPD and AFLP identified markers will help in selective cultivation of specific variety and along with SSRs these markers can be exploited for further improvement of the species through breeding and Marker Assisted Selection (MAS).

  18. Variabilidade genética em populações de pitangueira oriundas de autopolinização e polinização livre, acessada por AFLP Genetic variability in surinam cherry populations originated from self-pollination and cross pollination, estimated by AFLP

    Directory of Open Access Journals (Sweden)

    Rodrigo Cezar Franzon

    2010-03-01

    Full Text Available Foram utilizados marcadores AFLP para a avaliação de populações de plantas de pitangueira (Eugenia uniflora oriundas de autopolinização e de polinização livre, com o objetivo de verificar a variabilidade existente entre e dentro dessas populações, visando a fornecer mais informações que ajudem no entendimento do modo de reprodução dessa espécie. O material vegetal utilizado foi oriundo de duas seleções de pitangueira ("Pit 15" e "Pit 52", mantidas na Embrapa Clima Temperado. De cada seleção, foram obtidas duas populações F1, por meio de autopolinização e de polinização livre, totalizando quatro populações. Foram analisados 18 indivíduos de cada população e as duas plantas-mãe, totalizando 74 indivíduos. Foram utilizadas três combinações de primers AFLP e calculada a similaridade genética entre plantas pelo coeficiente de Jaccard. Uma estimativa da variabilidade genética entre e dentro das populações foi estimada pela AMOVA. As três combinações de primers AFLP utilizadas amplificaram um total de 178 locos AFLP, dos quais 114 (64,0% foram polimórficos entre todos os indivíduos. Não houve separação clara entre populações descendentes da mesma planta-mãe. Foi observado maior polimorfismo de marcadores AFLP em populações de polinização livre. A proporção da variabilidade genética total entre populações foi significativa, embora tenha sido menor do que aquela observada dentro das populações. A reprodução da pitangueira é decorrente tanto da autofertilização quanto da polinização cruzada, sendo necessário, no entanto, novos estudos para determinar qual a estratégia de reprodução mais eficiente.AFLP molecular markers were used aiming to study the genetic variability within and between Surinam cherry (Eugenia uniflora populations, originated from self-pollination and open pollination of two selections (Pit 15 and Pit 52 of the Embrapa Clima Temperado collection. The objective was to

  19. Comparative analyses of genetic/epigenetic diversities and structures in a wild barley species (Hordeum brevisubulatum) using MSAP, SSAP and AFLP.

    Science.gov (United States)

    Shan, X H; Li, Y D; Liu, X M; Wu, Y; Zhang, M Z; Guo, W L; Liu, B; Yuan, Y P

    2012-08-17

    We analyzed genetic diversity and population genetic structure of four artificial populations of wild barley (Hordeum brevisubulatum); 96 plants collected from the Songnen Prairie in northeastern China were analyzed using amplified fragment length polymorphism (AFLP), specific-sequence amplified polymorphism (SSAP) and methylation-sensitive amplified polymorphism (MSAP) markers. Indices of (epi-)genetic diversity, (epi-)genetic distance, gene flow, genotype frequency, cluster analysis, PCA analysis and AMOVA analysis generated from MSAP, AFLP and SSAP markers had the same trend. We found a high level of correlation in the artificial populations between MSAP, SSAP and AFLP markers by the Mantel test (r > 0.8). This is incongruent with previous findings showing that there is virtually no correlation between DNA methylation polymorphism and classical genetic variation; the high level of genetic polymorphism could be a result of epigenetic regulation. We compared our results with data from natural populations. The population diversity of the artificial populations was lower. However, different from what was found using AFLP and SSAP, based on MSAP results the methylation polymorphism of the artificial populations was not significantly reduced. This leads us to suggest that the DNA methylation pattern change in H. brevisubulatum populations is not only related to DNA sequence variation, but is also regulated by other controlling systems.

  20. Genetic diversity of sweet sorghum germplasm in Mexico using AFLP and SSR markers

    Science.gov (United States)

    The objective of this work was to evaluate the diversity and genetic relationships between lines and varieties of the sweet sorghum (Sorghum bicolor) germplasm bank of the National Institute for Forestry, Agriculture and Livestock Research, Mexico, using AFLP and SSR markers. The molecular markers ...

  1. Species relationships in Lactuca S.L. (Lactuceae, Asteraceae) inferred from AFLP fingerprints

    NARCIS (Netherlands)

    Koopman, W.J.M.; Zevenbergen, M.J.; Berg, van den R.G.

    2001-01-01

    An AFLP data set comprising 95 accessions from 20 species of Lactuca s.l. (sensu lato) and related genera was generated using the primer combinations E35/M48 and E35/M49. In phenetic analyses of a data subset, clustering with UPGMA based on Jaccard's similarity coefficient resulted in the highest

  2. RNA-Seq for gene identification and transcript profiling of three Stevia rebaudiana genotypes.

    Science.gov (United States)

    Chen, Junwen; Hou, Kai; Qin, Peng; Liu, Hongchang; Yi, Bin; Yang, Wenting; Wu, Wei

    2014-07-07

    Stevia (Stevia rebaudiana) is an important medicinal plant that yields diterpenoid steviol glycosides (SGs). SGs are currently used in the preparation of medicines, food products and neutraceuticals because of its sweetening property (zero calories and about 300 times sweeter than sugar). Recently, some progress has been made in understanding the biosynthesis of SGs in Stevia, but little is known about the molecular mechanisms underlying this process. Additionally, the genomics of Stevia, a non-model species, remains uncharacterized. The recent advent of RNA-Seq, a next generation sequencing technology, provides an opportunity to expand the identification of Stevia genes through in-depth transcript profiling. We present a comprehensive landscape of the transcriptome profiles of three genotypes of Stevia with divergent SG compositions characterized using RNA-seq. 191,590,282 high-quality reads were generated and then assembled into 171,837 transcripts with an average sequence length of 969 base pairs. A total of 80,160 unigenes were annotated, and 14,211 of the unique sequences were assigned to specific metabolic pathways by the Kyoto Encyclopedia of Genes and Genomes. Gene sequences of all enzymes known to be involved in SG synthesis were examined. A total of 143 UDP-glucosyltransferase (UGT) unigenes were identified, some of which might be involved in SG biosynthesis. The expression patterns of eight of these genes were further confirmed by RT-QPCR. RNA-seq analysis identified candidate genes encoding enzymes responsible for the biosynthesis of SGs in Stevia, a non-model plant without a reference genome. The transcriptome data from this study yielded new insights into the process of SG accumulation in Stevia. Our results demonstrate that RNA-Seq can be successfully used for gene identification and transcript profiling in a non-model species.

  3. A linear programming approach for estimating the structure of a sparse linear genetic network from transcript profiling data

    Directory of Open Access Journals (Sweden)

    Chandra Nagasuma R

    2009-02-01

    Full Text Available Abstract Background A genetic network can be represented as a directed graph in which a node corresponds to a gene and a directed edge specifies the direction of influence of one gene on another. The reconstruction of such networks from transcript profiling data remains an important yet challenging endeavor. A transcript profile specifies the abundances of many genes in a biological sample of interest. Prevailing strategies for learning the structure of a genetic network from high-dimensional transcript profiling data assume sparsity and linearity. Many methods consider relatively small directed graphs, inferring graphs with up to a few hundred nodes. This work examines large undirected graphs representations of genetic networks, graphs with many thousands of nodes where an undirected edge between two nodes does not indicate the direction of influence, and the problem of estimating the structure of such a sparse linear genetic network (SLGN from transcript profiling data. Results The structure learning task is cast as a sparse linear regression problem which is then posed as a LASSO (l1-constrained fitting problem and solved finally by formulating a Linear Program (LP. A bound on the Generalization Error of this approach is given in terms of the Leave-One-Out Error. The accuracy and utility of LP-SLGNs is assessed quantitatively and qualitatively using simulated and real data. The Dialogue for Reverse Engineering Assessments and Methods (DREAM initiative provides gold standard data sets and evaluation metrics that enable and facilitate the comparison of algorithms for deducing the structure of networks. The structures of LP-SLGNs estimated from the INSILICO1, INSILICO2 and INSILICO3 simulated DREAM2 data sets are comparable to those proposed by the first and/or second ranked teams in the DREAM2 competition. The structures of LP-SLGNs estimated from two published Saccharomyces cerevisae cell cycle transcript profiling data sets capture known

  4. A detailed linkage map of lettuce based on SSAP, AFLP and NBS markers

    NARCIS (Netherlands)

    Syed, H.; Sorensen, A.P.; Antonise, R.; van de Wiel, C.; van der Linden, C.G.; van 't Westende, W.; Hooftman, D.A.P.; den Nijs, J.C.M.; Flavell, A.J.

    2006-01-01

    Abstract Molecular markers based upon a novel lettuce LTR retrotransposon and the nucleotide binding site-leucine-rich repeat (NBS-LRR) family of disease resistance-associated genes have been combined with AFLP markers to generate a 458 locus genetic linkage map for lettuce. A total of 187

  5. Genetic analysis of floating Enteromorpha prolifera in the Yellow Sea with AFLP marker

    Science.gov (United States)

    Liu, Cui; Zhang, Jing; Sun, Xiaoyu; Li, Jian; Zhang, Xi; Liu, Tao

    2011-09-01

    Extremely large accumulation of green algae Enteromorpha prolifera floated along China' coastal region of the Yellow Sea ever since the summer of 2008. Amplified Fragment Length Polymorphism (AFLP) analysis was applied to assess the genetic diversity and relationships among E. prolifera samples collected from 9 affected areas of the Yellow Sea. Two hundred reproducible fragments were generated with 8 AFLP primer combinations, of which 194 (97%) were polymorphic. The average Nei's genetic diversity, the coefficiency of genetic differentiation (Gst), and the average gene flow estimated from Gst in the 9 populations were 0.4018, 0.6404 and 0.2807 respectively. Cluster analysis based on the unweighed pair group method with arithmetic averages (UPGMA) showed that the genetic relationships within one population or among different populations were all related to their collecting locations and sampling time. Large genetic differentiation was detected among the populations. The E. prolifera originated from different areas and were undergoing a course of mixing.

  6. Low level of genetic variation within Melica transsilvanica populations from the Kraków-Częstochowa Upland and the Pieniny Mts revealed by AFLPs analysis

    Directory of Open Access Journals (Sweden)

    Magdalena Szczepaniak

    2011-01-01

    Full Text Available Fragmented distribution, the breeding system and effects of genetic drift in small-size populations occurring at edge of the species range play an important role in shaping genetic diversity of such a species. Melica transsilvanica is a plant rare in the flora of Poland, where it reaches the northern limit of its continuous range. Amplified Fragment Length Polymorphism (AFLP DNA profiling method was applied to measure genetic diversity among and within populations of M. transsilvanica. Additionally, genetic relationships between M. transsilvanica and Melica ciliata, two closely related species, were explored. A total of 68 plants from 7 populations of M. transsilvanica and 24 plants from 2 populations of M. ciliata, collected in Poland and outside it, were analyzed. Using 294 AFLP fragments from 3 primer combinations, accessions were grouped into two major clusters associating with M. ciliata and M. transsilvanica, respectively. Further, two subclusters, corresponding to the samples collected from the Pieniny Mts and from the Kraków - Częstochowa Upland were clearly distinguished within the M. transsilvanica group. The hierarchical AMOVA exhibited significant genetic distinction between these geographic regions (60.89%, p < 0.001. The obtained results showed that the most genetic diversity resided between the populations of M. transsilvanica (86.03% while considerably lower genetic variation was found within the populations (13.97%, which is consistent with the results reported for self-plants. The low level of AFLP genetic variation of M. transsilvanica can be caused by the geographic isolation of populations, which preserves the dominant self-mating breeding system of the species. Individual populations of M. transsilvanica are characterized by isolated gene pools differing by a small number of loci.

  7. An AFLP marker linked to turnip mosaic virus resistance gene in pak ...

    African Journals Online (AJOL)

    An AFLP marker linked to turnip mosaic virus resistance gene in pak-choi. W Xinhua, C Huoying, Z Yuying, H Ruixian. Abstract. Pak-choi is one of the most important vegetable crops in China. Turnip mosaic virus (TuMV) is one of its main pathogen. Screening the molecular marker linked to the TuMV resistance gene is an ...

  8. Identification of QTLs for grain yield and grain-related traits of maize (Zea mays L.) using an AFLP-map, different testers, and cofactor analysis

    NARCIS (Netherlands)

    Ajimone Marsan, P.; Gorni, C.; Chitto, A.; Redaelli, R.; Vijk, van R.; Stam, P.; Motto, M.

    2001-01-01

    Abstract We exploited the AFLP?1(AFLP? is a registered trademark of Keygene, N.V.) technique to map and characterise quantitative trait loci (QTLs) for grain yield and two grain-related traits of a maize segregating population. Two maize elite inbred lines were crossed to produce 229 F2 individuals

  9. AFLP analysis of genetic diversity and phylogenetic relationships of Brassica oleracea in Ireland.

    Science.gov (United States)

    El-Esawi, Mohamed A; Germaine, Kieran; Bourke, Paula; Malone, Renee

    2016-01-01

    Brassica oleracea L. is one of the most economically important vegetable crop species of the genus Brassica L. This species is threatened in Ireland, without any prior reported genetic studies. The use of this species is being very limited due to its imprecise phylogeny and uncompleted genetic characterisation. The main objective of this study was to assess the genetic diversity and phylogenetic relationships of a set of 25 Irish B. oleracea accessions using the powerful amplified fragment length polymorphism (AFLP) technique. A total of 471 fragments were scored across all the 11 AFLP primer sets used, out of which 423 (89.8%) were polymorphic and could differentiate the accessions analysed. The dendrogram showed that cauliflowers were more closely related to cabbages than kales were, and accessions of some cabbage types were distributed among different clusters within cabbage subgroups. Approximately 33.7% of the total genetic variation was found among accessions, and 66.3% of the variation resided within accessions. The total genetic diversity (HT) and the intra-accessional genetic diversity (HS) were 0.251 and 0.156, respectively. This high level of variation demonstrates that the Irish B. oleracea accessions studied should be managed and conserved for future utilisation and exploitation in food and agriculture. In conclusion, this study addressed important phylogenetic questions within this species, and provided a new insight into the inclusion of four accessions of cabbages and kales in future breeding programs for improving varieties. AFLP markers were efficient for assessing genetic diversity and phylogenetic relationships in Irish B. oleracea species. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  10. Relationship of European Persimmon (Diospyros kaki Thunb.) Cultivars to Asian Cultivars, Characterized Using AFLPs.

    Science.gov (United States)

    Sixty one persimmon (Diospyros kaki Thunb.) selections, including 17 Italian, 11 Spanish, 13 Japanese, six Korean, five Chinese, one Israeli, and eight of unknown origin, were evaluated for genetic differences by AFLP analysis. Relationships among cultivars were evaluated by UPGMA clustering, Neigh...

  11. Variations of transcript profiles between sea otters Enhydra lutris from Prince William Sound, Alaska, and clinically normal reference otters

    Science.gov (United States)

    Miles, A. Keith; Bowen, Lizabeth; Ballachey, Brenda E.; Bodkin, James L.; Murray, M.; Estes, J.L.; Keister, Robin A.; Stott, J.L.

    2012-01-01

    Development of blood leukocyte gene transcript profiles has the potential to expand condition assessments beyond those currently available to evaluate wildlife health, including sea otters Enhydra lutris, both individually and as populations. The 10 genes targeted in our study represent multiple physiological systems that play a role in immuno-modulation, inflammation, cell protection, tumor suppression, cellular stress-response, xenobiotic metabolizing enzymes, and antioxidant enzymes. These genes can be modified by biological, physical, or anthropogenic impacts and consequently provide information on the general type of stressors present in a given environment. We compared gene transcript profiles of sea otters sampled in 2008 among areas within Prince William Sound impacted to varying degrees by the 1989 ‘Exxon Valdez’ oil spill with those of captive and wild reference sea otters. Profiles of sea otters from Prince William Sound showed elevated transcription in genes associated with tumor formation, cell death, organic exposure, inflammation, and viral exposure when compared to the reference sea otter group, indicating possible recent and chronic exposure to organic contaminants. Sea otters from historically designated oiled areas within Prince William Sound 19 yr after the oil spill had higher transcription of genes associated with tumor formation, cell death, heat shock, and inflammation than those from areas designated as less impacted by the spill.

  12. Transcriptional profiling in human HaCaT keratinocytes in response to kaempferol and identification of potential transcription factors for regulating differential gene expression

    Science.gov (United States)

    Kang, Byung Young; Lee, Ki-Hwan; Lee, Yong Sung; Hong, Il; Lee, Mi-Ock; Min, Daejin; Chang, Ihseop; Hwang, Jae Sung; Park, Jun Seong; Kim, Duck Hee

    2008-01-01

    Kaempferol is the major flavonol in green tea and exhibits many biomedically useful properties such as antioxidative, cytoprotective and anti-apoptotic activities. To elucidate its effects on the skin, we investigated the transcriptional profiles of kaempferol-treated HaCaT cells using cDNA microarray analysis and identified 147 transcripts that exhibited significant changes in expression. Of these, 18 were up-regulated and 129 were down-regulated. These transcripts were then classified into 12 categories according to their functional roles: cell adhesion/cytoskeleton, cell cycle, redox homeostasis, immune/defense responses, metabolism, protein biosynthesis/modification, intracellular transport, RNA processing, DNA modification/ replication, regulation of transcription, signal transduction and transport. We then analyzed the promoter sequences of differentially-regulated genes and identified over-represented regulatory sites and candidate transcription factors (TFs) for gene regulation by kaempferol. These included c-REL, SAP-1, Ahr-ARNT, Nrf-2, Elk-1, SPI-B, NF-κB and p65. In addition, we validated the microarray results and promoter analyses using conventional methods such as real-time PCR and ELISA-based transcription factor assay. Our microarray analysis has provided useful information for determining the genetic regulatory network affected by kaempferol, and this approach will be useful for elucidating gene-phytochemical interactions. PMID:18446059

  13. Whole genome transcription profiling of Anaplasma phagocytophilum in human and tick host cells by tiling array analysis

    Directory of Open Access Journals (Sweden)

    Chavez Adela

    2008-07-01

    Full Text Available Abstract Background Anaplasma phagocytophilum (Ap is an obligate intracellular bacterium and the agent of human granulocytic anaplasmosis, an emerging tick-borne disease. Ap alternately infects ticks and mammals and a variety of cell types within each. Understanding the biology behind such versatile cellular parasitism may be derived through the use of tiling microarrays to establish high resolution, genome-wide transcription profiles of the organism as it infects cell lines representative of its life cycle (tick; ISE6 and pathogenesis (human; HL-60 and HMEC-1. Results Detailed, host cell specific transcriptional behavior was revealed. There was extensive differential Ap gene transcription between the tick (ISE6 and the human (HL-60 and HMEC-1 cell lines, with far fewer differentially transcribed genes between the human cell lines, and all disproportionately represented by membrane or surface proteins. There were Ap genes exclusively transcribed in each cell line, apparent human- and tick-specific operons and paralogs, and anti-sense transcripts that suggest novel expression regulation processes. Seven virB2 paralogs (of the bacterial type IV secretion system showed human or tick cell dependent transcription. Previously unrecognized genes and coding sequences were identified, as were the expressed p44/msp2 (major surface proteins paralogs (of 114 total, through elevated signal produced to the unique hypervariable region of each – 2/114 in HL-60, 3/114 in HMEC-1, and none in ISE6. Conclusion Using these methods, whole genome transcription profiles can likely be generated for Ap, as well as other obligate intracellular organisms, in any host cells and for all stages of the cell infection process. Visual representation of comprehensive transcription data alongside an annotated map of the genome renders complex transcription into discernable patterns.

  14. Characterization of the transcriptional profile in primary astrocytes after oxidative stress induced by Paraquat

    DEFF Research Database (Denmark)

    Olesen, Birgitte S. M. Thuesen; Clausen, Jørgen; Vang, Ole

    2008-01-01

    the antioxidative enzymes Mn- and CuZn superoxide dismutase (SOD) and catalase as well as the transcription factor component AP-1. Paraquat induced the expression of Mn- and CuZn SOD, catalase and decreases the expression of c-jun (a part of AP-1). Furthermore, the gene expression profiles were investigated after...

  15. Profiling of Leptospira interrogans, L. santarosai, L. meyeri and L. borgpetersenii by SE-AFLP, PFGE and susceptibility testing--a continuous attempt at species and serovar differentiation.

    Science.gov (United States)

    Moreno, Luisa Z; Miraglia, Fabiana; Lilenbaum, Walter; Neto, José S F; Freitas, Julio C; Morais, Zenaide M; Hartskeerl, Rudy A; da Costa, Barbara L P; Vasconcellos, Silvio A; Moreno, Andrea M

    2016-03-09

    Leptospirosis is a widespread systemic zoonosis, considered as reemerging in certain developing countries. Although the cross agglutinin absorption test is still considered the standard method for Leptospira identification, it presents several disadvantages. The aim of this study was to characterize Leptospira spp. isolated from various hosts by genotyping and broth microdilution susceptibility testing in an attempt to differentiate Leptospira species, serogroups and serovars. Forty-seven isolates were studied. They were previously serotyped, and species confirmation was performed by 16S rRNA sequencing. Single-enzyme amplified fragment length polymorphism (SE-AFLP) and pulsed-field gel electrophoresis (PFGE) analysis enabled the distinction of L. interrogans from L. santarosai, L. meyeri and L. borgpetersenii in two main clusters. Among L. interrogans, it was possible to differentiate into two new clusters the serogroup Icterohaemorrhagiae from the serogroups Canicola and Pomona. L. santarosai isolates presented higher genetic variation than the other species in both techniques. Interestingly, the minimum inhibitory concentration (MIC) cluster analysis also provided Leptospira serogroup differentiation. Further studies are necessary regarding serovar Bananal isolates, as they presented the highest MIC values for most of the antimicrobials tested. All studied techniques successfully distinguished Leptospira species and serogroups. Despite being library-dependent methods, these approaches are less labor intensive and more economically viable, particularly SE-AFLP, and can be implemented in most reference laboratories worldwide to enable faster Leptospira typing.

  16. AFLPs reveal genomic regions not detected by RFLPs: a case study in tomato

    NARCIS (Netherlands)

    Bonnema, G.; Berg, van den P.; Lindhout, P.

    2002-01-01

    A set of three tomato chromosome 7 introgression lines (ILs) containing overlapping segments of Lycopersicon pennellii DNA was screened with a set of 10 EcoRI–MseI and 10 PstI–MseI AFLP primer combinations. A large number of markers were identified that mapped to one of the four regions of

  17. Species-specific AFLP markers for identification of Zingiber officinale, Z. montanum and Z. zerumbet (Zingiberaceae).

    Science.gov (United States)

    Ghosh, S; Majumder, P B; Sen Mandi, S

    2011-02-08

    The Zingiber genus, which includes the herbs known as gingers, commonly used in cooking, is well known for its medicinal properties, as described in the Indian pharmacopoeia. Different members of this genus, although somewhat similar in morphology, differ widely in their pharmacological and therapeutic properties. The most important species of this genus, with maximal therapeutic properties, is Zingiber officinale (garden ginger), which is often adulterated with other less-potent Zingiber sp. There is an existing demand in the herbal drug industry for an authentication system for the Zingiber sp in order to facilitate their commercial use as genuine phytoceuticals. To this end, we used amplified fragment length polymorphism (AFLP) to produce DNA fingerprints for three Zingiber species. Sixteen collections (six of Z. officinale, five of Z. montanum, and five of Z. zerumbet) were used in the study. Seven selective primer pairs were found to be useful for all the accessions. A total of 837 fragments were produced by these primer pairs. Species-specific markers were identified for all three Zingiber species (91 for Z. officinale, 82 for Z. montanum, and 55 for Z. zerumbet). The dendogram analysis generated from AFLP patterns showed that Z. montanum and Z. zerumbet are phylogenetically closer to each other than to Z. officinale. The AFLP fingerprints of the Zingiber species could be used to authenticate Zingiber sp-derived drugs and to resolve adulteration-related problems faced by the commercial users of these herbs.

  18. Bisphenol A and Bisphenol S Induce Distinct Transcriptional Profiles in Differentiating Human Primary Preadipocytes.

    Directory of Open Access Journals (Sweden)

    Jonathan G Boucher

    Full Text Available Bisphenol S (BPS is increasingly used as a replacement plasticizer for bisphenol A (BPA but its effects on human health have not been thoroughly examined. Recent evidence indicates that both BPA and BPS induce adipogenesis, although the mechanisms leading to this effect are unclear. In an effort to identify common and distinct mechanisms of action in inducing adipogenesis, transcriptional profiles of differentiating human preadipocytes exposed to BPA or BPS were compared. Human subcutaneous primary preadipocytes were differentiated in the presence of either 25 μM BPA or BPS for 2 and 4 days. Poly-A RNA-sequencing was used to identify differentially expressed genes (DEGs. Functional analysis of DEGs was undertaken in Ingenuity Pathway Analysis. BPA-treatment resulted in 472 and 176 DEGs on days 2 and 4, respectively, affecting pathways such as liver X receptor (LXR/retinoid X receptor (RXR activation, hepatic fibrosis and cholestasis. BPS-treatment resulted in 195 and 51 DEGs on days 2 and 4, respectively, revealing enrichment of genes associated with adipogenesis and lipid metabolism including the adipogenesis pathway and cholesterol biosynthesis. Interestingly, the transcription repressor N-CoR was identified as a negative upstream regulator in both BPA- and BPS-treated cells. This study presents the first comparison of BPA- and BPS-induced transcriptional profiles in human differentiating preadipocytes. While we previously showed that BPA and BPS both induce adipogenesis, the results from this study show that BPS affects adipose specific transcriptional changes earlier than BPA, and alters the expression of genes specifically related to adipogenesis and lipid metabolism. The findings provide insight into potential BPS and BPA-mediated mechanisms of action in inducing adipogenesis in human primary preadipocytes.

  19. Statistical modelling of transcript profiles of differentially regulated genes

    Directory of Open Access Journals (Sweden)

    Sergeant Martin J

    2008-07-01

    Full Text Available Abstract Background The vast quantities of gene expression profiling data produced in microarray studies, and the more precise quantitative PCR, are often not statistically analysed to their full potential. Previous studies have summarised gene expression profiles using simple descriptive statistics, basic analysis of variance (ANOVA and the clustering of genes based on simple models fitted to their expression profiles over time. We report the novel application of statistical non-linear regression modelling techniques to describe the shapes of expression profiles for the fungus Agaricus bisporus, quantified by PCR, and for E. coli and Rattus norvegicus, using microarray technology. The use of parametric non-linear regression models provides a more precise description of expression profiles, reducing the "noise" of the raw data to produce a clear "signal" given by the fitted curve, and describing each profile with a small number of biologically interpretable parameters. This approach then allows the direct comparison and clustering of the shapes of response patterns between genes and potentially enables a greater exploration and interpretation of the biological processes driving gene expression. Results Quantitative reverse transcriptase PCR-derived time-course data of genes were modelled. "Split-line" or "broken-stick" regression identified the initial time of gene up-regulation, enabling the classification of genes into those with primary and secondary responses. Five-day profiles were modelled using the biologically-oriented, critical exponential curve, y(t = A + (B + CtRt + ε. This non-linear regression approach allowed the expression patterns for different genes to be compared in terms of curve shape, time of maximal transcript level and the decline and asymptotic response levels. Three distinct regulatory patterns were identified for the five genes studied. Applying the regression modelling approach to microarray-derived time course data

  20. Characterization and Improvement of RNA-Seq Precision in Quantitative Transcript Expression Profiling

    Energy Technology Data Exchange (ETDEWEB)

    Labaj, Pawel P.; Leparc, German G.; Linggi, Bryan E.; Markillie, Lye Meng; Wiley, H. S.; Kreil, David P.

    2011-07-01

    Measurement precision determines the power of any analysis to reliably identify significant signals, such as in screens for differential expression, independent of whether the experimental design incorporates replicates or not. With the compilation of large scale RNA-Seq data sets with technical replicate samples, however, we can now, for the first time, perform a systematic analysis of the precision of expression level estimates from massively parallel sequencing technology. This then allows considerations for its improvement by computational or experimental means. Results: We report on a comprehensive study of target coverage and measurement precision, including their dependence on transcript expression levels, read depth and other parameters. In particular, an impressive target coverage of 84% of the estimated true transcript population could be achieved with 331 million 50 bp reads, with diminishing returns from longer read lengths and even less gains from increased sequencing depths. Most of the measurement power (75%) is spent on only 7% of the known transcriptome, however, making less strongly expressed transcripts harder to measure. Consequently, less than 30% of all transcripts could be quantified reliably with a relative error < 20%. Based on established tools, we then introduce a new approach for mapping and analyzing sequencing reads that yields substantially improved performance in gene expression profiling, increasing the number of transcripts that can reliably be quantified to over 40%. Extrapolations to higher sequencing depths highlight the need for efficient complementary steps. In discussion we outline possible experimental and computational strategies for further improvements in quantification precision.

  1. Comparative transcriptional profiling of tildipirosin-resistant and sensitive Haemophilus parasuis.

    Science.gov (United States)

    Lei, Zhixin; Fu, Shulin; Yang, Bing; Liu, Qianying; Ahmed, Saeed; Xu, Lei; Xiong, Jincheng; Cao, Jiyue; Qiu, Yinsheng

    2017-08-08

    Numerous studies have been conducted to examine the molecular mechanism of Haemophilus parasuis resistance to antibiotic, but rarely to tildipirosin. In the current study, transcriptional profiling was applied to analyse the variation in gene expression of JS0135 and tildipirosin-resistant JS32. The growth curves showed that JS32 had a higher growth rate but fewer bacteria than JS0135. The cell membranes of JS32 and a resistant clinical isolate (HB32) were observed to be smoother than those of JS0135. From the comparative gene expression profile 349 up- and 113 downregulated genes were observed, covering 37 GO and 63 KEGG pathways which are involved in biological processes (11), cellular components (17), molecular function (9), cellular processes (1), environmental information processing (4), genetic information processing (9) and metabolism (49) affected in JS32. In addition, the relative overexpression of genes of the metabolism pathway (HAPS_RS09315, HAPS_RS09320), ribosomes (HAPS_RS07815) and ABC transporters (HAPS_RS10945) was detected, particularly the metabolism pathway, and verified with RT-qPCR. Collectively, the gene expression profile in connection with tildipirosin resistance factors revealed unique and highly resistant determinants of H. parasuis to macrolides that warrant further attention due to the significant threat of bacterial resistance.

  2. AFLP Markers as a tool to reconstruct complex relationships: a case study in Rosa (Rosaceae)

    NARCIS (Netherlands)

    Koopman, W.J.M.; Wissemann, V.; Cock, de K.; Huylenbroeck, van J.; Riek, de J.; Sabatino, G.J.H.; Visser, D.L.; Vosman, B.; Ritz, K.; Maes, B.; Werlemark, G.; Nybom, H.; Debener, T.; Linde, M.; Smulders, M.J.M.

    2008-01-01

    The genus Rosa has a complex evolutionary history caused by several factors, often in conjunction: extensive hybridization, recent radiation, incomplete lineage sorting, and multiple events of polyploidy. We examined the applicability of AFLP markers for reconstructing (species) relationships in

  3. Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles.

    Directory of Open Access Journals (Sweden)

    Gwendal Le Martelot

    Full Text Available Interactions of cell-autonomous circadian oscillators with diurnal cycles govern the temporal compartmentalization of cell physiology in mammals. To understand the transcriptional and epigenetic basis of diurnal rhythms in mouse liver genome-wide, we generated temporal DNA occupancy profiles by RNA polymerase II (Pol II as well as profiles of the histone modifications H3K4me3 and H3K36me3. We used these data to quantify the relationships of phases and amplitudes between different marks. We found that rhythmic Pol II recruitment at promoters rather than rhythmic transition from paused to productive elongation underlies diurnal gene transcription, a conclusion further supported by modeling. Moreover, Pol II occupancy preceded mRNA accumulation by 3 hours, consistent with mRNA half-lives. Both methylation marks showed that the epigenetic landscape is highly dynamic and globally remodeled during the 24-hour cycle. While promoters of transcribed genes had tri-methylated H3K4 even at their trough activity times, tri-methylation levels reached their peak, on average, 1 hour after Pol II. Meanwhile, rhythms in tri-methylation of H3K36 lagged transcription by 3 hours. Finally, modeling profiles of Pol II occupancy and mRNA accumulation identified three classes of genes: one showing rhythmicity both in transcriptional and mRNA accumulation, a second class with rhythmic transcription but flat mRNA levels, and a third with constant transcription but rhythmic mRNAs. The latter class emphasizes widespread temporally gated posttranscriptional regulation in the mouse liver.

  4. Genome-wide profiling of H3K56 acetylation and transcription factor binding sites in human adipocytes.

    Directory of Open Access Journals (Sweden)

    Kinyui Alice Lo

    Full Text Available The growing epidemic of obesity and metabolic diseases calls for a better understanding of adipocyte biology. The regulation of transcription in adipocytes is particularly important, as it is a target for several therapeutic approaches. Transcriptional outcomes are influenced by both histone modifications and transcription factor binding. Although the epigenetic states and binding sites of several important transcription factors have been profiled in the mouse 3T3-L1 cell line, such data are lacking in human adipocytes. In this study, we identified H3K56 acetylation sites in human adipocytes derived from mesenchymal stem cells. H3K56 is acetylated by CBP and p300, and deacetylated by SIRT1, all are proteins with important roles in diabetes and insulin signaling. We found that while almost half of the genome shows signs of H3K56 acetylation, the highest level of H3K56 acetylation is associated with transcription factors and proteins in the adipokine signaling and Type II Diabetes pathways. In order to discover the transcription factors that recruit acetyltransferases and deacetylases to sites of H3K56 acetylation, we analyzed DNA sequences near H3K56 acetylated regions and found that the E2F recognition sequence was enriched. Using chromatin immunoprecipitation followed by high-throughput sequencing, we confirmed that genes bound by E2F4, as well as those by HSF-1 and C/EBPα, have higher than expected levels of H3K56 acetylation, and that the transcription factor binding sites and acetylation sites are often adjacent but rarely overlap. We also discovered a significant difference between bound targets of C/EBPα in 3T3-L1 and human adipocytes, highlighting the need to construct species-specific epigenetic and transcription factor binding site maps. This is the first genome-wide profile of H3K56 acetylation, E2F4, C/EBPα and HSF-1 binding in human adipocytes, and will serve as an important resource for better understanding adipocyte

  5. [Morphologic and AFLP analysis of relationships between tulip species Tulipa biebersteiniana (Liliaceae)].

    Science.gov (United States)

    Kutlunina, N A; Polezhaeva, M A; Permiakova, M V

    2013-04-01

    In populations of four species of tulips, (Tulipa biebersteiniana, T. patens, T. scytica and T. riparia) from the Volgograd, Kurgansk, Orenburg, and Chelyabinsk regions and the Republic of Bashkortostan, genetic diversity was studied by means of morphological and AFLP analysis. A morphological analysis of seven quantitative and two qualitative criteria was carried out. Three selective EcoRI/MseI primer pairs allowed one to genotype 81 individuals from 13 tulip populations with 87 loci. The low level of variability by AFLP loci were revealed in all species, including T. biebersteiniana (P = 20.41%, UH(e) = 0.075), T. patens (26.97%, 0.082), T. scytica (27.53%, 0.086), and T. riparia (27.72%, 0.096). According to the AMOVA results, the variability proportion that characterizes the differences between the four Tulip species was lower (F(CT) = 0.235) than between populations within species (F(ST) = 0.439). Tulipa patens is well differentiated by means of Nei's distances, coordination, and analysis in the STRUCTURE program. An analysis in the STRUCTURE revealed four genetic groups of tulips that are not completely in accordance with the analyzed species. This acknowledges the presence of complicated genetic process in the tulip population.

  6. Integrated pathway-based transcription regulation network mining and visualization based on gene expression profiles.

    Science.gov (United States)

    Kibinge, Nelson; Ono, Naoaki; Horie, Masafumi; Sato, Tetsuo; Sugiura, Tadao; Altaf-Ul-Amin, Md; Saito, Akira; Kanaya, Shigehiko

    2016-06-01

    Conventionally, workflows examining transcription regulation networks from gene expression data involve distinct analytical steps. There is a need for pipelines that unify data mining and inference deduction into a singular framework to enhance interpretation and hypotheses generation. We propose a workflow that merges network construction with gene expression data mining focusing on regulation processes in the context of transcription factor driven gene regulation. The pipeline implements pathway-based modularization of expression profiles into functional units to improve biological interpretation. The integrated workflow was implemented as a web application software (TransReguloNet) with functions that enable pathway visualization and comparison of transcription factor activity between sample conditions defined in the experimental design. The pipeline merges differential expression, network construction, pathway-based abstraction, clustering and visualization. The framework was applied in analysis of actual expression datasets related to lung, breast and prostrate cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Resistance to Plasmopara viticola in a grapevine segregating population is associated with stilbenoid accumulation and with specific host transcriptional responses

    Directory of Open Access Journals (Sweden)

    Delledonne Massimo

    2011-08-01

    Full Text Available Abstract Background Downy mildew, caused by the oomycete Plasmopara viticola, is a serious disease in Vitis vinifera, the most commonly cultivated grapevine species. Several wild Vitis species have instead been found to be resistant to this pathogen and have been used as a source to introgress resistance into a V. vinifera background. Stilbenoids represent the major phytoalexins in grapevine, and their toxicity is closely related to the specific compound. The aim of this study was to assess the resistance response to P. viticola of the Merzling × Teroldego cross by profiling the stilbenoid content of the leaves of an entire population and the transcriptome of resistant and susceptible individuals following infection. Results A three-year analysis of the population's response to artificial inoculation showed that individuals were distributed in nine classes ranging from total resistance to total susceptibility. In addition, quantitative metabolite profiling of stilbenoids in the population, carried out using HPLC-DAD-MS, identified three distinct groups differing according to the concentrations present and the complexity of their profiles. The high producers were characterized by the presence of trans-resveratrol, trans-piceid, trans-pterostilbene and up to thirteen different viniferins, nine of them new in grapevine. Accumulation of these compounds is consistent with a resistant phenotype and suggests that they may contribute to the resistance response. A preliminary transcriptional study using cDNA-AFLP selected a set of genes modulated by the oomycete in a resistant genotype. The expression of this set of genes in resistant and susceptible genotypes of the progeny population was then assessed by comparative microarray analysis. A group of 57 genes was found to be exclusively modulated in the resistant genotype suggesting that they are involved in the grapevine-P. viticola incompatible interaction. Functional annotation of these transcripts

  8. Divergência genética entre genótipos de alface por meio de marcadores AFLP Genetics divergence among lettuce genotypes by AFLP markers

    Directory of Open Access Journals (Sweden)

    Cristina Soares de Sousa

    2007-01-01

    Full Text Available Considerando a restrita diversidade de espécies disponíveis para nutrir a carência de vitaminas no Brasil, Kerr e colaboradores, desde 1981, vêm desenvolvendo pesquisas para melhoramento genético de hortaliças ricas em vitamina A. Dentre elas, obtiveram uma cultivar de alface, denominada Uberlândia 10.000 com 10.200 UI de vitamina A em 100 gramas de folha fresca. Este trabalho objetivou comparar o grau de divergência genética entre a cultivar Uberlândia 10.000 e seus parentais para avaliar a eficiência da seleção utilizada, por meio da técnica AFLP. Foram utilizados os seguintes genótipos de alface: Maioba, Salad Bowl-Mimosa, Moreninha-de-Uberlândia, Vitória de Santo Antão, Uberlândia 10.000 lisa 8.ª e 9.ª geração e Uberlândia 10.000 crespa 8.ª e 9.ª geração. A técnica AFLP foi eficiente para identificar genótipos muito próximos e para estudos de progênies em alface. O primer PR15 permitiu a separação da forma lisa e crespa com 1,8% de divergência genética e a oitava da nona geração com apenas 0,71%. Com o estudo da filogenia da cultivar pode-se observar que o programa de melhoramento foi desenvolvido com sucesso, pois a cultivar obtida Uberlândia 10.000 possui alto teor de vitamina A e 92% de similaridade com o parental Vitória de Santo Antão. O primer PR11 conseguiu identificar polimorfismo entre cultivares de alta e baixa resistência à septoriose, sugerindo a possibilidade destas bandas estarem relacionadas à resistência.Considering the restricted diversity of species available to counteract vitamin deficiencies in Brazil, Kerr and coworkers have been engaged since 1981, in developing genetic improved garden vegetables rich in vitamin A. One of these vegetables is the lettuce cultivar Uberlândia 10,000, which contains 10,200 UI of vitamin A per 100 grams of fresh leaves. This study compares the genetic diversity between Uberlândia 10,000 and its parental, evaluating selection efficiency through

  9. Molecular mapping of the Pinus monticola Cr2 gene using AFLP and SCAR markers

    Directory of Open Access Journals (Sweden)

    A.K.M. Ekramoddoullah

    2013-12-01

    Full Text Available White pine blister rust (WPBR, caused by Cronartium ribicola, is a devastating disease in five-needle pines. Genetic resistance is an important component of integrated strategies to control WPBR. The major resistance gene Cr2, discovered by Kinloch etal.(1999, is also effective against British Columbia (BC isolates of WPBR (Hunt et al. 2004. Pyramiding Cr2 gene with other resistancegenes is being pursued as a strategy in BC white pine breeding. To facilitate this strategy, we have recently identified a few RAPD markerslinked to Cr2 at one side (Liu et al. 2006. The objective of the present study was to identify amplified fragment length polymorphism(AFLP markers linked to both sides of Cr2 for its more precise apping. Use of the AFLP technique combined with bulked segregant analysis (BSA and haploid segregation analysis allowed the identification of five AFLP markers. Of these five AFLP markers in the Cr2 linkage, markers EacccMccgat-365, EactgMcccac- 290, and EacagEacag-750 werelinked in coupling and EacagMcccag-160r and EacccMccgat-180r in repulsion. Following cloning and sequencing of the AFLP andRAPD markers, specific PCR primers were designed and used in the amplification of sequence characterized amplified region(SCAR markers at both sides of Cr2. EacccMccgat- 365 and RAPD marker U570-843 reported previously were converted into SCARmarkers. These two SCARs segregated in a 1:1 (presence:absence ratio and the scoring cosegregated with their respective AFLP orRAPD marker. The SCAR marker EacccMccgat- 365-scar was positioned at 3.1 Kosambi cM from one side of Cr2 and U570-843-scarlocalized at 1.4 Kosambi cM from other side. Both SCAR markers can be useful in breeding programs with marker-assisted selection procedureto screen for resistance. This study represents the first report of the development of PCR-based sequence-specific markers linkedto blister rust resistance in five-needle pines. These findings may

  10. Global transcription profiling reveals comprehensive insights into hypoxic response in Arabidopsis.

    Science.gov (United States)

    Liu, Fenglong; Vantoai, Tara; Moy, Linda P; Bock, Geoffrey; Linford, Lara D; Quackenbush, John

    2005-03-01

    Plants have evolved adaptation mechanisms to sense oxygen deficiency in their environments and make coordinated physiological and structural adjustments to enhance their hypoxic tolerance. To gain insight into how plants respond to low-oxygen stress, gene expression profiling using whole-genome DNA amplicon microarrays was carried out at seven time points over 24 h, in wild-type and transgenic P(SAG12):ipt Arabidopsis (Arabidopsis thaliana) plants under normoxic and hypoxic conditions. Transcript levels of genes involved in glycolysis and fermentation pathways, ethylene synthesis and perception, calcium signaling, nitrogen utilization, trehalose metabolism, and alkaloid synthesis were significantly altered in response to oxygen limitation. Analysis based on gene ontology assignments suggested a significant down-regulation of genes whose functions are associated with cell walls, nucleosome structures, water channels, and ion transporters and a significant up-regulation of genes involved in transcriptional regulation, protein kinase activity, and auxin responses under conditions of oxygen shortage. Promoter analysis on a cluster of up-regulated genes revealed a significant overrepresentation of the AtMYB2-binding motif (GT motif), a sugar response element-like motif, and a G-box-related sequence, and also identified several putative anaerobic response elements. Finally, quantitative real-time polymerase chain reactions using 29 selected genes independently verified the microarray results. This study represents one of the most comprehensive analyses conducted to date investigating hypoxia-responsive transcriptional networks in plants.

  11. AFLP polymorphisms allow high resolution genetic analysis of American Tegumentary Leishmaniasis agents circulating in Panama and other members of the Leishmania genus.

    Directory of Open Access Journals (Sweden)

    Carlos M Restrepo

    Full Text Available American Tegumentary Leishmaniasis is caused by parasites of the genus Leishmania, and causes significant health problems throughout the Americas. In Panama, Leishmania parasites are endemic, causing thousands of new cases every year, mostly of the cutaneous form. In the last years, the burden of the disease has increased, coincident with increasing disturbances in its natural sylvatic environments. The study of genetic variation in parasites is important for a better understanding of the biology, population genetics, and ultimately the evolution and epidemiology of these organisms. Very few attempts have been made to characterize genetic polymorphisms of parasites isolated from Panamanian patients of cutaneous leishmaniasis. Here we present data on the genetic variability of local isolates of Leishmania, as well as specimens from several other species, by means of Amplified Fragment Length Polymorphisms (AFLP, a technique seldom used to study genetic makeup of parasites. We demonstrate that this technique allows detection of very high levels of genetic variability in local isolates of Leishmania panamensis in a highly reproducible manner. The analysis of AFLP fingerprints generated by unique selective primer combinations in L. panamensis suggests a predominant clonal mode of reproduction. Using fluorescently labeled primers, many taxon-specific fragments were identified which may show potential as species diagnostic fragments. The AFLP permitted a high resolution genetic analysis of the Leishmania genus, clearly separating certain groups among L. panamensis specimens and highly related species such as L. panamensis and L. guyanensis. The phylogenetic networks reconstructed from our AFLP data are congruent with established taxonomy for the genus Leishmania, even when using single selective primer combinations. Results of this study demonstrate that AFLP polymorphisms can be informative for genetic characterization in Leishmania parasites, at

  12. A genetic linkage map of willow (Salix viminalis) based on AFLP and microsatelite markers

    NARCIS (Netherlands)

    Hanley, S.; Barker, J.H.A.; Ooijen, van J.W.; Aldam, C.; Harris, S.L.; Ahman, I.; Larsson, S.; Karp, A.

    2002-01-01

    The genus Salix (willow) contains a number of species of great value as biomass crops. Efforts to breed varieties with improved biomass yields and resistances to pests and diseases are limited by the lack of knowledge on the genetic basis of the traits. We have used AFLP and microsatellite markers

  13. Assessment of genetic stability in micropropagules of Jatropha curcas genotypes by RAPD and AFLP analysis

    KAUST Repository

    Sharma, Sweta K.

    2011-07-01

    Jatropha curcas (Euphorbiaceae), a drought resistant non edible oil yielding plant, has acquired significant importance as an alternative renewable energy source. Low and inconsistent yields found in field plantations prompted for identification of high yielding clones and their large scale multiplication by vegetative propagation to obtain true to type plants. In the current investigation plantlets of J. curcas generated by axillary bud proliferation (micropropagation) using nodal segments obtained from selected high yielding genotypes were assessed for their genetic stability using Randomly Amplified Polymorphic DNA (RAPD) and Amplified Fragment Length Polymorphism (AFLP) analyses. For RAPD analysis, 21 out of 52 arbitrary decamer primers screened gave clear reproducible bands. In the micropropagated plantlets obtained from the 2nd sub-culture, 4 out of a total of 177 bands scored were polymorphic, but in the 8th and 16th sub-cultures (culture cycle) no polymorphisms were detected. AFLP analysis revealed 0.63%, 0% and 0% polymorphism in the 2nd, 8th and 16th generations, respectively. When different genotypes, viz. IC 56557 16, IC 56557 34 and IC 56557 13, were assessed by AFLP, 0%, 0.31% and 0.47% polymorphisms were found, respectively, indicating a difference in genetic stability among the different genotypes. To the best of our knowledge this is the first report on assessment of genetic stability of micropropagated plantlets in J. curcas and suggests that axillary shoot proliferation can safely be used as an efficient micropropagation method for mass propagation of J. curcas. © 2011 Elsevier B.V.

  14. JASPAR 2010: the greatly expanded open-access database of transcription factor binding profiles

    Science.gov (United States)

    Portales-Casamar, Elodie; Thongjuea, Supat; Kwon, Andrew T.; Arenillas, David; Zhao, Xiaobei; Valen, Eivind; Yusuf, Dimas; Lenhard, Boris; Wasserman, Wyeth W.; Sandelin, Albin

    2010-01-01

    JASPAR (http://jaspar.genereg.net) is the leading open-access database of matrix profiles describing the DNA-binding patterns of transcription factors (TFs) and other proteins interacting with DNA in a sequence-specific manner. Its fourth major release is the largest expansion of the core database to date: the database now holds 457 non-redundant, curated profiles. The new entries include the first batch of profiles derived from ChIP-seq and ChIP-chip whole-genome binding experiments, and 177 yeast TF binding profiles. The introduction of a yeast division brings the convenience of JASPAR to an active research community. As binding models are refined by newer data, the JASPAR database now uses versioning of matrices: in this release, 12% of the older models were updated to improved versions. Classification of TF families has been improved by adopting a new DNA-binding domain nomenclature. A curated catalog of mammalian TFs is provided, extending the use of the JASPAR profiles to additional TFs belonging to the same structural family. The changes in the database set the system ready for more rapid acquisition of new high-throughput data sources. Additionally, three new special collections provide matrix profile data produced by recent alternative high-throughput approaches. PMID:19906716

  15. Dynamic Metabolite Profiling in an Archaeon Connects Transcriptional Regulation to Metabolic Consequences.

    Science.gov (United States)

    Todor, Horia; Gooding, Jessica; Ilkayeva, Olga R; Schmid, Amy K

    2015-01-01

    Previous work demonstrated that the TrmB transcription factor is responsible for regulating the expression of many enzyme-coding genes in the hypersaline-adapted archaeon Halobacterium salinarum via a direct interaction with a cis-regulatory sequence in their promoters. This interaction is abolished in the presence of glucose. Although much is known about the effects of TrmB at the transcriptional level, it remains unclear whether and to what extent changes in mRNA levels directly affect metabolite levels. In order to address this question, here we performed a high-resolution metabolite profiling time course during a change in nutrients using a combination of targeted and untargeted methods in wild-type and ΔtrmB strain backgrounds. We found that TrmB-mediated transcriptional changes resulted in widespread and significant changes to metabolite levels across the metabolic network. Additionally, the pattern of growth complementation using various purines suggests that the mis-regulation of gluconeogenesis in the ΔtrmB mutant strain in the absence of glucose results in low phosphoribosylpyrophosphate (PRPP) levels. We confirmed these low PRPP levels using a quantitative mass spectrometric technique and found that they are associated with a metabolic block in de novo purine synthesis, which is partially responsible for the growth defect of the ΔtrmB mutant strain in the absence of glucose. In conclusion, we show how transcriptional regulation of metabolism affects metabolite levels and ultimately, phenotypes.

  16. Dynamic Metabolite Profiling in an Archaeon Connects Transcriptional Regulation to Metabolic Consequences.

    Directory of Open Access Journals (Sweden)

    Horia Todor

    Full Text Available Previous work demonstrated that the TrmB transcription factor is responsible for regulating the expression of many enzyme-coding genes in the hypersaline-adapted archaeon Halobacterium salinarum via a direct interaction with a cis-regulatory sequence in their promoters. This interaction is abolished in the presence of glucose. Although much is known about the effects of TrmB at the transcriptional level, it remains unclear whether and to what extent changes in mRNA levels directly affect metabolite levels. In order to address this question, here we performed a high-resolution metabolite profiling time course during a change in nutrients using a combination of targeted and untargeted methods in wild-type and ΔtrmB strain backgrounds. We found that TrmB-mediated transcriptional changes resulted in widespread and significant changes to metabolite levels across the metabolic network. Additionally, the pattern of growth complementation using various purines suggests that the mis-regulation of gluconeogenesis in the ΔtrmB mutant strain in the absence of glucose results in low phosphoribosylpyrophosphate (PRPP levels. We confirmed these low PRPP levels using a quantitative mass spectrometric technique and found that they are associated with a metabolic block in de novo purine synthesis, which is partially responsible for the growth defect of the ΔtrmB mutant strain in the absence of glucose. In conclusion, we show how transcriptional regulation of metabolism affects metabolite levels and ultimately, phenotypes.

  17. Transcriptional Profiling of Nitrogen Fixation in Azotobacter vinelandii▿†

    Science.gov (United States)

    Hamilton, Trinity L.; Ludwig, Marcus; Dixon, Ray; Boyd, Eric S.; Dos Santos, Patricia C.; Setubal, João C.; Bryant, Donald A.; Dean, Dennis R.; Peters, John W.

    2011-01-01

    Most biological nitrogen (N2) fixation results from the activity of a molybdenum-dependent nitrogenase, a complex iron-sulfur enzyme found associated with a diversity of bacteria and some methanogenic archaea. Azotobacter vinelandii, an obligate aerobe, fixes nitrogen via the oxygen-sensitive Mo nitrogenase but is also able to fix nitrogen through the activities of genetically distinct alternative forms of nitrogenase designated the Vnf and Anf systems when Mo is limiting. The Vnf system appears to replace Mo with V, and the Anf system is thought to contain Fe as the only transition metal within the respective active site metallocofactors. Prior genetic analyses suggest that a number of nif-encoded components are involved in the Vnf and Anf systems. Genome-wide transcription profiling of A. vinelandiicultured under nitrogen-fixing conditions under various metal amendments (e.g., Mo or V) revealed the discrete complement of genes associated with each nitrogenase system and the extent of cross talk between the systems. In addition, changes in transcript levels of genes not directly involved in N2fixation provided insight into the integration of central metabolic processes and the oxygen-sensitive process of N2fixation in this obligate aerobe. The results underscored significant differences between Mo-dependent and Mo-independent diazotrophic growth that highlight the significant advantages of diazotrophic growth in the presence of Mo. PMID:21724999

  18. Kinome-wide transcriptional profiling of uveal melanoma reveals new vulnerabilities to targeted therapeutics.

    Science.gov (United States)

    Bailey, Fiona P; Clarke, Kim; Kalirai, Helen; Kenyani, Jenna; Shahidipour, Haleh; Falciani, Francesco; Coulson, Judy M; Sacco, Joseph J; Coupland, Sarah E; Eyers, Patrick A

    2018-03-01

    Metastatic uveal melanoma (UM) is invariably fatal, usually within a year of diagnosis. There are currently no effective therapies, and clinical studies employing kinase inhibitors have so far demonstrated limited success. This is despite common activating mutations in GNAQ/11 genes, which trigger signalling pathways that might predispose tumours to a variety of targeted drugs. In this study, we have profiled kinome expression network dynamics in various human ocular melanomas. We uncovered a shared transcriptional profile in human primary UM samples and across a variety of experimental cell-based models. The poor overall response of UM cells to FDA-approved kinase inhibitors contrasted with much higher sensitivity to the bromodomain inhibitor JQ1, a broad transcriptional repressor. Mechanistically, we identified a repressed FOXM1-dependent kinase subnetwork in JQ1-exposed cells that contained multiple cell cycle-regulated protein kinases. Consistently, we demonstrated vulnerability of UM cells to inhibitors of mitotic protein kinases within this network, including the investigational PLK1 inhibitor BI6727. We conclude that analysis of kinome-wide signalling network dynamics has the potential to reveal actionable drug targets and inhibitors of potential therapeutic benefit for UM patients. © 2017 The Authors. Pigment Cell & Melanoma Research Published by John Wiley & Sons.

  19. Differential Gene Expression in Response to Papaya ringspot virus Infection in Cucumis metuliferus Using cDNA- Amplified Fragment Length Polymorphism Analysis

    Science.gov (United States)

    Lin, Chia-Wei; Chung, Chien-Hung; Chen, Jo-Chu; Yeh, Shy-Dong; Ku, Hsin-Mei

    2013-01-01

    A better understanding of virus resistance mechanisms can offer more effective strategies to control virus diseases. Papaya ringspot virus (PRSV), Potyviridae, causes severe economical losses in papaya and cucurbit production worldwide. However, no resistance gene against PRSV has been identified to date. This study aimed to identify candidate PRSV resistance genes using cDNA-AFLP analysis and offered an open architecture and transcriptomic method to study those transcripts differentially expressed after virus inoculation. The whole genome expression profile of Cucumis metuliferus inoculated with PRSV was generated using cDNA-amplified fragment length polymorphism (cDNA-AFLP) method. Transcript derived fragments (TDFs) identified from the resistant line PI 292190 may represent genes involved in the mechanism of PRSV resistance. C. metuliferus susceptible Acc. 2459 and resistant PI 292190 lines were inoculated with PRSV and subsequently total RNA was isolated for cDNA-AFLP analysis. More than 400 TDFs were expressed specifically in resistant line PI 292190. A total of 116 TDFs were cloned and their expression patterns and putative functions in the PRSV-resistance mechanism were further characterized. Subsequently, 28 out of 116 candidates which showed two-fold higher expression levels in resistant PI 292190 than those in susceptible Acc. 2459 after virus inoculation were selected from the reverse northern blot and bioinformatic analysis. Furthermore, the time point expression profiles of these candidates by northern blot analysis suggested that they might play roles in resistance against PRSV and could potentially provide valuable information for controlling PRSV disease in the future. PMID:23874746

  20. Long-term boron-deficiency-responsive genes revealed by cDNA-AFLP differ between Citrus sinensis roots and leaves

    Science.gov (United States)

    Lu, Yi-Bin; Qi, Yi-Ping; Yang, Lin-Tong; Lee, Jinwook; Guo, Peng; Ye, Xin; Jia, Meng-Yang; Li, Mei-Li; Chen, Li-Song

    2015-01-01

    Seedlings of Citrus sinensis (L.) Osbeck were supplied with boron (B)-deficient (without H3BO3) or -sufficient (10 μM H3BO3) nutrient solution for 15 weeks. We identified 54 (38) and 38 (45) up (down)-regulated cDNA-AFLP bands (transcript-derived fragments, TDFs) from B-deficient leaves and roots, respectively. These TDFs were mainly involved in protein and amino acid metabolism, carbohydrate and energy metabolism, nucleic acid metabolism, cell transport, signal transduction, and stress response and defense. The majority of the differentially expressed TDFs were isolated only from B-deficient roots or leaves, only seven TDFs with the same GenBank ID were isolated from the both. In addition, ATP biosynthesis-related TDFs were induced in B-deficient roots, but unaffected in B-deficient leaves. Most of the differentially expressed TDFs associated with signal transduction and stress defense were down-regulated in roots, but up-regulated in leaves. TDFs related to protein ubiquitination and proteolysis were induced in B-deficient leaves except for one TDF, while only two down-regulated TDFs associated with ubiquitination were detected in B-deficient roots. Thus, many differences existed in long-term B-deficiency-responsive genes between roots and leaves. In conclusion, our findings provided a global picture of the differential responses occurring in B-deficient roots and leaves and revealed new insight into the different adaptive mechanisms of C. sinensis roots and leaves to B-deficiency at the transcriptional level. PMID:26284101

  1. Caracterización molecular de introducciones colombianas de caña flecha utilizando la técnica AFLP Molecular characterization of colombian wild cane accesions with AFLP

    Directory of Open Access Journals (Sweden)

    Hernando Rivera Jiménez

    2008-12-01

    Full Text Available La fibra de la caña flecha Gynerium sagittatum (Aubl. se utiliza como materia prima para fabricar el "sombrero vueltiao", sombrero típico de la costa caribeña colombiana. Se realizó la caracterización molecular con AFLP para estimar variabilidad genética teniendo en cuenta criterios geográficos y morfológicos de 25 introducciones colombianas del banco de germoplasma de la Universidad de Córdoba. El análisis de correspondencia múltiple discriminó las introducciones en cuatro grupos, donde se identificaron características de importancia artesanal (comercial y atributos agronómicos. Se observó escasa correlación entre distancia geográfica y diferenciación genética, lo cual indicó flujos antrópicos por la reproducción asexual del material.Wild cane (Gynerium sagittatum Aubl. fiber is used as raw material for to make "hat vueltiao". A molecular characterization using AFLP was carriet out to estimate genetic variability of 25 accessions planted at the University of Cordoba, associated with geographical and morphological traits. Multiple discrimination correspondence analyses of introductions separated four groups, based on craft handling and agronomic attributes desirable. There was little correlation between geographic distance and genetic differentiation, indicating an anthropic flows by asexual reproduction.

  2. Identification of aluminum-regulated genes by cDNA-AFLP analysis of roots in two contrasting genotypes of highbush blueberry (Vaccinium corymbosum L.).

    Science.gov (United States)

    Inostroza-Blancheteau, Claudio; Aquea, Felipe; Reyes-Díaz, Marjorie; Alberdi, Miren; Arce-Johnson, Patricio

    2011-09-01

    To investigate the molecular mechanisms of Al(3+)-stress in blueberry, a cDNA-amplified fragment length polymorphism (cDNA-AFLP) analysis was employed to identify Al-regulated genes in roots of contrasting genotypes of highbush blueberry (Brigitta, Al(3+)-resistant and Bluegold, Al(3+)-sensitive). Plants grown in hydroponic culture were treated with 0 and 100 μM Al(3+) and collected at different times over 48 h. Seventy transcript-derived fragments (TDFs) were identified as being Al(3+) responsive, 31 of which showed significant homology to genes with known or putative functions. Twelve TDFs were homologous to uncharacterized genes and 27 did not have significant matches. The expression pattern of several of the genes with known functions in other species was confirmed by quantitative relative real-time RT-PCR. Twelve genes of known or putative function were related to cellular metabolism, nine associated to stress responses and other transcription and transport facilitation processes. Genes involved in signal transduction, photosynthetic and energy processes were also identified, suggesting that a multitude of processes are implicated in the Al(3+)-stress response as reported previously for other species. The Al(3+)-stress response genes identified in this study could be involved in Al(3+)-resistance in woody plants.

  3. Gene expression analysis by cDNA-AFLP highlights a set of new signaling networks and translational control during seed dormancy breaking in Nicotiana plumbaginifolia.

    Science.gov (United States)

    Bove, Jérôme; Lucas, Philippe; Godin, Béatrice; Ogé, Laurent; Jullien, Marc; Grappin, Philippe

    2005-03-01

    Seed dormancy in Nicotiana plumbaginifolia is characterized by an abscisic acid accumulation linked to a pronounced germination delay. Dormancy can be released by 1 year after-ripening treatment. Using a cDNA-amplified fragment length polymorphism (cDNA-AFLP) approach we compared the gene expression patterns of dormant and after-ripened seeds, air-dry or during one day imbibition and analyzed 15,000 cDNA fragments. Among them 1020 were found to be differentially regulated by dormancy. Of 412 sequenced cDNA fragments, 83 were assigned to a known function by search similarities to public databases. The functional categories of the identified dormancy maintenance and breaking responsive genes, give evidence that after-ripening turns in the air-dry seed to a new developmental program that modulates, at the RNA level, components of translational control, signaling networks, transcriptional control and regulated proteolysis.

  4. Transcriptional profiling at whole population and single cell levels reveals somatosensory neuron molecular diversity

    Science.gov (United States)

    Chiu, Isaac M; Barrett, Lee B; Williams, Erika K; Strochlic, David E; Lee, Seungkyu; Weyer, Andy D; Lou, Shan; Bryman, Gregory S; Roberson, David P; Ghasemlou, Nader; Piccoli, Cara; Ahat, Ezgi; Wang, Victor; Cobos, Enrique J; Stucky, Cheryl L; Ma, Qiufu; Liberles, Stephen D; Woolf, Clifford J

    2014-01-01

    The somatosensory nervous system is critical for the organism's ability to respond to mechanical, thermal, and nociceptive stimuli. Somatosensory neurons are functionally and anatomically diverse but their molecular profiles are not well-defined. Here, we used transcriptional profiling to analyze the detailed molecular signatures of dorsal root ganglion (DRG) sensory neurons. We used two mouse reporter lines and surface IB4 labeling to purify three major non-overlapping classes of neurons: 1) IB4+SNS-Cre/TdTomato+, 2) IB4−SNS-Cre/TdTomato+, and 3) Parv-Cre/TdTomato+ cells, encompassing the majority of nociceptive, pruriceptive, and proprioceptive neurons. These neurons displayed distinct expression patterns of ion channels, transcription factors, and GPCRs. Highly parallel qRT-PCR analysis of 334 single neurons selected by membership of the three populations demonstrated further diversity, with unbiased clustering analysis identifying six distinct subgroups. These data significantly increase our knowledge of the molecular identities of known DRG populations and uncover potentially novel subsets, revealing the complexity and diversity of those neurons underlying somatosensation. DOI: http://dx.doi.org/10.7554/eLife.04660.001 PMID:25525749

  5. Genetic diversity of wild and cultivated Rubus species in Colombia using AFLP and SSR markers

    Directory of Open Access Journals (Sweden)

    Sandra Bibiana Aguilar

    2007-01-01

    Full Text Available The Andean blackberry belongs to the genus Rubus, the largest of the Rosaceae family and one of the mostdiverse of the plant kingdom. In Colombia Rubus glaucus Benth, known as the Andean raspberry or blackberry, is one of thenine edible of the genus out of forty-four reported species. In this study wild and cultivated genotypes, collected in the CentralAndes of Colombia were analyzed by AFLP and SSR markers. Sexual reproduction seems to play an important role inmaintaining the genetic variability in R. glaucus, and the viability of using the SSR of Rubus alceifolius to characterizeColombian Rubus species was clearly demonstrated. All species evaluated produced very specific banding patterns,differentiating them from the others. Both AFLP and SSR produced bands exclusive to each of the following species: R.robustus, R. urticifolius, R. glaucus, and R. rosifolius. The SSR markers differentiated diploid and tetraploid genotypes of R.glaucus.

  6. JASPAR 2014: an extensively expanded and updated open-access database of transcription factor binding profiles.

    Science.gov (United States)

    Mathelier, Anthony; Zhao, Xiaobei; Zhang, Allen W; Parcy, François; Worsley-Hunt, Rebecca; Arenillas, David J; Buchman, Sorana; Chen, Chih-yu; Chou, Alice; Ienasescu, Hans; Lim, Jonathan; Shyr, Casper; Tan, Ge; Zhou, Michelle; Lenhard, Boris; Sandelin, Albin; Wasserman, Wyeth W

    2014-01-01

    JASPAR (http://jaspar.genereg.net) is the largest open-access database of matrix-based nucleotide profiles describing the binding preference of transcription factors from multiple species. The fifth major release greatly expands the heart of JASPAR-the JASPAR CORE subcollection, which contains curated, non-redundant profiles-with 135 new curated profiles (74 in vertebrates, 8 in Drosophila melanogaster, 10 in Caenorhabditis elegans and 43 in Arabidopsis thaliana; a 30% increase in total) and 43 older updated profiles (36 in vertebrates, 3 in D. melanogaster and 4 in A. thaliana; a 9% update in total). The new and updated profiles are mainly derived from published chromatin immunoprecipitation-seq experimental datasets. In addition, the web interface has been enhanced with advanced capabilities in browsing, searching and subsetting. Finally, the new JASPAR release is accompanied by a new BioPython package, a new R tool package and a new R/Bioconductor data package to facilitate access for both manual and automated methods.

  7. Coordinated multitissue transcriptional and plasma metabonomic profiles following acute caloric restriction in mice.

    Science.gov (United States)

    Selman, Colin; Kerrison, Nicola D; Cooray, Anisha; Piper, Matthew D W; Lingard, Steven J; Barton, Richard H; Schuster, Eugene F; Blanc, Eric; Gems, David; Nicholson, Jeremy K; Thornton, Janet M; Partridge, Linda; Withers, Dominic J

    2006-11-27

    Caloric restriction (CR) increases healthy life span in a range of organisms. The underlying mechanisms are not understood but appear to include changes in gene expression, protein function, and metabolism. Recent studies demonstrate that acute CR alters mortality rates within days in flies. Multitissue transcriptional changes and concomitant metabolic responses to acute CR have not been described. We generated whole genome RNA transcript profiles in liver, skeletal muscle, colon, and hypothalamus and simultaneously measured plasma metabolites using proton nuclear magnetic resonance in mice subjected to acute CR. Liver and muscle showed increased gene expressions associated with fatty acid metabolism and a reduction in those involved in hepatic lipid biosynthesis. Glucogenic amino acids increased in plasma, and gene expression for hepatic gluconeogenesis was enhanced. Increased expression of genes for hormone-mediated signaling and decreased expression of genes involved in protein binding and development occurred in hypothalamus. Cell proliferation genes were decreased and cellular transport genes increased in colon. Acute CR captured many, but not all, hepatic transcriptional changes of long-term CR. Our findings demonstrate a clear transcriptional response across multiple tissues during acute CR, with congruent plasma metabolite changes. Liver and muscle switched gene expression away from energetically expensive biosynthetic processes toward energy conservation and utilization processes, including fatty acid metabolism and gluconeogenesis. Both muscle and colon switched gene expression away from cellular proliferation. Mice undergoing acute CR rapidly adopt many transcriptional and metabolic changes of long-term CR, suggesting that the beneficial effects of CR may require only a short-term reduction in caloric intake.

