Manifolds with integrable affine shape operator
Daniel A. Joaquín
2005-05-01
Full Text Available This work establishes the conditions for the existence of vector fields with the property that theirs covariant derivative, with respect to the affine normal connection, be the affine shape operatorS in hypersurfaces. Some results are obtained from this property and, in particular, for some kind of affine decomposable hypersurfaces we explicitely get the actual vector fields.
Genetic Algorithm-based Affine Parameter Estimation for Shape Recognition
Yuxing Mao
2014-06-01
Full Text Available Shape recognition is a classically difficult problem because of the affine transformation between two shapes. The current study proposes an affine parameter estimation method for shape recognition based on a genetic algorithm (GA. The contributions of this study are focused on the extraction of affine- invariant features, the individual encoding scheme, and the fitness function construction policy for a GA. First, the affine-invariant characteristics of the centroid distance ratios (CDRs of any two opposite contour points to the barycentre are analysed. Using different intervals along the azimuth angle, the different numbers of CDRs of two candidate shapes are computed as representations of the shapes, respectively. Then, the CDRs are selected based on predesigned affine parameters to construct the fitness function. After that, a GA is used to search for the affine parameters with optimal matching between candidate shapes, which serve as actual descriptions of the affine transformation between the shapes. Finally, the CDRs are resampled based on the estimated parameters to evaluate the similarity of the shapes for classification. The experimental results demonstrate the robust performance of the proposed method in shape recognition with translation, scaling, rotation and distortion.
Mao, Yiqi; Robertson, Jaimee M.; Mu, Xiaoming; Mather, Patrick T.; Jerry Qi, H.
2015-12-01
Shape memory polymers (SMPs) can fix a temporary shape and recover their permanent shape upon activation by an external stimulus. Most SMPs require programming at above their transition temperatures, normally well above the room temperature. In addition, most SMPs are programmed into shapes that are affine to the high temperature deformation. Recently, a cold-programmed anisotropic shape memory elastomeric composite was developed and showed interesting low temperature stretching induced shape memory behavior. There, simple, uniaxial stretching at low temperature transformed the composites into curled temporary shapes upon unloading. The exact geometry of the curled state depended on the microstructure of the composite, and the curled shape showed no affinity to the deformed shape. Heating the sample recovered the sample back to its original shape. This new composite consisted of an elastomeric matrix reinforced by aligned amorphous polymer fibers. By utilizing the plastic-like behavior of the amorphous polymer phase at low temperatures, a temporary shape could be fixed upon unloading since the induced plastic-like strain resists the recovery of the elastomer matrix. After heating to a high temperature, the permanent shape was recovered when the amorphous polymer softened and the elastomer matrix contracted. To set a theoretical foundation for capturing the cold-programmed shape memory effects and the dramatic non-affine shape change of this composite, a 3D anisotropic thermoviscoelastic constitutive model is developed in this paper. In this model, the matrix is modeled as a hyperelastic solid, and the amorphous phase of the fibrous mat is considered as a nonlinear thermoviscoplastic solid, whose viscous flow resistance is sensitive to both temperature and stress. The plastic-deformation like behavior demonstrated in the fiber is treated as nonlinear viscoplasticity with extremely high viscosity or long relaxation time at zero-stress state at low temperature. The
Relating the shape of protein binding sites to binding affinity profiles: is there an association?
Bitter István
2010-10-01
Full Text Available Abstract Background Various pattern-based methods exist that use in vitro or in silico affinity profiles for classification and functional examination of proteins. Nevertheless, the connection between the protein affinity profiles and the structural characteristics of the binding sites is still unclear. Our aim was to investigate the association between virtual drug screening results (calculated binding free energy values and the geometry of protein binding sites. Molecular Affinity Fingerprints (MAFs were determined for 154 proteins based on their molecular docking energy results for 1,255 FDA-approved drugs. Protein binding site geometries were characterized by 420 PocketPicker descriptors. The basic underlying component structure of MAFs and binding site geometries, respectively, were examined by principal component analysis; association between principal components extracted from these two sets of variables was then investigated by canonical correlation and redundancy analyses. Results PCA analysis of the MAF variables provided 30 factors which explained 71.4% of the total variance of the energy values while 13 factors were obtained from the PocketPicker descriptors which cumulatively explained 94.1% of the total variance. Canonical correlation analysis resulted in 3 statistically significant canonical factor pairs with correlation values of 0.87, 0.84 and 0.77, respectively. Redundancy analysis indicated that PocketPicker descriptor factors explain 6.9% of the variance of the MAF factor set while MAF factors explain 15.9% of the total variance of PocketPicker descriptor factors. Based on the salient structures of the factor pairs, we identified a clear-cut association between the shape and bulkiness of the drug molecules and the protein binding site descriptors. Conclusions This is the first study to investigate complex multivariate associations between affinity profiles and the geometric properties of protein binding sites. We found that
Exploiting affine invariant regions and leaf edge shapes for weed detection
Kazmi, Wajahat; Garcia Ruiz, Francisco Jose; Nielsen, Jon;
2015-01-01
for younger plants under a shade (overall more than 80%). The weed detection accuracy was assessed using the Bag-of-Visual-Word scheme with KNN and SVM classifiers. The assessment showed that with an SVM classifier, a fusion of surface color and edge shapes boosted the overall classification accuracy...
Overall, Nickola C; Hammond, Matthew D; McNulty, James K; Finkel, Eli J
2016-08-01
When does power in intimate relationships shape important interpersonal behaviors, such as psychological aggression? Five studies tested whether possessing low relationship power was associated with aggressive responses, but (a) only within power-relevant relationship interactions when situational power was low, and (b) only by men because masculinity (but not femininity) involves the possession and demonstration of power. In Studies 1 and 2, men lower in relationship power exhibited greater aggressive communication during couples' observed conflict discussions, but only when they experienced low situational power because they were unable to influence their partner. In Study 3, men lower in relationship power reported greater daily aggressive responses toward their partner, but only on days when they experienced low situational power because they were either (a) unable to influence their partner or (b) dependent on their partner for support. In Study 4, men who possessed lower relationship power exhibited greater aggressive responses during couples' support-relevant discussions, but only when they had low situational power because they needed high levels of support. Study 5 provided evidence for the theoretical mechanism underlying men's aggressive responses to low relationship power. Men who possessed lower relationship power felt less manly on days they faced low situational power because their partner was unwilling to change to resolve relationship problems, which in turn predicted greater aggressive behavior toward their partner. These results demonstrate that fully understanding when and why power is associated with interpersonal behavior requires differentiating between relationship and situational power. (PsycINFO Database Record PMID:27442766
Resonant pulse-shaping power supply for radar transmitters
Bell Rodriguez, Miguel Victoria Ramo; Roberg, Michael; Pack, Riley; Garcia Fernandez, Pablo; Alarcón Cot, Eduardo José; Popoviç, Zoya; Maksimovic, Dragan
2012-01-01
The final radiofrequency power amplifier (PA) of a radar transmitter module is a large factor in system efficiency. Typical radar transmitter signals are frequency-modulated with constant-amplitude pulse envelopes in order to optimize efficiency, resulting in spectral broadening and power radiated outside of the radar frequency band. This paper demonstrates a PA with a dynamic power supply which enables high efficiency while reducing the spectral emissions. The resonant pulse-shaping power su...
Hancock, Stephen P; Stella, Stefano; Cascio, Duilio; Johnson, Reid C
2016-01-01
The abundant Fis nucleoid protein selectively binds poorly related DNA sequences with high affinities to regulate diverse DNA reactions. Fis binds DNA primarily through DNA backbone contacts and selects target sites by reading conformational properties of DNA sequences, most prominently intrinsic minor groove widths. High-affinity binding requires Fis-stabilized DNA conformational changes that vary depending on DNA sequence. In order to better understand the molecular basis for high affinity site recognition, we analyzed the effects of DNA sequence within and flanking the core Fis binding site on binding affinity and DNA structure. X-ray crystal structures of Fis-DNA complexes containing variable sequences in the noncontacted center of the binding site or variations within the major groove interfaces show that the DNA can adapt to the Fis dimer surface asymmetrically. We show that the presence and position of pyrimidine-purine base steps within the major groove interfaces affect both local DNA bending and minor groove compression to modulate affinities and lifetimes of Fis-DNA complexes. Sequences flanking the core binding site also modulate complex affinities, lifetimes, and the degree of local and global Fis-induced DNA bending. In particular, a G immediately upstream of the 15 bp core sequence inhibits binding and bending, and A-tracts within the flanking base pairs increase both complex lifetimes and global DNA curvatures. Taken together, our observations support a revised DNA motif specifying high-affinity Fis binding and highlight the range of conformations that Fis-bound DNA can adopt. The affinities and DNA conformations of individual Fis-DNA complexes are likely to be tailored to their context-specific biological functions. PMID:26959646
Shape Biased Low Power Spin Dependent Tunneling Magnetic Field Sensors
Tondra, Mark; Qian, Zhenghong; Wang, Dexin; Nordman, Cathy; Anderson, John
2001-10-01
Spin Dependent Tunneling (SDT) devices are leading candidates for inclusion in a number of Unattended Ground Sensor applications. Continued progress at NVE has pushed their performance to 1OOs of pT I rt. Hz 1 Hz. However, these sensors were designed to use an applied field from an on-chip coil to create an appropriate magnetic sensing configuration. The power required to generate this field (^100mW) is significantly greater than the power budget (^lmW) for a magnetic sensor in an Unattended Ground Sensor (UGS) application. Consequently, a new approach to creating an ideal sensing environment is required. One approach being used at NVE is "shape biasing." This means that the physical layout of the SDT sensing elements is such that the magnetization of the sensing film is correct even when no biasing field is applied. Sensors have been fabricated using this technique and show reasonable promise for UGS applications. Some performance trade-offs exist. The power is easily tinder 1 MW, but the sensitivity is typically lower by a factor of 10. This talk will discuss some of the design details of these sensors as well as their expected ultimate performance.
Study of high power laser mirror shape maintenance technology
Li, Gang; Wang, Feng; Liu, Shunfu; Deng, Songwen; Sun, Tianxiang; Liu, Yushi; Zhang, Zengbao; Sun, Long; Jin, Yuqi
2015-02-01
With the laser power and operation time increasing, the surface distortion of the laser cavity mirrors has been a critical problem to be resolved. In order to maintain the mirror shape under intense laser irradiation, in this paper, a new type of micro channel silicon water cooled mirror is given. The water cooled mirror includes three layers, the first layer is mirror seat made of Invar materials with water inlet and outlet, the second layer is water manifold unit made of silicon with millimeter channels; the third layer is reflection plate with micro-channels. These three layers are bonded together by vacuum soldering. Then the thickness of the reflection plate is reduced to 0.5mm by grinding, and polished by traditional pitch polishing method. In order to reduce the coating stress, conventional all dielectric coating is replaced by a metal dielectric film stack. At last, a 100mm×100mm water cooled mirror is fabricated with surface figure 0.22λ@632.8 nm. The mirror surface distortion is 0.12λ、0.24λ、0.33 λ respectively corresponding to 7.3w/cm2 、11.9 w/cm2 、17.6 w/cm2 heat load.
Affine and degenerate affine BMW algebras: Actions on tensor space
Daugherty, Zajj; Virk, Rahbar
2012-01-01
The affine and degenerate affine Birman-Murakami-Wenzl (BMW) algebras arise naturally in the context of Schur-Weyl duality for orthogonal and symplectic quantum groups and Lie algebras, respectively. Cyclotomic BMW algebras, affine and cyclotomic Hecke algebras, and their degenerate versions are quotients. In this paper we explain how the affine and degenerate affine BMW algebras are tantalizers (tensor power centralizer algebras) by defining actions of the affine braid group and the degenerate affine braid algebra on tensor space and showing that, in important cases, these actions induce actions of the affine and degenerate affine BMW algebras. We then exploit the connection to quantum groups and Lie algebras to determine universal parameters for the affine and degenerate affine BMW algebras. Finally, we show that the universal parameters are central elements--the higher Casimir elements for orthogonal and symplectic enveloping algebras and quantum groups.
Wenhua Han
2014-09-01
Full Text Available Magnetic flux leakage (MFL inspection is one of the most important and sensitive nondestructive testing approaches. For online MFL inspection of a long-range railway track or oil pipeline, a fast and effective defect profile estimating method based on a multi-power affine projection algorithm (MAPA is proposed, where the depth of a sampling point is related with not only the MFL signals before it, but also the ones after it, and all of the sampling points related to one point appear as serials or multi-power. Defect profile estimation has two steps: regulating a weight vector in an MAPA filter and estimating a defect profile with the MAPA filter. Both simulation and experimental data are used to test the performance of the proposed method. The results demonstrate that the proposed method exhibits high speed while maintaining the estimated profiles clearly close to the desired ones in a noisy environment, thereby meeting the demand of accurate online inspection.
Deregulation and reforms in the electricity markets over the recent years have led to increasing volatility of electricity prices since prices in the market are now determined by the fundamental rules of supply and demand. The existence of price risk in the market leads to the increasing necessity of hedging using derivatives and the subsequent development of models to price and hedge electricity derivatives. However the non-storable nature of the market implies that ''traditional'' approaches for the pricing and hedging of commodity derivatives based on the theory of storage are not applicable to electricity markets. In this paper we propose a two-factor jump diffusion model with seasonal components in order to capture the systematic pattern in the forward curve and the volatility term structure. Our model is then calibrated for the spot and the financial contracts in the Nord Pool Exchange using Kalman filter techniques. The proposed model has several advantages. First it enables to select the risk neutral measure that best fits the term structure hence capturing the most significant distributional characteristics of both spot and forwards. Second, it explains the seasonal risk premium, and finally it provides a fit for the Volatility Term Structure. The resulting model is very promising, providing a very useful Financial Engineering tool to market participants for Risk Hedging and Derivatives Pricing in the highly volatile Power Markets. (Author)
A low frequency piezoelectric power harvester using a spiral-shaped bimorph
HU Yuantai; HU Hongping; YANG Jiashi
2006-01-01
We propose a spiral-shaped piezoelectric bimorph power harvester operating with coupled flexural and extensional vibration modes for applications to low frequency energy sources.A theoretical analysis is performed and the computational results show that the spiral structure has relatively low operating frequency compared to beam power harvesters of the same size.It is found that to optimize the performance of a piezoelectric spiral-shaped harvester careful design is needed.
Design of measurement equipment for high power laser beam shapes
Hansen, K. S.; Olsen, F. O.; Kristiansen, Morten;
2013-01-01
To analyse advanced high power beam patterns, a method, which is capable of analysing the intensity distribution in 3D is needed. Further a measuring of scattered light in the same system is preferred. This requires a high signal to noise ratio. Such a system can be realised by a CCD-chip impleme...
Lin, Dejiao; Alam, Shaif-ul; Chen, Kangkang; Malinowski, Andrew; Norman, Steve; Richardson, David
2009-01-01
We report a pulsed, fully-fiberised, Yb-doped MOPA with a maximum average output power of 100W. Adaptive pulse shaping was incorporated to reduce the impact of nonlinearities, delivering 2mJ flat-topped pulses with 20kW peak power.
U-shape magnetostrictive vibration based power generator for universal use
Ueno, T.
2016-04-01
Vibrational power generator extracts electrical energy from ambient vibration. Author invented novel configuration using magnetostrictive material. The device is based on parallel beams of iron-gallium alloy and magnetic material, and features high efficiency, high robustness, and low electrical impedance. In this paper, author proposes U-shape generator for universal use. It consists of the parallel beams and fixed and free end beams forming U-shape frame flexibly modified for variety of mechanical input. Miniature U-shape prototype using Fe-Ga rod 6 by 0.5 by 13 mm3 exhibited average power of 3.7 mW under vibration of 166 Hz and 2.5 G. L-shape type was demonstrated to generate electromotive force by two directional vibrations. In switch type, maximum energy of 0.7 mJ was retrieved by one pushing force. The performances are sufficient to drive wireless module for heath monitoring and remote control.
Scale and shape issues in focused cluster power for count data
Porter Dwayne E
2005-03-01
Full Text Available Abstract Background Interest in the development of statistical methods for disease cluster detection has experienced rapid growth in recent years. Evaluations of statistical power provide important information for the selection of an appropriate statistical method in environmentally-related disease cluster investigations. Published power evaluations have not yet addressed the use of models for focused cluster detection and have not fully investigated the issues of disease cluster scale and shape. As meteorological and other factors can impact the dispersion of environmental toxicants, it follows that environmental exposures and associated diseases can be dispersed in a variety of spatial patterns. This study simulates disease clusters in a variety of shapes and scales around a centrally located single pollution source. We evaluate the power of a range of focused cluster tests and generalized linear models to detect these various cluster shapes and scales for count data. Results In general, the power of hypothesis tests and models to detect focused clusters improved when the test or model included parameters specific to the shape of cluster being examined (i.e. inclusion of a function for direction improved power of models to detect clustering with an angular effect. However, power to detect clusters where the risk peaked and then declined was limited. Conclusion Findings from this investigation show sizeable changes in power according to the scale and shape of the cluster and the test or model applied. These findings demonstrate the importance of selecting a test or model with functions appropriate to detect the spatial pattern of the disease cluster.
Determination of \\alpha_s from Event Shapes and Power Corrections
Wicke, Daniel
1997-01-01
The size of non-perturbative corrections to event shape observables is predicted to fall like a power of the inverse centre of mass energy. These power corrections are investigated for different observables from e+e-annihilation and compared to the theoretical predictions. Using the latest DELPHI high energy data advantages of determining \\alpha_s from these predictions are discussed and compared to conventional methods.
Beam Shaping of High-power Laser Diode Arrays by Continuous Surface-relief Elements
Ehbets, Peter; Herzig, Hans-Peter; Dändliker, René; Regnault, P.; Kjelberg, I.
2007-01-01
A breadboard for beam shaping of high-power laser diode arrays (LDAs) has been realized. The coherent beams are added with the aid of a continuous surface-relief fan-in element. It results in a nearly symmetric single lobed beam of collimated light with maximum conversion efficiency. The theoretical efficiency is determined to be 96•7%. Experimentally, one third of the total power is now in the central peak.
Lee, Tiane L.; Fiske, Susan T.; Glick, Peter; Chen, Zhixia
2010-01-01
Gender-based structural power and heterosexual dependency produce ambivalent gender ideologies, with hostility and benevolence separately shaping close-relationship ideals. The relative importance of romanticized benevolent versus more overtly power-based hostile sexism, however, may be culturally dependent. Testing this, northeast US (N=311) and central Chinese (N=290) undergraduates rated prescriptions and proscriptions (ideals) for partners and completed Ambivalent Sexism and Ambivalence t...
Plate-shaped high power nuclear fuel element containing low enrichment uranium and its preparation
The present invention provides a plate-shaped high power nuclear fuel element containing low enrichment uranium (5 to 20 percent by weight uranium235 in the uranium component) as the fissionable material, the fuel element essentially comprising a plate of UAl4 provided with a sheath (clad) of aluminum or an aluminum alloy and impurities inherent to the manufacturing process. (DG)
Beam shaping in high-power laser systems with using refractive beam shapers
Laskin, Alexander; Laskin, Vadim
2012-06-01
Beam Shaping of the spatial (transverse) profile of laser beams is highly desirable by building optical systems of high-power lasers as well in various applications with these lasers. Pumping of the crystals of Ti:Sapphire lasers by the laser radiation with uniform (flattop) intensity profile improves performance of these ultrashort pulse high-power lasers in terms of achievable efficiency, peak-power and stability, output beam profile. Specifications of the solid-state lasers built according to MOPA configuration can be also improved when radiation of the master oscillator is homogenized and then is amplified by the power amplifier. Features of building these high power lasers require that a beam shaping solution should be capable to work with single mode and multimode beams, provide flattop and super-Gauss intensity distributions, the consistency and divergence of a beam after the intensity re-distribution should be conserved and low absorption provided. These specific conditions are perfectly fulfilled by the refractive field mapping beam shapers due to their unique features: almost lossless intensity profile transformation, low output divergence, high transmittance and flatness of output beam profile, extended depth of field, adaptability to real intensity profiles of TEM00 and multimode laser sources. Combining of the refractive field mapping beam shapers with other optical components, like beam-expanders, relay imaging lenses, anamorphic optics makes it possible to generate the laser spots of necessary shape, size and intensity distribution. There are plenty of applications of high-power lasers where beam shaping bring benefits: irradiating photocathode of Free Electron Lasers (FEL), material ablation, micromachining, annealing in display making techniques, cladding, heat treating and others. This paper will describe some design basics of refractive beam shapers of the field mapping type, with emphasis on the features important for building and applications
Gaussian Affine Feature Detector
Xu, Xiaopeng; Zhang, Xiaochun
2011-01-01
A new method is proposed to get image features' geometric information. Using Gaussian as an input signal, a theoretical optimal solution to calculate feature's affine shape is proposed. Based on analytic result of a feature model, the method is different from conventional iterative approaches. From the model, feature's parameters such as position, orientation, background luminance, contrast, area and aspect ratio can be extracted. Tested with synthesized and benchmark data, the method achieve...
Temporal Shaping of High Peak Power Pulse Trains from a Burst-Mode Laser System
Jörg Körner
2015-12-01
Full Text Available It has been shown in the past that pulsed laser systems operating in the so-called “burst mode” are a beneficial approach to generate high peak power laser pulses at high repetition rates suitable for various applications. So far, most high-energy burst-mode laser systems put great effort into generating a homogeneous energy distribution across the burst duration, e.g., by shaping the pump pulse. In this work, we present a new shaping technique, which is able to produce arbitrary energy distributions within the burst by pre-shaping the seed pulse burst with a Pockels cell. Furthermore, this technique allows for the precompensation of any static modulations across the burst, which may be introduced during the subsequent amplification process. Therefore, a pulse burst with a uniform energy distribution can also be generated. The method is tested with an ultra-short pulse burst mode laser amplifier system producing bursts of a 1 ms duration with a pulse repetition rate of 1 MHz and a maximum output power of 800 W during the burst. Furthermore, a method to predict the influence of the amplifier on a non-uniformly shaped burst is presented and successfully tested to produce a pre-defined pulse shape after amplification.
Changes in power curve shapes as an indicator of fatigue during dynamic contractions.
Mallor, Fermin; Leon, Teresa; Gaston, Martin; Izquierdo, Mikel
2010-05-28
The purpose of this study was to analyze exercise-induced leg fatigue during a dynamic fatiguing task by examining the shapes of power vs. time curves through the combined use of several statistical methods: B-spline smoothing, functional principal components and (supervised and unsupervised) classification. In addition, granulometric size distributions were also computed to allow for comparison of curves coming from different subjects. Twelve physically active men participated in one acute heavy-resistance exercise protocol which consisted of five sets of 10 repetition maximum leg press with 120 s of rest between sets. To obtain a smooth and accurate representation of the data, a basis of 180 B-splines was used. Functional principal component (FPC) analysis was used to find the dominant modes of variation in the curves. A multivariate cluster over the FPC scores and a k-nearest neighbor classification led to three interpretable groups corresponding to different levels of fatigue. Fatigue-induced changes in the shapes of the power curves were evident, in which curves progressively flatten and develop a second power peak. In a practical setting FPC analysis greatly reduces dimensionality and the use of granulometries allows for comparison of the curve shapes without distorting the time scale. In contrast to the present methodology, which considers each curve as a datum, classical statistical approaches using summary parameters of time series may lead to limited information about the impact of dynamic fatiguing protocols on kinematic and kinetic time-course changes in curve shapes. PMID:20170919
Temporal Shaping of High Peak Power Pulse Trains from a Burst-Mode Laser System
Jörg Körner; Jürgen Reiter; Joachim Hein; Kaluza, Malte C.
2015-01-01
It has been shown in the past that pulsed laser systems operating in the so-called “burst mode” are a beneficial approach to generate high peak power laser pulses at high repetition rates suitable for various applications. So far, most high-energy burst-mode laser systems put great effort into generating a homogeneous energy distribution across the burst duration, e.g., by shaping the pump pulse. In this work, we present a new shaping technique, which is able to produce arbitrary energy distr...
Handle Shape Affects the Grip Force Distribution and the Muscle Loadings During Power Grip Tasks.
