WorldWideScience

Sample records for affecting human chromosome

  1. Chromosome analysis of arsenic affected cattle

    Directory of Open Access Journals (Sweden)

    S. Shekhar

    2014-10-01

    Full Text Available Aim: The aim was to study the chromosome analysis of arsenic affected cattle. Materials and Methods: 27 female cattle (21 arsenic affected and 6 normal were selected for cytogenetical study. The blood samples were collected, incubated, and cultured using appropriate media and specific methods. The samples were analyzed for chromosome number and morphology, relative length of the chromosome, arm ratio, and centromere index of X chromosome and chromosomal abnormalities in arsenic affected cattle to that of normal ones. Results: The diploid number of metaphase chromosomes in arsenic affected cattle as well as in normal cattle were all 2n=60, 58 being autosomes and 2 being sex chromosomes. From the centromeric position, karyotyping studies revealed that all the 29 pair of autosomes was found to be acrocentric or telocentric, and the sex chromosomes (XX were submetacentric in both normal and arsenic affected cattle. The relative length of all the autosome pairs and sex chrosomosome pair was found to be higher in normal than that of arsenic affected cattle. The mean arm ratio of X-chromosome was higher in normal than that of arsenic affected cattle, but it is reverse in case of centromere index value of X-chromosome. There was no significant difference of arm ratio and centromere index of X-chromosomes between arsenic affected and normal cattle. No chromosomal abnormalities were found in arsenic affected cattle. Conclusion: The chromosome analysis of arsenic affected cattle in West Bengal reported for the first time in this present study which may serve as a guideline for future studies in other species. These reference values will also help in comparison of cytological studies of arsenic affected cattle to that of various toxicants.

  2. Numerically abnormal chromosome constitutions in humans

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    Chapter 24, discusses numerically abnormal chromosome constitutions in humans. This involves abnormalities of human chromosome number, including polyploidy (when the number of sets of chromosomes increases) and aneuploidy (when the number of individual normal chromosomes changes). Chapter sections discuss the following chromosomal abnormalities: human triploids, imprinting and uniparental disomy, human tetraploids, hydatidiform moles, anomalies caused by chromosomal imbalance, 13 trisomy (D{sub 1} trisomy, Patau syndrome), 21 trisomy (Down syndrome), 18 trisomy syndrome (Edwards syndrome), other autosomal aneuploidy syndromes, and spontaneous abortions. The chapter concludes with remarks on the nonrandom participation of chromosomes in trisomy. 69 refs., 3 figs., 4 tabs.

  3. Natural Selection Reduced Diversity on Human Y Chromosomes

    Science.gov (United States)

    Wilson Sayres, Melissa A.; Lohmueller, Kirk E.; Nielsen, Rasmus

    2014-01-01

    The human Y chromosome exhibits surprisingly low levels of genetic diversity. This could result from neutral processes if the effective population size of males is reduced relative to females due to a higher variance in the number of offspring from males than from females. Alternatively, selection acting on new mutations, and affecting linked neutral sites, could reduce variability on the Y chromosome. Here, using genome-wide analyses of X, Y, autosomal and mitochondrial DNA, in combination with extensive population genetic simulations, we show that low observed Y chromosome variability is not consistent with a purely neutral model. Instead, we show that models of purifying selection are consistent with observed Y diversity. Further, the number of sites estimated to be under purifying selection greatly exceeds the number of Y-linked coding sites, suggesting the importance of the highly repetitive ampliconic regions. While we show that purifying selection removing deleterious mutations can explain the low diversity on the Y chromosome, we cannot exclude the possibility that positive selection acting on beneficial mutations could have also reduced diversity in linked neutral regions, and may have contributed to lowering human Y chromosome diversity. Because the functional significance of the ampliconic regions is poorly understood, our findings should motivate future research in this area. PMID:24415951

  4. Micromechanics of human mitotic chromosomes

    International Nuclear Information System (INIS)

    Sun, Mingxuan; Kawamura, Ryo; Marko, John F

    2011-01-01

    Eukaryote cells dramatically reorganize their long chromosomal DNAs to facilitate their physical segregation during mitosis. The internal organization of folded mitotic chromosomes remains a basic mystery of cell biology; its understanding would likely shed light on how chromosomes are separated from one another as well as into chromosome structure between cell divisions. We report biophysical experiments on single mitotic chromosomes from human cells, where we combine micromanipulation, nano-Newton-scale force measurement and biochemical treatments to study chromosome connectivity and topology. Results are in accord with previous experiments on amphibian chromosomes and support the 'chromatin network' model of mitotic chromosome structure. Prospects for studies of chromosome-organizing proteins using siRNA expression knockdowns, as well as for differential studies of chromosomes with and without mutations associated with genetic diseases, are also discussed

  5. Evolutionary rate of a gene affected by chromosomal position.

    Science.gov (United States)

    Perry, J; Ashworth, A

    1999-09-09

    Genes evolve at different rates depending on the strength of selective pressure to maintain their function. Chromosomal position can also have an influence [1] [2]. The pseudoautosomal region (PAR) of mammalian sex chromosomes is a small region of sequence identity that is the site of an obligatory pairing and recombination event between the X and Y chromosomes during male meiosis [3] [4] [5] [6]. During female meiosis, X chromosomes can pair and recombine along their entire length. Recombination in the PAR is therefore approximately 10 times greater in male meiosis compared with female meiosis [4] [5] [6]. The gene Fxy (also known as MID1 [7]) spans the pseudoautosomal boundary (PAB) in the laboratory mouse (Mus musculus domesticus, C57BL/6) such that the 5' three exons of the gene are located on the X chromosome but the seven exons encoding the carboxy-terminal two-thirds of the protein are located within the PAR and are therefore present on both the X and Y chromosomes [8]. In humans [7] [9], the rat, and the wild mouse species Mus spretus, the gene is entirely X-unique. Here, we report that the rate of sequence divergence of the 3' end of the Fxy gene is much higher (estimated at 170-fold higher for synonymous sites) when pseudoautosomal (present on both the X and Y chromosomes) than when X-unique. Thus, chromosomal position can directly affect the rate of evolution of a gene. This finding also provides support for the suggestion that regions of the genome with a high recombination frequency, such as the PAR, may have an intrinsically elevated rate of sequence divergence.

  6. The Human Proteome Organization Chromosome 6 Consortium: integrating chromosome-centric and biology/disease driven strategies.

    Science.gov (United States)

    Borchers, C H; Kast, J; Foster, L J; Siu, K W M; Overall, C M; Binkowski, T A; Hildebrand, W H; Scherer, A; Mansoor, M; Keown, P A

    2014-04-04

    The Human Proteome Project (HPP) is designed to generate a comprehensive map of the protein-based molecular architecture of the human body, to provide a resource to help elucidate biological and molecular function, and to advance diagnosis and treatment of diseases. Within this framework, the chromosome-based HPP (C-HPP) has allocated responsibility for mapping individual chromosomes by country or region, while the biology/disease HPP (B/D-HPP) coordinates these teams in cross-functional disease-based groups. Chromosome 6 (Ch6) provides an excellent model for integration of these two tasks. This metacentric chromosome has a complement of 1002-1034 genes that code for known, novel or putative proteins. Ch6 is functionally associated with more than 120 major human diseases, many with high population prevalence, devastating clinical impact and profound societal consequences. The unique combination of genomic, proteomic, metabolomic, phenomic and health services data being drawn together within the Ch6 program has enormous potential to advance personalized medicine by promoting robust biomarkers, subunit vaccines and new drug targets. The strong liaison between the clinical and laboratory teams, and the structured framework for technology transfer and health policy decisions within Canada will increase the speed and efficacy of this transition, and the value of this translational research. Canada has been selected to play a leading role in the international Human Proteome Project, the global counterpart of the Human Genome Project designed to understand the structure and function of the human proteome in health and disease. Canada will lead an international team focusing on chromosome 6, which is functionally associated with more than 120 major human diseases, including immune and inflammatory disorders affecting the brain, skeletal system, heart and blood vessels, lungs, kidney, liver, gastrointestinal tract and endocrine system. Many of these chronic and persistent

  7. Cell-autonomous correction of ring chromosomes in human induced pluripotent stem cells

    Science.gov (United States)

    Bershteyn, Marina; Hayashi, Yohei; Desachy, Guillaume; Hsiao, Edward C.; Sami, Salma; Tsang, Kathryn M.; Weiss, Lauren A.; Kriegstein, Arnold R.; Yamanaka, Shinya; Wynshaw-Boris, Anthony

    2014-03-01

    Ring chromosomes are structural aberrations commonly associated with birth defects, mental disabilities and growth retardation. Rings form after fusion of the long and short arms of a chromosome, and are sometimes associated with large terminal deletions. Owing to the severity of these large aberrations that can affect multiple contiguous genes, no possible therapeutic strategies for ring chromosome disorders have been proposed. During cell division, ring chromosomes can exhibit unstable behaviour leading to continuous production of aneuploid progeny with low viability and high cellular death rate. The overall consequences of this chromosomal instability have been largely unexplored in experimental model systems. Here we generated human induced pluripotent stem cells (iPSCs) from patient fibroblasts containing ring chromosomes with large deletions and found that reprogrammed cells lost the abnormal chromosome and duplicated the wild-type homologue through the compensatory uniparental disomy (UPD) mechanism. The karyotypically normal iPSCs with isodisomy for the corrected chromosome outgrew co-existing aneuploid populations, enabling rapid and efficient isolation of patient-derived iPSCs devoid of the original chromosomal aberration. Our results suggest a fundamentally different function for cellular reprogramming as a means of `chromosome therapy' to reverse combined loss-of-function across many genes in cells with large-scale aberrations involving ring structures. In addition, our work provides an experimentally tractable human cellular system for studying mechanisms of chromosomal number control, which is of critical relevance to human development and disease.

  8. Human hereditary diseases associated with elevated frequency of chromosome aberrations

    International Nuclear Information System (INIS)

    Ejima, Yosuke

    1988-01-01

    Human recessive diseases collectively known as chromosome breakage syndromes include Fanconi's anemia, Bloom's syndrome and ataxia telangiectasia. Cells from these patients show chromosome instabilities both spontaneously and following treatments with radiations or certain chemicals, where defects in DNA metabolisms are supposed to be involved. Cells from patients with ataxia telangiectasia are hypersensitive to ionizing radiations, though DNA replication is less affected than in normal cells. Chromatid-type as well as chromosom-type aberrations are induced in cells irradiated in G 0 or G 1 phases. These unusual responses to radiations may provide clues for understanding the link between DNA replicative response and cellular radiosensitivity. Alterations in cellular radiosensitivity or spontaneous chromosome instabilities are observed in some patients with congenital chromosome anomalies or dominant diseases, where underlying defects may be different from those in recessive diseases. (author)

  9. Human hereditary diseases associated with elevated frequency of chromosome aberrations

    Energy Technology Data Exchange (ETDEWEB)

    Ejima, Yosuke; Ikushima, Takaji (ed.)

    1988-07-01

    Human recessive diseases collectively known as chromosome breakage syndromes include Fanconi's anemia, Bloom's syndrome and ataxia telangiectasia. Cells from these patients show chromosome instabilities both spontaneously and following treatments with radiations or certain chemicals, where defects in DNA metabolisms are supposed to be involved. Cells from patients with ataxia telangiectasia are hypersensitive to ionizing radiations, though DNA replication is less affected than in normal cells. Chromatid-type as well as chromosom-type aberrations are induced in cells irradiated in G/sub 0/ or G/sub 1/ phases. These unusual responses to radiations may provide clues for understanding the link between DNA replicative response and cellular radiosensitivity. Alterations in cellular radiosensitivity or spontaneous chromosome instabilities are observed in some patients with congenital chromosome anomalies or dominant diseases, where underlying defects may be different from those in recessive diseases.

  10. Scanning conductance microscopy investigations on fixed human chromosomes

    DEFF Research Database (Denmark)

    Clausen, Casper Hyttel; Lange, Jacob Moresco; Jensen, Linda Boye

    2008-01-01

    Scanning conductance microscopy investigations were carried out in air on human chromosomes fixed on pre-fabricated SiO2 surfaces with a backgate. The point of the investigation was to estimate the dielectric constant of fixed human chromosomes in order to use it for microfluidic device...... optimization. The phase shift caused by the electrostatic forces, together with geometrical measurements of the atomic force microscopy (AFM) cantilever and the chromosomes were used to estimate a value,for the dielectric constant of different human chromosomes....

  11. Chromosomal localization of the human diazepam binding inhibitor gene

    International Nuclear Information System (INIS)

    DeBernardi, M.A.; Crowe, R.R.; Mocchetti, I.; Shows, T.B.; Eddy, R.L.; Costa, E.

    1988-01-01

    The authors have used in situ chromosome hybridization and human-mouse somatic cell hybrids to map the gene(s) for human diazepam binding inhibitor (DBI), an endogenous putative modulator of the γ-aminobutyric acid receptor acting at the allosteric regulatory center of this receptor that includes the benzodiazepine recognition site. In 784 chromosome spreads hybridized with human DBI cDNA, the distribution of 1,476 labeled sites revealed a significant clustering of autoradiographic grains (11.3% of total label) on the long arm of chromosome 2 (2q). Furthermore, 63.5% of the grains found on 2q were located on 2q12-21, suggesting regional mapping of DBI gene(s) to this segment. Secondary hybridization signals were frequently observed on other chromosomes and they were statistically significant mainly for chromosomes 5, 6, 11, and 14. In addition, DNA from 32 human-mouse cell hybrids was digested with BamHI and probed with human DBI cDNA. A 3.5-kilobase band, which probably represents the human DBI gene, was assigned to chromosome 2. Four higher molecular weight bands, also detected in BamHI digests, could not be unequivocally assigned. A chromosome 2 location was excluded for the 27-, 13-, and 10-kilobase bands. These results assign a human DBI gene to chromosome 2 (2q12-21) and indicate that three of the four homologous sequences detected by the human DBI probe are located on three other chromosomes

  12. Computer graphics of SEM images facilitate recognition of chromosome position in isolated human metaphase plates.

    Science.gov (United States)

    Hodge, L D; Barrett, J M; Welter, D A

    1995-04-01

    There is general agreement that at the time of mitosis chromosomes occupy precise positions and that these positions likely affect subsequent nuclear function in interphase. However, before such ideas can be investigated in human cells, it is necessary to determine first the precise position of each chromosome with regard to its neighbors. It has occurred to us that stereo images, produced by scanning electron microscopy, of isolated metaphase plates could form the basis whereby these positions could be ascertained. In this paper we describe a computer graphic technique that permits us to keep track of individual chromosomes in a metaphase plate and to compare chromosome positions in different metaphase plates. Moreover, the computer graphics provide permanent, easily manipulated, rapid recall of stored chromosome profiles. These advantages are demonstrated by a comparison of the relative position of group A-specific and groups D- and G-specific chromosomes to the full complement of chromosomes in metaphase plates isolated from a nearly triploid human-derived cell (HeLa S3) to a hypo-diploid human fetal lung cell.

  13. Dielectrophoretic manipulation of human chromosomes in microfluidic channels: extracting chromosome dielectric properties

    DEFF Research Database (Denmark)

    Clausen, Casper Hyttel; Dimaki, Maria; Buckley, Sonia

    2011-01-01

    An investigation of the dielectric properties of polyamine buffer prepared human chromosomes is presented in this paper. Chromosomes prepared in this buffer are only a few micrometers in size and shaped roughly like spherical discs. Dielectrophoresis was therefore chosen as the method...... of manipulation combined with a custom designed microfluidic system containing the required electrodes for dielectrophoresis experiments. Our results show that although this system is presently not able to distinguish between the different chromosomes, it can provide average data for the dielectric properties...... of human chromosomes in polyamine buffer. These can then be used to optimize system designs for further characterization and even sorting. The experimental data from the dielectrophoretic manipulation were combined with theoretical calculations to extract a range of values for the permittivity...

  14. Centromere Destiny in Dicentric Chromosomes: New Insights from the Evolution of Human Chromosome 2 Ancestral Centromeric Region.

    Science.gov (United States)

    Chiatante, Giorgia; Giannuzzi, Giuliana; Calabrese, Francesco Maria; Eichler, Evan E; Ventura, Mario

    2017-07-01

    Dicentric chromosomes are products of genomic rearrangements that place two centromeres on the same chromosome. Due to the presence of two primary constrictions, they are inherently unstable and overcome their instability by epigenetically inactivating and/or deleting one of the two centromeres, thus resulting in functionally monocentric chromosomes that segregate normally during cell division. Our understanding to date of dicentric chromosome formation, behavior and fate has been largely inferred from observational studies in plants and humans as well as artificially produced de novo dicentrics in yeast and in human cells. We investigate the most recent product of a chromosome fusion event fixed in the human lineage, human chromosome 2, whose stability was acquired by the suppression of one centromere, resulting in a unique difference in chromosome number between humans (46 chromosomes) and our most closely related ape relatives (48 chromosomes). Using molecular cytogenetics, sequencing, and comparative sequence data, we deeply characterize the relicts of the chromosome 2q ancestral centromere and its flanking regions, gaining insight into the ancestral organization that can be easily broadened to all acrocentric chromosome centromeres. Moreover, our analyses offered the opportunity to trace the evolutionary history of rDNA and satellite III sequences among great apes, thus suggesting a new hypothesis for the preferential inactivation of some human centromeres, including IIq. Our results suggest two possible centromere inactivation models to explain the evolutionarily stabilization of human chromosome 2 over the last 5-6 million years. Our results strongly favor centromere excision through a one-step process. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Chromosomal Aberrations in Humans Induced by Urban Air Pollution

    DEFF Research Database (Denmark)

    Knudsen, Lisbeth E.; Norppa, Hannu; Gamborg, Michael O.

    1999-01-01

    We have studied the influence of individual susceptibility factors on the genotoxic effects of urban air pollution in 106 nonsmoking bus drivers and 101 postal workers in the Copenhagen metropolitan area. We used the frequency of chromosomal aberrations in peripheral blood lymphocytes as a biomar......We have studied the influence of individual susceptibility factors on the genotoxic effects of urban air pollution in 106 nonsmoking bus drivers and 101 postal workers in the Copenhagen metropolitan area. We used the frequency of chromosomal aberrations in peripheral blood lymphocytes...... that long-term exposure to urban air pollution (with traffic as the main contributor) induces chromosome damage in human somatic cells. Low DNA repair capacity and GSTM1 and NAT2 variants associated with reduced detoxification ability increase susceptibility to such damage. The effect of the GSTM1 genotype......, which was observed only in the bus drivers, appears to be associated with air pollution, whereas the NAT2 genotype effect, which affected all subjects, may influence the individual response to some other common exposure or the baseline level of chromosomal aberrations....

  16. Radiation hybrid mapping of human chromosome 18

    International Nuclear Information System (INIS)

    Francke, U.; Moon, A.J.; Chang, E.; Foellmer, B.; Strauss, B.; Haschke, A.; Chihlin Hsieh; Geigl, E.M.; Welch, S.

    1990-01-01

    The authors have generated a Chinese hamster V79/380-6 HPRT minus x human leukocyte hybrid cell line (18/V79) with chromosome 18 as the only human chromosome that is retained at high frequency without specific selection. Hybrid cells were selected in HAT medium, and 164 individual colonies were isolated. Of 110 colonies screened for human DNA by PCR amplification using a primer specific for human Alu repeats 67 (61%) were positive. These were expanded in culture for large-scale DNA preparations. Retesting expanded clones by PCR with Alu and LINE primers has revealed unique patterns of amplification products. In situ hybridization of biotin labelled total human DNA to metaphase spreads from various hybrids revealed the presence of one or more human DNA fragments integrated in hamster chromosomes. The authors have generated a resource that should allow the construction of a radiation map, to be compared with the YAC contig map also under construction in their laboratory

  17. Preparation and bivariate analysis of suspensions of human chromosomes

    Energy Technology Data Exchange (ETDEWEB)

    van den Engh, G.J.; Trask, B.J.; Gray, J.W.; Langlois, R.G.; Yu, L.C.

    1985-01-01

    Chromosomes were isolated from a variety of human cell types using a HEPES-buffered hypotonic solution (pH 8.0) containing KCl, MgSO/sub 4/ dithioerythritol, and RNase. The chromosomes isolated by this procedure could be stained with a variety of fluorescent stains including propidium iodide, chromomycin A3, and Hoeschst 33258. Addition of sodium citrate to the stained chromosomes was found to improve the total fluorescence resolution. High-quality bivariate Hoeschst vs. chromomycin fluorescence distributions were obtained for chromosomes isolated from a human fibroblast cell strain, a human colon carcinoma cell line, and human peripheral blood lymphocyte cultures. Good flow karyotypes were also obtained from primary amniotic cell cultures. The Hoeschst vs. chromomycin flow karyotypes of a given cell line, made at different times and at dye concentrations varying over fourfold ranges, show little variation in the relative peak positions of the chromosomes. The size of the DNA in chromosomes isolated using this procedure ranges from 20 to 50 kilobases. The described isolation procedure is simple, it yields high-quality flow karyotypes, and it can be used to prepare chromosomes from clinical samples. 22 references, 7 figures, 1 table.

  18. A high-resolution comparative map between pig chromosome 17 and human chromosomes 4, 8, and 20: Identification of synteny breakpoints

    DEFF Research Database (Denmark)

    Lahbib-Mansais, Yvette; Karlskov-Mortensen, Peter; Mompart, Florence

    2005-01-01

    We report on the construction of a high-resolution comparative map of porcine chromosome 17 (SSC17) focusing on evolutionary breakpoints with human chromosomes. The comparative map shows high homology with human chromosome 20 but suggests more limited homologies with other human chromosomes. SSC1...

  19. The distribution of chromosome aberrations among chromosomes of karyotype in exposed human lymphocyte

    International Nuclear Information System (INIS)

    Que Tran; Tien Hoang Hung

    1997-01-01

    Induced chromosome aberrations (ch. ab.) in exposed Human peripheral blood lymphocyte have been used to assay radio.bio.doses, because of their characters such as: the maintaining Go phase in cell cycle in body, the distribution of cell in blood system and the distribution of ch. ab. in exposed cells of body and among chromosomes of karyotype. The frequency of ch. ab. reflected the quantity of radiation dose, dose rate and radiation energy. The dependence between radiation dose and frequency of ch. ab. was illustrated by the mathematic equations. The distribution of induced ch. ab. among the cells exposed to uniform radiation fields was Poisson's, but the distribution of ch. ab. among chromosomes in karyotype depended on radiation field and mononucleotid sequence of DNA molecular of each chromosome. The minimum influence of mononucleotid sequence of DNA molecular in inform ch. ab. will be advantageous state for dose-assessments. The location of induced ch. ab. in exposed Human lymphocyte had been determined by karyotype analyses. The data of statistic analyse had improved that the number of ch. ab. depended on the size of chromosomes in karyotype. The equal distribution of ch. ab.among chromosomes in karyotype provided the objectiveness and the accuracy of using the chromosomal aberrant analysis technique on bio-dosimetry. (author)

  20. Genetic integrity of the human Y chromosome exposed to groundwater arsenic

    Directory of Open Access Journals (Sweden)

    Ali Sher

    2010-08-01

    Full Text Available Abstract Background Arsenic is a known human carcinogen reported to cause chromosomal deletions and genetic anomalies in cultured cells. The vast human population inhabiting the Ganges delta in West Bengal, India and Bangladesh is exposed to critical levels of arsenic present in the groundwater. The genetic and physiological mechanism of arsenic toxicity in the human body is yet to be fully established. In addition, lack of animal models has made work on this line even more challenging. Methods Human male blood samples were collected with their informed consent from 5 districts in West Bengal having groundwater arsenic level more than 50 μg/L. Isolation of genomic DNA and preparation of metaphase chromosomes was done using standard protocols. End point PCR was performed for established sequence tagged sites to ascertain the status of recombination events. Single nucleotide variants of candidate genes and amplicons were carried out using appropriate restriction enzymes. The copy number of DYZ1 array per haploid genome was calculated using real time PCR and its chromosomal localization was done by fluorescence in-situ hybridization (FISH. Results We studied effects of arsenic exposure on the human Y chromosome in males from different areas of West Bengal focusing on known recombination events (P5-P1 proximal; P5-P1 distal; gr/gr; TSPY-TSPY, b1/b3 and b2/b3, single nucleotide variants (SNVs of a few candidate Y-linked genes (DAZ, TTY4, BPY2, GOLGA2LY and the amplicons of AZFc region. Also, possible chromosomal reorganization of DYZ1 repeat arrays was analyzed. Barring a few microdeletions, no major changes were detected in blood DNA samples. SNV analysis showed a difference in some alleles. Similarly, DYZ1 arrays signals detected by FISH were found to be affected in some males. Conclusions Our Y chromosome analysis suggests that the same is protected from the effects of arsenic by some unknown mechanisms maintaining its structural and functional

  1. International study of factors affecting human chromosome translocations

    Czech Academy of Sciences Publication Activity Database

    Sigurdson, A.J.; Ha, M.; Hauptmann, M.; Bhatti, P.; Šrám, Radim; Beskid, Olena; Tawn, E.J.; Whitehouse, C.A.; Lindholm, C.; Nakano, M.; Kodama, Y.; Nakamura, N.; Vorobtsova, I.; Oestreicher, U.; Stephan, G.; Yong, L.C.; Bauchinger, M.; Schmid, E.; Chung, H.W.; Darroudi, F.; Roy, L.; Voisin, P.; Barquinero, J.F.; Livingston, G.; Blakey, D.; Hayata, I.; Zhang, W.; Wang, Ch.; Benett, L.M.; Littlefield, L.G.; Edwards, A.A.; Kleinerman, R.A.; Tucker, J.D.

    2008-01-01

    Roč. 652, č. 2 (2008), s. 112-121 ISSN 1383-5718 R&D Projects: GA MŽP SL/5/160/05; GA MŽP SI/340/2/00; GA MŽP SL/740/5/03 Institutional research plan: CEZ:AV0Z50390512 Keywords : Chromosome translocations * FISH * Background frequency Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 2.363, year: 2008

  2. Chromosome segregation regulation in human zygotes: altered mitotic histone phosphorylation dynamics underlying centromeric targeting of the chromosomal passenger complex.

    Science.gov (United States)

    van de Werken, C; Avo Santos, M; Laven, J S E; Eleveld, C; Fauser, B C J M; Lens, S M A; Baart, E B

    2015-10-01

    regulatory kinase pathways involved in centromeric CPC targeting revealed normal phosphorylation dynamics of histone H2A at T120 (H2ApT120) by Bub1 kinase and subsequent recruitment of Shugoshin. However, phosphorylation of histone H3 at threonine 3 (H3pT3) by Haspin kinase failed to show the expected centromeric enrichment on metaphase chromosomes in the zygote, but not at later stages. Inhibition of Haspin revealed this activity to be essential for proper mitotic checkpoint complex activation in human zygotes, thus demonstrating an active mitotic checkpoint under normal conditions. Abolishment of H3pT3 during zygotic prometaphase further shows that centromeric H2ApT120 alone is not sufficient for proper shugoshin and CPC localization. As the removal of H3pT3 from the chromosome arms during prometaphase normally contributes to further centromeric enrichment of the CPC in somatic cells, CPC targeting may be less accurate in human zygotes. Owing to ethical limitations, tripronuclear zygotes were used in functional experiments. Although these represent the best available models, it is unknown if they are completely representative for dipronuclear zygotes. In addition, further research is needed to determine to what extent the differences we observed in H3T3 phosphorylation dynamics and CPC localization affect chromosome attachment. In the zygote, paternal and maternal chromosomes coming from two separate pronuclei, and with contrasting epigenetic signatures, need to be aligned on a single metaphase plate. Our results suggest that adaptations in mechanisms regulating CPC targeting exist in the human zygote, to ensure symmetric recruitment despite the epigenetic asymmetry between maternal and paternal chromosomes. This adaptation may come at a price regarding chromosome segregation fidelity. This study was funded by the Portuguese Fundação para a Ciência e Tecnologia and the Netherlands Organization for Scientific Research. The authors have no conflicts of interest to declare

  3. Structure of the human chromosome interaction network.

    Directory of Open Access Journals (Sweden)

    Sergio Sarnataro

    Full Text Available New Hi-C technologies have revealed that chromosomes have a complex network of spatial contacts in the cell nucleus of higher organisms, whose organisation is only partially understood. Here, we investigate the structure of such a network in human GM12878 cells, to derive a large scale picture of nuclear architecture. We find that the intensity of intra-chromosomal interactions is power-law distributed. Inter-chromosomal interactions are two orders of magnitude weaker and exponentially distributed, yet they are not randomly arranged along the genomic sequence. Intra-chromosomal contacts broadly occur between epigenomically homologous regions, whereas inter-chromosomal contacts are especially associated with regions rich in highly expressed genes. Overall, genomic contacts in the nucleus appear to be structured as a network of networks where a set of strongly individual chromosomal units, as envisaged in the 'chromosomal territory' scenario derived from microscopy, interact with each other via on average weaker, yet far from random and functionally important interactions.

  4. Chromosome aberrations: plants to human and Feulgen to FISH

    International Nuclear Information System (INIS)

    Natarajan, A.T.

    2005-01-01

    Chromosome aberrations and their impact on human health have been recognized for a long time. In the 1950s, in India, studies on induced chromosome aberrations in plants were initiated by Swaminathan and his students. I trace here the impact of these initial studies on further developments in this field. The studies which were started in plants have been extended to mammals (including human) and the simple squash and solid staining have been improved by molecular cytogenetic techniques, thus enabling accurate identification and quantification of different types of chromosome aberrations. These studies have also thrown light on the mechanisms of chromosome aberration formation, especially following exposure to ionizing radiation. (author)

  5. Human oocyte chromosome analysis: complicated cases and major ...

    Indian Academy of Sciences (India)

    Human oocyte chromosome analysis: complicated cases and major ... dardized even after more than 20 years of research, making it difficult to draw .... (c) Part of a metaphase with a chromosome break in the centromeric region (arrows).

  6. Effect of estradiol on radiation-induced chromosome aberrations in human lymphocytes

    International Nuclear Information System (INIS)

    Kanda, Reiko; Hayata, Isamu

    1999-01-01

    As a part of studies on physiological factors that affect radiosensitivity, we examined the in vitro effect of estradiol (E2) on the yield of radiation-induced chromosome aberrations in human peripheral lymphocytes. Lymphocytes were cultured for 3 days in the medium containing E2 at 0-100000 ng/ml. On the second day, they were irradiated by X-rays at 3 Gy, and then 2% phytohemagglutinin and 0.05 μg/ml colcemid were added to the medium. After further 48 h, mitotic indices and the yields of chromosome aberrations were examined at various E2 concentrations. E2 treatment at concentrations above 1000 ng/ml resulted in dose-related inhibition of mitosis. Repeated experiments showed that the yield of dicentrics plus centric rings in the culture containing E2 at 100 ng/ml was significantly higher than the yields at 0 ng/ml. Similarly, the yield of total chromosome breaks in the culture containing E2 at 100 ng/ml was significantly higher than that at 1 ng/ml. This study provides the direct evidence in human that radiosensitivity may vary in relation to hormonal conditions. (author)

  7. Chromosomal localization of the human and mouse hyaluronan synthase genes

    Energy Technology Data Exchange (ETDEWEB)

    Spicer, A.P.; McDonald, J.A. [Mayo Clinic Scottsdale, AZ (United States); Seldin, M.F. [Univ. of California Davis, CA (United States)] [and others

    1997-05-01

    We have recently identified a new vertebrate gene family encoding putative hyaluronan (HA) synthases. Three highly conserved related genes have been identified, designated HAS1, HAS2, and HAS3 in humans and Has1, Has2, and Has3 in the mouse. All three genes encode predicted plasma membrane proteins with multiple transmembrane domains and approximately 25% amino acid sequence identity to the Streptococcus pyogenes HA synthase, HasA. Furthermore, expression of any one HAS gene in transfected mammalian cells leads to high levels of HA biosynthesis. We now report the chromosomal localization of the three HAS genes in human and in mouse. The genes localized to three different positions within both the human and the mouse genomes. HAS1 was localized to the human chromosome 19q13.3-q13.4 boundary and Has1 to mouse Chr 17. HAS2 was localized to human chromosome 8q24.12 and Has2 to mouse Chr 15. HAS3 was localized to human chromosome 16q22.1 and Has3 to mouse Chr 8. The map position for HAS1 reinforces the recently reported relationship between a small region of human chromosome 19q and proximal mouse chromosome 17. HAS2 mapped outside the predicted critical region delineated for the Langer-Giedion syndrome and can thus be excluded as a candidate gene for this genetic syndrome. 33 refs., 2 figs.

  8. Human oocyte chromosome analyses need a standardized ...

    Indian Academy of Sciences (India)

    Studies of DNA polymorphisms in human trisomic abor- tions and liveborn have ... Keywords. human oocyte chromosomes; cytogenetic analysis; aneuploidy; nondisjunction; predivision. Journal of .... oocytes and giant embryos. Hum. Reprod.

  9. Chromosomal localization of the gonadotropin-releasing hormone receptor gene to human chromosome 4q13. 1-q21. 1 and mouse chromosome 5

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, U.B.; Dushkin, H.; Beier, D.R.; Chin, W.W. (Harvard Medical School, Boston, MA (United States)); Altherr, M.R. (Los Alamos National Lab., NM (United States))

    1994-04-01

    The gonadotropin-releasing hormone receptor (GRHR) is a G-protein-coupled receptor on the cell surface of pituitary gonadotropes, where it serves to transduce signals from the extracellular ligand, the hypothalamic factor gonadotropin-releasing hormone, and to modulate the synthesis and secretion of luteinizing hormone and follicle-stimulating hormone. The authors have localized the GRHR gene to the q13.1-q21.1 region of the human chromosome 4 using mapping panels of human/rodent somatic cell hybrids containing different human chromosomes or different regions of human chromosome 4. Furthermore, using linkage analysis of single-strand conformational polymorphisms, the murine GRHR gene was localized to mouse chromosome 5, linked to the endogenous retroviral marker Pmv-11. This is consistent with the evolutionary conservation of homology between these two regions, as has been previously suggested from comparative mapping of several other loci. The localization of the GRHR gene may be useful in the study of disorders of reproduction. 22 refs., 2 figs.

  10. Roles of the Y chromosome genes in human cancers

    Directory of Open Access Journals (Sweden)

    Tatsuo Kido

    2015-06-01

    Full Text Available Male and female differ genetically by their respective sex chromosome composition, that is, XY as male and XX as female. Although both X and Y chromosomes evolved from the same ancestor pair of autosomes, the Y chromosome harbors male-specific genes, which play pivotal roles in male sex determination, germ cell differentiation, and masculinization of various tissues. Deletions or translocation of the sex-determining gene, SRY, from the Y chromosome causes disorders of sex development (previously termed as an intersex condition with dysgenic gonads. Failure of gonadal development results not only in infertility, but also in increased risks of germ cell tumor (GCT, such as gonadoblastoma and various types of testicular GCT. Recent studies demonstrate that either loss of Y chromosome or ectopic expression of Y chromosome genes is closely associated with various male-biased diseases, including selected somatic cancers. These observations suggest that the Y-linked genes are involved in male health and diseases in more frequently than expected. Although only a small number of protein-coding genes are present in the male-specific region of Y chromosome, the impacts of Y chromosome genes on human diseases are still largely unknown, due to lack of in vivo models and differences between the Y chromosomes of human and rodents. In this review, we highlight the involvement of selected Y chromosome genes in cancer development in men.

  11. Flow cytometry measurements of human chromosome kinetochore labeling

    International Nuclear Information System (INIS)

    Fantes, J.A.; Green, D.K.; Malloy, P.; Sumner, A.T.

    1989-01-01

    A method for the preparation and measurement of immunofluorescent human chromosome centromeres in suspension is described using CREST antibodies, which bind to the centromeric region of chromosomes. Fluorescein isothiocyanate (FITC)-conjugated antihuman antibodies provide the fluorescent label. Labeled chromosomes are examined on microscope slides and by flow cytometry. In both cases a dye which binds to DNA is added to provide identification of the chromosome groups. Sera from different CREST patients vary in their ability to bind to chromosome arms in addition to the centromeric region. Flow cytometry and microfluorimetry measurements have shown that with a given CREST serum the differences in kinetochore fluorescence between chromosomes are only minor. Flow cytometry experiments to relate the number of dicentric chromosomes, induced by in vitro radiation of peripheral blood cells to the slightly increased number of chromosomes with above-average kinetochore fluorescence did not produce decisive radiation dosimetry results

  12. Characterization of a chromosome-specific chimpanzee alpha satellite subset: Evolutionary relationship to subsets on human chromosomes

    Energy Technology Data Exchange (ETDEWEB)

    Warburton, P.E.; Gosden, J.; Lawson, D. [Western General Hospital, Edinburgh (United Kingdom)] [and others

    1996-04-15

    Alpha satellite DNA is a tandemly repeated DNA family found at the centromeres of all primate chromosomes examined. The fundamental repeat units of alpha satellite DNA are diverged 169- to 172-bp monomers, often found to be organized in chromosome-specific higher-order repeat units. The chromosomes of human (Homo sapiens (HSA)), chimpanzee (Pan troglodytes (PTR) and Pan paniscus), and gorilla (Gorilla gorilla) share a remarkable similarity and synteny. It is of interest to ask if alpha satellite arrays at centromeres of homologous chromosomes between these species are closely related (evolving in an orthologous manner) or if the evolutionary processes that homogenize and spread these arrays within and between chromosomes result in nonorthologous evolution of arrays. By using PCR primers specific for human chromosome 17-specific alpha satellite DNA, we have amplified, cloned, and characterized a chromosome-specific subset from the PTR chimpanzee genome. Hybridization both on Southern blots and in situ as well as sequence analysis show that this subset is most closely related, as expected, to sequences on HSA 17. However, in situ hybridization reveals that this subset is not found on the homologous chromosome in chimpanzee (PTR 19), but instead on PTR 12, which is homologous to HSA 2p. 40 refs., 3 figs.

  13. Chromosome microdissection and cloning in human genome and genetic disease analysis

    International Nuclear Information System (INIS)

    Kao, Faten; Yu, Jingwei

    1991-01-01

    A procedure has been described for microdissection and microcloning of human chromosomal DNA sequences in which universal amplification of the dissected fragments by Mbo I linker adaptor and polymerase chain reaction is used. A very large library comprising 700,000 recombinant plasmid microclones from 30 dissected chromosomes of human chromosome 21 was constructed. Colony hybridization showed that 42% of the clones contained repetitive sequences and 58% contained single or low-copy sequences. The insert sizes generated by complete Mbo I cleavage ranged from 50 to 1,100 base pairs with a mean of 416 base pairs. Southern blot analysis of microclones from the library confirmed their human origin and chromosome 21 specificity. Some of these clones have also been regionally mapped to specific sites of chromosome 21 by using a regional mapping panel of cell hybrids. This chromosome microtechnology can generate large numbers of microclones with unique sequences from defined chromosomal regions and can be used for processes such as (i) isolating corresponding yeast artificial chromosome clones with large inserts, (ii) screening various cDNA libraries for isolating expressed sequences, and (iii) constructing region-specific libraries of the entire human genome. The studies described here demonstrate the power of this technology for high-resolution genome analysis and explicate their use in an efficient search for disease-associated genes localized to specific chromosomal regions

  14. HACking the centromere chromatin code: insights from human artificial chromosomes.

    Science.gov (United States)

    Bergmann, Jan H; Martins, Nuno M C; Larionov, Vladimir; Masumoto, Hiroshi; Earnshaw, William C

    2012-07-01

    The centromere is a specialized chromosomal region that serves as the assembly site of the kinetochore. At the centromere, CENP-A nucleosomes form part of a chromatin landscape termed centrochromatin. This chromatin environment conveys epigenetic marks regulating kinetochore formation. Recent work sheds light on the intricate relationship between centrochromatin state, the CENP-A assembly pathway and the maintenance of centromere function. Here, we review the emerging picture of how chromatin affects mammalian kinetochore formation. We place particular emphasis on data obtained from Human Artificial Chromosome (HAC) biology and the targeted engineering of centrochromatin using synthetic HACs. We discuss implications of these findings, which indicate that a delicate balance of histone modifications and chromatin state dictates both de novo centromere formation and the maintenance of centromere identity in dividing cell populations.

  15. The DNA sequence of the human X chromosome

    Science.gov (United States)

    Ross, Mark T.; Grafham, Darren V.; Coffey, Alison J.; Scherer, Steven; McLay, Kirsten; Muzny, Donna; Platzer, Matthias; Howell, Gareth R.; Burrows, Christine; Bird, Christine P.; Frankish, Adam; Lovell, Frances L.; Howe, Kevin L.; Ashurst, Jennifer L.; Fulton, Robert S.; Sudbrak, Ralf; Wen, Gaiping; Jones, Matthew C.; Hurles, Matthew E.; Andrews, T. Daniel; Scott, Carol E.; Searle, Stephen; Ramser, Juliane; Whittaker, Adam; Deadman, Rebecca; Carter, Nigel P.; Hunt, Sarah E.; Chen, Rui; Cree, Andrew; Gunaratne, Preethi; Havlak, Paul; Hodgson, Anne; Metzker, Michael L.; Richards, Stephen; Scott, Graham; Steffen, David; Sodergren, Erica; Wheeler, David A.; Worley, Kim C.; Ainscough, Rachael; Ambrose, Kerrie D.; Ansari-Lari, M. Ali; Aradhya, Swaroop; Ashwell, Robert I. S.; Babbage, Anne K.; Bagguley, Claire L.; Ballabio, Andrea; Banerjee, Ruby; Barker, Gary E.; Barlow, Karen F.; Barrett, Ian P.; Bates, Karen N.; Beare, David M.; Beasley, Helen; Beasley, Oliver; Beck, Alfred; Bethel, Graeme; Blechschmidt, Karin; Brady, Nicola; Bray-Allen, Sarah; Bridgeman, Anne M.; Brown, Andrew J.; Brown, Mary J.; Bonnin, David; Bruford, Elspeth A.; Buhay, Christian; Burch, Paula; Burford, Deborah; Burgess, Joanne; Burrill, Wayne; Burton, John; Bye, Jackie M.; Carder, Carol; Carrel, Laura; Chako, Joseph; Chapman, Joanne C.; Chavez, Dean; Chen, Ellson; Chen, Guan; Chen, Yuan; Chen, Zhijian; Chinault, Craig; Ciccodicola, Alfredo; Clark, Sue Y.; Clarke, Graham; Clee, Chris M.; Clegg, Sheila; Clerc-Blankenburg, Kerstin; Clifford, Karen; Cobley, Vicky; Cole, Charlotte G.; Conquer, Jen S.; Corby, Nicole; Connor, Richard E.; David, Robert; Davies, Joy; Davis, Clay; Davis, John; Delgado, Oliver; DeShazo, Denise; Dhami, Pawandeep; Ding, Yan; Dinh, Huyen; Dodsworth, Steve; Draper, Heather; Dugan-Rocha, Shannon; Dunham, Andrew; Dunn, Matthew; Durbin, K. James; Dutta, Ireena; Eades, Tamsin; Ellwood, Matthew; Emery-Cohen, Alexandra; Errington, Helen; Evans, Kathryn L.; Faulkner, Louisa; Francis, Fiona; Frankland, John; Fraser, Audrey E.; Galgoczy, Petra; Gilbert, James; Gill, Rachel; Glöckner, Gernot; Gregory, Simon G.; Gribble, Susan; Griffiths, Coline; Grocock, Russell; Gu, Yanghong; Gwilliam, Rhian; Hamilton, Cerissa; Hart, Elizabeth A.; Hawes, Alicia; Heath, Paul D.; Heitmann, Katja; Hennig, Steffen; Hernandez, Judith; Hinzmann, Bernd; Ho, Sarah; Hoffs, Michael; Howden, Phillip J.; Huckle, Elizabeth J.; Hume, Jennifer; Hunt, Paul J.; Hunt, Adrienne R.; Isherwood, Judith; Jacob, Leni; Johnson, David; Jones, Sally; de Jong, Pieter J.; Joseph, Shirin S.; Keenan, Stephen; Kelly, Susan; Kershaw, Joanne K.; Khan, Ziad; Kioschis, Petra; Klages, Sven; Knights, Andrew J.; Kosiura, Anna; Kovar-Smith, Christie; Laird, Gavin K.; Langford, Cordelia; Lawlor, Stephanie; Leversha, Margaret; Lewis, Lora; Liu, Wen; Lloyd, Christine; Lloyd, David M.; Loulseged, Hermela; Loveland, Jane E.; Lovell, Jamieson D.; Lozado, Ryan; Lu, Jing; Lyne, Rachael; Ma, Jie; Maheshwari, Manjula; Matthews, Lucy H.; McDowall, Jennifer; McLaren, Stuart; McMurray, Amanda; Meidl, Patrick; Meitinger, Thomas; Milne, Sarah; Miner, George; Mistry, Shailesh L.; Morgan, Margaret; Morris, Sidney; Müller, Ines; Mullikin, James C.; Nguyen, Ngoc; Nordsiek, Gabriele; Nyakatura, Gerald; O’Dell, Christopher N.; Okwuonu, Geoffery; Palmer, Sophie; Pandian, Richard; Parker, David; Parrish, Julia; Pasternak, Shiran; Patel, Dina; Pearce, Alex V.; Pearson, Danita M.; Pelan, Sarah E.; Perez, Lesette; Porter, Keith M.; Ramsey, Yvonne; Reichwald, Kathrin; Rhodes, Susan; Ridler, Kerry A.; Schlessinger, David; Schueler, Mary G.; Sehra, Harminder K.; Shaw-Smith, Charles; Shen, Hua; Sheridan, Elizabeth M.; Shownkeen, Ratna; Skuce, Carl D.; Smith, Michelle L.; Sotheran, Elizabeth C.; Steingruber, Helen E.; Steward, Charles A.; Storey, Roy; Swann, R. Mark; Swarbreck, David; Tabor, Paul E.; Taudien, Stefan; Taylor, Tineace; Teague, Brian; Thomas, Karen; Thorpe, Andrea; Timms, Kirsten; Tracey, Alan; Trevanion, Steve; Tromans, Anthony C.; d’Urso, Michele; Verduzco, Daniel; Villasana, Donna; Waldron, Lenee; Wall, Melanie; Wang, Qiaoyan; Warren, James; Warry, Georgina L.; Wei, Xuehong; West, Anthony; Whitehead, Siobhan L.; Whiteley, Mathew N.; Wilkinson, Jane E.; Willey, David L.; Williams, Gabrielle; Williams, Leanne; Williamson, Angela; Williamson, Helen; Wilming, Laurens; Woodmansey, Rebecca L.; Wray, Paul W.; Yen, Jennifer; Zhang, Jingkun; Zhou, Jianling; Zoghbi, Huda; Zorilla, Sara; Buck, David; Reinhardt, Richard; Poustka, Annemarie; Rosenthal, André; Lehrach, Hans; Meindl, Alfons; Minx, Patrick J.; Hillier, LaDeana W.; Willard, Huntington F.; Wilson, Richard K.; Waterston, Robert H.; Rice, Catherine M.; Vaudin, Mark; Coulson, Alan; Nelson, David L.; Weinstock, George; Sulston, John E.; Durbin, Richard; Hubbard, Tim; Gibbs, Richard A.; Beck, Stephan; Rogers, Jane; Bentley, David R.

    2009-01-01

    The human X chromosome has a unique biology that was shaped by its evolution as the sex chromosome shared by males and females. We have determined 99.3% of the euchromatic sequence of the X chromosome. Our analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination between X and Y, and the extent of subsequent degradation of the Y chromosome. LINE1 repeat elements cover one-third of the X chromosome, with a distribution that is consistent with their proposed role as way stations in the process of X-chromosome inactivation. We found 1,098 genes in the sequence, of which 99 encode proteins expressed in testis and in various tumour types. A disproportionately high number of mendelian diseases are documented for the X chromosome. Of this number, 168 have been explained by mutations in 113 X-linked genes, which in many cases were characterized with the aid of the DNA sequence. PMID:15772651

  16. Telomere disruption results in non-random formation of de novo dicentric chromosomes involving acrocentric human chromosomes.

    Directory of Open Access Journals (Sweden)

    Kaitlin M Stimpson

    2010-08-01

    Full Text Available Genome rearrangement often produces chromosomes with two centromeres (dicentrics that are inherently unstable because of bridge formation and breakage during cell division. However, mammalian dicentrics, and particularly those in humans, can be quite stable, usually because one centromere is functionally silenced. Molecular mechanisms of centromere inactivation are poorly understood since there are few systems to experimentally create dicentric human chromosomes. Here, we describe a human cell culture model that enriches for de novo dicentrics. We demonstrate that transient disruption of human telomere structure non-randomly produces dicentric fusions involving acrocentric chromosomes. The induced dicentrics vary in structure near fusion breakpoints and like naturally-occurring dicentrics, exhibit various inter-centromeric distances. Many functional dicentrics persist for months after formation. Even those with distantly spaced centromeres remain functionally dicentric for 20 cell generations. Other dicentrics within the population reflect centromere inactivation. In some cases, centromere inactivation occurs by an apparently epigenetic mechanism. In other dicentrics, the size of the alpha-satellite DNA array associated with CENP-A is reduced compared to the same array before dicentric formation. Extra-chromosomal fragments that contained CENP-A often appear in the same cells as dicentrics. Some of these fragments are derived from the same alpha-satellite DNA array as inactivated centromeres. Our results indicate that dicentric human chromosomes undergo alternative fates after formation. Many retain two active centromeres and are stable through multiple cell divisions. Others undergo centromere inactivation. This event occurs within a broad temporal window and can involve deletion of chromatin that marks the locus as a site for CENP-A maintenance/replenishment.

  17. Unique signatures of natural background radiation on human Y chromosomes from Kerala, India.

    Directory of Open Access Journals (Sweden)

    Sanjay Premi

    Full Text Available The most frequently observed major consequences of ionizing radiation are chromosomal lesions and cancers, although the entire genome may be affected. Owing to its haploid status and absence of recombination, the human Y chromosome is an ideal candidate to be assessed for possible genetic alterations induced by ionizing radiation. We studied the human Y chromosome in 390 males from the South Indian state of Kerala, where the level of natural background radiation (NBR is ten-fold higher than the worldwide average, and that from 790 unexposed males as control.We observed random microdeletions in the Azoospermia factor (AZF a, b and c regions in >90%, and tandem duplication and copy number polymorphism (CNP of 11 different Y-linked genes in about 80% of males exposed to NBR. The autosomal homologues of Y-linked CDY genes largely remained unaffected. Multiple polymorphic copies of the Y-linked genes showing single Y-specific signals suggested their tandem duplication. Some exposed males showed unilocus duplication of DAZ genes resulting in six copies. Notably, in the AZFa region, approximately 25% of exposed males showed deletion of the DBY gene, whereas flanking genes USP9Y and UTY remained unaffected. All these alterations were detected in blood samples but not in the germline (sperm samples.Exposure to high levels of NBR correlated with several interstitial polymorphisms of the human Y chromosome. CNPs and enhanced transcription of the SRY gene after duplication are envisaged to compensate for the loss of Y chromosome in some cells. The aforesaid changes, confined to peripheral blood lymphocytes, suggest a possible innate mechanism protecting the germline DNA from the NBR. Genome analysis of a larger population focusing on greater numbers of genes may provide new insights into the mechanisms and risks of the resultant genetic damages. The present work demonstrates unique signatures of NBR on human Y chromosomes from Kerala, India.

  18. Human chromosome-specific changes in a human-hamster hybrid cell line (AL) assessed by fluorescent in situ hybridization (fish)

    International Nuclear Information System (INIS)

    Geard, Charles R.; Jenkins, Gloria

    1995-01-01

    Purpose: To quantitatively assess all gamma-ray induced chromosomal changes confined to one human chromosome using fluorescence microscopy and in situ hybridization with a fluorescently labeled human chromosome specific nucleic acid probe. Methods and Materials: Synchronized human-hamster hybrid cells containing human chromosome 11 were obtained by a modified mitotic shake-off procedure. G1 phase cells (> 95%) were irradiated with 137 Cs gamma rays (0, 0.5, 1.0, 1.5, 2.0, 4.0, 6.0, 8.0, and 10.0 Gy) at a dose rate of 1.1 Gy/min and mitotic cells collected 16-20 h later; chromosomal spreads were prepared, denatured, and hybridized with a fluorescein-tagged nucleic acid probe against total human DNA. Chromosomes were examined by fluorescence microscopy and all categories of change involving the human chromosome 11 as target, recorded. Results: Overall, of the 3104 human-hamster hybrid cells examined, 82.1% were euploid, of which 88.6% contained one copy of human chromosome 11, 6.2% contained two copies, and 5.2% contained 0 copies. This is compatible with mitotic nondisjunction in a small fraction of cells. Of the remaining 17.9% of cells, 85.2% were tetraploid cells with two copies of human chromosome 11. For all aberrations involving human chromosome 11 there was a linear relationship between yield and absorbed dose of 0.1 aberrations per chromosome per Gy. The yield of dicentrics, translocations, and terminal deletions that involve one lesion on the human chromosome was linear, while the yield of interstitial deletions that arise from two interacting lesions on the human chromosome was curvilinear. The frequencies of dicentrics and translocations were about equal, while there was a high (40-60%) incidence of incomplete exchanges between human and hamster chromosomes. Conclusions: Fluorescent in situ hybridization (FISH) procedures allow for the efficient detection of a broad range of induced changes in target chromosomes. Symmetrical exchanges induced in G1

  19. The study of human Y chromosome variation through ancient DNA.

    Science.gov (United States)

    Kivisild, Toomas

    2017-05-01

    High throughput sequencing methods have completely transformed the study of human Y chromosome variation by offering a genome-scale view on genetic variation retrieved from ancient human remains in context of a growing number of high coverage whole Y chromosome sequence data from living populations from across the world. The ancient Y chromosome sequences are providing us the first exciting glimpses into the past variation of male-specific compartment of the genome and the opportunity to evaluate models based on previously made inferences from patterns of genetic variation in living populations. Analyses of the ancient Y chromosome sequences are challenging not only because of issues generally related to ancient DNA work, such as DNA damage-induced mutations and low content of endogenous DNA in most human remains, but also because of specific properties of the Y chromosome, such as its highly repetitive nature and high homology with the X chromosome. Shotgun sequencing of uniquely mapping regions of the Y chromosomes to sufficiently high coverage is still challenging and costly in poorly preserved samples. To increase the coverage of specific target SNPs capture-based methods have been developed and used in recent years to generate Y chromosome sequence data from hundreds of prehistoric skeletal remains. Besides the prospects of testing directly as how much genetic change in a given time period has accompanied changes in material culture the sequencing of ancient Y chromosomes allows us also to better understand the rate at which mutations accumulate and get fixed over time. This review considers genome-scale evidence on ancient Y chromosome diversity that has recently started to accumulate in geographic areas favourable to DNA preservation. More specifically the review focuses on examples of regional continuity and change of the Y chromosome haplogroups in North Eurasia and in the New World.

  20. Engineering of Systematic Elimination of a Targeted Chromosome in Human Cells.

    Science.gov (United States)

    Sato, Hiroshi; Kato, Hiroki; Yamaza, Haruyoshi; Masuda, Keiji; Nguyen, Huong Thi Nguyen; Pham, Thanh Thi Mai; Han, Xu; Hirofuji, Yuta; Nonaka, Kazuaki

    2017-01-01

    Embryonic trisomy leads to abortion or congenital genetic disorders in humans. The most common autosomal chromosome abnormalities are trisomy of chromosomes 13, 18, and 21. Although alteration of gene dosage is thought to contribute to disorders caused by extra copies of chromosomes, genes associated with specific disease phenotypes remain unclear. To generate a normal cell from a trisomic cell as a means of etiological analysis or candidate therapy for trisomy syndromes, we developed a system to eliminate a targeted chromosome from human cells. Chromosome 21 was targeted by integration of a DNA cassette in HeLa cells that harbored three copies of chromosome 21. The DNA cassette included two inverted loxP sites and a herpes simplex virus thymidine kinase (HSV-tk) gene. This system causes missegregation of chromosome 21 after expression of Cre recombinase and subsequently enables the selection of cells lacking the chromosome by culturing in a medium that includes ganciclovir (GCV). Cells harboring only two copies of chromosome 21 were efficiently induced by transfection of a Cre expression vector, indicating that this approach is useful for eliminating a targeted chromosome.

  1. Genealogical and evolutionary inference with the human Y chromosome.

    Science.gov (United States)

    Stumpf, M P; Goldstein, D B

    2001-03-02

    Population genetics has emerged as a powerful tool for unraveling human history. In addition to the study of mitochondrial and autosomal DNA, attention has recently focused on Y-chromosome variation. Ambiguities and inaccuracies in data analysis, however, pose an important obstacle to further development of the field. Here we review the methods available for genealogical inference using Y-chromosome data. Approaches can be divided into those that do and those that do not use an explicit population model in genealogical inference. We describe the strengths and weaknesses of these model-based and model-free approaches, as well as difficulties associated with the mutation process that affect both methods. In the case of genealogical inference using microsatellite loci, we use coalescent simulations to show that relatively simple generalizations of the mutation process can greatly increase the accuracy of genealogical inference. Because model-free and model-based approaches have different biases and limitations, we conclude that there is considerable benefit in the continued use of both types of approaches.

  2. Human Chromosome 7: DNA Sequence and Biology

    OpenAIRE

    Scherer, Stephen W.; Cheung, Joseph; MacDonald, Jeffrey R.; Osborne, Lucy R.; Nakabayashi, Kazuhiko; Herbrick, Jo-Anne; Carson, Andrew R.; Parker-Katiraee, Layla; Skaug, Jennifer; Khaja, Razi; Zhang, Junjun; Hudek, Alexander K.; Li, Martin; Haddad, May; Duggan, Gavin E.

    2003-01-01

    DNA sequence and annotation of the entire human chromosome 7, encompassing nearly 158 million nucleotides of DNA and 1917 gene structures, are presented. To generate a higher order description, additional structural features such as imprinted genes, fragile sites, and segmental duplications were integrated at the level of the DNA sequence with medical genetic data, including 440 chromosome rearrangement breakpoints associated with disease. This approach enabled the discovery of candidate gene...

  3. Engineering of Systematic Elimination of a Targeted Chromosome in Human Cells

    Directory of Open Access Journals (Sweden)

    Hiroshi Sato

    2017-01-01

    Full Text Available Embryonic trisomy leads to abortion or congenital genetic disorders in humans. The most common autosomal chromosome abnormalities are trisomy of chromosomes 13, 18, and 21. Although alteration of gene dosage is thought to contribute to disorders caused by extra copies of chromosomes, genes associated with specific disease phenotypes remain unclear. To generate a normal cell from a trisomic cell as a means of etiological analysis or candidate therapy for trisomy syndromes, we developed a system to eliminate a targeted chromosome from human cells. Chromosome 21 was targeted by integration of a DNA cassette in HeLa cells that harbored three copies of chromosome 21. The DNA cassette included two inverted loxP sites and a herpes simplex virus thymidine kinase (HSV-tk gene. This system causes missegregation of chromosome 21 after expression of Cre recombinase and subsequently enables the selection of cells lacking the chromosome by culturing in a medium that includes ganciclovir (GCV. Cells harboring only two copies of chromosome 21 were efficiently induced by transfection of a Cre expression vector, indicating that this approach is useful for eliminating a targeted chromosome.

  4. A worldwide phylogeography for the human X chromosome.

    Directory of Open Access Journals (Sweden)

    Simone S Santos-Lopes

    Full Text Available BACKGROUND: We reasoned that by identifying genetic markers on human X chromosome regions where recombination is rare or absent, we should be able to construct X chromosome genealogies analogous to those based on Y chromosome and mitochondrial DNA polymorphisms, with the advantage of providing information about both male and female components of the population. METHODOLOGY/PRINCIPAL FINDINGS: We identified a 47 Kb interval containing an Alu insertion polymorphism (DXS225 and four microsatellites in complete linkage disequilibrium in a low recombination rate region of the long arm of the human X chromosome. This haplotype block was studied in 667 males from the HGDP-CEPH Human Genome Diversity Panel. The haplotypic diversity was highest in Africa (0.992+/-0.0025 and lowest in the Americas (0.839+/-0.0378, where no insertion alleles of DXS225 were observed. Africa shared few haplotypes with other geographical areas, while those exhibited significant sharing among themselves. Median joining networks revealed that the African haplotypes were numerous, occupied the periphery of the graph and had low frequency, whereas those from the other continents were few, central and had high frequency. Altogether, our data support a single origin of modern man in Africa and migration to occupy the other continents by serial founder effects. Coalescent analysis permitted estimation of the time of the most recent common ancestor as 182,000 years (56,700-479,000 and the estimated time of the DXS225 Alu insertion of 94,400 years (24,300-310,000. These dates are fully compatible with the current widely accepted scenario of the origin of modern mankind in Africa within the last 195,000 years and migration out-of-Africa circa 55,000-65,000 years ago. CONCLUSIONS/SIGNIFICANCE: A haplotypic block combining an Alu insertion polymorphism and four microsatellite markers on the human X chromosome is a useful marker to evaluate genetic diversity of human populations and

  5. Homologous subfamilies of human alphoid repetitive DNA on different nucleolus organizing chromosomes

    International Nuclear Information System (INIS)

    Joergensen, A.L.; Bostock, C.J.; Bak, A.L.

    1987-01-01

    The organization of alphoid repeated sequences on human nucleolus-organizing (NOR) chromosomes 13, 21, and 22 has been investigated. Analysis of hybridization of alphoid DNA probes to Southern transfers of restriction enzyme-digested DNA fragments from hybrid cells containing single human chromosomes shows that chromosomes 13 and 21 share one subfamily of alphoid repeats, whereas a different subfamily may be held in common by chromosomes 13 and 22. The sequences of cloned 680-base-pair EcoRI fragments of the alphoid DNA from chromosomes 13 and 21 show that the basic unit of this subfamily is indistinguishable on each chromosome. The sequence of cloned 1020-base-pair Xba I fragments from chromosome 22 is related to, but distinguishable from, that of the 680-base-pair EcoRI alphoid subfamily of chromosomes 13 and 21. These results suggest that, at some point after they originated and were homogenized, different subfamilies of alphoid sequences must have exchanged between chromosomes 13 and 21 and separately between chromosomes 13 and 22

  6. Gene expression, nucleotide composition and codon usage bias of genes associated with human Y chromosome.

    Science.gov (United States)

    Choudhury, Monisha Nath; Uddin, Arif; Chakraborty, Supriyo

    2017-06-01

    Analysis of codon usage pattern is important to understand the genetic and evolutionary characteristics of genomes. We have used bioinformatic approaches to analyze the codon usage bias (CUB) of the genes located in human Y chromosome. Codon bias index (CBI) indicated that the overall extent of codon usage bias was low. The relative synonymous codon usage (RSCU) analysis suggested that approximately half of the codons out of 59 synonymous codons were most frequently used, and possessed a T or G at the third codon position. The codon usage pattern was different in different genes as revealed from correspondence analysis (COA). A significant correlation between effective number of codons (ENC) and various GC contents suggests that both mutation pressure and natural selection affect the codon usage pattern of genes located in human Y chromosome. In addition, Y-linked genes have significant difference in GC contents at the second and third codon positions, expression level, and codon usage pattern of some codons like the SPANX genes in X chromosome.

  7. Study of ionizing radiation effect on human spermatozoa chromosomes

    International Nuclear Information System (INIS)

    Rousseaux, S.

    1990-02-01

    The purpose of this thesis is to study the radio-induced chromosomal aberrations in spermatozoa. After a brief recall on ionizing radiations, the author reviews the radio-induced chromosomal anomalies on somatic cells and on germinal line cells and spermatozoa. The author presents the technical aspects of human spermatozoa karyotype and finally studies the radio induced chromosomal anomalies of sperm to patients undergoing a radiotherapy. 13 tabs., 28 figs., 28 photos

  8. Structure, organization, and sequence of alpha satellite DNA from human chromosome 17: evidence for evolution by unequal crossing-over and an ancestral pentamer repeat shared with the human X chromosome.

    Science.gov (United States)

    Waye, J S; Willard, H F

    1986-09-01

    The centromeric regions of all human chromosomes are characterized by distinct subsets of a diverse tandemly repeated DNA family, alpha satellite. On human chromosome 17, the predominant form of alpha satellite is a 2.7-kilobase-pair higher-order repeat unit consisting of 16 alphoid monomers. We present the complete nucleotide sequence of the 16-monomer repeat, which is present in 500 to 1,000 copies per chromosome 17, as well as that of a less abundant 15-monomer repeat, also from chromosome 17. These repeat units were approximately 98% identical in sequence, differing by the exclusion of precisely 1 monomer from the 15-monomer repeat. Homologous unequal crossing-over is suggested as a probable mechanism by which the different repeat lengths on chromosome 17 were generated, and the putative site of such a recombination event is identified. The monomer organization of the chromosome 17 higher-order repeat unit is based, in part, on tandemly repeated pentamers. A similar pentameric suborganization has been previously demonstrated for alpha satellite of the human X chromosome. Despite the organizational similarities, substantial sequence divergence distinguishes these subsets. Hybridization experiments indicate that the chromosome 17 and X subsets are more similar to each other than to the subsets found on several other human chromosomes. We suggest that the chromosome 17 and X alpha satellite subsets may be related components of a larger alphoid subfamily which have evolved from a common ancestral repeat into the contemporary chromosome-specific subsets.

  9. Chromosomal mosaicism in human preimplantation embryos: a systematic review.

    NARCIS (Netherlands)

    Echten-Arends, J. van; Mastenbroek, S.; Sikkema-Raddatz, B.; Korevaar, J.C.; Heineman, M.J.; Veen, F. van der; Repping, S.

    2011-01-01

    BACKGROUND: Although chromosomal mosaicism in human preimplantation embryos has been described for almost two decades, its exact prevalence is still unknown. The prevalence of mosaicism is important in the context of preimplantation genetic screening in which the chromosomal status of an embryo is

  10. Chromosomal mosaicism in human preimplantation embryos : a systematic review

    NARCIS (Netherlands)

    van Echten-Arends, Jannie; Mastenbroek, Sebastiaan; Sikkema-Raddatz, Birgit; Korevaar, Johanna C.; Heineman, Maas Jan; van der Veen, Fulco; Repping, Sjoerd

    2011-01-01

    BACKGROUND: Although chromosomal mosaicism in human preimplantation embryos has been described for almost two decades, its exact prevalence is still unknown. The prevalence of mosaicism is important in the context of preimplantation genetic screening in which the chromosomal status of an embryo is

  11. Noninvolvement of the X chromosome in radiation-induced chromosome translocations in the human lymphoblastoid cell line TK6

    International Nuclear Information System (INIS)

    Jordan, R.; Schwartz, J.L.

    1994-01-01

    Fluorescence in situ hybridization procedures were used to examine the influence of chromosome locus on the frequency and type of chromosome aberrations induced by 60 Co γ rays in the human lymphoblastoid cell line TK6. Aberrations involving the X chromosome were compared to those involving the similarly sized autosome chromosome 7. When corrected for DNA content, acentric fragments were induced with equal frequency in the X and 7 chromosomes. Dose-dependent increases in chromosomal interchanges involving chromosome 7 were noted, and the frequencies of balanced translocations and dicentrics produced were approximately equal. Chromosome interchanges involving the X chromosome were rare and showed no apparent dose dependence. Thus, while chromosomes 7 and X are equally sensitive to the induction of chromosome breaks, the X chromosome is much less likely to interact with autosomes than chromosome 7. The noninvolvement of the X chromosome in translocations with autosomes may reflect a more peripheral and separate location for the X chromosome in the mammalian nucleus. 20 refs., 2 figs., 1 tab

  12. Frequency and distribution analysis of chromosomal translocations induced by x-ray in human lymphocytes

    International Nuclear Information System (INIS)

    Lopez Hidalgo, Juana Ines

    2000-01-01

    The characteristic of ionizing radiation suggests that induced chromosomal damage in the form of translocations would appear to be randomly distributed. However, the outcome of tests performed in vitro and in vivo (irradiated individuals) are contradictories. The most translocation-related chromosomes, as far as some studies reveal on one hand, appear to be less involved in accordance with others. These data, together with those related to molecular mechanisms involved in translocations production suggest that in G 0 -irradiated cells, the frequency and distribution of this kind of chromosomal rearrangement, does not take place at random. They seem to be affected by in-nucleus chromosome distribution, by each chromosome's DNA length and functional features, by the efficiency of DNA repair mechanisms, and by inter individual differences. The objective of this study was to establish the frequency pattern of each human chromosome involved in radio-induced translocations, as well as to analyze the importance the chromosome length, the activity of DNA polymerase- dependant repair mechanisms, and inter individual differences within the scope of such distribution. To achieve the goals, peripheral blood lymphocytes from healthy donors were irradiated in presence and absence of 2'-3' dideoxithimidine (ddThd), a Β - DNA polymerase inhibitor, which takes part in the base repair mechanism (B E R). The results showed that: The presence of ddThd during the irradiation increase the basal frequency of radioinduced translocations in 60 %. This result suggests that ddThd repair synthesis inhibition can be in itself a valid methodology for radiation-induced bases damage assessment, damage which if not BER-repaired may result in translocation-leading double strand breaks. A statistically significant correlation between translocation frequency and chromosome length, in terms of percentage of genome, has been noticed both in (basal) irradiation and in irradiation with ddThd inhibitor

  13. The complete sequence of human chromosome 5

    Energy Technology Data Exchange (ETDEWEB)

    Schmutz, Jeremy; Martin, Joel; Terry, Astrid; Couronne, Olivier; Grimwood, Jane; Lowry, State; Gordon, Laurie A.; Scott, Duncan; Xie, Gary; Huang, Wayne; Hellsten, Uffe; Tran-Gyamfi, Mary; She, Xinwei; Prabhakar, Shyam; Aerts, Andrea; Altherr, Michael; Bajorek, Eva; Black, Stacey; Branscomb, Elbert; Caoile, Chenier; Challacombe, Jean F.; Chan, Yee Man; Denys, Mirian; Detter, Chris; Escobar, Julio; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstenin, David; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Israni, Sanjay; Jett, Jamie; Kadner, Kristen; Kimbal, Heather; Kobayashi, Arthur; Lopez, Frederick; Lou, Yunian; Martinez, Diego; Medina, Catherine; Morgan, Jenna; Nandkeshwar, Richard; Noonan, James P.; Pitluck, Sam; Pollard, Martin; Predki, Paul; Priest, James; Ramirez, Lucia; Rash, Sam; Retterer, James; Rodriguez, Alex; Rogers, Stephanie; Salamov, Asaf; Salazar, Angelica; Thayer, Nina; Tice, Hope; Tsai, Ming; Ustaszewska, Anna; Vo, Nu; Wheeler, Jeremy; Wu, Kevin; Yang, Joan; Dickson, Mark; Cheng, Jan-Fang; Eichler, Evan E.; Olsen, Anne; Pennacchio, Len A.; Rokhsar, Daniel S.; Richardson, Paul; Lucas, Susan M.; Myers, Richard M.; Rubin, Edward M.

    2004-04-15

    Chromosome 5 is one of the largest human chromosomes yet has one of the lowest gene densities. This is partially explained by numerous gene-poor regions that display a remarkable degree of noncoding and syntenic conservation with non-mammalian vertebrates, suggesting they are functionally constrained. In total, we compiled 177.7 million base pairs of highly accurate finished sequence containing 923 manually curated protein-encoding genes including the protocadherin and interleukin gene families and the first complete versions of each of the large chromosome 5 specific internal duplications. These duplications are very recent evolutionary events and play a likely mechanistic role, since deletions of these regions are the cause of debilitating disorders including spinal muscular atrophy (SMA).

  14. Structure and chromosomal localization of the human lymphotoxin gene

    International Nuclear Information System (INIS)

    Nedwin, G.E.; Jarrett-Nedwin, J.; Smith, D.H.; Naylor, S.L.; Sakaguchi, A.Y.; Goeddel, D.V.; Gray, P.W.

    1987-01-01

    The authors have isolated, sequenced, and determined the chromosomal localization of the gene encoding human lymphotoxin (LT). The single copy gene was isolated from a human genomic library using a /sup 32/P-labeled 116 bp synthetic DNA fragment whose sequence was based on the NH/sub 2/-terminal amino acid sequence of LT. The gene spans 3 kb of DNA and is interrupted by three intervening sequences. The LT gene is located on human chromosome 6, as determined by Southern blot analysis of human-murine hybrid DNA. Putative transcriptional control regions and areas of homology with the promoters of interferon and other genes are identified

  15. Cloning and comparative mapping of a human chromosome 4-specific alpha satellite DNA sequence

    Energy Technology Data Exchange (ETDEWEB)

    D' Aiuto, L.; Marzella, R.; Archidiacono, N.; Rocchi, M. (Universita di Bari (Italy)); Antonacci, R. (Instituto Anatomia Umana Normale, Modena (Italy))

    1993-11-01

    The authors have isolated and characterized two human alphoid DNA clones: p4n1/4 and pZ4.1. Clone p4n1/4 identifies specifically the centromeric region of chromosome 4; pZ4.1 recognizes a subset of alphoid DNA shared by chromosomes 4 and 9. The specificity was determined using fluorescence in situ hybridization experiments on metaphase spreads and Southern blotting analysis of human-hamster somatic cell hybrids. The genomic organization of both subsets was also investigated. Comparative mapping on chimpanzee and gorilla chromosomes was performed. p4n1/4 hybridizes to chimpanzee chromosomes 11 and 13, homologs of human chromosomes 9 and 2q, respectively. On gorilla metaphase spreads, p4n1/4 hybridizes exclusively to the centromeric region of chromosome 19, partially homologous to human chromosome 17. No hybridization signal was detected on chromosome 3 of both chimpanzee and gorilla, in both species homolog of human chromosome 4. Identical comparative mapping results were obtained using pZ4.1 probe, although the latter recognizes an alphoid subset distinct from the one recognized by p4n1/4. The implications of these results in the evolution of centromeric regions of primate chromosomes are discussed. 33 refs., 4 figs.

  16. Cytogenetic and molecular studies on a recombinant human X chromosome: implications for the spreading of X chromosome inactivation

    International Nuclear Information System (INIS)

    Mohandas, T.; Geller, R.L.; Yen, P.H.; Rosendorff, J.; Bernstein, R.; Yoshida, A.; Shapiro, L.J.

    1987-01-01

    A pericentric inversion of human X chromosome and a recombinant X chromosome [rec(X)] derived from crossing-over within the inversion was identified in a family. The rec(X) had a duplication of the segment Xq26.3 → Xqter and a deletion of Xp22.3 → Xpter and was interpreted to be Xqter → Xq26.3::Xp22.3 → Xqter. To characterize the rec(X) chromosome, dosage blots were done on genomic DNA from carriers of this rearranged X chromosome using a number of X chromosome probes. Results showed that anonymous sequences from the distal end of the long arm to which probes 4D8, Hx120A, DX13, and St14 bind as well as the locus for glucose-6-phosphate dehydrogenase (G6PD) wee duplicated on the rec(X). Mouse-human cell hybrids were constructed that retained the rec(X) in the active or inactive state. Analyses of these hybrid clones for markers from the distal short arm of the X chromosome showed that the rec(X) retained the loci for steroid sulfatase (STS) and the cell surface antigen 12E7 (MIC2); but not the pseudoautosomal sequence 113D. These molecular studies confirm that the rec(X) is a duplication-deficiency chromosome as expected. In the inactive state in cell hybrids, STS and MIC2 (which usually escape X chromosome inactivation) were expressed from the rec(X), whereas G6PD was not. Therefore, in the rec(X) X chromosome inactivation has spread through STS and MIC2 leaving these loci unaffected and has inactivated G6PD in the absence of an inactivation center in the q26.3 → qter region of the human X chromosome. The mechanism of spreading of inactivation appears to operate in a sequence-specific fashion. Alternatively, STS and MIC2 may have undergone inactivation initially but could not be maintained in an inactive state

  17. Assignment of adenosine deaminase complexing protein (ADCP) gene(s) to human chromosome 2 in rodent-human somatic cell hybrids.

    Science.gov (United States)

    Herbschleb-Voogt, E; Grzeschik, K H; Pearson, P L; Meera Khan, P

    1981-01-01

    The experiments reported in this paper indicate that the expression of human adenosine deaminase complexing protein (ADCP) in the human-rodent somatic cell hybrids is influenced by the state of confluency of the cells and the background rodent genome. Thus, the complement of the L-cell derived A9 or B82 mouse parent apparently prevents the expression of human ADCP in the interspecific somatic cell hybrids. In the a3, E36, or RAG hybrids the human ADCP expression was not prevented by the rodent genome and was found to be proportional to the degree of confluency of the cell in the culture as in the case of primary human fibroblasts. An analysis of human chromosomes, chromosome specific enzyme markers, and ADCP in a panel of rodent-human somatic cell hybrids optimally maintained and harvested at full confluency has shown that the expression of human ADCP in the mouse (RAG)-human as well as in the hamster (E36 or a3)-human hybrids is determined by a gene(s) in human chromosome 2 and that neither chromosome 6 nor any other of the chromosomes of man carry any gene(s) involved in the formation of human ADCP at least in the Chinese hamster-human hybrids. A series of rodent-human hybrid clones exhibiting a mitotic separation of IDH1 and MDH1 indicated that ADCP is most probably situated between corresponding loci in human chromosome 2.

  18. Progress towards construction of a total restriction fragment map of a human chromosome.

    NARCIS (Netherlands)

    H. Vissing; F.G. Grosveld (Frank); E. Solomon; G. Moore; N. Lench; N. Shennan; R. Williamson

    1987-01-01

    textabstractWe present an approach to the construction of an overlapping restriction fragment map of a single human chromosome. A genomic cosmid library genome was constructed from a mouse-human hybrid cell line containing chromosome 17 as its only human genetic component. Cosmids containing human

  19. Hexavalent chromium induces chromosome instability in human urothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Wise, Sandra S. [Wise Laboratory of Environmental and Genetic Toxicology, Maine Center for Toxicology and Environmental Health, Department of Applied Medical Science, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Holmes, Amie L. [Wise Laboratory of Environmental and Genetic Toxicology, Maine Center for Toxicology and Environmental Health, Department of Applied Medical Science, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Department of Radiation Oncology, Dana Farber Cancer Institute, 450 Brookline Ave., Boston, MA 02215 (United States); Liou, Louis [Department of Pathology, Boston University School of Medicine, 670 Albany St., Boston, MA 02118 (United States); Adam, Rosalyn M. [Department of Surgery, Harvard Medical School, Boston, MA 02115 (United States); Wise, John Pierce Sr., E-mail: john.wise@louisville.edu [Wise Laboratory of Environmental and Genetic Toxicology, Maine Center for Toxicology and Environmental Health, Department of Applied Medical Science, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States)

    2016-04-01

    Numerous metals are well-known human bladder carcinogens. Despite the significant occupational and public health concern of metals and bladder cancer, the carcinogenic mechanisms remain largely unknown. Chromium, in particular, is a metal of concern as incidences of bladder cancer have been found elevated in chromate workers, and there is an increasing concern for patients with metal hip implants. However, the impact of hexavalent chromium (Cr(VI)) on bladder cells has not been studied. We compared chromate toxicity in two bladder cell lines; primary human urothelial cells and hTERT-immortalized human urothelial cells. Cr(VI) induced a concentration- and time-dependent increase in chromosome damage in both cell lines, with the hTERT-immortalized cells exhibiting more chromosome damage than the primary cells. Chronic exposure to Cr(VI) also induced a concentration-dependent increase in aneuploid metaphases in both cell lines which was not observed after a 24 h exposure. Aneuploidy induction was higher in the hTERT-immortalized cells. When we correct for uptake, Cr(VI) induces a similar amount of chromosome damage and aneuploidy suggesting that the differences in Cr(VI) sensitivity between the two cells lines were due to differences in uptake. The increase in chromosome instability after chronic chromate treatment suggests this may be a mechanism for chromate-induced bladder cancer, specifically, and may be a mechanism for metal-induced bladder cancer, in general. - Highlights: • Hexavalent chromium is genotoxic to human urothelial cells. • Hexavalent chromium induces aneuploidy in human urothelial cells. • hTERT-immortalized human urothelial cells model the effects seen in primary urothelial cells. • Hexavalent chromium has a strong likelihood of being carcinogenic for bladder tissue.