  8. Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain.

    Science.gov (United States)

    Krienen, Fenna M; Yeo, B T Thomas; Ge, Tian; Buckner, Randy L; Sherwood, Chet C

    2016-01-26

    The human brain is patterned with disproportionately large, distributed cerebral networks that connect multiple association zones in the frontal, temporal, and parietal lobes. The expansion of the cortical surface, along with the emergence of long-range connectivity networks, may be reflected in changes to the underlying molecular architecture. Using the Allen Institute's human brain transcriptional atlas, we demonstrate that genes particularly enriched in supragranular layers of the human cerebral cortex relative to mouse distinguish major cortical classes. The topography of transcriptional expression reflects large-scale brain network organization consistent with estimates from functional connectivity MRI and anatomical tracing in nonhuman primates. Microarray expression data for genes preferentially expressed in human upper layers (II/III), but enriched only in lower layers (V/VI) of mouse, were cross-correlated to identify molecular profiles across the cerebral cortex of postmortem human brains (n = 6). Unimodal sensory and motor zones have similar molecular profiles, despite being distributed across the cortical mantle. Sensory/motor profiles were anticorrelated with paralimbic and certain distributed association network profiles. Tests of alternative gene sets did not consistently distinguish sensory and motor regions from paralimbic and association regions: (i) genes enriched in supragranular layers in both humans and mice, (ii) genes cortically enriched in humans relative to nonhuman primates, (iii) genes related to connectivity in rodents, (iv) genes associated with human and mouse connectivity, and (v) 1,454 gene sets curated from known gene ontologies. Molecular innovations of upper cortical layers may be an important component in the evolution of long-range corticocortical projections.

  9. Transcriptional profiling of Actinobacillus pleuropneumoniae during the acute phase of a natural infection in pigs

    Directory of Open Access Journals (Sweden)

    Harel Josée

    2010-02-01

    Full Text Available Abstract Background Actinobacillus pleuropneumoniae is the etiological agent of porcine pleuropneumonia, a respiratory disease which causes great economic losses worldwide. Many virulence factors are involved in the pathogenesis, namely capsular polysaccharides, RTX toxins, LPS and many iron acquisition systems. In order to identify genes that are expressed in vivo during a natural infection, we undertook transcript profiling experiments with an A. pleuropneumoniae DNA microarray, after recovery of bacterial mRNAs from serotype 5b-infected porcine lungs. AppChip2 contains 2033 PCR amplicons based on the genomic sequence of App serotype 5b strain L20, representing more than 95% of ORFs greater than 160 bp in length. Results Transcriptional profiling of A. pleuropneumoniae recovered from the lung of a pig suffering from a natural infection or following growth of the bacterial isolate in BHI medium was performed. An RNA extraction protocol combining beadbeating and hot-acid-phenol was developed in order to maximize bacterial mRNA yields and quality following total RNA extraction from lung lesions. Nearly all A. pleuropneumoniae transcripts could be detected on our microarrays, and 150 genes were deemed differentially expressed in vivo during the acute phase of the infection. Our results indicate that, for example, gene apxIVA from an operon coding for RTX toxin ApxIV is highly up-regulated in vivo, and that two genes from the operon coding for type IV fimbriae (APL_0878 and APL_0879 were also up-regulated. These transcriptional profiling data, combined with previous comparative genomic hybridizations performed by our group, revealed that 66 out of the 72 up-regulated genes are conserved amongst all serotypes and that 3 of them code for products that are predicted outer membrane proteins (genes irp and APL_0959, predicted to code for a TonB-dependent receptor and a filamentous hemagglutinin/adhesin respectively or lipoproteins (gene APL_0920. Only 4

  10. The effect of antimicrobial photodynamic therapy on the expression of novel methicillin resistance markers determined using cDNA-AFLP approach in Staphylococcus aureus.

    Science.gov (United States)

    Hoorijani, Mohammad Neshvan; Rostami, Hosein; Pourhajibagher, Maryam; Chiniforush, Nasim; Heidari, Mansour; Pourakbari, Babak; Kazemian, Hossein; Davari, Kambiz; Amini, Vahid; Raoofian, Reza; Bahador, Abbas

    2017-09-01

    Widespread methicillin resistant Staphylococcus aureus (MRSA) and absence of effective antimicrobial agents has led to limited therapeutic options for treating MRSA infection. We aimed to evaluate the effect of antimicrobial photodynamic therapy (aPDT) on the expression of novel identified methicillin resistance markers (NIMRMs) in S. aureus using complementary DNA-Amplified Fragment Length Polymorphism (cDNA-AFLP) approaches to address the therapeutic alternatives for MRSA infections. We used cDNA-AFLP to compare MRSA and methicillin susceptible S. aureus (MSSA) for identification of target genes implicated in methicillin resistance. To determine the sub-lethal aPDT (sPDT), MRSA and MSSA clinical isolates photosensitized with toluidine blue O (TBO), and then were irradiated with diode laser. After sPDT, the colony forming units/mL was quantified. Antimicrobial susceptibility against methicillin was assessed for cell-surviving aPDT. Effects of sPDT on the expression of NIMRMs were evaluated by real-time quantitative reverse transcription PCR. According to our results, serine hydrolase family protein (Shfp) encoding gene and a gene encoding a conserved hypothetical protein (Chp) were implicated in methicillin resistance in MRSA. sPDT reduced the minimum inhibitory concentrations of methicillin by 3-fold in MRSA. sPDT could lead to about 10- and 6.2- fold suppression of expression of the Chp and Shfp encoding genes, respectively. sPDT would lead to reduction in resistance to methicillin of MRSA in surviving cells by suppressing the expression of the Shfp and Chp encoding genes associated with methicillin resistance. This may have potential implications of aPDT for the treatment of MRSA infections. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Transcript profiling of Elf5+/- mammary glands during pregnancy identifies novel targets of Elf5.

    Directory of Open Access Journals (Sweden)

    Renee L Rogers

    Full Text Available BACKGROUND: Elf5, an epithelial specific Ets transcription factor, plays a crucial role in the pregnancy-associated development of the mouse mammary gland. Elf5(-/- embryos do not survive, however the Elf5(+/- mammary gland displays a severe pregnancy-associated developmental defect. While it is known that Elf5 is crucial for correct mammary development and lactation, the molecular mechanisms employed by Elf5 to exert its effects on the mammary gland are largely unknown. PRINCIPAL FINDINGS: Transcript profiling was used to investigate the transcriptional changes that occur as a result of Elf5 haploinsufficiency in the Elf5(+/- mouse model. We show that the development of the mouse Elf5(+/- mammary gland is delayed at a transcriptional and morphological level, due to the delayed increase in Elf5 protein in these glands. We also identify a number of potential Elf5 target genes, including Mucin 4, whose expression, is directly regulated by the binding of Elf5 to an Ets binding site within its promoter. CONCLUSION: We identify novel transcriptional targets of Elf5 and show that Muc4 is a direct target of Elf5, further elucidating the mechanisms through which Elf5 regulates proliferation and differentiation in the mammary gland.

  12. Comparative transcriptional profiling of human Merkel cells and Merkel cell carcinoma.

    Science.gov (United States)

    Mouchet, Nicolas; Coquart, Nolwenn; Lebonvallet, Nicolas; Le Gall-Ianotto, Christelle; Mogha, Ariane; Fautrel, Alain; Boulais, Nicholas; Dréno, Brigitte; Martin, Ludovic; Hu, Weiguo; Galibert, Marie-Dominique; Misery, Laurent

    2014-12-01

    Merkel cell carcinoma is believed to be derived from Merkel cells after infection by Merkel cell polyomavirus (MCPyV) and other poorly understood events. Transcriptional profiling using cDNA microarrays was performed on cells from MCPy-negative and MCPy-positive Merkel cell carcinomas and isolated normal Merkel cells. This microarray revealed numerous significantly upregulated genes and some downregulated genes. The extensive list of genes that were identified in these experiments provides a large body of potentially valuable information of Merkel cell carcinoma carcinogenesis and could represent a source of potential targets for cancer therapy. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Transcriptional profiling of protein expression related genes of Pichia pastoris under simulated microgravity.

    Directory of Open Access Journals (Sweden)

    Feng Qi

    Full Text Available The physiological responses and transcription profiling of Pichia pastoris GS115 to simulated microgravity (SMG were substantially changed compared with normal gravity (NG control. We previously reported that the recombinant P. pastoris grew faster under SMG than NG during methanol induction phase and the efficiencies of recombinant enzyme production and secretion were enhanced under SMG, which was considered as the consequence of changed transcriptional levels of some key genes. In this work, transcriptiome profiling of P. pastoris cultured under SMG and NG conditions at exponential and stationary phases were determined using next-generation sequencing (NGS technologies. Four categories of 141 genes function as methanol utilization, protein chaperone, RNA polymerase and protein transportation or secretion classified according to Gene Ontology (GO were chosen to be analyzed on the basis of NGS results. And 80 significantly changed genes were weighted and estimated by Cluster 3.0. It was found that most genes of methanol metabolism (85% of 20 genes and protein transportation or secretion (82.2% of 45 genes were significantly up-regulated under SMG. Furthermore the quantity and fold change of up-regulated genes in exponential phase of each category were higher than those of stationary phase. The results indicate that the up-regulated genes of methanol metabolism and protein transportation or secretion mainly contribute to enhanced production and secretion of the recombinant protein under SMG.

  14. KARAKTERISTIK GENETIK Kappaphycus alvarezii SEHAT DAN TERINFEKSI PENYAKIT ICE-ICE DENGAN METODE Amplified Fragment Length Polymorphism (AFLP

    Directory of Open Access Journals (Sweden)

    Emma Suryati

    2013-03-01

    Full Text Available Infeksi penyakit ice-ice pada Kappaphycus alvarezii seringkali menyebabkan penurunan produksi yang sangat signifikan. K. alvarezii merupakan alga merah penghasil karaginan yang memiliki nilai ekonomi tinggi dan banyak dimanfaatkan dalam berbagai industri, seperti farmasi, makanan, stabilizer, dan kosmetik. Perbaikan genetik sangat diperlukan untuk meningkatkan produksi. Penelitian ini bertujuan untuk mengetahui karakteristik kemiripan genetik K. alvarezii sehat dan terinfeksi penyakit dari Balai Penelitian dan Pengembangan Budidaya Air Payau (BPPBAP, Maros dengan metode Amplified Fragment Length Polymorphism (AFLP. Pada penelitian ini juga dianalisis K. alvarezii asal Bone (BNE, Gorontalo (GRL, Tambalang (TMB, dan Kendari (KND sebagai kontrol rumput laut sehat. Metode AFLP menggunakan enzim restriksi Psti dan Mset, preamplifikasi dan amplifikasi selektif diawali dengan isolsi DNA, uji genimoc DNA, restriksi dan ligasi. Hasil yang diperoleh menunjukkan penggunaan marker AFLP dengan primer forward P11 dan primer reverse M48, M49 dan M50 terhadap K. alvarezii yang berasal dari Takalar (TKL, dan Mataram (MTR, tanpa infeksi (sehat dan terinfeksi penyakit Takalar ice (TKL+, Mataram ice (MTR+, serta K. alvarezii kontrol (BNE, (GRL, (TMB, dan (KND menghasilkan 519 fragmen dalam 122 lokus dengan ukuran 50 - ~370 pb. Kemiripan genetik K. alvarezii yang terinfeksi penyakit ice-ice lebih rendah jika dibandingkan dengan yang sehat. Kemiripan genetik K. alvarezii dari Takalar sehat (TKL dan terinfeksi ice-ice (TKL+ adalah 0,8176 dan MTR-MTR+ adalah 0,8033.

  15. Transcriptional Profiles of the Response to Ketoconazole and Amphotericin B in Trichophyton rubrum▿ †

    Science.gov (United States)

    Yu, Lu; Zhang, Wenliang; Wang, Lingling; Yang, Jian; Liu, Tao; Peng, Junping; Leng, Wenchuan; Chen, Lihong; Li, Ruoyu; Jin, Qi

    2007-01-01

    Trichophyton rubrum is a pathogenic filamentous fungus of increasing medical concern. Two antifungal agents, ketoconazole (KTC) and amphotericin B (AMB), have specific activity against dermatophytes. To identify the mechanisms of action of KTC and AMB against T. rubrum, a cDNA microarray was constructed from the expressed sequence tags of the cDNA library from different developmental stages, and transcriptional profiles of the responses to KTC and AMB were determined. T. rubrum was exposed to subinhibitory concentrations of KTC and AMB for 12 h, and microarray analysis was used to examine gene transcription. KTC exposure induced transcription of genes involved in lipid, fatty acid, and sterol metabolism, including ERG11, ERG3, ERG25, ERG6, ERG26, ERG24, ERG4, CPO, INO1, DW700960, CPR, DW696584, DW406350, and ATG15. KTC also increased transcription of the multidrug resistance gene ABC1. AMB exposure increased transcription of genes involved in lipid, fatty acid, and sterol metabolism (DW696584, EB801458, IVD, DW694010, DW688343, DW684992), membrane transport (Git1, DW706156, DW684040, DMT, DW406136, CCH1, DW710650), and stress-related responses (HSP70, HSP104, GSS, AOX, EB801455, EB801702, TDH1, UBI4) but reduced transcription of genes involved in maintenance of cell wall integrity and signal transduction pathways (FKS1, SUN4, DW699324, GAS1, DW681613, SPS1, DW703091, STE7, DW703091, DW695308) and some ribosomal proteins. This is the first report of the use of microarray analysis to determine the effects of drug action in T. rubrum. PMID:17060531

  16. Dynamic transcriptional profiling provides insights into tuberous root development in Rehmannia glutinosa

    Directory of Open Access Journals (Sweden)

    Peng eSun

    2015-06-01

    Full Text Available Rehmannia glutinosa, a herb of the Scrophulariaceae family, is widely cultivated in the Northern part of China. The tuberous root has well known medicinal properties; however, yield and quality are threatened by abiotic and biotic stresses. Understanding the molecular process of tuberous root development may help identify novel targets for its control. In the present study, we used Illumina sequencing and de novo assembly strategies to obtain a reference transcriptome that is relevant to tuberous root development. We then conducted RNA-seq quantification analysis to determine gene expression profiles of the adventitious root (AR, thickening adventitious root (TAR, and the developing tuberous root (DTR. Expression profiling identified a total of 6,974 differentially expressed unigenes during root developmental. Bioinformatics analysis and gene expression profiling revealed changes in phenylpropanoid biosynthesis, starch and sucrose metabolism, and plant hormone biosynthesis during root development. Moreover, we identified and allocated putative functions to the genes involved in tuberous root development, including genes related to major carbohydrate metabolism, hormone metabolism, and transcription regulation. The present study provides the initial description of gene expression profiles of AR, TAR, and DTR, which facilitates identification of genes of interest. Moreover, our work provides insights into the molecular mechanisms underlying tuberous root development and may assist in the design and development of improved breeding schemes for different R. glutinosa varieties through genetic manipulation.

  17. Profiling ethanol-targeted transcription factors in human carcinoma cell-derived embryoid bodies.

    Science.gov (United States)

    Mandal, Chanchal; Halder, Debasish; Chai, Jin Choul; Lee, Young Seek; Jung, Kyoung Hwa; Chai, Young Gyu

    2016-01-15

    Fetal alcohol spectrum disorder is a collective term that represents fetal abnormalities associated with maternal alcohol consumption. Prenatal alcohol exposure and related anomalies are well characterized, but the molecular mechanism behind this phenomenon is not yet understood. Few insights have been gained from genetic and epigenetic studies of fetal alcohol spectrum disorder. Our aim was to profile the important molecular regulators of ethanol-related alterations of the genome. For this purpose, we have analyzed the gene expression pattern of human carcinoma cell-derived embryoid bodies in the absence or presence of ethanol. A cDNA microarray analysis was used to profile mRNA expression in embryoid bodies at day 7 with or without ethanol treatment. A total of 493 differentially expressed genes were identified in response to 50 mM ethanol exposure. Of these, 111 genes were up-regulated, and 382 were down-regulated. Gene ontology term enrichment analysis revealed that these genes are involved in important biological processes: neurological system processes, cognition, behavior, sensory perception of smell, taste and chemical stimuli and synaptic transmission. Similarly, the enrichment of disease-related genes included relevant categories such as neurological diseases, developmental disorders, skeletal and muscular disorders, and connective tissue disorders. Furthermore, we have identified a group of 26 genes that encode transcription factors. We validated the relative gene expression of several transcription factors using quantitative real time PCR. We hope that our study substantially contributes to the understanding of the molecular mechanisms underlying the pathology of alcohol-mediated anomalies and facilitates further research. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Genetic structure of Pilosocereus gounellei (Cactaceae) as revealed by AFLP marker to guide proposals for improvement and restoration of degraded areas in Caatinga biome.

    Science.gov (United States)

    Monteiro, E R; Strioto, D K; Meirelles, A C S; Mangolin, C A; Machado, M F P S

    2015-12-15

    Amplified fragment length polymorphism (AFLP) analysis was used to evaluate DNA polymorphism in Pilosocereus gounellei with the aim of differentiating samples grown in different Brazilian semiarid regions. Seven primer pairs were used to amplify 703 AFLP markers, of which 700 (99.21%) markers were polymorphic. The percentage of polymorphic markers ranged from 95.3% for the primer combination E-AAG/M-CTT to 100% for E-ACC/M-CAT, E-ACC/M-CAA, E-AGC/M-CAG, E-ACT/M-CTA, and E-AGG/M-CTG. The largest number of informative markers (126) was detected using the primer combination E-AAC/M-CTA. Polymorphism of the amplified DNA fragments ranged from 72.55% (in sample from Piauí State) to 82.79% (in samples from Rio Grande Norte State), with an average of 75.39%. Despite the high genetic diversity of AFLP markers in xiquexique, analysis using the STRUCTURE software identified relatively homogeneous clusters of xiquexique from the same location, indicating a differentiation at the molecular level, among the plant samples from different regions of the Caatinga biome. The AFLP methodology identified genetically homogeneous and contrasting plants, as well as plants from different regions with common DNA markers. Seeds from such plants can be used for further propagation of plants for establishment of biodiversity conservation units and restoration of degraded areas of the Caatinga biome.

  19. Transcriptional profiling of cork oak phellogenic cells isolated by laser microdissection.

    Science.gov (United States)

    Teixeira, Rita Teresa; Fortes, Ana Margarida; Bai, Hua; Pinheiro, Carla; Pereira, Helena

    2018-02-01

    The phenylpropanoid pathway impacts the cork quality development. In cork of bad quality, the flavonoid route is favored, whereas in good quality, cork lignin and suberin production prevails. Cork oaks develop a thick cork tissue as a protective shield that results of the continuous activity of a secondary meristem, the cork cambium, or phellogen. Most studies applied to developmental processes do not consider the cell types from which the samples were extracted. Here, laser microdissection (LM) coupled with transcript profiling using RNA sequencing (454 pyrosequencing) was applied to phellogen cells of trees producing low- and good quality cork. Functional annotation and functional enrichment analyses showed that stress-related genes are enriched in samples extracted from trees producing good quality cork (GQC). This process is under tight transcriptional (transcription factors, kinases) regulation and also hormonal control involving ABA, ethylene, and auxins. The phellogen cells collected from trees producing bad quality cork (BQC) show a consistent up-regulation of genes belonging to the flavonoid pathway as a response to stress. They also display a different modulation of cell wall genes resulting into a thinner cork layer, i.e., less meristematic activity. Based on the analysis of the phenylpropanoid pathway regulating genes, in GQC, the synthesis of lignin and suberin is promoted, whereas in BQC, the same pathway favors the biosynthesis of free phenolic compounds. This study provided new insights of how cell-specific gene expression can determine tissue and organ morphology and physiology and identified robust candidate genes that can be used in breeding programs aiming at improving cork quality.

  20. Transcriptional and Cytokine Profiles Identify CXCL9 as a Biomarker of Disease Activity in Morphea.

    Science.gov (United States)

    O'Brien, Jack C; Rainwater, Yevgeniya Byekova; Malviya, Neeta; Cyrus, Nika; Auer-Hackenberg, Lorenz; Hynan, Linda S; Hosler, Gregory A; Jacobe, Heidi T

    2017-08-01

    IFN-related pathways have not been studied in morphea, and biomarkers are needed. We sought to characterize morphea serum cytokine imbalance and IFN-related gene expression in blood and skin to address this gap by performing a case-control study of 87 participants with morphea and 26 healthy control subjects. We used multiplexed immunoassays to determine serum cytokine concentrations, performed transcriptional profiling of whole blood and lesional morphea skin, and used double-staining immunohistochemistry to determine the cutaneous cellular source of CXCL9. We found that CXCL9 was present at increased concentrations in morphea serum (P morphea skin (fold change = 30.6, P = 0.006), and preliminary transcriptional profiling showed little evidence for IFN signature in whole blood. Double-staining immunohistochemistry showed CXCL9 co-localized with CD68 + dermal macrophages. In summary, inflammatory morphea is characterized by T helper type 1 cytokine imbalance in serum, particularly CXCL9, which is associated with disease activity. CXCL9 expression in lesional macrophages implicates the skin as the source of circulating cytokines. CXCL9 is a promising biomarker of disease activity in morphea. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Versatile Gene-Specific Sequence Tags for Arabidopsis Functional Genomics: Transcript Profiling and Reverse Genetics Applications

    Science.gov (United States)

    Hilson, Pierre; Allemeersch, Joke; Altmann, Thomas; Aubourg, Sébastien; Avon, Alexandra; Beynon, Jim; Bhalerao, Rishikesh P.; Bitton, Frédérique; Caboche, Michel; Cannoot, Bernard; Chardakov, Vasil; Cognet-Holliger, Cécile; Colot, Vincent; Crowe, Mark; Darimont, Caroline; Durinck, Steffen; Eickhoff, Holger; de Longevialle, Andéol Falcon; Farmer, Edward E.; Grant, Murray; Kuiper, Martin T.R.; Lehrach, Hans; Léon, Céline; Leyva, Antonio; Lundeberg, Joakim; Lurin, Claire; Moreau, Yves; Nietfeld, Wilfried; Paz-Ares, Javier; Reymond, Philippe; Rouzé, Pierre; Sandberg, Goran; Segura, Maria Dolores; Serizet, Carine; Tabrett, Alexandra; Taconnat, Ludivine; Thareau, Vincent; Van Hummelen, Paul; Vercruysse, Steven; Vuylsteke, Marnik; Weingartner, Magdalena; Weisbeek, Peter J.; Wirta, Valtteri; Wittink, Floyd R.A.; Zabeau, Marc; Small, Ian

    2004-01-01

    Microarray transcript profiling and RNA interference are two new technologies crucial for large-scale gene function studies in multicellular eukaryotes. Both rely on sequence-specific hybridization between complementary nucleic acid strands, inciting us to create a collection of gene-specific sequence tags (GSTs) representing at least 21,500 Arabidopsis genes and which are compatible with both approaches. The GSTs were carefully selected to ensure that each of them shared no significant similarity with any other region in the Arabidopsis genome. They were synthesized by PCR amplification from genomic DNA. Spotted microarrays fabricated from the GSTs show good dynamic range, specificity, and sensitivity in transcript profiling experiments. The GSTs have also been transferred to bacterial plasmid vectors via recombinational cloning protocols. These cloned GSTs constitute the ideal starting point for a variety of functional approaches, including reverse genetics. We have subcloned GSTs on a large scale into vectors designed for gene silencing in plant cells. We show that in planta expression of GST hairpin RNA results in the expected phenotypes in silenced Arabidopsis lines. These versatile GST resources provide novel and powerful tools for functional genomics. PMID:15489341

  2. Variabilidade genética do umbuzeiro no Semi-Árido brasileiro, por meio de marcadores AFLP Genetic variability of umbu trees in Brazilian Semi-Arid region, based on AFLP markers

    Directory of Open Access Journals (Sweden)

    Carlos Antonio Fernandes Santos

    2008-08-01

    Full Text Available O objetivo deste trabalho foi avaliar a distribuição da variabilidade genética do umbuzeiro (Spondias tuberosa, no Semi-Árido brasileiro, por meio de marcadores AFLP, para subsidiar estratégias de prospecção e conservação da espécie. Foram analisados 68 indivíduos de umbuzeiro de 15 ecorregiões, pelo dendrograma UPGMA e pela dispersão em escala multidimensional (MDS, com o coeficiente de Jaccard de 141 bandas polimórficas de AFLP. A análise da variância molecular foi realizada pela decomposição total entre e dentro das regiões ecogeográficas. O dendrograma apresentou valor cofenético de 0,96, e o gráfico MDS apresentou 0,25 para a falta de ajustamento. A variabilidade genética do umbuzeiro foi estimada em 0,3138, o que indica grande variação entre os grupos de indivíduos. Agrupamentos específicos foram observados em seis regiões ecogeográficas, enquanto nas demais regiões observaram-se pares entre alguns indivíduos, sem formação de agrupamentos específicos por local de amostragem, o que indica que a variabilidade genética do umbuzeironão está uniformemente distribuída no Semi-Árido. Sugerem-se estratégias para o estabelecimento de maior número de áreas para conservação in situ ou amostragens de menor número de indivíduos, em várias unidades de paisagens, para conservação ex situ da variabilidade genética do umbuzeiro.The objective of this work was to evaluate the genetic variability distribution of umbu tree (Spondias tuberosa, within Brazilian Semi-Arid region, based on AFLP markers, in order to suggest prospecting and preservation strategies for this species. Sixty-eight umbu trees of 15 ecogeographic regions were analyzed for 141 polymorphic AFLP bands, through the UPGMA dendrogram and the multidimensional scaling (MDS, based on Jaccard's coefficient . Analysis of molecular variance was accomplished by total decomposition among and within ecogeographic regions. The dendrogram presented co

  3. Molecular characterisation of Aspergillus flavus isolates from peanut fields in India using AFLP

    Directory of Open Access Journals (Sweden)

    Diwakar Singh

    2015-09-01

    Full Text Available Aflatoxin contamination of peanut, due to infection by Aspergillus flavus, is a major problem of rain-fed agriculture in India. In the present study, molecular characterisation of 187 Aspergillus flavus isolates, which were sampled from the peanut fields of Gujarat state in India, was performed using AFLP markers. On a pooled cluster analysis, the markers could successfully discriminate among the ‘A’, ‘B’ and ‘G’ group A. flavus isolates. PCoA analysis also showed equivalent results to the cluster analysis. Most of the isolates from one district could be clustered together, which indicated genetic similarity among the isolates. Further, a lot of genetic variability was observed within a district and within a group. The results of AMOVA test revealed that the variance within a population (84% was more than that between two populations (16%. The isolates, when tested by indirect competitive ELISA, showed about 68.5% of them to be atoxigenic. Composite analysis between the aflatoxin production and AFLP data was found to be ineffective in separating the isolate types by aflatoxigenicity. Certain unique fragments, with respect to individual isolates, were also identified that may be used for development of SCAR marker to aid in rapid and precise identification of isolates.

  4. Comparing cancer vs normal gene expression profiles identifies new disease entities and common transcriptional programs in AML patients

    DEFF Research Database (Denmark)

    Rapin, Nicolas; Bagger, Frederik Otzen; Jendholm, Johan

    2014-01-01

    Gene expression profiling has been used extensively to characterize cancer, identify novel subtypes, and improve patient stratification. However, it has largely failed to identify transcriptional programs that differ between cancer and corresponding normal cells and has not been efficient in iden......-karyotype AML, which allowed for the generation of a highly prognostic survival signature. Collectively, our CvN method holds great potential as a tool for the analysis of gene expression profiles of cancer patients....

  5. Análisis de segregantes agrupados (BSA para la detección de AFLPs ligados al gen de resistencia a PVX en Solanum commersonii

    Directory of Open Access Journals (Sweden)

    Mónica Blanco

    2005-01-01

    Full Text Available Para identificar polimorfismos asociados al gen de resistencia al PVX en la papa silvestre Solanum commersonii, se realizó un análisis de segregantes agrupados (BSA asistido con AFLPs. Estos polimorfismos están basados en la localización de un locus relacionado con la resistencia al virus X de la papa (PVX. Inicialmente, mediante un análisis de ELISA, los individuos de una progenie F2 previamente inoculados con el PVX, fueron ubicados en 2 grupos, uno con los individuos resistentes y otro con los susceptibles. Posteriormente, para el BSA el ADN de todos los individuos resistentes fue mezclado, lo mismo el ADN de todos los individuos susceptibles. Ambos grupos de ADN fueron analizados independientemente, utilizando 64 diferentes combinaciones de AFLPs. El análisis de los geles resultó en la identificación de 22 combinaciones diferentes de AFLPs que generaron bandas relacionadas exclusivamente con el carácter de resistencia al PVX.

  6. Cloning and Molecular Analysis of HlbZip1 and HlbZip2 Transcription Factors Putatively Involved in the Regulation of the Lupulin Metabolome in Hop (Humulus lupulus L.)

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Jaroslav; Kocábek, Tomáš; Patzak, J.; Stehlík, Jan; Füssy, Zoltán; Krofta, K.; Heyerick, A.; Roldán-Ruiz, I.; Maloukh, L.; De Keukeleire, D.

    2010-01-01

    Roč. 58, č. 2 (2010), s. 902-912 ISSN 0021-8561 R&D Projects: GA ČR GA521/08/0740; GA MZe QH81052; GA MŠk ME 940 Institutional research plan: CEZ:AV0Z50510513 Keywords : secondary metabolites transcriptional regulation * cDNA-AFLP analysis * hop cDNA library screening * Nicotiana benthamiana * Petunia hybrida Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.816, year: 2010

  7. Genome-wide transcriptional profiling of human glioblastoma cells in response to ITE treatment.

    Science.gov (United States)

    Kang, Bo; Zhou, Yanwen; Zheng, Min; Wang, Ying-Jie

    2015-09-01

    A ligand-activated transcription factor aryl hydrocarbon receptor (AhR) is recently revealed to play a key role in embryogenesis and tumorigenesis (Feng et al. [1], Safe et al. [2]) and 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) (Song et al. [3]) is an endogenous AhR ligand that possesses anti-tumor activity. In order to gain insights into how ITE acts via the AhR in embryogenesis and tumorigenesis, we analyzed the genome-wide transcriptional profiles of the following three groups of cells: the human glioblastoma U87 parental cells, U87 tumor sphere cells treated with vehicle (DMSO) and U87 tumor sphere cells treated with ITE. Here, we provide the details of the sample gathering strategy and show the quality controls and the analyses associated with our gene array data deposited into the Gene Expression Omnibus (GEO) under the accession code of GSE67986.

  8. Transcriptomic profiling-based mutant screen reveals three new transcription factors mediating menadione resistance in Neurospora crassa.

    Science.gov (United States)

    Zhu, Jufen; Yu, Xinxu; Xie, Baogui; Gu, Xiaokui; Zhang, Zhenying; Li, Shaojie

    2013-06-01

    To gain insight into the regulatory mechanisms of oxidative stress responses in filamentous fungi, the genome-wide transcriptional response of Neurospora crassa to menadione was analysed by digital gene expression (DGE) profiling, which identified 779 upregulated genes and 576 downregulated genes. Knockout mutants affecting 130 highly-upregulated genes were tested for menadione sensitivity, which revealed that loss of the transcription factor siderophore regulation (SRE) (a transcriptional repressor for siderophore biosynthesis), catatase-3, cytochrome c peroxidase or superoxide dismutase 1 copper chaperone causes hypersensitivity to menadione. Deletion of sre dramatically increased transcription of the siderophore biosynthesis gene ono and the siderophore iron transporter gene sit during menadione stress, suggesting that SRE is required for repression of iron uptake under oxidative stress conditions. Contrary to its phenotype, the sre deletion mutant showed higher transcriptional levels of genes encoding reactive oxygen species (ROS) scavengers than wild type during menadione stress, which implies that the mutant suffers a higher level of oxidative stress than wild type. Uncontrolled iron uptake in the sre mutant might exacerbate cellular oxidative stress. This is the first report of a negative regulator of iron assimilation participating in the fungal oxidative stress response. In addition to SRE, eight other transcription factor genes were also menadione-responsive but their single gene knockout mutants showed wild-type menadione sensitivity. Two of them, named as mit-2 (menadione induced transcription factor-2) and mit-4 (menadione induced transcription factor-4), were selected for double mutant analysis. The double mutant was hypersensitive to menadione. Similarly, the double mutation of mit-2 and sre also had additive effects on menadione sensitivity, suggesting multiple transcription factors mediate oxidative stress resistance in an additive manner

  9. JASPAR 2010: the greatly expanded open-access database of transcription factor binding profiles

    DEFF Research Database (Denmark)

    Portales-Casamar, Elodie; Thongjuea, Supat; Kwon, Andrew T

    2009-01-01

    JASPAR (http://jaspar.genereg.net) is the leading open-access database of matrix profiles describing the DNA-binding patterns of transcription factors (TFs) and other proteins interacting with DNA in a sequence-specific manner. Its fourth major release is the largest expansion of the core database...... to an active research community. As binding models are refined by newer data, the JASPAR database now uses versioning of matrices: in this release, 12% of the older models were updated to improved versions. Classification of TF families has been improved by adopting a new DNA-binding domain nomenclature...

  10. Galactinol synthase transcriptional profile in two genotypes of Coffea canephora with contrasting tolerance to drought

    Directory of Open Access Journals (Sweden)

    Tiago Benedito Dos Santos

    2015-06-01

    Full Text Available Increased synthesis of galactinol and raffinose family oligosaccharides (RFOs has been reported in vegetative tissues in response to a range of abiotic stresses. In this work, we evaluated the transcriptional profile of a Coffea canephora galactinol synthase gene (CcGolS1 in two clones that differed in tolerance to water deficit in order to assess the contribution of this gene to drought tolerance. The expression of CcGolS1 in leaves was differentially regulated by water deficit, depending on the intensity of stress and the genotype. In clone 109A (drought-susceptible, the abundance of CcGolS1 transcripts decreased upon exposure to drought, reaching minimum values during recovery from severe water deficit and stress. In contrast, CcGolS1 gene expression in clone 14 (drought-tolerant was stimulated by water deficit. Changes in galactinol and RFO content did not correlate with variation in the steady-state transcript level. However, the magnitude of increase in RFO accumulation was higher in the tolerant cultivar, mainly under severe water deficit. The finding that the drought-tolerant coffee clone showed enhanced accumulation of CcGolS1 transcripts and RFOs under water deficit suggests the possibility of using this gene to improve drought tolerance in this important crop.

  11. Circulating Human Eosinophils Share a Similar Transcriptional Profile in Asthma and Other Hypereosinophilic Disorders.

    Science.gov (United States)

    Barnig, Cindy; Alsaleh, Ghada; Jung, Nicolas; Dembélé, Doulaye; Paul, Nicodème; Poirot, Anh; Uring-Lambert, Béatrice; Georgel, Philippe; de Blay, Fréderic; Bahram, Seiamak

    2015-01-01

    Eosinophils are leukocytes that are released into the peripheral blood in a phenotypically mature state and are capable of being recruited into tissues in response to appropriate stimuli. Eosinophils, traditionally considered cytotoxic effector cells, are leukocytes recruited into the airways of asthma patients where they are believed to contribute to the development of many features of the disease. This perception, however, has been challenged by recent findings suggesting that eosinophils have also immunomodulatory functions and may be involved in tissue homeostasis and wound healing. Here we describe a transcriptome-based approach-in a limited number of patients and controls-to investigate the activation state of circulating human eosinophils isolated by flow cytometry. We provide an overview of the global expression pattern in eosinophils in various relevant conditions, e.g., eosinophilic asthma, hypereosinophilic dermatological diseases, parasitosis and pulmonary aspergillosis. Compared to healthy subjects, circulating eosinophils isolated from asthma patients differed in their gene expression profile which is marked by downregulation of transcripts involved in antigen presentation, pathogen recognition and mucosal innate immunity, whereas up-regulated genes were involved in response to non-specific stimulation, wounding and maintenance of homeostasis. Eosinophils from other hypereosinophilic disorders displayed a very similar transcriptional profile. Taken together, these observations seem to indicate that eosinophils exhibit non-specific immunomodulatory functions important for tissue repair and homeostasis and suggest new roles for these cells in asthma immunobiology.

  12. Phylogeny and infrageneric delimitation in the genus Spiraea (Rosaceae) inferred from AFLP markers and compared with morphology

    Czech Academy of Sciences Publication Activity Database

    Záveská Drábková, Lenka; Pospíšková, M.; Businský, R.

    2017-01-01

    Roč. 185, č. 4 (2017), s. 525-541 ISSN 0024-4074 R&D Projects: GA ČR(CZ) GA16-14649S Institutional support: RVO:67985939 Keywords : morphological analysis * Spiraea * AFLP Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 2.277, year: 2016

  13. ISSR and AFLP analysis of the temporal and spatial population structure of the post-fire annual, Nicotiana attenuata, in SW Utah

    Directory of Open Access Journals (Sweden)

    Preston Catherine A

    2004-09-01

    Full Text Available Abstract Background The native annual tobacco, Nicotiana attenuata, is found primarily in large ephemeral populations (typically for less than 3 growing seasons after fires in sagebrush and pinyon-juniper ecosystems and in small persistent populations (for many growing seasons in isolated washes typically along roadsides throughout the Great Basin Desert of the SW USA. This distribution pattern is due to its unusual germination behavior. Ephemeral populations are produced by the germination of dormant seeds from long-lived seed banks which are stimulated to germinate by a combination of unidentified positive cues found in wood smoke and the removal of inhibitors leached from the unburned litter of the dominant vegetation. Persistent populations may result where these inhibitors do not exist, as in washes or along disturbed roadsides. To determine if this germination behavior has influenced population structure, we conducted an AFLP (244 individuals, ISSR (175 individuals and ISSR+ AFLP (175 individuals analysis on plants originating from seed collected from populations growing in 11 wash and burns over 11 years from the SW USA. Results Genetic variance as measured by both ISSR and AFLP markers was low among sites and comparatively higher within populations. Cluster analysis of the Utah samples with samples collected from Arizona, California, and Oregon as out-groups also did not reveal patterns. AMOVA analysis of the combined AFLP and ISSR data sets yielded significantly low genetic differentiation among sites (Φct, moderate among populations within sites (Φsc and higher genetic differentiation within populations (Φst. Conclusions We conclude that the seed dormancy of this post-fire annual and its resulting age structure in conjunction with natural selection processes are responsible for significantly low among sites and comparatively high within-population genetic variation observed in this species.

  14. Genetic diversity in populations of Isatis glauca Aucher ex Boiss. ssp. from Central Anatolia in Turkey, as revealed by AFLP analysis.

    Science.gov (United States)

    Özbek, Özlem; Görgülü, Elçin; Yıldırımlı, Şinasi

    2013-12-01

    Isatidae L. is a complex and systematically difficult genus in Brassicaceae. The genus displays great morphological polymorphism, which makes the classification of species and subspecies difficult as it is observed in Isatis glauca Aucher ex Boiss. The aim of this study is characterization of the genetic diversity in subspecies of Isatis glauca Aucher ex Boiss. distributed widely in Central Anatolia, in Turkey by using Amplified Fragment Length Polymorphism (AFLP) technique. Eight different Eco RI-Mse I primer combinations produced 805 AFLP loci, 793 (98.5%) of which were polymorphic in 67 accessions representing nine different populations. The data obtained by AFLP was computed with using GDA (Genetic Data Analysis) and STRUCTURE (version 2.3.3) software programs for population genetics. The mean proportion of the polymorphic locus (P), the mean number of alleles (A), the number of unique alleles (U) and the mean value of gene diversity (He) were 0.59, 1.59, 20, and 0.23 respectively. The coancestry coefficient (ϴ) was 0.24. The optimal number of K was identified as seven. The principal component analysis (PCA) explained 85.61% of the total genetic variation. Isatis glauca ssp. populations showed a high level of genetic diversity, and the AFLP analysis revealed that high polymorphism and differentiated subspecies could be used conveniently for population genetic studies. The principal coordinate analysis (PCoA) based on the dissimilarity matrix, the dendrogram drawn with UPGMA method and STRUCTURE cluster analysis distinguished the accessions successfully. The accessions formed distinctive population structures for populations AA, AB, E, K, and S. Populations AG1 and AG2 seemed to have similar genetic content, in addition, in both populations several hybrid individuals were observed. The accessions did not formed distinctive population structures for both populations AI and ANP. Consequently, Ankara province might be the area, where species Isatis glauca Aucher

  15. Phylogeny and infrageneric delimitation in Spiraea (Rosaceae) inferred from AFLP markers and a comparison with morphology

    Czech Academy of Sciences Publication Activity Database

    Záveská Drábková, Lenka; Pospíšková, M.; Businský, R.

    2017-01-01

    Roč. 185, č. 4 (2017), s. 525-541 ISSN 0024-4074 R&D Projects: GA ČR(CZ) GA16-14649S Institutional support: RVO:61389030 Keywords : classification * spiraeoideae * networks * aflp * Bayesian analysis * maximum parsimony * neighbour network * taxonomy Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 2.277, year: 2016

  16. Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes

    Directory of Open Access Journals (Sweden)

    Deyholos Michael K

    2006-10-01

    Full Text Available Abstract Background Roots are an attractive system for genomic and post-genomic studies of NaCl responses, due to their primary importance to agriculture, and because of their relative structural and biochemical simplicity. Excellent genomic resources have been established for the study of Arabidopsis roots, however, a comprehensive microarray analysis of the root transcriptome following NaCl exposure is required to further understand plant responses to abiotic stress and facilitate future, systems-based analyses of the underlying regulatory networks. Results We used microarrays of 70-mer oligonucleotide probes representing 23,686 Arabidopsis genes to identify root transcripts that changed in relative abundance following 6 h, 24 h, or 48 h of hydroponic exposure to 150 mM NaCl. Enrichment analysis identified groups of structurally or functionally related genes whose members were statistically over-represented among up- or down-regulated transcripts. Our results are consistent with generally observed stress response themes, and highlight potentially important roles for underappreciated gene families, including: several groups of transporters (e.g. MATE, LeOPT1-like; signalling molecules (e.g. PERK kinases, MLO-like receptors, carbohydrate active enzymes (e.g. XTH18, transcription factors (e.g. members of ZIM, WRKY, NAC, and other proteins (e.g. 4CL-like, COMT-like, LOB-Class 1. We verified the NaCl-inducible expression of selected transcription factors and other genes by qRT-PCR. Conclusion Micorarray profiling of NaCl-treated Arabidopsis roots revealed dynamic changes in transcript abundance for at least 20% of the genome, including hundreds of transcription factors, kinases/phosphatases, hormone-related genes, and effectors of homeostasis, all of which highlight the complexity of this stress response. Our identification of these transcriptional responses, and groups of evolutionarily related genes with either similar or divergent

  17. Global Transcription Profiling Reveals Comprehensive Insights into Hypoxic Response in Arabidopsis1[w

    Science.gov (United States)

    Liu, Fenglong; VanToai, Tara; Moy, Linda P.; Bock, Geoffrey; Linford, Lara D.; Quackenbush, John

    2005-01-01

    Plants have evolved adaptation mechanisms to sense oxygen deficiency in their environments and make coordinated physiological and structural adjustments to enhance their hypoxic tolerance. To gain insight into how plants respond to low-oxygen stress, gene expression profiling using whole-genome DNA amplicon microarrays was carried out at seven time points over 24 h, in wild-type and transgenic PSAG12:ipt Arabidopsis (Arabidopsis thaliana) plants under normoxic and hypoxic conditions. Transcript levels of genes involved in glycolysis and fermentation pathways, ethylene synthesis and perception, calcium signaling, nitrogen utilization, trehalose metabolism, and alkaloid synthesis were significantly altered in response to oxygen limitation. Analysis based on gene ontology assignments suggested a significant down-regulation of genes whose functions are associated with cell walls, nucleosome structures, water channels, and ion transporters and a significant up-regulation of genes involved in transcriptional regulation, protein kinase activity, and auxin responses under conditions of oxygen shortage. Promoter analysis on a cluster of up-regulated genes revealed a significant overrepresentation of the AtMYB2-binding motif (GT motif), a sugar response element-like motif, and a G-box-related sequence, and also identified several putative anaerobic response elements. Finally, quantitative real-time polymerase chain reactions using 29 selected genes independently verified the microarray results. This study represents one of the most comprehensive analyses conducted to date investigating hypoxia-responsive transcriptional networks in plants. PMID:15734912

  18. Analysis of hepatic transcript profile and plasma lipid profile in early lactating dairy cows fed grape seed and grape marc meal extract.

    Science.gov (United States)

    Gessner, Denise K; Winkler, Anne; Koch, Christian; Dusel, Georg; Liebisch, Gerhard; Ringseis, Robert; Eder, Klaus

    2017-03-23

    It was recently reported that dairy cows fed a polyphenol-rich grape seed and grape marc meal extract (GSGME) during the transition period had an increased milk yield, but the underlying reasons remained unclear. As polyphenols exert a broad spectrum of metabolic effects, we hypothesized that feeding of GSGME influences metabolic pathways in the liver which could account for the positive effects of GSGME in dairy cows. In order to identify these pathways, we performed genome-wide transcript profiling in the liver and lipid profiling in plasma of dairy cows fed GSGME during the transition period at 1 week postpartum. Transcriptomic analysis of the liver revealed 207 differentially expressed transcripts, from which 156 were up- and 51 were down-regulated, between cows fed GSGME and control cows. Gene set enrichment analysis of the 155 up-regulated mRNAs showed that the most enriched gene ontology (GO) biological process terms were dealing with cell cycle regulation and the most enriched Kyoto Encyclopedia of Genes and Genomes pathways were p53 signaling and cell cycle. Functional analysis of the 43 down-regulated mRNAs revealed that a great part of these genes are involved in endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) and inflammatory processes. Accordingly, protein folding, response to unfolded protein, unfolded protein binding, chemokine activity and heat shock protein binding were identified as one of the most enriched GO biological process and molecular function terms assigned to the down-regulated genes. In line with the transcriptomics data the plasma concentrations of the acute phase proteins serum amyloid A (SAA) and haptoglobin were reduced in cows fed GSGME compared to control cows. Lipidomic analysis of plasma revealed no differences in the concentrations of individual species of major and minor lipid classes between cows fed GSGME and control cows. Analysis of hepatic transcript profile in cows fed GSGME during the

  19. Characterization of Macrophomina phaseolina isolates by their response to different osmotic potentials and AFLP

    Directory of Open Access Journals (Sweden)

    Bárbara J. Gutiérrez Cedeño

    2014-01-01

    Full Text Available Charcoal rot of Phaseolus vulgaris is caused by the fungus Macrophomina phaseolina, the disease is associated with high temperature and water stress. The objective of this study was to characterize isolates of M. phaseolina by their response to different osmotic potentials and AFLP. The growth of 11 isolates was determined on potato dextrose agar at 48 and 72 h in a gradient of osmotic potential induced using NaCl as well as their effects on germination of sclerotia. Three water groups were statistically different indicating differential response to osmotic potential and all sclerotia grown under these conditions, germinated between 24 and 48h. There were groups of isolates that were tolerant to water stress induced. The AFLP genotyping allowed the formation of five genetic groups, showing a wide genetic variability. Of the nine starters CTA-AT showed a high degree of confidence in the identification of genotypes of M. phaseolina and CAA-AC had the lowest discriminatory power. These results show that M. phaseolina isolates responded differently to osmotic potential and are genetically different between them. Although there was a clear correspondence of genetic groups to water groups; these responses are important features in the search for alternative management in black bean pathosystem. Keywords: molecular marker, M. phaseolina, water deficit

  20. Distinct cardiac transcriptional profiles defining pregnancy and exercise.

    Directory of Open Access Journals (Sweden)

    Eunhee Chung

    Full Text Available BACKGROUND: Although the hypertrophic responses of the heart to pregnancy and exercise are both considered to be physiological processes, they occur in quite different hormonal and temporal settings. In this study, we have compared the global transcriptional profiles of left ventricular tissues at various time points during the progression of hypertrophy in exercise and pregnancy. METHODOLOGY/PRINCIPAL FINDINGS: The following groups of female mice were analyzed: non-pregnant diestrus cycle sedentary control, mid-pregnant, late-pregnant, and immediate-postpartum, and animals subjected to 7 and 21 days of voluntary wheel running. Hierarchical clustering analysis shows that while mid-pregnancy and both exercise groups share the closest relationship and similar gene ontology categories, late pregnancy and immediate post-partum are quite different with high representation of secreted/extracellular matrix-related genes. Moreover, pathway-oriented ontological analysis shows that metabolism regulated by cytochrome P450 and chemokine pathways are the most significant signaling pathways regulated in late pregnancy and immediate-postpartum, respectively. Finally, increases in expression of components of the proteasome observed in both mid-pregnancy and immediate-postpartum also result in enhanced proteasome activity. Interestingly, the gene expression profiles did not correlate with the degree of cardiac hypertrophy observed in the animal groups, suggesting that distinct pathways are employed to achieve similar amounts of cardiac hypertrophy. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that cardiac adaptation to the later stages of pregnancy is quite distinct from both mid-pregnancy and exercise. Furthermore, it is very dynamic since, by 12 hours post-partum, the heart has already initiated regression of cardiac growth, and 50 genes have changed expression significantly in the immediate-postpartum compared to late-pregnancy. Thus, pregnancy

  1. Analysis of temporal transcription expression profiles reveal links between protein function and developmental stages of Drosophila melanogaster.

    Science.gov (United States)

    Wan, Cen; Lees, Jonathan G; Minneci, Federico; Orengo, Christine A; Jones, David T

    2017-10-01

    Accurate gene or protein function prediction is a key challenge in the post-genome era. Most current methods perform well on molecular function prediction, but struggle to provide useful annotations relating to biological process functions due to the limited power of sequence-based features in that functional domain. In this work, we systematically evaluate the predictive power of temporal transcription expression profiles for protein function prediction in Drosophila melanogaster. Our results show significantly better performance on predicting protein function when transcription expression profile-based features are integrated with sequence-derived features, compared with the sequence-derived features alone. We also observe that the combination of expression-based and sequence-based features leads to further improvement of accuracy on predicting all three domains of gene function. Based on the optimal feature combinations, we then propose a novel multi-classifier-based function prediction method for Drosophila melanogaster proteins, FFPred-fly+. Interpreting our machine learning models also allows us to identify some of the underlying links between biological processes and developmental stages of Drosophila melanogaster.

  2. Analysis of temporal transcription expression profiles reveal links between protein function and developmental stages of Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Cen Wan

    2017-10-01

    Full Text Available Accurate gene or protein function prediction is a key challenge in the post-genome era. Most current methods perform well on molecular function prediction, but struggle to provide useful annotations relating to biological process functions due to the limited power of sequence-based features in that functional domain. In this work, we systematically evaluate the predictive power of temporal transcription expression profiles for protein function prediction in Drosophila melanogaster. Our results show significantly better performance on predicting protein function when transcription expression profile-based features are integrated with sequence-derived features, compared with the sequence-derived features alone. We also observe that the combination of expression-based and sequence-based features leads to further improvement of accuracy on predicting all three domains of gene function. Based on the optimal feature combinations, we then propose a novel multi-classifier-based function prediction method for Drosophila melanogaster proteins, FFPred-fly+. Interpreting our machine learning models also allows us to identify some of the underlying links between biological processes and developmental stages of Drosophila melanogaster.

  3. Gene expression profiling analysis of CRTC1-MAML2 fusion oncogene-induced transcriptional program in human mucoepidermoid carcinoma cells

    International Nuclear Information System (INIS)

    Chen, Jie; Li, Jian-Liang; Chen, Zirong; Griffin, James D.; Wu, Lizi

    2015-01-01

    Mucoepidermoid carcinoma (MEC) arises from multiple organs and accounts for the most common types of salivary gland malignancies. Currently, patients with unresectable and metastatic MEC have poor long-term clinical outcomes and no targeted therapies are available. The majority of MEC tumors contain a t(11;19) chromosomal translocation that fuses two genes, CRTC1 and MAML2, to generate the chimeric protein CRTC1-MAML2. CRTC1-MAML2 displays transforming activity in vitro and is required for human MEC cell growth and survival, partially due to its ability to constitutively activate CREB-mediated transcription. Consequently, CRTC1-MAML2 is implicated as a major etiologic molecular event and a therapeutic target for MEC. However, the molecular mechanisms underlying CRTC1-MAML2 oncogenic action in MEC have not yet been systematically analyzed. Elucidation of the CRTC1-MAML2-regulated transcriptional program and its underlying mechanisms will provide important insights into MEC pathogenesis that are essential for the development of targeted therapeutics. Transcriptional profiling was performed on human MEC cells with the depletion of endogenous CRTC1-MAML2 fusion or its interacting partner CREB via shRNA-mediated gene knockdown. A subset of target genes was validated via real-time RT-PCR assays. CRTC1-MAML2-perturbed molecular pathways in MEC were identified through pathway analyses. Finally, comparative analysis of CRTC1-MAML2-regulated and CREB-regulated transcriptional profiles was carried out to assess the contribution of CREB in mediating CRTC1-MAML2-induced transcription. A total of 808 differentially expressed genes were identified in human MEC cells after CRTC1-MAML2 knockdown and a subset of known and novel fusion target genes was confirmed by real-time RT-PCR. Pathway Analysis revealed that CRTC1-MAML2-regulated genes were associated with network functions that are important for cell growth, proliferation, survival, migration, and metabolism. Comparison of CRTC

  4. DIVERSIDAD GENÉTICA DE MARACUYÁ EN GUATEMALA REVELADA POR MARCADORES AFLP

    Directory of Open Access Journals (Sweden)

    Karla Melina Ponciano-Samayoa

    2012-01-01

    Full Text Available Diversidad genética de maracuyá en Guatemala revelada por marcadores AFLP. Los objetivos de este estudio fueron caracterizar con AFLP nueve genotipos colectados en Guatemala y determinar la diversidad genética existente. En el Instituto de Ciencia y Tecnología Agrícolas (ICTA, en el período julio 2010/mayo 2011, se realizó este análisis preliminar amplifi cando diez combinaciones selectivas con las que se detectaron 106 polimorfi smos. Las combinaciones selectivas E+ACG/M+CAG, E+ACA/M+CTA, E+ACT/M+CTG y E+AAC/M+CTT dieron el mayor grado de información. En promedio se visualizaron diez loci por amplifi cación selectiva. El análisis de similaridad reveló que los genotipos no están duplicados. Los análisis de correspondencia y conglomerados identifi caron dos grupos bien defi nidos. El primero incluyó a los materiales de P. edulis f. edulis Sims y el segundo a los materiales de P. edulis f. fl avicarpa Degener. La diversidad genética de Nei para la colección fue 0,3160. La diferenciación genética (Gst fue 0,2542. El 25,42% de la diversidad se expresó entre grupos mientras que el 74,58% dentro de estos. Los resultados dan evidencia de la cercanía evolutiva de los tipos amarilla y morada de P. edulis Sims. El fl ujo genético fue alto (Nm=1,4670 como se esperaba en una especie alógama en la que se favorece el intercambio inter e intraespecífi co.

  5. Transcriptional profiles of Treponema denticola in response to environmental conditions.

    Directory of Open Access Journals (Sweden)

    Ian McHardy

    Full Text Available The periodontal pathogen T. denticola resides in a stressful environment rife with challenges, the human oral cavity. Knowledge of the stress response capabilities of this invasive spirochete is currently very limited. Whole genome expression profiles in response to different suspected stresses including heat shock, osmotic downshift, oxygen and blood exposure were examined. Most of the genes predicted to encode conserved heat shock proteins (HSPs were found to be induced under heat and oxygen stress. Several of these HSPs also seem to be important for survival in hypotonic solutions and blood. In addition to HSPs, differential regulation of many genes encoding metabolic proteins, hypothetical proteins, transcriptional regulators and transporters was observed in patterns that could betoken functional associations. In summary, stress responses in T. denticola exhibit many similarities to the corresponding stress responses in other organisms but also employ unique components including the induction of hypothetical proteins.

  6. Transcriptional profiling of cells sorted by RNA abundance

    NARCIS (Netherlands)

    Klemm, Sandy; Semrau, Stefan; Wiebrands, Kay; Mooijman, Dylan; Faddah, Dina A; Jaenisch, Rudolf; van Oudenaarden, Alexander

    We have developed a quantitative technique for sorting cells on the basis of endogenous RNA abundance, with a molecular resolution of 10-20 transcripts. We demonstrate efficient and unbiased RNA extraction from transcriptionally sorted cells and report a high-fidelity transcriptome measurement of

  7. Transcriptional profile of fibroblasts obtained from the primary site, lymph node and bone marrow of breast cancer patients

    Directory of Open Access Journals (Sweden)

    Paulo Roberto Del Valle

    2014-09-01

    Full Text Available Cancer-associated fibroblasts (CAF influence tumor development at primary as well as in metastatic sites, but there have been no direct comparisons of the transcriptional profiles of stromal cells from different tumor sites. In this study, we used customized cDNA microarrays to compare the gene expression profile of stromal cells from primary tumor (CAF, n = 4, lymph node metastasis (N+, n = 3 and bone marrow (BM, n = 4 obtained from breast cancer patients. Biological validation was done in another 16 samples by RT-qPCR. Differences between CAF vs N+, CAF vs BM and N+ vs BM were represented by 20, 235 and 245 genes, respectively (SAM test, FDR < 0.01. Functional analysis revealed that genes related to development and morphogenesis were overrepresented. In a biological validation set, NOTCH2 was confirmed to be more expressed in N+ (vs CAF and ADCY2, HECTD1, HNMT, LOX, MACF1, SLC1A3 and USP16 more expressed in BM (vs CAF. Only small differences were observed in the transcriptional profiles of fibroblasts from the primary tumor and lymph node of breast cancer patients, whereas greater differences were observed between bone marrow stromal cells and the other two sites. These differences may reflect the activities of distinct differentiation programs.

  8. Intervention of pumpkin seed oil on metabolic disease revealed by metabonomics and transcript profile.

    Science.gov (United States)

    Zhao, Xiu-Ju; Chen, Yu-Lian; Fu, Bing; Zhang, Wen; Liu, Zhiguo; Zhuo, Hexian

    2017-03-01

    Understanding the metabolic and transcription basis of pumpkin seed oil (PSO) intervention on metabolic disease (MD) is essential to daily nutrition and health. This study analyzed the liver metabolic variations of Wistar rats fed normal diet (CON), high-fat diet (HFD) and high-fat plus PSO diet (PSO) to establish the relationship between the liver metabolite composition/transcript profile and the effects of PSO on MD. By using proton nuclear magnetic resonance spectroscopy together with multivariate data analysis, it was found that, compared with CON rats, HFD rats showed clear dysfunctions of choline metabolism, glucose metabolism and nucleotide and amino acid metabolism. Using quantitative real-time polymerase chain reaction (qPCR), it was found that, compared with HFD rats, PSO rats showed alleviated endoplasmic reticulum stress accompanied by lowered unfolded protein response. These findings provide useful information to understand the metabolic alterations triggered by MD and to evaluate the effects of PSO intervention. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. Transcriptional Profiling and Identification of Heat-Responsive Genes in Perennial Ryegrass by RNA-Sequencing

    Directory of Open Access Journals (Sweden)

    Kehua Wang

    2017-06-01

    Full Text Available Perennial ryegrass (Lolium perenne is one of the most widely used forage and turf grasses in the world due to its desirable agronomic qualities. However, as a cool-season perennial grass species, high temperature is a major factor limiting its performance in warmer and transition regions. In this study, a de novo transcriptome was generated using a cDNA library constructed from perennial ryegrass leaves subjected to short-term heat stress treatment. Then the expression profiling and identification of perennial ryegrass heat response genes by digital gene expression analyses was performed. The goal of this work was to produce expression profiles of high temperature stress responsive genes in perennial ryegrass leaves and further identify the potentially important candidate genes with altered levels of transcript, such as those genes involved in transcriptional regulation, antioxidant responses, plant hormones and signal transduction, and cellular metabolism. The de novo assembly of perennial ryegrass transcriptome in this study obtained more total and annotated unigenes compared to previously published ones. Many DEGs identified were genes that are known to respond to heat stress in plants, including HSFs, HSPs, and antioxidant related genes. In the meanwhile, we also identified four gene candidates mainly involved in C4 carbon fixation, and one TOR gene. Their exact roles in plant heat stress response need to dissect further. This study would be important by providing the gene resources for improving heat stress tolerance in both perennial ryegrass and other cool-season perennial grass plants.

  10. Cytogenetic characterization and AFLP-based genetic linkage mapping for the butterfly Bicyclus anynana, covering all 28 karyotyped chromosomes

    Czech Academy of Sciences Publication Activity Database

    Van´t Hof, A. E.; Marec, František; Saccheri, I. J.; Brakefield, P. M.; Zwaan, B. J.

    2008-01-01

    Roč. 3, č. 12 (2008), e3882 E-ISSN 1932-6203 R&D Projects: GA ČR GA206/06/1860 Institutional research plan: CEZ:AV0Z50070508 Keywords : Bicyclus anynana * cytogenetic characterization * AFLP-based genetic linkage mapping Subject RIV: EB - Genetics ; Molecular Biology

  11. Dynamics in the tomato root transcriptome on infection with the potato cyst nematode Globodera rostochiensis.

    Science.gov (United States)

    Swiecicka, Magdalena; Filipecki, Marcin; Lont, Dieuwertje; Van Vliet, Joke; Qin, Ling; Goverse, Aska; Bakker, Jaap; Helder, Johannes

    2009-07-01

    Plant parasitic nematodes infect roots and trigger the formation of specialized feeding sites by substantial reprogramming of the developmental process of root cells. In this article, we describe the dynamic changes in the tomato root transcriptome during early interactions with the potato cyst nematode Globodera rostochiensis. Using amplified fragment length polymorphism-based mRNA fingerprinting (cDNA-AFLP), we monitored 17 600 transcript-derived fragments (TDFs) in infected and uninfected tomato roots, 1-14 days after inoculation with nematode larvae. Six hundred and twenty-four TDFs (3.5%) showed significant differential expression on nematode infection. We employed GenEST, a computer program which links gene expression profiles generated by cDNA-AFLP and databases of cDNA sequences, to identify 135 tomato sequences. These sequences were grouped into eight functional categories based on the presence of genes involved in hormone regulation, plant pathogen defence response, cell cycle and cytoskeleton regulation, cell wall modification, cellular signalling, transcriptional regulation, primary metabolism and allocation. The presence of unclassified genes was also taken into consideration. This article describes the responsiveness of numerous tomato genes hitherto uncharacterized during infection with endoparasitic cyst nematodes. The analysis of transcriptome profiles allowed the sequential order of expression to be dissected for many groups of genes and the genes to be connected with the biological processes involved in compatible interactions between the plant and nematode.

  12. Translatome profiling in dormant and nondormant sunflower (Helianthus annuus) seeds highlights post-transcriptional regulation of germination.

    Science.gov (United States)

    Layat, Elodie; Leymarie, Juliette; El-Maarouf-Bouteau, Hayat; Caius, José; Langlade, Nicolas; Bailly, Christophe

    2014-12-01

    Seed dormancy, which blocks germination in apparently favourable conditions, is a key regulatory control point of plant population establishment. As germination requires de novo translation, its regulation by dormancy is likely to be related to the association of individual transcripts to polysomes. Here, the polysome-associated mRNAs, that is, the translatome, were fractionated and characterized with microarrays in dormant and nondormant sunflower (Helianthus annuus) embryos during their imbibition at 10°C, a temperature preventing germination of dormant embryos. Profiling of mRNAs in polysomal complexes revealed that the translatome differs between germinating and nongerminating embryos. Association of transcripts with polysomes reached a maximum after 15 h of imbibition; at this time-point 194 polysome-associated transcripts were specifically found in nondormant embryos and 47 in dormant embryos only. The proteins corresponding to the polysomal mRNAs in nondormant embryos appeared to be very pertinent for germination and were involved mainly in transport, regulation of transcription or cell wall modifications. This work demonstrates that seed germination results from a timely regulated and selective recruitment of mRNAs to polysomes, thus opening novel fields of investigation for the understanding of this developmental process. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  13. Quantitative profiling of housekeeping and Epstein-Barr virus gene transcription in Burkitt lymphoma cell lines using an oligonucleotide microarray

    Directory of Open Access Journals (Sweden)

    Niggli Felix K

    2006-06-01

    Full Text Available Abstract Background The Epstein-Barr virus (EBV is associated with lymphoid malignancies, including Burkitt's lymphoma (BL, and can transform human B cells in vitro. EBV-harboring cell lines are widely used to investigate lymphocyte transformation and oncogenesis. Qualitative EBV gene expression has been extensively described, but knowledge of quantitative transcription is lacking. We hypothesized that transcription levels of EBNA1, the gene essential for EBV persistence within an infected cell, are similar in BL cell lines. Results To compare quantitative gene transcription in the BL cell lines Namalwa, Raji, Akata, Jijoye, and P3HR1, we developed an oligonucleotide microarray chip, including 17 housekeeping genes, six latent EBV genes (EBNA1, EBNA2, EBNA3A, EBNA3C, LMP1, LMP2, and four lytic EBV genes (BZLF1, BXLF2, BKRF2, BZLF2, and used the cell line B95.8 as a reference for EBV gene transcription. Quantitative polymerase chain reaction assays were used to validate microarray results. We found that transcription levels of housekeeping genes differed considerably among BL cell lines. Using a selection of housekeeping genes with similar quantitative transcription in the tested cell lines to normalize EBV gene transcription data, we showed that transcription levels of EBNA1 were quite similar in very different BL cell lines, in contrast to transcription levels of other EBV genes. As demonstrated with Akata cells, the chip allowed us to accurately measure EBV gene transcription changes triggered by treatment interventions. Conclusion Our results suggest uniform EBNA1 transcription levels in BL and that microarray profiling can reveal novel insights on quantitative EBV gene transcription and its impact on lymphocyte biology.

  14. Transcription Profiling Demonstrates Epigenetic Control of Non-retroviral RNA Virus-Derived Elements in the Human Genome

    Directory of Open Access Journals (Sweden)

    Kozue Sofuku

    2015-09-01

    Full Text Available Endogenous bornavirus-like nucleoprotein elements (EBLNs are DNA sequences in vertebrate genomes formed by the retrotransposon-mediated integration of ancient bornavirus sequence. Thus, EBLNs evidence a mechanism of retrotransposon-mediated RNA-to-DNA information flow from environment to animals. Although EBLNs are non-transposable, they share some features with retrotransposons. Here, to test whether hosts control the expression of EBLNs similarly to retrotransposons, we profiled the transcription of all Homo sapiens EBLNs (hsEBLN-1 to hsEBLN-7. We could detect transcription of all hsEBLNs in at least one tissue. Among them, hsEBLN-1 is transcribed almost exclusively in the testis. In most tissues, expression from the hsEBLN-1 locus is silenced epigenetically. Finally, we showed the possibility that hsEBLN-1 integration at this locus affects the expression of a neighboring gene. Our results suggest that hosts regulate the expression of endogenous non-retroviral virus elements similarly to how they regulate the expression of retrotransposons, possibly contributing to new transcripts and regulatory complexity to the human genome.

  15. Identificación y mapeo de AFLPs ligados al gen de resistencia al PVX en Solanum commersonii

    Directory of Open Access Journals (Sweden)

    Mónica Blanco

    2005-01-01

    Full Text Available Solanum commersonii es una especie silvestre de papa considerada como una fuente de genes de resistencia al PVX. Para identificar marcadores moleculares relacionados con los genes de resistencia a este virus, se realizó un análisis en el que se combinó la técnica de BSA con el uso de AFLPs. Del cruce de 2 padres heterocigotos y resistentes al PVX, provenientes de una F1, se obtuvo una F2. La población fue inoculada con el PVXMS y 30 días después mediante un ELISA, la progenie fue dividida en individuos infectados y no infectados con el PVXMS; a estos 2 grupos se les realizó un BSA. El ADN de los individuos resistentes fue mezclado aparte del ADN de los individuos susceptibles y con la ayuda de AFLPs se logró identificar 22 combinaciones de imprimadores que produjeron bandas específicas relacionadas con el carácter de resistencia al PVX. Las combinaciones de imprimadores seleccionadas fueron utilizadas para evaluar cada uno de los individuos de la F2 en forma independiente. Producto de este análisis se obtuvo 63 bandas polimórficas relacionadas al carácter de resistencia, cuya información fue introducida en el programa MAPRF6. Como resultado se obtuvo 4 grupos de ligamiento. Se encontró un RGA, obtenido en otro estudio que co-segrega (0 cM con el locus del gen de resistencia extrema (Rx y los AFLPs 42 y 39 que están rodeando el mismo locus a 22,6 cM o más. La información obtenida será básica para implementar programas de selección asistida por marcadores moleculares en el mejoramiento genético.