Rossi, Jérémy; Goislard De Monsabert, Benjamin; Berton, Eric; Vigouroux, Laurent
2015-12-01
The objectives of this study were to investigate the effect of handle shape on the grip force distribution in the hand and on the muscle forces during maximal power grip tasks. Eleven subjects maximally grasped 3 handles with different external shapes (circular, elliptic, and double-frustum). A handle dynamometer, equipped with both a force sensor and a pressure map, was used to record the forces exerted at the hand/handle interface. The finger and wrist joint postures were also computed from synchronized kinematic measurement. These processed data were then used as input of a biomechanical hand model to estimate muscle forces. The results showed that handle shape influences the maximal grip force, the grip force distribution, and the finger joint postures. Particularly, we observed that the elliptical shape resulted in a 6.6% lower maximal grip force compared with the circular and double-frustum handle. Concomitantly, the estimated muscle forces also varied significantly according to the handle shape, with up to 48% differences for the flexor digitorum superficialis muscle for example. Interestingly, different muscle coordination strategies were observed depending on the handle shape, therefore suggesting a potential influence of these geometrical characteristics on pathological risks such as tendonitis. PMID:26214057
Xue, Zheng-wei; Guo, Ya-ding; Chen, Zhong-zheng; Li, Shuai; Xu, Yi-ting; Xu, Jian; Wang, Bao-shan; Gong, Ke-ling; Gao, Hong-wei; Bo, Yong; Peng, Qin-jun; Cui, Da-fu; Xu, Zu-yan
2015-12-01
We present a compact refractive shaping system for actively compensating low order aberrations of high power slab lasers. The shaping system includes three spherical lenses and two cylindrical lenses. Both theoretical and experimental investigations were performed to evaluate the compensation capability of the refractive shaping system. For a typical input beam with large low order aberrations of peak-to-valley (PV)=66.10λ and root-mean-square (RMS)=16.05λ, adjusting the distance between lenses, the wavefront aberrations are reduced to PV=0.48λ, RMS=0.10λ for the theoretical simulation and PV=0.50λ, RMS=0.11λ for the experimental result, respectively. It indicates that the main low order aberrations of defocus and 0° astigmatism can be significantly compensated by actively adjusting the distance between lenses and the experimental result agree well with the theoretical simulation.
Guglielmi, Michel; Johannesen, Hl
, Essex, Hertfordshire, Norfolk and Suffolk. Research found that there was a lack of identity or sense of belonging and nothing anchoring people to the region as a whole. Common affinity is somehow forced to the people of East England and thereby we came to the conclusion that a single landmark or a...... a sense of belonging to people sharing deterritorialized synchronic experiences. But at the same time, the immersion experience is highly low tech and desperately analog, mainly based on fabulation, cartoons, and mushrooms growing in local forests. It ultimately appeals to the experienced sense of...
Advanced control of the Tokamak plasma shape and position by the quick response power supply
The research on large tokamaks to get high parameter plasmas has been greatly extended. However, a number of engineering problems such as plasma vertical instability and unexpected pulse termination are still serious. For this reason the control of poloidal field power supplies employed to maintain the plasma in stable equilibrium with complex X points around plasma have been more and more important. Hybrid matrix control of shape and position for changing plasmas and development of the quick response power amplifier are reported. (author). 2 refs.; 6 figs.; 1 tab
Yuan, Mingquan; Alocilja, Evangelyn C; Chakrabartty, Shantanu
2016-08-01
This paper presents a wireless, self-powered, affinity-based biosensor based on the integration of paper-based microfluidics with our previously reported method for self-assembling radio-frequency (RF) antennas. At the core of the proposed approach is a silver-enhancement technique that grows portions of a RF antenna in regions where target antigens hybridize with target specific affinity probes. The hybridization regions are defined by a network of nitrocellulose based microfluidic channels which implement a self-powered approach to sample the reagent and control its flow and mixing. The integration substrate for the biosensor has been constructed using polyethylene and the patterning of the antenna on the substrate has been achieved using a low-cost ink-jet printing technique. The substrate has been integrated with passive radio-frequency identification (RFID) tags to demonstrate that the resulting sensor-tag can be used for continuous monitoring in a food supply-chain where direct measurement of analytes is typically considered to be impractical. We validate the proof-of-concept operation of the proposed sensor-tag using IgG as a model analyte and using a 915 MHz Ultra-high-frequency (UHF) RFID tagging technology. PMID:27214914
Device for measurement of power and shape of radio frequency pulses in nuclear magnetic resonance
A design of an instrument to measure the power and shape of radio frequency (RF) pulses operating in a broad frequency range is described. The device is capable of measuring the pulse power up to 500 W of both CW and extremely short (∼1 μs) RF pulses of arbitrary period. The pulse envelope can be observed on a logarithmic scale on a corresponding instrument output using an inexpensive storage oscilloscope. The instrument consists of a coaxial measurement head, the RF processing circuits and an AD conversion and display unit. The whole device is based on widely available integrated circuits; thus, good reproducibility and adaptability of the design is ensured. Since the construction is intended to be used in particular (but not solely) in nuclear magnetic resonance spectroscopy, we found it useful to provide a demonstration of two typical usage scenarios. Other application fields may comprise magnetic resonance imaging, radar and laser technology, power amplifier testing, etc. (technical design note)
Gaussian Affine Feature Detector
Xu, Xiaopeng
2011-01-01
A new method is proposed to get image features' geometric information. Using Gaussian as an input signal, a theoretical optimal solution to calculate feature's affine shape is proposed. Based on analytic result of a feature model, the method is different from conventional iterative approaches. From the model, feature's parameters such as position, orientation, background luminance, contrast, area and aspect ratio can be extracted. Tested with synthesized and benchmark data, the method achieves or outperforms existing approaches in term of accuracy, speed and stability. The method can detect small, long or thin objects precisely, and works well under general conditions, such as for low contrast, blurred or noisy images.
A low-power high-flow shape memory alloy wire gas microvalve
Gradin, Henrik; Clausi, Donato; Braun, Stefan; Stemme, Göran; Peirs, Jan; van der Wijngaart, Wouter; Reynaerts, Dominiek
2012-01-01
In this paper the use of shape memory alloy (SMA) wire actuators for high gas flow control is investigated. A theoretical model for effective gas flow control is presented and gate microvalve prototypes are fabricated. The SMA wire actuator demonstrates the robust flow control of more than 1600 sccm at a pressure drop of 200 kPa. The valve can be successfully switched at over 10 Hz and at an actuation power of 90 mW. Compared to the current state-of-the-art high-flow microvalves, the proposed...
Improving the power efficiency of SOA-based UWB over fiber systems via pulse shape randomization
Taki, H.; Azou, S.; Hamie, A.; Al Housseini, A.; Alaeddine, A.; Sharaiha, A.
2016-09-01
A simple pulse shape randomization scheme is considered in this paper for improving the performance of ultra wide band (UWB) communication systems using On Off Keying (OOK) or pulse position modulation (PPM) formats. The advantage of the proposed scheme, which can be either employed for impulse radio (IR) or for carrier-based systems, is first theoretically studied based on closed-form derivations of power spectral densities. Then, we investigate an application to an IR-UWB over optical fiber system, by utilizing the 4th and 5th orders of Gaussian derivatives. Our approach proves to be effective for 1 Gbps-PPM and 2 Gbps-OOK transmissions, with an advantage in terms of power efficiency for short distances. We also examine the performance for a system employing an in-line Semiconductor Optical Amplifier (SOA) with the view to achieve a reach extension, while limiting the cost and system complexity.
Design of shape memory alloy actuators for direct power by an automotive battery
Highlights: ► We model Ni–Ti SMA actuators directly powered by a standard automotive battery. ► Feasible permutations for direct power are identified and confirmed experimentally. ► 0.5 mm diameter SMA of 225 mm length or larger is feasible for direct power. ► The feasibility of 0.25 mm SMA is greater, although the actuation force is lower. ► Prototype actuators are developed for long-stroke and short-stroke applications. -- Abstract: Nickel–Titanium (Ni–Ti) Shape Memory Alloys (SMAs) are increasingly utilized as mechanical actuators due to high power-to-mass ratio, high fatigue life and low cost. The implementation of SMA actuators in an automotive environment is of particular interest due to the potential for lower end-user functional efforts, together with reduced component mass and cost within a limited packaging space. In applications of this kind, the actuators are powered by a standard automotive (six cell lead-acid) battery. Although resistors and electronic devices can be used to avoid overload of either the SMA or battery system, the feasibility of supplying power to the actuators directly from the battery becomes a key objective for reducing system cost and complexity. In this study, the electrical resistivity of a linear Ni–Ti SMA actuator was theoretically calculated and experimentally verified. Based on this developed knowledge, the resistance of various actuator permutations was calculated, and the feasibility of operating the actuators with a standard automotive battery was assessed. To confirm the feasibility of powering SMA actuators directly from the automotive battery, two SMA actuator concepts were developed and experimentally validated.
OPTIMIZING THE SHAPE OF ROTOR BLADES FOR MAXIMUM POWER EXTRACTION IN MARINE CURRENT TURBINES
J.A. Esfahani
2012-12-01
Full Text Available In this paper the shape of rotor blades in Marine Current Turbines (MCTs are investigated. The evaluation of hydrodynamic loads on blades is performed based on the Blade Element Momentum (BEM theory. The shape of blades is optimized according to the main parameters in the configuration and operation of these devices. The optimization is conducted based on the ability of the blades to harness the maximum energy during operating. The main parameters investigated are the tip speed ratio and angle of attack. Furthermore, the influence of these parameters on the maximum energy extraction from fluid flow over a hydrofoil is evaluated. It is shown that the effect of the angle of attack on power extraction is greater than that of the tip speed ratio, while both are found to be significant. Additionally, the proper angle of attack is the angle at which the lift to drag ratio is at its maximum value. However, if a proper angle of attack is chosen, the variations in power coefficient would not be effectively changed with small variations in the tip speed ratio.
A NEW 3D DESIGN METHOD FOR FOOTWEAR SOLES USING DELCAM PowerSHAPE-e SYSTEM
IONESCU Cozmin
2016-05-01
Full Text Available Design methods of soles and soles injection moulds must be accurate, timely and at the same time, accessible to a wide category of soles and injection moulds designers and manufacturers. For designing soles and injection moulds for soles, various dedicated CAD/CAM systems have been developed, such as: Delcam Shoe Solution (3D, Delcam PowerSHAPE-e (2D and 3D, Padsy II (2D and Padsy III (3D, Shoemaster System (2D and 3D, Lectra System (2D and 3D, Parmel System (2D and ATOS II System (3D. These systems are equipped with colour displays, plotters, digitizers, terminals and other equipment dedicated for computer aided design activities. Designing 3D soles models using computer systems enables the prevention of ambiguities inherited from 2D drawings, thus reducing errors and remanufacturing. Depending on the design complexity of soles, the technical means available for copying shoe soles and the technologies at the disposal of the soles manufacturers, soles and injection moulds designers adopt various design methods. Not all CAD/CAM systems are accessible for all users, because often their purchasing costs are high. Design method developed and presented in this paper, uses Delcam PowerSHAPE software program, which has the advantage that it can be accessed free of charge from the manufacturer's website. At the same time, this software program provides the user with all the necessary tools and instruments needed to design the most complex injection moulds and footwear sole.
Thermal-Hydraulic Performance of Cross-Shaped Spiral Fuel in High-Power-Density BWRs
Power up-rating of existing nuclear reactors promises to be an area of great study for years to come. One of the major approaches to efficiently increasing power density is by way of advanced fuel design, and cross-shaped spiral-fuel has shown such potential in previous studies. Our work aims to model the thermal-hydraulic consequences of filling a BWR core with these spiral-shaped pins. The helically-wound pins have a cross-section resembling a 4-petaled flower. They fill an assembly in a tight bundle, their dimensions chosen carefully such that the petals of neighboring pins contact each other at their outer-most extent in a self-supporting lattice, absent of grid spacers. Potential advantages of this design raise much optimism from a thermal-hydraulic perspective. These spiral rods possess about 40% larger surface area than traditional rods, resulting in increased cooling and a proportional reduction in average surface heat flux. The thin petal-like extensions help by lowering thermal resistance between the hot central region of the pin and the bulk coolant flow, decreasing the maximum fuel temperature by 200 deg. C according to Finite Element (COSMOS) models. However, COSMOS models also predict a potential problem area at the 'elbow' region of two adjoining petals, where heat flux peaking is twice that along the extensions. Preliminary VIPRE models, which account only for the surface area increase, predict a 22% increase in critical power. It is also anticipated that the spiral twist would provide the flowing coolant with an additional radial velocity component, and likely promote turbulence and mixing within an assembly. These factors are expected to provide further margin for increased power density, and are currently being incorporated into the VIPRE model. The reduction in pressure drop inherent in any core without grid-spacers is also expected to be significant in aiding core stability, though this has not yet been quantified. Spiral-fuel seems to be a
Li, Sensen; Wang, Yulei; Lu, Zhiwei; Ding, Lei; Cui, Can; Chen, Yi; Pengyuan, Du; Ba, Dexin; Zheng, Zhenxing; Yuan, Hang; Shi, Lei; Bai, Zhenxu; Liu, Zhaohong; Zhu, Chengyu; Dong, Yongkang; Zhou, Luoxian
2016-05-01
We propose and demonstrate a spatial beam shaping method to achieve high-quality near-field for a high-power frequency tripling laser system by using a liquid crystal spatial light modulator (SLM). Considering the nonlinear relationship between the output 3ω intensity and the input 1ω intensity of the frequency conversion system and the transmittance nonuniformity of the whole laser system, we introduce an efficient spatial beam shaping method that improves the output near-field beam quality of frequency tripling laser dramatically. Results show that the near-field peak-to-mean value of the frequency tripling laser improves from 1.83:1 to 1.42:1 after spatial beam shaping within four shots. This method provides effective guidance for spatial beam shaping of high-power frequency tripling laser systems.
Sensitivity studies for 3-D rod ejection analyses on axial power shape
Park, Min-Ho; Park, Jin-Woo; Park, Guen-Tae; Ryu, Seok-Hee; Um, Kil-Sup; Lee, Jae-Il [KEPCO NF, Daejeon (Korea, Republic of)
2015-10-15
The current safety analysis methodology using the point kinetics model combined with numerous conservative assumptions result in unrealistic prediction of the transient behavior wasting huge margin for safety analyses while the safety regulation criteria for the reactivity initiated accident are going strict. To deal with this, KNF is developing a 3-D rod ejection analysis methodology using the multi-dimensional code coupling system CHASER. The CHASER system couples three-dimensional core neutron kinetics code ASTRA, sub-channel analysis code THALES, and fuel performance analysis code FROST using message passing interface (MPI). A sensitivity study for 3-D rod ejection analysis on axial power shape (APS) is carried out to survey the tendency of safety parameters by power distributions and to build up a realistic safety analysis methodology while maintaining conservatism. The currently developing 3-D rod ejection analysis methodology using the multi-dimensional core transient analysis code system, CHASER was shown to reasonably reflect the conservative assumptions by tuning up kinetic parameters.
J. Navarro; Sancho, C.; Sancho, P.
2009-01-01
A functor of sets $\\mathbb X$ over the category of $K$-commutative algebras is said to be an affine functor if its functor of functions, $\\mathbb A_{\\mathbb X}$, is reflexive and $\\mathbb X=\\Spec \\mathbb A_{\\mathbb X}$. We prove that affine functors are equal to a direct limit of affine schemes and that affine schemes, formal schemes, the completion of affine schemes along a closed subscheme, etc., are affine functors. Endowing an affine functor $\\mathbb X$ with a functor of monoids structure...
Chung, Moo K.; Kim, Seung-Goo; Schaefer, Stacey M.; van Reekum, Carien M.; Peschke-Schmitz, Lara; Sutterer, Matthew J.; Davidson, Richard J.
2014-03-01
The sparse regression framework has been widely used in medical image processing and analysis. However, it has been rarely used in anatomical studies. We present a sparse shape modeling framework using the Laplace- Beltrami (LB) eigenfunctions of the underlying shape and show its improvement of statistical power. Tradition- ally, the LB-eigenfunctions are used as a basis for intrinsically representing surface shapes as a form of Fourier descriptors. To reduce high frequency noise, only the first few terms are used in the expansion and higher frequency terms are simply thrown away. However, some lower frequency terms may not necessarily contribute significantly in reconstructing the surfaces. Motivated by this idea, we present a LB-based method to filter out only the significant eigenfunctions by imposing a sparse penalty. For dense anatomical data such as deformation fields on a surface mesh, the sparse regression behaves like a smoothing process, which will reduce the error of incorrectly detecting false negatives. Hence the statistical power improves. The sparse shape model is then applied in investigating the influence of age on amygdala and hippocampus shapes in the normal population. The advantage of the LB sparse framework is demonstrated by showing the increased statistical power.
Chung, Moo K; Kim, Seung-Goo; Schaefer, Stacey M; van Reekum, Carien M; Peschke-Schmitz, Lara; Sutterer, Matthew J; Davidson, Richard J
2014-03-21
The sparse regression framework has been widely used in medical image processing and analysis. However, it has been rarely used in anatomical studies. We present a sparse shape modeling framework using the Laplace-Beltrami (LB) eigenfunctions of the underlying shape and show its improvement of statistical power. Traditionally, the LB-eigenfunctions are used as a basis for intrinsically representing surface shapes as a form of Fourier descriptors. To reduce high frequency noise, only the first few terms are used in the expansion and higher frequency terms are simply thrown away. However, some lower frequency terms may not necessarily contribute significantly in reconstructing the surfaces. Motivated by this idea, we present a LB-based method to filter out only the significant eigenfunctions by imposing a sparse penalty. For dense anatomical data such as deformation fields on a surface mesh, the sparse regression behaves like a smoothing process, which will reduce the error of incorrectly detecting false negatives. Hence the statistical power improves. The sparse shape model is then applied in investigating the influence of age on amygdala and hippocampus shapes in the normal population. The advantage of the LB sparse framework is demonstrated by showing the increased statistical power. PMID:25302007
Lv, Ge; Zhu, Hanqi; Elery, Toby; Li, Luwei; Gregg, Robert D.
2016-01-01
Traditional control methodologies of rehabilitation orthoses/exoskeletons aim at replicating normal kinematics and thus fall into the category of kinematic control. This control paradigm depends on pre-defined reference trajectories, which can be difficult to adjust between different locomotor tasks and human subjects. An alternative control category, kinetic control, enforces kinetic goals (e.g., torques or energy) instead of kinematic trajectories, which could provide a flexible learning environment for the user while freeing up therapists to make corrections. We propose that the theory of underactuated potential energy shaping, which falls into the category of kinetic control, could be used to generate virtual body-weight support for stroke gait rehabilitation. After deriving the nonlinear control law and simulating it on a human-like biped model, we implemented this controller on a powered ankle-foot orthosis that was designed specifically for testing torque control strategies. Experimental results with an able-bodied human subject demonstrate the feasibility of the control approach for both positive and negative virtual body-weight augmentation.
Protein Complex Purification by Affinity Capture.
LaCava, John; Fernandez-Martinez, Javier; Hakhverdyan, Zhanna; Rout, Michael P
2016-01-01
Affinity capture has become a powerful technique for consistently purifying endogenous protein complexes, facilitating biochemical and biophysical assays on otherwise inaccessible biological assemblies, and enabling broader interactomic exploration. For this procedure, cells are broken and their contents separated and extracted into a solvent, permitting access to target macromolecular complexes thus released in solution. The complexes are specifically enriched from the extract onto a solid medium coupled with an affinity reagent-usually an antibody-that recognizes the target either directly or through an appended affinity tag, allowing subsequent characterization of the complex. Here, we discuss approaches and considerations for purifying endogenous yeast protein complexes by affinity capture. PMID:27371601
LIU Hai; LIU JinSong; L(U) JianTao; WANG KeJia
2009-01-01
Polarization-dependent difference of the power spectra from a set of two-dimensional (2D) passive random media is investigated by simultaneously solving Maxwell's equations for both transverse magnetic (TM) and transverse electric (TE) fields. The random media have the same random constitution but different shapes. Results show that both two polarized states are morphology dependent,and the variety of the shapes has more influence on the selection of TM polarized modes than that of TE polarized modes. Such polarization-dependent difference of morphology property presents a new modeselecting technique for random lasers.
Meyer, Mathieu; Schuett, Carsten; Werner, Elisabeth M.
2013-01-01
An affine invariant point on the class of convex bodies in R^n, endowed with the Hausdorff metric, is a continuous map p which is invariant under one-to-one affine transformations A on R^n, that is, p(A(K))=A(p(K)). We define here the new notion of dual affine point q of an affine invariant point p by the formula q(K^{p(K)})=p(K) for every convex body K, where K^{p(K)} denotes the polar of K with respect to p(K). We investigate which affine invariant points do have a dual point, whether this ...
This work is devoted to selecting the shaping lines (SL) and pulse transformers parameters in the pulse modulators circuits for supplying power klystrons. It is shown, that single SL contribute lesser distortions by the assigned parameters of the commutators, contained in the pulse modulators. It is noted also, that the pulse transformer time constant unambiguously determines the number of cells in the SL, whereby the pulse characteristics are the best ones
Høholdt, Tom; Beelen, Peter; Ghorpade, Sudhir Ramakant
2010-01-01
We consider a new class of linear codes, called affine Grassmann codes. These can be viewed as a variant of generalized Reed-Muller codes and are closely related to Grassmann codes.We determine the length, dimension, and the minimum distance of any affine Grassmann code. Moreover, we show that...... affine Grassmann codes have a large automorphism group and determine the number of minimum weight codewords....
Study on welding power source used in intelligent control system for weld pool shape in pulsed GTAW
无
2001-01-01
This paper analyses the performance request of arc welding power source used in intelligent control of weld pool shape in pulsed GTAW, and develops a sample power source. The main circuit of the power source takes the structure of single ended inverter with two switches, and takes IGBTs as power switches. The working frequency of the inverter is set at 20(¨)kHz. The control circuit takes PWM circuit as center, and uses single chip computer to complete the manage functions such as the control of working sequence, setting and changing of the welding parameters, sensing of the welding states and communication with outside computer etc. The dynamic reacting time of the whole power is 1(¨)ms, the range of the output current is 5～250(¨)A, the precision of the output current reaches to 1 A. The power strikes arc by contacting workpiece under 5A, and have convenient interface with system computer. All above shows this power source is one with high performance.
Yi, Fang; Wang, Xiaofeng; Niu, Simiao; Li, Shengming; Yin, Yajiang; Dai, Keren; Zhang, Guangjie; Lin, Long; Wen, Zhen; Guo, Hengyu; Wang, Jie; Yeh, Min-Hsin; Zi, Yunlong; Liao, Qingliang; You, Zheng; Zhang, Yue; Wang, Zhong Lin
2016-06-01
The rapid growth of deformable and stretchable electronics calls for a deformable and stretchable power source. We report a scalable approach for energy harvesters and self-powered sensors that can be highly deformable and stretchable. With conductive liquid contained in a polymer cover, a shape-adaptive triboelectric nanogenerator (saTENG) unit can effectively harvest energy in various working modes. The saTENG can maintain its performance under a strain of as large as 300%. The saTENG is so flexible that it can be conformed to any three-dimensional and curvilinear surface. We demonstrate applications of the saTENG as a wearable power source and self-powered sensor to monitor biomechanical motion. A bracelet-like saTENG worn on the wrist can light up more than 80 light-emitting diodes. Owing to the highly scalable manufacturing process, the saTENG can be easily applied for large-area energy harvesting. In addition, the saTENG can be extended to extract energy from mechanical motion using flowing water as the electrode. This approach provides a new prospect for deformable and stretchable power sources, as well as self-powered sensors, and has potential applications in various areas such as robotics, biomechanics, physiology, kinesiology, and entertainment. PMID:27386560
Shehla, Romana; Khan, Athar Ali
2016-01-01
Models with bathtub-shaped hazard function have been widely accepted in the field of reliability and medicine and are particularly useful in reliability related decision making and cost analysis. In this paper, the exponential power model capable of assuming increasing as well as bathtub-shape, is studied. This article makes a Bayesian study of the same model and simultaneously shows how posterior simulations based on Markov chain Monte Carlo algorithms can be straightforward and routine in R. The study is carried out for complete as well as censored data, under the assumption of weakly-informative priors for the parameters. In addition to this, inference interest focuses on the posterior distribution of non-linear functions of the parameters. Also, the model has been extended to include continuous explanatory variables and R-codes are well illustrated. Two real data sets are considered for illustrative purposes. PMID:27462524
Heat flux and acoustic power in a convection-driven T-shaped thermoacoustic system
Highlights: • A convection-driven T-shaped standing-wave thermoacoustic system is designed and tested. • A 2D model is developed to simulate the heat-to-sound energy conversion process in such system. • Three critical parameters are examined in trigging thermoacoustic oscillations. • Hopf supercritical bifurcation is observed. • Good agreement is obtained between the numerical and experimental measurement. - Abstract: The present work considers a convection-driven T-shaped standing-wave thermoacoustic system. To gain insights on the conversion process of heat to sound and to study the nonlinear coupling between unsteady heat release and acoustic disturbances, thermodynamic analysis, numerical and experimental investigations are conducted. Three parameters are examined: (1) the inlet flow velocity, (2) heater temperature and (3) heat source location. Their effects on triggering limit cycle oscillations are first investigated in 2D numerical model. As each of the parameters is varied, the head-driven acoustic signature is found to change. The main nonlinearity is identified in the heat fluxes. To characterize the transient (growing) behavior of the pressure fluctuation, the thermoacoustic mode growth rate is defined and calculated. It is found that the growth rate decreases first and then ‘saturates’. Similar behavior is observed by examining the slope of Rayleigh index. Furthermore, the overall efficiency of converting the input thermal energy into acoustical energy is defined and calculated. It is found that the energy conversion efficiency can be increased by increasing the inlet flow velocity. To validate our numerical findings, a cylindrical T-shaped duct made of quartz-glass with a metal gauze attaching on top of a Bunsen burner is designed and tested. Supercritical bifurcation is observed. And the experimental measurements show a good agreement with the numerical results in terms of mode frequency, mode shape, sound pressure level and Hopf
Two universal physical principles shape the power-law statistics of real-world networks
Lorimer, Tom; Stoop, Ruedi
2015-01-01
The study of complex networks has pursued an understanding of macroscopic behavior by focusing on power-laws in microscopic observables. Here, we uncover two universal fundamental physical principles that are at the basis of complex networks generation. These principles together predict the generic emergence of deviations from ideal power laws, which were previously discussed away by reference to the thermodynamic limit. Our approach proposes a paradigm shift in the physics of complex networks, toward the use of power-law deviations to infer meso-scale structure from macroscopic observations.