  20. Report of the Fourth international workshop on human chromosome 18 mapping 1996

    International Nuclear Information System (INIS)

    Silverman, G.A.; Overhauser, J.; Gerken, S.; Aburomia, R.; O'Connell, P.; Krauter, K.S.; Detera-Wadleigh, S.D.; Yoshikawa, T.; Collins, A.R.; Geurts van Kessel, A.

    1996-01-01

    The fourth international workshop on human chromosome 18 mapping was held in Boston, Massachusetts, USA on October 7-9, 1996. The workshop was attended by 34 participants from 7 countries. The goals of the workshop were to (1) generate integrated genetic and physical maps, (2) update the transcriptional map, (3) assess the syntenic relationships between human chromosome 18 and the mouse genome, and (4) establish a chromosome 18 web site

  1. Human chromosome 9 can complement UV sensitivity of xeroderma pigmentosum group A cells

    International Nuclear Information System (INIS)

    Ishizaki, Kanji; Sasaki, Masao S.; Ikenaga, Mituo; Nakamura, Yusuke

    1990-01-01

    A single human chromosome derived from normal human fibroblasts and tagged with the G418 resistance gene was transferred into SV40-transformed xeroderma pigmentosum group A (XP-A) cells via microcell fusion. When chromosome 1 or 12 was transferred, UV sensitivity of microcell hybrid cells was not changed. By contrast, after transferring chromosome 9,7 of 11 reipient clones were as UV-resistant as normal human cells. Four other clones were still as UV-sensitive as the parental XP-A cells. Southern hybridization analysis using a polymorphic probe, pEKZ19.3, which is homologous to a sequence of the D9S17 locus on chromosome 9, has confirmed that at least a part of normal human chromosome 9 was transferred into the recipient clones. However, amounts iof UV-induced unscheduled DNA synthesis in the UV-resistant clones were only one-third of those in normal human cells. These results indicate that a gene on chromosome 9 can confer complementation of high UV sensitivity of XP-A cells although it is still possible that 2 or more genes might be involved in the defective-repair phenotypes of XP-A. (author). 20 refs.; 3 figs.; 1 tab

  2. Comparative mapping of DNA markers from the familial Alzheimer disease and Down syndrome regions of human chromosome 21 to mouse chromosomes 16 and 17

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, S.V.; Nadeau, J.H.; Tanzi, R.E.; Watkins, P.C.; Jagadesh, J.; Taylor, B.A.; Haines, J.L.; Sacchi, N.; Gusella, J.F. (Harvard Medical School, Boston, MA (USA))

    1988-08-01

    Mouse trisomy 16 has been proposed as an animal model of Down syndrome (DS), since this chromosome contains homologues of several loci from the q22 band of human chromosome 21. The recent mapping of the defect causing familial Alzheimer disease (FAD) and the locus encoding the Alzheimer amyloid {beta} precursor protein (APP) to human chromosome 21 has prompted a more detailed examination of the extent of conservation of this linkage group between the two species. Using anonymous DNA probes and cloned genes from human chromosome 21 in a combination of recombinant inbred and interspecific mouse backcross analyses, the authors have established that the linkage group shared by mouse chromosome 16 includes not only the critical DS region of human chromosome 21 but also the APP gene and FAD-linked markers. Extending from the anonymous DNA locus D21S52 to ETS2, the linkage map of six loci spans 39% recombination in man but only 6.4% recombination in the mouse. A break in synteny occurs distal to ETS2, with the homologue of the human marker D21S56 mapping to mouse chromosome 17. Conservation of the linkage relationships of markers in the FAD region suggests that the murine homologue of the FAD locus probably maps to chromosome 16 and that detailed comparison of the corresponding region in both species could facilitate identification of the primary defect in this disorder. The break in synteny between the terminal portion of human chromosome 21 and mouse chromosome 16 indicates, however, that mouse trisomy 16 may not represent a complete model of DS.

  3. Comparative mapping of DNA markers from the familial Alzheimer disease and Down syndrome regions of human chromosome 21 to mouse chromosomes 16 and 17

    International Nuclear Information System (INIS)

    Cheng, S.V.; Nadeau, J.H.; Tanzi, R.E.; Watkins, P.C.; Jagadesh, J.; Taylor, B.A.; Haines, J.L.; Sacchi, N.; Gusella, J.F.

    1988-01-01

    Mouse trisomy 16 has been proposed as an animal model of Down syndrome (DS), since this chromosome contains homologues of several loci from the q22 band of human chromosome 21. The recent mapping of the defect causing familial Alzheimer disease (FAD) and the locus encoding the Alzheimer amyloid β precursor protein (APP) to human chromosome 21 has prompted a more detailed examination of the extent of conservation of this linkage group between the two species. Using anonymous DNA probes and cloned genes from human chromosome 21 in a combination of recombinant inbred and interspecific mouse backcross analyses, the authors have established that the linkage group shared by mouse chromosome 16 includes not only the critical DS region of human chromosome 21 but also the APP gene and FAD-linked markers. Extending from the anonymous DNA locus D21S52 to ETS2, the linkage map of six loci spans 39% recombination in man but only 6.4% recombination in the mouse. A break in synteny occurs distal to ETS2, with the homologue of the human marker D21S56 mapping to mouse chromosome 17. Conservation of the linkage relationships of markers in the FAD region suggests that the murine homologue of the FAD locus probably maps to chromosome 16 and that detailed comparison of the corresponding region in both species could facilitate identification of the primary defect in this disorder. The break in synteny between the terminal portion of human chromosome 21 and mouse chromosome 16 indicates, however, that mouse trisomy 16 may not represent a complete model of DS

  4. Induction of chromosome aberrations and mitotic arrest by cytomegalovirus in human cells

    International Nuclear Information System (INIS)

    AbuBakar, S.; Au, W.W.; Legator, M.S.; Albrecht, T.

    1988-01-01

    Human cytomegalovirus (CMV) is potentially an effective but often overlooked genotoxic agent in humans. We report here evidence that indicates that infection by CMV can induce chromosome alterations and mitotic inhibition. The frequency of chromosome aberrations induced was dependent on the input multiplicity of infection (m.o.i.) for human lung fibroblasts (LU), but not for human peripheral blood lymphocytes (PBLs) when both cell types were infected at the GO phase of the cell cycle. The aberrations induced by CMV were mostly chromatid breaks and chromosome pulverizations that resembled prematurely condensed S-phase chromatin. Pulverized chromosomes were not observed in LU cells infected with virus stocks that had been rendered nonlytic by UV-irradiation at 24,000 ergs/mm2 or from infection of human lymphocytes. In LU cells infected with UV-irradiated CMV, the frequency of aberrations induced was inversely dependent on the extent of the exposure of the CMV stock to the UV-light. In permissive CMV infection of proliferating LU cells at 24 hr after subculture, a high percentage (greater than 40%) of the metaphase cells were arrested at their first metaphase and displayed severely condensed chromosomes when harvested 48 hr later. A significant increase (p less than 0.05) in the chromosome aberration frequency was also observed. Our study shows that CMV infection is genotoxic to host cells. The types and extent of damage are dependent on the viral genome expression and on the cell cycle stage of the cells at the time of infection. The possible mechanisms for induction of chromosome damage by CMV are discussed

  5. Chromosomes of older humans are more prone to aminopterine-induced breakage

    International Nuclear Information System (INIS)

    Esposito, D.; Fassina, G.; Szabo, P.; Weksler, M.; De Angelis, P.; Siniscalco, M.; Rodgers, L.

    1989-01-01

    The authors have adopted a simplified version of the cell hybrid cotransfer method to test the hypothesis that human lymphocytes derived from elderly individuals have a higher chromosome instability. Peripheral blood lymphocytes from old male individuals and young controls were fused with a Chinese hamster cell line (CHO-YH21), yielding 10 HAT-resistant rodent-human clones from the old propositi and 22 from the young controls. Both series of hybrid clones were analyzed with respect to the retention of the enzyme glucose-6-phosphate dehydrogenase and the surface antigen MIC2 identified by monoclonal antibody 12E7, two human X chromosome-linked markers located at opposite ends of the X chromosome. Cell hybrid clones with an X chromosome from a young control retained both markers in about 70% of the cells. In contrast, cell hybrid clones with an X chromosome from an old donor retained the MIC2 marker in only 30% of their cells. Slot-blot hybridization studies have established that the observed loss of the MIC2 marker is due to loss of the coding gene, not to suppression of its expression. T lymphocytes from old donors were also found to have an LD 50 for aminopterine significantly lower than the concentration of this drug in the HAT medium used to grow the hybrids. They speculate that the higher rate of chromosomal breakage and of marker loss observed along the old-age X chromosomes could be the result of molecular scars accumulated with aging at sites of constitutive chromosomal fragility

  6. Human nucleolus organizers on nonhomologous chromosomes can share the same ribosomal gene variants.

    Science.gov (United States)

    Krystal, M; D'Eustachio, P; Ruddle, F H; Arnheim, N

    1981-01-01

    The distributions of three human ribosomal gene polymorphisms among individual chromosomes containing nucleolus organizers were analyzed by using mouse--human hybrid cells. Different nucleolus organizers can contain the same variant, suggesting the occurrence of genetic exchanges among ribosomal gene clusters on nonhomologous chromosomes. Such exchanges appear to occur less frequently in mice. This difference is discussed in terms of the nucleolar organization and chromosomal location of ribosomal gene clusters in humans and mice. Images PMID:6272316

  7. Combinations of chromosome transfer and genome editing for the development of cell/animal models of human disease and humanized animal models.

    Science.gov (United States)

    Uno, Narumi; Abe, Satoshi; Oshimura, Mitsuo; Kazuki, Yasuhiro

    2018-02-01

    Chromosome transfer technology, including chromosome modification, enables the introduction of Mb-sized or multiple genes to desired cells or animals. This technology has allowed innovative developments to be made for models of human disease and humanized animals, including Down syndrome model mice and humanized transchromosomic (Tc) immunoglobulin mice. Genome editing techniques are developing rapidly, and permit modifications such as gene knockout and knockin to be performed in various cell lines and animals. This review summarizes chromosome transfer-related technologies and the combined technologies of chromosome transfer and genome editing mainly for the production of cell/animal models of human disease and humanized animal models. Specifically, these include: (1) chromosome modification with genome editing in Chinese hamster ovary cells and mouse A9 cells for efficient transfer to desired cell types; (2) single-nucleotide polymorphism modification in humanized Tc mice with genome editing; and (3) generation of a disease model of Down syndrome-associated hematopoiesis abnormalities by the transfer of human chromosome 21 to normal human embryonic stem cells and the induction of mutation(s) in the endogenous gene(s) with genome editing. These combinations of chromosome transfer and genome editing open up new avenues for drug development and therapy as well as for basic research.

  8. NEUROD2 and NEUROD3 genes map to human chromosomes 17q12 and 5q23-q31 and mouse chromosomes 11 and 13, respectively

    Energy Technology Data Exchange (ETDEWEB)

    Tamimi, R.M.; Montgomery-Dyer, K.; Tapscott, S.J. [Fred Hutchinson Cancer Research Center, Seattle, WA (United States)] [and others

    1997-03-01

    NEUROD2 and NEUROD3 are transcription factors involved in neurogenesis that are related to the basic helix-loop-helix protein NEUROD. NEUROD2 maps to human chromosome 17q12 and mouse chromosome 11. NEUROD3 maps to human chromosome 5q23-q31 and mouse chromosome 13. 16 refs., 2 figs.

  9. Replication Banding Patterns in Human Chromosomes Detected Using 5-ethynyl-2'-deoxyuridine Incorporation

    International Nuclear Information System (INIS)

    Hoshi, Osamu; Ushiki, Tatsuo

    2011-01-01

    A novel technique using the incorporation of 5-ethynyl-2'-deoxyuridine (EdU) into replicating DNA is described for the analysis of replicating banding patterns of human metaphase chromosomes. Human lymphocytes were synchronized with excess thymidine and treated with EdU during the late S phase of the cell cycle. The incorporated EdU was then detected in metaphase chromosomes using Alexa Fluor® 488 azides, through the 1,3-dipolar cycloaddition reaction of organic azides with the terminal acetylene group of EdU. Chromosomes with incorporated EdU showed a banding pattern similar to G-banding of normal human chromosomes. Imaging by atomic force microscopy (AFM) in liquid conditions showed that the structure of the chromosomes was well preserved even after EdU treatment. Comparison between fluorescence microscopy and AFM images of the same chromosome 1 indicated the presence of ridges and grooves in the chromatid arm, features that have been previously reported in relation to G-banding. These results suggest an intimate relationship between EdU-induced replication bands and G- or R-bands in human chromosomes. This technique is thus useful for analyzing the structure of chromosomes in relation to their banding patterns following DNA replication in the S phase

  10. Addition of Aegilops U and M Chromosomes Affects Protein and Dietary Fiber Content of Wholemeal Wheat Flour

    Directory of Open Access Journals (Sweden)

    Marianna Rakszegi

    2017-09-01

    Full Text Available Cereal grain fiber is an important health-promoting component in the human diet. One option to improve dietary fiber content and composition in wheat is to introduce genes from its wild relatives Aegilops biuncialis and Aegilops geniculata. This study showed that the addition of chromosomes 2Ug, 4Ug, 5Ug, 7Ug, 2Mg, 5Mg, and 7Mg of Ae. geniculata and 3Ub, 2Mb, 3Mb, and 7Mb of Ae. biuncialis into bread wheat increased the seed protein content. Chromosomes 1Ug and 1Mg increased the proportion of polymeric glutenin proteins, while the addition of chromosomes 1Ub and 6Ub led to its decrease. Both Aegilops species had higher proportions of β-glucan compared to arabinoxylan (AX than wheat lines, and elevated β-glucan content was also observed in wheat chromosome addition lines 5U, 7U, and 7M. The AX content in wheat was increased by the addition of chromosomes 5Ug, 7Ug, and 1Ub while water-soluble AX was increased by the addition of chromosomes 5U, 5M, and 7M, and to a lesser extent by chromosomes 3, 4, 6Ug, and 2Mb. Chromosomes 5Ug and 7Mb also affected the structure of wheat AX, as shown by the pattern of oligosaccharides released by digestion with endoxylanase. These results will help to map genomic regions responsible for edible fiber content in Aegilops and will contribute to the efficient transfer of wild alleles in introgression breeding programs to obtain wheat varieties with improved health benefits.Key Message: Addition of Aegilops U- and M-genome chromosomes 5 and 7 improves seed protein and fiber content and composition in wheat.

  11. Standard guidelines for the chromosome-centric human proteome project.

    Science.gov (United States)

    Paik, Young-Ki; Omenn, Gilbert S; Uhlen, Mathias; Hanash, Samir; Marko-Varga, György; Aebersold, Ruedi; Bairoch, Amos; Yamamoto, Tadashi; Legrain, Pierre; Lee, Hyoung-Joo; Na, Keun; Jeong, Seul-Ki; He, Fuchu; Binz, Pierre-Alain; Nishimura, Toshihide; Keown, Paul; Baker, Mark S; Yoo, Jong Shin; Garin, Jerome; Archakov, Alexander; Bergeron, John; Salekdeh, Ghasem Hosseini; Hancock, William S

    2012-04-06

    The objective of the international Chromosome-Centric Human Proteome Project (C-HPP) is to map and annotate all proteins encoded by the genes on each human chromosome. The C-HPP consortium was established to organize a collaborative network among the research teams responsible for protein mapping of individual chromosomes and to identify compelling biological and genetic mechanisms influencing colocated genes and their protein products. The C-HPP aims to foster the development of proteome analysis and integration of the findings from related molecular -omics technology platforms through collaborations among universities, industries, and private research groups. The C-HPP consortium leadership has elicited broad input for standard guidelines to manage these international efforts more efficiently by mobilizing existing resources and collaborative networks. The C-HPP guidelines set out the collaborative consensus of the C-HPP teams, introduce topics associated with experimental approaches, data production, quality control, treatment, and transparency of data, governance of the consortium, and collaborative benefits. A companion approach for the Biology and Disease-Driven HPP (B/D-HPP) component of the Human Proteome Project is currently being organized, building upon the Human Proteome Organization's organ-based and biofluid-based initiatives (www.hupo.org/research). The common application of these guidelines in the participating laboratories is expected to facilitate the goal of a comprehensive analysis of the human proteome.

  12. Molecular mechanism in the formation of a human ring chromosome 21

    International Nuclear Information System (INIS)

    Wong, C.; Kazazian, H.H. Jr.; Stetten, G.; Earnshaw, W.C.; Antonarakis, S.E.; Van Keuren, M.L.

    1989-01-01

    The authors have characterized the structural rearrangements of a chromosome 21 that led to the de novo formation of a human ring chromosome 21 [r(21)]. Molecular cloning and chromosomal localization of the DNA regions flanking the ring junction provide evidence for a long arm to long arm fusion in formation of the r(21). In addition, the centromere and proximal long arm region of a maternal chromosome 21 are duplicated in the r(21). Therefore, the mechanism in formation of the r(21) was complex involving two sequential chromosomal rearrangements. (i) Duplication of the centromere and long arm of one maternal chromosome 21 occurred forming a rearranged intermediate. (ii) Chromosomal breaks in both the proximal and telomeric long arm regions on opposite arms of this rearranged chromosome occurred with subsequent reunion producing the r(21)

  13. Epigenetic basis of neuronal plasticity: Association with R/G-band boundaries on human chromosomes

    Directory of Open Access Journals (Sweden)

    Yoshihisa Watanabe

    2016-09-01

    Full Text Available Epigenetic mechanisms have been suggested to have roles in neuroplasticity, in particular with regard to learning and memory formation, and in a range of neural diseases. In addition to epigenetic marks, the human genome also contains large-scale compartmentalized structures that might also influence neuroplasticity and neural disease. These structures result from variations in the amounts of GC% and in the timing of DNA replication and give rise to longitudinal differentiation (light and dark bands along chromosomes after the appropriate staining. Here we describe our current understanding of the biological importance of the boundaries between these light and dark bands (the so-called R/G boundaries. We propose that the R/G-band boundaries on human chromosomes can be altered by epigenetic mechanisms, and that these changes may affect neuroplasticity, which is important to memory and learning, and may also have a role in the development of neural diseases associated with genomic instability.

  14. The DNA sequence and biology of human chromosome 19

    Energy Technology Data Exchange (ETDEWEB)

    Grimwood, J; Gordon, L A; Olsen, A; Terry, A; Schmutz, J; Lamerdin, J; Hellsten, U; Goodstein, D; Couronne, O; Tran-Gyamfi, M

    2004-04-06

    Chromosome 19 has the highest gene density of all human chromosomes, more than double the genome-wide average. The large clustered gene families, corresponding high GC content, CpG islands and density of repetitive DNA indicate a chromosome rich in biological and evolutionary significance. Here we describe 55.8 million base pairs of highly accurate finished sequence representing 99.9% of the euchromatin portion of the chromosome. Manual curation of gene loci reveals 1,461 protein-coding genes and 321 pseudogenes. Among these are genes directly implicated in Mendelian disorders, including familial hypercholesterolemia and insulin-resistant diabetes. Nearly one quarter of these genes belong to tandemly arranged families, encompassing more than 25% of the chromosome. Comparative analyses show a fascinating picture of conservation and divergence, revealing large blocks of gene orthology with rodents, scattered regions with more recent gene family expansions and deletions, and segments of coding and non-coding conservation with the distant fish species Takifugu.

  15. Mouse Chromosome Engineering for Modeling Human Disease

    OpenAIRE

    van der Weyden, Louise; Bradley, Allan

    2006-01-01

    Chromosomal rearrangements occur frequently in humans and can be disease-associated or phenotypically neutral. Recent technological advances have led to the discovery of copy-number changes previously undetected by cytogenetic techniques. To understand the genetic consequences of such genomic changes, these mutations need to be modeled in experimentally tractable systems. The mouse is an excellent organism for this analysis because of its biological and genetic similarity to humans, and the e...

  16. Cloning an expressed gene shared by the human sex chromosomes

    International Nuclear Information System (INIS)

    Darling, S.M.; Banting, G.S.; Pym, B.; Wolfe, J.; Goodfellow, P.N.

    1986-01-01

    The existence of genes shared by mammalian sex chromosomes has been predicted on both evolutionary and functional grounds. However, the only experimental evidence for such genes in humans is the cell-surface antigen encoded by loci on the X and Y chromosomes (MIC2X and MIC2Y, respectively), which is recognized by the monoclonal antibody 12E7. Using the bacteriophage λgt11 expression system in Escherichia coli and immunoscreening techniques, the authors have isolated a cDNA clone whose primary product is recognized by 12E7. Southern blot analysis using somatic cell hybrids containing only the human X or Y chromosomes shows that the sequences reacting with the cDNA clone are localized to the sex chromosomes. In addition, the clone hybridizes to DNAs isolated from mouse cells that have been transfected with human DNA and selected for 12E7 expression on the fluorescence-activated cell sorter. The authors conclude that the cDNA clone encodes the 12E7 antigen, which is the primary product of the MIC2 loci. The clone was used to explore sequence homology between MIC2X and MIC2Y; these loci are closely related, if not identical

  17. Complementation of a DNA repair defect in xeroderma pigmentosum cells by transfer of human chromosome 9

    International Nuclear Information System (INIS)

    Kaur, G.P.; Athwal, R.S.

    1989-01-01

    Complementation of the repair defect in xeroderma pigmentosum cells of complementation group A was achieved by the transfer of human chromosome 9. A set of mouse-human hybrid cell lines, each containing a single Ecogpt-marked human chromosome, was used as a source of donor chromosomes. Chromosome transfer to XPTG-1 cells, a hypoxanthine/guanine phosphoribosyltransferase-deficient mutant of simian virus 40-transformed complementation group A cells, was achieved by microcell fusion and selection for Ecogpt. Chromosome-transfer clones of XPTG-1 cells, each containing a different human donor chromosome, were analyzed for complementation of sensitivity to UV irradiation. Among all the clones, increased levels of resistance to UV was observed only in clones containing chromosome 9. Since our recipient cell line XPTG-1 is hypoxanthine/guanine phosphoribosyltransferase deficient, cultivation of Ecogpt+ clones in medium containing 6-thioguanine permits selection of cells for loss of the marker and, by inference, transferred chromosome 9. Clones isolated for growth in 6-thioguanine, which have lost the Ecogpt-marked chromosome, exhibited a UV-sensitive phenotype, confirming the presence of the repair gene(s) for complementation group A on chromosome 9

  18. The mapping of novel genes to human chromosome 19

    Energy Technology Data Exchange (ETDEWEB)

    Buenaventura, J.M. [Sarah Lawrence College, Bronxville, NY (United States)

    1994-12-01

    The principle goal of our laboratory is the discovery of new genes on human chromosome 19. One of the strategies to achieve this goal is through the use of cDNA clones known as {open_quotes}expressed sequence tags{close_quotes} (ESTs). ESTs, short segments of sequence from a cDNA clone that correspond to the mRNA, occur as unique regions in the genome and, therefore, can be used as markers for specific positions. In collaboration with researchers from Genethon in France, fifteen cDNA clones from a normalized human infant brain cDNA library were tested and determined to map to chromosome 19. A verification procedure is then followed to confirm assignment to chromosome 19. First, primers for each cDNA clone are developed and then amplified by polymerase chain reaction from genomic DNA. Next, a {sup 32}P-radiolabeled probe is made by polymerase chain reaction for each clone and then hybridized against filters containing an LLNL chromosome 19-specific cosmid library to find putative locations on the chromosome. The location is then verified by running a polymerase chain reactions from the positive cosmids. With the Browser database at LLNL, additional information about the positive cosmids can be found. Through use of the BLAST database at the National Library of Medicine, homologous sequences to the clones can be found. Among the fifteen cDNA clones received from Genethon, all have been amplified by polymerase chain reaction. Three have turned out as repetitive elements in the genome. Ten have been mapped to specific locations on chromosome 19. Putative locations have been found for the remaining two clones and thus verification testing will proceed.

  19. Radiation hybrids from human chromosome 3: A basis for the construction of region and specific sublibraries

    International Nuclear Information System (INIS)

    Atchison, L.; Cosmis, R.L.; Atchison, M.L.

    1990-01-01

    The authors are interested in identifying genes on human chromosome involved in disease processes. To date at least 20 different loci on this chromosome are implicated with various disease states. DNA libraries containing clones derived from a small chromosomal subregion implicated in a particular disease would greatly assist these studies. They have utilized the radiation hybrid (RH) technique to generate a series of somatic cell hybrids that contain small segments of human chromosome 3 as the only human genetic material. A Chinese hamster-human cell hybrid (Q314-2) containing only human chromosome 3 was used to prepare radiation hybrids. Cells were lethally X-irradiated with 6,000 rads and fused to Urd(??) Chinese hamster cells by PEG 1000 treatment. The majority of hybrids (>72%) analyzed retained portions of chromosome 3. The amount of chromosome 3 in each hybrid ranged from nearly all of the chromosome to very little. Currently these hybrids are being further characterized with single copy probes of known map location in order to isolate regions of chromosome 3 that contain specific disease locus. These reduced hybrids can then be used for the construction of region specific libraries and for the generation of new DNA probes from the specific region of interest

  20. Statistical properties of nucleotides in human chromosomes 21 and 22

    International Nuclear Information System (INIS)

    Zhang Linxi; Sun Tingting

    2005-01-01

    In this paper the statistical properties of nucleotides in human chromosomes 21 and 22 are investigated. The n-tuple Zipf analysis with n = 3, 4, 5, 6, and 7 is used in our investigation. It is found that the most common n-tuples are those which consist only of adenine (A) and thymine (T), and the rarest n-tuples are those in which GC or CG pattern appears twice. With the n-tuples become more and more frequent, the double GC or CG pattern becomes a single GC or CG pattern. The percentage of four nucleotides in the rarest ten and the most common ten n-tuples are also considered in human chromosomes 21 and 22, and different behaviors are found in the percentage of four nucleotides. Frequency of appearance of n-tuple f(r) as a function of rank r is also examined. We find the n-tuple Zipf plot shows a power-law behavior for r n-1 and a rapid decrease for r > 4 n-1 . In order to explore the interior statistical properties of human chromosomes 21 and 22 in detail, we divide the chromosome sequence into some moving windows and we discuss the percentage of ξη (ξ, η = A, C, G, T) pair in those moving windows. In some particular regions, there are some obvious changes in the percentage of ξη pair, and there maybe exist functional differences. The normalized number of repeats N 0 (l) can be described by a power law: N 0 (l) ∼ l -μ . The distance distributions P 0 (S) between two nucleotides in human chromosomes 21 and 22 are also discussed. A two-order polynomial fit exists in those distance distributions: log P 0 (S) = a + bS + cS 2 , and it is quite different from the random sequence

  1. Human artificial chromosomes with alpha satellite-based de novo centromeres show increased frequency of nondisjunction and anaphase lag.

    Science.gov (United States)

    Rudd, M Katharine; Mays, Robert W; Schwartz, Stuart; Willard, Huntington F

    2003-11-01

    Human artificial chromosomes have been used to model requirements for human chromosome segregation and to explore the nature of sequences competent for centromere function. Normal human centromeres require specialized chromatin that consists of alpha satellite DNA complexed with epigenetically modified histones and centromere-specific proteins. While several types of alpha satellite DNA have been used to assemble de novo centromeres in artificial chromosome assays, the extent to which they fully recapitulate normal centromere function has not been explored. Here, we have used two kinds of alpha satellite DNA, DXZ1 (from the X chromosome) and D17Z1 (from chromosome 17), to generate human artificial chromosomes. Although artificial chromosomes are mitotically stable over many months in culture, when we examined their segregation in individual cell divisions using an anaphase assay, artificial chromosomes exhibited more segregation errors than natural human chromosomes (P artificial chromosomes missegregate over a fivefold range, the data suggest that variable centromeric DNA content and/or epigenetic assembly can influence the mitotic behavior of artificial chromosomes.

  2. Transmission of chromosomal and instability via a chromosome irradiated with ionizing radiation

    International Nuclear Information System (INIS)

    Kodama, Seiji; Tanabe, Masateru; Shiraishi, Kazunori; Oshimura, Mitsuo

    2010-01-01

    We examined the stability of the transferred chromosome in 5 and 12 microcell hybrids including unirradiated human chromosomes 6 and 8, respectively, and 6 and 19 microcell hybrids including 4 Gy-irradiated human chromosomes 6 and 8, respectively. The transferred chromosome was structurally stable in most microcell hybrids transferred with the unirradiated chromosomes 6 and 8. In contrast, the 4 Gy-irradiated human chromosomes were unstable in 3 out of 6 hybrids (50%) with chromosome 6 and 3 out of 19 hybrids (16%) with chromosome 8, showing multiple aberrations in high frequencies (35∼98%). To know the cause of delayed chromosomal instability, intrachromosomal rearrangements of the human chromosome is investigated by subtelomere FISH in 17 microcell hybrids transferred with chromosomes 6 and 8. We found frequent intrachromosomal in 7 microcell hybrids (41%). However, no clear correlation was observed between the intrachromosomal rearrangements and the induction of delayed chromosomal instability by ionizing radiation

  3. Chromosomal localization of the human vesicular amine transporter genes

    Energy Technology Data Exchange (ETDEWEB)

    Peter, D.; Finn, P.; Liu, Y.; Roghani, A.; Edwards, R.H.; Klisak, I.; Kojis, T.; Heinzmann, C.; Sparkes, R.S. (UCLA School of Medicine, Los Angeles, CA (United States))

    1993-12-01

    The physiologic and behavioral effects of pharmacologic agents that interfere with the transport of monoamine neurotransmitters into vesicles suggest that vesicular amine transport may contribute to human neuropsychiatric disease. To determine whether an alteration in the genes that encode vesicular amine transport contributes to the inherited component of these disorders, the authors have isolated a human cDNA for the brain transporter and localized the human vesciular amine transporter genes. The human brain synaptic vesicle amine transporter (SVAT) shows unexpected conservation with rat SVAT in the regions that diverge extensively between rat SVAT and the rat adrenal chromaffin granule amine transporter (CGAT). Using the cloned sequences with a panel of mouse-human hybrids and in situ hybridization for regional localization, the adrenal CGAT gene (or VAT1) maps to human chromosome 8p21.3 and the brain SVAT gene (or VAT2) maps to chromosome 10q25. Both of these sites occur very close to if not within previously described deletions that produce severe but viable phenotypes. 26 refs., 3 figs., 1 tab.

  4. Stabilization of Telomere G-Quadruplexes Interferes with Human Herpesvirus 6A Chromosomal Integration.

    Science.gov (United States)

    Gilbert-Girard, Shella; Gravel, Annie; Artusi, Sara; Richter, Sara N; Wallaschek, Nina; Kaufer, Benedikt B; Flamand, Louis

    2017-07-15

    Human herpesviruses 6A and 6B (HHV-6A/B) can integrate their genomes into the telomeres of human chromosomes using a mechanism that remains poorly understood. To achieve a better understanding of the HHV-6A/B integration mechanism, we made use of BRACO-19, a compound that stabilizes G-quadruplex secondary structures and prevents telomere elongation by the telomerase complex. First, we analyzed the folding of telomeric sequences into G-quadruplex structures and their binding to BRACO-19 using G-quadruplex-specific antibodies and surface plasmon resonance. Circular dichroism studies indicate that BRACO-19 modifies the conformation and greatly stabilizes the G-quadruplexes formed in G-rich telomeric DNA. Subsequently we assessed the effects of BRACO-19 on the HHV-6A initial phase of infection. Our results indicate that BRACO-19 does not affect entry of HHV-6A DNA into cells. We next investigated if stabilization of G-quadruplexes by BRACO-19 affected HHV-6A's ability to integrate its genome into host chromosomes. Incubation of telomerase-expressing cells with BRACO-19, such as HeLa and MCF-7, caused a significant reduction in the HHV-6A integration frequency ( P integration frequency in U2OS cells that lack telomerase activity and elongate their telomeres through alternative lengthening mechanisms. Our data suggest that the fluidity of telomeres is important for efficient chromosomal integration of HHV-6A and that interference with telomerase activity negatively affects the generation of cellular clones containing integrated HHV-6A. IMPORTANCE HHV-6A/B can integrate their genomes into the telomeres of infected cells. Telomeres consist of repeated hexanucleotides (TTAGGG) of various lengths (up to several kilobases) and end with a single-stranded 3' extension. To avoid recognition and induce a DNA damage response, the single-stranded overhang folds back on itself and forms a telomeric loop (T-loop) or adopts a tertiary structure, referred to as a G-quadruplex. In the

  5. Chromosomal Bands Affected by Acute Oil Exposure and DNA Repair Errors

    Science.gov (United States)

    Zock, Jan-Paul; Giraldo, Jesús; Pozo-Rodríguez, Francisco; Espinosa, Ana; Rodríguez-Trigo, Gema; Verea, Hector; Castaño-Vinyals, Gemma; Gómez, Federico P.; Antó, Josep M.; Coll, Maria Dolors; Barberà, Joan Albert; Fuster, Carme

    2013-01-01

    Background In a previous study, we showed that individuals who had participated in oil clean-up tasks after the wreckage of the Prestige presented an increase of structural chromosomal alterations two years after the acute exposure had occurred. Other studies have also reported the presence of DNA damage during acute oil exposure, but little is known about the long term persistence of chromosomal alterations, which can be considered as a marker of cancer risk. Objectives We analyzed whether the breakpoints involved in chromosomal damage can help to assess the risk of cancer as well as to investigate their possible association with DNA repair efficiency. Methods Cytogenetic analyses were carried out on the same individuals of our previous study and DNA repair errors were assessed in cultures with aphidicolin. Results Three chromosomal bands, 2q21, 3q27 and 5q31, were most affected by acute oil exposure. The dysfunction in DNA repair mechanisms, expressed as chromosomal damage, was significantly higher in exposed-oil participants than in those not exposed (p= 0.016). Conclusion The present study shows that breaks in 2q21, 3q27 and 5q31 chromosomal bands, which are commonly involved in hematological cancer, could be considered useful genotoxic oil biomarkers. Moreover, breakages in these bands could induce chromosomal instability, which can explain the increased risk of cancer (leukemia and lymphomas) reported in chronically benzene-exposed individuals. In addition, it has been determined that the individuals who participated in clean-up of the oil spill presented an alteration of their DNA repair mechanisms two years after exposure. PMID:24303039

  6. Three-dimensional genome architecture influences partner selection for chromosomal translocations in human disease.

    Directory of Open Access Journals (Sweden)

    Jesse M Engreitz

    Full Text Available Chromosomal translocations are frequent features of cancer genomes that contribute to disease progression. These rearrangements result from formation and illegitimate repair of DNA double-strand breaks (DSBs, a process that requires spatial colocalization of chromosomal breakpoints. The "contact first" hypothesis suggests that translocation partners colocalize in the nuclei of normal cells, prior to rearrangement. It is unclear, however, the extent to which spatial interactions based on three-dimensional genome architecture contribute to chromosomal rearrangements in human disease. Here we intersect Hi-C maps of three-dimensional chromosome conformation with collections of 1,533 chromosomal translocations from cancer and germline genomes. We show that many translocation-prone pairs of regions genome-wide, including the cancer translocation partners BCR-ABL and MYC-IGH, display elevated Hi-C contact frequencies in normal human cells. Considering tissue specificity, we find that translocation breakpoints reported in human hematologic malignancies have higher Hi-C contact frequencies in lymphoid cells than those reported in sarcomas and epithelial tumors. However, translocations from multiple tissue types show significant correlation with Hi-C contact frequencies, suggesting that both tissue-specific and universal features of chromatin structure contribute to chromosomal alterations. Our results demonstrate that three-dimensional genome architecture shapes the landscape of rearrangements directly observed in human disease and establish Hi-C as a key method for dissecting these effects.

  7. Chromosome aberration induction in human diploid fibroblast and epithelial cells

    International Nuclear Information System (INIS)

    Scott, D.

    1986-01-01

    The relative sensitivity of cultured human fibroblasts and epithelial cells to radiation-induced chromosomal aberrations was investigated. Lung fibroblast and kidney epithelial cells from the same fetus were compared, as were skin fibroblasts and epithelial keratinocytes from the same foreskin sample. After exposure of proliferating fetal cells to 1.5 Gy X-rays there was a very similar aberration yield in the fibroblasts and epithelial cells. Observations of either little or no difference in chromosomal sensitivity between human fibroblasts and epithelial cells give added confidence that quantitative cytogenetic data obtained from cultured fibroblasts are relevant to the question of sensitivity of epithelial cells which are the predominant cell type in human cancers. (author)

  8. The genomic distribution of intraspecific and interspecific sequence divergence of human segmental duplications relative to human/chimpanzee chromosomal rearrangements

    Directory of Open Access Journals (Sweden)

    Eichler Evan E

    2008-08-01

    Full Text Available Abstract Background It has been suggested that chromosomal rearrangements harbor the molecular footprint of the biological phenomena which they induce, in the form, for instance, of changes in the sequence divergence rates of linked genes. So far, all the studies of these potential associations have focused on the relationship between structural changes and the rates of evolution of single-copy DNA and have tried to exclude segmental duplications (SDs. This is paradoxical, since SDs are one of the primary forces driving the evolution of structure and function in our genomes and have been linked not only with novel genes acquiring new functions, but also with overall higher DNA sequence divergence and major chromosomal rearrangements. Results Here we take the opposite view and focus on SDs. We analyze several of the features of SDs, including the rates of intraspecific divergence between paralogous copies of human SDs and of interspecific divergence between human SDs and chimpanzee DNA. We study how divergence measures relate to chromosomal rearrangements, while considering other factors that affect evolutionary rates in single copy DNA. Conclusion We find that interspecific SD divergence behaves similarly to divergence of single-copy DNA. In contrast, old and recent paralogous copies of SDs do present different patterns of intraspecific divergence. Also, we show that some relatively recent SDs accumulate in regions that carry inversions in sister lineages.

  9. Chromosome painting analysis of X-ray-induced aberrations in human lymphocytes in vitro

    International Nuclear Information System (INIS)

    Matsuoka, A.; Hayashi, M.; Yamazaki, N.; Sofuni, T.

    1994-01-01

    Chromosomal rearrangements in human lymphocytes induced by X-rays (0, 0.5, 1.0 and 2.0 Gray) were analyzed using chromosome painting. DNA probes for human chromosomes 1, 3 or 4 alone, and a combination of 1 and 4, were used for analysis. The frequency of cells with rearrangements, i.e. reciprocal translocations, dicentrics, insertions, tricentrics and fragments, involving chromosome 4 increased with dose in both 48 and 72 h cultures. The number of translocations per cell also increased with dose at 48 and 72 h. Dicentrics increased with dose in 48 h but not in 72 h cultures. The estimated genomic frequency of aberrations per cell was comparable with results in banded cells. No difference was shown on the detection efficiency of chromosome rearrangements among the various DNA probes used. Since this technique does not necessarily require well-spread metaphases for analysis, it is possible to increase the number of analyzable metaphases compared with the banding technique. Chromosome painting is a simpler, more objective and practical method for detecting chromosome rearrangements than conventional banding analyses. (Author)

  10. Use of chromosome translocations for measuring prior environment exposures in humans

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, J. D.

    1997-05-01

    Recent advances in cytogenetic methodology are beginning to have a major impact upon our ability to provide assessments of environmental exposure in humans. The advent of fluorescent-based techniques for `painting` whole chromosomes has made the analysis of chromosome translocations rapid, specific, sensitive and routine. Chromosome painting has been used to address a wide variety of scientific questions, resulting in an increased understanding of the biological consequences of adverse environmental exposure. This paper describes the use of chromosome translocations as a biological marker of exposure and effect in humans. The relevance of translocations is discussed, as are the advantages and disadvantages of painting compared to classical cytogenetic methods for translocation evaluation. The factors to consider in the use of translocations as a retrospective indicator of exposure are then described. Several theoretical parameters that are important to the use of translocations are provided, and the paper concludes with a vision for the future of cytogenetic methodology.

  11. Evaluating the relationship between spermatogenic silencing of the X chromosome and evolution of the Y chromosome in chimpanzee and human

    NARCIS (Netherlands)

    E. Mulugeta (Eskeatnaf); W.M. Baarends (Willy); J.H. Gribnau (Joost); J.A. Grootegoed (Anton)

    2010-01-01

    textabstractChimpanzees and humans are genetically very similar, with the striking exception of their Y chromosomes, which have diverged tremendously. The male-specific region (MSY), representing the greater part of the Y chromosome, is inherited from father to son in a clonal fashion, with natural

  12. Homologous alpha satellite sequences on human acrocentric chromosomes with selectivity for chromosomes 13, 14, and 21: implications for recombination between nonhomologues and Robertsonian translocations

    Energy Technology Data Exchange (ETDEWEB)

    Choo, K H; Vissel, B; Brown, R; Filby, R G; Earle, E

    1988-02-25

    The authors report a new subfamily of alpha satellite DNA (pTRA-2) which is found on all the human acrocentric chromosomes. The alphoid nature of the cloned DNA was established by partial sequencing. Southern analysis of restriction enzyme-digested DNA fragments from mouse/human hybrid cells containing only human chromosome 21 showed that the predominant higher-order repeating unit for pTRA-2 is a 3.9 kb structure. Analysis of a consensus in situ hybridization profile derived from 13 normal individuals revealed the localization of 73% of all centromeric autoradiographic grains over the five acrocentric chromosomes, with the following distribution: 20.4%, 21.5%, 17.1%, 7.3% and 6.5% on chromosomes 13, 14, 21, 15 and 22 respectively. An average of 1.4% of grains was found on the centromere of each of the remaining 19 nonacrocentric chromosomes. These results indicate the presence of a common subfamily of alpha satellite DNA on the five acrocentric chromosomes and suggest an evolutionary process consistent with recombination exchange of sequences between the nonhomologues. The results further suggests that such exchanges are more selective for chromosomes 13, 14 and 21 than for chromosomes 15 and 22. The possible role of centromeric alpha satellite DNA in the aetiology of 13q14q and 14q21q Robertsonian translocation involving the common and nonrandom association of chromosomes 13 and 14, and 14 and 21 is discussed.

  13. Fluorescent in-situ hybridization of cattle and sheep chromosomes with cloned human fragile-X DNA

    DEFF Research Database (Denmark)

    Ali, Ahmd; Thomsen, Preben Dybdahl; Babar, M.E.

    2009-01-01

    An extensive study on spontaneous and 5-Fluorodeoxyuridine induced fragile sites identified Xq31 in cattle (Bos taurus) and (Xq24, Xq26) in sheep (Ovis aries) in addition to several autosomal fragile sites (under publication). A ZOO-FISH study using three cloned human fragile-X probes with CCG....../CGG(n) trinucleotide repeat sequence was carried out to determine homology between human and bovine fragile-X. The hybridisation results showed only a weak signal on a human chromosome that was not an X with all three fragile site probes. No signals were detected in sheep chromosomes. The signal of all three human...... fragile-X probes on cattle chromosomes was however, medium-prominent sub-centromeric signal on two homologues. BrdU administration in 12 h before harvesting identified these homologues to be chromosome number 5. In addition retrospective slides of cattle and sheep chromosomes used for fragile site studies...

  14. Chromosomally Integrated Human Herpesvirus 6: Models of Viral Genome Release from the Telomere and Impacts on Human Health.

    Science.gov (United States)

    Wood, Michael L; Royle, Nicola J

    2017-07-12

    Human herpesvirus 6A and 6B, alongside some other herpesviruses, have the striking capacity to integrate into telomeres, the terminal repeated regions of chromosomes. The chromosomally integrated forms, ciHHV-6A and ciHHV-6B, are proposed to be a state of latency and it has been shown that they can both be inherited if integration occurs in the germ line. The first step in full viral reactivation must be the release of the integrated viral genome from the telomere and here we propose various models of this release involving transcription of the viral genome, replication fork collapse, and t-circle mediated release. In this review, we also discuss the relationship between ciHHV-6 and the telomere carrying the insertion, particularly how the presence and subsequent partial or complete release of the ciHHV-6 genome may affect telomere dynamics and the risk of disease.

  15. Chimpanzee and human Y chromosomes are remarkably divergent in structure and gene content

    NARCIS (Netherlands)

    Hughes, Jennifer F.; Skaletsky, Helen; Pyntikova, Tatyana; Graves, Tina A.; van Daalen, Saskia K. M.; Minx, Patrick J.; Fulton, Robert S.; McGrath, Sean D.; Locke, Devin P.; Friedman, Cynthia; Trask, Barbara J.; Mardis, Elaine R.; Warren, Wesley C.; Repping, Sjoerd; Rozen, Steve; Wilson, Richard K.; Page, David C.

    2010-01-01

    The human Y chromosome began to evolve from an autosome hundreds of millions of years ago, acquiring a sex-determining function and undergoing a series of inversions that suppressed crossing over with the X chromosome(1,2). Little is known about the recent evolution of the Y chromosome because only

  16. Induction of anchorage-independent growth of human embryonic fibroblasts with a deletion in the short arm of chromosome 11 by human papillomavirus type 16 DNA

    International Nuclear Information System (INIS)

    Smits, H.L.; Raadsheer, E.; Rood, I.; Mehendale, S.; Slater, R.M.; van der Noordaa, J.; Ter Schegget, J.

    1988-01-01

    Human embryonic fibroblasts with a large deletion (11p11.11p15.1) in the short arm of one chromosome 11 (del-11 cells) appeared to be susceptible to transformation by early human papillomavirus type 16 (HPV-16) DNA, whereas diploid human embryonic fibroblasts were not. This difference in susceptibility might be explained by the absence of a tumor suppressor gene located within the deleted part on the short arm of chromosome 11. The presence of abundant viral early-gene transcripts in transformed cells suggests that transformation was induced by an elevated level of an HPV-16 early-gene product(s). The low transcriptional activity of HPV-16 in diploid cells may indicate that cellular genes affect viral transcription. Interruption of the HPV-16 E2 early open reading frame is probably required for high-level HPV-16 early-gene expression driven from the homologous enhancer-promoter region

  17. Reactivation of chromosomally integrated human herpesvirus-6 by telomeric circle formation.

    Directory of Open Access Journals (Sweden)

    Bhupesh K Prusty

    Full Text Available More than 95% of the human population is infected with human herpesvirus-6 (HHV-6 during early childhood and maintains latent HHV-6 genomes either in an extra-chromosomal form or as a chromosomally integrated HHV-6 (ciHHV-6. In addition, approximately 1% of humans are born with an inheritable form of ciHHV-6 integrated into the telomeres of chromosomes. Immunosuppression and stress conditions can reactivate latent HHV-6 replication, which is associated with clinical complications and even death. We have previously shown that Chlamydia trachomatis infection reactivates ciHHV-6 and induces the formation of extra-chromosomal viral DNA in ciHHV-6 cells. Here, we propose a model and provide experimental evidence for the mechanism of ciHHV-6 reactivation. Infection with Chlamydia induced a transient shortening of telomeric ends, which subsequently led to increased telomeric circle (t-circle formation and incomplete reconstitution of circular viral genomes containing single viral direct repeat (DR. Correspondingly, short t-circles containing parts of the HHV-6 DR were detected in cells from individuals with genetically inherited ciHHV-6. Furthermore, telomere shortening induced in the absence of Chlamydia infection also caused circularization of ciHHV-6, supporting a t-circle based mechanism for ciHHV-6 reactivation.

  18. Large-scale polymorphism near the ends of several human chromosomes analyzed by using fluorescence in situ hybridization (FISH)

    Energy Technology Data Exchange (ETDEWEB)

    Trask, B.J.; Friedman, C. [Univ. of Washington, Seattle, WA (United States); Giorgi, D. [CNRS, Montpelier (France)] [and others

    1994-09-01

    We have discovered a large DNA segment that is polymorphically present at the ends of several human chromosomes. The segment, f7501, was originally derived form a human chromosome 19-specific cosmid library. FISH was used to determine the cosmid`s chromosomal distribution on 44 unrelated humans and several closely related primates. The human subjects represent a diversity of reproductively isolated ethnic populations. FISH analysis revealed that sequences highly homologous to the cosmid`s insert are present on both homologs at 3q, 15q,. and 19p in almost all individuals (88, 85, and 87 of 88 homologs, respectively). Other chromosomes sites were labeled much more rarely in the sampled individuals. For example, 56 of the 88 analyzed chromosomes 11 were labeled (18+/+, 6-/-, and 20+/- individuals). In contrast, 2q was labeled on only 1/88 sampled chromosomes. The termini of 2q, 5q, 6p, 6q, 7p, 8p, 9p, 9q, 11p, 12q, 16p, 19q, and 20q and an interstitial site at 2q13-14 were labeled in at least one individual of the set. EcoR1-fragments derived from the cosmid showed the same hybridization pattern as the entire cosmid, indicating that at least 40 kbp is shared by these chromosome ends. Ethnic differences in the allele frequency of these polymorphic variants was observed. For example, signals were observed on 8/10 and 7/10 of the chromosomes 7p and 16q, respectively, derived form Biakan Pygmies, but these sites were infrequently labeled in non-Pygmy human populations (2/68, respectively). This region has undergone significant changes in chromosome location during human evolution. Strong signal was seen on chimpanzee and gorilla chromosome 3, which is homologous to human chromosome 4, a chromosome unlabeled in any of the humans we have analyzed.

  19. Human interphase chromosomes: a review of available molecular cytogenetic technologies

    Directory of Open Access Journals (Sweden)

    Yurov Yuri B

    2010-01-01

    Full Text Available Abstract Human karyotype is usually studied by classical cytogenetic (banding techniques. To perform it, one has to obtain metaphase chromosomes of mitotic cells. This leads to the impossibility of analyzing all the cell types, to moderate cell scoring, and to the extrapolation of cytogenetic data retrieved from a couple of tens of mitotic cells to the whole organism, suggesting that all the remaining cells possess these genomes. However, this is far from being the case inasmuch as chromosome abnormalities can occur in any cell along ontogeny. Since somatic cells of eukaryotes are more likely to be in interphase, the solution of the problem concerning studying postmitotic cells and larger cell populations is interphase cytogenetics, which has become more or less applicable for specific biomedical tasks due to achievements in molecular cytogenetics (i.e. developments of fluorescence in situ hybridization -- FISH, and multicolor banding -- MCB. Numerous interphase molecular cytogenetic approaches are restricted to studying specific genomic loci (regions being, however, useful for identification of chromosome abnormalities (aneuploidy, polyploidy, deletions, inversions, duplications, translocations. Moreover, these techniques are the unique possibility to establish biological role and patterns of nuclear genome organization at suprachromosomal level in a given cell. Here, it is to note that this issue is incompletely worked out due to technical limitations. Nonetheless, a number of state-of-the-art molecular cytogenetic techniques (i.e multicolor interphase FISH or interpahase chromosome-specific MCB allow visualization of interphase chromosomes in their integrity at molecular resolutions. Thus, regardless numerous difficulties encountered during studying human interphase chromosomes, molecular cytogenetics does provide for high-resolution single-cell analysis of genome organization, structure and behavior at all stages of cell cycle.

  20. Molecular genetic approach to human meningioma: loss of genes on chromosome 22

    International Nuclear Information System (INIS)

    Seizinger, B.R.; De La Monte, S.; Atkins, L.; Gusella, J.F.; Martuza, R.L.

    1987-01-01

    A molecular genetic approach employing polymorphic DNA markers has been used to investigate the role of chromosomal aberrations in meningioma, one of the most common tumors of the human nervous system. Comparison of the alleles detected by DNA markers in tumor DNA versus DNA from normal tissue revealed chromosomal alterations present in primary surgical specimens. In agreement with cytogenetic studies of cultured meningiomas, the most frequent alteration detected was loss of heterozygosity on chromosome 22. Forty of 51 patients were constitutionally heterozygous for at least one chromosome 22 DNA marker. Seventeen of the 40 constitutionally heterozygotic patients (43%) displayed hemizygosity for the corresponding marker in their meningioma tumor tissues. Loss of heterozygosity was also detected at a significantly lower frequency for markers on several other autosomes. In view of the striking association between acoustic neuroma and meningioma in bilateral acoustic neurofibromatosis and the discovery that acoustic neuromas display specific loss of genes on chromosome 22, the authors propose that a common mechanism involving chromosome 22 is operative in the development of both tumor types. Fine-structure mapping to reveal partial deletions in meningiomas may provide the means to clone and characterize a gene (or genes) of importance for tumorigenesis in this and possibly other clinically associated tumors of the human nervous system

  1. Termini of human chromosomes display elevated rates of mitotic recombination.

    Science.gov (United States)

    Cornforth, M N; Eberle, R L

    2001-01-01

    The strand-specific in situ hybridization technique of CO-FISH was used to probe telomeres of human mitotic cells in order to determine the spontaneous frequency of crossover. This approach allowed the detection of recombinational crossovers occurring anywhere along the length of individual chromosomes, including reciprocal events taking place between sister chromatids. Although the process of sister chromatid exchange (SCE) is the most prominent type of recombination in somatic mammalian cells, our results show that SCEs accounted for less than a third of the recombinational events revealed by CO-FISH. It is concluded that chromosomal regions near the termini of chromosome arms undergo extraordinarily high rates of spontaneous recombination, producing terminal crossovers whose small size precludes detection by standard cytogenetic methods. That similar results were observed for transformed epithelial cells, as well as primary fibroblasts, suggests that the phenomenon is a common characteristic of human cells. These findings are noteworthy because, although telomeric and subtelomeric DNA is known to be preferentially involved in certain types of recombination, the tips of somatic mammalian chromosomes have not previously been identified as preferred sites for crossover. Implications of these results are discussed in terms of limitations imposed on CO-FISH for its proposed use in directional hybridization mapping.

  2. Y chromosome diversity, human expansion, drift, and cultural evolution.

    Science.gov (United States)

    Chiaroni, Jacques; Underhill, Peter A; Cavalli-Sforza, Luca L

    2009-12-01

    The relative importance of the roles of adaptation and chance in determining genetic diversity and evolution has received attention in the last 50 years, but our understanding is still incomplete. All statements about the relative effects of evolutionary factors, especially drift, need confirmation by strong demographic observations, some of which are easier to obtain in a species like ours. Earlier quantitative studies on a variety of data have shown that the amount of genetic differentiation in living human populations indicates that the role of positive (or directional) selection is modest. We observe geographic peculiarities with some Y chromosome mutants, most probably due to a drift-related phenomenon called the surfing effect. We also compare the overall genetic diversity in Y chromosome DNA data with that of other chromosomes and their expectations under drift and natural selection, as well as the rate of fall of diversity within populations known as the serial founder effect during the recent "Out of Africa" expansion of modern humans to the whole world. All these observations are difficult to explain without accepting a major relative role for drift in the course of human expansions. The increasing role of human creativity and the fast diffusion of inventions seem to have favored cultural solutions for many of the problems encountered in the expansion. We suggest that cultural evolution has been subrogating biologic evolution in providing natural selection advantages and reducing our dependence on genetic mutations, especially in the last phase of transition from food collection to food production.

  3. Neuropeptide Y receptor genes on human chromosome 4q31-q32 map to conserved linkage groups on mouse chromosomes 3 and 8

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, C.M.; Frankel, W.N. [Jackson Lab., Bar Harbor, ME (United States); Richards, J.E. [Univ. of Michigan Medical School, Ann Arbor, MI (United States)] [and others

    1997-05-01

    Npy1r and Npy2r, the genes encoding mouse type 1 and type 2 neuropeptide Y receptors, have been mapped by interspecific backcross analysis. Previous studies have localized the human genes encoding these receptors to chromosome 4q31-q32. We have now assigned Npy1r and Npy2r to conserved linkage groups on mouse Chr 8 and Chr 3, respectively, which correspond to the distal region of human chromosome 4q. Using yeast artificial chromosomes, we have estimated the distance between the human genes to be approximately 6 cM. Although ancient tandem duplication events may account for some closely spaced G-protein-coupled receptor genes, the large genetic distance between the human type 1 and type 2 neuropeptide Y receptor genes raises questions about whether this mechanism accounts for their proximity. 20 refs., 1 fig.

  4. A role for Aurora C in the chromosomal passenger complex during human preimplantation embryo development

    NARCIS (Netherlands)

    Santos, Margarida Avo; van de Werken, Christine; de Vries, Marieke; Jahr, Holger; Vromans, Martijn J. M.; Laven, Joop S. E.; Fauser, Bart C.; Kops, Geert J.; Lens, Susanne M.; Baart, Esther B.

    BACKGROUND: Human embryos generated by IVF demonstrate a high incidence of chromosomal segregation errors during the cleavage divisions. To analyse underlying molecular mechanisms, we investigated the behaviour of the chromosomal passenger complex (CPC) in human oocytes and embryos. This important

  5. The Consequences of Chromosome Segregation Errors in Mitosis and Meiosis

    Directory of Open Access Journals (Sweden)

    Tamara Potapova

    2017-02-01

    Full Text Available Mistakes during cell division frequently generate changes in chromosome content, producing aneuploid or polyploid progeny cells. Polyploid cells may then undergo abnormal division to generate aneuploid cells. Chromosome segregation errors may also involve fragments of whole chromosomes. A major consequence of segregation defects is change in the relative dosage of products from genes located on the missegregated chromosomes. Abnormal expression of transcriptional regulators can also impact genes on the properly segregated chromosomes. The consequences of these perturbations in gene expression depend on the specific chromosomes affected and on the interplay of the aneuploid phenotype with the environment. Most often, these novel chromosome distributions are detrimental to the health and survival of the organism. However, in a changed environment, alterations in gene copy number may generate a more highly adapted phenotype. Chromosome segregation errors also have important implications in human health. They may promote drug resistance in pathogenic microorganisms. In cancer cells, they are a source for genetic and phenotypic variability that may select for populations with increased malignance and resistance to therapy. Lastly, chromosome segregation errors during gamete formation in meiosis are a primary cause of human birth defects and infertility. This review describes the consequences of mitotic and meiotic errors focusing on novel concepts and human health.

  6. Chromosome condensation and segmentation

    International Nuclear Information System (INIS)

    Viegas-Pequignot, E.M.

    1981-01-01

    Some aspects of chromosome condensation in mammalians -humans especially- were studied by means of cytogenetic techniques of chromosome banding. Two further approaches were adopted: a study of normal condensation as early as prophase, and an analysis of chromosome segmentation induced by physical (temperature and γ-rays) or chemical agents (base analogues, antibiotics, ...) in order to show out the factors liable to affect condensation. Here 'segmentation' means an abnormal chromosome condensation appearing systematically and being reproducible. The study of normal condensation was made possible by the development of a technique based on cell synchronization by thymidine and giving prophasic and prometaphasic cells. Besides, the possibility of inducing R-banding segmentations on these cells by BrdU (5-bromodeoxyuridine) allowed a much finer analysis of karyotypes. Another technique was developed using 5-ACR (5-azacytidine), it allowed to induce a segmentation similar to the one obtained using BrdU and identify heterochromatic areas rich in G-C bases pairs [fr

  7. The Sequence and Analysis of Duplication Rich Human Chromosome 16

    Science.gov (United States)

    Martin, Joel; Han, Cliff; Gordon, Laurie A.; Terry, Astrid; Prabhakar, Shyam; She, Xinwei; Xie, Gary; Hellsten, Uffe; Man Chan, Yee; Altherr, Michael; Couronne, Olivier; Aerts, Andrea; Bajorek, Eva; Black, Stacey; Blumer, Heather; Branscomb, Elbert; Brown, Nancy C.; Bruno, William J.; Buckingham, Judith M.; Callen, David F.; Campbell, Connie S.; Campbell, Mary L.; Campbell, Evelyn W.; Caoile, Chenier; Challacombe, Jean F.; Chasteen, Leslie A.; Chertkov, Olga; Chi, Han C.; Christensen, Mari; Clark, Lynn M.; Cohn, Judith D.; Denys, Mirian; Detter, John C.; Dickson, Mark; Dimitrijevic-Bussod, Mira; Escobar, Julio; Fawcett, Joseph J.; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstein, David; Goodwin, Lynne A.; Grady, Deborah L.; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Hildebrand, Carl E.; Huang, Wayne; Israni, Sanjay; Jett, Jamie; Jewett, Phillip E.; Kadner, Kristen; Kimball, Heather; Kobayashi, Arthur; Krawczyk, Marie-Claude; Leyba, Tina; Longmire, Jonathan L.; Lopez, Frederick; Lou, Yunian; Lowry, Steve; Ludeman, Thom; Mark, Graham A.; Mcmurray, Kimberly L.; Meincke, Linda J.; Morgan, Jenna; Moyzis, Robert K.; Mundt, Mark O.; Munk, A. Christine; Nandkeshwar, Richard D.; Pitluck, Sam; Pollard, Martin; Predki, Paul; Parson-Quintana, Beverly; Ramirez, Lucia; Rash, Sam; Retterer, James; Ricke, Darryl O.; Robinson, Donna L.; Rodriguez, Alex; Salamov, Asaf; Saunders, Elizabeth H.; Scott, Duncan; Shough, Timothy; Stallings, Raymond L.; Stalvey, Malinda; Sutherland, Robert D.; Tapia, Roxanne; Tesmer, Judith G.; Thayer, Nina; Thompson, Linda S.; Tice, Hope; Torney, David C.; Tran-Gyamfi, Mary; Tsai, Ming; Ulanovsky, Levy E.; Ustaszewska, Anna; Vo, Nu; White, P. Scott; Williams, Albert L.; Wills, Patricia L.; Wu, Jung-Rung; Wu, Kevin; Yang, Joan; DeJong, Pieter; Bruce, David; Doggett, Norman; Deaven, Larry; Schmutz, Jeremy; Grimwood, Jane; Richardson, Paul; et al.

    2004-01-01

    We report here the 78,884,754 base pairs of finished human chromosome 16 sequence, representing over 99.9 percent of its euchromatin. Manual annotation revealed 880 protein coding genes confirmed by 1,637 aligned transcripts, 19 tRNA genes, 341 pseudogenes and 3 RNA pseudogenes. These genes include metallothionein, cadherin and iroquois gene families, as well as the disease genes for polycystic kidney disease and acute myelomonocytic leukemia. Several large-scale structural polymorphisms spanning hundreds of kilobasepairs were identified and result in gene content differences across humans. One of the unique features of chromosome 16 is its high level of segmental duplication, ranked among the highest of the human autosomes. While the segmental duplications are enriched in the relatively gene poor pericentromere of the p-arm, some are involved in recent gene duplication and conversion events which are likely to have had an impact on the evolution of primates and human disease susceptibility.

  8. The sequence and analysis of duplication rich human chromosome 16

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Joel; Han, Cliff; Gordon, Laurie A.; Terry, Astrid; Prabhakar, Shyam; She, Xinwei; Xie, Gary; Hellsten, Uffe; Man Chan, Yee; Altherr, Michael; Couronne, Olivier; Aerts, Andrea; Bajorek, Eva; Black, Stacey; Blumer, Heather; Branscomb, Elbert; Brown, Nancy C.; Bruno, William J.; Buckingham, Judith M.; Callen, David F.; Campbell, Connie S.; Campbell, Mary L.; Campbell, Evelyn W.; Caoile, Chenier; Challacombe, Jean F.; Chasteen, Leslie A.; Chertkov, Olga; Chi, Han C.; Christensen, Mari; Clark, Lynn M.; Cohn, Judith D.; Denys, Mirian; Detter, John C.; Dickson, Mark; Dimitrijevic-Bussod, Mira; Escobar, Julio; Fawcett, Joseph J.; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstein, David; Goodwin, Lynne A.; Grady, Deborah L.; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Hildebrand, Carl E.; Huang, Wayne; Israni, Sanjay; Jett, Jamie; Jewett, Phillip E.; Kadner, Kristen; Kimball, Heather; Kobayashi, Arthur; Krawczyk, Marie-Claude; Leyba, Tina; Longmire, Jonathan L.; Lopez, Frederick; Lou, Yunian; Lowry, Steve; Ludeman, Thom; Mark, Graham A.; Mcmurray, Kimberly L.; Meincke, Linda J.; Morgan, Jenna; Moyzis, Robert K.; Mundt, Mark O.; Munk, A. Christine; Nandkeshwar, Richard D.; Pitluck, Sam; Pollard, Martin; Predki, Paul; Parson-Quintana, Beverly; Ramirez, Lucia; Rash, Sam; Retterer, James; Ricke, Darryl O.; Robinson, Donna L.; Rodriguez, Alex; Salamov, Asaf; Saunders, Elizabeth H.; Scott, Duncan; Shough, Timothy; Stallings, Raymond L.; Stalvey, Malinda; Sutherland, Robert D.; Tapia, Roxanne; Tesmer, Judith G.; Thayer, Nina; Thompson, Linda S.; Tice, Hope; Torney, David C.; Tran-Gyamfi, Mary; Tsai, Ming; Ulanovsky, Levy E.; Ustaszewska, Anna; Vo, Nu; White, P. Scott; Williams, Albert L.; Wills, Patricia L.; Wu, Jung-Rung; Wu, Kevin; Yang, Joan; DeJong, Pieter; Bruce, David; Doggett, Norman; Deaven, Larry; Schmutz, Jeremy; Grimwood, Jane; Richardson, Paul; et al.

    2004-08-01

    We report here the 78,884,754 base pairs of finished human chromosome 16 sequence, representing over 99.9 percent of its euchromatin. Manual annotation revealed 880 protein coding genes confirmed by 1,637 aligned transcripts, 19 tRNA genes, 341 pseudogenes and 3 RNA pseudogenes. These genes include metallothionein, cadherin and iroquois gene families, as well as the disease genes for polycystic kidney disease and acute myelomonocytic leukemia. Several large-scale structural polymorphisms spanning hundreds of kilobasepairs were identified and result in gene content differences across humans. One of the unique features of chromosome 16 is its high level of segmental duplication, ranked among the highest of the human autosomes. While the segmental duplications are enriched in the relatively gene poor pericentromere of the p-arm, some are involved in recent gene duplication and conversion events which are likely to have had an impact on the evolution of primates and human disease susceptibility.

  9. Identification of a herpes simplex labialis susceptibility region on human chromosome 21.

    Science.gov (United States)

    Hobbs, Maurine R; Jones, Brandt B; Otterud, Brith E; Leppert, Mark; Kriesel, John D

    2008-02-01

    Most of the United States population is infected with either herpes simplex virus type 1 (HSV-1), herpes simplex virus type 2, or both. Reactivations of HSV-1 infection cause herpes simplex labialis (HSL; cold sores or fever blisters), which is the most common recurring viral infection in humans. To investigate the possibility of a human genetic component conferring resistance or susceptibility to cold sores (i.e., a HSL susceptibility gene), we conducted a genetic linkage analysis that included serotyping and phenotyping 421 individuals from 39 families enrolled in the Utah Genetic Reference Project. Linkage analysis identified a 2.5-Mb nonrecombinant region of interest on the long arm of human chromosome 21, with a multipoint logarithm of odds score of 3.9 noted near marker abmc65 (D21S409). Nonparametric linkage analysis of the data also provided strong evidence for linkage (P = .0005). This region of human chromosome 21 contains 6 candidate genes for herpes susceptibility. The development of frequent cold sores is associated with a region on the long arm of human chromosome 21. This region contains several candidate genes that could influence the frequency of outbreaks of HSL.

  10. Identification of human chromosome 22 transcribed sequences with ORF expressed sequence tags

    Science.gov (United States)

    de Souza, Sandro J.; Camargo, Anamaria A.; Briones, Marcelo R. S.; Costa, Fernando F.; Nagai, Maria Aparecida; Verjovski-Almeida, Sergio; Zago, Marco A.; Andrade, Luis Eduardo C.; Carrer, Helaine; El-Dorry, Hamza F. A.; Espreafico, Enilza M.; Habr-Gama, Angelita; Giannella-Neto, Daniel; Goldman, Gustavo H.; Gruber, Arthur; Hackel, Christine; Kimura, Edna T.; Maciel, Rui M. B.; Marie, Suely K. N.; Martins, Elizabeth A. L.; Nóbrega, Marina P.; Paçó-Larson, Maria Luisa; Pardini, Maria Inês M. C.; Pereira, Gonçalo G.; Pesquero, João Bosco; Rodrigues, Vanderlei; Rogatto, Silvia R.; da Silva, Ismael D. C. G.; Sogayar, Mari C.; de Fátima Sonati, Maria; Tajara, Eloiza H.; Valentini, Sandro R.; Acencio, Marcio; Alberto, Fernando L.; Amaral, Maria Elisabete J.; Aneas, Ivy; Bengtson, Mário Henrique; Carraro, Dirce M.; Carvalho, Alex F.; Carvalho, Lúcia Helena; Cerutti, Janete M.; Corrêa, Maria Lucia C.; Costa, Maria Cristina R.; Curcio, Cyntia; Gushiken, Tsieko; Ho, Paulo L.; Kimura, Elza; Leite, Luciana C. C.; Maia, Gustavo; Majumder, Paromita; Marins, Mozart; Matsukuma, Adriana; Melo, Analy S. A.; Mestriner, Carlos Alberto; Miracca, Elisabete C.; Miranda, Daniela C.; Nascimento, Ana Lucia T. O.; Nóbrega, Francisco G.; Ojopi, Élida P. B.; Pandolfi, José Rodrigo C.; Pessoa, Luciana Gilbert; Rahal, Paula; Rainho, Claudia A.; da Ro's, Nancy; de Sá, Renata G.; Sales, Magaly M.; da Silva, Neusa P.; Silva, Tereza C.; da Silva, Wilson; Simão, Daniel F.; Sousa, Josane F.; Stecconi, Daniella; Tsukumo, Fernando; Valente, Valéria; Zalcberg, Heloisa; Brentani, Ricardo R.; Reis, Luis F. L.; Dias-Neto, Emmanuel; Simpson, Andrew J. G.

    2000-01-01

    Transcribed sequences in the human genome can be identified with confidence only by alignment with sequences derived from cDNAs synthesized from naturally occurring mRNAs. We constructed a set of 250,000 cDNAs that represent partial expressed gene sequences and that are biased toward the central coding regions of the resulting transcripts. They are termed ORF expressed sequence tags (ORESTES). The 250,000 ORESTES were assembled into 81,429 contigs. Of these, 1,181 (1.45%) were found to match sequences in chromosome 22 with at least one ORESTES contig for 162 (65.6%) of the 247 known genes, for 67 (44.6%) of the 150 related genes, and for 45 of the 148 (30.4%) EST-predicted genes on this chromosome. Using a set of stringent criteria to validate our sequences, we identified a further 219 previously unannotated transcribed sequences on chromosome 22. Of these, 171 were in fact also defined by EST or full length cDNA sequences available in GenBank but not utilized in the initial annotation of the first human chromosome sequence. Thus despite representing less than 15% of all expressed human sequences in the public databases at the time of the present analysis, ORESTES sequences defined 48 transcribed sequences on chromosome 22 not defined by other sequences. All of the transcribed sequences defined by ORESTES coincided with DNA regions predicted as encoding exons by genscan. (http://genes.mit.edu/GENSCAN.html). PMID:11070084

  11. Chromosome-Centric Human Proteome Project Allies with Developmental Biology: A Case Study of the Role of Y Chromosome Genes in Organ Development.

    Science.gov (United States)

    Meyfour, Anna; Pooyan, Paria; Pahlavan, Sara; Rezaei-Tavirani, Mostafa; Gourabi, Hamid; Baharvand, Hossein; Salekdeh, Ghasem Hosseini

    2017-12-01

    One of the main goals of Chromosome-Centric Human Proteome Project is to identify protein evidence for missing proteins (MPs). Here, we present a case study of the role of Y chromosome genes in organ development and how to overcome the challenges facing MPs identification by employing human pluripotent stem cell differentiation into cells of different organs yielding unprecedented biological insight into adult silenced proteins. Y chromosome is a male-specific sex chromosome which escapes meiotic recombination. From an evolutionary perspective, Y chromosome has preserved 3% of ancestral genes compared to 98% preservation of the X chromosome based on Ohno's law. Male specific region of Y chromosome (MSY) contains genes that contribute to central dogma and govern the expression of various targets throughout the genome. One of the most well-known functions of MSY genes is to decide the male-specific characteristics including sex, testis formation, and spermatogenesis, which are majorly formed by ampliconic gene families. Beyond its role in sex-specific gonad development, MSY genes in coexpression with their X counterparts, as single copy and broadly expressed genes, inhibit haplolethality and play a key role in embryogenesis. The role of X-Y related gene mutations in the development of hereditary syndromes suggests an essential contribution of sex chromosome genes to development. MSY genes, solely and independent of their X counterparts and/or in association with sex hormones, have a considerable impact on organ development. In this Review, we present major recent findings on the contribution of MSY genes to gonad formation, spermatogenesis, and the brain, heart, and kidney development and discuss how Y chromosome proteome project may exploit developmental biology to find missing proteins.

  12. Dysregulation of gene expression in the artificial human trisomy cells of chromosome 8 associated with transformed cell phenotypes.

    Directory of Open Access Journals (Sweden)

    Hisakatsu Nawata

    Full Text Available A change in chromosome number, known as aneuploidy, is a common characteristic of cancer. Aneuploidy disrupts gene expression in human cancer cells and immortalized human epithelial cells, but not in normal human cells. However, the relationship between aneuploidy and cancer remains unclear. To study the effects of aneuploidy in normal human cells, we generated artificial cells of human primary fibroblast having three chromosome 8 (trisomy 8 cells by using microcell-mediated chromosome transfer technique. In addition to decreased proliferation, the trisomy 8 cells lost contact inhibition and reproliferated after exhibiting senescence-like characteristics that are typical of transformed cells. Furthermore, the trisomy 8 cells exhibited chromosome instability, and the overall gene expression profile based on microarray analyses was significantly different from that of diploid human primary fibroblasts. Our data suggest that aneuploidy, even a single chromosome gain, can be introduced into normal human cells and causes, in some cases, a partial cancer phenotype due to a disruption in overall gene expression.

  13. High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli.

    Science.gov (United States)

    van Koningsbruggen, Silvana; Gierlinski, Marek; Schofield, Pietá; Martin, David; Barton, Geoffey J; Ariyurek, Yavuz; den Dunnen, Johan T; Lamond, Angus I

    2010-11-01

    The nuclear space is mostly occupied by chromosome territories and nuclear bodies. Although this organization of chromosomes affects gene function, relatively little is known about the role of nuclear bodies in the organization of chromosomal regions. The nucleolus is the best-studied subnuclear structure and forms around the rRNA repeat gene clusters on the acrocentric chromosomes. In addition to rDNA, other chromatin sequences also surround the nucleolar surface and may even loop into the nucleolus. These additional nucleolar-associated domains (NADs) have not been well characterized. We present here a whole-genome, high-resolution analysis of chromatin endogenously associated with nucleoli. We have used a combination of three complementary approaches, namely fluorescence comparative genome hybridization, high-throughput deep DNA sequencing and photoactivation combined with time-lapse fluorescence microscopy. The data show that specific sequences from most human chromosomes, in addition to the rDNA repeat units, associate with nucleoli in a reproducible and heritable manner. NADs have in common a high density of AT-rich sequence elements, low gene density and a statistically significant enrichment in transcriptionally repressed genes. Unexpectedly, both the direct DNA sequencing and fluorescence photoactivation data show that certain chromatin loci can specifically associate with either the nucleolus, or the nuclear envelope.

  14. Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration.

    Science.gov (United States)

    Bachtrog, Doris

    2013-02-01

    The human Y chromosome is intriguing not only because it harbours the master-switch gene that determines gender but also because of its unusual evolutionary history. The Y chromosome evolved from an autosome, and its evolution has been characterized by massive gene decay. Recent whole-genome and transcriptome analyses of Y chromosomes in humans and other primates, in Drosophila species and in plants have shed light on the current gene content of the Y chromosome, its origins and its long-term fate. Furthermore, comparative analysis of young and old Y chromosomes has given further insights into the evolutionary and molecular forces triggering Y-chromosome degeneration and into the evolutionary destiny of the Y chromosome.

  15. A high density of human communication-associated genes in chromosome 7q31-q36: differential expression in human and non-human primate cortices.

    Science.gov (United States)

    Schneider, E; Jensen, L R; Farcas, R; Kondova, I; Bontrop, R E; Navarro, B; Fuchs, E; Kuss, A W; Haaf, T

    2012-01-01

    The human brain is distinguished by its remarkable size, high energy consumption, and cognitive abilities compared to all other mammals and non-human primates. However, little is known about what has accelerated brain evolution in the human lineage. One possible explanation is that the appearance of advanced communication skills and language has been a driving force of human brain development. The phenotypic adaptations in brain structure and function which occurred on the way to modern humans may be associated with specific molecular signatures in today's human genome and/or transcriptome. Genes that have been linked to language, reading, and/or autism spectrum disorders are prime candidates when searching for genes for human-specific communication abilities. The database and genome-wide expression analyses we present here revealed a clustering of such communication-associated genes (COAG) on human chromosomes X and 7, in particular chromosome 7q31-q36. Compared to the rest of the genome, we found a high number of COAG to be differentially expressed in the cortices of humans and non-human primates (chimpanzee, baboon, and/or marmoset). The role of X-linked genes for the development of human-specific cognitive abilities is well known. We now propose that chromosome 7q31-q36 also represents a hot spot for the evolution of human-specific communication abilities. Selective pressure on the T cell receptor beta locus on chromosome 7q34, which plays a pivotal role in the immune system, could have led to rapid dissemination of positive gene variants in hitchhiking COAG. Copyright © 2012 S. Karger AG, Basel.

  16. Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes.

    Directory of Open Access Journals (Sweden)

    Andreas Bolzer

    2005-05-01

    Full Text Available Studies of higher-order chromatin arrangements are an essential part of ongoing attempts to explore changes in epigenome structure and their functional implications during development and cell differentiation. However, the extent and cell-type-specificity of three-dimensional (3D chromosome arrangements has remained controversial. In order to overcome technical limitations of previous studies, we have developed tools that allow the quantitative 3D positional mapping of all chromosomes simultaneously. We present unequivocal evidence for a probabilistic 3D order of prometaphase chromosomes, as well as of chromosome territories (CTs in nuclei of quiescent (G0 and cycling (early S-phase human diploid fibroblasts (46, XY. Radial distance measurements showed a probabilistic, highly nonrandom correlation with chromosome size: small chromosomes-independently of their gene density-were distributed significantly closer to the center of the nucleus or prometaphase rosette, while large chromosomes were located closer to the nuclear or rosette rim. This arrangement was independently confirmed in both human fibroblast and amniotic fluid cell nuclei. Notably, these cell types exhibit flat-ellipsoidal cell nuclei, in contrast to the spherical nuclei of lymphocytes and several other human cell types, for which we and others previously demonstrated gene-density-correlated radial 3D CT arrangements. Modeling of 3D CT arrangements suggests that cell-type-specific differences in radial CT arrangements are not solely due to geometrical constraints that result from nuclear shape differences. We also found gene-density-correlated arrangements of higher-order chromatin shared by all human cell types studied so far. Chromatin domains, which are gene-poor, form a layer beneath the nuclear envelope, while gene-dense chromatin is enriched in the nuclear interior. We discuss the possible functional implications of this finding.