  16. Identification and Transcription Profiling of NDUFS8 in Aedes taeniorhynchus (Diptera: Culicidae): Developmental Regulation and Environmental Response

    Science.gov (United States)

    2014-12-18

    Identification and transcription profiling of NDUFS8 in Aedes taeniorhynchus (Diptera: Culicidae): developmental regulation and environmental response...7205 Email lmzhao@ufl.edu Abstract: The cDNA of a NADH dehydrogenase-ubiquinone Fe-S protein 8 subunit (NDUFS8) gene from Aedes (Ochlerotatus...information useful for developing dsRNA pesticide for mosquito control. Keywords: Aedes taeniorhynchus, AetNDUFS8, mRNA expression, development

  17. Gene Transcript Profiling in Sea Otters Post-Exxon Valdez Oil Spill: A Tool for Marine Ecosystem Health Assessment

    Directory of Open Access Journals (Sweden)

    Lizabeth Bowen

    2016-06-01

    Full Text Available Using a panel of genes stimulated by oil exposure in a laboratory study, we evaluated gene transcription in blood leukocytes sampled from sea otters captured from 2006–2012 in western Prince William Sound (WPWS, Alaska, 17–23 years after the 1989 Exxon Valdez oil spill (EVOS. We compared WPWS sea otters to reference populations (not affected by the EVOS from the Alaska Peninsula (2009, Katmai National Park and Preserve (2009, Clam Lagoon at Adak Island (2012, Kodiak Island (2005 and captive sea otters in aquaria. Statistically, sea otter gene transcript profiles separated into three distinct clusters: Cluster 1, Kodiak and WPWS 2006–2008 (higher relative transcription; Cluster 2, Clam Lagoon and WPWS 2010–2012 (lower relative transcription; and Cluster 3, Alaska Peninsula, Katmai and captive sea otters (intermediate relative transcription. The lower transcription of the aryl hydrocarbon receptor (AHR, an established biomarker for hydrocarbon exposure, in WPWS 2010–2012 compared to earlier samples from WPWS is consistent with declining hydrocarbon exposure, but the pattern of overall low levels of transcription seen in WPWS 2010–2012 could be related to other factors, such as food limitation, pathogens or injury, and may indicate an inability to mount effective responses to stressors. Decreased transcriptional response across the entire gene panel precludes the evaluation of whether or not individual sea otters show signs of exposure to lingering oil. However, related studies on sea otter demographics indicate that by 2012, the sea otter population in WPWS had recovered, which indicates diminishing oil exposure.

  18. Gene transcript profiling in sea otters post-Exxon Valdez oil spill: A tool for marine ecosystem health assessment

    Science.gov (United States)

    Bowen, Lizabeth; Miles, A. Keith; Ballachey, Brenda E.; Waters, Shannon C.; Bodkin, James L.

    2016-01-01

    Using a panel of genes stimulated by oil exposure in a laboratory study, we evaluated gene transcription in blood leukocytes sampled from sea otters captured from 2006–2012 in western Prince William Sound (WPWS), Alaska, 17–23 years after the 1989 Exxon Valdez oil spill (EVOS). We compared WPWS sea otters to reference populations (not affected by the EVOS) from the Alaska Peninsula (2009), Katmai National Park and Preserve (2009), Clam Lagoon at Adak Island (2012), Kodiak Island (2005) and captive sea otters in aquaria. Statistically, sea otter gene transcript profiles separated into three distinct clusters: Cluster 1, Kodiak and WPWS 2006–2008 (higher relative transcription); Cluster 2, Clam Lagoon and WPWS 2010–2012 (lower relative transcription); and Cluster 3, Alaska Peninsula, Katmai and captive sea otters (intermediate relative transcription). The lower transcription of the aryl hydrocarbon receptor (AHR), an established biomarker for hydrocarbon exposure, in WPWS 2010–2012 compared to earlier samples from WPWS is consistent with declining hydrocarbon exposure, but the pattern of overall low levels of transcription seen in WPWS 2010–2012 could be related to other factors, such as food limitation, pathogens or injury, and may indicate an inability to mount effective responses to stressors. Decreased transcriptional response across the entire gene panel precludes the evaluation of whether or not individual sea otters show signs of exposure to lingering oil. However, related studies on sea otter demographics indicate that by 2012, the sea otter population in WPWS had recovered, which indicates diminishing oil exposure.

  19. Key processes for Cheirolophus (Asteraceae diversification on oceanic islands inferred from AFLP data.

    Directory of Open Access Journals (Sweden)

    Daniel Vitales

    Full Text Available The radiation of the genus Cheirolophus (Asteraceae in Macaronesia constitutes a spectacular case of rapid diversification on oceanic islands. Twenty species - nine of them included in the IUCN Red List of Threatened Species - have been described to date inhabiting the Madeiran and Canarian archipelagos. A previous phylogenetic study revealed that the diversification of Cheirolophus in Macaronesia started less than 2 Ma. As a result of such an explosive speciation process, limited phylogenetic resolution was reported, mainly due to the low variability of the employed molecular markers. In the present study, we used highly polymorphic AFLP markers to i evaluate species' boundaries, ii infer their evolutionary relationships and iii investigate the patterns of genetic diversity in relation to the potential processes likely involved in the radiation of Cheirolophus. One hundred and seventy-two individuals representing all Macaronesian Cheirolophus species were analysed using 249 AFLP loci. Our results suggest that geographic isolation played an important role in this radiation process. This was likely driven by the combination of poor gene flow capacity and a good ability for sporadic long-distance colonisations. In addition, we also found some traces of introgression and incipient ecological adaptation, which could have further enhanced the extraordinary diversification of Cheirolophus in Macaronesia. Last, we hypothesize that current threat categories assigned to Macaronesian Cheirolophus species do not reflect their respective evolutionary relevance, so future evaluations of their conservation status should take into account the results presented here.

  20. Key processes for Cheirolophus (Asteraceae) diversification on oceanic islands inferred from AFLP data.

    Science.gov (United States)

    Vitales, Daniel; García-Fernández, Alfredo; Pellicer, Jaume; Vallès, Joan; Santos-Guerra, Arnoldo; Cowan, Robyn S; Fay, Michael F; Hidalgo, Oriane; Garnatje, Teresa

    2014-01-01

    The radiation of the genus Cheirolophus (Asteraceae) in Macaronesia constitutes a spectacular case of rapid diversification on oceanic islands. Twenty species - nine of them included in the IUCN Red List of Threatened Species - have been described to date inhabiting the Madeiran and Canarian archipelagos. A previous phylogenetic study revealed that the diversification of Cheirolophus in Macaronesia started less than 2 Ma. As a result of such an explosive speciation process, limited phylogenetic resolution was reported, mainly due to the low variability of the employed molecular markers. In the present study, we used highly polymorphic AFLP markers to i) evaluate species' boundaries, ii) infer their evolutionary relationships and iii) investigate the patterns of genetic diversity in relation to the potential processes likely involved in the radiation of Cheirolophus. One hundred and seventy-two individuals representing all Macaronesian Cheirolophus species were analysed using 249 AFLP loci. Our results suggest that geographic isolation played an important role in this radiation process. This was likely driven by the combination of poor gene flow capacity and a good ability for sporadic long-distance colonisations. In addition, we also found some traces of introgression and incipient ecological adaptation, which could have further enhanced the extraordinary diversification of Cheirolophus in Macaronesia. Last, we hypothesize that current threat categories assigned to Macaronesian Cheirolophus species do not reflect their respective evolutionary relevance, so future evaluations of their conservation status should take into account the results presented here.

  1. A note on the measurement of genetic diversity within genebank accessions of lettuce (Lactuca sativa L.) using AFLP markers

    NARCIS (Netherlands)

    Jansen, J.; Verbakel, H.; Peleman, J.; Hintum, van T.J.L.

    2006-01-01

    This paper discusses a statistical approach for measuring genetic diversity within genebank accessions of a self-fertilising species. This approach is applied to lettuce (Lactuca sativa L.), using AFLP marker data on a set of 1,390 accessions, representing six different lettuce types. Knowledge of

  2. Use of AFLP marker system on sugarcane somaclones to study their resistance to rust

    OpenAIRE

    María Ileana Oloriz; Luis Rojas; Víctor Gil; Milady Mendoza; Ariel Arencibia; Elva Rosa Carmona; Elio Jiménez

    2002-01-01

    AFLPs (amplified fragment length polymorphism) was carried out from genomic DNA of five rust resistant sugar cane somaclons and their susceptible donor, Saccharum officinarum var B 4362, using three combinations of primers (EcoRI/aca: MseI/acc; EcoRI/aca: MseI/atg and EcoRI/aca: MseI/agg). Six polymorphic bands were obtained, two of these only appeared in the resistant genotypes, which are probably DNA sequences, related to rust resistance locus. These fragments have been cloned to study thei...

  3. A strong anti-inflammatory signature revealed by liver transcription profiling of Tmprss6-/- mice.

    Directory of Open Access Journals (Sweden)

    Michela Riba

    Full Text Available Control of systemic iron homeostasis is interconnected with the inflammatory response through the key iron regulator, the antimicrobial peptide hepcidin. We have previously shown that mice with iron deficiency anemia (IDA-low hepcidin show a pro-inflammatory response that is blunted in iron deficient-high hepcidin Tmprss6 KO mice. The transcriptional response associated with chronic hepcidin overexpression due to genetic inactivation of Tmprss6 is unknown. By using whole genome transcription profiling of the liver and analysis of spleen immune-related genes we identified several functional pathways differentially expressed in Tmprss6 KO mice, compared to IDA animals and thus irrespective of the iron status. In the effort of defining genes potentially targets of Tmprss6 we analyzed liver gene expression changes according to the genotype and independently of treatment. Tmprss6 inactivation causes down-regulation of liver pathways connected to immune and inflammatory response as well as spleen genes related to macrophage activation and inflammatory cytokines production. The anti-inflammatory status of Tmprss6 KO animals was confirmed by the down-regulation of pathways related to immunity, stress response and intracellular signaling in both liver and spleen after LPS treatment. Opposite to Tmprss6 KO mice, Hfe(-/- mice are characterized by iron overload with inappropriately low hepcidin levels. Liver expression profiling of Hfe(-/- deficient versus iron loaded mice show the opposite expression of some of the genes modulated by the loss of Tmprss6. Altogether our results confirm the anti-inflammatory status of Tmprss6 KO mice and identify new potential target pathways/genes of Tmprss6.

  4. Identification of imprinted genes subject to parent-of-origin specific expression in Arabidopsis thaliana seeds

    LENUS (Irish Health Repository)

    McKeown, Peter C

    2011-08-12

    confirmed via allele-specific transcript analysis across a range of different accessions. Differentially methylated regions were identified adjacent to ATCDC48 and PDE120, which may represent candidate imprinting control regions. Finally, we demonstrate that expression levels of these three genes in vegetative tissues are MET1-dependent, while their uniparental maternal expression in the seed is not dependent on MET1. Conclusions Using a cDNA-AFLP transcriptome profiling approach, we have identified three genes, ATCDC48, PDE120 and MS5-like which represent novel maternally expressed imprinted genes in the Arabidopsis thaliana seed. The extent of overlap between our cDNA-AFLP screen for maternally expressed imprinted genes, and other screens for imprinted and endosperm-expressed genes is discussed.

  5. Identification of imprinted genes subject to parent-of-origin specific expression in Arabidopsis thaliana seeds

    Directory of Open Access Journals (Sweden)

    Wennblom Trevor J

    2011-08-01

    seeds was confirmed via allele-specific transcript analysis across a range of different accessions. Differentially methylated regions were identified adjacent to ATCDC48 and PDE120, which may represent candidate imprinting control regions. Finally, we demonstrate that expression levels of these three genes in vegetative tissues are MET1-dependent, while their uniparental maternal expression in the seed is not dependent on MET1. Conclusions Using a cDNA-AFLP transcriptome profiling approach, we have identified three genes, ATCDC48, PDE120 and MS5-like which represent novel maternally expressed imprinted genes in the Arabidopsis thaliana seed. The extent of overlap between our cDNA-AFLP screen for maternally expressed imprinted genes, and other screens for imprinted and endosperm-expressed genes is discussed.

  6. Spatial profiling of nuclear receptor transcription patterns over the course of Drosophila development.

    Science.gov (United States)

    Wilk, Ronit; Hu, Jack; Krause, Henry M

    2013-07-08

    Previous work has shown that many of the 18 family members of Drosophila nuclear receptor transcription factors function in a temporal hierarchy to coordinate developmental progression and growth with the rate limiting process of metabolism. To gain further insight into these interactions and processes, we have undertaken a whole-family analysis of nuclear receptor mRNA spatial expression patterns over the entire process of embryogenesis, as well as the 3rd instar wandering larva stage, by using high-resolution fluorescence in situ hybridization. Overall, the patterns of expression are remarkably consistent with previously mapped spatial activity profiles documented during the same time points, with similar hot spots and temporal profiles in endocrine and metabolically important tissues. Among the more remarkable of the findings is that the majority of mRNA expression patterns observed show striking subcellular distributions, indicating potentially critical roles in the control of protein synthesis and subsequent subcellular distributions. These patterns will serve as a useful reference for future studies on the tissue-specific roles and interactions of nuclear receptor proteins, partners, cofactors and ligands.

  7. Transcript profiling of two alfalfa genotypes with contrasting cell wall composition in stems using a cross-species platform: optimizing analysis by masking biased probes

    Directory of Open Access Journals (Sweden)

    Jung Hans-Joachim G

    2010-05-01

    Full Text Available Abstract Background The GeneChip® Medicago Genome Array, developed for Medicago truncatula, is a suitable platform for transcript profiling in tetraploid alfalfa [Medicago sativa (L. subsp. sativa]. However, previous research involving cross-species hybridization (CSH has shown that sequence variation between two species can bias transcript profiling by decreasing sensitivity (number of expressed genes detected and the accuracy of measuring fold-differences in gene expression. Results Transcript profiling using the Medicago GeneChip® was conducted with elongating stem (ES and post-elongation stem (PES internodes from alfalfa genotypes 252 and 1283 that differ in stem cell wall concentrations of cellulose and lignin. A protocol was developed that masked probes targeting inter-species variable (ISV regions of alfalfa transcripts. A probe signal intensity threshold was selected that optimized both sensitivity and accuracy. After masking for both ISV regions and previously identified single-feature polymorphisms (SFPs, the number of differentially expressed genes between the two genotypes in both ES and PES internodes was approximately 2-fold greater than the number detected prior to masking. Regulatory genes, including transcription factor and receptor kinase genes that may play a role in development of secondary xylem, were significantly over-represented among genes up-regulated in 252 PES internodes compared to 1283 PES internodes. Several cell wall-related genes were also up-regulated in genotype 252 PES internodes. Real-time quantitative RT-PCR of differentially expressed regulatory and cell wall-related genes demonstrated increased sensitivity and accuracy after masking for both ISV regions and SFPs. Over 1,000 genes that were differentially expressed in ES and PES internodes of genotypes 252 and 1283 were mapped onto putative orthologous loci on M. truncatula chromosomes. Clustering simulation analysis of the differentially expressed genes

  8. Functional Profiling of Transcription Factor Genes in Neurospora crassa

    Directory of Open Access Journals (Sweden)

    Alexander J. Carrillo

    2017-09-01

    Full Text Available Regulation of gene expression by DNA-binding transcription factors is essential for proper control of growth and development in all organisms. In this study, we annotate and characterize growth and developmental phenotypes for transcription factor genes in the model filamentous fungus Neurospora crassa. We identified 312 transcription factor genes, corresponding to 3.2% of the protein coding genes in the genome. The largest class was the fungal-specific Zn2Cys6 (C6 binuclear cluster, with 135 members, followed by the highly conserved C2H2 zinc finger group, with 61 genes. Viable knockout mutants were produced for 273 genes, and complete growth and developmental phenotypic data are available for 242 strains, with 64% possessing at least one defect. The most prominent defect observed was in growth of basal hyphae (43% of mutants analyzed, followed by asexual sporulation (38%, and the various stages of sexual development (19%. Two growth or developmental defects were observed for 21% of the mutants, while 8% were defective in all three major phenotypes tested. Analysis of available mRNA expression data for a time course of sexual development revealed mutants with sexual phenotypes that correlate with transcription factor transcript abundance in wild type. Inspection of this data also implicated cryptic roles in sexual development for several cotranscribed transcription factor genes that do not produce a phenotype when mutated.

  9. Estudo da diversidade genética de Podosphaera xanthii através de marcadores AFLP e seqüências ITS

    Directory of Open Access Journals (Sweden)

    Erika Sayuri Naruzawa

    2011-06-01

    Full Text Available O meloeiro (Cucumis melo L. é uma frutífera largamente cultivada no Brasil, principalmente no nordeste brasileiro, onde é produzida principalmente para a exportação. Plantas da família do meloeiro, como pepino e abóbora, podem ser severamente afetadas pelo oídio, causado por Podosphaera xanthii.. Este fungo apresenta diversas raças fisiológicas cuja correta identificação é importante para o manejo da doença, já que o uso de variedades resistentes é o método mais eficaz de seu controle. No entanto, a identificação destas raças por meio da prática tradicional de inoculações em uma série diferenciadora de variedades de meloeiro é laboriosa e passível de erros. Devido a isso, um método alternativo seria o uso de marcadores moleculares para determinar de forma rápida a identidade das raças. O objetivo deste estudo foi o de analisar a variabilidade entre isolados de P. xanthii previamente classificados em raças através da técnica de AFLP e do seqüenciamento da região ITS 5.8S do rDNA. A partir dos marcadores AFLP obteve-se um dendrograma no qual não houve separação dos isolados quanto às suas raças, origem geográfica ou hospedeiro de origem. Com esta técnica verificou-se alta variabilidade entre isolados, com similaridade genética máxima de 69% e similaridade mínima de 23%. Ao contrário da informação gerada por AFLP, não foi observada variação na sequência da região ITS 5.8S entre isolados. Desta forma, a análise por AFLP indicou que os isolados tem composição genética heterogênea muito embora este fato não tenha sido evidenciado pelo sequenciamento da região ITS.

  10. Differentially expressed genes in Populus simonii x P. nigra in respnse to NaCl stress using cDNA-AFLP

    Science.gov (United States)

    Salinity is an important environmental factor limiting growth and productivity of plants, and affects almost every aspect of the plant physiology and biochemistry. The objective of this study was to apply cDNA-AFLP and to identify differentially expressed genes in response to NaCl stress vs. no-stre...

  11. Morphological changes of Paulownia seedlings infected phytoplasmas reveal the genes associated with witches' broom through AFLP and MSAP.

    Directory of Open Access Journals (Sweden)

    Xibing Cao

    Full Text Available Paulownia witches' broom (PaWB caused by phytoplasma might result in devastating damage to the growth and wood production of Paulownia. To study the effect of phytoplasma on DNA sequence and to discover the genes related to PaWB occurrence, DNA polymorphisms and DNA methylation levels and patterns in PaWB seedlings, the ones treated with various concentration of methyl methane sulfonate (MMS and healthy seedlings were investigated with amplified fragment length polymorphism (AFLP and methylation-sensitive amplification polymorphism (MSAP. Our results indicated that PaWB seedlings recovered a normal morphology, similar to healthy seedlings, after treatment with more than 20 mg · L-1 MMS; Phytoplasma infection did not change the Paulownia genomic DNA sequence at AFLP level, but changed the global DNA methylation levels and patterns; Genes related to PaWB were discovered through MSAP and validated using quantitative real-time PCR (qRT-PCR. These results implied that changes of DNA methylation levels and patterns were closely related to the morphological changes of seedlings infected with phytoplasmas.

  12. Genome-wide dynamic transcriptional profiling in clostridium beijerinckii NCIMB 8052 using single-nucleotide resolution RNA-Seq

    Directory of Open Access Journals (Sweden)

    Wang Yi

    2012-03-01

    Full Text Available Abstract Background Clostridium beijerinckii is a prominent solvent-producing microbe that has great potential for biofuel and chemical industries. Although transcriptional analysis is essential to understand gene functions and regulation and thus elucidate proper strategies for further strain improvement, limited information is available on the genome-wide transcriptional analysis for C. beijerinckii. Results The genome-wide transcriptional dynamics of C. beijerinckii NCIMB 8052 over a batch fermentation process was investigated using high-throughput RNA-Seq technology. The gene expression profiles indicated that the glycolysis genes were highly expressed throughout the fermentation, with comparatively more active expression during acidogenesis phase. The expression of acid formation genes was down-regulated at the onset of solvent formation, in accordance with the metabolic pathway shift from acidogenesis to solventogenesis. The acetone formation gene (adc, as a part of the sol operon, exhibited highly-coordinated expression with the other sol genes. Out of the > 20 genes encoding alcohol dehydrogenase in C. beijerinckii, Cbei_1722 and Cbei_2181 were highly up-regulated at the onset of solventogenesis, corresponding to their key roles in primary alcohol production. Most sporulation genes in C. beijerinckii 8052 demonstrated similar temporal expression patterns to those observed in B. subtilis and C. acetobutylicum, while sporulation sigma factor genes sigE and sigG exhibited accelerated and stronger expression in C. beijerinckii 8052, which is consistent with the more rapid forespore and endspore development in this strain. Global expression patterns for specific gene functional classes were examined using self-organizing map analysis. The genes associated with specific functional classes demonstrated global expression profiles corresponding to the cell physiological variation and metabolic pathway switch. Conclusions The results from this

  13. Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses

    Directory of Open Access Journals (Sweden)

    Su Zhen

    2011-07-01

    Full Text Available Abstract Background Salt stress hinders the growth of plants and reduces crop production worldwide. However, different plant species might possess different adaptive mechanisms to mitigate salt stress. We conducted a detailed pathway analysis of transcriptional dynamics in the roots of Medicago truncatula seedlings under salt stress and selected a transcription factor gene, MtCBF4, for experimental validation. Results A microarray experiment was conducted using root samples collected 6, 24, and 48 h after application of 180 mM NaCl. Analysis of 11 statistically significant expression profiles revealed different behaviors between primary and secondary metabolism pathways in response to external stress. Secondary metabolism that helps to maintain osmotic balance was induced. One of the highly induced transcription factor genes was successfully cloned, and was named MtCBF4. Phylogenetic analysis revealed that MtCBF4, which belongs to the AP2-EREBP transcription factor family, is a novel member of the CBF transcription factor in M. truncatula. MtCBF4 is shown to be a nuclear-localized protein. Expression of MtCBF4 in M. truncatula was induced by most of the abiotic stresses, including salt, drought, cold, and abscisic acid, suggesting crosstalk between these abiotic stresses. Transgenic Arabidopsis over-expressing MtCBF4 enhanced tolerance to drought and salt stress, and activated expression of downstream genes that contain DRE elements. Over-expression of MtCBF4 in M. truncatula also enhanced salt tolerance and induced expression level of corresponding downstream genes. Conclusion Comprehensive transcriptomic analysis revealed complex mechanisms exist in plants in response to salt stress. The novel transcription factor gene MtCBF4 identified here played an important role in response to abiotic stresses, indicating that it might be a good candidate gene for genetic improvement to produce stress-tolerant plants.

  14. Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses

    Science.gov (United States)

    2011-01-01

    Background Salt stress hinders the growth of plants and reduces crop production worldwide. However, different plant species might possess different adaptive mechanisms to mitigate salt stress. We conducted a detailed pathway analysis of transcriptional dynamics in the roots of Medicago truncatula seedlings under salt stress and selected a transcription factor gene, MtCBF4, for experimental validation. Results A microarray experiment was conducted using root samples collected 6, 24, and 48 h after application of 180 mM NaCl. Analysis of 11 statistically significant expression profiles revealed different behaviors between primary and secondary metabolism pathways in response to external stress. Secondary metabolism that helps to maintain osmotic balance was induced. One of the highly induced transcription factor genes was successfully cloned, and was named MtCBF4. Phylogenetic analysis revealed that MtCBF4, which belongs to the AP2-EREBP transcription factor family, is a novel member of the CBF transcription factor in M. truncatula. MtCBF4 is shown to be a nuclear-localized protein. Expression of MtCBF4 in M. truncatula was induced by most of the abiotic stresses, including salt, drought, cold, and abscisic acid, suggesting crosstalk between these abiotic stresses. Transgenic Arabidopsis over-expressing MtCBF4 enhanced tolerance to drought and salt stress, and activated expression of downstream genes that contain DRE elements. Over-expression of MtCBF4 in M. truncatula also enhanced salt tolerance and induced expression level of corresponding downstream genes. Conclusion Comprehensive transcriptomic analysis revealed complex mechanisms exist in plants in response to salt stress. The novel transcription factor gene MtCBF4 identified here played an important role in response to abiotic stresses, indicating that it might be a good candidate gene for genetic improvement to produce stress-tolerant plants. PMID:21718548

  15. AFLP diversity between the Novosibirsk and Tomsk chromosome races of the common shrew (Sorex araneus

    Directory of Open Access Journals (Sweden)

    Andrey Polyakov

    2009-12-01

    Full Text Available Genetic diversity between of the Novosibirsk and Tomsk chromosome races of the common shrew (Sorex araneus was analyzed using 39 polymorphic AFLP (amplified fragments length polymorphism markers. Exact and F-statistics tests for population differentiation demonstrated significant interracial difference in allele frequencies and significant subdivision between the races. The value of the genetic distance between the chromosome races observed in this study corresponds to that found between subspecies of mammals studied so far.

  16. Transcriptional profiling of MEF2-regulated genes in human neural progenitor cells derived from embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Shing Fai Chan

    2015-03-01

    Full Text Available The myocyte enhancer factor 2 (MEF2 family of transcription factors is highly expressed in the brain and constitutes a key determinant of neuronal survival, differentiation, and synaptic plasticity. However, genome-wide transcriptional profiling of MEF2-regulated genes has not yet been fully elucidated, particularly at the neural stem cell stage. Here we report the results of microarray analysis comparing mRNAs isolated from human neural progenitor/stem cells (hNPCs derived from embryonic stem cells expressing a control vector versus progenitors expressing a constitutively-active form of MEF2 (MEF2CA, which increases MEF2 activity. Microarray experiments were performed using the Illumina Human HT-12 V4.0 expression beadchip (GEO#: GSE57184. By comparing vector-control cells to MEF2CA cells, microarray analysis identified 1880 unique genes that were differentially expressed. Among these genes, 1121 genes were up-regulated and 759 genes were down-regulated. Our results provide a valuable resource for identifying transcriptional targets of MEF2 in hNPCs.

  17. Alteration of the exopolysaccharide production and the transcriptional profile of free-living Frankia strain CcI3 under nitrogen-fixing conditions.

    Science.gov (United States)

    Lee, Hae-In; Donati, Andrew J; Hahn, Dittmar; Tisa, Louis S; Chang, Woo-Suk

    2013-12-01

    We investigated the effect of different nitrogen (N) sources on exopolysaccharide (EPS) production and composition by Frankia strain CcI3, a N2-fixing actinomycete that forms root nodules with Casuarina species. Frankia cells grown in the absence of NH4Cl (i.e., under N2-fixing conditions) produced 1.7-fold more EPS, with lower galactose (45.1 vs. 54.7 mol%) and higher mannose (17.3 vs. 9.7 mol%) contents than those grown in the presence of NH4Cl as a combined N-source. In the absence of the combined N-source, terminally linked and branched residue contents were nearly twice as high with 32.8 vs. 15.1 mol% and 15.1 vs. 8.7 mol%, respectively, than in its presence, while the content of linearly linked residues was lower with 52.1 mol% compared to 76.2 mol%. To find out clues for the altered EPS production at the transcriptional level, we performed whole-gene expression profiling using quantitative reverse transcription PCR and microarray technology. The transcription profiles of Frankia strain CcI3 grown in the absence of NH4Cl revealed up to 2 orders of magnitude higher transcription of nitrogen fixation-related genes compared to those of CcI3 cells grown in the presence of NH4Cl. Unexpectedly, microarray data did not provide evidence for transcriptional regulation as a mechanism for differences in EPS production. These findings indicate effects of nitrogen fixation on the production and composition of EPS in Frankia strain CcI3 and suggest posttranscriptional regulation of enhanced EPS production in the absence of the combined N-source.

  18. Gene Expression Profiling Reveals a Massive, Aneuploidy-Dependent Transcriptional Deregulation and Distinct Differences between Lymph Node–Negative and Lymph Node–Positive Colon Carcinomas

    Science.gov (United States)

    Grade, Marian; Hörmann, Patrick; Becker, Sandra; Hummon, Amanda B.; Wangsa, Danny; Varma, Sudhir; Simon, Richard; Liersch, Torsten; Becker, Heinz; Difilippantonio, Michael J.; Ghadimi, B. Michael; Ried, Thomas

    2016-01-01

    To characterize patterns of global transcriptional deregulation in primary colon carcinomas, we did gene expression profiling of 73 tumors [Unio Internationale Contra Cancrum stage II (n = 33) and stage III (n = 40)] using oligonucleotide microarrays. For 30 of the tumors, expression profiles were compared with those from matched normal mucosa samples. We identified a set of 1,950 genes with highly significant deregulation between tumors and mucosa samples (P 5-fold average expression difference between normal colon mucosa and carcinomas, including up-regulation of MYC and of HMGA1, a putative oncogene. Furthermore, we identified 68 genes that were significantly differentially expressed between lymph node–negative and lymph node–positive tumors (P deregulated genes were validated using quantitative real-time reverse transcription-PCR in >40 tumor and normal mucosa samples with good concordance between the techniques. Finally, we established a relationship between specific genomic imbalances, which were mapped for 32 of the analyzed colon tumors by comparative genomic hybridization, and alterations of global transcriptional activity. Previously, we had conducted a similar analysis of primary rectal carcinomas. The systematic comparison of colon and rectal carcinomas revealed a significant overlap of genomic imbalances and transcriptional deregulation, including activation of the Wnt/β-catenin signaling cascade, suggesting similar pathogenic pathways. PMID:17210682

  19. Using AFLP markers and the Geneland program for the inference of population genetic structure

    DEFF Research Database (Denmark)

    Guillot, Gilles; Santos, Filipe

    2010-01-01

    the computer program Geneland designed to infer population structure has been adapted to deal with dominant markers; and (ii) we use Geneland for numerical comparison of dominant and codominant markers to perform clustering. AFLP markers lead to less accurate results than bi-allelic codominant markers...... such as single nucleotide polymorphisms (SNP) markers but this difference becomes negligible for data sets of common size (number of individuals n≥100, number of markers L≥200). The latest Geneland version (3.2.1) handling dominant markers is freely available as an R package with a fully clickable graphical...

  20. Rapid changes in transcription profiles of the Plasmodium yoelii yir multigene family in clonal populations: lack of epigenetic memory?

    Directory of Open Access Journals (Sweden)

    Deirdre Cunningham

    Full Text Available The pir multigene family, found in the genomes of Plasmodium vivax, P. knowlesi and the rodent malaria species, encode variant antigens that could be targets of the immune response. Individual parasites of the rodent malaria Plasmodium yoelii, selected by micromanipulation, transcribe only 1 to 3 different pir (yir suggesting tight transcriptional control at the level of individual cells. Using microarray and quantitative RT-PCR, we show that despite this very restricted transcription in a single cell, many yir genes are transcribed throughout the intra-erythrocytic asexual cycle. The timing and level of transcription differs between genes, with some being more highly transcribed in ring and trophozoite stages, whereas others are more highly transcribed in schizonts. Infection of immunodeficient mice with single infected erythrocytes results in populations of parasites each with transcriptional profiles different from that of the parent parasite population and from each other. This drift away from the original 'set' of transcribed genes does not appear to follow a preset pattern and "epigenetic memory" of the yir transcribed in the parent parasite can be rapidly lost. Thus, regulation of pir gene transcription may be different from that of the well-characterised multigene family, var, of Plasmodium falciparum.

  1. Mechanisms on boron-induced alleviation of aluminum-toxicity in Citrus grandis seedlings at a transcriptional level revealed by cDNA-AFLP analysis.

    Directory of Open Access Journals (Sweden)

    Xin-Xing Zhou

    Full Text Available The physiological and biochemical mechanisms on boron (B-induced alleviation of aluminum (B-toxicity in plants have been examined in some details, but our understanding of the molecular mechanisms underlying these processes is very limited. In this study, we first used the cDNA-AFLP to investigate the gene expression patterns in Citrus grandis roots responsive to B and Al interactions, and isolated 100 differentially expressed genes. Results showed that genes related to detoxification of reactive oxygen species (ROS and aldehydes (i.e., glutathione S-transferase zeta class-like isoform X1, thioredoxin M-type 4, and 2-alkenal reductase (NADP+-dependent-like, metabolism (i.e., carboxylesterases and lecithin-cholesterol acyltransferase-like 4-like, nicotianamine aminotransferase A-like isoform X3, thiosulfate sulfurtransferase 18-like isoform X1, and FNR, root isozyme 2, cell transport (i.e., non-specific lipid-transfer protein-like protein At2g13820-like and major facilitator superfamily protein, Ca signal and hormone (i.e., calcium-binding protein CML19-like and IAA-amino acid hydrolase ILR1-like 4-like, gene regulation (i.e., Gag-pol polyprotein and cell wall modification (i.e., glycosyl hydrolase family 10 protein might play a role in B-induced alleviation of Al-toxicity. Our results are useful not only for our understanding of molecular processes associated with B-induced alleviation of Al-toxicity, but also for obtaining key molecular genes to enhance Al-tolerance of plants in the future.

  2. Mechanisms on boron-induced alleviation of aluminum-toxicity in Citrus grandis seedlings at a transcriptional level revealed by cDNA-AFLP analysis.

    Science.gov (United States)

    Zhou, Xin-Xing; Yang, Lin-Tong; Qi, Yi-Ping; Guo, Peng; Chen, Li-Song

    2015-01-01

    The physiological and biochemical mechanisms on boron (B)-induced alleviation of aluminum (B)-toxicity in plants have been examined in some details, but our understanding of the molecular mechanisms underlying these processes is very limited. In this study, we first used the cDNA-AFLP to investigate the gene expression patterns in Citrus grandis roots responsive to B and Al interactions, and isolated 100 differentially expressed genes. Results showed that genes related to detoxification of reactive oxygen species (ROS) and aldehydes (i.e., glutathione S-transferase zeta class-like isoform X1, thioredoxin M-type 4, and 2-alkenal reductase (NADP+-dependent)-like), metabolism (i.e., carboxylesterases and lecithin-cholesterol acyltransferase-like 4-like, nicotianamine aminotransferase A-like isoform X3, thiosulfate sulfurtransferase 18-like isoform X1, and FNR, root isozyme 2), cell transport (i.e., non-specific lipid-transfer protein-like protein At2g13820-like and major facilitator superfamily protein), Ca signal and hormone (i.e., calcium-binding protein CML19-like and IAA-amino acid hydrolase ILR1-like 4-like), gene regulation (i.e., Gag-pol polyprotein) and cell wall modification (i.e., glycosyl hydrolase family 10 protein) might play a role in B-induced alleviation of Al-toxicity. Our results are useful not only for our understanding of molecular processes associated with B-induced alleviation of Al-toxicity, but also for obtaining key molecular genes to enhance Al-tolerance of plants in the future.

  3. Transcript profiling reveals rewiring of iron assimilation gene expression in Candida albicans and C. dubliniensis.

    LENUS (Irish Health Repository)

    Moran, Gary P

    2012-12-01

    Hyphal growth is repressed in Candida albicans and Candida dubliniensis by the transcription factor Nrg1. Transcript profiling of a C. dubliniensis NRG1 mutant identified a common group of 28 NRG1-repressed genes in both species, including the hypha-specific genes HWP1, ECE1 and the regulator of cell elongation UME6. Unexpectedly, C. dubliniensis NRG1 was required for wild-type levels of expression of 10 genes required for iron uptake including seven ferric reductases, SIT1, FTR1 and RBT5. However, at alkaline pH and during filamentous growth in 10% serum, most of these genes were highly induced in C. dubliniensis. Conversely, RBT5, PGA10, FRE10 and FRP1 did not exhibit induction during hyphal growth when NRG1 is downregulated, indicating that in C. dubliniensis NRG1 is also required for optimal expression of these genes in alkaline environments. In iron-depleted medium at pH 4.5, reduced growth of the NRG1 mutant relative to wild type was observed; however, growth was restored to wild-type levels or greater at pH 6.5, indicating that alkaline induction of iron assimilation gene expression could rescue this phenotype. These data indicate that transcriptional control of iron assimilation and pseudohypha formation has been separated in C. albicans, perhaps promoting growth in a wider range of niches.

  4. Gene Expression and Metabolite Profiling of Developing Highbush Blueberry Fruit Indicates Transcriptional Regulation of Flavonoid Metabolism and Activation of Abscisic Acid Metabolism1[W][OA

    Science.gov (United States)

    Zifkin, Michael; Jin, Alena; Ozga, Jocelyn A.; Zaharia, L. Irina; Schernthaner, Johann P.; Gesell, Andreas; Abrams, Suzanne R.; Kennedy, James A.; Constabel, C. Peter

    2012-01-01

    Highbush blueberry (Vaccinium corymbosum) fruits contain substantial quantities of flavonoids, which are implicated in a wide range of health benefits. Although the flavonoid constituents of ripe blueberries are known, the molecular genetics underlying their biosynthesis, localization, and changes that occur during development have not been investigated. Two expressed sequence tag libraries from ripening blueberry fruit were constructed as a resource for gene identification and quantitative real-time reverse transcription-polymerase chain reaction primer design. Gene expression profiling by quantitative real-time reverse transcription-polymerase chain reaction showed that flavonoid biosynthetic transcript abundance followed a tightly regulated biphasic pattern, and transcript profiles were consistent with the abundance of the three major classes of flavonoids. Proanthocyanidins (PAs) and corresponding biosynthetic transcripts encoding anthocyanidin reductase and leucoanthocyanidin reductase were most concentrated in young fruit and localized predominantly to the inner fruit tissue containing the seeds and placentae. Mean PA polymer length was seven to 8.5 subunits, linked predominantly via B-type linkages, and was relatively constant throughout development. Flavonol accumulation and localization patterns were similar to those of the PAs, and the B-ring hydroxylation pattern of both was correlated with flavonoid-3′-hydroxylase transcript abundance. By contrast, anthocyanins accumulated late in maturation, which coincided with a peak in flavonoid-3-O-glycosyltransferase and flavonoid-3′5′-hydroxylase transcripts. Transcripts of VcMYBPA1, which likely encodes an R2R3-MYB transcriptional regulator of PA synthesis, were prominent in both phases of development. Furthermore, the initiation of ripening was accompanied by a substantial rise in abscisic acid, a growth regulator that may be an important component of the ripening process and contribute to the regulation

  5. Transcript and protein expression profile of PF11_0394, a Plasmodium falciparum protein expressed in salivary gland sporozoites

    Directory of Open Access Journals (Sweden)

    Schlarman Maggie S

    2012-03-01

    Full Text Available Abstract Background Plasmodium falciparum malaria is a significant problem around the world today, thus there is still a need for new control methods to be developed. Because the sporozoite displays dual infectivity for both the mosquito salivary glands and vertebrate host tissue, it is a good target for vaccine development. Methods The P. falciparum gene, PF11_0394, was chosen as a candidate for study due to its potential role in the invasion of host tissues. This gene, which was selected using a data mining approach from PlasmoDB, is expressed both at the transcriptional and protein levels in sporozoites and likely encodes a putative surface protein. Using reverse transcription-polymerase chain reaction (RT-PCR and green fluorescent protein (GFP-trafficking studies, a transcript and protein expression profile of PF11_0394 was determined. Results The PF11_0394 protein has orthologs in other Plasmodium species and Apicomplexans, but none outside of the group Apicomplexa. PF11_0394 transcript was found to be present during both the sporozoite and erythrocytic stages of the parasite life cycle, but no transcript was detected during axenic exoerythrocytic stages. Despite the presence of transcript throughout several life cycle stages, the PF11_0394 protein was only detected in salivary gland sporozoites. Conclusions PF11_0394 appears to be a protein uniquely detected in salivary gland sporozoites. Even though a specific function of PF11_0394 has not been determined in P. falciparum biology, it could be another candidate for a new vaccine.

  6. Using AFLP-RGA markers to assess genetic diversity among pigeon pea (Cajanus cajan genotypes in relation to major diseases

    Directory of Open Access Journals (Sweden)

    Prakash G Pati

    2014-06-01

    Full Text Available Resistance gene analog (RGA-anchored amplified fragment length polymorphism (AFLP-RGA marker system was used in order to evaluate genetic relationships among 22 pigeon pea genotypes with varied responses to Fusarium wilt and sterility mosaic disease. Five AFLP-RGA primer combinations (E-CAG/wlrk-S, M-GTG/wlrk-S, M-GTG/wlrk-AS, E-CAT/S1-INV and E-CAG/wlrk-AS produced 173 scorable fragments, of which 157 (90.7% were polymorphic, with an average of 31.4 fragments per primer combination. The polymorphism rates obtained with the five primers were 83.3%, 92.0%, 92.3%, 93.0% and 93.1%, respectively. Mean polymorphic information content (PIC values ranged from 0.24 (with E-CAT/S1-INV to 0.30 (with E-CAG/wlrk-AS, whereas resolving power (RP values varied from 11.06 (with M-GTG/wlrk-S to 25.51 (with E-CAG/wlrk-AS and marker index (MI values ranged from 5.98 (with M-GTG/wlrk-S to 12.30 (with E-CAG/wlrk-AS. We identified a positive correlation between MI and RP (r²=0.98, p<0.05, stronger that that observed for the comparison between PIC and RP (r²=0.88, p<0.05. That implies that either MI or RP is the best parameter for selecting more informative AFLP-RGA primer combinations. The Jaccard coefficient ranged from 0.07 to 0.72, suggesting a broad genetic base in the genotypes studied. A neighbor-joining tree, based on the unweighted pair group method with arithmetic mean, distinguished cultivated species from wild species. The grouping of resistant genotypes in different clusters would help in the selection of suitable donors for resistance breeding in pigeon pea.

  7. Effect of chronic uremia on the transcriptional profile of the calcified aorta analyzed by RNA sequencing

    DEFF Research Database (Denmark)

    Rukov, Jakob Lewin; Gravesen, Eva; Mace, Maria L.

    2016-01-01

    The development of vascular calcification (VC) in chronic uremia (CU) is a tightly regulated process controlled by factors promoting and inhibiting mineralization. Next-generation high-throughput RNA sequencing (RNA-seq) is a powerful and sensitive tool for quantitative gene expression profiling...... with an expression level of >1 reads/kilobase transcript/million mapped reads, 2,663 genes were differentially expressed with 47% upregulated genes and 53% downregulated genes in uremic rats. Significantly deregulated genes were enriched for ontologies related to the extracellular matrix, response to wounding...

  8. Discriminative identification of transcriptional responses of promoters and enhancers after stimulus

    KAUST Repository

    Kleftogiannis, Dimitrios A.

    2016-10-17

    Promoters and enhancers regulate the initiation of gene expression and maintenance of expression levels in spatial and temporal manner. Recent findings stemming from the Cap Analysis of Gene Expression (CAGE) demonstrate that promoters and enhancers, based on their expression profiles after stimulus, belong to different transcription response subclasses. One of the most promising biological features that might explain the difference in transcriptional response between subclasses is the local chromatin environment. We introduce a novel computational framework, PEDAL, for distinguishing effectively transcriptional profiles of promoters and enhancers using solely histone modification marks, chromatin accessibility and binding sites of transcription factors and co-activators. A case study on data from MCF-7 cell-line reveals that PEDAL can identify successfully the transcription response subclasses of promoters and enhancers from two different stimulations. Moreover, we report subsets of input markers that discriminate with minimized classification error MCF-7 promoter and enhancer transcription response subclasses. Our work provides a general computational approach for identifying effectively cell-specific and stimulation-specific promoter and enhancer transcriptional profiles, and thus, contributes to improve our understanding of transcriptional activation in human.

  9. Simultaneous RNA-seq based transcriptional profiling of intracellular Brucella abortus and B. abortus-infected murine macrophages.

    Science.gov (United States)

    Hop, Huynh Tan; Arayan, Lauren Togonon; Reyes, Alisha Wehdnesday Bernardo; Huy, Tran Xuan Ngoc; Min, WonGi; Lee, Hu Jang; Son, Jee Soo; Kim, Suk

    2017-12-01

    Brucella is a zoonotic pathogen that survives within macrophages; however the replicative mechanisms involved are not fully understood. We describe the isolation of sufficient Brucella abortus RNA from primary host cell environment using modified reported methods for RNA-seq analysis, and simultaneously characterize the transcriptional profiles of intracellular B. abortus and bone marrow-derived macrophages (BMM) from BALB/c mice at 24 h (replicative phase) post-infection. Our results revealed that 25.12% (801/3190) and 16.16% (515/3190) of the total B. abortus genes were up-regulated and down-regulated at >2-fold, respectively as compared to the free-living B. abortus. Among >5-fold differentially expressed genes, the up-regulated genes are mostly involved in DNA, RNA manipulations as well as protein biosynthesis and secretion while the down-regulated genes are mainly involved in energy production and metabolism. On the other hand, the host responses during B. abortus infection revealed that 14.01% (6071/43,346) of BMM genes were reproducibly transcribed at >5-fold during infection. Transcription of cytokines, chemokines and transcriptional factors, such as tumor necrosis factor (Tnf), interleukin-1α (Il1α), interleukin-1β (Il1β), interleukin-6 (Il6), interleukin-12 (Il12), chemokine C-X-C motif (CXCL) family, nuclear factor kappa B (Nf-κb), signal transducer and activator of transcription 1 (Stat1), that may contribute to host defense were markedly induced while transcription of various genes involved in cell proliferation and metabolism were suppressed upon B. abortus infection. In conclusion, these data suggest that Brucella modulates gene expression in hostile intracellular environment while simultaneously alters the host pathways that may lead to the pathogen's intracellular survival and infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Identification of AFLP molecular linked to row- type gene in barley

    International Nuclear Information System (INIS)

    Sayed- Tabatabaei, B.E.

    2005-01-01

    Formation of the two-and six-rowed types in barley is predominantly controlled by alleles at a single locus (vrzl) which is located in long armn of chromosome 2H. This gene is a key character on the study of barley domestication and yield. Near-isogenic lines of barley were produced from crosses between Kanto Nakate Gold (tow-rowed) and Azumamugi (six-rowed). The selected lines were used for screening of AFLP polymorphic bands which are linked to vrs1 locus. After screening of a total of 1792 primer combination, five polymorphic bands were identified. A construction of high resolution map around the vrs1 locus was made using recombinant inbred lines. These markers can be used for a map-based cloning of the genes at the vrsl locus

  11. Transcriptional profiling of midgut immunity response and degeneration in the wandering silkworm, Bombyx mori.

    Science.gov (United States)

    Xu, Qiuyun; Lu, Anrui; Xiao, Guohua; Yang, Bing; Zhang, Jie; Li, Xuquan; Guan, Jingmin; Shao, Qimiao; Beerntsen, Brenda T; Zhang, Peng; Wang, Chengshu; Ling, Erjun

    2012-01-01

    Lepidoptera insects have a novel development process comprising several metamorphic stages during their life cycle compared with vertebrate animals. Unlike most Lepidoptera insects that live on nectar during the adult stage, the Bombyx mori silkworm adults do not eat anything and die after egg-laying. In addition, the midguts of Lepidoptera insects produce antimicrobial proteins during the wandering stage when the larval tissues undergo numerous changes. The exact mechanisms responsible for these phenomena remain unclear. We used the silkworm as a model and performed genome-wide transcriptional profiling of the midgut between the feeding stage and the wandering stage. Many genes concerned with metabolism, digestion, and ion and small molecule transportation were down-regulated during the wandering stage, indicating that the wandering stage midgut loses its normal functions. Microarray profiling, qRT-PCR and western blot proved the production of antimicrobial proteins (peptides) in the midgut during the wandering stage. Different genes of the immune deficiency (Imd) pathway were up-regulated during the wandering stage. However, some key genes belonging to the Toll pathway showed no change in their transcription levels. Unlike butterfly (Pachliopta aristolochiae), the midgut of silkworm moth has a layer of cells, indicating that the development of midgut since the wandering stage is not usual. Cell division in the midgut was observed only for a short time during the wandering stage. However, there was extensive cell apoptosis before pupation. The imbalance of cell division and apoptosis probably drives the continuous degeneration of the midgut in the silkworm since the wandering stage. This study provided an insight into the mechanism of the degeneration of the silkworm midgut and the production of innate immunity-related proteins during the wandering stage. The imbalance of cell division and apoptosis induces irreversible degeneration of the midgut. The Imd pathway

  12. Transcriptional blood signatures distinguish pulmonary tuberculosis, pulmonary sarcoidosis, pneumonias and lung cancers.

    Science.gov (United States)

    Bloom, Chloe I; Graham, Christine M; Berry, Matthew P R; Rozakeas, Fotini; Redford, Paul S; Wang, Yuanyuan; Xu, Zhaohui; Wilkinson, Katalin A; Wilkinson, Robert J; Kendrick, Yvonne; Devouassoux, Gilles; Ferry, Tristan; Miyara, Makoto; Bouvry, Diane; Valeyre, Dominique; Dominique, Valeyre; Gorochov, Guy; Blankenship, Derek; Saadatian, Mitra; Vanhems, Phillip; Beynon, Huw; Vancheeswaran, Rama; Wickremasinghe, Melissa; Chaussabel, Damien; Banchereau, Jacques; Pascual, Virginia; Ho, Ling-Pei; Lipman, Marc; O'Garra, Anne

    2013-01-01

    New approaches to define factors underlying the immunopathogenesis of pulmonary diseases including sarcoidosis and tuberculosis are needed to develop new treatments and biomarkers. Comparing the blood transcriptional response of tuberculosis to other similar pulmonary diseases will advance knowledge of disease pathways and help distinguish diseases with similar clinical presentations. To determine the factors underlying the immunopathogenesis of the granulomatous diseases, sarcoidosis and tuberculosis, by comparing the blood transcriptional responses in these and other pulmonary diseases. We compared whole blood genome-wide transcriptional profiles in pulmonary sarcoidosis, pulmonary tuberculosis, to community acquired pneumonia and primary lung cancer and healthy controls, before and after treatment, and in purified leucocyte populations. An Interferon-inducible neutrophil-driven blood transcriptional signature was present in both sarcoidosis and tuberculosis, with a higher abundance and expression in tuberculosis. Heterogeneity of the sarcoidosis signature correlated significantly with disease activity. Transcriptional profiles in pneumonia and lung cancer revealed an over-abundance of inflammatory transcripts. After successful treatment the transcriptional activity in tuberculosis and pneumonia patients was significantly reduced. However the glucocorticoid-responsive sarcoidosis patients showed a significant increase in transcriptional activity. 144-blood transcripts were able to distinguish tuberculosis from other lung diseases and controls. Tuberculosis and sarcoidosis revealed similar blood transcriptional profiles, dominated by interferon-inducible transcripts, while pneumonia and lung cancer showed distinct signatures, dominated by inflammatory genes. There were also significant differences between tuberculosis and sarcoidosis in the degree of their transcriptional activity, the heterogeneity of their profiles and their transcriptional response to treatment.

  13. Leaf cDNA-AFLP analysis reveals novel mechanisms for boron-induced alleviation of aluminum-toxicity in Citrus grandis seedlings.

    Science.gov (United States)

    Wang, Liu-Qing; Yang, Lin-Tong; Guo, Peng; Zhou, Xin-Xing; Ye, Xin; Chen, En-Jun; Chen, Li-Song

    2015-10-01

    Little information is available on the molecular mechanisms of boron (B)-induced alleviation of aluminum (Al)-toxicity. 'Sour pummelo' (Citrus grandis) seedlings were irrigated for 18 weeks with nutrient solution containing different concentrations of B (2.5 or 20μM H3BO3) and Al (0 or 1.2mM AlCl3·6H2O). B alleviated Al-induced inhibition in plant growth accompanied by lower leaf Al. We used cDNA-AFLP to isolate 127 differentially expressed genes from leaves subjected to B and Al interactions. These genes were related to signal transduction, transport, cell wall modification, carbohydrate and energy metabolism, nucleic acid metabolism, amino acid and protein metabolism, lipid metabolism and stress responses. The ameliorative mechanisms of B on Al-toxicity might be related to: (a) triggering multiple signal transduction pathways; (b) improving the expression levels of genes related to transport; (c) activating genes involved in energy production; and (d) increasing amino acid accumulation and protein degradation. Also, genes involved in nucleic acid metabolism, cell wall modification and stress responses might play a role in B-induced alleviation of Al-toxicity. To conclude, our findings reveal some novel mechanisms on B-induced alleviation of Al-toxicity at the transcriptional level in C. grandis leaves. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Levels of Intra-specific AFLP Diversity in Tuber-Bearing Potato Species with Different Breeding Systems and Ploidy Levels

    Directory of Open Access Journals (Sweden)

    Glenn J. Bryan

    2017-09-01

    Full Text Available DNA-based marker analysis of plant genebank material has become a useful tool in the evaluation of levels of genetic diversity and for the informed use and maintenance of germplasm. In this study, we quantify levels of amplified fragment length polymorphism (AFLP in representative accessions of wild and cultivated potato species of differing geographic origin, ploidy, and breeding system. We generated 449 polymorphic AFLP fragments in 619 plants, representing multiple plants (16–23 from 17 accessions of 14 potato taxa as well as single plants sampled from available accessions (from 3 to 56 of the same 14 taxa. Intra-accession diversities were compared to those of a synthetic ‘taxon-wide’ population comprising a single individual from a variable number of available accessions of each sampled taxon. Results confirm the expected considerably lower levels of polymorphism within accessions of self-compatible as compared to self-incompatible taxa. We observed broadly similar levels of ‘taxon-wide’ polymorphism among self-compatible and self-incompatible species, with self-compatible taxa showing only slightly lower rates of polymorphism. The most diverse accessions were the two cultivated potato accessions examined, the least diverse being the Mexican allohexaploids Solanum demissum and S. iopetalum. Generally allopolyploid self-compatible accessions exhibited lower levels of diversity. Some purported self-incompatible accessions showed relatively low levels of marker diversity, similar to the more diverse self-compatible material surveyed. Our data indicate that for self-compatible species a single plant is highly representative of a genebank accession. The situation for self-incompatible taxa is less clear, and sampling strategies used will depend on the type of investigation. These results have important implications for those seeking novel trait variation (e.g., disease resistance in gene banks as well as for the selection of individuals

  15. DNA dynamics play a role as a basal transcription factor in the positioning and regulation of gene transcription initiation

    OpenAIRE

    Alexandrov, Boian S.; Gelev, Vladimir; Yoo, Sang Wook; Alexandrov, Ludmil B.; Fukuyo, Yayoi; Bishop, Alan R.; Rasmussen, Kim ?.; Usheva, Anny

    2009-01-01

    We assess the role of DNA breathing dynamics as a determinant of promoter strength and transcription start site (TSS) location. We compare DNA Langevin dynamic profiles of representative gene promoters, calculated with the extended non-linear PBD model of DNA with experimental data on transcription factor binding and transcriptional activity. Our results demonstrate that DNA dynamic activity at the TSS can be suppressed by mutations that do not affect basal transcription factor binding–DNA co...

  16. Transcript Profiling of Hevea brasiliensis during Latex Flow

    Directory of Open Access Journals (Sweden)

    Jinquan Chao

    2017-11-01

    Full Text Available Latex exploitation enhances latex regeneration in rubber trees. The latex exploitation-caused latex flow lasts from 10 min to a few hours, which is convenient for exploring the transcript profiling of latex metabolism-related genes at the different stages of latex flow. In the present study, the expression pattern of 62 latex metabolism-related genes involved in water transportation, carbohydrate metabolism, natural rubber biosynthesis, hormone signaling, ROS generation and scavenging, and latex coagulum across three stages of latex flow between rubber tree clones CATAS7-33-97 and CATAS8-79 were comparatively analyzed by quantitative real-time PCR. The two clones show differences in latex regeneration and have a different duration of latex flow. The results showed that the expression levels of 38 genes were significantly higher in CATAS8-79 latex than in CATAS7-33-97 during latex regeneration, while 45 genes had a notably higher expression level in CATAS8-79 latex during latex flow. Together with the activation of the MEP pathway and jasmonate pathway in CATAS8-79 latex, HbPIP1;3, HbPIP1;4, HbSUT3, HbSus3, HbHMGS1-2, HbMK should contribute to the high latex regeneration ability. The up-regulation of ethylene signaling and Hb44KD and the down-regulation of latex coagulation-related genes in CATAS8-79 latex might contribute to its longer latex flow duration. This study provides some cues for revealing the regulation of latex metabolism in rubber trees.

  17. Metabolite and transcript profiling of berry skin during fruit development elucidates differential regulation between Cabernet Sauvignon and Shiraz cultivars at branching points in the polyphenol pathway.

    Science.gov (United States)

    Degu, Asfaw; Hochberg, Uri; Sikron, Noga; Venturini, Luca; Buson, Genny; Ghan, Ryan; Plaschkes, Inbar; Batushansky, Albert; Chalifa-Caspi, Vered; Mattivi, Fulvio; Delledonne, Massimo; Pezzotti, Mario; Rachmilevitch, Shimon; Cramer, Grant R; Fait, Aaron

    2014-07-26

    Grapevine berries undergo complex biochemical changes during fruit maturation, many of which are dependent upon the variety and its environment. In order to elucidate the varietal dependent developmental regulation of primary and specialized metabolism, berry skins of Cabernet Sauvignon and Shiraz were subjected to gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) based metabolite profiling from pre-veraison to harvest. The generated dataset was augmented with transcript profiling using RNAseq. The analysis of the metabolite data revealed similar developmental patterns of change in primary metabolites between the two cultivars. Nevertheless, towards maturity the extent of change in the major organic acid and sugars (i.e. sucrose, trehalose, malate) and precursors of aromatic and phenolic compounds such as quinate and shikimate was greater in Shiraz compared to Cabernet Sauvignon. In contrast, distinct directional projections on the PCA plot of the two cultivars samples towards maturation when using the specialized metabolite profiles were apparent, suggesting a cultivar-dependent regulation of the specialized metabolism. Generally, Shiraz displayed greater upregulation of the entire polyphenol pathway and specifically higher accumulation of piceid and coumaroyl anthocyanin forms than Cabernet Sauvignon from veraison onwards. Transcript profiling revealed coordinated increased transcript abundance for genes encoding enzymes of committing steps in the phenylpropanoid pathway. The anthocyanin metabolite profile showed F3'5'H-mediated delphinidin-type anthocyanin enrichment in both varieties towards maturation, consistent with the transcript data, indicating that the F3'5'H-governed branching step dominates the anthocyanin profile at late berry development. Correlation analysis confirmed the tightly coordinated metabolic changes during development, and suggested a source-sink relation between the central and specialized

  18. Comparative Transcriptional Profiling of Three Super-Hybrid Rice Combinations

    Directory of Open Access Journals (Sweden)

    Yonggang Peng

    2014-03-01

    Full Text Available Utilization of heterosis has significantly increased rice yields. However, its mechanism remains unclear. In this study, comparative transcriptional profiles of three super-hybrid rice combinations, LY2163, LY2186 and LYP9, at the flowering and filling stages, were created using rice whole-genome oligonucleotide microarray. The LY2163, LY2186 and LYP9 hybrids yielded 1193, 1630 and 1046 differentially expressed genes (DGs, accounting for 3.2%, 4.4% and 2.8% of the total number of genes (36,926, respectively, after using the z-test (p < 0.01. Functional category analysis showed that the DGs in each hybrid combination were mainly classified into the carbohydrate metabolism and energy metabolism categories. Further analysis of the metabolic pathways showed that DGs were significantly enriched in the carbon fixation pathway (p < 0.01 for all three combinations. Over 80% of the DGs were located in rice quantitative trait loci (QTLs of the Gramene database, of which more than 90% were located in the yield related QTLs in all three combinations, which suggested that there was a correlation between DGs and rice heterosis. Pathway Studio analysis showed the presence of DGs in the circadian regulatory network of all three hybrid combinations, which suggested that the circadian clock had a role in rice heterosis. Our results provide information that can help to elucidate the molecular mechanism underlying rice heterosis.

  19. NSR-seq transcriptional profiling enables identification of a gene signature of Plasmodium falciparum parasites infecting children.

    Science.gov (United States)

    Vignali, Marissa; Armour, Christopher D; Chen, Jingyang; Morrison, Robert; Castle, John C; Biery, Matthew C; Bouzek, Heather; Moon, Wonjong; Babak, Tomas; Fried, Michal; Raymond, Christopher K; Duffy, Patrick E

    2011-03-01

    Malaria caused by Plasmodium falciparum results in approximately 1 million annual deaths worldwide, with young children and pregnant mothers at highest risk. Disease severity might be related to parasite virulence factors, but expression profiling studies of parasites to test this hypothesis have been hindered by extensive sequence variation in putative virulence genes and a preponderance of host RNA in clinical samples. We report here the application of RNA sequencing to clinical isolates of P. falciparum, using not-so-random (NSR) primers to successfully exclude human ribosomal RNA and globin transcripts and enrich for parasite transcripts. Using NSR-seq, we confirmed earlier microarray studies showing upregulation of a distinct subset of genes in parasites infecting pregnant women, including that encoding the well-established pregnancy malaria vaccine candidate var2csa. We also describe a subset of parasite transcripts that distinguished parasites infecting children from those infecting pregnant women and confirmed this observation using quantitative real-time PCR and mass spectrometry proteomic analyses. Based on their putative functional properties, we propose that these proteins could have a role in childhood malaria pathogenesis. Our study provides proof of principle that NSR-seq represents an approach that can be used to study clinical isolates of parasites causing severe malaria syndromes as well other blood-borne pathogens and blood-related diseases.

  20. NSR-seq transcriptional profiling enables identification of a gene signature of Plasmodium falciparum parasites infecting children

    Science.gov (United States)

    Vignali, Marissa; Armour, Christopher D.; Chen, Jingyang; Morrison, Robert; Castle, John C.; Biery, Matthew C.; Bouzek, Heather; Moon, Wonjong; Babak, Tomas; Fried, Michal; Raymond, Christopher K.; Duffy, Patrick E.

    2011-01-01

    Malaria caused by Plasmodium falciparum results in approximately 1 million annual deaths worldwide, with young children and pregnant mothers at highest risk. Disease severity might be related to parasite virulence factors, but expression profiling studies of parasites to test this hypothesis have been hindered by extensive sequence variation in putative virulence genes and a preponderance of host RNA in clinical samples. We report here the application of RNA sequencing to clinical isolates of P. falciparum, using not-so-random (NSR) primers to successfully exclude human ribosomal RNA and globin transcripts and enrich for parasite transcripts. Using NSR-seq, we confirmed earlier microarray studies showing upregulation of a distinct subset of genes in parasites infecting pregnant women, including that encoding the well-established pregnancy malaria vaccine candidate var2csa. We also describe a subset of parasite transcripts that distinguished parasites infecting children from those infecting pregnant women and confirmed this observation using quantitative real-time PCR and mass spectrometry proteomic analyses. Based on their putative functional properties, we propose that these proteins could have a role in childhood malaria pathogenesis. Our study provides proof of principle that NSR-seq represents an approach that can be used to study clinical isolates of parasites causing severe malaria syndromes as well other blood-borne pathogens and blood-related diseases. PMID:21317536

  1. The post-transcriptional operon

    DEFF Research Database (Denmark)

    Tenenbaum, Scott A.; Christiansen, Jan; Nielsen, Henrik

    2011-01-01

    model (PTO) is used to describe data from an assortment of methods (e.g. RIP-Chip, CLIP-Chip, miRNA profiling, ribosome profiling) that globally address the functionality of mRNA. Several examples of post-transcriptional operons have been documented in the literature and demonstrate the usefulness...... of the model in identifying new participants in cellular pathways as well as in deepening our understanding of cellular responses....

  2. Genetic diversity revealed by AFLP markers in Albanian goat breeds

    Directory of Open Access Journals (Sweden)

    Hoda Anila

    2012-01-01

    Full Text Available The amplified fragment length polymorphism (AFLP technique with three EcoRI/TaqI primer combinations was used in 185 unrelated individuals, representative of 6 local goat breeds of Albania, and 107 markers were generated. The mean Nei’s expected heterozygosity value for the whole population was 0.199 and the mean Shannon index was 0.249, indicating a high level of within-breed diversity. Wright’s FST index, Nei’s unbiased genetic distance and Reynolds’ genetic distance were calculated. Pairwise Fst values among the populations ranged from 0.019 to 0.047. A highly significant average FST of 0.031 was estimated, showing a low level of breed subdivision. Most of the variation is accounted for by differences among individuals. Cluster analysis based on Reynolds’ genetic distance between breeds and PCA were performed. An individual UPGMA tree based on Jaccard’s similarity index showed clusters with individuals from all goat breeds. Analysis of population structure points to a high level of admixture among breeds.

  3. Study on differential transcriptional profile in human hepatocyte exposed to different doses γ ray

    International Nuclear Information System (INIS)

    Li Jianguo; Wen Jianhua; Duan Zhikai; Tian Yu; Wang Fang; Zuo Yahui

    2009-01-01

    The study analyzed the differential transcriptional profile of normal human hepatic cell and human hepatic cell radiated with three different doses (0.5 Gy, 2 Gy, 4 Gy γ ray) by gene chip technique. The results showed that the whole differentially expressed genes of three different doses have 284 in 14112 human genes analyzed, in which 261 genes were up-regulated and 23 genes were down-regulated. These genes are mainly associated with interferon receptor, mitochondrial regulation, homo sapiens hepatitis A virus cellular receptor, cell cycle regulation, kinase and zinc finger protein etc. RT-PCR results indicated that up-regulated expression of gene HAVcr-1, HAVcr-2, MFTC, MOAP1 and down-regulated expression of gene TRIP12, DCN are consistent with gene chip data. (authors)

  4. An efficient cDNA-AFLP-based strategy for the identification of putative pathogenicity factors from the potato cyst nematode Globodera rostochiensis.

    Science.gov (United States)

    Qin, L; Overmars, H; Helder, J; Popeijus, H; van der Voort, J R; Groenink, W; van Koert, P; Schots, A; Bakker, J; Smant, G

    2000-08-01

    A new strategy has been designed to identify putative pathogenicity factors from the dorsal or subventral esophageal glands of the potato cyst nematode Globodera rostochiensis. Three independent criteria were used for selection. First, genes of interest should predominantly be expressed in infective second-stage juveniles, and not, or to a far lesser extent, in younger developmental stages. For this, gene expression profiles from five different developmental stages were generated with cDNA-AFLP (amplified fragment length polymorphism). Secondly, the mRNA corresponding to such a putative pathogenicity factor should predominantly be present in the esophageal glands of pre-parasitic juveniles. This was checked by in situ hybridization. As a third criterion, these proteinaceous factors should be preceded by a signal peptide for secretion. Expression profiles of more than 4,000 genes were generated and three up-regulated, dorsal gland-specific proteins preceded by signal peptide for secretion were identified. No dorsal gland genes have been cloned before from plant-parasitic nematodes. The partial sequence of these three factors, A4, A18, and A41, showed no significant homology to any known gene. Their presence in the dorsal glands of infective juveniles suggests that these proteins could be involved in feeding cell initiation, and not in migration in the plant root or in protection against plant defense responses. Finally, the applicability of this new strategy in other plant-microbe interactions is discussed.