Two universal physical principles shape the power-law statistics of real-world networks
Lorimer, Tom; Gomez, Florian; Stoop, Ruedi
2015-07-01
The study of complex networks has pursued an understanding of macroscopic behaviour by focusing on power-laws in microscopic observables. Here, we uncover two universal fundamental physical principles that are at the basis of complex network generation. These principles together predict the generic emergence of deviations from ideal power laws, which were previously discussed away by reference to the thermodynamic limit. Our approach proposes a paradigm shift in the physics of complex networks, toward the use of power-law deviations to infer meso-scale structure from macroscopic observations.
Does Culture Shape the Balance of Power in Multinational Companies ? The Case of the EADS Group
Barmeyer, Christoph; Mayrhofer, Ulrike
2010-01-01
This article examines the impact of culture on the evolution of power relationships in multinational companies. The empirical study is based on a longitudinal analysis of the EADS Group (European Aeronautic Defence and Space Company), which resulted from the merger of French company Aérospatiale-Matra, German company DASA and Spanish company CASA. The findings show that the balance of power depends not only on contextual factors and individual strategies, but also on cultural factors. The ana...
Radmard, S.; Haghparast, A.; Arabgari, S.; Mehrabani, M. T.
2013-06-01
An innovative architecture for edge-pumped high power microchip laser is introduced. This geometry consists of a Yb:YAG thin disk gain media surrounded by an irregular octagonal undoped YAG cap as pumping light waveguide. The main advantages of the new geometry are high uniform absorption distribution, high absorption efficiency and simple construction to fabricate. Using the Monte Carlo ray tracing method, the pumping process and absorption profile in active medium are simulated. In addition, considering the impact of Yb+3 doping concentration and temperature on thermal conductivity, and based on the finite-difference method the conduction equation was solved and the temperature distribution in the gain media calculated. Based on these simulations, influence of active medium parameters such as core diameter, doping concentration and octagon side sizes ratio on absorption profile and efficiency as well as maximum temperature in gain medium is investigated. High absorption efficiency (over 94%) with perfect top-hat absorption profile has been predicted to be obtained from the designed microchip with optimized parameters. This microchip has a core diameter of 4 or 5 mm, 9 at% Yb3+ doping concentration and 300 μm thickness. An estimation based on laser rate equations shows that with 960 W pumping power, more than 600 W output power (optical efficiency of 66%) can be extracted from the designed system.
Affine and Projective Geometry
Bennett, M K
1995-01-01
An important new perspective on AFFINE AND PROJECTIVE GEOMETRY. This innovative book treats math majors and math education students to a fresh look at affine and projective geometry from algebraic, synthetic, and lattice theoretic points of view. Affine and Projective Geometry comes complete with ninety illustrations, and numerous examples and exercises, covering material for two semesters of upper-level undergraduate mathematics. The first part of the book deals with the correlation between synthetic geometry and linear algebra. In the second part, geometry is used to introduce lattice theory
Gueltekin, Kemal [Izmir Institute of Technology, Department of Physics, Izmir (Turkey)
2016-03-15
In this study, we give a thorough analysis of a general affine gravity with torsion. After a brief exposition of the affine gravities considered by Eddington and Schroedinger, we construct and analyze different affine gravities based on the determinants of the Ricci tensor, the torsion tensor, the Riemann tensor, and their combinations. In each case we reduce equations of motion to their simplest forms and give a detailed analysis of their solutions. Our analyses lead to the construction of the affine connection in terms of the curvature and torsion tensors. Our solutions of the dynamical equations show that the curvature tensors at different points are correlated via non-local, exponential rescaling factors determined by the torsion tensor. (orig.)
Narrow limiter SOL power channels and their impact of ITER first wall shaping
Kocan, M.; Pitts, R.A.; Arnoux, G.; Balboa, I.; Dejarnac, Renaud; Furno, I.; Goldston, R.J.; Horáček, Jan; Komm, Michael; Labit, B.; LaBombard, B.; Lasnier, C.J.; Mitteau, R.; Nespoli, F.; Pace, D.; Pánek, Radomír; Stangeby, P.C.; Terry, J.L.; Theiler, C.; Tsui, C.; Vondráček, Petr; Wolfe, S.
2014-01-01
Roč. 59, č. 5 (2014), JI1:00001. ISSN 0003-0503. [Annual Meeting of the APS Division of Plasma Physics /56./. 27.10.2014-31.10.2014, New Orleans, Louisiana] Institutional support: RVO:61389021 Keywords : ITER * power flux * limiter * narrow channel Subject RIV: BL - Plasma and Gas Discharge Physics
Restructuring the Power Arena in Denmark: Shaping Markets, Technologies and Environmental Priorities
Jørgensen, Ulrik; Strunge, Lars
2002-01-01
The ongoing liberalisation of the Danish power sector challenges the traditional engineering regime of regulation and the Danish support policies for renewable energy sources. The chapter highlights the changes using an actor-network approach and the framework of development and policy arenas....
Knowledge, Power and Meanings Shaping Quality Assurance in Higher Education: A Systemic Critique
Houston, Don; Paewai, Shelley
2013-01-01
Internationally, quality assurance schemes persist despite long-standing dissatisfaction and critique of their impact and outcomes. Adopting a critical systems perspective, the article explores the relationships between the knowledge, power and meanings that stakeholder groups bring to the design and implementation of quality assurance systems.…
Fiber-Shaped Perovskite Solar Cells with High Power Conversion Efficiency.
Qiu, Longbin; He, Sisi; Yang, Jiahua; Deng, Jue; Peng, Huisheng
2016-05-01
A perovskite solar cell fiber is created with a high power conversion efficiency of 7.1% through a controllable deposition method. A combination of aligned TiO2 nanotubes, a uniform perovskite layer, and transparent aligned carbon nanotube sheet contributes to the high photovoltaic performance. It is flexible and stable, and can be woven into smart clothes for wearable applications. PMID:27002590
Laser assisted chemically shaped unstable resonator, for high power coherent laser diodes
Laser assisted chemical etching (LACE) is used to etch a continuous graded channel, set inside a wide stripe graded-index and separate confinement heterostructure (GRIN-SCH) for laser diodes, grown by metal organic chemical vapor deposition (MOCVD). After a procedure of growing-etching-regrowing, a two-part waveguide is formed inside such modified structure, that is characterized by a negative change in the lateral effective refractive index (ERI). This effects the cavity to work as an unstable resonator. Procedures on the photo etching process are described, including the GaAs photochemistry and the optical system, with special emphasis on the fabrication of the approximately parabolic channels, as this represents a novel step. We call the cavity fabricated by this method, the shaped unstable resonator (SHUR). (Author)
Shaping and reproduction patterns of power elites in former Yugoslavia I: Vertical mobility
Miladinović Slobodan M.
2003-01-01
Full Text Available This work consists of two parts. In the first one are presented some general characteristics and are analyzed vertical social mobility of power elite's in Serbia and Croatia. Special attention was paid to intergenerational and intergenerational mobility fluxes. The researches said there was changes in mobility patterns i.e. in structure of power elites at last three decades ago. Participation of manual professions was going down for the benefits of nonmanual ones. There was used log-linear analyze its hierarchical method because finding statistics importance of connection between presented factors of social mobility. Thanks to this method we can see details of complex relations of interdependence of this factors.
Catalytically powered dynamic assembly of rod-shaped nanomotors and passive tracer particles
Wang, Wei; Duan, Wentao; Sen, Ayusman; Mallouk, Thomas E.
2013-01-01
Microscale catalyst particles suspended in fluids can convert the energy of chemical reactions that occur on their surfaces to movement. Collections of particles undergoing powered motion exhibit behavior that mimics living microparticles such as bacteria: swarming, predator–prey interactions, and chemotaxis. These behaviors originate from pairwise interactions of particles that so far have not been measured or understood. In this article, short-range attractive interactions of catalytic nano...
Study on the beam shaping of high-power laser diode bars
Wei Huang(黄伟); Xiaodong Zeng(曾晓东); Yuying An(安毓英)
2003-01-01
Based on the Collins form, the intensity distribution of the resulting beam is derived when Gaussian beamsof a high-power laser diode bar pass through a paraxial optical system. Then flattop beam profiles areobtained by a concave cylindrical lens, and the propagation properties are discussed in detail, such as thepeak-intensity axis inclined at an angle γi. In addition, an expression to calculate beam angular width ispresented.
O'Connor, M.V.; Shepherd, D. P.; Hanna, D.C.
2004-01-01
The synchronously pumped optical parametric oscillator (SPOPO) has undergone major developments in the past decade. Quasi-phase-matched nonlinear materials, such as periodically-poled lithium niobate (PPLN) and the availability of higher pump power have led to SPOPO demonstrations with additional functionality including extended tuning ranges throughout the infrared with greater spectral control and frequency tuning agility. In addition, two demonstrations of extended wavelength performance ...
LARISSA BǍTRÂNCEA
2014-06-01
Full Text Available Tax literature acknowledges that trust in authorities and power of authorities, as grassroots dimensions of the “slippery slope framework”, influence compliance behavior. The present material assesses the framework’s main dimensions in the case of the Mediterranean tax climate (i.e., Cyprus, Greece, Italy, Portugal and Spain by a manifold of economic, financial and psychological variables. The proposed rationale, including World Bank governance indicators (government effectiveness, rule of law, regulatory quality, control for corruption as proxies for the framework’s dimensions, analyses of chain base indexes with respect to economic performance (calculations involving GDP per capita, quantitative evaluation of tax compliance burden and cost of taxation (calculations involving Paying Taxes reports, aims at raising awareness among policy makers and citizens about relevance of trust and power for compliance behavior within the Mediterranean tax climate. Multidisciplinary estimations of trust and power may constitute a benchmark for decision makers in appraising the effects generated by the measures countervailing crises and in designing strategies to hinder future undesirable economic bouts.
Robinett, Rush D., III; Wilson, David Gerald
2010-11-01
The swing equations for renewable generators connected to the grid are developed and a wind turbine is used as an example. The swing equations for the renewable generators are formulated as a natural Hamiltonian system with externally applied non-conservative forces. A two-step process referred to as Hamiltonian Surface Shaping and Power Flow Control (HSSPFC) is used to analyze and design feedback controllers for the renewable generators system. This formulation extends previous results on the analytical verification of the Potential Energy Boundary Surface (PEBS) method to nonlinear control analysis and design and justifies the decomposition of the system into conservative and non-conservative systems to enable a two-step, serial analysis and design procedure. The first step is to analyze the system as a conservative natural Hamiltonian system with no externally applied non-conservative forces. The Hamiltonian surface of the swing equations is related to the Equal-Area Criterion and the PEBS method to formulate the nonlinear transient stability problem. This formulation demonstrates the effectiveness of proportional feedback control to expand the stability region. The second step is to analyze the system as natural Hamiltonian system with externally applied non-conservative forces. The time derivative of the Hamiltonian produces the work/rate (power flow) equation which is used to ensure balanced power flows from the renewable generators to the loads. The Second Law of Thermodynamics is applied to the power flow equations to determine the stability boundaries (limit cycles) of the renewable generators system and enable design of feedback controllers that meet stability requirements while maximizing the power generation and flow to the load. Necessary and sufficient conditions for stability of renewable generators systems are determined based on the concepts of Hamiltonian systems, power flow, exergy (the maximum work that can be extracted from an energy flow) rate
Tafuri, Felice Francesco; Sira, Daniel; Jensen, Ole Kiel; Larsen, Torben
a dynamic minimization of the current consumption while imposing simultaneously a constant gain condition. In such a way we maximize the efficiency of the ET transmitter maintaining a considerable linearity. Bias and supply voltages are modulated applying specific waveforms obtained as a function of...... vector magnitude (EVM) of 1.2% and an adjacent channel power ratio (ACPR) of -39.4/-43.5 dBc. The presented transmitter architecture allowed an improvement of 12% PAE compared to a classical ET transmitter where the measured PA was biased in class-AB, maintaining the linearity indicators....
Use of a hybrid Monte Carlo technique for power shape calculations
There are many modelling situations in nuclear power reactors where a full three-dimensional solution of the transport equation would be of benefit. For example, in UK gas reactors there are significant three-dimensional effects associated with axial gaps in the fuel element, which cause significant perturbations to the flux and hence power. Other reactors also exhibit 3D effects, for example grids, partially inserted control rods and axial reflectors. To date these effects have been evaluated by approximate synthesis methods. There is a further requirement to accurately predict the effect of perturbations to parameters such as temperature and material density, an area where conventional Monte Carlo methods can be inefficient. Recent work has led to the development of an accurate and efficient 3D method, based on a hybrid Monte Carlo approach, to model the three-dimensional situations and provide accurate estimates of perturbed states. This paper outlines the approaches used for this method and demonstrates its application to practical situations. (orig.)
Debt and market power challenges return: Responses to set-back taking shape
The reaction of the energy sector to the recent re-entry of the Ontario government into the commodity side of the electricity business with its announcement of a residential power price freeze and accompanying adjustments to the energy regime in Ontario is discussed. John Brace, the President of the Independent Power Producers' Society of Ontario (IPPSO) predicts that the action has created an urgent need for power generators and other players to work closely together to sort out the implications and put new mechanisms in place to allow the system to function properly and to create pressures to bring things back into balance. While popular with residential consumers, the government action sparked significant criticism across the energy industry and has upset traditional allegiances among groups which have supported the establishment of a competitive market, such as the Toronto Board of Trade, Stakeholders Alliance for Competition, (SAC), and the Association of Major Power Consumers in Ontario. The Toronto Board of Trade reacted by urging the province to (1) abandon the proposal to introduce a price freeze; (2) respect the independent role and mandate of the Ontario Energy Board in regulating the market and determining electricity prices; (3) provide for active and ongoing involvement by the private sector in developing new supply; and (4) include a strong educational and communications component in its conservation program. The SAC questioned the long-term benefits of the government's move and envisaged serious danger to Ontario's ability to develop new generation capacity. It recommended government action on encouraging more electricity supply in Ontario; continued decontrol of Ontario Power Generation (OPG, the former Ontario Hydro) assets; keeping intact the basic open market; and ensuring the continued financial well-being of local distribution companies. The Ontario Energy Association (OEA) also expressed its concern over the serious implications to Ontario
Wilson, David G.; Robinett, Rush D. III [Sandia National Laboratories, Albuquerque, NM (United States). Energy, Resources and Systems Analysis Center
2010-07-01
The swing equations for renewable generators connected to the grid are developed and a simple wind turbine with UPFC is used as an example. The swing equations for renewable generator are formulated as a natural Hamiltonian system with externally applied non-conservative forces. A two-step process referred to as Hamiltonian Surface Shaping and Power Flow Control (HSSPFC) is used to analyze and design feedback controllers for the renewable generators system. This formulation extends previous results on the analytical verification of the Potential Energy Boundary Surface (PEBS) method to nonlinear control analysis and design and justifies the decomposition of the system into conservative and nonconservative systems to enable a two-step, serial analysis and design procedure. This paper presents the analysis and numerical simulation results for a nonlinear control design example that includes the One-Machine Infinite Bus (OMIB) system with a Unified Power Flow Control (UPEC) and applied to a simplified wind turbine generator. The needed power and energy storage/charging responses are also determined. (orig.)
Hongmei Zhang
2014-01-01
Full Text Available BIPV is now widely used in office and residential buildings, but its seismic performance still remained vague especially when the photovoltaic (PV modules are installed on high-rise building facades. A new form of reinforced concrete shear wall integrated with photovoltaic module is proposed in this paper, aiming to apply PV module to the facades of high-rise buildings. In this new form, the PV module is integrated with the reinforced concrete wall by U-shaped steel connectors through embedded steel plates. The lateral cyclic loading test is executed to investigate the seismic behavior and the electric and thermal performance with different drift angles. The seismic behavior, including failure pattern, lateral force-top displacement relationship, and deformation capacity, was investigated. The power generation and temperature variation on the back of the PV module and both sides of the shear wall were also tested. Two main results are demonstrated through the experiment: (1 the U-shaped steel connectors provide enough deformation capacity for the compatibility of the PV module to the shear wall during the whole cyclic test; (2 the electricity generation capacity is effective and stable during this seismic simulation test.
Skjødt, Mette Louise
Yeast surface display is an effective tool for antibody affinity maturation because yeast can be used as an all-in-one workhorse to assemble, display and screen diversified antibody libraries. By employing the natural ability of yeast Saccharomyces cerevisiae to efficiently recombine multiple DNA...
Bonora, Stefano; Villoresi, Paolo
2006-04-01
In this work we report on a novel optical design for beam shaping and focalization of high-power diode laser bars. The goals of our study are: the increase the optical throughput of the beam shaping device with respect to standard solutions and either to enhance the irradiance on a target or to inject the laser beam into a smaller fibre than with respect to beam shaping system based on plane surfaces. The high power diode laser bars pose serious difficulties in their optical handling due to their strong difference between the two transverse axes, which induce a strong astigmatic and asymmetric output radiation. As is well known, the beam quality is very different in the two axes called slow axis and fast axis, and in particular the slow axis is composed by the superposition of several multimodal sources. The beam quality in this axis is very low (its etendue may exceed 2000 mm mrad). On the other hand, the fast axis has a very high beam quality, near diffraction limited, although with very high divergence (30°-50°). The common solution for the application of the laser radiation is a fast axis aspheric micro lens in front of the emitters, in order to achieve its collimation. Typical values of the fast axis collimated beam are 0.7mm and less than 6mrad. However, the so obtained collimated beam is poorly focusable with a standard lens, and a few methods were proposed to overcome the problem. The more relevant solutions include: the stepped mirror technique, the plane parallel mirrors pair, micro prisms array and confocal micro lens array. Each of these techniques is based on the equalization of the beam parameter product by the subdivision of the beam in the slow axis and its reshaping. For all these techniques the efficiency spans from 50% to 70%. The best focalization results allow the coupling in a fibre of 400μm diameter, with NA-0.22. The aim of this work is the design and the realization of a new device, that is considered as target the following aspects: 1
Affine and degenerate affine BMW algebras: The center
Daugherty, Zajj; Virk, Rahbar
2011-01-01
The degenerate affine and affine BMW algebras arise naturally in the context of Schur-Weyl duality for orthogonal and symplectic Lie algebras and quantum groups, respectively. Cyclotomic BMW algebras, affine Hecke algebras, cyclotomic Hecke algebras, and their degenerate versions are quotients. In this paper the theory is unified by treating the orthogonal and symplectic cases simultaneously; we make an exact parallel between the degenerate affine and affine cases via a new algebra which takes the role of the affine braid group for the degenerate setting. A main result of this paper is an identification of the centers of the affine and degenerate affine BMW algebras in terms of rings of symmetric functions which satisfy a "cancellation property" or "wheel condition" (in the degenerate case, a reformulation of a result of Nazarov). Miraculously, these same rings also arise in Schubert calculus, as the cohomology and K-theory of isotropic Grassmanians and symplectic loop Grassmanians. We also establish new inte...
Hierarchical Affinity Propagation
Givoni, Inmar; Frey, Brendan J
2012-01-01
Affinity propagation is an exemplar-based clustering algorithm that finds a set of data-points that best exemplify the data, and associates each datapoint with one exemplar. We extend affinity propagation in a principled way to solve the hierarchical clustering problem, which arises in a variety of domains including biology, sensor networks and decision making in operational research. We derive an inference algorithm that operates by propagating information up and down the hierarchy, and is efficient despite the high-order potentials required for the graphical model formulation. We demonstrate that our method outperforms greedy techniques that cluster one layer at a time. We show that on an artificial dataset designed to mimic the HIV-strain mutation dynamics, our method outperforms related methods. For real HIV sequences, where the ground truth is not available, we show our method achieves better results, in terms of the underlying objective function, and show the results correspond meaningfully to geographi...
Control and estimation of piecewise affine systems
Xu, Jun
2014-01-01
As a powerful tool to study nonlinear systems and hybrid systems, piecewise affine (PWA) systems have been widely applied to mechanical systems. Control and Estimation of Piecewise Affine Systems presents several research findings relating to the control and estimation of PWA systems in one unified view. Chapters in this title discuss stability results of PWA systems, using piecewise quadratic Lyapunov functions and piecewise homogeneous polynomial Lyapunov functions. Explicit necessary and sufficient conditions for the controllability and reachability of a class of PWA systems are
Affinity driven social networks
Ruyú, B.; Kuperman, M. N.
2007-04-01
In this work we present a model for evolving networks, where the driven force is related to the social affinity between individuals of a population. In the model, a set of individuals initially arranged on a regular ordered network and thus linked with their closest neighbors are allowed to rearrange their connections according to a dynamics closely related to that of the stable marriage problem. We show that the behavior of some topological properties of the resulting networks follows a non trivial pattern.
Affine General Equilibrium Models
Bjørn Eraker
2008-01-01
No-arbitrage models are extremely flexible modelling tools but often lack economic motivation. This paper describes an equilibrium consumption-based CAPM framework based on Epstein-Zin preferences, which produces analytic pricing formulas for stocks and bonds under the assumption that macro growth rates follow affine processes. This allows the construction of equilibrium pricing formulas while maintaining the same flexibility of state dynamics as in no-arbitrage models. In demonstrating the a...
Arias-Martorell, Julia; Potau, Josep Maria; Bello-Hellegouarch, Gaëlle; Pérez-Pérez, Alejandro
2015-01-01
The postcranial evidence for the Australopithecus genus indicates that australopiths were able bipeds; however, the morphology of the forelimbs and particularly that of the shoulder girdle suggests that they were partially adapted to an arboreal lifestyle. The nature of such arboreal adaptations is still unclear, as are the kind of arboreal behaviors in which australopiths might have engaged. In this study we analyzed the shape of the shoulder joint (proximal humerus and glenoid cavity of the scapula) of three australopith specimens: A.L. 288-1 (A. afarensis), Sts 7 (A. africanus) and Omo 119-73-2718 (Australopithecus sp.) with three-dimensional geometric morphometrics. The morphology of the specimens was compared with that of a wide array of living anthropoid taxa and some additional fossil hominins (the Homo erectus specimen KNM-WT 15000 and the H. neanderthalensis specimen Tabun 1). Our results indicate that A.L. 288-1 shows mosaic traits resembling H. sapiens and Pongo, whereas the Sts 7 shoulder is most similar to the arboreal apes and does not present affinities with H. sapiens. Omo 119-73-2718 exhibits morphological affinities with the more arboreal and partially suspensory New World monkey Lagothrix. The shoulder of the australopith specimens thus shows a combination of primitive and derived traits (humeral globularity, enhancement of internal and external rotation of the joint), related to use of the arm in overhead positions. The genus Homo specimens show overall affinities with H. sapiens at the shoulder, indicating full correspondence of these hominin shoulders with the modern human morphotype. PMID:25651542
Arias-Martorell, Julia; Potau, Josep Maria; Bello-Hellegouarch, Gaëlle; Pérez-Pérez, Alejandro
2015-01-01
The postcranial evidence for the Australopithecus genus indicates that australopiths were able bipeds; however, the morphology of the forelimbs and particularly that of the shoulder girdle suggests that they were partially adapted to an arboreal lifestyle. The nature of such arboreal adaptations is still unclear, as are the kind of arboreal behaviors in which australopiths might have engaged. In this study we analyzed the shape of the shoulder joint (proximal humerus and glenoid cavity of the scapula) of three australopith specimens: A.L. 288–1 (A. afarensis), Sts 7 (A. africanus) and Omo 119–73–2718 (Australopithecus sp.) with three-dimensional geometric morphometrics. The morphology of the specimens was compared with that of a wide array of living anthropoid taxa and some additional fossil hominins (the Homo erectus specimen KNM-WT 15000 and the H. neanderthalensis specimen Tabun 1). Our results indicate that A.L. 288–1 shows mosaic traits resembling H. sapiens and Pongo, whereas the Sts 7 shoulder is most similar to the arboreal apes and does not present affinities with H. sapiens. Omo 119–73–2718 exhibits morphological affinities with the more arboreal and partially suspensory New World monkey Lagothrix. The shoulder of the australopith specimens thus shows a combination of primitive and derived traits (humeral globularity, enhancement of internal and external rotation of the joint), related to use of the arm in overhead positions. The genus Homo specimens show overall affinities with H. sapiens at the shoulder, indicating full correspondence of these hominin shoulders with the modern human morphotype. PMID:25651542
Julia Arias-Martorell
Full Text Available The postcranial evidence for the Australopithecus genus indicates that australopiths were able bipeds; however, the morphology of the forelimbs and particularly that of the shoulder girdle suggests that they were partially adapted to an arboreal lifestyle. The nature of such arboreal adaptations is still unclear, as are the kind of arboreal behaviors in which australopiths might have engaged. In this study we analyzed the shape of the shoulder joint (proximal humerus and glenoid cavity of the scapula of three australopith specimens: A.L. 288-1 (A. afarensis, Sts 7 (A. africanus and Omo 119-73-2718 (Australopithecus sp. with three-dimensional geometric morphometrics. The morphology of the specimens was compared with that of a wide array of living anthropoid taxa and some additional fossil hominins (the Homo erectus specimen KNM-WT 15000 and the H. neanderthalensis specimen Tabun 1. Our results indicate that A.L. 288-1 shows mosaic traits resembling H. sapiens and Pongo, whereas the Sts 7 shoulder is most similar to the arboreal apes and does not present affinities with H. sapiens. Omo 119-73-2718 exhibits morphological affinities with the more arboreal and partially suspensory New World monkey Lagothrix. The shoulder of the australopith specimens thus shows a combination of primitive and derived traits (humeral globularity, enhancement of internal and external rotation of the joint, related to use of the arm in overhead positions. The genus Homo specimens show overall affinities with H. sapiens at the shoulder, indicating full correspondence of these hominin shoulders with the modern human morphotype.