  17. A First Generation Comparative Chromosome Map between Guinea Pig (Cavia porcellus) and Humans.

    Science.gov (United States)

    Romanenko, Svetlana A; Perelman, Polina L; Trifonov, Vladimir A; Serdyukova, Natalia A; Li, Tangliang; Fu, Beiyuan; O'Brien, Patricia C M; Ng, Bee L; Nie, Wenhui; Liehr, Thomas; Stanyon, Roscoe; Graphodatsky, Alexander S; Yang, Fengtang

    2015-01-01

    The domesticated guinea pig, Cavia porcellus (Hystricomorpha, Rodentia), is an important laboratory species and a model for a number of human diseases. Nevertheless, genomic tools for this species are lacking; even its karyotype is poorly characterized. The guinea pig belongs to Hystricomorpha, a widespread and important group of rodents; so far the chromosomes of guinea pigs have not been compared with that of other hystricomorph species or with any other mammals. We generated full sets of chromosome-specific painting probes for the guinea pig by flow sorting and microdissection, and for the first time, mapped the chromosomal homologies between guinea pig and human by reciprocal chromosome painting. Our data demonstrate that the guinea pig karyotype has undergone extensive rearrangements: 78 synteny-conserved human autosomal segments were delimited in the guinea pig genome. The high rate of genome evolution in the guinea pig may explain why the HSA7/16 and HSA16/19 associations presumed ancestral for eutherians and the three syntenic associations (HSA1/10, 3/19, and 9/11) considered ancestral for rodents were not found in C. porcellus. The comparative chromosome map presented here is a starting point for further development of physical and genetic maps of the guinea pig as well as an aid for genome assembly assignment to specific chromosomes. Furthermore, the comparative mapping will allow a transfer of gene map data from other species. The probes developed here provide a genomic toolkit, which will make the guinea pig a key species to unravel the evolutionary biology of the Hystricomorph rodents.

  18. Damage of chromosoms under irradiation of human blood lymphocytes and development of bystander effect.

    Science.gov (United States)

    Shemetun, O V

    2016-12-01

    the research the distribution of radiation induced damages among chromosomes and their bands in irra diated in vitro human blood lymphocytes and in unirradiated bystander cells.Material and methods of research: cultivation of human peripheral blood lymphocytes by semi micromethod D.A. Hungerford, modeling of radiation induced bystander effect in mixed cultures consisting of irradiated in vitro and non irradiated blood lymphocytes from persons of different gender, GTG staining of metaphase chromosomes and their cytogenetic analysis. Break points in chromosomes under the formation of aberrations were identified in exposed in vitro human peripheral blood lymphocytes in doses 0.25 Gy (95 breaks in 1248 cells) and 1.0 Gy (227 breaks in 726 cells) and in non irradiated bystander cells under their joint cultivation with irradiated in vitro human lymphocytes (51 breaks in 1137 cells at irradiation of adjacent populations of lymphocytes in dose 0.25 Gy and 75 breaks in 1321 cells at irradiation of adjacent population of lymphocytes in a dose 1.0 Gy). The distribution of injuries among the chromo somes and their bands was investigated. in radiation exposed in vitro human peripheral blood lymphocytes as well as in bystander cells the fre quency of damaged bands and number of breaks which localized in them exceeded the control value (p chromosomes were damaged according to their relative length. Location of bands with increasing number of breaks coincided with the «hot spots» of chromosome damage following irradiation and fragile sites. More sensitive to damage were G negative euchromatin chromosome bands, in which were localized 82 88 % breaks. Damageability of telomeric regions in the irradiated cells had no significant difference from the control, while in bystander cells was lower than control value (p < 0.05). O. V. Shemetun.

  19. Three-Dimensional Organization of Chromosome Territories and the Human Cell Nucleus

    NARCIS (Netherlands)

    T.A. Knoch (Tobias)

    1999-01-01

    textabstractTo study the three-dimensional organization of chromosome territories and the human interphase cell nucleus we developed models, which could be compared to experiments. Despite the successful linear sequencing of the human genome its 3D-organization is widely unknown. Using Monte

  20. Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome

    Science.gov (United States)

    Machiela, Mitchell J.; Zhou, Weiyin; Karlins, Eric; Sampson, Joshua N.; Freedman, Neal D.; Yang, Qi; Hicks, Belynda; Dagnall, Casey; Hautman, Christopher; Jacobs, Kevin B.; Abnet, Christian C.; Aldrich, Melinda C.; Amos, Christopher; Amundadottir, Laufey T.; Arslan, Alan A.; Beane-Freeman, Laura E.; Berndt, Sonja I.; Black, Amanda; Blot, William J.; Bock, Cathryn H.; Bracci, Paige M.; Brinton, Louise A.; Bueno-de-Mesquita, H Bas; Burdett, Laurie; Buring, Julie E.; Butler, Mary A.; Canzian, Federico; Carreón, Tania; Chaffee, Kari G.; Chang, I-Shou; Chatterjee, Nilanjan; Chen, Chu; Chen, Constance; Chen, Kexin; Chung, Charles C.; Cook, Linda S.; Crous Bou, Marta; Cullen, Michael; Davis, Faith G.; De Vivo, Immaculata; Ding, Ti; Doherty, Jennifer; Duell, Eric J.; Epstein, Caroline G.; Fan, Jin-Hu; Figueroa, Jonine D.; Fraumeni, Joseph F.; Friedenreich, Christine M.; Fuchs, Charles S.; Gallinger, Steven; Gao, Yu-Tang; Gapstur, Susan M.; Garcia-Closas, Montserrat; Gaudet, Mia M.; Gaziano, J. Michael; Giles, Graham G.; Gillanders, Elizabeth M.; Giovannucci, Edward L.; Goldin, Lynn; Goldstein, Alisa M.; Haiman, Christopher A.; Hallmans, Goran; Hankinson, Susan E.; Harris, Curtis C.; Henriksson, Roger; Holly, Elizabeth A.; Hong, Yun-Chul; Hoover, Robert N.; Hsiung, Chao A.; Hu, Nan; Hu, Wei; Hunter, David J.; Hutchinson, Amy; Jenab, Mazda; Johansen, Christoffer; Khaw, Kay-Tee; Kim, Hee Nam; Kim, Yeul Hong; Kim, Young Tae; Klein, Alison P.; Klein, Robert; Koh, Woon-Puay; Kolonel, Laurence N.; Kooperberg, Charles; Kraft, Peter; Krogh, Vittorio; Kurtz, Robert C.; LaCroix, Andrea; Lan, Qing; Landi, Maria Teresa; Marchand, Loic Le; Li, Donghui; Liang, Xiaolin; Liao, Linda M.; Lin, Dongxin; Liu, Jianjun; Lissowska, Jolanta; Lu, Lingeng; Magliocco, Anthony M.; Malats, Nuria; Matsuo, Keitaro; McNeill, Lorna H.; McWilliams, Robert R.; Melin, Beatrice S.; Mirabello, Lisa; Moore, Lee; Olson, Sara H.; Orlow, Irene; Park, Jae Yong; Patiño-Garcia, Ana; Peplonska, Beata; Peters, Ulrike; Petersen, Gloria M.; Pooler, Loreall; Prescott, Jennifer; Prokunina-Olsson, Ludmila; Purdue, Mark P.; Qiao, You-Lin; Rajaraman, Preetha; Real, Francisco X.; Riboli, Elio; Risch, Harvey A.; Rodriguez-Santiago, Benjamin; Ruder, Avima M.; Savage, Sharon A.; Schumacher, Fredrick; Schwartz, Ann G.; Schwartz, Kendra L.; Seow, Adeline; Wendy Setiawan, Veronica; Severi, Gianluca; Shen, Hongbing; Sheng, Xin; Shin, Min-Ho; Shu, Xiao-Ou; Silverman, Debra T.; Spitz, Margaret R.; Stevens, Victoria L.; Stolzenberg-Solomon, Rachael; Stram, Daniel; Tang, Ze-Zhong; Taylor, Philip R.; Teras, Lauren R.; Tobias, Geoffrey S.; Van Den Berg, David; Visvanathan, Kala; Wacholder, Sholom; Wang, Jiu-Cun; Wang, Zhaoming; Wentzensen, Nicolas; Wheeler, William; White, Emily; Wiencke, John K.; Wolpin, Brian M.; Wong, Maria Pik; Wu, Chen; Wu, Tangchun; Wu, Xifeng; Wu, Yi-Long; Wunder, Jay S.; Xia, Lucy; Yang, Hannah P.; Yang, Pan-Chyr; Yu, Kai; Zanetti, Krista A.; Zeleniuch-Jacquotte, Anne; Zheng, Wei; Zhou, Baosen; Ziegler, Regina G.; Perez-Jurado, Luis A.; Caporaso, Neil E.; Rothman, Nathaniel; Tucker, Margaret; Dean, Michael C.; Yeager, Meredith; Chanock, Stephen J.

    2016-01-01

    To investigate large structural clonal mosaicism of chromosome X, we analysed the SNP microarray intensity data of 38,303 women from cancer genome-wide association studies (20,878 cases and 17,425 controls) and detected 124 mosaic X events >2 Mb in 97 (0.25%) women. Here we show rates for X-chromosome mosaicism are four times higher than mean autosomal rates; X mosaic events more often include the entire chromosome and participants with X events more likely harbour autosomal mosaic events. X mosaicism frequency increases with age (0.11% in 50-year olds; 0.45% in 75-year olds), as reported for Y and autosomes. Methylation array analyses of 33 women with X mosaicism indicate events preferentially involve the inactive X chromosome. Our results provide further evidence that the sex chromosomes undergo mosaic events more frequently than autosomes, which could have implications for understanding the underlying mechanisms of mosaic events and their possible contribution to risk for chronic diseases. PMID:27291797

  1. Frequencies of X-ray and fast neutron induced chromosome translocations in human peripheral blood lymphocytes as detected by in situ hybridization using chromosome specific DNA libraries

    International Nuclear Information System (INIS)

    Natarajan, A.T.; Darroudi, F.; Vermeulen, S.; Wiegant, J.

    1992-01-01

    DNA libraries of six human chromosomes were used to detect translocations in human lymphocytes induced by different doses of X-rays and fast neutrons. Results show that with X-rays, one can detect about 1.5 to 2.0 fold more translocations in comparison to dicentrics, whereas following fast neutron irradiation, the difference between these two classes of aberrations are significantly different at high doses. In addition, triple fluorescent in situ hybridization technique was used to study the frequencies of radiation-induced translocations involving a specific chromosome. Chromosome number 1 was found to be involved in translocations more frequently than chromosomes number 2, 3, 4, 8 and X. (author). 10 refs., 1 fig., 2 tabs

  2. Protannotator: a semiautomated pipeline for chromosome-wise functional annotation of the "missing" human proteome.

    Science.gov (United States)

    Islam, Mohammad T; Garg, Gagan; Hancock, William S; Risk, Brian A; Baker, Mark S; Ranganathan, Shoba

    2014-01-03

    The chromosome-centric human proteome project (C-HPP) aims to define the complete set of proteins encoded in each human chromosome. The neXtProt database (September 2013) lists 20,128 proteins for the human proteome, of which 3831 human proteins (∼19%) are considered "missing" according to the standard metrics table (released September 27, 2013). In support of the C-HPP initiative, we have extended the annotation strategy developed for human chromosome 7 "missing" proteins into a semiautomated pipeline to functionally annotate the "missing" human proteome. This pipeline integrates a suite of bioinformatics analysis and annotation software tools to identify homologues and map putative functional signatures, gene ontology, and biochemical pathways. From sequential BLAST searches, we have primarily identified homologues from reviewed nonhuman mammalian proteins with protein evidence for 1271 (33.2%) "missing" proteins, followed by 703 (18.4%) homologues from reviewed nonhuman mammalian proteins and subsequently 564 (14.7%) homologues from reviewed human proteins. Functional annotations for 1945 (50.8%) "missing" proteins were also determined. To accelerate the identification of "missing" proteins from proteomics studies, we generated proteotypic peptides in silico. Matching these proteotypic peptides to ENCODE proteogenomic data resulted in proteomic evidence for 107 (2.8%) of the 3831 "missing proteins, while evidence from a recent membrane proteomic study supported the existence for another 15 "missing" proteins. The chromosome-wise functional annotation of all "missing" proteins is freely available to the scientific community through our web server (http://biolinfo.org/protannotator).

  3. Repression of hTERT transcription by the introduction of chromosome 3 into human oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, Sachiyo [Division of Oral and Maxillofacial Biopathological Surgery, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503 (Japan); Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Tottori, 683-8503 (Japan); Ohira, Takahito; Sunamura, Naohiro [Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Tottori, 683-8503 (Japan); Oshimura, Mitsuo [Chromosome Engineering Research Center, Tottori University, Yonago, Tottori, 683-8503 (Japan); Ryoke, Kazuo [Division of Oral and Maxillofacial Biopathological Surgery, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503 (Japan); Kugoh, Hiroyuki, E-mail: kugoh@med.tottori-u.ac.jp [Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Tottori, 683-8503 (Japan); Chromosome Engineering Research Center, Tottori University, Yonago, Tottori, 683-8503 (Japan)

    2015-10-30

    Telomerase is a ribonucleoprotein enzyme that maintains telomere length. Telomerase activity is primarily attributed to the expression of telomerase reverse transcriptase (TERT). It has been reported that introduction of an intact human chromosome 3 into the human oral squamous cell carcinoma cell line HSC3 suppresses the tumorigenicity of these cells. However, the mechanisms that regulate tumorigenicity have not been elucidated. To determine whether this reduction in tumorigenicity was accompanied by a reduction in telomerase activity, we investigated the transcriptional activation of TERT in HSC3 microcell hybrid clones with an introduced human chromosome 3 (HSC3#3). HSC#3 cells showed inhibition of hTERT transcription compared to that of the parental HSC3 cells. Furthermore, cell fusion experiments showed that hybrids of HSC3 cells and cells of the RCC23 renal carcinoma cell line, which also exhibits suppression of TERT transcription by the introduction of human chromosome 3, also displayed suppressed TERT transcription. These results suggested that human chromosome 3 may carry functionally distinct, additional TERT repressor genes. - Highlights: • hTERT mRNA expression level decreased in the chromosome 3 introduced HSC3 clones. • hTERT mRNA expression level was tend to suppressed in HSC3 and RCC23 hybrid cells. • We provide evidence that human chromosome 3 carries at least two distinct hTERT regulatory factors.

  4. Repression of hTERT transcription by the introduction of chromosome 3 into human oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Nishio, Sachiyo; Ohira, Takahito; Sunamura, Naohiro; Oshimura, Mitsuo; Ryoke, Kazuo; Kugoh, Hiroyuki

    2015-01-01

    Telomerase is a ribonucleoprotein enzyme that maintains telomere length. Telomerase activity is primarily attributed to the expression of telomerase reverse transcriptase (TERT). It has been reported that introduction of an intact human chromosome 3 into the human oral squamous cell carcinoma cell line HSC3 suppresses the tumorigenicity of these cells. However, the mechanisms that regulate tumorigenicity have not been elucidated. To determine whether this reduction in tumorigenicity was accompanied by a reduction in telomerase activity, we investigated the transcriptional activation of TERT in HSC3 microcell hybrid clones with an introduced human chromosome 3 (HSC3#3). HSC#3 cells showed inhibition of hTERT transcription compared to that of the parental HSC3 cells. Furthermore, cell fusion experiments showed that hybrids of HSC3 cells and cells of the RCC23 renal carcinoma cell line, which also exhibits suppression of TERT transcription by the introduction of human chromosome 3, also displayed suppressed TERT transcription. These results suggested that human chromosome 3 may carry functionally distinct, additional TERT repressor genes. - Highlights: • hTERT mRNA expression level decreased in the chromosome 3 introduced HSC3 clones. • hTERT mRNA expression level was tend to suppressed in HSC3 and RCC23 hybrid cells. • We provide evidence that human chromosome 3 carries at least two distinct hTERT regulatory factors.

  5. A revised root for the human Y chromosomal phylogenetic tree: the origin of patrilineal diversity in Africa.

    Science.gov (United States)

    Cruciani, Fulvio; Trombetta, Beniamino; Massaia, Andrea; Destro-Bisol, Giovanni; Sellitto, Daniele; Scozzari, Rosaria

    2011-06-10

    To shed light on the structure of the basal backbone of the human Y chromosome phylogeny, we sequenced about 200 kb of the male-specific region of the human Y chromosome (MSY) from each of seven Y chromosomes belonging to clades A1, A2, A3, and BT. We detected 146 biallelic variant sites through this analysis. We used these variants to construct a patrilineal tree, without taking into account any previously reported information regarding the phylogenetic relationships among the seven Y chromosomes here analyzed. There are several key changes at the basal nodes as compared with the most recent reference Y chromosome tree. A different position of the root was determined, with important implications for the origin of human Y chromosome diversity. An estimate of 142 KY was obtained for the coalescence time of the revised MSY tree, which is earlier than that obtained in previous studies and easier to reconcile with plausible scenarios of modern human origin. The number of deep branchings leading to African-specific clades has doubled, further strengthening the MSY-based evidence for a modern human origin in the African continent. An analysis of 2204 African DNA samples showed that the deepest clades of the revised MSY phylogeny are currently found in central and northwest Africa, opening new perspectives on early human presence in the continent. Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  6. Cytogenetic evaluation of Fansidar on human lymphocyte chromosomes in vitro.

    Science.gov (United States)

    Praveen, Nuzhat; Saifi, Muheet Alam; Shadab, G G H A

    2011-01-01

    Fansidar is a fixed combination of two antimalarial agents a diaminopyrimidine (Pyrimethamine) and a sulphonamide (Sulphadoxine) in the ratio 1:20- that have been used extensively worldwide for the treatment of Chloroquine resistant Plasmodium falciparum malaria, toxoplasmosis and Pneumocystis carinii pneumonia in patients with the acquired immunodeficiency syndrome. This study examined the effect of Fansidar on chromosomes in human lymphocyte culture. Fansidar was added to peripheral blood lymphocyte cultures in vitro at four different concentrations: 5,15, 25 and 50 microl in the ratio 1:20, 3:60, 5:100 and 10:200 microg ml(-1). Result shows that this drug induces moderate increase in the frequency of gaps, breaks and rearrangements. Therefore it can be concluded that Fansidar has moderate clastogenic effect on human chromosomes in vitro.

  7. Whole Genome Scan to Detect Chromosomal Regions Affecting Multiple Traits in Dairy Cattle

    NARCIS (Netherlands)

    Schrooten, C.; Bink, M.C.A.M.; Bovenhuis, H.

    2004-01-01

    Chromosomal regions affecting multiple traits ( multiple trait quantitative trait regions or MQR) in dairy cattle were detected using a method based on results from single trait analyses to detect quantitative trait loci (QTL). The covariance between contrasts for different traits in single trait

  8. Human Technology and Human Affects

    DEFF Research Database (Denmark)

    Fausing, Bent

    2009-01-01

    Human Technology and Human Affects  This year Samsung introduced a mobile phone with "Soul". It was made with a human touch and included itself a magical touch. Which function does technology and affects get in everyday aesthetics like this, its images and interactions included this presentation...... will ask and try to answer. The mobile phone and its devices are depicted as being able to make a unique human presence, interaction, and affect. The medium, the technology is a necessary helper to get towards this very special and lost humanity. Without the technology, no special humanity - soul....... The paper will investigate how technology, humanity, affects, and synaesthesia are presented and combined with examples from everyday aesthetics, e.g. early computer tv-commercial, net-commercial for mobile phones. Technology and affects point, is the conclusion, towards a forgotten pre-human and not he...

  9. Techniques for imaging human metaphase chromosomes in liquid conditions by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ushiki, Tatsuo; Hoshi, Osamu [Division of Microscopic Anatomy and Bio-imaging, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510 (Japan); Shigeno, Masatsugu [SII NanoTechnology Incorporated, RBM Tsukiji Building, Shintomi 2-15-5, Chuo-ku, Tokyo 104-0041 (Japan)], E-mail: t-ushiki@med.niigata-u.ac.jp

    2008-09-24

    The purpose of this study was to obtain three-dimensional images of wet chromosomes by atomic force microscopy (AFM) in liquid conditions. Human metaphase chromosomes-obtained either by chromosome spreads or by an isolation technique-were observed in a dynamic mode by AFM in a buffer solution. Under suitable operating conditions with a soft triangular cantilever (with the spring constant of 0.08-0.4 N m{sup -1}), clear images of fixed chromosomes in the chromosome spread were obtained by AFM. For imaging isolated chromosomes with the height of more than 400 nm, a cantilever with a high aspect ratio probing tip was required. The combination of a Q-control system and the sampling intelligent scan (SIS) system in dynamic force mode AFM was useful for obtaining high-quality images of the isolated chromosomes, in which globular or cord-like structures about 50 nm thick were clearly observed on the surface of each chromatid.

  10. Human Artificial Chromosomes with Alpha Satellite-Based De Novo Centromeres Show Increased Frequency of Nondisjunction and Anaphase Lag

    OpenAIRE

    Rudd, M. Katharine; Mays, Robert W.; Schwartz, Stuart; Willard, Huntington F.

    2003-01-01

    Human artificial chromosomes have been used to model requirements for human chromosome segregation and to explore the nature of sequences competent for centromere function. Normal human centromeres require specialized chromatin that consists of alpha satellite DNA complexed with epigenetically modified histones and centromere-specific proteins. While several types of alpha satellite DNA have been used to assemble de novo centromeres in artificial chromosome assays, the extent to which they fu...

  11. Aneuploidy in immortalized human mesenchymal stem cells with non-random loss of chromosome 13 in culture.

    Science.gov (United States)

    Takeuchi, Masao; Takeuchi, Kikuko; Ozawa, Yutaka; Kohara, Akihiro; Mizusawa, Hiroshi

    2009-01-01

    Aneuploidy (an abnormal number of chromosomes) is commonly observed in most human cancer cells, highlighting the need to examine chromosomal instability in tumorigenesis. Previously, the immortalized human mesenchymal stem cell line UE6E7T-3 was shown to undergo a preferential loss of one copy of chromosome 13 after prolonged culture. Here, the loss of chromosome 13 was found to be caused by chromosome missegregation during mitosis, which involved unequal segregation, exclusion of the misaligned chromosome 13 on the metaphase plate, and trapping of chromosome 13 in the midbody region, as observed by fluorescence in situ hybridization. Near-diploid aneuploidy, not tetraploidy, was the direct result. The loss of chromosome 13 was non-random, and was detected by analysis of microsatellites and single nucleotide polymorphism-based loss of heterozygosity (LOH). Of the five microsatellite loci on chromosome 13, four loci showed microsatellite instability at an early stage in culture, and LOH was apparent at a late stage in culture. These results suggest that the microsatellite mutations cause changes in centromere integrity provoking loss of this chromosome in the UE6E7T-3 cell line. Thus, these results support the use of this cell line as a useful model for understanding the mechanism of aneuploid formation in cell cultures.

  12. Efficient identification of Y chromosome sequences in the human and Drosophila genomes

    Science.gov (United States)

    Carvalho, Antonio Bernardo; Clark, Andrew G.

    2013-01-01

    Notwithstanding their biological importance, Y chromosomes remain poorly known in most species. A major obstacle to their study is the identification of Y chromosome sequences; due to its high content of repetitive DNA, in most genome projects, the Y chromosome sequence is fragmented into a large number of small, unmapped scaffolds. Identification of Y-linked genes among these fragments has yielded important insights about the origin and evolution of Y chromosomes, but the process is labor intensive, restricting studies to a small number of species. Apart from these fragmentary assemblies, in a few mammalian species, the euchromatic sequence of the Y is essentially complete, owing to painstaking BAC mapping and sequencing. Here we use female short-read sequencing and k-mer comparison to identify Y-linked sequences in two very different genomes, Drosophila virilis and human. Using this method, essentially all D. virilis scaffolds were unambiguously classified as Y-linked or not Y-linked. We found 800 new scaffolds (totaling 8.5 Mbp), and four new genes in the Y chromosome of D. virilis, including JYalpha, a gene involved in hybrid male sterility. Our results also strongly support the preponderance of gene gains over gene losses in the evolution of the Drosophila Y. In the intensively studied human genome, used here as a positive control, we recovered all previously known genes or gene families, plus a small amount (283 kb) of new, unfinished sequence. Hence, this method works in large and complex genomes and can be applied to any species with sex chromosomes. PMID:23921660

  13. Efficient identification of Y chromosome sequences in the human and Drosophila genomes.

    Science.gov (United States)

    Carvalho, Antonio Bernardo; Clark, Andrew G

    2013-11-01

    Notwithstanding their biological importance, Y chromosomes remain poorly known in most species. A major obstacle to their study is the identification of Y chromosome sequences; due to its high content of repetitive DNA, in most genome projects, the Y chromosome sequence is fragmented into a large number of small, unmapped scaffolds. Identification of Y-linked genes among these fragments has yielded important insights about the origin and evolution of Y chromosomes, but the process is labor intensive, restricting studies to a small number of species. Apart from these fragmentary assemblies, in a few mammalian species, the euchromatic sequence of the Y is essentially complete, owing to painstaking BAC mapping and sequencing. Here we use female short-read sequencing and k-mer comparison to identify Y-linked sequences in two very different genomes, Drosophila virilis and human. Using this method, essentially all D. virilis scaffolds were unambiguously classified as Y-linked or not Y-linked. We found 800 new scaffolds (totaling 8.5 Mbp), and four new genes in the Y chromosome of D. virilis, including JYalpha, a gene involved in hybrid male sterility. Our results also strongly support the preponderance of gene gains over gene losses in the evolution of the Drosophila Y. In the intensively studied human genome, used here as a positive control, we recovered all previously known genes or gene families, plus a small amount (283 kb) of new, unfinished sequence. Hence, this method works in large and complex genomes and can be applied to any species with sex chromosomes.

  14. Chromosomal abnormalities in human glioblastomas: gain in chromosome 7p correlating with loss in chromosome 10q.

    Science.gov (United States)

    Inda, María del Mar; Fan, Xing; Muñoz, Jorge; Perot, Christine; Fauvet, Didier; Danglot, Giselle; Palacio, Ana; Madero, Pilar; Zazpe, Idoya; Portillo, Eduardo; Tuñón, Teresa; Martínez-Peñuela, José María; Alfaro, Jorge; Eiras, José; Bernheim, Alain; Castresana, Javier S

    2003-01-01

    Various genomic alterations have been detected in glioblastoma. Chromosome 7p, with the epidermal growth factor receptor locus, together with chromosome 10q, with the phosphatase and tensin homologue deleted in chromosome 10 and deleted in malignant brain tumors-1 loci, and chromosome 9p, with the cyclin-dependent kinase inhibitor 2A locus, are among the most frequently damaged chromosomal regions in glioblastoma. In this study, we evaluated the genetic status of 32 glioblastomas by comparative genomic hybridization; the sensitivity of comparative genomic hybridization versus differential polymerase chain reaction to detect deletions at the phosphatase and tensin homologue deleted in chromosome 10, deleted in malignant brain tumors-1, and cyclin-dependent kinase inhibitor 2A loci and amplifications at the cyclin-dependent kinase 4 locus; the frequency of genetic lesions (gain or loss) at 16 different selected loci (including oncogenes, tumor-suppressor genes, and proliferation markers) mapping on 13 different chromosomes; and the possible existence of a statistical association between any pair of molecular markers studied, to subdivide the glioblastoma entity molecularly. Comparative genomic hybridization showed that the most frequent region of gain was chromosome 7p, whereas the most frequent losses occurred on chromosomes 10q and 13q. The only statistically significant association was found for 7p gain and 10q loss. Copyright 2002 Wiley-Liss, Inc.

  15. Yleaf: Software for Human Y-Chromosomal Haplogroup Inference from Next-Generation Sequencing Data.

    Science.gov (United States)

    Ralf, Arwin; Montiel González, Diego; Zhong, Kaiyin; Kayser, Manfred

    2018-05-01

    Next-generation sequencing (NGS) technologies offer immense possibilities given the large genomic data they simultaneously deliver. The human Y-chromosome serves as good example how NGS benefits various applications in evolution, anthropology, genealogy, and forensics. Prior to NGS, the Y-chromosome phylogenetic tree consisted of a few hundred branches, based on NGS data, it now contains many thousands. The complexity of both, Y tree and NGS data provide challenges for haplogroup assignment. For effective analysis and interpretation of Y-chromosome NGS data, we present Yleaf, a publically available, automated, user-friendly software for high-resolution Y-chromosome haplogroup inference independently of library and sequencing methods.

  16. Linking Y‐chromosomal short tandem repeat loci to human male impulsive aggression

    OpenAIRE

    Yang, Chun; Ba, Huajie; Cao, Yin; Dong, Guoying; Zhang, Shuyou; Gao, Zhiqin; Zhao, Hanqing; Zhou, Xianju

    2017-01-01

    Abstract Introduction Men are more susceptible to impulsive behavior than women. Epidemiological studies revealed that the impulsive aggressive behavior is affected by genetic factors, and the male‐specific Y chromosome plays an important role in this behavior. In this study, we investigated the association between the impulsive aggressive behavior and Y‐chromosomal short tandem repeats (Y‐STRs) loci. Methods The collected biologic samples from 271 offenders with impulsive aggressive behavior...

  17. Loss of heterozygosity on the X chromosome in human breast cancer.

    Science.gov (United States)

    Loupart, M L; Adams, S; Armour, J A; Walker, R; Brammar, W; Varley, J

    1995-08-01

    The analysis of loss of heterozygosity (LOH) in tumours can be a powerful tool for mapping the sites of tumour suppressor genes in the human genome. A panel of breast cancer patients was assembled as pairs of tumour and lymphocyte DNA samples and LOH studies carried out by Southern hybridisation with polymorphic loci mapping to the X chromosome with appropriate controls. Deletion mapping revealed a high frequency of small regionalised deletions, defining at least three independent regions, one of which is particularly well mapped to a 500 kb stretch of DNA in the distal portion of the pseudoautosomal region of Xp. A second region has been identified within the pseudoautosomal region close to the pseudoautosomal boundary, and there is a third discrete site of loss on distal Xq. Perturbations of sequences at these regions represent independent events in a number of patients. This study represents the first detailed analysis of LOH on the X chromosome in human breast tumours, the results of which indicate that at least three regions of this chromosome are involved in the disease.

  18. Developing de novo human artificial chromosomes in embryonic stem cells using HSV-1 amplicon technology.

    Science.gov (United States)

    Moralli, Daniela; Monaco, Zoia L

    2015-02-01

    De novo artificial chromosomes expressing genes have been generated in human embryonic stem cells (hESc) and are maintained following differentiation into other cell types. Human artificial chromosomes (HAC) are small, functional, extrachromosomal elements, which behave as normal chromosomes in human cells. De novo HAC are generated following delivery of alpha satellite DNA into target cells. HAC are characterized by high levels of mitotic stability and are used as models to study centromere formation and chromosome organisation. They are successful and effective as gene expression vectors since they remain autonomous and can accommodate larger genes and regulatory regions for long-term expression studies in cells unlike other viral gene delivery vectors currently used. Transferring the essential DNA sequences for HAC formation intact across the cell membrane has been challenging for a number of years. A highly efficient delivery system based on HSV-1 amplicons has been used to target DNA directly to the ES cell nucleus and HAC stably generated in human embryonic stem cells (hESc) at high frequency. HAC were detected using an improved protocol for hESc chromosome harvesting, which consistently produced high-quality metaphase spreads that could routinely detect HAC in hESc. In tumour cells, the input DNA often integrated in the host chromosomes, but in the host ES genome, it remained intact. The hESc containing the HAC formed embryoid bodies, generated teratoma in mice, and differentiated into neuronal cells where the HAC were maintained. The HAC structure and chromatin composition was similar to the endogenous hESc chromosomes. This review will discuss the technological advances in HAC vector delivery using HSV-1 amplicons and the improvements in the identification of de novo HAC in hESc.

  19. Mutational landscape of the human Y chromosome-linked genes ...

    Indian Academy of Sciences (India)

    Mutational landscape of the human Y chromosome-linked genes and loci in patients with hypogonadism. Deepali Pathak, Sandeep Kumar Yadav, Leena Rawal and Sher Ali. J. Genet. 94, 677–687. Table 1. Details showing age, sex, karyotype, clinical features and diagnosis results of the patients with H. Hormone profile.

  20. Establishment of a molecular genetic map of distal mouse chromosome 1: further definition of a conserved linkage group syntenic with human chromosome 1q.

    Science.gov (United States)

    Seldin, M F; Morse, H C; LeBoeuf, R C; Steinberg, A D

    1988-01-01

    A linkage map of distal mouse chromosome 1 was constructed by restriction fragment length polymorphism analysis of DNAs from seven sets of recombinant inbred (RI) strains. The data obtained with seven probes on Southern hybridization combined with data from previous studies suggest the gene order Cfh, Pep-3/Ren-1,2, Ly-5, Lamb-2, At-3, Apoa-2/Ly-17,Spna-1. These results confirm and extend analyses of a large linkage group which includes genes present on a 20-30 cM span of mouse chromosome 1 and those localized to human chromosome 1q21-32. Moreover, the data indicate similar relative positions of human and mouse complement receptor-related genes REN, CD45, LAMB2, AT3, APOA2, and SPTA. These results suggest that mouse gene analyses may help in detailed mapping of human genes within such a syntenic group.

  1. An integrated physical map of 210 markers assigned to the short arm of human chromosome 11

    NARCIS (Netherlands)

    Redeker, E.; Hoovers, J. M.; Alders, M.; van Moorsel, C. J.; Ivens, A. C.; Gregory, S.; Kalikin, L.; Bliek, J.; de Galan, L.; van den Bogaard, R.; Visser, J.; van der Voort, R.; Feinberg, A. P.; Little, P. F. R.; Westerveld, A.; Mannens, M.

    1994-01-01

    Using a panel of patient cell lines with chromosomal breakpoints, we constructed a physical map for the short arm of human chromosome 11. We focused on 11p15, a chromosome band harboring at least 25 known genes and associated with the Beckwith-Wiedemann syndrome, several childhood tumors, and

  2. Transfection of normal human and Chinese hamster DNA corrects diepoxybutane-induced chromosomal hypersensitivity of Fanconi anemia fibroblasts

    International Nuclear Information System (INIS)

    Shaham, M.; Adler, B.; Ganguly, S.; Chaganti, R.S.K.

    1987-01-01

    Cultured cells from individuals affected with Fanconi anemia (FA) exhibit spontaneous chromosome breakage and hypersensitivity to the cell killing and clastogenic effects of the difunctional alkylating agent diepoxybutane (DEB). The authors report here the correction of both of these DEB-hypersensitivity phenotypes of FA cells achieved by cotransfection of normal placental of Chinese hamster lung cell DNA and the plasmid pSV2-neo-SVgpt. Transfectants were selected for clonogenic survival after treatment with DEB at a dose of 5 μgml. At this dose of DEB, the clonogenicity of normal fibroblasts was reduced to 50% and that of FA fibroblasts was reduced to zero. DEB-resistant (DEB/sup r/) colonies selected in this system exhibited a normal response to DEB-induced chromosome breakage and resistance to repeated DEB treatment. The neo and gpt sequences were detected by Southern blot analysis of DNA from one of four DEB/sup r/ colonies independently derived from transfection of human DNA and one of three DEB/sup r/ colonies independently derived from transfection of Chinese hamster DNA. The results demonstrate that DNA sequences that complement the two hallmark cellular phenotypes (cellular and chromosomal hypersensitivity to alkylating agents) of FA are present in human as well as Chinese hamster DNA. The cloning of these genes using transfection strategies can be expected to enable molecular characterization of FA

  3. Three-Dimensional Organization of Chromosome Territories and the Human Interphase Cell Nucleus

    NARCIS (Netherlands)

    T.A. Knoch (Tobias); C. Münkel (Christian); J. Langowski (Jörg)

    1998-01-01

    textabstractTo study the three-dimensional organization of chromosome territories and the human interphase cell nucleus we developed models which could be compared to experiments. Despite the successful linear sequencing of the human genome its 3D-organization is widely unknown. Using Monte

  4. Molecular analysis of the distribution of chromosomal breakpoints: characterization of a 'hot' region for breaks in human chromosome 11

    International Nuclear Information System (INIS)

    Vannais, D.B.; Hirai, Y.; Cologne, J.B.; Waldren, C.A.; Ueno, A.

    2003-01-01

    Full text: Ionizing radiation randomly damages DNA and chromosomes whereas subsequent chromosome breaks are non-random. Assuming, as an ideal and naive but useful proposition, that breaks are equally likely anywhere in the chromosome and that a deletion always occurs between two breaks, the frequency of fragments would decrease linearly with increasing fragment size. This simple distribution is not, however, observed. To shed light on the 'real' situation of break formation we mapped breakpoints in the human chromosome no. 11 of 353 independent CD59- mutants isolated from human/hamster hybrid AL cells exposed to radiations (high and low dose-rate gamma rays, high LET carbon or nitrogen ions, protons) or chemicals (arsenic or irradiated, mutagenic histidine) or unexposed. The number of breaks per unit length of DNA differed significantly in different regions of chromosome 11.The highest level of breaks (140/mbp) were in the 0.8 mbp segment between CD59 and Catalase (CAT). Finer mapping of break points was carried out using 26 PCR primer pairs spread across this interval in 15 independent mutants. In two mutants, the break point was in a 107 bp fragment; in the other 13 the breaks were in a single 35 mbp fragment, but not all were at exactly the same site; 4 of 13 occurred in 3 different 3 mbp sub-segments. We are sequencing these fragments to look for such features as repeats: 'colder' regions like that between CD59 and WT will also be analyzed. But, since at least some breaks occurred at different sites and the frequency and distribution of breaks was about the same for all treatments, our we postulate that hot (and cold spots) may be due more to structural features or specific repair than to sequence or type of damage

  5. Chromosomal locations of members of a family of novel endogenous human retroviral genomes

    International Nuclear Information System (INIS)

    Horn, T.M.; Huebner, K.; Croce, C.; Callahan, R.

    1986-01-01

    Human cellular DNA contains two distinguishable families of retroviral related sequences. One family shares extensive nucleotide sequence homology with infectious mammalian type C retroviral genomes. The other family contains major regions of homology with the pol genes of infectious type A and B and avian type C and D retroviral genomes. Analysis of the human recombinant clone HLM-2 has shown that the pol gene in the latter family is located within an endogenous proviral genome. The authors show that the proviral genome in HLM-2 and the related recombinant clone HLM-25 are located, respectively, on human chromosomes 1 and 5. Other related proviral genomes are located on chromosomes 7, 8, 11, 14, and 17

  6. Effect of borax on immune cell proliferation and sister chromatid exchange in human chromosomes.

    Science.gov (United States)

    Pongsavee, Malinee

    2009-10-30

    Borax is used as a food additive. It becomes toxic when accumulated in the body. It causes vomiting, fatigue and renal failure. The heparinized blood samples from 40 healthy men were studied for the impact of borax toxicity on immune cell proliferation (lymphocyte proliferation) and sister chromatid exchange in human chromosomes. The MTT assay and Sister Chromatid Exchange (SCE) technic were used in this experiment with the borax concentrations of 0.1, 0.15, 0.2, 0.3 and 0.6 mg/ml. It showed that the immune cell proliferation (lymphocyte proliferation) was decreased when the concentrations of borax increased. The borax concentration of 0.6 mg/ml had the most effectiveness to the lymphocyte proliferation and had the highest cytotoxicity index (CI). The borax concentrations of 0.15, 0.2, 0.3 and 0.6 mg/ml significantly induced sister chromatid exchange in human chromosomes (P Borax had effects on immune cell proliferation (lymphocyte proliferation) and induced sister chromatid exchange in human chromosomes. Toxicity of borax may lead to cellular toxicity and genetic defect in human.

  7. Drinking beer reduces radiation-induced chromosome aberrations in human lymphocytes

    International Nuclear Information System (INIS)

    Monobe, Manami

    2002-01-01

    We here investigated and reported the effects of beer drinking on radiation-induced chromosome aberrations in blood lymphocytes. Human blood that was collected either before or after drinking a 700 ml beer was in vitro irradiated with 200 kVp X rays or 50 keV/μm carbon ions. The relation between the radiation dose and the aberration frequencies (fragments and dicentrics) was significantly (P<0.05) lower for lymphocytes collected 3 h after beer drinking than those before drinking. Fitting the dose response to a linear quadratic model showed that the alpha term of carbon ions was significantly (P<0.05) decreased by beer drinking. A decrease of dicentric formation was detected as early as 0.5 h after beer drinking, and lasted not shorter than 4.5 h. The mitotic index of lymphocytes was higher after beer drinking than before, indicating that a division delay would not be responsible for the low aberrations induced by beer drinking. An in vitro treatment of normal lymphocytes with 0.1 M ethanol, which corresponded to a concentration of 6-times higher than the maximum ethanol concentration in the blood after beer drinking, reduced the dicentric formation caused by X-ray irradiation, but not by carbon-ion irradiation. The beer-induced reduction of dicentric formation was not affected by serum. It is concluded that beer could contain non-ethanol elements that reduce the chromosome damage of lymphocytes induced by high-LET radiation. (author)

  8. Chromosomal changes in cultured human epithelial cells transformed by low- and high-LET radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tracy Chui-hsu; Craise, L.M; Prioleau, J.C.; Stampfer, M.R.; Rhim, J.S.

    1990-11-01

    For a better assessment of radiation risk in space, an understanding of the responses of human cells, especially the epithelial cells, to low- and high-LET radiation is essential. In our laboratory, we have successfully developed techniques to study the neoplastic transformation of two human epithelial cell systems by ionizing radiation. These cell systems are human mammary epithelial cells (H184B5) and human epidermal keratinocytes (HEK). Both cell lines are immortal, anchorage dependent for growth, and nontumorigenic in athymic nude nice. Neoplastic transformation was achieved by irradiation cells successively. Our results showed that radiogenic cell transformation is a multistep process and that a single exposure of ionizing radiation can cause only one step of transformation. It requires, therefore, multihits to make human epithelial cells fully tumorigenic. Using a simple karyotyping method, we did chromosome analysis with cells cloned at various stages of transformation. We found no consistent large terminal deletion of chromosomes in radiation-induced transformants. Some changes of total number of chromosomes, however, were observed in the transformed cells. These transformants provide an unique opportunity for further genetic studies at a molecular level. 15 refs., 9 figs., 2 tabs.

  9. Chromosomal changes in cultured human epithelial cells transformed by low- and high-LET radiation

    International Nuclear Information System (INIS)

    Yang, Tracy Chui-hsu; Craise, L.M; Prioleau, J.C.; Stampfer, M.R.; Rhim, J.S.

    1990-11-01

    For a better assessment of radiation risk in space, an understanding of the responses of human cells, especially the epithelial cells, to low- and high-LET radiation is essential. In our laboratory, we have successfully developed techniques to study the neoplastic transformation of two human epithelial cell systems by ionizing radiation. These cell systems are human mammary epithelial cells (H184B5) and human epidermal keratinocytes (HEK). Both cell lines are immortal, anchorage dependent for growth, and nontumorigenic in athymic nude nice. Neoplastic transformation was achieved by irradiation cells successively. Our results showed that radiogenic cell transformation is a multistep process and that a single exposure of ionizing radiation can cause only one step of transformation. It requires, therefore, multihits to make human epithelial cells fully tumorigenic. Using a simple karyotyping method, we did chromosome analysis with cells cloned at various stages of transformation. We found no consistent large terminal deletion of chromosomes in radiation-induced transformants. Some changes of total number of chromosomes, however, were observed in the transformed cells. These transformants provide an unique opportunity for further genetic studies at a molecular level. 15 refs., 9 figs., 2 tabs

  10. Effects of alpha-particles on survival and chromosomal aberrations in human mammary epithelial cells

    Science.gov (United States)

    Durante, M.; Grossi, G. F.; Gialanella, G.; Pugliese, M.; Nappo, M.; Yang, T. C.

    1995-01-01

    We have studied the radiation responses of a human mammary epithelial cell line, H184B5 F5-1 M/10. This cell line was derived from primary mammary cells after treatment with chemicals and heavy ions. The F5-1 M/10 cells are immortal, density-inhibited in growth, and non-tumorigenic in athymic nude mice and represent an in vitro model of the human epithelium for radiation studies. Because epithelial cells are the target of alpha-particles emitted from radon daughters, we concentrated our studies on the efficiency of alpha-particles. Confluent cultures of M/10 cells were exposed to accelerated alpha-particles [beam energy incident at the cell monolayer = 3.85 MeV, incident linear energy transfer (LET) in cell = 109 keV/microns] and, for comparison, to 80 kVp x-rays. The following endpoints were studied: (1) survival, (2) chromosome aberrations at the first postirradiation mitosis, and (3) chromosome alterations at later passages following irradiation. The survival curve was exponential for alpha-particles (D0 = 0.73 +/- 0.04 Gy), while a shoulder was observed for x-rays (alpha/beta = 2.9 Gy; D0 = 2.5 Gy, extrapolation number 1.6). The relative biological effectiveness (RBE) of high-LET alpha-particles for human epithelial cell killing was 3.3 at 37% survival. Dose-response curves for the induction of chromosome aberrations were linear for alpha-particles and linearquadratic for x-rays. The RBE for the induction of chromosome aberrations varied with the type of aberration scored and was high (about 5) for chromosome breaks and low (about 2) for chromosome exchanges.(ABSTRACT TRUNCATED AT 250 WORDS).

  11. Active role of a human genomic insert in replication of a yeast artificial chromosome.

    Science.gov (United States)

    van Brabant, A J; Fangman, W L; Brewer, B J

    1999-06-01

    Yeast artificial chromosomes (YACs) are a common tool for cloning eukaryotic DNA. The manner by which large pieces of foreign DNA are assimilated by yeast cells into a functional chromosome is poorly understood, as is the reason why some of them are stably maintained and some are not. We examined the replication of a stable YAC containing a 240-kb insert of DNA from the human T-cell receptor beta locus. The human insert contains multiple sites that serve as origins of replication. The activity of these origins appears to require the yeast ARS consensus sequence and, as with yeast origins, additional flanking sequences. In addition, the origins in the human insert exhibit a spacing, a range of activation efficiencies, and a variation in times of activation during S phase similar to those found for normal yeast chromosomes. We propose that an appropriate combination of replication origin density, activation times, and initiation efficiencies is necessary for the successful maintenance of YAC inserts.

  12. Transmission of clonal chromosomal abnormalities in human hematopoietic stem and progenitor cells surviving radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, Daniela, E-mail: d.kraft@gsi.de [GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Planckstr. 1, 64291 Darmstadt (Germany); Institute for Transfusion Medicine und Immunohematology, DRK-Blutspendedienst Baden-Wuerttemberg—Hessen, Johann Wolfgang Goethe-University Hospital, Sandhofstrasse 1, 60528 Frankfurt (Germany); Ritter, Sylvia, E-mail: s.ritter@gsi.de [GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Planckstr. 1, 64291 Darmstadt (Germany); Durante, Marco, E-mail: m.durante@gsi.de [GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Planckstr. 1, 64291 Darmstadt (Germany); Institute for Condensed Matter Physics, Physics Department, Technical University Darmstadt, Hochschulstraße 6-8, 64289 Darmstadt (Germany); Seifried, Erhard, E-mail: e.seifried@blutspende.de [Institute for Transfusion Medicine und Immunohematology, DRK-Blutspendedienst Baden-Wuerttemberg—Hessen, Johann Wolfgang Goethe-University Hospital, Sandhofstrasse 1, 60528 Frankfurt (Germany); Fournier, Claudia, E-mail: c.fournier@gsi.de [GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Planckstr. 1, 64291 Darmstadt (Germany); Tonn, Torsten, E-mail: t.tonn@blutspende.de [Institute for Transfusion Medicine und Immunohematology, DRK-Blutspendedienst Baden-Wuerttemberg—Hessen, Johann Wolfgang Goethe-University Hospital, Sandhofstrasse 1, 60528 Frankfurt (Germany); Technische Universität Dresden, Med. Fakultät Carl Gustav Carus, Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Blasewitzer Straße 68/70, 01307 Dresden (Germany)

    2015-07-15

    Highlights: • Radiation induced formation and transmission of chromosomal aberrations were assessed. • Cytogenetic analysis was performed in human CD34+ HSPC by mFISH. • We report transmission of stable aberrations in irradiated, clonally expanded HSPC. • Unstable aberrations in clonally expanded HSPC occur independently of irradiation. • Carbon ions and X-rays bear a similar risk for propagation of cytogenetic changes. - Abstract: In radiation-induced acute myeloid leukemia (rAML), clonal chromosomal abnormalities are often observed in bone marrow cells of patients, suggesting that their formation is crucial in the development of the disease. Since rAML is considered to originate from hematopoietic stem and progenitor cells (HSPC), we investigated the frequency and spectrum of radiation-induced chromosomal abnormalities in human CD34{sup +} cells. We then measured stable chromosomal abnormalities, a possible biomarker of leukemia risk, in clonally expanded cell populations which were grown for 14 days in a 3D-matrix (CFU-assay). We compared two radiation qualities used in radiotherapy, sparsely ionizing X-rays and densely ionizing carbon ions (29 and 60–85 keV/μm, doses between 0.5 and 4 Gy). Only a negligible number of de novo arising, unstable aberrations (≤0.05 aberrations/cell, 97% breaks) were measured in the descendants of irradiated HSPC. However, stable aberrations were detected in colonies formed by irradiated HSPC. All cells of the affected colonies exhibited one or more identical aberrations, indicating their clonal origin. The majority of the clonal rearrangements (92%) were simple exchanges such as translocations (77%) and pericentric inversions (15%), which are known to contribute to the development of rAML. Carbon ions were more efficient in inducing cell killing (maximum of ∼30–35% apoptotic cells for 2 Gy carbon ions compared to ∼25% for X-rays) and chromosomal aberrations in the first cell-cycle after exposure (∼70% and

  13. Report on the Second International Workshop on Human Chromosome 9

    Energy Technology Data Exchange (ETDEWEB)

    Kwiatkowski, D.J. [Brigham and Women`s Hospital, Boston, MA (United States); Armour, J. [Univ. of Leicester (England). Dept. of Genetics; Bale, A.E. [Yale Univ., New Haven, CT (United States). Dept. of Genetics] [and others

    1993-12-31

    The Second International Workshop on Human Chromosome 9 was held in Chatham, Massachusetts on April 18--20, 1993. Fifty-three abstracts were received and the data presented on posters. The purpose of the meeting was to bring together all interested investigators working on the map of chromosome 9, many of whom had disease-specific interests. After a brief presentation of interests and highlighted results, the meeting broke up into the following subgroups for production of consensus maps: 9p; 9cen-q32; 9q32 ter. A global mapping group also met. Reports of each of these working groups is presented in the summary.

  14. Radiobiological application of atomic force microscopy. Analysis on human chromosomes in culture medium

    International Nuclear Information System (INIS)

    Watanabe, Makoto; Kinjo, Yasuhito

    1995-01-01

    We have proposed a 'Heterogeneous Chromatin Target Model' on the regulating mechanisms involved in chromosome mutation due to ionizing radiations. The heterogeneity of chromatin is derived from the highly condensed organization of chromatin segments that consist of hypersensitive and fragile sites in the fluctuating assembly of nucleosome clusters (superbeads). The above consideration is going to be subjected to a new experimental approach applying the atomic force microscope (AFM), one of the most promising members of a family of scanning probe microscope (SPM). The AFM can be operated in liquid as well as in air. A living specimen can be examined without any preparative procedures (for instance, fixation, staining, vecuum evaporation and so on). Micromanipulation of the isolated chromosome is also possible by the precise positional control of a cantilever on the nanometer scale. In the present report, the mitotic metaphase chromosomes released from living cells (human lymphocytes RPMI) were spread on the clean surface of distilled water filled in a trough. The spread surface film, in which the chromosomes were embedded, was picked up and adhered tightly on a specimen substrate made of silicon. The whole-mounted chromosome were submerged in a solution of culture medium and observed within a liquid immersion cell for AFM. We used an AFM system, SPA-300 made by Seiko Instruments. The particulate chromatin segments of nucleosome clusters (superbeads) were clearly observed within mitotic human chromosomes in a living hydrated condition. These findings support the heterogeneity of chromatin target in a living cell. (author)

  15. Different radiosensitization effects of the halogenated compounds on the human chromosome in vitro

    International Nuclear Information System (INIS)

    Kang, Y.S.

    1976-01-01

    Unscheduled DNA synthesis and chromosome aberrations were compared following X- or UV-irradiation or methyl methanesulfonate treatment in cultures of HeLa S 3 or KB cells or human and rabbit lymphocytes. The sensitization by incorporation of the halouridines BUdR and IUdR was also investigated. Unscheduled DNA synthesis occurred in two established cell lines after irradiation with 0 to 10 kR of X-rays. The rate of unscheduled synthesis was dose dependent and differed for the two cell lines. The unscheduled synthesis was not correlated with the modal chromosome number nor with the number of aberrations produced. UV-irradiated rabbit lymphocytes exhibited unscheduled DNA synthesis which saturated after a dose of 250 ergs/mm 2 . In contrast the incorporation of BUdR or IUdR eliminated this saturation and caused an increasing effect with increasing dose up to 1000 ergs/mm 2 . The degree of sensitization varied between the two halo-uridines, BUdR being more effective at high doses while IUdR was a more potent sensitizer at low doses. Chromosome aberrations were not directly related to unscheduled DNA synthesis but were sensitized by halo-uridine incorporation. In this case IUdR was more potent than BUdR at all doses studied. Methyl methanesulfonate was an effective producer of chromosome aberration in human lymphocytes of both the chromosome and chromatid type. Prior incorporation of BUdR or IUdR did not increase the total aberration produced but did increase the number of chromosome type aberration at the expense of the chromatid type

  16. An Allometric Analysis of Sex and Sex Chromosome Dosage Effects on Subcortical Anatomy in Humans

    Science.gov (United States)

    Clasen, Liv; Giedd, Jay N.; Blumenthal, Jonathan; Lerch, Jason P.; Chakravarty, M. Mallar; Raznahan, Armin

    2016-01-01

    Structural neuroimaging of humans with typical and atypical sex-chromosome complements has established the marked influence of both Yand X-/Y-chromosome dosage on total brain volume (TBV) and identified potential cortical substrates for the psychiatric phenotypes associated with sex-chromosome aneuploidy (SCA). Here, in a cohort of 354 humans with varying karyotypes (XX, XY, XXX, XXY, XYY, XXYY, XXXXY), we investigate sex and SCA effects on subcortical size and shape; focusing on the striatum, pallidum and thalamus. We find large effect-size differences in the volume and shape of all three structures as a function of sex and SCA. We correct for TBV effects with a novel allometric method harnessing normative scaling rules for subcortical size and shape in humans, which we derive here for the first time. We show that all three subcortical volumes scale sublinearly with TBV among healthy humans, mirroring known relationships between subcortical volume and TBV among species. Traditional TBV correction methods assume linear scaling and can therefore invert or exaggerate sex and SCA effects on subcortical anatomy. Allometric analysis restricts sex-differences to: (1) greater pallidal volume (PV) in males, and (2) relative caudate head expansion and ventral striatum contraction in females. Allometric analysis of SCA reveals that supernumerary X- and Y-chromosomes both cause disproportionate reductions in PV, and coordinated deformations of striatopallidal shape. Our study provides a novel understanding of sex and sex-chromosome dosage effects on subcortical organization, using an allometric approach that can be generalized to other basic and clinical structural neuroimaging settings. SIGNIFICANCE STATEMENT Sex and sex-chromosome dosage (SCD) are known to modulate human brain size and cortical anatomy, but very little is known regarding their impact on subcortical structures that work with the cortex to subserve a range of behaviors in health and disease. Moreover

  17. Identification of susceptibility genes for bipolar affective disorder and schizophrenia on chromosome 22q13

    DEFF Research Database (Denmark)

    Severinsen, Jacob Eg

    2006-01-01

    Linkage analyses suggest that chromosome 22q12-13 may harbor one or more shared susceptibility loci for bipolar affective disorder (BPD) and schizophrenia (SZ). In a study of distantly related cases and control individuals from the Faeroe Islands our group has previously reported that chromosome 22...... samples (total of 1,751 individuals), and by bioinformatic and expression analyses of a subset of disease associated genes and gene variants. In total 67 single nucleotide polymorphisms (SNPs) located in 18 positional candidate genes, and 4 microsattelite markers were investigated, using a Scottish case...

  18. Chromosome segregation regulation in human zygotes : Altered mitotic histone phosphorylation dynamics underlying centromeric targeting of the chromosomal passenger complex

    NARCIS (Netherlands)

    Van De Werken, C.; Avo Santos, M.; Laven, J. S E; Eleveld, C.; Fauser, B. C J M; Lens, S. M A; Baart, E. B.

    2015-01-01

    STUDY QUESTION Are the kinase feedback loops that regulate activation and centromeric targeting of the chromosomal passenger complex (CPC), functional during mitosis in human embryos? SUMMARY ANSWER Investigation of the regulatory kinase pathways involved in centromeric CPC targeting revealed normal

  19. Dose Assessment using Chromosome Aberration Analyses in Human Peripheral Blood Lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Tae Ho; Kim, Jin-Hong; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The healthy five donors were recruited to establish the dose-response calibration curve for chromosomal aberrations by ionizing radiation exposure. Our cytogenetic results revealed that the mean frequency of chromosome aberration increased with increasing radiation dose. In this study, dicentric assay and CBMN assay were compared considering the sensitivity and accuracy of dose estimation. Therefore, these chromosome aberration analyses will be the foundation for biological dosimetric analysis with additional research methods such as translocation and PCC assay. The conventional analysis of dicentric chromosomes in HPBL was suggested by Bender and Gooch in 1962. This assay has been for many years, the golden standard and the most specific method for ionizing radiation damage. The dicentric assay technique in HPBL has been shown as the most sensitive biological method and reliable bio-indicator of quantifying the radiation dose. In contrast, the micronucleus assay has advantages over the dicentric assay since it is rapid and requires less specialized expertise, and accordingly it can be applied to monitor a big population. The cytokinesis-block micronucleus (CBMN) assay is a suitable method for micronuceli measurement in cultured human as well as mammalian cells. The aim of our study was to establish the dose response curve of radiation-induced chromosome aberrations in HPBL by analyzing the frequency of dicentrics and micronuclei.

  20. Abnormal X : autosome ratio, but normal X chromosome inactivation in human triploid cultures

    Directory of Open Access Journals (Sweden)

    Norwood Thomas H

    2006-07-01

    Full Text Available Abstract Background X chromosome inactivation (XCI is that aspect of mammalian dosage compensation that brings about equivalence of X-linked gene expression between females and males by inactivating one of the two X chromosomes (Xi in normal female cells, leaving them with a single active X (Xa as in male cells. In cells with more than two X's, but a diploid autosomal complement, all X's but one, Xa, are inactivated. This phenomenon is commonly thought to suggest 1 that normal development requires a ratio of one Xa per diploid autosomal set, and 2 that an early event in XCI is the marking of one X to be active, with remaining X's becoming inactivated by default. Results Triploids provide a test of these ideas because the ratio of one Xa per diploid autosomal set cannot be achieved, yet this abnormal ratio should not necessarily affect the one-Xa choice mechanism for XCI. Previous studies of XCI patterns in murine triploids support the single-Xa model, but human triploids mostly have two-Xa cells, whether they are XXX or XXY. The XCI patterns we observe in fibroblast cultures from different XXX human triploids suggest that the two-Xa pattern of XCI is selected for, and may have resulted from rare segregation errors or Xi reactivation. Conclusion The initial X inactivation pattern in human triploids, therefore, is likely to resemble the pattern that predominates in murine triploids, i.e., a single Xa, with the remaining X's inactive. Furthermore, our studies of XIST RNA accumulation and promoter methylation suggest that the basic features of XCI are normal in triploids despite the abnormal X:autosome ratio.

  1. New sequence-based data on the relative DNA contents of chromosomes in the normal male and female human diploid genomes for radiation molecular cytogenetics

    Directory of Open Access Journals (Sweden)

    Repin Mikhail V

    2009-06-01

    Full Text Available Abstract Background The objective of this work is to obtain the correct relative DNA contents of chromosomes in the normal male and female human diploid genomes for the use at FISH analysis of radiation-induced chromosome aberrations. Results The relative DNA contents of chromosomes in the male and female human diploid genomes have been calculated from the publicly available international Human Genome Project data. New sequence-based data on the relative DNA contents of human chromosomes were compared with the data recommended by the International Atomic Energy Agency in 2001. The differences in the values of the relative DNA contents of chromosomes obtained by using different approaches for 15 human chromosomes, mainly for large chromosomes, were below 2%. For the chromosomes 13, 17, 20 and 22 the differences were above 5%. Conclusion New sequence-based data on the relative DNA contents of chromosomes in the normal male and female human diploid genomes were obtained. This approach, based on the genome sequence, can be recommended for the use in radiation molecular cytogenetics.

  2. Students as "Humans Chromosomes" in Role-Playing Mitosis and Meiosis

    Science.gov (United States)

    Chinnici, Joseph P.; Yue, Joyce W.; Torres, Kieron M.

    2004-01-01

    Students often find it challenging to understand mitosis and meiosis and determine their processes. To develop an easier way to understand these terms, students are asked to role-play mitosis and meiosis and students themselves act as human chromosomes, which help students to learn differences between mitosis and meiosis.

  3. Cloning and chromosomal localization of the three human syntrophin genes

    Energy Technology Data Exchange (ETDEWEB)

    Feener, C.A.; Anderson, M.D.S.; Selig, S. [Children`s Hospital, Boston, MA (United States)] [and others

    1994-09-01

    Dystrophin, the protein product the Duchenne muscular dystrophy locus, is normally found to be associated with a complex of proteins. Among these dystrophin-associated proteins are the syntrophins, a group of 59 kDa membrane-associated proteins. When the syntrophins are purified based upon their association with dystrophin, they have been shown previously to form two distinct groups, the acidic ({alpha}) and basic ({beta}) forms. Based on peptide and rodent cDNA sequences, three separate syntrophin genes have been cloned and characterized from human tissues. The predicted amino acid sequences from these cDNA reveal that these proteins are related but are distinct with respect to charge, as predicted from their biochemistry. The family consists of one acidic ({alpha}-syntrophin, analogous to mouse syntrophin-1) and two basic ({beta}{sub 1}-syntrophin; and {beta}{sub 2}-syntrophin, analogous to mouse syntrophin-2) genes. Each of the three genes are widely expressed in a variety of human tissues, but the relative abundance of the three are unique with respect to each other. {alpha}-syntrophin is expressed primarily in skeletal muscle and heart as a single transcript. {beta}{sub 1}-syntrophin is expressed widely in up to five distinct transcript sizes, and is most abundant in brain. The human chromosomal locations of the three syntrophins are currently being mapped. {beta}{sub 1}-syntrophin maps to chromosome 8q23-24 and {beta}{sub 2}-syntrophin to chromosome 16. The {alpha}-syntrophin gene will be mapped accordingly. Although all three genes are candidates for neuromuscular diseases, the predominant expression of {alpha}-syntrophin in skeletal muscle and heart makes it a strong candidate to be involved in a neuromuscular disease.

  4. Localization of the homolog of a mouse craniofacial mutant to human chromosome 18q11 and evaluation of linkage to human CLP and CPO

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, A.J.; Burgess, D.L.; Kohrman, D.C.; Yu, J. [Univ. of Michigan, Ann Arbor, MI (United States)] [and others

    1996-06-15

    The transgene-induced mutation 9257 and the spontaneous mutation twirler cause craniofacial and inner ear malformations and are located on mouse chromosome 18 near the ataxia locus ax. To map the human homolog of 9257, a probe from the transgene insertion site was used to screen a human genomic library. Analysis of a cross-hybridizing human clone identified a 3-kb conserved sequence block that does not appear to contain protein coding sequence. Analysis of somatic cell hybrid panels assigned the human locus to 18q11. The polymorphic microsatellite markers D18S1001 and D18S1002 were isolated from the human locus and mapped by linkage analysis using the CEPH pedigrees. The 9257 locus maps close to the centromeres of human chromosome 18q and mouse chromosome 18 at the proximal end of a conserved linkage group. To evaluate the role of this locus in human craniofacial disorders, linkage to D18S1002 was tested in 11 families with autosomal dominant nonsyndromic cleft lip and palate and 3 families with autosomal dominant cleft palate only. Obligatory recombinants were observed in 8 of the families, and negative lod scores from the other families indicated that these disorders are not linked to the chromosome 18 loci. 23 refs., 4 figs., 2 tabs.

  5. Clonal chromosomal and genomic instability during human multipotent mesenchymal stromal cells long-term culture.

    Directory of Open Access Journals (Sweden)

    Victoria Nikitina

    Full Text Available Spontaneous mutagenesis often leads to appearance of genetic changes in cells. Although human multipotent mesenchymal stromal cells (hMSC are considered as genetically stable, there is a risk of genomic and structural chromosome instability and, therefore, side effects of cell therapy associated with long-term effects. In this study, the karyotype, genetic variability and clone formation analyses have been carried out in the long-term culture MSC from human gingival mucosa.The immunophenotype of MSC has been examined using flow cytofluorometry and short tandem repeat (STR analysis has been carried out for authentication. The karyotype has been examined using GTG staining and mFISH, while the assessment of the aneuploidy 8 frequency has been performed using centromere specific chromosome FISH probes in interphase cells.The immunophenotype and STR loci combination did not change during the process of cultivation. From passage 23 the proliferative activity of cultured MSCs was significantly reduced. From passage 12 of cultivation, clones of cells with stable chromosome aberrations have been identified and the biggest of these (12% are tetrasomy of chromosome 8. The random genetic and structural chromosomal aberrations and the spontaneous level of chromosomal aberrations in the hMSC long-term cultures were also described.The spectrum of spontaneous chromosomal aberrations in MSC long-term cultivation has been described. Clonal chromosomal aberrations have been identified. A clone of cells with tetrasomy 8 has been detected in passage 12 and has reached the maximum size by passage 18 before and decreased along with the reduction of proliferative activity of cell line by passage 26. At later passages, the MSC line exhibited a set of cells with structural variants of the karyotype with a preponderance of normal diploid cells. The results of our study strongly suggest a need for rigorous genetic analyses of the clone formation in cultured MSCs before

  6. Conserved chromosomal positions of dual domains of the ets protooncogene in cats, mice, and humans

    International Nuclear Information System (INIS)

    Watson, D.K.; McWilliams-Smith, M.J.; Kozak, C.

    1986-01-01

    The mammalian protooncogene homologue of the avian v-ets sequence from the E26 retrovirus consists of two sequentially distinct domains located on different chromosomes. Using somatic cell hybrid panels, the authors have mapped the mammalian homologue of the 5' v-ets-domain to chromosome 11 (ETS1) in man, to chromosome 9 (ets-1) in mouse, and to chromosome D1 (ETS1) in the domestic cat. The mammalian homologue of the 3' v-ets domain was similarly mapped to human chromosome 21 (ETS2), to mouse chromosome 16 (Ets-2), and to feline chromosome C2 (ETS2). Both protooncogenes fell in syntenic groups of homologous linked loci that were conserved among the three species. The occurrence of two distinct functional protooncogenes and their conservation of linkage positions in the three mammalian orders indicate that these two genes have been separate since before the evolutionary divergence of mammals

  7. Effect of borax on immune cell proliferation and sister chromatid exchange in human chromosomes

    Directory of Open Access Journals (Sweden)

    Pongsavee Malinee

    2009-10-01

    Full Text Available Abstract Background Borax is used as a food additive. It becomes toxic when accumulated in the body. It causes vomiting, fatigue and renal failure. Methods The heparinized blood samples from 40 healthy men were studied for the impact of borax toxicity on immune cell proliferation (lymphocyte proliferation and sister chromatid exchange in human chromosomes. The MTT assay and Sister Chromatid Exchange (SCE technic were used in this experiment with the borax concentrations of 0.1, 0.15, 0.2, 0.3 and 0.6 mg/ml. Results It showed that the immune cell proliferation (lymphocyte proliferation was decreased when the concentrations of borax increased. The borax concentration of 0.6 mg/ml had the most effectiveness to the lymphocyte proliferation and had the highest cytotoxicity index (CI. The borax concentrations of 0.15, 0.2, 0.3 and 0.6 mg/ml significantly induced sister chromatid exchange in human chromosomes (P Conclusion Borax had effects on immune cell proliferation (lymphocyte proliferation and induced sister chromatid exchange in human chromosomes. Toxicity of borax may lead to cellular toxicity and genetic defect in human.

  8. Computational simulation of chromosome breaks in human liver

    International Nuclear Information System (INIS)

    Yang Jianshe; Li Wenjian; Jin Xiaodong

    2006-01-01

    An easy method was established for computing chromosome breaks in cells exposed to heavily charged particles. The cell chromosome break value by 12 C +6 ions was theoretically calculated, and was tested with experimental data of chromosome breaks by using a premature chromosome condensation technique. The theoretical chromosome break value agreed well with the experimental data. The higher relative biological effectiveness of the heavy ions was closely correlated to its physical characteristics. In addition, the chromosome break value can be predicted off line. (authors)

  9. Protective Effect of Curcumin on γ - radiation Induced Chromosome Aberrations in Human Blood Lymphocytes

    International Nuclear Information System (INIS)

    AlSuhaibani, E.S

    2008-01-01

    The present work is aimed at evaluating the radioprotective effect of curcumin on γ radiation induced genetic toxicity. The DNA damage was analyzed by the frequencies of chromosome aberrations assay. Human lymphocytes were treated in vitro with 5.0 γg/ml of curcumin for 30 min at 37 degree C then exposed to 1, 2 and 4 Gy gamma-radiation. The lymphocytes which were pre-treated with curcumin exhibited a significant decrease in the frequency of chromosome aberration at 1 and 2 Gy radiation-induced chromosome damage as compared with the irradiated cells which did not receive the curcumin pretreatment. Thus, pretreatment with curcumin gives protection to lymphocytes against γ-radiation induced chromosome aberration at certain doses. (author)

  10. Chromosomal instability can be induced by the formation of breakage-prone chromosome rearrangement junctions

    International Nuclear Information System (INIS)

    Allen, R.N.; Ritter, L.; Moore, S.R.; Grosovsky, A.J.

    2003-01-01

    Full text: Studies in our lab have led to the hypothesis that chromosomal rearrangements can generate novel breakage-prone sites, resulting in chromosomal instability acting predominantly in cis. For example, specific breakage of large blocks of centromeric region heterochromatin on chromosome 16q by treatment with 2,6-diaminopurine (DAP) is associated with repeated rearrangement of chromosome 16q during outgrowth of DAP-treated clones, thereby establishing a link between the initial site of damage and the occurrence of persistent chromosomal instability. Similarly, karyotypic analysis of gamma ray induced instability demonstrated that chromosomal rearrangements in sub-clones were significantly clustered near the site of previously identified chromosomal rearrangement junctions in unstable parental clones. This study investigates the hypothesis that integration of transfected sequences into host chromosomes could create breakage-prone junction regions and persistent genomic instability without exposure to DNA-damage agents. These junctions may mimic the unstable chromosomal rearrangements induced by DAP or radiation, and thus provide a test of the broader hypothesis that instability can to some extent be attributed to the formation of novel chromosomal breakage hot spots. These experiments were performed using human-hamster hybrid AL cells containing a single human chromosome 11, which was used to monitor instability in a chromosomal painting assay. AL cells were transfected with a 2.5 Kb fragment containing multiple copies of the 180 bp human alpha heterochromatic repeat, which resulted in chromosomal instability in 41% of the transfected clones. Parallel exposure to gamma-radiation resulted in a similar level of chromosomal instability, although control transfections with plasmid alone did not lead to karyotypic instability. Chromosomal instability induced by integration of alpha heterochromatic repeats was also frequently associated with delayed reproductive

  11. Complete Genome Sequence of Germline Chromosomally Integrated Human Herpesvirus 6A and Analyses Integration Sites Define a New Human Endogenous Virus with Potential to Reactivate as an Emerging Infection.

    OpenAIRE

    Tweedy, J; Spyrou, MA; Pearson, M; Lassner, D; Kuhl, U; Gompels, UA

    2016-01-01

    Human herpesvirus-6A and B (HHV-6A, HHV-6B) have recently defined endogenous genomes, resulting from integration into the germline: chromosomally-integrated "CiHHV-6A/B". These affect approximately 1.0% of human populations, giving potential for virus gene expression in every cell. We previously showed that CiHHV-6A was more divergent than CiHHV-6B by examining four genes in 44 European CiHHV-6A/B cardiac/haematology patients. There was evidence for gene expression/reactivation, imp...

  12. Structure of the human gene encoding the associated microfibrillar protein (MFAP1) and localization to chromosome 15q15-q21

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, H.; Chow, M.; Abrams, W.R. [Univ. of Pennsylvania, Philadelphia, PA (United States)] [and others

    1994-09-15

    Microfibrils with a diameter of 10-12 nm, found either in assocation with elastin or independently, are an important component of the extracellular matrix of many tissues. To extend understanding of the proteins composing these microfibrils, the cDNA and gene encoding the human associated microfibril protein (MRAP1) have been cloned and characterized. The coding portion is contained in 9 exons, and the sequence is very homologous to the previously described chick cDNA, but does not appear to share homology or domain motifs with any other known protein. Interestingly, the gene has been localized to chromosome 15q15-q21 by somatic hybrid cell and chromosome in situ analyses. This is the same chromosomal region to which the fibrillin gene, FBN1, known to be defective in the Marfan syndrome, has been mapped. MFAP1 is a candidate gene for heritable diseases affecting microfibrils. 38 refs., 6 figs.

  13. Chromosome Connections: Compelling Clues to Common Ancestry

    Science.gov (United States)

    Flammer, Larry

    2013-01-01

    Students compare banding patterns on hominid chromosomes and see striking evidence of their common ancestry. To test this, human chromosome no. 2 is matched with two shorter chimpanzee chromosomes, leading to the hypothesis that human chromosome 2 resulted from the fusion of the two shorter chromosomes. Students test that hypothesis by looking for…

  14. Chromosomal Aberrations in Canine Gliomas Define Candidate Genes and Common Pathways in Dogs and Humans

    Science.gov (United States)

    York, Dan; Higgins, Robert J.; LeCouteur, Richard A.; Joshi, Nikhil; Bannasch, Danika

    2016-01-01

    Spontaneous gliomas in dogs occur at a frequency similar to that in humans and may provide a translational model for therapeutic development and comparative biological investigations. Copy number alterations in 38 canine gliomas, including diffuse astrocytomas, glioblastomas, oligodendrogliomas, and mixed oligoastrocytomas, were defined using an Illumina 170K single nucleotide polymorphism array. Highly recurrent alterations were seen in up to 85% of some tumor types, most notably involving chromosomes 13, 22, and 38, and gliomas clustered into 2 major groups consisting of high-grade IV astrocytomas, or oligodendrogliomas and other tumors. Tumor types were characterized by specific broad and focal chromosomal events including focal loss of the INK4A/B locus in glioblastoma and loss of the RB1 gene and amplification of the PDGFRA gene in oligodendrogliomas. Genes associated with the 3 critical pathways in human high-grade gliomas (TP53, RB1, and RTK/RAS/PI3K) were frequently associated with canine aberrations. Analysis of oligodendrogliomas revealed regions of chromosomal losses syntenic to human 1p involving tumor suppressor genes, such as CDKN2C, as well as genes associated with apoptosis, autophagy, and response to chemotherapy and radiation. Analysis of high frequency chromosomal aberrations with respect to human orthologues may provide insight into both novel and common pathways in gliomagenesis and response to therapy. PMID:27251041

  15. Intrachromosomal exchange aberrations predicted on the basis of globular interphase chromosome model

    International Nuclear Information System (INIS)

    Andreev, S.G.; Eidelman, Yu.A.

    2002-01-01

    One of the key questions in understanding mechanisms of chromosome aberration production is how does interphase chromosome structure affect aberration formation. To explore this a modelling approach is presented which combines Monte Carlo simulation of both a particle track and interphase chromosome structure. The structural state of interphase chromosome influences a dose-effect relationship for intrachromosomal exchange aberrations (intrachanges). It is shown that intrachanges are induced frequently by both X rays and a particles if the chromosome is in the condensed globular but not in the decondensed coiled state. Truly simple intra-arm intrachanges induced by X rays are dose squared in coiled chromosomes, but exhibit linear dose dependence in globular chromosomes. Experimental data on interarm intrachanges obtained by dual arm chromosome painting are analysed by means of the technique presented. Results of analysis support the conclusion about the arms proximity of chromosome 1 in human lymphocytes. (author)

  16. A scale invariant clustering of genes on human chromosome 7

    Directory of Open Access Journals (Sweden)

    Kendal Wayne S

    2004-01-01

    Full Text Available Abstract Background Vertebrate genes often appear to cluster within the background of nontranscribed genomic DNA. Here an analysis of the physical distribution of gene structures on human chromosome 7 was performed to confirm the presence of clustering, and to elucidate possible underlying statistical and biological mechanisms. Results Clustering of genes was confirmed by virtue of a variance of the number of genes per unit physical length that exceeded the respective mean. Further evidence for clustering came from a power function relationship between the variance and mean that possessed an exponent of 1.51. This power function implied that the spatial distribution of genes on chromosome 7 was scale invariant, and that the underlying statistical distribution had a Poisson-gamma (PG form. A PG distribution for the spatial scattering of genes was validated by stringent comparisons of both the predicted variance to mean power function and its cumulative distribution function to data derived from chromosome 7. Conclusion The PG distribution was consistent with at least two different biological models: In the microrearrangement model, the number of genes per unit length of chromosome represented the contribution of a random number of smaller chromosomal segments that had originated by random breakage and reconstruction of more primitive chromosomes. Each of these smaller segments would have necessarily contained (on average a gamma distributed number of genes. In the gene cluster model, genes would be scattered randomly to begin with. Over evolutionary timescales, tandem duplication, mutation, insertion, deletion and rearrangement could act at these gene sites through a stochastic birth death and immigration process to yield a PG distribution. On the basis of the gene position data alone it was not possible to identify the biological model which best explained the observed clustering. However, the underlying PG statistical model implicated neutral

  17. Chromosome aberrations in human lymphocytes for investigation of individual radiosensitivity

    International Nuclear Information System (INIS)

    Zitzelsberger, H.; Bauchinger, M.

    2000-01-01

    Stable translocations and insertions which are not selected against during cell proliferation can be reliably scored by use of fluorescence in situ hybridisation (FISH) which allows painting of selected chromosomes along their entire length. This temporal persistence makes them particulary valuable for quantifying post human radiation exposures ('biodosimetry'). A disadvantage of this approach is that for routine use only a partial genome analysis can be performed which is mostly based on triple combinations of DNA probes for particular chromosomes. Translocation frequencies from partial genome analysis are often scaled-up to equal the full genome. Basic assumptions for such scaling are, that double strand breaks leading to translocations must be distributed randomly throughout the genome and no preferential interaction between particular pairs of chromosomes occurs. Thus, the probability of a particular chromosome being involved in an exchange is proportional to its DNA content. However, this is not always supported by experimental findings and may thus indicate a differential radiosensitivity of particular chromosomes. Translocation measurements in peripheral blood of different healthy donors irradiated in vitro with the same dose revealed also some evidence for the existence of interindividual differences in radiosensitivity. Similar findings have been already demonstrated after therapeutic irradiation of tumour patients. Consequences thereof may result for long-term retrospective biodosimetry. In order to provide reliable estimates of an individual's exposure to ionising radiation, the extent, distribution and dose-dependence of the observed variability has to be carefully examined in larger groups of persons and larger sets of calibration data. (orig.) [de

  18. Mapping of the human NMDA receptor subunit (NMDAR1) and the proposed NMDA receptor glutamate-binding subunit (NMDARA1) to chromosomes 9q34.3 and chromosome 8, respectively

    DEFF Research Database (Denmark)

    Collins, C; Duff, C; Duncan, A M

    1993-01-01

    to human chromosome 8 using a somatic cell hybrid panel. Because the gene causing HD has been localized to chromosome 4p16.3, the chromosome assignments reported here are inconsistent with either of these genes playing a causative role in the molecular pathology of HD. However, it is noteworthy......A role for the N-methyl-D-aspartate (NMDA) receptor in the molecular pathology underlying Huntington disease (HD) has been proposed on the basis of neurochemical studies in HD and the ability of the NMDA receptor to mediate neuronal cell death. The molecular cloning of the human NMDA receptor...