  5. Primer reporte de empleo de marcadores AFLP en Asteraceae en Cuba

    Directory of Open Access Journals (Sweden)

    Grecia Montalvo Fernández

    2012-07-01

    Full Text Available Título en ingles: First report of the employment of AFLP markers in Asteraceae in Cuba. Resumen: Rhodogeron coronopifolius Griseb., es una especie vegetal de la familia Asteraceae, que se encuentra en peligro crítico de extinción. Es endémico de la provincia Villa Clara en la región central de Cuba. Habita en el matorral xeromorfo sub espinoso sobre serpentina. Existen solo cinco poblaciones naturales dentro de un área protegida, la principal causa de amenaza es la fragmentación de su hábitat por acciones antrópicas. Debido a su situación de conservación, se hace necesario realizar estudios de la diversidad genética de las poblaciones naturales para así generar información básica y diseñar una estrategia de conservación. El objetivo de este trabajo fue analizar de manera preliminar la diversidad genética de cuatro poblaciones de esta especie utilizando marcadores AFLP (Polimorfismo de Longitud de Fragmentos Amplificados. Se emplearon dos combinaciones de iniciadores y se evaluó el porcentaje de polimorfismo así como la similitud entre los individuos.  Se obtuvieron 165 loci de los cuales el 78,7 % fueron polimórficos. La población de mayor polimorfismo fue Corojito con 85,2%, de manera general el polimorfismo fue alto con valores entre 75 y  87%. La similitud entre los individuos también fue alta con un promedio de 0,74. El agrupamiento genético fue independiente a la población de procedencia, lo que sugiere que existe intercambio genético entre las poblaciones y que estas comparten más del 80 % de los alelos que fueron analizados. Los resultados obtenidos son importantes para el mantenimiento in situ de la especie y para tomar decisiones en aras de su conservación. Palabras clave: Rhodogeron coronopifolius, peligro de extinción, polimorfismo, conservación. Abstract: Rhodogeron coronopifolius Griseb., is a specie of Asteraceae family, in critical danger of extinction. It is an endemic of Villa Clara city in the

  6. HaCaT Keratinocytes and Primary Epidermal Keratinocytes Have Different Transcriptional Profiles of Cornified Envelope-Associated Genes to T Helper Cell Cytokines

    Science.gov (United States)

    Seo, Min-Duk; Kang, Tae Jin; Lee, Chang Hoon; Lee, Ai-Young; Noh, Minsoo

    2012-01-01

    HaCaT cells are the immortalized human keratinocytes and have been extensively used to study the epidermal homeostasis and its pathophysiology. T helper cells play a role in various chronic dermatological conditions and they can affect skin barrier homeostasis. To evaluate whether HaCaT cells can be used as a model cell system to study abnormal skin barrier development in various dermatologic diseases, we analyzed the gene expression profile of epidermal differentiation markers of HaCaT cells in response to major T helper (Th) cell cytokines, such as IFNγ, IL-4, IL-17A and IL-22. The gene transcriptional profile of cornified envelope-associated proteins, such as filaggrin, loricrin, involucrin and keratin 10 (KRT10), in HaCaT cells was generally different from that in normal human keratinocytes (NHKs). This suggests that HaCaT cells have a limitation as a model system to study the pathophysiological mechanism associated with the Th cell cytokine-dependent changes in cornified envelope-associated proteins which are essential for normal skin barrier development. In contrast, the gene transcription profile change of human β2-defensin (HBD2) in response to IFNγ, IL-4 or IL-17A in HaCaT cells was consistent with the expression pattern of NHKs. IFNγ also up-regulated transglutaminase 2 (TGM2) gene transcription in both HaCaT cells and NHKs. As an alternative cell culture system for NHKs, HaCaT cells can be used to study molecular mechanisms associated with abnormal HBD2 and TGM2 expression in response to IFNγ, IL-4 or IL-17A. PMID:24116291

  7. Differences between flocculating yeast and regular industrial yeast in transcription and metabolite profiling during ethanol fermentation

    Directory of Open Access Journals (Sweden)

    Lili Li

    2017-03-01

    Full Text Available Objectives: To improve ethanolic fermentation performance of self-flocculating yeast, difference between a flocculating yeast strain and a regular industrial yeast strain was analyzed by transcriptional and metabolic approaches. Results: The number of down-regulated (industrial yeast YIC10 vs. flocculating yeast GIM2.71 and up-regulated genes were 4503 and 228, respectively. It is the economic regulation for YIC10 that non-essential genes were down-regulated, and cells put more “energy” into growth and ethanol production. Hexose transport and phosphorylation were not the limiting-steps in ethanol fermentation for GIM2.71 compared to YIC10, whereas the reaction of 1,3-disphosphoglycerate to 3-phosphoglycerate, the decarboxylation of pyruvate to acetaldehyde and its subsequent reduction to ethanol were the most limiting steps. GIM2.71 had stronger stress response than non-flocculating yeast and much more carbohydrate was distributed to other bypass, such as glycerol, acetate and trehalose synthesis. Conclusions: Differences between flocculating yeast and regular industrial yeast in transcription and metabolite profiling will provide clues for improving the fermentation performance of GIM2.71.

  8. Glacial survival east and west of the 'Mekong-Salween Divide' in the Himalaya-Hengduan Mountains region as revealed by AFLPs and cpDNA sequence variation in Sinopodophyllum hexandrum (Berberidaceae).

    Science.gov (United States)

    Li, Yong; Zhai, Sheng-Nan; Qiu, Ying-Xiong; Guo, Yan-Ping; Ge, Xue-Jun; Comes, Hans Peter

    2011-05-01

    Molecular phylogeographic studies have recently begun to elucidate how plant species from the Qinghai-Tibetan Plateau (QTP) and adjacent regions responded to the Quaternary climatic oscillations. In this regard, however, far less attention has been paid to the southern and south-eastern declivities of the QTP, i.e. the Himalaya-Hengduan Mountains (HHM) region. Here, we report a survey of amplified fragment length polymorphisms (AFLPs) and chloroplast DNA (cpDNA) sequence variation in the HHM endemic Sinopodophyllum hexandrum, a highly selfing alpine perennial herb with mainly gravity-dispersed berries (105 individuals, 19 localities). We specifically aimed to test a vicariant evolutionary hypothesis across the 'Mekong-Salween Divide', a known biogeographic and phytogeographic boundary of north-to-south trending river valleys separating the East Himalayas and Hengduan Mts. Both cpDNA and AFLPs identified two divergent phylogroups largely congruent with these mountain ranges. There was no genetic depauperation in the more strongly glaciated East Himalayas (AFLPs: H(E)=0.031; cpDNA: h(S)=0.133) compared to the mainly ice-free Hengduan Mts. (AFLPs: H(E)=0.037; cpDNA: h(S)=0.082), while population differentiation was consistently higher in the former region (AFLPs: Φ(ST)=0.522 vs. 0.312; cpDNA: Φ(ST)=0.785 vs. 0.417). Our results suggest that East Himalayan and Hengduan populations of S. hexandrum were once fragmented, persisted in situ during glacials in both areas, and have not merged again, except for a major instance of inter-lineage chloroplast capture identified at the MSD boundary. Our coalescent time estimate for all cpDNA haplotypes (c. 0.37-0.48 mya), together with paleogeological evidence, strongly rejects paleo-drainage formation as a mechanism underlying allopatric fragmentation, whereas mountain glaciers following the ridges of the MSD during glacials (and possible interglacials) could have been responsible. This study thus indicates an important role

  9. Sialotranscriptomics of Rhipicephalus zambeziensis reveals intricate expression profiles of secretory proteins and suggests tight temporal transcriptional regulation during blood-feeding.

    Science.gov (United States)

    de Castro, Minique Hilda; de Klerk, Daniel; Pienaar, Ronel; Rees, D Jasper G; Mans, Ben J

    2017-08-10

    Ticks secrete a diverse mixture of secretory proteins into the host to evade its immune response and facilitate blood-feeding, making secretory proteins attractive targets for the production of recombinant anti-tick vaccines. The largely neglected tick species, Rhipicephalus zambeziensis, is an efficient vector of Theileria parva in southern Africa but its available sequence information is limited. Next generation sequencing has advanced sequence availability for ticks in recent years and has assisted the characterisation of secretory proteins. This study focused on the de novo assembly and annotation of the salivary gland transcriptome of R. zambeziensis and the temporal expression of secretory protein transcripts in female and male ticks, before the onset of feeding and during early and late feeding. The sialotranscriptome of R. zambeziensis yielded 23,631 transcripts from which 13,584 non-redundant proteins were predicted. Eighty-six percent of these contained a predicted start and stop codon and were estimated to be putatively full-length proteins. A fifth (2569) of the predicted proteins were annotated as putative secretory proteins and explained 52% of the expression in the transcriptome. Expression analyses revealed that 2832 transcripts were differentially expressed among feeding time points and 1209 between the tick sexes. The expression analyses further indicated that 57% of the annotated secretory protein transcripts were differentially expressed. Dynamic expression profiles of secretory protein transcripts were observed during feeding of female ticks. Whereby a number of transcripts were upregulated during early feeding, presumably for feeding site establishment and then during late feeding, 52% of these were downregulated, indicating that transcripts were required at specific feeding stages. This suggested that secretory proteins are under stringent transcriptional regulation that fine-tunes their expression in salivary glands during feeding. No open

  10. Use of AFLP marker system on sugarcane somaclones to study their resistance to rust

    Directory of Open Access Journals (Sweden)

    María Ileana Oloriz

    2002-10-01

    Full Text Available AFLPs (amplified fragment length polymorphism was carried out from genomic DNA of five rust resistant sugar cane somaclons and their susceptible donor, Saccharum officinarum var B 4362, using three combinations of primers (EcoRI/aca: MseI/acc; EcoRI/aca: MseI/atg and EcoRI/aca: MseI/agg. Six polymorphic bands were obtained, two of these only appeared in the resistant genotypes, which are probably DNA sequences, related to rust resistance locus. These fragments have been cloned to study their nucleotide sequence and to investigate their roll in resistance mechanism develop by these mutants during Puccinia melanocephala infection. Key words: molecular markers, Puccinia. melanocephala, Saccharum

  11. Primary effect of chemotherapy on the transcription profile of AIDS-related Kaposi's sarcoma

    International Nuclear Information System (INIS)

    Kuyl, Antoinette C van der; Burg, Remco van den; Zorgdrager, Fokla; Dekker, John T; Maas, Jolanda; Noesel, Carel JM van; Goudsmit, Jaap; Cornelissen, Marion

    2002-01-01

    Drugs & used in anticancer chemotherapy have severe effects upon the cellular transcription and replication machinery. From in vitro studies it has become clear that these drugs can affect specific genes, as well as have an effect upon the total transcriptome. Total mRNA from two skin lesions from a single AIDS-KS patient was analyzed with the SAGE (Serial Analysis of Gene Expression) technique to assess changes in the transcriptome induced by chemotherapy. SAGE libraries were constructed from material obtained 24 (KS-24) and 48 (KS-48) hrs after combination therapy with bleomycin, doxorubicin and vincristine. KS-24 and KS-48 were compared to SAGE libraries of untreated AIDS-KS, and to libraries generated from normal skin and from isolated CD4+ T-cells, using the programs USAGE and HTM. SAGE libraries were also compared with the SAGEmap database. In order to assess the primary response of AIDS-related Kaposi's sarcoma (AIDS-KS) to chemotherapy in vivo, we analyzed the transcriptome of AIDS-KS skin lesions from a HIV-1 seropositive patient at two time points after therapy. The mRNA profile was found to have changed dramatically within 24 hours after drug treatment. There was an almost complete absence of transcripts highly expressed in AIDS-KS, probably due to a transcription block. Analysis of KS-24 suggested that mRNA pool used in its construction originated from poly(A) binding protein (PABP) mRNP complexes, which are probably located in nuclear structures known as interchromatin granule clusters (IGCs). IGCs are known to fuse after transcription inhibition, probably affecting poly(A)+RNA distribution. Forty-eight hours after chemotherapy, mRNA isolated from the lesion was largely derived from infiltrating lymphocytes, confirming the transcriptional block in the AIDS-KS tissue. These in vivo findings indicate that the effect of anti-cancer drugs is likely to be more global than up- or downregulation of specific genes, at least in this single patient with

  12. Molecular characterization of papaya genotypes using AFLP markers

    Directory of Open Access Journals (Sweden)

    Eder Jorge de Oliveira

    2011-09-01

    Full Text Available Due to the low genetic variability reported in the commercial plantations of papaya (Carica papaya L., the objective of this study was analyze the genetic diversity of 32 genotypes including cultivars, landraces, inbred lines, and improved germplasm using the AFLP technique (Amplified Fragment Length Polymorphism. The genetic distance matrix was obtained using the Nei and Li genetic distance and clustering was performed using the unweighted pair-method with arithmetic mean (UPGMA. Using 11 combinations of EcoRI/MseI primers, 383 polymorphic bands were obtained. On average, 34.8 polymorphic bands were obtained per primer combination. Five clusters were formed. The traditional cultivar 'Sunrise' and the inbred line CMF-L30-08 were the closest genotypes, and the improved germplasm (CMF041 and landrace (CMF233 the most distant. The main papaya cultivars commercially grown in Brazil, as well as four inbred lines and three improved germplasm, were clustered together, however, were not grouped in the same branch. The genetic distance between the Sunrise and Golden cultivars was 0.329, and even arising from mutation and selection within the Sunrise variety, the Golden stores considerable genetic variability. Additional variability was observed in the inbred lines derived from papaya breeding program at Embrapa Cassava and Fruits.

  13. Transcriptome profiling of Nasonia vitripennis testis reveals novel transcripts expressed from the selfish B chromosome, paternal sex ratio.

    Science.gov (United States)

    Akbari, Omar S; Antoshechkin, Igor; Hay, Bruce A; Ferree, Patrick M

    2013-09-04

    A widespread phenomenon in nature is sex ratio distortion of arthropod populations caused by microbial and genetic parasites. Currently little is known about how these agents alter host developmental processes to favor one sex or the other. The paternal sex ratio (PSR) chromosome is a nonessential, paternally transmitted centric fragment that segregates in natural populations of the jewel wasp, Nasonia vitripennis. To persist, PSR is thought to modify the hereditary material of the developing sperm, with the result that all nuclear DNA other than the PSR chromosome is destroyed shortly after fertilization. This results in the conversion of a fertilized embryo--normally a female--into a male, thereby insuring transmission of the "selfish" PSR chromosome, and simultaneously leading to wasp populations that are male-biased. To begin to understand this system at the mechanistic level, we carried out transcriptional profiling of testis from WT and PSR-carrying males. We identified a number of transcripts that are differentially expressed between these conditions. We also discovered nine transcripts that are uniquely expressed from the PSR chromosome. Four of these PSR-specific transcripts encode putative proteins, whereas the others have very short open reading frames and no homology to known proteins, suggesting that they are long noncoding RNAs. We propose several different models for how these transcripts could facilitate PSR-dependent effects. Our analyses also revealed 15.71 MB of novel transcribed regions in the N. vitripennis genome, thus increasing the current annotation of total transcribed regions by 53.4%. Finally, we detected expression of multiple meiosis-related genes in the wasp testis, despite the lack of conventional meiosis in the male sex.

  14. Transcriptional Profiling of Bone Marrow Stromal Cells in Response to Porphyromonas gingivalis Secreted Products

    Science.gov (United States)

    Reddi, Durga; Belibasakis, Georgios N.

    2012-01-01

    Periodontitis is an infectious inflammatory disease that destroys the tooth-supporting (periodontal) tissues. Porphyromonas gingivalis is an oral pathogen highly implicated in the pathogenesis of this disease. It can exert its effects to a number of cells, including osteogenic bone marrow stromal cells which are important for homeostastic capacity of the tissues. By employing gene microarray technology, this study aimed to describe the overall transcriptional events (>2-fold regulation) elicited by P. gingivalis secreted products in bone marrow stromal cells, and to dissect further the categories of genes involved in bone metabolism, inflammatory and immune responses. After 6 h of challenge with P. gingivalis, 271 genes were up-regulated whereas 209 genes were down-regulated, whereas after 24 h, these numbers were 259 and 109, respectively. The early (6 h) response was characterised by regulation of genes associated with inhibition of cell cycle, induction of apoptosis and loss of structural integrity, whereas the late (24 h) response was characterised by induction of chemokines, cytokines and their associated intracellular pathways (such as NF-κB), mediators of connective tissue and bone destruction, and suppression of regulators of osteogenic differentiation. The most strongly up-regulated genes were lipocalin 2 (LCN2) and serum amyloid A3 (SAA3), both encoding for proteins of the acute phase inflammatory response. Collectively, these transcriptional changes elicited by P. gingivalis denote that the fundamental cellular functions are hindered, and that the cells acquire a phenotype commensurate with propagated innate immune response and inflammatory-mediated tissue destruction. In conclusion, the global transcriptional profile of bone marrow stromal cells in response to P. gingivalis is marked by deregulated homeostatic functions, with implications in the pathogenesis of periodontitis. PMID:22937121

  15. Transcriptional profiling differences for articular cartilage and repair tissue in equine joint surface lesions

    Directory of Open Access Journals (Sweden)

    Stromberg Arnold J

    2009-09-01

    Full Text Available Abstract Background Full-thickness articular cartilage lesions that reach to the subchondral bone yet are restricted to the chondral compartment usually fill with a fibrocartilage-like repair tissue which is structurally and biomechanically compromised relative to normal articular cartilage. The objective of this study was to evaluate transcriptional differences between chondrocytes of normal articular cartilage and repair tissue cells four months post-microfracture. Methods Bilateral one-cm2 full-thickness defects were made in the articular surface of both distal femurs of four adult horses followed by subchondral microfracture. Four months postoperatively, repair tissue from the lesion site and grossly normal articular cartilage from within the same femorotibial joint were collected. Total RNA was isolated from the tissue samples, linearly amplified, and applied to a 9,413-probe set equine-specific cDNA microarray. Eight paired comparisons matched by limb and horse were made with a dye-swap experimental design with validation by histological analyses and quantitative real-time polymerase chain reaction (RT-qPCR. Results Statistical analyses revealed 3,327 (35.3% differentially expressed probe sets. Expression of biomarkers typically associated with normal articular cartilage and fibrocartilage repair tissue corroborate earlier studies. Other changes in gene expression previously unassociated with cartilage repair were also revealed and validated by RT-qPCR. Conclusion The magnitude of divergence in transcriptional profiles between normal chondrocytes and the cells that populate repair tissue reveal substantial functional differences between these two cell populations. At the four-month postoperative time point, the relative deficiency within repair tissue of gene transcripts which typically define articular cartilage indicate that while cells occupying the lesion might be of mesenchymal origin, they have not recapitulated differentiation to

  16. Simultaneous transcriptional profiling of bacteria and their host cells.

    Directory of Open Access Journals (Sweden)

    Michael S Humphrys

    Full Text Available We developed an RNA-Seq-based method to simultaneously capture prokaryotic and eukaryotic expression profiles of cells infected with intracellular bacteria. As proof of principle, this method was applied to Chlamydia trachomatis-infected epithelial cell monolayers in vitro, successfully obtaining transcriptomes of both C. trachomatis and the host cells at 1 and 24 hours post-infection. Chlamydiae are obligate intracellular bacterial pathogens that cause a range of mammalian diseases. In humans chlamydiae are responsible for the most common sexually transmitted bacterial infections and trachoma (infectious blindness. Disease arises by adverse host inflammatory reactions that induce tissue damage & scarring. However, little is known about the mechanisms underlying these outcomes. Chlamydia are genetically intractable as replication outside of the host cell is not yet possible and there are no practical tools for routine genetic manipulation, making genome-scale approaches critical. The early timeframe of infection is poorly understood and the host transcriptional response to chlamydial infection is not well defined. Our simultaneous RNA-Seq method was applied to a simplified in vitro model of chlamydial infection. We discovered a possible chlamydial strategy for early iron acquisition, putative immune dampening effects of chlamydial infection on the host cell, and present a hypothesis for Chlamydia-induced fibrotic scarring through runaway positive feedback loops. In general, simultaneous RNA-Seq helps to reveal the complex interplay between invading bacterial pathogens and their host mammalian cells and is immediately applicable to any bacteria/host cell interaction.

  17. Transcriptional profiling of midgut immunity response and degeneration in the wandering silkworm, Bombyx mori.

    Directory of Open Access Journals (Sweden)

    Qiuyun Xu

    Full Text Available BACKGROUND: Lepidoptera insects have a novel development process comprising several metamorphic stages during their life cycle compared with vertebrate animals. Unlike most Lepidoptera insects that live on nectar during the adult stage, the Bombyx mori silkworm adults do not eat anything and die after egg-laying. In addition, the midguts of Lepidoptera insects produce antimicrobial proteins during the wandering stage when the larval tissues undergo numerous changes. The exact mechanisms responsible for these phenomena remain unclear. PRINCIPAL FINDINGS: We used the silkworm as a model and performed genome-wide transcriptional profiling of the midgut between the feeding stage and the wandering stage. Many genes concerned with metabolism, digestion, and ion and small molecule transportation were down-regulated during the wandering stage, indicating that the wandering stage midgut loses its normal functions. Microarray profiling, qRT-PCR and western blot proved the production of antimicrobial proteins (peptides in the midgut during the wandering stage. Different genes of the immune deficiency (Imd pathway were up-regulated during the wandering stage. However, some key genes belonging to the Toll pathway showed no change in their transcription levels. Unlike butterfly (Pachliopta aristolochiae, the midgut of silkworm moth has a layer of cells, indicating that the development of midgut since the wandering stage is not usual. Cell division in the midgut was observed only for a short time during the wandering stage. However, there was extensive cell apoptosis before pupation. The imbalance of cell division and apoptosis probably drives the continuous degeneration of the midgut in the silkworm since the wandering stage. CONCLUSIONS: This study provided an insight into the mechanism of the degeneration of the silkworm midgut and the production of innate immunity-related proteins during the wandering stage. The imbalance of cell division and apoptosis

  18. Genetic relationship and diversity in a sesame (Sesamum indicum L. germplasm collection using amplified fragment length polymorphism (AFLP

    Directory of Open Access Journals (Sweden)

    Karlovsky Petr

    2006-02-01

    Full Text Available Abstract Background Sesame is an important oil crop in tropical and subtropical areas. Despite its nutritional value and historic and cultural importance, the research on sesame has been scarce, particularly as far as its genetic diversity is concerned. The aims of the present study were to clarify genetic relationships among 32 sesame accessions from the Venezuelan Germplasm Collection, which represents genotypes from five diversity centres (India, Africa, China-Korea-Japan, Central Asia and Western Asia, and to determine the association between geographical origin and genetic diversity using amplified fragment length polymorphism (AFLP. Results Large genetic variability was found within the germplasm collection. A total of 457 AFLP markers were recorded, 93 % of them being polymorphic. The Jaccard similarity coefficient ranged from 0.38 to 0.85 between pairs of accessions. The UPGMA dendrogram grouped 25 of 32 accessions in two robust clusters, but it has not revealed any association between genotype and geographical origin. Indian, African and Chinese-Korean-Japanese accessions were distributed throughout the dendrogram. A similar pattern was obtained using principal coordinates analysis. Genetic diversity studies considering five groups of accessions according to the geographic origin detected that only 20 % of the total diversity was due to diversity among groups using Nei's coefficient of population differentiation. Similarly, only 5% of the total diversity was attributed to differences among groups by the analysis of molecular variance (AMOVA. This small but significant difference was explained by the fact that the Central Asia group had a lower genetic variation than the other diversity centres studied. Conclusion We found that our sesame collection was genetically very variable and did not show an association between geographical origin and AFLP patterns. This result suggests that there was considerable gene flow among diversity centres

  19. Transcriptional profiles of pulmonary innate immune responses to isogenic antibiotic-susceptible and multidrug-resistant Pseudomonas aeruginosa.

    Science.gov (United States)

    Tam, Vincent H; Pérez, Cynthia; Ledesma, Kimberly R; Lewis, Russell E

    2018-04-01

    The virulence of an isogenic pair of Pseudomonas aeruginosa strains was studied under similar experimental conditions in two animal infection models. The time to death was significantly longer for the multidrug resistant (MDR) than the wild-type strain. The transcriptional profiles of 84 innate immune response genes in the lungs of immune competent Balb/C mice were further compared. Significantly weaker expression of genes involved in production of soluble pattern recognition receptor and complement were observed in animals infected with the MDR strain. Altered patterns of innate immune system activation may explain the attenuated virulence in MDR bacteria. © 2018 The Societies and John Wiley & Sons Australia, Ltd.

  20. Genome-wide organization and expression profiling of the NAC transcription factor family in potato (Solanum tuberosum L.).

    Science.gov (United States)

    Singh, Anil Kumar; Sharma, Vishal; Pal, Awadhesh Kumar; Acharya, Vishal; Ahuja, Paramvir Singh

    2013-08-01

    NAC [no apical meristem (NAM), Arabidopsis thaliana transcription activation factor [ATAF1/2] and cup-shaped cotyledon (CUC2)] proteins belong to one of the largest plant-specific transcription factor (TF) families and play important roles in plant development processes, response to biotic and abiotic cues and hormone signalling. Our genome-wide analysis identified 110 StNAC genes in potato encoding for 136 proteins, including 14 membrane-bound TFs. The physical map positions of StNAC genes on 12 potato chromosomes were non-random, and 40 genes were found to be distributed in 16 clusters. The StNAC proteins were phylogenetically clustered into 12 subgroups. Phylogenetic analysis of StNACs along with their Arabidopsis and rice counterparts divided these proteins into 18 subgroups. Our comparative analysis has also identified 36 putative TNAC proteins, which appear to be restricted to Solanaceae family. In silico expression analysis, using Illumina RNA-seq transcriptome data, revealed tissue-specific, biotic, abiotic stress and hormone-responsive expression profile of StNAC genes. Several StNAC genes, including StNAC072 and StNAC101that are orthologs of known stress-responsive Arabidopsis RESPONSIVE TO DEHYDRATION 26 (RD26) were identified as highly abiotic stress responsive. Quantitative real-time polymerase chain reaction analysis largely corroborated the expression profile of StNAC genes as revealed by the RNA-seq data. Taken together, this analysis indicates towards putative functions of several StNAC TFs, which will provide blue-print for their functional characterization and utilization in potato improvement.

  1. GISH and AFLP analyses of novel Brassica napus lines derived from one hybrid between B. napus and Orychophragmus violaceus.

    Science.gov (United States)

    Ma, Ni; Li, Zai-Yun; Cartagena, J A; Fukui, K

    2006-10-01

    New Brassica napus inbred lines with different petal colors and with canola quality and increased levels of oleic (approximately 70%, 10% higher than that of B. napus parent) and linoleic (28%) acids have been developed in the progenies of one B. napus cv. Oro x Orychophragmus violaceus F5 hybrid plant (2n = 31). Their genetic constituents were analyzed by using the methods of genomic in situ hybridization (GISH) and amplified fragments length polymorphism (AFLP). No intact chromosomes of O. violaceus origin were detected by GISH in their somatic cells of ovaries and root tips (2n = 38) and pollen mother cells (PMCs) with normal chromosome pairing (19 bivalents) and segregation (19:19), though signals of variable sizes and intensities were located mainly at terminal and centromeric parts of some mitotic chromosomes and meiotic bivalents at diakinesis or chromosomes in anaphase I groups and one large patch of chromatin was intensively labeled and separated spatially in some telophase I nuclei and metaphase II PMCs. AFLP analysis revealed that substantial genomic changes have occurred in these lines and O. violaceus-specific bands, deleted bands in 'Oro' and novel bands for two parents were detected. The possible mechanisms for these results were discussed.

  2. Detecting the influence of ornamental Berberis thunbergii var. atropurpurea in invasive populations of Berberis thunbergii (Berberidaceae) using AFLP1.

    Science.gov (United States)

    Lubell, Jessica D; Brand, Mark H; Lehrer, Jonathan M; Holsinger, Kent E

    2008-06-01

    Japanese barberry (Berberis thunbergii DC.) is a widespread invasive plant that remains an important landscape shrub represented by ornamental, purple-leaved forms of the botanical variety atropurpurea. These forms differ greatly in appearance from feral plants, bringing into question whether they contribute to invasive populations or whether the invasions represent self-sustaining populations derived from the initial introduction of the species in the late 19th century. In this study we used amplified fragment length polymorphism (AFLP) markers to determine whether genetic contributions from B. t. var. atropurpurea are found within naturalized Japanese barberry populations in southern New England. Bayesian clustering of AFLP genotypes and principal coordinate analysis distinguished B. t. var. atropurpurea genotypes from 85 plants representing five invasive populations. While a single feral plant resembled B. t. var. atropurpurea phenotypically and fell within the same genetic cluster, all other naturalized plants sampled were genetically distinct from the purple-leaved genotypes. Seven plants from two different sites possessed morphology consistent with Berberis vulgaris (common barberry) or B. ×ottawensis (B. thunbergii × B. vulgaris). Genetic analysis placed these plants in two clusters separate from B. thunbergii. Although the Bayesian analysis indicated some introgression of B. t. var. atropurpurea and B. vulgaris, these genotypes have had limited influence on extant feral populations of B. thunbergii.

  3. Genetic networks of liver metabolism revealed by integration of metabolic and transcriptional profiling.

    Directory of Open Access Journals (Sweden)

    Christine T Ferrara

    2008-03-01

    Full Text Available Although numerous quantitative trait loci (QTL influencing disease-related phenotypes have been detected through gene mapping and positional cloning, identification of the individual gene(s and molecular pathways leading to those phenotypes is often elusive. One way to improve understanding of genetic architecture is to classify phenotypes in greater depth by including transcriptional and metabolic profiling. In the current study, we have generated and analyzed mRNA expression and metabolic profiles in liver samples obtained in an F2 intercross between the diabetes-resistant C57BL/6 leptin(ob/ob and the diabetes-susceptible BTBR leptin(ob/ob mouse strains. This cross, which segregates for genotype and physiological traits, was previously used to identify several diabetes-related QTL. Our current investigation includes microarray analysis of over 40,000 probe sets, plus quantitative mass spectrometry-based measurements of sixty-seven intermediary metabolites in three different classes (amino acids, organic acids, and acyl-carnitines. We show that liver metabolites map to distinct genetic regions, thereby indicating that tissue metabolites are heritable. We also demonstrate that genomic analysis can be integrated with liver mRNA expression and metabolite profiling data to construct causal networks for control of specific metabolic processes in liver. As a proof of principle of the practical significance of this integrative approach, we illustrate the construction of a specific causal network that links gene expression and metabolic changes in the context of glutamate metabolism, and demonstrate its validity by showing that genes in the network respond to changes in glutamine and glutamate availability. Thus, the methods described here have the potential to reveal regulatory networks that contribute to chronic, complex, and highly prevalent diseases and conditions such as obesity and diabetes.

  4. Molecular characterization and antifungal susceptibility of Cryptococcus neoformans strains collected from a single institution in Lima, Peru.

    Science.gov (United States)

    Bejar, Vilma; Tello, Mercedes; García, Ruth; Guevara, José M; Gonzales, Sofia; Vergaray, German; Valencia, Esther; Abanto, Enma; Ortega-Loayza, Alex G; Hagen, Ferry; Gutierrez, Ericson L

    2015-01-01

    Cryptococcosis is a fungal infection with a worldwide distribution, mainly caused by Cryptococcus neoformans and Cryptococcus gattii. To molecularly characterize the mating-types, serotypes, genotypes and antifungal susceptibility profiles of a set of retrospectively isolated C. neoformans strains from Lima, Peru. A set of 32 Cryptococcus spp. strains from the Institute of Tropical Medicine of the National University of San Marcos, Lima, Peru, were included in this retrospective study. Twenty-four strains were isolated from patients, while the remaining 8 were isolated from the environment. Using conventional PCR, 27 (84.4%) of the isolates were identified as C. neoformans var. grubii mating-type alpha and serotype A. Using the AFLP fingerprinting, it was shown that 16 (50%) of the C. neoformans strains were genotype AFLP1, 13 (40.6%) were genotype AFLP1B, 2 (6.3%) were genotype AFLP2, and 1 (3.1%) was found to be a hybrid between both C. neoformans varieties (genotype AFLP3). The antifungal susceptibility profiles for amphotericin B, fluconazole and voriconazole showed that all the 32 C. neoformans are sensitive to these antifungal compounds. In this study we observed that C. neoformans var. grubii (AFLP1 and AFLP1B) and C. neoformans var. neoformans (AFLP2) were the only cryptococcal varieties involved. All strains were found to be sensitive to the antifungals tested, results that are consistent with those found in the international literature. Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  5. Genetic diversity of Actinobacillus lignieresii isolates from different hosts

    DEFF Research Database (Denmark)

    Kokotovic, Branko; Angen, Øystein; Bisgaard, Magne

    2011-01-01

    Genetic diversity detected by analysis of amplified fragment length polymorphisms (AFLPs) of 54 Actinobacilus lignieresii isolates from different hosts and geographic localities is described. On the basis of variances in AFLP profiles, the strains were grouped in two major clusters; one comprisin...

  6. Production of the 2400 kb Duchenne muscular dystrophy (DMD) gene transcript; transcription time and cotranscriptional splicing

    Energy Technology Data Exchange (ETDEWEB)

    Tennyson, C.N.; Worton, R.G. [Univ. of Toronto and the Hospital for Sick Children, Ontario (Canada)

    1994-09-01

    The largest known gene in any organism is the human DMD gene which has 79 exons that span 2400 kb. The extreme nature of the DMD gene raises questions concerning the time required for transcription and whether splicing begins before transcription is complete. DMD gene transcription is induced as cultured human myoblasts differentiate to form multinucleated myotubes, providing a system for studying the kinetics of transcription and splicing. Using quantitative RT-PCR, transcript accumulation was monitored from four different regions within the gene following induction of expression. By comparing the accumulation of transcripts from the 5{prime} and 3{prime} ends of the gene we have shown that approximately 12 hours are required to transcribe 1770 kb of the gene, extrapolating to a time of 16 hours for the transcription unit expressed in muscle. Comparison of accumulation profiles for spliced and total transcript demonstrated that transcripts are spliced at the 5{prime} end before transcription is complete, providing strong evidence for cotranscriptional splicing of DMD gene transcripts. Finally, the rate of transcript accumulation was reduced at the 3{prime} end of the gene relative to the 5{prime} end, perhaps due to premature termination of transcription complexes as they traverse this enormous transcription unit. The lag between transcription initiation and the appearance of complete transcripts could be important in limiting transcript production in dividing cells and to the timing of mRNA appearance in differentiating muscle.

  7. Comparative transcriptional profiling of Bacillus cereus sensu lato strains during growth in CO2-bicarbonate and aerobic atmospheres.

    Directory of Open Access Journals (Sweden)

    Karla D Passalacqua

    Full Text Available Bacillus species are spore-forming bacteria that are ubiquitous in the environment and display a range of virulent and avirulent phenotypes. This range is particularly evident in the Bacillus cereus sensu lato group; where closely related strains cause anthrax, food-borne illnesses, and pneumonia, but can also be non-pathogenic. Although much of this phenotypic range can be attributed to the presence or absence of a few key virulence factors, there are other virulence-associated loci that are conserved throughout the B. cereus group, and we hypothesized that these genes may be regulated differently in pathogenic and non-pathogenic strains.Here we report transcriptional profiles of three closely related but phenotypically unique members of the Bacillus cereus group--a pneumonia-causing B. cereus strain (G9241, an attenuated strain of B. anthracis (Sterne 34F(2, and an avirulent B. cereus strain (10987--during exponential growth in two distinct atmospheric environments: 14% CO(2/bicarbonate and ambient air. We show that the disease-causing Bacillus strains undergo more distinctive transcriptional changes between the two environments, and that the expression of plasmid-encoded virulence genes was increased exclusively in the CO(2 environment. We observed a core of conserved metabolic genes that were differentially expressed in all three strains in both conditions. Additionally, the expression profiles of putative virulence genes in G9241 suggest that this strain, unlike Bacillus anthracis, may regulate gene expression with both PlcR and AtxA transcriptional regulators, each acting in a different environment.We have shown that homologous and even identical genes within the genomes of three closely related members of the B. cereus sensu lato group are in some instances regulated very differently, and that these differences can have important implications for virulence. This study provides insights into the evolution of the B. cereus group, and

  8. Dense genetic linkage maps of three Populus species (Populus deltoides, P. nigra and P. trichocarpa) based on AFLP and microsatellite markers.

    Science.gov (United States)

    Cervera, M T; Storme, V; Ivens, B; Gusmão, J; Liu, B H; Hostyn, V; Van Slycken, J; Van Montagu, M; Boerjan, W

    2001-06-01

    Populus deltoides, P. nigra, and P. trichocarpa are the most important species for poplar breeding programs worldwide. In addition, Populus has become a model for fundamental research on trees. Linkage maps were constructed for these three species by analyzing progeny of two controlled crosses sharing the same female parent, Populus deltoides cv. S9-2 x P. nigra cv. Ghoy and P. deltoides cv. S9-2 x P. trichocarpa cv. V24. The two-way pseudotestcross mapping strategy was used to construct the maps. Amplified fragment length polymorphism (AFLP) markers that segregated 1:1 were used to form the four parental maps. Microsatellites and sequence-tagged sites were used to align homoeologous groups between the maps and to merge linkage groups within the individual maps. Linkage analysis and alignment of the homoeologous groups resulted in 566 markers distributed over 19 groups for P. deltoides covering 86% of the genome, 339 markers distributed over 19 groups for P. trichocarpa covering 73%, and 369 markers distributed over 28 groups for P. nigra covering 61%. Several tests for randomness showed that the AFLP markers were randomly distributed over the genome.

  9. Elucidating MicroRNA Regulatory Networks Using Transcriptional, Post-transcriptional, and Histone Modification Measurements

    Directory of Open Access Journals (Sweden)

    Sara J.C. Gosline

    2016-01-01

    Full Text Available MicroRNAs (miRNAs regulate diverse biological processes by repressing mRNAs, but their modest effects on direct targets, together with their participation in larger regulatory networks, make it challenging to delineate miRNA-mediated effects. Here, we describe an approach to characterizing miRNA-regulatory networks by systematically profiling transcriptional, post-transcriptional and epigenetic activity in a pair of isogenic murine fibroblast cell lines with and without Dicer expression. By RNA sequencing (RNA-seq and CLIP (crosslinking followed by immunoprecipitation sequencing (CLIP-seq, we found that most of the changes induced by global miRNA loss occur at the level of transcription. We then introduced a network modeling approach that integrated these data with epigenetic data to identify specific miRNA-regulated transcription factors that explain the impact of miRNA perturbation on gene expression. In total, we demonstrate that combining multiple genome-wide datasets spanning diverse regulatory modes enables accurate delineation of the downstream miRNA-regulated transcriptional network and establishes a model for studying similar networks in other systems.

  10. Large-scale transcriptional profiling of lignified tissues in Tectona grandis.

    Science.gov (United States)

    Galeano, Esteban; Vasconcelos, Tarcísio Sales; Vidal, Mabel; Mejia-Guerra, Maria Katherine; Carrer, Helaine

    2015-09-15

    Currently, Tectona grandis is one of the most valuable trees in the world and no transcript dataset related to secondary xylem is available. Considering how important the secondary xylem and sapwood transition from young to mature trees is, little is known about the expression differences between those successional processes and which transcription factors could regulate lignin biosynthesis in this tropical tree. Although MYB transcription factors are one of the largest superfamilies in plants related to secondary metabolism, it has not yet been characterized in teak. These results will open new perspectives for studies of diversity, ecology, breeding and genomic programs aiming to understand deeply the biology of this species. We present a widely expressed gene catalog for T. grandis using Illumina technology and the de novo assembly. A total of 462,260 transcripts were obtained, with 1,502 and 931 genes differentially expressed for stem and branch secondary xylem, respectively, during age transition. Analysis of stem and branch secondary xylem indicates substantial similarity in gene ontologies including carbohydrate enzymes, response to stress, protein binding, and allowed us to find transcription factors and heat-shock proteins differentially expressed. TgMYB1 displays a MYB domain and a predicted coiled-coil (CC) domain, while TgMYB2, TgMYB3 and TgMYB4 showed R2R3-MYB domain and grouped with MYBs from several gymnosperms and flowering plants. TgMYB1, TgMYB4 and TgCES presented higher expression in mature secondary xylem, in contrast with TgMYB2, TgHsp1, TgHsp2, TgHsp3, and TgBi whose expression is higher in young lignified tissues. TgMYB3 is expressed at lower level in secondary xylem. Expression patterns of MYB transcription factors and heat-shock proteins in lignified tissues are dissimilar when tree development was evaluated, obtaining more expression of TgMYB1 and TgMYB4 in lignified tissues of 60-year-old trees, and more expression in TgHsp1, TgHsp2, Tg

  11. Comparison of transcriptional profiles of Clostridium thermocellum grown on cellobiose and pretreated yellow poplar using RNA-Seq

    Directory of Open Access Journals (Sweden)

    Hui eWei

    2014-04-01

    Full Text Available The anaerobic, thermophilic bacterium, Clostridium thermocellum, secretes multi-protein enzyme complexes, termed cellulosomes, which synergistically interact with the microbial cell surface and efficiently disassemble plant cell wall biomass. C. thermocellum has also been considered a potential consolidated bioprocessing (CBP organism due to its ability to produce the biofuel products, hydrogen and ethanol. We found that C. thermocellum fermentation of pretreated yellow poplar (PYP produced 30% and 39% of ethanol and hydrogen product concentrations, respectively, compared to fermentation of cellobiose. RNA-seq was used to analyze the transcriptional profiles of these cells. The PYP-grown cells taken for analysis at the late stationary phase showed 1211 genes up-regulated and 314 down-regulated by more than 2-fold compared to the cellobiose-grown cells. These affected genes cover a broad spectrum of specific functional categories. The transcriptional analysis was further validated by sub-proteomics data taken from the literature; as well as by quantitative reverse transcription-PCR (qRT-PCR analyses of selected genes. Specifically, 47 cellulosomal protein-encoding genes, genes for 4 pairs of SigI-RsgI for polysaccharide sensing, 7 cellodextrin ABC transporter genes, and a set of NAD(PH hydogenase and alcohol dehydrogenase genes were up-regulated for cells growing on PYP compared to cellobiose. These genes could be potential candidates for future studies aimed at gaining insight into the regulatory mechanism of this organism as well as for improvement of C. thermocellum in its role as a CBP organism.

  12. Metabolite Profiling and Transcript Analysis Reveal Specificities in the Response of a Berry Derived Cell Culture to Abiotic Stresses

    Directory of Open Access Journals (Sweden)

    Biruk eAyenew

    2015-09-01

    Full Text Available As climate changes, there is a need to understand the expected effects on viticulture. In nature, stresses exist in a combined manner, hampering the elucidation of the effect of individual cues on grape berry metabolism. Cell suspension culture originated from pea-size Gamy Red grape berry was used to harness metabolic response to high light (2500 µmol m-2s-1, high temperature (40 0C and their combination in comparison to 25 0C and 100 µmol m-2s-1 under controlled condition. When LC-MS and GC-MS based metabolite profiling was implemented and integrated with targeted RT-qPCR transcript analysis specific responses were observed to the different cues. High light enhanced polyphenol metabolism while high temperature and its combination with high light induced amino acid and organic acid metabolism with additional effect on polyphenols. The trend of increment in TCA cycle genes like ATCs, ACo1 and IDH in the combined treatment might support the observed increment in organic acids, GABA shunt, and their derivatives. The apparent phenylalanine reduction with polyphenol increment under high light suggests enhanced fueling of the precursor towards the downstream phenylpropanoid pathway. In the polyphenol metabolism, a differential pattern of expression of flavonoid 3’,5’ hydroxylase and flavonoid 3’ hydroxylase was observed under high light and combined cues which were accompanied by characteristic metabolite profiles. High temperature decreased glycosylated cyanidin and peonidin forms while the combined cues increased acetylated and coumarylated peonidin forms. Transcription factors regulating anthocyanin metabolism and their methylation, MYB, OMT, UFGT and DFR, were expressed differentially among the treatments, overall in agreement with the metabolite profiles. Taken together these data provide insights into the coordination of central and secondary metabolism in relation to multiple abiotic stresses.

  13. Global transcriptional profiling of longitudinal clinical isolates of Mycobacterium tuberculosis exhibiting rapid accumulation of drug resistance.

    Directory of Open Access Journals (Sweden)

    Anirvan Chatterjee

    Full Text Available The identification of multidrug resistant (MDR, extensively and totally drug resistant Mycobacterium tuberculosis (Mtb, in vulnerable sites such as Mumbai, is a grave threat to the control of tuberculosis. The current study aimed at explaining the rapid expression of MDR in Directly Observed Treatment Short Course (DOTS compliant patients, represents the first study comparing global transcriptional profiles of 3 pairs of clinical Mtb isolates, collected longitudinally at initiation and completion of DOTS. While the isolates were drug susceptible (DS at onset and MDR at completion of DOTS, they exhibited identical DNA fingerprints at both points of collection. The whole genome transcriptional analysis was performed using total RNA from H37Rv and 3 locally predominant spoligotypes viz. MANU1, CAS and Beijing, hybridized on MTBv3 (BuG@S microarray, and yielded 36, 98 and 45 differentially expressed genes respectively. Genes encoding transcription factors (sig, rpoB, cell wall biosynthesis (emb genes, protein synthesis (rpl and additional central metabolic pathways (ppdK, pknH, pfkB were found to be down regulated in the MDR isolates as compared to the DS isolate of the same genotype. Up regulation of drug efflux pumps, ABC transporters, trans-membrane proteins and stress response transcriptional factors (whiB in the MDR isolates was observed. The data indicated that Mtb, without specific mutations in drug target genes may persist in the host due to additional mechanisms like drug efflux pumps and lowered rate of metabolism. Furthermore this population of Mtb, which also showed reduced DNA repair activity, would result in selection and stabilization of spontaneous mutations in drug target genes, causing selection of a MDR strain in the presence of drug pressures. Efflux pump such as drrA may play a significant role in increasing fitness of low level drug resistant cells and assist in survival of Mtb till acquisition of drug resistant mutations with

  14. Transcript Profiling Identifies NAC-Domain Genes Involved in Regulating Wall Ingrowth Deposition in Phloem Parenchyma Transfer Cells of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Yuzhou Wu

    2018-03-01

    Full Text Available Transfer cells (TCs play important roles in facilitating enhanced rates of nutrient transport at key apoplasmic/symplasmic junctions along the nutrient acquisition and transport pathways in plants. TCs achieve this capacity by developing elaborate wall ingrowth networks which serve to increase plasma membrane surface area thus increasing the cell's surface area-to-volume ratio to achieve increased flux of nutrients across the plasma membrane. Phloem parenchyma (PP cells of Arabidopsis leaf veins trans-differentiate to become PP TCs which likely function in a two-step phloem loading mechanism by facilitating unloading of photoassimilates into the apoplasm for subsequent energy-dependent uptake into the sieve element/companion cell (SE/CC complex. We are using PP TCs in Arabidopsis as a genetic model to identify transcription factors involved in coordinating deposition of the wall ingrowth network. Confocal imaging of pseudo-Schiff propidium iodide-stained tissue revealed different profiles of temporal development of wall ingrowth deposition across maturing cotyledons and juvenile leaves, and a basipetal gradient of deposition across mature adult leaves. RNA-Seq analysis was undertaken to identify differentially expressed genes common to these three different profiles of wall ingrowth deposition. This analysis identified 68 transcription factors up-regulated two-fold or more in at least two of the three experimental comparisons, with six of these transcription factors belonging to Clade III of the NAC-domain family. Phenotypic analysis of these NAC genes using insertional mutants revealed significant reductions in levels of wall ingrowth deposition, particularly in a double mutant of NAC056 and NAC018, as well as compromised sucrose-dependent root growth, indicating impaired capacity for phloem loading. Collectively, these results support the proposition that Clade III members of the NAC-domain family in Arabidopsis play important roles in

  15. Transcriptional profiling of primary endometrial epithelial cells following acute HIV-1 exposure reveals gene signatures related to innate immunity.

    Science.gov (United States)

    Zahoor, Muhammad Atif; Woods, Matthew William; Dizzell, Sara; Nazli, Aisha; Mueller, Kristen M; Nguyen, Philip V; Verschoor, Chris P; Kaushic, Charu

    2018-04-01

    Genital epithelial cells (GECs) line the mucosal surface of the female genital tract (FGT) and are the first cells that interface with both commensal microbiota and sexually transmitted pathogens. Despite the protective barrier formed by GECs, the FGT is a major site of HIV-1 infection. This highlights the importance of studying the interaction of HIV-1 and GECs. Using microarray analysis, we characterized the transcriptional profile of primary endometrial GECs grown in the presence or absence of physiological levels of E2 (10 -9  mol/L) or P4 (10 -7  mol/L) following acute exposure to HIV-1 for 6 hours. Acute exposure of primary endometrial GECs to HIV-1 resulted in the expression of genes related to inflammation, plasminogen activation, adhesion and diapedesis and interferon response. Interestingly, exposure to HIV-1 in the presence of E2 and P4 resulted in differential transcriptional profiles, suggesting that the response of primary endometrial GECs to HIV-1 exposure is modulated by female sex hormones. The gene expression signature of endometrial GECs indicates that the response of these cells may be key to determining host susceptibility to HIV-1 and that sex hormones modulate these interactions. This study allows us to explore possible mechanisms that explain the hormone-mediated fluctuation of HIV-1 susceptibility in women. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Clustering of transcriptional profiles identifies changes to insulin signaling as an early event in a mouse model of Alzheimer's disease.

    Science.gov (United States)

    Jackson, Harriet M; Soto, Ileana; Graham, Leah C; Carter, Gregory W; Howell, Gareth R

    2013-11-25

    Alzheimer's disease affects more than 35 million people worldwide but there is no known cure. Age is the strongest risk factor for Alzheimer's disease but it is not clear how age-related changes impact the disease. Here, we used a mouse model of Alzheimer's disease to identify age-specific changes that occur prior to and at the onset of traditional Alzheimer-related phenotypes including amyloid plaque formation. To identify these early events we used transcriptional profiling of mouse brains combined with computational approaches including singular value decomposition and hierarchical clustering. Our study identifies three key events in early stages of Alzheimer's disease. First, the most important drivers of Alzheimer's disease onset in these mice are age-specific changes. These include perturbations of the ribosome and oxidative phosphorylation pathways. Second, the earliest detectable disease-specific changes occur to genes commonly associated with the hypothalamic-adrenal-pituitary (HPA) axis. These include the down-regulation of genes relating to metabolism, depression and appetite. Finally, insulin signaling, in particular the down-regulation of the insulin receptor substrate 4 (Irs4) gene, may be an important event in the transition from age-related changes to Alzheimer's disease specific-changes. A combination of transcriptional profiling combined with computational analyses has uncovered novel features relevant to Alzheimer's disease in a widely used mouse model and offers avenues for further exploration into early stages of AD.

  17. Overexpression of Aldo-Keto-Reductase in Azole-resistant Clinical Isolates of Candida Glabrata Determined by cDNA-AFLP

    Directory of Open Access Journals (Sweden)

    Mansour Heidari

    2013-01-01

    Full Text Available Background: Candida glabrata causes significant medical problems in immunocompromised patients. Many strains of this yeast are intrinsically resistant to azole antifungal agents, and treatment is problematic, leading to high morbidity and mortality rates in immunosuppressed individuals. The primary goal of this study was to investigate the genes involved in the drug resistance of clinical isolates of C. glabrata.Methods: The clinical isolates of C. glabrata were collected in an epidemiological survey of candidal infection inimmunocompromised patients and consisted of four fluconazole and itraconazole resistant isolates, two fluconazoleand itraconazole sensitive isolates, and C. glabrata CBS 138 as reference strain. Antifungal susceptibility patterns ofthe organisms were determined beforehand by the Clinical and Laboratory Standards Institute (CLSI. The potentialgene(s implicated in antifungal resistance were investigated using complementary DNA- Amplified Fragment Length Polymorphism (cDNA-AFLP. Semi-quantitative RT-PCR was carried out to evaluate the expression of gene(s in resistant isolates as compared to sensitive and reference strains.Results and conclusions: The aldo-keto-reductase superfamily (AKR gene was upregulated in the resistant clinicalisolates as assessed by cDNA-AFLP. Semi-quantitative RT-PCR revealed AKR mRNA expression approximately twice that seen in the sensitive isolates. Overexpression of the AKR gene was associated with increased fluconazole and itraconazole resistance in C. glabrata. The data suggest that upregulation of the AKR gene might give a new insight into the mechanism of azole resistance.

  18. Isolation of Blastomyces dermatitidis yeast from lung tissue during murine infection for in vivo transcriptional profiling.

    Science.gov (United States)

    Marty, Amber J; Wüthrich, Marcel; Carmen, John C; Sullivan, Thomas D; Klein, Bruce S; Cuomo, Christina A; Gauthier, Gregory M

    2013-07-01

    Blastomyces dermatitidis belongs to a group of thermally dimorphic fungi that grow as sporulating mold in the soil and convert to pathogenic yeast in the lung following inhalation of spores. Knowledge about the molecular events important for fungal adaptation and survival in the host remains limited. The development of high-throughput analytic tools such as RNA sequencing (RNA-Seq) has potential to provide novel insight on fungal pathogenesis especially if applied in vivo during infection. However, in vivo transcriptional profiling is hindered by the low abundance of fungal cells relative to mammalian tissue and difficulty in isolating fungal cells from the tissues they infect. For the purpose of obtaining B. dermatitidis RNA for in vivo transcriptional analysis by RNA-Seq, we developed a simple technique for isolating yeast from murine lung tissue. Using a two-step approach of filtration and centrifugation following lysis of murine lung cells, 91% of yeast cells causing infection were isolated from lung tissue. B. dermatitidis recovered from the lung yielded high-quality RNA with minimal murine contamination and was suitable for RNA-Seq. Approximately 87% of the sequencing reads obtained from the recovered yeast aligned with the B. dermatitidis genome. This was similar to 93% alignment for yeast grown in vitro. The use of near-freezing temperature along with short ex vivo time minimized transcriptional changes that would have otherwise occurred with higher temperature or longer processing time. In conclusion, we have developed a technique that recovers the majority of yeast causing pulmonary infection and yields high-quality fungal RNA with minimal contamination by mammalian RNA. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. AFLP genome scans suggest divergent selection on colour patterning in allopatric colour morphs of a cichlid fish.

    Science.gov (United States)

    Mattersdorfer, Karin; Koblmüller, Stephan; Sefc, Kristina M

    2012-07-01

    Genome scan-based tests for selection are directly applicable to natural populations to study the genetic and evolutionary mechanisms behind phenotypic differentiation. We conducted AFLP genome scans in three distinct geographic colour morphs of the cichlid fish Tropheus moorii to assess whether the extant, allopatric colour pattern differentiation can be explained by drift and to identify markers mapping to genomic regions possibly involved in colour patterning. The tested morphs occupy adjacent shore sections in southern Lake Tanganyika and are separated from each other by major habitat barriers. The genome scans revealed significant genetic structure between morphs, but a very low proportion of loci fixed for alternative AFLP alleles in different morphs. This high level of polymorphism within morphs suggested that colour pattern differentiation did not result exclusively from neutral processes. Outlier detection methods identified six loci with excess differentiation in the comparison between a bluish and a yellow-blotch morph and five different outlier loci in comparisons of each of these morphs with a red morph. As population expansions and the genetic structure of Tropheus make the outlier approach prone to false-positive signals of selection, we examined the correlation between outlier locus alleles and colour phenotypes in a genetic and phenotypic cline between two morphs. Distributions of allele frequencies at one outlier locus were indeed consistent with linkage to a colour locus. Despite the challenges posed by population structure and demography, our results encourage the cautious application of genome scans to studies of divergent selection in subdivided and recently expanded populations. © 2012 Blackwell Publishing Ltd.

  20. Transcript profiling of common bean (Phaseolus vulgaris L. using the GeneChip® Soybean Genome Array: optimizing analysis by masking biased probes

    Directory of Open Access Journals (Sweden)

    Gronwald John W

    2010-05-01

    Full Text Available Abstract Background Common bean (Phaseolus vulgaris L. and soybean (Glycine max both belong to the Phaseoleae tribe and share significant coding sequence homology. This suggests that the GeneChip® Soybean Genome Array (soybean GeneChip may be used for gene expression studies using common bean. Results To evaluate the utility of the soybean GeneChip for transcript profiling of common bean, we hybridized cRNAs purified from nodule, leaf, and root of common bean and soybean in triplicate to the soybean GeneChip. Initial data analysis showed a decreased sensitivity and accuracy of measuring differential gene expression in common bean cross-species hybridization (CSH GeneChip data compared to that of soybean. We employed a method that masked putative probes targeting inter-species variable (ISV regions between common bean and soybean. A masking signal intensity threshold was selected that optimized both sensitivity and accuracy of measuring differential gene expression. After masking for ISV regions, the number of differentially-expressed genes identified in common bean was increased by 2.8-fold reflecting increased sensitivity. Quantitative RT-PCR (qRT-PCR analysis of 20 randomly selected genes and purine-ureide pathway genes demonstrated an increased accuracy of measuring differential gene expression after masking for ISV regions. We also evaluated masked probe frequency per probe set to gain insight into the sequence divergence pattern between common bean and soybean. The sequence divergence pattern analysis suggested that the genes for basic cellular functions and metabolism were highly conserved between soybean and common bean. Additionally, our results show that some classes of genes, particularly those associated with environmental adaptation, are highly divergent. Conclusions The soybean GeneChip is a suitable cross-species platform for transcript profiling in common bean when used in combination with the masking protocol described. In

  1. Incorporating evolution of transcription factor binding sites into ...

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    Identifying transcription factor binding sites (TFBSs) is essential to elucidate ... alignments with parts annotated as gap lessly aligned TFBSs (pair-profile hits) are generated. Moreover, the pair- profile related parameters are derived in a sound statistical framework. ... Much research has gone into the study of the evolution of.

  2. Large-scale integration of small molecule-induced genome-wide transcriptional responses, Kinome-wide binding affinities and cell-growth inhibition profiles reveal global trends characterizing systems-level drug action

    Directory of Open Access Journals (Sweden)

    Dusica eVidovic

    2014-09-01

    Full Text Available The Library of Integrated Network-based Cellular Signatures (LINCS project is a large-scale coordinated effort to build a comprehensive systems biology reference resource. The goals of the program include the generation of a very large multidimensional data matrix and informatics and computational tools to integrate, analyze, and make the data readily accessible. LINCS data include genome-wide transcriptional signatures, biochemical protein binding profiles, cellular phenotypic response profiles and various other datasets for a wide range of cell model systems and molecular and genetic perturbations. Here we present a partial survey of this data facilitated by data standards and in particular a robust compound standardization workflow; we integrated several types of LINCS signatures and analyzed the results with a focus on mechanism of action and chemical compounds. We illustrate how kinase targets can be related to disease models and relevant drugs. We identified some fundamental trends that appear to link Kinome binding profiles and transcriptional signatures to chemical information and biochemical binding profiles to transcriptional responses independent of chemical similarity. To fill gaps in the datasets we developed and applied predictive models. The results can be interpreted at the systems level as demonstrated based on a large number of signaling pathways. We can identify clear global relationships, suggesting robustness of cellular responses to chemical perturbation. Overall, the results suggest that chemical similarity is a useful measure at the systems level, which would support phenotypic drug optimization efforts. With this study we demonstrate the potential of such integrated analysis approaches and suggest prioritizing further experiments to fill the gaps in the current data.

  3. Origins of domestication and polyploidy in oca (Oxalis tuberosa; Oxalidaceae). 3. AFLP data of oca and four wild, tuber-bearing taxa.

    Science.gov (United States)

    Emshwiller, Eve; Theim, Terra; Grau, Alfredo; Nina, Victor; Terrazas, Franz

    2009-10-01

    Many crops are polyploids, and it can be challenging to untangle the often complicated history of their origins of domestication and origins of polyploidy. To complement other studies of the origins of polyploidy of the octoploid tuber crop oca (Oxalis tuberosa) that used DNA sequence data and phylogenetic methods, we here compared AFLP data for oca with four wild, tuber-bearing Oxalis taxa found in different regions of the central Andes. Results confirmed the divergence of two use-categories of cultivated oca that indigenous farmers use for different purposes, suggesting the possibility that they might have had separate origins of domestication. Despite previous results with nuclear-encoded, chloroplast-expressed glutamine synthetase suggesting that O. picchensis might be a progenitor of oca, AFLP data of this species, as well as different populations of wild, tuber-bearing Oxalis found in Lima Department, Peru, were relatively divergent from O. tuberosa. Results from all analytical methods suggested that the unnamed wild, tuber-bearing Oxalis found in Bolivia and O. chicligastensis in NW Argentina are the best candidates as the genome donors for polyploid O. tuberosa, but the results were somewhat equivocal about which of these two taxa is the more strongly supported as oca's progenitor.

  4. Genomic binding profiles of functionally distinct RNA polymerase III transcription complexes in human cells.

    Science.gov (United States)

    Moqtaderi, Zarmik; Wang, Jie; Raha, Debasish; White, Robert J; Snyder, Michael; Weng, Zhiping; Struhl, Kevin

    2010-05-01

    Genome-wide occupancy profiles of five components of the RNA polymerase III (Pol III) machinery in human cells identified the expected tRNA and noncoding RNA targets and revealed many additional Pol III-associated loci, mostly near short interspersed elements (SINEs). Several genes are targets of an alternative transcription factor IIIB (TFIIIB) containing Brf2 instead of Brf1 and have extremely low levels of TFIIIC. Strikingly, expressed Pol III genes, unlike nonexpressed Pol III genes, are situated in regions with a pattern of histone modifications associated with functional Pol II promoters. TFIIIC alone associates with numerous ETC loci, via the B box or a novel motif. ETCs are often near CTCF binding sites, suggesting a potential role in chromosome organization. Our results suggest that human Pol III complexes associate preferentially with regions near functional Pol II promoters and that TFIIIC-mediated recruitment of TFIIIB is regulated in a locus-specific manner.

  5. Transcriptional profiles of pilocytic astrocytoma are related to their three different locations, but not to radiological tumor features

    International Nuclear Information System (INIS)

    Zakrzewski, Krzysztof; Jarząb, Michał; Pfeifer, Aleksandra; Oczko-Wojciechowska, Małgorzata; Jarząb, Barbara; Liberski, Paweł P.; Zakrzewska, Magdalena

    2015-01-01

    Pilocytic astrocytoma is the most common type of brain tumor in the pediatric population, with a generally favorable prognosis, although recurrences or leptomeningeal dissemination are sometimes also observed. For tumors originating in the supra-or infratentorial location, a different molecular background was suggested, but plausible correlations between the transcriptional profile and radiological features and/or clinical course are still undefined. The purpose of this study was to identify gene expression profiles related to the most frequent locations of this tumor, subtypes based on various radiological features, and the clinical pattern of the disease. Eighty six children (55 males and 31 females) with histologically verified pilocytic astrocytoma were included in this study. Their age at the time of diagnosis ranged from fourteen months to seventeen years, with a mean age of seven years. There were 40 cerebellar, 23 optic tract/hypothalamic, 21 cerebral hemispheric, and two brainstem tumors. According to the radiological features presented on MRI, all cases were divided into four subtypes: cystic tumor with a non-enhancing cyst wall; cystic tumor with an enhancing cyst wall; solid tumor with central necrosis; and solid or mainly solid tumor. In 81 cases primary surgical resection was the only and curative treatment, and in five cases progression of the disease was observed. In 47 cases the analysis was done by using high density oligonucleotide microarrays (Affymetrix HG-U133 Plus 2.0) with subsequent bioinformatic analyses and confirmation of the results by independent RT-qPCR (on 39 samples). Bioinformatic analyses showed that the gene expression profile of pilocytic astrocytoma is highly dependent on the tumor location. The most prominent differences were noted for IRX2, PAX3, CXCL14, LHX2, SIX6, CNTN1 and SIX1 genes expression even within different compartments of the supratentorial region. Analysis of the genes potentially associated with radiological

  6. Caracterización de accesiones de papaya (Carica papaya L.) a través de marcadores AFLP en Cuba

    OpenAIRE

    Maruchi Alonso Esquivel; Martín Bautista Alor; Matilde Ortiz García; Adriana Quiroz Moreno; Wolfgang Rohde; Lorenzo Felipe Sánchez Teyer

    2010-01-01

    Los marcadores moleculares son herramientas valiosas en los estudios genéticos en plantas, y están siendo empleados exitosamente en programas de mejoramiento principalmente en la elección de progenitores y en la selección. El polimorfismo observado mediante la técnica molecular AFLP (Amplified Fragment Length Polymorphism) ha sido de utilidad para estudios de diversidad genética en frutales. En el presente trabajo se realizó la caracterización molecular de 12 accesiones de papaya (Carica papa...

  7. Caracterización de accesiones de papaya (Carica papaya L.) a través de marcadores AFLP en Cuba

    OpenAIRE

    Esquivel, Maruchi Alonso; Bautista Alor, Martín; Ortiz García, Matilde; Quiroz Moreno, Adriana; Rohde, Wolfgang; Sánchez Teyer, Lorenzo Felipe

    2009-01-01

    Los marcadores moleculares son herramientas valiosas en los estudios genéticos en plantas, y están siendo empleados exitosamente en programas de mejoramiento principalmente en la elección de progenitores y en la selección. El polimorfismo observado mediante la técnica molecular AFLP (Amplified Fragment Length Polymorphism) ha sido de utilidad para estudios de diversidad genética en frutales. En el presente trabajo se realizó la caracterización molecular de 12 accesiones de papaya (Carica papa...

  8. AFLP analysis and improved phytoextraction capacity of transgenic gshI-poplar clones (Populus x canescens L.) for copper in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Gyulai, G. [St. Stephanus Univ., Dept. of Genetics and PB (Hungary); HAS-SIU Research Group for Molecular Plant Breeding (Hungary); IGER, Plas Gogerddan, Aberystwyth (United Kingdom); Humphreys, M.; Skoet, K.; Skoet, L.; Heywood, S.; Lovatt, A.; Roderick, H.; Abberton, M. [IGER, Plas Gogerddan, Aberystwyth (United Kingdom); Bittsanszky, A.; Kiss, J.; Szabo, Z. [St. Stephanus Univ., Dept. of Genetics and PB (Hungary); Gullner, G.; Koemives, T. [Plant Protection Inst., Hungarian Academy of Sciences, Budapest (Hungary); Radimszky, L. [Soil Science Inst., Hungarian Academy of Sciences, Budapest (Hungary); Rennenberg, H. [Albert-Ludwigs-Univ., Inst. fuer Forstbotanik und Baumphysiologie, Freiburg (Germany); Heszky, L. [St. Stephanus Univ., Dept. of Genetics and PB (Hungary); HAS-SIU Research Group for Molecular Plant Breeding (Hungary)

    2005-04-01

    Clone stability and in vitro phytoextraction capacity of vegetative clones of P. x canescens (2n = 4x = 38) including two transgenic clones (ggs11 and lgl6) were studied as in vitro leaf disc cultures. Presence of the gshI-transgene in the transformed clones was detected in PCR reactions using gshI-specific primers. Clone stability was determined by fAFLP (fluorescent amplified DNA fragment length polymorphism) analysis. In total, 682 AFLP fragments were identified generated by twelve selective primer pairs after EcoRI-MseI digestion. Four fragments generated by EcoAGT-MseCCC were different (99.4% genetic similarity) which proves an unexpectedly low bud mutation frequency in P. x canescens. For the study of phytoextraction capacity leaf discs (8 mm) were exposed to a concentration series of ZnSO{sub 4} (10{sup -1} to 10{sup -5} M) incubated for 21 days on aseptic tissue culture media WPM containing 1 {mu}M Cu. ZN{sup 2+} caused phytotoxicity only at high concentrations (10{sup -1} to 10{sup -2} M). The transgenic poplar cyt-ECS (ggs11) clone, as stimulated by the presence of Zn, showed elevated heavy metal (Cu) uptake as compared to the non-transformed clone. These results suggest that gshI-transgenic poplars may be suitable for phytoremediation of soils contaminated with zinc and copper. (orig.)

  9. Relative profile analysis of molecular markers for identification and genetic discrimination of loaches (Pisces, Nemacheilidae).

    Science.gov (United States)

    Patil, Tejas Suresh; Tamboli, Asif Shabodin; Patil, Swapnil Mahadeo; Bhosale, Amrut Ravindra; Govindwar, Sanjay Prabhu; Muley, Dipak Vishwanathrao

    2016-01-01

    Genus Nemacheilus, Nemachilichthys and Schistura belong to the family Nemacheilidae of the order Cypriniformes. The present investigation was undertaken to observe genetic diversity, phylogenetic relationship and to develop a molecular-based tool for taxonomic identification. For this purpose, four different types of molecular markers were utilized in which 29 random amplified polymorphic DNA (RAPD), 25 inter-simple sequence repeat (ISSR) markers, and 10 amplified fragment length polymorphism (AFLP) marker sets were screened and mitochondrial COI gene was sequenced. This study added COI barcodes for the identification of Nemacheilus anguilla, Nemachilichthys rueppelli and Schistura denisoni. RAPD showed higher polymorphism (100%) than the ISSR (93.75-100%) and AFLP (93.86-98.96%). The polymorphic information content (PIC), heterozygosity, multiplex ratio, and gene diversity was observed highest for AFLP primers, whereas the major allele frequency was observed higher for RAPD (0.5556) and lowest for AFLP (0.1667). The COI region of all individuals was successfully amplified and sequenced, which gave a 100% species resolution. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  10. Molecular characterization of cultivated species of the genus Pachyrhizus Rich. ex DC. by AFLP markers

    DEFF Research Database (Denmark)

    Santayana, Monica; Rossel, Genoveva; Núñez, Jorge

    2014-01-01

    ) molecular markers in order to estimate genetic diversity and interspecific relationships. To complement molecular marker information, individuals from each accession were analyzed in order to confirmploidy levels. Eight AFLP primer combinations detected 136 (68.7 %) polymorphic bands. Shannon’s diversity...... indices (Hs) for each species were 1.04 (P. ahipa), 1.07 (P. tuberosus), and 2.42 (P. erosus), while the total diversity index was 2.45. Phylogenetic analysis, principal coordinate analysis and analysis of molecular variance (FST=0.796) all showed significant species differentiation. All accessions were...... diploid (2n=2x=22), which is characteristic of the tribe Phaseoleae. Finally, a misclassified accession of P. tuberosus was identified. Molecular characterization of accessions is necessary for efficient management of germplasm collections....