On the Affine Isoperimetric Inequalities
Wuyang Yu; Gangsong Leng
2011-11-01
We obtain an isoperimetric inequality which estimate the affine invariant -surface area measure on convex bodies. We also establish the reverse version of -Petty projection inequality and an affine isoperimetric inequality of $_{-p}K$.
Adjoint affine fusion and tadpoles
Urichuk, Andrew; Walton, Mark A.
2016-01-01
We study affine fusion with the adjoint representation. For simple Lie algebras, elementary and universal formulas determine the decomposition of a tensor product of an integrable highest-weight representation with the adjoint representation. Using the (refined) affine depth rule, we prove that equally striking results apply to adjoint affine fusion. For diagonal fusion, a coefficient equals the number of nonzero Dynkin labels of the relevant affine highest weight, minus 1. A nice lattice-pol...
Haag, Sebastian; Bernhardt, Henning; Rübenach, Olaf; Haverkamp, Tobias; Müller, Tobias; Zontar, Daniel; Brecher, Christian
2015-02-01
In many applications for high-power diode lasers, the production of beam-shaping and homogenizing optical systems experience rising volumes and dynamical market demands. The automation of assembly processes on flexible and reconfigurable machines can contribute to a more responsive and scalable production. The paper presents a flexible mounting device designed for the challenging assembly of side-tab based optical systems. It provides design elements for precisely referencing and fixating two optical elements in a well-defined geometric relation. Side tabs are presented to the machine allowing the application of glue and a rotating mechanism allows the attachment to the optical elements. The device can be adjusted to fit different form factors and it can be used in high-volume assembly machines. The paper shows the utilization of the device for a collimation module consisting of a fast-axis and a slow-axis collimation lens. Results regarding the repeatability and process capability of bonding side tab assemblies as well as estimates from 3D simulation for overall performance indicators achieved such as cycle time and throughput will be discussed.
Euclidean Reconstruction and Affine Camera Calibration Using Controlled Robot Motions
Horaud, Radu; Christy, Stéphane; Mohr, Roger
1997-01-01
We are addressing the problem of Euclidean reconstruction with an uncalibrated affine camera and the calibration of this camera. We investigate constraints under which the Euclidean shape and motion problem becomes linear. The theoretical study described in this paper leads us to impose some practical constraints that the camera is mounted onto a robot arm and that the robot is executing controlled motions whose parameters are known. The affine camera model considered here is just an approxim...
The Future Shape of Theoretical Physics and Beyond
Anderson, Edward
2015-01-01
A suite of relational notions of shape are presented at the level of configuration space geometry, with corresponding new theories of shape mechanics and shape statistics. These further generalize two quite well known examples: -1) Kendall's (metric) shape space with his shape statistics and Barbour's mechanics thereupon. 0) Leibnizian relational space alias metric scale-and-shape space to which corresponds Barbour--Bertotti mechanics. This paper's new theories include, using the invariant and group namings, 1) $Angle$ alias $conformal$ $shape$ $mechanics$. 2) $Area$ $ratio$ alias $affine$ $shape$ $mechanics$. 3) $Area$ alias $affine$ $scale$-$and$-$shape$ $mechanics$. 1) to 3) rest respectively on angle space, area-ratio space, and area space configuration spaces. Affine shape matching and affine shape statistics are argued to be of value to the theory of image analysis, as are in another sense their projective counterparts which rest on the geometry of cross-ratio space (another configuration space). The sh...
Affinity Purification of Insulin by Peptide-Ligand Affinity Chromatography
无
2007-01-01
The affinity heptapeptide (HWWWPAS) for insulin, selected from phage display library,was coupled to EAH Sepharose 4B gel and packed to a 1-mL column. The column was used for the affinity purification of insulin from protein mixture and commercial insulin preparation. It was observed that the minor impurity in the commercial insulin was removed by the affinity chromatography. Nearly 40 mg of insulin could be purified with the 1-mL affinity column. The results revealed the high specificity and capacity of the affinity column for insulin purification. Moreover, based on the analysis of the amino acids in the peptide sequence, shorter peptides were designed and synthesized for insulin chromatography. As a result, HWWPS was found to be a good alternative to HWWWPAS, while the other two peptides with three or four amino acids showed weak affinity for insulin. The results indicated that the peptide sequence of HWWWPAS was quite conservative for specific binding of insulin.
The work presents the results of investigations aimed at assessment of furnace charge materials impact on stoichiometry of shape memory alloy (TH1 grade) on the basis of nickelide titanium. It is shown that highly pure iodide titanium of TI grade and electrolytic nickel of H-0 grade are the most appropriate precursors for generation of nickelide titanium with fixed temperature of shape recovery. Iodide titanium, if used as furnace charge component in the process of melting of hydrogen-resistant α-alloys for heat-exchange equipment of nuclear power installations, will contribute to the increase of major devices service life.
An affine framework for analytical mechanics
Urbanski, Pawel
2003-01-01
An affine Cartan calculus is developed. The concepts of special affine bundles and special affine duality are introduced. The canonical isomorphisms, fundamental for Lagrangian and Hamiltonian formulations of the dynamics in the affine setting are proved.
Adjoint affine fusion and tadpoles
Urichuk, Andrew; Walton, Mark A.
2016-06-01
We study affine fusion with the adjoint representation. For simple Lie algebras, elementary and universal formulas determine the decomposition of a tensor product of an integrable highest-weight representation with the adjoint representation. Using the (refined) affine depth rule, we prove that equally striking results apply to adjoint affine fusion. For diagonal fusion, a coefficient equals the number of nonzero Dynkin labels of the relevant affine highest weight, minus 1. A nice lattice-polytope interpretation follows and allows the straightforward calculation of the genus-1 1-point adjoint Verlinde dimension, the adjoint affine fusion tadpole. Explicit formulas, (piecewise) polynomial in the level, are written for the adjoint tadpoles of all classical Lie algebras. We show that off-diagonal adjoint affine fusion is obtained from the corresponding tensor product by simply dropping non-dominant representations.
Adjoint affine fusion and tadpoles
Urichuk, Andrew
2016-01-01
We study affine fusion with the adjoint representation. For simple Lie algebras, elementary and universal formulas determine the decomposition of a tensor product of an integrable highest-weight representation with the adjoint representation. Using the (refined) affine depth rule, we prove that equally striking results apply to adjoint affine fusion. For diagonal fusion, a coefficient equals the number of nonzero Dynkin labels of the relevant affine highest weight, minus 1. A nice lattice-polytope interpretation follows, and allows the straightforward calculation of the genus-1 1-point adjoint Verlinde dimension, the adjoint affine fusion tadpole. Explicit formulas, (piecewise) polynomial in the level, are written for the adjoint tadpoles of all classical Lie algebras. We show that off-diagonal adjoint affine fusion is obtained from the corresponding tensor product by simply dropping non-dominant representations.
Kim, Se-Hee; Choi, Keun-Ho; Cho, Sung-Ju; Choi, Sinho; Park, Soojin; Lee, Sang-Young
2015-08-12
Forthcoming flexible/wearable electronic devices with shape diversity and mobile usability garner a great deal of attention as an innovative technology to bring unprecedented changes in our daily lives. From the power source point of view, conventional rechargeable batteries (one representative example is a lithium-ion battery) with fixed shapes and sizes have intrinsic limitations in fulfilling design/performance requirements for the flexible/wearable electronics. Here, as a facile and efficient strategy to address this formidable challenge, we demonstrate a new class of printable solid-state batteries (referred to as "PRISS batteries"). Through simple stencil printing process (followed by ultraviolet (UV) cross-linking), solid-state composite electrolyte (SCE) layer and SCE matrix-embedded electrodes are consecutively printed on arbitrary objects of complex geometries, eventually leading to fully integrated, multilayer-structured PRISS batteries with various form factors far beyond those achievable by conventional battery technologies. Tuning rheological properties of SCE paste and electrode slurry toward thixotropic fluid characteristics, along with well-tailored core elements including UV-cured triacrylate polymer and high boiling point electrolyte, is a key-enabling technology for the realization of PRISS batteries. This process/material uniqueness allows us to remove extra processing steps (related to solvent drying and liquid-electrolyte injection) and also conventional microporous separator membranes, thereupon enabling the seamless integration of shape-conformable PRISS batteries (including letters-shaped ones) into complex-shaped objects. Electrochemical behavior of PRISS batteries is elucidated via an in-depth analysis of cell impedance, which provides a theoretical basis to enable sustainable improvement of cell performance. We envision that PRISS batteries hold great promise as a reliable and scalable platform technology to open a new concept of cell
In this study, monodispersed and high-quality hexagonal phase LaF3 nanocrystals with different shapes and sizes were synthesized by a solvothermal method using oleic acid as the stabilizing agent. The as-prepared LaF3 nanocrystals were characterized by transmission electron microscopy (TEM), x-ray diffraction (XRD), and analysis of the upconversion spectra. The TEM results reveal that the samples present high uniformity and monodispersity and are self-assembled into a two-dimensional ordered array. Moreover, the shape, size and structure of the nanocrystals can be readily tuned by adjusting the NaF content. With increasing content of NaF, the shape of the LaF3 nanocrystals changed from particle to rod and the size gradually increased. More importantly, high NaF content favors the formation of one-dimensional nanorods. High Y b3+ and Er3+ content is beneficial to synthesizing the hexagonal phase of NaLaF4 nanocrystals. Furthermore, the TEM results show that the shape and size of the LaF3 nanocrystals can also be tuned by doping lanthanide ions, which provides a new route for size and shape control of nanocrystals. In addition, LaF3 nanocrystals co-doped with Y b3+/Tm3+ present efficient near-infrared (NIR)–NIR upconversion luminescence. More importantly, the upconversion luminescent colors can be readily tuned from blue-white to blue by adjusting the excitation power. Therefore, it is expected that these LaF3 nanocrystals with well-controlled shape, size and NIR–NIR upconversion emission have potential applications in biomedical imaging fields. (paper)
Several Affinity Tags Commonly Used in Chromatographic Purification
Xinyu Zhao; Guoshun Li; Shufang Liang
2013-01-01
Affinity tags have become powerful tools from basic biological research to structural and functional proteomics. They were widely used to facilitate the purification and detection of proteins of interest, as well as the separation of protein complexes. Here, we mainly discuss the benefits and drawbacks of several affinity or epitope tags frequently used, including hexahistidine tag, FLAG tag, Strep II tag, streptavidin-binding peptide (SBP) tag, calmodulin-binding peptide (CBP), glutathione S...
A general critical heat flux (CHF) prediction method with a wide applicable range and reasonable accuracy is essential to the thermal-hydraulic design and safety analysis at the conceptual design stage for a new pressurized water reactor (PWR). In this study, the Korea Advanced Institute of Science and Technology (KAIST) liquid sub-layer dryout CHF prediction model for Departure from Nucleate Boiling (DNB) region has been implemented in a sub-channel analysis code, and investigated for the method's possible use in a rod bundle environment with various non-uniform axial power shapes. The KAIST model showed comparable prediction capability to Lin's method for bottom-, center-, and top-peaked heat flux shapes. The KAIST model, without any correction factors or empirical constants, turned out to be suitable to fulfill the needs for a basis of a general CHF prediction method as compared to Lin's method and Westinghouse-3 (W-3) correlation
2014-01-01
BIPV is now widely used in office and residential buildings, but its seismic performance still remained vague especially when the photovoltaic (PV) modules are installed on high-rise building facades. A new form of reinforced concrete shear wall integrated with photovoltaic module is proposed in this paper, aiming to apply PV module to the facades of high-rise buildings. In this new form, the PV module is integrated with the reinforced concrete wall by U-shaped steel connectors through embedd...
Infinite transitivity on affine varieties
Arzhantsev, Ivan; Flenner, Hubert; Kaliman, Shulim; Kutzschebauch, Frank; ZAIDENBERG, MIKHAIL
2012-01-01
In this note we survey recent results on automorphisms of affine algebraic varieties, infinitely transitive group actions and flexibility. We present related constructions and examples, and discuss geometric applications and open problems.
Representations of affine Hecke algebras
Xi, Nanhua
1994-01-01
Kazhdan and Lusztig classified the simple modules of an affine Hecke algebra Hq (q E C*) provided that q is not a root of 1 (Invent. Math. 1987). Ginzburg had some very interesting work on affine Hecke algebras. Combining these results simple Hq-modules can be classified provided that the order of q is not too small. These Lecture Notes of N. Xi show that the classification of simple Hq-modules is essentially different from general cases when q is a root of 1 of certain orders. In addition the based rings of affine Weyl groups are shown to be of interest in understanding irreducible representations of affine Hecke algebras. Basic knowledge of abstract algebra is enough to read one third of the book. Some knowledge of K-theory, algebraic group, and Kazhdan-Lusztig cell of Cexeter group is useful for the rest
In the theory of affine SL(2)-embeddings, which was constructed in 1973 by Popov, a locally transitive action of the group SL(2) on a normal affine three-dimensional variety X is determined by a pair (p/q,r), where 0GV//T-hat. In the substantiation of this result a key role is played by Cox's construction in toric geometry. Bibliography: 12 titles
Fusion power gain has been increased by a factor of 3 in DIII-D by tailoring the pressure profile to avoid the kink instability in H-mode plasmas. The resulting plasmas are found to have neoclassical ion confinement. This reduction in transport losses in beam-heated plasmas with negative central shear is correlated with a dramatic reduction in density fluctuations. Improved magnetohydrodynamic stability is achieved by controlling the plasma pressure profile width. In deuterium plasmas the highest gain Q (the ratio of fusion power to input power), was 0.0015, corresponding to an equivalent Q of 0.32 in a deuterium-tritium plasma. copyright 1996 The American Physical Society
Wang, Peng; Li, Xiao; Shang, YaPing; Xu, XiaoJun
2015-10-01
The fiber laser has very obvious advantages and broad applications in remote welding, 3D cutting and national defense compared with the traditional solid laser. But influenced by heat effect of gain medium, nonlinear effect, stress birefringence effect and other negative factors, it's very difficult to get high power linearly polarized laser just using a single laser. For these limitations a polarization-converting system is designed using beam shaping and combination technique which is able to transform naturally polarized laser to linearly polarized laser at real time to resolve difficulties of generating high-power linearly polarized laser from fiber lasers in this paper. The principle of the Gaussian beam changing into the hollow beam passing through two axicons and the combination of the Gaussian beam and the hollow beam is discussed. In the experimental verification the energy conversion efficiency reached 93.1% with a remarkable enhancement of the extinction ratio from 3% to 98% benefited from the high conversion efficiency of axicons and the system worked fine under high power conditions. The system also kept excellent far field divergence. The experiment phenomenon also agreed with the simulation quite well. The experiment proves that this polarization-converting system will not affect laser structure which controls easily and needs no feedback and controlling system with stable and reliable properties at the same time. It can absolutely be applied to the polarization-conversion of high power laser.
PulsE installations, based on a disc explosive magnetic generator (EMG), having a current openning switch, enabling the transfer of > 10 MJ of magnetic energy into the liner loads at a power level of >10 (sup 13) W, have been worked out. Energy from explosive magnetic installations to energy releasing devices, ponderomotor units (PU) is transferred through a transmission line, the main element of which is electrically strong insulation. Insulator peculiarities of a transmission line are described
Yang, Po Kang
2015-05-15
A flexible triboelectric nanogenerator (FTENG) based on wavy-structured Kapton film and a serpentine electrode on stretchable substrates is presented. The as-fabricated FTENG is capable of harvesting ambient mechanical energy via both compressive and stretching modes. Moreover, the FTENG can be a bendable power source to work on curved surfaces; it can also be adaptively attached onto human skin for monitoring gentle body motions. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zuo Yan-Lei; Jiang Dong-Bin; Zhu Qi-Hua; Dong Jun; Zen Xiao-Ming; Huang Xiao-Jun; Huang Zheng
2012-01-01
We present a new method that can be used to calculate pulse-front distortion by measuring the spectral interference of two point-diffraction fields in their overlapped district.We demonstrate,for the first time,the measurement of the pulse-front distortion of the pulse from a complex multi-pass amplification system,which exists in almost all high-power laser systems,and obtain the irregular pulse-front distribution.The method presented does not need any reference light or assumption about the pulse-front distribution,and has an accuracy of several femtoseconds.
Miladinović Slobodan M.
2003-01-01
Full Text Available In the second part of this paper are analyzed effecting of main channels of social mobility for ascent on elite's positions in Serbia and Croatia. Special attention was paid to education and political activity. Survey data says that the patterns of ideological desirable social origin were developed in pattern of ideological desirable developing way of building individual career of members of power elite's across the time. Special importance in that process had high education acquirement. Political activity was necessary follower in the way of advance to the highest social positions. There was used log-linear analyze (hierarchical method because finding statistical importance between presented factors of education and political activity. Thanks to this method we can see details of complex relations of interdependence of this factors.
Neuhoff, K.; Boyd, R.; Grau, T. [Climate Policy Initiative, German Institute for Economic Research (DIW Berlin), Berlin (Germany); Hobbs, B.; Newbery, D. [Electricity Policy Research Group, University of Cambridge, Cambridge (United Kingdom); Borggrefe, F. [University of Cologne, Cologne (Germany); Barquin, J.; Echavarren, F. [Universidad Pontificia Comillas, Madrid (Spain); Bialek, J.; Dent, C. [Durham University, Durham (United Kingdom); Con Hirschhausen, C. [Technical University of Berlin, Berlin (Germany); Kunz, F.; Weigt, H. [Technical University of Dresden, Dresden (Germany); Nabe, C.; Papaefthymiou, G. [Ecofys Germany, Berlin (Germany); Weber, C. [Duisberg-Essen University, Duisburg-Essen (Germany)
2011-10-15
The core objective of the RE-Shaping project is to assist Member State governments in preparing for the implementation of Directive 2009/28/EC (on the promotion of the use of energy from renewable sources) and to guide a European policy for RES (renewable energy sources) in the mid- to long term. The past and present success of policies for renewable energies will be evaluated and recommendations derived to improve future RES support schemes. The core content of this collaborative research activity comprises: Developing a comprehensive policy background for RES support instruments; Providing the European Commission and Member States with scientifically based and statistically robust indicators to measure the success of currently implemented RES policies; Proposing innovative financing schemes for lower costs and better capital availability in RES financing; Initiation of National Policy Processes which attempt to stimulate debate and offer key stakeholders a meeting place to set and implement RES targets as well as options to improve the national policies fostering RES market penetration; Assessing options to coordinate or even gradually harmonize national RES policy approaches. In the EU, at least 200 gigawatts (GWs) of new and additional renewable electricity sources may be needed by 2020. The aim of this report is to analyse whether the current electricity market and system design is consistent with such an ambitious target. Using an international comparison, we identify opportunities to improve the power market design currently in place across EU countries so as to support the large scale integration of renewable energy sources.
Bowles, Samuel; Gintis, Herbert
2007-01-01
We consider the exercise of power in competitive markets for goods, labour and credit. We offer a definition of power and show that if contracts are incomplete it may be exercised either in Pareto-improving ways or to the disadvantage of those without power. Contrasting conceptions of power including bargaining power, market power, and consumer sovereignty are considered. Because the exercise of power may alter prices and other aspects of exchanges, abstracting from power may miss essential a...
Affine density in wavelet analysis
Kutyniok, Gitta
2007-01-01
In wavelet analysis, irregular wavelet frames have recently come to the forefront of current research due to questions concerning the robustness and stability of wavelet algorithms. A major difficulty in the study of these systems is the highly sensitive interplay between geometric properties of a sequence of time-scale indices and frame properties of the associated wavelet systems. This volume provides the first thorough and comprehensive treatment of irregular wavelet frames by introducing and employing a new notion of affine density as a highly effective tool for examining the geometry of sequences of time-scale indices. Many of the results are new and published for the first time. Topics include: qualitative and quantitative density conditions for existence of irregular wavelet frames, non-existence of irregular co-affine frames, the Nyquist phenomenon for wavelet systems, and approximation properties of irregular wavelet frames.
Protein isolation using affinity chromatography
Besselink, T.
2012-01-01
Many product or even waste streams in the food industry contain components that may have potential for e.g. functional foods. These streams are typically large in volume and the components of interest are only present at low concentrations. A robust and highly selective separation process should be developed for efficient isolation of the components. Affinity chromatography is such a selective method. Ligands immobilized to a stationary phase (e.g., a resin or membrane) are used to bind the c...
Inhomogeneous self-affine carpets
Fraser, Jonathan M.
2013-01-01
We investigate the dimension theory of inhomogeneous self-affine carpets. Through the work of Olsen, Snigireva and Fraser, the dimension theory of inhomogeneous self-similar sets is now relatively well-understood, however, almost no progress has been made concerning more general non-conformal inhomogeneous attractors. If a dimension is countably stable, then the results are immediate and so we focus on the upper and lower box dimensions and compute these explicitly for large classes of inhomo...
Boyer, M. D.; Andre, R.; Gates, D. A.; Gerhardt, S.; Goumiri, I. R.; Menard, J.
2015-05-01
The high-performance operational goals of NSTX-U will require development of advanced feedback control algorithms, including control of βN and the safety factor profile. In this work, a novel approach to simultaneously controlling βN and the value of the safety factor on the magnetic axis, q0, through manipulation of the plasma boundary shape and total beam power, is proposed. Simulations of the proposed scheme show promising results and motivate future experimental implementation and eventual integration into a more complex current profile control scheme planned to include actuation of individual beam powers, density, and loop voltage. As part of this work, a flexible framework for closed loop simulations within the high-fidelity code TRANSP was developed. The framework, used here to identify control-design-oriented models and to tune and test the proposed controller, exploits many of the predictive capabilities of TRANSP and provides a means for performing control calculations based on user-supplied data (controller matrices, target waveforms, etc). The flexible framework should enable high-fidelity testing of a variety of control algorithms, thereby reducing the amount of expensive experimental time needed to implement new control algorithms on NSTX-U and other devices.
Alternative affinity tools: more attractive than antibodies?
Ruigrok, V.J.B.; Levisson, M.; Eppink, M.H.M.; Smidt, H.; Oost, van der J.