  19. Non-random distribution of instability-associated chromosomal rearrangement breakpoints in human lymphoblastoid cells

    International Nuclear Information System (INIS)

    Moore, Stephen R.; Papworth, David; Grosovsky, Andrew J.

    2006-01-01

    Genomic instability is observed in tumors and in a large fraction of the progeny surviving irradiation. One of the best-characterized phenotypic manifestations of genomic instability is delayed chromosome aberrations. Our working hypothesis for the current study was that if genomic instability is in part attributable to cis mechanisms, we should observe a non-random distribution of chromosomes or sites involved in instability-associated rearrangements, regardless of radiation quality, dose, or trans factor expression. We report here the karyotypic examination of 296 instability-associated chromosomal rearrangement breaksites (IACRB) from 118 unstable TK6 human B lymphoblast, and isogenic derivative, clones. When we tested whether IACRB were distributed across the chromosomes based on target size, a significant non-random distribution was evident (p < 0.00001), and three IACRB hotspots (chromosomes 11, 12, and 22) and one IACRB coldspot (chromosome 2) were identified. Statistical analysis at the chromosomal band-level identified four IACRB hotspots accounting for 20% of all instability-associated breaks, two of which account for over 14% of all IACRB. Further, analysis of independent clones provided evidence within 14 individual clones of IACRB clustering at the chromosomal band level, suggesting a predisposition for further breaks after an initial break at some chromosomal bands. All of these events, independently, or when taken together, were highly unlikely to have occurred by chance (p < 0.000001). These IACRB band-level cluster hotspots were observed independent of radiation quality, dose, or cellular p53 status. The non-random distribution of instability-associated chromosomal rearrangements described here significantly differs from the distribution that was observed in a first-division post-irradiation metaphase analysis (p = 0.0004). Taken together, these results suggest that genomic instability may be in part driven by chromosomal cis mechanisms

  20. Mechanisms of ring chromosome formation in 11 cases of human ring chromosome 21

    DEFF Research Database (Denmark)

    McGinniss, M J; Kazazian, H H; Stetten, G

    1992-01-01

    We studied the mechanism of ring chromosome 21 (r(21)) formation in 13 patients (11 unique r(21)s), consisting of 7 from five families with familial r(21) and 6 with de novo r(21). The copy number of chromosome 21 sequences in the rings of these patients was determined by quantitative dosage......), resulting in deletion of varying amounts of 21q22.1 to 21qter. The data from one individual who had a Down syndrome phenotype were consistent with asymmetric breakage and reunion of 21q sequences from an intermediate isochromosome or Robertsonian translocation chromosome as reported by Wong et al. Another......). The phenotype of patients correlated well with the extent of deletion or duplication of chromosome 21 sequences. These data demonstrate three mechanisms of r(21) formation and show that the phenotype of r(21) patients varies with the extent of chromosome 21 monosomy or trisomy....

  1. Regional assignment of seven genes on chromosome 1 of man by use of man-Chinese hamster somatic cell hybrids. I. Results obtained after hybridization of human cells carrying reciprocal translocations involving chromosome 1.

    Science.gov (United States)

    Jongsma, A P; Burgerhout, W G

    1977-01-01

    Regional localization studies of genes coding for human PGD, PPH1, PGM1, UGPP, GuK1, Pep-C, and FH, which have been assigned to chromosome 1, were performed with man-Chinese hamster somatic cell hybrids, Informative hybrids that retained fragments of the human chromosome 1 were produced by fusion of hamster cells with human cells carrying reciprocal translocations involving chromosome 1. Analysis of the hybrids that retained one of the translocation chromosomes or de novo rearrangements involving the human 1 revealed the following gene positions: PGD and PPH1 in 1pter leads to 1p32, PGM1 in 1p32 leads to 1p22, UGPP and GuK1 in 1q21 leads to 1q42, FH in 1qter leads to 1q42, and Pep-C probably in 1q42.

  2. [Characteristics of pregnancy and delivery of fetuses affected by either central nervous system malformations or chromosomal abnormalities].

    Science.gov (United States)

    Friedler, Jordana Mashiach; Mazor, Moshe; Shoham-Vardi, Ilana; Bashiri, Asher

    2011-11-01

    To determine whether fetuses affected by either chromosomal abnormalities or central nervous system (CNS) malformations are prone to complications during pregnancy and delivery. In this study, 320 singleton pregnancies with CNS malformations and 133 singleton pregnancies with chromosomal abnormaLities were compared with 149,112 singleton births without any known congenital anomalies. Exclusion criteria were: births with other congenital anomalies or malformations, pregnancies Lacking prenatal care and multiple pregnancies. Data was obtained using the computerized birth discharge records. The statistical analysis was performed with the SPSS package. There were no statistically significant differences in maternal age, ethnicity, uterine anomalies or parity. The ratio of general anesthesia was almost double in the study groups compared to the control group: 25% in the CNS malformation group (RR 2.617, CI 2.031-3.372) and 25.6% in the chromosomal abnormality group (RR 2.696, CI 1.825-3.982) and 11.3% in the control group (p malformation group, 20.3% in the chromosomal abnormaLity group and 12% in the control group. A logistic regression model that included previous CS, maLpresentation, non-reassuring fetal heart monitor (NRFHR) and presence of a malformation, concluded that the presence of a malformation was not an independent risk factor for CS. However, indirect causes, such as malpresentation (4.34 OR), were independently associated with the malformations. Fetuses affected by either CNS malformations or chromosomal abnormalities have a higher rate of pregnancy and delivery complications, including those which increase the risk of maternal morbidity and mortality.

  3. Chromosomal location of the human gene for DNA polymerase β

    International Nuclear Information System (INIS)

    McBride, O.W.; Zmudzka, B.Z.; Wilson, S.H.

    1987-01-01

    Inhibition studies indicate that DNA polymerase β has a synthetic role in DNA repair after exposure of mammalian cells to some types of DNA-damaging agents. The primary structure of the enzyme is highly conserved in vertebrates, and nearly full-length cDNAs for the enzyme were recently cloned from mammalian cDNA libraries. Southern blot analysis of DNA from a panel of human-rodent somatic cell hybrids, using portions of the cDNA as probe, indicates that the gene for human DNA polymerase β is single copy and located on the short arm or proximal long arm of chromosome 8 (8pter-8q22). A restriction fragment length polymorphism (RFLP) was detected in normal individuals by using a probe from the 5' end of the cDNA, and this RFLP probably is due to an insertion or duplication of DNA in 20-25% of the population. This restriction site can be used as one marker for chromosome 8 genetic linkage studies and for family studies of traits potentially involving this DNA repair gene

  4. Monoamine oxidase deficiency in males with an X chromosome deletion.

    Science.gov (United States)

    Sims, K B; de la Chapelle, A; Norio, R; Sankila, E M; Hsu, Y P; Rinehart, W B; Corey, T J; Ozelius, L; Powell, J F; Bruns, G

    1989-01-01

    Mapping of the human MAOA gene to chromosomal region Xp21-p11 prompted our study of two affected males in a family previously reported to have Norrie disease resulting from a submicroscopic deletion in this chromosomal region. In this investigation we demonstrate in these cousins deletion of the MAOA gene, undetectable levels of MAO-A and MAO-B activities in their fibroblasts and platelets, respectively, loss of mRNA for MAO-A in fibroblasts, and substantial alterations in urinary catecholamine metabolites. The present study documents that a marked deficiency of MAO activity is compatible with life and that genes for MAO-A and MAO-B are near each other in this Xp chromosomal region. Some of the clinical features of these MAO deletion patients may help to identify X-linked MAO deficiency diseases in humans.

  5. Human Chromosome 21: Mapping of the chromosomes and cloning of cDNAs

    Energy Technology Data Exchange (ETDEWEB)

    Antonarakis, S.E.

    1991-09-01

    The objective of the research funded by DOE grant DE-FG02-89ER60857 from 6/15/89 to 8/31/91 was to contribute to the physical mapping of human chromosome 21 (HC21) by cloning large fragments of DNA into Yeast Artificial Chromosomes (YACs) and identify YACs that map on HC21. A total of 54 sequence tagged sites (STS) have been developed and mapped in our laboratory to HC21 and can be used as initial reference points for YAC identification and construction of overlapping clones. A small YAC library was constructed which is HC21 specific. DNA from somatic cell hybrid WAV17 or from flow-sorted HC21 was partially digested with EcoRI, ligated into vectors PJS97, PJS98, and YACs have been obtained with average size insert of more than 300 kb. This library has been deposited in D. Patterson's lab for the Joint YAC screening effort. Additional YAC libraries from ICI Pharmaceuticals or from Los Alamos National Laboratories have been screened with several STS and positive YACs have been identified. Work in progress includes screening of YAC libraries in order to construct overlapping clones, characterization of the cloning ends of YACs, characterization of additional STS and cloning of HC21 specific cDNAs. 15 refs., 2 figs., 5 tabs.

  6. Inter-chromosomal heterogeneity in the formation of radiation induced chromosomal aberrations

    International Nuclear Information System (INIS)

    Natarajan, A.T.; Vermeulen, S.; Boei, J.J.W.A.

    1997-01-01

    It is generally assumed that radiation induced chromosomal lesions are distributed randomly and repaired randomly among the genome. Recent studies using fluorescent in situ hybridization (FISH) and chromosome specific DNA libraries indicate that some chromosomes are more sensitive for radiation induced aberration formation than others. Chromosome No. 4 in human and chromosome No. 8 in Chinese hamster have been found to involve more in exchange aberrations than others, when calculated on the basis of their DNA content. Painting with arm specific chromosome libraries indicate that the frequencies of radiation induced intra-chromosome exchanges (i.e., between the arms of a chromosome, such as centric rings and inversions) are far in excess than one would expect on the basis of the frequencies of observed inter-chromosomal exchanges. The possible factors leading to the observed heterogeneity will be discussed

  7. Analysis of the conservation of synteny between Fugu and human chromosome 12

    Directory of Open Access Journals (Sweden)

    Koop Ben F

    2003-07-01

    Full Text Available Abstract Background The pufferfish Fugu rubripes (Fugu with its compact genome is increasingly recognized as an important vertebrate model for comparative genomic studies. In particular, large regions of conserved synteny between human and Fugu genomes indicate its utility to identify disease-causing genes. The human chromosome 12p12 is frequently deleted in various hematological malignancies and solid tumors, but the actual tumor suppressor gene remains unidentified. Results We investigated approximately 200 kb of the genomic region surrounding the ETV6 locus in Fugu (fETV6 in order to find conserved functional features, such as genes or regulatory regions, that could give insight into the nature of the genes targeted by deletions in human cancer cells. Seven genes were identified near the fETV6 locus. We found that the synteny with human chromosome 12 was conserved, but extensive genomic rearrangements occurred between the Fugu and human ETV6 loci. Conclusion This comparative analysis led to the identification of previously uncharacterized genes in the human genome and some potentially important regulatory sequences as well. This is a good indication that the analysis of the compact Fugu genome will be valuable to identify functional features that have been conserved throughout the evolution of vertebrates.

  8. Cell killing and chromosomal aberration induced by heavy-ion beams in cultured human tumor cells

    International Nuclear Information System (INIS)

    Takakura, K.; Funada, A.; Mohri, M.; Lee, R.; Aoki, M.; Furusawa, Y.; Gotoh, E.

    2003-01-01

    Full text: To clarify the relation between cell death and chromosomal aberration in cultured human tumor cells irradaited with heavy-ion beams. The analyses were carried out on the basis of the linear energy transfer (LET) values of heavy ion beams as radiation source. Exponentially growing human tumor cells, Human Salivary Gland Tumor cells (HSG cells), were irradiated with various high energy heavy ions, such as 13 keV/micrometer carbon (C) ions as low LET charged particle radiation source, 120 keV/ micrometer carbon (C) ions and 440 keV/micrometer iron (Fe) ions as high LET charged particle radiation sources.The cell death was analysed by the colony formation method, and the chromosomal aberration and its repairing kinetics was analysed by prematurely chromosome condensation method (PCC method) using calyculin A. Chromatid-type breaks, isochromatid breaks and exchanges were scored for the samples from the cells keeping with various incubation time after irradiation. The LET dependence of the cell death was similar to that of the chromosome exchange formation after 12 hours incubation. A maximum peak was around 120 keV/micrometer. However it was not similar to the LET dependence of isochromatid breaks or chromatid breaks after 12 hours incubation. These results suggest that the exchanges formed in chromosome after irradiation should be one of essential causes to lead the cell death. The different quality of induced chromosome damage between high-LET and low-LET radiation was also shown. About 89 % and 88 % chromatid breaks induced by X rays and 13 keV/micrometer C ions were rejoined within 12 hours of post-irradiation, though only 71% and 58 % of chromatid breaks induced by 120 keV/micrometer C ions and 440 keV/micrometer Fe ions were rejoined within 12 hours of post-irradiation

  9. Cytogenetic and molecular genetic characterization of immortalized human ovarian surface epithelial cell lines: consistent loss of chromosome 13 and amplification of chromosome 20.

    Science.gov (United States)

    Jin, Yuesheng; Zhang, Hao; Tsao, Sai Wah; Jin, Charlotte; Lv, Mei; Strömbeck, Bodil; Wiegant, Joop; Wan, Thomas Shek Kong; Yuen, Po Wing; Kwong, Yok-Lam

    2004-01-01

    This study aimed at identifying the genetic events involved in immortalization of ovarian epithelial cells, which might be important steps in ovarian carcinogenesis. The genetic profiles of five human ovarian surface epithelial (HOSE) cell lines immortalized by retroviral transfection of the human papillomavirus (HPV) E6/E7 genes were thoroughly characterized by chromosome banding and fluorescence in situ hybridization (FISH), at various passages pre- and post-crisis. In pre-crisis, most cells had simple, non-clonal karyotypic changes. Telomere association was the commonest aberration, suggesting that tolermase dysfunction might be an important genetic event leading to cellular crisis. After immortalization post-crisis, however, the karyotypic patterns were non-random. Loss of genetic materials was a characteristic feature. The commonest numerical aberrations were -13, -14, -16, -17, -18, and +5. Among them, loss of chromosome 13 was common change observed in all lines. The only recurrent structural aberration was homogeneously staining regions (hsr) observed in three lines. FISH and combined binary ratio labeling (COBRA)-FISH showed in two cases that the hsrs were derived from chromosome 20. Clonal evolution was observed in four of the lines. In one line, hsr was the only change shared by all subclones, suggesting that it might be a primary event in cell immortalization. The results of the present study suggested that loss of chromosome 13 and the amplification of chromosome 20 might be early genetic events involved in ovarian cell immortalization, and might be useful targets for the study of genomic aberrations in ovarian carcinogenesis.

  10. Human X chromosome inactivation and reactivation: implications for cell reprogramming and disease.

    Science.gov (United States)

    Cantone, Irene; Fisher, Amanda G

    2017-11-05

    X-chromosome inactivation (XCI) is an exemplar of epigenetic regulation that is set up as pluripotent cells differentiate. Once established, XCI is stably propagated, but can be reversed in vivo or by pluripotent reprogramming in vitro Although reprogramming provides a useful model for inactive X (Xi) reactivation in mouse, the relative instability and heterogeneity of human embryonic stem (ES) cells and induced pluripotent stem cells hampers comparable progress in human. Here we review studies aimed at reactivating the human Xi using different reprogramming strategies. We outline our recent results using mouse ES cells to reprogramme female human fibroblasts by cell-cell fusion. We show that pluripotent reprogramming induces widespread and rapid chromatin remodelling in which the human Xi loses XIST and H3K27m3 enrichment and selected Xi genes become reactivated, ahead of mitotic division. Using RNA sequencing to map the extent of human Xi reactivation, and chromatin-modifying drugs to potentiate reactivation, we outline how this approach could be used to better design strategies to re-express human X-linked loci. As cell fusion induces the expression of human pluripotency genes that represent both the 'primed' and 'naive' states, this approach may also offer a fresh opportunity to segregate human pluripotent states with distinct Xi expression profiles, using single-cell-based approaches.This article is part of the themed issue 'X-chromosome inactivation: a tribute to Mary Lyon'. © 2017 The Author(s).

  11. Cytogenetic biological dosimetry in radiological protection: chromosome aberration analysis in human lymphocyties

    International Nuclear Information System (INIS)

    Campos, I.M.A. de.

    1988-01-01

    The effects of ionizing radiation on chromosomes have been know for several decades and dose effect relationships are also fairly well established for several doses and dose rates. Apart from its biological significance, the interpretation of chromosome aberration frequency associated with human exposure to radiation plays an important role in dose assessment, particularly in cases where exposure is though to have occurred but no physical dose monitoring system was present. Based on the cytogenetic data obtained from seven cases of exposure to radiation the aberration frequency have been fitted to the quadratic function Y= αD + βD 2 as the dose response curves from literature. The dose equivalent estimate by frequency of chromosomic aberration found here was compared with 60 Co and 192 Ir already published curves obtained at almost similar dose rate together with some hematological data. (author) [pt

  12. European gene mapping project (EUROGEM) : Breakpoint panels for human chromosomes based on the CEPH reference families

    NARCIS (Netherlands)

    Attwood, J; Bryant, SP; Bains, R; Povey, R; Povey, S; Rebello, M; Kapsetaki, M; Moschonas, NK; Grzeschik, KH; Otto, M; Dixon, M; Sudworth, HE; Kooy, RF; Wright, A; Teague, P; Terrenato, L; Vergnaud, G; Monfouilloux, S; Weissenbach, J; Alibert, O; Dib, C; Faure, S; Bakker, E; Pearson, NM; Vossen, RHAM; Gal, A; MuellerMyhsok, B; Cann, HM; Spurr, NK

    Meiotic breakpoint panels for human chromosomes 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 17; 18, 20 and X were constructed from genotypes from the CEPH reference families. Each recombinant chromosome included has a breakpoint well-supported with reference to defined quantitative criteria. The panels

  13. Gamma-ray mutagenesis studies in a new human-hamster hybrid, A(L)CD59(+/-), which has two human chromosomes 11 but is hemizygous for the CD59 gene

    Science.gov (United States)

    Kraemer, S. M.; Vannais, D. B.; Kronenberg, A.; Ueno, A.; Waldren, C. A.; Chatterjee, A. (Principal Investigator)

    2001-01-01

    Kraemer, S. M., Vannais, D. B., Kronenberg, A., Ueno, A. and Waldren, C. A. Gamma-Ray Mutagenesis Studies in a New Human-Hamster Hybrid, A(L)CD59(+/-), which has Two Human Chromosomes 11 but is Hemizygous for the CD59 Gene. Radiat. Res. 156, 10-19 (2001).We have developed a human-CHO hybrid cell line, named A(L)CD59(+/-), which has two copies of human chromosome 11 but is hemizygous for the CD59 gene and the CD59 cell surface antigen that it encodes. Our previous studies used the A(L) and A(L)C hybrids that respectively contain one or two sets of CHO chromosomes plus a single copy of human chromosome 11. The CD59 gene at 11p13.5 and the CD59 antigen encoded by it are the principal markers used in our mutagenesis studies. The hybrid A(L)CD59(+/-) contains two copies of human chromosome 11, only one of which carries the CD59 gene. The incidence of CD59 (-) mutants (formerly called S1(-)) induced by (137)Cs gamma rays is about fivefold greater in A(L)CD59(+/-) cells than in A(L) cells. Evidence is presented that this increase in mutant yield is due to the increased induction of certain classes of large chromosomal mutations that are lethal to A(L) cells but are tolerated in the A(L)CD59(+/-) hybrid. In addition, significantly more of the CD59 (-) mutants induced by (137)Cs gamma rays in A(L)CD59(+/-) cells display chromosomal instability than in A(L) cells. On the other hand, the yield of gamma-ray-induced CD59 (-) mutants in A(L)CD59(+/-) cells is half that of the A(L)C hybrid, which also tolerates very large mutations but has only one copy of human chromosome 11. We interpret the difference in mutability as evidence that repair processes involving the homologous chromosomes 11 play a role in determining mutant yields. The A(L)CD59(+/-) hybrid provides a useful new tool for quantifying mutagenesis and shedding light on mechanisms of genetic instability and mutagenesis.

  14. Kaposi's sarcoma herpesvirus C-terminal LANA concentrates at pericentromeric and peri-telomeric regions of a subset of mitotic chromosomes

    International Nuclear Information System (INIS)

    Kelley-Clarke, Brenna; Ballestas, Mary E.; Komatsu, Takashi; Kaye, Kenneth M.

    2007-01-01

    The Kaposi's sarcoma-associated herpesvirus (KSHV) latency-associated nuclear antigen (LANA) tethers KSHV terminal repeat (TR) DNA to mitotic chromosomes to efficiently segregate episomes to progeny nuclei. LANA contains N- and C-terminal chromosome binding regions. We now show that C-terminal LANA preferentially concentrates to paired dots at pericentromeric and peri-telomeric regions of a subset of mitotic chromosomes through residues 996-1139. Deletions within C-terminal LANA abolished both self-association and chromosome binding, consistent with a requirement for self-association to bind chromosomes. A deletion abolishing TR DNA binding did not affect chromosome targeting, indicating LANA's localization is not due to binding its recognition sequence in chromosomal DNA. LANA distributed similarly on human and non-human mitotic chromosomes. These results are consistent with C-terminal LANA interacting with a cell factor that concentrates at pericentromeric and peri-telomeric regions of mitotic chromosomes

  15. Chromosomal mosaicism in mouse two-cell embryos after paternal exposure to acrylamide

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Francesco; Bishop, Jack; Lowe, Xiu; Wyrobek, Andrew J

    2008-10-14

    Chromosomal mosaicism in human preimplantation embryos is a common cause ofspontaneous abortions, however, our knowledge of its etiology is limited. We used multicolor fluorescence in situ hybridization (FISH) painting to investigate whether paternally-transmitted chromosomal aberrations result in mosaicism in mouse 2-cell embryos. Paternal exposure to acrylamide, an important industrial chemical also found in tobacco smoke and generated during the cooking process of starchy foods, produced significant increases in chromosomally defective 2-cell embryos, however, the effects were transient primarily affecting the postmeiotic stages of spermatogenesis. Comparisons with our previous study of zygotes demonstrated similar frequencies of chromosomally abnormal zygotes and 2-cell embryos suggesting that there was no apparent selection against numerical or structural chromosomal aberrations. However, the majority of affected 2-cell embryos were mosaics showing different chromosomal abnormalities in the two blastomeric metaphases. Analyses of chromosomal aberrations in zygotes and 2-cell embryos showed a tendency for loss of acentric fragments during the first mitotic division ofembryogenesis, while both dicentrics and translocations apparently underwent propersegregation. These results suggest that embryonic development can proceed up to the end of the second cell cycle of development in the presence of abnormal paternal chromosomes and that even dicentrics can persist through cell division. The high incidence of chromosomally mosaic 2-cell embryos suggests that the first mitotic division of embryogenesis is prone to missegregation errors and that paternally-transmitted chromosomal abnromalities increase the risk of missegregation leading to embryonic mosaicism.

  16. Convergence and divergence of tumor-suppressor and proto-oncogenes in chimpanzee from human chromosome 17

    Energy Technology Data Exchange (ETDEWEB)

    Verma, R.S.; Ramesh, K.H. [Long Island College Hospital, Brooklyn, NY (United States)

    1994-09-01

    Due to the emergence of molecular technology, the phylogenetic evolution of the human genome via apes has become a saltatory even. In the present investigation, cosmid probes for P53, Charcot-Marie-Tooth [CMTIA], HER-2/NEU and myeloperoxidase [MPO] were used. Probes mapping to these genetic loci are well-defined on human chromosome 17 [HSA 17]. We localized these genes on chimpanzee [Pan troglodyte] chromosomes by FISH technique employing two different cell lines. Our results indicate that chimpanzee chromosome 19 [PTR 19] differs from HSA 17 by a pericentric inversion. The P53 gene assigned to HSA 17p13.1 is localized on PTR 19p15 and the MPO sequence of HSA 17q21.3-23 hybridized to PTR 19q23. Perplexing enough, HER-2/NEU assigned to HSA 17q11.2 localized to PTR 19p12. Obviously, there is convergence of P53 and MPO regions and distinctive divergence of HER-2/NEU and CMT1A regions of human and chimpanzee. This investigation has demonstrated the pronounced genetic shuffling which occurred during the origin of HSA 17. Molecular markers should serve as evolutionary punctuations in defining the precise sequence of genetic events that led to the evolution of other chromosomes whose genomic synteny, although similar, have surprisingly evolved through different mechanisms.

  17. High-speed AFM of human chromosomes in liquid

    Energy Technology Data Exchange (ETDEWEB)

    Picco, L M; Dunton, P G; Ulcinas, A; Engledew, D J; Miles, M J [H H Wills Physics Laboratory and IRC in Nanotechnology, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Hoshi, O; Ushiki, T [Division of Microscopic Anatomy and Bio-Imaging, Department of Cellular Function, Niigata University Graduate School of Medical and Dental Sciences, Asahimachi-Dori 1, Niigata, 951-8150 (Japan)], E-mail: m.j.miles@bristol.ac.uk

    2008-09-24

    Further developments of the previously reported high-speed contact-mode AFM are described. The technique is applied to the imaging of human chromosomes at video rate both in air and in water. These are the largest structures to have been imaged with high-speed AFM and the first imaging in liquid to be reported. A possible mechanism that allows such high-speed contact-mode imaging without significant damage to the sample is discussed in the context of the velocity dependence of the measured lateral force on the AFM tip.

  18. High-resolution YAC-cosmid-STS map of human chromosome 13.

    Science.gov (United States)

    Cayanis, E; Russo, J J; Kalachikov, S; Ye, X; Park, S H; Sunjevaric, I; Bonaldo, M F; Lawton, L; Venkatraj, V S; Schon, E; Soares, M B; Rothstein, R; Warburton, D; Edelman, I S; Zhang, P; Efstratiadis, A; Fischer, S G

    1998-01-01

    We have assembled a high-resolution physical map of human chromosome 13 DNA (approximately 114 Mb) from hybridization, PCR, and FISH mapping data using a specifically designed set of computer programs. Although the mapping of 13p is limited, 13q (approximately 98 Mb) is covered by an almost continuous contig of 736 YACs aligned to 597 contigs of cosmids. Of a total of 10,789 cosmids initially selected from a chromosome 13-specific cosmid library (16,896 colonies) using inter-Alu PCR probes from the YACs and probes for markers mapped to chromosome 13, 511 were assembled in contigs that were established from cross-hybridization relationships between the cosmids. The 13q YAC-cosmid map was annotated with 655 sequence tagged sites (STSs) with an average spacing of 1 STS per 150 kb. This set of STSs, each identified by a D number and cytogenetic location, includes database markers (198), expressed sequence tags (93), and STSs generated by sequencing of the ends of cosmid inserts (364). Additional annotation has been provided by positioning 197 cosmids mapped by FISH on 13q. The final (comprehensive) map, a list of STS primers, and raw data used in map assembly are available at our Web site (genome1.ccc.columbia.edu/ approximately genome/) and can serve as a resource to facilitate accurate localization of additional markers, provide substrates for sequencing, and assist in the discovery of chromosome 13 genes associated with hereditary diseases.

  19. Chromosome surveys of human populations: between epidemiology and anthropology.

    Science.gov (United States)

    de Chadarevian, Soraya

    2014-09-01

    It is commonly held that after 1945 human genetics turned medical and focussed on the individual rather than on the study of human populations that had become discredited. However, a closer look at the research practices at the time quickly reveals that human population studies, using old and new tools, prospered in this period. The essay focuses on the rise of chromosome analysis as a new tool for the study of human populations. It reviews a broad array of population studies ranging from newborn screening programmes to studies of isolated or 'primitive' people. Throughout, it highlights the continuing role of concerns and opportunities raised by the propagation of atomic energy for civilian and military uses, the collection of large data bases and computers, and the role of international organisations like the World Health Organisation and the International Biological Programme in shaping research agendas and carving out a space for human heredity in the postwar era. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Analysis of 62 hybrid assembled human Y chromosomes exposes rapid structural changes and high rates of gene conversion

    DEFF Research Database (Denmark)

    Gonzalez-Izarzugaza, Jose Maria; Skov, Laurits; Maretty, Lasse

    2017-01-01

    The human Y-chromosome does not recombine across its male-specific part and is therefore an excellent marker of human migrations. It also plays an important role in male fertility. However, its evolution is difficult to fully understand because of repetitive sequences, inverted repeats and the po......The human Y-chromosome does not recombine across its male-specific part and is therefore an excellent marker of human migrations. It also plays an important role in male fertility. However, its evolution is difficult to fully understand because of repetitive sequences, inverted repeats...... and the potentially large role of gene conversion. Here we perform an evolutionary analysis of 62 Y-chromosomes of Danish descent sequenced using a wide range of library insert sizes and high coverage, thus allowing large regions of these chromosomes to be well assembled. These include 17 father-son pairs, which we...... use to validate variation calling. Using a recent method that can integrate variants based on both mapping and de novo assembly, we genotype 10898 SNVs and 2903 indels (max length of 27241 bp) in our sample and show by father-son concordance and experimental validation that the non-recurrent SNP...

  1. Chromosome-wise Protein Interaction Patterns and Their Impact on Functional Implications of Large-Scale Genomic Aberrations

    DEFF Research Database (Denmark)

    Kirk, Isa Kristina; Weinhold, Nils; Belling, Kirstine González-Izarzugaza

    2017-01-01

    Gene copy-number changes influence phenotypes through gene-dosage alteration and subsequent changes of protein complex stoichiometry. Human trisomies where gene copy numbers are increased uniformly over entire chromosomes provide generic cases for studying these relationships. In most trisomies......, gene and protein level alterations have fatal consequences. We used genome-wide protein-protein interaction data to identify chromosome-specific patterns of protein interactions. We found that some chromosomes encode proteins that interact infrequently with each other, chromosome 21 in particular. We...... combined the protein interaction data with transcriptome data from human brain tissue to investigate how this pattern of global interactions may affect cellular function. We identified highly connected proteins that also had coordinated gene expression. These proteins were associated with important...

  2. Persistence of X-ray-induced chromosomal rearrangements in long-term cultures of human diploid fibroblasts

    International Nuclear Information System (INIS)

    Kano, Y.; Little, J.B.

    1984-01-01

    As part of a long-term study of mechanisms of human cell neoplastic transformation, the authors have examined the change in the frequencies of X-ray-induced chromosome rearrangements in density-inhibited human foreskin fibroblasts as a function of subculture time. In nonproliferating cells, the frequency of chromosomal aberrations declined within 24 to 48 hr but still remained at a relatively high level up to 43 days after irradiation. Aberrations disappeared rapidly, however, when the cells were allowed to proliferate, indicating that these lesions are lethal to dividing cells. The frequency of induced translocations, as determined by analysis of G-banded karyotypes, was dose dependent and remained stable up to 20 mean population doublings after irradiation. When subculture of density-inhibited cultures was delayed for 4 hr after irradiation (confluent holding), the frequency of chromosomal aberrations in the first mitosis declined, whereas the translocation frequencies at later passage were elevated as compared with cells subcultured immediately. This correlates with the reported increase in the frequency of transformation under similar conditions. These findings support the hypothesis that chromosomal rearrangements induced by DNA damage may be involved in the initiation of cancer

  3. Sensitivity of human peripheral lymphocyte chromosomes to various X-ray doses and subsequent storage in Plexiglass or glass containers

    International Nuclear Information System (INIS)

    Ivanov, B.; Bulanova, M.; Geogieva, I.

    1979-01-01

    A study was performed to determine whether chromosomal aberrations produced in vitro by various X-ray doses in human lymphocytes were affected by post-irradiation storage of the blood in plastic or glass containers. Following X-ray doses of up to 400 R, the yields of cells with aberrations and the incidence of dicentrics, rings, interstitial deletions, symmetrical changes and chromosome fragments increased with dose. After storage of the irradiated lymphocytes in either Plexiglass or glass, the values for exchange aberrations, deletions and aberrant cells were compared. The only statistically significant difference was a slight increase in the percentage of aberrant cells stored in the plastic containers at the 400 R dose level. It was concluded that plastics appear to have a sensitizing effect on the genetic structure of the peripheral lymphocyte and thus the use of this material to store blood in biological dosimetry studies should be discouraged. (U.K.)

  4. Mutational analysis of the Wolfram syndrome gene in two families with chromosome 4p-linked bipolar affective disorder.

    Science.gov (United States)

    Evans, K L; Lawson, D; Meitinger, T; Blackwood, D H; Porteous, D J

    2000-04-03

    Bipolar affective disorder (BPAD) is a complex disease with a significant genetic component. Heterozygous carriers of Wolfram syndrome (WFS) are at increased risk of psychiatric illness. A gene for WFS (WFS1) has recently been cloned and mapped to chromosome 4p, in the general region we previously reported as showing linkage to BPAD. Here we present sequence analysis of the WFS1 coding sequence in five affected individuals from two chromosome 4p-linked families. This resulted in the identification of six polymorphisms, two of which are predicted to change the amino acid sequence of the WFS1 protein, however none of the changes segregated with disease status. Am. J. Med. Genet. (Neuropsychiatr. Genet.) 96:158-160, 2000. Copyright 2000 Wiley-Liss, Inc.

  5. Biological radiation dose estimation by chromosomal aberrations analysis in human peripheral blood (dose-effect curve)

    International Nuclear Information System (INIS)

    Al-Achkar, W.

    2001-09-01

    In order to draw a dose-effect curve, experimentally gamma ray induced chromosomal aberrations in human peripheral lymphocytes from eight healthy people were studied. Samples from 4 males and 4 females were irradiated in tubes with 0.15, 0.25, 0.5, 1, 1.5, 2, 2.5 gray of gamma ray (Co 60 at dose rate 0.3 Gy/min). Irradiated and control samples were incubated in 37 centigrade for 48 hours cell cultures. Cell cultures then were stopped and metaphases spread, Giemsa stained to score the induced chromosomal aberrations. Chromosomal aberrations from 67888 metaphases were scored. Curves from the total number of dicentrics, dicentrics + rings and total numbers of breaks in cell for each individual or for all people were drawn. An increase of all chromosomal aberrations types with the elevation of the doses was observed. The yield of chromosome aberrations is related to the dose used. These curves give a quick useful estimation of the accidentally radiation exposure. (author)

  6. Three-dimensional visualization of a human chromosome using coherent x-ray diffraction

    International Nuclear Information System (INIS)

    Nishino, Yoshinori; Ishikawa, Tetsuya; Takahashi, Yukio; Imamoto, Naoko; Maeshima, Kazuhiro

    2010-01-01

    We succeeded in observing a human chromosome in two- and three-dimensions using x-ray diffraction microscopy. X-ray diffraction microscopy is a lens-less imaging technique utilizing coherent x-ray diffraction, and can overcome various limitations in conventional lens-based x-ray microscopy. Biological applications of the method have been limited to 2D observation, and 3D observation has been long waited. We found that the reconstructed chromosome images contain high-density axial structure, which has not been observed under unstained or unlabeled conditions. The result experimentally demonstrates the effectiveness of x-ray diffraction microscopy in observing internal structures of unstained biological samples with high image contrast. (author)

  7. Chromosome locations of genes encoding human signal transduction adapter proteins, Nck (NCK), Shc (SHC1), and Grb2 (GRB2)

    DEFF Research Database (Denmark)

    Huebner, K; Kastury, K; Druck, T

    1994-01-01

    "adapter" proteins, which are involved in transducing signals from receptor tyrosine kinases to downstream signal recipients such as ras, because adaptor protein genes could also, logically, serve as targets of mutation, rearrangement, or other aberration in disease. Therefore, DNAs from panels of rodent-human......Abnormalities due to chromosomal aberration or point mutation in gene products of growth factor receptors or in ras gene products, which lie on the same signaling pathway, can cause disease in animals and humans. Thus, it can be important to determine chromosomal map positions of genes encoding...... hybrids carrying defined complements of human chromosomes were assayed for the presence of the cognate genes for NCK, SHC, and GRB2, three SH2 or SH2/SH3 (Src homology 2 and 3) domain-containing adapter proteins. Additionally, NCK and SHC genes were more narrowly localized by chromosomal in situ...

  8. New insights into human nondisjunction of chromosome 21 in oocytes.

    Directory of Open Access Journals (Sweden)

    Tiffany Renee Oliver

    2008-03-01

    Full Text Available Nondisjunction of chromosome 21 is the leading cause of Down syndrome. Two risk factors for maternal nondisjunction of chromosome 21 are increased maternal age and altered recombination. In order to provide further insight on mechanisms underlying nondisjunction, we examined the association between these two well established risk factors for chromosome 21 nondisjunction. In our approach, short tandem repeat markers along chromosome 21 were genotyped in DNA collected from individuals with free trisomy 21 and their parents. This information was used to determine the origin of the nondisjunction error and the maternal recombination profile. We analyzed 615 maternal meiosis I and 253 maternal meiosis II cases stratified by maternal age. The examination of meiosis II errors, the first of its type, suggests that the presence of a single exchange within the pericentromeric region of 21q interacts with maternal age-related risk factors. This observation could be explained in two general ways: 1 a pericentromeric exchange initiates or exacerbates the susceptibility to maternal age risk factors or 2 a pericentromeric exchange protects the bivalent against age-related risk factors allowing proper segregation of homologues at meiosis I, but not segregation of sisters at meiosis II. In contrast, analysis of maternal meiosis I errors indicates that a single telomeric exchange imposes the same risk for nondisjunction, irrespective of the age of the oocyte. Our results emphasize the fact that human nondisjunction is a multifactorial trait that must be dissected into its component parts to identify specific associated risk factors.

  9. The effects of severe mixed environmental pollution on human chromosomes.

    Science.gov (United States)

    Katsantoni, A; Nakou, S; Antoniadou-Koumatou, I; Côté, G B

    1986-01-01

    Cytogenetic studies were conducted on healthy young mothers, shortly after child birth, in two residential areas each with an approximate population of 20,000, situated about 25 km from Athens, Greece. One of the areas, Elefsis, is subject to severe mixed industrial pollution, and the other, Koropi, is relatively free of pollution. Chromosomal aberrations were investigated in 16 women from each area in 72 hour lymphocyte cultures treated with gentian violet to enhance any chromosomal instability induced by the pollution. The women were of a comparable socioeconomic level, aged between 20 and 31 years, and with no history of factors associated with mutagenesis. Venous blood samples were taken from the two groups and processed concurrently. The slides were coded and examined independently by two observers, who were unaware of the source of the samples. A total of 100 cells was examined on each sample. The two observers obtained highly comparable results. Women from Elefsis had an average of 0.42 anomalies per cell and those from Koropi had 0.39. The absence of a statistically significant difference between the two groups clearly shows that the severe mixed environmental pollution of Elefsis has no significant visible effect on human chromosomes in most residents. However, two Elefsis women had abnormal results and could be at risk. Their presence is not sufficient to raise significantly their group's average, but the induction by pollution of an increased rate of chromosomal anomalies in only a few people at risk could account for the known association between urban residence and cancer mortality. PMID:3783622

  10. Chromosomal mutations and chromosome loss measured in a new human-hamster hybrid cell line, ALC: studies with colcemid, ultraviolet irradiation, and 137Cs gamma-rays

    Science.gov (United States)

    Kraemer, S. M.; Waldren, C. A.; Chatterjee, A. (Principal Investigator)

    1997-01-01

    Small mutations, megabase deletions, and aneuploidy are involved in carcinogenesis and genetic defects, so it is important to be able to quantify these mutations and understand mechanisms of their creation. We have previously quantified a spectrum of mutations, including megabase deletions, in human chromosome 11, the sole human chromosome in a hamster-human hybrid cell line AL. S1- mutants have lost expression of a human cell surface antigen, S1, which is encoded by the M1C1 gene at 11p13 so that mutants can be detected via a complement-mediated cytotoxicity assay in which S1+ cells are killed and S1- cells survive. But loss of genes located on the tip of the short arm of 11 (11p15.5) is lethal to the AL hybrid, so that mutants that have lost the entire chromosome 11 die and escape detection. To circumvent this, we fused AL with Chinese hamster ovary (CHO) cells to produce a new hybrid, ALC, in which the requirement for maintaining 11p15.5 is relieved, allowing us to detect mutations events involving loss of 11p15.5. We evaluated the usefulness of this hybrid by conducting mutagenesis studies with colcemid, 137Cs gamma-radiation and UV 254 nm light. Colcemid induced 1000 more S1- mutants per unit dose in ALC than in AL; the increase for UV 254 nm light was only two-fold; and the increase for 137Cs gamma-rays was 12-fold. The increase in S1- mutant fraction in ALC cells treated with colcemid and 137Cs gamma-rays were largely due to chromosome loss and 11p deletions often containing a breakpoint within the centromeric region.

  11. Alternative Lengthening of Telomeres: Recurrent Cytogenetic Aberrations and Chromosome Stability under Extreme Telomere Dysfunction

    Directory of Open Access Journals (Sweden)

    Despoina Sakellariou

    2013-11-01

    Full Text Available Human tumors using the alternative lengthening of telomeres (ALT exert high rates of telomere dysfunction. Numerical chromosomal aberrations are very frequent, and structural rearrangements are widely scattered among the genome. This challenging context allows the study of telomere dysfunction-driven chromosomal instability in neoplasia (CIN in a massive scale. We used molecular cytogenetics to achieve detailed karyotyping in 10 human ALT neoplastic cell lines.We identified 518 clonal recombinant chromosomes affected by 649 structural rearrangements. While all human chromosomes were involved in random or clonal, terminal, or pericentromeric rearrangements and were capable to undergo telomere healing at broken ends, a differential recombinatorial propensity of specific genomic regions was noted.We show that ALT cells undergo epigenetic modifications rendering polycentric chromosomes functionally monocentric, and because of increased terminal recombinogenicity, they generate clonal recombinant chromosomes with interstitial telomeric repeats. Losses of chromosomes 13, X, and 22, gains of 2, 3, 5, and 20, and translocation/deletion events involving several common chromosomal fragile sites (CFSs were recurrent. Long-term reconstitution of telomerase activity in ALT cells reduced significantly the rates of random ongoing telomeric and pericentromeric CIN. However, the contribution of CFS in overall CIN remained unaffected, suggesting that in ALT cells whole-genome replication stress is not suppressed by telomerase activation. Our results provide novel insights into ALT-driven CIN, unveiling in parallel specific genomic sites that may harbor genes critical for ALT cancerous cell growth.

  12. Cytogenetic evaluation of human glial tumors: correlation of overexpression of epidermal growth factor receptor (EGFB) with abnormalities of chromosome 7

    International Nuclear Information System (INIS)

    Bell, C.W.

    1987-01-01

    Chromosome banding analysis of human glial tumors were performed using G- and Q-banding techniques in an attempt to establish recurring sites of chromosome change. Results revealed a nonrandom karyotypic profile including aneuploidy and considerable variation in chromosome number (range 40 → 200). All tumors examined displayed numerical abnormalities, with the most common numeric change being a gain of chromosome 7. An attempt was then made to correlate the observed chromosome 7 changes with activation of the cellular proto-oncogene c-erb-B, whose produce is the epidermal growth factor receptor (EGFR). Six human glial tumors were analyzed for 125 I-EGF binding, EGFR gene copy number, EGFR gene rearrangement, mRNA expression, and karyotypic profile. Saturation analysis at 4 0 C revealed significant numbers of EGFR's in all 6 tumors. Southern blotting analysis utilizing cDNA probes for the EGFR failed to demonstrate significant amplification or structural rearrangement of the EFGR gene. The results suggest that overexpression of the EGFR may be related to an alternative mechanism, other than gene amplification and elevated mRNA levels, such as the regulation of receptor biosynthesis and degradation. In summary, findings indicate that alterations of chromosome 7 are the most prevalent chromosomal change in human glial tumors, and that these alterations may lead to overexpression of the protooncogene c-erb-B

  13. Rearrangement of a common cellular DNA domain on chromosome 4 in human primary liver tumors

    International Nuclear Information System (INIS)

    Pasquinelli, C.; Garreau, F.; Bougueleret, L.; Cariani, E.; Thiers, V.; Croissant, O.; Hadchouel, M.; Tiollais, P.; Brechot, C.; Grzeschik, K.H.

    1988-01-01

    Hepatitis B virus (HBV) DNA integration has been shown to occur frequently in human hepatocellular carcinomas. The authors have investigated whether common cellular DNA domains might be rearranged, possibly by HBV integration, in human primary liver tumors. Unique cellular DNA sequences adjacent to an HBV integration site were isolated from a patient with hepatitis B surface antigen-positive hepatocellular carcinoma. These probes detected rearrangement of this cellular region of chromosomal DNA in 3 of 50 additional primary liver tumors studied. Of these three tumor samples, two contained HBV DNA, without an apparent link between the viral DNA and the rearranged allele; HBV DNA sequences were not detected in the third tumor sample. By use of a panel of somatic cell hybrids, these unique cellular DNA sequences were shown to be located on chromosome 4. Therefore, this region of chromosomal DNA might be implicated in the formation of different tumors at one step of liver cell transformation, possible related to HBV integration

  14. Colocalization of coregulated genes: a steered molecular dynamics study of human chromosome 19.

    Directory of Open Access Journals (Sweden)

    Marco Di Stefano

    Full Text Available The connection between chromatin nuclear organization and gene activity is vividly illustrated by the observation that transcriptional coregulation of certain genes appears to be directly influenced by their spatial proximity. This fact poses the more general question of whether it is at all feasible that the numerous genes that are coregulated on a given chromosome, especially those at large genomic distances, might become proximate inside the nucleus. This problem is studied here using steered molecular dynamics simulations in order to enforce the colocalization of thousands of knowledge-based gene sequences on a model for the gene-rich human chromosome 19. Remarkably, it is found that most (≈ 88% gene pairs can be brought simultaneously into contact. This is made possible by the low degree of intra-chromosome entanglement and the large number of cliques in the gene coregulatory network. A clique is a set of genes coregulated all together as a group. The constrained conformations for the model chromosome 19 are further shown to be organized in spatial macrodomains that are similar to those inferred from recent HiC measurements. The findings indicate that gene coregulation and colocalization are largely compatible and that this relationship can be exploited to draft the overall spatial organization of the chromosome in vivo. The more general validity and implications of these findings could be investigated by applying to other eukaryotic chromosomes the general and transferable computational strategy introduced here.

  15. MECHANISMS IN ENDOCRINOLOGY: Aberrations of the X chromosome as cause of male infertility.

    Science.gov (United States)

    Röpke, Albrecht; Tüttelmann, Frank

    2017-11-01

    Male infertility is most commonly caused by spermatogenetic failure, clinically noted as oligo- or a-zoospermia. Today, in approximately 20% of azoospermic patients, a causal genetic defect can be identified. The most frequent genetic causes of azoospermia (or severe oligozoospermia) are Klinefelter syndrome (47,XXY), structural chromosomal abnormalities and Y-chromosomal microdeletions. Consistent with Ohno's law, the human X chromosome is the most stable of all the chromosomes, but contrary to Ohno's law, the X chromosome is loaded with regions of acquired, rapidly evolving genes, which are of special interest because they are predominantly expressed in the testis. Therefore, it is not surprising that the X chromosome, considered as the female counterpart of the male-associated Y chromosome, may actually play an essential role in male infertility and sperm production. This is supported by the recent description of a significantly increased copy number variation (CNV) burden on both sex chromosomes in infertile men and point mutations in X-chromosomal genes responsible for male infertility. Thus, the X chromosome seems to be frequently affected in infertile male patients. Four principal X-chromosomal aberrations have been identified so far: (1) aneuploidy of the X chromosome as found in Klinefelter syndrome (47,XXY or mosaicism for additional X chromosomes). (2) Translocations involving the X chromosome, e.g. nonsyndromic 46,XX testicular disorders of sex development (XX-male syndrome) or X-autosome translocations. (3) CNVs affecting the X chromosome. (4) Point mutations disrupting X-chromosomal genes. All these are reviewed herein and assessed concerning their importance for the clinical routine diagnostic workup of the infertile male as well as their potential to shape research on spermatogenic failure in the next years. © 2017 European Society of Endocrinology.

  16. Use of a human chromosome 11 radiation hybrid panel to map markers at 11q13

    International Nuclear Information System (INIS)

    Withers, D.; Richard, C. III; Meeker, T.C.; Maurer, S.; Evans, G.; Myers, R.M.; Cox, D.R.

    1990-01-01

    A human/hamster hybrid cell line containing human chromosome 11 was X-irradiated and 102-independent derivative lines were recovered. These 'radiation hybrids' contain random fragments of human chromosome 11. This radiation hybrid panel was used to score the retention of markers at band 11q13. Statistical analysis of marker co-retention patterns in the radiation hybrid panel permits a preliminary ordering and mapping of the markers used. The best order for six scored markers is: proximal - CD5 - CD20 - PGA - HST - BCL1 - SEA - distal. Additional markers are currently being scored. The six 11q13 markers above are spread over approximately 10-12 mB of DNA. The mapping data has implications for the identification of the bcl-1 gene. bcl-1 is the site of chromosome breakage in translocations associated with B lymphocytic malignancy. bcl-1 markers map at least 4 Mb away from any of four genes previously hypothesized to be activated by such translocations, thereby making them unlikely candidates for activation

  17. Formation of radiation induced chromosome aberrations: involvement of telomeric sequences and telomerase

    International Nuclear Information System (INIS)

    Pirzio, L.

    2004-07-01

    As telomeres are crucial for chromosome integrity; we investigated the role played by telomeric sequences in the formation and in the transmission of radio-induced chromosome rearrangements in human cells. Starting from interstitial telomeric sequences (ITS) as putative region of breakage, we showed that the radiation sensitivity is not equally distributed along chromosomes and. is not affected by ITS. On the contrary, plasmid integration sites are prone to radio-induced breaks, suggesting a possible integration at sites already characterized by fragility. However plasmids do not preferentially insert at radio-induced breaks in human cells immortalized by telomerase. These cells showed remarkable karyotype stability even after irradiation, suggesting a role of telomerase in the genome maintenance despite functional telomeres. Finally, we showed that the presence of more breaks in a cell favors the repair, leading to an increase of transmissible rearrangements. (author)

  18. Nuclear organization in human sperm: preliminary evidence for altered sex chromosome centromere position in infertile males.

    Science.gov (United States)

    Finch, K A; Fonseka, K G L; Abogrein, A; Ioannou, D; Handyside, A H; Thornhill, A R; Hickson, N; Griffin, D K

    2008-06-01

    Many genetic defects with a chromosomal basis affect male reproduction via a range of different mechanisms. Chromosome position is a well-known marker of nuclear organization, and alterations in standard patterns can lead to disease phenotypes such as cancer, laminopathies and epilepsy. It has been demonstrated that normal mammalian sperm adopt a pattern with the centromeres aligning towards the nuclear centre. The purpose of this study was to test the hypothesis that altered chromosome position in the sperm head is associated with male infertility. The average nuclear positions of fluorescence in-situ hybridization signals for three centromeric probes (for chromosomes X, Y and 18) were compared in normoozoospermic men and in men with compromised semen parameters. In controls, the centromeres of chromosomes X, Y and 18 all occupied a central nuclear location. In infertile men the sex chromosomes appeared more likely to be distributed in a pattern not distinguishable from a random model. Our findings cast doubt on the reliability of centromeric probes for aneuploidy screening. The analysis of chromosome position in sperm heads should be further investigated for the screening of infertile men.

  19. Cloning of the cDNA for a human homologue of the Drosophila white gene and mapping to chromosome 21q22.3.

    OpenAIRE

    Chen, H.; Rossier, C.; Lalioti, M. D.; Lynn, A.; Chakravarti, A.; Perrin, G.; Antonarakis, S. E.

    1996-01-01

    In an effort to contribute to the transcript map of human chromosome 21 and the understanding of the pathophysiology of trisomy 21, we have used exon trapping to identify fragments of chromosome 21 genes. Two trapped exons, from pools of chromosome 21-specific cosmids, showed homology to the Drosophila white (w) gene. We subsequently cloned the corresponding cDNA for a human homologue of the Drosophila w gene (hW) from human retina and fetal brain cDNA libraries. The gene belongs to the ATP-b...

  20. Human female meiosis revised: new insights into the mechanisms of chromosome segregation and aneuploidies from advanced genomics and time-lapse imaging.

    Science.gov (United States)

    Capalbo, Antonio; Hoffmann, Eva R; Cimadomo, Danilo; Ubaldi, Filippo Maria; Rienzi, Laura

    2017-11-01

    The unbalanced transmission of chromosomes in human gametes and early preimplantation embryos causes aneuploidy, which is a major cause of infertility and pregnancy failure. A baseline of 20% of human oocytes are estimated to be aneuploid and this increases exponentially from 30 to 35 years, reaching on average 80% by 42 years. As a result, reproductive senescence in human females is predominantly determined by the accelerated decline in genetic quality of oocytes from 30 years of age. Understanding mechanisms of chromosome segregation and aneuploidies in the female germline is a crucial step towards the development of new diagnostic approaches and, possibly, for the development of therapeutic targets and molecules. Here, we have reviewed emerging mechanisms that may drive human aneuploidy, in particular the maternal age effect. We conducted a systematic search in PubMed Central of the primary literature from 1990 through 2016 following the PRISMA guidelines, using MeSH terms related to human aneuploidy. For model organism research, we conducted a literature review based on references in human oocytes manuscripts and general reviews related to chromosome segregation in meiosis and mitosis. Advances in genomic and imaging technologies are allowing unprecedented insight into chromosome segregation in human oocytes. This includes the identification of a novel chromosome segregation error, termed reverse segregation, as well as sister kinetochore configurations that were not predicted based on murine models. Elucidation of mechanisms that result in errors in chromosome segregation in meiosis may lead to therapeutic developments that could improve reproductive outcomes by reducing aneuploidy. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  1. Culture of human oocytes with granulocyte-macrophage colony-stimulating factor has no effect on embryonic chromosomal constitution

    DEFF Research Database (Denmark)

    Agerholm, Inge; Loft, Anne; Hald, Finn

    2010-01-01

    -vitro culture of human embryos in the presence of 2 ng/ml GM-CSF resulted in 34.8% (8/23) uniformly normal embryos. Culture without 2 ng/ml GM-CSF resulted in 33.3% (9/27) uniformly normal embryos. A trend towards a higher number of TQE in the test group was observed; however, due to lack of TQE in the control...... women donating 86 oocytes. The primary endpoint was to investigate the chromosomal constitution of human embryos (fluorescence in-situ hybridization analysis for chromosomes 13, 16, 18, 21, 22, X and Y) cultured with or without GM-CSF. The secondary endpoints were number of top-quality embryos (TQE......) and number of normally developed embryos evaluated morphologically on day 3. The cytogenetic analyses demonstrated non-inferiority and therefore the chromosomal constitution of human embryos cultured in vitro in the presence of 2 ng/ml GM-CSF was no worse than the control group cultured without GM-CSF. In...

  2. Culture of human oocytes with granulocyte-macrophage colony-stimulating factor has no effect on embryonic chromosomal constitution

    DEFF Research Database (Denmark)

    Agerholm, Inge; Loft, Anne; Hald, Finn

    2010-01-01

    women donating 86 oocytes. The primary endpoint was to investigate the chromosomal constitution of human embryos (fluorescence in-situ hybridization analysis for chromosomes 13, 16, 18, 21, 22, X and Y) cultured with or without GM-CSF. The secondary endpoints were number of top-quality embryos (TQE......) and number of normally developed embryos evaluated morphologically on day 3. The cytogenetic analyses demonstrated non-inferiority and therefore the chromosomal constitution of human embryos cultured in vitro in the presence of 2 ng/ml GM-CSF was no worse than the control group cultured without GM-CSF. In......-vitro culture of human embryos in the presence of 2 ng/ml GM-CSF resulted in 34.8% (8/23) uniformly normal embryos. Culture without 2 ng/ml GM-CSF resulted in 33.3% (9/27) uniformly normal embryos. A trend towards a higher number of TQE in the test group was observed; however, due to lack of TQE in the control...

  3. Telomere dysfunction and chromosome instability

    Energy Technology Data Exchange (ETDEWEB)

    Murnane, John P., E-mail: jmurnane@radonc.ucsf.edu [Department of Radiation Oncology, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 94143-1331 (United States)

    2012-02-01

    The ends of chromosomes are composed of a short repeat sequence and associated proteins that together form a cap, called a telomere, that keeps the ends from appearing as double-strand breaks (DSBs) and prevents chromosome fusion. The loss of telomeric repeat sequences or deficiencies in telomeric proteins can result in chromosome fusion and lead to chromosome instability. The similarity between chromosome rearrangements resulting from telomere loss and those found in cancer cells implicates telomere loss as an important mechanism for the chromosome instability contributing to human cancer. Telomere loss in cancer cells can occur through gradual shortening due to insufficient telomerase, the protein that maintains telomeres. However, cancer cells often have a high rate of spontaneous telomere loss despite the expression of telomerase, which has been proposed to result from a combination of oncogene-mediated replication stress and a deficiency in DSB repair in telomeric regions. Chromosome fusion in mammalian cells primarily involves nonhomologous end joining (NHEJ), which is the major form of DSB repair. Chromosome fusion initiates chromosome instability involving breakage-fusion-bridge (B/F/B) cycles, in which dicentric chromosomes form bridges and break as the cell attempts to divide, repeating the process in subsequent cell cycles. Fusion between sister chromatids results in large inverted repeats on the end of the chromosome, which amplify further following additional B/F/B cycles. B/F/B cycles continue until the chromosome acquires a new telomere, most often by translocation of the end of another chromosome. The instability is not confined to a chromosome that loses its telomere, because the instability is transferred to the chromosome donating a translocation. Moreover, the amplified regions are unstable and form extrachromosomal DNA that can reintegrate at new locations. Knowledge concerning the factors promoting telomere loss and its consequences is

  4. Radiation-induced chromosome aberrations and cell killing in normal human fibroblasts and ataxia telangiectasia fibroblasts

    International Nuclear Information System (INIS)

    Kawata, T.; Saito, M.; Uno, T.; Ito, H.; Shigematsu, N.

    2003-01-01

    Full text: When cells are held in a non-dividing state (G0) after irradiation, an enhanced survival can be observed compared to that of immediate plating. A change of survival depending on post irradiation condition is known to be repair of potentially lethal damage (RPLD). The effects of confluent holding recovery (24-h incubation following irradiation) on chromosome aberrations in normal human fibroblasts (AG1522) and ataxia telangiectasia fibroblasts (GM02052C) were examined. A chemical-induced premature chromosome condensation (PCC) technique with fluorescent in situ hybridization (FISH) was applied to study chromosome aberrations in G2 and M-phase. Results from cell survival showed that the capacity for potentially lethal damage repair was normal in AG1522 cells but very little in GM02052C cells. The frequency of chromosome aberrations in AG1522 cells decreased when cells were allowed to repair for 24-h. Especially complex type exchanges were found to decrease markedly at high doses (4Gy and 6Gy). However, the frequency of chromosome aberrations including complex type exchanges showed little decrease in GM02052C cells. Confluent holding can effectively reduce chromosome aberrations, especially complex type exchanges in normal cells

  5. Sequence and expression analysis of gaps in human chromosome 20

    DEFF Research Database (Denmark)

    Minocherhomji, Sheroy; Seemann, Stefan; Mang, Yuan

    2012-01-01

    /or overlap disease-associated loci, including the DLGAP4 locus. In this study, we sequenced ~99% of all three unfinished gaps on human chr 20, determined their complete genomic sizes and assessed epigenetic profiles using a combination of Sanger sequencing, mate pair paired-end high-throughput sequencing......The finished human genome-assemblies comprise several hundred un-sequenced euchromatic gaps, which may be rich in long polypurine/polypyrimidine stretches. Human chromosome 20 (chr 20) currently has three unfinished gaps remaining on its q-arm. All three gaps are within gene-dense regions and...... and chromatin, methylation and expression analyses. We found histone 3 trimethylated at Lysine 27 to be distributed across all three gaps in immortalized B-lymphocytes. In one gap, five novel CpG islands were predominantly hypermethylated in genomic DNA from peripheral blood lymphocytes and human cerebellum...

  6. Generation of meiomaps of genome-wide recombination and chromosome segregation in human oocytes

    DEFF Research Database (Denmark)

    Ottolini, Christian S; Capalbo, Antonio; Newnham, Louise

    2016-01-01

    We have developed a protocol for the generation of genome-wide maps (meiomaps) of recombination and chromosome segregation for the three products of human female meiosis: the first and second polar bodies (PB1 and PB2) and the corresponding oocyte. PB1 is biopsied and the oocyte is artificially......-nucleotide polymorphisms (SNPs) genome-wide by microarray. Informative maternal heterozygous SNPs are phased using a haploid PB2 or oocyte as a reference. A simple algorithm is then used to identify the maternal haplotypes for each chromosome, in all of the products of meiosis for each oocyte. This allows mapping...

  7. Space Radiation Effects on Human Cells: Modeling DNA Breakage, DNA Damage Foci Distribution, Chromosomal Aberrations and Tissue Effects

    Science.gov (United States)

    Ponomarev, A. L.; Huff, J. L.; Cucinotta, F. A.

    2011-01-01

    Future long-tem space travel will face challenges from radiation concerns as the space environment poses health risk to humans in space from radiations with high biological efficiency and adverse post-flight long-term effects. Solar particles events may dramatically affect the crew performance, while Galactic Cosmic Rays will induce a chronic exposure to high-linear-energy-transfer (LET) particles. These types of radiation, not present on the ground level, can increase the probability of a fatal cancer later in astronaut life. No feasible shielding is possible from radiation in space, especially for the heavy ion component, as suggested solutions will require a dramatic increase in the mass of the mission. Our research group focuses on fundamental research and strategic analysis leading to better shielding design and to better understanding of the biological mechanisms of radiation damage. We present our recent effort to model DNA damage and tissue damage using computational models based on the physics of heavy ion radiation, DNA structure and DNA damage and repair in human cells. Our particular area of expertise include the clustered DNA damage from high-LET radiation, the visualization of DSBs (DNA double strand breaks) via DNA damage foci, image analysis and the statistics of the foci for different experimental situations, chromosomal aberration formation through DSB misrepair, the kinetics of DSB repair leading to a model-derived spectrum of chromosomal aberrations, and, finally, the simulation of human tissue and the pattern of apoptotic cell damage. This compendium of theoretical and experimental data sheds light on the complex nature of radiation interacting with human DNA, cells and tissues, which can lead to mutagenesis and carcinogenesis later in human life after the space mission.

  8. Chromosomal aberrations in humans induced by urban air pollution: influence of DNA repair and polymorphisms of glutathione S-transferase M1 and N-acetyltransferase 2

    DEFF Research Database (Denmark)

    Knudsen, Lisbeth E.; Norppa, H; Gamborg, M O

    1999-01-01

    We have studied the influence of individual susceptibility factors on the genotoxic effects of urban air pollution in 106 nonsmoking bus drivers and 101 postal workers in the Copenhagen metropolitan area. We used the frequency of chromosomal aberrations in peripheral blood lymphocytes as a biomar......We have studied the influence of individual susceptibility factors on the genotoxic effects of urban air pollution in 106 nonsmoking bus drivers and 101 postal workers in the Copenhagen metropolitan area. We used the frequency of chromosomal aberrations in peripheral blood lymphocytes...... that long-term exposure to urban air pollution (with traffic as the main contributor) induces chromosome damage in human somatic cells. Low DNA repair capacity and GSTM1 and NAT2 variants associated with reduced detoxification ability increase susceptibility to such damage. The effect of the GSTM1 genotype......, which was observed only in the bus drivers, appears to be associated with air pollution, whereas the NAT2 genotype effect, which affected all subjects, may influence the individual response to some other common exposure or the baseline level of chromosomal aberrations....

  9. Tissue-specific expression of the human laminin alpha5-chain, and mapping of the gene to human chromosome 20q13.2-13.3 and to distal mouse chromosome 2 near the locus for the ragged (Ra) mutation

    DEFF Research Database (Denmark)

    Durkin, M E; Loechel, F; Mattei, M G

    1997-01-01

    , heart, lung, skeletal muscle, kidney, and pancreas. The human laminin alpha5-chain gene (LAMA5) was assigned to chromosome 20q13.2-q13.3 by in situ hybridization, and the mouse gene (Lama5) was mapped by linkage analysis to a syntonic region of distal chromosome 2, close to the locus for the ragged (Ra...

  10. Correlation of chromosome patterns in human leukemic cells with exposure to chemicals and/or radiation. Progress report, January 1-July 31, 1986

    International Nuclear Information System (INIS)

    Rowley, J.D.

    1986-08-01

    Two genes for colony stimulating factors (CSF) has been mapped on chromosome five of humans. These CSFs are a family of glycoproteins that are required for the growth and maturation of myeloid progenetor cells in vitro. They are classified according to their cell specificity; thus, M-CSF (CSF-1) and G-CSF primarily stimulate cells committed to the macrophage and granulocyte lineages, respectively. Recently, the genes for both of these factors have been cloned and probes for the clonal genes were used to map their location on normal human chromosomes. Localization of CSF-1 was performed by in situ hybridization of the probe pST-CSF-17 to normal human metaphase chromosomes. This resulted in specific labeling only of chromosome 5. 8 refs., 4 figs., 2 tabs

  11. Linking Y-chromosomal short tandem repeat loci to human male impulsive aggression.

    Science.gov (United States)

    Yang, Chun; Ba, Huajie; Cao, Yin; Dong, Guoying; Zhang, Shuyou; Gao, Zhiqin; Zhao, Hanqing; Zhou, Xianju

    2017-11-01

    Men are more susceptible to impulsive behavior than women. Epidemiological studies revealed that the impulsive aggressive behavior is affected by genetic factors, and the male-specific Y chromosome plays an important role in this behavior. In this study, we investigated the association between the impulsive aggressive behavior and Y-chromosomal short tandem repeats (Y-STRs) loci. The collected biologic samples from 271 offenders with impulsive aggressive behavior and 492 healthy individuals without impulsive aggressive behavior were amplified by PowerPlex R Y23 PCR System and the resultant products were separated by electrophoresis and further genotyped. Then, comparisons in allele and haplotype frequencies of the selected 22 Y-STRs were made in the two groups. Our results showed that there were significant differences in allele frequencies at DYS448 and DYS456 between offenders and controls ( p  impulsive aggression. However, the DYS448-DYS456-22-15 is less related to impulsive aggression. Our results suggest a link between Y-chromosomal allele types and male impulsive aggression.

  12. Characterization of cDNAs encoding human leukosialin and localization of the leukosialin gene to chromosome 16

    International Nuclear Information System (INIS)

    Pallant, A.; Eskenazi, A.; Frelinger, J.G.; Mattei, M.G.; Fournier, R.E.K.; Carlsson, S.R.; Fukuda, M.

    1989-01-01

    The authors describe the isolation and characterization of cDNA clones encoding human leukosialin, a major sialoglycoprotein of human leukocytes. Leukosialin is very closely related or identical to the sialophorin molecule, which is involved in T-cell proliferation and whose expression is altered in Wiskott-Aldrich syndrome (WAS), an X-chromosome-linked immunodeficiency disease. Using a rabbit antiserum to leukosialin, a cDNA clone was isolated from a λgt11 cDNA library constructed from human peripheral blood cells. The λgt11 clone was used to isolate longer cDNA clones that correspond to the entire coding sequence of leukosialin. DNA sequence analysis reveals three domains in the predicted mature protein. The extracellular domain is enriched for Ser, Thr, and Pro and contains four contiguous 18-amino acid repeats. The transmembrane and intracellular domains of the human leukosialin molecule are highly homologous to the rat W3/13 molecule. RNA gel blot analysis reveals two polyadenylylated species of 2.3 and 8 kilobases. Southern blot analysis suggests that human leukosialin is a single-copy gene. Analysis of monochromosomal cell hybrids indicates that the leukosialin gene is not X chromosome linked and in situ hybridization shows leukosialin is located on chromosome 16. These findings demonstrate that the primary mutation in WAS is not a defect in the structural gene for leukosialin

  13. Stabilization of chromosomes by DNA intercalators for flow karyotyping and identification by banding of isolated chromosomes

    NARCIS (Netherlands)

    Aten, J. A.; Buys, C. H.; van der Veen, A. Y.; Mesa, J. R.; Yu, L. C.; Gray, J. W.; Osinga, J.; Stap, J.

    1987-01-01

    A number of structurally unrelated DNA intercalators have been studied as stabilizers of mitotic chromosomes during isolation from rodent and human metaphase cells. Seven out of the nine intercalators tested were found to be useful as chromosome stabilizing agents. Chromosome suspensions prepared in

  14. A Quest for Missing Proteins : update 2015 on Chromosome-Centric Human Proteome Project

    NARCIS (Netherlands)

    Horvatovich, Péter; Lundberg, Emma K; Chen, Yu-Ju; Sung, Ting-Yi; He, Fuchu; Nice, Edouard C; Goode, Robert J A; Yu, Simon; Ranganathan, Shoba; Baker, Mark S; Domont, Gilberto B; Velasquez, Erika; Li, Dong; Liu, Siqi; Wang, Quanhui; He, Qing-Yu; Menon, Rajasree; Guan, Yuanfang; Corrales, Fernando Jose; Segura, Victor; Casal, José Ignacio; Pascual-Montano, Alberto; Albar, Juan Pablo; Fuentes, Manuel; Gonzalez-Gonzalez, Maria; Diez, Paula; Ibarrola, Nieves; Degano, Rosa M; Mohammed, Yassene; Borchers, Christoph H; Urbani, Andrea; Soggiu, Alessio; Yamamoto, Tadashi; Archakov, Alexander I; Ponomarenko, Elena; Lisitsa, Andrey V; Lichti, Cheryl F; Mostovenko, Ekaterina; Kroes, Roger A; Rezeli, Melinda; Vegvari, Akos; Fehniger, Thomas E; Bischoff, Rainer; Vizcaíno, Juan Antonio; Deutsch, Eric W; Lane, Lydie; Nilsson, Carol L; Marko-Varga, György; Omenn, Gilbert S; Jeong, Seul-Ki; Cho, Jin-Young; Paik, Young-Ki; Hancock, William S

    2015-01-01

    This paper summarizes the recent activities of the Chromosome-Centric Human Proteome Project (C-HPP) consortium, which develops new technologies to identify yet-to-be annotated proteins (termed "missing proteins") in biological samples that lack sufficient experimental evidence at the protein level

  15. Human Y chromosome copy number variation in the next generation sequencing era and beyond.

    Science.gov (United States)

    Massaia, Andrea; Xue, Yali

    2017-05-01

    The human Y chromosome provides a fertile ground for structural rearrangements owing to its haploidy and high content of repeated sequences. The methodologies used for copy number variation (CNV) studies have developed over the years. Low-throughput techniques based on direct observation of rearrangements were developed early on, and are still used, often to complement array-based or sequencing approaches which have limited power in regions with high repeat content and specifically in the presence of long, identical repeats, such as those found in human sex chromosomes. Some specific rearrangements have been investigated for decades; because of their effects on fertility, or their outstanding evolutionary features, the interest in these has not diminished. However, following the flourishing of large-scale genomics, several studies have investigated CNVs across the whole chromosome. These studies sometimes employ data generated within large genomic projects such as the DDD study or the 1000 Genomes Project, and often survey large samples of healthy individuals without any prior selection. Novel technologies based on sequencing long molecules and combinations of technologies, promise to stimulate the study of Y-CNVs in the immediate future.

  16. Cell Culture Systems To Study Human Herpesvirus 6A/B Chromosomal Integration.

    Science.gov (United States)

    Gravel, Annie; Dubuc, Isabelle; Wallaschek, Nina; Gilbert-Girard, Shella; Collin, Vanessa; Hall-Sedlak, Ruth; Jerome, Keith R; Mori, Yasuko; Carbonneau, Julie; Boivin, Guy; Kaufer, Benedikt B; Flamand, Louis

    2017-07-15

    Human herpesviruses 6A/B (HHV-6A/B) can integrate their viral genomes in the telomeres of human chromosomes. The viral and cellular factors contributing to HHV-6A/B integration remain largely unknown, mostly due to the lack of efficient and reproducible cell culture models to study HHV-6A/B integration. In this study, we characterized the HHV-6A/B integration efficiencies in several human cell lines using two different approaches. First, after a short-term infection (5 h), cells were processed for single-cell cloning and analyzed for chromosomally integrated HHV-6A/B (ciHHV-6A/B). Second, cells were infected with HHV-6A/B and allowed to grow in bulk for 4 weeks or longer and then analyzed for the presence of ciHHV-6. Using quantitative PCR (qPCR), droplet digital PCR, and fluorescent in situ hybridization, we could demonstrate that HHV-6A/B integrated in most human cell lines tested, including telomerase-positive (HeLa, MCF-7, HCT-116, and HEK293T) and telomerase-negative cell lines (U2OS and GM847). Our results also indicate that inhibition of DNA replication, using phosphonoacetic acid, did not affect HHV-6A/B integration. Certain clones harboring ciHHV-6A/B spontaneously express viral genes and proteins. Treatment of cells with phorbol ester or histone deacetylase inhibitors triggered the expression of many viral genes, including U39 , U90 , and U100 , without the production of infectious virus, suggesting that the tested stimuli were not sufficient to trigger full reactivation. In summary, both integration models yielded comparable results and should enable the identification of viral and cellular factors contributing to HHV-6A/B integration and the screening of drugs influencing viral gene expression, as well as the release of infectious HHV-6A/B from the integrated state. IMPORTANCE The analysis and understanding of HHV-6A/B genome integration into host DNA is currently limited due to the lack of reproducible and efficient viral integration systems. In the

  17. Low level dose induced chromosome aberrations in human blood lymphocytes

    International Nuclear Information System (INIS)

    Pohl-Rueling, J.

    1992-01-01

    Unstable structural aberrations in chromosomes of human blood lymphocytes cannot be used as biological dosemeters in the low dose range, when extrapolating from high doses using a linear dose response, as required by the original formula of the dual radiation action theory. A survey is given of experimental dose-response curves of chromosome aberrations, obtained in investigations not only by this institute, in cooperation with many other laboratories, but also by various authors in different areas of the world. The results are not compatible with the predicted linear dose relationships at in vivo dose ranges up to 30 mGy.y -1 . The aberration frequencies rise sharply with dose within the normal environmental exposure up to about twice that level. At higher doses, aberration frequencies increase less rapidly and reach a plateau. Some in vitro experiments of various authors with higher doses of low LET radiations, up to about 400 mGy have found dose responses with steps. (author)

  18. Integration of human adipocyte chromosomal interactions with adipose gene expression prioritizes obesity-related genes from GWAS.

    Science.gov (United States)

    Pan, David Z; Garske, Kristina M; Alvarez, Marcus; Bhagat, Yash V; Boocock, James; Nikkola, Elina; Miao, Zong; Raulerson, Chelsea K; Cantor, Rita M; Civelek, Mete; Glastonbury, Craig A; Small, Kerrin S; Boehnke, Michael; Lusis, Aldons J; Sinsheimer, Janet S; Mohlke, Karen L; Laakso, Markku; Pajukanta, Päivi; Ko, Arthur

    2018-04-17

    Increased adiposity is a hallmark of obesity and overweight, which affect 2.2 billion people world-wide. Understanding the genetic and molecular mechanisms that underlie obesity-related phenotypes can help to improve treatment options and drug development. Here we perform promoter Capture Hi-C in human adipocytes to investigate interactions between gene promoters and distal elements as a transcription-regulating mechanism contributing to these phenotypes. We find that promoter-interacting elements in human adipocytes are enriched for adipose-related transcription factor motifs, such as PPARG and CEBPB, and contribute to heritability of cis-regulated gene expression. We further intersect these data with published genome-wide association studies for BMI and BMI-related metabolic traits to identify the genes that are under genetic cis regulation in human adipocytes via chromosomal interactions. This integrative genomics approach identifies four cis-eQTL-eGene relationships associated with BMI or obesity-related traits, including rs4776984 and MAP2K5, which we further confirm by EMSA, and highlights 38 additional candidate genes.

  19. Comparative Genomic Hybridization of Human Malignant Gliomas Reveals Multiple Amplification Sites and Nonrandom Chromosomal Gains and Losses

    Science.gov (United States)

    Schròck, Evelin; Thiel, Gundula; Lozanova, Tanka; du Manoir, Stanislas; Meffert, Marie-Christine; Jauch, Anna; Speicher, Michael R.; Nürnberg, Peter; Vogel, Siegfried; Janisch, Werner; Donis-Keller, Helen; Ried, Thomas; Witkowski, Regine; Cremer, Thomas

    1994-01-01

    Nine human malignant gliomas (2 astrocytomas grade III and 7 glioblastomas) were analyzed using comparative genomic hybridization (CGH). In addition to the amplification of the EGFR gene at 7p12 in 4 of 9 cases, six new amplification sites were mapped to 1q32, 4q12, 7q21.1, 7q21.2-3, 12p, and 22q12. Nonrandom chromosomal gains and losses were identified with overrepresentation of chromosome 7 and underrepresentation of chromosome 10 as the most frequent events (1 of 2 astrocytomas, 7 of 7 glioblastomas). Gain of a part or the whole chromosome 19 and losses of chromosome bands 9pter-23 and 22q13 were detected each in five cases. Loss of chromosome band 17p13 and gain of chromosome 20 were revealed each in three cases. The validity of the CGH data was confirmed using interphase cytogenetics with YAC clones, chromosome painting in tumor metaphase spreads, and DNA fingerprinting. A comparison of CGH data with the results of chromosome banding analyses indicates that metaphase spreads accessible in primary tumor cell cultures may not represent the clones predominant in the tumor tissue ImagesFigure 1Figure 4Figure 6 PMID:8203461

  20. [Familial febrile convulsions is supposed to link to human chromosome 19p13.3].

    Science.gov (United States)

    Qi, Y; Lü, J; Wu, X

    2001-01-10

    To localize the familial febrile convulsion (FC) genes on human chromosomes. For 63 FC pedigrees, tetranucleotide repeat markers D19S253 D19S395 and D19S591 on the short arm of chromosome 19, as well as dinucleotide repeat markers D8S84 and D8S85 on the long arm of chromosome 8 were genotyped. Transmission disequilibrium test (TDT) and Lod score calculation were carried out. The data were processed by PPAP software package. All the alleles in every locus of FC probands and normal controls were in Hardy-Weinburg balance. Transmission disequilibrium was found on D8S84, D19S395 and D19S591 in FC families. chi(2) values were 4.0, 5.124 and 7.364 separately. Each P value was < 0.05, and significantly meaningful. The two-point Lod scores between D8S84 and FC, D8S85 and FC, D19S253 and FC, D19S395 and FC, D19S591 and FC are 0.00002, 0.000017, 0.58, 1.53 and 1.42 respectively. The multi-point Lod score among markers on chromosome 8q and FC was 0.88, while Lod score among markers on chromosome 19p and FC reached 2.78. The results by both the non-parameter (TDT) and parameter (Lod score) methods were consistant on a whole. FC is linked with chromosome region 19p13.3, but not with chromosome 8q.

  1. Screening human populations for chromosome damage. Progress report, March 1982-November 1982

    International Nuclear Information System (INIS)

    Norman, A.