  11. The effects of Ankaferd® Blood Stopper on transcription factors in HUVEC and the erythrocyte protein profile

    Directory of Open Access Journals (Sweden)

    Erkan Yılmaz

    2011-12-01

    Full Text Available Objective: Ankaferd® Blood Stopper (ABS is an herbal extract that has historically been used as a hemostatic agent in traditional Turkish medicine. ABS is comprised of a standardized herbal mixture of T. vulgaris, G. glabra, V. vinifera, A. officinarum, and U. dioica. ABS’s basic mechanism of action is the formation of an encapsulated protein web, which represents the focal point for vital erythrocyte masses. The hemostatic effects of ABS have been observed in vitro and in vivo. ABS was registered as a hemostatic agent for external hemorrhages and dental bleeding following phase I randomized, double-blind crossover placebo-controlled clinical research, and safety and efficacy reports. In terms of the potential use of ABS, transcription factors may be novel factors that play a role in the hemostatic and other pleiotropic effects of ABS. Materials and Methods: Hence, the present study aimed to investigate the effects of ABS on endothelium, and possible transcription factor changes in HUVEC (human umbilical vein endothelial cells and the erythrocyte membrane profile. ABS (5 μL and 50 μL was administered to HUVEC (in 75 cm2; ~75% fullness for 5 min and 15 min. Results: ABS caused significant increases in the level of activation of the following transcription factors; AP2, AR, CRE/ATF1, CREB, E2F1-5, E2F6, EGR, GATA, HNF-1, ISRE, Myc-Max, NF-1, NFkB, p53, PPAR, SMAD 2/3, SP1, TRE/AP1, and YY1. Following erythrocyte membrane isolation, protein complexes were undissolved, but denatured. The protein complex formed was resistant to heat and detergent. Trypsin and sonication were used in order to break this complex; the complex dissolved and erythrocyte membrane proteins were released in SDS-PAGE.Conclusion: ABS established a very fast and solid protein web, and increased the level of transcription factor activation. Therefore the cellular effects of ABS could be related to different intracellular biological pathways.

  12. A high degree of genetic diversity is revealed in Isatis spp. (dyer's woad) by amplified fragment length polymorphism (AFLP).

    Science.gov (United States)

    Gilbert (nee Stoker), G.; Garton, S.; Karam, A.; Arnold, M.; Karp, A.; Edwards, J.; Cooke, T.; Barker, A.

    2002-05-01

    Genetic diversity in 38 genotypes, representing 28 individual genotypes from five landraces of Isatis tinctoria (three German: Tubingen, Potsdam and Erfurt, one Swiss and one English), five genotypes of Isatis indigotica (Chinese woad) and five genotypes of Isatis glauca, were investigated using AFLP analysis. Five primer combinations detected a total of 502 fragments of which 436 (86.9%) were polymorphic. The level of polymorphism recorded within each species was 29.8, 86.9 and 35.8% for I. indigotica, I. tinctoria and I. glauca, respectively. Clearly, genetic diversity within I. tinctoria was greater than that observed in I. indigotica or I. glauca. Cluster analyses of the AFLP data using UPGMA and PCO revealed the complete separation of the genotypes of each species into distinct groups. I. indigotica separated as an entirely independent group, whereas I. glauca formed a separate cluster within the I. tinctoria group. Indeed, I. tinctoria and I. glauca are more closely related to each other than either is to I. indigotica. In addition, the genotypes of each landrace, apart from one from the English group, were clearly discriminated. However, the anomalous genotype did associate with the rest of its group when it was linked with the Erfurt group. These results provide new and useful information about the make-up of the Isatis genome, which has not previously been evaluated. They will be useful in the selection of plant material for variety development and conservation of the gene-pool.

  13. RAPD, RFLP, T-RFLP, AFLP, RISA

    International Nuclear Information System (INIS)

    Denman, S.E.; McSweeney, C.S.; Makoto Mitsumori

    2005-01-01

    focus on the conserved ribosomal regions for phylogenetic diversity studies are those that amplify up random genomic sequences. The two most common methods are random amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP)

  14. Genome-wide transcriptional profiling of skin and dorsal root ganglia after ultraviolet-B-induced inflammation.

    Directory of Open Access Journals (Sweden)

    John M Dawes

    Full Text Available Ultraviolet-B (UVB-induced inflammation produces a dose-dependent mechanical and thermal hyperalgesia in both humans and rats, most likely via inflammatory mediators acting at the site of injury. Previous work has shown that the gene expression of cytokines and chemokines is positively correlated between species and that these factors can contribute to UVB-induced pain. In order to investigate other potential pain mediators in this model we used RNA-seq to perform genome-wide transcriptional profiling in both human and rat skin at the peak of hyperalgesia. In addition we have also measured transcriptional changes in the L4 and L5 DRG of the rat model. Our data show that UVB irradiation produces a large number of transcriptional changes in the skin: 2186 and 3888 genes are significantly dysregulated in human and rat skin, respectively. The most highly up-regulated genes in human skin feature those encoding cytokines (IL6 and IL24, chemokines (CCL3, CCL20, CXCL1, CXCL2, CXCL3 and CXCL5, the prostanoid synthesising enzyme COX-2 and members of the keratin gene family. Overall there was a strong positive and significant correlation in gene expression between the human and rat (R = 0.8022. In contrast to the skin, only 39 genes were significantly dysregulated in the rat L4 and L5 DRGs, the majority of which had small fold change values. Amongst the most up-regulated genes in DRG were REG3B, CCL2 and VGF. Overall, our data shows that numerous genes were up-regulated in UVB irradiated skin at the peak of hyperalgesia in both human and rats. Many of the top up-regulated genes were cytokines and chemokines, highlighting again their potential as pain mediators. However many other genes were also up-regulated and might play a role in UVB-induced hyperalgesia. In addition, the strong gene expression correlation between species re-emphasises the value of the UVB model as translational tool to study inflammatory pain.

  15. Curated compendium of human transcriptional biomarker data.

    Science.gov (United States)

    Golightly, Nathan P; Bell, Avery; Bischoff, Anna I; Hollingsworth, Parker D; Piccolo, Stephen R

    2018-04-17

    One important use of genome-wide transcriptional profiles is to identify relationships between transcription levels and patient outcomes. These translational insights can guide the development of biomarkers for clinical application. Data from thousands of translational-biomarker studies have been deposited in public repositories, enabling reuse. However, data-reuse efforts require considerable time and expertise because transcriptional data are generated using heterogeneous profiling technologies, preprocessed using diverse normalization procedures, and annotated in non-standard ways. To address this problem, we curated 45 publicly available, translational-biomarker datasets from a variety of human diseases. To increase the data's utility, we reprocessed the raw expression data using a uniform computational pipeline, addressed quality-control problems, mapped the clinical annotations to a controlled vocabulary, and prepared consistently structured, analysis-ready data files. These data, along with scripts we used to prepare the data, are available in a public repository. We believe these data will be particularly useful to researchers seeking to perform benchmarking studies-for example, to compare and optimize machine-learning algorithms' ability to predict biomedical outcomes.

  16. Pairwise comparisons of ten porcine tissues identify differential transcriptional regulation at the gene, isoform, promoter and transcription start site level

    International Nuclear Information System (INIS)

    Farajzadeh, Leila; Hornshøj, Henrik; Momeni, Jamal; Thomsen, Bo; Larsen, Knud; Hedegaard, Jakob; Bendixen, Christian; Madsen, Lone Bruhn

    2013-01-01

    Highlights: •Transcriptome sequencing yielded 223 mill porcine RNA-seq reads, and 59,000 transcribed locations. •Establishment of unique transcription profiles for ten porcine tissues including four brain tissues. •Comparison of transcription profiles at gene, isoform, promoter and transcription start site level. •Highlights a high level of regulation of neuro-related genes at both gene, isoform, and TSS level. •Our results emphasize the pig as a valuable animal model with respect to human biological issues. -- Abstract: The transcriptome is the absolute set of transcripts in a tissue or cell at the time of sampling. In this study RNA-Seq is employed to enable the differential analysis of the transcriptome profile for ten porcine tissues in order to evaluate differences between the tissues at the gene and isoform expression level, together with an analysis of variation in transcription start sites, promoter usage, and splicing. Totally, 223 million RNA fragments were sequenced leading to the identification of 59,930 transcribed gene locations and 290,936 transcript variants using Cufflinks with similarity to approximately 13,899 annotated human genes. Pairwise analysis of tissues for differential expression at the gene level showed that the smallest differences were between tissues originating from the porcine brain. Interestingly, the relative level of differential expression at the isoform level did generally not vary between tissue contrasts. Furthermore, analysis of differential promoter usage between tissues, revealed a proportionally higher variation between cerebellum (CBE) versus frontal cortex and cerebellum versus hypothalamus (HYP) than in the remaining comparisons. In addition, the comparison of differential transcription start sites showed that the number of these sites is generally increased in comparisons including hypothalamus in contrast to other pairwise assessments. A comprehensive analysis of one of the tissue contrasts, i

  17. A powerful method for transcriptional profiling of specific cell types in eukaryotes: laser-assisted microdissection and RNA sequencing.

    Directory of Open Access Journals (Sweden)

    Marc W Schmid

    Full Text Available The acquisition of distinct cell fates is central to the development of multicellular organisms and is largely mediated by gene expression patterns specific to individual cells and tissues. A spatially and temporally resolved analysis of gene expression facilitates the elucidation of transcriptional networks linked to cellular identity and function. We present an approach that allows cell type-specific transcriptional profiling of distinct target cells, which are rare and difficult to access, with unprecedented sensitivity and resolution. We combined laser-assisted microdissection (LAM, linear amplification starting from <1 ng of total RNA, and RNA-sequencing (RNA-Seq. As a model we used the central cell of the Arabidopsis thaliana female gametophyte, one of the female gametes harbored in the reproductive organs of the flower. We estimated the number of expressed genes to be more than twice the number reported previously in a study using LAM and ATH1 microarrays, and identified several classes of genes that were systematically underrepresented in the transcriptome measured with the ATH1 microarray. Among them are many genes that are likely to be important for developmental processes and specific cellular functions. In addition, we identified several intergenic regions, which are likely to be transcribed, and describe a considerable fraction of reads mapping to introns and regions flanking annotated loci, which may represent alternative transcript isoforms. Finally, we performed a de novo assembly of the transcriptome and show that the method is suitable for studying individual cell types of organisms lacking reference sequence information, demonstrating that this approach can be applied to most eukaryotic organisms.

  18. Dataset on differential gene expression analysis for splenic transcriptome profiling and the transcripts related to six immune pathways in grass carp

    Directory of Open Access Journals (Sweden)

    Guoxi Li

    2017-02-01

    Full Text Available The data presented in this paper are related to the research article entitled “Transcriptome profiling of developing spleen tissue and discovery of immune-related genes in grass carp (Ctenopharyngodon idella” (Li et al. 2016 [1]. Please refer to this article for interpretation of the data. Data provided in this submission are comprised of the expression levels of unigenes, significantly differentially expressed genes(DEGs, significant enrichment GO term and KEGG pathway of DEGs, and information of the transcripts assigned to six immune pathways.

  19. Differential expression analysis of genic male sterility by cDNA-AFLP in maize

    International Nuclear Information System (INIS)

    Zhang Linbi; Rong Tingzhao; Pan Guangtang; Cao Moju

    2009-01-01

    The differential expression of male sterility induced by space flight with male fertility was studied using cDNA-AFLP technology. Total RNA was isolated from anther of male sterility and male fertility. Nine differential expression cDNA fragments were obtained with 16 primer combinations. The differential cDNA fragments were eluted, cloned and sequenced. Then half-quantitative RT-PCR was used to stuy the differential expressions of 4 development stages between sterility and fertility. Sequencing analysis shown 2 fragments from male sterility might be novel genes. Four fragments from male fertility were homology as chalcone and stilbene synthases, putative acyl CoA dehydrogenase, putative protein kinases and putative glycine decarboxylase. All these proteins might participate in the energy metabolisms, substance metabolisms or signal pollen development, Z8 took on increasing expression during the middle period of pollen development. These results just met the demand of more energy and more substance during the pollen development. (authors)

  20. Genetic relatedness between cassava (Manihot esculenta Crantz and M. flabellifolia and M. Peruviana based on both RAPD and AFLP markers

    Directory of Open Access Journals (Sweden)

    Colombo Carlos

    2000-01-01

    Full Text Available The taxonomy of the genus Manihot is still uncertain and the genetic origin of cassava (M. esculenta Crantz continues to be controversial. We studied the degree of genetic relatedness between cassava and two naturally occurring species (M. flabellifolia and M. peruviana which are probably involved in the evolution of cassava, using RAPD and AFLP molecular markers. Thirty-three clonal accessions of cassava of known genetic diversity and 15 accessions of the wild species M. flabellifolia and M. peruviana were analyzed using 92 polymorphic RAPD bands and 73 polymorphic AFLP bands. The genetic markers were unable to differentiate the two wild species, which confirms their botanical similarity. Half of the total number of amplified bands were monomorphic in all of the genotypes evaluated. The mean genetic similarity (Jaccard between cassava and the species M. flabellifolia/M. peruviana was 0.59. A grouping analysis (neighbor-joining method with RAPD markers of cultivated cassava, M. flabellifolia/M. peruviana and the other wild species located the genotypes of cassava and M. flabellifolia/M. peruviana at one extremity and the three Mexican species (M. aesculifolia, M. michaelis and M. chlorostica at the other. An intermediate position between these groups was occupied by two wild species (M. glaziovii and M. reptans native to central and northeastern Brazil. These results are consistent with the hypothesis that the species M. flabellifolia and M. peruviana gave rise to the cultivated species.

  1. Utilization of AFLP markers for PCR-based identification of Aspergillus carbonarius and indication of its presence in green coffee samples.

    Science.gov (United States)

    Schmidt, H; Taniwaki, M H; Vogel, R F; Niessen, L

    2004-01-01

    The objective of this work was to test whether ochratoxin A (OTA) production of Aspergillus niger and A. carbonarius is linked to a certain genotype and to identify marker sequences with diagnostic value aiding identification of A. carbonarius, a fungus of major concern regarding OTA production in food and food raw materials. Aspergillus niger and A. carbonarius were isolated mainly from Brazilian coffee sources. The ability of isolates to produce OTA was tested by thin layer chromatography (TLC). Strains were genetically characterized by AFLP fingerprinting and compared with each other and with reference strains. Cluster analysis of fingerprints showed clear separation of A. niger from A. carbonarius strains. To obtain marker sequences, AFLP fragments were isolated from silver stained polyacrylamide gels, cloned and sequenced. Sequences obtained were used to develop species- specific PCR primers for the identification of A. carbonarius in pure culture and in artificially and naturally infected samples of green coffee. No clear correlation between genetic similarity of the strains studied and their potential to produce OTA was found. The PCR assays designed are a useful and specific tool for identification and highly sensitive detection of A. carbonarius. The developed PCR assays allow specific and sensitive detection and identification of A. carbonarius, a fungus considered to be one of the major causative agents for OTA in coffee and grape-derived products. Assays may provide powerful tools to improve quality control and consumer safety in the food processing industry.

  2. Revisiting AFLP fingerprinting for an unbiased assessment of genetic structure and differentiation of taurine and zebu cattle

    Science.gov (United States)

    2014-01-01

    Background Descendants from the extinct aurochs (Bos primigenius), taurine (Bos taurus) and zebu cattle (Bos indicus) were domesticated 10,000 years ago in Southwestern and Southern Asia, respectively, and colonized the world undergoing complex events of admixture and selection. Molecular data, in particular genome-wide single nucleotide polymorphism (SNP) markers, can complement historic and archaeological records to elucidate these past events. However, SNP ascertainment in cattle has been optimized for taurine breeds, imposing limitations to the study of diversity in zebu cattle. As amplified fragment length polymorphism (AFLP) markers are discovered and genotyped as the samples are assayed, this type of marker is free of ascertainment bias. In order to obtain unbiased assessments of genetic differentiation and structure in taurine and zebu cattle, we analyzed a dataset of 135 AFLP markers in 1,593 samples from 13 zebu and 58 taurine breeds, representing nine continental areas. Results We found a geographical pattern of expected heterozygosity in European taurine breeds decreasing with the distance from the domestication centre, arguing against a large-scale introgression from European or African aurochs. Zebu cattle were found to be at least as diverse as taurine cattle. Western African zebu cattle were found to have diverged more from Indian zebu than South American zebu. Model-based clustering and ancestry informative markers analyses suggested that this is due to taurine introgression. Although a large part of South American zebu cattle also descend from taurine cows, we did not detect significant levels of taurine ancestry in these breeds, probably because of systematic backcrossing with zebu bulls. Furthermore, limited zebu introgression was found in Podolian taurine breeds in Italy. Conclusions The assessment of cattle diversity reported here contributes an unbiased global view to genetic differentiation and structure of taurine and zebu cattle

  3. Global gene expression profiling of brown to white adipose tissue transformation in sheep reveals novel transcriptional components linked to adipose remodeling

    DEFF Research Database (Denmark)

    Basse, Astrid L.; Dixen, Karen; Yadav, Rachita

    2015-01-01

    . Conclusions: Using global gene expression profiling of the postnatal BAT to WAT transformation in sheep, we provide novel insight into adipose tissue plasticity in a large mammal, including identification of novel transcriptional components linked to adipose tissue remodeling. Moreover, our data set provides...... NR1H3, MYC, KLF4, ESR1, RELA and BCL6, which were linked to the overall changes in gene expression during the adipose tissue remodeling. Finally, the perirenal adipose tissue expressed both brown and brite/beige adipocyte marker genes at birth, the expression of which changed substantially over time...

  4. Transcriptional profiling of suberoylanilide hydroxamic acid (SAHA regulated genes in mineralizing dental pulp cells at early and late time points

    Directory of Open Access Journals (Sweden)

    Henry F. Duncan

    2015-09-01

    Full Text Available Dental pulp tissue can be damaged by a range of irritants, however, if the irritation is removed and/or the tooth is adequately restored, pulp regeneration is possible (Mjör and Tronstad, 1974 [1]. At present, dental restorative materials limit healing by impairing mineralization and repair processes and as a result new biologically-based materials are being developed (Ferracane et al., 2010 [2]. Previous studies have highlighted the benefit of epigenetic modification by histone deacetylase inhibitor (HDACi application to dental pulp cells (DPCs, which induces changes to chromatin architecture, promoting gene expression and cellular-reparative events (Duncan et al., 2013 [3]; Paino et al., 2014 [4]. In this study a genome-wide transcription profiling in epigenetically-modified mineralizing primary DPC cultures was performed, at relatively early and late time-points, to identify differentially regulated transcripts that may provide novel therapeutic targets for use in restorative dentistry. Here we provide detailed methods and analysis on these microarray data which has been deposited in Gene Expression Omnibus (GEO: GSE67175.

  5. RNA-seq Transcriptional Profiling of an Arbuscular Mycorrhiza Provides Insights into Regulated and Coordinated Gene Expression in Lotus japonicus and Rhizophagus irregularis.

    Science.gov (United States)

    Handa, Yoshihiro; Nishide, Hiroyo; Takeda, Naoya; Suzuki, Yutaka; Kawaguchi, Masayoshi; Saito, Katsuharu

    2015-08-01

    Gene expression during arbuscular mycorrhizal development is highly orchestrated in both plants and arbuscular mycorrhizal fungi. To elucidate the gene expression profiles of the symbiotic association, we performed a digital gene expression analysis of Lotus japonicus and Rhizophagus irregularis using a HiSeq 2000 next-generation sequencer with a Cufflinks assembly and de novo transcriptome assembly. There were 3,641 genes differentially expressed during arbuscular mycorrhizal development in L. japonicus, approximately 80% of which were up-regulated. The up-regulated genes included secreted proteins, transporters, proteins involved in lipid and amino acid metabolism, ribosomes and histones. We also detected many genes that were differentially expressed in small-secreted peptides and transcription factors, which may be involved in signal transduction or transcription regulation during symbiosis. Co-regulated genes between arbuscular mycorrhizal and root nodule symbiosis were not particularly abundant, but transcripts encoding for membrane traffic-related proteins, transporters and iron transport-related proteins were found to be highly co-up-regulated. In transcripts of arbuscular mycorrhizal fungi, expansion of cytochrome P450 was observed, which may contribute to various metabolic pathways required to accommodate roots and soil. The comprehensive gene expression data of both plants and arbuscular mycorrhizal fungi provide a powerful platform for investigating the functional and molecular mechanisms underlying arbuscular mycorrhizal symbiosis. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Transcriptional profiling of nitrogen fixation and the role of NifA in the diazotrophic endophyte Azoarcus sp. strain BH72.

    Directory of Open Access Journals (Sweden)

    Abhijit Sarkar

    Full Text Available BACKGROUND: The model endophyte Azoarcus sp. strain BH72 is known to contribute fixed nitrogen to its host Kallar grass and also expresses nitrogenase genes endophytically in rice seedlings. Availability of nitrogen is a signal regulating the transcription of nitrogenase genes. Therefore, we analysed global transcription in response to differences in the nitrogen source. METHODOLOGY/PRINCIPAL FINDINGS: A DNA microarray, comprising 70-mer oligonucleotides representing 3989 open reading frames of the genome of strain BH72, was used for transcriptome studies. Transcription profiles of cells grown microaerobically on N2 versus ammonium were compared. Expression of 7.2% of the genes was significantly up-regulated, and 5.8% down-regulated upon N2 fixation, respectively. A parallel genome-wide prediction of σ(54-type promoter elements mapped to the upstream region of 38 sequences of which 36 were modulated under the N2 response. In addition to modulation of genes related to N2 fixation, the expressions of gene clusters that might be related to plant-microbe interaction and of several transcription factors were significantly enhanced. While comparing under N2-fixation conditions the transcriptome of wild type with a nifLA(- insertion mutant, NifA being the essential transcriptional activator for nif genes, 24.5% of the genome was found to be affected in expression. A genome-wide prediction of 29 NifA binding sequences matched to 25 of the target genes whose expression was differential during microarray analysis, some of which were putatively negatively regulated by NifA. For selected genes, differential expression was corroborated by real time RT-PCR studies. CONCLUSION/SIGNIFICANCE: Our data suggest that life under conditions of nitrogen fixation is an important part of the lifestyle of strain BH72 in roots, as a wide range of genes far beyond the nif regulon is modulated. Moreover, the NifA regulon in strain BH72 appears to encompass a wider range of

  7. Identification of transcription factors potential related to brown planthopper resistance in rice via microarray expression profiling

    Directory of Open Access Journals (Sweden)

    Wang Yubing

    2012-12-01

    Full Text Available Abstract Background Brown planthopper (BPH, Nilaparvata lugens Stål, is one of the most destructive insect pests of rice. The molecular responses of plants to sucking insects resemble responses to pathogen infection. However, the molecular mechanism of BPH-resistance in rice remains unclear. Transcription factors (TF are up-stream regulators of various genes that bind to specific DNA sequences, thereby controlling the transcription from DNA to mRNA. They are key regulators for transcriptional expression in biological processes, and are probably involved in the BPH-induced pathways in resistant rice varieties. Results We conducted a microarray experiment to analyze TF genes related to BPH resistance in a Sri Lankan rice cultivar, Rathu Heenati (RHT. We compared the expression profiles of TF genes in RHT with those of the susceptible rice cultivar Taichun Native 1 (TN1. We detected 2038 TF genes showing differential expression signals between the two rice varieties. Of these, 442 TF genes were probably related to BPH-induced resistance in RHT and TN1, and 229 may be related to constitutive resistance only in RHT. These genes showed a fold change (FC of more than 2.0 (P10, there were 37 induced TF genes and 26 constitutive resistance TF genes. Of these, 13 were probably involved in BPH-induced resistance, and 8 in constitutive resistance to BPH in RHT. Conclusions We explored the molecular mechanism of resistance to BPH in rice by comparing expressions of TF genes between RHT and TN1. We speculate that the level of gene repression, especially for early TF genes, plays an important role in the defense response. The fundamental point of the resistance strategy is that plants protect themselves by reducing their metabolic level to inhibit feeding by BPH and prevent damage from water and nutrient loss. We have selected 21 TF genes related to BPH resistance for further analyses to understand the molecular responses to BPH feeding in rice.

  8. Use of AFLP and RAPD molecular genetic markers and cytogenetic analysis to explore relationships among taxa of the Patagonian Bromus setifolius complex

    Directory of Open Access Journals (Sweden)

    Ana M. García

    2009-01-01

    Full Text Available Bromus setifolius var. pictus (Hook Skottsb., B. setifolius var. setifolius Presl. and B. setifolius var. brevifolius Ness are three native Patagonian taxa in the section Pnigma Dumort of the genus Bromus L. AFLP and RAPD analysis, in conjunction with genetic distance measurements and statistical techniques, revealed variation within this group and indicated that B. setifolius var. brevifolius was closely related to B. setifolius var. pictus, with both taxa being more distantly related to B. setifolius var. setifolius. Cytogenetic analysis confirmed the chromosomal number of B. setifolius var. pictus (2n = 70 and B. setifolius var. setifolius (2n = 28 and showed for the first time that B. setifolius var. brevifolius had 2n = 70. The combination of molecular genetic and cytogenetic evidence supported a species status for two of the three taxa and suggested hypotheses for the evolutionary origin of these complex taxa. Species status was also indicated for B. setifolius var. setifolius. Based on these findings, we suggest that B. setifolius var. pictus be referred to as B. pictus Hook var. pictus, and B. setifolius var brevifolius as B. pictus Hook var brevifolius. The correlation between AFLP diversity and variation in ecological parameters suggested that this marker system could be used to assess breeding progress and to monitor the domestication of Patagonian Bromus species for agronomic use.

  9. AFLP and AMP Fingerprints as Markers to Evaluate Genetic Differences between Medicago truncatula Line Jemalong and 2HA, a New Line Produced by in vitro Culture Selection

    Directory of Open Access Journals (Sweden)

    R.R. Irwanto

    2008-09-01

    Full Text Available A new line, Medicago truncatula cv. Jemalong 2HA (herein known as 2HA has been developed via repetitive regeneration and selection of M. truncatula cv. Jemalong. During somatic embryogenesis, 2HA produces 500 times more embryos than its progenitor, Jemalong. It is interesting to study if those two lines are isogenic or has genetic differences. The main objectives of the study was to evaluate the genotypic differences between Jemalong and 2HA also to evaluate the methylation event in 2HA utilized two DNA fingerprinting techniques, i.e AFLP fingerprints (Amplified Length of Polymorphism and AMP (Amplified Methylation Polymorphism. The results showed that AFLP analysis using eight primers combinations could not detect any differences between Jemalong and 2HA. However, using AMP methylation sensitive primers it could detect 15 polymorphisms out of 840 markers. These results lead to a conclusion that Jemalong and 2HA are isogenic lines. 2HA may have higher regeneration capacities due to methylation process which occurs during the production of 2HA through repetitive regeneration cycles.

  10. Nascent-Seq reveals novel features of mouse circadian transcriptional regulation

    Science.gov (United States)

    Menet, Jerome S; Rodriguez, Joseph; Abruzzi, Katharine C; Rosbash, Michael

    2012-01-01

    A substantial fraction of the metazoan transcriptome undergoes circadian oscillations in many cells and tissues. Based on the transcription feedback loops important for circadian timekeeping, it is commonly assumed that this mRNA cycling reflects widespread transcriptional regulation. To address this issue, we directly measured the circadian dynamics of mouse liver transcription using Nascent-Seq (genome-wide sequencing of nascent RNA). Although many genes are rhythmically transcribed, many rhythmic mRNAs manifest poor transcriptional rhythms, indicating a prominent contribution of post-transcriptional regulation to circadian mRNA expression. This analysis of rhythmic transcription also showed that the rhythmic DNA binding profile of the transcription factors CLOCK and BMAL1 does not determine the transcriptional phase of most target genes. This likely reflects gene-specific collaborations of CLK:BMAL1 with other transcription factors. These insights from Nascent-Seq indicate that it should have broad applicability to many other gene expression regulatory issues. DOI: http://dx.doi.org/10.7554/eLife.00011.001 PMID:23150795

  11. Simulated Microgravity Regulates Gene Transcript Profiles of 2T3 Preosteoblasts: Comparison of the Random Positioning Machine and the Rotating Wall Vessel Bioreactor

    Science.gov (United States)

    Patel, Mamta J.; Liu, Wenbin; Sykes, Michelle C.; Ward, Nancy E.; Risin, Semyon A.; Risin, Diana; Hanjoong, Jo

    2007-01-01

    Microgravity of spaceflight induces bone loss due in part to decreased bone formation by osteoblasts. We have previously examined the microgravity-induced changes in gene expression profiles in 2T3 preosteoblasts using the Random Positioning Machine (RPM) to simulate microgravity conditions. Here, we hypothesized that exposure of preosteoblasts to an independent microgravity simulator, the Rotating Wall Vessel (RWV), induces similar changes in differentiation and gene transcript profiles, resulting in a more confined list of gravi-sensitive genes that may play a role in bone formation. In comparison to static 1g controls, exposure of 2T3 cells to RWV for 3 days inhibited alkaline phosphatase activity, a marker of differentiation, and downregulated 61 genes and upregulated 45 genes by more than two-fold as shown by microarray analysis. The microarray results were confirmed with real time PCR for downregulated genes osteomodulin, bone morphogenic protein 4 (BMP4), runx2, and parathyroid hormone receptor 1. Western blot analysis validated the expression of three downregulated genes, BMP4, peroxiredoxin IV, and osteoglycin, and one upregulated gene peroxiredoxin I. Comparison of the microarrays from the RPM and the RWV studies identified 14 gravi-sensitive genes that changed in the same direction in both systems. Further comparison of our results to a published database showing gene transcript profiles of mechanically loaded mouse tibiae revealed 16 genes upregulated by the loading that were shown to be downregulated by RWV and RPM. These mechanosensitive genes identified by the comparative studies may provide novel insights into understanding the mechanisms regulating bone formation and potential targets of countermeasure against decreased bone formation both in astronauts and in general patients with musculoskeletal disorders.

  12. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework.

    Science.gov (United States)

    Khan, Aziz; Fornes, Oriol; Stigliani, Arnaud; Gheorghe, Marius; Castro-Mondragon, Jaime A; van der Lee, Robin; Bessy, Adrien; Chèneby, Jeanne; Kulkarni, Shubhada R; Tan, Ge; Baranasic, Damir; Arenillas, David J; Sandelin, Albin; Vandepoele, Klaas; Lenhard, Boris; Ballester, Benoît; Wasserman, Wyeth W; Parcy, François; Mathelier, Anthony

    2018-01-04

    JASPAR (http://jaspar.genereg.net) is an open-access database of curated, non-redundant transcription factor (TF)-binding profiles stored as position frequency matrices (PFMs) and TF flexible models (TFFMs) for TFs across multiple species in six taxonomic groups. In the 2018 release of JASPAR, the CORE collection has been expanded with 322 new PFMs (60 for vertebrates and 262 for plants) and 33 PFMs were updated (24 for vertebrates, 8 for plants and 1 for insects). These new profiles represent a 30% expansion compared to the 2016 release. In addition, we have introduced 316 TFFMs (95 for vertebrates, 218 for plants and 3 for insects). This release incorporates clusters of similar PFMs in each taxon and each TF class per taxon. The JASPAR 2018 CORE vertebrate collection of PFMs was used to predict TF-binding sites in the human genome. The predictions are made available to the scientific community through a UCSC Genome Browser track data hub. Finally, this update comes with a new web framework with an interactive and responsive user-interface, along with new features. All the underlying data can be retrieved programmatically using a RESTful API and through the JASPAR 2018 R/Bioconductor package. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Circuit-wide Transcriptional Profiling Reveals Brain Region-Specific Gene Networks Regulating Depression Susceptibility.

    Science.gov (United States)

    Bagot, Rosemary C; Cates, Hannah M; Purushothaman, Immanuel; Lorsch, Zachary S; Walker, Deena M; Wang, Junshi; Huang, Xiaojie; Schlüter, Oliver M; Maze, Ian; Peña, Catherine J; Heller, Elizabeth A; Issler, Orna; Wang, Minghui; Song, Won-Min; Stein, Jason L; Liu, Xiaochuan; Doyle, Marie A; Scobie, Kimberly N; Sun, Hao Sheng; Neve, Rachael L; Geschwind, Daniel; Dong, Yan; Shen, Li; Zhang, Bin; Nestler, Eric J

    2016-06-01

    Depression is a complex, heterogeneous disorder and a leading contributor to the global burden of disease. Most previous research has focused on individual brain regions and genes contributing to depression. However, emerging evidence in humans and animal models suggests that dysregulated circuit function and gene expression across multiple brain regions drive depressive phenotypes. Here, we performed RNA sequencing on four brain regions from control animals and those susceptible or resilient to chronic social defeat stress at multiple time points. We employed an integrative network biology approach to identify transcriptional networks and key driver genes that regulate susceptibility to depressive-like symptoms. Further, we validated in vivo several key drivers and their associated transcriptional networks that regulate depression susceptibility and confirmed their functional significance at the levels of gene transcription, synaptic regulation, and behavior. Our study reveals novel transcriptional networks that control stress susceptibility and offers fundamentally new leads for antidepressant drug discovery. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Identificação de híbridos de citros resistentes à mancha-marrom-de-alternária por meio de fAFLP e testes de patogenicidade Alternaria brown spot resistant citrus hybrid identification by means of fAFLP and pathogenicity tests

    Directory of Open Access Journals (Sweden)

    Edvan Alves Chagas

    2007-07-01

    Full Text Available O objetivo deste trabalho foi identificar híbridos, oriundos de hibridações controladas entre 'Folha Murcha' x 'Ponkan' e testá-los quanto à resistência a Alternaria alternata f. sp. citri. As plântulas foram obtidas via cultura in vitro de embriões. Utilizou-se o marcador molecular fAFLP para identificação dos híbridos e, em seguida, realizou-se o teste de patogenicidade nos híbridos com isolados de Alternaria alternata f. sp. citri, em condições de laboratório. Os pares de primers EcoRI AAG - MseI CAG e EcoRI ACC - MseI CAA foram os mais eficientes na identificação dos híbridos, os quais identificaram 48,5% de híbridos. Os híbridos F64, F108, F111, F113, F131 e F139 são potencialmente resistentes a Alternaria alternata f. sp. citri.The objective of this work was to identify hybrids obtained from controlled crossings between 'Folha Murcha' x 'Ponkan', and to check their resistance to Alternaria alternata f. sp. citri. The seedlings were obtained by in vitro embryo culture. The fAFLP marker technique was used to identify the hybrids, then laboratory pathogenicity test of the hybrids was accomplished with Alternaria alternata f. sp. citri isolates. The pairs of primers EcoRI AAG - Msel CAG and EcoRI ACC - Msel CAA were the most efficient for hybrids identification, and distinguished 48.5% of hybrids. Hybrids F64, F108, F111, F113, F131 and F139 showed potential resistance to the Alternaria alternata f. sp. citri.

  15. Transcriptional profiling of human brain endothelial cells reveals key properties crucial for predictive in vitro blood-brain barrier models.

    Directory of Open Access Journals (Sweden)

    Eduard Urich

    Full Text Available Brain microvascular endothelial cells (BEC constitute the blood-brain barrier (BBB which forms a dynamic interface between the blood and the central nervous system (CNS. This highly specialized interface restricts paracellular diffusion of fluids and solutes including chemicals, toxins and drugs from entering the brain. In this study we compared the transcriptome profiles of the human immortalized brain endothelial cell line hCMEC/D3 and human primary BEC. We identified transcriptional differences in immune response genes which are directly related to the immortalization procedure of the hCMEC/D3 cells. Interestingly, astrocytic co-culturing reduced cell adhesion and migration molecules in both BECs, which possibly could be related to regulation of immune surveillance of the CNS controlled by astrocytic cells within the neurovascular unit. By matching the transcriptome data from these two cell lines with published transcriptional data from freshly isolated mouse BECs, we discovered striking differences that could explain some of the limitations of using cultured BECs to study BBB properties. Key protein classes such as tight junction proteins, transporters and cell surface receptors show differing expression profiles. For example, the claudin-5, occludin and JAM2 expression is dramatically reduced in the two human BEC lines, which likely explains their low transcellular electric resistance and paracellular leakiness. In addition, the human BEC lines express low levels of unique brain endothelial transporters such as Glut1 and Pgp. Cell surface receptors such as LRP1, RAGE and the insulin receptor that are involved in receptor-mediated transport are also expressed at very low levels. Taken together, these data illustrate that BECs lose their unique protein expression pattern outside of their native environment and display a more generic endothelial cell phenotype. A collection of key genes that seems to be highly regulated by the local

  16. Mis-spliced transcripts of nicotinic acetylcholine receptor alpha6 are associated with field evolved spinosad resistance in Plutella xylostella (L..

    Directory of Open Access Journals (Sweden)

    Simon W Baxter

    2010-01-01

    Full Text Available The evolution of insecticide resistance is a global constraint to agricultural production. Spinosad is a new, low-environmental-risk insecticide that primarily targets nicotinic acetylcholine receptors (nAChR and is effective against a wide range of pest species. However, after only a few years of application, field evolved resistance emerged in the diamondback moth, Plutella xylostella, an important pest of brassica crops worldwide. Spinosad resistance in a Hawaiian population results from a single incompletely recessive and autosomal gene, and here we use AFLP linkage mapping to identify the chromosome controlling resistance in a backcross family. Recombinational mapping with more than 700 backcross progeny positioned a putative spinosad target, nAChR alpha 6 (Pxalpha6, at the resistance locus, PxSpinR. A mutation within the ninth intron splice junction of Pxalpha6 results in mis-splicing of transcripts, which produce a predicted protein truncated between the third and fourth transmembrane domains. Additional resistance-associated Pxalpha6 transcripts that excluded the mutation containing exon were detected, and these were also predicted to produce truncated proteins. Identification of the locus of resistance in this important crop pest will facilitate field monitoring of the spread of resistance and offer insights into the genetic basis of spinosad resistance in other species.

  17. Application of Fluorescent Amplified Fragment Length Polymorphism for Comparison of Human and Animal Isolates of Yersinia enterocolitica

    Science.gov (United States)

    Fearnley, Catherine; On, Stephen L. W.; Kokotovic, Branko; Manning, Georgina; Cheasty, Tom; Newell, Diane G.

    2005-01-01

    An amplified fragment length polymorphism (AFLP) method, developed to genotype Yersinia enterocolitica, has been used to investigate 70 representative strains isolated from humans, pigs, sheep, and cattle in the United Kingdom. AFLP primarily distinguished Y. enterocolitica strains according to their biotype, with strains dividing into two distinct clusters: cluster A, comprising largely the putatively pathogenic biotypes (BT2 to -4), and cluster B, comprising the putatively nonpathogenic biotype 1A strains and a single BT1B isolate. Within these two clusters, subclusters formed largely on the basis of serotype. However, AFLP profiles also allowed differentiation of strains within these serotype-related subclusters, indicating the high discriminatory power of the technique for Y. enterocolitica. Investigation of the relationship between strain AFLP profile and host confirmed that pigs are, and provides further proof that sheep may be, potential sources of human infection with putatively pathogenic strains. However, the results suggest that some strains causing human disease do not come from veterinary sources identifiable at this time. The distribution of some BT1A isolates within cluster A raises questions about the relationship between virulence potential and biotype. PMID:16151073

  18. Identification of Two Protein-Signaling States Delineating Transcriptionally Heterogeneous Human Medulloblastoma

    Directory of Open Access Journals (Sweden)

    Walderik W. Zomerman

    2018-03-01

    Full Text Available Summary: The brain cancer medulloblastoma consists of different transcriptional subgroups. To characterize medulloblastoma at the phosphoprotein-signaling level, we performed high-throughput peptide phosphorylation profiling on a large cohort of SHH (Sonic Hedgehog, group 3, and group 4 medulloblastomas. We identified two major protein-signaling profiles. One profile was associated with rapid death post-recurrence and resembled MYC-like signaling for which MYC lesions are sufficient but not necessary. The second profile showed enrichment for DNA damage, as well as apoptotic and neuronal signaling. Integrative analysis demonstrated that heterogeneous transcriptional input converges on these protein-signaling profiles: all SHH and a subset of group 3 patients exhibited the MYC-like protein-signaling profile; the majority of the other group 3 subset and group 4 patients displayed the DNA damage/apoptotic/neuronal signaling profile. Functional analysis of enriched pathways highlighted cell-cycle progression and protein synthesis as therapeutic targets for MYC-like medulloblastoma. : Using peptide phosphorylation profiling, Zomerman et al. identify two medulloblastoma phosphoprotein-signaling profiles that have prognostic value and are potentially targetable. They find that these profiles extend across transcriptome-based subgroup borders. This suggests that diverse genetic information converges on common protein-signaling pathways and highlights protein-signaling as a unique information layer. Keywords: medulloblastoma, protein-signaling, protein synthesis, MYC, TP53, proteome, phosphoproteome

  19. Manuscript Transcription by Crowdsourcing: Transcribe Bentham

    Directory of Open Access Journals (Sweden)

    Martin Moyle

    2011-02-01

    Full Text Available Transcribe Bentham is testing the feasibility of outsourcing the work of manuscript transcription to members of the public. UCL Library Services holds 60,000 folios of manuscripts of the philosopher and jurist Jeremy Bentham (1748–1832. Transcribe Bentham will digitise 12,500 Bentham folios, and, through a wiki-based interface, allow volunteer transcribers to take temporary ownership of manuscript images and to create TEI-encoded transcription text for final approval by UCL experts. Approved transcripts will be stored and preserved, with the manuscript images, in UCL’s public Digital Collections repository. The project makes innovative use of traditional library material. It will stimulate public engagement with UCL’s scholarly archive collections and the challenges of palaeography and manuscript transcription; it will raise the profile of the work and thought of Jeremy Bentham; and it will create new digital resources for future use by professional researchers. Towards the end of the project, the transcription tool will be made available to other projects and services. This paper is based on a presentation given by the lead author at LIBER’s 39th Annual General Conference in Aarhus, Denmark, 2010.

  20. RNA-Seq for enrichment and analysis of IRF5 transcript expression in SLE.

    Directory of Open Access Journals (Sweden)

    Rivka C Stone

    Full Text Available Polymorphisms in the interferon regulatory factor 5 (IRF5 gene have been consistently replicated and shown to confer risk for or protection from the development of systemic lupus erythematosus (SLE. IRF5 expression is significantly upregulated in SLE patients and upregulation associates with IRF5-SLE risk haplotypes. IRF5 alternative splicing has also been shown to be elevated in SLE patients. Given that human IRF5 exists as multiple alternatively spliced transcripts with distinct function(s, it is important to determine whether the IRF5 transcript profile expressed in healthy donor immune cells is different from that expressed in SLE patients. Moreover, it is not currently known whether an IRF5-SLE risk haplotype defines the profile of IRF5 transcripts expressed. Using standard molecular cloning techniques, we identified and isolated 14 new differentially spliced IRF5 transcript variants from purified monocytes of healthy donors and SLE patients to generate an IRF5 variant transcriptome. Next-generation sequencing was then used to perform in-depth and quantitative analysis of full-length IRF5 transcript expression in primary immune cells of SLE patients and healthy donors by next-generation sequencing. Evidence for additional alternatively spliced transcripts was obtained from de novo junction discovery. Data from these studies support the overall complexity of IRF5 alternative splicing in SLE. Results from next-generation sequencing correlated with cloning and gave similar abundance rankings in SLE patients thus supporting the use of this new technology for in-depth single gene transcript profiling. Results from this study provide the first proof that 1 SLE patients express an IRF5 transcript signature that is distinct from healthy donors, 2 an IRF5-SLE risk haplotype defines the top four most abundant IRF5 transcripts expressed in SLE patients, and 3 an IRF5 transcript signature enables clustering of SLE patients with the H2 risk haplotype.

  1. Caracterización de accesiones de papaya (Carica papaya L. a través de marcadores AFLP en Cuba

    Directory of Open Access Journals (Sweden)

    Maruchi Alonso Esquivel

    2009-07-01

    Full Text Available Los marcadores moleculares son herramientas valiosas en los estudios genéticos en plantas, y están siendo empleados exitosamente en programas de mejoramiento principalmente en la elección de progenitores y en la selección. El polimorfismo observado mediante la técnica molecular AFLP (Amplified Fragment Length Polymorphism ha sido de utilidad para estudios de diversidad genética en frutales. En el presente trabajo se realizó la caracterización molecular de 12 accesiones de papaya (Carica papaya L. del banco de germoplasma del Instituto de Investigaciones en Fruticultura Tropical (IIFT, empleando la técnica AFLP. Se evaluaron seis combinaciones de iniciadores para la amplificación selectiva, las cuales amplificaron un total de 431 bandas con 73,3% de polimorfismo. El número total de patrones de bandas identificados fue igual en todas las combinaciones utilizadas, con un porcentaje de identificación alto, lo que sugiere que dichas combinaciones pudieran ser empleadas para estudios de variabilidad genética en papaya. En general, los resultados presentados demuestran que existe diversidad genética entre las accesiones evaluadas, lo cual constituye un reflejo del origen que presentan los genotipos analizados a partir de la introducción de materiales foráneos y la polinización abierta de un grupo de materiales selectos. Por tanto, se recomienda retomar la prospección y selección de accesiones locales, así como la introducción de nuevos genotipos foráneos, como dos vías fundamentales para aumentar la diversidad genética presente en el banco de germoplasma de papaya de Cuba.

  2. Blood Transcriptional Signatures for Disease Progression in a Rat Model of Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Michał Korostyński

    2017-01-01

    Full Text Available Biomarkers of osteoarthritis (OA that can accurately diagnose the disease at the earliest stage would significantly support efforts to develop treatments for prevention and early intervention. We have sought to determine the time course of alterations in peripheral blood gene expression profile associated with the development of OA. Blood samples were collected from a tail vein of individual rats with monosodium iodoacetate- (MIA- induced OA (2, 14, 21, and 28 days after the treatment. We used whole-genome microarrays to reveal OA-related transcriptional alterations of 72 transcripts. Three main groups of coexpressed genes revealed diverse time-dependent profiles of up- and downregulation. Functional links that connect expression of the gradually downregulated genes to the G13 signaling pathway were indicated. The mRNA abundance levels of the identified transcripts were further analyzed in publicly available gene expression dataset obtained from a GARP study cohort of OA patients. We revealed three-gene signature differentially expressed in both rat and human blood (TNK2, KCTD2, and WDR37. The alterations in expression of the selected transcripts in peripheral blood samples of the patients indicate heterogeneity of the OA profiles potentially related to disease progress and severity of clinical symptoms. Our study identifies several potential stage-specific biomarkers of OA progression.

  3. Probabilistic Inference on Multiple Normalized Signal Profiles from Next Generation Sequencing: Transcription Factor Binding Sites

    KAUST Repository

    Wong, Ka-Chun; Peng, Chengbin; Li, Yue

    2015-01-01

    With the prevalence of chromatin immunoprecipitation (ChIP) with sequencing (ChIP-Seq) technology, massive ChIP-Seq data has been accumulated. The ChIP-Seq technology measures the genome-wide occupancy of DNA-binding proteins in vivo. It is well-known that different DNA-binding protein occupancies may result in a gene being regulated in different conditions (e.g. different cell types). To fully understand a gene's function, it is essential to develop probabilistic models on multiple ChIP-Seq profiles for deciphering the gene transcription causalities. In this work, we propose and describe two probabilistic models. Assuming the conditional independence of different DNA-binding proteins' occupancies, the first method (SignalRanker) is developed as an intuitive method for ChIP-Seq genome-wide signal profile inference. Unfortunately, such an assumption may not always hold in some gene regulation cases. Thus, we propose and describe another method (FullSignalRanker) which does not make the conditional independence assumption. The proposed methods are compared with other existing methods on ENCODE ChIP-Seq datasets, demonstrating its regression and classification ability. The results suggest that FullSignalRanker is the best-performing method for recovering the signal ranks on the promoter and enhancer regions. In addition, FullSignalRanker is also the best-performing method for peak sequence classification. We envision that SignalRanker and FullSignalRanker will become important in the era of next generation sequencing. FullSignalRanker program is available on the following website: http://www.cs.toronto.edu/∼wkc/FullSignalRanker/ © 2015 IEEE.

  4. Probabilistic Inference on Multiple Normalized Signal Profiles from Next Generation Sequencing: Transcription Factor Binding Sites

    KAUST Repository

    Wong, Ka-Chun

    2015-04-20

    With the prevalence of chromatin immunoprecipitation (ChIP) with sequencing (ChIP-Seq) technology, massive ChIP-Seq data has been accumulated. The ChIP-Seq technology measures the genome-wide occupancy of DNA-binding proteins in vivo. It is well-known that different DNA-binding protein occupancies may result in a gene being regulated in different conditions (e.g. different cell types). To fully understand a gene\\'s function, it is essential to develop probabilistic models on multiple ChIP-Seq profiles for deciphering the gene transcription causalities. In this work, we propose and describe two probabilistic models. Assuming the conditional independence of different DNA-binding proteins\\' occupancies, the first method (SignalRanker) is developed as an intuitive method for ChIP-Seq genome-wide signal profile inference. Unfortunately, such an assumption may not always hold in some gene regulation cases. Thus, we propose and describe another method (FullSignalRanker) which does not make the conditional independence assumption. The proposed methods are compared with other existing methods on ENCODE ChIP-Seq datasets, demonstrating its regression and classification ability. The results suggest that FullSignalRanker is the best-performing method for recovering the signal ranks on the promoter and enhancer regions. In addition, FullSignalRanker is also the best-performing method for peak sequence classification. We envision that SignalRanker and FullSignalRanker will become important in the era of next generation sequencing. FullSignalRanker program is available on the following website: http://www.cs.toronto.edu/∼wkc/FullSignalRanker/ © 2015 IEEE.

  5. Transcriptional Profiling of Cholinergic Neurons From Basal Forebrain Identifies Changes in Expression of Genes Between Sleep and Wake.

    Science.gov (United States)

    Nikonova, Elena V; Gilliland, Jason DA; Tanis, Keith Q; Podtelezhnikov, Alexei A; Rigby, Alison M; Galante, Raymond J; Finney, Eva M; Stone, David J; Renger, John J; Pack, Allan I; Winrow, Christopher J

    2017-06-01

    To assess differences in gene expression in cholinergic basal forebrain cells between sleeping and sleep-deprived mice sacrificed at the same time of day. Tg(ChAT-eGFP)86Gsat mice expressing enhanced green fluorescent protein (eGFP) under control of the choline acetyltransferase (Chat) promoter were utilized to guide laser capture of cholinergic cells in basal forebrain. Messenger RNA expression levels in these cells were profiled using microarrays. Gene expression in eGFP(+) neurons was compared (1) to that in eGFP(-) neurons and to adjacent white matter, (2) between 7:00 am (lights on) and 7:00 pm (lights off), (3) between sleep-deprived and sleeping animals at 0, 3, 6, and 9 hours from lights on. There was a marked enrichment of ChAT and other markers of cholinergic neurons in eGFP(+) cells. Comparison of gene expression in these eGFP(+) neurons between 7:00 am and 7:00 pm revealed expected differences in the expression of clock genes (Arntl2, Per1, Per2, Dbp, Nr1d1) as well as mGluR3. Comparison of expression between spontaneous sleep and sleep-deprived groups sacrificed at the same time of day revealed a number of transcripts (n = 55) that had higher expression in sleep deprivation compared to sleep. Genes upregulated in sleep deprivation predominantly were from the protein folding pathway (25 transcripts, including chaperones). Among 42 transcripts upregulated in sleep was the cold-inducible RNA-binding protein. Cholinergic cell signatures were characterized. Whether the identified genes are changing as a consequence of differences in behavioral state or as part of the molecular regulatory mechanism remains to be determined. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  6. cDNA-AFLP analysis reveals the adaptive responses of citrus to long-term boron-toxicity.

    Science.gov (United States)

    Guo, Peng; Qi, Yi-Ping; Yang, Lin-Tong; Ye, Xin; Jiang, Huan-Xin; Huang, Jing-Hao; Chen, Li-Song

    2014-10-28

    Boron (B)-toxicity is an important disorder in agricultural regions across the world. Seedlings of 'Sour pummelo' (Citrus grandis) and 'Xuegan' (Citrus sinensis) were fertigated every other day until drip with 10 μM (control) or 400 μM (B-toxic) H3BO3 in a complete nutrient solution for 15 weeks. The aims of this study were to elucidate the adaptive mechanisms of citrus plants to B-toxicity and to identify B-tolerant genes. B-toxicity-induced changes in seedlings growth, leaf CO2 assimilation, pigments, total soluble protein, malondialdehyde (MDA) and phosphorus were less pronounced in C. sinensis than in C. grandis. B concentration was higher in B-toxic C. sinensis leaves than in B-toxic C. grandis ones. Here we successfully used cDNA-AFLP to isolate 67 up-regulated and 65 down-regulated transcript-derived fragments (TDFs) from B-toxic C. grandis leaves, whilst only 31 up-regulated and 37 down-regulated TDFs from B-toxic C. sinensis ones, demonstrating that gene expression is less affected in B-toxic C. sinensis leaves than in B-toxic C. grandis ones. These differentially expressed TDFs were related to signal transduction, carbohydrate and energy metabolism, nucleic acid metabolism, protein and amino acid metabolism, lipid metabolism, cell wall and cytoskeleton modification, stress responses and cell transport. The higher B-tolerance of C. sinensis might be related to the findings that B-toxic C. sinensis leaves had higher expression levels of genes involved in photosynthesis, which might contribute to the higher photosyntheis and light utilization and less excess light energy, and in reactive oxygen species (ROS) scavenging compared to B-toxic C. grandis leaves, thus preventing them from photo-oxidative damage. In addition, B-toxicity-induced alteration in the expression levels of genes encoding inorganic pyrophosphatase 1, AT4G01850 and methionine synthase differed between the two species, which might play a role in the B-tolerance of C. sinensis. C. sinensis

  7. Analysis of transcriptional regulatory pathways of photoreceptor genes by expression profiling of the Otx2-deficient retina.

    Science.gov (United States)

    Omori, Yoshihiro; Katoh, Kimiko; Sato, Shigeru; Muranishi, Yuki; Chaya, Taro; Onishi, Akishi; Minami, Takashi; Fujikado, Takashi; Furukawa, Takahisa

    2011-01-01

    In the vertebrate retina, the Otx2 transcription factor plays a crucial role in the cell fate determination of both rod and cone photoreceptors. We previously reported that Otx2 conditional knockout (CKO) mice exhibited a total absence of rods and cones in the retina due to their cell fate conversion to amacrine-like cells. In order to investigate the entire transcriptome of the Otx2 CKO retina, we compared expression profile of Otx2 CKO and wild-type retinas at P1 and P12 using microarray. We observed that expression of 101- and 1049-probe sets significantly decreased in the Otx2 CKO retina at P1 and P12, respectively, whereas, expression of 3- and 4149-probe sets increased at P1 and P12, respectively. We found that expression of genes encoding transcription factors involved in photoreceptor development, including Crx, Nrl, Nr2e3, Esrrb, and NeuroD, was markedly down-regulated in the Otx2 CKO at both P1 and P12. Furthermore, we identified three human retinal disease loci mapped in close proximity to certain down-regulated genes in the Otx2 CKO retina including Ccdc126, Tnfsf13 and Pitpnm1, suggesting that these genes are possibly responsible for these diseases. These transcriptome data sets of the Otx2 CKO retina provide a resource on developing rods and cones to further understand the molecular mechanisms underlying photoreceptor development, function and disease.

  8. Analysis of transcriptional regulatory pathways of photoreceptor genes by expression profiling of the Otx2-deficient retina.

    Directory of Open Access Journals (Sweden)

    Yoshihiro Omori

    Full Text Available In the vertebrate retina, the Otx2 transcription factor plays a crucial role in the cell fate determination of both rod and cone photoreceptors. We previously reported that Otx2 conditional knockout (CKO mice exhibited a total absence of rods and cones in the retina due to their cell fate conversion to amacrine-like cells. In order to investigate the entire transcriptome of the Otx2 CKO retina, we compared expression profile of Otx2 CKO and wild-type retinas at P1 and P12 using microarray. We observed that expression of 101- and 1049-probe sets significantly decreased in the Otx2 CKO retina at P1 and P12, respectively, whereas, expression of 3- and 4149-probe sets increased at P1 and P12, respectively. We found that expression of genes encoding transcription factors involved in photoreceptor development, including Crx, Nrl, Nr2e3, Esrrb, and NeuroD, was markedly down-regulated in the Otx2 CKO at both P1 and P12. Furthermore, we identified three human retinal disease loci mapped in close proximity to certain down-regulated genes in the Otx2 CKO retina including Ccdc126, Tnfsf13 and Pitpnm1, suggesting that these genes are possibly responsible for these diseases. These transcriptome data sets of the Otx2 CKO retina provide a resource on developing rods and cones to further understand the molecular mechanisms underlying photoreceptor development, function and disease.

  9. Effects of cytosine methylation on transcription factor binding sites

    KAUST Repository

    Medvedeva, Yulia A

    2014-03-26

    Background: DNA methylation in promoters is closely linked to downstream gene repression. However, whether DNA methylation is a cause or a consequence of gene repression remains an open question. If it is a cause, then DNA methylation may affect the affinity of transcription factors (TFs) for their binding sites (TFBSs). If it is a consequence, then gene repression caused by chromatin modification may be stabilized by DNA methylation. Until now, these two possibilities have been supported only by non-systematic evidence and they have not been tested on a wide range of TFs. An average promoter methylation is usually used in studies, whereas recent results suggested that methylation of individual cytosines can also be important.Results: We found that the methylation profiles of 16.6% of cytosines and the expression profiles of neighboring transcriptional start sites (TSSs) were significantly negatively correlated. We called the CpGs corresponding to such cytosines " traffic lights" We observed a strong selection against CpG " traffic lights" within TFBSs. The negative selection was stronger for transcriptional repressors as compared with transcriptional activators or multifunctional TFs as well as for core TFBS positions as compared with flanking TFBS positions.Conclusions: Our results indicate that direct and selective methylation of certain TFBS that prevents TF binding is restricted to special cases and cannot be considered as a general regulatory mechanism of transcription. 2013 Medvedeva et al.; licensee BioMed Central Ltd.

  10. Extensive polycistronism and antisense transcription in the mammalian Hox clusters.

    Directory of Open Access Journals (Sweden)

    Gaëll Mainguy

    Full Text Available The Hox clusters play a crucial role in body patterning during animal development. They encode both Hox transcription factor and micro-RNA genes that are activated in a precise temporal and spatial sequence that follows their chromosomal order. These remarkable collinear properties confer functional unit status for Hox clusters. We developed the TranscriptView platform to establish high resolution transcriptional profiling and report here that transcription in the Hox clusters is far more complex than previously described in both human and mouse. Unannotated transcripts can represent up to 60% of the total transcriptional output of a cluster. In particular, we identified 14 non-coding Transcriptional Units antisense to Hox genes, 10 of which (70% have a detectable mouse homolog. Most of these Transcriptional Units in both human and mouse present conserved sizeable sequences (>40 bp overlapping Hox transcripts, suggesting that these Hox antisense transcripts are functional. Hox clusters also display at least seven polycistronic clusters, i.e., different genes being co-transcribed on long isoforms (up to 30 kb. This work provides a reevaluated framework for understanding Hox gene function and dys-function. Such extensive transcriptions may provide a structural explanation for Hox clustering.

  11. Differential Rickettsial Transcription in Bloodfeeding and Non-Bloodfeeding Arthropod Hosts.

    Directory of Open Access Journals (Sweden)

    Victoria I Verhoeve

    Full Text Available Crucial factors influencing the epidemiology of Rickettsia felis rickettsiosis include pathogenesis and transmission. Detection of R. felis DNA in a number of arthropod species has been reported, with characterized isolates, R. felis strain LSU and strain LSU-Lb, generated from the cat flea, Ctenocephalides felis, and the non-hematophagous booklouse, Liposcelis bostrychophila, respectively. While it is realized that strain influence on host biology varies, the rickettsial response to these distinct host environments remained undefined. To identify a panel of potential rickettsial transmission determinants in the cat flea, the transcriptional profile for these two strains of R. felis were compared in their arthropod hosts using RNAseq. Rickettsial genes with increased transcription in the flea as compared to the booklouse were identified. Genes previously associated with bacterial virulence including LPS biosynthesis, Type IV secretion system, ABC transporters, and a toxin-antitoxin system were selected for further study. Transcription of putative virulence-associated genes was determined in a flea infection bioassay for both strains of R. felis. A host-dependent transcriptional profile during bloodfeeding, specifically, an increased expression of selected transcripts in newly infected cat fleas and flea feces was detected when compared to arthropod cell culture and incubation in vertebrate blood. Together, these studies have identified novel, host-dependent rickettsial factors that likely contribute to successful horizontal transmission by bloodfeeding arthropods.

  12. Transcriptional profiling of rice treated with MoHrip1 reveal the function of protein elicitor in enhancement of disease resistance and plant growth

    Directory of Open Access Journals (Sweden)

    Shun Lv

    2016-12-01

    Full Text Available MoHrip1 is a protein elicitor isolated from Magnaporthe oryzae and was found to induce blast-resistance in rice. To investigate the comprehensive functions of MoHrip1, next-generation sequencing (NGS-based digital gene expression (DGE profiling was performed to collect the transcriptional data of differentially expressed genes induced by MoHrip1. A total of 308 genes were identified with differential expression, and 80 genes were predicted to be induced specifically by MoHrip1. Among these 308 genes, a series of genes associated with the salicylic acid (SA pathway, phytoalexin, transcription factors and pathogen-related proteins were identified. Both the SA signaling pathway and the gibberellin (GA pathway were activated, while the jasmonic acid (JA signaling pathway was repressed. The contents of endogenous SA and GA and the morphological characteristics of the rice after treatment were measured to provide evidence supporting the predictions made based on the DGE data. The 80 genes mentioned above might be candidate genes for studying interactions with MoHrip1. The transcriptional data provided global effect information in rice induced by MoHrip1, and all the results demonstrated that MoHrip1 could induce pathogen resistance and promote plant growth by regulating the contents of SA and GA directly or indirectly.

  13. Transcriptional Profiling of Rice Treated with MoHrip1 Reveal the Function of Protein Elicitor in Enhancement of Disease Resistance and Plant Growth.

    Science.gov (United States)

    Lv, Shun; Wang, Zhenzhen; Yang, Xiufen; Guo, Lihua; Qiu, Dewen; Zeng, Hongmei

    2016-01-01

    MoHrip1 is a protein elicitor isolated from Magnaporthe oryzae and was found to induce blast-resistance in rice. To investigate the comprehensive functions of MoHrip1, next-generation sequencing (NGS)-based digital gene expression (DGE) profiling was performed to collect the transcriptional data of differentially expressed genes (DEGs) induced by MoHrip1. A total of 308 genes were identified with differential expression, and 80 genes were predicted to be induced specifically by MoHrip1. Among these 308 genes, a series of genes associated with the salicylic acid (SA) pathway, phytoalexin, transcription factors, and pathogen-related proteins were identified. Both the SA signaling pathway and the gibberellin (GA) pathway were activated, while the jasmonic acid (JA) signaling pathway was repressed. The contents of endogenous SA and GA and the morphological characteristics of the rice after treatment were measured to provide evidence supporting the predictions made based on the DGE data. The 80 genes mentioned above might be candidate genes for studying interactions with MoHrip1. The transcriptional data provided global effect information in rice induced by MoHrip1, and all the results demonstrated that MoHrip1 could induce pathogen resistance and promote plant growth by regulating the contents of SA and GA directly or indirectly.

  14. Genes Involved in Human Ribosome Biogenesis areTranscriptionally Upregulated in Colorectal Cancer

    DEFF Research Database (Denmark)

    Mansilla, Francisco; Lamy, Philippe; Ørntoft, Torben Falck

    2009-01-01

    Microarray gene expression profiling comprising 168 colorectal adenocarcinomas and 10 normal mucosas showed that over 79% of the genes involved in human ribosome biogenesis are significantly upregulated (log2>0.5, p<10-3) when compared to normal mucosa. Overexpression was independent of microsate......Microarray gene expression profiling comprising 168 colorectal adenocarcinomas and 10 normal mucosas showed that over 79% of the genes involved in human ribosome biogenesis are significantly upregulated (log2>0.5, p... of microsatellite status. The promoters of the genes studied showed a significant enrichment for several transcription factor binding sites. There was a significant correlation between the number of binding site targets for these transcription factors and the observed gene transcript upregulation. The upregulation...

  15. Transcriptional and Proteomic Profiling of Aspergillus flavipes in Response to Sulfur Starvation.

    Science.gov (United States)

    El-Sayed, Ashraf S A; Yassin, Marwa A; Ali, Gul Shad

    2015-01-01

    Aspergillus flavipes has received considerable interest due to its potential to produce therapeutic enzymes involved in sulfur amino acid metabolism. In natural habitats, A. flavipes survives under sulfur limitations by mobilizing endogenous and exogenous sulfur to operate diverse cellular processes. Sulfur limitation affects virulence and pathogenicity, and modulates proteome of sulfur assimilating enzymes of several fungi. However, there are no previous reports aimed at exploring effects of sulfur limitation on the regulation of A. flavipes sulfur metabolism enzymes at the transcriptional, post-transcriptional and proteomic levels. In this report, we show that sulfur limitation affects morphological and physiological responses of A. flavipes. Transcription and enzymatic activities of several key sulfur metabolism genes, ATP-sulfurylase, sulfite reductase, methionine permease, cysteine synthase, cystathionine β- and γ-lyase, glutathione reductase and glutathione peroxidase were increased under sulfur starvation conditions. A 50 kDa protein band was strongly induced by sulfur starvation, and the proteomic analyses of this protein band using LC-MS/MS revealed similarity to many proteins involved in the sulfur metabolism pathway.

  16. Inference of RNA polymerase II transcription dynamics from chromatin immunoprecipitation time course data.

    Directory of Open Access Journals (Sweden)

    Ciira wa Maina

    2014-05-01

    Full Text Available Gene transcription mediated by RNA polymerase II (pol-II is a key step in gene expression. The dynamics of pol-II moving along the transcribed region influence the rate and timing of gene expression. In this work, we present a probabilistic model of transcription dynamics which is fitted to pol-II occupancy time course data measured using ChIP-Seq. The model can be used to estimate transcription speed and to infer the temporal pol-II activity profile at the gene promoter. Model parameters are estimated using either maximum likelihood estimation or via Bayesian inference using Markov chain Monte Carlo sampling. The Bayesian approach provides confidence intervals for parameter estimates and allows the use of priors that capture domain knowledge, e.g. the expected range of transcription speeds, based on previous experiments. The model describes the movement of pol-II down the gene body and can be used to identify the time of induction for transcriptionally engaged genes. By clustering the inferred promoter activity time profiles, we are able to determine which genes respond quickly to stimuli and group genes that share activity profiles and may therefore be co-regulated. We apply our methodology to biological data obtained using ChIP-seq to measure pol-II occupancy genome-wide when MCF-7 human breast cancer cells are treated with estradiol (E2. The transcription speeds we obtain agree with those obtained previously for smaller numbers of genes with the advantage that our approach can be applied genome-wide. We validate the biological significance of the pol-II promoter activity clusters by investigating cluster-specific transcription factor binding patterns and determining canonical pathway enrichment. We find that rapidly induced genes are enriched for both estrogen receptor alpha (ERα and FOXA1 binding in their proximal promoter regions.

  17. HALO--a Java framework for precise transcript half-life determination.

    Science.gov (United States)

    Friedel, Caroline C; Kaufmann, Stefanie; Dölken, Lars; Zimmer, Ralf

    2010-05-01

    Recent improvements in experimental technologies now allow measurements of de novo transcription and/or RNA decay at whole transcriptome level and determination of precise transcript half-lives. Such transcript half-lives provide important insights into the regulation of biological processes and the relative contributions of RNA decay and de novo transcription to differential gene expression. In this article, we present HALO (Half-life Organizer), the first software for the precise determination of transcript half-lives from measurements of RNA de novo transcription or decay determined with microarrays or RNA-seq. In addition, methods for quality control, filtering and normalization are supplied. HALO provides a graphical user interface, command-line tools and a well-documented Java application programming interface (API). Thus, it can be used both by biologists to determine transcript half-lives fast and reliably with the provided user interfaces as well as software developers integrating transcript half-life analysis into other gene expression profiling pipelines. Source code, executables and documentation are available at http://www.bio.ifi.lmu.de/software/halo.