2011-01-01
Antibodies are the most successful affinity tools used today, in both fundamental and applied research (diagnostics, purification and therapeutics). Nonetheless, antibodies do have their limitations, including high production costs and low stability. Alternative affinity tools based on nucleic acids
The paper examines the most significant technical and economical indications which are emerging from design, construction and operation of the first full size nuclear power plants and which may be most helpful in shaping future additions to nuclear capacity, with particular regard to the stituation existing in Italy. The present status of manufacturers' technology and its continuous development in the course of existing projects have shown a positive trend toward reduction of both fuel-cycle and plant-component costs. This is further favoured by the increasing tendency toward bigger plant sizes and by the fact that power forecasting analyses of the electrical network suggest the opportunity of installing units of higher capacity for nuclear than for conventional plants on the basis of predicted changes in energy production expenses due to the addition of such new units. Concerning the design, construction and testing experience of existing types of stations, the paper reviews the main factors to take into account in future planning also in the light of construction and testing schedules. A certain emphasis is given to the problem of containment, because of the rewards on plant location which can be made possible by the development of very safe containers with little or no economic penalty, also taking advantage of the specific Italian situation on certain aspects of this problem. Concerning the operation experience of proven station types, the paper discusses their ability to meet network requirements and their availability, also in connection with the increasing role of nuclear capacity which is being planned in the country. Finally, the paper stresses the importance of the problem of data collection and interpretation from the three power stations now starting operation in Italy in assisting the planning of next installations. Hint is given to longer-range fuel-cycle planning on the basis of the existing framework. (author)
Spectral affinity in protein networks
Teng Shang-Hua
2009-11-01
Full Text Available Abstract Background Protein-protein interaction (PPI networks enable us to better understand the functional organization of the proteome. We can learn a lot about a particular protein by querying its neighborhood in a PPI network to find proteins with similar function. A spectral approach that considers random walks between nodes of interest is particularly useful in evaluating closeness in PPI networks. Spectral measures of closeness are more robust to noise in the data and are more precise than simpler methods based on edge density and shortest path length. Results We develop a novel affinity measure for pairs of proteins in PPI networks, which uses personalized PageRank, a random walk based method used in context-sensitive search on the Web. Our measure of closeness, which we call PageRank Affinity, is proportional to the number of times the smaller-degree protein is visited in a random walk that restarts at the larger-degree protein. PageRank considers paths of all lengths in a network, therefore PageRank Affinity is a precise measure that is robust to noise in the data. PageRank Affinity is also provably related to cluster co-membership, making it a meaningful measure. In our experiments on protein networks we find that our measure is better at predicting co-complex membership and finding functionally related proteins than other commonly used measures of closeness. Moreover, our experiments indicate that PageRank Affinity is very resilient to noise in the network. In addition, based on our method we build a tool that quickly finds nodes closest to a queried protein in any protein network, and easily scales to much larger biological networks. Conclusion We define a meaningful way to assess the closeness of two proteins in a PPI network, and show that our closeness measure is more biologically significant than other commonly used methods. We also develop a tool, accessible at http://xialab.bu.edu/resources/pnns, that allows the user to
Use of Intrinsic Viscosity for evaluation of polymer-solvent affinity
Marani, Debora; Hjelm, Johan; Wandel, Marie
2013-01-01
The objective of the current paper was to define a rheological method for the study of the solvent/binder affinity. The adopted strategy involves the study of the intrinsic viscosity [η] of polymer solutions. [η] was estimated via an extrapolation procedure using the Huggins and Kramer equations....... The intrinsic viscosity and the Mark-Houwink shape parameter were estimated for the three polymers and used as criteria for estimating the polymer/solvent affinity....
Deepak; PRASAD; Mohammed; Asid; ZULLAH; Mohammed; Rafiuddin; AHMED; Young-Ho; LEE
2010-01-01
There is an increasing interest in cross flow turbines(also known as Banki turbines) for small and low head applications because of their simple structure as well as low capital and maintenance costs.The present work aims at implementing the direct drive turbine(DDT) of cross flow type for wave power generation.A numerical wave tank was used to simulate the waves and after obtaining the desired wave properties;the augmentation channel plus the front guide nozzle and rear chamber were integrated to the numerical wave tank.The waves in the numerical wave tank were generated by a piston type wave maker which was located at the wave tank inlet.The inlet which was modeled as a plate wall moved sinusoidally with the general function x = asinω t.The augmentation channel consisted of a front nozzle,rear nozzle and an internal fluid region which represented the turbine housing.The front and rear nozzles were geometrically the same.Three different front guide nozzle configurations were studied:a standard guide nozzle which was originally attached to the augmentation channel and two other front guide nozzles of different geometries.The purpose of this study is to observe how the front guide nozzle shape influences the flow downstream,mainly in the augmenta-tion channel,water power and the first stage energy conversion.The analysis was performed using a commercial CFD code ANSYS-CFX.The results of the flow in the augmentation channel for the three front guide nozzles are presented in this paper.
Steiner, Wolfgang
2012-01-01
An integral self-affine tile is the solution of a set equation $\\mathbf{A} \\mathcal{T} = \\bigcup_{d \\in \\mathcal{D}} (\\mathcal{T} + d)$, where $\\mathbf{A}$ is an $n \\times n$ integer matrix and $\\mathcal{D}$ is a finite subset of $\\mathbb{Z}^n$. In the recent decades, these objects and the induced tilings have been studied systematically. We extend this theory to matrices $\\mathbf{A} \\in \\mathbb{Q}^{n \\times n}$. We define rational self-affine tiles as compact subsets of the open subring $\\mathbb{R}^n\\times \\prod_\\mathfrak{p} K_\\mathfrak{p}$ of the ad\\'ele ring $\\mathbb{A}_K$, where the factors of the (finite) product are certain $\\mathfrak{p}$-adic completions of a number field $K$ that is defined in terms of the characteristic polynomial of $\\mathbf{A}$. Employing methods from classical algebraic number theory, Fourier analysis in number fields, and results on zero sets of transfer operators, we establish a general tiling theorem for these tiles. We also associate a second kind of tiles with a rational matr...
The affine quantum gravity programme
The central principle of affine quantum gravity is securing and maintaining the strict positivity of the matrix { g-hat ab(x)} composed of the spatial components of the local metric operator. On spectral grounds, canonical commutation relations are incompatible with this principle, and they must be replaced by noncanonical, affine commutation relations. Due to the partial second-class nature of the quantum gravitational constraints, it is advantageous to use the recently developed projection operator method, which treats all quantum constraints on an equal footing. Using this method, enforcement of regularized versions of the gravitational operator constraints is formulated quite naturally by means of a novel and relatively well-defined functional integral involving only the same set of variables that appears in the usual classical formulation. It is anticipated that skills and insight to study this formulation can be developed by studying special, reduced-variable models that still retain some basic characteristics of gravity, specifically a partial second-class constraint operator structure. Although perturbatively nonrenormalizable, gravity may possibly be understood nonperturbatively from a hard-core perspective that has proved valuable for specialized models. Finally, developing a procedure to pass to the genuine physical Hilbert space involves several interconnected steps that require careful coordination
Craniomandibular morphology and phylogenetic affinities of panthera atrox
Christiansen, Per; Harris, J.M.
2009-01-01
The great North American Pleistocene pantherine felid Panthera atrox has had a turbulent phylogenetic history, and has been claimed to show affinities to both the jaguar and the tiger; currently, it is most often regarded as a subspecies of the extant lion. The cranial, mandibular, and dental...... morphology of Panthera atrox was compared with those of extant lions, jaguars, and tigers using bivariate, multivariate, and shape analyses. Results indicate that the skull of Panthera atrox shows lion affinities, but also deviates from lions in numerous aspects. Mandibular morphology is more similar to...... jaguars and tigers and, as with cranial morphology, the mandible shows a number of traits not present among extant pantherines. Multivariate analyses grouped Panthera atrox separately from other pantherines. Panthera atrox was no lion, and cannot be assigned to any of the extant pantherines; it...
Conformal field theory on affine Lie groups
Working directly on affine Lie groups, we construct several new formulations of the WZW model, the gauged WZW model, and the generic affine-Virasoro action. In one formulation each of these conformal field theories (CFTs) is expressed as a one-dimensional mechanical system whose variables are coordinates on the affine Lie group. When written in terms of the affine group element, this formulation exhibits a two-dimensional WZW term. In another formulation each CFT is written as a two-dimensional field theory, with a three- dimensional WZW term, whose fields are coordinates on the affine group. On the basis of these equivalent formulations, we develop a translation dictionary in which the new formulations on the affine Lie group are understood as mode formulations of the conventional formulations on the Lie group. Using this dictionary, we also express each CFT as a three-dimensional field theory on the Lie group with a four-dimensional WZW term. 36 refs
Conformal field theory on affine Lie groups
Clubok, K.S.
1996-04-01
Working directly on affine Lie groups, we construct several new formulations of the WZW model, the gauged WZW model, and the generic affine-Virasoro action. In one formulation each of these conformal field theories (CFTs) is expressed as a one-dimensional mechanical system whose variables are coordinates on the affine Lie group. When written in terms of the affine group element, this formulation exhibits a two-dimensional WZW term. In another formulation each CFT is written as a two-dimensional field theory, with a three- dimensional WZW term, whose fields are coordinates on the affine group. On the basis of these equivalent formulations, we develop a translation dictionary in which the new formulations on the affine Lie group are understood as mode formulations of the conventional formulations on the Lie group. Using this dictionary, we also express each CFT as a three-dimensional field theory on the Lie group with a four-dimensional WZW term. 36 refs.
Maximin affinity learning of image segmentation
Turaga, Srinivas C; Helmstaedter, Moritz; Denk, Winfried; Seung, H Sebastian
2009-01-01
Images can be segmented by first using a classifier to predict an affinity graph that reflects the degree to which image pixels must be grouped together and then partitioning the graph to yield a segmentation. Machine learning has been applied to the affinity classifier to produce affinity graphs that are good in the sense of minimizing edge misclassification rates. However, this error measure is only indirectly related to the quality of segmentations produced by ultimately partitioning the affinity graph. We present the first machine learning algorithm for training a classifier to produce affinity graphs that are good in the sense of producing segmentations that directly minimize the Rand index, a well known segmentation performance measure. The Rand index measures segmentation performance by quantifying the classification of the connectivity of image pixel pairs after segmentation. By using the simple graph partitioning algorithm of finding the connected components of the thresholded affinity graph, we are ...
Bulbeck, David
2013-01-01
Genetic research into Southeast Asia's "negritos" has revealed their deep-rooted ancestry, with time depth comparable to that of Southwest Pacific populations. This finding is often interpreted as evidence that negritos, in contrast to other Southeast Asians, can trace much of their ancestry directly back to the early dispersal of Homo sapiens in the order of 70 kya from Africa to Pleistocene New Guinea and Australia. One view on negritos is to lump them and Southwest Pacific peoples into an "Australoid" race whose geographic distribution had included Southeast Asia prior to the Neolithic incursion of "Mongoloid" farmers. Studies into Semang osteology have revealed some hints of Southwest Pacific affinities in cranial shape, dental morphology, and dental metrical "shape." On the other hand, the Andamanese have been shown to resemble Africans in their craniometrics and South Asians in their dental morphology, while Philippine negritos resemble Mongoloid Southeast Asians in these respects and also in their dental metrics. This study expands the scope of negrito cranial comparisons by including Melayu Malays and additional coverage of South Asians. It highlights the distinction between the Mongoloid-like Philippine negritos and the Andamanese and Semang (and Senoi of Malaya) with their non-Mongoloid associations. It proposes that the early/mid-Holocene dispersal of the B4a1a mitochondrial DNA clade across Borneo, the Philippines, and Taiwan may be important for understanding the distinction between Philippine and other negritos. PMID:24297222
Elmholdt, Claus Westergård; Fogsgaard, Morten
2016-01-01
In this chapter, we will explore the dynamics of power in processes of creativity, and show its paradoxical nature as both a bridge and a barrier to creativity in organisations. Recent social psychological experimental research (Slighte, de Dreu & Nijstad, 2011) on the relation between power and...... creativity suggests that when managers give people the opportunity to gain power and explicate that there is reason to be more creative, people will show a boost in creative behaviour. Moreover, this process works best in unstable power hierarchies, which implies that power is treated as a negotiable and...... floating source for empowering people in the organisation. We will explore and discuss here the potentials, challenges and pitfalls of power in relation to creativity in the life of organisations today. The aim is to demonstrate that power struggles may be utilised as constructive sources of creativity. It...
Methods for Improving Aptamer Binding Affinity
Hijiri Hasegawa; Nasa Savory; Koichi Abe; Kazunori Ikebukuro
2016-01-01
Aptamers are single stranded oligonucleotides that bind a wide range of biological targets. Although aptamers can be isolated from pools of random sequence oligonucleotides using affinity-based selection, aptamers with high affinities are not always obtained. Therefore, further refinement of aptamers is required to achieve desired binding affinities. The optimization of primary sequences and stabilization of aptamer conformations are the main approaches to refining the binding properties of a...
Covariant Functional Calculi from the Affine Groups
Gong, Yafang
2009-01-01
Invoking the Clifford-Hermite Wavelets from Clifford analysis, we use the covariances of affine groups to construct a kind of functional calculi for several non-commuting bounded operators. Functional calculi are the intertwining transforms between the representations of affine groups in the space $L^2(\\mathbb R^m)$ and in the space of bounded operators. It turns out that the Weyl calculus is the value of this new functional calculus at the identity of affine groups. Our app...
Multipole solutions in metric-affine gravity
Socorro, J; Macías, A; Mielke, E W; Socorro, José; Lämmerzahl, Claus; Macías, Alfredo; Mielke, Eckehard W.
1998-01-01
Above Planck energies, the spacetime might become non--Riemannian, as it is known fron string theory and inflation. Then geometries arise in which nonmetricity and torsion appear as field strengths, side by side with curvature. By gauging the affine group, a metric affine gauge theory emerges as dynamical framework. Here, by using the harmonic map ansatz, a new class of multipole like solutions in the metric affine gravity theory (MAG) is obtained.
Maximin affinity learning of image segmentation
Srinivas C Turaga; Briggman, Kevin L; Helmstaedter, Moritz; Denk, Winfried; Seung, H. Sebastian
2009-01-01
Images can be segmented by first using a classifier to predict an affinity graph that reflects the degree to which image pixels must be grouped together and then partitioning the graph to yield a segmentation. Machine learning has been applied to the affinity classifier to produce affinity graphs that are good in the sense of minimizing edge misclassification rates. However, this error measure is only indirectly related to the quality of segmentations produced by ultimately partitioning the a...
Discrete Affine Minimal Surfaces with Indefinite Metric
Craizer, Marcos; Anciaux, Henri; Lewiner, Thomas
2008-01-01
Inspired by the Weierstrass representation of smooth affine minimal surfaces with indefinite metric, we propose a constructive process producing a large class of discrete surfaces that we call discrete affine minimal surfaces. We show that they are critical points of an affine area functional defined on the space of quadrangular discrete surfaces. The construction makes use of asymptotic coordinates and allows defining the discrete analogs of some differential geometric objects, such as the n...
A Novel Vertex Affinity for Community Detection
Yoo, Andy [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sanders, Geoffrey [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Henson, Van [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vassilevski, Panayot [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-10-05
We propose a novel vertex affinity measure in this paper. The new vertex affinity quantifies the proximity between two vertices in terms of their clustering strength and is ideal for such graph analytics applications as community detection. We also developed a framework that combines simple graph searches and resistance circuit formulas to compute the vertex affinity efficiently. We study the properties of the new affinity measure empirically in comparison to those of other popular vertex proximity metrics. Our results show that the existing metrics are ill-suited for community detection due to their lack of fundamental properties that are essential for correctly capturing inter- and intra-cluster vertex proximity.
Compact noncontraction semigroups of affine operators
Voynov, A. S.; Protasov, V. Yu
2015-07-01
We analyze compact multiplicative semigroups of affine operators acting in a finite-dimensional space. The main result states that every such semigroup is either contracting, that is, contains elements of arbitrarily small operator norm, or all its operators share a common invariant affine subspace on which this semigroup is contracting. The proof uses functional difference equations with contraction of the argument. We look at applications to self-affine partitions of convex sets, the investigation of finite affine semigroups and the proof of a criterion of primitivity for nonnegative matrix families. Bibliography: 32 titles.
Structural determinants of sigma receptor affinity
The structural determinants of sigma receptor affinity have been evaluated by examining a wide range of compounds related to opioids, neuroleptics, and phenylpiperidine dopaminergic structures for affinity at sigma receptor-binding sites labeled with (+)-[3H]3-PPP. Among opioid compounds, requirements for sigma receptor affinity differ strikingly from the determinants of affinity for conventional opiate receptors. Sigma sites display reverse stereoselectivity to classical opiate receptors. Multi-ringed opiate-related compounds such as morphine and naloxone have negligible affinity for sigma sites, with the highest sigma receptor affinity apparent for benzomorphans which lack the C ring of opioids. Highest affinity among opioids and other compounds occurs with more lipophilic N-substituents. This feature is particularly striking among the 3-PPP derivatives as well as the opioids. The butyrophenone haloperidol is the most potent drug at sigma receptors we have detected. Among the series of butyrophenones, receptor affinity is primarily associated with the 4-phenylpiperidine moiety. Conformational calculations for various compounds indicate a fairly wide range of tolerance for distances between the aromatic ring and the amine nitrogen, which may account for the potency at sigma receptors of structures of considerable diversity. Among the wide range of structures that bind to sigma receptor-binding sites, the common pharmacophore associated with high receptor affinity is a phenylpiperidine with a lipophilic N-substituent
Structural determinants of sigma receptor affinity
Largent, B.L.; Wikstroem, H.G.; Gundlach, A.L.; Snyder, S.H.
1987-12-01
The structural determinants of sigma receptor affinity have been evaluated by examining a wide range of compounds related to opioids, neuroleptics, and phenylpiperidine dopaminergic structures for affinity at sigma receptor-binding sites labeled with (+)-(/sup 3/H)3-PPP. Among opioid compounds, requirements for sigma receptor affinity differ strikingly from the determinants of affinity for conventional opiate receptors. Sigma sites display reverse stereoselectivity to classical opiate receptors. Multi-ringed opiate-related compounds such as morphine and naloxone have negligible affinity for sigma sites, with the highest sigma receptor affinity apparent for benzomorphans which lack the C ring of opioids. Highest affinity among opioids and other compounds occurs with more lipophilic N-substituents. This feature is particularly striking among the 3-PPP derivatives as well as the opioids. The butyrophenone haloperidol is the most potent drug at sigma receptors we have detected. Among the series of butyrophenones, receptor affinity is primarily associated with the 4-phenylpiperidine moiety. Conformational calculations for various compounds indicate a fairly wide range of tolerance for distances between the aromatic ring and the amine nitrogen, which may account for the potency at sigma receptors of structures of considerable diversity. Among the wide range of structures that bind to sigma receptor-binding sites, the common pharmacophore associated with high receptor affinity is a phenylpiperidine with a lipophilic N-substituent.
For a class of Schroedinger operators, with potentials having minima embedded in the continuum of the spectrum and non-trapping tails, we show the existence of shape-resonance exponentially close to the real axis as n → ν. The resonant energies are given by a convergent perturbation expansion in powers of a parameter exhibiting the expected exponentially small behaviour for tunneling
Baumbick, Robert J. (Inventor)
2002-01-01
The present invention discloses and teaches a unique, remote optically controlled micro actuator particularly suitable for aerospace vehicle applications wherein hot gas, or in the alternative optical energy, is employed as the medium by which shape memory alloy elements are activated. In gas turbine powered aircraft the source of the hot gas may be the turbine engine compressor or turbine sections.
Several Affinity Tags Commonly Used in Chromatographic Purification
Xinyu Zhao
2013-01-01
Full Text Available Affinity tags have become powerful tools from basic biological research to structural and functional proteomics. They were widely used to facilitate the purification and detection of proteins of interest, as well as the separation of protein complexes. Here, we mainly discuss the benefits and drawbacks of several affinity or epitope tags frequently used, including hexahistidine tag, FLAG tag, Strep II tag, streptavidin-binding peptide (SBP tag, calmodulin-binding peptide (CBP, glutathione S-transferase (GST, maltose-binding protein (MBP, S-tag, HA tag, and c-Myc tag. In some cases, a large-size affinity tag, such as GST or MBP, can significantly impact on the structure and biological activity of the fusion partner protein. So it is usually necessary to excise the tag by protease. The most commonly used endopeptidases are enterokinase, factor Xa, thrombin, tobacco etch virus, and human rhinovirus 3C protease. The proteolysis features of these proteases are described in order to provide a general guidance on the proteolytic removal of the affinity tags.
Structure of classical affine and classical affine fractional W-algebras
We introduce a classical BRST complex (See Definition 3.2.) and show that one can construct a classical affine W-algebra via the complex. This definition clarifies that classical affine W-algebras can be considered as quasi-classical limits of quantum affine W-algebras. We also give a definition of a classical affine fractional W-algebra as a Poisson vertex algebra. As in the classical affine case, a classical affine fractional W-algebra has two compatible λ-brackets and is isomorphic to an algebra of differential polynomials as a differential algebra. When a classical affine fractional W-algebra is associated to a minimal nilpotent, we describe explicit forms of free generators and compute λ-brackets between them. Provided some assumptions on a classical affine fractional W-algebra, we find an infinite sequence of integrable systems related to the algebra, using the generalized Drinfel’d and Sokolov reduction
Scaling analysis of affinity propagation.
Furtlehner, Cyril; Sebag, Michèle; Zhang, Xiangliang
2010-06-01
We analyze and exploit some scaling properties of the affinity propagation (AP) clustering algorithm proposed by Frey and Dueck [Science 315, 972 (2007)]. Following a divide and conquer strategy we setup an exact renormalization-based approach to address the question of clustering consistency, in particular, how many cluster are present in a given data set. We first observe that the divide and conquer strategy, used on a large data set hierarchically reduces the complexity O(N2) to O(N((h+2)/(h+1))) , for a data set of size N and a depth h of the hierarchical strategy. For a data set embedded in a d -dimensional space, we show that this is obtained without notably damaging the precision except in dimension d=2 . In fact, for d larger than 2 the relative loss in precision scales such as N((2-d)/(h+1)d). Finally, under some conditions we observe that there is a value s* of the penalty coefficient, a free parameter used to fix the number of clusters, which separates a fragmentation phase (for ss*) of the underlying hidden cluster structure. At this precise point holds a self-similarity property which can be exploited by the hierarchical strategy to actually locate its position, as a result of an exact decimation procedure. From this observation, a strategy based on AP can be defined to find out how many clusters are present in a given data set. PMID:20866473
Free C+ actions on affine threefolds
Kraft, H.
2005-01-01
We study algebraic actions of the additive group C+ on an affine threefold X and prove a smoothness property for the quotient morphism X -< X//C+. Then, following Shulim Kaliman, we give a proof of the conjecture that every free C+ action on affine 3-space C^3 is a translation.
Lectures on extended affine Lie algebras
Neher, Erhard
2010-01-01
We give an introduction to the structure theory of extended affine Lie algebras, which provide a common framework for finite-dimensional semisimple, affine and toroidal Lie algebras. The notes are based on a lecture series given during the Fields Institute summer school at the University of Ottawa in June 2009.
Affine Constellations Without Mutually Unbiased Counterparts
Weigert, Stefan
2010-01-01
It has been conjectured that a complete set of mutually unbiased bases in a space of dimension d exists if and only if there is an affine plane of order d. We introduce affine constellations and compare their existence properties with those of mutually unbiased constellations, mostly in dimension six. The observed discrepancies make a deeper relation between the two existence problems unlikely.
Affine constellations without mutually unbiased counterparts
Weigert, Stefan [Department of Mathematics, University of York, York YO10 5DD (United Kingdom); Durt, Thomas, E-mail: slow500@york.ac.u, E-mail: thomdurt@vub.ac.b [IR-TONA, VUB, BE-1050 Brussels (Belgium)
2010-10-08
It has been conjectured that a complete set of mutually unbiased bases in a space of dimension d exists if and only if there is an affine plane of order d. We introduce affine constellations and compare their existence properties with those of mutually unbiased constellations. The observed discrepancies make a deeper relation between the two existence problems unlikely. (fast track communication)
Dyes with high affinity for polylactide
Liang He; Shu Fen Zhang; Bing Tao Tang; Li Li Wang; Jin Zong Yang
2007-01-01
Attempts were made to develop dyes with high affinity for polylactide as an alternative to the existent commercial disperse dyes.The dyes synthesized according to the affinity concept of dye to polylactide exhibited excellent dyeing properties on polylactide compared with the commercial disperse dyes.
Lifeng XI
2008-01-01
In this paper,it is proved that any self-affine set satisfying the strong separation condition is uniformly porous.The author constructs a self-affine set which is not porous,although the open set condition holds.Besides,the author also gives a C1 iterated function system such that its invariant set is not porous.
Affine constellations without mutually unbiased counterparts
It has been conjectured that a complete set of mutually unbiased bases in a space of dimension d exists if and only if there is an affine plane of order d. We introduce affine constellations and compare their existence properties with those of mutually unbiased constellations. The observed discrepancies make a deeper relation between the two existence problems unlikely. (fast track communication)
Improving image segmentation by learning region affinities
Prasad, Lakshman [Los Alamos National Laboratory; Yang, Xingwei [TEMPLE UNIV.; Latecki, Longin J [TEMPLE UNIV.
2010-11-03
We utilize the context information of other regions in hierarchical image segmentation to learn new regions affinities. It is well known that a single choice of quantization of an image space is highly unlikely to be a common optimal quantization level for all categories. Each level of quantization has its own benefits. Therefore, we utilize the hierarchical information among different quantizations as well as spatial proximity of their regions. The proposed affinity learning takes into account higher order relations among image regions, both local and long range relations, making it robust to instabilities and errors of the original, pairwise region affinities. Once the learnt affinities are obtained, we use a standard image segmentation algorithm to get the final segmentation. Moreover, the learnt affinities can be naturally unutilized in interactive segmentation. Experimental results on Berkeley Segmentation Dataset and MSRC Object Recognition Dataset are comparable and in some aspects better than the state-of-art methods.