    1982-01-01

    The micronuclear counts in 73 relatively young and healthy patients obtained in previous studies were examined. The natural logarithm of the micronuclear counts (LMNC) was approximately normally distributed so we have tested the effects of age, sex, and medical x-ray exposure on the counts. The results show a clear dependence of micronuclear counts on age, and demonstrate that studies of chromosome damage in radiation workers or in other populations exposed to radiation may be misinterpreted if the effects of age and medical x-ray examinations are not controlled. The results also show that the variability in LNMC among the individuals examined cannot be accounted for totally by the factors of age, sex, or medical x-rays. There are at least two other important sources of variation: counting statistics and degree of lymphocyte proliferation. A single set of harlequin stained cells may be sufficient for estimating micronuclear yields, the degree of lymphocyte proliferation, and possibly the frequency of chromosome aberrations. These results point to the usefulness of the micronucleus assay for screening human populations for chromosome damage

  2. Comparative mapping of DNA probes derived from the V{sub k} immunoglobulin gene regions on human and great ape chromosomes by fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, N.; Wienberg, J.; Ermert, K. [Universitaet Muenchen (Germany)] [and others

    1995-03-01

    Fluorescence in situ hybridization (FISH) of cosmid clones of human V{sub K} gene regions to human and primate chromosomes contributed to the dating of chromosome reorganizations in evolution. A clone from the K locus at 2p11-p12 (cos 106) hybridized to the assumed homologous chromosome bands in the chimpanzees Pan troglodytes (PTR) and P. paniscus (PPA), the Gorilla gorilla (GGO), and the orangutan Pongo Pygmaeus (PPY). Human and both chimpanzees differed from gorilla and orangutan by the mapping of cos 170, a clone derived from chromosome 2cen-q11.2; the transposition of this orphon to the other side of the centromere can, therefore, be dated after the human/chimpanzee and gorilla divergence. Hybridization to homologous bands was also found with a cosmid clone containing a V{sub K}I orphon located on chromosome 1 (cos 115, main signal at 1q31-q32), although the probe is not fully unique. Also, a clone derived from the orphon V{sub K} region on chromosome 22q11 (cos 121) hybridized to the homologous bands in the great apes. This indicates that the orphons on human chromosomes 1 and 22 had been translocated early in primate evolution. 18 refs., 2 figs.

  3. Interphase Chromosome Conformation and Chromatin-Chromatin Interactions in Human Epithelial Cells Cultured Under Different Gravity Conditions

    Science.gov (United States)

    Zhang, Ye; Wong, Michael; Hada, Megumi; Wu, Honglu

    2015-01-01

    Microgravity has been shown to alter global gene expression patterns and protein levels both in cultured cells and animal models. It has been suggested that the packaging of chromatin fibers in the interphase nucleus is closely related to genome function, and the changes in transcriptional activity are tightly correlated with changes in chromatin folding. This study explores the changes of chromatin conformation and chromatin-chromatin interactions in the simulated microgravity environment, and investigates their correlation to the expression of genes located at different regions of the chromosome. To investigate the folding of chromatin in interphase under various culture conditions, human epithelial cells, fibroblasts, and lymphocytes were fixed in the G1 phase. Interphase chromosomes were hybridized with a multicolor banding in situ hybridization (mBAND) probe for chromosome 3 which distinguishes six regions of the chromosome as separate colors. After images were captured with a laser scanning confocal microscope, the 3-dimensional structure of interphase chromosome 3 was reconstructed at multi-mega base pair scale. In order to determine the effects of microgravity on chromosome conformation and orientation, measures such as distance between homologous pairs, relative orientation of chromosome arms about a shared midpoint, and orientation of arms within individual chromosomes were all considered as potentially impacted by simulated microgravity conditions. The studies revealed non-random folding of chromatin in interphase, and suggested an association of interphase chromatin folding with radiation-induced chromosome aberration hotspots. Interestingly, the distributions of genes with expression changes over chromosome 3 in cells cultured under microgravity environment are apparently clustered on specific loci and chromosomes. This data provides important insights into how mammalian cells respond to microgravity at molecular level.

  4. Biodosimetry of ionizing radiation by selective painting of prematurely condensed chromosomes in human lymphocytes

    Science.gov (United States)

    Durante, M.; George, K.; Yang, T. C.

    1997-01-01

    Painting of interphase chromosomes can be useful for biodosimetric purposes in particular cases such as radiation therapy, accidental exposure to very high radiation doses and exposure to densely ionizing radiation, for example during space missions. Biodosimetry of charged-particle radiation is analyzed in the present paper. Target cells were human peripheral blood lymphocytes irradiated in vitro with gamma rays, protons and iron ions. After exposure, lymphocytes were incubated for different times to allow repair of radiation-induced damage and then fused to mitotic hamster cells to promote premature condensation in the interphase chromosomes. Chromosome spreads were then hybridized with whole-chromosome DNA probes labeled with fluorescent stains. Dose-response curves for the induction of chromatin fragments shortly after exposure, as well as the kinetics of rejoining and misrejoining, were not markedly dependent on linear energy transfer. However, after exposure to heavy ions, more aberrations were scored in the interphase cells after incubation for repair than in metaphase samples harvested at the first postirradiation mitosis. On the other hand, no significant differences were observed in the two samples after exposure to sparsely ionizing radiation. These results suggest that interphase chromosome painting can be a useful tool for biodosimetry of particle radiation.

  5. Human sperm sex chromosome disomy and sperm DNA damage assessed by the neutral comet assay.

    Science.gov (United States)

    McAuliffe, M E; Williams, P L; Korrick, S A; Dadd, R; Marchetti, F; Martenies, S E; Perry, M J

    2014-10-10

    Is there an association between human sperm sex chromosome disomy and sperm DNA damage? An increase in human sperm XY disomy was associated with higher comet extent; however, there was no other consistent association of sex chromosome disomies with DNA damage. There is limited published research on the association between sex chromosome disomy and sperm DNA damage and the findings are not consistent across studies. We conducted a cross-sectional study of 190 men (25% ever smoker, 75% never smoker) from subfertile couples presenting at the Massachusetts General Hospital Fertility Clinic from January 2000 to May 2003. Multiprobe fluorescence in situ hybridization for chromosomes X, Y and 18 was used to determine XX, YY, XY and total sex chromosome disomy in sperm nuclei using an automated scoring method. The neutral comet assay was used to measure sperm DNA damage, as reflected by comet extent, percentage DNA in the comet tail, and tail distributed moment. Univariate and multiple linear regression models were constructed with sex chromosome disomy (separate models for each of the four disomic conditions) as the independent variable, and DNA damage parameters (separate models for each measure of DNA damage) as the dependent variable. Men with current or past smoking history had significantly greater comet extent (µm: regression coefficients with 95% CI) [XX18: 15.17 (1.98, 28.36); YY18: 14.68 (1.50, 27.86); XY18: 15.41 (2.37, 28.45); Total Sex Chromosome Disomy: 15.23 (2.09, 28.38)], and tail distributed moment [XX18: 3.01 (0.30, 5.72); YY18: 2.95 (0.24, 5.67); XY18: 3.04 (0.36, 5.72); Total Sex Chromosome Disomy: 3.10 (0.31, 5.71)] than men who had never smoked. In regression models adjusted for age and smoking, there was a positive association between XY disomy and comet extent. For an increase in XY disomy from 0.56 to 1.47% (representing the 25th to 75th percentile), there was a mean increase of 5.08 µm in comet extent. No other statistically significant

  6. Generation of an approximately 2.4 Mb human X centromere-based minichromosome by targeted telomere-associated chromosome fragmentation in DT40.

    Science.gov (United States)

    Mills, W; Critcher, R; Lee, C; Farr, C J

    1999-05-01

    A linear mammalian artificial chromosome (MAC) will require at least three types of functional element: a centromere, two telomeres and origins of replication. As yet, our understanding of these elements, as well as many other aspects of structure and organization which may be critical for a fully functional mammalian chromosome, remains poor. As a way of defining these various requirements, minichromosome reagents are being developed and analysed. Approaches for minichromosome generation fall into two broad categories: de novo assembly from candidate DNA sequences, or the fragmentation of an existing chromosome to reduce it to a minimal size. Here we describe the generation of a human minichromosome using the latter, top-down, approach. A human X chromosome, present in a DT40-human microcell hybrid, has been manipulated using homologous recombination and the targeted seeding of a de novo telomere. This strategy has generated a linear approximately 2.4 Mb human X centromere-based minichromosome capped by two artificially seeded telomeres: one immediately flanking the centromeric alpha-satellite DNA and the other targeted to the zinc finger gene ZXDA in Xp11.21. The chromosome retains an alpha-satellite domain of approximately 1. 8 Mb, a small array of gamma-satellite repeat ( approximately 40 kb) and approximately 400 kb of Xp proximal DNA sequence. The mitotic stability of this minichromosome has been examined, both in DT40 and following transfer into hamster and human cell lines. In all three backgrounds, the minichromosome is retained efficiently, but in the human and hamster microcell hybrids its copy number is poorly regulated. This approach of engineering well-defined chromosome reagents will allow key questions in MAC development (such as whether a lower size limit exists) to be addressed. In addition, the 2.4 Mb minichromosome described here has potential to be developed as a vector for gene delivery.

  7. Gold nanoparticle-assisted primer walking for closing the human chromosomal gap

    DEFF Research Database (Denmark)

    Li, H; Shi, B; Li, X

    2013-01-01

    The finished sequence of the human genome still contains 260 euchromatic gaps. All the PCR-based genome walking techniques used to close gaps have common limitations, such as low efficiency and low specificity. We herein describe a strategy to solve this problem by employing gold nanoparticles (Au......NPs) to improve the efficiency in primer walking amplification. We used this strategy to close a gap in human chromosome 5 containing a DNA stretch composed of the 12SAT repeat. The obtained gap sequence is highly conserved among several mammalian genomes. The demonstrated AuNP-assisted primer walking strategy...

  8. Radiation-induced cytogenetic damage in relation to changes in interphase chromosome conformation

    International Nuclear Information System (INIS)

    Pantelias, G.E.

    1986-01-01

    The premature chromosome condensation (PCC) technique was used to study several factors that determine the yield of chromosome fragments as observed in interphase cells after irradiation. In addition to absorbed dose and the extent of chromosome condensation at the time of irradiation, changes in chromosome conformation as cells progressed through the cell cycle after irradiation affected dramatically the yield of chromosome fragments observed. As a test of the effect of chromosome decondensation, irradiated metaphase Chinese hamster ovary (CHO) cells were allowed to divide, and the prematurely condensed chromosomes in the daughter cells were analyzed in their G1 phase. The yield of chromosome fragments increased as the daughter cells progressed toward S phase and chromosome decondensation occurred. When early G1 CHO cells were irradiated and analyzed at later times in G1 phase, an increase in chromosome fragmentation again followed the gradual increase in chromosome decondensation. As a test of the effect of chromosome condensation, G0 human lymphocytes were irradiated and analyzed at various times after fusion with mitotic CHO cells, i.e., as condensation proceeded. The yield of fragments observed was directly related to the amount of chromosome condensation allowed to take place after irradiation and inversely related to the extent of chromosome condensation at the time of irradiation. It can be concluded that changes in chromosome conformation interfered with rejoining processes. In contrast, resting chromosomes (as in G0 lymphocytes irradiated before fusion) showed efficient rejoining. These results support the hypothesis that cytogenetic lesions become observable chromosome breaks when chromosome condensation or decondensation occurs during the cell cycle

  9. [Architecture of the X chromosome, expression of LIM kinase 1, and recombination in the agnostic mutants of Drosophila: a model of human Williams syndrome].

    Science.gov (United States)

    Savvateeva-Popova, E V; Peresleni, A I; Sharagina, L M; Medvedeva, A V; Korochkina, S E; Grigor'eva, I V; Diuzhikova, N A; Popov, A V; Baricheva, E M; Karagodin, D; Heisenberg, M

    2004-06-01

    As the Human Genome and Drosophila Genome Projects were completed, it became clear that functions of human disease-associated genes may be elucidated by studying the phenotypic expression of mutations affecting their structural or functional homologs in Drosophila. Genomic diseases were identified as a new class of human disorders. Their cause is recombination, which takes place at gene-flanking duplicons to generate chromosome aberrations such as deletions, duplications, inversions, and translocations. The resulting imbalance of the dosage of developmentally important genes arises at a frequency of 10(-3) (higher than the mutation rate of individual genes) and leads to syndromes with multiple manifestations, including cognitive defects. Genomic DNA fragments were cloned from the Drosophila melanogaster agnostic locus, whose mutations impair learning ability and memory. As a result, the locus was exactly localized in X-chromosome region 11A containing the LIM kinase 1 (LIMK1) gene (CG1848), which is conserved among many species. Hemizygosity for the LIMK1 gene, which is caused by recombination at neighboring extended repeats, underlies cognitive disorders in human Williams syndrome. LIMK1 is a component of the integrin signaling cascade, which regulates the functions of the actin cytoskeleton, synaptogenesis, and morphogenesis in the developing brain. Immunofluorescence analysis revealed LIMK1 in all subdomains of the central complex and the visual system of Drosophila melanogaster. Like in the human genome, the D. melanogaster region is flanked by numerous repeats, which were detected by molecular genetic methods and analysis of ectopic chromosome pairing. The repeats determined a higher rate of spontaneous and induced recombination. including unequal crossing over, in the agnostic gene region. Hence, the agnostic locus was considered as the first D. melanogaster model suitable for studying the genetic defect associated with Williams syndrome in human.

  10. Effects of radiation and porphyrin on mitosis and chromosomes in human hematopoietic cell lines

    International Nuclear Information System (INIS)

    Tan, J.C.; Huang, C.C.; Fiel, R.J.

    1976-01-01

    The effect on mitosis of a human hematopoietic cell line RPMI-1788 treated with a metal chelate (Zn ++ ) of meso-tetra (p-carboxyphenyl) porphine (Zn-TCPP) alone at various concentrations or in combination with gamma-irradiation at various doses were studied. The results showed that both Zn-TCPP and radiation were effective in interfering with normal mitosis and that the effect of radiation was relatively more effective. Data also suggest interacting effects between Zn-TCPP and gamma-irradiation. At low doses of radiation, Zn-TCPP potentiated the effect of radiation. The reverse seemed to be true at a high dose of radiation. The effects of two porphyrins (Zn-TCPP and hematoporphyrin) and radiation on chromosomes were also studied. Chromosomal aberrations characteristic of radiation were observed. The porphyrins were found not to be effective chromosome-breaking agents under the experimental conditions tested

  11. Origin of amphibian and avian chromosomes by fission, fusion, and retention of ancestral chromosomes

    Science.gov (United States)

    Voss, Stephen R.; Kump, D. Kevin; Putta, Srikrishna; Pauly, Nathan; Reynolds, Anna; Henry, Rema J.; Basa, Saritha; Walker, John A.; Smith, Jeramiah J.

    2011-01-01

    Amphibian genomes differ greatly in DNA content and chromosome size, morphology, and number. Investigations of this diversity are needed to identify mechanisms that have shaped the evolution of vertebrate genomes. We used comparative mapping to investigate the organization of genes in the Mexican axolotl (Ambystoma mexicanum), a species that presents relatively few chromosomes (n = 14) and a gigantic genome (>20 pg/N). We show extensive conservation of synteny between Ambystoma, chicken, and human, and a positive correlation between the length of conserved segments and genome size. Ambystoma segments are estimated to be four to 51 times longer than homologous human and chicken segments. Strikingly, genes demarking the structures of 28 chicken chromosomes are ordered among linkage groups defining the Ambystoma genome, and we show that these same chromosomal segments are also conserved in a distantly related anuran amphibian (Xenopus tropicalis). Using linkage relationships from the amphibian maps, we predict that three chicken chromosomes originated by fusion, nine to 14 originated by fission, and 12–17 evolved directly from ancestral tetrapod chromosomes. We further show that some ancestral segments were fused prior to the divergence of salamanders and anurans, while others fused independently and randomly as chromosome numbers were reduced in lineages leading to Ambystoma and Xenopus. The maintenance of gene order relationships between chromosomal segments that have greatly expanded and contracted in salamander and chicken genomes, respectively, suggests selection to maintain synteny relationships and/or extremely low rates of chromosomal rearrangement. Overall, the results demonstrate the value of data from diverse, amphibian genomes in studies of vertebrate genome evolution. PMID:21482624

  12. Detection of chromosomal instability in α-irradiated and bystander human fibroblasts

    International Nuclear Information System (INIS)

    Ponnaiya, Brian; Jenkins-Baker, Gloria; Bigelow, Alan; Marino, Stephen; Geard, Charles R.

    2004-01-01

    There is increasing evidence biological responses to ionizing radiation are not confined to those cells that are directly hit, but may be seen in the progeny at subsequent generations (genomic instability) and in non-irradiated neighbors of irradiated cells (bystander effects). These so called non-targeted phenomena would have significant contributions to radiation-induced carcinogenesis, especially at low doses where only a limited number of cells in a population are directed hit. Here we present data using a co-culturing protocol examining chromosomal instability in α-irradiated and bystander human fibroblasts BJ1-htert. At the first cell division following exposure to 0.1 and 1 Gy α-particles, irradiated populations demonstrated a dose dependent increase in chromosome-type aberrations. At this time bystander BJ1-htert populations demonstrated elevated chromatid-type aberrations when compared to controls. Irradiated and bystander populations were also analyzed for chromosomal aberrations as a function of time post-irradiation. When considered over 25 doublings, all irradiated and bystander populations had significantly higher frequencies of chromatid aberrations when compared to controls (2-3-fold over controls) and were not dependent on dose. The results presented here support the link between the radiation-induced phenomena of genomic instability and the bystander effect

  13. The use of premature chromosome condensation to study in interphase cells the influence of environmental factors on human genetic material

    Directory of Open Access Journals (Sweden)

    Vasiliki I. Hatzi

    2006-01-01

    Full Text Available Nowadays, there is a constantly increasing concern regarding the mutagenic and carcinogenic potential of a variety of harmful environmental factors to which humans are exposed in their natural and anthropogenic environment. These factors exert their hazardous potential in humans' personal (diet, smoking, pharmaceuticals, cosmetics and occupational environment that constitute part of the anthropogenic environment. It is well known that genetic damage due to these factors has dramatic implications for human health. Since most of the environmental genotoxic factors induce arrest or delay in cell cycle progression, the conventional analysis of chromosomes at metaphase may underestimate their genotoxic potential. Premature Chromosome Condensation (PCC induced either by means of cell fusion or specific chemicals, enables the microscopic visualization of interphase chromosomes whose morphology depends on the cell cycle stage, as well as the analysis of structural and numerical aberrations at the G1 and G2 phases of the cell cycle. The PCC has been successfully used in problems involving cell cycle analysis, diagnosis and prognosis of human leukaemia, assessment of interphase chromosome malformations resulting from exposure to radiation or chemicals, as well as elucidation of the mechanisms underlying the conversion of DNA damage into chromosomal damage. In this report, particular emphasis is given to the advantages of the PCC methodology used as an alternative to conventional metaphase analysis in answering questions in the fields of radiobiology, biological dosimetry, toxicogenetics, clinical cytogenetics and experimental therapeutics.

  14. Y chromosome microdeletions and alterations of spermatogenesis, patient approach and genetic counseling.

    Science.gov (United States)

    Rives, Nathalie

    2014-05-01

    Infertility affects 15% of couples at reproductive age and human male infertility appears frequently idiopathic. The main genetic causes of spermatogenesis defect responsible for non-obstructive azoospermia and severe oligozoospermia are constitutional chromosomal abnormalities and microdeletions in the azoospermia factor region of the Y chromosome. The improvement of the Yq microdeletion screening method gave new insights in the mechanism responsible for the genesis of Yq microdeletions and for the consequences of the management of male infertility and genetic counselling in case of assisted reproductive technology. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  15. Social chromosome variants differentially affect queen determination and the survival of workers in the fire ant Solenopsis invicta.

    Science.gov (United States)

    Buechel, Séverine D; Wurm, Yanick; Keller, Laurent

    2014-10-01

    Intraspecific variation in social organization is common, yet the underlying causes are rarely known. An exception is the fire ant Solenopsis invicta in which the existence of two distinct forms of social colony organization is under the control of the two variants of a pair of social chromosomes, SB and Sb. Colonies containing exclusively SB/SB workers accept only one single queen and she must be SB/SB. By contrast, when colonies contain more than 10% of SB/Sb workers, they accept several queens but only SB/Sb queens. The variants of the social chromosome are associated with several additional important phenotypic differences, including the size, fecundity and dispersal strategies of queens, aggressiveness of workers, and sperm count in males. However, little is known about whether social chromosome variants affect fitness in other life stages. Here, we perform experiments to determine whether differential selection occurs during development and in adult workers. We find evidence that the Sb variant of the social chromosome increases the likelihood of female brood to develop into queens and that adult SB/Sb workers, the workers that cull SB/SB queens, are overrepresented in comparison to SB/SB workers. This demonstrates that supergenes such as the social chromosome can have complex effects on phenotypes at various stages of development. © 2014 John Wiley & Sons Ltd.

  16. On-line sorting of human chromosomes by centromeric index, and identification of sorted populations by GTG-banding and fluorescent in situ hybridization

    NARCIS (Netherlands)

    Boschman, G. A.; Rens, W.; Manders, E.; van Oven, C.; Barendsen, G. W.; Aten, J. A.

    1990-01-01

    Using slit-scan flow cytometry, the shape of human metaphase chromosomes, as expressed in their centromeric index (CI), and the DNA content of the chromosomes have been used as parameters in bivariate flow karyotyping. The resolution of the DNA vs CI flow karyogram of the larger chromosomes up to

  17. Inter-chromosomal variation in the pattern of human population genetic structure

    Directory of Open Access Journals (Sweden)

    Baye Tesfaye M

    2011-05-01

    Full Text Available Abstract Emerging technologies now make it possible to genotype hundreds of thousands of genetic variations in individuals, across the genome. The study of loci at finer scales will facilitate the understanding of genetic variation at genomic and geographic levels. We examined global and chromosomal variations across HapMap populations using 3.7 million single nucleotide polymorphisms to search for the most stratified genomic regions of human populations and linked these regions to ontological annotation and functional network analysis. To achieve this, we used five complementary statistical and genetic network procedures: principal component (PC, cluster, discriminant, fixation index (FST and network/pathway analyses. At the global level, the first two PC scores were sufficient to account for major population structure; however, chromosomal level analysis detected subtle forms of population structure within continental populations, and as many as 31 PCs were required to classify individuals into homogeneous groups. Using recommended population ancestry differentiation measures, a total of 126 regions of the genome were catalogued. Gene ontology and networks analyses revealed that these regions included the genes encoding oculocutaneous albinism II (OCA2, hect domain and RLD 2 (HERC2, ectodysplasin A receptor (EDAR and solute carrier family 45, member 2 (SLC45A2. These genes are associated with melanin production, which is involved in the development of skin and hair colour, skin cancer and eye pigmentation. We also identified the genes encoding interferon-γ (IFNG and death-associated protein kinase 1 (DAPK1, which are associated with cell death, inflammatory and immunological diseases. An in-depth understanding of these genomic regions may help to explain variations in adaptation to different environments. Our approach offers a comprehensive strategy for analysing chromosome-based population structure and differentiation, and demonstrates the

  18. The Biological Effectiveness of Four Energies of Neon Ions for the Induction of Chromosome Damage in Human Lymphocytes

    Science.gov (United States)

    George, Kerry; Hada, Megumi; Cucinotta, F. A.

    2011-01-01

    Chromosomal aberrations were measured in human peripheral blood lymphocytes after in vitro exposure to neon ions at energies of 64, 89, 142, or 267. The corresponding LET values for these energies of neon ranged from 38-103 keV/micrometers and doses delivered were in the 10 to 80 cGy range. Chromosome exchanges were assessed in metaphase and G2 phase cells at first division after exposure using fluorescence in situ hybridization (FISH) with whole chromosome probes and dose response curves were generated for different types of chromosomal exchanges. The yields of total chromosome exchanges were similar for the 64, 89, and 142 MeV exposures, whereas the 267 MeV/u neon with LET of 38 keV/micrometers produced about half as many exchanges per unit dose. The induction of complex type chromosome exchanges (exchanges involving three or more breaks and two or more chromosomes) showed a clear LET dependence for all energies. The ratio of simple to complex type exchanges increased with LET from 18 to 51%. The relative biological effectiveness (RBE) was estimated from the initial slope of the dose response curve for chromosome damage with respect to gamma-rays. The RBE(sub max) values for total chromosome exchanges for the 64 MeV/u was around 30.

  19. Effect of mobile phone station on micronucleus frequency and chromosomal aberrations in human blood cells.

    Science.gov (United States)

    Yildirim, M S; Yildirim, A; Zamani, A G; Okudan, N

    2010-01-01

    The use of mobile telephones has rapidly increased worldwide as well as the number of mobile phone base stations that lead to rise low level radiofrequency emissions which may in turn have possible harm for human health. The national radiation protection board has published the known effects of radio waves exposure on humans living close to mobile phone base stations. However, several studies have claimed that the base station has detrimental effects on different tissues. In this study, we aimed to evaluate the effects of mobile phone base stations on the micronucleus (MN) frequency and chromosomal aberrations on blood in people who were living around mobile phone base stations and healthy controls. Frequency of MN and chromosomal aberrations in study and control groups was 8.96 +/- 3.51 and 6.97 +/- 1.52 (p: 0.16); 0.36 +/- 0.31 and 0.75 +/- 0.61 (p: 0.07), respectively. Our results show that there was not a significant difference of MN frequency and chromosomal aberrations between the two study groups. The results claim that cellular phones and their base stations do not produce important carcinogenic changes.

  20. Intrinsic factors that can affect sensitivity to chromosome-aberration induction

    International Nuclear Information System (INIS)

    Preston, R.J.

    1982-01-01

    The paper addresses the question, are there individuals who are hypersensitive, or are more likely to be hypersensitive, to the induction of chromosome aberrations by radiation and chemicals. Lymphocytes of persons heterozygous for xeroderma pigmentosum, ataxia telangiectasia, and Fauconi's anemia were subjected to chemical and/or ionizing radiations to determine their sensitivity to chromosome aberration induction. In the majority of cases the sensitivity was intermediate between that of normal individuals and homozygotes for these genes

  1. Non-random X chromosome inactivation in an affected twin in a monozygotic twin pair discordant for Wiedemann-Beckwith syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Oestavik, R.E.; Eiklid, K.; Oerstavik, K.H. [Ulleval Univ. Hospital, Oslo (Norway)] [and others

    1995-03-27

    Wiedemann-Beckwith syndrome (WBS) is a syndrome including exomphalos, macroglossia, and generalized overgrowth. The locus has been assigned to 11p15, and genomic imprinting may play a part in the expression of one or more genes involved. Most cases are sporadic. An excess of female monozygotic twins discordant for WBS have been reported, and it has been proposed that this excess could be related to the process of X chromosome inactivation. We have therefore studied X chromosome inactivation in 13-year-old monozygotic twin girls who were discordant for WBS. In addition, both twins had Tourette syndrome. The twins were monochorionic and therefore the result of a late twinning process. This has also been the case in previously reported discordant twin pairs with information on placentation. X chromosome inactivation was determined in DNA from peripheral blood cells by PCR analysis at the androgen receptor locus. The affected twin had a completely skewed X inactivation, where the paternal allele was on the active X chromosome in all cells. The unaffected twin had a moderately skewed X inactivation in the same direction, whereas the mother had a random pattern. Further studies are necessary to establish a possible association between the expression of WBS and X chromosome inactivation. 18 refs., 2 figs., 1 tab.

  2. DNA Catenation Maintains Structure of Human Metaphase Chromosomes

    DEFF Research Database (Denmark)

    L. V. Bauer, David; Marie, Rodolphe; Rasmussen, Kristian Hagsted

    2012-01-01

    Mitotic chromosome structure is pivotal to cell division but difficult to observe in fine detail using conventional methods. DNA catenation has been implicated in both sister chromatid cohesion and chromosome condensation, but has never been observed directly. We have used a lab-on-a-chip microfl...

  3. Molecular fundamentals of chromosomal mutagenesis

    International Nuclear Information System (INIS)

    Ganassi, E.Eh.; Zaichkina, S.I.; Malakhova, L.V.

    1987-01-01

    Precise quantitative correlation between the yield of chromosome structure damages and the yield of DNA damages is shown when comparing data on molecular and cytogenetic investigations carried out in cultural Mammalia cells. As the chromosome structure damage is to be connected with the damage of its carcass structure, then it is natural that DNA damage in loop regions is not to affect considerably the structure, while DNA damage lying on the loop base and connected with the chromosome carcass is to play a determining role in chromosomal mutagenesis. This DNA constitutes 1-2% from the total quantity of nuclear DNA. If one accepts that damages of these regions of DNA are ''hot'' points of chromosomal mutagenesis, then it becomes clear why 1-2% of preparation damages in a cell are realized in chromosome structural damages

  4. Chromosome-specific DNA Repeat Probes

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartner, Adolf; Weier, Jingly Fung; Weier, Heinz-Ulrich G.

    2006-03-16

    In research as well as in clinical applications, fluorescence in situ hybridization (FISH) has gained increasing popularity as a highly sensitive technique to study cytogenetic changes. Today, hundreds of commercially available DNA probes serve the basic needs of the biomedical research community. Widespread applications, however, are often limited by the lack of appropriately labeled, specific nucleic acid probes. We describe two approaches for an expeditious preparation of chromosome-specific DNAs and the subsequent probe labeling with reporter molecules of choice. The described techniques allow the preparation of highly specific DNA repeat probes suitable for enumeration of chromosomes in interphase cell nuclei or tissue sections. In addition, there is no need for chromosome enrichment by flow cytometry and sorting or molecular cloning. Our PCR-based method uses either bacterial artificial chromosomes or human genomic DNA as templates with {alpha}-satellite-specific primers. Here we demonstrate the production of fluorochrome-labeled DNA repeat probes specific for human chromosomes 17 and 18 in just a few days without the need for highly specialized equipment and without the limitation to only a few fluorochrome labels.

  5. Chromosomal instability mediated by non-B DNA: cruciform conformation and not DNA sequence is responsible for recurrent translocation in humans.

    Science.gov (United States)

    Inagaki, Hidehito; Ohye, Tamae; Kogo, Hiroshi; Kato, Takema; Bolor, Hasbaira; Taniguchi, Mariko; Shaikh, Tamim H; Emanuel, Beverly S; Kurahashi, Hiroki

    2009-02-01

    Chromosomal aberrations have been thought to be random events. However, recent findings introduce a new paradigm in which certain DNA segments have the potential to adopt unusual conformations that lead to genomic instability and nonrandom chromosomal rearrangement. One of the best-studied examples is the palindromic AT-rich repeat (PATRR), which induces recurrent constitutional translocations in humans. Here, we established a plasmid-based model that promotes frequent intermolecular rearrangements between two PATRRs in HEK293 cells. In this model system, the proportion of PATRR plasmid that extrudes a cruciform structure correlates to the levels of rearrangement. Our data suggest that PATRR-mediated translocations are attributable to unusual DNA conformations that confer a common pathway for chromosomal rearrangements in humans.

  6. Using 3-color chromosome painting to decide between chromosome aberration models

    International Nuclear Information System (INIS)

    Lucas, J.N.; Sachs, R.K.

    1993-01-01

    Ionizing radiation produces chromosome aberrations when DNA double strand breaks (DSB) interact pairwise. For more than 30 years there have been two main, competing theories of such binary DSB interactions. The classical theory asserts that an unrepaired DSB makes two ends which separate, with each end subsequently able to join any similar (non-telomeric) end. The exchange theory asserts that the two DSB ends remain associated until repair or a reciprocal chromosome exchange involving a second DSB occurs. The authors conducted an experiment to test these models, using 3-color chromosome painting. After in vitro irradiation of resting human lymphocytes, they observed cells with three-color triplets at first metaphase: three derivative chromosomes having permuted colors, as if three broken chromosomes had played musical chairs. On the exchange model in its standard form such 3-color triplets cannot occur. On the classical model the expected frequency can be calculated. They report data and computer calculations which exclude the exchange model and favor the classical model

  7. Chromosome aberrations in human lymphocytes exposed to tritiated water in vitro

    International Nuclear Information System (INIS)

    Bocian, E.; Ziemba-zak, B.; Rosiek, O.; Sablinski, J.

    1978-01-01

    The induction of chromosome aberrations in human peripheral blood lymphocytes by tritiated water or 180 kV X-rays in vitro was studied. Lymphocytes were exposed to various concentrations of HTO for 2 h or for 53 h. Chromosome and chromatid type aberrations were scored during the first mitotic division after stimulation with phytohaemagglutinin. For the analysis of the dose-response relationship the data were fitted by the method of least-squares to different models. After acute exposure to tritium β-rays and X-rays, the dicentrics + centric rings and terminal + interstitial deletions gave the best fit to the linear-quadratic function. However, data for these types of aberrations after 53 h exposure to HTO gave equally good fit to the linear and linear-quadratic functions. The best description of the dose-response relationship for chromatid aberrations is given by the linear model. In the system studied the RBE of tritium β-rays as compared to 180 KV X-rays was 1.17+-0.02. (Auth.)

  8. Report of the first international workshop on human chromosome 14 mapping 1993

    Energy Technology Data Exchange (ETDEWEB)

    Cox, D.W.

    1995-06-01

    The first International Workshop on Human Chromosome 14 mapping was held at Novotel in Toronto, Canada on June 9-12, 1993. There were 23 participants from nine countries. The goals of the workshop were to compile physical maps and a consensus linkage map, to consolidate available data on disease loci, to catalogue and facilitate distribution of resources and to encourage new collaborations and data sharing.

  9. Dose-response calibration curves of {sup 137}Cs gamma rays for dicentric chromosome aberrations in human lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Wol Soon; Oh, Su Jung; Jeong, Soo Kyun; Yang, Kwang Mo [Dept. of Research center, Dong Nam Institute of Radiological and Medical Sciences, Busan (Korea, Republic of); Jeong, Min Ho [Dept. of Microbiology, Dong A University College of Medicine, Busan (Korea, Republic of)

    2012-11-15

    Recently, the increased threat of radiologically industrial accident such as radiation nondestructive inspection or destruction of nuclear accident by natural disaster such as Fukushima accident requires a greater capacity for cytogenetic biodosimetry, which is critical for clinical triage of potentially thousands of radiation-exposed individuals. Dicentric chromosome aberration analysis is the conventional means of assessing radiation exposure. Dose–response calibration curves for {sup 13}'7Cs gamma rays have been established for unstable chromosome aberrations in human peripheral blood lymphocytes in many laboratories of international biodosimetry network. In this study, therefore, we established dose– response calibration curves of our laboratory for {sup 137}Cs gamma raysaccording to the IAEA protocols for conducting the dicentric chromosome assay We established in vitro dose–response calibration curves for dicentric chromosome aberrations in human lymphocytes for{sup 13}'7Cs gamma rays in the 0 to 5 Gy range, using the maximum likelihood linear-quadratic model, Y = c+αD+βD2. The estimated coefficients of the fitted curves were within the 95% confidence intervals (CIs) and the curve fitting of dose–effect relationship data indicated a good fit to the linear-quadratic model. Hence, meaningful dose estimation from unknown sample can be determined accurately by using our laboratory’s calibration curve according to standard protocol.

  10. Relative biological effectiveness of tritiated water on human chromosomes of lymphocytes and bone marrow cells

    International Nuclear Information System (INIS)

    Tanaka, Kimio; Sawada, Shozo; Kamada, Nanao

    1992-01-01

    One of the major toxic effluent from nuclear power industries is tritiated water (HTO), which is released into the environment in large quantities. Low dose radiation effects and dose rate effects of HTO on human lymphocytes and bone marrow cells are not well studied. The present study was performed to investigate dose-response relationship for chromosome aberration frequencies in the human lymphocytes and bone marrow cells, by HTO in-vitro exposure at low dose ranges of 0.1 to 1 Gy. Go lymphocytes and bone marrow cells were incubated for 10 - 150 minutes with HTO at 2 cGy/min. Also 60 Co γ and 137 Cs γ rays were used as controls. Dicentric chromosomes were scored in 1,000 to 2,000 cells of each experimental series. The RBE values of HTO at low dose range for the induction of dicentric chromosomes and chromatid type aberrations were 2.7 in lymphocytes and approximately 3.8 in bone marrow cells with respect to 60 Co γ ray, respectively. Also lymphocytes were chronically exposed to HTO for 24 to 72 hrs at lower dose rates (0.2 and 0.05 cGy/min). The yields of dicentrics and rings decreased with the reduction in the dose rate of HTO, presenting a clear dose rate effects of HTO. These results provide an useful information for the assessment for health risk in humans exposed to low concentration level to HTO. (author)

  11. Y Chromosome analysis of prehistoric human populations in the West Liao River Valley, Northeast China.

    Science.gov (United States)

    Cui, Yinqiu; Li, Hongjie; Ning, Chao; Zhang, Ye; Chen, Lu; Zhao, Xin; Hagelberg, Erika; Zhou, Hui

    2013-09-30

    The West Liao River valley in Northeast China is an ecologically diverse region, populated in prehistory by human populations with a wide range of cultures and modes of subsistence. To help understand the human evolutionary history of this region, we performed Y chromosome analyses on ancient human remains from archaeological sites ranging in age from 6500 to 2700 BP. 47 of the 70 individuals provided reproducible results. They were assigned into five different Y sub-haplogroups using diagnostic single nucleotide polymorphisms, namely N1 (xN1a, N1c), N1c, C/C3e, O3a (O3a3) and O3a3c. We also used 17 Y short tandem repeat loci in the non-recombining portion of the Y chromosome. There appears to be significant genetic differences between populations of the West Liao River valley and adjacent cultural complexes in the prehistoric period, and these prehistoric populations were shown to carry similar haplotypes as present-day Northeast Asians, but at markedly different frequencies. Our results suggest that the prehistoric cultural transitions were associated with immigration from the Yellow River valley and the northern steppe into the West Liao River valley. They reveal the temporal continuity of Y chromosome lineages in populations of the West Liao River valley over 5000 years, with a concurrent increase in lineage diversity caused by an influx of immigrants from other populations.

  12. Sex, rebellion and decadence: the scandalous evolutionary history of the human Y chromosome.

    Science.gov (United States)

    Navarro-Costa, Paulo

    2012-12-01

    It can be argued that the Y chromosome brings some of the spirit of rock&roll to our genome. Equal parts degenerate and sex-driven, the Y has boldly rebelled against sexual recombination, one of the sacred pillars of evolution. In evolutionary terms this chromosome also seems to have adopted another of rock&roll's mottos: living fast. Yet, it appears to have refused to die young. In this manuscript the Y chromosome will be analyzed from the intersection between structural, evolutionary and functional biology. Such integrative approach will present the Y as a highly specialized product of a series of remarkable evolutionary processes. These led to the establishment of a sex-specific genomic niche that is maintained by a complex balance between selective pressure and the genetic diversity introduced by intrachromosomal recombination. Central to this equilibrium is the "polish or perish" dilemma faced by the male-specific Y genes: either they are polished by the acquisition of male-related functions or they perish via the accumulation of inactivating mutations. Thus, understanding to what extent the idiosyncrasies of Y recombination may impact this chromosome's role in sex determination and male germline functions should be regarded as essential for added clinical insight into several male infertility phenotypes. This article is part of a Special Issue entitled: Molecular Genetics of Human Reproductive Failure. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Chromosomal damages and mutagenesis in mammalian and human cells induced by ionizing radiations with different LET

    International Nuclear Information System (INIS)

    Govorun, R.D.

    1997-01-01

    On the basis of literature and proper data the inference was made about essential role of structural chromosomal (and gene) damages in spontaneous and radiation-induced mutagenesis of mammalian and human cells on HPRT-loci. The evidences of increasing role of these damages in the mutagenesis after the influence of ionizing radiations with high LET are adduced. The consequences of HPRT-gene damages have been examined hypothetically. The geterogeneity of mutant subclones on their cytogenetical properties were revealed experimentally. The data reflect a phenomenon of the reproductive chromosomal instability in many generations of mutant cell. The mutagenesis of mammalian cells is also accompanied by the impairment of chromosome integrity with high probability as a stage of appropriate genome reorganization because of changed vital conditions

  14. Microarray Analysis of Copy Number Variants on the Human Y Chromosome Reveals Novel and Frequent Duplications Overrepresented in Specific Haplogroups.

    Directory of Open Access Journals (Sweden)

    Martin M Johansson

    Full Text Available The human Y chromosome is almost always excluded from genome-wide investigations of copy number variants (CNVs due to its highly repetitive structure. This chromosome should not be forgotten, not only for its well-known relevance in male fertility, but also for its involvement in clinical phenotypes such as cancers, heart failure and sex specific effects on brain and behaviour.We analysed Y chromosome data from Affymetrix 6.0 SNP arrays and found that the signal intensities for most of 8179 SNP/CN probes in the male specific region (MSY discriminated between a male, background signals in a female and an isodicentric male containing a large deletion of the q-arm and a duplication of the p-arm of the Y chromosome. Therefore, this SNP/CN platform is suitable for identification of gain and loss of Y chromosome sequences. In a set of 1718 males, we found 25 different CNV patterns, many of which are novel. We confirmed some of these variants by PCR or qPCR. The total frequency of individuals with CNVs was 14.7%, including 9.5% with duplications, 4.5% with deletions and 0.7% exhibiting both. Hence, a novel observation is that the frequency of duplications was more than twice the frequency of deletions. Another striking result was that 10 of the 25 detected variants were significantly overrepresented in one or more haplogroups, demonstrating the importance to control for haplogroups in genome-wide investigations to avoid stratification. NO-M214(xM175 individuals presented the highest percentage (95% of CNVs. If they were not counted, 12.4% of the rest included CNVs, and the difference between duplications (8.9% and deletions (2.8% was even larger.Our results demonstrate that currently available genome-wide SNP platforms can be used to identify duplications and deletions in the human Y chromosome. Future association studies of the full spectrum of Y chromosome variants will demonstrate the potential involvement of gain or loss of Y chromosome sequence in

  15. Induction of chromosomal aberrations in human lymphocytes by fission neutrons

    International Nuclear Information System (INIS)

    Silva, Marcia Augusta da; Coelho, Paulo Rogerio Pinto; Bartolini, Paolo; Okazaki, Kayo

    2009-01-01

    Chromosome aberrations induced by sparsely ionizing radiation (low-LET) are well known and cytogenetic analyses of irradiated human lymphocytes have been widely applied to biological dosimetry. However, much less is known about chromosome aberrations induced by densely ionizing radiation (high LET), such as that of alpha particles or neutrons. Such particles induce DNA strand breaks, as well as chromosome breakage and rearrangements of high complexity. This damage is more localized and less efficiently repaired than after X- or γ-ray irradiation. This preferential production of complex aberrations by densely ionizing radiation is related to the unique energy deposition patterns, which produces highly localized multiple DNA damage at the chromosomal level. A better knowledge of the interactions between different types of radiation and cellular DNA is of importance, not only from the radiobiological viewpoint but also for dosimetric and therapeutic purposes. The objective of the present study was to analyse the cytogenetic effects of fission neutrons on peripheral blood lymphocytes in order to evaluate structural and numerical aberrations and number of cells in the different mitotic cycles. So, blood samples from five healthy donors, 22-25 years old, of both sexes, were irradiated in the Research Reactor IEA-R1 of our Institute (IPEN/CNEN-SP) with thermal and fast neutrons at doses of 0.2; 0.3; 0.5 and 1.0 Gy. The γ contribution to the total absorbed dose was about 30%. These doses were monitored by thermoluminescent dosemeters: LiF-600 (for neutrons) and LiF-700 (for γ-rays). The data concerning structural aberrations were evaluated with regard to three parameters: percentage of cells with aberrations, number of aberrations/cell and number of dicentric/cell. The cytogenetic results showed an increase in the three parameters after irradiation with neutrons, as a function of radiation dose. Apparently, there was no influence of neutrons on the kinetics of cellular

  16. Genome scan identifies a locus affecting gamma-globin expression in human beta-cluster YAC transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Lin, S.D.; Cooper, P.; Fung, J.; Weier, H.U.G.; Rubin, E.M.

    2000-03-01

    Genetic factors affecting post-natal g-globin expression - a major modifier of the severity of both b-thalassemia and sickle cell anemia, have been difficult to study. This is especially so in mice, an organism lacking a globin gene with an expression pattern equivalent to that of human g-globin. To model the human b-cluster in mice, with the goal of screening for loci affecting human g-globin expression in vivo, we introduced a human b-globin cluster YAC transgene into the genome of FVB mice . The b-cluster contained a Greek hereditary persistence of fetal hemoglobin (HPFH) g allele resulting in postnatal expression of human g-globin in transgenic mice. The level of human g-globin for various F1 hybrids derived from crosses between the FVB transgenics and other inbred mouse strains was assessed. The g-globin level of the C3HeB/FVB transgenic mice was noted to be significantly elevated. To map genes affecting postnatal g-globin expression, a 20 centiMorgan (cM) genome scan of a C3HeB/F VB transgenics [prime] FVB backcross was performed, followed by high-resolution marker analysis of promising loci. From this analysis we mapped a locus within a 2.2 cM interval of mouse chromosome 1 at a LOD score of 4.2 that contributes 10.4% of variation in g-globin expression level. Combining transgenic modeling of the human b-globin gene cluster with quantitative trait analysis, we have identified and mapped a murine locus that impacts on human g-globin expression in vivo.

  17. Regulated expression of genes inserted at the human chromosomal β-globin locus by homologous recombination

    International Nuclear Information System (INIS)

    Nandi, A.K.; Roginski, R.S.; Gregg, R.G.; Smithies, O.; Skoultchi, A.I.

    1988-01-01

    The authors have examined the effect of the site of integration on the expression of cloned genes introduced into cultured erythroid cells. Smithies et al. reported the targeted integration of DNA into the human β-globin locus on chromosome 11 in a mouse erythroleukemia-human cell hybrid. These hybrid cells can undergo erythroid differentiation leading to greatly increased mouse and human β-globin synthesis. By transfection of these hybrid cells with a plasmid carrying a modified human β-globin gene and a foreign gene composed of the coding sequence of the bacterial neomycin-resistance gene linked to simian virus 40 transcription signals (SVneo), cells were obtained in which the two genes are integrated at the β-globin locus on human chromosome 11 or at random sites. When they examined the response of the integrated genes to cell differentation, they found that the genes inserted at the β-globin locus were induced during differentiation, whereas randomly positioned copies were not induced. Even the foreign SVneo gene was inducible when it had been integrated at the β-globin locus. The results show that genes introduced at the β-globin locus acquire some of the regulatory properties of globin genes during erythroid differentiation

  18. Implications for x-chromosome regulation from studies of human x-chromosome DNA

    International Nuclear Information System (INIS)

    Wolf, S.F.; Migeon, B.R.

    1983-01-01

    It is clear that there must be multiple events involved in the regulation of the mammalian X chromosome. The initial event, occurring about the time of implantation results in inactivation of all but a single X chromosome in diploid cells. A popular working hypothesis is that DNA modification, such as methylation or sequence rearrangement, might be responsible for maintenance of the inactive state. Methylation is particularly attractive, since the preference for methylating half-methylated sites might result in perpetuation of the differentiated state. In this paper we discuss several facets of our studies of X inactivation; specifically, our general strategy, studies of X DNA methylation, and studies of loci that escape inactivation. 47 references, 8 figures, 2 tables

  19. Induction of chromosomal aberrations in human primary fibroblasts and immortalized cancer cells exposed to extremely-low-frequency electromagnetic fields

    International Nuclear Information System (INIS)

    Seyyedi, S. S.; Mozdarani, H.; Rezaei Tavirani, M.; Heydari, S.

    2010-01-01

    Rapidly increasing possibilities of exposure to environmental extremely low-frequency electromagnetic fields have become a topic of worldwide investigation. Epidemiological and laboratory studies suggest that exposure to extremely low-frequency electromagnetic fields may increase cancer risk therefore assessment of chromosomal damage in various cell lines might be of predictive value for future risk estimation. Materials and Methods: Primary cultures of fibroblasts from human skin biopsy were exposed to continuous extremely low-frequency electromagnetic fields (3, 50 and 60 Hz, sinusoidal, 3h, and 4 m T). Also immortalized cell lines, SW480, MCF-7 and 1321N1 were exposed to continuous extremely low-frequency electromagnetic fields (50 Hz, sinusoidal, 3 h, 4 m T). Metaphase plates Were prepared according to standard methods and stained in 5% Giemsa solution. Chromosomal aberrations of both chromosome and chromatid types were scored to evaluate the effects of extremely low-frequency electromagnetic fields on primary or established cell lines. Results: Results indicate that by increasing the frequency of extremely low-frequency electromagnetic fields, chromosomal aberrations were increased up to 7-fold above background levels in primary human fibroblast cells. In addition, continuous exposure to a 50 Hz electromagnetic field led to a significant increase in chromosomal aberrations in SW480, MCF-7 and 1321N1 cell lines compared to sham control. Conclusion: Results obtained indicate that extremely low-frequency electromagnetic fields has the potential for induction of chromosomal aberrations in all cell types.

  20. Origin and domestication of papaya Yh chromosome

    Science.gov (United States)

    VanBuren, Robert; Zeng, Fanchang; Chen, Cuixia; Zhang, Jisen; Wai, Ching Man; Han, Jennifer; Aryal, Rishi; Gschwend, Andrea R.; Wang, Jianping; Na, Jong-Kuk; Huang, Lixian; Zhang, Lingmao; Miao, Wenjing; Gou, Jiqing; Arro, Jie; Guyot, Romain; Moore, Richard C.; Wang, Ming-Li; Zee, Francis; Charlesworth, Deborah; Moore, Paul H.; Yu, Qingyi; Ming, Ray

    2015-01-01

    Sex in papaya is controlled by a pair of nascent sex chromosomes. Females are XX, and two slightly different Y chromosomes distinguish males (XY) and hermaphrodites (XYh). The hermaphrodite-specific region of the Yh chromosome (HSY) and its X chromosome counterpart were sequenced and analyzed previously. We now report the sequence of the entire male-specific region of the Y (MSY). We used a BAC-by-BAC approach to sequence the MSY and resequence the Y regions of 24 wild males and the Yh regions of 12 cultivated hermaphrodites. The MSY and HSY regions have highly similar gene content and structure, and only 0.4% sequence divergence. The MSY sequences from wild males include three distinct haplotypes, associated with the populations’ geographic locations, but gene flow is detected for other genomic regions. The Yh sequence is highly similar to one Y haplotype (MSY3) found only in wild dioecious populations from the north Pacific region of Costa Rica. The low MSY3-Yh divergence supports the hypothesis that hermaphrodite papaya is a product of human domestication. We estimate that Yh arose only ∼4000 yr ago, well after crop plant domestication in Mesoamerica >6200 yr ago but coinciding with the rise of the Maya civilization. The Yh chromosome has lower nucleotide diversity than the Y, or the genome regions that are not fully sex-linked, consistent with a domestication bottleneck. The identification of the ancestral MSY3 haplotype will expedite investigation of the mutation leading to the domestication of the hermaphrodite Yh chromosome. In turn, this mutation should identify the gene that was affected by the carpel-suppressing mutation that was involved in the evolution of males. PMID:25762551

  1. Synteny of human chromosomes 14 and 15 in the platyrrhines (Primates, Platyrrhini)

    Science.gov (United States)

    2009-01-01

    In order to study the intra- and interspecific variability of the 14/15 association in Platyrrhini, we analyzed 15 species from 13 genera, including species that had not been described yet. The DNA libraries of human chromosomes 14 and 15 were hybridized to metaphases of Alouatta guariba clamitans, A. caraya, A. sara, Ateles paniscus chamek, Lagothrix lagothricha, Brachyteles arachnoides, Saguinus midas midas, Leontopithecus chrysomelas, Callimico goeldii, Callithrix sp., Cebus apella, Aotus nigriceps, Cacajao melanocephalus,Chiropotes satanas and Callicebus caligatus. The 14/15 hybridization pattern was present in 13 species, but not in Alouatta sara that showed a 14/15/14 pattern and Aotus nigriceps that showed a 15/14/15/14 pattern. In the majority of the species, the HSA 14 homologue retained synteny for the entire chromosome, whereas the HSA 15 homologue displayed fragmented segments. Within primates, the New World monkeys represent the taxon with the highest variability in chromosome number (2n = 16 to 62). The presence of the HSA 14/15 association in all species and subspecies studied herein confirms that this association is the ancestral condition for platyrrhines and that this association has been retained in most platyrrhines, despite the occurrence of extensive inter- and intrachromosomal rearrangements in this infraorder of Primates. PMID:21637455

  2. Synteny of human chromosomes 14 and 15 in the platyrrhines (Primates, Platyrrhini

    Directory of Open Access Journals (Sweden)

    Cristiani Gifalli-Iughetti

    2009-01-01

    Full Text Available In order to study the intra- and interspecific variability of the 14/15 association in Platyrrhini, we analyzed 15 species from 13 genera, including species that had not been described yet. The DNA libraries of human chromosomes 14 and 15 were hybridized to metaphases of Alouatta guariba clamitans, A. caraya, A. sara, Ateles paniscus chamek, Lagothrix lagothricha, Brachyteles arachnoides, Saguinus midas midas, Leontopithecus chrysomelas, Callimico goeldii, Callithrix sp., Cebus apella, Aotus nigriceps, Cacajao melanocephalus, Chiropotes satanas and Callicebus caligatus. The 14/15 hybridization pattern was present in 13 species, but not in Alouatta sara that showed a 14/15/14 pattern and Aotus nigriceps that showed a 15/14/15/14 pattern. In the majority of the species, the HSA 14 homologue retained synteny for the entire chromosome, whereas the HSA 15 homologue displayed fragmented segments. Within primates, the New World monkeys represent the taxon with the highest variability in chromosome number (2n = 16 to 62. The presence of the HSA 14/15 association in all species and subspecies studied herein confirms that this association is the ancestral condition for platyrrhines and that this association has been retained in most platyrrhines, despite the occurrence of extensive inter- and intrachromosomal rearrangements in this infraorder of Primates.

  3. Synteny of human chromosomes 14 and 15 in the platyrrhines (Primates, Platyrrhini).

    Science.gov (United States)

    Gifalli-Iughetti, Cristiani; Koiffmann, Célia P

    2009-10-01

    In order to study the intra- and interspecific variability of the 14/15 association in Platyrrhini, we analyzed 15 species from 13 genera, including species that had not been described yet. The DNA libraries of human chromosomes 14 and 15 were hybridized to metaphases of Alouatta guariba clamitans, A. caraya, A. sara, Ateles paniscus chamek, Lagothrix lagothricha, Brachyteles arachnoides, Saguinus midas midas, Leontopithecus chrysomelas, Callimico goeldii, Callithrix sp., Cebus apella, Aotus nigriceps, Cacajao melanocephalus,Chiropotes satanas and Callicebus caligatus. The 14/15 hybridization pattern was present in 13 species, but not in Alouatta sara that showed a 14/15/14 pattern and Aotus nigriceps that showed a 15/14/15/14 pattern. In the majority of the species, the HSA 14 homologue retained synteny for the entire chromosome, whereas the HSA 15 homologue displayed fragmented segments. Within primates, the New World monkeys represent the taxon with the highest variability in chromosome number (2n = 16 to 62). The presence of the HSA 14/15 association in all species and subspecies studied herein confirms that this association is the ancestral condition for platyrrhines and that this association has been retained in most platyrrhines, despite the occurrence of extensive inter- and intrachromosomal rearrangements in this infraorder of Primates.

  4. Human MLH1 suppresses the insertion of telomeric sequences at intra-chromosomal sites in telomerase-expressing cells

    Science.gov (United States)

    Jia, Pingping; Chastain, Megan; Zou, Ying; Her, Chengtao

    2017-01-01

    Abstract Aberrant formation of interstitial telomeric sequences (ITSs) promotes genome instabilities. However, it is unclear how aberrant ITS formation is suppressed in human cells. Here, we report that MLH1, a key protein involved in mismatch repair (MMR), suppresses telomeric sequence insertion (TSI) at intra-chromosomal regions. The frequency of TSI can be elevated by double-strand break (DSB) inducer and abolished by ATM/ATR inhibition. Suppression of TSI requires MLH1 recruitment to DSBs, indicating that MLH1's role in DSB response/repair is important for suppressing TSI. Moreover, TSI requires telomerase activity but is independent of the functional status of p53 and Rb. Lastly, we show that TSI is associated with chromosome instabilities including chromosome loss, micronuclei formation and chromosome breakage that are further elevated by replication stress. Our studies uncover a novel link between MLH1, telomerase, telomere and genome stability. PMID:28180301

  5. Human tissue factor: cDNA sequence and chromosome localization of the gene

    International Nuclear Information System (INIS)

    Scarpati, E.M.; Wen, D.; Broze, G.J. Jr.; Miletich, J.P.; Flandermeyer, R.R.; Siegel, N.R.; Sadler, J.E.

    1987-01-01

    A human placenta cDNA library in λgt11 was screened for the expression of tissue factor antigens with rabbit polyclonal anti-human tissue factor immunoglobulin G. Among 4 million recombinant clones screened, one positive, λHTF8, expressed a protein that shared epitopes with authentic human brain tissue factor. The 1.1-kilobase cDNA insert of λHTF8 encoded a peptide that contained the amino-terminal protein sequence of human brain tissue factor. Northern blotting identified a major mRNA species of 2.2 kilobases and a minor species of ∼ 3.2 kilobases in poly(A) + RNA of placenta. Only 2.2-kilobase mRNA was detected in human brain and in the human monocytic U937 cell line. In U937 cells, the quantity of tissue factor mRNA was increased several fold by exposure of the cells to phorbol 12-myristate 13-acetate. Additional cDNA clones were selected by hybridization with the cDNA insert of λHTF8. These overlapping isolates span 2177 base pairs of the tissue factor cDNA sequence that includes a 5'-noncoding region of 75 base pairs, an open reading frame of 885 base pairs, a stop codon, a 3'-noncoding region of 1141 base pairs, and a poly(a) tail. The open reading frame encodes a 33-kilodalton protein of 295 amino acids. The predicted sequence includes a signal peptide of 32 or 34 amino acids, a probable extracellular factor VII binding domain of 217 or 219 amino acids, a transmembrane segment of 23 acids, and a cytoplasmic tail of 21 amino acids. There are three potential glycosylation sites with the sequence Asn-X-Thr/Ser. The 3'-noncoding region contains an inverted Alu family repetitive sequence. The tissue factor gene was localized to chromosome 1 by hybridization of the cDNA insert of λHTF8 to flow-sorted human chromosomes

  6. Fluorescence in situ hybridization on human metaphase chromosomes detected by near-field scanning optical microscopy

    NARCIS (Netherlands)

    Moers, M.H.P.; Moers, M.H.P.; Kalle, W.H.J.; Kalle, W.H.J.; Ruiter, A.G.T.; Wiegant, J.C.A.G.; Raap, A.K.; Greve, Jan; de Grooth, B.G.; van Hulst, N.F.

    1996-01-01

    Fluorescence in situ hybridization o­n human metaphase chromosomes is detected by near-field scanning optical microscopy. This combination of cytochemical and scanning probe techniques enables the localization and identification of several fluorescently labelled genomic DNA fragments o­n a single

  7. Deletion of DXZ4 on the human inactive X chromosome alters higher-order genome architecture.

    Science.gov (United States)

    Darrow, Emily M; Huntley, Miriam H; Dudchenko, Olga; Stamenova, Elena K; Durand, Neva C; Sun, Zhuo; Huang, Su-Chen; Sanborn, Adrian L; Machol, Ido; Shamim, Muhammad; Seberg, Andrew P; Lander, Eric S; Chadwick, Brian P; Aiden, Erez Lieberman

    2016-08-02

    During interphase, the inactive X chromosome (Xi) is largely transcriptionally silent and adopts an unusual 3D configuration known as the "Barr body." Despite the importance of X chromosome inactivation, little is known about this 3D conformation. We recently showed that in humans the Xi chromosome exhibits three structural features, two of which are not shared by other chromosomes. First, like the chromosomes of many species, Xi forms compartments. Second, Xi is partitioned into two huge intervals, called "superdomains," such that pairs of loci in the same superdomain tend to colocalize. The boundary between the superdomains lies near DXZ4, a macrosatellite repeat whose Xi allele extensively binds the protein CCCTC-binding factor. Third, Xi exhibits extremely large loops, up to 77 megabases long, called "superloops." DXZ4 lies at the anchor of several superloops. Here, we combine 3D mapping, microscopy, and genome editing to study the structure of Xi, focusing on the role of DXZ4 We show that superloops and superdomains are conserved across eutherian mammals. By analyzing ligation events involving three or more loci, we demonstrate that DXZ4 and other superloop anchors tend to colocate simultaneously. Finally, we show that deleting DXZ4 on Xi leads to the disappearance of superdomains and superloops, changes in compartmentalization patterns, and changes in the distribution of chromatin marks. Thus, DXZ4 is essential for proper Xi packaging.

  8. Biological effects of tritiated water in low concentration of human lymphocyte chromosome

    International Nuclear Information System (INIS)

    Tanaka, K.; Kamada, N.; Sawaeda, S.

    1992-01-01

    This study was undertaken to investigate the dose-response relationship of tritiated water (HTO) for chromosome aberration in the human lymphocytes, at low dose in vitro exposure ranging from 0.1-1 Gy. The Relative Biological Effectiveness values of HTO with respect to 60 Co gamma ray at a dose rate of 2 cGy/min(15 mCi/ml), at low dose range for the induction of dicentric and centric ring chromosomes were 2.7 in lymphocytes. Also lymphocytes were chronically exposed to HTO for 67 to 80 hrs at different lower dose rates (0.5 and 0.02 cGy/min). There was a 77% decrease in the yields of dicentrics and centric rings, at the dose rate of 0.02cGy/min of HTO, presenting a clear dose rate effect of HTO. The RBE value of HTO relative to 137 Cs gamma ray was 2.0 at the dose rate of 0.02cGy/min(0.15mCi/ml). This suggests that a higher dose rate of HTO exposure has a higher risk and a decrease of RBE value at low dose rate. These results provide useful information for the assessment of health risks in humans specially exposed to low concentration of HTO. (author). 6 refs., 2 figs

  9. Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome

    DEFF Research Database (Denmark)

    Machiela, Mitchell J; Zhou, Weiyin; Karlins, Eric

    2016-01-01

    To investigate large structural clonal mosaicism of chromosome X, we analysed the SNP microarray intensity data of 38,303 women from cancer genome-wide association studies (20,878 cases and 17,425 controls) and detected 124 mosaic X events >2 Mb in 97 (0.25%) women. Here we show rates for X-chrom...

  10. A molecular deletion of distal chromosome 4p in two families with a satellited chromosome 4 lacking the Wolf-Hirschhorn syndrome phenotype.

    Science.gov (United States)

    Estabrooks, L L; Lamb, A N; Kirkman, H N; Callanan, N P; Rao, K W

    1992-11-01

    We report two families with a satellited chromosome 4 short arm (4ps). Satellites and stalks normally occur on the short arms of acrocentric chromosomes; however, the literature cites several reports of satellited nonacrocentric chromosomes, which presumably result from a translocation with an acrocentric chromosome. This is the first report of 4ps chromosomes. Our families are remarkable in that both unaffected and affected individuals carry the 4ps chromosome. The phenotypes observed in affected individuals, although dissimilar, were sufficient to encourage a search for a deletion of chromosome 4p. By Southern blot analysis and fluorescence in situ hybridization, a deletion of material mapping approximately 150 kb from chromosome 4pter was discovered. This deletion is notable because it does not result in the Wolf-Hirschhorn syndrome and can result in an apparently normal phenotype. We speculate that homology between subterminal repeat sequences on 4p and sequences on the acrocentric short arms may explain the origin of the rearrangement and that position effect may play a role in the expression of the abnormal phenotype.

  11. Induction and persistence of multicentric chromosomes in cultured human peripheral blood lymphocytes following high-dose gamma irradiation

    International Nuclear Information System (INIS)

    Suto, Yumiko; Hirai, Momoki; Akiyama, Miho; Nakagawa, Takashi; Tominaga, Takako; Suzuki, Toshikazu; Sugiura, Nobuyuki; Yuki, Masanori; Nakayama, Fumiaki

    2012-01-01

    Among radiation-induced chromosome aberrations, multicentric chromosomes, as represented by dicentric chromosomes (dicentrics), are regarded as sensitive and specific biomarkers for assessing radiation dose in the 0 to 5 Gy range. The objective of this study was to characterize chromosome aberrations induced in vitro by a higher dose of radiation. Peripheral blood lymphocytes were exposed to 15 Gy gamma rays at a dose rate of 0.5 Gy/min and harvested at 48, 50, 52, 54, 56 and 72 h. The first mitotic peak appeared at 52-54 h, showing about a 6 h mitotic delay as compared with nonirradiated control cultures. Cell-cycle analysis of parallel and simultaneous cultures by sister-chromatid differentiation staining suggests that metaphase cells examined in 48-56 h cultures were in the first mitosis after culture initiation. The mean dicentric equivalent counts ranged from 9.0 to 9.3 in consecutively harvested cultures with no significant differences among them. At 72 h, about 20% of dividing cells were tetraploid, persisting with faithfully replicated unstable chromosome aberrations. The non-random distribution of replicated chromosome pairs, deduced from multicolor fluorescence in situ hybridization analysis, led us to surmise that the predominant mechanism underlying the induction of tetraploid cells is endoreduplication. These findings suggest that a high-dose in vitro irradiation applied to peripheral blood lymphocytes may affect on the replication process, in addition to structural chromosome damage. (author)

  12. Telomere dysfunction and chromosome structure modulate the contribution of individual chromosomes in abnormal nuclear morphologies

    Energy Technology Data Exchange (ETDEWEB)

    Pampalona, J.; Soler, D.; Genesca, A. [Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, Bellaterra E-08193 (Spain); Tusell, L., E-mail: laura.tusell@uab.es [Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, Bellaterra E-08193 (Spain)

    2010-01-05

    The cytokinesis-block micronucleus assay has emerged as a biomarker of chromosome damage relevant to cancer. Although it was initially developed to measure micronuclei, it is also useful for measuring nucleoplasmic bridges and nuclear buds. Abnormal nuclear morphologies are frequently observed in malignant tissues and short-term tumour cell cultures. Changes in chromosome structure and number resulting from chromosome instability are important factors in oncogenesis. Telomeres have become key players in the initiation of chromosome instability related to carcinogenesis by means of breakage-fusion-bridge cycles. To better understand the connection between telomere dysfunction and the appearance of abnormal nuclear morphologies, we have characterised the presence of micronuclei, nucleoplasmic bridges and nuclear buds in human mammary primary epithelial cells. These cells can proliferate beyond the Hayflick limit by spontaneously losing expression of the p16{sup INK4a} protein. Progressive telomere shortening leads to the loss of the capping function, and the appearance of end-to-end chromosome fusions that can enter into breakage-fusion-bridge cycles generating massive chromosomal instability. In human mammary epithelial cells, different types of abnormal nuclear morphologies were observed, however only nucleoplasmatic bridges and buds increased significantly with population doublings. Fluorescent in situ hybridisation using centromeric and painting specific probes for chromosomes with eroded telomeres has revealed that these chromosomes are preferentially included in the different types of abnormal nuclear morphologies observed, thus reflecting their common origin. Accordingly, real-time imaging of cell divisions enabled us to determine that anaphase bridge resolution was mainly through chromatin breakage and the formation of symmetric buds in daughter nuclei. Few micronuclei emerged in this cell system thus validating the scoring of nucleoplasmic bridges and

  13. Telomere dysfunction and chromosome structure modulate the contribution of individual chromosomes in abnormal nuclear morphologies

    International Nuclear Information System (INIS)

    Pampalona, J.; Soler, D.; Genesca, A.; Tusell, L.

    2010-01-01

    The cytokinesis-block micronucleus assay has emerged as a biomarker of chromosome damage relevant to cancer. Although it was initially developed to measure micronuclei, it is also useful for measuring nucleoplasmic bridges and nuclear buds. Abnormal nuclear morphologies are frequently observed in malignant tissues and short-term tumour cell cultures. Changes in chromosome structure and number resulting from chromosome instability are important factors in oncogenesis. Telomeres have become key players in the initiation of chromosome instability related to carcinogenesis by means of breakage-fusion-bridge cycles. To better understand the connection between telomere dysfunction and the appearance of abnormal nuclear morphologies, we have characterised the presence of micronuclei, nucleoplasmic bridges and nuclear buds in human mammary primary epithelial cells. These cells can proliferate beyond the Hayflick limit by spontaneously losing expression of the p16 INK4a protein. Progressive telomere shortening leads to the loss of the capping function, and the appearance of end-to-end chromosome fusions that can enter into breakage-fusion-bridge cycles generating massive chromosomal instability. In human mammary epithelial cells, different types of abnormal nuclear morphologies were observed, however only nucleoplasmatic bridges and buds increased significantly with population doublings. Fluorescent in situ hybridisation using centromeric and painting specific probes for chromosomes with eroded telomeres has revealed that these chromosomes are preferentially included in the different types of abnormal nuclear morphologies observed, thus reflecting their common origin. Accordingly, real-time imaging of cell divisions enabled us to determine that anaphase bridge resolution was mainly through chromatin breakage and the formation of symmetric buds in daughter nuclei. Few micronuclei emerged in this cell system thus validating the scoring of nucleoplasmic bridges and nuclear

  14. Telomere dysfunction and chromosome structure modulate the contribution of individual chromosomes in abnormal nuclear morphologies.

    Science.gov (United States)

    Pampalona, J; Soler, D; Genescà, A; Tusell, L

    2010-01-05

    The cytokinesis-block micronucleus assay has emerged as a biomarker of chromosome damage relevant to cancer. Although it was initially developed to measure micronuclei, it is also useful for measuring nucleoplasmic bridges and nuclear buds. Abnormal nuclear morphologies are frequently observed in malignant tissues and short-term tumour cell cultures. Changes in chromosome structure and number resulting from chromosome instability are important factors in oncogenesis. Telomeres have become key players in the initiation of chromosome instability related to carcinogenesis by means of breakage-fusion-bridge cycles. To better understand the connection between telomere dysfunction and the appearance of abnormal nuclear morphologies, we have characterised the presence of micronuclei, nucleoplasmic bridges and nuclear buds in human mammary primary epithelial cells. These cells can proliferate beyond the Hayflick limit by spontaneously losing expression of the p16(INK4a) protein. Progressive telomere shortening leads to the loss of the capping function, and the appearance of end-to-end chromosome fusions that can enter into breakage-fusion-bridge cycles generating massive chromosomal instability. In human mammary epithelial cells, different types of abnormal nuclear morphologies were observed, however only nucleoplasmatic bridges and buds increased significantly with population doublings. Fluorescent in situ hybridisation using centromeric and painting specific probes for chromosomes with eroded telomeres has revealed that these chromosomes are preferentially included in the different types of abnormal nuclear morphologies observed, thus reflecting their common origin. Accordingly, real-time imaging of cell divisions enabled us to determine that anaphase bridge resolution was mainly through chromatin breakage and the formation of symmetric buds in daughter nuclei. Few micronuclei emerged in this cell system thus validating the scoring of nucleoplasmic bridges and nuclear

  15. Analysis of the frequency of unstable chromosome aberrations in human lymphocytes irradiated with 60Co

    International Nuclear Information System (INIS)

    Mendonca, Julyanne C.G.; Mendes, Mariana E.; Lima, Fabiana F.; Santos, Neide

    2013-01-01

    The aim of this study was to analyze the frequency of unstable chromosomal aberrations induced by gamma radiation from a 60 Co source at two different doses. Samples were obtained from a healthy donor and exposed to 60 Co source (Gammacel 220 ) located in the Department of Nuclear Energy of Pernambuco Federal University (DEN/UFPe/Brazil) with a rate of air Kerma to 3,277 Gy/h. Exposures resulted in absorbed dose 0.51 Gy and 0.77 Gy. Mitotic metaphases were obtained by culturing lymphocytes for chromosome analysis and the slides were stained with 5% Giemsa. Among the unstable chromosomal aberrations the dicentric chromosomes, ring chromosomes and acentric fragments were analyzed. To calculate the significance level the chi - square test was used, considering relevant differences between the frequencies when the value of p < 0.05. To calculate the significance level of the chi - square test was used, considering relevant differences between the frequencies when the value of p < 0.05. The results showed that there was significant difference of the frequencies of dicentric chromosomes (from 0.18 to 0.51 to 0.37 Gy to 0.77 Gy), however there was no statistically significant difference between the frequencies of acentric fragments ( 0.054 to 0, 51 Gy to 0.063 to 0.77 Gy) and ring chromosomes (0.001 to 0.51 Gy to 0.003 to 0.77 Gy). The low number of rings is found justified, considering that in irradiated human lymphocytes, its appearance is rare relative to dicentrics. The results confirm that dicentrics are the most reliable biomarkers in estimating dose after exposure to gamma radiation. These two points will make the calibration curve dose-response being built for Biological Dosimetry Laboratory of CRCN-NE/CNEN

  16. Radiation exposure and chromosome abnormalities. Human cytogenetic studies at the National Institute of Radiological Sciences, Japan, 1963-1988

    International Nuclear Information System (INIS)

    Ishihara, T.; Kohno, S.; Minamihisamatsu, M.

    1990-01-01

    The results of human cytogenetic studies performed at the National Institute of Radiological Sciences (NIRS), Chiba, Japan for about 25 years are described. The studies were pursued primarily under two major projects: one involving people exposed to radiation under various conditions and the other involving patients with malignant diseases, especially leukemias. Whereas chromosome abnormalities in radiation-exposed people are excellent indicators of radiation exposure, their behavior in bone marrow provide useful information for a better understanding of chromosome abnormalities in leukemias and related disorders. The role of chromosome abnormalities in the genesis and development of leukemia and related disorders is considered, suggesting a view for future studies in this field

  17. Characterization of three Agrobacterium tumefaciens avirulent mutants with chromosomal mutations that affect induction of vir genes.

    OpenAIRE

    Metts, J; West, J; Doares, S H; Matthysse, A G

    1991-01-01

    Three Agrobacterium tumefaciens mutants with chromosomal mutations that affect bacterial virulence were isolated by transposon mutagenesis. Two of the mutants were avirulent on all hosts tested. The third mutant, Ivr-211, was a host range mutant which was avirulent on Bryophyllum diagremontiana, Nicotiana tabacum, N. debneyi, N. glauca, and Daucus carota but was virulent on Zinnia elegans and Lycopersicon esculentum (tomato). That the mutant phenotype was due to the transposon insertion was d...

  18. Chromosomal aberrations induced by low-dose γ-irradiation: Study of R-banded chromosomes of human lymphocytes

    International Nuclear Information System (INIS)

    Al-Achkar, W.; Lefrancois, D.; Aurias, A.

    1991-01-01

    The effect of low-dose (0-0.5 Gy) γ-radiations was studied on R-banded chromosomes from lymphocytes of healthy donors of various ages. In cells from newborns, an increase of chromosome damage roughly proportional to the dose was found. In lymphocytes from young adults chromosomal aberrations were not detected at doses of 0.05 and 0.1 Gy, and in lymphocytes from old adults not even at 0.2 Gy. The difficulty in detecting aberrations in lymphocytes from adults is largely due to a considerable background of chromosomal anomalies which should be borne in mind in dosimetry studies. The rate of induction largely depends on the types of rearrangements. One-break terminal deletions are efficiently induced at 0.1 and 0.2 Gy and are the best indicators of exposure at these doses. At 0.5 Gy, the frequencies of 2-break lesions, i.e., dicentrics and reciprocal translocations, increase, whereas the of deletions decreases. (author). 6 refs., 3 figs., 2 tabs

  19. Human acrocentric chromosomes with transcriptionally silent nucleolar organizer regions associate with nucleoli

    OpenAIRE

    Sullivan, Gareth J.; Bridger, Joanna M.; Cuthbert, Andrew P.; Newbold, Robert F.; Bickmore, Wendy A.; McStay, Brian

    2001-01-01

    Human ribosomal gene repeats are distributed among five nucleolar organizer regions (NORs) on the p arms of acrocentric chromosomes. On exit from mitosis, nucleoli form around individual active NORs. As cells progress through the cycle, these mini-nucleoli fuse to form large nucleoli incorporating multiple NORs. It is generally assumed that nucleolar incorporation of individual NORs is dependent on ribosomal gene transcription. To test this assumption, we determined the nuclear location of in...

  20. First-trimester maternal serum human thyroid-stimulating hormone in chromosomally normal and Down syndrome pregnancies

    NARCIS (Netherlands)

    Pratt, JJ; de Wolf, BTHM; Mantingh, A

    Maternal serum human thyroid-stimulating hormone (TSH) levels were investigated in chromosomally normal and Down syndrome pregnancies to determine whether TSH can be used as a marker for Down syndrome in the first trimester. Measurements were conducted on stored serum samples collected from 23 Down

  1. Telomerase-mediated life-span extension of human primary fibroblasts by human artificial chromosome (HAC) vector

    International Nuclear Information System (INIS)

    Shitara, Shingo; Kakeda, Minoru; Nagata, Keiko; Hiratsuka, Masaharu; Sano, Akiko; Osawa, Kanako; Okazaki, Akiyo; Katoh, Motonobu; Kazuki, Yasuhiro; Oshimura, Mitsuo; Tomizuka, Kazuma

    2008-01-01

    Telomerase-mediated life-span extension enables the expansion of normal cells without malignant transformation, and thus has been thought to be useful in cell therapies. Currently, integrating vectors including the retrovirus are used for human telomerase reverse transcriptase (hTERT)-mediated expansion of normal cells; however, the use of these vectors potentially causes unexpected insertional mutagenesis and/or activation of oncogenes. Here, we established normal human fibroblast (hPF) clones retaining non-integrating human artificial chromosome (HAC) vectors harboring the hTERT expression cassette. In hTERT-HAC/hPF clones, we observed the telomerase activity and the suppression of senescent-associated SA-β-galactosidase activity. Furthermore, the hTERT-HAC/hPF clones continued growing beyond 120 days after cloning, whereas the hPF clones retaining the silent hTERT-HAC senesced within 70 days. Thus, hTERT-HAC-mediated episomal expression of hTERT allows the extension of the life-span of human primary cells, implying that gene delivery by non-integrating HAC vectors can be used to control cellular proliferative capacity of primary cultured cells

  2. Tripolar chromosome segregation drives the association between maternal genotype at variants spanning PLK4 and aneuploidy in human preimplantation embryos.

    Science.gov (United States)

    McCoy, Rajiv C; Newnham, Louise J; Ottolini, Christian S; Hoffmann, Eva R; Chatzimeletiou, Katerina; Cornejo, Omar E; Zhan, Qiansheng; Zaninovic, Nikica; Rosenwaks, Zev; Petrov, Dmitri A; Demko, Zachary P; Sigurjonsson, Styrmir; Handyside, Alan H

    2018-04-24

    Aneuploidy is prevalent in human embryos and is the leading cause of pregnancy loss. Many aneuploidies arise during oogenesis, increasing with maternal age. Superimposed on these meiotic aneuploidies are frequent errors occurring during early mitotic divisions, contributing to widespread chromosomal mosaicism. Here we reanalyzed a published dataset comprising preimplantation genetic testing for aneuploidy in 24,653 blastomere biopsies from day-3 cleavage-stage embryos, as well as 17,051 trophectoderm biopsies from day-5 blastocysts. We focused on complex abnormalities that affected multiple chromosomes simultaneously, seeking insights into their formation. In addition to well-described patterns such as triploidy and haploidy, we identified 4.7% of blastomeres possessing characteristic hypodiploid karyotypes. We inferred this signature to have arisen from tripolar chromosome segregation in normally-fertilized diploid zygotes or their descendant diploid cells. This could occur via segregation on a tripolar mitotic spindle or by rapid sequential bipolar mitoses without an intervening S-phase. Both models are consistent with time-lapse data from an intersecting set of 77 cleavage-stage embryos, which were enriched for the tripolar signature among embryos exhibiting abnormal cleavage. The tripolar signature was strongly associated with common maternal genetic variants spanning the centrosomal regulator PLK4, driving the association we previously reported with overall mitotic errors. Our findings are consistent with the known capacity of PLK4 to induce tripolar mitosis or precocious M-phase upon dysregulation. Together, our data support tripolar chromosome segregation as a key mechanism generating complex aneuploidy in cleavage-stage embryos and implicate maternal genotype at a quantitative trait locus spanning PLK4 as a factor influencing its occurrence.