  18. Global effects of the CSR-1 RNA interference pathway on transcriptional landscape

    Science.gov (United States)

    Cecere, Germano; Hoersch, Sebastian; O’Keeffe, Sean; Sachidanandam, Ravi; Grishok, Alla

    2014-01-01

    Argonaute proteins and their small RNA co-factors short interfering RNAs (siRNAs) are known to inhibit gene expression at the transcriptional and post-transcriptional levels. In Caenorhabditis elegans, the Argonaute CSR-1 binds thousands of endogenous siRNAs (endo-siRNAs) antisense to germline transcripts and associates with chromatin in a siRNA-dependent manner. However, its role in gene expression regulation remains controversial. Here, we used a genome-wide profiling of nascent RNA transcripts to demonstrate that the CSR-1 RNAi pathway promotes sense-oriented Pol II transcription. Moreover, a loss of CSR-1 function resulted in global increase in antisense transcription and ectopic transcription of silent chromatin domains, which led to reduced chromatin incorporation of centromere-specific histone H3. Based on these findings, we propose that the CSR-1 pathway has a role in maintaining the directionality of active transcription thereby propagating the distinction between transcriptionally active and silent genomic regions. PMID:24681887

  19. Coordinated Evolution of Transcriptional and Post-Transcriptional Regulation for Mitochondrial Functions in Yeast Strains.

    Directory of Open Access Journals (Sweden)

    Xuepeng Sun

    Full Text Available Evolution of gene regulation has been proposed to play an important role in environmental adaptation. Exploring mechanisms underlying coordinated evolutionary changes at various levels of gene regulation could shed new light on how organism adapt in nature. In this study, we focused on regulatory differences between a laboratory Saccharomyces cerevisiae strain BY4742 and a pathogenic S. cerevisiae strain, YJM789. The two strains diverge in many features, including growth rate, morphology, high temperature tolerance, and pathogenicity. Our RNA-Seq and ribosomal footprint profiling data showed that gene expression differences are pervasive, and genes functioning in mitochondria are mostly divergent between the two strains at both transcriptional and translational levels. Combining functional genomics data from other yeast strains, we further demonstrated that significant divergence of expression for genes functioning in the electron transport chain (ETC was likely caused by differential expression of a transcriptional factor, HAP4, and that post-transcriptional regulation mediated by an RNA-binding protein, PUF3, likely led to expression divergence for genes involved in mitochondrial translation. We also explored mito-nuclear interactions via mitochondrial DNA replacement between strains. Although the two mitochondrial genomes harbor substantial sequence divergence, neither growth nor gene expression were affected by mitochondrial DNA replacement in both fermentative and respiratory growth media, indicating compatible mitochondrial and nuclear genomes between these two strains in the tested conditions. Collectively, we used mitochondrial functions as an example to demonstrate for the first time that evolution at both transcriptional and post-transcriptional levels could lead to coordinated regulatory changes underlying strain specific functional variations.

  20. Global Transcriptional and Physiological Responses of Saccharomyces cerevisiae to Ammonium, L-Alanine, or L-Glutamine Limitation

    DEFF Research Database (Denmark)

    Usaite, Renata; Patil, Kiran Raosaheb; Grotkjær, Thomas

    2006-01-01

    -ammonium in limitation and by growing cells in an excess of ammonium. Cells grown in L-alanine-limited cultures had higher biomass yield per nitrogen mole (19%) than those from ammonium-limited cultures. Whole-genome transcript profiles were analyzed with a genome-scalle metabolic model that suggested increased anabolic...... activity in L-alanine-limited cells. The changes in these cells were found to be focused around pyruvate, acetyl coenzyme A, glyoxylate, and alpha-ketoglutarate via increased levels of ALT1, DAL7, PYC1, GDH2, and ADH5 and decreased levels of GDH3, CIT2, and ACS1 transcripts. The transcript profiles were...

  1. Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers.

    Science.gov (United States)

    Cervera, M T; Ruiz-García, L; Martínez-Zapater, J M

    2002-12-01

    AFLP analysis using restriction enzyme isoschizomers that differ in their sensitivity to methylation of their recognition sites has been used to analyse the methylation state of anonymous CCGG sequences in Arabidopsis thaliana. The technique was modified to improve the quality of fingerprints and to visualise larger numbers of scorable fragments. Sequencing of amplified fragments indicated that detection was generally associated with non-methylation of the cytosine to which the isoschizomer is sensitive. Comparison of EcoRI/ HpaII and EcoRI/ MspI patterns in different ecotypes revealed that 35-43% of CCGG sites were differentially digested by the isoschizomers. Interestingly, the pattern of digestion among different plants belonging to the same ecotype is highly conserved, with the rate of intra-ecotype methylation-sensitive polymorphisms being less than 1%. However, pairwise comparisons of methylation patterns between samples belonging to different ecotypes revealed differences in up to 34% of the methylation-sensitive polymorphisms. The lack of correlation between inter-ecotype similarity matrices based on methylation-insensitive or methylation-sensitive polymorphisms suggests that whatever the mechanisms regulating methylation may be, they are not related to nucleotide sequence variation.

  2. Transcriptional profiling reveals the expression of novel genes in response to various stimuli in the human dermatophyte Trichophyton rubrum

    Directory of Open Access Journals (Sweden)

    Aquino-Ferreira Roseli

    2010-02-01

    Full Text Available Abstract Background Cutaneous mycoses are common human infections among healthy and immunocompromised hosts, and the anthropophilic fungus Trichophyton rubrum is the most prevalent microorganism isolated from such clinical cases worldwide. The aim of this study was to determine the transcriptional profile of T. rubrum exposed to various stimuli in order to obtain insights into the responses of this pathogen to different environmental challenges. Therefore, we generated an expressed sequence tag (EST collection by constructing one cDNA library and nine suppression subtractive hybridization libraries. Results The 1388 unigenes identified in this study were functionally classified based on the Munich Information Center for Protein Sequences (MIPS categories. The identified proteins were involved in transcriptional regulation, cellular defense and stress, protein degradation, signaling, transport, and secretion, among other functions. Analysis of these unigenes revealed 575 T. rubrum sequences that had not been previously deposited in public databases. Conclusion In this study, we identified novel T. rubrum genes that will be useful for ORF prediction in genome sequencing and facilitating functional genome analysis. Annotation of these expressed genes revealed metabolic adaptations of T. rubrum to carbon sources, ambient pH shifts, and various antifungal drugs used in medical practice. Furthermore, challenging T. rubrum with cytotoxic drugs and ambient pH shifts extended our understanding of the molecular events possibly involved in the infectious process and resistance to antifungal drugs.

  3. EWS/FLI mediates transcriptional repression via NKX2.2 during oncogenic transformation in Ewing's sarcoma.

    Directory of Open Access Journals (Sweden)

    Leah A Owen

    2008-04-01

    Full Text Available EWS/FLI is a master regulator of Ewing's sarcoma formation. Gene expression studies in A673 Ewing's sarcoma cells have demonstrated that EWS/FLI downregulates more genes than it upregulates, suggesting that EWS/FLI, and/or its targets, function as transcriptional repressors. One critical EWS/FLI target, NKX2.2, is a transcription factor that contains both transcriptional activation and transcriptional repression domains, raising the possibility that it mediates portions of the EWS/FLI transcriptional signature. We now report that microarray analysis demonstrated that the transcriptional profile of NKX2.2 consists solely of downregulated genes, and overlaps with the EWS/FLI downregulated signature, suggesting that NKX2.2 mediates oncogenic transformation via transcriptional repression. Structure-function analysis revealed that the DNA binding and repressor domains in NKX2.2 are required for oncogenesis in Ewing's sarcoma cells, while the transcriptional activation domain is completely dispensable. Furthermore, blockade of TLE or HDAC function, two protein families thought to mediate the repressive function of NKX2.2, inhibited the transformed phenotype and reversed the NKX2.2 transcriptional profile in Ewing's sarcoma cells. Whole genome localization studies (ChIP-chip revealed that a significant portion of the NKX2.2-repressed gene expression signature was directly mediated by NKX2.2 binding. These data demonstrate that the transcriptional repressive function of NKX2.2 is necessary, and sufficient, for the oncogenic phenotype of Ewing's sarcoma, and suggest a therapeutic approach to this disease.

  4. Discovery of non-directional and directional pioneer transcription factors by modeling DNase profile magnitude and shape

    Science.gov (United States)

    Lewis, Sophia; Barkal, Amira A; van Hoff, John Peter; Karun, Vivek; Jaakkola, Tommi; Gifford, David K

    2014-01-01

    Here we describe Protein Interaction Quantitation (PIQ), a computational method that models the magnitude and shape of genome-wide DNase profiles to facilitate the identification of transcription factor (TF) binding sites. Through the use of machine learning techniques, PIQ identified binding sites for >700 TFs from one DNase-seq experiment with accuracy comparable to ChIP-seq for motif-associated TFs (median AUC=0.93 across 303 TFs). We applied PIQ to analyze DNase-seq data from mouse embryonic stem cells differentiating into pre-pancreatic and intestinal endoderm. We identified (n=120) and experimentally validated eight ‘pioneer’ TF families that dynamically open chromatin, enabling other TFs to bind to adjacent DNA. Four pioneer TF families only open chromatin in one direction from their motifs. Furthermore, we identified a class of ‘settler’ TFs whose genomic binding is principally governed by proximity to open chromatin. Our results support a model of hierarchical TF binding in which directional and non-directional pioneer activity shapes the chromatin landscape for population by settler TFs. PMID:24441470

  5. Detecting Differential Transcription Factor Activity from ATAC-Seq Data

    Directory of Open Access Journals (Sweden)

    Ignacio J. Tripodi

    2018-05-01

    Full Text Available Transcription factors are managers of the cellular factory, and key components to many diseases. Many non-coding single nucleotide polymorphisms affect transcription factors, either by directly altering the protein or its functional activity at individual binding sites. Here we first briefly summarize high-throughput approaches to studying transcription factor activity. We then demonstrate, using published chromatin accessibility data (specifically ATAC-seq, that the genome-wide profile of TF recognition motifs relative to regions of open chromatin can determine the key transcription factor altered by a perturbation. Our method of determining which TFs are altered by a perturbation is simple, is quick to implement, and can be used when biological samples are limited. In the future, we envision that this method could be applied to determine which TFs show altered activity in response to a wide variety of drugs and diseases.

  6. Global effects of the CSR-1 RNA interference pathway on the transcriptional landscape.

    Science.gov (United States)

    Cecere, Germano; Hoersch, Sebastian; O'Keeffe, Sean; Sachidanandam, Ravi; Grishok, Alla

    2014-04-01

    Argonaute proteins and their small RNA cofactors short interfering RNAs are known to inhibit gene expression at the transcriptional and post-transcriptional levels. In Caenorhabditis elegans, the Argonaute CSR-1 binds thousands of endogenous siRNAs (endo-siRNAs) that are antisense to germline transcripts. However, its role in gene expression regulation remains controversial. Here we used genome-wide profiling of nascent RNA transcripts and found that the CSR-1 RNA interference pathway promoted sense-oriented RNA polymerase II transcription. Moreover, a loss of CSR-1 function resulted in global increase in antisense transcription and ectopic transcription of silent chromatin domains, which led to reduced chromatin incorporation of centromere-specific histone H3. On the basis of these findings, we propose that the CSR-1 pathway helps maintain the directionality of active transcription, thereby propagating the distinction between transcriptionally active and silent genomic regions.

  7. Transcription facilitated genome-wide recruitment of topoisomerase I and DNA gyrase.

    Science.gov (United States)

    Ahmed, Wareed; Sala, Claudia; Hegde, Shubhada R; Jha, Rajiv Kumar; Cole, Stewart T; Nagaraja, Valakunja

    2017-05-01

    Movement of the transcription machinery along a template alters DNA topology resulting in the accumulation of supercoils in DNA. The positive supercoils generated ahead of transcribing RNA polymerase (RNAP) and the negative supercoils accumulating behind impose severe topological constraints impeding transcription process. Previous studies have implied the role of topoisomerases in the removal of torsional stress and the maintenance of template topology but the in vivo interaction of functionally distinct topoisomerases with heterogeneous chromosomal territories is not deciphered. Moreover, how the transcription-induced supercoils influence the genome-wide recruitment of DNA topoisomerases remains to be explored in bacteria. Using ChIP-Seq, we show the genome-wide occupancy profile of both topoisomerase I and DNA gyrase in conjunction with RNAP in Mycobacterium tuberculosis taking advantage of minimal topoisomerase representation in the organism. The study unveils the first in vivo genome-wide interaction of both the topoisomerases with the genomic regions and establishes that transcription-induced supercoils govern their recruitment at genomic sites. Distribution profiles revealed co-localization of RNAP and the two topoisomerases on the active transcriptional units (TUs). At a given locus, topoisomerase I and DNA gyrase were localized behind and ahead of RNAP, respectively, correlating with the twin-supercoiled domains generated. The recruitment of topoisomerases was higher at the genomic loci with higher transcriptional activity and/or at regions under high torsional stress compared to silent genomic loci. Importantly, the occupancy of DNA gyrase, sole type II topoisomerase in Mtb, near the Ter domain of the Mtb chromosome validates its function as a decatenase.

  8. Osmotic stress upregulates the transcription of thiamine (vitamin B1 ...

    African Journals Online (AJOL)

    Osmotic stress upregulates the transcription of thiamine (vitamin B1) ... Oil palm's responses in terms of the expression profiles of these two thiamine biosynthesis genes to an osmotic stress inducer, polyethylene glycol ... from 32 Countries:.

  9. Quantitative transcriptional profiling of ATDC5 mouse progenitor cells during chondrogenesis

    DEFF Research Database (Denmark)

    Chen, Li; Fink, Trine; Zhang, Xiao-Yan

    2005-01-01

    During the differentiation of a mouse chondroprogenitor cell line, ATDC5, an analysis of the transcription cartilage-related genes was carried out using real-time RT-PCR in a semiquantitative fashion. A total number of 104 genes both previously linked to chondrogenesis and hitherto not associated...

  10. Inferring the role of transcription factors in regulatory networks

    Directory of Open Access Journals (Sweden)

    Le Borgne Michel

    2008-05-01

    Full Text Available Abstract Background Expression profiles obtained from multiple perturbation experiments are increasingly used to reconstruct transcriptional regulatory networks, from well studied, simple organisms up to higher eukaryotes. Admittedly, a key ingredient in developing a reconstruction method is its ability to integrate heterogeneous sources of information, as well as to comply with practical observability issues: measurements can be scarce or noisy. In this work, we show how to combine a network of genetic regulations with a set of expression profiles, in order to infer the functional effect of the regulations, as inducer or repressor. Our approach is based on a consistency rule between a network and the signs of variation given by expression arrays. Results We evaluate our approach in several settings of increasing complexity. First, we generate artificial expression data on a transcriptional network of E. coli extracted from the literature (1529 nodes and 3802 edges, and we estimate that 30% of the regulations can be annotated with about 30 profiles. We additionally prove that at most 40.8% of the network can be inferred using our approach. Second, we use this network in order to validate the predictions obtained with a compendium of real expression profiles. We describe a filtering algorithm that generates particularly reliable predictions. Finally, we apply our inference approach to S. cerevisiae transcriptional network (2419 nodes and 4344 interactions, by combining ChIP-chip data and 15 expression profiles. We are able to detect and isolate inconsistencies between the expression profiles and a significant portion of the model (15% of all the interactions. In addition, we report predictions for 14.5% of all interactions. Conclusion Our approach does not require accurate expression levels nor times series. Nevertheless, we show on both data, real and artificial, that a relatively small number of perturbation experiments are enough to determine

  11. Identification of transcription factors potential related to brown planthopper resistance in rice via microarray expression profiling.

    Science.gov (United States)

    Wang, Yubing; Guo, Huimin; Li, Haichao; Zhang, Hao; Miao, Xuexia

    2012-12-10

    Brown planthopper (BPH), Nilaparvata lugens Stål, is one of the most destructive insect pests of rice. The molecular responses of plants to sucking insects resemble responses to pathogen infection. However, the molecular mechanism of BPH-resistance in rice remains unclear. Transcription factors (TF) are up-stream regulators of various genes that bind to specific DNA sequences, thereby controlling the transcription from DNA to mRNA. They are key regulators for transcriptional expression in biological processes, and are probably involved in the BPH-induced pathways in resistant rice varieties. We conducted a microarray experiment to analyze TF genes related to BPH resistance in a Sri Lankan rice cultivar, Rathu Heenati (RHT). We compared the expression profiles of TF genes in RHT with those of the susceptible rice cultivar Taichun Native 1 (TN1). We detected 2038 TF genes showing differential expression signals between the two rice varieties. Of these, 442 TF genes were probably related to BPH-induced resistance in RHT and TN1, and 229 may be related to constitutive resistance only in RHT. These genes showed a fold change (FC) of more than 2.0 (Pgenes related to BPH-induced resistance, most of them were readily induced in TN1 than in RHT by BPH feeding, for instance, 154 TF genes were up-regulated in TN1, but only 31 TF genes were up-regulated in RHT at 24 hours after BPH infestation; 2-4 times more TF genes were induced in TN1 than in RHT by BPH. At an FC threshold of >10, there were 37 induced TF genes and 26 constitutive resistance TF genes. Of these, 13 were probably involved in BPH-induced resistance, and 8 in constitutive resistance to BPH in RHT. We explored the molecular mechanism of resistance to BPH in rice by comparing expressions of TF genes between RHT and TN1. We speculate that the level of gene repression, especially for early TF genes, plays an important role in the defense response. The fundamental point of the resistance strategy is that plants

  12. Dissecting interferon-induced transcriptional programs in human peripheral blood cells.

    Directory of Open Access Journals (Sweden)

    Simon J Waddell

    2010-03-01

    Full Text Available Interferons are key modulators of the immune system, and are central to the control of many diseases. The response of immune cells to stimuli in complex populations is the product of direct and indirect effects, and of homotypic and heterotypic cell interactions. Dissecting the global transcriptional profiles of immune cell populations may provide insights into this regulatory interplay. The host transcriptional response may also be useful in discriminating between disease states, and in understanding pathophysiology. The transcriptional programs of cell populations in health therefore provide a paradigm for deconvoluting disease-associated gene expression profiles.We used human cDNA microarrays to (1 compare the gene expression programs in human peripheral blood mononuclear cells (PBMCs elicited by 6 major mediators of the immune response: interferons alpha, beta, omega and gamma, IL12 and TNFalpha; and (2 characterize the transcriptional responses of purified immune cell populations (CD4+ and CD8+ T cells, B cells, NK cells and monocytes to IFNgamma stimulation. We defined a highly stereotyped response to type I interferons, while responses to IFNgamma and IL12 were largely restricted to a subset of type I interferon-inducible genes. TNFalpha stimulation resulted in a distinct pattern of gene expression. Cell type-specific transcriptional programs were identified, highlighting the pronounced response of monocytes to IFNgamma, and emergent properties associated with IFN-mediated activation of mixed cell populations. This information provides a detailed view of cellular activation by immune mediators, and contributes an interpretive framework for the definition of host immune responses in a variety of disease settings.

  13. dna profiling of capsicum annuum with the help of molecular markers

    African Journals Online (AJOL)

    isha

    2013-07-24

    Jul 24, 2013 ... Since the commercial value of chilli pepper is based on pungency level, ... Randomly Amplified Polymorphic DNA, Dendrogram, Polymerase Chain ..... the Amazon department in Columbia, characterization by AFLPs of.

  14. ReTrOS: a MATLAB toolbox for reconstructing transcriptional activity from gene and protein expression data.

    Science.gov (United States)

    Minas, Giorgos; Momiji, Hiroshi; Jenkins, Dafyd J; Costa, Maria J; Rand, David A; Finkenstädt, Bärbel

    2017-06-26

    Given the development of high-throughput experimental techniques, an increasing number of whole genome transcription profiling time series data sets, with good temporal resolution, are becoming available to researchers. The ReTrOS toolbox (Reconstructing Transcription Open Software) provides MATLAB-based implementations of two related methods, namely ReTrOS-Smooth and ReTrOS-Switch, for reconstructing the temporal transcriptional activity profile of a gene from given mRNA expression time series or protein reporter time series. The methods are based on fitting a differential equation model incorporating the processes of transcription, translation and degradation. The toolbox provides a framework for model fitting along with statistical analyses of the model with a graphical interface and model visualisation. We highlight several applications of the toolbox, including the reconstruction of the temporal cascade of transcriptional activity inferred from mRNA expression data and protein reporter data in the core circadian clock in Arabidopsis thaliana, and how such reconstructed transcription profiles can be used to study the effects of different cell lines and conditions. The ReTrOS toolbox allows users to analyse gene and/or protein expression time series where, with appropriate formulation of prior information about a minimum of kinetic parameters, in particular rates of degradation, users are able to infer timings of changes in transcriptional activity. Data from any organism and obtained from a range of technologies can be used as input due to the flexible and generic nature of the model and implementation. The output from this software provides a useful analysis of time series data and can be incorporated into further modelling approaches or in hypothesis generation.

  15. SMRT has tissue-specific isoform profiles that include a form containing one CoRNR box

    International Nuclear Information System (INIS)

    Short, Stephen; Malartre, Marianne; Sharpe, Colin

    2005-01-01

    SMRT acts as a corepressor for a range of transcription factors. The amino-terminal part of the protein includes domains that mainly mediate transcriptional repression whilst the carboxy-terminal part includes domains that interact with nuclear receptors using up to three motifs called CoRNR boxes. The region of the SMRT primary transcript encoding the interaction domains is subject to alternative splicing that varies the inclusion of the third CoRNR box. The profile in mice includes an abundant, novel SMRT isoform that possesses just one CoRNR box. Mouse tissues therefore express SMRT isoforms containing one, two or three CoRNR boxes. In frogs, the SMRT isoform profile is tissue-specific. The mouse also shows distinct profiles generated by differential expression levels of the SMRT transcript isoforms. The formation of multiple SMRT isoforms and their tissue-specific regulation indicates a mechanism, whereby cells can define the repertoire of transcription factors regulated by SMRT

  16. Genetic diversity in cultivated carioca common beans based on molecular marker analysis

    Directory of Open Access Journals (Sweden)

    Juliana Morini Küpper Cardoso Perseguini

    2011-01-01

    Full Text Available A wide array of molecular markers has been used to investigate the genetic diversity among common bean species. However, the best combination of markers for studying such diversity among common bean cultivars has yet to be determined. Few reports have examined the genetic diversity of the carioca bean, commercially one of the most important common beans in Brazil. In this study, we examined the usefulness of two molecular marker systems (simple sequence repeats - SSRs and amplified fragment length polymorphisms - AFLPs for assessing the genetic diversity of carioca beans. The amount of information provided by Roger's modified genetic distance was used to analyze SSR data and Jaccards similarity coefficient was used for AFLP data. Seventy SSRs were polymorphic and 20 AFLP primer combinations produced 635 polymorphic bands. Molecular analysis showed that carioca genotypes were quite diverse. AFLPs revealed greater genetic differentiation and variation within the carioca genotypes (Gst = 98% and Fst = 0.83, respectively than SSRs and provided better resolution for clustering the carioca genotypes. SSRs and AFLPs were both suitable for assessing the genetic diversity of Brazilian carioca genotypes since the number of markers used in each system provided a low coefficient of variation. However, fingerprint profiles were generated faster with AFLPs, making them a better choice for assessing genetic diversity in the carioca germplasm.

  17. Integration analysis of microRNA and mRNA paired expression profiling identifies deregulated microRNA-transcription factor-gene regulatory networks in ovarian endometriosis.

    Science.gov (United States)

    Zhao, Luyang; Gu, Chenglei; Ye, Mingxia; Zhang, Zhe; Li, Li'an; Fan, Wensheng; Meng, Yuanguang

    2018-01-22

    The etiology and pathophysiology of endometriosis remain unclear. Accumulating evidence suggests that aberrant microRNA (miRNA) and transcription factor (TF) expression may be involved in the pathogenesis and development of endometriosis. This study therefore aims to survey the key miRNAs, TFs and genes and further understand the mechanism of endometriosis. Paired expression profiling of miRNA and mRNA in ectopic endometria compared with eutopic endometria were determined by high-throughput sequencing techniques in eight patients with ovarian endometriosis. Binary interactions and circuits among the miRNAs, TFs, and corresponding genes were identified by the Pearson correlation coefficients. miRNA-TF-gene regulatory networks were constructed using bioinformatic methods. Eleven selected miRNAs and TFs were validated by quantitative reverse transcription-polymerase chain reaction in 22 patients. Overall, 107 differentially expressed miRNAs and 6112 differentially expressed mRNAs were identified by comparing the sequencing of the ectopic endometrium group and the eutopic endometrium group. The miRNA-TF-gene regulatory network consists of 22 miRNAs, 12 TFs and 430 corresponding genes. Specifically, some key regulators from the miR-449 and miR-34b/c cluster, miR-200 family, miR-106a-363 cluster, miR-182/183, FOX family, GATA family, and E2F family as well as CEBPA, SOX9 and HNF4A were suggested to play vital regulatory roles in the pathogenesis of endometriosis. Integration analysis of the miRNA and mRNA expression profiles presents a unique insight into the regulatory network of this enigmatic disorder and possibly provides clues regarding replacement therapy for endometriosis.

  18. Scaling proprioceptor gene transcription by retrograde NT3 signaling.

    Directory of Open Access Journals (Sweden)

    Jun Lee

    Full Text Available Cell-type specific intrinsic programs instruct neuronal subpopulations before target-derived factors influence later neuronal maturation. Retrograde neurotrophin signaling controls neuronal survival and maturation of dorsal root ganglion (DRG sensory neurons, but how these potent signaling pathways intersect with transcriptional programs established at earlier developmental stages remains poorly understood. Here we determine the consequences of genetic alternation of NT3 signaling on genome-wide transcription programs in proprioceptors, an important sensory neuron subpopulation involved in motor reflex behavior. We find that the expression of many proprioceptor-enriched genes is dramatically altered by genetic NT3 elimination, independent of survival-related activities. Combinatorial analysis of gene expression profiles with proprioceptors isolated from mice expressing surplus muscular NT3 identifies an anticorrelated gene set with transcriptional levels scaled in opposite directions. Voluntary running experiments in adult mice further demonstrate the maintenance of transcriptional adjustability of genes expressed by DRG neurons, pointing to life-long gene expression plasticity in sensory neurons.

  19. Shedding light on cell compartmentation in the candidate phylum Poribacteria by high resolution visualisation and transcriptional profiling

    KAUST Repository

    Jahn, Martin T.

    2016-10-31

    Assigning functions to uncultivated environmental microorganisms continues to be a challenging endeavour. Here, we present a new microscopy protocol for fluorescence in situ hybridisation-correlative light and electron microscopy (FISH-CLEM) that enabled, to our knowledge for the first time, the identification of single cells within their complex microenvironment at electron microscopy resolution. Members of the candidate phylum Poribacteria, common and uncultivated symbionts of marine sponges, were used towards this goal. Cellular 3D reconstructions revealed bipolar, spherical granules of low electron density, which likely represent carbon reserves. Poribacterial activity profiles were retrieved from prokaryotic enriched sponge metatranscriptomes using simulation-based optimised mapping. We observed high transcriptional activity for proteins related to bacterial microcompartments (BMC) and we resolved their subcellular localisation by combining FISH-CLEM with immunohistochemistry (IHC) on ultra-thin sponge tissue sections. In terms of functional relevance, we propose that the BMC-A region may be involved in 1,2-propanediol degradation. The FISH-IHC-CLEM approach was proven an effective toolkit to combine -omics approaches with functional studies and it should be widely applicable in environmental microbiology.

  20. Transcriptional profiling of PBMCs unravels B cell mediated immunopathogenic imprints of HCV vasculitis.

    Science.gov (United States)

    Comstock, Emily; Kim, Cheol-Woo; Murphy, Alison; Emmanuel, Benjamin; Zhang, Xi; Sneller, Michael; Poonia, Bhawna; Kottilil, Shyamasundaran

    2017-01-01

    B cell depletion therapy using rituximab has been shown to be effective in achieving remission in patients with HCV-mixed cryoglobulinemic (MC) vasculitis. Previously, we have demonstrated abnormalities in peripheral immune cells involving neutrophils, chemotaxis, and innate immune activation among patients with HCV-MC vasculitis when compared to HCV patients without vasculitis. In this study, we evaluated the effect of B cell depletion therapy on transcriptional profiles of peripheral blood mononuclear cells before and after riruximab therapy, in order to unravel the pathogenic mechanism involved in HCV-MC vasculitis induced by abnormal B cell proliferation. DNA microarray analysis was performed using RNA from PBMCs from seven patients with HCV-MC vasculitis and seven normal volunteers. DNA was hybridized to Affymetrix U133A chips. After normalization, differentially expressed gene list with treatment was generated using partitional clustering. RT-PCR, flow cytometry, and enzyme immunoassay (EIA) was used to validate DNA microarray findings. Differentially expressed genes included B cells and non-B cell genes. Validation of genes using purified cell subsets demonstrated distinct effect of B cell depletion therapy on non-B cells, such as monocytes, T cells, and NK cells. Notably, B lymphocyte stimulator (BLyS) levels were persistently elevated in patients who subsequently relapsed. In conclusion, pathogenesis of HCV-MC vasculitis is mediated by abnormal proliferation of B cells, driven by BLyS, leading to significant effects on non-B cells in mediating symptomatology. Future therapeutics using a combination approach of B cell depletion and proliferation may be desired to achieve long-term remission.

  1. Exploring the utility of organo-polyoxometalate hybrids to inhibit SOX transcription factors

    Directory of Open Access Journals (Sweden)

    Kamesh Narasimhan

    2014-01-01

    Conclusion: Polyoxometalates are highly potent, nanomolar range inhibitors of the DNA binding activity of the Sox-HMG family. However, binding assays involving a limited subset of structurally diverse polyoxometalates revealed a low selectivity profile against different transcription factor families. Further progress in achieving selectivity and deciphering structure-activity relationship of POMs require the identification of POM binding sites on transcription factors using elaborate approaches like X-ray crystallography and multidimensional NMR. In summary, our report reaffirms that transcription factors are challenging molecular architectures and that future polyoxometalate chemistry must consider further modification strategies, to address the substantial challenges involved in achieving target selectivity.

  2. Molecular cloning, transcriptional profiling, and subcellular localization of signal transducer and activator of transcription 2 (STAT2) ortholog from rock bream, Oplegnathus fasciatus.

    Science.gov (United States)

    Bathige, S D N K; Umasuthan, Navaneethaiyer; Priyathilaka, Thanthrige Thiunuwan; Thulasitha, William Shanthakumar; Jayasinghe, J D H E; Wan, Qiang; Nam, Bo-Hye; Lee, Jehee

    2017-08-30

    Signal transducer and activator of transcription 2 (STAT2) is a key element that transduces signals from the cell membrane to the nucleus via the type I interferon-signaling pathway. Although the structural and functional aspects of STAT proteins are well studied in mammals, information on teleostean STATs is very limited. In this study, a STAT paralog, which is highly homologous to the STAT2 members, was identified from a commercially important fish species called rock bream and designated as RbSTAT2. The RbSTAT2 gene was characterized at complementary DNA (cDNA) and genomic sequence levels, and was found to possess structural features common with its mammalian counterparts. The complete cDNA sequence was distributed into 24 exons in the genomic sequence. The promoter proximal region was analyzed and found to contain potential transcription factor binding sites to regulate the transcription of RbSTAT2. Phylogenetic studies and comparative genomic structure organization revealed the distinguishable evolution for fish and other vertebrate STAT2 orthologs. Transcriptional quantification was performed by SYBR Green quantitative real-time PCR (qPCR) and the ubiquitous expression of RbSTAT2 transcripts was observed in all tissues analyzed from healthy fish, with a remarkably high expression in blood cells. Significantly (Prock bream irido virus; RBIV), bacterial (Edwardsiella tarda and Streptococcus iniae), and immune stimulants (poly I:C and LPS). Antiviral potential was further confirmed by WST-1 assay, by measuring the viability of rock bream heart cells treated with RBIV. In addition, results of an in vitro challenge experiment signified the influence of rock bream interleukin-10 (RbIL-10) on transcription of RbSTAT2. Subcellular localization studies by transfection of pEGFP-N1/RbSTAT2 into rock bream heart cells revealed that the RbSTAT2 was usually located in the cytoplasm and translocated near to the nucleus upon poly I:C administration. Altogether, these

  3. Crowding-induced transcriptional bursts dictate polymerase and nucleosome density profiles along genes

    NARCIS (Netherlands)

    van den Berg, A.A.; Depken, S.M.

    2017-01-01

    During eukaryotic transcription, RNA polymerase (RNAP) translocates along DNA molecules covered with nucleosomes and other DNA binding proteins. Though the interactions between a single nucleosome and RNAP are by now fairly well understood, this understanding has not been synthesized into a

  4. Transcriptional analysis of phloem-associated cells of potato.

    Science.gov (United States)

    Lin, Tian; Lashbrook, Coralie C; Cho, Sung Ki; Butler, Nathaniel M; Sharma, Pooja; Muppirala, Usha; Severin, Andrew J; Hannapel, David J

    2015-09-03

    Numerous signal molecules, including proteins and mRNAs, are transported through the architecture of plants via the vascular system. As the connection between leaves and other organs, the petiole and stem are especially important in their transport function, which is carried out by the phloem and xylem, especially by the sieve elements in the phloem system. The phloem is an important conduit for transporting photosynthate and signal molecules like metabolites, proteins, small RNAs, and full-length mRNAs. Phloem sap has been used as an unadulterated source to profile phloem proteins and RNAs, but unfortunately, pure phloem sap cannot be obtained in most plant species. Here we make use of laser capture microdissection (LCM) and RNA-seq for an in-depth transcriptional profile of phloem-associated cells of both petioles and stems of potato. To expedite our analysis, we have taken advantage of the potato genome that has recently been fully sequenced and annotated. Out of the 27 k transcripts assembled that we identified, approximately 15 k were present in phloem-associated cells of petiole and stem with greater than ten reads. Among these genes, roughly 10 k are affected by photoperiod. Several RNAs from this day length-regulated group are also abundant in phloem cells of petioles and encode for proteins involved in signaling or transcriptional control. Approximately 22 % of the transcripts in phloem cells contained at least one binding motif for Pumilio, Nova, or polypyrimidine tract-binding proteins in their downstream sequences. Highlighting the predominance of binding processes identified in the gene ontology analysis of active genes from phloem cells, 78 % of the 464 RNA-binding proteins present in the potato genome were detected in our phloem transcriptome. As a reasonable alternative when phloem sap collection is not possible, LCM can be used to isolate RNA from specific cell types, and along with RNA-seq, provides practical access to expression profiles of

  5. Yam (Dioscorea spp.) molecular breeding

    African Journals Online (AJOL)

    Admin

    identifying candidate loci controlling agronomic traits in yam is by the application of the cDNA/AFLP technique, which generates polymorphic transcript derived fragments (TDFs) between the parents of a mapping cross. Once candidate genes have been identified, they can be employed in gene tagging and QTL mapping.

  6. Transcript Profile of Flowering Regulatory Genes in VcFT-Overexpressing Blueberry Plants.

    Science.gov (United States)

    Walworth, Aaron E; Chai, Benli; Song, Guo-Qing

    2016-01-01

    In order to identify genetic components in flowering pathways of highbush blueberry (Vaccinium corymbosum L.), a transcriptome reference composed of 254,396 transcripts and 179,853 gene contigs was developed by assembly of 72.7 million reads using Trinity. Using this transcriptome reference and a query of flowering pathway genes of herbaceous plants, we identified potential flowering pathway genes/transcripts of blueberry. Transcriptome analysis of flowering pathway genes was then conducted on leaf tissue samples of transgenic blueberry cv. Aurora ('VcFT-Aurora'), which overexpresses a blueberry FLOWERING LOCUS T-like gene (VcFT). Sixty-one blueberry transcripts of 40 genes showed high similarities to 33 known flowering-related genes of herbaceous plants, of which 17 down-regulated and 16 up-regulated genes were identified in 'VcFT-Aurora'. All down-regulated genes encoded transcription factors/enzymes upstream in the signaling pathway containing VcFT. A blueberry CONSTANS-LIKE 5-like (VcCOL5) gene was down-regulated and associated with five other differentially expressed (DE) genes in the photoperiod-mediated flowering pathway. Three down-regulated genes, i.e., a MADS-AFFECTING FLOWERING 2-like gene (VcMAF2), a MADS-AFFECTING FLOWERING 5-like gene (VcMAF5), and a VERNALIZATION1-like gene (VcVRN1), may function as integrators in place of FLOWERING LOCUS C (FLC) in the vernalization pathway. Because no CONSTAN1-like or FLOWERING LOCUS C-like genes were found in blueberry, VcCOL5 and VcMAF2/VcMAF5 or VRN1 might be the major integrator(s) in the photoperiod- and vernalization-mediated flowering pathway, respectively. The major down-stream genes of VcFT, i.e., SUPPRESSOR of Overexpression of Constans 1-like (VcSOC1), LEAFY-like (VcLFY), APETALA1-like (VcAP1), CAULIFLOWER 1-like (VcCAL1), and FRUITFULL-like (VcFUL) genes were present and showed high similarity to their orthologues in herbaceous plants. Moreover, overexpression of VcFT promoted expression of all of these

  7. Transcript Profile of Flowering Regulatory Genes in VcFT-Overexpressing Blueberry Plants.

    Directory of Open Access Journals (Sweden)

    Aaron E Walworth

    Full Text Available In order to identify genetic components in flowering pathways of highbush blueberry (Vaccinium corymbosum L., a transcriptome reference composed of 254,396 transcripts and 179,853 gene contigs was developed by assembly of 72.7 million reads using Trinity. Using this transcriptome reference and a query of flowering pathway genes of herbaceous plants, we identified potential flowering pathway genes/transcripts of blueberry. Transcriptome analysis of flowering pathway genes was then conducted on leaf tissue samples of transgenic blueberry cv. Aurora ('VcFT-Aurora', which overexpresses a blueberry FLOWERING LOCUS T-like gene (VcFT. Sixty-one blueberry transcripts of 40 genes showed high similarities to 33 known flowering-related genes of herbaceous plants, of which 17 down-regulated and 16 up-regulated genes were identified in 'VcFT-Aurora'. All down-regulated genes encoded transcription factors/enzymes upstream in the signaling pathway containing VcFT. A blueberry CONSTANS-LIKE 5-like (VcCOL5 gene was down-regulated and associated with five other differentially expressed (DE genes in the photoperiod-mediated flowering pathway. Three down-regulated genes, i.e., a MADS-AFFECTING FLOWERING 2-like gene (VcMAF2, a MADS-AFFECTING FLOWERING 5-like gene (VcMAF5, and a VERNALIZATION1-like gene (VcVRN1, may function as integrators in place of FLOWERING LOCUS C (FLC in the vernalization pathway. Because no CONSTAN1-like or FLOWERING LOCUS C-like genes were found in blueberry, VcCOL5 and VcMAF2/VcMAF5 or VRN1 might be the major integrator(s in the photoperiod- and vernalization-mediated flowering pathway, respectively. The major down-stream genes of VcFT, i.e., SUPPRESSOR of Overexpression of Constans 1-like (VcSOC1, LEAFY-like (VcLFY, APETALA1-like (VcAP1, CAULIFLOWER 1-like (VcCAL1, and FRUITFULL-like (VcFUL genes were present and showed high similarity to their orthologues in herbaceous plants. Moreover, overexpression of VcFT promoted expression of all of

  8. Transcript Profile of Flowering Regulatory Genes in VcFT-Overexpressing Blueberry Plants

    Science.gov (United States)

    Walworth, Aaron E.; Chai, Benli; Song, Guo-qing

    2016-01-01

    In order to identify genetic components in flowering pathways of highbush blueberry (Vaccinium corymbosum L.), a transcriptome reference composed of 254,396 transcripts and 179,853 gene contigs was developed by assembly of 72.7 million reads using Trinity. Using this transcriptome reference and a query of flowering pathway genes of herbaceous plants, we identified potential flowering pathway genes/transcripts of blueberry. Transcriptome analysis of flowering pathway genes was then conducted on leaf tissue samples of transgenic blueberry cv. Aurora (‘VcFT-Aurora’), which overexpresses a blueberry FLOWERING LOCUS T-like gene (VcFT). Sixty-one blueberry transcripts of 40 genes showed high similarities to 33 known flowering-related genes of herbaceous plants, of which 17 down-regulated and 16 up-regulated genes were identified in ‘VcFT-Aurora’. All down-regulated genes encoded transcription factors/enzymes upstream in the signaling pathway containing VcFT. A blueberry CONSTANS-LIKE 5-like (VcCOL5) gene was down-regulated and associated with five other differentially expressed (DE) genes in the photoperiod-mediated flowering pathway. Three down-regulated genes, i.e., a MADS-AFFECTING FLOWERING 2-like gene (VcMAF2), a MADS-AFFECTING FLOWERING 5-like gene (VcMAF5), and a VERNALIZATION1-like gene (VcVRN1), may function as integrators in place of FLOWERING LOCUS C (FLC) in the vernalization pathway. Because no CONSTAN1-like or FLOWERING LOCUS C-like genes were found in blueberry, VcCOL5 and VcMAF2/VcMAF5 or VRN1 might be the major integrator(s) in the photoperiod- and vernalization-mediated flowering pathway, respectively. The major down-stream genes of VcFT, i.e., SUPPRESSOR of Overexpression of Constans 1-like (VcSOC1), LEAFY-like (VcLFY), APETALA1-like (VcAP1), CAULIFLOWER 1-like (VcCAL1), and FRUITFULL-like (VcFUL) genes were present and showed high similarity to their orthologues in herbaceous plants. Moreover, overexpression of VcFT promoted expression of all

  9. Regulation of Adult CNS Axonal Regeneration by the Post-transcriptional Regulator Cpeb1

    Directory of Open Access Journals (Sweden)

    Wilson Pak-Kin Lou

    2018-01-01

    Full Text Available Adult mammalian central nervous system (CNS neurons are unable to regenerate following axonal injury, leading to permanent functional impairments. Yet, the reasons underlying this regeneration failure are not fully understood. Here, we studied the transcriptome and translatome shortly after spinal cord injury. Profiling of the total and ribosome-bound RNA in injured and naïve spinal cords identified a substantial post-transcriptional regulation of gene expression. In particular, transcripts associated with nervous system development were down-regulated in the total RNA fraction while remaining stably loaded onto ribosomes. Interestingly, motif association analysis of post-transcriptionally regulated transcripts identified the cytoplasmic polyadenylation element (CPE as enriched in a subset of these transcripts that was more resistant to injury-induced reduction at the transcriptome level. Modulation of these transcripts by overexpression of the CPE binding protein, Cpeb1, in mouse and Drosophila CNS neurons promoted axonal regeneration following injury. Our study uncovered a global evolutionarily conserved post-transcriptional mechanism enhancing regeneration of injured CNS axons.

  10. Preliminary assessment of AFLP fingerprinting of Rubus glaucus Benth. elite genotypes

    Directory of Open Access Journals (Sweden)

    Duarte Delgado Diana

    2011-04-01

    Full Text Available

    The Andean blackberry (Rubus glaucus Benth. is a promissory fruit crop for Colombia with potential to become an international commodity due to its high nutritional and nutraceutical value. Farmer genotypes from the national R. glaucus collection were selected from eight outstanding accessions according to their nutritional and agronomic value, for distribution among local producers. The goal of this work is to evaluate the genomic fingerprint by AFLP analysis of these elite genotypes using three primer combinations. From 179 total amplified loci produced by the three combinations, 20% resulted polymorphic. The EAGG/MCTT combination was the most informative with a 32% polymorphism and greater discrimination power. The genotypes tested showed a high average similarity (96% and the accessions San Antonio and ILS-1863 formed independent groups with good statistical support in the clustering analysis. The remaining accessions did not form discrete groups with good support (<50%, probably due to genetic homogeneity among them and/or low resolving power of markers. This study is one of the first attempts to generate a genomic fingerprint of these farmer elite genotypes for protection, seed certification and future support to breeding programs.

     

  11. Transcriptional profiling reveals molecular signatures associated with HIV permissiveness in Th1Th17 cells and identifies Peroxisome Proliferator-Activated Receptor Gamma as an intrinsic negative regulator of viral replication

    Science.gov (United States)

    2013-01-01

    Background We previously demonstrated that primary Th1Th17 cells are highly permissive to HIV-1, whereas Th1 cells are relatively resistant. Molecular mechanisms underlying these differences remain unknown. Results Exposure to replication competent and single-round VSV-G pseudotyped HIV strains provide evidence that superior HIV replication in Th1Th17 vs. Th1 cells was regulated by mechanisms located at entry and post-entry levels. Genome-wide transcriptional profiling identified transcripts upregulated (n = 264) and downregulated (n = 235) in Th1Th17 vs. Th1 cells (p-value Th17 (nuclear receptors, trafficking, p38/MAPK, NF-κB, p53/Ras, IL-23) vs. Th1 cells (proteasome, interferon α/β). Differentially expressed genes were classified into biological categories using Gene Ontology. Th1Th17 cells expressed typical Th17 markers (IL-17A/F, IL-22, CCL20, RORC, IL-26, IL-23R, CCR6) and transcripts functionally linked to regulating cell trafficking (CEACAM1, MCAM), activation (CD28, CD40LG, TNFSF13B, TNFSF25, PTPN13, MAP3K4, LTB, CTSH), transcription (PPARγ, RUNX1, ATF5, ARNTL), apoptosis (FASLG), and HIV infection (CXCR6, FURIN). Differential expression of CXCR6, PPARγ, ARNTL, PTPN13, MAP3K4, CTSH, SERPINB6, PTK2, and ISG20 was validated by RT-PCR, flow cytometry and/or confocal microscopy. The nuclear receptor PPARγ was preferentially expressed by Th1Th17 cells. PPARγ RNA interference significantly increased HIV replication at levels post-entry and prior HIV-DNA integration. Finally, the activation of PPARγ pathway via the agonist Rosiglitazone induced the nuclear translocation of PPARγ and a robust inhibition of viral replication. Conclusions Thus, transcriptional profiling in Th1Th17 vs. Th1 cells demonstrated that HIV permissiveness is associated with a superior state of cellular activation and limited antiviral properties and identified PPARγ as an intrinsic negative regulator of viral replication. Therefore, triggering PPARγ pathway via non

  12. Genome-wide conserved consensus transcription factor binding motifs are hyper-methylated

    Directory of Open Access Journals (Sweden)

    Down Thomas A

    2010-09-01

    Full Text Available Abstract Background DNA methylation can regulate gene expression by modulating the interaction between DNA and proteins or protein complexes. Conserved consensus motifs exist across the human genome ("predicted transcription factor binding sites": "predicted TFBS" but the large majority of these are proven by chromatin immunoprecipitation and high throughput sequencing (ChIP-seq not to be biological transcription factor binding sites ("empirical TFBS". We hypothesize that DNA methylation at conserved consensus motifs prevents promiscuous or disorderly transcription factor binding. Results Using genome-wide methylation maps of the human heart and sperm, we found that all conserved consensus motifs as well as the subset of those that reside outside CpG islands have an aggregate profile of hyper-methylation. In contrast, empirical TFBS with conserved consensus motifs have a profile of hypo-methylation. 40% of empirical TFBS with conserved consensus motifs resided in CpG islands whereas only 7% of all conserved consensus motifs were in CpG islands. Finally we further identified a minority subset of TF whose profiles are either hypo-methylated or neutral at their respective conserved consensus motifs implicating that these TF may be responsible for establishing or maintaining an un-methylated DNA state, or whose binding is not regulated by DNA methylation. Conclusions Our analysis supports the hypothesis that at least for a subset of TF, empirical binding to conserved consensus motifs genome-wide may be controlled by DNA methylation.

  13. Discovery of transcription factors and regulatory regions driving in vivo tumor development by ATAC-seq and FAIRE-seq open chromatin profiling.

    Directory of Open Access Journals (Sweden)

    Kristofer Davie

    2015-02-01

    Full Text Available Genomic enhancers regulate spatio-temporal gene expression by recruiting specific combinations of transcription factors (TFs. When TFs are bound to active regulatory regions, they displace canonical nucleosomes, making these regions biochemically detectable as nucleosome-depleted regions or accessible/open chromatin. Here we ask whether open chromatin profiling can be used to identify the entire repertoire of active promoters and enhancers underlying tissue-specific gene expression during normal development and oncogenesis in vivo. To this end, we first compare two different approaches to detect open chromatin in vivo using the Drosophila eye primordium as a model system: FAIRE-seq, based on physical separation of open versus closed chromatin; and ATAC-seq, based on preferential integration of a transposon into open chromatin. We find that both methods reproducibly capture the tissue-specific chromatin activity of regulatory regions, including promoters, enhancers, and insulators. Using both techniques, we screened for regulatory regions that become ectopically active during Ras-dependent oncogenesis, and identified 3778 regions that become (over-activated during tumor development. Next, we applied motif discovery to search for candidate transcription factors that could bind these regions and identified AP-1 and Stat92E as key regulators. We validated the importance of Stat92E in the development of the tumors by introducing a loss of function Stat92E mutant, which was sufficient to rescue the tumor phenotype. Additionally we tested if the predicted Stat92E responsive regulatory regions are genuine, using ectopic induction of JAK/STAT signaling in developing eye discs, and observed that similar chromatin changes indeed occurred. Finally, we determine that these are functionally significant regulatory changes, as nearby target genes are up- or down-regulated. In conclusion, we show that FAIRE-seq and ATAC-seq based open chromatin profiling

  14. Transcriptome analysis of paired primary colorectal carcinoma and liver metastases reveals fusion transcripts and similar gene expression profiles in primary carcinoma and liver metastases

    International Nuclear Information System (INIS)

    Lee, Ja-Rang; Kwon, Chae Hwa; Choi, Yuri; Park, Hye Ji; Kim, Hyun Sung; Jo, Hong-Jae; Oh, Nahmgun; Park, Do Youn

    2016-01-01

    Despite the clinical significance of liver metastases, the difference between molecular and cellular changes in primary colorectal cancers (CRC) and matched liver metastases is poorly understood. In order to compare gene expression patterns and identify fusion genes in these two types of tumors, we performed high-throughput transcriptome sequencing of five sets of quadruple-matched tissues (primary CRC, liver metastases, normal colon, and liver). The gene expression patterns in normal colon and liver were successfully distinguished from those in CRCs; however, RNA sequencing revealed that the gene expression between primary CRCs and their matched liver metastases is highly similar. We identified 1895 genes that were differentially expressed in the primary carcinoma and liver metastases, than that in the normal colon tissues. A major proportion of the transcripts, identified by gene expression profiling as significantly enriched in the primary carcinoma and metastases, belonged to gene ontology categories involved in the cell cycle, mitosis, and cell division. Furthermore, we identified gene fusion events in primary carcinoma and metastases, and the fusion transcripts were experimentally confirmed. Among these, a chimeric transcript resulting from the fusion of RNF43 and SUPT4H1 was found to occur frequently in primary colorectal carcinoma. In addition, knockdown of the expression of this RNF43-SUPT4H1 chimeric transcript was found to have a growth-inhibitory effect in colorectal cancer cells. The present study reports a high concordance of gene expression in the primary carcinoma and liver metastases, and reveals potential new targets, such as fusion genes, against primary and metastatic colorectal carcinoma. The online version of this article (doi:10.1186/s12885-016-2596-3) contains supplementary material, which is available to authorized users

  15. The transcriptional profiling of human in vivo-generated plasma cells identifies selective imbalances in monoclonal gammopathies.

    Directory of Open Access Journals (Sweden)

    Luis M Valor

    Full Text Available Plasma cells (PC represent the heterogeneous final stage of the B cells (BC differentiation process. To characterize the transition of BC into PC, transcriptomes from human naïve BC were compared to those of three functionally-different subsets of human in vivo-generated PC: i tonsil PC, mainly consisting of early PC; ii PC released to the blood after a potent booster-immunization (mostly cycling plasmablasts; and, iii bone marrow CD138+ PC that represent highly mature PC and include the long-lived PC compartment. This transcriptional transition involves subsets of genes related to key processes for PC maturation: the already known protein processing, apoptosis and homeostasis, and of new discovery including histones, macromolecule assembly, zinc-finger transcription factors and neuromodulation. This human PC signature is partially reproduced in vitro and is conserved in mouse. Moreover, the present study identifies genes that define PC subtypes (e.g., proliferation-associated genes for circulating PC and transcriptional-related genes for tonsil and bone marrow PC and proposes some putative transcriptional regulators of the human PC signatures (e.g., OCT/POU, XBP1/CREB, E2F, among others. Finally, we also identified a restricted imbalance of the present PC transcriptional program in monoclonal gammopathies that correlated with PC malignancy.

  16. High-density transcriptional initiation signals underline genomic islands in bacteria.

    Directory of Open Access Journals (Sweden)

    Qianli Huang

    Full Text Available Genomic islands (GIs, frequently associated with the pathogenicity of bacteria and having a substantial influence on bacterial evolution, are groups of "alien" elements which probably undergo special temporal-spatial regulation in the host genome. Are there particular hallmark transcriptional signals for these "exotic" regions? We here explore the potential transcriptional signals that underline the GIs beyond the conventional views on basic sequence composition, such as codon usage and GC property bias. It showed that there is a significant enrichment of the transcription start positions (TSPs in the GI regions compared to the whole genome of Salmonella enterica and Escherichia coli. There was up to a four-fold increase for the 70% GIs, implying high-density TSPs profile can potentially differentiate the GI regions. Based on this feature, we developed a new sliding window method GIST, Genomic-island Identification by Signals of Transcription, to identify these regions. Subsequently, we compared the known GI-associated features of the GIs detected by GIST and by the existing method Islandviewer to those of the whole genome. Our method demonstrates high sensitivity in detecting GIs harboring genes with biased GI-like function, preferred subcellular localization, skewed GC property, shorter gene length and biased "non-optimal" codon usage. The special transcriptional signals discovered here may contribute to the coordinate expression regulation of foreign genes. Finally, by using GIST, we detected many interesting GIs in the 2011 German E. coli O104:H4 outbreak strain TY-2482, including the microcin H47 system and gene cluster ycgXEFZ-ymgABC that activates the production of biofilm matrix. The aforesaid findings highlight the power of GIST to predict GIs with distinct intrinsic features to the genome. The heterogeneity of cumulative TSPs profiles may not only be a better identity for "alien" regions, but also provide hints to the special

  17. Identification of a Transcription Factor Controlling pH-Dependent Organic Acid Response in Aspergillus niger

    DEFF Research Database (Denmark)

    Poulsen, Lars; Andersen, Mikael Rørdam; Lantz, Anna Eliasson

    2012-01-01

    exhibiting an oxalate overproducing phenotype were identified. The yield of oxalate was increased up to 158% compared to the wild type and the corresponding transcription factor was therefore entitled Oxalic Acid repression Factor, OafA. Detailed physiological characterization of one of the ΔoafA mutants......, compared to the wild type, showed that both strains produced substantial amounts of gluconic acid, but the mutant strain was more efficient in re-uptake of gluconic acid and converting it to oxalic acid, particularly at high pH (pH 5.0). Transcriptional profiles showed that 241 genes were differentially......Acid formation in Aspergillus niger is known to be subjected to tight regulation, and the acid production profiles are fine-tuned to respond to the ambient pH. Based on transcriptome data, putative trans-acting pH responding transcription factors were listed and through knock out studies, mutants...

  18. Is gene transcription involved in seed dry after-ripening?

    Directory of Open Access Journals (Sweden)

    Patrice Meimoun

    Full Text Available Orthodox seeds are living organisms that survive anhydrobiosis and may display dormancy, an inability to germinate at harvest. Seed germination potential can be acquired during a prolonged period of dry storage called after-ripening. The aim of this work was to determine if gene transcription is an underlying regulatory mechanism for dormancy alleviation during after-ripening. To identify changes in gene transcription strictly associated with the acquisition of germination potential but not with storage, we used seed storage at low relative humidity that maintains dormancy as control. Transcriptome profiling was performed using DNA microarray to compare change in gene transcript abundance between dormant (D, after-ripened non-dormant (ND and after-ripened dormant seeds (control, C. Quantitative real-time polymerase chain reaction (qPCR was used to confirm gene expression. Comparison between D and ND showed the differential expression of 115 probesets at cut-off values of two-fold change (p<0.05. Comparisons between both D and C with ND in transcript abundance showed that only 13 transcripts, among 115, could be specific to dormancy alleviation. qPCR confirms the expression pattern of these transcripts but without significant variation between conditions. Here we show that sunflower seed dormancy alleviation in the dry state is not related to regulated changes in gene expression.

  19. Transcriptional dysregulation in NIPBL and cohesin mutant human cells.

    Directory of Open Access Journals (Sweden)

    Jinglan Liu

    2009-05-01

    Full Text Available Cohesin regulates sister chromatid cohesion during the mitotic cell cycle with Nipped-B-Like (NIPBL facilitating its loading and unloading. In addition to this canonical role, cohesin has also been demonstrated to play a critical role in regulation of gene expression in nondividing cells. Heterozygous mutations in the cohesin regulator NIPBL or cohesin structural components SMC1A and SMC3 result in the multisystem developmental disorder Cornelia de Lange Syndrome (CdLS. Genome-wide assessment of transcription in 16 mutant cell lines from severely affected CdLS probands has identified a unique profile of dysregulated gene expression that was validated in an additional 101 samples and correlates with phenotypic severity. This profile could serve as a diagnostic and classification tool. Cohesin binding analysis demonstrates a preference for intergenic regions suggesting a cis-regulatory function mimicking that of a boundary/insulator interacting protein. However, the binding sites are enriched within the promoter regions of the dysregulated genes and are significantly decreased in CdLS proband, indicating an alternative role of cohesin as a transcription factor.

  20. FARNA: knowledgebase of inferred functions of non-coding RNA transcripts

    KAUST Repository

    Alam, Tanvir

    2016-10-12

    Non-coding RNA (ncRNA) genes play a major role in control of heterogeneous cellular behavior. Yet, their functions are largely uncharacterized. Current available databases lack in-depth information of ncRNA functions across spectrum of various cells/tissues. Here, we present FARNA, a knowledgebase of inferred functions of 10,289 human ncRNA transcripts (2,734 microRNA and 7,555 long ncRNA) in 119 tissues and 177 primary cells of human. Since transcription factors (TFs) and TF co-factors (TcoFs) are crucial components of regulatory machinery for activation of gene transcription, cellular processes and diseases in which TFs and TcoFs are involved suggest functions of the transcripts they regulate. In FARNA, functions of a transcript are inferred from TFs and TcoFs whose genes co-express with the transcript controlled by these TFs and TcoFs in a considered cell/tissue. Transcripts were annotated using statistically enriched GO terms, pathways and diseases across cells/tissues based on guilt-by-association principle. Expression profiles across cells/tissues based on Cap Analysis of Gene Expression (CAGE) are provided. FARNA, having the most comprehensive function annotation of considered ncRNAs across widest spectrum of human cells/tissues, has a potential to greatly contribute to our understanding of ncRNA roles and their regulatory mechanisms in human. FARNA can be accessed at: http://cbrc.kaust.edu.sa/farna

  1. FARNA: knowledgebase of inferred functions of non-coding RNA transcripts

    KAUST Repository

    Alam, Tanvir; Uludag, Mahmut; Essack, Magbubah; Salhi, Adil; Ashoor, Haitham; Hanks, John B.; Kapfer, Craig Eric; Mineta, Katsuhiko; Gojobori, Takashi; Bajic, Vladimir B.

    2016-01-01

    Non-coding RNA (ncRNA) genes play a major role in control of heterogeneous cellular behavior. Yet, their functions are largely uncharacterized. Current available databases lack in-depth information of ncRNA functions across spectrum of various cells/tissues. Here, we present FARNA, a knowledgebase of inferred functions of 10,289 human ncRNA transcripts (2,734 microRNA and 7,555 long ncRNA) in 119 tissues and 177 primary cells of human. Since transcription factors (TFs) and TF co-factors (TcoFs) are crucial components of regulatory machinery for activation of gene transcription, cellular processes and diseases in which TFs and TcoFs are involved suggest functions of the transcripts they regulate. In FARNA, functions of a transcript are inferred from TFs and TcoFs whose genes co-express with the transcript controlled by these TFs and TcoFs in a considered cell/tissue. Transcripts were annotated using statistically enriched GO terms, pathways and diseases across cells/tissues based on guilt-by-association principle. Expression profiles across cells/tissues based on Cap Analysis of Gene Expression (CAGE) are provided. FARNA, having the most comprehensive function annotation of considered ncRNAs across widest spectrum of human cells/tissues, has a potential to greatly contribute to our understanding of ncRNA roles and their regulatory mechanisms in human. FARNA can be accessed at: http://cbrc.kaust.edu.sa/farna

  2. Comparative analysis of regulatory elements between Escherichia coli and Klebsiella pneumoniae by genome-wide transcription start site profiling.

    Directory of Open Access Journals (Sweden)

    Donghyuk Kim

    Full Text Available Genome-wide transcription start site (TSS profiles of the enterobacteria Escherichia coli and Klebsiella pneumoniae were experimentally determined through modified 5' RACE followed by deep sequencing of intact primary mRNA. This identified 3,746 and 3,143 TSSs for E. coli and K. pneumoniae, respectively. Experimentally determined TSSs were then used to define promoter regions and 5' UTRs upstream of coding genes. Comparative analysis of these regulatory elements revealed the use of multiple TSSs, identical sequence motifs of promoter and Shine-Dalgarno sequence, reflecting conserved gene expression apparatuses between the two species. In both species, over 70% of primary transcripts were expressed from operons having orthologous genes during exponential growth. However, expressed orthologous genes in E. coli and K. pneumoniae showed a strikingly different organization of upstream regulatory regions with only 20% identical promoters with TSSs in both species. Over 40% of promoters had TSSs identified in only one species, despite conserved promoter sequences existing in the other species. 662 conserved promoters having TSSs in both species resulted in the same number of comparable 5' UTR pairs, and that regulatory element was found to be the most variant region in sequence among promoter, 5' UTR, and ORF. In K. pneumoniae, 48 sRNAs were predicted and 36 of them were expressed during exponential growth. Among them, 34 orthologous sRNAs between two species were analyzed in depth, and the analysis showed that many sRNAs of K. pneumoniae, including pleiotropic sRNAs such as rprA, arcZ, and sgrS, may work in the same way as in E. coli. These results reveal a new dimension of comparative genomics such that a comparison of two genomes needs to be comprehensive over all levels of genome organization.

  3. Transcriptional Regulation and the Diversification of Metabolism in Wine Yeast Strains

    Science.gov (United States)

    Rossouw, Debra; Jacobson, Dan; Bauer, Florian F.

    2012-01-01

    Transcription factors and their binding sites have been proposed as primary targets of evolutionary adaptation because changes to single transcription factors can lead to far-reaching changes in gene expression patterns. Nevertheless, there is very little concrete evidence for such evolutionary changes. Industrial wine yeast strains, of the species Saccharomyces cerevisiae, are a geno- and phenotypically diverse group of organisms that have adapted to the ecological niches of industrial winemaking environments and have been selected to produce specific styles of wine. Variation in transcriptional regulation among wine yeast strains may be responsible for many of the observed differences and specific adaptations to different fermentative conditions in the context of commercial winemaking. We analyzed gene expression profiles of wine yeast strains to assess the impact of transcription factor expression on metabolic networks. The data provide new insights into the molecular basis of variations in gene expression in industrial strains and their consequent effects on metabolic networks important to wine fermentation. We show that the metabolic phenotype of a strain can be shifted in a relatively predictable manner by changing expression levels of individual transcription factors, opening opportunities to modify transcription networks to achieve desirable outcomes. PMID:22042577

  4. Using gene transcription to assess ecological and anthropological stressors in brown bears

    Science.gov (United States)

    Bowen, Lizabeth; Miles, A. Keith; Waters, Shannon C.; Gustine, Dave; Joly, Kyle; Hilderbrand, Grant V.

    2017-01-01

    Increasingly, population- and ecosystem-level health assessments are performed using sophisticated molecular tools. Advances in molecular technology enable the identification of synergistic effects of multiple stressors on the individual physiology of different species. Brown bears (Ursus arctos) are an apex predator; thus, they are ideal candidates for detecting potentially ecosystem-level systemic perturbations using molecular-based tools. We used gene transcription to analyze 130 brown bear samples from three National Parks and Preserves in Alaska. Although the populations we studied are apparently stable in abundance and exist within protected and intact environments, differences in transcript profiles were noted. The most prevalent differences were among locations. The transcript patterns among groups reflect the influence of environmental factors, such as nutritional status, disease, and xenobiotic exposure. However, these profiles also likely represent baselines for each unique environment by which future measures can be made to identify early indication of population-level changes due to, for example, increasing Arctic temperatures. Some of those environmental changes are predicted to be potentially positive for brown bears, but other effects such as the manifestation of disease or indirect effects of oceanic acidification may produce negative impacts.

  5. Transcriptional profile of Paracoccidioides induced by oenothein B, a potential antifungal agent from the Brazilian Cerrado plant Eugenia uniflora.

    Science.gov (United States)

    Zambuzzi-Carvalho, Patrícia Fernanda; Tomazett, Patrícia Kott; Santos, Suzana Costa; Ferri, Pedro Henrique; Borges, Clayton Luiz; Martins, Wellington Santos; de Almeida Soares, Célia Maria; Pereira, Maristela

    2013-10-12

    The compound oenothein B (OenB), which is isolated from the leaves of Eugenia uniflora, a Brazilian Cerrado plant, interferes with Paracoccidioides yeast cell morphology and inhibits 1,3-β-D-glucan synthase (PbFKS1) transcript accumulation, which is involved in cell wall synthesis. In this work we examined the gene expression changes in Paracoccidioides yeast cells following OenB treatment in order to investigate the adaptive cellular responses to drug stress. We constructed differential gene expression libraries using Representational Difference Analysis (RDA) of Paracoccidioides yeast cells treated with OenB for 90 and 180 min. Treatment for 90 min resulted in the identification of 463 up-regulated expressed sequences tags (ESTs) and 104 down-regulated ESTs. For the 180 min treatment 301 up-regulated ESTs and 143 down-regulated were identified. Genes involved in the cell wall biosynthesis, such as GLN1, KRE6 and FKS1, were found to be regulated by OenB. Infection experiments in macrophages corroborated the in vitro results. Fluorescence microscopy showed increased levels of chitin in cells treated with OenB. The carbohydrate polymer content of the cell wall of the fungus was also evaluated, and the results corroborated with the transcriptional data. Several other genes, such as those involved in a variety of important cellular processes (i.e., membrane maintenance, stress and virulence) were found to be up-regulated in response to OenB treatment. The exposure of Paracoccidioides to OenB resulted in a complex altered gene expression profile. Some of the changes may represent specific adaptive responses to this compound in this important pathogenic fungus.

  6. Transcription Profiling of Bacillus subtilis Cells Infected with AR9, a Giant Phage Encoding Two Multisubunit RNA Polymerases.

    Science.gov (United States)

    Lavysh, Daria; Sokolova, Maria; Slashcheva, Marina; Förstner, Konrad U; Severinov, Konstantin

    2017-02-14

    Bacteriophage AR9 is a recently sequenced jumbo phage that encodes two multisubunit RNA polymerases. Here we investigated the AR9 transcription strategy and the effect of AR9 infection on the transcription of its host, Bacillus subtilis Analysis of whole-genome transcription revealed early, late, and continuously expressed AR9 genes. Alignment of sequences upstream of the 5' ends of AR9 transcripts revealed consensus sequences that define early and late phage promoters. Continuously expressed AR9 genes have both early and late promoters in front of them. Early AR9 transcription is independent of protein synthesis and must be determined by virion RNA polymerase injected together with viral DNA. During infection, the overall amount of host mRNAs is significantly decreased. Analysis of relative amounts of host transcripts revealed notable differences in the levels of some mRNAs. The physiological significance of up- or downregulation of host genes for AR9 phage infection remains to be established. AR9 infection is significantly affected by rifampin, an inhibitor of host RNA polymerase transcription. The effect is likely caused by the antibiotic-induced killing of host cells, while phage genome transcription is solely performed by viral RNA polymerases. IMPORTANCE Phages regulate the timing of the expression of their own genes to coordinate processes in the infected cell and maximize the release of viral progeny. Phages also alter the levels of host transcripts. Here we present the results of a temporal analysis of the host and viral transcriptomes of Bacillus subtilis infected with a giant phage, AR9. We identify viral promoters recognized by two virus-encoded RNA polymerases that are a unique feature of the phiKZ-related group of phages to which AR9 belongs. Our results set the stage for future analyses of highly unusual RNA polymerases encoded by AR9 and other phiKZ-related phages. Copyright © 2017 Lavysh et al.