Novel trends in affinity biosensors: current challenges and perspectives
Molecular biorecognition processes facilitate physical and biochemical interactions between molecules in all crucial metabolic pathways. Perhaps the target analyte and the biorecognition element interactions have the most impactful use in biosensing applications. Traditional analytical sensing systems offer excellent biorecognition elements with the ability to detect and determine the presence of analytes. High affinity antibodies and DNA play an important role in the development of affinity biosensors based on electrochemical, optical and mass sensitive approaches. Advancements in this area routinely employ labels, label free, nanoparticles, multifunctional matrices, carbon nanotubes and other methods to meet the requirements of its own application. However, despite increasing affinity ceilings for conventional biosensors, the field draws back in meeting specifically important demands, such as long-term stability, ultrasensitivity, rapid detection, extreme selectivity, strong biological base, calibration, in vivo measurements, regeneration, satisfactory performance and ease of production. Nevertheless, recent efforts through this line have produced novel high-tech nanosensing systems such as ‘aptamers’ and ‘phages’ which exhibit high-throughput sensing. Aptamers and phages are powerful tools that excel over antibodies in sensibility, stability, multi-detection, in vivo measurements and regeneration. Phages are superior in stability, screening for affinity-based target molecules ranging from small to proteins and even cells, and easy production. In this review, we focus mainly on recent developments in affinity-based biosensors such as immunosensors, DNA sensors, emphasizing aptasensors and phage-based biosensors basing on novel electrochemical, optical and mass sensitive detection techniques. We also address enzyme inhibition-based biosensors and the current problems associated with the above sensors and their future perspectives. (topical review)
Xu Wei; Li Yan
2014-09-01
The particles energy distribution is derived directly from the () line shape, which is measured by two sets of OMA. The dissociative excitation of molecular is dominating when the local electron temperature is > 10 eV. The line shape is also simulated by the Monte–Carlo method, the molecular dissociation contributes to 57% neutral atoms and 53% emission intensity in front of the limiter, and 85% neutral atoms and 82% emission intensity in front of the wall. The processes of atoms and molecules influence on the energy balance is discussed in SOL, the power loss from molecular dissociation is 6 × 104 kW at SOL.
Pulse shaping on the Nova laser system
Inertial confinement fusion requires temporally shaped pulses to achieve high gain efficiency. Recently, we demonstrated the ability to produce complex temporal pulse shapes at high power at 0.35 microns on the Nova laser system. 2 refs., 2 figs
Honma, T.; Omata, K.; Kojima, N. [Meiji University, Tokyo (Japan)
1997-11-25
An improved J-shaped blade, in which a J-shaped blade is combined with a small-size Savonius blade, has been developed, to further improve efficiency of an air turbine for wave power generator systems. A prototype model of stationary wave power generator has been developed using the improved blade, to confirm its power generation characteristics by tests in a water tank and small-scale ocean tests. The results are compared with the characteristics of the units with conventional blades. The air turbine unit with the improved blade shows an efficiency of 13 to 35%, which is higher by 10 to 20% than that of the turbine with a J-shaped blade and by 20 to 70% than that of the one with a Savonius blade, more noted at low speed of rotation. It is therefore considered that the turbine with the improved blade is suited for sea areas having a relatively low wave height. It is also considered that efficiency can be further enhanced, when one or more guide vanes are provided around the blade. 2 refs., 12 figs.
Bayesian Vision for Shape Recovery
Jalobeanu, Andre
2004-01-01
We present a new Bayesian vision technique that aims at recovering a shape from two or more noisy observations taken under similar lighting conditions. The shape is parametrized by a piecewise linear height field, textured by a piecewise linear irradiance field, and we assume Gaussian Markovian priors for both shape vertices and irradiance variables. The observation process. also known as rendering, is modeled by a non-affine projection (e.g. perspective projection) followed by a convolution with a piecewise linear point spread function. and contamination by additive Gaussian noise. We assume that the observation parameters are calibrated beforehand. The major novelty of the proposed method consists of marginalizing out the irradiances considered as nuisance parameters, which is achieved by Laplace approximations. This reduces the inference to minimizing an energy that only depends on the shape vertices, and therefore allows an efficient Iterated Conditional Mode (ICM) optimization scheme to be implemented. A Gaussian approximation of the posterior shape density is computed, thus providing estimates both the geometry and its uncertainty. We illustrate the effectiveness of the new method by shape reconstruction results in a 2D case. A 3D version is currently under development and aims at recovering a surface from multiple images, reconstructing the topography by marginalizing out both albedo and shading.
Østergaard, Jesper; Jensen, Henrik; Holm, Rene
2012-01-01
influence on the ionic strength of the background electrolyte when the cyclodextrin is used in capillary electrophoresis. Mobility-shift affinity capillary methods for investigation of the complexation of taurocholate and taurochenodeoxycholate with the negatively charged cyclodextrin derivative applying...... constant power and ionic strength conditions as well as constant voltage and varying ionic strength were investigated. A new approach for the correction of background electrolyte ionic strength was developed. Mobility-shift affinity capillary electrophoresis experiments obtained at constant voltage and...
Optimized Affinity Capture of Yeast Protein Complexes.
LaCava, John; Fernandez-Martinez, Javier; Hakhverdyan, Zhanna; Rout, Michael P
2016-01-01
Here, we describe an affinity isolation protocol. It uses cryomilled yeast cell powder for producing cell extracts and antibody-conjugated paramagnetic beads for affinity capture. Guidelines for determining the optimal extraction solvent composition are provided. Captured proteins are eluted in a denaturing solvent (sodium dodecyl sulfate polyacrylamide gel electrophoresis sample buffer) for gel-based proteomic analyses. Although the procedures can be modified to use other sources of cell extract and other forms of affinity media, to date we have consistently obtained the best results with the method presented. PMID:27371596
Affinity Proteomics in the mountains: Alpbach 2015.
Taussig, Michael J
2016-09-25
The 2015 Alpbach Workshop on Affinity Proteomics, organised by the EU AFFINOMICS consortium, was the 7th workshop in this series. As in previous years, the focus of the event was the current state of affinity methods for proteome analysis, including complementarity with mass spectrometry, progress in recombinant binder production methods, alternatives to classical antibodies as affinity reagents, analysis of proteome targets, industry focus on biomarkers, and diagnostic and clinical applications. The combination of excellent science with Austrian mountain scenery and winter sports engender an atmosphere that makes this series of workshops exceptional. The articles in this Special Issue represent a cross-section of the presentations at the 2015 meeting. PMID:27118167
Corner Transfer Matrices and Quantum Affine Algebras
Foda, O E; Foda, Omar; Miwa, Tetsuji
1992-01-01
Let H be the corner-transfer-matrix Hamiltonian for the six-vertex model in the anti-ferroelectric regime. It acts on the infinite tensor product W = V . V . V ....., where is the 2-dimensional irreducible representation of the quantum affine sl(2). We observe that H is the derivation of quantum affine sl(2), and conjecture that the eigenvectors of H form the level-1 vacuum representation of quantum affine sl(2). We report on checks in support of our conjecture.
Koslowski, Tim
2011-01-01
Barbour's formulation of Mach's principle requires a theory of gravity to implement local relativity of clocks, local relativity of rods and spatial covariance. It turns out that relativity of clocks and rods are mutually exclusive. General Relativity implements local relativity of clocks and spatial covariance, but not local relativity of rods. It is the purpose of this contribution to show how Shape Dynamics, a theory that is locally equivalent to General Relativity, implements local relati...
Automorphisms in Birational and Affine Geometry
Ciliberto, Ciro; Flenner, Hubert; McKernan, James; Prokhorov, Yuri; Zaidenberg, Mikhail
2014-01-01
The main focus of this volume is on the problem of describing the automorphism groups of affine and projective varieties, a classical subject in algebraic geometry where, in both cases, the automorphism group is often infinite dimensional. The collection covers a wide range of topics and is intended for researchers in the fields of classical algebraic geometry and birational geometry (Cremona groups) as well as affine geometry with an emphasis on algebraic group actions and automorphism groups. It presents original research and surveys and provides a valuable overview of the current state of the art in these topics. Bringing together specialists from projective, birational algebraic geometry and affine and complex algebraic geometry, including Mori theory and algebraic group actions, this book is the result of ensuing talks and discussions from the conference “Groups of Automorphisms in Birational and Affine Geometry” held in October 2012, at the CIRM, Levico Terme, Italy. The talks at the conference high...
Synthesis of a New Series of Bone Affinity Compounds
无
2006-01-01
A new series of bone affinity compounds were synthesized by linking chrysophanol with 5-fluorouracil derivatives. Their bone affinity was established by hydroxyapafive (HA)affinity experiment in vitro, and their cytostatic effects were shown by the MTT assay.
Affine Moment Invariants Generated by Graph Method
Suk, Tomáš; Flusser, Jan
2011-01-01
Roč. 44, č. 9 (2011), 2047 – 2056. ISSN 0031-3203 R&D Projects: GA ČR(CZ) GA102/08/1593 Institutional research plan: CEZ:AV0Z10750506 Keywords : Image moments * Object recognition * Affine transformation * Affine moment invariants * Pseudoinvariants * Graph representation * Irreducibility * Independence Subject RIV: IN - Informatics, Computer Science Impact factor: 2.292, year: 2011 http://library.utia.cas.cz/separaty/2011/ZOI/suk-0359752.pdf
On Affine Fusion and the Phase Model
Walton, Mark A.
2012-01-01
A brief review is given of the integrable realization of affine fusion discovered recently by Korff and Stroppel. They showed that the affine fusion of the $su(n)$ Wess-Zumino-Novikov-Witten (WZNW) conformal field theories appears in a simple integrable system known as the phase model. The Yang-Baxter equation leads to the construction of commuting operators as Schur polynomials, with noncommuting hopping operators as arguments. The algebraic Bethe ansatz diagonalizes them, revealing a connec...
Purely affine elementary su(N) fusions
Rasmussen, Jorgen; Walton, Mark A.
2001-01-01
We consider three-point couplings in simple Lie algebras -- singlets in triple tensor products of their integrable highest weight representations. A coupling can be expressed as a linear combination of products of finitely many elementary couplings. This carries over to affine fusion, the fusion of Wess-Zumino-Witten conformal field theories, where the expressions are in terms of elementary fusions. In the case of su(4) it has been observed that there is a purely affine elementary fusion, i.e...
Complete algebraic vector fields on affine surfaces
Kaliman, Shulim; Kutzschebauch, Frank; Leuenberger, Matthias
2014-01-01
Let $\\AAutH (X)$ be the subgroup of the group $\\AutH (X)$ of holomorphic automorphisms of a normal affine algebraic surface $X$ generated by elements of flows associated with complete algebraic vector fields. Our main result is a classification of all normal affine algebraic surfaces $X$ quasi-homogeneous under $\\AAutH (X)$ in terms of the dual graphs of the boundaries $\\bX \\setminus X$ of their SNC-completions $\\bX$.
Fan affinity laws from a collision model
The performance of a fan is usually estimated using hydrodynamical considerations. The calculations are long and involved and the results are expressed in terms of three affinity laws. In this paper we use kinetic theory to attack this problem. A hard sphere collision model is used, and subsequently a correction to account for the flow behaviour of air is incorporated. Our calculations prove the affinity laws and provide numerical estimates of the air delivery, thrust and drag on a rotating fan. (paper)
A MEMS Dielectric Affinity Glucose Biosensor
Xian HUANG; Li, SiQi; Davis, Erin; Li, Dachao; Wang, Qian; Lin, Qiao
2013-01-01
Continuous glucose monitoring (CGM) sensors based on affinity detection are desirable for long-term and stable glucose management. However, most affinity sensors contain mechanical moving structures and complex design in sensor actuation and signal readout, limiting their reliability in subcutaneously implantable glucose detection. We have previously demonstrated a proof-of-concept dielectric glucose sensor that measured pre-mixed glucose-sensitive polymer solutions at various glucose concent...
Supramolecular Affinity Chromatography for Methylation-Targeted Proteomics.
Garnett, Graham A E; Starke, Melissa J; Shaurya, Alok; Li, Janessa; Hof, Fraser
2016-04-01
Proteome-wide studies of post-translationally methylated species using mass spectrometry are complicated by high sample diversity, competition for ionization among peptides, and mass redundancies. Antibody-based enrichment has powered methylation proteomics until now, but the reliability, pan-specificity, polyclonal nature, and stability of the available pan-specific antibodies are problematic and do not provide a standard, reliable platform for investigators. We have invented an anionic supramolecular host that can form host-guest complexes selectively with methyllysine-containing peptides and used it to create a methylysine-affinity column. The column resolves peptides on the basis of methylation-a feat impossible with a comparable commercial cation-exchange column. A proteolyzed nuclear extract was separated on the methyl-affinity column prior to standard proteomics analysis. This experiment demonstrates that such chemical methyl-affinity columns are capable of enriching and improving the analysis of methyllysine residues from complex protein mixtures. We discuss the importance of this advance in the context of biomolecule-driven enrichment methods. PMID:26973166
Exact deformations of quantum groups; applications to the affine case
Frønsdal, Christian
1996-01-01
This paper continues our investigation of a class of generalized quantum groups. The ``standard" R-matrix was shown to be the unique solution of a very simple, linear recursion relation and the classical limit was obtained in the case of quantized Kac-Moody algebras of finite type. Here the standard R-matrix for generalized quantum groups is first examined in the case of quantized affine Kac-Moody algebras. The classical limit yields the standard affine r-matrices of Belavin and Drinfeld. Then, turning to the general case, we study the exact deformations of the standard R-matrix and the associated Hopf algebras. They are described as a generalized twist, R_\\epsilon = (F^t)^{-1}RF, where R is the standard R-matrix and F (a power series in the deformation parameter \\epsilon) is the solution of a linear recursion relation of the same type as that which determines R. Specializing again, to the case of quantized, affine Kac-Moody algebras, and taking the classical limit of these esoteric quantum groups, one re-dis...
Affinity approaches in RNAi-based therapeutics purification.
Pereira, Patrícia; Queiroz, João A; Figueiras, Ana; Sousa, Fani
2016-05-15
The recent investigation on RNA interference (RNAi) related mechanisms and applications led to an increased awareness of the importance of RNA in biology. Nowadays, RNAi-based technology has emerged as a potentially powerful tool for silencing gene expression, being exploited to develop new therapeutics for treating a vast number of human disease conditions, as it is expected that this technology can be translated onto clinical applications in a near future. This approach makes use of a large number of small (namely short interfering RNAs, microRNAs and PIWI-interacting RNAs) and long non-coding RNAs (ncRNAs), which are likely to have a crucial role as the next generation therapeutics. The commercial and biomedical interest in these RNAi-based therapy applications have fostered the need to develop innovative procedures to easily and efficiently purify RNA, aiming to obtain the final product with high purity degree, good quality and biological activity. Recently, affinity chromatography has been applied to ncRNAs purification, in view of the high specificity. Therefore, this article intends to review the biogenesis pathways of regulatory ncRNAs and also to discuss the most significant and recent developments as well as applications of affinity chromatography in the challenging task of purifying ncRNAs. In addition, the importance of affinity chromatography in ncRNAs purification is addressed and prospects for what is forthcoming are presented. PMID:26830537
Food and value motivation: Linking consumer affinities to different types of food products.
de Boer, Joop; Schösler, Hanna
2016-08-01
This study uses the consumer affinity concept to examine the multiple motives that may shape consumers' relationships with food. The concept was applied in a study on four broad product types in the Netherlands, which cover a wide range of the market and may each appeal to consumers with different affinities towards foods. These product types may be denoted as 'conventional', 'efficient', 'gourmet' and 'pure'. A comparative analysis, based on Higgins' Regulatory Focus Theory, was performed to examine whether food-related value motivations could explain different consumer affinities for these product types. The affinities of consumers were measured by means of a non-verbal, visual presentation of four samples of food products in a nationwide survey (n = 742) among consumers who were all involved in food purchasing and/or cooking. The affinities found could be predicted fairly well from a number of self-descriptions relating to food and eating, which expressed different combinations of type of value motivation and involvement with food. The analysis demonstrated the contrasting role of high and low involvement as well as the potential complementarity of promotion- and prevention-focused value motivation. It is suggested that knowledge of the relationships between product types, consumer affinities and value motivation can help improve the effectiveness of interventions that seek to promote healthy and sustainable diets in developed countries. PMID:27046434
Affine modifications and affine hypersurfaces with a very transitive automorphism group
Kaliman, Shulim; ZAIDENBERG, MIKHAIL
1998-01-01
We study a kind of modification of an affine domain which produces another affine domain. First appeared in passing in the basic paper of O. Zariski (1942), it was further considered by E.D. Davis (1967). The first named author applied its geometric counterpart to construct contractible smooth affine varieties non-isomorphic to Euclidean spaces. Here we provide certain conditions which guarantee preservation of the topology under a modification. As an application, we show that the group of bi...
Arias-Martorell, Julia; Potau, Josep Maria; Bello-Hellegouarch, Gaëlle; Pérez-Pérez, Alejandro
2015-01-01
The postcranial evidence for the Australopithecus genus indicates that australopiths were able bipeds; however, the morphology of the forelimbs and particularly that of the shoulder girdle suggests that they were partially adapted to an arboreal lifestyle. The nature of such arboreal adaptations is still unclear, as are the kind of arboreal behaviors in which australopiths might have engaged. In this study we analyzed the shape of the shoulder joint (proximal humerus and glenoid cavity of the...
Kim, Youngdeuk
2011-04-15
The quantitative correlations between workpiece volume and melt pool geometry, as well as the flow and thermal features of the melt pool are established. Thermocapillary convections in melt pool with a deformable free surface are investigated with respect to surface shape and laser intensity. When the contact angle between the tangent to the top surface and the vertical wall at the hot center is acute, the free surface flattens, compared with that of the initial free surface. Otherwise, the free surface forms a bowl-like shape with a deep crater and a low peripheral rim when the contact angle at the hot center is obtuse. Increasing the workpiece volume at a fixed laser intensity and a negative radial height gradient cause linear decreases in the geometric size and magnitude of flow and temperature of the melt pool. Conversely, linear increases are observed with a positive radial height gradient. © 2011 American Institute of Chemical Engineers (AIChE).
Affinity purification of aprotinin from bovine lung.
Xin, Yu; Liu, Lanhua; Chen, Beizhan; Zhang, Ling; Tong, Yanjun
2015-05-01
An affinity protocol for the purification of aprotinin from bovine lung was developed. To simulate the structure of sucrose octasulfate, a natural specific probe for aprotinin, the affinity ligand was composed of an acidic head and a hydrophobic stick, and was then linked with Sepharose. The sorbent was then subjected to adsorption analysis with pure aprotinin. The purification process consisted of one step of affinity chromatography and another step of ultrafiltration. Then purified aprotinin was subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis, trypsin inhibitor activity, gel-filtration, and thin-layer chromatography analysis. As calculated, the theoretical maximum adsorption (Qmax ) of the affinity sorbent was 25,476.0 ± 184.8 kallikrein inactivator unit/g wet gel; the dissociation constant of the complex "immobilized ligand-aprotinin" (Kd ) was 4.6 ± 0.1 kallikrein inactivator unit/mL. After the affinity separation of bovine lung aprotinin, reducing sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis and gel-filtration chromatography revealed that the protein was a single polypeptide, and the purities were ∼ 97 and 100%, respectively; the purified peptide was also confirmed with aprotinin standard by gel-filtration chromatography and thin-layer chromatography. After the whole purification process, protein, and bioactivity recoveries were 2.2 and 92.6%, respectively; and the specific activity was up to 15,907.1 ± 10.2 kallikrein inactivator unit/mg. PMID:25677462
Heegaard, N H; Sen, J W; Nissen, Mogens Holst
2000-01-01
The amyloidogenic protein beta-microglobulin was characterized by affinity capillary electrophoresis (CE). CE could separate conformational variants of beta2-microglobulin and with the amyloid-specific dye Congo red as a buffer additive it was possible to measure different Congo red-affinities of...
Influence of affinity on antibody determination in microtiter ELISA systems
Theoretically, all immunoassays are affinity (Ka) dependent when the product of the antibody (Ab) Ka and the free epitope concentration is less than 10. Thus, the degree of dependence on Ka depends on the concentration of available antigen in the system. The authors examined the binding of 125I-anti-fluorescein (a-FLU) monoclonal antibodies of different affinities to FLU-gelatin adsorbed on Immunlon 2 microtiter plates. Data obtained were in general agreement with our theoretical predictions; the percent of 125I-a-FLU which bound correlated with Ka, as did the shape of the titration curves. Measurement of 5 a-FLU monoclonals by the ELISA showed that the determination of Ab concentrations depends on the FLU-gelatin concentration, epitope density, and on the relationship between the Kas of test samples and the reference standard Ab preparation. Thus the ELISA is Ka dependent and should not be used routinely to estimate the absolute amount to Ab in unknown samples. However, the Ka dependency of the ELISA might provide a convenient assay for the estimation of the relative functional Ka (rfKa) of antibody preparations
On Affine Fusion and the Phase Model
Mark A. Walton
2012-11-01
Full Text Available A brief review is given of the integrable realization of affine fusion discovered recently by Korff and Stroppel. They showed that the affine fusion of the su(n Wess-Zumino-Novikov-Witten (WZNW conformal field theories appears in a simple integrable system known as the phase model. The Yang-Baxter equation leads to the construction of commuting operators as Schur polynomials, with noncommuting hopping operators as arguments. The algebraic Bethe ansatz diagonalizes them, revealing a connection to the modular S matrix and fusion of the su(n WZNW model. The noncommutative Schur polynomials play roles similar to those of the primary field operators in the corresponding WZNW model. In particular, their 3-point functions are the su(n fusion multiplicities. We show here how the new phase model realization of affine fusion makes obvious the existence of threshold levels, and how it accommodates higher-genus fusion.
On affine fusion and the phase model
Walton, Mark A
2012-01-01
A brief review is given of the integrable realization of affine fusion discovered recently by Korff and Stroppel. They showed that the affine fusion of the su(n) Wess-Zumino-Novikov-Witten (WZNW) conformal field theories appears in a simple integrable system known as the phase model. The algebraic Bethe ansatz constructs the commuting operators of the phase model as Schur polynomials, with non-commuting hopping operators as arguments. These non-commutative Schur polynomials play roles similar to those of the primary field operators in the corresponding WZNW model. In particular, their 3-point functions are the su(n) fusion multiplicities. We show here how the new phase model realization of affine fusion makes obvious the existence of threshold levels, and how it accommodates higher-genus fusion.
Affine Projection Algorithm Using Regressive Estimated Error
Zhang, Shu; Zhi, Yongfeng
2011-01-01
An affine projection algorithm using regressive estimated error (APA-REE) is presented in this paper. By redefining the iterated error of the affine projection algorithm (APA), a new algorithm is obtained, and it improves the adaptive filtering convergence rate. We analyze the iterated error signal and the stability for the APA-REE algorithm. The steady-state weights of the APA-REE algorithm are proved to be unbiased and consist. The simulation results show that the proposed algorithm has a f...
Periodic cyclic homology of affine Hecke algebras
Solleveld, Maarten
2009-01-01
This is the author's PhD-thesis, which was written in 2006. The version posted here is identical to the printed one. Instead of an abstract, the short list of contents: Preface 5 1 Introduction 9 2 K-theory and cyclic type homology theories 13 3 Affine Hecke algebras 61 4 Reductive p-adic groups 103 5 Parameter deformations in affine Hecke algebras 129 6 Examples and calculations 169 A Crossed products 223 Bibliography 227 Index 237 Samenvatting 245 Curriculum vitae 253
Green, R. M.
1997-01-01
We introduce an analogue of the $q$-Schur algebra associated to Coxeter systems of type $\\hat A_{n-1}$. We give two constructions of this algebra. The first construction realizes the algebra as a certain endomorphism algebra arising from an affine Hecke algebra of type $\\hat A_{r-1}$, where $n \\geq r$. This generalizes the original $q$-Schur algebra as defined by Dipper and James, and the new algebra contains the ordinary $q$-Schur algebra and the affine Hecke algebra as subalgebras. Using th...
Shape of optimal active flagella
Eloy, Christophe
2013-01-01
Many eukaryotic cells use the active waving motion of flexible flagella to self-propel in viscous fluids. However, the criteria governing the selection of particular flagellar waveforms among all possible shapes has proved elusive so far. To address this question, we derive computationally the optimal shape of an internally-forced periodic planar flagellum deforming as a travelling wave. The optimum is here defined as the shape leading to a given swimming speed with minimum energetic cost. To calculate the energetic cost though, we consider the irreversible internal power expanded by the molecular motors forcing the flagellum, only a portion of which ending up dissipated in the fluid. This optimisation approach allows us to derive a family of shapes depending on a single dimensionless number quantifying the relative importance of elastic to viscous effects: the Sperm number. The computed optimal shapes are found to agree with the waveforms observed on spermatozoon of marine organisms, thus suggesting that the...
Crossing Chris: Some Markerian Affinities
Adrian Martin
2010-01-01
-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}
Abstract (E: This essay creatively explores a group of artists, writers, and other special individuals whose work or life story can be described as having an intriguing affinity with the protean career of Chris Marker. Avoiding the ‘usual suspects’ (such as Godard or Sebald, it discusses gossip columnist Milt Machlin, record collector Harry Smith, painter Gianfranco Baruchello, writer-filmmaker Edgardo Cozarinsky, and several others. From this constellation, a particular view of Markerian poetics emerges, touching upon the meanings of anonymity, storytelling, history and archiving.