  3. Isolation of probes specific to human chromosomal region 6p21 from immunoselected irradiation-fusion gene transfer hybrids

    International Nuclear Information System (INIS)

    Ragoussis, J.; Jones, T.A.; Sheer, D.; Shrimpton, A.E.; Goodfellow, P.N.; Trowsdale, J.; Ziegler, A.

    1991-01-01

    A hybrid cell line (R21/B1) containing a truncated human chromosome 6 (6pter-6q21) and a human Y chromosome on a hamster background was irradiated and fused to A23 (TK-) or W3GH (HPRT-) hamster cells. Clones containing expressed HLA class I genes (4/40) were selected using monoclonal antibodies. These clones were recloned and analyzed with a panel of probes from the HLA region. One hybrid (4G6) contained the entire HLA complex. Two other hybrids (4J4 and 4H2) contained only the HLA class I region, while the fourth hybrid (5P9) contained HLA class I and III genes in addition to other genes located in the 6p21 chromosomal region. In situ hybridization showed that the hybrid cells contained more than one fragment of human DNA. Alu and LINE PCR products were derived from these cells and compared to each other as well as to products from two somatic cell hybrids having the 6p21 region in common. The PCR fragments were then screened on conventional Southern blots of the somatic cell hybrids to select a panel of novel probes encompassing the 6p21 region. In addition, the origin of the human DNA fragments in hybrid 4J4 was determined by regional mapping of PCR products

  4. The study of chromosome aberration yield in human lymphocytes as an indicator of radiation dose. 1. Techniques

    International Nuclear Information System (INIS)

    Purrott, R.J.; Lloyd, D.C.

    1972-08-01

    Estimates of exposure to ionizing radiation can be obtained by determining the yield of chromosome aberrations in cultured human lymphocytes. Chromosomes can only be conveniently examined during cell division. The lymphocytes, which do not normally divide whilst circulating, are stimulated to divide during a 48-hour culture period. Two types of culture technique are described, one of which employs a lymphocyte-enriched inoculum and the other which uses whole blood. After culture the cells are harvested, dispensed onto slides and prepared for microscopic examination. An account is also given of the analysis of various types of radiation-induced chromosome aberrations and of the construction of calibration curves for certain types and rates of radiation which are used to interpret the aberration yields in terms of dose. (author)

  5. Cloning and sequencing of cDNA encoding human DNA topoisomerase II and localization of the gene to chromosome region 17q21-22

    International Nuclear Information System (INIS)

    Tsai-Pflugfelder, M.; Liu, L.F.; Liu, A.A.; Tewey, K.M.; Whang-Peng, J.; Knutsen, T.; Huebner, K.; Croce, C.M.; Wang, J.C.

    1988-01-01

    Two overlapping cDNA clones encoding human DNA topoisomerase II were identified by two independent methods. In one, a human cDNA library in phage λ was screened by hybridization with a mixed oligonucleotide probe encoding a stretch of seven amino acids found in yeast and Drosophila DNA topoisomerase II; in the other, a different human cDNA library in a λgt11 expression vector was screened for the expression of antigenic determinants that are recognized by rabbit antibodies specific to human DNA topoisomerase II. The entire coding sequences of the human DNA topoisomerase II gene were determined from these and several additional clones, identified through the use of the cloned human TOP2 gene sequences as probes. Hybridization between the cloned sequences and mRNA and genomic DNA indicates that the human enzyme is encoded by a single-copy gene. The location of the gene was mapped to chromosome 17q21-22 by in situ hybridization of a cloned fragment to metaphase chromosomes and by hybridization analysis with a panel of mouse-human hybrid cell lines, each retaining a subset of human chromosomes

  6. Chromosomal instability induced by ionizing radiation

    International Nuclear Information System (INIS)

    Morgan, W.F.; Marder, B.A.; Day, J.P.

    1995-01-01

    There is accumulating evidence indicating genomic instability can manifest multiple generations after cellular exposure to DNA damaging agents. For instance, some cells surviving exposure to ionizing radiations show delayed reproductive cell death, delayed mutation and / or delayed chromosomal instability. Such instability, especially chromosome destabilization has been implicated in mutation, gene amplification, cellular transformation, and cell killing. To investigate chromosomal instability following DNA damage, we have used fluorescence in situ hybridization to detect chromosomal rearrangements in a human/hamster somatic hybrid cell line following exposure to ionizing radiation. Delayed chromosomal instability was detected when multiple populations of uniquely arranged metaphases were observed in clonal isolates raised from single cells. The relationship between delayed chromosomal destabilization and other endpoints of genomic instability, namely; delayed mutation and gene amplification will be discussed, as will the potential cytogenetic and molecular mechanisms contributing to delayed chromosomal instability

  7. Chromosomal instability in women with primary ovarian insufficiency.

    Science.gov (United States)

    Katari, Sunita; Aarabi, Mahmoud; Kintigh, Angela; Mann, Susan; Yatsenko, Svetlana A; Sanfilippo, Joseph S; Zeleznik, Anthony J; Rajkovic, Aleksandar

    2018-02-07

    What is the prevalence of somatic chromosomal instability among women with idiopathic primary ovarian insufficiency (POI)? A subset of women with idiopathic POI may have functional impairment in DNA repair leading to chromosomal instability in their soma. The formation and repair of DNA double-strand breaks during meiotic recombination are fundamental processes of gametogenesis. Oocytes with compromised DNA integrity are susceptible to apoptosis which could trigger premature ovarian aging and accelerated wastage of the human follicle reserve. Genomewide association studies, as well as whole exome sequencing, have implicated multiple genes involved in DNA damage repair. However, the prevalence of defective DNA damage repair in the soma of women with POI is unknown. In total, 46 women with POI and 15 family members were evaluated for excessive mitomycin-C (MMC)-induced chromosome breakage. Healthy fertile females (n = 20) and two lymphoblastoid cell lines served as negative and as positive controls, respectively. We performed a pilot functional study utilizing MMC to assess chromosomal instability in the peripheral blood of participants. A high-resolution array comparative genomic hybridization (aCGH) was performed on 16 POI patients to identify copy number variations (CNVs) for a set of 341 targeted genes implicated in DNA repair. Array CGH revealed three POI patients (3/16, 18.8%) with pathogenic CNVs. Excessive chromosomal breakage suggestive of a constitutional deficiency in DNA repair was detected in one POI patient with the 16p12.3 duplication. In two patients with negative chromosome breakage analysis, aCGH detected a Xq28 deletion comprising the Centrin EF-hand Protein 2 (CETN2) and HAUS Augmin Like Complex Subunit 7 (HAUS7) genes essential for meiotic DNA repair, and a duplication in the 3p22.2 region comprising a part of the ATPase domain of the MutL Homolog 1 (MLH1) gene. Peripheral lymphocytes, used as a surrogate tissue to quantify induced chromosome

  8. Introduction of a normal human chromosome 8 corrects abnormal phenotypes of Werner syndrome cells immortalized by expressing an hTERT gene

    International Nuclear Information System (INIS)

    Ariyoshi, Kentaro; Kodama, Seiji; Suzuki, Keiji; Goto, Makoto; Oshimura, Mitsuo; Ishizaki, Kanji; Watanabe, Masami

    2009-01-01

    Werner syndrome (WS) is an autosomal recessive disease characterized by premature aging and caused by mutations of the WRN gene mapped at 8p12. To examine functional complementation of WS phenotypes, we introduced a normal human chromosome 8 into a strain of WS fibroblasts (WS3RGB) immortalized by expressing a human telomerase reverse transcriptase subunit (hTERT) gene. Here, we demonstrate that the abnormal WS phenotypes including cellular sensitivities to 4-nitroquinoline-1-oxide (4NQO) and hydroxy urea (HU), and chromosomal radiosensitivity at G 2 phase are corrected by expression of the WRN gene mediated by introducing a chromosome 8. This indicates that those multiple abnormal WS phenotypes are derived from a primary, but not secondary, defect in the WRN gene. (author)

  9. Isolation and characterization of DNA probes from a flow-sorted human chromosome 8 library that detect restriction fragment length polymorphism (RFLP).

    Science.gov (United States)

    Wood, S; Starr, T V; Shukin, R J

    1986-01-01

    We have used a recombinant DNA library constructed from flow-sorted human chromosome 8 as a source of single-copy human probes. These probes have been screened for restriction fragment length polymorphism (RFLP) by hybridization to Southern transfers of genomic DNA from five unrelated individuals. We have detected six RFLPs distributed among four probes after screening 741 base pairs for restriction site variation. These RFLPs all behave as codominant Mendelian alleles. Two of the probes detect rare variants, while the other two detect RFLPs with PIC values of .36 and .16. Informative probes will be useful for the construction of a linkage map for chromosome 8 and for the localization of mutant alleles to this chromosome. Images Fig. 1 PMID:2879441

  10. Types of structural chromosome aberrations and their incidences in human spermatozoa X-irradiated in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Kamiguchi, Yujiroh; Tateno, Hiroyuki; Mikamo, Kazuya (Asahikawa Medical College (Japan). Department of Biological Sciences)

    1990-02-01

    The authors studied the effects of in vitro X-irradiation on human sperm chromosomes, using our interspecific in vitro fertilization system between human spermatozoa and zona-free hamster oocytes. 28 semen samples from 5 healthy men were exposed to 0.23, 0.45, 0.91 and 1.82 Gy of X-rays. Totals of 2098 and 2862 spermatozoa were karyotyped in the control and the irradiated groups, respectively. The indicence of spermatozoa with X-ray-induced structural chromosome aberrations (Y) increased linearly with increasing dosage (D), being best expressed by the equation, Y = 0.08 + 34.52 D. The incidence of breakage-type aberrations was moe than 9 times higher than that of exchange-type aberrations. Both of them showed linear dose-dependent increases, which were expressed by the regression lines, Y = -0.014 + 0.478 D and Y -0.010 + 0.057 D, respectively. The incidence of chromosome-ltype aberrations was about 6 times higher than that of chromatid-type aberrations. Their dose-dependent increases were expressed by the regression lines, Y = -0.015 + 0.462 D and Y = -0.006 + 0.079 D, respectively. These results are discussed in relation to the previous data obtained with {gamma}-rays. The repair mechanism of X-ray-induced sperm DNA lesions is also discussed. (author). 21 refs.; 4 figs.; 4 tabs.

  11. Auditory function in the Tc1 mouse model of down syndrome suggests a limited region of human chromosome 21 involved in otitis media.

    Directory of Open Access Journals (Sweden)

    Stephanie Kuhn

    Full Text Available Down syndrome is one of the most common congenital disorders leading to a wide range of health problems in humans, including frequent otitis media. The Tc1 mouse carries a significant part of human chromosome 21 (Hsa21 in addition to the full set of mouse chromosomes and shares many phenotypes observed in humans affected by Down syndrome with trisomy of chromosome 21. However, it is unknown whether Tc1 mice exhibit a hearing phenotype and might thus represent a good model for understanding the hearing loss that is common in Down syndrome. In this study we carried out a structural and functional assessment of hearing in Tc1 mice. Auditory brainstem response (ABR measurements in Tc1 mice showed normal thresholds compared to littermate controls and ABR waveform latencies and amplitudes were equivalent to controls. The gross anatomy of the middle and inner ears was also similar between Tc1 and control mice. The physiological properties of cochlear sensory receptors (inner and outer hair cells: IHCs and OHCs were investigated using single-cell patch clamp recordings from the acutely dissected cochleae. Adult Tc1 IHCs exhibited normal resting membrane potentials and expressed all K(+ currents characteristic of control hair cells. However, the size of the large conductance (BK Ca(2+ activated K(+ current (I(K,f, which enables rapid voltage responses essential for accurate sound encoding, was increased in Tc1 IHCs. All physiological properties investigated in OHCs were indistinguishable between the two genotypes. The normal functional hearing and the gross structural anatomy of the middle and inner ears in the Tc1 mouse contrast to that observed in the Ts65Dn model of Down syndrome which shows otitis media. Genes that are trisomic in Ts65Dn but disomic in Tc1 may predispose to otitis media when an additional copy is active.

  12. Rejoining of x-ray induced chromosome breaks in human cells and its relationship to cellular repair

    International Nuclear Information System (INIS)

    Cornforth, M.N.

    1985-01-01

    A method was developed to improve the resolution for measuring breaks produced in interphase chromosomes by X-rays following the induction of premature chromosome condensation (PCC). It is based on the principle of 5-BrdU incorporation into the DNA of HeLa mitotic cells, which act as inducers of PCC when they are fused to diploid human fibroblasts. After a modified Fluorescence Plus Giemsa (FPG) protocol, the PCC stain intensely, while the mitotic inducer chromosomes stain faintly. The dose response for density inhibited (G 0 ) human cells was linear from 10.9 to 600 rad, with a slope of 0.06 breaks per cell per rad. Upon incubation at 37 0 C, half of the breaks disappeared in 2 hours. Following a dose of 600 rad the initial rate of break rejoining mirrored the rate of increase in survival from post-irradiation incubation, due to the repair of potentially lethal damage (PLD). The X-ray induced PCC rejoining characteristics from two ataxia telangiectasia (A-T) cell lines were compared to profiles obtained with normal cells. Both normal and A-T cells apparently sustained the same initial level of radiation damage, and both cell types rejoined breaks at the same rate. However, while normal cells eventually rejoined all but about 5% of the breaks produced by 600 rad, the A-T lines were left with 5-6 times the level of residual damage. These experiments demonstrate that progression of cells into S phase is not a necessary condition for the measured frequency of chromosome fragments observed in X-irradiated A-T cells

  13. The human thyroglobulin gene: a polymorphic marker localized distal to C-MYC on chromosome 8 band q24

    NARCIS (Netherlands)

    Baas, F.; Bikker, H.; Geurts van Kessel, A.; Melsert, R.; Pearson, P. L.; de Vijlder, J. J.; van Ommen, G. J.

    1985-01-01

    The human thyroglobulin (Tg) gene is localized to chromosome 8 and regionally to band q24 as shown independently by both in situ hybridization techniques and Southern blot analysis of human-rodent somatic cell hybrids. Analysis of hybrids derived from a Burkitt lymphoma, with a translocation

  14. Analysis of 62 hybrid assembled human Y chromosomes exposes rapid structural changes and high rates of gene conversion.

    Directory of Open Access Journals (Sweden)

    Laurits Skov

    2017-08-01

    Full Text Available The human Y-chromosome does not recombine across its male-specific part and is therefore an excellent marker of human migrations. It also plays an important role in male fertility. However, its evolution is difficult to fully understand because of repetitive sequences, inverted repeats and the potentially large role of gene conversion. Here we perform an evolutionary analysis of 62 Y-chromosomes of Danish descent sequenced using a wide range of library insert sizes and high coverage, thus allowing large regions of these chromosomes to be well assembled. These include 17 father-son pairs, which we use to validate variation calling. Using a recent method that can integrate variants based on both mapping and de novo assembly, we genotype 10898 SNVs and 2903 indels (max length of 27241 bp in our sample and show by father-son concordance and experimental validation that the non-recurrent SNP and indel variation on the Y chromosome tree is called very accurately. This includes variation called in a 0.9 Mb centromeric heterochromatic region, which is by far the most variable in the Y chromosome. Among the variation is also longer sequence-stretches not present in the reference genome but shared with the chimpanzee Y chromosome. We analyzed 2.7 Mb of large inverted repeats (palindromes for variation patterns among the two palindrome arms and identified 603 mutation and 416 gene conversions events. We find clear evidence for GC-biased gene conversion in the palindromes (and a balancing AT mutation bias, but irrespective of this, also a strong bias towards gene conversion towards the ancestral state, suggesting that palindromic gene conversion may alleviate Muller's ratchet. Finally, we also find a large number of large-scale gene duplications and deletions in the palindromic regions (at least 24 and find that such events can consist of complex combinations of simultaneous insertions and deletions of long stretches of the Y chromosome.

  15. Human placental Na+, K+-ATPase α subunit: cDNA cloning, tissue expression, DNA polymorphism, and chromosomal localization

    International Nuclear Information System (INIS)

    Chehab, F.F.; Kan, Y.W.; Law, M.L.; Hartz, J.; Kao, F.T.; Blostein, R.

    1987-01-01

    A 2.2-kilobase clone comprising a major portion of the coding sequence of the Na + , K + -ATPase α subunit was cloned from human placenta and its sequence was identical to that encoding the α subunit of human kidney and HeLa cells. Transfer blot analysis of the mRNA products of the Na + , K + -ATPase gene from various human tissues and cell lines revealed only one band (≅ 4.7 kilobases) under low and high stringency washing conditions. The levels of expression in the tissues were intestine > placenta > liver > pancreas, and in the cell lines the levels were human erythroleukemia > butyrate-induced colon > colon > brain > HeLa cells. mRNA was undetectable in reticulocytes, consistent with the authors failure to detect positive clones in a size-selected ( > 2 kilobases) λgt11 reticulocyte cDNA library. DNA analysis revealed by a polymorphic EcoRI band and chromosome localization by flow sorting and in situ hybridization showed that the α subunit is on the short is on the short arm (band p11-p13) of chromosome 1

  16. Effect of caffeine posttreatment on X-ray-induced chromosomal aberrations in human blood lymphocytes in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Natarajan, A T [Rijksuniversiteit Leiden (Netherlands). Dept. of Radiation Genetics and Chemical Mutagenesis; Cohen (J.A.) Inst. voor Radiopathologie en Stralenbescherming, Leiden (Netherlands)); Obe, G [Rijksuniversiteit Leiden (Netherlands). Dept. of Radiation Genetics and Chemical Mutagenesis; Cohen (J.A.) Inst. voor Radiopathologie en Stralenbescherming, Leiden (Netherlands); Freie Univ. Berlin (Germany, F.R.). Inst. fuer Genetik); Dulout, F N [Rijksuniversiteit Leiden (Netherlands). Dept. of Radiation Genetics and Chemical Mutagenesis; Instituto Multidisciplinario de Biologia Celular, La Plata (Argentinia))

    1980-01-01

    The potentiating effect of caffeine on X-ray-induced chromosomal aberrations in human blood lymphocytes has been investigated, with special reference to cell cycle stages (G0 and G2). Both quantitative and qualitative differences in the yield of chromosomal aberrations were detected in caffeine-posttreated cells, depending on the cell stage irradiated. The studies on caffeine potentiating effects on X-irradiated G0 lymphocytes from normal adults, newborns, Down syndrome patients, and an ataxia telangiectasia patient pointed to interindividual variations in the response to caffeine potentiation among normal probands and a very profound effect in ataxia cells.

  17. Symmetrical exchanges between chromosomes induced by irradiation of human lymphocytes with fast neutrons and detected by repeated fluorescence in situ hybridisation

    International Nuclear Information System (INIS)

    Lukasova, E.; Kozubek, S.; Ryznar, L.; Mareckova, A.; Bartova, E.; Kozubek, M.; Skalnikova, M.; Kroha, V.

    1998-01-01

    The frequency was studied of exchange aberrations between chromosomes no. 1, 2, 3, 4, 6, 8, 9, 11, 12, 14, 18, and 22 in the first postirradiation mitosis of human lymphocytes irradiated with various doses of neutrons of a mean energy of 7 MeV. Seven repeated hybridizations were carried out. Seven different images were obtained for each mitosis, in which two specific chromosomes were distinguished from the others by red and green fluorescence. The successive images were compared, whereby the frequencies of exchange aberrations between the visualized chromosomes were found. The results show a higher frequency of exchanges between chromosomes 14/8, 14/18, 14/3, 8/3, 8/1, and 8/18. No exchange aberrations occurred between the upper of the chromosomes mentioned and chromosomes 9, 22, 4, or 12. The results suggest that chromosomes 1, 3, 8, 14, and 18 are located in mutual vicinity in the interphase nuclei of lymphocytes. This vicinity seems to be one of the reasons for the spontaneous reciprocal exchanges between chromosome 14 and the remaining chromosomes mentioned (1, 3, 8, 18), characteristic for the malignancy of B-lymphocytes in various types of non-Hodgkin lymphomas

  18. Cancer risk in humans predicted by increased levels of chromosomal aberrations in lymphocytes: Nordic study group on the health risk of chromosome damage

    DEFF Research Database (Denmark)

    Hagmar, L; Brøgger, A; Hansteen, I L

    1994-01-01

    Cytogenetic assays in peripheral blood lymphocytes (PBL) have been used extensively to survey the exposure of humans to genotoxic agents. The conceptual basis for this has been the hypothesis that the extent of genetic damage in PBL reflects critical events for carcinogenic processes in target...... tissues. Until now, no follow-up studies have been performed to assess the predictive value of these methods for subsequent cancer risk. In an ongoing Nordic cohort study of cancer incidence, 3182 subjects were examined between 1970 and 1988 for chromosomal aberrations (CA), sister chromatid exchange.......0009) in CA strata with regard to subsequent cancer risk. The point estimates of the standardized incidence ratio in the three CA strata were 0.9, 0.7, and 2.1, respectively. Thus, an increased level of chromosome breakage appears to be a relevant biomarker of future cancer risk....

  19. Klinefelter syndrome and other sex chromosomal aneuploidies

    Directory of Open Access Journals (Sweden)

    Graham John M

    2006-10-01

    Full Text Available Abstract The term Klinefelter syndrome (KS describes a group of chromosomal disorder in which there is at least one extra X chromosome to a normal male karyotype, 46,XY. XXY aneuploidy is the most common disorder of sex chromosomes in humans, with prevalence of one in 500 males. Other sex chromosomal aneuploidies have also been described, although they are much less frequent, with 48,XXYY and 48,XXXY being present in 1 per 17,000 to 1 per 50,000 male births. The incidence of 49,XXXXY is 1 per 85,000 to 100,000 male births. In addition, 46,XX males also exist and it is caused by translocation of Y material including sex determining region (SRY to the X chromosome during paternal meiosis. Formal cytogenetic analysis is necessary to make a definite diagnosis, and more obvious differences in physical features tend to be associated with increasing numbers of sex chromosomes. If the diagnosis is not made prenatally, 47,XXY males may present with a variety of subtle clinical signs that are age-related. In infancy, males with 47,XXY may have chromosomal evaluations done for hypospadias, small phallus or cryptorchidism, developmental delay. The school-aged child may present with language delay, learning disabilities, or behavioral problems. The older child or adolescent may be discovered during an endocrine evaluation for delayed or incomplete pubertal development with eunuchoid body habitus, gynecomastia, and small testes. Adults are often evaluated for infertility or breast malignancy. Androgen replacement therapy should begin at puberty, around age 12 years, in increasing dosage sufficient to maintain age appropriate serum concentrations of testosterone, estradiol, follicle stimulating hormone (FSH, and luteinizing hormone (LH. The effects on physical and cognitive development increase with the number of extra Xs, and each extra X is associated with an intelligence quotient (IQ decrease of approximately 15–16 points, with language most affected

  20. Dose response curve for prematurely condensed chromosome fragments of human lymphocytes after 60Co-γ ray exposure

    International Nuclear Information System (INIS)

    Gao Jinsheng; Zheng Siying; Bao Hong

    1992-06-01

    The dose-effect relationship of premature condensed chromosome fragments in human lymphocytes irradiated by 60 Co gamma ray was studied by PCC method (premature condensed chromosomes). In addition, The conventional cellular genetics method was also used in the study. The response curve of both methods can represented by two linear equations. The ratio of two slopes, K PCC /K M1 , is about 28. Comparing with conventional method, the PCC method has many advantages such as faster, simpler, more sensitive and accurate. The PCC method used in the studying of radiation damage is also discussed

  1. Caffeine potentiates or protects against radiation-induced DNA and chromosomal damage in human lymphocytes depending on temperature and concentration

    International Nuclear Information System (INIS)

    Stoilov, L.M.; Mullenders, L.H.F.; Natarajan, A.T.

    1994-01-01

    The effect of caffeine on radiation-induced chromosomal aberrations and DNA strand breaks in unstimulated human lymphocytes was investigated. When present prior to and during the radiation exposure, caffeine treatment was found to cause either potentiation or protection against induction of chromosomal aberrations depending on the concentration and temperature. When the nucleoid sedimentation technique was applied, enhancement or reduction of radiation-induced DNA strand breaks by caffeine was also found to be dependent on temperature and caffeine concentration. It is proposed that caffeine, in addition to its suspected ability to influence DNA repair, can also influence the induction of DNA damage, leading to alterations in the yield of chromosomal aberrations

  2. Caffeine potentiates or protects against radiation-induced DNA and chromosomal damage in human lymphocytes depending on temperature and concentration

    Energy Technology Data Exchange (ETDEWEB)

    Stoilov, L.M. (Department of Molecular Genetics, Institute of Genetics, Sofia (Bulgaria)); Mullenders, L.H.F.; Natarajan, A.T. (J.A. Cohen Institute, Interuniversity Research Institute for Radiopathology and Radiation Protection, Leiden (Netherlands))

    1994-12-01

    The effect of caffeine on radiation-induced chromosomal aberrations and DNA strand breaks in unstimulated human lymphocytes was investigated. When present prior to and during the radiation exposure, caffeine treatment was found to cause either potentiation or protection against induction of chromosomal aberrations depending on the concentration and temperature. When the nucleoid sedimentation technique was applied, enhancement or reduction of radiation-induced DNA strand breaks by caffeine was also found to be dependent on temperature and caffeine concentration. It is proposed that caffeine, in addition to its suspected ability to influence DNA repair, can also influence the induction of DNA damage, leading to alterations in the yield of chromosomal aberrations.

  3. Chromatin structure and ionizing-radiation-induced chromosome aberrations

    International Nuclear Information System (INIS)

    Muehlmann-Diaz, M.C.

    1993-01-01

    The possible influence of chromatic structure or activity on chromosomal radiosensitivity was studied. A cell line was isolated which contained some 10 5 copies of an amplified plasmid in a single large mosquito artificial chromosome (MAC). This chromosome was hypersensitive to DNase I. Its radiosensitivity was some three fold greater than normal mosquito chromosomes in the same cell. In cultured human cells irradiated during G 0 , the initial breakage frequency in chromosome 4, 19 and the euchromatic and heterochromatic portions of the Y chromosome were measured over a wide range of doses by inducing Premature Chromosome Condensation (PCC) immediately after irradiation with Cs-137 gamma rays. No evidence was seen that Y heterochromatin or large fragments of it remained unbroken. The only significant deviation from the expected initial breakage frequency per Gy per unit length of chromosome was that observed for the euchromatic portion of the Y chromosome, with breakage nearly twice that expected. The development of aberrations involving X and Y chromosomes at the first mitosis after irradation was also studied. Normal female cells sustained about twice the frequency of aberrations involving X chromosomes for a dose of 7.3 Gy than the corresponding male cells. Fibroblasts from individuals with supernumerary X chromosomes did not show any further increase in X aberrations for this dos. The frequency of aberrations involving the heterochromatic portion of the long arm of the Y chromosome was about what would be expected for a similar length of autosome, but the euchromatic portion of the Y was about 3 times more radiosensitive per unit length. 5-Azacytidine treatment of cultured human female fibroblasts or fibroblasts from a 49,XXXXY individual, reduced the methylation of cytosine residues in DNA, and resulted in an increased chromosomal radiosensitivity in general, but it did not increase the frequency of aberrations involving the X chromosomes

  4. Satellite DNA-based artificial chromosomes for use in gene therapy.

    Science.gov (United States)

    Hadlaczky, G

    2001-04-01

    Satellite DNA-based artificial chromosomes (SATACs) can be made by induced de novo chromosome formation in cells of different mammalian species. These artificially generated accessory chromosomes are composed of predictable DNA sequences and they contain defined genetic information. Prototype human SATACs have been successfully constructed in different cell types from 'neutral' endogenous DNA sequences from the short arm of the human chromosome 15. SATACs have already passed a number of hurdles crucial to their further development as gene therapy vectors, including: large-scale purification; transfer of purified artificial chromosomes into different cells and embryos; generation of transgenic animals and germline transmission with purified SATACs; and the tissue-specific expression of a therapeutic gene from an artificial chromosome in the milk of transgenic animals.

  5. Chromosomal clustering of a human transcriptome reveals regulatory background

    Directory of Open Access Journals (Sweden)

    Purmann Antje

    2005-09-01

    Full Text Available Abstract Background There has been much evidence recently for a link between transcriptional regulation and chromosomal gene order, but the relationship between genomic organization, regulation and gene function in higher eukaryotes remains to be precisely defined. Results Here, we present evidence for organization of a large proportion of a human transcriptome into gene clusters throughout the genome, which are partly regulated by the same transcription factors, share biological functions and are characterized by non-housekeeping genes. This analysis was based on the cardiac transcriptome identified by our genome-wide array analysis of 55 human heart samples. We found 37% of these genes to be arranged mainly in adjacent pairs or triplets. A significant number of pairs of adjacent genes are putatively regulated by common transcription factors (p = 0.02. Furthermore, these gene pairs share a significant number of GO functional classification terms. We show that the human cardiac transcriptome is organized into many small clusters across the whole genome, rather than being concentrated in a few larger clusters. Conclusion Our findings suggest that genes expressed in concert are organized in a linear arrangement for coordinated regulation. Determining the relationship between gene arrangement, regulation and nuclear organization as well as gene function will have broad biological implications.

  6. Mechanisms and consequences of paternally transmitted chromosomal abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, F; Wyrobek, A J

    2005-04-05

    Paternally transmitted chromosomal damage has been associated with pregnancy loss, developmental and morphological defects, infant mortality, infertility, and genetic diseases in the offspring including cancer. There is epidemiological evidence linking paternal exposure to occupational or environmental agents with an increased risk of abnormal reproductive outcomes. There is also a large body of literature on germ cell mutagenesis in rodents showing that treatment of male germ cells with mutagens has dramatic consequences on reproduction producing effects such as those observed in human epidemiological studies. However, we know very little about the etiology, transmission and early embryonic consequences of paternally-derived chromosomal abnormalities. The available evidence suggests that: (1) there are distinct patterns of germ cell-stage differences in the sensitivity of induction of transmissible genetic damage with male postmeiotic cells being the most sensitive; (2) cytogenetic abnormalities at first metaphase after fertilization are critical intermediates between paternal exposure and abnormal reproductive outcomes; and, (3) there are maternally susceptibility factors that may have profound effects on the amount of sperm DNA damage that is converted into chromosomal aberrations in the zygote and directly affect the risk for abnormal reproductive outcomes.

  7. Complete Genome Sequence of Germline Chromosomally Integrated Human Herpesvirus 6A and Analyses Integration Sites Define a New Human Endogenous Virus with Potential to Reactivate as an Emerging Infection.

    Science.gov (United States)

    Tweedy, Joshua; Spyrou, Maria Alexandra; Pearson, Max; Lassner, Dirk; Kuhl, Uwe; Gompels, Ursula A

    2016-01-15

    Human herpesvirus-6A and B (HHV-6A, HHV-6B) have recently defined endogenous genomes, resulting from integration into the germline: chromosomally-integrated "CiHHV-6A/B". These affect approximately 1.0% of human populations, giving potential for virus gene expression in every cell. We previously showed that CiHHV-6A was more divergent than CiHHV-6B by examining four genes in 44 European CiHHV-6A/B cardiac/haematology patients. There was evidence for gene expression/reactivation, implying functional non-defective genomes. To further define the relationship between HHV-6A and CiHHV-6A we used next-generation sequencing to characterize genomes from three CiHHV-6A cardiac patients. Comparisons to known exogenous HHV-6A showed CiHHV-6A genomes formed a separate clade; including all 85 non-interrupted genes and necessary cis-acting signals for reactivation as infectious virus. Greater single nucleotide polymorphism (SNP) density was defined in 16 genes and the direct repeats (DR) terminal regions. Using these SNPs, deep sequencing analyses demonstrated superinfection with exogenous HHV-6A in two of the CiHHV-6A patients with recurrent cardiac disease. Characterisation of the integration sites in twelve patients identified the human chromosome 17p subtelomere as a prevalent site, which had specific repeat structures and phylogenetically related CiHHV-6A coding sequences indicating common ancestral origins. Overall CiHHV-6A genomes were similar, but distinct from known exogenous HHV-6A virus, and have the capacity to reactivate as emerging virus infections.

  8. Delayed cell death, giant cell formation and chromosome instability induced by X-irradiation in human embryo cells

    International Nuclear Information System (INIS)

    Roy, K.; Kodama, Seiji; Suzuki, Keiji; Watanabe, Masami

    1999-01-01

    We studied X-ray-induced delayed cell death, delayed giant cell formation and delayed chromosome aberrations in normal human embryo cells to explore the relationship between initial radiation damage and delayed effect appeared at 14 to 55 population doubling numbers (PDNs) after X-irradiation. The delayed effect was induced in the progeny of X-ray survivors in a dose-dependent manner and recovered with increasing PDNs after X-irradiation. Delayed plating for 24 h post-irradiation reduced both acute and delayed lethal damage, suggesting that potentially lethal damage repair (PLDR) can be effective for relieving the delayed cell death. The chromosome analysis revealed that most of the dicentrics (more than 90%) observed in the progeny of X-ray survivors were not accompanied with fragments, in contrast with those observed in the first mitosis after X-irradiation. The present results indicate that the potentiality of genetic instability is determined during the repair process of initial radiation damage and suggest that the mechanism for formation of delayed chromosome aberrations by radiation might be different from that of direct radiation-induced chromosome aberrations. (author)

  9. Genome-wide detection of chromosomal rearrangements, indels, and mutations in circular chromosomes by short read sequencing

    DEFF Research Database (Denmark)

    Skovgaard, Ole; Bak, Mads; Løbner-Olesen, Anders

    2011-01-01

    a combination of WGS and genome copy number analysis, for the identification of mutations that suppress the growth deficiency imposed by excessive initiations from the Escherichia coli origin of replication, oriC. The E. coli chromosome, like the majority of bacterial chromosomes, is circular, and DNA...... replication is initiated by assembling two replication complexes at the origin, oriC. These complexes then replicate the chromosome bidirectionally toward the terminus, ter. In a population of growing cells, this results in a copy number gradient, so that origin-proximal sequences are more frequent than...... origin-distal sequences. Major rearrangements in the chromosome are, therefore, readily identified by changes in copy number, i.e., certain sequences become over- or under-represented. Of the eight mutations analyzed in detail here, six were found to affect a single gene only, one was a large chromosomal...

  10. Non-disjunction of chromosome 13

    DEFF Research Database (Denmark)

    Bugge, Merete; Collins, Andrew; Hertz, Jens Michael

    2007-01-01

    We performed a molecular study with 21 microsatellites on a sample of 82 trisomy 13 conceptuses, the largest number of cases studied to date. The parental origin was determined in every case and in 89% the extra chromosome 13 was of maternal origin with an almost equal number of maternal MI and MII...... recombination in both maternal MI and MII errors and the former is associated with a significant number of tetrads (33%) that are nullichiasmate, which do not appear to be a feature of normal chromosome 13 meiosis. This study supports the evidence for subtle chromosome-specific influences on the mechanisms...... that determine non-disjunction of human chromosomes, consistent with the diversity of findings for other trisomies. Udgivelsesdato: 2007-Aug-15...

  11. Structure and chromosomal localization of the human renal kallikrein gene

    International Nuclear Information System (INIS)

    Evans, B.A.; Yun, Z.X.; Close, J.A.

    1988-01-01

    Glandular kallikreins are a family of proteases encoded by a variable number of genes in different mammalian species. In all species examined, however, one particular kallikrein is functionally conserved in its capacity to release the vasoactive peptide, Lys-bradykinin, from low molecular weight kininogen. This kallikrein is found in the kidney, pancreas, and salivary gland, showing a unique pattern of tissue-specific expression relative to other members of the family. The authors have isolated a genomic clone carrying the human renal kallikrein gene and compared the nucleotide sequence of its promoter region with those of the mouse renal kallikrein gene and another mouse kallikrein gene expressed in a distinct cell type. They find four sequence elements conserved between renal kallikrein genes from the two species. They have also shown that the human gene is localized to 19q13, a position analogous to that of the kallikrein gene family on mouse chromosome 7

  12. Involvement of DNA repair in telomere maintenance and chromosomal instability in human cells

    International Nuclear Information System (INIS)

    Ayouaz, Ali

    2008-01-01

    Telomeres are a major actor of cell immortalization, precursor of a carcinogenesis process. Thus, it appears that the maintenance of telomeres is crucial in the implementation of carcinogenesis process. Due to their structures and under some conditions, telomeres can be assimilated in some respects to chromosomal breakages. Within this perspective, this research thesis aims at determining under which circumstances telomeres can be taken as targets by DNA repair mechanisms. More precisely, the author addressed the respective contributions of two repair mechanisms (the Non-Homologous End-Joining or NHEJ, and Homologous Recombination or HR) in the maintenance of telomere integrity. The author first discusses knowledge related to the interaction between chromosomal extremities and repair mechanisms. Then, he defines the behaviour of these mechanisms with respect to telomeres. He shows that, in absence of recombination mechanisms, the integrity of telomeres is not affected. Finally, he reports the attempt to determine their respective contributions in telomeric homeostasis [fr

  13. Chromosomal disorders and male infertility

    Institute of Scientific and Technical Information of China (English)

    Gary L Harton; Helen G Tempest

    2012-01-01

    infertility in humans is surprisingly common occurring in approximately 15% of the population wishing to start a family.Despite this,the molecular and genetic factors underlying the cause of infertility remain largely undiscovered.Nevertheless,more and more genetic factors associated with infertility are being identified.This review will focus on our current understanding of the chromosomal basis of male infertility specifically:chromosomal aneuploidy,structural and numerical karyotype abnormalities and Y chromosomal microdeletions.Chromosomal aneuploidy is the leading cause of pregnancy loss and developmental disabilities in humans.Aneuploidy is predominantly maternal in origin,but concerns have been raised regarding the safety of intracytoplasmic sperm injection as infertile men have significantly higher levels of sperm aneuploidy compared to their fertile counterparts.Males with numerical or structural karyotype abnormalities are also at an increased risk of producing aneuploid sperm.Our current understanding of how sperm aneuploidy translates to embryo aneuploidy will be reviewed,as well as the application of preimplantation genetic diagnosis (PGD) in such cases.Clinical recommendations where possible will be made,as well as discussion of the use of emerging array technology in PGD and its potential applications in male infertility.

  14. The alpha-spectrin gene is on chromosome 1 in mouse and man.

    Science.gov (United States)

    Huebner, K; Palumbo, A P; Isobe, M; Kozak, C A; Monaco, S; Rovera, G; Croce, C M; Curtis, P J

    1985-06-01

    By using alpha-spectrin cDNA clones of murine and human origin and somatic cell hybrids segregating either mouse or human chromosomes, the gene for alpha-spectrin has been mapped to chromosome 1 in both species. This assignment of the mouse alpha-spectrin gene to mouse chromosome 1 by DNA hybridization strengthens the previous identification of the alpha-spectrin locus in mouse with the sph locus, which previously was mapped by linkage analysis to mouse chromosome 1, distal to the Pep-3 locus. By in situ hybridization to human metaphase chromosomes, the human alpha-spectrin gene has been localized to 1q22-1q25; interestingly, the locus for a non-Rh-linked form of elliptocytosis has been provisionally mapped to band 1q2 by family linkage studies.

  15. Styl RFLP recognized by a human IRBP cDNA localized to chromosome 10

    Energy Technology Data Exchange (ETDEWEB)

    Chin, K S; Mathew, C G.P.; Fong, S L; Bridges, C D; Ponder, B A.J.

    1988-02-25

    A 2184 bp cDNA (H.4 IRBP) encoding human interstitial retinol-biding protein isolated from a human retina cDNA library in lambdagt10 by screening with a bovine IRBP cDNA probe. Styl identifies a 2-allele polymorphism with bands at 2.3 kb (Cl) and 1.95 kb (C2) and invariant bands at 1.1, 1.0 and 0.8kb. Codominant segregation was observed in two informative families. The RFLP was mapped to chromosome 10 using somatic cell hybrids. In situ hybridization suggests regional assignments near p11.2 -q11.2 with a secondary site of hybridization at q24-25.

  16. Cloning, expression, and chromosome mapping of human galectin-7

    DEFF Research Database (Denmark)

    Madsen, Peder; Rasmussen, H H; Flint, T

    1995-01-01

    The galectins are a family of beta-galactoside-binding proteins implicated in modulating cell-cell and cell-matrix interactions. Here we report the cloning and expression of a novel member of this family (galectin-7) that correspond to IEF (isoelectric focusing) 17 (12,700 Da; pI, 7.6) in the human...... keratinocyte protein data base, and that is strikingly down-regulated in SV40 transformed keratinocytes (K14). The cDNA was cloned from a lambda gt11 cDNA expression library using degenerated oligodeoxyribonucleotides back-translated from an IEF 17 peptide sequence. The protein encoded by the galectin-7 clone......14 keratinocytes imply a role in cell-cell and/or cell-matrix interactions necessary for normal growth control. The galectin-7 gene was mapped to chromosome 19. Udgivelsesdato: 1995-Mar-17...

  17. Chromosome 11-linked determinant controls fetal globin expression and the fetal-to-adult globin switch

    International Nuclear Information System (INIS)

    Melis, M.; Demopulos, G.; Najfeld, V.; Zhang, J.W.; Brice, M.; Papayannopoulou, T.; Stamatoyannopoulos, G.

    1987-01-01

    Hybrids formed by fusing mouse erythroleukemia (MEL) cells with human fetal erythroid cells produce human fetal globin, but they switch to adult globin production as culture time advances. To obtain information on the chromosomal assignment of the elements that control γ-to-β switching, the authors analyzed the chromosomal composition of hybrids producing exclusively or predominantly human fetal globin and hybrids producing only adult human globin. No human chromosome was consistently present in hybrids expressing fetal globin and consistently absent in hybrids expressing adult globin. Subcloning experiments demonstrated identical chromosomal compositions in subclones displaying the fetal globin program and those that had switched to expression of the adult globin program. These data indicate that retention of only one human chromosome -- i.e., chromosome 11 -- is sufficient for expression of human fetal globin and the subsequent γ-to-β switch. The results suggest that the γ-to-β switch is controlled either cis to the β-globin locus of by a trans-acting mechanism, the genes of which reside on human chromosome 11

  18. Chromosome Aberrations in Human Lymphocytes Irradiated with Ionizing Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Tae Ho; Kim, Jin Hong; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The purpose of the present experiment was to provide data on the dose-dependent production of chromosome aberrations such as dicentrics, centric rings, and excess acentrics. Radiation is one of the more dangerous clastogens in the environment. Ionizing radiation causes chromosome breakages and various cytogenetic aberrations in exposed cells. In an investigation into radiation emergencies, it is important to estimate the dose to exposed persons for several reasons. Physical dosimeters (e. g., film badges) may misrepresent the actual radiation dose and may not be available in a radiological accident or terrorism incident. Biological dosimetry is suitable for estimating the radiation dose during such accidents. The dicentric chromosome assay is very sensitive and a reliable bio-indicator in cases of accidental overexposure.

  19. Chromosomal organization of adrenergic receptor genes

    International Nuclear Information System (INIS)

    Yang-Feng, T.L.; Xue, Feiyu; Zhong, Wuwei; Cotecchia, S.; Frielle, T.; Caron, M.G.; Lefkowitz, R.J.; Francke, U.

    1990-01-01

    The adrenergic receptors (ARs) (subtypes α 1 , α 2 , β 1 , and β 2 ) are a prototypic family of guanine nucleotide binding regulatory protein-coupled receptors that mediate the physiological effects of the hormone epinephrine and the neurotransmitter norepinephrine. The authors have previously assigned the genes for β 2 -and α 2 -AR to human chromosomes 5 and 10, respectively. By Southern analysis of somatic cell hybrids and in situ chromosomal hybridization, they have now mapped the α 1 -AR gene to chromosome 5q32→q34, the same position as β 2 -AR, and the β 1 -AR gene to chromosome 10q24→q26, the region where α 2 -AR, is located. In mouse, both α 2 -and β 1 -AR genes were assigned to chromosome 19, and the α 1 -AR locus was localized to chromosome 11. Pulsed field gel electrophoresis has shown that the α 1 -and β 2 -AR genes in humans are within 300 kilobases (kb) and the distance between the α 2 - and β 1 -AR genes is <225 kb. The proximity of these two pairs of AR genes and the sequence similarity that exists among all the ARs strongly suggest that they are evolutionarily related. Moreover, they likely arose from a common ancestral receptor gene and subsequently diverged through gene duplication and chromosomal duplication to perform their distinctive roles in mediation the physiological effects of catecholamines. The AR genes thus provide a paradigm for understanding the evolution of such structurally conserved yet functionally divergent families off receptor molecules

  20. CDE-1 affects chromosome segregation through uridylation of CSR-1-bound siRNAs.

    Science.gov (United States)

    van Wolfswinkel, Josien C; Claycomb, Julie M; Batista, Pedro J; Mello, Craig C; Berezikov, Eugene; Ketting, René F

    2009-10-02

    We have studied the function of a conserved germline-specific nucleotidyltransferase protein, CDE-1, in RNAi and chromosome segregation in C. elegans. CDE-1 localizes specifically to mitotic chromosomes in embryos. This localization requires the RdRP EGO-1, which physically interacts with CDE-1, and the Argonaute protein CSR-1. We found that CDE-1 is required for the uridylation of CSR-1 bound siRNAs, and that in the absence of CDE-1 these siRNAs accumulate to inappropriate levels, accompanied by defects in both meiotic and mitotic chromosome segregation. Elevated siRNA levels are associated with erroneous gene silencing, most likely through the inappropriate loading of CSR-1 siRNAs into other Argonaute proteins. We propose a model in which CDE-1 restricts specific EGO-1-generated siRNAs to the CSR-1 mediated, chromosome associated RNAi pathway, thus separating it from other endogenous RNAi pathways. The conserved nature of CDE-1 suggests that similar sorting mechanisms may operate in other animals, including mammals.

  1. Assignment of FUT8 to chicken chromosome band 5q1.4 and to human chromosome 14q23.2-->q24.1 by in situ hybridization. Conserved and compared synteny between human and chicken

    NARCIS (Netherlands)

    Coullin, Ph.; Crooijmans, R.P.M.A.; Groenen, M.A.M.; Heilig, R.; Mollicone, R.; Oriol, R.; Candelier, J.J.

    2002-01-01

    The human FUT8 gene is implicated in crucial developmental stages and is overexpressed in some tumors and other malignant diseases. Based on three different experiments we have assigned the FUT8 gene to chromosome bands 14q23.2 --> q24.1 and not 14q24.3 as previously shown (Yamaguchi et al.,

  2. Mapping of the human APOB gene to chromosome 2p and demonstration of a two-allele restriction fragment length polymorphism

    International Nuclear Information System (INIS)

    Huang, L.; Miller, D.A.; Bruns, G.A.P.; Breslow, J.L.

    1986-01-01

    ApoB is a large glycoprotein with an apparent molecular mass of 550 kDa on NaDodSO 4 /PAGE. Recently, apoB cDNA clones have been isolated from an expression library made with mRNA from a human hepatoma cell line. These clones, which were all 1.5-1.6 kilobases (kb) long and corresponded to the 3' end of apoB mRNA, were used to demonstrate that hepatic apoB mRNA is ≅ 22 kb long. In the current report, a probe derived from one of these cDNA clones, pB8, was used for in situ hybridization experiments to map the human gene for apoB, APOB, to the distal half of the short arm of chromosome 2. This probe was also used to analyze somatic cell hybrids and, in agreement with the in situ hybridization studies, concordancy was demonstrated with chromosome 2. In addition, two hybrids with chromosome 2 translocations that contain only the short arm reacted with the pB8 probe. A third hybrid with a complex rearrangement of chromosome 2, which deleted an interstitial region and the tip of the short arm of chromosome 2, did not react. These data indicate that APOB maps to either 2p21-p23 or 2p24-pter. In further studies, DNA from normal individuals, digested with the restriction endonuclease EcoRI and subjected to Southern blot analysis with the pB8 probe, revealed a two-allele restriction fragment length polymorphism (RFLP). The mapping studies provide the means for understanding the relationship of the APOB locus to others in the human genome, whereas the demonstration of an APOB RFLP increases their ability to assess the role of this locus in determining plasma lipoprotein levels

  3. The effect of caffeine posttreatment on X-ray-induced chromosomal aberrations in human blood lymphocytes in vitro

    International Nuclear Information System (INIS)

    Natarajan, A.T.; Obe, G.

    1980-01-01

    The potentiating effect of caffeine on X-ray-induced chromosomal aberrations in human blood lymphocytes has been investigated, with special reference to cell cycle stages (G0 and G2). Both quantitative and qualitative differences in the yield of chromosomal aberrations were detected in caffeine-posttreated cells, depending on the cell stage irradiated. The studies on caffeine potentiating effects on X-irradiated G0 lymphocytes from normal adults, newborns, Down syndrome patients, and an ataxia telangiectasia patient pointed to interindividual variations in the response to caffeine potentiation among normal probands and a very profound effect in ataxia cells. (orig.) [de

  4. Integration sites of Epstein-Barr virus genome on chromosomes of human lymphoblastoid cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Wuu, K.D.; Chen, Y.J.; Wang-Wuu, S. [Institute of Genetics, Taipei (Taiwan, Province of China)

    1994-09-01

    Epstein-Barr virus (EBV) is the pathogen of infectious mononucleosis. The viral genome is present in more than 95% of the African cases of Burkitt lymphoma and it is usually maintained in episomal form in the tumor cells. Viral integration has been described only for Nanalwa which is a Burkitt lymphoma cell line lacking episomes. In order to examine the role of EBV in the immortalization of human Blymphocytes, we investigated whether the EBV integration into the human genome is essential. If the integration does occur, we would like to know whether the integration is randomly distributed or whether the viral DNA integrates preferentially at certain sites. Fourteen in vitro immortalized human lymphoblastoid cell lines (LCLs) were examined by fluorescence in situ hybridization (FISH) with a biotinylated EBV BamHI w DNA fragment as probe. The episomal form of EBV DNA was found in all cells of these cell lines, while only about 65% of the cells have the integrated viral DNA. This might suggest that integration is not a pre-requisite for cell immortalization. Although all chromosomes, except Y, have been found with integrated viral genome, chromsomes 1 and 5 are the most frequent EBV DNA carrier (p<0.05). Nine chromosome bands, namely, 1p31, 1q31, 2q32, 3q13, 3q26, 5q14, 6q24, 7q31 and 12q21, are preferential targets for EBV integration (p<0.001). Eighty percent of the total 938 EBV hybridization signals were found to be at G-band-positive area. This suggests that the mechanism of EBV integration might be different from that of the retroviruses, which specifically integrate to G-band-negative areas. Thus, we conclude that the integration of EBV to host genome is non-random and it may have something to do with the structure of chromosome and DNA sequences.

  5. Flow cytogenetics and chromosome sorting.

    Science.gov (United States)

    Cram, L S

    1990-06-01

    This review of flow cytogenetics and chromosome sorting provides an overview of general information in the field and describes recent developments in more detail. From the early developments of chromosome analysis involving single parameter or one color analysis to the latest developments in slit scanning of single chromosomes in a flow stream, the field has progressed rapidly and most importantly has served as an important enabling technology for the human genome project. Technological innovations that advanced flow cytogenetics are described and referenced. Applications in basic cell biology, molecular biology, and clinical investigations are presented. The necessary characteristics for large number chromosome sorting are highlighted. References to recent review articles are provided as a starting point for locating individual references that provide more detail. Specific references are provided for recent developments.

  6. Mechanisms of telomere loss and their consequences for chromosome instability

    International Nuclear Information System (INIS)

    Muraki, Keiko; Nyhan, Kristine; Han, Limei; Murnane, John P.

    2012-01-01

    The ends of chromosomes in mammals, called telomeres, are composed of a 6-bp repeat sequence, TTAGGG, which is added on by the enzyme telomerase. In combination with a protein complex called shelterin, these telomeric repeat sequences form a cap that protects the ends of chromosomes. Due to insufficient telomerase expression, telomeres shorten gradually with each cell division in human somatic cells, which limits the number of times they can divide. The extensive cell division involved in cancer cell progression therefore requires that cancer cells must acquire the ability to maintain telomeres, either through expression of telomerase, or through an alternative mechanism involving recombination. It is commonly thought that the source of many chromosome rearrangements in cancer cells is a result of the extensive telomere shortening that occurs prior to the expression of telomerase. However, despite the expression of telomerase, tumor cells can continue to show chromosome instability due to telomere loss. Dysfunctional telomeres in cancer cells can result from oncogene-induced replication stress, which results in double-strand breaks (DSBs) at fragile sites, including telomeres. DSBs near telomeres are especially prone to chromosome rearrangements, because telomeric regions are deficient in DSB repair. The deficiency in DSB repair near telomeres is also an important mechanism for ionizing radiation-induced replicative senescence in normal human cells. In addition, DSBs near telomeres can result in chromosome instability in mouse embryonic stem cells, suggesting that telomere loss can contribute to heritable chromosome rearrangements. Consistent with this possibility, telomeric regions in humans are highly heterogeneous, and chromosome rearrangements near telomeres are commonly involved in human genetic disease. Understanding the mechanisms of telomere loss will therefore provide important insights into both human cancer and genetic disease.

  7. Mechanisms of telomere loss and their consequences for chromosome instability

    Directory of Open Access Journals (Sweden)

    Keiko eMuraki

    2012-10-01

    Full Text Available The ends of chromosomes in mammals, called telomeres, are composed of a 6 base pair repeat sequence, TTAGGG, which is added on by the enzyme telomerase. In combination with a protein complex called shelterin, these telomeric repeat sequences form a cap that protects the ends of chromosomes. Due to insufficient telomerase expression, telomeres shorten gradually with each cell division in human somatic cells, which limits the number of times they can divide. The extensive cell division involved in cancer cell progression therefore requires that cancer cells must acquire the ability to maintain telomeres, either through expression of telomerase, or through an alternative mechanism involving recombination. It is commonly thought that the source of many chromosome rearrangements in cancer cells is a result of the extensive telomere shortening that occurs prior to the expression of telomerase. However, despite the expression of telomerase, tumor cells can continue to show chromosome instability due to telomere loss. Dysfunctional telomeres in cancer cells can result from oncogene-induced replication stress, which results in double-strand breaks (DSBs at fragile sites, including telomeres. DSBs near telomeres are especially prone to chromosome rearrangements, because telomeric regions are deficient in DSB repair. The deficiency in DSB repair near telomeres is also an important mechanism for ionizing radiation-induced replicative senescence in normal human cells. In addition, DSBs near telomeres can result in chromosome instability in mouse embryonic stem cells, suggesting that telomere loss can contribute to heritable chromosome rearrangements. Consistent with this possibility, telomeric regions in humans are highly heterogeneous, and chromosome rearrangements near telomeres are commonly involved in human genetic disease. Understanding the mechanisms of telomere loss will therefore provide important insights into both human cancer and genetic disease.

  8. Mechanisms of telomere loss and their consequences for chromosome instability

    Energy Technology Data Exchange (ETDEWEB)

    Muraki, Keiko; Nyhan, Kristine; Han, Limei; Murnane, John P., E-mail: jmurnane@radonc.ucsf.edu [Department of Radiation Oncology, University of California at San Francisco, San Francisco, CA (United States)

    2012-10-04

    The ends of chromosomes in mammals, called telomeres, are composed of a 6-bp repeat sequence, TTAGGG, which is added on by the enzyme telomerase. In combination with a protein complex called shelterin, these telomeric repeat sequences form a cap that protects the ends of chromosomes. Due to insufficient telomerase expression, telomeres shorten gradually with each cell division in human somatic cells, which limits the number of times they can divide. The extensive cell division involved in cancer cell progression therefore requires that cancer cells must acquire the ability to maintain telomeres, either through expression of telomerase, or through an alternative mechanism involving recombination. It is commonly thought that the source of many chromosome rearrangements in cancer cells is a result of the extensive telomere shortening that occurs prior to the expression of telomerase. However, despite the expression of telomerase, tumor cells can continue to show chromosome instability due to telomere loss. Dysfunctional telomeres in cancer cells can result from oncogene-induced replication stress, which results in double-strand breaks (DSBs) at fragile sites, including telomeres. DSBs near telomeres are especially prone to chromosome rearrangements, because telomeric regions are deficient in DSB repair. The deficiency in DSB repair near telomeres is also an important mechanism for ionizing radiation-induced replicative senescence in normal human cells. In addition, DSBs near telomeres can result in chromosome instability in mouse embryonic stem cells, suggesting that telomere loss can contribute to heritable chromosome rearrangements. Consistent with this possibility, telomeric regions in humans are highly heterogeneous, and chromosome rearrangements near telomeres are commonly involved in human genetic disease. Understanding the mechanisms of telomere loss will therefore provide important insights into both human cancer and genetic disease.

  9. Chromosomal aberrations and DNA damage in human populations exposed to the processing of electronics waste.

    Science.gov (United States)

    Liu, Qiang; Cao, Jia; Li, Ke Qiu; Miao, Xu Hong; Li, Guang; Fan, Fei Yue; Zhao, Yong Cheng

    2009-05-01

    It has been known that the pollutants of electronic wastes (E-wastes) can lead to severe pollution to the environment. It has been reported that about 50% to 80% of E-wastes from developed countries are exported to Asia and Africa. It has become a major global environmental problem to deal with 'E-wastes'. E-waste recycling has remained primitive in Jinghai, China. This not only produces enormous environmental pollution but also can bring about toxic or genotoxic effects on the human body, threatening the health of both current residents and future generations living in the local environment. The concentration of lead in the blood of children in the E-waste polluted area in China is higher than that of the control area. But little is known about the cytogenetic effect to human beings caused by the pollution of E-wastes. In the present study, experiments have been performed to investigate the genetics of permanent residents of three villages with numerous E-waste disposal sites and to analyze the harmful effects of exposure to E-wastes. In total, 171 villagers (exposed group) were randomly selected from permanent residents of three villages located in Jinghai County of Tianjin, China, where there has been massive disposal of E-wastes. Thirty villagers were selected from the neighboring towns without E-waste disposal sites to serve as controls. Chromosomal aberrations and cytokinesis blocking micronucleus were performed to detect the cytogenetic effect, dic + r (dicentric and ring chromosome), monomer, fragments (acentric fragments, minute chromosomes, and acentric rings), translocation, satellite, quadriradial, total aberrations, and micronuclear rate were scored for each subject. DNA damage was detected using comet assay; the DNA percentage in the comet tail (TDNA%), tail moment (TM), and Olive tail moment (OTM) were recorded to describe DNA damage to lymphocytes. The total chromosome aberration rates (5.50%) and micronuclear rates (16.99%) of the exposure group

  10. Assessment of DNA damage and Chromosome aberration in human lymphocyte exposed to low dose radiation detected by FISH(Fluorescence In Situ Hybridization) and SCGE(Single Cell Gel Electrophoresis)

    International Nuclear Information System (INIS)

    Chung, Hai Won; Kim, Su Young; Kim, Byung Mo; Kim, Sun Jin; Ha, Sung Whan; Kim, Tae Hwan; Cho, Chul Koo

    2000-01-01

    Comparative study was performed for the assessment of DNA damage and Chromosomal aberration in human lymphocyte exposed to low dose radiation using Fluorescence In Situ Hybridization(FISH) and Single Cell Gel Electrophoresis(SCGE). Chromosomal aberrations in human lymphocyte exposed to radiation at doses of 5, 10, 30 and 50cGy were analysed with whole chromosome-specific probes by human chromosome 1, 2 and 4 according to PAINT system. FISH with chromosome-specific probe has been used to be a valid and rapid method for detection of chromosome rearrangements induced by low dose radiation. The frequencies of stable translocation per cell equivalents were 0.0116, 0.0375, 0.0407, 0.0727 and 0.0814 for 0, 5, 10, 30 and 50cGy, respectively, and those of dicentric were 0.00, 0.0125, 0.174, 0.0291 and 0.0407 respectively. Radiation induced DNA damage in human lymphocyte in a dose-dependent manner at low doses from 5cGy to 50cGy, which were analysed by single Cell Gel Electrophoresis(SCGE). From above results, FISH seemed to be useful for radiation biodosimetry by which the frequencies of stable aberrations in human lymphocyte can be observed more easily than by conventional method and SCGE also seemed to be sensitive method for detecting DNA damage by low dose radiation exposure, so that those methods will improve our technique to perform meaningful biodosimetry for radiation at low doses

  11. Chromosome polymorphism in a population of ceratitis capitata

    International Nuclear Information System (INIS)

    Lifschitz, E.

    1987-08-01

    A morphological chromosomal polymorphism along with the observation of B chromosomes in a natural population of Ceratitis capitata is reported. A variability affecting the centromere size of chromosome 3 is described. The observed B chromosome is minute, heterochromatic and telocentric. The B chromosome was found in the male and female germ cells and it exhibited, in the males, intra-individual numerical variation with OB and IB cells, which suggested a mitotic instability. It was also found, in both sexes, in somatic cells (cerebral ganglia tissue). Only males transmitted the B chromosomes to the progeny. The high rate of transmission suggested a differential utilization of the sperm carrying the B chromosomes or a preferential segregation into secondary spermatocytes. Previously reported linkage relationship between a pupal esterase gene (Est-1) and a pupa colour mutant (nig) has been extended to a line carrying a Y-chromosome (Y,B) shorter than the one previously studied (Y,A). Furthermore, an elaborate crossing scheme has been devised in order to estimate the recombination distances between these two genes and a third one affecting pupal length (lp-1). It is concluded that all three genes are in the same linkage group but Est-1 is far from the other two. In turn, nig and lp-1 are separated by 14.9 map units. It is confirmed that genetic recombination does not regularly occur at high frequency in the male and this frequency is not increased by the varying length of the Y-chromosome. Refs, figs, tabs

  12. Reflections and meditations upon complex chromosomal exchanges.

    Science.gov (United States)

    Savage, John R K

    2002-12-01

    The application of FISH chromosome painting techniques, especially the recent mFISH (and its equivalents) where all 23 human chromosome pairs can be distinguished, has demonstrated that many chromosome-type structural exchanges are much more complicated (involving more "break-rejoins" and arms) than has hitherto been assumed. It is clear that we have been greatly under-estimating the damage produced in chromatin by such agents as ionising radiation. This article gives a brief historical summary of observations leading up to this conclusion, and after outlining some of the problems surrounding the formation of complex chromosomes exchanges, speculates about possible solutions currently being proposed.

  13. Late-replicating X-chromosome: replication patterns in mammalian females

    Directory of Open Access Journals (Sweden)

    Tunin Karen

    2002-01-01

    Full Text Available The GTG-banding and 5-BrdU incorporation patterns of the late-replicating X-chromosome were studied in female dogs and cattle, and compared to human female patterns. The replication patterns of the short arm of the X-chromosomes did not show any difference between human, dog and cattle females. As to the long arm, some bands showed differences among the three studied species regarding the replication kinetics pattern. These differences were observed in a restricted region of the X-chromosome, delimited by Xq11 -> q25 in humans, by Xq1 -> q8 in dogs, and by Xq12 -> q32 in cattle. In an attempt to find out if these differences in the replication kinetics could be a reflection of differences in the localization of genes in that region of the X-chromosome, we used the probe for the human androgen receptor gene (AR localized at Xq12, which is in the region where we observed differences among the three studied species. We did not, however, observe hybridization signals. Our study goes on, using other human probes for genes located in the region Xq11 -> Xq25.

  14. Utilization of a cloned alphoid repeating sequence of human DNA in the study of polymorphism of chromosomal heterochromatin regions

    International Nuclear Information System (INIS)

    Kruminya, A.R.; Kroshkina, V.G.; Yurov, Yu.B.; Aleksandrov, I.A.; Mitkevich, S.P.; Gindilis, V.M.

    1988-01-01

    The chromosomal distribution of the cloned PHS05 fragment of human alphoid DNA was studied by in situ hybridization in 38 individuals. It was shown that this DNA fraction is primarily localized in the pericentric regions of practically all chromosomes of the set. Significant interchromosomal differences and a weakly expressed interindividual polymorphism were discovered in the copying ability of this class of repeating DNA sequences; associations were not found between the results of hybridization and the pattern of Q-polymorphism

  15. Characterization of human chromosome 22 : Cloning of breakpoints of the constitutional translocation t(11;22)(q23;q11) and detection of small constitutional delections by microarray CGH

    OpenAIRE

    Tapia Paez, Isabel

    2003-01-01

    Chromosome 22 is the second smallest human chromosome, composing approximately 1.5% of the genome. The short arm of this acrocentric chromosome harbors ribosomal genes and the long arm contains the protein coding genes. This chromosome is gene-rich in comparison to the majority of other chromosomes, containing approximately 600 so far characterized genes. Many of these are involved in the etiology of a wide spectrum of diseases such as congenital and psychiatric disorders as...

  16. Complete Genome Sequence of Germline Chromosomally Integrated Human Herpesvirus 6A and Analyses Integration Sites Define a New Human Endogenous Virus with Potential to Reactivate as an Emerging Infection

    Science.gov (United States)

    Tweedy, Joshua; Spyrou, Maria Alexandra; Pearson, Max; Lassner, Dirk; Kuhl, Uwe; Gompels, Ursula A.

    2016-01-01

    Human herpesvirus-6A and B (HHV-6A, HHV-6B) have recently defined endogenous genomes, resulting from integration into the germline: chromosomally-integrated “CiHHV-6A/B”. These affect approximately 1.0% of human populations, giving potential for virus gene expression in every cell. We previously showed that CiHHV-6A was more divergent than CiHHV-6B by examining four genes in 44 European CiHHV-6A/B cardiac/haematology patients. There was evidence for gene expression/reactivation, implying functional non-defective genomes. To further define the relationship between HHV-6A and CiHHV-6A we used next-generation sequencing to characterize genomes from three CiHHV-6A cardiac patients. Comparisons to known exogenous HHV-6A showed CiHHV-6A genomes formed a separate clade; including all 85 non-interrupted genes and necessary cis-acting signals for reactivation as infectious virus. Greater single nucleotide polymorphism (SNP) density was defined in 16 genes and the direct repeats (DR) terminal regions. Using these SNPs, deep sequencing analyses demonstrated superinfection with exogenous HHV-6A in two of the CiHHV-6A patients with recurrent cardiac disease. Characterisation of the integration sites in twelve patients identified the human chromosome 17p subtelomere as a prevalent site, which had specific repeat structures and phylogenetically related CiHHV-6A coding sequences indicating common ancestral origins. Overall CiHHV-6A genomes were similar, but distinct from known exogenous HHV-6A virus, and have the capacity to reactivate as emerging virus infections. PMID:26784220

  17. Induction of chromosomal instability in human lymphoblasts by low doses of γ-radiation

    International Nuclear Information System (INIS)

    Gibbons, C.F.; Grosovsky, A.J.

    2003-01-01

    Full text: Genomic instability is a hallmark of tumorigenic progression, and a similar phenotype is also observed in a high fraction (10 - 50%) of cells that survive exposure to ionizing radiation. In both cases unstable clones are characterized by non-clonal chromosomal rearrangements, which are indicative of a high rate of genetic change during the outgrowth of an unstable parental cell. We postulate that the remarkably high frequency of radiation-induced genomic instability is incompatible with a mutational mechanism for a specific gene, or even a large family of genes. Rather, we hypothesize that a major portion of instability is attributable to the formation of chromosomal rearrangement junction sequences that act as de novo chromosomal breakage hotspots. We further suggest that critical target sequences, which represent at least 10% of the genome and include repetitive DNA sequences such as those found in centromeric heterochromatin, can be involved in breakage and rearrangement hotspots that drive persistent genomic instability and karyotypic heterogeneity. Since chromosomal damage is induced even by low dose radiation exposure, we hypothesize that this phenotype can be efficiently induced at doses that are relevant to environmental, occupational, or medical exposure. In the present study, TK6 human B-lymphoblastoid cells were irradiated with 0, 10, 20 and 200cGy, in order to provide a set of data points for single, low dose exposures. Independent clones were analyzed karyotypically approximately 40 generations after radiation exposure. Preliminary results suggest that the fraction of clones exhibiting genomic instability after 20 cGy (0.16) is similar to and statistically indistinguishable from the fraction of unstable clones following 200 cGy (0.2) exposure. These findings support the hypothesis that instability following radiation, and perhaps also in cancer, primarily reflects non-mutational mechanisms

  18. Hominoid chromosomal rearrangements on 17q map to complex regions of segmental duplication.

    Science.gov (United States)

    Cardone, Maria Francesca; Jiang, Zhaoshi; D'Addabbo, Pietro; Archidiacono, Nicoletta; Rocchi, Mariano; Eichler, Evan E; Ventura, Mario

    2008-01-01

    Chromosomal rearrangements, such as translocations and inversions, are recurrent phenomena during evolution, and both of them are involved in reproductive isolation and speciation. To better understand the molecular basis of chromosome rearrangements and their part in karyotype evolution, we have investigated the history of human chromosome 17 by comparative fluorescence in situ hybridization (FISH) and sequence analysis. Human bacterial artificial chromosome/p1 artificial chromosome probes spanning the length of chromosome 17 were used in FISH experiments on great apes, Old World monkeys and New World monkeys to study the evolutionary history of this chromosome. We observed that the macaque marker order represents the ancestral organization. Human, chimpanzee and gorilla homologous chromosomes differ by a paracentric inversion that occurred specifically in the Homo sapiens/Pan troglodytes/Gorilla gorilla ancestor. Detailed analyses of the paracentric inversion revealed that the breakpoints mapped to two regions syntenic to human 17q12/21 and 17q23, both rich in segmental duplications. Sequence analyses of the human and macaque organization suggest that the duplication events occurred in the catarrhine ancestor with the duplication blocks continuing to duplicate or undergo gene conversion during evolution of the hominoid lineage. We propose that the presence of these duplicons has mediated the inversion in the H. sapiens/P. troglodytes/G. gorilla ancestor. Recently, the same duplication blocks have been shown to be polymorphic in the human population and to be involved in triggering microdeletion and duplication in human. These results further support a model where genomic architecture has a direct role in both rearrangement involved in karyotype evolution and genomic instability in human.

  19. Isolation of anonymous, polymorphic DNA fragments from human chromosome 22q12-qter

    NARCIS (Netherlands)

    J.P. Dumanski (Jan); A.H.M. Geurts van Kessel (Ad); M. Ruttledge (Martin); A. Wladis (Andreas); N. Sugawa (Noriaki); V.P. Collins (Peter); M. Nordenskjöld

    1990-01-01

    textabstractA series of 195 random chromosome 22-specific probes, equivalent to approximately 1% of the size of this chromosome, have been isolated from a chromosome 22-specific bacteriophage lambda genomic library. These probes were mapped to four different regions of chromosome 22 on a panel of

  20. Chromosome mosaicism in hypomelanosis of Ito.

    Science.gov (United States)

    Ritter, C L; Steele, M W; Wenger, S L; Cohen, B A

    1990-01-01

    Our finding of chromosome mosaicism with a ring 22 in a retarded black boy with hypomelanosis of Ito prompted a review of this "syndrome." Most patients have a variety of non-dermal defects, particularly those affecting CNS function. Among karyotyped patients, most are chromosome mosaics of one sort or another. Hypomelanosis of Ito turns out to be a causable non-specific phenotype, i.e., a clinical marker for chromosome mosaicism of all different types in individuals with a dark enough skin to show lighter patches. Consequently, cytogenetic evaluation is indicated in all patients with this skin finding.

  1. Chromosomes and irradiation: in vitro study of the action of X-rays on human lymphocytes

    International Nuclear Information System (INIS)

    Mouriquand, C.; Patet, J.; Gilly, C.; Wolff, C.

    1966-01-01

    Radioinduced chromosomal aberrations were studied in vitro on leukocytes of human peripheral blood after x irradiation at 25, 50, 100, 200, and 300 R. The numeric and structural anomalies were examined on 600 karyotypes. The relationship between these disorders and the dose delivered to the blood are discussed. An explanation on their mechanism of formation is tentatively given. (authors) [fr

  2. Chromosomal radiosensitivity of human leucocytes in relation to sampling time

    International Nuclear Information System (INIS)

    Buul, P.P.W. van; Natarajan, A.T.

    1980-01-01

    Frequencies of chromosomal aberrations after irradiation with X-rays of peripheral blood lymphocytes in vitro were determined at different times after initiation of cultures. In each culture, the kinetics of cell multiplication was followed by using BrdU labelling and differential staining of chromosomes. The results indicate that the mixing up of first and second cell cycle cells at later sampling times cannot explain the observed variation in the frequencies of chromosomal aberrations but that donor-to-donor variation is a predominant factor influencing yields of aberrations. The condition of a donor seems to be most important because repeats on the same donor also showed marked variability. (orig.)

  3. Delayed chromosomal instability induced by DNA damage

    International Nuclear Information System (INIS)

    Morgan, W.F.; Marder, B.A.; Day, J.P.

    1994-01-01

    Cellular exposure to DNA damaging agents rapidly results in a dose dependent increase in chromosomal breakage and gross structural chromosomal rearrangements. Over recent years, evidence has been accumulating indicating genomic instability can manifest multiple generations after cellular exposure to physical and chemical DNA damaging agents. Genomic instability manifests in the progeny of surviving cells, and has been implicated in mutation, gene application, cellular transformation, and cell killing. To investigate chromosome instability following DNA damage, we have used fluorescence in situ hybridization to detect chromosomal rearrangements in a human/hamster somatic hybrid cell line following exposure to ionizing radiation. Delayed chromosomal instability was detected when multiple populations of uniquely arranged metaphases were observed in clonal isolates raised from single cells surviving X-irradiation many generations after exposure. At higher radiation doses, chromosomal instability was observed in a relatively high frequency of surviving clones and, in general, those clones showed delayed chromosome instability also showed reduced survival as measured by colony forming ability

  4. Assignment of the gene for human tetranectin (TNA) to chromosome 3p22-->p21.3 by somatic cell hybrid mapping

    DEFF Research Database (Denmark)

    Durkin, M E; Naylor, S L; Albrechtsen, R

    1997-01-01

    Tetranectin is a plasminogen-binding protein that is induced during the mineralization phase of osteogenesis. By screening a human chromosome 3 somatic cell hybrid mapping panel, we have localized the human tetranectin gene (TNA) to 3p22-->p21.3, which is distinct from the loci of two human...

  5. Direct fluorescence in situ hybridization on human metaphase chromosomes using quantum dot-platinum labeled DNA probes

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Gyoyeon [Chemical Kinomics Research Center, Future Convergence Research Division, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Biological Chemistry, Korea University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Deajeon (Korea, Republic of); Lee, Hansol [Chemical Kinomics Research Center, Future Convergence Research Division, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Lee, Jiyeon, E-mail: jylee@kist.re.kr [Chemical Kinomics Research Center, Future Convergence Research Division, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Biological Chemistry, Korea University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Deajeon (Korea, Republic of)

    2015-11-13

    The telomere shortening in chromosomes implies the senescence, apoptosis, or oncogenic transformation of cells. Since detecting telomeres in aging and diseases like cancer, is important, the direct detection of telomeres has been a very useful biomarker. We propose a telomere detection method using a newly synthesized quantum dot (QD) based probe with oligonucleotide conjugation and direct fluorescence in situ hybridization (FISH). QD-oligonucleotides were prepared with metal coordination bonding based on platinum-guanine binding reported in our previous work. The QD-oligonucleotide conjugation method has an advantage where any sequence containing guanine at the end can be easily bound to the starting QD-Pt conjugate. A synthesized telomeric oligonucleotide was bound to the QD-Pt conjugate successfully and this probe hybridized specifically on the telomere of fabricated MV-4-11 and MOLT-4 chromosomes. Additionally, the QD-telomeric oligonucleotide probe successfully detected the telomeres on the CGH metaphase slide. Due to the excellent photostability and high quantum yield of QDs, the QD-oligonucleotide probe has high fluorescence intensity when compared to the organic dye-oligonucleotide probe. Our QD-oligonucleotide probe, conjugation method of this QD probe, and hybridization protocol with the chromosomes can be a useful tool for chromosome painting and FISH. - Highlights: • We prepared a probe linked between QD and telomeric oligonucleotide with platinum-guanine bonding. • Telomeres were detected by our new telomere probes successfully in three different human metaphase chromosomes. • QDPt-DNA probe has high fluorescence intensity in comparison with organic dye-DNA probe.

  6. Mitotic chromosome condensation in vertebrates

    International Nuclear Information System (INIS)

    Vagnarelli, Paola

    2012-01-01

    Work from several laboratories over the past 10–15 years has revealed that, within the interphase nucleus, chromosomes are organized into spatially distinct territories [T. Cremer, C. Cremer, Chromosome territories, nuclear architecture and gene regulation in mammalian cells, Nat. Rev. Genet. 2 (2001) 292–301 and T. Cremer, M. Cremer, S. Dietzel, S. Muller, I. Solovei, S. Fakan, Chromosome territories—a functional nuclear landscape, Curr. Opin. Cell Biol. 18 (2006) 307–316]. The overall compaction level and intranuclear location varies as a function of gene density for both entire chromosomes [J.A. Croft, J.M. Bridger, S. Boyle, P. Perry, P. Teague,W.A. Bickmore, Differences in the localization and morphology of chromosomes in the human nucleus, J. Cell Biol. 145 (1999) 1119–1131] and specific chromosomal regions [N.L. Mahy, P.E. Perry, S. Gilchrist, R.A. Baldock, W.A. Bickmore, Spatial organization of active and inactive genes and noncoding DNA within chromosome territories, J. Cell Biol. 157 (2002) 579–589] (Fig. 1A, A'). In prophase, when cyclin B activity reaches a high threshold, chromosome condensation occurs followed by Nuclear Envelope Breakdown (NEB) [1]. At this point vertebrate chromosomes appear as compact structures harboring an attachment point for the spindle microtubules physically recognizable as a primary constriction where the two sister chromatids are held together. The transition from an unshaped interphase chromosome to the highly structured mitotic chromosome (compare Figs. 1A and B) has fascinated researchers for several decades now; however a definite picture of how this process is achieved and regulated is not yet in our hands and it will require more investigation to comprehend the complete process. From a biochemical point of view a vertebrate mitotic chromosomes is composed of DNA, histone proteins (60%) and non-histone proteins (40%) [6]. I will discuss below what is known to date on the contribution of these two different

  7. Mitotic chromosome condensation in vertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Vagnarelli, Paola, E-mail: P.Vagnarelli@ed.ac.uk

    2012-07-15

    Work from several laboratories over the past 10-15 years has revealed that, within the interphase nucleus, chromosomes are organized into spatially distinct territories [T. Cremer, C. Cremer, Chromosome territories, nuclear architecture and gene regulation in mammalian cells, Nat. Rev. Genet. 2 (2001) 292-301 and T. Cremer, M. Cremer, S. Dietzel, S. Muller, I. Solovei, S. Fakan, Chromosome territories-a functional nuclear landscape, Curr. Opin. Cell Biol. 18 (2006) 307-316]. The overall compaction level and intranuclear location varies as a function of gene density for both entire chromosomes [J.A. Croft, J.M. Bridger, S. Boyle, P. Perry, P. Teague,W.A. Bickmore, Differences in the localization and morphology of chromosomes in the human nucleus, J. Cell Biol. 145 (1999) 1119-1131] and specific chromosomal regions [N.L. Mahy, P.E. Perry, S. Gilchrist, R.A. Baldock, W.A. Bickmore, Spatial organization of active and inactive genes and noncoding DNA within chromosome territories, J. Cell Biol. 157 (2002) 579-589] (Fig. 1A, A'). In prophase, when cyclin B activity reaches a high threshold, chromosome condensation occurs followed by Nuclear Envelope Breakdown (NEB) [1]. At this point vertebrate chromosomes appear as compact structures harboring an attachment point for the spindle microtubules physically recognizable as a primary constriction where the two sister chromatids are held together. The transition from an unshaped interphase chromosome to the highly structured mitotic chromosome (compare Figs. 1A and B) has fascinated researchers for several decades now; however a definite picture of how this process is achieved and regulated is not yet in our hands and it will require more investigation to comprehend the complete process. From a biochemical point of view a vertebrate mitotic chromosomes is composed of DNA, histone proteins (60%) and non-histone proteins (40%) [6]. I will discuss below what is known to date on the contribution of these two different classes

  8. An improved method for chromosome counting in maize.

    Science.gov (United States)

    Kato, A

    1997-09-01

    An improved method for counting chromosomes in maize (Zea mays L.) is presented. Application of cold treatment (5C, 24 hr), heat treatment (42 C, 5 min) and a second cold treatment (5C, 24 hr) to root tips before fixation increased the number of condensed and dispersed countable metaphase chromosome figures. Fixed root tips were prepared by the enzymatic maceration-air drying method and preparations were stained with acetic orcein. Under favorable conditions, one preparation with 50-100 countable chromosome figures could be obtained in diploid maize using this method. Conditions affecting the dispersion of the chromosomes are described. This technique is especially useful for determining the somatic chromosome number in triploid and tetraploid maize lines.