  7. Transcriptional profiles of hybrid Eucalyptus genotypes with contrasting lignin content reveal that monolignol biosynthesis-related genes regulate wood composition

    Directory of Open Access Journals (Sweden)

    Tomotaka eShinya

    2016-04-01

    Full Text Available Eucalyptus species constitutes the most widely planted hardwood trees in temperate and subtropical regions. In this study, we compared the transcript levels of genes involved in lignocellulose formation such as cellulose, hemicellulose and lignin biosynthesis in two selected three-year old hybrid Eucalyptus (Eucalyptus urophylla x E. grandis genotypes (AM063 and AM380 that have different lignin content. AM063 and AM380 had 20.2 and 35.5% of Klason lignin content and 59.0% and 48.2%, -cellulose contents, respectively. We investigated the correlation between wood properties and transcript levels of wood formation-related genes using RNA-seq with total RNAs extracted from developing xylem tissues at a breast height. Transcript levels of cell wall construction genes such as cellulose synthase (CesA and sucrose synthase (SUSY were almost the same in both genotypes. However, AM063 exhibited higher transcript levels of UDP-glucose pyrophosphorylase (UGP and xyloglucan endotransglucoxylase (XTH than those in AM380. Most monolignol biosynthesis- related isozyme genes showed higher transcript levels in AM380. These results indicate monolignol biosynthesis-related genes may regulate wood composition in Eucalyptus. Flavonoids contents were also observed at much higher levels in AM380 as a result of the elevated transcript levels of common phenylpropanoid pathway genes, phenylalanine ammonium lyase (PAL, cinnamate-4-hydroxylase (C4H and 4-coumarate-CoA ligase (4CL. Secondary plant cell wall formation is regulated by many transcription factors. We analyzed genes encoding NAC, WRKY, AP2/ERF and KNOX transcription factors and found higher transcript levels of these genes in AM380. We also observed increased transcription of some MYB and LIM domain transcription factors in AM380 compared to AM063. All these results show that genes related to monolignol biosynthesis may regulate the wood composition and help maintain the ratio of cellulose and lignin contents

  8. Temporal dynamics and transcriptional control using single-cell gene expression analysis.

    Science.gov (United States)

    Kouno, Tsukasa; de Hoon, Michiel; Mar, Jessica C; Tomaru, Yasuhiro; Kawano, Mitsuoki; Carninci, Piero; Suzuki, Harukazu; Hayashizaki, Yoshihide; Shin, Jay W

    2013-01-01

    Changes in environmental conditions lead to expression variation that manifest at the level of gene regulatory networks. Despite a strong understanding of the role noise plays in synthetic biological systems, it remains unclear how propagation of expression heterogeneity in an endogenous regulatory network is distributed and utilized by cells transitioning through a key developmental event. Here we investigate the temporal dynamics of a single-cell transcriptional network of 45 transcription factors in THP-1 human myeloid monocytic leukemia cells undergoing differentiation to macrophages. We systematically measure temporal regulation of expression and variation by profiling 120 single cells at eight distinct time points, and infer highly controlled regulatory modules through which signaling operates with stochastic effects. This reveals dynamic and specific rewiring as a cellular strategy for differentiation. The integration of both positive and negative co-expression networks further identifies the proto-oncogene MYB as a network hinge to modulate both the pro- and anti-differentiation pathways. Compared to averaged cell populations, temporal single-cell expression profiling provides a much more powerful technique to probe for mechanistic insights underlying cellular differentiation. We believe that our approach will form the basis of novel strategies to study the regulation of transcription at a single-cell level.

  9. Prevalence of Avian Pathogenic Escherichia coli (APEC Clone Harboring sfa Gene in Brazil

    Directory of Open Access Journals (Sweden)

    Terezinha Knöbl

    2012-01-01

    Full Text Available Escherichia coli sfa+ strains isolated from poultry were serotyped and characterized by polymerase chain reaction (PCR and amplified fragment length polymorphism (AFLP. Isolates collected from 12 Brazilian poultry farms mostly belonged to serogroup O6, followed by serogroups O2, O8, O21, O46, O78, O88, O106, O111, and O143. Virulence genes associated were: iuc 90%, fim 86% neuS 60%, hly 34%, tsh 28%, crl/csg 26%, iss 26%, pap 18%, and 14% cnf. Strains from the same farm presented more than one genotypic pattern belonging to different profiles in AFLP. AFLP showed a clonal relation between Escherichia coli sfa+ serogroup O6. The virulence genes found in these strains reveal some similarity with extraintestinal E. coli (ExPEC, thus alerting for potential zoonotic risk.

  10. GenEST, a powerful bidirectional link between cDNA sequence data and gene expression profiles generated by cDNA-AFLP

    NARCIS (Netherlands)

    Qin Ling,; Prins, P.; Jones, J.T.; Popeijus, H.; Smant, G.; Bakker, J.; Helder, J.

    2001-01-01

    The release of vast quantities of DNA sequence data by large-scale genome and expressed sequence tag (EST) projects underlines the necessity for the development of efficient and inexpensive ways to link sequence databases with temporal and spatial expression profiles. Here we demonstrate the power

  11. Clinical characteristics and persistence of bovine mastitis caused by different species of coagulase-negative staphylococci identified with API or AFLP

    DEFF Research Database (Denmark)

    Taponen, S.; Simojoki, H.; Haveri, M.

    2006-01-01

    The coagulase-negative staphylococcal species causing mastitis in lactating cattle were identified and possible differences in the clinical characteristics or persistence of mastitis caused by different CNS were evaluated. The effect of antimicrobial treatment was also assessed. In addition, AFLP...... of these species. Approximately half of the mastitis cases were clinical, and in the majority clinical signs were mild. The severity and persistence of intramammary infection were unaffected by CNS species. Fifty-nine percent of the quarter cases were treated with antimicrobials, and the rest were left without...... treatment. Mastitis due to P-lactamase-negative CNS was treated with penicillin G and that due to beta-lactamase-positive CNS with cloxacillin. Nineteen percent of the isolates were P-lactamase-positive. The bacterial cure rate for quarters treated with antimicrobials was high, 85.9%, as opposed to only 45...

  12. Quantitative multi-target RNA profiling in Epstein-Barr virus infected tumor cells.

    Science.gov (United States)

    Greijer, A E; Ramayanti, O; Verkuijlen, S A W M; Novalić, Z; Juwana, H; Middeldorp, J M

    2017-03-01

    Epstein-Barr virus (EBV) is etiologically linked to multiple acute, chronic and malignant diseases. Detection of EBV-RNA transcripts in tissues or biofluids besides EBV-DNA can help in diagnosing EBV related syndromes. Sensitive EBV transcription profiling yields new insights on its pathogenic role and may be useful for monitoring virus targeted therapy. Here we describe a multi-gene quantitative RT-PCR profiling method that simultaneously detects a broad spectrum (n=16) of crucial latent and lytic EBV transcripts. These transcripts include (but are not restricted to), EBNA1, EBNA2, LMP1, LMP2, BARTs, EBER1, BARF1 and ZEBRA, Rta, BGLF4 (PK), BXLF1 (TK) and BFRF3 (VCAp18) all of which have been implicated in EBV-driven oncogenesis and viral replication. With this method we determine the amount of RNA copies per infected (tumor) cell in bulk populations of various origin. While we confirm the expected RNA profiles within classic EBV latency programs, this sensitive quantitative approach revealed the presence of rare cells undergoing lytic replication. Inducing lytic replication in EBV tumor cells supports apoptosis and is considered as therapeutic approach to treat EBV-driven malignancies. This sensitive multi-primed quantitative RT-PCR approach can provide broader understanding of transcriptional activity in latent and lytic EBV infection and is suitable for monitoring virus-specific therapy responses in patients with EBV associated cancers. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Methylation associated transcriptional repression of ELOVL5 in novel colorectal cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Arnoud Boot

    Full Text Available Genetic and epigenetic alterations mark colorectal cancer (CRC. Global hypomethylation is observed in nearly all CRC, but a distinct subset of CRC show the CpG Island Methylator Phenotype (CIMP. These tumors show DNA hypermethylation of a specific subset of CpG islands, resulting in transcriptional downregulation of nearby genes. Recently we reported the establishment of novel CRC cell lines derived from primary and metastatic CRC tissues. In this study we describe the DNA methylation profiling of these low passage CRC cell lines. We generated global DNA methylation profiles with Infinium HumanMethylation450 BeadChips and analysed them in conjunction with matching gene expression profiles. Multidimensional scaling of the DNA methylation and gene expression datasets showed that BRAF mutated cell lines form a distinct group. In this group we investigated the 706 loci which we have previously identified to be hypermethylated in BRAF mutant CRC. We validated the significant findings in the The Cancer Genome Atlas colon adenocarcinoma dataset. Our analysis identified ELOVL5, FAM127B, MTERF1, ZNF606 to be subject to transcriptional downregulation through DNA hypermethylation in CRC. We further investigated ELOVL5 with qPCR and immunohistochemical staining, validating our results, but did not find a clear relation between ELOVL5 expression and tumor stage or relapse free survival. ELOVL5, FAM127B, MTERF1, ZNF606 are involved in important cellular processes such as apoptosis, lipogenesis and the downstream transcriptional effect of the MAPK-pathway. We have identified a DNA methylation profile regulating key cellular processes in CRC, resulting in a growth advantage to the tumor cells.

  14. Transcriptional Profiling of Metabolic Transitions during Development and Diapause Preparation in the Copepod Calanus finmarchicus.

    Science.gov (United States)

    Tarrant, Ann M; Baumgartner, Mark F; Lysiak, Nadine S J; Altin, Dag; Størseth, Trond R; Hansen, Bjørn Henrik

    2016-12-01

    Calanus finmarchicus, like many other copepods in the family Calanidae, can enter into a facultative diapause during the last juvenile phase (fifth copepodid, C5) to enable survival during unfavorable periods. Diapause is essential to the persistence of Calanus populations and profoundly impacts energy flow within oceanic ecosystems, yet regulation of diapause is not understood in these animals. Transcriptional profiling has begun to provide insight into metabolic changes occurring as C. finmarchicus prepares for and enters into diapause or skips diapause to prepare for the terminal molt. In particular, components of the glycolysis, pentose phosphate and lipid synthesis pathways are upregulated early in the C5 stage when lipid stores are low. Currently, our ability to identify metabolic patterns is limited by the incomplete functional annotation of the C. finmarchicus transcriptome. Such limitations are widespread among studies of non-model organisms and addressing them should be a priority for future research. In addition, integrating the results across multiple emerging complementary transcriptomic studies will provide a more complete picture of copepod physiology than isolated studies. Ultimately, identifying molecular markers of copepod physiology could enable robust identification of animals preparing to enter into diapause and ultimately lead to a greatly improved understanding of diapause regulation. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  15. Transcriptional profiling of immune-related genes in Pacific white shrimp (Litopenaeus vannamei) during ontogenesis.

    Science.gov (United States)

    Quispe, Ruth L; Justino, Emily B; Vieira, Felipe N; Jaramillo, Michael L; Rosa, Rafael D; Perazzolo, Luciane M

    2016-11-01

    We have performed here a gene expression analysis to determine the developmental stage at the main genes involved in crustacean immune response begin to be expressed and their changes in mRNA abundance during shrimp development. By using a quantitative PCR-based approach, we have measured the mRNA abundance of 24 immune-related genes from different functional categories in twelve developmental stages ranging from fertilized eggs to larval and postlarval stages and also in juveniles. We showed for the first time that the main genes from the RNAi-based post-transcriptional pathway involved in shrimp antiviral immunity are transcribed in all developmental stages, but exhibit a diverse pattern of gene expression during shrimp ontogenesis. On the other hand, hemocyte-expressed genes mainly involved in antimicrobial defenses appeared to be transcribed in larval stages, indicating that hematopoiesis initiates early in development. Moreover, transcript levels of some genes were early detected in fertilized eggs at 0-4 h post-spawning, suggesting a maternal contribution of immune-related transcripts to shrimp progeny. Altogether, our results provide important clues regarding the ontogenesis of hemocytes as well the establishment of antiviral and antimicrobial defenses in shrimp. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The Eimeria Transcript DB: an integrated resource for annotated transcripts of protozoan parasites of the genus Eimeria

    Science.gov (United States)

    Rangel, Luiz Thibério; Novaes, Jeniffer; Durham, Alan M.; Madeira, Alda Maria B. N.; Gruber, Arthur

    2013-01-01

    Parasites of the genus Eimeria infect a wide range of vertebrate hosts, including chickens. We have recently reported a comparative analysis of the transcriptomes of Eimeria acervulina, Eimeria maxima and Eimeria tenella, integrating ORESTES data produced by our group and publicly available Expressed Sequence Tags (ESTs). All cDNA reads have been assembled, and the reconstructed transcripts have been submitted to a comprehensive functional annotation pipeline. Additional studies included orthology assignment across apicomplexan parasites and clustering analyses of gene expression profiles among different developmental stages of the parasites. To make all this body of information publicly available, we constructed the Eimeria Transcript Database (EimeriaTDB), a web repository that provides access to sequence data, annotation and comparative analyses. Here, we describe the web interface, available sequence data sets and query tools implemented on the site. The main goal of this work is to offer a public repository of sequence and functional annotation data of reconstructed transcripts of parasites of the genus Eimeria. We believe that EimeriaTDB will represent a valuable and complementary resource for the Eimeria scientific community and for those researchers interested in comparative genomics of apicomplexan parasites. Database URL: http://www.coccidia.icb.usp.br/eimeriatdb/ PMID:23411718

  17. Leaderless Transcripts and Small Proteins Are Common Features of the Mycobacterial Translational Landscape.

    Directory of Open Access Journals (Sweden)

    Scarlet S Shell

    2015-11-01

    Full Text Available RNA-seq technologies have provided significant insight into the transcription networks of mycobacteria. However, such studies provide no definitive information on the translational landscape. Here, we use a combination of high-throughput transcriptome and proteome-profiling approaches to more rigorously understand protein expression in two mycobacterial species. RNA-seq and ribosome profiling in Mycobacterium smegmatis, and transcription start site (TSS mapping and N-terminal peptide mass spectrometry in Mycobacterium tuberculosis, provide complementary, empirical datasets to examine the congruence of transcription and translation in the Mycobacterium genus. We find that nearly one-quarter of mycobacterial transcripts are leaderless, lacking a 5' untranslated region (UTR and Shine-Dalgarno ribosome-binding site. Our data indicate that leaderless translation is a major feature of mycobacterial genomes and is comparably robust to leadered initiation. Using translational reporters to systematically probe the cis-sequence requirements of leaderless translation initiation in mycobacteria, we find that an ATG or GTG at the mRNA 5' end is both necessary and sufficient. This criterion, together with our ribosome occupancy data, suggests that mycobacteria encode hundreds of small, unannotated proteins at the 5' ends of transcripts. The conservation of small proteins in both mycobacterial species tested suggests that some play important roles in mycobacterial physiology. Our translational-reporter system further indicates that mycobacterial leadered translation initiation requires a Shine Dalgarno site in the 5' UTR and that ATG, GTG, TTG, and ATT codons can robustly initiate translation. Our combined approaches provide the first comprehensive view of mycobacterial gene structures and their non-canonical mechanisms of protein expression.

  18. The family of DOF transcription factors in Brachypodium distachyon: phylogenetic comparison with rice and barley DOFs and expression profiling

    Directory of Open Access Journals (Sweden)

    Hernando-Amado Sara

    2012-11-01

    Full Text Available Abstract Background Transcription factors (TFs are proteins that have played a central role both in evolution and in domestication, and are major regulators of development in living organisms. Plant genome sequences reveal that approximately 7% of all genes encode putative TFs. The DOF (DNA binding with One Finger TF family has been associated with vital processes exclusive to higher plants and to their close ancestors (algae, mosses and ferns. These are seed maturation and germination, light-mediated regulation, phytohormone and plant responses to biotic and abiotic stresses, etc. In Hordeum vulgare and Oryza sativa, 26 and 30 different Dof genes, respectively, have been annotated. Brachypodium distachyon has been the first Pooideae grass to be sequenced and, due to its genomic, morphological and physiological characteristics, has emerged as the model system for temperate cereals, such as wheat and barley. Results Through searches in the B. distachyon genome, 27 Dof genes have been identified and a phylogenetic comparison with the Oryza sativa and the Hordeum vulgare DOFs has been performed. To explore the evolutionary relationship among these DOF proteins, a combined phylogenetic tree has been constructed with the Brachypodium DOFs and those from rice and barley. This phylogenetic analysis has classified the DOF proteins into four Major Cluster of Orthologous Groups (MCOGs. Using RT-qPCR analysis the expression profiles of the annotated BdDof genes across four organs (leaves, roots, spikes and seeds has been investigated. These results have led to a classification of the BdDof genes into two groups, according to their expression levels. The genes highly or preferentially expressed in seeds have been subjected to a more detailed expression analysis (maturation, dry stage and germination. Conclusions Comparison of the expression profiles of the Brachypodium Dof genes with the published functions of closely related DOF sequences from the cereal

  19. Integrating gene transcription-based biomarkers to understand desert tortoise and ecosystem health

    Science.gov (United States)

    Bowen, Lizabeth; Miles, A. Keith; Drake, Karla K.; Waters, Shannon C.; Esque, Todd C.; Nussear, Kenneth E.

    2015-01-01

    Tortoises are susceptible to a wide variety of environmental stressors, and the influence of human disturbances on health and survival of tortoises is difficult to detect. As an addition to current diagnostic methods for desert tortoises, we have developed the first leukocyte gene transcription biomarker panel for the desert tortoise (Gopherus agassizii), enhancing the ability to identify specific environmental conditions potentially linked to declining animal health. Blood leukocyte transcript profiles have the potential to identify physiologically stressed animals in lieu of clinical signs. For desert tortoises, the gene transcript profile included a combination of immune or detoxification response genes with the potential to be modified by biological or physical injury and consequently provide information on the type and magnitude of stressors present in the animal’s habitat. Blood from 64 wild adult tortoises at three sites in Clark County, NV, and San Bernardino, CA, and from 19 captive tortoises in Clark County, NV, was collected and evaluated for genes indicative of physiological status. Statistical analysis using a priori groupings indicated significant differences among groups for several genes, while multidimensional scaling and cluster analyses of transcriptionC T values indicated strong differentiation of a large cluster and multiple outlying individual tortoises or small clusters in multidimensional space. These analyses highlight the effectiveness of the gene panel at detecting environmental perturbations as well as providing guidance in determining the health of the desert tortoise.

  20. Pan-Cancer Mutational and Transcriptional Analysis of the Integrator Complex

    Directory of Open Access Journals (Sweden)

    Antonio Federico

    2017-04-01

    Full Text Available The integrator complex has been recently identified as a key regulator of RNA Polymerase II-mediated transcription, with many functions including the processing of small nuclear RNAs, the pause-release and elongation of polymerase during the transcription of protein coding genes, and the biogenesis of enhancer derived transcripts. Moreover, some of its components also play a role in genome maintenance. Thus, it is reasonable to hypothesize that their functional impairment or altered expression can contribute to malignancies. Indeed, several studies have described the mutations or transcriptional alteration of some Integrator genes in different cancers. Here, to draw a comprehensive pan-cancer picture of the genomic and transcriptomic alterations for the members of the complex, we reanalyzed public data from The Cancer Genome Atlas. Somatic mutations affecting Integrator subunit genes and their transcriptional profiles have been investigated in about 11,000 patients and 31 tumor types. A general heterogeneity in the mutation frequencies was observed, mostly depending on tumor type. Despite the fact that we could not establish them as cancer drivers, INTS7 and INTS8 genes were highly mutated in specific cancers. A transcriptome analysis of paired (normal and tumor samples revealed that the transcription of INTS7, INTS8, and INTS13 is significantly altered in several cancers. Experimental validation performed on primary tumors confirmed these findings.

  1. Identification of novel candidate genes involved in mineralization of dental enamel by genome-wide transcript profiling.

    Science.gov (United States)

    Lacruz, Rodrigo S; Smith, Charles E; Bringas, Pablo; Chen, Yi-Bu; Smith, Susan M; Snead, Malcolm L; Kurtz, Ira; Hacia, Joseph G; Hubbard, Michael J; Paine, Michael L

    2012-05-01

    The gene repertoire regulating vertebrate biomineralization is poorly understood. Dental enamel, the most highly mineralized tissue in mammals, differs from other calcifying systems in that the formative cells (ameloblasts) lack remodeling activity and largely degrade and resorb the initial extracellular matrix. Enamel mineralization requires that ameloblasts undergo a profound functional switch from matrix-secreting to maturational (calcium transport, protein resorption) roles as mineralization progresses. During the maturation stage, extracellular pH decreases markedly, placing high demands on ameloblasts to regulate acidic environments present around the growing hydroxyapatite crystals. To identify the genetic events driving enamel mineralization, we conducted genome-wide transcript profiling of the developing enamel organ from rat incisors and highlight over 300 genes differentially expressed during maturation. Using multiple bioinformatics analyses, we identified groups of maturation-associated genes whose functions are linked to key mineralization processes including pH regulation, calcium handling, and matrix turnover. Subsequent qPCR and Western blot analyses revealed that a number of solute carrier (SLC) gene family members were up-regulated during maturation, including the novel protein Slc24a4 involved in calcium handling as well as other proteins of similar function (Stim1). By providing the first global overview of the cellular machinery required for enamel maturation, this study provide a strong foundation for improving basic understanding of biomineralization and its practical applications in healthcare. Copyright © 2011 Wiley Periodicals, Inc.

  2. Transcriptionally active LTR retrotransposons in Eucalyptus genus are differentially expressed and insertionally polymorphic.

    Science.gov (United States)

    Marcon, Helena Sanches; Domingues, Douglas Silva; Silva, Juliana Costa; Borges, Rafael Junqueira; Matioli, Fábio Filippi; Fontes, Marcos Roberto de Mattos; Marino, Celso Luis

    2015-08-14

    In Eucalyptus genus, studies on genome composition and transposable elements (TEs) are particularly scarce. Nearly half of the recently released Eucalyptus grandis genome is composed by retrotransposons and this data provides an important opportunity to understand TE dynamics in Eucalyptus genome and transcriptome. We characterized nine families of transcriptionally active LTR retrotransposons from Copia and Gypsy superfamilies in Eucalyptus grandis genome and we depicted genomic distribution and copy number in two Eucalyptus species. We also evaluated genomic polymorphism and transcriptional profile in three organs of five Eucalyptus species. We observed contrasting genomic and transcriptional behavior in the same family among different species. RLC_egMax_1 was the most prevalent family and RLC_egAngela_1 was the family with the lowest copy number. Most families of both superfamilies have their insertions occurring Eucalyptus species. Using EST analysis and qRT-PCRs, we observed transcriptional activity in several tissues and in all evaluated species. In some families, osmotic stress increases transcript values. Our strategy was successful in isolating transcriptionally active retrotransposons in Eucalyptus, and each family has a particular genomic and transcriptional pattern. Overall, our results show that retrotransposon activity have differentially affected genome and transcriptome among Eucalyptus species.

  3. Transcriptional regulation of gene expression clusters in motor neurons following spinal cord injury

    Directory of Open Access Journals (Sweden)

    Westerdahl Ann-Charlotte

    2010-06-01

    Full Text Available Abstract Background Spinal cord injury leads to neurological dysfunctions affecting the motor, sensory as well as the autonomic systems. Increased excitability of motor neurons has been implicated in injury-induced spasticity, where the reappearance of self-sustained plateau potentials in the absence of modulatory inputs from the brain correlates with the development of spasticity. Results Here we examine the dynamic transcriptional response of motor neurons to spinal cord injury as it evolves over time to unravel common gene expression patterns and their underlying regulatory mechanisms. For this we use a rat-tail-model with complete spinal cord transection causing injury-induced spasticity, where gene expression profiles are obtained from labeled motor neurons extracted with laser microdissection 0, 2, 7, 21 and 60 days post injury. Consensus clustering identifies 12 gene clusters with distinct time expression profiles. Analysis of these gene clusters identifies early immunological/inflammatory and late developmental responses as well as a regulation of genes relating to neuron excitability that support the development of motor neuron hyper-excitability and the reappearance of plateau potentials in the late phase of the injury response. Transcription factor motif analysis identifies differentially expressed transcription factors involved in the regulation of each gene cluster, shaping the expression of the identified biological processes and their associated genes underlying the changes in motor neuron excitability. Conclusions This analysis provides important clues to the underlying mechanisms of transcriptional regulation responsible for the increased excitability observed in motor neurons in the late chronic phase of spinal cord injury suggesting alternative targets for treatment of spinal cord injury. Several transcription factors were identified as potential regulators of gene clusters containing elements related to motor neuron hyper

  4. Transcriptional regulation of gene expression clusters in motor neurons following spinal cord injury.

    Science.gov (United States)

    Ryge, Jesper; Winther, Ole; Wienecke, Jacob; Sandelin, Albin; Westerdahl, Ann-Charlotte; Hultborn, Hans; Kiehn, Ole

    2010-06-09

    Spinal cord injury leads to neurological dysfunctions affecting the motor, sensory as well as the autonomic systems. Increased excitability of motor neurons has been implicated in injury-induced spasticity, where the reappearance of self-sustained plateau potentials in the absence of modulatory inputs from the brain correlates with the development of spasticity. Here we examine the dynamic transcriptional response of motor neurons to spinal cord injury as it evolves over time to unravel common gene expression patterns and their underlying regulatory mechanisms. For this we use a rat-tail-model with complete spinal cord transection causing injury-induced spasticity, where gene expression profiles are obtained from labeled motor neurons extracted with laser microdissection 0, 2, 7, 21 and 60 days post injury. Consensus clustering identifies 12 gene clusters with distinct time expression profiles. Analysis of these gene clusters identifies early immunological/inflammatory and late developmental responses as well as a regulation of genes relating to neuron excitability that support the development of motor neuron hyper-excitability and the reappearance of plateau potentials in the late phase of the injury response. Transcription factor motif analysis identifies differentially expressed transcription factors involved in the regulation of each gene cluster, shaping the expression of the identified biological processes and their associated genes underlying the changes in motor neuron excitability. This analysis provides important clues to the underlying mechanisms of transcriptional regulation responsible for the increased excitability observed in motor neurons in the late chronic phase of spinal cord injury suggesting alternative targets for treatment of spinal cord injury. Several transcription factors were identified as potential regulators of gene clusters containing elements related to motor neuron hyper-excitability, the manipulation of which potentially could be

  5. Transcript Profiling Distinguishes Complete Treatment Responders With Locally Advanced Cervical Cancer

    Directory of Open Access Journals (Sweden)

    Jorge Fernandez-Retana

    2015-04-01

    Full Text Available Cervical cancer (CC mortality is a major public health concern since it is the second cause of cancer-related deaths among women. Patients diagnosed with locally advanced CC (LACC have an important rate of recurrence and treatment failure. Conventional treatment for LACC is based on chemotherapy and radiotherapy; however, up to 40% of patients will not respond to conventional treatment; hence, we searched for a prognostic gene signature able to discriminate patients who do not respond to the conventional treatment employed to treat LACC. Tumor biopsies were profiled with genome-wide high-density expression microarrays. Class prediction was performed in tumor tissues and the resultant gene signature was validated by quantitative reverse transcription–polymerase chain reaction. A 27-predictive gene profile was identified through its association with pathologic response. The 27-gene profile was validated in an independent set of patients and was able to distinguish between patients diagnosed as no response versus complete response. Gene expression analysis revealed two distinct groups of tumors diagnosed as LACC. Our findings could provide a strategy to select patients who would benefit from neoadjuvant radiochemotherapy-based treatment.

  6. Sugarcane genes differentially expressed in response to Puccinia melanocephala infection: identification and transcript profiling.

    Science.gov (United States)

    Oloriz, María I; Gil, Víctor; Rojas, Luis; Portal, Orelvis; Izquierdo, Yovanny; Jiménez, Elio; Höfte, Monica

    2012-05-01

    Brown rust caused by the fungus Puccinia melanocephala is a major disease of sugarcane (Saccharum spp.). A sugarcane mutant, obtained by chemical mutagenesis of the susceptible variety B4362, showed a post-haustorial hypersensitive response (HR)-mediated resistance to the pathogen and was used to identify genes differentially expressed in response to P. melanocephala via suppression subtractive hybridization (SSH). Tester cDNA was derived from the brown rust-resistant mutant after inoculation with P. melanocephala, while driver cDNAs were obtained from the non-inoculated resistant mutant and the inoculated susceptible donor variety B4362. Database comparisons of the sequences of the SSH recombinant clones revealed that, of a subset of 89 non-redundant sequences, 88% had similarity to known functional genes, while 12% were of unknown function. Thirteen genes were selected for transcript profiling in the resistant mutant and the susceptible donor variety. Genes involved in glycolysis and C4 carbon fixation were up-regulated in both interactions probably due to disturbance of sugarcane carbon metabolism by the pathogen. Genes related with the nascent polypeptide associated complex, post-translational proteome modulation and autophagy were transcribed at higher levels in the compatible interaction. Up-regulation of a putative L-isoaspartyl O-methyltransferase S-adenosylmethionine gene in the compatible interaction may point to fungal manipulation of the cytoplasmatic methionine cycle. Genes coding for a putative no apical meristem protein, S-adenosylmethionine decarboxylase, non-specific lipid transfer protein, and GDP-L-galactose phosphorylase involved in ascorbic acid biosynthesis were up-regulated in the incompatible interaction at the onset of haustorium formation, and may contribute to the HR-mediated defense response in the rust-resistant mutant.

  7. Comparative Analyses of Transcriptional Profiles in Mouse Organs Using a Pneumonic Plague Model after Infection with Wild-Type Yersinia pestis CO92 and Its Braun Lipoprotein Mutant

    Directory of Open Access Journals (Sweden)

    Cristi L. Galindo

    2009-01-01

    Full Text Available We employed Murine GeneChips to delineate the global transcriptional profiles of the livers, lungs, and spleens in a mouse pneumonic plague infection model with wild-type (WT Y. pestis CO92 and its Braun lipoprotein (Δlpp mutant with reduced virulence. These organs showed differential transcriptional responses to infection with WT Y. pestis, but the overall host functional processes affected were similar across all three tissues. Gene expression alterations were found in inflammation, cytokine signaling, and apoptotic cell death-associated genes. Comparison of WT and Δlpp mutant-infected mice indicated significant overlap in lipopolysaccharide- (LPS- associated gene expression, but the absence of Lpp perturbed host cell signaling at critical regulatory junctions resulting in altered immune response and possibly host cell apoptosis. We generated a putative signaling pathway including major inflammatory components that could account for the synergistic action of LPS and Lpp and provided the mechanistic basis of attenuation caused by deletion of the lpp gene from Y. pestis in a mouse model of pneumonic plague.

  8. [Construction of genetic linkage map and localization of NBS-LRR like resistance gene analogues in cauliflower (Brassica oleracea var. botrytis)].

    Science.gov (United States)

    Gu, Yu; Zhao, Qian-Cheng; Sun, De-Ling; Song, Wen-Qin

    2007-06-01

    Nucleotide binding site (NBS) profiling, a new method was used to map resistance gene analogues (RGAs) in cauliflower (Brassica oleracea var. botrytis). This method allows amplification and the mapping of genetic markers anchored in the conserved NBS encoding domain of plant disease resistance genes. AFLP was also performed to construct the cauliflower intervarietal genetic map. The aim of constructing genetic map was to identify potential molecular markers linked to important agronomic traits that would be particularly useful for development and improving the species. Using 17 AFLP primer combinations and two degeneration primer/enzyme combinations, a total of 234 AFLP markers and 21 NBS markers were mapped in the F2 population derived from self-pollinating a single F1 plant of the cross AD White Flower x C-8. The markers were mapped in 9 of major linkage groups spanning 668.4 cM, with an average distance of 2.9 cM between adjacent mapped markers. The AFLP markers were well distributed throughout the linkage groups. The linkage groups contained from 12 to 47 loci each and the distance between two consecutive loci ranged from 0 to 14.9 cM. NBS markers were mapped on 8 of the 9 linkage groups of the genetic map. Most of these markers were organized in clusters. This result demonstrates the feasibility of the NBS-profiling method for generating NBS markers for resistance loci in cauliflower. The clustering of the markers mapped in this study adds to the evidence that most of them could be real RGAs.

  9. Screening Driving Transcription Factors in the Processing of Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Guangzhong Xu

    2016-01-01

    Full Text Available Background. Construction of the transcriptional regulatory network can provide additional clues on the regulatory mechanisms and therapeutic applications in gastric cancer. Methods. Gene expression profiles of gastric cancer were downloaded from GEO database for integrated analysis. All of DEGs were analyzed by GO enrichment and KEGG pathway enrichment. Transcription factors were further identified and then a global transcriptional regulatory network was constructed. Results. By integrated analysis of the six eligible datasets (340 cases and 43 controls, a bunch of 2327 DEGs were identified, including 2100 upregulated and 227 downregulated DEGs. Functional enrichment analysis of DEGs showed that digestion was a significantly enriched GO term for biological process. Moreover, there were two important enriched KEGG pathways: cell cycle and homologous recombination. Furthermore, a total of 70 differentially expressed TFs were identified and the transcriptional regulatory network was constructed, which consisted of 566 TF-target interactions. The top ten TFs regulating most downstream target genes were BRCA1, ARID3A, EHF, SOX10, ZNF263, FOXL1, FEV, GATA3, FOXC1, and FOXD1. Most of them were involved in the carcinogenesis of gastric cancer. Conclusion. The transcriptional regulatory network can help researchers to further clarify the underlying regulatory mechanisms of gastric cancer tumorigenesis.

  10. Medusa structure of the gene regulatory network: dominance of transcription factors in cancer subtype classification.

    Science.gov (United States)

    Guo, Yuchun; Feng, Ying; Trivedi, Niraj S; Huang, Sui

    2011-05-01

    Gene expression profiles consisting of ten thousands of transcripts are used for clustering of tissue, such as tumors, into subtypes, often without considering the underlying reason that the distinct patterns of expression arise because of constraints in the realization of gene expression profiles imposed by the gene regulatory network. The topology of this network has been suggested to consist of a regulatory core of genes represented most prominently by transcription factors (TFs) and microRNAs, that influence the expression of other genes, and of a periphery of 'enslaved' effector genes that are regulated but not regulating. This 'medusa' architecture implies that the core genes are much stronger determinants of the realized gene expression profiles. To test this hypothesis, we examined the clustering of gene expression profiles into known tumor types to quantitatively demonstrate that TFs, and even more pronounced, microRNAs, are much stronger discriminators of tumor type specific gene expression patterns than a same number of randomly selected or metabolic genes. These findings lend support to the hypothesis of a medusa architecture and of the canalizing nature of regulation by microRNAs. They also reveal the degree of freedom for the expression of peripheral genes that are less stringently associated with a tissue type specific global gene expression profile.

  11. Transcriptional Profiling of Saccharomyces cerevisiae Reveals the Impact of Variation of a Single Transcription Factor on Differential Gene Expression in 4NQO, Fermentable, and Nonfermentable Carbon Sources

    Directory of Open Access Journals (Sweden)

    Xiaoqing Rong-Mullins

    2018-02-01

    Full Text Available Cellular metabolism can change the potency of a chemical’s tumorigenicity. 4-nitroquinoline-1-oxide (4NQO is a tumorigenic drug widely used on animal models for cancer research. Polymorphisms of the transcription factor Yrr1 confer different levels of resistance to 4NQO in Saccharomyces cerevisiae. To study how different Yrr1 alleles regulate gene expression leading to resistance, transcriptomes of three isogenic S. cerevisiae strains carrying different Yrr1 alleles were profiled via RNA sequencing (RNA-Seq and chromatin immunoprecipitation coupled with sequencing (ChIP-Seq in the presence and absence of 4NQO. In response to 4NQO, all alleles of Yrr1 drove the expression of SNQ2 (a multidrug transporter, which was highest in the presence of 4NQO resistance-conferring alleles, and overexpression of SNQ2 alone was sufficient to overcome 4NQO-sensitive growth. Using shape metrics to refine the ChIP-Seq peaks, Yrr1 strongly associated with three loci including SNQ2. In addition to a known Yrr1 target SNG1, Yrr1 also bound upstream of RPL35B; however, overexpression of these genes did not confer 4NQO resistance. RNA-Seq data also implicated nucleotide synthesis pathways including the de novo purine pathway, and the ribonuclease reductase pathways were downregulated in response to 4NQO. Conversion of a 4NQO-sensitive allele to a 4NQO-resistant allele by a single point mutation mimicked the 4NQO-resistant allele in phenotype, and while the 4NQO resistant allele increased the expression of the ADE genes in the de novo purine biosynthetic pathway, the mutant Yrr1 increased expression of ADE genes even in the absence of 4NQO. These same ADE genes were only increased in the wild-type alleles in the presence of 4NQO, indicating that the point mutation activated Yrr1 to upregulate a pathway normally only activated in response to stress. The various Yrr1 alleles also influenced growth on different carbon sources by altering the function of the mitochondria

  12. E-cadherin acts as a regulator of transcripts associated with a wide range of cellular processes in mouse embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Francesca Soncin

    Full Text Available We have recently shown that expression of the cell adhesion molecule E-cadherin is required for LIF-dependent pluripotency of mouse embryonic stem (ES cells.In this study, we have assessed global transcript expression in E-cadherin null (Ecad-/- ES cells cultured in either the presence or absence of LIF and compared these to the parental cell line wtD3.We show that LIF has little effect on the transcript profile of Ecad-/- ES cells, with statistically significant transcript alterations observed only for Sp8 and Stat3. Comparison of Ecad-/- and wtD3 ES cells cultured in LIF demonstrated significant alterations in the transcript profile, with effects not only confined to cell adhesion and motility but also affecting, for example, primary metabolic processes, catabolism and genes associated with apoptosis. Ecad-/- ES cells share similar, although not identical, gene expression profiles to epiblast-derived pluripotent stem cells, suggesting that E-cadherin expression may inhibit inner cell mass to epiblast transition. We further show that Ecad-/- ES cells maintain a functional β-catenin pool that is able to induce β-catenin/TCF-mediated transactivation but, contrary to previous findings, do not display endogenous β-catenin/TCF-mediated transactivation. We conclude that loss of E-cadherin in mouse ES cells leads to significant transcript alterations independently of β-catenin/TCF transactivation.

  13. Deconstructing transcriptional heterogeneity in pluripotent stem cells

    Science.gov (United States)

    Shalek, Alex K.; Satija, Rahul; DaleyKeyser, AJay; Li, Hu; Zhang, Jin; Pardee, Keith; Gennert, David; Trombetta, John J.; Ferrante, Thomas C.; Regev, Aviv; Daley, George Q.; Collins, James J.

    2014-01-01

    SUMMARY Pluripotent stem cells (PSCs) are capable of dynamic interconversion between distinct substates, but the regulatory circuits specifying these states and enabling transitions between them are not well understood. We set out to characterize transcriptional heterogeneity in PSCs by single-cell expression profiling under different chemical and genetic perturbations. Signaling factors and developmental regulators show highly variable expression, with expression states for some variable genes heritable through multiple cell divisions. Expression variability and population heterogeneity can be influenced by perturbation of signaling pathways and chromatin regulators. Strikingly, either removal of mature miRNAs or pharmacologic blockage of signaling pathways drives PSCs into a low-noise ground state characterized by a reconfigured pluripotency network, enhanced self-renewal, and a distinct chromatin state, an effect mediated by opposing miRNA families acting on the c-myc / Lin28 / let-7 axis. These data illuminate the nature of transcriptional heterogeneity in PSCs. PMID:25471879

  14. Using transcriptomic profiles in the diatom Phaeodactylum tricornutum to identify and prioritize stressors

    International Nuclear Information System (INIS)

    Osborn, Hannah L.; Hook, Sharon E.

    2013-01-01

    Highlights: •Exposure to stressors with different modes of action generated unique gene expression profiles in the diatom Phaeodactylum tricornutum. •The gene expression profile generated by a multiple stressor exposure reflected exposure to individual components of the mixture. •Quantitative PCR assays were generated that could be used to identify exposure to individual stressors. -- Abstract: The transcriptomic profile of the marine diatom, Phaeodactylum tricornutum, exposed to several ecologically relevant stressors, was used to develop toxicity identification evaluation (TIE)-like gene expression assays. Algal growth inhibition was measured by flow cytometry to determine exposure concentrations that elicited a sublethal toxic response. P. tricornutum was exposed to concentrations of copper (2 μg L −1 ), cadmium (5 μg L −1 ), silver (20 μg L −1 ), simazine (75 μg L −1 ), the water accommodated fraction (WAF) of weathered crude oil (5 mg L −1 ), 50 μg L −1 ammonia, a decreased salinity treatment (15‰), and a mixture exposure of ammonia, decreased salinity and cadmium (10 μg L −1 ). Analysis of the gene expression via microarray indicated that unique transcriptomic signals were generated for each of the individual treatments. Transcriptomic profiles of ammonia and the mixture treatment overlapped substantially. Photosynthesis related transcripts were altered in the simazine (herbicide) treatment. A transcript involved in degrading hydrocarbons, dioxygenase, had increased abundance after crude oil exposure. Overall, transcriptomic responses in the different treatments were associated with stress responses, membrane transport, transcription and translation and could be linked to contaminant mode of action. The transcriptomic profiles were used to design real-time (quantitative) polymerase chain reaction (qPCR) assays that would link changes in transcript abundance to a particular stressor in a TIE-based approach. At least one transcript

  15. Using transcriptomic profiles in the diatom Phaeodactylum tricornutum to identify and prioritize stressors

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, Hannah L., E-mail: Hannah.Osborn@csiro.au; Hook, Sharon E., E-mail: Sharon.Hook@csiro.au

    2013-08-15

    Highlights: •Exposure to stressors with different modes of action generated unique gene expression profiles in the diatom Phaeodactylum tricornutum. •The gene expression profile generated by a multiple stressor exposure reflected exposure to individual components of the mixture. •Quantitative PCR assays were generated that could be used to identify exposure to individual stressors. -- Abstract: The transcriptomic profile of the marine diatom, Phaeodactylum tricornutum, exposed to several ecologically relevant stressors, was used to develop toxicity identification evaluation (TIE)-like gene expression assays. Algal growth inhibition was measured by flow cytometry to determine exposure concentrations that elicited a sublethal toxic response. P. tricornutum was exposed to concentrations of copper (2 μg L{sup −1}), cadmium (5 μg L{sup −1}), silver (20 μg L{sup −1}), simazine (75 μg L{sup −1}), the water accommodated fraction (WAF) of weathered crude oil (5 mg L{sup −1}), 50 μg L{sup −1} ammonia, a decreased salinity treatment (15‰), and a mixture exposure of ammonia, decreased salinity and cadmium (10 μg L{sup −1}). Analysis of the gene expression via microarray indicated that unique transcriptomic signals were generated for each of the individual treatments. Transcriptomic profiles of ammonia and the mixture treatment overlapped substantially. Photosynthesis related transcripts were altered in the simazine (herbicide) treatment. A transcript involved in degrading hydrocarbons, dioxygenase, had increased abundance after crude oil exposure. Overall, transcriptomic responses in the different treatments were associated with stress responses, membrane transport, transcription and translation and could be linked to contaminant mode of action. The transcriptomic profiles were used to design real-time (quantitative) polymerase chain reaction (qPCR) assays that would link changes in transcript abundance to a particular stressor in a TIE

  16. Triptolide inhibits transcription of hTERT through down-regulation of transcription factor specificity protein 1 in primary effusion lymphoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Long, Cong; Wang, Jingchao [Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 (China); Guo, Wei [Department of Pathology and Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 (China); Wang, Huan; Wang, Chao; Liu, Yu [Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 (China); Sun, Xiaoping, E-mail: xsun6@whu.edu.cn [Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 (China); State Key Laboratory of Virology, Wuhan University, Wuhan, 430072 (China)

    2016-01-01

    Primary effusion lymphoma (PEL) is a rare and aggressive non-Hodgkin's lymphoma. Human telomerase reverse transcriptase (hTERT), a key component responsible for the regulation of telomerase activity, plays important roles in cellular immortalization and cancer development. Triptolide purified from Tripterygium extracts displays a broad-spectrum bioactivity profile, including immunosuppressive, anti-inflammatory, and anti-tumor. In this study, it is investigated whether triptolide reduces hTERT expression and suppresses its activity in PEL cells. The mRNA and protein levels of hTERT were examined by real time-PCR and Western blotting, respectively. The activity of hTERT promoter was determined by Dual luciferase reporter assay. Our results demonstrated that triptolide decreased expression of hTERT at both mRNA and protein levels. Further gene sequence analysis indicated that the activity of hTERT promoter was suppressed by triptolide. Triptolide also reduced the half-time of hTERT. Additionally, triptolide inhibited the expression of transcription factor specificity protein 1(Sp1) in PEL cells. Furthermore, knock-down of Sp1 by using specific shRNAs resulted in down-regulation of hTERT transcription and protein expression levels. Inhibition of Sp1 by specific shRNAs enhanced triptolide-induced cell growth inhibition and apoptosis. Collectively, our results demonstrate that the inhibitory effect of triptolide on hTERT transcription is possibly mediated by inhibition of transcription factor Sp1 in PEL cells. - Highlights: • Triptolide reduces expression of hTERT by decreasing its transcription level. • Triptolide reduces promoter activity and stability of hTERT. • Triptolide down-regulates expression of Sp1. • Special Sp1 shRNAs inhibit transcription and protein expression of hTERT. • Triptolide and Sp1 shRNA2 induce cell proliferation inhibition and apoptosis.

  17. Gene transcription profiles, global DNA methylation and potential transgenerational epigenetic effects related to Zn exposure history in Daphnia magna

    International Nuclear Information System (INIS)

    Vandegehuchte, Michiel B.; De Coninck, Dieter; Vandenbrouck, Tine; De Coen, Wim M.; Janssen, Colin R.

    2010-01-01

    A reduced level of DNA methylation has recently been described in both Zn-exposed and non-exposed offspring of Daphnia magna exposed to Zn. The hypothesis examined in this study is that DNA hypomethylation has an effect on gene transcription. A second hypothesis is that accumulative epigenetic effects can affect gene transcription in non-exposed offspring from parents with an exposure history of more than one generation. Transcriptional gene regulation was studied with a cDNA microarray. In the exposed and non-exposed hypomethylated daphnids, a large proportion of common genes were similarly up- or down-regulated, indicating a possible effect of the DNA hypomethylation. Two of these genes can be mechanistically involved in DNA methylation reduction. The similar transcriptional regulation of two and three genes in the F 0 and F 1 exposed daphnids on one hand and their non-exposed offspring on the other hand, could be the result of a one-generation temporary transgenerational epigenetic effect, which was not accumulative. - Zn-induced DNA hypomethylation is related to gene transcription in Daphnia magna and Zn exposure potentially induced limited temporary transgenerational effects on gene transcription.

  18. Similaridade genética entre cultivares de cebola de diferentes tipos e origens, baseada em marcadores AFLP Genetic similarity among onion cultivars of different types and origins, based on AFLP markers

    Directory of Open Access Journals (Sweden)

    CAF Santos

    2011-03-01

    Full Text Available Foi estimada a similaridade genética entre cultivares de cebola de diferentes tipos e regiões geográficas, de forma a orientar programas de recursos genéticos e melhoramento da espécie no Nordeste brasileiro. Foram analisadas 41 cultivares, adotando-se para a visualização da similaridade genética o fenograma UPGMA gerado da matriz de distâncias genéticas estimadas pelo coeficiente de Jaccard e baseadas em 146 bandas polimórficas de Pst1 e Mse1 de AFLP. A correlação cofenética foi de 0,91, indicando boa confiabilidade da representação gráfica para a interpretação dos resultados. Foram observados dois grupos principais no fenograma, no ponto de corte de 0,55 de similaridade: 1 grupo formado por cultivares predominantemente brasileiras, com algumas inclusões de cultivares estrangeiras; e 2 grupo formado por três cultivares estrangeiras (Mercedes, Perfect e TEG 502 PRR. Rijnsburger Jumbo e IPA 8 apresentaram a maior similaridade (85%, enquanto Madrugada foi a mais divergente em relação às demais cultivares. As cultivares da série IPA se dividiram em subgrupos no grupo das cultivares brasileiras (IPA 8, IPA 10 e IPA 11; IPA 12, IPA 7, IPA 2 e IPA 6; IPA 3, IPA 4 e IPA 9, indicando haver variabilidade genética a ser explorada entre aquelas situadas em subgrupos distintos. Bola Precoce e BRS Cascata apresentaram a maior similaridade entre as cultivares de origem brasileira. Foi observada similaridade superior a 39%, refletindo a alta variabilidade genética da coleção de cebola estudada. A introdução de novos acessos deve considerar procedências outras que não norte americanas, para aumentar a variabilidade de germoplasma de cebola disponível no Nordeste do Brasil.The genetic similarity among onion cultivars of different origins was evaluated, in order to carry out genetic resources and breeding programs for this species on the Brazilian Northeast. Forty-one onion cultivars were analyzed for 146 polymorphic Pst1/Mse1

  19. Effects of Argentilactone on the Transcriptional Profile, Cell Wall and Oxidative Stress of Paracoccidioides spp.

    Science.gov (United States)

    Araújo, Felipe Souto; Coelho, Luciene Melo; Silva, Lívia do Carmo; da Silva Neto, Benedito Rodrigues; Parente-Rocha, Juliana Alves; Bailão, Alexandre Melo; de Oliveira, Cecília Maria Alves; Fernandes, Gabriel da Rocha; Hernández, Orville; Ochoa, Juan Guillermo McEwen; Soares, Célia Maria de Almeida; Pereira, Maristela

    2016-01-01

    Paracoccidioides spp., a dimorphic pathogenic fungus, is the etiologic agent of paracoccidioidomycosis (PCM). PCM is an endemic disease that affects at least 10 million people in Latin America, causing severe public health problems. The drugs used against pathogenic fungi have various side effects and limited efficacy; therefore, there is an inevitable and urgent medical need for the development of new antifungal drugs. In the present study, we evaluated the transcriptional profile of Paracoccidioides lutzii exposed to argentilactone, a constituent of the essential oil of Hyptis ovalifolia. A total of 1,058 genes were identified, of which 208 were up-regulated and 850 were down-regulated. Cell rescue, defense and virulence, with a total of 26 genes, was a functional category with a large number of genes induced, including heat shock protein 90 (hsp90), cytochrome c peroxidase (ccp), the hemoglobin ligand RBT5 (rbt5) and superoxide dismutase (sod). Quantitative real-time PCR revealed an increase in the expression level of all of those genes. An enzymatic assay showed a significant increase in SOD activity. The reduced growth of Pbhsp90-aRNA, Pbccp-aRNA, Pbsod-aRNA and Pbrbt5-aRNA isolates in the presence of argentilactone indicates the importance of these genes in the response of Paracoccidioides spp. to argentilactone. The response of the P. lutzii cell wall to argentilactone treatment was also evaluated. The results showed that argentilactone caused a decrease in the levels of polymers in the cell wall. These results suggest that argentilactone is a potential candidate for antifungal therapy.

  20. Effects of Argentilactone on the Transcriptional Profile, Cell Wall and Oxidative Stress of Paracoccidioides spp.

    Directory of Open Access Journals (Sweden)

    Felipe Souto Araújo

    2016-01-01

    Full Text Available Paracoccidioides spp., a dimorphic pathogenic fungus, is the etiologic agent of paracoccidioidomycosis (PCM. PCM is an endemic disease that affects at least 10 million people in Latin America, causing severe public health problems. The drugs used against pathogenic fungi have various side effects and limited efficacy; therefore, there is an inevitable and urgent medical need for the development of new antifungal drugs. In the present study, we evaluated the transcriptional profile of Paracoccidioides lutzii exposed to argentilactone, a constituent of the essential oil of Hyptis ovalifolia. A total of 1,058 genes were identified, of which 208 were up-regulated and 850 were down-regulated. Cell rescue, defense and virulence, with a total of 26 genes, was a functional category with a large number of genes induced, including heat shock protein 90 (hsp90, cytochrome c peroxidase (ccp, the hemoglobin ligand RBT5 (rbt5 and superoxide dismutase (sod. Quantitative real-time PCR revealed an increase in the expression level of all of those genes. An enzymatic assay showed a significant increase in SOD activity. The reduced growth of Pbhsp90-aRNA, Pbccp-aRNA, Pbsod-aRNA and Pbrbt5-aRNA isolates in the presence of argentilactone indicates the importance of these genes in the response of Paracoccidioides spp. to argentilactone. The response of the P. lutzii cell wall to argentilactone treatment was also evaluated. The results showed that argentilactone caused a decrease in the levels of polymers in the cell wall. These results suggest that argentilactone is a potential candidate for antifungal therapy.

  1. Using RNA-Seq for gene identification, polymorphism detection and transcript profiling in two alfalfa genotypes with divergent cell wall composition in stems

    Science.gov (United States)

    2011-01-01

    Background Alfalfa, [Medicago sativa (L.) sativa], a widely-grown perennial forage has potential for development as a cellulosic ethanol feedstock. However, the genomics of alfalfa, a non-model species, is still in its infancy. The recent advent of RNA-Seq, a massively parallel sequencing method for transcriptome analysis, provides an opportunity to expand the identification of alfalfa genes and polymorphisms, and conduct in-depth transcript profiling. Results Cell walls in stems of alfalfa genotype 708 have higher cellulose and lower lignin concentrations compared to cell walls in stems of genotype 773. Using the Illumina GA-II platform, a total of 198,861,304 expression sequence tags (ESTs, 76 bp in length) were generated from cDNA libraries derived from elongating stem (ES) and post-elongation stem (PES) internodes of 708 and 773. In addition, 341,984 ESTs were generated from ES and PES internodes of genotype 773 using the GS FLX Titanium platform. The first alfalfa (Medicago sativa) gene index (MSGI 1.0) was assembled using the Sanger ESTs available from GenBank, the GS FLX Titanium EST sequences, and the de novo assembled Illumina sequences. MSGI 1.0 contains 124,025 unique sequences including 22,729 tentative consensus sequences (TCs), 22,315 singletons and 78,981 pseudo-singletons. We identified a total of 1,294 simple sequence repeats (SSR) among the sequences in MSGI 1.0. In addition, a total of 10,826 single nucleotide polymorphisms (SNPs) were predicted between the two genotypes. Out of 55 SNPs randomly selected for experimental validation, 47 (85%) were polymorphic between the two genotypes. We also identified numerous allelic variations within each genotype. Digital gene expression analysis identified numerous candidate genes that may play a role in stem development as well as candidate genes that may contribute to the differences in cell wall composition in stems of the two genotypes. Conclusions Our results demonstrate that RNA-Seq can be

  2. Transcriptional profiling of human liver identifies sex-biased genes associated with polygenic dyslipidemia and coronary artery disease.

    Directory of Open Access Journals (Sweden)

    Yijing Zhang

    Full Text Available Sex-differences in human liver gene expression were characterized on a genome-wide scale using a large liver sample collection, allowing for detection of small expression differences with high statistical power. 1,249 sex-biased genes were identified, 70% showing higher expression in females. Chromosomal bias was apparent, with female-biased genes enriched on chrX and male-biased genes enriched on chrY and chr19, where 11 male-biased zinc-finger KRAB-repressor domain genes are distributed in six clusters. Top biological functions and diseases significantly enriched in sex-biased genes include transcription, chromatin organization and modification, sexual reproduction, lipid metabolism and cardiovascular disease. Notably, sex-biased genes are enriched at loci associated with polygenic dyslipidemia and coronary artery disease in genome-wide association studies. Moreover, of the 8 sex-biased genes at these loci, 4 have been directly linked to monogenic disorders of lipid metabolism and show an expression profile in females (elevated expression of ABCA1, APOA5 and LDLR; reduced expression of LIPC that is consistent with the lower female risk of coronary artery disease. Female-biased expression was also observed for CYP7A1, which is activated by drugs used to treat hypercholesterolemia. Several sex-biased drug-metabolizing enzyme genes were identified, including members of the CYP, UGT, GPX and ALDH families. Half of 879 mouse orthologs, including many genes of lipid metabolism and homeostasis, show growth hormone-regulated sex-biased expression in mouse liver, suggesting growth hormone might play a similar regulatory role in human liver. Finally, the evolutionary rate of protein coding regions for human-mouse orthologs, revealed by dN/dS ratio, is significantly higher for genes showing the same sex-bias in both species than for non-sex-biased genes. These findings establish that human hepatic sex differences are widespread and affect diverse cell

  3. Temporal and spatial transcriptional fingerprints by antipsychotic or propsychotic drugs in mouse brain.

    Directory of Open Access Journals (Sweden)

    Kensuke Sakuma

    Full Text Available Various types of antipsychotics have been developed for the treatment of schizophrenia since the accidental discovery of the antipsychotic activity of chlorpromazine. Although all clinically effective antipsychotic agents have common properties to interact with the dopamine D2 receptor (D2R activation, their precise mechanisms of action remain elusive. Antipsychotics are well known to induce transcriptional changes of immediate early genes (IEGs, raising the possibility that gene expressions play an essential role to improve psychiatric symptoms. Here, we report that while different classes of antipsychotics have complex pharmacological profiles against D2R, they share common transcriptome fingerprint (TFP profile of IEGs in the murine brain in vivo by quantitative real-time PCR (qPCR. Our data showed that various types of antipsychotics with a profound interaction of D2R including haloperidol (antagonist, olanzapine (antagonist, and aripiprazole (partial agonist all share common spatial TFPs closely homologous to those of D2R antagonist sulpiride, and elicited greater transcriptional responses in the striatum than in the nucleus accumbens. Meanwhile, D2R agonist quinpirole and propsychotic NMDA antagonists such as MK-801 and phencyclidine (PCP exhibited the contrasting TFP profiles. Clozapine and propsychotic drug methamphetamine (MAP displayed peculiar TFPs that reflect their unique pharmacological property. Our results suggest that transcriptional responses are conserved across various types of antipsychotics clinically effective in positive symptoms of schizophrenia and also show that temporal and spatial TFPs may reflect the pharmacological features of the drugs. Thus, we propose that a TFP approach is beneficial to evaluate novel drug candidates for antipsychotic development.

  4. Repetitive Elements in Mycoplasma hyopneumoniae Transcriptional Regulation.

    Directory of Open Access Journals (Sweden)

    Amanda Malvessi Cattani

    Full Text Available Transcriptional regulation, a multiple-step process, is still poorly understood in the important pig pathogen Mycoplasma hyopneumoniae. Basic motifs like promoters and terminators have already been described, but no other cis-regulatory elements have been found. DNA repeat sequences have been shown to be an interesting potential source of cis-regulatory elements. In this work, a genome-wide search for tandem and palindromic repetitive elements was performed in the intergenic regions of all coding sequences from M. hyopneumoniae strain 7448. Computational analysis demonstrated the presence of 144 tandem repeats and 1,171 palindromic elements. The DNA repeat sequences were distributed within the 5' upstream regions of 86% of transcriptional units of M. hyopneumoniae strain 7448. Comparative analysis between distinct repetitive sequences found in related mycoplasma genomes demonstrated different percentages of conservation among pathogenic and nonpathogenic strains. qPCR assays revealed differential expression among genes showing variable numbers of repetitive elements. In addition, repeats found in 206 genes already described to be differentially regulated under different culture conditions of M. hyopneumoniae strain 232 showed almost 80% conservation in relation to M. hyopneumoniae strain 7448 repeats. Altogether, these findings suggest a potential regulatory role of tandem and palindromic DNA repeats in the M. hyopneumoniae transcriptional profile.

  5. Repetitive Elements in Mycoplasma hyopneumoniae Transcriptional Regulation.

    Science.gov (United States)

    Cattani, Amanda Malvessi; Siqueira, Franciele Maboni; Guedes, Rafael Lucas Muniz; Schrank, Irene Silveira

    2016-01-01

    Transcriptional regulation, a multiple-step process, is still poorly understood in the important pig pathogen Mycoplasma hyopneumoniae. Basic motifs like promoters and terminators have already been described, but no other cis-regulatory elements have been found. DNA repeat sequences have been shown to be an interesting potential source of cis-regulatory elements. In this work, a genome-wide search for tandem and palindromic repetitive elements was performed in the intergenic regions of all coding sequences from M. hyopneumoniae strain 7448. Computational analysis demonstrated the presence of 144 tandem repeats and 1,171 palindromic elements. The DNA repeat sequences were distributed within the 5' upstream regions of 86% of transcriptional units of M. hyopneumoniae strain 7448. Comparative analysis between distinct repetitive sequences found in related mycoplasma genomes demonstrated different percentages of conservation among pathogenic and nonpathogenic strains. qPCR assays revealed differential expression among genes showing variable numbers of repetitive elements. In addition, repeats found in 206 genes already described to be differentially regulated under different culture conditions of M. hyopneumoniae strain 232 showed almost 80% conservation in relation to M. hyopneumoniae strain 7448 repeats. Altogether, these findings suggest a potential regulatory role of tandem and palindromic DNA repeats in the M. hyopneumoniae transcriptional profile.

  6. The transcriptional landscape

    DEFF Research Database (Denmark)

    Nielsen, Henrik

    2011-01-01

    The application of new and less biased methods to study the transcriptional output from genomes, such as tiling arrays and deep sequencing, has revealed that most of the genome is transcribed and that there is substantial overlap of transcripts derived from the two strands of DNA. In protein coding...... regions, the map of transcripts is very complex due to small transcripts from the flanking ends of the transcription unit, the use of multiple start and stop sites for the main transcript, production of multiple functional RNA molecules from the same primary transcript, and RNA molecules made...... by independent transcription from within the unit. In genomic regions separating those that encode proteins or highly abundant RNA molecules with known function, transcripts are generally of low abundance and short-lived. In most of these cases, it is unclear to what extent a function is related to transcription...

  7. Transcriptome profiling of mice testes following low dose irradiation

    DEFF Research Database (Denmark)

    Belling, Kirstine C.; Tanaka, Masami; Dalgaard, Marlene Danner

    2013-01-01

    ABSTRACT: BACKGROUND: Radiotherapy is used routinely to treat testicular cancer. Testicular cells vary in radio-sensitivity and the aim of this study was to investigate cellular and molecular changes caused by low dose irradiation of mice testis and to identify transcripts from different cell types...... in the adult testis. METHODS: Transcriptome profiling was performed on total RNA from testes sampled at various time points (n = 17) after 1 Gy of irradiation. Transcripts displaying large overall expression changes during the time series, but small expression changes between neighbouring time points were...... selected for further analysis. These transcripts were separated into clusters and their cellular origin was determined. Immunohistochemistry and in silico quantification was further used to study cellular changes post-irradiation (pi). RESULTS: We identified a subset of transcripts (n = 988) where changes...

  8. Identification and molecular characterization of 48 kDa calcium binding protein as calreticulin from finger millet (Eleusine coracana) using peptide mass fingerprinting and transcript profiling.

    Science.gov (United States)

    Singh, Manoj; Metwal, Mamta; Kumar, Vandana A; Kumar, Anil

    2016-01-30

    Attempts were made to identify and characterize the calcium binding proteins (CaBPs) in grain filling stages of finger millet using proteomics, bioinformatics and molecular approaches. A distinctly observed blue color band of 48 kDa stained by Stains-all was eluted and analyzed as calreticulin (CRT) using nano liquid chromatography-tandem mass spectrometry (nano LC-MS). Based on the top hits of peptide mass fingerprinting results, conserved primers were designed for isolation of the CRT gene from finger millet using calreticulin sequences of different cereals. The deduced nucleotide sequence analysis of 600 bp amplicon showed up to 91% similarity with CRT gene(s) of rice and other plant species and designated as EcCRT1. Transcript profiling of EcCRT1 showed different levels of relative expression at different stages of developing spikes. The higher expression of EcCRT1 transcripts and protein were observed in later stages of developing spikes which might be due to greater translational synthesis of EcCRT1 protein during seed maturation in finger millet. Preferentially higher synthesis of this CaBP during later stages of grain filling may be responsible for the sequestration of calcium in endoplasmic reticulum of finger millet grains. © 2015 Society of Chemical Industry.

  9. Histone Deacetylase Inhibitors Prolong Cardiac Repolarization through Transcriptional Mechanisms.

    Science.gov (United States)

    Spence, Stan; Deurinck, Mark; Ju, Haisong; Traebert, Martin; McLean, LeeAnne; Marlowe, Jennifer; Emotte, Corinne; Tritto, Elaine; Tseng, Min; Shultz, Michael; Friedrichs, Gregory S

    2016-09-01

    Histone deacetylase (HDAC) inhibitors are an emerging class of anticancer agents that modify gene expression by altering the acetylation status of lysine residues of histone proteins, thereby inducing transcription, cell cycle arrest, differentiation, and cell death or apoptosis of cancer cells. In the clinical setting, treatment with HDAC inhibitors has been associated with delayed cardiac repolarization and in rare instances a lethal ventricular tachyarrhythmia known as torsades de pointes. The mechanism(s) of HDAC inhibitor-induced effects on cardiac repolarization is unknown. We demonstrate that administration of structurally diverse HDAC inhibitors to dogs causes delayed but persistent increases in the heart rate corrected QT interval (QTc), an in vivo measure of cardiac repolarization, at timepoints far removed from the Tmax for parent drug and metabolites. Transcriptional profiling of ventricular myocardium from dogs treated with various HDAC inhibitors demonstrated effects on genes involved in protein trafficking, scaffolding and insertion of various ion channels into the cell membrane as well as genes for specific ion channel subunits involved in cardiac repolarization. Extensive in vitro ion channel profiling of various structural classes of HDAC inhibitors (and their major metabolites) by binding and acute patch clamp assays failed to show any consistent correlations with direct ion channel blockade. Drug-induced rescue of an intracellular trafficking-deficient mutant potassium ion channel, hERG (G601S), and decreased maturation (glycosylation) of wild-type hERG expressed by CHO cells in vitro correlated with prolongation of QTc intervals observed in vivo The results suggest that HDAC inhibitor-induced prolongation of cardiac repolarization may be mediated in part by transcriptional changes of genes required for ion channel trafficking and localization to the sarcolemma. These data have broad implications for the development of these drug classes and

  10. The transcriptional regulatory network mediated by banana (Musa acuminata) dehydration-responsive element binding (MaDREB) transcription factors in fruit ripening.

    Science.gov (United States)

    Kuang, Jian-Fei; Chen, Jian-Ye; Liu, Xun-Cheng; Han, Yan-Chao; Xiao, Yun-Yi; Shan, Wei; Tang, Yang; Wu, Ke-Qiang; He, Jun-Xian; Lu, Wang-Jin

    2017-04-01

    Fruit ripening is a complex, genetically programmed process involving the action of critical transcription factors (TFs). Despite the established significance of dehydration-responsive element binding (DREB) TFs in plant abiotic stress responses, the involvement of DREBs in fruit ripening is yet to be determined. Here, we identified four genes encoding ripening-regulated DREB TFs in banana (Musa acuminata), MaDREB1, MaDREB2, MaDREB3, and MaDREB4, and demonstrated that they play regulatory roles in fruit ripening. We showed that MaDREB1-MaDREB4 are nucleus-localized, induced by ethylene and encompass transcriptional activation activities. We performed a genome-wide chromatin immunoprecipitation and high-throughput sequencing (ChIP-Seq) experiment for MaDREB2 and identified 697 genomic regions as potential targets of MaDREB2. MaDREB2 binds to hundreds of loci with diverse functions and its binding sites are distributed in the promoter regions proximal to the transcriptional start site (TSS). Most of the MaDREB2-binding targets contain the conserved (A/G)CC(G/C)AC motif and MaDREB2 appears to directly regulate the expression of a number of genes involved in fruit ripening. In combination with transcriptome profiling (RNA sequencing) data, our results indicate that MaDREB2 may serve as both transcriptional activator and repressor during banana fruit ripening. In conclusion, our study suggests a hierarchical regulatory model of fruit ripening in banana and that the MaDREB TFs may act as transcriptional regulators in the regulatory network. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  11. Transcriptional program of ciliated epithelial cells reveals new cilium and centrosome components and links to human disease.

    Directory of Open Access Journals (Sweden)

    Ramona A Hoh

    Full Text Available Defects in the centrosome and cilium are associated with a set of human diseases having diverse phenotypes. To further characterize the components that define the function of these organelles we determined the transcriptional profile of multiciliated tracheal epithelial cells. Cultures of mouse tracheal epithelial cells undergoing differentiation in vitro were derived from mice expressing GFP from the ciliated-cell specific FOXJ1 promoter (FOXJ1:GFP. The transcriptional profile of ciliating GFP+ cells from these cultures was defined at an early and a late time point during differentiation and was refined by subtraction of the profile of the non-ciliated GFP- cells. We identified 649 genes upregulated early, when most cells were forming basal bodies, and 73 genes genes upregulated late, when most cells were fully ciliated. Most, but not all, of known centrosome proteins are transcriptionally upregulated early, particularly Plk4, a master regulator of centriole formation. We found that three genes associated with human disease states, Mdm1, Mlf1, and Dyx1c1, are upregulated during ciliogenesis and localize to centrioles and cilia. This transcriptome for mammalian multiciliated epithelial cells identifies new candidate centrosome and cilia proteins, highlights similarities between components of motile and primary cilia, and identifies new links between cilia proteins and human disease.