Abstract (F: Cet essai brosse de manière créative le portrait d’un groupe d'artistes, d'écrivains et d'autres personnes particulières dont le travail ou la biographie peuvent être décrits comme montrant une étrange mais certaine connivence avec la carrière protéiforme de Chris Marker. Evitant les lieux communs (comme Godard ou Sebald, cet article trace des références moins attendues :
Morizane Toshimitsu
2015-12-01
Full Text Available It has been proposed that a novel maglev transport system uses both of the attractive force and thrust force of the Linear Induction Motor (LIM. In our proposal, these two forces will be controlled by two different frequency components. One of the frequency components is synchronous with the motor speed (fm. Another frequency component is drive frequency (fd. Our proposed system enables the independent and simultaneous control of the attractive and thrust force of LIM. Each value of the attractive and the thrust force generated by fm and fd must be identified in order to design that LIM control system. For these purpose, a disc-shaped LIM has been developed as an experimental equipment. The force profiles, especially around zero slip, have been analyzed under experimental conditions.
Renhua Huang
2015-09-01
Full Text Available Often when generating recombinant affinity reagents to a target, one singles out an individual binder, constructs a secondary library of variants, and affinity selects a tighter or more specific binder. To enhance the throughput of this general approach, we have developed a more integrated strategy where the “affinity maturation” step is part of the phage-display pipeline, rather than a follow-on process. In our new schema, we perform two rounds of affinity selection, followed by error-prone PCR on the pools of recovered clones, generation of secondary libraries, and three additional rounds of affinity selection, under conditions of off-rate competition. We demonstrate the utility of this approach by generating low nanomolar fibronectin type III (FN3 monobodies to five human proteins: ubiquitin-conjugating enzyme E2 R1 (CDC34, COP9 signalosome complex subunit 5 (COPS5, mitogen-activated protein kinase kinase 5 (MAP2K5, Splicing factor 3A subunit 1 (SF3A1 and ubiquitin carboxyl-terminal hydrolase 11 (USP11. The affinities of the resulting monobodies are typically in the single-digit nanomolar range. We demonstrate the utility of two binders by pulling down the targets from a spiked lysate of HeLa cells. This integrated approach should be applicable to directed evolution of any phage-displayed affinity reagent scaffold.
Huang, Renhua; Gorman, Kevin T; Vinci, Chris R; Dobrovetsky, Elena; Gräslund, Susanne; Kay, Brian K
2015-01-01
Often when generating recombinant affinity reagents to a target, one singles out an individual binder, constructs a secondary library of variants, and affinity selects a tighter or more specific binder. To enhance the throughput of this general approach, we have developed a more integrated strategy where the "affinity maturation" step is part of the phage-display pipeline, rather than a follow-on process. In our new schema, we perform two rounds of affinity selection, followed by error-prone PCR on the pools of recovered clones, generation of secondary libraries, and three additional rounds of affinity selection, under conditions of off-rate competition. We demonstrate the utility of this approach by generating low nanomolar fibronectin type III (FN3) monobodies to five human proteins: ubiquitin-conjugating enzyme E2 R1 (CDC34), COP9 signalosome complex subunit 5 (COPS5), mitogen-activated protein kinase kinase 5 (MAP2K5), Splicing factor 3A subunit 1 (SF3A1) and ubiquitin carboxyl-terminal hydrolase 11 (USP11). The affinities of the resulting monobodies are typically in the single-digit nanomolar range. We demonstrate the utility of two binders by pulling down the targets from a spiked lysate of HeLa cells. This integrated approach should be applicable to directed evolution of any phage-displayed affinity reagent scaffold. PMID:26437402
General super Virasoro construction on affine G
We consider a bosonic current algebra and a theory of free fermions and construct a general N = 1 super Virasoro current algebra. We obtain a master-set of equations which comprises the bosonic master equation for general Virasoro construction on affine G. As an illustration we study the case of the group SU(2). (author). 13 refs
Classification of neocortical interneurons using affinity propagation
Roberto eSantana
2013-12-01
Full Text Available In spite of over a century of research on cortical circuits, it is still unknown how many classes of cortical neurons exist. Neuronal classification has been a difficult problem because it is unclear what a neuronal cell class actually is and what are the best characteristics are to define them. Recently, unsupervised classifications using cluster analysis based on morphological, physiological or molecular characteristics, when applied to selected datasets, have provided quantitative and unbiased identification of distinct neuronal subtypes. However, better and more robust classification methods are needed for increasingly complex and larger datasets. We explored the use of affinity propagation, a recently developed unsupervised classification algorithm imported from machine learning, which gives a representative example or exemplar for each cluster. As a case study, we applied affinity propagation to a test dataset of 337 interneurons belonging to four subtypes, previously identified based on morphological and physiological characteristics. We found that affinity propagation correctly classified most of the neurons in a blind, non-supervised manner. In fact, using a combined anatomical/physiological dataset, our algorithm differentiated parvalbumin from somatostatin interneurons in 49 out of 50 cases. Affinity propagation could therefore be used in future studies to validly classify neurons, as a first step to help reverse engineer neural circuits.
Affinely Recursive Functions and Neural Networks
Kůrková, Věra; Kainen, P.C.
Atlanta : Georgia Institute of Technology, 1994 - ( Ames , W.), s. 776-779 [IMACS World Congress /14./. Atlanta (US), 11.07.1994-15.07.1994] R&D Projects: GA AV ČR IA23057; GA ČR GA201/93/0427 Keywords : neural networks * affinely recursive functions
Colliding waves in metric-affine gravity
García, A; Macías, A; Mielke, E W; Socorro, J; García, Alberto; Lämmerzahl, Claus; Macías, Alfredo; Mielke, Eckehard W.; Socorro, José
1998-01-01
We generalize the formulation of the colliding gravitational waves to metric-affine theories and present an example of such kind of exact solutions. The plane waves are equipped with five symmetries and the resulting geometry after the collision possesses two spacelike Killing vectors.
Model of Earthquake Generation Exhibiting Self-Organized Criticality with Self-Affine Fault Surfaces
Generation of earthquakes has not been still understood. However, some statistical properties of seismicity are established such as magnitude-frequency distribution indicating power law. In this study, we numerically investigate one-dimensional spring-block earthquake model, considering self-affine fault surfaces, in order to understand such statistical properties
GPU-ASIFT : A Fast Fully Affine-Invariant Feature Extraction Algorithm
Codreanu, Valeriu; Dong, Feng; Liu, Baoquan; Roerdink, Jos B.T.M.; Williams, David; Yang, Po; Yasar, Burhan
2013-01-01
This paper presents a method that takes advantage of powerful graphics hardware to obtain fully affine-invariant image feature detection and matching. The chosen approach is the accurate, but also very computationally expensive, ASIFT algorithm. We have created a CUDA version of this algorithm that
Deformable segmentation via sparse shape representation.
Zhang, Shaoting; Zhan, Yiqiang; Dewan, Maneesh; Huang, Junzhou; Metaxas, Dimitris N; Zhou, Xiang Sean
2011-01-01
Appearance and shape are two key elements exploited in medical image segmentation. However, in some medical image analysis tasks, appearance cues are weak/misleading due to disease/artifacts and often lead to erroneous segmentation. In this paper, a novel deformable model is proposed for robust segmentation in the presence of weak/misleading appearance cues. Owing to the less trustable appearance information, this method focuses on the effective shape modeling with two contributions. First, a shape composition method is designed to incorporate shape prior on-the-fly. Based on two sparsity observations, this method is robust to false appearance information and adaptive to statistically insignificant shape modes. Second, shape priors are modeled and used in a hierarchical fashion. More specifically, by using affinity propagation method, our deformable surface is divided into multiple partitions, on which local shape models are built independently. This scheme facilitates a more compact shape prior modeling and hence a more robust and efficient segmentation. Our deformable model is applied on two very diverse segmentation problems, liver segmentation in PET-CT images and rodent brain segmentation in MR images. Compared to state-of-art methods, our method achieves better performance in both studies. PMID:21995060
Specification of ROP flux shape
Min, Byung Joo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Gray, A. [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)
1997-06-01
The CANDU 9 480/SEU core uses 0.9% SEU (Slightly Enriched Uranium) fuel. The use f SEU fuel enables the reactor to increase the radial power form factor from 0.865, which is typical in current natural uranium CANDU reactors, to 0.97 in the nominal CANDU 9 480/SEU core. The difference is a 12% increase in reactor power. An additional 5% increase can be achieved due to a reduced refuelling ripple. The channel power limits were also increased by 3% for a total reactor power increase of 20%. This report describes the calculation of neutron flux distributions in the CANDU 9 480/SEU core under conditions specified by the C and I engineers. The RFSP code was used to calculate of neutron flux shapes for ROP analysis. Detailed flux values at numerous potential detector sites were calculated for each flux shape. (author). 6 tabs., 70 figs., 4 refs.
Specification of ROP flux shape
The CANDU 9 480/SEU core uses 0.9% SEU (Slightly Enriched Uranium) fuel. The use f SEU fuel enables the reactor to increase the radial power form factor from 0.865, which is typical in current natural uranium CANDU reactors, to 0.97 in the nominal CANDU 9 480/SEU core. The difference is a 12% increase in reactor power. An additional 5% increase can be achieved due to a reduced refuelling ripple. The channel power limits were also increased by 3% for a total reactor power increase of 20%. This report describes the calculation of neutron flux distributions in the CANDU 9 480/SEU core under conditions specified by the C and I engineers. The RFSP code was used to calculate of neutron flux shapes for ROP analysis. Detailed flux values at numerous potential detector sites were calculated for each flux shape. (author). 6 tabs., 70 figs., 4 refs
Emonts, B H C; Stroe, A; Pentericci, L; Villar-Martin, M; Norris, R P; Miley, G; De Breuck, C; van Moorsel, G A; Lehnert, M D; Carilli, C L; Rottgering, H J A; Seymour, N; Sadler, E M; Ekers, R D; Drouart, G; Feain, I; Colina, L; Stevens, J; Holt, J
2015-01-01
In the low-redshift Universe, the most powerful radio sources are often associated with gas-rich galaxy mergers or interactions. We here present evidence for an advanced, gas-rich (`wet') merger associated with a powerful radio galaxy at a redshift of z~2. This radio galaxy, MRC 0152-209, is the most infrared-luminous high-redshift radio galaxy known in the southern hemisphere. Using the Australia Telescope Compact Array, we obtained high-resolution CO(1-0) data of cold molecular gas, which we complement with HST/WFPC2 imaging and WHT long-slit spectroscopy. We find that, while roughly M(H2) ~ 2 x 10$^{10}$ M$_{\\odot}$ of molecular gas coincides with the central host galaxy, another M(H2) ~ 3 x 10$^{10}$ M$_{\\odot}$ is spread across a total extent of ~60 kpc. Most of this widespread CO(1-0) appears to follow prominent tidal features visible in the rest-frame near-UV HST/WFPC2 imaging. Ly$\\alpha$ emission shows an excess over HeII, but a deficiency over L(IR), which is likely the result of photo-ionisation by ...
Offset removing in the domain of signal shapes
Rix, Hervé
2011-01-01
National audience The recognition of a given shape in a positive signal using the Distribution Function Method (DFM) assumes an affine transform on the abscissa and only a multiplicative coefficient on the ordinates, without any offset. The aim of the paper is to extent DFM when shape equality includes an offset. In fact, this problem is a particular case of signal shape recognition in a sum of two signals whose shapes are known. The first application in mind is the beat to beat extraction...
Artificial Affinity Proteins as Ligands of Immunoglobulins
Barbara Mouratou
2015-01-01
Full Text Available A number of natural proteins are known to have affinity and specificity for immunoglobulins. Some of them are widely used as reagents for detection or capture applications, such as Protein G and Protein A. However, these natural proteins have a defined spectrum of recognition that may not fit specific needs. With the development of combinatorial protein engineering and selection techniques, it has become possible to design artificial affinity proteins with the desired properties. These proteins, termed alternative scaffold proteins, are most often chosen for their stability, ease of engineering and cost-efficient recombinant production in bacteria. In this review, we focus on alternative scaffold proteins for which immunoglobulin binders have been identified and characterized.
Improved native affinity purification of RNA.
Batey, Robert T; Kieft, Jeffrey S
2007-08-01
RNA biochemical or structural studies often require an RNA sample that is chemically pure, and most protocols for its in vitro production use denaturing polyacrylamide gel electrophoresis to achieve this. Unfortunately, many RNAs do not quantitatively refold into an active conformation after denaturation, creating significant problems for downstream characterization or use. In addition, this traditional purification method is not amenable to studies demanding high-throughput RNA production. Recently, we presented the first general method for producing almost any RNA sequence that employs an affinity tag that is removed during the purification process. Because technical difficulties prevented application of this method to many RNAs, we have developed an improved version that utilizes a different activatable ribozyme and affinity tag that are considerably more robust, rapid, and broadly applicable. PMID:17548432
AFFINITY OF LIGNIN PREPARATIONS TOWARDS GENOTOXIC COMPOUNDS
Božena Košíková
2009-02-01
Full Text Available The carcinogenicity and mutagenicity of chemicals may be modulated by other chemicals, including those prepared by organic synthesis. Consid-ering the several drawbacks of synthetic compounds vis-a-vis the human organism, the lignin biomass component was examined for this purpose. The binding affinity of lignin samples prepared by chemical and biological modification of lignin products derived from chemical wood treatment towards for N-nitrosodiethylamine (NDA was examined. The protective role of the lignin samples against carcinogenesis was tested on a well-known model carcinogen, N-methyl-N´-nitro-N-nitrosoguanidine (MNNG. The observed ability of a series of lignin preparations to reduce alkylation damage of deoxyribonucleic acid (DNA on hamster cells in vitro could be explained by their affinity to bind N-nitrosoamines. The results indicate that lignin has potential to protect living organisms against damaging effects of different genotoxicants.
Phosphopeptide enrichment by immobilized metal affinity chromatography
Thingholm, Tine E.; Larsen, Martin R.
2016-01-01
binding capacity. After binding, the enriched phosphopeptides are released from the metal ions using alkaline buffers of pH 10–11, EDTA, or phosphate-containing buffers. Here we describe a protocol for IMAC using Fe 3+ for phosphopeptide enrichment. The principles are illustrated on a semi-complex peptide......Immobilized metal affinity chromatography (IMAC) has been the method of choice for phosphopeptide enrichment prior to mass spectrometric analysis for many years and it is still used extensively in many laboratories. Using the affinity of negatively charged phosphate groups towards positively...... charged metal ions such as Fe3+, Ga3+, Al3+, Zr4+, and Ti4+ has made it possible to enrich phosphorylated peptides from peptide samples. However, the selectivity of most of the metal ions is limited, when working with highly complex samples, e.g., whole-cell extracts, resulting in contamination from...
We conducted an elution experiment with contaminated soils using various aqueous reagent solutions and autoradiography measurements of contaminated bamboo shoots and shiitake mushrooms to determine the physical and chemical characteristics of radioactive Cs from the Fukushima Daiichi Nuclear Power Plant accident. Based on our study results and data in the literature, we conclude that the active Cs emitted by the accident fell to the ground as granular non-ionic materials. Therefore, they were not adsorbed or trapped by minerals in the soil, but instead physically adhere to the rough surfaces of the soil mineral particles. Granular Cs* can be transferred among media, such as soils and plants. The physical properties and dynamic behavior of the granular Cs* is expected to be helpful in considering methods for decontamination of soil, litter, and other media
High-affinity neuropeptide Y receptor antagonists.
Daniels, A J; Matthews, J. E.; Slepetis, R J; Jansen, M; Viveros, O. H.; Tadepalli, A.; Harrington, W; Heyer, D; Landavazo, A; Leban, J J
1995-01-01
Neuropeptide Y (NPY) is one of the most abundant peptide transmitters in the mammalian brain. In the periphery it is costored and coreleased with norepinephrine from sympathetic nerve terminals. However, the physiological functions of this peptide remain unclear because of the absence of specific high-affinity receptor antagonists. Three potent NPY receptor antagonists were synthesized and tested for their biological activity in in vitro, ex vivo, and in vivo functional assays. We describe he...
Staircase models from affine Toda field theory
The authors propose a class of purely elastic scattering theories generalizing the staircase model of Al. B. Zamolodchikov, based on the affine Toda field theories for simply-laced Lie algebras g = A,D,E at suitable complex values of their coupling constants. Considering their Thermodynamic Bethe Ansatz equations, they give analytic arguments in support of a conjectured renormalization group flow visiting the neighborhood of each Wg minimal model in turn
AFFINE TRANSFORMATION IN RANDOM ITERATED FUNCTION SYSTEMS
熊勇; 史定华
2001-01-01
Random iterated function systems (IFSs) is discussed, which is one of the methods for fractal drawing. A certain figure can be reconstructed by a random IFS. One approach is presented to determine a new random IFS, that the figure reconstructed by the new random IFS is the image of the origin figure reconstructed by old IFS under a given affine transformation. Two particular examples are used to show this approach.
Homogeneous grading affine Toda quantum solitons
Zuevsky, Alexander
Vol. 563. Bristol : IOP Science, 2014 - (Burdik, C.; Navratil, O.; Posta, S.), 012036 ISSN 1742-6588. [International Conference on Integrable Systems and Quantum Symmetries (ISQS-22) /22./. Prague (CZ), 26.06.2014-29.06.-2014] Institutional support: RVO:67985840 Keywords : exactly solvable models * conformal and affine Toda systems * quantum groups Subject RIV: BA - General Mathematics http://iopscience.iop.org/1742-6596/563/1/012036
Denominators in cluster algebras of affine type
Buan, Aslak Bakke; Marsh, Robert J.
2008-01-01
The Fomin-Zelevinsky Laurent phenomenon states that every cluster variable in a cluster algebra can be expressed as a Laurent polynomial in the variables lying in an arbitrary initial cluster. We give representation-theoretic formulas for the denominators of cluster variables in cluster algebras of affine type. The formulas are in terms of the dimensions of spaces of homomorphisms in the corresponding cluster category, and hold for any choice of initial cluster.
Thermodynamics. Using Affinities to define reversible processes
Ritacco, Hernán A
2016-01-01
In this article a definition of reversible processes in terms of differences in intensive Thermodynamics properties (Affinities) is proposed. This definition makes it possible to both define reversible processes before introducing the concept of entropy and avoid the circularity problem that follows from the Clausius definition of entropy changes. The convenience of this new definition compared to those commonly found in textbooks is demonstrated with examples.
On constructing purely affine theories with matter
Cervantes-Cota, Jorge L.; Liebscher, D.-E.
2016-08-01
We explore ways to obtain the very existence of a space-time metric from an action principle that does not refer to it a priori. Although there are reasons to believe that only a non-local theory can viably achieve this goal, we investigate here local theories that start with Schrödinger's purely affine theory (Schrödinger in Space-time structure. Cambridge UP, Cambridge, 1950), where he gave reasons to set the metric proportional to the Ricci curvature aposteriori. When we leave the context of unified field theory, and we couple the non-gravitational matter using some weak equivalence principle, we can show that the propagation of shock waves does not define a lightcone when the purely affine theory is local and avoids the explicit use of the Ricci tensor in realizing the weak equivalence principle. When the Ricci tensor is substituted for the metric, the equations seem to have only a very limited set of solutions. This backs the conviction that viable purely affine theories have to be non-local.
On constructing purely affine theories with matter
Cervantes-Cota, Jorge L
2016-01-01
We explore ways to obtain the very existence of a space-time metric from an action principle that does not refer to it a priori. Although there are reasons to believe that only a non-local theory can viably achieve this goal, we investigate here local theories that start with Schroedinger's purely affine theory [21], where he gave reasons to set the metric proportional to the Ricci curvature aposteriori. When we leave the context of unified field theory, and we couple the non-gravitational matter using some weak equivalence principle, we can show that the propagation of shock waves does not define a lightcone when the purely affine theory is local and avoids the explicit use of the Ricci tensor in realizing the weak equivalence principle. When the Ricci tensor is substituted for the metric, the equations seem to have only a very limited set of solutions. This backs the conviction that viable purely affine theories have to be non-local.
Overview of affinity biosensors in food analysis.
Patel, Pradip D
2006-01-01
The 4 major driving forces that are expected to lead to increased use of affinity biosensors that meet crucial industrial test specifications, e.g., fast, reliable, cost-effective, and use of low-skilled personnel, are (1) strict legislative framework, e.g., recent changes proposed to the European food safety and hygiene legislation, EC No. 178/2002; (2) industrial shift from quality control to quality assurance procedures, e.g., Hazard Analysis Critical Control Point, ensuring effective positioning in the global competitive trade; (3) just-in-time production resulting in 'right' product every time; and (4) consumer demand for safe and wholesome products. The affinity biosensors field has expanded significantly over the past decade, with a projected global biosensors market growth from $6.1 billion in 2004 to $8.2 billion in 2009, representing major industrial sectors (e.g., Pharma, Medicare, and Food). This brief review is targeted to affinity biosensors developed for the food industry and includes research and development leading to biosensors for microbiological and chemical analytes of industrial concern, commercial biosensors products on the market, and examples of future prospects in this diagnostic field. PMID:16792079
A MEMS Dielectric Affinity Glucose Biosensor.
Huang, Xian; Li, Siqi; Davis, Erin; Li, Dachao; Wang, Qian; Lin, Qiao
2013-06-20
Continuous glucose monitoring (CGM) sensors based on affinity detection are desirable for long-term and stable glucose management. However, most affinity sensors contain mechanical moving structures and complex design in sensor actuation and signal readout, limiting their reliability in subcutaneously implantable glucose detection. We have previously demonstrated a proof-of-concept dielectric glucose sensor that measured pre-mixed glucose-sensitive polymer solutions at various glucose concentrations. This sensor features simplicity in sensor design, and possesses high specificity and accuracy in glucose detection. However, lack of glucose diffusion passage, this device is unable to fulfill real-time in-vivo monitoring. As a major improvement to this device, we present in this paper a fully implantable MEMS dielectric affinity glucose biosensor that contains a perforated electrode embedded in a suspended diaphragm. This capacitive-based sensor contains no moving parts, and enables glucose diffusion and real-time monitoring. The experimental results indicate that this sensor can detect glucose solutions at physiological concentrations and possesses good reversibility and reliability. This sensor has a time constant to glucose concentration change at approximately 3 min, which is comparable to commercial systems. The sensor has potential applications in fully implantable CGM that require excellent long-term stability and reliability. PMID:24511215
Phosphopeptide Enrichment by Immobilized Metal Affinity Chromatography.
Thingholm, Tine E; Larsen, Martin R
2016-01-01
Immobilized metal affinity chromatography (IMAC) has been the method of choice for phosphopeptide enrichment prior to mass spectrometric analysis for many years and it is still used extensively in many laboratories. Using the affinity of negatively charged phosphate groups towards positively charged metal ions such as Fe(3+), Ga(3+), Al(3+), Zr(4+), and Ti(4+) has made it possible to enrich phosphorylated peptides from peptide samples. However, the selectivity of most of the metal ions is limited, when working with highly complex samples, e.g., whole-cell extracts, resulting in contamination from nonspecific binding of non-phosphorylated peptides. This problem is mainly caused by highly acidic peptides that also share high binding affinity towards these metal ions. By lowering the pH of the loading buffer nonspecific binding can be reduced significantly, however with the risk of reducing specific binding capacity. After binding, the enriched phosphopeptides are released from the metal ions using alkaline buffers of pH 10-11, EDTA, or phosphate-containing buffers. Here we describe a protocol for IMAC using Fe(3+) for phosphopeptide enrichment. The principles are illustrated on a semi-complex peptide mixture. PMID:26584922
Quelques remarques sur la notion de modification affine
Dubouloz, Adrien
2005-01-01
in french We construct a global counterpart to the notion of affine modification due to Kaliman and Zaidenberg. This leads to a simple explicit description of the structure of birational affine morphisms between arbitrary quasi-projective varieties.
A multiscale framework for affine invariant pattern recognition and registration
Rahtu, E. (Esa)
2007-01-01
Abstract This thesis presents a multiscale framework for the construction of affine invariant pattern recognition and registration methods. The idea in the introduced approach is to extend the given pattern to a set of affine covariant versions, each carrying slightly different information, and then to apply known affine invariants to each of them separately. The key part of the framework is the construction of the affine covariant set, and this is done by combining several scaled represen...
The purification of affinity-labelled active-site peptides
The isolation of the labelled peptide from the protein digest, following the affinity labelling of the active sites of enzymes or antibodies, is described. Single-step affinity chromatography utilises the affinity of the native enzymes or antibody for the ligand used to label the same protein. The labelled peptide is the only one in the digest that displays affinity for the immobilised protein and can be released with eluants that dissociate the protein-ligand complex. (Auth.)