  9. Human papillomavirus type influences the extent of chromosomal lag during mitosis in cervical intraepithelial neoplasia grade III

    NARCIS (Netherlands)

    Burger, MPM; VanLeeuwen, AM; Hollema, H; Quint, WGV; Pieters, WJLM

    The level of risk for carcinoma in the uterine cervix depends on the type of human papillomavirus (HPV) present. We examined whether the HPV type influences the proliferation rate and occurrence of mitotic figures with lagging chromosomes in the precursor of cervical carcinoma. The study group

  10. Human papillomavirus type influences the extent of chromosomal lag during mitosis in cervical intraepithelial neoplasia grade III

    NARCIS (Netherlands)

    Burger, M. P.; van Leeuwen, A. M.; Hollema, H.; Quint, W. G.; Pieters, W. J.

    1997-01-01

    The level of risk for carcinoma in the uterine cervix depends on the type of human papillomavirus (HPV) present. We examined whether the HPV type influences the proliferation rate and occurrence of mitotic figures with lagging chromosomes in the precursor of cervical carcinoma. The study group

  11. Quantitative trait loci on chromosomes 2p, 4p, and 13q influence bone mineral density of the forearm and hip in Mexican Americans.

    Science.gov (United States)

    Kammerer, Candace M; Schneider, Jennifer L; Cole, Shelley A; Hixson, James E; Samollow, Paul B; O'Connell, Jeffrey R; Perez, Reina; Dyer, Thomas D; Almasy, Laura; Blangero, John; Bauer, Richard L; Mitchell, Braxton D

    2003-12-01

    We performed a genome scan using BMD data of the forearm and hip on 664 individuals in 29 Mexican-American families. We obtained evidence for QTL on chromosome 4p, affecting forearm BMD overall, and on chromosomes 2p and 13q, affecting hip BMD in men. The San Antonio Family Osteoporosis Study (SAFOS) was designed to identify genes and environmental factors that influence bone mineral density (BMD) using data from large Mexican-American families. We performed a genome-wide linkage analysis using 416 highly polymorphic microsatellite markers spaced approximately 9.5 cM apart to locate and identify quantitative trait loci (QTL) that affect BMD of the forearm and hip. Multipoint variance components linkage analyses were done using data on all 664 subjects, as well as two subgroups of 259 men and 261 premenopausal women, from 29 families for which genotypic and phenotypic data were available. We obtained significant evidence for a QTL affecting forearm (radius midpoint) BMD in men and women combined on chromosome 4p near D4S2639 (maximum LOD = 4.33, genomic p = 0.006) and suggestive evidence for a QTL on chromosome 12q near locus D12S2070 (maximum conditional LOD = 2.35). We found suggestive evidence for a QTL influencing trochanter BMD on chromosome 6 (maximum LOD = 2.27), but no evidence for QTL affecting the femoral neck in men and women combined. In men, we obtained evidence for QTL affecting neck and trochanter BMD on chromosomes 2p near D2S1780 (maximum LOD = 3.98, genomic p = 0.013) and 13q near D13S788 (maximum LOD = 3.46, genomic p = 0.039), respectively. We found no evidence for QTL affecting forearm or hip BMD in premenopausal women. These results provide strong evidence that a QTL on chromosome 4p affects radius BMD in Mexican-American men and women, as well as evidence that QTL on chromosomes 2p and 13q affect hip BMD in men. Our results are consistent with some reports in humans and mice. J Bone Miner Res 2003;18:2245-2252

  12. Plasma amine oxidase activities in Norrie disease patients with an X-chromosomal deletion affecting monoamine oxidase.

    Science.gov (United States)

    Murphy, D L; Sims, K B; Karoum, F; Garrick, N A; de la Chapelle, A; Sankila, E M; Norio, R; Breakefield, X O

    1991-01-01

    Two individuals with an X-chromosomal deletion were recently found to lack the genes encoding monoamine oxidase type A (MAO-A) and MAO-B. This abnormality was associated with almost total (90%) reductions in the oxidatively deaminated urinary metabolites of the MAO-A substrate, norepinephrine, and with marked (100-fold) increases in an MAO-B substrate, phenylethylamine, confirming systemic functional consequences of the genetic enzyme deficiency. However, urinary concentrations of the deaminated metabolites of dopamine and serotonin (5-HT) were essentially normal. To investigate other deaminating systems besides MAO-A and MAO-B that might produce these metabolites of dopamine and 5-HT, we examined plasma amine oxidase (AO) activity in these two patients and two additional patients with the same X-chromosomal deletion. Normal plasma AO activity was found in all four Norrie disease-deletion patients, in four patients with classic Norrie disease without a chromosomal deletion, and in family members of patients from both groups. Marked plasma amine metabolite abnormalities and essentially absent platelet MAO-B activity were found in all four Norrie disease-deletion patients, but in none of the other subjects in the two comparison groups. These results indicate that plasma AO is encoded by gene(s) independent of those for MAO-A and MAO-B, and raise the possibility that plasma AO, and perhaps the closely related tissue AO, benzylamine oxidase, as well as other atypical AOs or MAOs encoded independently from MAO-A and MAO-B may contribute to the oxidative deamination of dopamine and 5-HT in humans.

  13. Chromosome region-specific libraries for human genome analysis. Final progress report, 1 March 1991--28 February 1994

    Energy Technology Data Exchange (ETDEWEB)

    Kao, F.T.

    1994-04-01

    The objectives of this grant proposal include (1) development of a chromosome microdissection and PCR-mediated microcloning technology, (2) application of this microtechnology to the construction of region-specific libraries for human genome analysis. During this grant period, the authors have successfully developed this microtechnology and have applied it to the construction of microdissection libraries for the following chromosome regions: a whole chromosome 21 (21E), 2 region-specific libraries for the long arm of chromosome 2, 2q35-q37 (2Q1) and 2q33-q35 (2Q2), and 4 region-specific libraries for the entire short arm of chromosome 2, 2p23-p25 (2P1), 2p21-p23 (2P2), 2p14-p16 (wP3) and 2p11-p13 (2P4). In addition, 20--40 unique sequence microclones have been isolated and characterized for genomic studies. These region-specific libraries and the single-copy microclones from the library have been used as valuable resources for (1) isolating microsatellite probes in linkage analysis to further refine the disease locus; (2) isolating corresponding clones with large inserts, e.g. YAC, BAC, P1, cosmid and phage, to facilitate construction of contigs for high resolution physical mapping; and (3) isolating region-specific cDNA clones for use as candidate genes. These libraries are being deposited in the American Type Culture Collection (ATCC) for general distribution.

  14. Increased number of sex chromosomes affects height in a nonlinear fashion: a study of 305 patients with sex chromosome aneuploidy

    DEFF Research Database (Denmark)

    Ottesen, Anne-Marie; Aksglaede, Lise; Garn, Inger

    2010-01-01

    Tall stature and eunuchoid body proportions characterize patients with 47,XXY Klinefelter syndrome, whereas patients with 45,X Turner syndrome are characterized by impaired growth. Growth is relatively well characterized in these two syndromes, while few studies describe the growth of patients wi......,XXXX (n = 13), and -1.0 (-3.5 to -0.8) in 49,XXXXX (n = 3). Height increased with an increasing number of extra X or Y chromosomes, except in males with five, and in females with four or five sex chromosomes, consistent with a nonlinear effect on height....

  15. Single-nucleotide variant in multiple copies of a deleted in azoospermia (DAZ) sequence - a human Y chromosome quantitative polymorphism.

    Science.gov (United States)

    Szmulewicz, Martin N; Ruiz, Luis M; Reategui, Erika P; Hussini, Saeed; Herrera, Rene J

    2002-01-01

    The evolution of the deleted in azoospermia (DAZ) gene family supports prevalent theories on the origin and development of sex chromosomes and sexual dimorphism. The ancestral DAZL gene in human chromosome 3 is known to be involved in germline development of both males and females. The available phylogenetic data suggest that some time after the divergence of the New World and Old World monkey lineages, the DAZL gene, which is found in all mammals, was copied to the Y chromosome of an ancestor to the Old World monkeys, but not New World monkeys. In modern man, the Y-linked DAZ gene complex is located on the distal part of the q arm. It is thought that after being copied to the Y chromosome, and after the divergence of the human and great ape lineages, the DAZ gene in the former underwent internal rearrangements. This included tandem duplications as well as a T > C transition altering an MboI restriction enzyme site in a duplicated sequence. In this study, we report on the ratios of MboI-/MboI+ variant sequences in individuals from seven worldwide human populations (Basque, Benin, Egypt, Formosa, Kungurtug, Oman and Rwanda) in the DAZ complex. The ratio of PCR MboI- and MboI+ amplicons can be used to characterize individuals and populations. Our results show a nonrandom distribution of MboI-/MboI+ sequence ratios in all populations examined, as well as significant differences in ratios between populations when compared pairwise. The multiple ratios imply that there have been more than one recent reorganization events at this locus. Considering the dynamic nature of this locus and its involvement in male fertility, we investigated the extent and distribution of this polymorphism. Copyright 2002 S. Karger AG, Basel

  16. Preimplantation diagnosis of repeated miscarriage due to chromosomal translocations using metaphase chromosomes of a blastomere biopsied from 4- to 6-cell-stage embryos.

    Science.gov (United States)

    Tanaka, Atsushi; Nagayoshi, Motoi; Awata, Shoichiro; Mawatari, Yoshifumi; Tanaka, Izumi; Kusunoki, Hiroshi

    2004-01-01

    To evaluate the safety and accuracy of karyotyping the blastomere chromosomes at metaphase in the natural cell cycle for preimplantation diagnosis. A pilot study. A private infertility clinic and a university laboratory. Eleven patients undergoing IVF and preimplantation diagnosis. Intact human embryos at the 4- to 6-cell stage and human-mouse heterokaryons were cultured and checked hourly for disappearance of the nuclear envelope. After it disappeared, the metaphase chromosomes were analyzed by fluorescence in situ hybridization. Percentage of analyzable metaphase plates and safety and accuracy of the method. The success rate of electrofusion to form human-mouse heterokaryons was 87.1% (27/31), and analyzable chromosomes were obtained from 77.4% (24/31) of the heterokaryons. On the other hand, disappearance of the nuclear envelope occurred in 89.5% (17/19) of the human embryos and it began earlier than that in the heterokaryons. Analyzable chromosomes were obtained and their translocation sites were identified in all blastomeres biopsied from the 17 embryos. After the biopsy, 67.0% of the embryos could develop to the blastocyst stage. The natural cell cycle method reported herein requires frequent observation, but it is safe, with no artificial effects on the chromosomes and without loss of or damage to blastomeres, which occurred with the electrofusion method. Using the natural cell cycle method, we could perform preimplantation diagnosis with nearly 100% accuracy.

  17. A recent bottleneck of Y chromosome diversity coincides with a global change in culture

    KAUST Repository

    Karmin, Monika; Saag, Lauri; Vicente, Má rio; Sayres, Melissa A. Wilson; Jä rve, Mari; Talas, Ulvi Gerst; Rootsi, Siiri; Ilumä e, Anne-Mai; Mä gi, Reedik; Mitt, Mario; Pagani, Luca; Puurand, Tarmo; Faltyskova, Zuzana; Clemente, Florian; Cardona, Alexia; Metspalu, Ene; Sahakyan, Hovhannes; Yunusbayev, Bayazit; Hudjashov, Georgi; DeGiorgio, Michael; Loogvä li, Eva-Liis; Eichstaedt, Christina; Eelmets, Mikk; Chaubey, Gyaneshwer; Tambets, Kristiina; Litvinov, Sergei; Mormina, Maru; Xue, Yali; Ayub, Qasim; Zoraqi, Grigor; Korneliussen, Thorfinn Sand; Akhatova, Farida; Lachance, Joseph; Tishkoff, Sarah; Momynaliev, Kuvat; Ricaut, Franç ois-Xavier; Kusuma, Pradiptajati; Razafindrazaka, Harilanto; Pierron, Denis; Cox, Murray P.; Sultana, Gazi Nurun Nahar; Willerslev, Rane; Muller, Craig; Westaway, Michael; Lambert, David; Skaro, Vedrana; Kovačevic´ , Lejla; Turdikulova, Shahlo; Dalimova, Dilbar; Khusainova, Rita; Trofimova, Natalya; Akhmetova, Vita; Khidiyatova, Irina; Lichman, Daria V.; Isakova, Jainagul; Pocheshkhova, Elvira; Sabitov, Zhaxylyk; Barashkov, Nikolay A.; Nymadawa, Pagbajabyn; Mihailov, Evelin; Seng, Joseph Wee Tien; Evseeva, Irina; Migliano, Andrea Bamberg; Abdullah, Syafiq; Andriadze, George; Primorac, Dragan; Atramentova, Lubov; Utevska, Olga; Yepiskoposyan, Levon; Marjanovic´ , Damir; Kushniarevich, Alena; Behar, Doron M.; Gilissen, Christian; Vissers, Lisenka; Veltman, Joris A.; Balanovska, Elena; Derenko, Miroslava; Malyarchuk, Boris; Metspalu, Andres; Fedorova, Sardana; Eriksson, Anders; Manica, Andrea; Mendez, Fernando L.; Karafet, Tatiana M.; Veeramah, Krishna R.; Bradman, Neil; Hammer, Michael F.; Osipova, Ludmila P.; Balanovsky, Oleg; Khusnutdinova, Elza K.; Johnsen, Knut; Remm, Maido; Thomas, Mark G.; Tyler-Smith, Chris; Underhill, Peter A.; Willerslev, Eske; Nielsen, Rasmus; Metspalu, Mait; Villems, Richard; Kivisild, Toomas

    2015-01-01

    It is commonly thought that human genetic diversity in non-African populations was shaped primarily by an out-of-Africa dispersal 50–100 thousand yr ago (kya). Here, we present a study of 456 geographically diverse high-coverage Y chromosome sequences, including 299 newly reported samples. Applying ancient DNA calibration, we date the Y-chromosomal most recent common ancestor (MRCA) in Africa at 254 (95% CI 192–307) kya and detect a cluster of major non-African founder haplogroups in a narrow time interval at 47–52 kya, consistent with a rapid initial colonization model of Eurasia and Oceania after the out-of-Africa bottleneck. In contrast to demographic reconstructions based on mtDNA, we infer a second strong bottleneck in Y-chromosome lineages dating to the last 10 ky. We hypothesize that this bottleneck is caused by cultural changes affecting variance of reproductive success among males.

  18. A recent bottleneck of Y chromosome diversity coincides with a global change in culture

    KAUST Repository

    Karmin, Monika

    2015-04-30

    It is commonly thought that human genetic diversity in non-African populations was shaped primarily by an out-of-Africa dispersal 50–100 thousand yr ago (kya). Here, we present a study of 456 geographically diverse high-coverage Y chromosome sequences, including 299 newly reported samples. Applying ancient DNA calibration, we date the Y-chromosomal most recent common ancestor (MRCA) in Africa at 254 (95% CI 192–307) kya and detect a cluster of major non-African founder haplogroups in a narrow time interval at 47–52 kya, consistent with a rapid initial colonization model of Eurasia and Oceania after the out-of-Africa bottleneck. In contrast to demographic reconstructions based on mtDNA, we infer a second strong bottleneck in Y-chromosome lineages dating to the last 10 ky. We hypothesize that this bottleneck is caused by cultural changes affecting variance of reproductive success among males.

  19. Culture creates genetic structure in the Caucasus: Autosomal, mitochondrial, and Y-chromosomal variation in Daghestan

    Directory of Open Access Journals (Sweden)

    Harpending Henry C

    2008-07-01

    Full Text Available Abstract Background Near the junction of three major continents, the Caucasus region has been an important thoroughfare for human migration. While the Caucasus Mountains have diverted human traffic to the few lowland regions that provide a gateway from north to south between the Caspian and Black Seas, highland populations have been isolated by their remote geographic location and their practice of patrilocal endogamy. We investigate how these cultural and historical differences between highland and lowland populations have affected patterns of genetic diversity. We test 1 whether the highland practice of patrilocal endogamy has generated sex-specific population relationships, and 2 whether the history of migration and military conquest associated with the lowland populations has left Central Asian genes in the Caucasus, by comparing genetic diversity and pairwise population relationships between Daghestani populations and reference populations throughout Europe and Asia for autosomal, mitochondrial, and Y-chromosomal markers. Results We found that the highland Daghestani populations had contrasting histories for the mitochondrial DNA and Y-chromosome data sets. Y-chromosomal haplogroup diversity was reduced among highland Daghestani populations when compared to other populations and to highland Daghestani mitochondrial DNA haplogroup diversity. Lowland Daghestani populations showed Turkish and Central Asian affinities for both mitochondrial and Y-chromosomal data sets. Autosomal population histories are strongly correlated to the pattern observed for the mitochondrial DNA data set, while the correlation between the mitochondrial DNA and Y-chromosome distance matrices was weak and not significant. Conclusion The reduced Y-chromosomal diversity exhibited by highland Daghestani populations is consistent with genetic drift caused by patrilocal endogamy. Mitochondrial and Y-chromosomal phylogeographic comparisons indicate a common Near Eastern

  20. Chromosome aberrations in human peripheral lymphocytes induced by single or fractionated X-irradiation

    International Nuclear Information System (INIS)

    Ivanov, B.; Leonard, A.; Deknyudt, G.

    1980-01-01

    Investigated is the effect of single (125 and 250 R) and fractionated (2x125 R) irradiation on the output of chromosome aberrations in lymphocytes of human peripheral blood kept between irradiations at the temperature of 5 deg C. The single irradiation is carried out immediately after vein-puncture. In the case of fractionated irradiation the first dose of 125R is given after vein-puncture, the second, in the interval of 2, 8 and 24 hours. Blood is cultivated immediately after two irradiations in order to prepare metaphase plates for cytogenic analysis. Repair processes in cell heritage structures are not realised in blood irradiated by fractions which is kept at 5 deg C between irradiations. On the contrary, chromosome fragments, interstitial deletions, aberrant cells and cell breaks are found in a large amount in blood irradiated by fractions. They have appeared with the authentically high statistic difference as compared with the cells irradiated one time with the same dose. This effect is probably attained due to blood preservation

  1. Chromosome painting in the manatee supports Afrotheria and Paenungulata

    Directory of Open Access Journals (Sweden)

    Zori Roberto T

    2007-01-01

    Full Text Available Abstract Background Sirenia (manatees, dugongs and Stellar's sea cow have no evolutionary relationship with other marine mammals, despite similarities in adaptations and body shape. Recent phylogenomic results place Sirenia in Afrotheria and with elephants and rock hyraxes in Paenungulata. Sirenia and Hyracoidea are the two afrotherian orders as yet unstudied by comparative molecular cytogenetics. Here we report on the chromosome painting of the Florida manatee. Results The human autosomal and X chromosome paints delimited a total of 44 homologous segments in the manatee genome. The synteny of nine of the 22 human autosomal chromosomes (4, 5, 6, 9, 11, 14, 17, 18 and 20 and the X chromosome were found intact in the manatee. The syntenies of other human chromosomes were disrupted in the manatee genome into two to five segments. The hybridization pattern revealed that 20 (15 unique associations of human chromosome segments are found in the manatee genome: 1/15, 1/19, 2/3 (twice, 3/7 (twice, 3/13, 3/21, 5/21, 7/16, 8/22, 10/12 (twice, 11/20, 12/22 (three times, 14/15, 16/19 and 18/19. Conclusion There are five derived chromosome traits that strongly link elephants with manatees in Tethytheria and give implicit support to Paenungulata: the associations 2/3, 3/13, 8/22, 18/19 and the loss of the ancestral eutherian 4/8 association. It would be useful to test these conclusions with chromosome painting in hyraxes. The manatee chromosome painting data confirm that the associations 1/19 and 5/21 phylogenetically link afrotherian species and show that Afrotheria is a natural clade. The association 10/12/22 is also ubiquitous in Afrotheria (clade I, present in Laurasiatheria (clade IV, only partially present in Xenarthra (10/12, clade II and absent in Euarchontoglires (clade III. If Afrotheria is basal to eutherians, this association could be part of the ancestral eutherian karyotype. If afrotherians are not at the root of the eutherian tree, then the 10

  2. Computational model of dose response for low-LET-induced complex chromosomal aberrations

    International Nuclear Information System (INIS)

    Eidelman, Y.A.; Andreev, S.G.

    2015-01-01

    Experiments with full-colour mFISH chromosome painting have revealed high yield of radiation-induced complex chromosomal aberrations (CAs). The ratio of complex to simple aberrations is dependent on cell type and linear energy transfer. Theoretical analysis has demonstrated that the mechanism of CA formation as a result of interaction between lesions at a surface of chromosome territories does not explain high complexes-to-simples ratio in human lymphocytes. The possible origin of high yields of γ-induced complex CAs was investigated in the present work by computer simulation. CAs were studied on the basis of chromosome structure and dynamics modelling and the hypothesis of CA formation on nuclear centres. The spatial organisation of all chromosomes in a human interphase nucleus was predicted by simulation of mitosis-to-interphase chromosome structure transition. Two scenarios of CA formation were analysed, 'static' (existing in a nucleus prior to irradiation) centres and 'dynamic' (formed in response to irradiation) centres. The modelling results reveal that under certain conditions, both scenarios explain quantitatively the dose-response relationships for both simple and complex γ-induced inter-chromosomal exchanges observed by mFISH chromosome painting in the first post-irradiation mitosis in human lymphocytes. (authors)

  3. Defective double-strand DNA break repair and chromosomal translocations by MYC overexpression.

    Science.gov (United States)

    Karlsson, Asa; Deb-Basu, Debabrita; Cherry, Athena; Turner, Stephanie; Ford, James; Felsher, Dean W

    2003-08-19

    DNA repair mechanisms are essential for the maintenance of genomic integrity. Disruption of gene products responsible for DNA repair can result in chromosomal damage. Improperly repaired chromosomal damage can result in the loss of chromosomes or the generation of chromosomal deletions or translocations, which can lead to tumorigenesis. The MYC protooncogene is a transcription factor whose overexpression is frequently associated with human neoplasia. MYC has not been previously implicated in a role in DNA repair. Here we report that the overexpression of MYC disrupts the repair of double-strand DNA breaks, resulting in a several-magnitude increase in chromosomal breaks and translocations. We found that MYC inhibited the repair of gamma irradiation DNA breaks in normal human cells and blocked the repair of a single double-strand break engineered to occur in an immortal cell line. By spectral karyotypic analysis, we found that MYC even within one cell division cycle resulted in a several-magnitude increase in the frequency of chromosomal breaks and translocations in normal human cells. Hence, MYC overexpression may be a previously undescribed example of a dominant mutator that may fuel tumorigenesis by inducing chromosomal damage.

  4. Transfer of unstable chromosomal aberrations in human peripheral lymphocytes at cell division and their significance for the aberration frequency

    International Nuclear Information System (INIS)

    Stephan, G.; Chang Tsangpi.

    1986-04-01

    In 48 h cultures, the fraction of human lymphocytes in 2nd mitosis was found to be between 0 and 42.5% (mean value 8.7%). The X-ray exposure from irradiating with 2 Gy resulted in a cell cycle delay which varied from donor to donor. A loss of nearly 50% of dicentric chromosomes and acentric fragments from unstable chromosomes occurred at cell division, while centric rings were not impeded. When dicentric chromosomes, or acentric fragments are found in 2nd mitosis, they show a characteristic differential staining, which means that chromatides at cell division fall free and are replicated in daughter cells. When plotting dose effect curves of dicentric chromosomes, up to 20% of 2nd mitosis fractions have little influence on the aberration rate. This may be additionally verified as part of the 'biological dosimetry' in a person with 24% of 2nd mitosis. When the rates of dicentric chromosomes exclusively evaluated from 1st mitosis after irradiation with 2.0 Gy were related to the donors age, no age-dependent sensitivity to radiation could be observed. Aberration rates which deviate from person to person are comparable to the results achieved by conventional staining methods. (orig./MG) [de

  5. How do humans affect wildlife nematodes?

    Science.gov (United States)

    Weinstein, Sara B.; Lafferty, Kevin D.

    2015-01-01

    Human actions can affect wildlife and their nematode parasites. Species introductions and human-facilitated range expansions can create new host–parasite interactions. Novel hosts can introduce parasites and have the potential to both amplify and dilute nematode transmission. Furthermore, humans can alter existing nematode dynamics by changing host densities and the abiotic conditions that affect larval parasite survival. Human impacts on wildlife might impair parasites by reducing the abundance of their hosts; however, domestic animal production and complex life cycles can maintain transmission even when wildlife becomes rare. Although wildlife nematodes have many possible responses to human actions, understanding host and parasite natural history, and the mechanisms behind the changing disease dynamics might improve disease control in the few cases where nematode parasitism impacts wildlife.

  6. Correlation of chromosome patterns in human leukemic cells with exposure to chemicals and/or radiation. Progress report, January 1-December 31, 1984

    International Nuclear Information System (INIS)

    Rowley, J.D.

    1984-08-01

    Oncogenes associated with human neoplasms are genetically mapped to the human genome. In addition, chromosomal deletions and rearrangements presumably induced by radiotherapy and/or chemotherapy for other maladys are correlated with malignant lymphomas. 27 refs., 6 figs., 2 tabs. (DT)

  7. Atrial Fibrillation associated chromosome 4q25 variants are not associated with PITX2c expression in human adult left atrial appendages.

    Directory of Open Access Journals (Sweden)

    Shamone R Gore-Panter

    Full Text Available Atrial Fibrillation (AF, the most common sustained arrhythmia, has a strong genetic component, but the mechanism by which common genetic variants lead to increased AF susceptibility is unknown. Genome-wide association studies (GWAS have identified that the single nucleotide polymorphisms (SNPs most strongly associated with AF are located on chromosome 4q25 in an intergenic region distal to the PITX2 gene. Our objective was to determine whether the AF-associated SNPs on chromosome 4q25 were associated with PITX2c expression in adult human left atrial appendages. Analysis of a lone AF GWAS identified four independent AF risk SNPs at chromosome 4q25. Human adult left atrial appendage tissue was obtained from 239 subjects of European Ancestry and used for SNP analysis of genomic DNA and determination of PITX2c RNA expression levels by quantitative PCR. Subjects were divided into three groups based on their history of AF and pre-operative rhythm. AF rhythm subjects had higher PITX2c expression than those with history of AF but in sinus rhythm. PITX2c expression was not associated with the AF risk SNPs in human adult left atrial appendages in all subjects combined or in each of the three subgroups. However, we identified seven SNPs modestly associated with PITX2c expression located in the introns of the ENPEP gene, ∼54 kb proximal to PITX2. PITX2c expression in human adult left atrial appendages is not associated with the chromosome 4q25 AF risk SNPs; thus, the mechanism by which these SNPs are associated with AF remains enigmatic.

  8. Energy homeostasis targets chromosomal reconfiguration of the human GH1 locus.

    Science.gov (United States)

    Vakili, Hana; Jin, Yan; Cattini, Peter A

    2014-11-01

    Levels of pituitary growth hormone (GH), a metabolic homeostatic factor with strong lipolytic activity, are decreased in obese individuals. GH declines prior to the onset of weight gain in response to excess caloric intake and hyperinsulinemia; however, the mechanism by which GH is reduced is not clear. We used transgenic mice expressing the human GH (hGH) gene, GH1, to assess the effect of high caloric intake on expression as well as the local chromosome structure of the intact GH1 locus. Animals exposed to 3 days of high caloric intake exhibited hyperinsulinemia without hyperglycemia and a decrease in both hGH synthesis and secretion, but no difference in endogenous production of murine GH. Efficient GH1 expression requires a long-range intrachromosomal interaction between remote enhancer sequences and the proximal promoter region through "looping" of intervening chromatin. High caloric intake disrupted this interaction and decreased both histone H3/H4 hyperacetylation and RNA polymerase II occupancy at the GH1 promoter. Incorporation of physical activity muted the effects of excess caloric intake on insulin levels, GH1 promoter hyperacetylation, chromosomal architecture, and expression. These results indicate that energy homeostasis alters postnatal hGH synthesis through dynamic changes in the 3-dimensional chromatin structure of the GH1 locus, including structures required for cell type specificity during development.

  9. Mutations and chromosomal aberrations

    International Nuclear Information System (INIS)

    Kihlman, B.A.

    1977-01-01

    The genetic changes of mutations and chromosomal aberrations are discussed. The consequences of both depend not only on the type of genetic change produced but also on the type of cell that is affected and on the development stage of the organism. (C.F.)

  10. Impact of types of lymphocyte chromosomal aberrations on human cancer risk

    DEFF Research Database (Denmark)

    Hagmar, Lars; Strömberg, Ulf; Bonassi, Stefano

    2004-01-01

    The frequency of cells with structural chromosomal aberrations (CAs) in peripheral blood lymphocytes is the first genotoxicity biomarker that has shown an association with cancer risk. CAs are usually divided into chromosome-type (CSAs) and chromatid-type aberrations (CTAs), with different mechan...

  11. Chromosomal Mosaicism in Human Feto-Placental Development: Implications for Prenatal Diagnosis

    Directory of Open Access Journals (Sweden)

    Francesca Romana Grati

    2014-07-01

    Full Text Available Chromosomal mosaicism is one of the primary interpretative issues in prenatal diagnosis. In this review, the mechanisms underlying feto-placental chromosomal mosaicism are presented. Based on the substantial retrospective diagnostic experience with chorionic villi samples (CVS of a prenatal diagnosis laboratory the following items are discussed: (i The frequency of the different types of mosaicism (confined placental, CPM, and true fetal mosaicisms, TFM; (ii The risk of fetal confirmation after the detection of a mosaic in CVS stratified by chromosome abnormality and placental tissue involvement; (iii The frequency of uniparental disomy for imprinted chromosomes associated with CPM; (iv The incidence of false-positive and false-negative results in CVS samples analyzed by only (semi-direct preparation or long term culture; and (v The implications of the presence of a feto-placental mosaicism for microarray analysis of CVS and non-invasive prenatal screening (NIPS.

  12. Chromosome Segregation: The Bigger They Come, the Harder They Fall.

    Science.gov (United States)

    Baudoin, Nicolaas C; Cimini, Daniela

    2018-06-04

    Aneuploidy is frequently found to affect individual chromosomes differentially, but it is unclear whether this depends on inter-chromosome differences in missegregation rates. A new study presents evidence that, in the Indian muntjac, centromere-kinetochore size influences the rate at which chromosomes missegregate. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Geant4.10 simulation of geometric model for metaphase chromosome

    Energy Technology Data Exchange (ETDEWEB)

    Rafat-Motavalli, L., E-mail: rafat@um.ac.ir; Miri-Hakimabad, H.; Bakhtiyari, E.

    2016-04-01

    In this paper, a geometric model of metaphase chromosome is explained. The model is constructed according to the packing ratio and dimension of the structure from nucleosome up to chromosome. A B-DNA base pair is used to construct 200 base pairs of nucleosomes. Each chromatin fiber loop, which is the unit of repeat, has 49,200 bp. This geometry is entered in Geant4.10 Monte Carlo simulation toolkit and can be extended to the whole metaphase chromosomes and any application in which a DNA geometrical model is needed. The chromosome base pairs, chromosome length, and relative length of chromosomes are calculated. The calculated relative length is compared to the relative length of human chromosomes.

  14. Geant4.10 simulation of geometric model for metaphase chromosome

    International Nuclear Information System (INIS)

    Rafat-Motavalli, L.; Miri-Hakimabad, H.; Bakhtiyari, E.

    2016-01-01

    In this paper, a geometric model of metaphase chromosome is explained. The model is constructed according to the packing ratio and dimension of the structure from nucleosome up to chromosome. A B-DNA base pair is used to construct 200 base pairs of nucleosomes. Each chromatin fiber loop, which is the unit of repeat, has 49,200 bp. This geometry is entered in Geant4.10 Monte Carlo simulation toolkit and can be extended to the whole metaphase chromosomes and any application in which a DNA geometrical model is needed. The chromosome base pairs, chromosome length, and relative length of chromosomes are calculated. The calculated relative length is compared to the relative length of human chromosomes.

  15. Early embryonic failure: Expression and imprinted status of candidate genes on human chromosome 21

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, L.S.; Bennett, P.R.; Moore, G.E. [Queen Charlotte`s and Chelsea Hospital, London (United Kingdom)

    1994-09-01

    Two cases of maternal uniparental (hetero)disomy for human chromosome 21 (mUPD21) have been identified in a systematic search for UPD in 23 cases of early embryonic failure (EEF). Bi-parental origin of the other chromosome pairs was confirmed using specific VNTR probes or dinucleotide repeat analysis. Both maternally and paternally derived isochromosomes 21q have previously been identified in two individuals with normal phenotypes. Full UPD21 has a different mechanism of origin than uniparental isochromosome 21q and its effect on imprinted genes and phenotypic outcome will therefore not necessarily be the same. EEF associated with mUPD21 suggests that developmentally important genes on HSA 21 may be imprinted such that they are only expressed from either the maternally or paternally derived alleles. We have searched for monoallelic expression of candidate genes on HSA 21 in human pregnancy (CBS, IFNAR, COL6A1) using intragenic DNA polymorphisms. These genes were chosen either because their murine homologues lie in imprinted regions or because they are potentially important in embryogenesis. Once imprinted candidate genes have been identified, their methylation status and expression in normal, early embryonic failure and uniparental disomy 21 pregnancies will be studied. At the same time, a larger number of cases of EEF are being examined to further investigate the incidence of UPD21 in this group.

  16. A study of some problems in chromosome cultivation after ionization radiation of human blood in vitro

    International Nuclear Information System (INIS)

    Jiang Benrong; Yao Bo; Chen Zhijian

    1992-01-01

    The effects of Cytochalasin B (Cyt-B) and cultural time on mitotic index (MI) during chromosome culture of human peripheral blood irradiated by 6 MV X-ray in vitro were studied. The results showed: (1) a successful cultivation with enough mitotic figures could be carried out in order to estimate the irradiation dose with chromosome aberrations and when the predicted dose was above 6 Gy in a radiation accident, when the predicted dose was up to 15 Gy the cultural time should be prolonged and Cyt-B should be added to the cultural medium; (2) it was possible to establish a dose effect calibration curve for doses above 5 Gy by adding Cyt-B and prolonging the cultural time; so that its value as a biological dosimeter for clinical application might be increased than before

  17. Distribution of segmental duplications in the context of higher order chromatin organisation of human chromosome 7

    DEFF Research Database (Denmark)

    Ebert, Grit; Steininger, Anne; Weißmann, Robert

    2014-01-01

    of the Williams-Beuren syndrome locus we demonstrate by cross-species comparison that these SDs have inserted at the borders of a topological domain and that they flank regions with distinct DNA conformation. CONCLUSIONS: Our study suggests a link of nuclear architecture and the propagation of SDs across......BACKGROUND: Segmental duplications (SDs) are not evenly distributed along chromosomes. The reasons for this biased susceptibility to SD insertion are poorly understood. Accumulation of SDs is associated with increased genomic instability, which can lead to structural variants and genomic disorders...... chromosome 7, either by promoting regional SD insertion or by contributing to the establishment of higher order chromatin organisation themselves. The latter could compensate for the high risk of structural rearrangements and thus may have contributed to their evolutionary fixation in the human genome....

  18. Initial damage in human interphase chromosomes from alpha particles with linear energy transfers relevant to radon exposure

    International Nuclear Information System (INIS)

    Loucas, B.D.; Geard, C.R.

    1994-01-01

    To determine the efficiency at which α particles at LETs chosen to simulate exposure to radon progeny break chromosomes, the premature chromosome condensation technique was used to measure breaks soon after irradiation. Noncycling human fibroblasts were irradiated with graded doses of monoenergetic α particles accelerated to produce LETs of 90, 120, 150, 180 and 200 keV/pm at the midpoint of the cell nuclei. Premature chromosome condensation was initiated immediately after irradiation and cells were scored for the total number of prematurely condensed chromosomes and fragments per cell. Similar experiments were conducted with 250 kVp X rays for comparison. Irradiation with α particles produced 8.6 to 13.1 excess fragments per gray, while X rays produced 5.8 excess fragments, resulting in RBEs around 2. Calculations of the number of breaks produced on average by a single particle traversal of a cell nucleus indicated that at the LETs tested more than one break was produced by each traversal, the maximum being that produced by 180 keV/μm α particles. When chromosome aberrations are scored at metaphase after high-LET irradiation, RBEs considerably greater than those recorded here have been reported. These results showing relatively small differences in initial break levels for α particles in the LET range of the radon progeny relative to X rays indicate that the great aberration frequencies are not due principally to an increase in breakage efficiency, but interactions between breaks along the same particle track are important. 16 refs., 4 figs

  19. Radiation exposure and chromosome damage

    International Nuclear Information System (INIS)

    Lloyd, D.

    1979-01-01

    Chromosome damage is discussed as a means of biologically measuring radiation exposure to the body. Human lymphocytes are commonly used for this test since the extent of chromosome damage induced is related to the exposure dose. Several hundred lymphocytes are analysed in metaphase for chromosome damage, particularly dicentrics. The dose estimate is made by comparing the observed dicentric yield against calibration curves, previously produced by in vitro irradiation of blood samples to known doses of different types of radiation. This test is useful when there is doubt that the film badge has recorded a reasonable whole body dose and also when there is an absence of any physical data. A case of deliberate exposure is described where the chromosome damage test estimated an exposure of 152 rads. The life span of cell aberrations is also considered. Regular checks on radiotherapy patients and some accidental overdose cases have shown little reduction in the aberration levels over the first six weeks after which the damage disappears slowly with a half-life of about three years. In conclusion, chromosome studies have been shown to be of value in resolving practical problems in radiological protection. (U.K.)

  20. Dose-response relationship for the induction of structural chromosome aberrations in human spermatozoa after in vitro exposure ti tritium. beta. -rays

    Energy Technology Data Exchange (ETDEWEB)

    Kamiguchi, Yujiroh; Tateno, Hiroyuki; Mikamo, Kazuya (Asahikawa Medical College (Japan). Department of Biological Sciences)

    1990-02-01

    THe effects of tritium (HTO) {beta}-rays on human sperm chromosomes were studied using our interspecific in vitro fertilization system between human spermatozoa and zona-free hamster oocytes. Semen samples were treated with media containing 1.53-24.3 mCi/ml HTO for about 80 min. 1290 spermatozoa from the controls and 1842 spermatozoa from the irradiated groups were karyotyped. The incidence of spermatozoa with structural chromosome aberrations increased linearly with increasing dosage. Breakage-type aberrations occurred far more frequently than exchange-type. Chromosome-type aberrations appeared far more frequently than chromatid-ype. All of these types of aberrations showed linear dose-dependent increases. The RBE valus of HTO {beta}-rays relative to X-rays were calculated for the above-mentioned 5 indices, respectively. Their RBE values franged from 1.89 to 3.00 when the absorbed dose was estimated to be the minimum, whereas the values ranged between 1.04 and 1.65 when the absorbed dose was estimated to be the maximum. (author). 15 refs.; 3 figs.; 4 tabs.

  1. Over half of breakpoints in gene pairs involved in cancer-specific recurrent translocations are mapped to human chromosomal fragile sites

    Directory of Open Access Journals (Sweden)

    Pierce Levi CT

    2009-01-01

    Full Text Available Abstract Background Gene rearrangements such as chromosomal translocations have been shown to contribute to cancer development. Human chromosomal fragile sites are regions of the genome especially prone to breakage, and have been implicated in various chromosome abnormalities found in cancer. However, there has been no comprehensive and quantitative examination of the location of fragile sites in relation to all chromosomal aberrations. Results Using up-to-date databases containing all cancer-specific recurrent translocations, we have examined 444 unique pairs of genes involved in these translocations to determine the correlation of translocation breakpoints and fragile sites in the gene pairs. We found that over half (52% of translocation breakpoints in at least one gene of these gene pairs are mapped to fragile sites. Among these, we examined the DNA sequences within and flanking three randomly selected pairs of translocation-prone genes, and found that they exhibit characteristic features of fragile DNA, with frequent AT-rich flexibility islands and the potential of forming highly stable secondary structures. Conclusion Our study is the first to examine gene pairs involved in all recurrent chromosomal translocations observed in tumor cells, and to correlate the location of more than half of breakpoints to positions of known fragile sites. These results provide strong evidence to support a causative role for fragile sites in the generation of cancer-specific chromosomal rearrangements.

  2. Human Y Chromosome Haplogroup N: A Non-trivial Time-Resolved Phylogeography that Cuts across Language Families.

    Science.gov (United States)

    Ilumäe, Anne-Mai; Reidla, Maere; Chukhryaeva, Marina; Järve, Mari; Post, Helen; Karmin, Monika; Saag, Lauri; Agdzhoyan, Anastasiya; Kushniarevich, Alena; Litvinov, Sergey; Ekomasova, Natalya; Tambets, Kristiina; Metspalu, Ene; Khusainova, Rita; Yunusbayev, Bayazit; Khusnutdinova, Elza K; Osipova, Ludmila P; Fedorova, Sardana; Utevska, Olga; Koshel, Sergey; Balanovska, Elena; Behar, Doron M; Balanovsky, Oleg; Kivisild, Toomas; Underhill, Peter A; Villems, Richard; Rootsi, Siiri

    2016-07-07

    The paternal haplogroup (hg) N is distributed from southeast Asia to eastern Europe. The demographic processes that have shaped the vast extent of this major Y chromosome lineage across numerous linguistically and autosomally divergent populations have previously been unresolved. On the basis of 94 high-coverage re-sequenced Y chromosomes, we establish and date a detailed hg N phylogeny. We evaluate geographic structure by using 16 distinguishing binary markers in 1,631 hg N Y chromosomes from a collection of 6,521 samples from 56 populations. The more southerly distributed sub-clade N4 emerged before N2a1 and N3, found mostly in the north, but the latter two display more elaborate branching patterns, indicative of regional contrasts in recent expansions. In particular, a number of prominent and well-defined clades with common N3a3'6 ancestry occur in regionally dissimilar northern Eurasian populations, indicating almost simultaneous regional diversification and expansion within the last 5,000 years. This patrilineal genetic affinity is decoupled from the associated higher degree of language diversity. Copyright © 2016 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  3. Slit-scanning technique using standard cell sorter instruments for analyzing and sorting nonacrocentric human chromosomes, including small ones

    NARCIS (Netherlands)

    Rens, W.; van Oven, C. H.; Stap, J.; Jakobs, M. E.; Aten, J. A.

    1994-01-01

    We have investigated the performance of two types of standard flow cell sorter instruments, a System 50 Cytofluorograph and a FACSTar PLUS cell sorter, for the on-line centromeric index (CI) analysis of human chromosomes. To optimize the results, we improved the detection efficiency for centromeres

  4. Molecular cloning and chromosome mapping of the human gene encoding protein phosphotyrosyl phosphatase 1B

    International Nuclear Information System (INIS)

    Brown-Shimer, S.; Johnson, K.A.; Bruskin, A.; Green, N.R.; Hill, D.E.; Lawrence, J.B.; Johnson, C.

    1990-01-01

    The inactivation of growth suppressor genes appears to play a major role in the malignant process. To assess whether protein phosphotyrosyl phosphatases function as growth suppressors, the authors have isolated a cDNA clone encoding human protein phosphotyrosyl phosphatase 1B for structural and functional characterization. The translation product deduced from the 1,305-nucleotide open reading frame predicts a protein containing 435 amino acids and having a molecular mass of 49,966 Da. The amino-terminal 321 amino acids deduced from the cDNA sequence are identical to the empirically determined sequence of protein phosphotyrosyl phosphatase 1B. A genomic clone has been isolated and used in an in situ hybridization to banded metaphase chromosomes to determine that the gene encoding protein phosphotyrosyl phosphatase 1B maps as a single-copy gene to the long arm of chromosome 20 in the region q13.1-q13.2

  5. Tiptoeing to chromosome tips: facts, promises and perils of today's human telomere biology.

    Science.gov (United States)

    Fajkus, J; Simícková, M; Maláska, J

    2002-04-29

    The past decade has witnessed an explosion of knowledge concerning the structure and function of chromosome terminal structures-telomeres. Today's telomere research has advanced from a pure descriptive approach of DNA and protein components to an elementary understanding of telomere metabolism, and now to promising applications in medicine. These applications include 'passive' ones, among which the use of analysis of telomeres and telomerase (a cellular reverse transcriptase that synthesizes telomeres) for cancer diagnostics is the best known. The 'active' applications involve targeted downregulation or upregulation of telomere synthesis, either to mortalize immortal cancer cells, or to rejuvenate mortal somatic cells and tissues for cellular transplantations, respectively. This article reviews the basic data on structure and function of human telomeres and telomerase, as well as both passive and active applications of human telomere biology.

  6. Effect of borax on immune cell proliferation and sister chromatid exchange in human chromosomes

    OpenAIRE

    Pongsavee Malinee

    2009-01-01

    Abstract Background Borax is used as a food additive. It becomes toxic when accumulated in the body. It causes vomiting, fatigue and renal failure. Methods The heparinized blood samples from 40 healthy men were studied for the impact of borax toxicity on immune cell proliferation (lymphocyte proliferation) and sister chromatid exchange in human chromosomes. The MTT assay and Sister Chromatid Exchange (SCE) technic were used in this experiment with the borax concentrations of 0.1, 0.15, 0.2, 0...

  7. Studies on chromosome aberrations induced in human lymphocytes by very low-dose exposure to tritium

    International Nuclear Information System (INIS)

    Hori, T.; Moriya, Junko; Nakai, Sayaka

    1978-01-01

    Assessment of potential hazard from environmental tritium to man becomes very important with increasing the development of nuclear-power industry. However, little data are available as to the determination on the genetic effect of tritium especially at the low levels. The object of the present study is to obtain quantitative data for chromosome aberrations in human lymphocytes, as an indicator for genetic risk estimation, induced by tritium at very low dose levels. Leukocyte cultures of human peripheral blood were chronically exposed for 48h to tritiated water and 3 H-thymidine using a wide range of tritium doses, and aberrations in lymphocyte chromosomes at the first metaphases were examined. In the experimental conditions, the types of aberrations induced by radiation emitted from both tritiated water and 3 H-thymidine were mostly chromatid types, such as chromatid gaps and deletions. The dose-response relations for chromatid breaks per cell exhibited unusual dose-dependency in both cases. It was demonstrated that at higher dose range the yields of chromatid breaks increased linearly with dose, while those at lower dose range were significantly higher than would be expected by a downward extraporation from the linear relation. Partial-hit or partial-target kinetics events appeared at very low dose exposure. (author)

  8. A recent bottleneck of Y chromosome diversity coincides with a global change in culture.

    Science.gov (United States)

    Karmin, Monika; Saag, Lauri; Vicente, Mário; Wilson Sayres, Melissa A; Järve, Mari; Talas, Ulvi Gerst; Rootsi, Siiri; Ilumäe, Anne-Mai; Mägi, Reedik; Mitt, Mario; Pagani, Luca; Puurand, Tarmo; Faltyskova, Zuzana; Clemente, Florian; Cardona, Alexia; Metspalu, Ene; Sahakyan, Hovhannes; Yunusbayev, Bayazit; Hudjashov, Georgi; DeGiorgio, Michael; Loogväli, Eva-Liis; Eichstaedt, Christina; Eelmets, Mikk; Chaubey, Gyaneshwer; Tambets, Kristiina; Litvinov, Sergei; Mormina, Maru; Xue, Yali; Ayub, Qasim; Zoraqi, Grigor; Korneliussen, Thorfinn Sand; Akhatova, Farida; Lachance, Joseph; Tishkoff, Sarah; Momynaliev, Kuvat; Ricaut, François-Xavier; Kusuma, Pradiptajati; Razafindrazaka, Harilanto; Pierron, Denis; Cox, Murray P; Sultana, Gazi Nurun Nahar; Willerslev, Rane; Muller, Craig; Westaway, Michael; Lambert, David; Skaro, Vedrana; Kovačevic, Lejla; Turdikulova, Shahlo; Dalimova, Dilbar; Khusainova, Rita; Trofimova, Natalya; Akhmetova, Vita; Khidiyatova, Irina; Lichman, Daria V; Isakova, Jainagul; Pocheshkhova, Elvira; Sabitov, Zhaxylyk; Barashkov, Nikolay A; Nymadawa, Pagbajabyn; Mihailov, Evelin; Seng, Joseph Wee Tien; Evseeva, Irina; Migliano, Andrea Bamberg; Abdullah, Syafiq; Andriadze, George; Primorac, Dragan; Atramentova, Lubov; Utevska, Olga; Yepiskoposyan, Levon; Marjanovic, Damir; Kushniarevich, Alena; Behar, Doron M; Gilissen, Christian; Vissers, Lisenka; Veltman, Joris A; Balanovska, Elena; Derenko, Miroslava; Malyarchuk, Boris; Metspalu, Andres; Fedorova, Sardana; Eriksson, Anders; Manica, Andrea; Mendez, Fernando L; Karafet, Tatiana M; Veeramah, Krishna R; Bradman, Neil; Hammer, Michael F; Osipova, Ludmila P; Balanovsky, Oleg; Khusnutdinova, Elza K; Johnsen, Knut; Remm, Maido; Thomas, Mark G; Tyler-Smith, Chris; Underhill, Peter A; Willerslev, Eske; Nielsen, Rasmus; Metspalu, Mait; Villems, Richard; Kivisild, Toomas

    2015-04-01

    It is commonly thought that human genetic diversity in non-African populations was shaped primarily by an out-of-Africa dispersal 50-100 thousand yr ago (kya). Here, we present a study of 456 geographically diverse high-coverage Y chromosome sequences, including 299 newly reported samples. Applying ancient DNA calibration, we date the Y-chromosomal most recent common ancestor (MRCA) in Africa at 254 (95% CI 192-307) kya and detect a cluster of major non-African founder haplogroups in a narrow time interval at 47-52 kya, consistent with a rapid initial colonization model of Eurasia and Oceania after the out-of-Africa bottleneck. In contrast to demographic reconstructions based on mtDNA, we infer a second strong bottleneck in Y-chromosome lineages dating to the last 10 ky. We hypothesize that this bottleneck is caused by cultural changes affecting variance of reproductive success among males. © 2015 Karmin et al.; Published by Cold Spring Harbor Laboratory Press.

  9. Role of DNA polymerase α in chromosomal aberration production by ionizing radiation

    International Nuclear Information System (INIS)

    Bender, M.A.

    1983-01-01

    Aphidicolin is a tetracyclic diterpinoid fungal antibiotic which inhibits DNA synthesis in eukaryotic cells by interfering specifically with DNA polymerase α, apparently by binding to and inactivating the DNA-polymerase α complex. We have shown that aphidicolin, like other inhibitors of DNA synthesis, both induces chromosomal aberrations in human peripheral lymphocytes, and, as a post-treatment, interacts synergistically with x rays to produce greatly enhanced aberration yields. The present experiments explore the effects of aphidicolin in human lymphocytes in the post-DNA-synthetic G 2 phase of the cell cycle. These experiments utilized labeling with tritiated thymidine to positively identify cells in the S phase at the time of treatment, and used serial colcemid collections and fixations to determine aberration yields over as much of the G 2 phase as feasible. Because DNA polymerase α is the only DNA synthetic or repair enzyme known to be affected by aphidicolin, we infer that this enzyme is directly involved in the repair of DNA lesions which can result in visible chromosomal aberrations. (DT)

  10. Interleukin 3 gene is located on human chromosome 5 and is deleted in myeloid leukemias with a deletion of 5q

    International Nuclear Information System (INIS)

    Le Beau, M.M.; Epstein, N.D.; O'Brien, S.J.; Nienhuis, A.W.; Yang, Y.C.; Clark, S.C.; Rowley, J.D.

    1987-01-01

    The gene IL-3 encodes interleukin 3, a hematopoietic colony-stimulating factor (CSF) that is capable of supporting the proliferation of a broad range of hematopoietic cell types. By using somatic cell hybrids and in situ chromosomal hybridization, the authors localized this gene to human chromosome 5 at bands q23-31, a chromosomal region that is frequently deleted [del(5q)] in patients with myeloid disorders. By in situ hybridization, IL-3 was found to be deleted in the 5q-chromosome of one patient with refractory anemia who had a del(5)(q15q33.3), of three patients with refractory anemia (two patients) or acute nonlymphocytic leukemia (ANLL) de novo who had a similar distal breakpoint [del(5)(q13q33.3)], and of a fifth patient, with therapy-related ANLL, who had a similar distal breakpoint in band q33[del(5)(q14q33.3)]. Southern blot analysis of somatic cell hybrids retaining the normal or the deleted chromosome 5 from two patients with the refractory anemia 5q- syndrome indicated that IL-3 sequences were absent from the hybrids retaining the deleted chromosome 5 but not from hybrids that had a cytologically normal chromosome 5. Thus, a small segment of chromosome 5 contains IL-3, GM-CSF, CSF-1, and FMS. The findings and earlier results indicating that GM-CSF, CSF-1, and FMS were deleted in the 5q- chromosome, suggest that loss of IL-3 or of other CSF genes may play an important role in the pathogenesis of hematologic disorders associated with a del(5q)

  11. Frequent gene conversion events between the X and Y homologous chromosomal regions in primates

    Directory of Open Access Journals (Sweden)

    Hirai Hirohisa

    2010-07-01

    Full Text Available Abstract Background Mammalian sex-chromosomes originated from a pair of autosomes. A step-wise cessation of recombination is necessary for the proper maintenance of sex-determination and, consequently, generates a four strata structure on the X chromosome. Each stratum shows a specific per-site nucleotide sequence difference (p-distance between the X and Y chromosomes, depending on the time of recombination arrest. Stratum 4 covers the distal half of the human X chromosome short arm and the p-distance of the stratum is ~10%, on average. However, a 100-kb region, which includes KALX and VCX, in the middle of stratum 4 shows a significantly lower p-distance (1-5%, suggesting frequent sequence exchanges or gene conversions between the X and Y chromosomes in humans. To examine the evolutionary mechanism for this low p-distance region, sequences of a corresponding region including KALX/Y from seven species of non-human primates were analyzed. Results Phylogenetic analysis of this low p-distance region in humans and non-human primate species revealed that gene conversion like events have taken place at least ten times after the divergence of New World monkeys and Catarrhini (i.e., Old World monkeys and hominoids. A KALY-converted KALX allele in white-handed gibbons also suggests a possible recent gene conversion between the X and Y chromosomes. In these primate sequences, the proximal boundary of this low p-distance region is located in a LINE element shared between the X and Y chromosomes, suggesting the involvement of this element in frequent gene conversions. Together with a palindrome on the Y chromosome, a segmental palindrome structure on the X chromosome at the distal boundary near VCX, in humans and chimpanzees, may mediate frequent sequence exchanges between X and Y chromosomes. Conclusion Gene conversion events between the X and Y homologous regions have been suggested, mainly in humans. Here, we found frequent gene conversions in the

  12. A 15 Mb large paracentric chromosome 21 inversion identified in Czech population through a pair of flanking duplications.

    Science.gov (United States)

    Drabova, Jana; Trkova, Marie; Hancarova, Miroslava; Novotna, Drahuse; Hejtmankova, Michaela; Havlovicova, Marketa; Sedlacek, Zdenek

    2014-01-01

    Inversions are balanced structural chromosome rearrangements, which can influence gene expression and the risk of unbalanced chromosome constitution in offspring. Many examples of inversion polymorphisms exist in human, affecting both heterochromatic regions and euchromatin. We describe a novel, 15 Mb long paracentric inversion, inv(21)(q21.1q22.11), affecting more than a third of human 21q. Despite of its length, the inversion cannot be detected using karyotyping due to similar band patterns on the normal and inverted chromosomes, and is therefore likely to escape attention. Its identification was aided by the repeated observation of the same pair of 150 kb long duplications present in cis on chromosome 21 in three Czech families subjected to microarray analysis. The finding prompted us to hypothesise that this co-occurrence of two remote duplications could be associated with an inversion of the intervening segment, and this speculation turned out to be right. The inversion was confirmed in a series of FISH experiments which also showed that the second copy of each of the duplications was always located at the opposite end of the inversion. The presence of the same pair of duplications in additional individuals reported in public databases indicates that the inversion may also be present in other populations. Three out of the total of about 4000 chromosomes 21 examined in our sample carried the duplications and were inverted, corresponding to carrier frequency of about 1/660. Although the breakpoints affect protein-coding genes, the occurrence of the inversion in normal parents and siblings of our patients and the occurrence of the duplications in unaffected controls in databases indicate that this rare variant is rather non-pathogenic. The inverted segment carried an identical shared haplotype in the three families studied. The haplotypes, however, diverged very rapidly in the flanking regions, possibly pointing to an ancient founder event at the origin of the

  13. Localization of the cellular retinoic acid binding protein (CRABP) gene relative to the acute promyelocytic leukemia-associated breakpoint on human chromosome 15

    NARCIS (Netherlands)

    A.H.M. Geurts van Kessel (Ad); H. de Leeuw (H.); E.J. Dekker (Erik Jan); J.M. Rijks (Jolianne); N. Spurr (N.); A.M. Ledbetter (Andrew M.); E. Kootwijk (E.); M.J. Vaessen (Marie-Josée)

    1991-01-01

    textabstractA human genomic fragment comprising the cellular retinoic acid binding protein (CRABP) gene was isolated. By using a panel of somatic cell hybrids, this gene could be assigned to human chromosome 15. Subsequently, a possible involvement of the CRABP gene in translocation (15;17)

  14. Defective replication initiation results in locus specific chromosome breakage and a ribosomal RNA deficiency in yeast.

    Directory of Open Access Journals (Sweden)

    Joseph C Sanchez

    2017-10-01

    Full Text Available A form of dwarfism known as Meier-Gorlin syndrome (MGS is caused by recessive mutations in one of six different genes (ORC1, ORC4, ORC6, CDC6, CDT1, and MCM5. These genes encode components of the pre-replication complex, which assembles at origins of replication prior to S phase. Also, variants in two additional replication initiation genes have joined the list of causative mutations for MGS (Geminin and CDC45. The identity of the causative MGS genetic variants strongly suggests that some aspect of replication is amiss in MGS patients; however, little evidence has been obtained regarding what aspect of chromosome replication is faulty. Since the site of one of the missense mutations in the human ORC4 alleles is conserved between humans and yeast, we sought to determine in what way this single amino acid change affects the process of chromosome replication, by introducing the comparable mutation into yeast (orc4Y232C. We find that yeast cells with the orc4Y232C allele have a prolonged S-phase, due to compromised replication initiation at the ribosomal DNA (rDNA locus located on chromosome XII. The inability to initiate replication at the rDNA locus results in chromosome breakage and a severely reduced rDNA copy number in the survivors, presumably helping to ensure complete replication of chromosome XII. Although reducing rDNA copy number may help ensure complete chromosome replication, orc4Y232C cells struggle to meet the high demand for ribosomal RNA synthesis. This finding provides additional evidence linking two essential cellular pathways-DNA replication and ribosome biogenesis.

  15. Defective replication initiation results in locus specific chromosome breakage and a ribosomal RNA deficiency in yeast.

    Science.gov (United States)

    Sanchez, Joseph C; Kwan, Elizabeth X; Pohl, Thomas J; Amemiya, Haley M; Raghuraman, M K; Brewer, Bonita J

    2017-10-01

    A form of dwarfism known as Meier-Gorlin syndrome (MGS) is caused by recessive mutations in one of six different genes (ORC1, ORC4, ORC6, CDC6, CDT1, and MCM5). These genes encode components of the pre-replication complex, which assembles at origins of replication prior to S phase. Also, variants in two additional replication initiation genes have joined the list of causative mutations for MGS (Geminin and CDC45). The identity of the causative MGS genetic variants strongly suggests that some aspect of replication is amiss in MGS patients; however, little evidence has been obtained regarding what aspect of chromosome replication is faulty. Since the site of one of the missense mutations in the human ORC4 alleles is conserved between humans and yeast, we sought to determine in what way this single amino acid change affects the process of chromosome replication, by introducing the comparable mutation into yeast (orc4Y232C). We find that yeast cells with the orc4Y232C allele have a prolonged S-phase, due to compromised replication initiation at the ribosomal DNA (rDNA) locus located on chromosome XII. The inability to initiate replication at the rDNA locus results in chromosome breakage and a severely reduced rDNA copy number in the survivors, presumably helping to ensure complete replication of chromosome XII. Although reducing rDNA copy number may help ensure complete chromosome replication, orc4Y232C cells struggle to meet the high demand for ribosomal RNA synthesis. This finding provides additional evidence linking two essential cellular pathways-DNA replication and ribosome biogenesis.

  16. Chromosome

    Science.gov (United States)

    ... St Louis, MO: Elsevier; 2017:chap 69. Taber's Medical Dictionary Online. Chromosome. www.tabers.com/tabersonline/view/Tabers-Dictionary/753321/all/chromosome?q=Chromosome&ti=0 . Accessed June 11, 2017.

  17. Computer aided analysis of additional chromosome aberrations in Philadelphia chromosome positive acute lymphoblastic leukaemia using a simplified computer readable cytogenetic notation

    Directory of Open Access Journals (Sweden)

    Mohr Brigitte

    2003-01-01

    Full Text Available Abstract Background The analysis of complex cytogenetic databases of distinct leukaemia entities may help to detect rare recurring chromosome aberrations, minimal common regions of gains and losses, and also hot spots of genomic rearrangements. The patterns of the karyotype alterations may provide insights into the genetic pathways of disease progression. Results We developed a simplified computer readable cytogenetic notation (SCCN by which chromosome findings are normalised at a resolution of 400 bands. Lost or gained chromosomes or chromosome segments are specified in detail, and ranges of chromosome breakpoint assignments are recorded. Software modules were written to summarise the recorded chromosome changes with regard to the respective chromosome involvement. To assess the degree of karyotype alterations the ploidy levels and numbers of numerical and structural changes were recorded separately, and summarised in a complex karyotype aberration score (CKAS. The SCCN and CKAS were used to analyse the extend and the spectrum of additional chromosome aberrations in 94 patients with Philadelphia chromosome positive (Ph-positive acute lymphoblastic leukemia (ALL and secondary chromosome anomalies. Dosage changes of chromosomal material represented 92.1% of all additional events. Recurring regions of chromosome losses were identified. Structural rearrangements affecting (pericentromeric chromosome regions were recorded in 24.6% of the cases. Conclusions SCCN and CKAS provide unifying elements between karyotypes and computer processable data formats. They proved to be useful in the investigation of additional chromosome aberrations in Ph-positive ALL, and may represent a step towards full automation of the analysis of large and complex karyotype databases.

  18. Lethality of radiation-induced chromosome aberrations in human tumour cell lines with different radiosensitivities.

    Science.gov (United States)

    Coco-Martin, J M; Ottenheim, C P; Bartelink, H; Begg, A C

    1996-03-01

    In order to find an explanation for the eventual disappearance of all chromosome aberrations in two radiosensitive human tumour cell lines, the type and stability of different aberration types was investigated in more detail. To classify the aberrations into unstable and stable types, three-colour fluorescence in situ hybridization was performed, including a whole-chromosome probe, a pancentromere probe, and a stain for total DNA. This technique enables the appropriate classification of the aberrations principally by the presence (stable) or not (unstable) of a single centromere per chromosome. Unstable-type aberrations were found to disappear within 7 days (several divisions) in the two radiosensitive and the two radioresistant tumour lines investigated. Stable-type aberrations were found to remain at an approximately constant level over the duration of the experiment (14 days; 8-10 divisions) in the two radioresistant lines. In contrast, the majority of these stable-type aberrations had disappeared by 14 days in the two radiosensitive lines. The previous findings of disappearance of total aberrations in radiosensitive cells was therefore not due to a reduced induction of stable-type aberrations, but the complete disappearance of cells with this aberration type. These results could not be explained by differences in apoptosis or G1 blocks. Two possible explanations for these unexpected findings involve non-random induction of unstable-type aberrations, or lethality of stable-type aberrations. The results suggest caution in the use of stable-type aberration numbers as a predictor for radiosensitivity.

  19. Psychotic disorder and its characteristics in sex chromosome aneuploidies

    Directory of Open Access Journals (Sweden)

    Annapia Verri

    2009-09-01

    Full Text Available Sex chromosome anomalies have been associated with psychoses. We report a patient with XYY chromosome anomaly who developed a paranoid psychosis. The second case deal with a 51-year-old woman affected by Turner Syndrome and Psychotic Disorder, with a prevalent somatic and sexual focus.

  20. [Chromosomal instability parameters in the population affected by nuclear explosions at the Semipalatinsk nuclear test site].

    Science.gov (United States)

    Abil'dinova, G Zh; Kuleshov, N P; Sviatova, G S

    2003-08-01

    A population genetic survey of 149 persons who were born and have permanently lived in the contaminated zones of the Semipalatinsk region has been performed. A cytogenetic study has demonstrated that the frequency of aberrant cells is 1.7-3 times higher than control parameters. The total frequencies of chromosome aberrations are 3.43 +/- 0.48, 3.1 +/- 0.3, 1.8 +/- 0.2, and 1.15 +/- 0.17 aberrations per 100 cells in the populations of the extreme radiation risk (ERR), maximum radiation risk (MaxRR), minimum radiation risk (MinRR), and control zones, respectively. The high chromosome aberration rate in all three zones of radiation risk has been detected mainly due to radiation-induced chromosome markers, including paired fragments (1.2 +/- 0.2, 0.94 +/- 0.13, and 0.43 +/- 0.06 per 100 cells, respectively), dicentric and ring chromosomes (0.44 +/- 0.04, 0.45 +/- 0.07, and 0.11 +/- 0.02 per 100 cells, respectively), and stable chromosome aberrations (0.74 +/- 0.16, 0.8 +/- 0.1, and 0.63 +/- 0.13 per 100 cells, respectively). The qualitative spectra of the cytogenetic lesions observed in these groups indicate a mutagenic effect of ionizing radiation on chromosomes in the populations studied.

  1. Chromosome aberrations induced by radiation. With special reference to possible relation between chromosome aberrations and carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Kamada, N [Hiroshima Univ. (Japan). Research Inst. for Nuclear Medicine and Biology

    1980-02-01

    Chromosome aberration seems to be one of the most conspicuous residual abnormalities recognizable in radiation-exposed persons for many years after exposure. Knowledge of the biological significance of these abnormalities seems to be necessary for understanding of the effect of radiation on humans, especially in relation to possible leukemic development. Cytogenetic studies were performed on the bone marrow cells, T and B lymphocytes, and fibroblasts in atomic bomb-survivors who were in apparent good health (105 cases), atomic bomb exposed patients who had prolonged periods of blood disorders which terminated in acute leukemia (8 cases), and who had no such abnormalities (6 cases). All patients with chronic myelocytic leukemia (CML) and a history of atomic bomb exposure showed Philadelphia chromosome, a characteristic chromosome abnormality for CML. The persistent chromosome aberrations of bone marrow cells, T and B lymphocytes found among the atomic bomb survivors with or without blood disorders may give some clue to solve the problems of carcinogenesis.

  2. Mechanisms of induction of chromosomal aberrations and their detection by fluorescence in situ hybridization

    International Nuclear Information System (INIS)

    Natarajan, A.T.

    2002-01-01

    Recently introduced fluorescence in situ hybridization (FISH) technique employing chromosome specific DNA libraries as well as region specific DNA probes (e.g., centromere, telomere) have helped to analyse chromosomal aberrations in great detail and thus have given some new insights into the mechanisms of induction of chromosomal aberrations. The relative proportion of induction of translocations and dicentrics by ionising radiation was studied in human, mice and Chinese hamster cells. Many of the studies point to the differences between the mechanisms of induction of dicentrics and translocations. Preliminary results obtained in our laboratory using arm specific probes for human chromosomes 1 and 3 indicate that the aberrations between the arms appear to be more than expected on a random basis. By employing telomeric probes the frequencies of interstitial deletions were found to be high and similar to the frequencies of dicentrics both in human and mouse lymphocytes. A recent study with human chromosome specific probes clearly shows variation of sensitivity of chromosomes for the induction of exchange aberrations. Radiation response studies with Chinese hamster cells using telomeric probes, suggest that telomeric sequences, especially interstitial ones appear to be an important factor in the origin of both spontaneous and induced chromosomal aberrations

  3. Forensic use of Y-chromosome DNA: a general overview

    NARCIS (Netherlands)

    M.H. Kayser (Manfred)

    2017-01-01

    textabstractThe male-specific part of the human Y chromosome is widely used in forensic DNA analysis, particularly in cases where standard autosomal DNA profiling is not informative. A Y-chromosomal gene fragment is applied for inferring the biological sex of a crime scene trace donor. Haplotypes

  4. Human placental Na/sup +/, K/sup +/-ATPase. cap alpha. subunit: cDNA cloning, tissue expression, DNA polymorphism, and chromosomal localization

    Energy Technology Data Exchange (ETDEWEB)

    Chehab, F.F.; Kan, Y.W.; Law, M.L.; Hartz, J.; Kao, F.T.; Blostein, R.

    1987-11-01

    A 2.2-kilobase clone comprising a major portion of the coding sequence of the Na/sup +/, K/sup +/-ATPase ..cap alpha.. subunit was cloned from human placenta and its sequence was identical to that encoding the ..cap alpha.. subunit of human kidney and HeLa cells. Transfer blot analysis of the mRNA products of the Na/sup +/, K/sup +/-ATPase gene from various human tissues and cell lines revealed only one band (approx. = 4.7 kilobases) under low and high stringency washing conditions. The levels of expression in the tissues were intestine > placenta > liver > pancreas, and in the cell lines the levels were human erythroleukemia > butyrate-induced colon > colon > brain > HeLa cells. mRNA was undetectable in reticulocytes, consistent with the authors failure to detect positive clones in a size-selected ( > 2 kilobases) lambdagt11 reticulocyte cDNA library. DNA analysis revealed by a polymorphic EcoRI band and chromosome localization by flow sorting and in situ hybridization showed that the ..cap alpha.. subunit is on the short is on the short arm (band p11-p13) of chromosome 1.

  5. Loss of heterozygosity of chromosome 15 in human lung carcinomas

    International Nuclear Information System (INIS)

    Mitchell, C.E.; Palmisano, W.A.; Lechner, J.F.

    1994-01-01

    Loss of heterozygosity (LOH) in tumors may be associated with the inactivation of tumor suppressor genes. A tumor suppressor gene for lung cancer may reside on chromosome 15, because deletions in this chromosome are frequently observed. Recently, it was reported that a newly discovered gene, GTPase-activating protein-3 (GAP3) maps to chromosome 15. GAP3 is a member of a family of GAP-related genes. Although the precise function of GAP3 is not known, it is thought that GAP3 is involved in the regulation of ras-like GTPase activities. Ras proteins have a low intrinsic activity, and their inactivation is dependent on GAPS in vivo. Oncogenic mutants of ras proteins, for example, at codons 12, 13, or 61, are resistant to GAP-mediated GTPase stimulation and are constituitively locked in their active, GTP-bound states. The purpose of this investigation was to determine the frequency and extent of LOH of GAP3 in a group of patients with lung cancer

  6. Dog Y chromosomal DNA sequence: identification, sequencing and SNP discovery

    Directory of Open Access Journals (Sweden)

    Kirkness Ewen

    2006-10-01

    Full Text Available Abstract Background Population genetic studies of dogs have so far mainly been based on analysis of mitochondrial DNA, describing only the history of female dogs. To get a picture of the male history, as well as a second independent marker, there is a need for studies of biallelic Y-chromosome polymorphisms. However, there are no biallelic polymorphisms reported, and only 3200 bp of non-repetitive dog Y-chromosome sequence deposited in GenBank, necessitating the identification of dog Y chromosome sequence and the search for polymorphisms therein. The genome has been only partially sequenced for one male dog, disallowing mapping of the sequence into specific chromosomes. However, by comparing the male genome sequence to the complete female dog genome sequence, candidate Y-chromosome sequence may be identified by exclusion. Results The male dog genome sequence was analysed by Blast search against the human genome to identify sequences with a best match to the human Y chromosome and to the female dog genome to identify those absent in the female genome. Candidate sequences were then tested for male specificity by PCR of five male and five female dogs. 32 sequences from the male genome, with a total length of 24 kbp, were identified as male specific, based on a match to the human Y chromosome, absence in the female dog genome and male specific PCR results. 14437 bp were then sequenced for 10 male dogs originating from Europe, Southwest Asia, Siberia, East Asia, Africa and America. Nine haplotypes were found, which were defined by 14 substitutions. The genetic distance between the haplotypes indicates that they originate from at least five wolf haplotypes. There was no obvious trend in the geographic distribution of the haplotypes. Conclusion We have identified 24159 bp of dog Y-chromosome sequence to be used for population genetic studies. We sequenced 14437 bp in a worldwide collection of dogs, identifying 14 SNPs for future SNP analyses, and

  7. Altered expression of mitochondrial and extracellular matrix genes in the heart of human fetuses with chromosome 21 trisomy

    Directory of Open Access Journals (Sweden)

    Olla Carlo

    2007-08-01

    Full Text Available Abstract Background The Down syndrome phenotype has been attributed to overexpression of chromosome 21 (Hsa21 genes. However, the expression profile of Hsa21 genes in trisomic human subjects as well as their effects on genes located on different chromosomes are largely unknown. Using oligonucleotide microarrays we compared the gene expression profiles of hearts of human fetuses with and without Hsa21 trisomy. Results Approximately half of the 15,000 genes examined (87 of the 168 genes on Hsa21 were expressed in the heart at 18–22 weeks of gestation. Hsa21 gene expression was globally upregulated 1.5 fold in trisomic samples. However, not all genes were equally dysregulated and 25 genes were not upregulated at all. Genes located on other chromosomes were also significantly dysregulated. Functional class scoring and gene set enrichment analyses of 473 genes, differentially expressed between trisomic and non-trisomic hearts, revealed downregulation of genes encoding mitochondrial enzymes and upregulation of genes encoding extracellular matrix proteins. There were no significant differences between trisomic fetuses with and without heart defects. Conclusion We conclude that dosage-dependent upregulation of Hsa21 genes causes dysregulation of the genes responsible for mitochondrial function and for the extracellular matrix organization in the fetal heart of trisomic subjects. These alterations might be harbingers of the heart defects associated with Hsa21 trisomy, which could be based on elusive mechanisms involving genetic variability, environmental factors and/or stochastic events.

  8. Localization of the panhypopituitary dwarf mutation (df) on mouse chromosome 11 in an intersubspecific backcross.

    Science.gov (United States)

    Buckwalter, M S; Katz, R W; Camper, S A

    1991-07-01

    Ames dwarf (df) is an autosomal recessive mutation characterized by severe dwarfism and infertility. This mutation provides a mouse model for panhypopituitarism. The dwarf phenotype results from failure in the differentiation of the cells which produce growth hormone, prolactin, and thyroid stimulating hormone. Using the backcross (DF/B-df/df X CASA/Rk) X DF/B-df/df, we confirmed the assignment of df to mouse chromosome 11 and demonstrated recombination between df and the growth hormone gene. This backcross is an invaluable resource for screening candidate genes for the df mutation. The df locus maps to less than 1 cM distal to Pad-1 (0.85 +/- 0.85 cM). Two new genes localized on mouse chromosome 11, Rpo2-1, and Edp-1, map to a region of conserved synteny with human chromosome 17. The localization of the alpha 1 adrenergic receptor, Adra-1, extends a known region of synteny conservation between mouse chromosome 11 and human chromosome 5, and suggests that a human counterpart to df would map to human chromosome 5.

  9. Non-disjunction of chromosome 18

    DEFF Research Database (Denmark)

    Bugge, M; Collins, A; Petersen, M B

    1998-01-01

    A sample of 100 trisomy 18 conceptuses analysed separately and together with a published sample of 61 conceptuses confirms that an error in maternal meiosis II (MII) is the most frequent cause of non-disjunction for chromosome 18. This is unlike all other human trisomies that have been studied......, which show a higher frequency in maternal meiosis I (MI). Maternal MI trisomy 18 shows a low frequency of recombination in proximal p and medial q, but not the reduction in proximal q observed in chromosome 21 MI non-disjunction. Maternal MII non-disjunction does not fit the entanglement model...... that predicts increased recombination, especially near the centromere. Whereas recent data on MII trisomy 21 show the predicted increase in recombination proximally, maternal MII trisomy 18 has non-significantly reduced recombination. Therefore, chromosome-specific factors must complicate the simple model...

  10. Delayed chromosomal instability caused by large deletion

    International Nuclear Information System (INIS)

    Ojima, M.; Suzuki, K.; Kodama, S.; Watanabe, M.

    2003-01-01

    Full text: There is accumulating evidence that genomic instability, manifested by the expression of delayed phenotypes, is induced by X-irradiation but not by ultraviolet (UV) light. It is well known that ionizing radiation, such as X-rays, induces DNA double strand breaks, but UV-light mainly causes base damage like pyrimidine dimers and (6-4) photoproducts. Although the mechanism of radiation-induced genomic instability has not been thoroughly explained, it is suggested that DNA double strand breaks contribute the induction of genomic instability. We examined here whether X-ray induced gene deletion at the hprt locus induces delayed instability in chromosome X. SV40-immortalized normal human fibroblasts, GM638, were irradiated with X-rays (3, 6 Gy), and the hprt mutants were isolated in the presence of 6-thioguanine (6-TG). A 2-fold and a 60-fold increase in mutation frequency were found by 3 Gy and 6 Gy irradiation, respectively. The molecular structure of the hprt mutations was determined by multiplex polymerase chain reaction of nine exons. Approximately 60% of 3 Gy mutants lost a part or the entire hprt gene, and the other mutants showed point mutations like spontaneous mutants. All 6 Gy mutants show total gene deletion. The chromosomes of the hprt mutants were analyzed by Whole Human Chromosome X Paint FISH or Xq telomere FISH. None of the point or partial gene deletion mutants showed aberrations of X-chromosome, however total gene deletion mutants induced translocations and dicentrics involving chromosome X. These results suggest that large deletion caused by DNA double strand breaks destabilizes chromosome structure, which may be involved in an induction of radiation-induced genomic instability

  11. Qualitative and quantitative expression status of the human chromosome 20 genes in cancer tissues and the representative cell lines.