  12. Characterisation of CDKL5 Transcript Isoforms in Human and Mouse.

    Science.gov (United States)

    Hector, Ralph D; Dando, Owen; Landsberger, Nicoletta; Kilstrup-Nielsen, Charlotte; Kind, Peter C; Bailey, Mark E S; Cobb, Stuart R

    2016-01-01

    Mutations in the X-linked Cyclin-Dependent Kinase-Like 5 gene (CDKL5) cause early onset infantile spasms and subsequent severe developmental delay in affected children. Deleterious mutations have been reported to occur throughout the CDKL5 coding region. Several studies point to a complex CDKL5 gene structure in terms of exon usage and transcript expression. Improvements in molecular diagnosis and more extensive research into the neurobiology of CDKL5 and pathophysiology of CDKL5 disorders necessitate an updated analysis of the gene. In this study, we have analysed human and mouse CDKL5 transcript patterns both bioinformatically and experimentally. We have characterised the predominant brain isoform of CDKL5, a 9.7 kb transcript comprised of 18 exons with a large 6.6 kb 3'-untranslated region (UTR), which we name hCDKL5_1. In addition we describe new exonic regions and a range of novel splice and UTR isoforms. This has enabled the description of an updated gene model in both species and a standardised nomenclature system for CDKL5 transcripts. Profiling revealed tissue- and brain development stage-specific differences in expression between transcript isoforms. These findings provide an essential backdrop for the diagnosis of CDKL5-related disorders, for investigations into the basic biology of this gene and its protein products, and for the rational design of gene-based and molecular therapies for these disorders.

  13. Global transcriptional profiling of the toxic dinoflagellate Alexandrium fundyense using Massively Parallel Signature Sequencing

    Directory of Open Access Journals (Sweden)

    Anderson Donald M

    2006-04-01

    duplication in dinoflagellates, which would contribute to the transcriptional complexity of these organisms. The MPSS data also demonstrate that a significant number of dinoflagellate mRNAs are transcriptionally regulated, indicating that dinoflagellates commonly employ transcriptional gene regulation along with the post-transcriptional regulation that has been well documented in these organisms.

  14. CAR and PXR-dependent transcriptional changes in the mouse liver after exposure to propiconazole

    Science.gov (United States)

    Exposure to the conazoles propiconazole and triadimefon but not myclobutanilled to tumors in mice after 2 years. Transcript profiling studies in the livers ofwild-type mice after short-term exposure to the conazoles revealed signatures indicating the involvement ofthe nuclear rec...

  15. Gene Structures, Evolution and Transcriptional Profiling of the WRKY Gene Family in Castor Bean (Ricinus communis L.).

    Science.gov (United States)

    Zou, Zhi; Yang, Lifu; Wang, Danhua; Huang, Qixing; Mo, Yeyong; Xie, Guishui

    2016-01-01

    WRKY proteins comprise one of the largest transcription factor families in plants and form key regulators of many plant processes. This study presents the characterization of 58 WRKY genes from the castor bean (Ricinus communis L., Euphorbiaceae) genome. Compared with the automatic genome annotation, one more WRKY-encoding locus was identified and 20 out of the 57 predicted gene models were manually corrected. All RcWRKY genes were shown to contain at least one intron in their coding sequences. According to the structural features of the present WRKY domains, the identified RcWRKY genes were assigned to three previously defined groups (I-III). Although castor bean underwent no recent whole-genome duplication event like physic nut (Jatropha curcas L., Euphorbiaceae), comparative genomics analysis indicated that one gene loss, one intron loss and one recent proximal duplication occurred in the RcWRKY gene family. The expression of all 58 RcWRKY genes was supported by ESTs and/or RNA sequencing reads derived from roots, leaves, flowers, seeds and endosperms. Further global expression profiles with RNA sequencing data revealed diverse expression patterns among various tissues. Results obtained from this study not only provide valuable information for future functional analysis and utilization of the castor bean WRKY genes, but also provide a useful reference to investigate the gene family expansion and evolution in Euphorbiaceus plants.

  16. Redefining the transcriptional regulatory dynamics of classically and alternatively activated macrophages by deepCAGE transcriptomics

    KAUST Repository

    Roy, S.

    2015-06-27

    Classically or alternatively activated macrophages (M1 and M2, respectively) play distinct and important roles for microbiocidal activity, regulation of inflammation and tissue homeostasis. Despite this, their transcriptional regulatory dynamics are poorly understood. Using promoter-level expression profiling by non-biased deepCAGE we have studied the transcriptional dynamics of classically and alternatively activated macrophages. Transcription factor (TF) binding motif activity analysis revealed four motifs, NFKB1_REL_RELA, IRF1,2, IRF7 and TBP that are commonly activated but have distinct activity dynamics in M1 and M2 activation. We observe matching changes in the expression profiles of the corresponding TFs and show that only a restricted set of TFs change expression. There is an overall drastic and transient up-regulation in M1 and a weaker and more sustainable up-regulation in M2. Novel TFs, such as Thap6, Maff, (M1) and Hivep1, Nfil3, Prdm1, (M2) among others, were suggested to be involved in the activation processes. Additionally, 52 (M1) and 67 (M2) novel differentially expressed genes and, for the first time, several differentially expressed long non-coding RNA (lncRNA) transcriptome markers were identified. In conclusion, the finding of novel motifs, TFs and protein-coding and lncRNA genes is an important step forward to fully understand the transcriptional machinery of macrophage activation.

  17. AFLP analysis of genetic diversity in leafy kale (Brassica oleracea L. convar. acephala (DC.) Alef.) landraces, cultivars and wild populations in Europe

    DEFF Research Database (Denmark)

    Christensen, Stina; von Bothmer, Roland; Poulsen, G.

    2011-01-01

    AFLP markers were used to characterize diversity and asses the genetic structure among 17 accessions of kale landraces, cultivars and wild populations from Europe. The range of average gene diversity in accessions was 0.11–0.27. Several landraces showed higher levels of diversity than the wild...... populations and one cultivar had the lowest diversity measures. The landraces that were most genetically diverse were from areas where kales are known to be extensively grown, suggesting in situ conservation in these areas as a supplement to storage of seeds in gene banks. An analysis of molecular variance...... the relationship among them is due to seed dispersal through human interactions. Our results indicate that a kale population found in a natural habitat in Denmark was probably not truly wild but most likely an escape from a cultivated Danish kale that had subsequently become naturalized....

  18. An integrated PCR colony hybridization approach to screen cDNA libraries for full-length coding sequences.

    Science.gov (United States)

    Pollier, Jacob; González-Guzmán, Miguel; Ardiles-Diaz, Wilson; Geelen, Danny; Goossens, Alain

    2011-01-01

    cDNA-Amplified Fragment Length Polymorphism (cDNA-AFLP) is a commonly used technique for genome-wide expression analysis that does not require prior sequence knowledge. Typically, quantitative expression data and sequence information are obtained for a large number of differentially expressed gene tags. However, most of the gene tags do not correspond to full-length (FL) coding sequences, which is a prerequisite for subsequent functional analysis. A medium-throughput screening strategy, based on integration of polymerase chain reaction (PCR) and colony hybridization, was developed that allows in parallel screening of a cDNA library for FL clones corresponding to incomplete cDNAs. The method was applied to screen for the FL open reading frames of a selection of 163 cDNA-AFLP tags from three different medicinal plants, leading to the identification of 109 (67%) FL clones. Furthermore, the protocol allows for the use of multiple probes in a single hybridization event, thus significantly increasing the throughput when screening for rare transcripts. The presented strategy offers an efficient method for the conversion of incomplete expressed sequence tags (ESTs), such as cDNA-AFLP tags, to FL-coding sequences.

  19. Genome-wide screening and transcriptional profile analysis of desaturase genes in the European corn borer moth

    Institute of Scientific and Technical Information of China (English)

    Bingye Xue; Alejandro P. Rooney; Wendell L. Roelofs

    2012-01-01

    Acyl-coenzyme A (Acyl-CoA) desaturases play a key role in the biosynthesis of female moth sex pheromones.Desaturase genes are encoded by a large multigene family,and they have been divided into five subgroups on the basis of biochemical functionality and phylogenetic affinity.In this study both copy numbers and transcriptional levels of desaturase genes in the European corn borer (ECB),Ostrinia nubilalis,were investigated.The results from genome-wide screening of ECB bacterial artificial chromosome (BAC)library indicated there are many copies of some desaturase genes in the genome.An open reading frame (ORF) has been isolated for the novel desaturase gene ECB ezi-△11β from ECB gland complementary DNA and its functionality has been analyzed by two yeast expression systems.No functional activities have been detected for it.The expression levels of the four desaturase genes both in the pheromone gland and fat body of ECB and Asian corn borer (ACB),O.furnacalis,were determined by real-time polymerase chain reaction.In the ECB gland,△ 11 is the most abundant,although the amount of △14 is also considerable.In the ACB gland,△14 is the most abundant and is 100 times more abundant than all the other three combined.The results from the analysis of evolution of desaturase gene transcription in the ECB,ACB and other moths indicate that the pattern of △ 11 gene transcription is significantly different from the transcriptional patterns of other desaturase genes and this difference is tied to the underlying nucleotide composition bias of the genome.

  20. Ancient dispersal of the human fungal pathogen Cryptococcus gattii from the Amazon rainforest.

    Science.gov (United States)

    Hagen, Ferry; Ceresini, Paulo C; Polacheck, Itzhack; Ma, Hansong; van Nieuwerburgh, Filip; Gabaldón, Toni; Kagan, Sarah; Pursall, E Rhiannon; Hoogveld, Hans L; van Iersel, Leo J J; Klau, Gunnar W; Kelk, Steven M; Stougie, Leen; Bartlett, Karen H; Voelz, Kerstin; Pryszcz, Leszek P; Castañeda, Elizabeth; Lazera, Marcia; Meyer, Wieland; Deforce, Dieter; Meis, Jacques F; May, Robin C; Klaassen, Corné H W; Boekhout, Teun

    2013-01-01

    Over the past two decades, several fungal outbreaks have occurred, including the high-profile 'Vancouver Island' and 'Pacific Northwest' outbreaks, caused by Cryptococcus gattii, which has affected hundreds of otherwise healthy humans and animals. Over the same time period, C. gattii was the cause of several additional case clusters at localities outside of the tropical and subtropical climate zones where the species normally occurs. In every case, the causative agent belongs to a previously rare genotype of C. gattii called AFLP6/VGII, but the origin of the outbreak clades remains enigmatic. Here we used phylogenetic and recombination analyses, based on AFLP and multiple MLST datasets, and coalescence gene genealogy to demonstrate that these outbreaks have arisen from a highly-recombining C. gattii population in the native rainforest of Northern Brazil. Thus the modern virulent C. gattii AFLP6/VGII outbreak lineages derived from mating events in South America and then dispersed to temperate regions where they cause serious infections in humans and animals.

  1. Pervasive transcription read-through promotes aberrant expression of oncogenes and RNA chimeras in renal carcinoma

    Science.gov (United States)

    Grosso, Ana R; Leite, Ana P; Carvalho, Sílvia; Matos, Mafalda R; Martins, Filipa B; Vítor, Alexandra C; Desterro, Joana MP; Carmo-Fonseca, Maria; de Almeida, Sérgio F

    2015-01-01

    Aberrant expression of cancer genes and non-canonical RNA species is a hallmark of cancer. However, the mechanisms driving such atypical gene expression programs are incompletely understood. Here, our transcriptional profiling of a cohort of 50 primary clear cell renal cell carcinoma (ccRCC) samples from The Cancer Genome Atlas (TCGA) reveals that transcription read-through beyond the termination site is a source of transcriptome diversity in cancer cells. Amongst the genes most frequently mutated in ccRCC, we identified SETD2 inactivation as a potent enhancer of transcription read-through. We further show that invasion of neighbouring genes and generation of RNA chimeras are functional outcomes of transcription read-through. We identified the BCL2 oncogene as one of such invaded genes and detected a novel chimera, the CTSC-RAB38, in 20% of ccRCC samples. Collectively, our data highlight a novel link between transcription read-through and aberrant expression of oncogenes and chimeric transcripts that is prevalent in cancer. DOI: http://dx.doi.org/10.7554/eLife.09214.001 PMID:26575290

  2. Reconstruction of the core and extended regulons of global transcription factors.

    Directory of Open Access Journals (Sweden)

    Yann S Dufour

    2010-07-01

    Full Text Available The processes underlying the evolution of regulatory networks are unclear. To address this question, we used a comparative genomics approach that takes advantage of the large number of sequenced bacterial genomes to predict conserved and variable members of transcriptional regulatory networks across phylogenetically related organisms. Specifically, we developed a computational method to predict the conserved regulons of transcription factors across alpha-proteobacteria. We focused on the CRP/FNR super-family of transcription factors because it contains several well-characterized members, such as FNR, FixK, and DNR. While FNR, FixK, and DNR are each proposed to regulate different aspects of anaerobic metabolism, they are predicted to recognize very similar DNA target sequences, and they occur in various combinations among individual alpha-proteobacterial species. In this study, the composition of the respective FNR, FixK, or DNR conserved regulons across 87 alpha-proteobacterial species was predicted by comparing the phylogenetic profiles of the regulators with the profiles of putative target genes. The utility of our predictions was evaluated by experimentally characterizing the FnrL regulon (a FNR-type regulator in the alpha-proteobacterium Rhodobacter sphaeroides. Our results show that this approach correctly predicted many regulon members, provided new insights into the biological functions of the respective regulons for these regulators, and suggested models for the evolution of the corresponding transcriptional networks. Our findings also predict that, at least for the FNR-type regulators, there is a core set of target genes conserved across many species. In addition, the members of the so-called extended regulons for the FNR-type regulators vary even among closely related species, possibly reflecting species-specific adaptation to environmental and other factors. The comparative genomics approach we developed is readily applicable to other

  3. Transcriptional correlates of disease outcome in anticoagulant-treated non-human primates infected with ebolavirus.

    Directory of Open Access Journals (Sweden)

    Sara Garamszegi

    Full Text Available Ebola virus (EBOV infection in humans and non-human primates (NHPs is highly lethal, and there is limited understanding of the mechanisms associated with pathogenesis and survival. Here, we describe a transcriptomic analysis of NHPs that survived lethal EBOV infection, compared to NHPs that did not survive. It has been previously demonstrated that anticoagulant therapeutics increase the survival rate in EBOV-infected NHPs, and that the characteristic transcriptional profile of immune response changes in anticoagulant-treated NHPs. In order to identify transcriptional signatures that correlate with survival following EBOV infection, we compared the mRNA expression profile in peripheral blood mononuclear cells from EBOV-infected NHPs that received anticoagulant treatment, to those that did not receive treatment. We identified a small set of 20 genes that are highly confident predictors and can accurately distinguish between surviving and non-surviving animals. In addition, we identified a larger predictive signature of 238 genes that correlated with disease outcome and treatment; this latter signature was associated with a variety of host responses, such as the inflammatory response, T cell death, and inhibition of viral replication. Notably, among survival-associated genes were subsets of genes that are transcriptionally regulated by (1 CCAAT/enhancer-binding protein alpha, (2 tumor protein 53, and (3 megakaryoblastic leukemia 1 and myocardin-like protein 2. These pathways merit further investigation as potential transcriptional signatures of host immune response to EBOV infection.

  4. High resolution analysis of the human transcriptome: detection of extensive alternative splicing independent of transcriptional activity

    Directory of Open Access Journals (Sweden)

    Rouet Fabien

    2009-10-01

    Full Text Available Abstract Background Commercially available microarrays have been used in many settings to generate expression profiles for a variety of applications, including target selection for disease detection, classification, profiling for pharmacogenomic response to therapeutics, and potential disease staging. However, many commercially available microarray platforms fail to capture transcript diversity produced by alternative splicing, a major mechanism for driving proteomic diversity through transcript heterogeneity. Results The human Genome-Wide SpliceArray™ (GWSA, a novel microarray platform, utilizes an existing probe design concept to monitor such transcript diversity on a genome scale. The human GWSA allows the detection of alternatively spliced events within the human genome through the use of exon body and exon junction probes to provide a direct measure of each transcript, through simple calculations derived from expression data. This report focuses on the performance and validation of the array when measured against standards recently published by the Microarray Quality Control (MAQC Project. The array was shown to be highly quantitative, and displayed greater than 85% correlation with the HG-U133 Plus 2.0 array at the gene level while providing more extensive coverage of each gene. Almost 60% of splice events among genes demonstrating differential expression of greater than 3 fold also contained extensive splicing alterations. Importantly, almost 10% of splice events within the gene set displaying constant overall expression values had evidence of transcript diversity. Two examples illustrate the types of events identified: LIM domain 7 showed no differential expression at the gene level, but demonstrated deregulation of an exon skip event, while erythrocyte membrane protein band 4.1 -like 3 was differentially expressed and also displayed deregulation of a skipped exon isoform. Conclusion Significant changes were detected independent of

  5. AFLP-Based Analysis of Genetic Diversity, Population Structure, and Relationships with Agronomic Traits in Rice Germplasm from North Region of Iran and World Core Germplasm Set.

    Science.gov (United States)

    Sorkheh, Karim; Masaeli, Mohammad; Chaleshtori, Maryam Hosseini; Adugna, Asfaw; Ercisli, Sezai

    2016-04-01

    Analysis of the genetic diversity and population structure of crops is very important for use in breeding programs and for genetic resources conservation. We analyzed the genetic diversity and population structure of 47 rice genotypes from diverse origins using amplified fragment length polymorphism (AFLP) markers and morphological characters. The 47 genotypes, which were composed of four populations: Iranian native varieties, Iranian improved varieties, International Rice Research Institute (IRRI) rice varieties, and world rice collections, were analyzed using ten primer combinations. A total of 221 scorable bands were produced with an average of 22.1 alleles per pair of primers, of which 120 (54.30%) were polymorphic. The polymorphism information content (PIC) values varied from 0.32 to 0.41 with an average of 0.35. The high percentage of polymorphic bands (%PB) was found to be 64.71 and the resolving power (R p) collections were 63.36. UPGMA clustering based on numerical data from AFLP patterns clustered all 47 genotypes into three large groups. The genetic similarity between individuals ranged from 0.54 to 0.94 with an average of 0.74. Population genetic tree showed that Iranian native cultivars formed far distant cluster from the other populations, which may indicate that these varieties had minimal genetic change over time. Analysis of molecular variance (AMOVA) revealed that the largest proportion of the variation (84%) to be within populations showing the inbreeding nature of rice. Therefore, Iranian native varieties (landraces) may have unique genes, which can be used for future breeding programs and there is a need to conserve this unique diversity. Furthermore, crossing of Iranian genotypes with the genetically distant genotypes in the other three populations may result in useful combinations, which can be used as varieties and/or lines for future rice breeding programs.

  6. Increased frequency of single base substitutions in a population of transcripts expressed in cancer cells

    Directory of Open Access Journals (Sweden)

    Bianchetti Laurent

    2012-11-01

    Full Text Available Abstract Background Single Base Substitutions (SBS that alter transcripts expressed in cancer originate from somatic mutations. However, recent studies report SBS in transcripts that are not supported by the genomic DNA of tumor cells. Methods We used sequence based whole genome expression profiling, namely Long-SAGE (L-SAGE and Tag-seq (a combination of L-SAGE and deep sequencing, and computational methods to identify transcripts with greater SBS frequencies in cancer. Millions of tags produced by 40 healthy and 47 cancer L-SAGE experiments were compared to 1,959 Reference Tags (RT, i.e. tags matching the human genome exactly once. Similarly, tens of millions of tags produced by 7 healthy and 8 cancer Tag-seq experiments were compared to 8,572 RT. For each transcript, SBS frequencies in healthy and cancer cells were statistically tested for equality. Results In the L-SAGE and Tag-seq experiments, 372 and 4,289 transcripts respectively, showed greater SBS frequencies in cancer. Increased SBS frequencies could not be attributed to known Single Nucleotide Polymorphisms (SNP, catalogued somatic mutations or RNA-editing enzymes. Hypothesizing that Single Tags (ST, i.e. tags sequenced only once, were indicators of SBS, we observed that ST proportions were heterogeneously distributed across Embryonic Stem Cells (ESC, healthy differentiated and cancer cells. ESC had the lowest ST proportions, whereas cancer cells had the greatest. Finally, in a series of experiments carried out on a single patient at 1 healthy and 3 consecutive tumor stages, we could show that SBS frequencies increased during cancer progression. Conclusion If the mechanisms generating the base substitutions could be known, increased SBS frequency in transcripts would be a new useful biomarker of cancer. With the reduction of sequencing cost, sequence based whole genome expression profiling could be used to characterize increased SBS frequency in patient’s tumor and aid diagnostic.

  7. Increased frequency of single base substitutions in a population of transcripts expressed in cancer cells

    International Nuclear Information System (INIS)

    Bianchetti, Laurent; Kieffer, David; Féderkeil, Rémi; Poch, Olivier

    2012-01-01

    Single Base Substitutions (SBS) that alter transcripts expressed in cancer originate from somatic mutations. However, recent studies report SBS in transcripts that are not supported by the genomic DNA of tumor cells. We used sequence based whole genome expression profiling, namely Long-SAGE (L-SAGE) and Tag-seq (a combination of L-SAGE and deep sequencing), and computational methods to identify transcripts with greater SBS frequencies in cancer. Millions of tags produced by 40 healthy and 47 cancer L-SAGE experiments were compared to 1,959 Reference Tags (RT), i.e. tags matching the human genome exactly once. Similarly, tens of millions of tags produced by 7 healthy and 8 cancer Tag-seq experiments were compared to 8,572 RT. For each transcript, SBS frequencies in healthy and cancer cells were statistically tested for equality. In the L-SAGE and Tag-seq experiments, 372 and 4,289 transcripts respectively, showed greater SBS frequencies in cancer. Increased SBS frequencies could not be attributed to known Single Nucleotide Polymorphisms (SNP), catalogued somatic mutations or RNA-editing enzymes. Hypothesizing that Single Tags (ST), i.e. tags sequenced only once, were indicators of SBS, we observed that ST proportions were heterogeneously distributed across Embryonic Stem Cells (ESC), healthy differentiated and cancer cells. ESC had the lowest ST proportions, whereas cancer cells had the greatest. Finally, in a series of experiments carried out on a single patient at 1 healthy and 3 consecutive tumor stages, we could show that SBS frequencies increased during cancer progression. If the mechanisms generating the base substitutions could be known, increased SBS frequency in transcripts would be a new useful biomarker of cancer. With the reduction of sequencing cost, sequence based whole genome expression profiling could be used to characterize increased SBS frequency in patient’s tumor and aid diagnostic

  8. Evaluation of genome damage and transcription profile of DNA damage/repair response genes in peripheral blood mononuclear cells exposed to low dose radiation

    International Nuclear Information System (INIS)

    Soren, D.C.; Saini, Divyalakshmi; Das, Birajalaxmi

    2016-01-01

    Humans are exposed to various physical and chemical mutagens in their life time. Physical mutagens, like ionizing radiation (IR), may induce adverse effect at high acute dose exposures in human cells. However, there are inconsistent results on the effect of low dose radiation exposure in human cells. There are a variety of DNA damage endpoints to evaluate the effect of low dose radiation in human cells. DNA damage response (DDR) may lead to changes in expression profile of many genes. In the present study, an attempt has been made to evaluate genome damage at low dose IR exposure in human blood lymphocytes. Cytochalasin blocked micronuclei (CBMN) assay has been used to determine the frequency of micronuclei in binucleated cells in PBMCs exposed to IR. Transcription profile of ATM, P53, GADD45A, CDKN1A, TRF1 and TRF2 genes was studied using real time quantitative PCR. Venous blood samples collected from 10 random healthy donors were irradiated with different doses of γ-radiation ( 137 Cs) along with sham irradiated control. Whole blood culture was set up using microculture technique. Blood samples were stimulated with phytohemagglutinin, and CBMN assay was performed. An average of 2,500 binucleated cells was scored for each dose point. For gene expression analysis, total RNA was isolated, cDNA was prepared, and gene expression analysis for ATM, P53, CDKN1A, GADD45A, TRF1 and TRF2 was done using real time PCR. Our results revealed no significant increase in the frequency of MN up to 100 mGy as compared to control. However, no significant alteration in gene expression profile was observed. In conclusion, no significant dose response was observed at the frequency of MN as well as the expression profile of DDR/repair genes, suggesting low dose radiation did not induce significant DNA damage at these acute dose exposures. (author)

  9. Modulation of transcription factors by curcumin.

    Science.gov (United States)

    Shishodia, Shishir; Singh, Tulika; Chaturvedi, Madan M

    2007-01-01

    Curcumin is the active ingredient of turmeric that has been consumed as a dietary spice for ages. Turmeric is widely used in traditional Indian medicine to cure biliary disorders, anorexia, cough, diabetic wounds, hepatic disorders, rheumatism, and sinusitis. Extensive investigation over the last five decades has indicated that curcumin reduces blood cholesterol, prevents low-density lipoprotein oxidation, inhibits platelet aggregation, suppresses thrombosis and myocardial infarction, suppresses symptoms associated with type II diabetes, rheumatoid arthritis, multiple sclerosis, and Alzheimer's disease, inhibits HIV replication, enhances wound healing, protects from liver injury, increases bile secretion, protects from cataract formation, and protects from pulmonary toxicity and fibrosis. Evidence indicates that the divergent effects of curcumin are dependent on its pleiotropic molecular effects. These include the regulation of signal transduction pathways and direct modulation of several enzymatic activities. Most of these signaling cascades lead to the activation of transcription factors. Curcumin has been found to modulate the activity of several key transcription factors and, in turn, the cellular expression profiles. Curcumin has been shown to elicit vital cellular responses such as cell cycle arrest, apoptosis, and differentiation by activating a cascade of molecular events. In this chapter, we briefly review the effects of curcumin on transcription factors NF-KB, AP-1, Egr-1, STATs, PPAR-gamma, beta-catenin, nrf2, EpRE, p53, CBP, and androgen receptor (AR) and AR-related cofactors giving major emphasis to the molecular mechanisms of its action.

  10. Gene expression profiling via LongSAGE in a non-model plant species: a case study in seeds of Brassica napus

    Directory of Open Access Journals (Sweden)

    Friedt Wolfgang

    2009-07-01

    Full Text Available Abstract Background Serial analysis of gene expression (LongSAGE was applied for gene expression profiling in seeds of oilseed rape (Brassica napus ssp. napus. The usefulness of this technique for detailed expression profiling in a non-model organism was demonstrated for the highly complex, neither fully sequenced nor annotated genome of B. napus by applying a tag-to-gene matching strategy based on Brassica ESTs and the annotated proteome of the closely related model crucifer A. thaliana. Results Transcripts from 3,094 genes were detected at two time-points of seed development, 23 days and 35 days after pollination (DAP. Differential expression showed a shift from gene expression involved in diverse developmental processes including cell proliferation and seed coat formation at 23 DAP to more focussed metabolic processes including storage protein accumulation and lipid deposition at 35 DAP. The most abundant transcripts at 23 DAP were coding for diverse protease inhibitor proteins and proteases, including cysteine proteases involved in seed coat formation and a number of lipid transfer proteins involved in embryo pattern formation. At 35 DAP, transcripts encoding napin, cruciferin and oleosin storage proteins were most abundant. Over both time-points, 18.6% of the detected genes were matched by Brassica ESTs identified by LongSAGE tags in antisense orientation. This suggests a strong involvement of antisense transcript expression in regulatory processes during B. napus seed development. Conclusion This study underlines the potential of transcript tagging approaches for gene expression profiling in Brassica crop species via EST matching to annotated A. thaliana genes. Limits of tag detection for low-abundance transcripts can today be overcome by ultra-high throughput sequencing approaches, so that tag-based gene expression profiling may soon become the method of choice for global expression profiling in non-model species.

  11. Distribution of genetic diversity in wild European populations of prickly lettuce (Lactuca serriola): implications for plant genetic resources management

    NARCIS (Netherlands)

    Wiel, van de C.C.M.; Sretenovic Rajicic, T.; Treuren, van R.; Dehmer, K.J.; Linden, van der C.G.; Hintum, van T.J.L.

    2010-01-01

    Genetic variation in Lactuca serriola, the closest wild relative of cultivated lettuce, was studied across Europe from the Czech Republic to the United Kingdom, using three molecular marker systems, simple sequence repeat (SSR, microsatellites), AFLP and nucleotide-binding site (NBS) profiling. The

  12. Exploring the utility of organo-polyoxometalate hybrids to inhibit SOX transcription factors.

    Science.gov (United States)

    Narasimhan, Kamesh; Micoine, Kevin; Lacôte, Emmanuel; Thorimbert, Serge; Cheung, Edwin; Hasenknopf, Bernold; Jauch, Ralf

    2014-01-01

    SOX transcription factors constitute an attractive target class for intervention with small molecules as they play a prominent role in the field of regenerative biomedicine and cancer biology. However, rationally engineering specific inhibitors that interfere with transcription factor DNA interfaces continues to be a monumental challenge in the field of transcription factor chemical biology. Polyoxometalates (POMs) are inorganic compounds that were previously shown to target the high-mobility group (HMG) of SOX proteins at nanomolar concentrations. In continuation of this work, we carried out an assessment of the selectivity of a panel of newly synthesized organo-polyoxometalate hybrids in targeting different transcription factor families to enable the usage of polyoxometalates as specific SOX transcription factor drugs. The residual DNA-binding activities of 15 different transcription factors were measured after treatment with a panel of diverse polyoxometalates. Polyoxometalates belonging to the Dawson structural class were found to be more potent inhibitors than the Keggin class. Further, organically modified Dawson polyoxometalates were found to be the most potent in inhibiting transcription factor DNA binding activity. The size of the polyoxometalates and its derivitization were found to be the key determinants of their potency. Polyoxometalates are highly potent, nanomolar range inhibitors of the DNA binding activity of the Sox-HMG family. However, binding assays involving a limited subset of structurally diverse polyoxometalates revealed a low selectivity profile against different transcription factor families. Further progress in achieving selectivity and deciphering structure-activity relationship of POMs require the identification of POM binding sites on transcription factors using elaborate approaches like X-ray crystallography and multidimensional NMR. In summary, our report reaffirms that transcription factors are challenging molecular architectures

  13. Global transcriptional responses of Acidithiobacillus ferrooxidans Wenelen under different sulfide minerals.

    Science.gov (United States)

    Latorre, Mauricio; Ehrenfeld, Nicole; Cortés, María Paz; Travisany, Dante; Budinich, Marko; Aravena, Andrés; González, Mauricio; Bobadilla-Fazzini, Roberto A; Parada, Pilar; Maass, Alejandro

    2016-01-01

    In order to provide new information about the adaptation of Acidithiobacillus ferrooxidans during the bioleaching process, the current analysis presents the first report of the global transcriptional response of the native copper mine strain Wenelen (DSM 16786) oxidized under different sulfide minerals. Microarrays were used to measure the response of At. ferrooxidans Wenelen to shifts from iron supplemented liquid cultures (reference state) to the addition of solid substrates enriched in pyrite or chalcopyrite. Genes encoding for energy metabolism showed a similar transcriptional profile for the two sulfide minerals. Interestingly, four operons related to sulfur metabolism were over-expressed during growth on a reduced sulfur source. Genes associated with metal tolerance (RND and ATPases type P) were up-regulated in the presence of pyrite or chalcopyrite. These results suggest that At. ferrooxidans Wenelen presents an efficient transcriptional system developed to respond to environmental conditions, namely the ability to withstand high copper concentrations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Transcription profiling of the model cyanobacterium Synechococcus sp. strain PCC 7002 by NextGen (SOLiD™ Sequencing of cDNA

    Directory of Open Access Journals (Sweden)

    Marcus eLudwig

    2011-03-01

    Full Text Available The genome of the unicellular, euryhaline cyanobacterium Synechococcus sp. PCC 7002 encodes about 3200 proteins. Transcripts were detected for nearly all annotated open reading frames by a global transcriptomic analysis by Next-Generation (SOLiDTM sequencing of cDNA. In the cDNA samples sequenced, ~90% of the mapped sequences were derived from the 16S and 23S ribosomal RNAs and ~10% of the sequences were derived from mRNAs. In cells grown photoautotrophically under standard conditions (38 °C, 1% (v/v CO2 in air, 250 µmol photons m-2 s-1, the highest transcript levels (up to 2% of the total mRNA for the most abundantly transcribed genes (e. g., cpcAB, psbA, psaA were generally derived from genes encoding structural components of the photosynthetic apparatus. High light exposure for one hour caused changes in transcript levels for genes encoding proteins of the photosynthetic apparatus, Type-1 NADH dehydrogenase complex and ATP synthase, whereas dark incubation for one hour resulted in a global decrease in transcript levels for photosynthesis-related genes and an increase in transcript levels for genes involved in carbohydrate degradation. Transcript levels for pyruvate kinase and the pyruvate dehydrogenase complex decreased sharply in cells incubated in the dark. Under dark anoxic (fermentative conditions, transcript changes indicated a global decrease in transcripts for respiratory proteins and suggested that cells employ an alternative phosphoenolpyruvate degradation pathway via phosphoenolpyruvate synthase (ppsA and the pyruvate:ferredoxin oxidoreductase (nifJ. Finally, the data suggested that an apparent operon involved in tetrapyrrole biosynthesis and fatty acid desaturation, acsF2-ho2-hemN2-desF, may be regulated by oxygen concentration.

  15. Transcriptional profiling of five isolated size-matched stages of human preantral follicles

    DEFF Research Database (Denmark)

    Kristensen, Stine Gry; Ebbesen, Pernille; Andersen, Claus Yding

    2015-01-01

    Little is known of the early stages of human follicular development and the complex processes that regulate follicular growth. To identify genes of potential importance, we analysed follicle-related transcripts in five populations of isolated size-matched human preantral follicles by microarray...... factors of NOTCH signalling, IGF2, orphan nuclear receptor LRH-1, and homeobox gene HOXA7, indicating potentially important regulatory roles for these genes during early human folliculogenesis. We also found that FSHR mRNA and protein were present in the earliest stages of preantral follicles, whereas LHR...

  16. Genetic and Metabolic Intraspecific Biodiversity of Ganoderma lucidum

    Science.gov (United States)

    Pawlik, Anna; Janusz, Grzegorz; Dębska, Iwona; Siwulski, Marek; Frąc, Magdalena; Rogalski, Jerzy

    2015-01-01

    Fourteen Ganoderma lucidum strains from different geographic regions were identified using ITS region sequencing. Based on the sequences obtained, the genomic relationship between the analyzed strains was determined. All G. lucidum strains were also genetically characterized using the AFLP technique. G. lucidum strains included in the analysis displayed an AFLP profile similarity level in the range from 9.6 to 33.9%. Biolog FF MicroPlates were applied to obtain data on utilization of 95 carbon sources and mitochondrial activity. The analysis allowed comparison of functional diversity of the fungal strains. The substrate utilization profiles for the isolates tested revealed a broad variability within the analyzed G. lucidum species and proved to be a good profiling technology for studying the diversity in fungi. Significant differences have been demonstrated in substrate richness values. Interestingly, the analysis of growth and biomass production also differentiated the strains based on the growth rate on the agar and sawdust substrate. In general, the mycelial growth on the sawdust substrate was more balanced and the fastest fungal growth was observed for GRE3 and FCL192. PMID:25815332

  17. Genetic and Metabolic Intraspecific Biodiversity of Ganoderma lucidum

    Directory of Open Access Journals (Sweden)

    Anna Pawlik

    2015-01-01

    Full Text Available Fourteen Ganoderma lucidum strains from different geographic regions were identified using ITS region sequencing. Based on the sequences obtained, the genomic relationship between the analyzed strains was determined. All G. lucidum strains were also genetically characterized using the AFLP technique. G. lucidum strains included in the analysis displayed an AFLP profile similarity level in the range from 9.6 to 33.9%. Biolog FF MicroPlates were applied to obtain data on utilization of 95 carbon sources and mitochondrial activity. The analysis allowed comparison of functional diversity of the fungal strains. The substrate utilization profiles for the isolates tested revealed a broad variability within the analyzed G. lucidum species and proved to be a good profiling technology for studying the diversity in fungi. Significant differences have been demonstrated in substrate richness values. Interestingly, the analysis of growth and biomass production also differentiated the strains based on the growth rate on the agar and sawdust substrate. In general, the mycelial growth on the sawdust substrate was more balanced and the fastest fungal growth was observed for GRE3 and FCL192.

  18. Molecular epidemiology of contagious bovine pleuropneumonia in Tanzania based on amplified fragment length polymorphism and pulsed-field gel electrophoresis analysis

    DEFF Research Database (Denmark)

    Kusiluka, L.J.M.; Ojeniyi, B.; Friis, N.F.

    2001-01-01

    anti vaccine strains. The strong genomic homogeneity among, M. mycoides SC strains associated with outbreaks of contagious bovine pleuropneumonia in different regions of Tanzania suggests that the outbreaks of the disease in the 1990-99 period might have been caused Ly a single epidemic clone. Moreover......The genetic diversity of 60 field strains of Mycoplasma mycoides ssp. mycoides, small colony type (M,. mycoides), comprising 56 isolates from cattle in Tanzania, one from Kenya, two from Botswana and one from Portugal, as well as the type (PG1(T)) and vaccine (T-1-SR49) strains, was ivestigated...... strains. The AFLP profiles of the type and vaccine strains were indistingiuishable from each other. Indistinguishable AFLP profiles were found for 55 Tanzanian held strains, one of them isolated in 1990 and the other 54 isolated in 1998/1999), although one strain isolated in 1999 showed a different...

  19. Genomic profiling of neutrophil transcripts in Asian Qigong practitioners: a pilot study in gene regulation by mind-body interaction.

    Science.gov (United States)

    Li, Quan-Zhen; Li, Ping; Garcia, Gabriela E; Johnson, Richard J; Feng, Lili

    2005-02-01

    The great similarity of the genomes of humans and other species stimulated us to search for genes regulated by elements associated with human uniqueness, such as the mind-body interaction. DNA microarray technology offers the advantage of analyzing thousands of genes simultaneously, with the potential to determine healthy phenotypic changes in gene expression. The aim of this study was to determine the genomic profile and function of neutrophils in Falun Gong (FLG, an ancient Chinese Qigong) practitioners, with healthy subjects as controls. Six (6) Asian FLG practitioners and 6 Asian normal healthy controls were recruited for our study. The practitioners have practiced FLG for at least 1 year (range, 1-5 years). The practice includes daily reading of FLG books and daily practice of exercises lasting 1-2 hours. Selected normal healthy controls did not perform Qigong, yoga, t'ai chi, or any other type of mind-body practice, and had not followed any conventional physical exercise program for at least 1 year. Neutrophils were isolated from fresh blood and assayed for gene expression, using microarrays and RNase protection assay (RPA), as well as for function (phagocytosis) and survival (apoptosis). The changes in gene expression of FLG practitioners in contrast to normal healthy controls were characterized by enhanced immunity, downregulation of cellular metabolism, and alteration of apoptotic genes in favor of a rapid resolution of inflammation. The lifespan of normal neutrophils was prolonged, while the inflammatory neutrophils displayed accelerated cell death in FLG practitioners as determined by enzyme-linked immunosorbent assay. Correlating with enhanced immunity reflected by microarray data, neutrophil phagocytosis was significantly increased in Qigong practitioners. Some of the altered genes observed by microarray were confirmed by RPA. Qigong practice may regulate immunity, metabolic rate, and cell death, possibly at the transcriptional level. Our pilot study

  20. Transcriptional regulation by competing transcription factor modules.

    Directory of Open Access Journals (Sweden)

    Rutger Hermsen

    2006-12-01

    Full Text Available Gene regulatory networks lie at the heart of cellular computation. In these networks, intracellular and extracellular signals are integrated by transcription factors, which control the expression of transcription units by binding to cis-regulatory regions on the DNA. The designs of both eukaryotic and prokaryotic cis-regulatory regions are usually highly complex. They frequently consist of both repetitive and overlapping transcription factor binding sites. To unravel the design principles of these promoter architectures, we have designed in silico prokaryotic transcriptional logic gates with predefined input-output relations using an evolutionary algorithm. The resulting cis-regulatory designs are often composed of modules that consist of tandem arrays of binding sites to which the transcription factors bind cooperatively. Moreover, these modules often overlap with each other, leading to competition between them. Our analysis thus identifies a new signal integration motif that is based upon the interplay between intramodular cooperativity and intermodular competition. We show that this signal integration mechanism drastically enhances the capacity of cis-regulatory domains to integrate signals. Our results provide a possible explanation for the complexity of promoter architectures and could be used for the rational design of synthetic gene circuits.

  1. Identification and Expression Profiles of Six Transcripts Encoding Carboxylesterase Protein in Vitis flexuosa Infected with Pathogens

    Directory of Open Access Journals (Sweden)

    Md. Zaherul Islam

    2016-08-01

    Full Text Available Plants protect themselves from pathogen attacks via several mechanisms, including hypersensitive cell death. Recognition of pathogen attack by the plant resistance gene triggers expression of carboxylesterase genes associated with hypersensitive response. We identified six transcripts of carboxylesterase genes, Vitis flexuosa carboxylesterase 5585 (VfCXE5585, VfCXE12827, VfCXE13132, VfCXE17159, VfCXE18231, and VfCXE47674, which showed different expression patterns upon transcriptome analysis of V. flexuosa inoculated with Elsinoe ampelina. The lengths of genes ranged from 1,098 to 1,629 bp, and their encoded proteins consisted of 309 to 335 amino acids. The predicted amino acid sequences showed hydrolase like domains in all six transcripts and contained two conserved motifs, GXSXG of serine hydrolase characteristics and HGGGF related to the carboxylesterase family. The deduced amino acid sequence also contained a potential catalytic triad consisted of serine, aspartic acid and histidine. Of the six transcripts, VfCXE12827 showed upregulated expression against E. ampelina at all time points. Three genes (VfCXE5585, VfCXE12827, and VfCXE13132 showed upregulation, while others (VfCXE17159, VfCXE18231, and VfCXE47674 were down regulated in grapevines infected with Botrytis cinerea. All transcripts showed upregulated expression against Rhizobium vitis at early and later time points except VfCXE12827, and were downregulated for up to 48 hours post inoculation (hpi after upregulation at 1 hpi in response to R. vitis infection. All tested genes showed high and differential expression in response to pathogens, indicating that they all may play a role in defense pathways during pathogen infection in grapevines.

  2. Transcriptome profiling of Curcuma longa L. cv. Suvarna

    Directory of Open Access Journals (Sweden)

    Ambika Sahoo

    2016-12-01

    Full Text Available Turmeric is an economically valued crop, because of its utility in the food, pharmaceutical industries and Ayurvedic medicine, attracts the attention in many areas of research work. In the present study, we executed resequencing through transcriptome assembly of the turmeric cultivar Suvarna (CL_Suv_10. Resequencing of Suvarna variety has generated 5 Gbases raw data with 75 bp paired-end sequence. The raw data has been submitted to SRA database of NCBI with accession number SRR4042181. Reads were assembled using Cufflinks-2.2.1 tool which ended up with 42994 numbers of transcripts. The length of transcripts ranged from 83 to15565, with a N50 value 1216 and median transcript length 773. The transcripts were annotated through number of databases. For the first time transcriptome profiling of cultivar Suvarna has been done, which could help towards identification of single nucleotide polymorphisms (SNPs between Suvarna and other turmeric cultivars for its authentic identification.

  3. Characterisation of CDKL5 Transcript Isoforms in Human and Mouse.

    Directory of Open Access Journals (Sweden)

    Ralph D Hector

    Full Text Available Mutations in the X-linked Cyclin-Dependent Kinase-Like 5 gene (CDKL5 cause early onset infantile spasms and subsequent severe developmental delay in affected children. Deleterious mutations have been reported to occur throughout the CDKL5 coding region. Several studies point to a complex CDKL5 gene structure in terms of exon usage and transcript expression. Improvements in molecular diagnosis and more extensive research into the neurobiology of CDKL5 and pathophysiology of CDKL5 disorders necessitate an updated analysis of the gene. In this study, we have analysed human and mouse CDKL5 transcript patterns both bioinformatically and experimentally. We have characterised the predominant brain isoform of CDKL5, a 9.7 kb transcript comprised of 18 exons with a large 6.6 kb 3'-untranslated region (UTR, which we name hCDKL5_1. In addition we describe new exonic regions and a range of novel splice and UTR isoforms. This has enabled the description of an updated gene model in both species and a standardised nomenclature system for CDKL5 transcripts. Profiling revealed tissue- and brain development stage-specific differences in expression between transcript isoforms. These findings provide an essential backdrop for the diagnosis of CDKL5-related disorders, for investigations into the basic biology of this gene and its protein products, and for the rational design of gene-based and molecular therapies for these disorders.

  4. Gene transcription in polar bears (Ursus maritimus) from disparate populations

    Science.gov (United States)

    Bowen, Lizabeth; Miles, A. Keith; Waters, Shannon C.; Meyerson, Randi; Rode, Karyn D.; Atwood, Todd C.

    2015-01-01

    Polar bears in the Beaufort (SB) and Chukchi (CS) Seas experience different environments due primarily to a longer history of sea ice loss in the Beaufort Sea. Ecological differences have been identified as a possible reason for the generally poorer body condition and reproduction of Beaufort polar bears compared to those from the Chukchi, but the influence of exposure to other stressors remains unknown. We use molecular technology, quantitative PCR, to identify gene transcription differences among polar bears from the Beaufort and Chukchi Seas as well as captive healthy polar bears. We identified significant transcriptional differences among a priori groups (i.e., captive bears, SB 2012, SB 2013, CS 2013) for ten of the 14 genes of interest (i.e., CaM, HSP70, CCR3, TGFβ, COX2, THRα, T-bet, Gata3, CD69, and IL17); transcription levels of DRβ, IL1β, AHR, and Mx1 did not differ among groups. Multivariate analysis also demonstrated separation among the groups of polar bears. Specifically, we detected transcript profiles consistent with immune function impairment in polar bears from the Beaufort Sea, when compared with Chukchi and captive polar bears. Although there is no strong indication of differential exposure to contaminants or pathogens between CS and SB bears, there are clearly differences in important transcriptional responses between populations. Further investigation is warranted to refine interpretation of potential effects of described stress-related conditions for the SB population.

  5. Transcript structure and domain display: a customizable transcript visualization tool.

    Science.gov (United States)

    Watanabe, Kenneth A; Ma, Kaiwang; Homayouni, Arielle; Rushton, Paul J; Shen, Qingxi J

    2016-07-01

    Transcript Structure and Domain Display (TSDD) is a publicly available, web-based program that provides publication quality images of transcript structures and domains. TSDD is capable of producing transcript structures from GFF/GFF3 and BED files. Alternatively, the GFF files of several model organisms have been pre-loaded so that users only needs to enter the locus IDs of the transcripts to be displayed. Visualization of transcripts provides many benefits to researchers, ranging from evolutionary analysis of DNA-binding domains to predictive function modeling. TSDD is freely available for non-commercial users at http://shenlab.sols.unlv.edu/shenlab/software/TSD/transcript_display.html : jeffery.shen@unlv.nevada.edu. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. LocExpress: a web server for efficiently estimating expression of novel transcripts.

    Science.gov (United States)

    Hou, Mei; Tian, Feng; Jiang, Shuai; Kong, Lei; Yang, Dechang; Gao, Ge

    2016-12-22

    The temporal and spatial-specific expression pattern of a transcript in multiple tissues and cell types can indicate key clues about its function. While several gene atlas available online as pre-computed databases for known gene models, it's still challenging to get expression profile for previously uncharacterized (i.e. novel) transcripts efficiently. Here we developed LocExpress, a web server for efficiently estimating expression of novel transcripts across multiple tissues and cell types in human (20 normal tissues/cells types and 14 cell lines) as well as in mouse (24 normal tissues/cell types and nine cell lines). As a wrapper to RNA-Seq quantification algorithm, LocExpress efficiently reduces the time cost by making abundance estimation calls increasingly within the minimum spanning bundle region of input transcripts. For a given novel gene model, such local context-oriented strategy allows LocExpress to estimate its FPKMs in hundreds of samples within minutes on a standard Linux box, making an online web server possible. To the best of our knowledge, LocExpress is the only web server to provide nearly real-time expression estimation for novel transcripts in common tissues and cell types. The server is publicly available at http://loc-express.cbi.pku.edu.cn .

  7. Coevolution within a transcriptional network by compensatory trans and cis mutations

    KAUST Repository

    Kuo, D.

    2010-10-26

    Transcriptional networks have been shown to evolve very rapidly, prompting questions as to how such changes arise and are tolerated. Recent comparisons of transcriptional networks across species have implicated variations in the cis-acting DNA sequences near genes as the main cause of divergence. What is less clear is how these changes interact with trans-acting changes occurring elsewhere in the genetic circuit. Here, we report the discovery of a system of compensatory trans and cis mutations in the yeast AP-1 transcriptional network that allows for conserved transcriptional regulation despite continued genetic change. We pinpoint a single species, the fungal pathogen Candida glabrata, in which a trans mutation has occurred very recently in a single AP-1 family member, distinguishing it from its Saccharomyces ortholog. Comparison of chromatin immunoprecipitation profiles between Candida and Saccharomyces shows that, despite their different DNA-binding domains, the AP-1 orthologs regulate a conserved block of genes. This conservation is enabled by concomitant changes in the cis-regulatory motifs upstream of each gene. Thus, both trans and cis mutations have perturbed the yeast AP-1 regulatory system in such a way as to compensate for one another. This demonstrates an example of “coevolution” between a DNA-binding transcription factor and its cis-regulatory site, reminiscent of the coevolution of protein binding partners.

  8. Rapid Genome-wide Recruitment of RNA Polymerase II Drives Transcription, Splicing, and Translation Events during T Cell Responses

    Directory of Open Access Journals (Sweden)

    Kathrin Davari

    2017-04-01

    Full Text Available Summary: Activation of immune cells results in rapid functional changes, but how such fast changes are accomplished remains enigmatic. By combining time courses of 4sU-seq, RNA-seq, ribosome profiling (RP, and RNA polymerase II (RNA Pol II ChIP-seq during T cell activation, we illustrate genome-wide temporal dynamics for ∼10,000 genes. This approach reveals not only immediate-early and posttranscriptionally regulated genes but also coupled changes in transcription and translation for >90% of genes. Recruitment, rather than release of paused RNA Pol II, primarily mediates transcriptional changes. This coincides with a genome-wide temporary slowdown in cotranscriptional splicing, even for polyadenylated mRNAs that are localized at the chromatin. Subsequent splicing optimization correlates with increasing Ser-2 phosphorylation of the RNA Pol II carboxy-terminal domain (CTD and activation of the positive transcription elongation factor (pTEFb. Thus, rapid de novo recruitment of RNA Pol II dictates the course of events during T cell activation, particularly transcription, splicing, and consequently translation. : Davari et al. visualize global changes in RNA Pol II binding, transcription, splicing, and translation. T cells change their functional program by rapid de novo recruitment of RNA Pol II and coupled changes in transcription and translation. This coincides with fluctuations in RNA Pol II phosphorylation and a temporary reduction in cotranscriptional splicing. Keywords: RNA Pol II, cotranscriptional splicing, T cell activation, ribosome profiling, 4sU, H3K36, Ser-5 RNA Pol II, Ser-2 RNA Pol II, immune response, immediate-early genes

  9. Genome-wide expression profiling shows transcriptional reprogramming in Fusarium graminearum by Fusarium graminearum virus 1-DK21 infection

    Directory of Open Access Journals (Sweden)

    Cho Won

    2012-05-01

    Full Text Available Abstract Background Fusarium graminearum virus 1 strain-DK21 (FgV1-DK21 is a mycovirus that confers hypovirulence to F. graminearum, which is the primary phytopathogenic fungus that causes Fusarium head blight (FHB disease in many cereals. Understanding the interaction between mycoviruses and plant pathogenic fungi is necessary for preventing damage caused by F. graminearum. Therefore, we investigated important cellular regulatory processes in a host containing FgV1-DK21 as compared to an uninfected parent using a transcriptional approach. Results Using a 3′-tiling microarray covering all known F. graminearum genes, we carried out genome-wide expression analyses of F. graminearum at two different time points. At the early point of growth of an infected strain as compared to an uninfected strain, genes associated with protein synthesis, including ribosome assembly, nucleolus, and ribosomal RNA processing, were significantly up-regulated. In addition, genes required for transcription and signal transduction, including fungal-specific transcription factors and cAMP signaling, respectively, were actively up-regulated. In contrast, genes involved in various metabolic pathways, particularly in producing carboxylic acids, aromatic amino acids, nitrogen compounds, and polyamines, showed dramatic down-regulation at the early time point. Moreover, genes associated with transport systems localizing to transmembranes were down-regulated at both time points. Conclusion This is the first report of global change in the prominent cellular pathways in the Fusarium host containing FgV1-DK21. The significant increase in transcripts for transcription and translation machinery in fungal host cells seems to be related to virus replication. In addition, significant down-regulation of genes required for metabolism and transporting systems in a fungal host containing the virus appears to be related to the host defense mechanism and fungal virulence. Taken together

  10. Erythroid-specific transcriptional changes in PBMCs from pulmonary hypertension patients.

    Directory of Open Access Journals (Sweden)

    Chris Cheadle

    Full Text Available Gene expression profiling of peripheral blood mononuclear cells (PBMCs is a powerful tool for the identification of surrogate markers involved in disease processes. The hypothesis tested in this study was that chronic exposure of PBMCs to a hypertensive environment in remodeled pulmonary vessels would be reflected by specific transcriptional changes in these cells.The transcript profiles of PBMCs from 30 idiopathic pulmonary arterial hypertension patients (IPAH, 19 patients with systemic sclerosis without pulmonary hypertension (SSc, 42 scleroderma-associated pulmonary arterial hypertensio patients (SSc-PAH, and 8 patients with SSc complicated by interstitial lung disease and pulmonary hypertension (SSc-PH-ILD were compared to the gene expression profiles of PBMCs from 41 healthy individuals. Multiple gene expression signatures were identified which could distinguish various disease groups from controls. One of these signatures, specific for erythrocyte maturation, is enriched specifically in patients with PH. This association was validated in multiple published datasets. The erythropoiesis signature was strongly correlated with hemodynamic measures of increasing disease severity in IPAH patients. No significant correlation of the same type was noted for SSc-PAH patients, this despite a clear signature enrichment within this group overall. These findings suggest an association of the erythropoiesis signature in PBMCs from patients with PH with a variable presentation among different subtypes of disease.In PH, the expansion of immature red blood cell precursors may constitute a response to the increasingly hypoxic conditions prevalent in this syndrome. A correlation of this erythrocyte signature with more severe hypertension cases may provide an important biomarker of disease progression.

  11. Identification of a transcription factor controlling pH-dependent organic acid response in Aspergillus niger.

    Directory of Open Access Journals (Sweden)

    Lars Poulsen

    Full Text Available Acid formation in Aspergillus niger is known to be subjected to tight regulation, and the acid production profiles are fine-tuned to respond to the ambient pH. Based on transcriptome data, putative trans-acting pH responding transcription factors were listed and through knock out studies, mutants exhibiting an oxalate overproducing phenotype were identified. The yield of oxalate was increased up to 158% compared to the wild type and the corresponding transcription factor was therefore entitled Oxalic Acid repression Factor, OafA. Detailed physiological characterization of one of the ΔoafA mutants, compared to the wild type, showed that both strains produced substantial amounts of gluconic acid, but the mutant strain was more efficient in re-uptake of gluconic acid and converting it to oxalic acid, particularly at high pH (pH 5.0. Transcriptional profiles showed that 241 genes were differentially expressed due to the deletion of oafA and this supported the argument of OafA being a trans-acting transcription factor. Furthermore, expression of two phosphoketolases was down-regulated in the ΔoafA mutant, one of which has not previously been described in fungi. It was argued that the observed oxalate overproducing phenotype was a consequence of the efficient re-uptake of gluconic acid and thereby a higher flux through glycolysis. This results in a lower flux through the pentose phosphate pathway, demonstrated by the down-regulation of the phosphoketolases. Finally, the physiological data, in terms of the specific oxygen consumption, indicated a connection between the oxidative phosphorylation and oxalate production and this was further substantiated through transcription analysis.

  12. The Transcription Profile of Tax-3 Is More Similar to Tax-1 than Tax-2: Insights into HTLV-3 Potential Leukemogenic Properties

    Science.gov (United States)

    Chevalier, Sébastien A.; Durand, Stéphanie; Dasgupta, Arindam; Radonovich, Michael; Cimarelli, Andrea; Brady, John N.

    2012-01-01

    Human T-cell Lymphotropic Viruses type 1 (HTLV-1) is the etiological agent of Adult T-cell Leukemia/Lymphoma. Although associated with lymphocytosis, HTLV-2 infection is not associated with any malignant hematological disease. Similarly, no infection-related symptom has been detected in HTLV-3-infected individuals studied so far. Differences in individual Tax transcriptional activity might account for these distinct physiopathological outcomes. Tax-1 and Tax-3 possess a PDZ binding motif in their sequence. Interestingly, this motif, which is critical for Tax-1 transforming activity, is absent from Tax-2. We used the DNA microarray technology to analyze and compare the global gene expression profiles of different T- and non T-cell types expressing Tax-1, Tax-2 or Tax-3 viral transactivators. In a T-cell line, this analysis allowed us to identify 48 genes whose expression is commonly affected by all Tax proteins and are hence characteristic of the HTLV infection, independently of the virus type. Importantly, we also identified a subset of genes (n = 70) which are specifically up-regulated by Tax-1 and Tax-3, while Tax-1 and Tax-2 shared only 1 gene and Tax-2 and Tax-3 shared 8 genes. These results demonstrate that Tax-3 and Tax-1 are closely related in terms of cellular gene deregulation. Analysis of the molecular interactions existing between those Tax-1/Tax-3 deregulated genes then allowed us to highlight biological networks of genes characteristic of HTLV-1 and HTLV-3 infection. The majority of those up-regulated genes are functionally linked in biological processes characteristic of HTLV-1-infected T-cells expressing Tax such as regulation of transcription and apoptosis, activation of the NF-κB cascade, T-cell mediated immunity and induction of cell proliferation and differentiation. In conclusion, our results demonstrate for the first time that, in T- and non T-cells types, Tax-3 is a functional analogue of Tax-1 in terms of transcriptional activation and

  13. High-resolution genotyping of Listeria monocytogenes by fluorescent amplified fragment length polymorphism analysis compared to pulsed-field gel electrophoresis, random amplified polymorphic DNA analysis, ribotyping, and PCR-restriction fragment length polymorphism analysis

    DEFF Research Database (Denmark)

    Vogel, Birte Fonnesbech; Fussing, V.; Ojeniyi, B.

    2004-01-01

    . Isolates with identical DNA profiles were distributed across the spectrum of origin. It was not possible to associate certain types with specific food sectors or clinical cases, which is indicative of the spread of L. monocytogenes clones across species. Overall, AFLP fingerprinting was suitable...

  14. Transcriptional profiling of the host cell response to feline immunodeficiency virus infection.

    Science.gov (United States)

    Ertl, Reinhard; Klein, Dieter

    2014-03-19

    Feline immunodeficiency virus (FIV) is a widespread pathogen of the domestic cat and an important animal model for human immunodeficiency virus (HIV) research. In contrast to HIV, only limited information is available on the transcriptional host cell response to FIV infections. This study aims to identify FIV-induced gene expression changes in feline T-cells during the early phase of the infection. Illumina RNA-sequencing (RNA-seq) was used identify differentially expressed genes (DEGs) at 24 h after FIV infection. After removal of low-quality reads, the remaining sequencing data were mapped against the cat genome and the numbers of mapping reads were counted for each gene. Regulated genes were identified through the comparison of FIV and mock-infected data sets. After statistical analysis and the removal of genes with insufficient coverage, we detected a total of 69 significantly DEGs (44 up- and 25 down-regulated genes) upon FIV infection. The results obtained by RNA-seq were validated by reverse transcription qPCR analysis for 10 genes. Out of the most distinct DEGs identified in this study, several genes are already known to interact with HIV in humans, indicating comparable effects of both viruses on the host cell gene expression and furthermore, highlighting the importance of FIV as a model system for HIV. In addition, a set of new genes not previously linked to virus infections could be identified. The provided list of virus-induced genes may represent useful information for future studies focusing on the molecular mechanisms of virus-host interactions in FIV pathogenesis.

  15. Transcriptional reprogramming in yeast using dCas9 and combinatorial gRNA strategies

    DEFF Research Database (Denmark)

    Damgaard Jensen, Emil; Ferreira, Raphael; Jakociunas, Tadas

    2017-01-01

    on developing synthetic biology tools for orthogonal control of transcription. Most recently, the nuclease-deficient Cas9 (dCas9) has emerged as a flexible tool for controlling activation and repression of target genes, by the simple RNA-guided positioning of dCas9 in the vicinity of the target gene...... transcription start site. In this study we compared two different systems of dCas9-mediated transcriptional reprogramming, and applied them to genes controlling two biosynthetic pathways for biobased production of isoprenoids and triacylglycerols (TAGs) in baker's yeast Saccharomyces cerevisiae. By testing 101...... production and increases in TAG. Taken together, we show similar performance for a constitutive and an inducible dCas9 approach, and identify multiplex gRNA designs that can significantly perturb isoprenoid production and TAG profiles in yeast without editing the genomic context of the target genes. We also...

  16. The Transcriptional Signature of Active Tuberculosis Reflects Symptom Status in Extra-Pulmonary and Pulmonary Tuberculosis.

    Directory of Open Access Journals (Sweden)

    Simon Blankley

    Full Text Available Mycobacterium tuberculosis infection is a leading cause of infectious death worldwide. Gene-expression microarray studies profiling the blood transcriptional response of tuberculosis (TB patients have been undertaken in order to better understand the host immune response as well as to identify potential biomarkers of disease. To date most of these studies have focused on pulmonary TB patients with gene-expression profiles of extra-pulmonary TB patients yet to be compared to those of patients with pulmonary TB or sarcoidosis.A novel cohort of patients with extra-pulmonary TB and sarcoidosis was recruited and the transcriptional response of these patients compared to those with pulmonary TB using a variety of transcriptomic approaches including testing a previously defined 380 gene meta-signature of active TB.The 380 meta-signature broadly differentiated active TB from healthy controls in this new dataset consisting of pulmonary and extra-pulmonary TB. The top 15 genes from this meta-signature had a lower sensitivity for differentiating extra-pulmonary TB from healthy controls as compared to pulmonary TB. We found the blood transcriptional responses in pulmonary and extra-pulmonary TB to be heterogeneous and to reflect the extent of symptoms of disease.The transcriptional signature in extra-pulmonary TB demonstrated heterogeneity of gene expression reflective of symptom status, while the signature of pulmonary TB was distinct, based on a higher proportion of symptomatic individuals. These findings are of importance for the rational design and implementation of mRNA based TB diagnostics.

  17. A comprehensive collection of experimentally validated primers for Polymerase Chain Reaction quantitation of murine transcript abundance

    Directory of Open Access Journals (Sweden)

    Wang Xiaowei

    2008-12-01

    Full Text Available Abstract Background Quantitative polymerase chain reaction (QPCR is a widely applied analytical method for the accurate determination of transcript abundance. Primers for QPCR have been designed on a genomic scale but non-specific amplification of non-target genes has frequently been a problem. Although several online databases have been created for the storage and retrieval of experimentally validated primers, only a few thousand primer pairs are currently present in existing databases and the primers are not designed for use under a common PCR thermal profile. Results We previously reported the implementation of an algorithm to predict PCR primers for most known human and mouse genes. We now report the use of that resource to identify 17483 pairs of primers that have been experimentally verified to amplify unique sequences corresponding to distinct murine transcripts. The primer pairs have been validated by gel electrophoresis, DNA sequence analysis and thermal denaturation profile. In addition to the validation studies, we have determined the uniformity of amplification using the primers and the technical reproducibility of the QPCR reaction using the popular and inexpensive SYBR Green I detection method. Conclusion We have identified an experimentally validated collection of murine primer pairs for PCR and QPCR which can be used under a common PCR thermal profile, allowing the evaluation of transcript abundance of a large number of genes in parallel. This feature is increasingly attractive for confirming and/or making more precise data trends observed from experiments performed with DNA microarrays.

  18. Genetic diversity and structure of Brazilian ginger germplasm (Zingiber officinale) revealed by AFLP markers.

    Science.gov (United States)

    Blanco, Eleonora Zambrano; Bajay, Miklos Maximiliano; Siqueira, Marcos Vinícius Bohrer Monteiro; Zucchi, Maria Imaculada; Pinheiro, José Baldin

    2016-12-01

    Ginger is a vegetable with medicinal and culinary properties widely cultivated in the Southern and Southeastern Brazil. The knowledge of ginger species' genetic variability is essential to direct correctly future studies of conservation and genetic improvement, but in Brazil, little is known about this species' genetic variability. In this study, we analyzed the genetic diversity and structure of 55 Brazilian accessions and 6 Colombian accessions of ginger, using AFLP (Amplified Fragment Length Polymorphism) molecular markers. The molecular characterization was based on 13 primers combinations, which generated an average of 113.5 polymorphic loci. The genetic diversity estimates of Nei (Hj), Shannon-Weiner index (I) and an effective number of alleles (n e ) were greater in the Colombian accessions in relation to the Brazilian accessions. The analysis of molecular variance showed that most of the genetic variation occurred between the two countries while in the Brazilian populations there is no genetic structure and probably each region harbors 100 % of genetic variation found in the samples. The bayesian model-based clustering and the dendrogram using the dissimilarity's coefficient of Jaccard were congruent with each other and showed that the Brazilian accessions are highly similar between themselves, regardless of the geographic region of origin. We suggested that the exploration of the interspecific variability and the introduction of new varieties of Z.officinale are viable alternatives for generating diversity in breeding programs in Brazil. The introduction of new genetic materials will certainly contribute to a higher genetic basis of such crop.

  19. Using RNA-seq to determine the transcriptional landscape and the hypoxic response of the pathogenic yeast Candida parapsilosis

    LENUS (Irish Health Repository)

    Guida, Alessandro

    2011-12-22

    Abstract Background Candida parapsilosis is one of the most common causes of Candida infection worldwide. However, the genome sequence annotation was made without experimental validation and little is known about the transcriptional landscape. The transcriptional response of C. parapsilosis to hypoxic (low oxygen) conditions, such as those encountered in the host, is also relatively unexplored. Results We used next generation sequencing (RNA-seq) to determine the transcriptional profile of C. parapsilosis growing in several conditions including different media, temperatures and oxygen concentrations. We identified 395 novel protein-coding sequences that had not previously been annotated. We removed > 300 unsupported gene models, and corrected approximately 900. We mapped the 5\\' and 3\\' UTR for thousands of genes. We also identified 422 introns, including two introns in the 3\\' UTR of one gene. This is the first report of 3\\' UTR introns in the Saccharomycotina. Comparing the introns in coding sequences with other species shows that small numbers have been gained and lost throughout evolution. Our analysis also identified a number of novel transcriptional active regions (nTARs). We used both RNA-seq and microarray analysis to determine the transcriptional profile of cells grown in normoxic and hypoxic conditions in rich media, and we showed that there was a high correlation between the approaches. We also generated a knockout of the UPC2 transcriptional regulator, and we found that similar to C. albicans, Upc2 is required for conferring resistance to azole drugs, and for regulation of expression of the ergosterol pathway in hypoxia. Conclusion We provide the first detailed annotation of the C. parapsilosis genome, based on gene predictions and transcriptional analysis. We identified a number of novel ORFs and other transcribed regions, and detected transcripts from approximately 90% of the annotated protein coding genes. We found that the transcription factor

  20. Cell type-specific termination of transcription by transposable element sequences.

    Science.gov (United States)

    Conley, Andrew B; Jordan, I King

    2012-09-30

    Transposable elements (TEs) encode sequences necessary for their own transposition, including signals required for the termination of transcription. TE sequences within the introns of human genes show an antisense orientation bias, which has been proposed to reflect selection against TE sequences in the sense orientation owing to their ability to terminate the transcription of host gene transcripts. While there is evidence in support of this model for some elements, the extent to which TE sequences actually terminate transcription of human gene across the genome remains an open question. Using high-throughput sequencing data, we have characterized over 9,000 distinct TE-derived sequences that provide transcription termination sites for 5,747 human genes across eight different cell types. Rarefaction curve analysis suggests that there may be twice as many TE-derived termination sites (TE-TTS) genome-wide among all human cell types. The local chromatin environment for these TE-TTS is similar to that seen for 3' UTR canonical TTS and distinct from the chromatin environment of other intragenic TE sequences. However, those TE-TTS located within the introns of human genes were found to be far more cell type-specific than the canonical TTS. TE-TTS were much more likely to be found in the sense orientation than other intragenic TE sequences of the same TE family and TE-TTS in the sense orientation terminate transcription more efficiently than those found in the antisense orientation. Alu sequences were found to provide a large number of relatively weak TTS, whereas LTR elements provided a smaller number of much stronger TTS. TE sequences provide numerous termination sites to human genes, and TE-derived TTS are particularly cell type-specific. Thus, TE sequences provide a powerful mechanism for the diversification of transcriptional profiles between cell types and among evolutionary lineages, since most TE-TTS are evolutionarily young. The extent of transcription