Fernando, Basura; Karaoglu, Sezer; Saha, Sajib Kumar
2015-01-01
This paper presents a novel multi scale gradient and a corner point based shape descriptors. The novel multi scale gradient based shape descriptor is combined with generic Fourier descriptors to extract contour and region based shape information. Shape information based object class detection and classification technique with a random forest classifier has been optimized. Proposed integrated descriptor in this paper is robust to rotation, scale, translation, affine deformations, noisy contour...
Duals of Affine Grassmann Codes and Their Relatives
Beelen, P.; Ghorpade, S. R.; Hoholdt, T.
2012-01-01
Affine Grassmann codes are a variant of generalized Reed-Muller codes and are closely related to Grassmann codes. These codes were introduced in a recent work by Beelen Here, we consider, more generally, affine Grassmann codes of a given level. We explicitly determine the dual of an affine Grassm...
Design of linear shaped thermoelectric generator and self-integration using shape memory alloy
Kim, Hee Seok [Center for Intelligent Materials and Systems, Department of Mechanical Engineering, University of Washington, Box 352600, Seattle, WA 98195-2600 (United States); Itoh, Takashi [EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Iida, Tsutomu [Department of Materials Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-Shi, Chiba 278-8510 (Japan); Taya, Minoru, E-mail: tayam@u.washington.edu [Center for Intelligent Materials and Systems, Department of Mechanical Engineering, University of Washington, Box 352600, Seattle, WA 98195-2600 (United States); Kikuchi, Keiko [Department of Materials Processing, Tohoku University, Sendai, 980-8579 (Japan)
2014-04-01
Highlights: • The linear-shaped thermoelectric (TE) module based on higher specific figure-of-merit is proposed by using Cu–AlN electrode. • The specific power density [W/kg] of the linear shaped TE generator is higher than that of the π-shaped TE generator. • New integration method using Fe based shape memory alloy and shrink-fit mechanism is developed for secure fastening. - Abstract: A segmented linear-shaped thermoelectric generator was designed with n-type Mg{sub 2}Si and p-type higher manganese silicide as higher temperature segments and n-type and p-type Bi–Te based compounds as low temperature legs. A new design of a dovetail-shaped AlN–Cu composite as an electrode enabled linear-shaped thermoelectric generator to be securely bonded to the combustion chamber walls by using shrink-fit-joining method. As-assembled linear thermoelectric generator is lighter in generating more power output as compared with conventional π-shaped thermoelectric generator. The linear thermoelectric module generates the output power of 0.513 W under 500 °C temperature difference and the specific power density was measured at 89.3 W/kg, the output power was improved by 7% and the specific power density more than 2 times, as compared with those of the π-shaped thermoelectric module based on the same set of thermoelectric materials and temperature differential.
Design of linear shaped thermoelectric generator and self-integration using shape memory alloy
Highlights: • The linear-shaped thermoelectric (TE) module based on higher specific figure-of-merit is proposed by using Cu–AlN electrode. • The specific power density [W/kg] of the linear shaped TE generator is higher than that of the π-shaped TE generator. • New integration method using Fe based shape memory alloy and shrink-fit mechanism is developed for secure fastening. - Abstract: A segmented linear-shaped thermoelectric generator was designed with n-type Mg2Si and p-type higher manganese silicide as higher temperature segments and n-type and p-type Bi–Te based compounds as low temperature legs. A new design of a dovetail-shaped AlN–Cu composite as an electrode enabled linear-shaped thermoelectric generator to be securely bonded to the combustion chamber walls by using shrink-fit-joining method. As-assembled linear thermoelectric generator is lighter in generating more power output as compared with conventional π-shaped thermoelectric generator. The linear thermoelectric module generates the output power of 0.513 W under 500 °C temperature difference and the specific power density was measured at 89.3 W/kg, the output power was improved by 7% and the specific power density more than 2 times, as compared with those of the π-shaped thermoelectric module based on the same set of thermoelectric materials and temperature differential
Boyer, M. D.; Andre, R.; Gates, D. A.; Gerhardt, S.; Goumiri, I. R.; Menard, J.
2015-04-24
The high-performance operational goals of NSTX-U will require development of advanced feedback control algorithms, including control of ßN and the safety factor profile. In this work, a novel approach to simultaneously controlling ßN and the value of the safety factor on the magnetic axis, q0, through manipulation of the plasma boundary shape and total beam power, is proposed. Simulations of the proposed scheme show promising results and motivate future experimental implementation and eventual integration into a more complex current profile control scheme planned to include actuation of individual beam powers, density, and loop voltage. As part of this work, a flexible framework for closed loop simulations within the high-fidelity code TRANSP was developed. The framework, used here to identify control-design-oriented models and to tune and test the proposed controller, exploits many of the predictive capabilities of TRANSP and provides a means for performing control calculations based on user-supplied data (controller matrices, target waveforms, etc.). The flexible framework should enable high-fidelity testing of a variety of control algorithms, thereby reducing the amount of expensive experimental time needed to implement new control algorithms on NSTX-U and other devices.
Avoiding degenerate coframes in an affine gauge approach to quantum gravity
This report discusses the following concepts on quantum gravity: The affine gauge approach; affine gauge transformations versus active differomorphisms; affine gauge approach to quantum gravity with topology change
On Metrizability of Invariant Affine Connections
Tanaka, Erico
2011-01-01
The metrizability problem for a symmetric affine connection on a manifold, invariant with respect to a group of diffeomorphisms G, is considered. We say that the connection is G-metrizable, if it is expressible as the Levi-Civita connection of a G-invariant metric field. In this paper we analyze the G-metrizability equations for the rotation group G = SO(3), acting canonically on three- and four-dimensional Euclidean spaces. We show that the property of the connection to be SO(3)-invariant allows us to find complete explicit description of all solutions of the SO(3)-metrizability equations.
Quantum affine symmetry in vertex models
Idzumi, M; Jimbo, M; Miwa, T; Nakashima, T; Tokihiro, T; Idzumi, Makoto; Iohara, Kenji; Jimbo, Michio; Miwa, Tetsuji; Nakashima, Toshiki; Tokihiro, Tetsuji
1993-01-01
We study the higher spin anologs of the six vertex model on the basis of its symmetry under the quantum affine algebra $U_q(\\slth)$. Using the method developed recently for the XXZ spin chain, we formulate the space of states, transfer matrix, vacuum, creation/annihilation operators of particles, and local operators, purely in the language of representation theory. We find that, regardless of the level of the representation involved, the particles have spin $1/2$, and that the $n$-particle space has an RSOS-type structure rather than a simple tensor product of the $1$-particle space. This agrees with the picture proposed earlier by Reshetikhin.
Connection between the Affine and conformal Affine Toda models and their Hirota's solution
It is shown that the Affine Toda models (AT) constitute a gauge fixed version of the Conformal Affine Toda model (CAT). This result enables one to map every solution of the AT models into an infinite number of solutions of the corresponding CAT models, each one associated to a point of the orbit of the conformal group. The Hirota's τ-function are introduced and soliton solutions for the AT and CAT models associated to SL (r+1) and SP (r) are constructed. (author)
Improved axial flux shape generator for quick DNB test
Axial power shapes that develop during power maneuvering in pressurized water reactors must be analyzed to ensure that adequate margin to avoid departure from nucleate boiling (DNB) is maintained during these transients. In order to reduce the number of flux shapes that need to be analyzed in detail to determine DNB ratio (DNBR), often generic axial flux shapes are analyzed and Maximum Allowable Peaking (MAP) limits are determined to conservatively filter those actual axial power shapes that are clearly safe. Current generic MAP limits, obtained for axial flux shapes, generated by a two-parameter based axial flux shape generator, are overly conservative for some power shapes and nonconservative for others leading to unnecessary operational restrictions on conservative cases. A penalty is imposed on nonconservative cases. In order to reduce the number of overly conservative and nonconservative cases, the authors have developed a new generic axial power shape generator, that is based on three parameters. Generic MAP limits have been developed for the new axial flux shape generator and tested using real flux shapes by plotting the percent deviation of MAP limits for generic flux shapes from the corresponding value for actual flux shapes. New axial flux shape generator, which is clearly superior as it leads to significantly lower percent deviation, will lead to reduced man-hours for detailed DNBR analyses and remove some of the unnecessary operational restrictions imposed by the old flux shape generator
Marc Behl
2007-04-01
Full Text Available Shape-memory polymers are an emerging class of active polymers that have dual-shape capability. They can change their shape in a predefined way from shape A to shape B when exposed to an appropriate stimulus. While shape B is given by the initial processing step, shape A is determined by applying a process called programming. We review fundamental aspects of the molecular design of suitable polymer architectures, tailored programming and recovery processes, and the quantification of the shape-memory effect. Shape-memory research was initially founded on the thermally induced dual-shape effect. This concept has been extended to other stimuli by either indirect thermal actuation or direct actuation by addressing stimuli-sensitive groups on the molecular level. Finally, polymers are introduced that can be multifunctional. Besides their dual-shape capability, these active materials are biofunctional or biodegradable. Potential applications for such materials as active medical devices are highlighted.
Aptamer Affinity Maturation by Resampling and Microarray Selection.
Kinghorn, Andrew B; Dirkzwager, Roderick M; Liang, Shaolin; Cheung, Yee-Wai; Fraser, Lewis A; Shiu, Simon Chi-Chin; Tang, Marco S L; Tanner, Julian A
2016-07-19
Aptamers have significant potential as affinity reagents, but better approaches are critically needed to discover higher affinity nucleic acids to widen the scope for their diagnostic, therapeutic, and proteomic application. Here, we report aptamer affinity maturation, a novel aptamer enhancement technique, which combines bioinformatic resampling of aptamer sequence data and microarray selection to navigate the combinatorial chemistry binding landscape. Aptamer affinity maturation is shown to improve aptamer affinity by an order of magnitude in a single round. The novel aptamers exhibited significant adaptation, the complexity of which precludes discovery by other microarray based methods. Honing aptamer sequences using aptamer affinity maturation could help optimize a next generation of nucleic acid affinity reagents. PMID:27346322
Induced Modules for Affine Lie Algebras
Vyacheslav Futorny
2009-03-01
Full Text Available We study induced modules of nonzero central charge with arbitrary multiplicities over affine Lie algebras. For a given pseudo parabolic subalgebra P of an affine Lie algebra G, our main result establishes the equivalence between a certain category of P-induced G-modules and the category of weight P-modules with injective action of the central element of G. In particular, the induction functor preserves irreducible modules. If P is a parabolic subalgebra with a finite-dimensional Levi factor then it defines a unique pseudo parabolic subalgebra P^{ps}, P subset P^{ps}. The structure of P-induced modules in this case is fully determined by the structure of P^{ps}-induced modules. These results generalize similar reductions in particular cases previously considered by V. Futorny, S. König, V. Mazorchuk [Forum Math. 13 (2001, 641-661], B. Cox [Pacific J. Math. 165 (1994, 269-294] and I. Dimitrov, V. Futorny, I. Penkov [Comm. Math. Phys. 250 (2004, 47-63].
Exploring Fluorous Affinity by Liquid Chromatography.
Catani, Martina; Guzzinati, Roberta; Marchetti, Nicola; Pasti, Luisa; Cavazzini, Alberto
2015-07-01
Terms such as "fluorous affinity" and "fluorophilicity" have been used to describe the unique partition and sorption properties often exhibited by highly fluorinated organic compounds, that is molecules rich in sp(3) carbon-fluorine bonds. In this work, we made use of a highly fluorinated stationary phase and a series of benzene derivatives to study the effect of one single perfluorinated carbon on the chromatographic behavior and adsorption properties of molecules. For this purpose, the adsorption equilibria of α,α,α-trifluorotoluene, toluene, and other alkylbenzenes have been studied by means of nonlinear chromatography in a variety of acetonitrile/water eluents. Our results reveal that one single perfluorinated carbon is already enough to induce a drastic change in the adsorption properties of molecules on the perfluorinated stationary phase. In particular, it has been found that adsorption is monolayer if the perfluoroalkyl carbon is present but that, when this unit is missing, molecules arrange as multilayer stack structures. These findings can contribute to the understanding of molecular mechanisms of fluorous affinity. PMID:26047527
Aspects of affine Toda field theory
The report is devoted to properties of the affine Toda field theory, the intention being to highlight a selection of curious properties that should be explicable in terms of the underlying group theory but for which in most cases there are no explanation. The motivation for exploring the ideas contained in this report came principally from the recent work of Zamolodchikov concerning the two dimensional Ising model at critical temperature perturbed by a magnetic field. Hollowood and Mansfield pointed out that since Toda field theory is conformal the perturbation considered by Zamolodchikov might well be best regarded as a perturbation of a Toda field theory. This work made it seem plausible that the theory sought by Zamolodchikov was actually affine E8 Toda field theory. However, this connection required an imaginary value of the coupling constant. Investigations here concerning exact S-matrices use a perturbative approach based on real coupling and the results differ in various ways from those thought to correspond to perturbed conformal field theory. A further motivation is to explore the connection between conformal and perturbed conformal field theories in other contexts using similar ideas. (N.K.)
Reinforced Airfoil Shaped Body
2011-01-01
The present invention relates to an airfoil shaped body with a leading edge and a trailing edge extending along the longitudinal extension of the body and defining a profile chord, the airfoil shaped body comprising an airfoil shaped facing that forms the outer surface of the airfoil shaped body...
Shape Control of Solar Collectors Using Shape Memory Alloy Actuators
Lobitz, D. W.; Grossman, J. W.; Allen, J. J.; Rice, T. M.; Liang, C.; Davidson, F. M.
1996-01-01
Solar collectors that are focused on a central receiver are designed with a mechanism for defocusing the collector or disabling it by turning it out of the path of the sun's rays. This is required to avoid damaging the receiver during periods of inoperability. In either of these two cases a fail-safe operation is very desirable where during power outages the collector passively goes to its defocused or deactivated state. This paper is principally concerned with focusing and defocusing the collector in a fail-safe manner using shape memory alloy actuators. Shape memory alloys are well suited to this application in that once calibrated the actuators can be operated in an on/off mode using a minimal amount of electric power. Also, in contrast to other smart materials that were investigated for this application, shape memory alloys are capable of providing enough stroke at the appropriate force levels to focus the collector. Design and analysis details presented, along with comparisons to test data taken from an actual prototype, demonstrate that the collector can be repeatedly focused and defocused within accuracies required by typical solar energy systems. In this paper the design, analysis and testing of a solar collector which is deformed into its desired shape by shape memory alloy actuators is presented. Computations indicate collector shapes much closer to spherical and with smaller focal lengths can be achieved by moving the actuators inward to a radius of approximately 6 inches. This would require actuators with considerably more stroke and some alternate SMA actuators are currently under consideration. Whatever SMA actuator is finally chosen for this application, repeatability and fatigue tests will be required to investigate the long term performance of the actuator.
Wilson, Thomas S.; Bearinger, Jane P.
2015-06-09
New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxyl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.
Affinity-based constraint optimization for nearly-automatic vessel segmentation
Cooper, O.; Freiman, M.; Joskowicz, L.; Lischinski, D.
2010-03-01
We present an affinity-based optimization method for nearly-automatic vessels segmentation in CTA scans. The desired segmentation is modeled as a function that minimizes a quadratic affinity-based functional. The functional incorporates intensity and geometrical vessel shape information and a smoothing constraint. Given a few user-defined seeds, the minimum of the functional is obtained by solving a single set of linear equations. The binary segmentation is then obtained by applying a user-selected threshold. The advantages of our method are that it requires fewer initialization seeds, is robust, and yields better results than existing graph-based interactive segmentation methods. Experimental results on 20 vessel segments including the carotid arteries bifurcation and noisy parts of the carotid yield a mean symmetric surface error of 0.54mm (std=0.28).
Classical models of affinely-rigid bodies with "thickness" in degenerate dimension
Kovalchuk, Vasyl
2009-01-01
The special interest is devoted to such situations when the material space of our object with affine degrees of freedom has generally lower dimension than the one of the physical space. In other words when we have the $m$-dimensional affinely-rigid body moving in the $n$-dimensional physical space, $m
Niemi, Sami-Matias; Cropper, Mark
2015-01-01
One of the most powerful techniques to study the dark sector of the Universe is weak gravitational lensing. In practice, to infer the reduced shear, weak lensing measures galaxy shapes, which are the consequence of both the intrinsic ellipticity of the sources and of the integrated gravitational lensing effect along the line of sight. Hence, a very large number of galaxies is required in order to average over their individual properties and to isolate the weak lensing cosmic shear signal. If this `shape noise' can be reduced, significant advances in the power of a weak lensing surveys can be expected. This paper describes a general method for extracting the probability distributions of parameters from catalogues of data using Voronoi cells, which has several applications, and has synergies with Bayesian hierarchical modelling approaches. This allows us to construct a probability distribution for the variance of the intrinsic ellipticity as a function of galaxy property using only photometric data, allowing a ...
Data Stream Clustering With Affinity Propagation
Zhang, Xiangliang
2014-07-09
Data stream clustering provides insights into the underlying patterns of data flows. This paper focuses on selecting the best representatives from clusters of streaming data. There are two main challenges: how to cluster with the best representatives and how to handle the evolving patterns that are important characteristics of streaming data with dynamic distributions. We employ the Affinity Propagation (AP) algorithm presented in 2007 by Frey and Dueck for the first challenge, as it offers good guarantees of clustering optimality for selecting exemplars. The second challenging problem is solved by change detection. The presented StrAP algorithm combines AP with a statistical change point detection test; the clustering model is rebuilt whenever the test detects a change in the underlying data distribution. Besides the validation on two benchmark data sets, the presented algorithm is validated on a real-world application, monitoring the data flow of jobs submitted to the EGEE grid.
Generalized affine transformation monoids on Galois rings
Yonglin Cao
2006-01-01
Let A be a ring with identity. The generalized affine transformation monoid Gaff(A) is defined as the set of all transformations on A of the form xÃ¢Â†Â¦xu+a (for all xÃ¢ÂˆÂˆA), where u,aÃ¢ÂˆÂˆA. We study the algebraic structure of the monoid Gaff(A) on a finite Galois ring A. The following results are obtained: an explicit description of Green's relations on Gaff(A); and an explicit description of the SchÃƒÂ¼tzenberger group of every Ã°ÂÂ’ÂŸ-class, which is shown to be isomorphic to the aff...
Gravitational Goldstone fields from affine gauge theory
Tresguerres, R
2000-01-01
In order to facilitate the application of standard renormalization techniques, gravitation should be decribed, if possible, in pure connection formalism, as a Yang-Mills theory of a certain spacetime group, say the Poincare or the affine group. This embodies the translational as well as the linear connection. However, the coframe is not the standard Yang-Mills type gauge field of the translations, since it lacks the inhomogeneous gradient term in the gauge transformations. By explicitly restoring the "hidden" piece responsible for this behavior within the framework of nonlinear realizations, the usual geometrical interpretation of the dynamical theory becomes possible, and in addition one can avoid the metric or coframe degeneracy which would otherwise interfere with the integrations within the path integral. We claim that nonlinear realizations provide a general mathematical scheme clarifying the foundations of gauge theories of spacetime symmetries. When applied to construct the Yang-Mills theory of the aff...
Effectively nonlocal metric-affine gravity
Golovnev, Alexey; Sandstad, Marit
2015-01-01
In metric-affine theories of gravity such as the C-theories, the spacetime connection is associated to a metric that is nontrivially related to the physical metric. In this article, such theories are rewritten in terms of a single metric and it is shown that they can be recast as effectively nonlocal gravity. With some assumptions, known ghost-free theories with non-singular and cosmologically interesting properties may be recovered. Relations between different formulations are analysed at both perturbative and nonperturbative levels taking carefully into account subtleties with boundary conditions in the presence of integral operators in the action, and equivalences between theories related by nonlocal redefinitions of the fields are verified at the level of equations of motion. This suggests a possible geometrical interpretation of nonlocal gravity as an emergent property of non-Riemannian spacetime structure.
Effectively nonlocal metric-affine gravity
Golovnev, Alexey; Koivisto, Tomi; Sandstad, Marit
2016-03-01
In metric-affine theories of gravity such as the C-theories, the spacetime connection is associated to a metric that is nontrivially related to the physical metric. In this article, such theories are rewritten in terms of a single metric, and it is shown that they can be recast as effectively nonlocal gravity. With some assumptions, known ghost-free theories with nonsingular and cosmologically interesting properties may be recovered. Relations between different formulations are analyzed at both perturbative and nonperturbative levels, taking carefully into account subtleties with boundary conditions in the presence of integral operators in the action, and equivalences between theories related by nonlocal redefinitions of the fields are verified at the level of equations of motion. This suggests a possible geometrical interpretation of nonlocal gravity as an emergent property of non-Riemannian spacetime structure.
Affine connection form of Regge calculus
Khatsymovsky, V M
2015-01-01
Regge action is represented analogously to how the Palatini action for general relativity (GR) as some functional of the metric and a general connection as independent variables represents the Einstein-Hilbert action. The piecewise flat (or simplicial) spacetime of Regge calculus is equipped with some world coordinates and some piecewise affine metric which is completely defined by the set of edge lengths and the world coordinates of the vertices. The conjugate variables are the general nondegenerate matrices on the 3-simplices which play a role of a general discrete connection. Our previous result on some representation of the Regge calculus action in terms of the local Euclidean (Minkowsky) frame vectors and orthogonal connection matrices as independent variables is somewhat modified for the considered case of the general linear group GL(4,R) of the connection matrices. As a result, we have some action invariant w. r. t. arbitrary change of coordinates of the vertices (and related GL(4,R) transformations in...
Li, Bing; Fouts, Ashley E; Stengel, Katharina; Luan, Peng; Dillon, Michael; Liang, Wei-Ching; Feierbach, Becket; Kelley, Robert F; Hötzel, Isidro
2014-01-01
Antibodies isolated from human donors are increasingly being developed for anti-infective therapeutics. These antibodies undergo affinity maturation in vivo, minimizing the need for engineering of therapeutic leads for affinity. However, the affinities required for some therapeutic applications may be higher than the affinities of the leads obtained, requiring further affinity maturation in vitro. To improve the neutralization potency of natural human antibody MSL-109 targeting human cytomegalovirus (CMV), we affinity matured the antibody against the gH/gL glycoprotein complex. A phage display library where most of the six complementary-determining regions (CDRs) were allowed to vary in only one amino acid residue at a time was used to scan for mutations that improve binding affinity. A T55R mutation and multiple mutations in position 53 of the heavy chain were identified that, when present individually or in combination, resulted in higher apparent affinities to gH/gL and improved CMV neutralization potency of Fab fragments expressed in bacterial cells. Three of these mutations in position 53 introduced glycosylation sites in heavy chain CDR 2 (CDR H2) that impaired binding of antibodies expressed in mammalian cells. One high affinity (KD < 10 pM) variant was identified that combined the D53N and T55R mutations while avoiding glycosylation of CDR H2. However, all the amino acid substitutions identified by phage display that improved binding affinity without introducing glycosylation sites required between two and four simultaneous nucleotide mutations to avoid glycosylation. These results indicate that the natural human antibody MSL-109 is close to a local affinity optimum. We show that affinity maturation by phage display can be used to identify and bypass barriers to in vivo affinity maturation of antibodies imposed by glycosylation and codon usage. These constraints may be relatively prevalent in human antibodies due to the codon usage and the amino acid
Classical affine W-algebras associated to Lie superalgebras
In this paper, we prove classical affine W-algebras associated to Lie superalgebras (W-superalgebras), which can be constructed in two different ways: via affine classical Hamiltonian reductions and via taking quasi-classical limits of quantum affine W-superalgebras. Also, we show that a classical finite W-superalgebra can be obtained by a Zhu algebra of a classical affine W-superalgebra. Using the definition by Hamiltonian reductions, we find free generators of a classical W-superalgebra associated to a minimal nilpotent. Moreover, we compute generators of the classical W-algebra associated to spo(2|3) and its principal nilpotent. In the last part of this paper, we introduce a generalization of classical affine W-superalgebras called classical affine fractional W-superalgebras. We show these have Poisson vertex algebra structures and find generators of a fractional W-superalgebra associated to a minimal nilpotent
Classical affine W-algebras associated to Lie superalgebras
Suh, Uhi Rinn, E-mail: uhrisu1@math.snu.ac.kr [Department of Mathematical Sciences, Seoul National University, GwanAkRo 1, Gwanak-Gu, Seoul 151-747 (Korea, Republic of)
2016-02-15
In this paper, we prove classical affine W-algebras associated to Lie superalgebras (W-superalgebras), which can be constructed in two different ways: via affine classical Hamiltonian reductions and via taking quasi-classical limits of quantum affine W-superalgebras. Also, we show that a classical finite W-superalgebra can be obtained by a Zhu algebra of a classical affine W-superalgebra. Using the definition by Hamiltonian reductions, we find free generators of a classical W-superalgebra associated to a minimal nilpotent. Moreover, we compute generators of the classical W-algebra associated to spo(2|3) and its principal nilpotent. In the last part of this paper, we introduce a generalization of classical affine W-superalgebras called classical affine fractional W-superalgebras. We show these have Poisson vertex algebra structures and find generators of a fractional W-superalgebra associated to a minimal nilpotent.