    Science.gov (United States)

    Wang, Quanhui; Wen, Bo; Yan, Guangrong; Wei, Junying; Xie, Liqi; Xu, Shaohang; Jiang, Dahai; Wang, Tingyou; Lin, Liang; Zi, Jin; Zhang, Ju; Zhou, Ruo; Zhao, Haiyi; Ren, Zhe; Qu, Nengrong; Lou, Xiaomin; Sun, Haidan; Du, Chaoqin; Chen, Chuangbin; Zhang, Shenyan; Tan, Fengji; Xian, Youqi; Gao, Zhibo; He, Minghui; Chen, Longyun; Zhao, Xiaohang; Xu, Ping; Zhu, Yunping; Yin, Xingfeng; Shen, Huali; Zhang, Yang; Jiang, Jing; Zhang, Chengpu; Li, Liwei; Chang, Cheng; Ma, Jie; Yan, Guoquan; Yao, Jun; Lu, Haojie; Ying, Wantao; Zhong, Fan; He, Qing-Yu; Liu, Siqi

    2013-01-04

    Under the guidance of the Chromosome-centric Human Proteome Project (C-HPP), (1, 2) we conducted a systematic survey of the expression status of genes located at human chromosome 20 (Chr.20) in three cancer tissues, gastric, colon, and liver carcinoma, and their representative cell lines. We have globally profiled proteomes in these samples with combined technology of LC-MS/MS and acquired the corresponding mRNA information upon RNA-seq and RNAchip. In total, 323 unique proteins were identified, covering 60% of the coding genes (323/547) in Chr.20. With regards to qualitative information of proteomics, we overall evaluated the correlation of the identified Chr.20 proteins with target genes of transcription factors or of microRNA, conserved genes and cancer-related genes. As for quantitative information, the expression abundances of Chr.20 genes were found to be almost consistent in both tissues and cell lines of mRNA in all individual chromosome regions, whereas those of Chr.20 proteins in cells are different from tissues, especially in the region of 20q13.33. Furthermore, the abundances of Chr.20 proteins were hierarchically evaluated according to tissue- or cancer-related distribution. The analysis revealed several cancer-related proteins in Chr.20 are tissue- or cell-type dependent. With integration of all the acquired data, for the first time we established a solid database of the Chr.20 proteome.

  12. DEMONSTRATION OF THE GENUINE ISO-12P CHARACTER OF THE STANDARD MARKER CHROMOSOME OF TESTICULAR GERM-CELL TUMORS AND IDENTIFICATION OF FURTHER CHROMOSOME-12 ABERRATIONS BY COMPETITIVE INSITU HYBRIDIZATION

    NARCIS (Netherlands)

    SUIJKERBUIJK, RF; VANDEVEEN, AY; VANECHTEN, J; BUYS, CHCM; DEJONG, B; OOSTERHUIS, JW; WARBURTON, DA; CASSIMAN, JJ; SCHONK, D; VANKESSEL, AG

    The recently developed competitive in situ hybridization (CISH) strategy was applied to the analysis of chromosome 12 aberrations in testicular germ cell tumors (TGCTs). DNAs from two rodent-human somatic cell hybrids, containing either a normal chromosome 12 or the p arm of chromosome 12 as their

  13. Molecular analysis of human complement component C5: localization of the structural gene to chromosome 9

    International Nuclear Information System (INIS)

    Wetsel, R.A.; Lemons, R.S.; Le Beau, M.M.; Barnum, S.R.; Noack, D.; Tack, B.F.

    1988-01-01

    A human C5 clone (pC5HG2) was isolated from a cDNA library constructed from Hep G2 mRNA. he DNA sequence showed that the pC5HG2 insert was comprised of 3309 base pairs of pro-C5 coding sequence and 404 base pairs of 3'-untranslated sequence. The derived amino acid sequence contained the entire coding sequence of the C5 α-chain, the β-α-chain junction region, and 100 amino acids (approximately 50%) of the β-chain. Protein sequences of four C5 tryptic peptides were aligned exactly to this sequence and demonstrated that C5 synthesized and secreted by Hep G2 cells is probably identical with plasma-derived C5. Coding sequence alignment of the human C5 sequences with those of murine C5 indicated that 80% of the nucleotides and 79% of the amino acids were placed identically in the two species. Amino acid sequence alignment of the homologous family members C3, C4, and α 2 -macroglobulin with that of C5 demonstrated 27%, 25%, and 19% identity, respectively. As was found in murine C5, the corresponding thiol ester region of human C5 contained several conserved amino acids, but the critical cysteine and glutamine residues which give rise to the intramolecular thiol ester bond in C3, C4, and α 2 -macroglobulin were absent in C5, having been replaced by serine and alanine, respectively. With the use of a panel of hamster-human somatic cell hybrids, the C5 gene was mapped to human chromosome 9. In situ chromosomal hybridization studies employing metaphase cells further localized the gene to bands 9q32-34, with the largest cluster of grains at 9q34.1

  14. Neocentric X-chromosome in a girl with Turner-like syndrome

    Directory of Open Access Journals (Sweden)

    Hemmat Morteza

    2012-06-01

    Full Text Available Abstract Background Neocentromeres are rare human chromosomal aberrations in which a new centromere has formed in a previously non-centromeric location. We report the finding of a structurally abnormal X chromosome with a neocentromere in a 15-year-old girl with clinical features suggestive of Turner syndrome, including short stature and primary amenorrhea. Result G-banded chromosome analysis revealed a mosaic female karyotype involving two abnormal cell lines. One cell line (84% of analyzed metaphases had a structurally abnormal X chromosome (duplication of the long arm and deletion of the short arm and a normal X chromosome. The other cell line (16% of cells exhibited monosomy X. C-banding studies were negative for the abnormal X chromosome. FISH analysis revealed lack of hybridization of the abnormal X chromosome with both the X centromere-specific probe and the “all human centromeres” probe, a pattern consistent with lack of the X chromosome endogenous centromere. A FISH study using an XIST gene probe revealed the presence of two XIST genes, one on each long arm of the iso(Xq, required for inactivation of the abnormal X chromosome. R-banding also demonstrated inactivation of the abnormal X chromosome. An assay for centromeric protein C (CENP-C was positive on both the normal and the abnormal X chromosomes. The position of CENP-C in the abnormal X chromosome defined a neocentromere, which explains its mitotic stability. The karyotype is thus designated as 46,X,neo(X(qter- > q12::q12- > q21.2- > neo- > q21.2- > qter[42]/45,X[8], which is consistent with stigmata of Turner syndrome. The mother of this patient has a normal karyotype; however, the father was not available for study. Conclusion To our knowledge, this is the first case of mosaic Turner syndrome involving an analphoid iso(Xq chromosome with a proven neocentromere among 90 previously described cases with a proven neocentromere.

  15. Human male infertility, the Y chromosome, and dinosaur extinction

    Directory of Open Access Journals (Sweden)

    Sherman J. Silber

    2011-06-01

    Our studies of the Y chromosome and male infertility suggest that the default mechanism for determining the sex of offspring is the temperature of egg incubation, and that genetic sex determination (based on sex chromosomes like X and Y has evolved many times over and over again in different ways, in different genera, as a more foolproof method than temperature variation of assuring a balanced sex ratio in offspring. The absence of such a genetic sex determining mechanism in dinosaurs may have led to a skewed sex ratio when global temperature dramatically changed 65,000,000 years ago, resulting in a preponderance of males, and consequentially a rapid decline in population.

  16. Integration of hepatitis B virus DNA in chromosome-specific satellite sequences

    International Nuclear Information System (INIS)

    Shaul, Y.; Garcia, P.D.; Schonberg, S.; Rutter, W.J.

    1986-01-01

    The authors previously reported the cloning and detailed analysis of the integrated hepatitis B virus sequences in a human hepatoma cell line. They report here the integration of at least one of hepatitis B virus at human satellite DNA sequences. The majority of the cellular sequences identified by this satellite were organized as a multimeric composition of a 0.6-kilobase EcoRI fragment. This clone hybridized in situ almost exclusively to the centromeric heterochromatin of chromosomes 1 and 16 and to a lower extent to chromosome 2 and to the heterochromatic region of the Y chromosome. The immediate flanking host sequence appeared as a hierarchy of repeating units which were almost identical to a previously reported human satellite III DNA sequence

  17. Autosomal mutations affecting Y chromosome loops in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Petrucci Romano

    2008-04-01

    Full Text Available Abstract Background The Y chromosome of Drosophila melanogaster harbors several genes required for male fertility. The genes for these fertility factors are very large in size and contain conspicuous amounts of repetitive DNA and transposons. Three of these loci (ks-1, kl-3 and kl-5 have the ability to develop giant lampbrush-like loops in primary spermatocytes, a cytological manifestation of their active state in these cells. Y-loops bind a number of non-Y encoded proteins, but the mechanisms regulating their development and their specific functions are still to be elucidated. Results Here we report the results of a screen of 726 male sterile lines to identify novel autosomal genes controlling Y-loop function. We analyzed mutant testis preparations both in vivo and by immunofluorescence using antibodies directed against Y-loop-associated proteins. This screen enabled us to isolate 17 mutations at 15 loci whose wild-type function is required for proper Y-loop morphogenesis. Six of these loci are likely to specifically control loop development, while the others display pleiotropic effects on both loops and meiotic processes such as spermiogenesis, sperm development and maturation. We also determined the map position of the mutations affecting exclusively Y-loop morphology. Conclusion Our cytological screening permitted us to identify novel genetic functions required for male spermatogenesis, some of which show pleiotropic effects. Analysis of these mutations also shows that loop development can be uncoupled from meiosis progression. These data represent a useful framework for the characterization of Y-loop development at a molecular level and for the study of the genetic control of heterochromatin.

  18. Induction of complete and incomplete chromosome aberrations by bleomycin in human lymphocytes

    International Nuclear Information System (INIS)

    Benkhaled, L.; Xuncla, M.; Caballin, M.R.; Barrios, L.; Barquinero, J.F.

    2008-01-01

    Bleomycin (BLM) is a clastogenic compound, which due to the overdispersion in the cell distribution of induced dicentrics has been compared to the effect of high-LET radiation. Recently, it has been described that in fibroblast derived cell lines BLM induces incomplete chromosome elements more efficiently than any type of ionizing radiation. The objective of the present study was to evaluate in human lymphocytes the induction of dicentrics and incomplete chromosome elements by BLM. Peripheral blood samples have been treated with different concentrations of BLM. Two cytogenetic techniques were applied, fluorescence plus Giemsa (FPG) and FISH using pan-centromeric and pan-telomeric probes. The observed frequency of dicentric equivalents increases linearly with the BLM concentration, and for all BLM concentrations the distribution of dicentric equivalents was overdispersed. In the FISH study the ratio between total incomplete elements and multicentrics was 0.27. The overdispersion in the dicentric cell distribution, and the linear BLM-concentration dependence of dicentrics can be compared to the effect of high-LET radiation, on the contrary the ratio of incomplete elements and multicentrics is similar to the one induced by low-LET radiation (∼0.40). The elevated proportion of interstitial deletions in relation to total acentric fragments, higher than any type of ionizing radiation could be a characteristic signature of the clastogenic effect of BLM

  19. Abnormalities of chromosome No. 1: significance in malignant transformation

    Energy Technology Data Exchange (ETDEWEB)

    Rowley, J D

    1978-01-01

    Studies of human hematologic malignancies have provided sufficient data not only for the identification of nonrandom abnormalities of whole chromosomes, but also for determination of the specific chromosome regions involved. In clonal aberrations leading to an excess of chromosome No. 1, or a partial excess of No. 1, trisomy for bands 1q25 to 1q32 was noted in the myeloid cells obtained from every one of 35 patients who had various disorders, such as acute leukemia, polycythemia vera, or myelofibrosis. Similar chromosome changes were a consistent finding in various solid tumors as well. This rearrangement was not the result of a particularly fragile site in that region of the chromosome, since the break points in reciprocal translocations that involve No. 1 occurred almost exclusively in the short arm. The nonrandom chromosome changes found in neoplastic cells can now be correlated with the gene loci on these chromosomes or chromosome segments as an attempt is made to identify specific genes that might be related to malignancy.

  20. HPV type-related chromosomal profiles in high-grade cervical intraepithelial neoplasia

    Directory of Open Access Journals (Sweden)

    Bierkens Mariska

    2012-01-01

    Full Text Available Abstract Background The development of cervical cancer and its high-grade precursor lesions (Cervical Intraepithelial Neoplasia grade 2/3 [CIN2/3] result from a persistent infection with high-risk human papillomavirus (hrHPV types and the accumulation of (epigenetic host cell aberrations. Epidemiological studies have demonstrated variable CIN2/3 and cancer risks between different hrHPV types. Recent genomic profiling studies revealed substantial heterogeneity in the chromosomal aberrations detected in morphologically indistinguishable CIN2/3 suggestive of varying cancer risk. The current study aimed to investigate whether CIN2/3 with different hrHPV types vary with respect to their chromosomal profiles, both in terms of the number of aberrations and chromosomal loci affected. Methods Chromosomal profiles were determined of 43 p16INK4a-immunopositive CIN2/3 of women with long-term hrHPV infection (≥ 5 years. Sixteen lesions harboured HPV16, 3 HPV18, 14 HPV31, 1 HPV33, 4 HPV45, 1 HPV51, 2 HPV52 and 2 HPV58. Results Unsupervised hierarchical clustering analysis of the chromosomal profiles revealed two major clusters, characterised by either few or multiple chromosomal aberrations, respectively. A majority of 87.5% of lesions with HPV16 were in the cluster with relatively few aberrations, whereas no such unbalanced distribution was seen for lesions harbouring other hrHPV types. Analysis of the two most prevalent types (HPV16 and HPV31 in this data set revealed a three-fold increase in the number of losses in lesions with HPV31 compared to HPV16-positive lesions. In particular, losses at chromosomes 2q, 4p, 4q, 6p, 6q, 8q & 17p and gain at 1p & 1q were significantly more frequent in HPV31-positive lesions (FDR Conclusions Chromosomal aberrations in CIN2/3 are at least in part related to the hrHPV type present. The relatively low number of chromosomal aberrations observed in HPV16-positive CIN2/3 suggests that the development of these lesions is

  1. Report of the fifth international workshop on human X chromosome mapping

    Energy Technology Data Exchange (ETDEWEB)

    Willard, H.F.; Cremers, F.; Mandel, J.L.; Monaco, A.P.; Nelson, D.L.; Schlessinger, D.

    1994-12-31

    A high-quality integrated genetic and physical map of the X chromosome from telomere to telomere, based primarily on YACs formatted with probes and STSs, is increasingly close to reality. At the Fifth International X Chromosome Workshop, organized by A.M. Poustka and D. Schlessinger in Heidelberg, Germany, April 24--27, 1994, substantial progress was recorded on extension and refinement of the physical map, on the integration of genetic and cytogenetic data, on attempts to use the map to direct gene searches, and on nascent large-scale sequencing efforts. This report summarizes physical and genetic mapping information presented at the workshop and/or published since the reports of the fourth International X Chromosome Workshop. The principle aim of the workshop was to derive a consensus map of the chromosome, in terms of physical contigs emphasizing the location of genes and microsatellite markers. The resulting map is presented and updates previous versions. This report also updates the list of highly informative microsatellites. The text highlights the working state of the map, the genes known to reside on the X, and the progress toward integration of various types of data.

  2. Demasculinization of the Anopheles gambiae X chromosome

    Directory of Open Access Journals (Sweden)

    Magnusson Kalle

    2012-05-01

    Full Text Available Abstract Background In a number of organisms sex-biased genes are non-randomly distributed between autosomes and the shared sex chromosome X (or Z. Studies on Anopheles gambiae have produced conflicting results regarding the underrepresentation of male-biased genes on the X chromosome and it is unclear to what extent sexual antagonism, dosage compensation or X-inactivation in the male germline, the evolutionary forces that have been suggested to affect the chromosomal distribution of sex-biased genes, are operational in Anopheles. Results We performed a meta-analysis of sex-biased gene expression in Anopheles gambiae which provides evidence for a general underrepresentation of male-biased genes on the X-chromosome that increased in significance with the observed degree of sex-bias. A phylogenomic comparison between Drosophila melanogaster, Aedes aegypti and Culex quinquefasciatus also indicates that the Anopheles X chromosome strongly disfavours the evolutionary conservation of male-biased expression and that novel male-biased genes are more likely to arise on autosomes. Finally, we demonstrate experimentally that transgenes situated on the Anopheles gambiae X chromosome are transcriptionally silenced in the male germline. Conclusion The data presented here support the hypothesis that the observed demasculinization of the Anopheles X chromosome is driven by X-chromosome inactivation in the male germline and by sexual antagonism. The demasculinization appears to be the consequence of a loss of male-biased expression, rather than a failure in the establishment or the extinction of male-biased genes.

  3. Positioning of NORs and NOR-bearing chromosomes in relation to nucleoli.

    Science.gov (United States)

    Kalmárová, Markéta; Smirnov, Evgeny; Masata, Martin; Koberna, Karel; Ligasová, Anna; Popov, Alexey; Raska, Ivan

    2007-10-01

    It is widely accepted that chromosomes occupy more or less fixed positions in mammalian interphase nucleus. However, relation between large-scale order of chromosome positioning and gene activity remains unclear. We used the model of the human ribosomal genes to address specific aspects of this problem. Ribosomal genes are organized at particular chromosomal sites in clusters termed nucleolus organizer regions (NORs). Only some NORs, called competent are generally accepted to be transcriptionally active during interphase. Importantly in this respect, the regularities in distribution of competent, and non-competent NORs among the specific chromosomes were already established in two human-derived cell lines: transformed HeLa and primary LEP cells. In the present study, using FISH and immunocytochemistry, we found that in HeLa and LEP cells the large-scale positioning of the NOR-bearing chromosomes with regard to nucleoli is linked to the transcription activity of rDNA. Namely, the tendency of rDNA-bearing chromosomes to associate with nucleoli correlates with the number of transcriptionally competent NORs in the respective chromosome homologs. Regarding the position of NORs, we found that not only competent but also most of the non-competent NORs are included in the nucleoli. Some intranucleolar NORs (supposedly non-competent) are situated on elongated chromatin protrusions connecting nucleoli with respective chromosome territories spatially distanced from nucleoli.

  4. Construction and characterization of a yeast artificial chromosome library containing seven haploid human genome equivalents

    International Nuclear Information System (INIS)

    Albertsen, H.M.; Abderrahim, H.; Cann, H.M.; Dausset, J.; Le Paslier, D.; Cohen, D.

    1990-01-01

    Prior to constructing a library of yeast artificial chromosomes (YACs) containing very large human DNA fragments, the authors performed a series of preliminary experiments aimed at developing a suitable protocol. They found an inverse relationship between YAC insert size and transformation efficiency. Evidence of occasional rearrangement within YAC inserts was found resulting in clonally stable internal deletions or clonally unstable size variations. A protocol was developed for preparative electrophoretic enrichment of high molecular mass human DNA fragments from partial restriction digests and ligation with the YAC vector in agarose. A YAC library has been constructed from large fragments of DNA from an Epstein-Barr virus-transformed human lymphoblastoid cell line. The library presently contains 50,000 clones, 95% of which are greater than 250 kilobase pairs in size. The mean YAC size of the library, calculated from 132 randomly isolated clones, is 430 kilobase pairs. The library thus contains the equivalent of approximately seven haploid human genomes

  5. Genome association study of human chromosome 13 and ...

    Indian Academy of Sciences (India)

    Ministry of Health, Department of Cardiology, Qilu Hospital of Shandong University,. Jinan, Shandong ... chromosome 13 and susceptibility to coronary artery disease in a Chinese population. J. Genet. .... of the 164 bp allele in cases was significantly lower than .... 5-lipoxygenase activating protein (FLAP), is associated with.

  6. Small regions of overlapping deletions on 6q26 in human astrocytic tumours identified using chromosome 6 tile path array CGH

    Science.gov (United States)

    Ichimura, Koichi; Mungall, Andrew J; Fiegler, Heike; Pearson, Danita M.; Dunham, Ian; Carter, Nigel P; Collins, V. Peter

    2009-01-01

    Deletions of chromosome 6 are a common abnormality in diverse human malignancies including astrocytic tumours, suggesting the presence of tumour suppressor genes (TSG). In order to help identify candidate TSGs, we have constructed a chromosome 6 tile path microarray. The array contains 1780 clones (778 PACs and 1002 BACs) that cover 98.3% of the published chromosome 6 sequences. A total of 104 adult astrocytic tumours (10 diffuse astrocytomas, 30 anaplastic astrocytomas (AA), 64 glioblastomas (GB)) were analysed using this array. Single copy number change was successfully detected and the result was in general concordant with a microsatellite analysis. The pattern of copy number change was complex with multiple interstitial deletions/gains. However, a predominance of telomeric 6q deletions was seen. Two small common and overlapping regions of deletion at 6q26 were identified. One was 1002 kb in size and contained PACRG and QKI, while the second was 199 kb and harbours a single gene, ARID1B. The data show that the chromosome 6 tile path array is useful in mapping copy number changes with high resolution and accuracy. We confirmed the high frequency of chromosome 6 deletions in AA and GB, and identified two novel commonly deleted regions that may harbour TSGs. PMID:16205629

  7. Chromosomal radiosensitivity: a study of the chromosomal G2 assay in human blood lymphocytes indicating significant inter-individual variability

    International Nuclear Information System (INIS)

    Smart, V.; Curwen, G.B.; Whitehouse, C.A.; Edwards, A.; Tawn, E.J.

    2003-01-01

    The G 2 chromosomal radiosensitivity assay is a technically demanding assay. To ensure that it is reproducible in our laboratory, we have examined the effects of storage and culture conditions by applying the assay to a group of healthy controls and determined the extent of intra- and inter-individual variations. Nineteen different individuals provided one or more blood samples resulting in a total of 57 successful tests. Multiple cultures from a single blood sample showed no statistically significant difference in the number of chromatid type aberrations between cultures. A 24 h delay prior to culturing the lymphocytes did not significantly affect the induced G 2 score. Intra-individual variation was not statistically significant in seven out of nine individuals. Inter-individual variation was highly statistically significant (P<0.001), indicating that there is a real difference between individuals in the response to radiation using this assay

  8. The Biological Effectiveness of Different Radiation Qualities for the Induction of Chromosome Damage in Human Lymphocytes

    Science.gov (United States)

    Hada, M.; George, Kerry; Cucinotta, F. A.

    2011-01-01

    Chromosome aberrations were measured in human peripheral blood lymphocytes after in vitro exposure to Si-28-ions with energies ranging from 90 to 600 MeV/u, Ti-48-ions with energies ranging from 240 to 1000 MeV/u, or to Fe-56-ions with energies ranging from 200 to 5,000 MeV/u. The LET of the various Si beams in this study ranged from 48 to 158 keV/ m, the LET of the Ti ions ranged from 107 to 240 keV/micron, and the LET of the Fe-ions ranged from 145 to 440 keV/ m. Doses delivered were in the 10- to 200-cGy range. Dose-response curves for chromosome exchanges in cells at first division after exposure, measured using fluorescence in situ hybridization (FISH) with whole-chromosome probes, were fitted with linear or linear-quadratic functions. The relative biological effectiveness (RBE) was estimated from the initial slope of the dose-response curve for chromosome damage with respect to gamma-rays. The estimates of RBEmax values for total chromosome exchanges ranged from 4.4+/-0.4 to 31.5+/-2.6 for Fe ions, 21.4+/-1.7 to 28.3+/-2.4 for Ti ions, and 11.8+/-1.0 to 42.2+/-3.3 for Si ions. The highest RBEmax value for Fe ions was obtained with the 600 MeV/u beam, the highest RBEmax value for Ti ions was obtained 1000 MeV/u beam, and the highest RBEmax value for Si ions was obtained with the 170 MeV/u beam. For Si and Fe ions the RBEmax values increased with LET, reaching a maximum at about 180 keV/micron for Fe and about 100 keV/micron for Si, and decreasing with further increase in LET. Additional studies for low doses Si-28-ions down to 0.02 Gy will be discussed.

  9. A recurrent human papillomavirus integration site at chromosome region 12q14-q15 in SW756 and SK-v cell lines derived from genital tumors

    International Nuclear Information System (INIS)

    Sastre-Garau, X.; Couturier, J.; Favre, M.; Orth, G.

    1995-01-01

    The SW756 cell line, derived from an invasive cancer of the uterine cervix, harbours integrated human papillomavirus (HPV) 18 DNA sequences which have been located in chromosome band 12q13. By in situ hybridization experiments with tritiated and digoxigenin-labelled HPV18 probes on R-banded chromosomes, we now localize the integrated viral sequences in 12q14-q15. Interestingly, we have previously localized integrated HPV16 sequences in the same chromosomal region in SK-v cells, derived from a pre-invasive vulvar neoplasia. The chromosomal region 12q14-q15 could thus correspond to a preferential site for the integration of HPV DNA in genital tumors. (authors). 29 refs., 2 figs

  10. Chromosome phylogenies of man, great apes, and Old World monkeys.

    Science.gov (United States)

    De Grouchy, J

    1987-08-31

    The karyotypes of man and of the closely related Pongidae--chimpanzee, gorilla, and orangutan--differ by a small number of well known rearrangements, mainly pericentric inversions and one fusion which reduced the chromosome number from 48 in the Pongidae to 46 in man. Dutrillaux et al. (1973, 1975, 1979) reconstructed the chromosomal phylogeny of the entire primate order. More and more distantly related species were compared thus moving backward in evolution to the common ancestors of the Pongidae, of the Cercopithecoidae, the Catarrhini, the Platyrrhini, the Prosimians, and finally the common ancestor of all primates. Descending the pyramid it becomes possible to assign the rearrangements that occurred in each phylum, and the one that led to man in particular. The main conclusions are that this phylogeny is compatible with the occurrence during evolution of simple chromosome rearrangements--inversions, fusions, reciprocal translocation, acquisition or loss of heterochromatin--and that it is entirely consistent with the known primate phylogeny based on physical morphology and molecular evolution. If heterochromatin is not taken into account, man has in common with the other primates practically all of his chromosomal material as determined by chromosome banding. However, it is arranged differently, according to species, on account of chromosome rearrangements. This interpretation has been confirmed by comparative gene mapping, which established that the same chromosome segments, identified by banding, carry the same genes (Finaz et al., 1973; Human Gene Mapping 8, 1985). A remarkable observation made by Dutrillaux is that different primate phyla seem to have adopted different chromosome rearrangements in the course of evolution: inversions for the Pongidae, Robertsonian fusions for the lemurs, etc. This observation may raise many questions, among which is that of an organized evolution. Also, the breakpoints of chromosomal rearrangements observed during evolution

  11. Semi-automated detection of aberrant chromosomes in bivariate flow karyotypes

    NARCIS (Netherlands)

    Boschman, G. A.; Manders, E. M.; Rens, W.; Slater, R.; Aten, J. A.

    1992-01-01

    A method is described that is designed to compare, in a standardized procedure, bivariate flow karyotypes of Hoechst 33258 (HO)/Chromomycin A3 (CA) stained human chromosomes from cells with aberrations with a reference flow karyotype of normal chromosomes. In addition to uniform normalization of

  12. Structural analysis of γ radiation-induced chromosomal aberrations observed by atomic force microscopy

    International Nuclear Information System (INIS)

    Qu Shuang; Chen Ying; Ge Shili; Liu Xiulin; Zhou Pingkun; Zhang Sa; Zhang Detian

    2003-01-01

    Objective: To find a new method for the measurement of radiation-induced damage, the structures of normal chromosomes and 60 Co γ-ray-induced chromosomal aberration were analyzed by atomic force microscopy. Methods: Normal and irradiated chromosomes of human peripheral blood lymphocytes were prepared, then three-dimensional structure and height of chromosomes were analyzed by atomic force microscopy. Results: Three-dimensional structures of normal chromosomes and dicentric aberration in irradiated chromosomes were observed clearly. The data of chromosome height were helpful to recognizing the dicentric aberrations. Conclusion: Atomic force microscopy providing three-dimension image and linear measurement is a new and valuable tool for structural analysis of radiation-induced chromosomal aberrations

  13. Radiation-induced genomic instability driven by de novo chromosomal rearrangement hot spots

    International Nuclear Information System (INIS)

    Grosovsky, A.J.; Allen, R.N.; Moore, S.R.

    2003-01-01

    Genomic instability has become generally recognized as a critical contributor to tumor progression by generating the necessary number of genetic alterations required for expression of a clinically significant malignancy. Our study of chromosomal instability investigates the hypothesis that chromosomal rearrangements can generate novel breakage-prone sites, resulting in instability acting predominantly in cis. Here we present an analysis of the karyotypic distribution of instability associated chromosomal rearrangements in TK6 and derivative human lymphoblasts. Karyotypic analysis performed on a total of 455 independent clones included 183 rearrangements distributed among 100 separate unstable clones. The results demonstrate that the breakpoints of chromosomal rearrangements in unstable clones are non-randomly distributed throughout the genome. This pattern is statistically significant, and incompatible with expectations for random breakage associated with loss or alteration of a trans-acting factor. Furthermore, specific chromosomal breakage hot spots associated with instability have been identified; these occur in several independent unstable clones and are often repeatedly broken and rejoined during the outgrowth of an individual clone. In complimentary studies, genomic instability was generated without any exposure to a DNA-damaging agent, but rather by transfection with alpha heterochromatin DNA. In a prospective analysis, human-hamster hybrid AL cells containing a single human chromosome 11 were transfected with heterochromatic alpha DNA repeats and clones were analyzed by chromosome 11 painting. Transfection with alpha DNA was associated with karyotypic heterogeneity in 40% of clones examined; control transfections with plasmid alone did not lead to karyotypic heterogeneity

  14. Construction of a map of chromosome 16 by using radiation hybrids

    International Nuclear Information System (INIS)

    Ceccherini, I.; Romeo, G.; Lawrence, S.; Morton, N.E.; Breuning, M.H.; Harris, P.C.; Himmelbauer, H.; Frischauf, A.M.; Sutherland, G.R.; Germino, G.G.; Reeders, S.T.

    1992-01-01

    A human-hamster cell hybrid carrying a single copy of chromosome 16 as the only human genetic material was irradiated with a single dose of γ-rays and then fused with a thymidine kinase-deficient hamster cell line (RJKM) to generate radiation hybrids retaining unselected fragments of this human chromosome. In two experiments, 223 hybrids were isolated in hypoxanthine/aminopterine/thymidine (HAT) medium and screened with 38 DNA probes, corresponding to anonymous DNA or gene sequences localized on chromosome 16. The most likely order and location of the 38 DNA sequences were established by multiple pairwise analysis and scaled to estimate physical distance in megabases. The order and the distances thus obtained are mostly consistent with available data on genetic and physical mapping of these markers, illustrating the usefulness of radiation hybrids for mapping

  15. Rapid evolution of cancer/testis genes on the X chromosome

    Directory of Open Access Journals (Sweden)

    Simpson Andrew J

    2007-05-01

    Full Text Available Abstract Background Cancer/testis (CT genes are normally expressed only in germ cells, but can be activated in the cancer state. This unusual property, together with the finding that many CT proteins elicit an antigenic response in cancer patients, has established a role for this class of genes as targets in immunotherapy regimes. Many families of CT genes have been identified in the human genome, but their biological function for the most part remains unclear. While it has been shown that some CT genes are under diversifying selection, this question has not been addressed before for the class as a whole. Results To shed more light on this interesting group of genes, we exploited the generation of a draft chimpanzee (Pan troglodytes genomic sequence to examine CT genes in an organism that is closely related to human, and generated a high-quality, manually curated set of human:chimpanzee CT gene alignments. We find that the chimpanzee genome contains homologues to most of the human CT families, and that the genes are located on the same chromosome and at a similar copy number to those in human. Comparison of putative human:chimpanzee orthologues indicates that CT genes located on chromosome X are diverging faster and are undergoing stronger diversifying selection than those on the autosomes or than a set of control genes on either chromosome X or autosomes. Conclusion Given their high level of diversifying selection, we suggest that CT genes are primarily responsible for the observed rapid evolution of protein-coding genes on the X chromosome.

  16. Report of the Fourth International Workshop on human X chromosome mapping 1993

    Energy Technology Data Exchange (ETDEWEB)

    Schlessinger, D.; Mandel, J.L.; Monaco, A.P.; Nelson, D.L.; Willard, H.F. [eds.

    1993-12-31

    Vigorous interactive efforts by the X chromosome community have led to accelerated mapping in the last six months. Seventy-five participants from 12 countries around the globe contributed progress reports to the Fourth International X Chromosome Workshop, at St. Louis, MO, May 9-12, 1993. It became clear that well over half the chromosome is now covered by YAC contigs that are being extended, verified, and aligned by their content of STSs and other markers placed by cytogenetic or linkage mapping techniques. The major aim of the workshop was to assemble the consensus map that appears in this report, summarizing both consensus order and YAC contig information.

  17. Folic acid deficiency increases chromosomal instability, chromosome 21 aneuploidy and sensitivity to radiation-induced micronuclei

    International Nuclear Information System (INIS)

    Beetstra, Sasja; Thomas, Philip; Salisbury, Carolyn; Turner, Julie; Fenech, Michael

    2005-01-01

    Folic acid deficiency can lead to uracil incorporation into DNA, hypomethylation of DNA, inefficient DNA repair and increase chromosome malsegregation and breakage. Because ionising radiation increases demand for efficient DNA repair and also causes chromosome breaks we hypothesised that folic acid deficiency may increase sensitivity to radiation-induced chromosome breakage. We tested this hypothesis by using the cytokinesis-block micronucleus assay in 10 day WIL2-NS cell cultures at four different folic acid concentrations (0.2, 2, 20, and 200 nM) that span the 'normal' physiological range in humans. The study showed a significant dose-dependent increase in frequency of binucleated cells with micronuclei and/or nucleoplasmic bridges with decreasing folic acid concentration (P < 0.0001, P = 0.028, respectively). These biomarkers of chromosomal instability were also increased in cells irradiated (1.5 Gy γ-rays) on day 9 relative to un-irradiated controls (P < 0.05). Folic acid deficiency and γ-irradiation were shown to have a significant interactive effect on frequency of cells containing micronuclei (two-way ANOVA, interaction P 0.0039) such that the frequency of radiation-induced micronucleated cells (i.e. after subtracting base-line frequency of un-irradiated controls) increased with decreasing folic acid concentration (P-trend < 0.0001). Aneuploidy of chromosome 21, apoptosis and necrosis were increased by folic acid deficiency but not by ionising radiation. The results of this study show that folate status has an important impact on chromosomal stability and is an important modifying factor of cellular sensitivity to radiation-induced genome damage

  18. Genetic and chromosomal effects of ionizing radiation

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The genetic and chromosomal effects of ionizing radiations deal with those effects in the descendants of the individuals irradiated. The information base concerning genetic and chromosomal injury to humans from radiation is less adequate than is the information base for cancer and leukemia. As a result, it is not possible to make the kinds of quantitative estimates that have been made for carcinogenesis in previous chapters of this book. The chapter includes a detailed explanation of various types of genetic injuries such as chromosomal diseases, x-linked diseases, autosomal dominant diseases, recessive diseases, and irregularly inherited diseases. Quantitative estimates of mutation rates and incidences are given based on atomic bomb survivors data

  19. Characterization of apparently balanced chromosomal rearrangements from the developmental genome anatomy project.

    Science.gov (United States)

    Higgins, Anne W; Alkuraya, Fowzan S; Bosco, Amy F; Brown, Kerry K; Bruns, Gail A P; Donovan, Diana J; Eisenman, Robert; Fan, Yanli; Farra, Chantal G; Ferguson, Heather L; Gusella, James F; Harris, David J; Herrick, Steven R; Kelly, Chantal; Kim, Hyung-Goo; Kishikawa, Shotaro; Korf, Bruce R; Kulkarni, Shashikant; Lally, Eric; Leach, Natalia T; Lemyre, Emma; Lewis, Janine; Ligon, Azra H; Lu, Weining; Maas, Richard L; MacDonald, Marcy E; Moore, Steven D P; Peters, Roxanna E; Quade, Bradley J; Quintero-Rivera, Fabiola; Saadi, Irfan; Shen, Yiping; Shendure, Jay; Williamson, Robin E; Morton, Cynthia C

    2008-03-01

    Apparently balanced chromosomal rearrangements in individuals with major congenital anomalies represent natural experiments of gene disruption and dysregulation. These individuals can be studied to identify novel genes critical in human development and to annotate further the function of known genes. Identification and characterization of these genes is the goal of the Developmental Genome Anatomy Project (DGAP). DGAP is a multidisciplinary effort that leverages the recent advances resulting from the Human Genome Project to increase our understanding of birth defects and the process of human development. Clinically significant phenotypes of individuals enrolled in DGAP are varied and, in most cases, involve multiple organ systems. Study of these individuals' chromosomal rearrangements has resulted in the mapping of 77 breakpoints from 40 chromosomal rearrangements by FISH with BACs and fosmids, array CGH, Southern-blot hybridization, MLPA, RT-PCR, and suppression PCR. Eighteen chromosomal breakpoints have been cloned and sequenced. Unsuspected genomic imbalances and cryptic rearrangements were detected, but less frequently than has been reported previously. Chromosomal rearrangements, both balanced and unbalanced, in individuals with multiple congenital anomalies continue to be a valuable resource for gene discovery and annotation.

  20. CRISPR/Cas9-induced transgene insertion and telomere-associated truncation of a single human chromosome for chromosome engineering in CHO and A9 cells.

    Science.gov (United States)

    Uno, Narumi; Hiramatsu, Kei; Uno, Katsuhiro; Komoto, Shinya; Kazuki, Yasuhiro; Oshimura, Mitsuo

    2017-10-06

    Chromosome engineering techniques including gene insertion, telomere-associated truncation and microcell-mediated chromosome transfer (MMCT) are powerful tools for generation of humanised model animal, containing megabase-sized genomic fragments. However, these techniques require two cell lines: homologous recombination (HR)-proficient DT40 cells for chromosome modification, and CHO cells for transfer to recipient cells. Here we show an improved technique using a combination of CRISPR/Cas9-induced HR in CHO and mouse A9 cells without DT40 cells following MMCT to recipient cells. Transgene insertion was performed in CHO cells with the insertion of enhanced green fluorescence protein (EGFP) using CRISPR/Cas9 and a circular targeting vector containing two 3 kb HR arms. Telomere-associated truncation was performed in CHO cells using CRISPR/Cas9 and a linearised truncation vector containing a single 7 kb HR arm at the 5' end, a 1 kb artificial telomere at the 3' end. At least 11% and 6% of the targeting efficiency were achieved for transgene insertion and telomere-associated truncation, respectively. The transgene insertion was also confirmed in A9 cells (29%). The modified chromosomes were transferrable to other cells. Thus, this CHO and A9 cell-mediated chromosome engineering using the CRISPR/Cas9 for direct transfer of the modified chromosome is a rapid technique that will facilitate chromosome manipulation.

  1. Dose response relationships and analysis of primary processes of radiation-induced chromosomal aberrations in human peripheral lymphocytes

    International Nuclear Information System (INIS)

    Schmid, E.

    1977-02-01

    Human peripheral lymphocytes were irradiated with 220 kV X-rays, 3 MeV electrons and 15 MeV neutrons. The frequency of dicentric, acentric and atypical chromosomes and the exhange aberrations were measured and dose effect curves were constructed. The aim is to prepare the chromosome analysis to a biological dosimetry. The aberration findings could be adapted to the linear-quadrativ model y = c+ αD + βD 2 . With increasing LET the quantity lambda increased which is a measure for the share of the linear and quadratical components of the dose effect obtained. In case of electrons the RBE-values increased with increasing doses. In the case of neutrons they had their maximum in the low dose range. The feed back distances which lead to formation of primary lesions are for X-rays and electrons approximately 1 μm, for neutrons 1.7 μm. In a fractionation experiment with X-rays, the time of formation of exchange aberrations in radiation-induced primary breaks was measured. The number of dicentric chromosomes decreased with increasing time, while the intercellular distribution was not changed. The number of primary breaks decreasing per temporal interval is proportional to the number of the existing primary breaks. The average feed back time during which the primary breaks lead to induction of dicentric chromosomes, is 110 min. In order to determine the correspondence of the results of in-vivo and in-vitro experiments 15 patients and their blood were irradiated with 60 C-γ-rays. No significant differences were measured. (AJ) [de

  2. Microgravitational effects on chromosome behavior (7-IML-1)

    Science.gov (United States)

    Bruschi, Carlo

    1992-01-01

    The effects of the two major space-related conditions, microgravity and radiation, on the maintenance and transmission of genetic information have been partially documented in many organisms. Specifically, microgravity acts at the chromosomal level, primarily on the structure and segregation of chromosomes, in producing major abberations such as deletions, breaks, nondisjunction, and chromosome loss, and to a lesser degree, cosmic radiation appears to affect the genic level, producing point mutations and DNA damage. To distinguish between the effects from microgravity and from radiation, it is necessary to monitor both mitotic and meiotic genetic damage in the same organism. The yeast Saccharomyces cerevisiae is used to monitor at high resolution the frequency of chromosome loss, nondisjunction, intergenic recombination, and gene mutation in mitotic and meiotic cells, to a degree impossible in other organisms. Because the yeast chromosomes are small, sensitive measurements can be made that can be extrapolated to higher organisms and man. The objectives of the research are: (1) to quantitate the effects of microgravity and its synergism with cosmic radiation on chromosomal integrity and transmission during mitosis and meiosis; (2) to discriminate between chromosomal processes sensitive to microgravity and/or radiation during mitosis and meiosis; and (3) to relate these findings to anomalous mitotic mating type switching and ascosporogenesis following meiosis.

  3. Chromosome and cell wall segregation in Streptococcus faecium ATCC 9790

    International Nuclear Information System (INIS)

    Higgins, M.L.; Glaser, D.; Dicker, D.T.; Zito, E.T.

    1989-01-01

    Segregation was studied by measuring the positions of autoradiographic grain clusters in chains formed from single cells containing on average less than one radiolabeled chromosome strand. The degree to which chromosomal and cell wall material cosegregated was quantified by using the methods of S. Cooper and M. Weinberger, dividing the number of chains labeled at the middle. This analysis indicated that in contrast to chromosomal segregation in Escherichia coli and, in some studies, to that in gram-positive rods, chromosomal segregation in Streptococcus faecium was slightly nonrandom and did not vary with growth rate. Results were not significantly affected by strand exchange. In contrast, labeled cell wall segregated predominantly nonrandomly

  4. Relationship between chromosome configurations/associations and nuclear size/shape

    International Nuclear Information System (INIS)

    Ostashevsky, J.Y.

    2003-01-01

    Full text: Chromosome configurations (linear,folded,loop,etc.,which are defined through a pattern of centromere and/or telomere anchoring to the nuclear membrane) and chromosome associations (homologous pairing, number of centromere or telomere clusters per nucleus, number of chromosome arms per cluster, etc.) are critical for the formation of radiation-induced chromosome aberrations and DSB repair. However, the rules of nuclear architecture are poorly understood. A polymer approach for chromosome configurations, associations, and attachments was developed, based on the coil-like behavior of chromosomal fibers and the tight packing of discrete chromatin domains in a nucleus. The model considers chromatin anchoring to nuclear structures and shows that confinement of chromatin diffusion in a nucleus can be related to its anchoring and higher-order chromatin structure. The model was applied to nuclei of budding and fission yeast, Drosophila, worm, newt, mammals (human, Indian and Chinese muntjac, mouse) and plants (Arabidopsis, maize, barley, wheat). Quantitative agreement between results calculated from the model and observed data was obtained in all considered (∼25) cases. This supports the model and means that permitted chromosome configurations and associations can be predicted from the geometrical constraints imposed on chromosomes by nuclear size and shape

  5. Positioning of chromosomes in human spermatozoa is determined by ordered centromere arrangement.

    Directory of Open Access Journals (Sweden)

    Olga S Mudrak

    Full Text Available The intranuclear positioning of chromosomes (CHRs is a well-documented fact; however, mechanisms directing such ordering remain unclear. Unlike somatic cells, human spermatozoa contain distinct spatial markers and have asymmetric nuclei which make them a unique model for localizing CHR territories and matching peri-centromere domains. In this study, we established statistically preferential longitudinal and lateral positioning for eight CHRs. Both parameters demonstrated a correlation with the CHR gene densities but not with their sizes. Intranuclear non-random positioning of the CHRs was found to be driven by a specific linear order of centromeres physically interconnected in continuous arrays. In diploid spermatozoa, linear order of peri-centromeres was identical in two genome sets and essentially matched the arrangement established for haploid cells. We propose that the non-random longitudinal order of CHRs in human spermatozoa is generated during meiotic stages of spermatogenesis. The specific arrangement of sperm CHRs may serve as an epigenetic basis for differential transcription/replication and direct spatial CHR organization during early embryogenesis.

  6. Proteomic analysis of human metaphase chromosomes reveals Topoisomerase II alpha as an Aurora B substrate

    DEFF Research Database (Denmark)

    Morrison, Ciaran; Henzing, Alexander J; Jensen, Ole Nørregaard

    2002-01-01

    B in the presence of radioactive ATP. Immunoblot analysis confirmed the HeLa scaffold fraction to be enriched for known chromosomal proteins including CENP-A, CENP-B, CENP-C, ScII and INCENP. Mass spectrometry of bands excised from one-dimensional polyacrylamide gels further defined the protein......The essential Aurora B kinase is a chromosomal passenger protein that is required for mitotic chromosome alignment and segregation. Aurora B function is dependent on the chromosome passenger, INCENP. INCENP, in turn, requires sister chromatid cohesion for its appropriate behaviour. Relatively few...... composition of the extracted chromosome fraction. Cloning, fluorescent tagging and expression in HeLa cells of the putative GTP-binding protein NGB/CRFG demonstrated it to be a novel mitotic chromosome protein, with a perichromosomal localisation. Identi fication of the protein bands corresponding to those...

  7. Assembly of the Genome of the Disease Vector Aedes aegypti onto a Genetic Linkage Map Allows Mapping of Genes Affecting Disease Transmission

    KAUST Repository

    Juneja, Punita

    2014-01-30

    The mosquito Aedes aegypti transmits some of the most important human arboviruses, including dengue, yellow fever and chikungunya viruses. It has a large genome containing many repetitive sequences, which has resulted in the genome being poorly assembled - there are 4,758 scaffolds, few of which have been assigned to a chromosome. To allow the mapping of genes affecting disease transmission, we have improved the genome assembly by scoring a large number of SNPs in recombinant progeny from a cross between two strains of Ae. aegypti, and used these to generate a genetic map. This revealed a high rate of misassemblies in the current genome, where, for example, sequences from different chromosomes were found on the same scaffold. Once these were corrected, we were able to assign 60% of the genome sequence to chromosomes and approximately order the scaffolds along the chromosome. We found that there are very large regions of suppressed recombination around the centromeres, which can extend to as much as 47% of the chromosome. To illustrate the utility of this new genome assembly, we mapped a gene that makes Ae. aegypti resistant to the human parasite Brugia malayi, and generated a list of candidate genes that could be affecting the trait. © 2014 Juneja et al.

  8. Gametocidal chromosomes enhancing chromosome aberration in common wheat induced by 5-azacytidine.

    Science.gov (United States)

    Su, W-Y; Cong, W-W; Shu, Y-J; Wang, D; Xu, G-H; Guo, C-H

    2013-07-08

    The gametocidal (Gc) chromosome from Aegilops spp induces chromosome mutation, which is introduced into common wheat as a tool of chromosome manipulation for genetic improvement. The Gc chromosome functions similar to a restriction-modification system in bacteria, in which DNA methylation is an important regulator. We treated root tips of wheat carrying Gc chromosomes with the hypomethylation agent 5-azacytidine; chromosome breakage and micronuclei were observed in these root tips. The frequency of aberrations differed in wheat containing different Gc chromosomes, suggesting different functions inducing chromosome breakage. Gc chromosome 3C caused the greatest degree of chromosome aberration, while Gc chromosome 3C(SAT) and 2C caused only slight chromosome aberration. Gc chromosome 3C induced different degrees of chromosome aberration in wheat varieties Triticum aestivum var. Chinese Spring and Norin 26, demonstrating an inhibition function in common wheat.

  9. Detection of chromosomal aberrations by fluorescence in situ hybridization in the first three postirradiation divisions of human lymphocytes

    International Nuclear Information System (INIS)

    Boei, J.J.W.A.; Vermeulen, S.; Natarajan, A.T.

    1996-01-01

    Chromosomal aberrations in human lymphocytes were analyzed by fluorescence in situ hybridization (FISH) in the first 3 postirradiation (0 and 2 Gy) divisions. Cells were grown in the presence of BrdU, collected at different sampling times (47, 70 and 91 h) and analyzed using an alphoid centromeric probe and PCR amplified DNA libraries for chromosomes 2 and 8. Following differential staining of sister chromatids, the analyzed cells were identified to be either in the first, second or third mitosis after irradiation. The frequencies of both dicentrics and fragments showed a reduction of about 50% after each cell generation, whereas translocations were more persistent. Cells within the same postirradiation division showed higher aberration frequencies when derived from later sampling times, indicating a delay in progression of aberrant cells. As a result, the frequencies for dicentrics and fragments remained rather constant at different sampling times if the cell cycle parameter was not taken into account. Thus, the average generation time of the lymphocytes had a clear effect on the obtained aberration frequencies. The described method allows the study of the persistence of chromosome damage using the FISH technique during 3 subsequent cell divisions in vitro

  10. Attenuation of G2 cell cycle checkpoint control in human tumor cells is associated with increased frequencies of unrejoined chromosome breaks but not increased cytotoxicity following radiation exposure

    International Nuclear Information System (INIS)

    Schwartz, J.L.; Cowan, J.; Grdina, D.J.

    1997-01-01

    The contribution of G 2 cell cycle checkpoint control to ionizing radiation responses was examined in ten human tumor cell lines. Most of the delay in cell cycle progression seen in the first cell cycle following radiation exposure was due to blocks in G 2 and there were large cell line-to-cell line variations in the length of the G 2 block. Longer delays were seen in cell lines that had mutations in p53. There was a highly significant inverse correlation between the length of G 2 delay and the frequency of unrejoined chromosome breaks seen as chromosome terminal deletions in mitosis, and observation that supports the hypothesis that the signal for G 2 delay in mammalian cells is an unrejoined chromosome break. There were also an inverse correlation between the length of G 2 delay and the level of chromosome aneuploidy in each cell line, suggesting that the G 2 and mitotic spindel checkpoints may be linked to each other. Attenuation in G 2 checkpoint control was not associated with alterations in either the frequency of induced chromosome rearrangements or cell survival following radiation exposure suggesting that chromosome rearrangements, the major radiation-induced lethal lesion in tumor cells, form before cells enters G 2 . Thus, agents that act solely to override G 2 arrest should produce little radiosensitization in human tumor cells

  11. Multiple roles of the Y chromosome in the biology of Drosophila melanogaster.

    Science.gov (United States)

    Piergentili, Roberto

    2010-09-01

    -induced male sterility; (5) it affects the behavior; and (6) it plays a role in genetic imprinting. In the present paper, all these Y-related phenotypes are described and a potential similarity with the human Y chromosome is drawn.

  12. X-linked gene expression and X-chromosome inactivation: marsupials, mouse, and man compared.

    Science.gov (United States)

    VandeBerg, J L; Robinson, E S; Samollow, P B; Johnston, P G

    1987-01-01

    The existence of paternal X inactivation in Australian and American marsupial species suggests that this feature of X-chromosome dosage compensation is not a recent adaptation, but probably predates the evolutionary separation of the Australian and American marsupial lineages. Although it is theoretically possible that the marsupial system is one of random X inactivation with p greater than 0.99 and q less than 0.01 and dependent on parental source, no instance of random X inactivation (p = q or p not equal to q) has ever been verified in any tissue or cell type of any marsupial species. Therefore, we conclude that the most fundamental difference in X inactivation of marsupials and eutherians is whether the inactive X is the paternal one or is determined at random (with p = q in most but not all cases). The only other unequivocal difference between eutherians and marsupials is that both X chromosomes are active in mice and human oocytes, but not in kangaroo oocytes. Apparently, the inactive X is reactivated at a later meiotic stage or during early embryogenesis in kangaroos. X-chromosome inactivation takes place early in embryogenesis of eutherians and marsupials. Extraembryonic membranes of mice exhibit paternal X inactivation, whereas those of humans seem to exhibit random X inactivation with p greater than q (i.e., preferential paternal X inactivation). In general, extraembryonic membranes of marsupial exhibit paternal X inactivation, but the Gpd locus is active on both X chromosomes in at least some cells of kangaroo yolk sac. It is difficult to draw any general conclusion because of major differences in embryogeny of mice, humans, and marsupials, and uncertainties in interpreting the data from humans. Other differences between marsupials and eutherians in patterns of X-linked gene expression and X-chromosome inactivation seem to be quantitative rather than qualitative. Partial expression of some genes on the inactive X is characteristic of marsupials, with

  13. Fetal chromosome analysis: screening for chromosome disease?

    DEFF Research Database (Denmark)

    Philip, J; Tabor, Ann; Bang, J

    1983-01-01

    The aim of the study was to investigate the rationale of the current indications for fetal chromosome analysis. 5372 women had 5423 amniocentesis performed, this group constituting a consecutive sample at the chromosome laboratory, Rigshospitalet, Copenhagen from March 1973 to September 1980 (Group...... A + B). Pregnant women 35 years of age, women who previously had a chromosomally abnormal child, families with translocation carriers or other heritable chromosomal disease, families where the father was 50 years or more and women in families with a history of Down's syndrome (group A), were compared...... to women having amniocentesis, although considered not to have any increased risk of fetal chromosome abnormality (1390 pregnancies, group B). They were also compared with 750 consecutive pregnancies in women 25-34 years of age, in whom all heritable diseases were excluded (group C). The risk of unbalanced...

  14. DNA damage and chromosome aberration induced by heavy-ion beams

    International Nuclear Information System (INIS)

    Takakura, Kahoru; Funada, Aya; Aoki, Mizuho; Furusawa, Yoshiya

    2003-01-01

    The aim of this study is to clarify the relation between cell death and chromosomal aberration in cultured human cells (human salivary gland (HSG) tumor cells and GM05389 human normal fibroblasts) irradiated with heavy ion beams on the basis of linear energy transfer (LET) values. The LET dependences of cell death were observed for the both cells by the method of colony assay. The LET dependences of the chromosomal aberrations, breaks and gaps, isochromatid breaks and exchanges were also observed for the both cells using the premature chromosome condensation (PCC) method. From these results it is suggested that exchange formation is essential for the cell death caused by heavy ion beam irradiation. It is suspected that the densely ionizing track structure of hight LET heavy ions inhibits the effective repair in the chromatid breaks and isochromatid breaks and finally induce much exchange in the cells, which should be essential cause of cell death. (author)

  15. Comparison of initial DNA (Chromosome) damage/repair in cells exposed to heavy ion particles and X-rays

    International Nuclear Information System (INIS)

    Okayasu, Ryuichi; Okada, Maki; Noguchi, Mitsuho; Saito, Shiori; Okabe, Atsushi; Takakura, Kahoru

    2005-01-01

    We have studied cell survival and chromosome damage/repair in normal and non homologous end-joining (NHEJ) deficient human cells exposed to carbon ions (290 MeV/u, ∼70 keV/um), iron ions (500 MeV/u, ∼200 keV/um) and X-rays. In order to examine the effect of heavy ion on double strand break (DSB) repair machinery, the auto-phosphorylation of DNA-PKcs was also investigated. The important discoveries made during this period are: 200 keV/um iron irradiation induced additional molecular damage beyond that 70 keV/um carbon did. Iron irradiation not only caused an inefficient G1 chromosome repair, but also induced non-repairable DSB/chromosome damage. The auto-phosphorylation of DNA-PKcs was significantly affected by high linear energy transfer (LET) irradiation when compared to X-rays. These results indicate NHEJ machinery was markedly disturbed by high LET radiation when compared to low LET radiation. (author)

  16. Efficient assembly of de novo human artificial chromosomes from large genomic loci

    Directory of Open Access Journals (Sweden)

    Stromberg Gregory

    2005-07-01

    Full Text Available Abstract Background Human Artificial Chromosomes (HACs are potentially useful vectors for gene transfer studies and for functional annotation of the genome because of their suitability for cloning, manipulating and transferring large segments of the genome. However, development of HACs for the transfer of large genomic loci into mammalian cells has been limited by difficulties in manipulating high-molecular weight DNA, as well as by the low overall frequencies of de novo HAC formation. Indeed, to date, only a small number of large (>100 kb genomic loci have been reported to be successfully packaged into de novo HACs. Results We have developed novel methodologies to enable efficient assembly of HAC vectors containing any genomic locus of interest. We report here the creation of a novel, bimolecular system based on bacterial artificial chromosomes (BACs for the construction of HACs incorporating any defined genomic region. We have utilized this vector system to rapidly design, construct and validate multiple de novo HACs containing large (100–200 kb genomic loci including therapeutically significant genes for human growth hormone (HGH, polycystic kidney disease (PKD1 and ß-globin. We report significant differences in the ability of different genomic loci to support de novo HAC formation, suggesting possible effects of cis-acting genomic elements. Finally, as a proof of principle, we have observed sustained ß-globin gene expression from HACs incorporating the entire 200 kb ß-globin genomic locus for over 90 days in the absence of selection. Conclusion Taken together, these results are significant for the development of HAC vector technology, as they enable high-throughput assembly and functional validation of HACs containing any large genomic locus. We have evaluated the impact of different genomic loci on the frequency of HAC formation and identified segments of genomic DNA that appear to facilitate de novo HAC formation. These genomic loci

  17. Chromosome mapping by FISH to metaphase and interphase nuclei. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Trask, B.

    1997-08-01

    The overall specific aims of this project were: (1) to determine the large-scale structure of interphase and metaphase chromosomes, in order to establish new capabilities for genome mapping by fluorescence in situ hybridization (FISH); (2) to detect chromosome abnormalities associated with genetic disease and map DNA sequences relative to them in order to facilitate the identification of new genes with disease-causing mutations; (3) to establish medium resolution physical maps of selected chromosomal regions using a combined metaphase and interphase mapping strategy and to corroborate physical and genetic maps and integrate these maps with the cytogenetic map; (4) to analyze the polymorphism and sequence evolution of subtelomeric regions of human chromosomes; (5) to establish a state-of-the-art FISH and image processing facility in the Department of Molecular Biotechnology, University of Washington, in order to map DNA sequences rapidly and accurately to benefit the Human Genome Project.

  18. Isolation of a Genomic Region Affecting Most Components of Metabolic Syndrome in a Chromosome-16 Congenic Rat Model.

    Directory of Open Access Journals (Sweden)

    Lucie Šedová

    Full Text Available Metabolic syndrome is a highly prevalent human disease with substantial genomic and environmental components. Previous studies indicate the presence of significant genetic determinants of several features of metabolic syndrome on rat chromosome 16 (RNO16 and the syntenic regions of human genome. We derived the SHR.BN16 congenic strain by introgression of a limited RNO16 region from the Brown Norway congenic strain (BN-Lx into the genomic background of the spontaneously hypertensive rat (SHR strain. We compared the morphometric, metabolic, and hemodynamic profiles of adult male SHR and SHR.BN16 rats. We also compared in silico the DNA sequences for the differential segment in the BN-Lx and SHR parental strains. SHR.BN16 congenic rats had significantly lower weight, decreased concentrations of total triglycerides and cholesterol, and improved glucose tolerance compared with SHR rats. The concentrations of insulin, free fatty acids, and adiponectin were comparable between the two strains. SHR.BN16 rats had significantly lower systolic (18-28 mmHg difference and diastolic (10-15 mmHg difference blood pressure throughout the experiment (repeated-measures ANOVA, P < 0.001. The differential segment spans approximately 22 Mb of the telomeric part of the short arm of RNO16. The in silico analyses revealed over 1200 DNA variants between the BN-Lx and SHR genomes in the SHR.BN16 differential segment, 44 of which lead to missense mutations, and only eight of which (in Asb14, Il17rd, Itih1, Syt15, Ercc6, RGD1564958, Tmem161a, and Gatad2a genes are predicted to be damaging to the protein product. Furthermore, a number of genes within the RNO16 differential segment associated with metabolic syndrome components in human studies showed polymorphisms between SHR and BN-Lx (including Lpl, Nrg3, Pbx4, Cilp2, and Stab1. Our novel congenic rat model demonstrates that a limited genomic region on RNO16 in the SHR significantly affects many of the features of metabolic

  19. Mitotic chromosome transmission fidelity mutants in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Spencer, F.; Gerring, S.L.; Connelly, C.; Hieter, P.

    1990-01-01

    The authors have isolated 136 independent EMS-induced mutations in haploid yeast strains that exhibit decreased chromosome transmission fidelity in mitosis. Eight-five percent of the mutations are recessive and 15% are partially dominant. Complementation analysis between MATa and MATα isolates identifies 11 chromosome transmission fidelity (CTF) complementation groups, the largest of which is identical to CHL1. For 49 independent mutations, no corresponding allele has been recovered in the opposite mating type. The initial screen monitored the stability of a centromere-linked color marker on a nonessential yeast chromosome fragment; the mitotic inheritance of natural yeast chromosome III is also affected by the ctf mutations. Of the 136 isolates identified, seven were inviable at 37 degree and five were inviable at 11 degree. In all cases tested, these temperature conditional lethalities cosegregated with the chromosome instability phenotype. Five additional complementation groups (ctf12 through ctf16) have been defined by complementation analysis of the mutations causing inviability at 37 degree. All of the mutant strains showed normal sensitivity to ultraviolet and γ-irradiation

  20. X-Chromosomal short tandem repeat loci in the Turkish population ...

    African Journals Online (AJOL)

    In this study, we aimed to demonstrate the importance and utility of polymorphic short tandem repeat (STR) found on the human X chromosome and to provide the first allelic frequency data of X-STR (X chromosomal) loci in the Turkish population. Blood samples were taken from unrelated individuals (135 males and 129 ...

  1. Mapping of the bovine spinal muscular atrophy locus to Chromosome 24.

    Science.gov (United States)

    Medugorac, Ivica; Kemter, Juliane; Russ, Ingolf; Pietrowski, Detlef; Nüske, Stefan; Reichenbach, Horst-Dieter; Schmahl, Wolfgang; Förster, Martin

    2003-06-01

    A hereditary form of spinal muscular atrophy (SMA) caused by an autosomal recessive gene has been reported for American Brown-Swiss cattle and in advanced backcrosses between American Brown-Swiss and many European brown cattle breeds. Bovine SMA (bovSMA) bears remarkable resemblance to the human SMA (SMA1). Affected homozygous calves also show progressive symmetric weakness and neurogenic atrophy of proximal muscles. The condition is characterized by severe muscle atrophy, quadriparesis, and sternal recumbency as result of neurogenic atrophy. We report on the localization of the gene causing bovSMA within a genomic interval between the microsatellite marker URB031 and the telomeric end of bovine Chromosome (Chr) 24 (BTA24). Linkage analysis of a complex pedigree of German Braunvieh cattle revealed a recombination fraction of 0.06 and a three-point lod score of 11.82. The results of linkage and haplotyping analysis enable a marker-assisted selection against bovSMA based on four microsatellite markers most telomeric on BTA24 to a moderate accuracy of 89-94%. So far, this region is not orthologous to any human chromosome segments responsible for twelve distinct disease phenotypes of autosomal neuropathies. Our results indicate the apoptosis-inhibiting protein BCL2 as the most promising positional candidate gene causing bovSMA. Our findings offer an attractive animal model for a better understanding of human forms of SMA and for a probable anti-apoptotic synergy of SMN-BCL2 aggregates in mammals.

  2. Evaluation of rate of unstable chromosomal changes in human blood irradiated by X-rays: establishment of dose-response curve

    International Nuclear Information System (INIS)

    Mendonça, J.C.G.; Mendes, M.E.; Melo, A.M.M.A.; Silva, L.M.; Andrade, A.M.G.; Hwang, S.F.; Lima, F.F.

    2017-01-01

    Since the discovery of ionizing radiation, and consequently of its properties, there has been an increasing in its use, which in turn has raised concerns about the biological damage that it could cause in exposed individuals. As a result, cytogenetic dosimetry has emerged: a method that can be used as a complement or, in the absence of physical dosimetry, relating the frequency of chromosomal changes found in the blood of the exposed individual and the dose absorbed through dose-response calibration curves. This work aimed to verify the frequencies of the unstable chromosomal changes in human blood lymphocytes irradiated by X-rays of 250 kVp with different absorbed doses and later establish the dose-response calibration curves. The irradiation was performed at the CRCN-NE/CNEN-PE, Brazil metrology service on a PANTAK X-ray machine, model HF 320. The blood samples had their lymphocytes cultured in culture media and, after the processing, the metaphases were obtained. The chromosomal alterations analyzed were chromosomes dicentric, ring and isolated actinic fragments. There was an increase in frequencies of all chromosomal changes with increased absorbed dose. The calibration curves of dicentric and dicentric + rings presented good adjustments with the values of the coefficients Y = 0.0013 + 0.0271D + 0.0556D 2 (X 2 = 10.36 / GL = 6) and Y = 0.0013 + 0.0263D + 0.0640D 2 (X 2 = 7.43 / GL = 6), respectively. The establishment of these curves enables the Laboratory of Biological Dosimetry of the CRCN/NE/CNEN-PE to estimate the dose absorbed by occupationally exposed individuals and in cases of radiological accidents

  3. Effect of pretreatment with venom of Apis mellifera bees on the yield of gamma-ray induced chromosome aberrations in human blood lymphocytes

    International Nuclear Information System (INIS)

    Varanda, E.A.; Takahashi, C.S.

    1993-01-01

    Venom of the honey bee Apis mellifera induced a protective effect against the induction of dicentric chromosomes by gamma radiation (2.0 Gy) in human peripheral blood lymphocytes when the cultures were treated with 0.00015 μl venom/1 ml medium 6 h before irradiation. In cultures to which the venom was added immediately before irradiation with 0.25, 1.0 and 2.0 Gy, no significant differences in number of dicentric chromosomes induced was observed when compared to cultures submitted to irradiation only. The venom did not induce clastogenic effects nor did it increase the frequency of sister chromatid exchanges. (author)

  4. Detailed ordering of markers localizing to the Xq26-Xqter region of the human X chromosome by the use of an interspecific Mus spretus mouse cross

    International Nuclear Information System (INIS)

    Avner, P.; Amar, L.; Arnaud, D.; Hanauer, A.; Cambrou, J.

    1987-01-01

    Five probes localizing to the Xq26-Xqter region of the human X chromosome have been genetically mapped on the mouse X chromosome using an interspecific cross involving Mus spretus to a contiguous region lying proximally to the Tabby (Ta) locus. Pedigree and recombinational analysis establish the marker order as being Hprt-FIX-c11-G6PD-St14-1. The size of this contiguous region is such that the X-linked muscular dystrophy (mdx) mouse mutation probably maps within this segment. This in turn suggests that it is highly improbable that the mouse mdx locus represents a model for Duchenne muscular dystrophy (DMD). It is, however, compatible with the idea that this mutation may correspond in man to Emery Dreifuss muscular dystrophy. The high frequency of restriction fragment length polymorphisms found in this interspecific system for all the human cross-reacting probes examined up until now, using only a limited number of restriction enzymes, suggests that the Mus spretus mapping system may be of great potential value for establishing the linkage relationships existing in man when conserved chromosomal regions are concerned and human/mouse cross-reacting probes are available or can be obtained

  5. Molecular diagnostic of the philadelphia chromosome

    International Nuclear Information System (INIS)

    Campos Rudin, M.; Cuenca Berger, P.; Gutierrez Espeleta, G.; Jimenez Cruz, G.; Montero Umana, C.; Vazquez Castillo, L.; Ramon Ortiz, M.

    1998-01-01

    The importance that has to confirm the presence or absence of the chromosome Philadelphia in the diagnostic and follow up of the patient affected with chronic myeloid leukemia and other leukemia. It is considered necessary to implement the molecular diagnostic in Costa Rica. They studied 32 patient affected by Chronic Myeloid Leukemia, 7 by other Myeloproliferative Chronic Disorders and 2 by Myelodysplastic Syndrome. It utilized the sound Trans probe-1 (Oncogene Science, Inc), which was marked with radioactivity ( 32 P) or chemiluminescence (digoxigenin). Of the 32 cases affected by L mc, in 28 it was possible to carry out the molecular analysis detecting the characteristic translocation of the chromosome Philadelphia among the Mbcr/c-ABL genes in 21 (75%) of the patients, in 7 (25%) the rearrangement was not found. In seven of the nine affected by other sufferings it was possible to obtain results, 3 that turned out to be positive for the rearrangement among Mbcr/c-ABL and 4 normal. In all the cases, they obtained results marking the sound with radioactivity. However, they tested the marks with digoxigenin in seven of the patients, as an methodological alternative for the laboratories that lacks the requirements to work with radiation. The results obtained were identical. (S. Grainger) [es

  6. The effects of exposure to different clastogens on the pattern of chromosomal aberrations detected by FISH whole chromosome painting in occupationally exposed individuals

    International Nuclear Information System (INIS)

    Beskid, O.; Dusek, Z.; Solansky, I.; Sram, R.J.

    2006-01-01

    The pattern of chromosomal aberrations (CA) was studied by fluorescence in situ hybridization (FISH) technique (whole chromosomes 1 and 4 painting) in workers occupationally exposed to any of the four following conditions: acrylonitrile (ACN), ethyl benzene (EB), carcinogenic polycyclic aromatic hydrocarbons (c-PAHs), and irradiation in nuclear power plants (NPP), respectively. Decrease in the relative frequency of translocations was observed in EB group, and an increase in reciprocal translocations in ACN and NPP-exposed groups. An increase in a relative number of insertions was registered under all four conditions (significant at ACN, EB, c-PAHs, quasisignificant at NPP-exposed groups). Significant differences in the percentage of lymphocytes with aberrations on chromosome 1 (58.8 ± 32.7%, versus 73.8 ± 33.6% in the controls, P G /100) increased with age (P G /100 (P < 0.05), but did not affect the pattern of chromosomal aberrations. Our results seem to indicate that different carcinogens may induce a different pattern of chromosomal aberrations

  7. X-ray-induced breakage and rejoining of human interphase chromosomes

    International Nuclear Information System (INIS)

    Cornforth, M.N.; Bedford, J.S.

    1983-01-01

    A method was developed for the high-resolution measurement of breaks in prematurely condensed chromosomes at the G 1 phase of the cell cycle. The dose response for fragments (breaks) produced immediately after x-irradiation of confluent cultures of normal human cells was linear down to 10.9 rad (0.109 Gy) and extrapolated to zero effect at zero dose. The curve had a slope of 0.063 breaks per cell per rad, which is at least an order of magnitude greater than that for breaks scored in the same cells after they have progressed to mitosis following subculture. When incubated at 37 0 C half of the breaks disappeared in 2 hours. A slower, perhaps nonrejoining component was apparent at later incubation times. The initial rate of break rejoining was similar to the rate of increase in survival after incubation because of the repair of potentially lethal damage and is also in close agreement with recently reported values for the rejoining of double-strand breakage in DNA

  8. Use of M-FISH analysis of α-particle-induced chromosome aberrations for the assessment of chromosomal breakpoint distribution and complex aberration formation

    International Nuclear Information System (INIS)

    Anderson, R.M.; Sumption, N.D.; Papworth, D.G.; Goodhead, D.T.

    2003-01-01

    Double strand breaks (dsb) of varying complexity are an important class of damage induced after exposure to ionising radiation and are considered to be the critical lesion for the formation of radiation-induced chromosome aberrations. Assuming the basic principles of the 'Breakage and Reunion' theory, dsb represent 'breakage' and aberrations are produced from the illegitimate repair (reunion) of the resulting dsb free-'ends'. Numerous questions relate to this process, in particular, (1) do chromosomal breakpoint 'hot-spots' that represent sensitive sites for breakage and/or regions of preferential repair/mis-repair, exist? (2) Considering that individual chromosomes and chromosome regions occupy discrete territories in the interphase nucleus, could rearrangements between specific chromosomes reflect domain organisation at the time of damage? (3) Assuming the topological constraints imposed on chromatin are not dramatically influenced by the presence of dsb, then how do multiple 'ends' from different chromosomes proximally associate for mis-repair as complex chromosome aberrations? To address these questions, we have analysed the chromosome aberrations induced in peripheral blood lymphocytes after exposure to 0.5 Gy α -particles (mean of 1 α -particle/cell) using the technique of M-FISH. This technique 'paints' all the human chromosomes (excluding homologues) uniquely, allowing chromosomal mis-repair to be visualised as differential colour-junctions and in addition, enhanced DAPI banding enables gross breakpoint assignation of these colour junctions. To test for non-randomness, we are comparing the frequency of occurrence of breakpoints obtained up to now with the F98 glioma model our knowledbased on chromosome length. Similarly, the involvement of each chromosome relative to other chromosomes within individual rearrangements can be determined by assuming the volume of chromosome domains is also proportional to their length. The current data to be presented will

  9. Isolation of a cosmid sublibrary for a region of chromosome 12 frequently amplified in human cancers using a complex chromosome microdissection probe

    Energy Technology Data Exchange (ETDEWEB)

    Elkahloun, A.G.; Meltzer, P.S.; Guan, Xin-Yuan [National Institutes of Health, Bethesda, MD (United States)] [and others

    1996-02-01

    Chromosome-specific cosmid libraries are in extremely useful resource for positional cloning projects. Once a particular region of interest has been identified, it would be of value to have an approach for isolating chromosome band-specific cosmids that could be assembled into a sublibrary for rapid screening. We constructed a region-specific sublibrary of 700 cosmids by screening a chromosome 12-specific cosmid library with a complex probe generated by degenerate oligonucleotide-primed PCR of a microdissected homogeneously staining region containing sequences amplified from chromosome 12q13-q15. Based on fluorescence in situ hybridization, approximately 60% of the cosmids in the sublibrary were derived from the microdissected region. To demonstrate further the utility of the sublibrary, a 150-kb contig containing the SAS and CDK4 genes was constructed, as well as several additional contigs between CDK4 and MDM2. This study demonstrates the possibility of utilizing probes generated by microdissection for assembling band-specific libraries that are amendable to rapid screening with multiple markers.

  10. Mitotic chromosome structure

    International Nuclear Information System (INIS)

    Heermann, Dieter W.

    2012-01-01

    Mounting evidence is compiling linking the physical organizational structure of chromosomes and the nuclear structure to biological function. At the base of the physical organizational structure of both is the concept of loop formation. This implies that physical proximity within chromosomes is provided for otherwise distal genomic regions and thus hierarchically organizing the chromosomes. Together with entropy many experimental observations can be explained with these two concepts. Among the observations that can be explained are the measured physical extent of the chromosomes, their shape, mechanical behavior, the segregation into territories (chromosomal and territories within chromosomes), the results from chromosome conformation capture experiments, as well as linking gene expression to structural organization.

  11. Mitotic chromosome structure

    Energy Technology Data Exchange (ETDEWEB)

    Heermann, Dieter W., E-mail: heermann@tphys.uni-heidelberg.de

    2012-07-15

    Mounting evidence is compiling linking the physical organizational structure of chromosomes and the nuclear structure to biological function. At the base of the physical organizational structure of both is the concept of loop formation. This implies that physical proximity within chromosomes is provided for otherwise distal genomic regions and thus hierarchically organizing the chromosomes. Together with entropy many experimental observations can be explained with these two concepts. Among the observations that can be explained are the measured physical extent of the chromosomes, their shape, mechanical behavior, the segregation into territories (chromosomal and territories within chromosomes), the results from chromosome conformation capture experiments, as well as linking gene expression to structural organization.

  12. Chromosome-damaging effect of betel leaf.

    Science.gov (United States)

    Sadasivan, G; Rani, G; Kumari, C K

    1978-05-01

    The chewing of betel leaf with other ingredients is a widespread addiction in India. The chromosome damaging effect was studied in human leukocyte cultures. There was an increase in the frequency of chromatid aberrations when the leaf extract was added to cultures.

  13. Experimental observation of G banding verifying X-ray workers' chromosome translocation detected by FISH

    International Nuclear Information System (INIS)

    Sun Yuanming; Li Jin; Wang Qin; Tang Weisheng; Wang Zhiquan

    2002-01-01

    Objective: FISH is the most effective way of detecting chromosome aberration and many factors affect its accuracy. G-banding is used to verify the results of early X-ray workers' chromosome translocation examined by FISH. Methods: The chromosome translocations of early X-ray workers have been analysed by FISH (fluorescence in situ hybridization) and G-banding, yields of translocation treated with statistics. Results: The chromosome aberrations frequencies by tow methods are closely related. Conclusion: FISH is a feasible way to analyse chromosome aberrations of X-ray workers and reconstruct dose

  14. Chromosome fragility at FRAXA in human cleavage stage embryos at risk for fragile X syndrome.

    Science.gov (United States)

    Verdyck, Pieter; Berckmoes, Veerle; De Vos, Anick; Verpoest, Willem; Liebaers, Inge; Bonduelle, Maryse; De Rycke, Martine

    2015-10-01

    Fragile X syndrome (FXS), the most common inherited intellectual disability syndrome, is caused by expansion and hypermethylation of the CGG repeat in the 5' UTR of the FMR1 gene. This expanded repeat, also known as the rare fragile site FRAXA, causes X chromosome fragility in cultured cells from patients but only when induced by perturbing pyrimidine synthesis. We performed preimplantation genetic diagnosis (PGD) on 595 blastomeres biopsied from 442 cleavage stage embryos at risk for FXS using short tandem repeat (STR) markers. In six blastomeres, from five embryos an incomplete haplotype was observed with loss of all alleles telomeric to the CGG repeat. In all five embryos, the incomplete haplotype corresponded to the haplotype carrying the CGG repeat expansion. Subsequent analysis of additional blastomeres from three embryos by array comparative genomic hybridization (aCGH) confirmed the presence of a terminal deletion with a breakpoint close to the CGG repeat in two blastomeres from one embryo. A blastomere from another embryo showed the complementary duplication. We conclude that a CGG repeat expansion at FRAXA causes X chromosome fragility in early human IVF embryos at risk for FXS. © 2015 Wiley Periodicals, Inc.

  15. Chromosomal locations of three human nuclear genes (RPSM12, TUFM, and AFG3L1) specifying putative components of the mitochondrial gene expression apparatus.

    Science.gov (United States)

    Shah, Z H; Migliosi, V; Miller, S C; Wang, A; Friedman, T B; Jacobs, H T

    1998-03-15

    We have mapped the chromosomal locations of three human nuclear genes for putative components of the apparatus of mitochondrial gene expression, using a combination of in situ hybridization and interspecies hybrid mapping. The genes RPMS12 (mitoribosomal protein S12, a conserved protein component of the mitoribosomal accuracy center), TUFM (mitochondrial elongation factor EF-Tu), and AFG3L1 (similar to the yeast genes Afg3 and Rca1 involved in the turnover of mistranslated or misfolded mtDNA-encoded polypeptides) were initially characterized by a combination of database sequence analysis, PCR, cloning, and DNA sequencing. RPMS12 maps to chromosome 19q13.1, close to the previously mapped gene for autosomal dominant hearing loss DFNA4. The TUFM gene is located on chromosome 16p11.2, with a putative pseudogene or variant (TUFML) located very close to the centromere of chromosome 17. AFG3L1 is located on chromosome 16q24, very close to the telomere. By virtue of their inferred functions in mitochondria, these genes should be regarded as candidates of disorders sharing features with mitochondrial disease syndromes, such as sensorineural deafness, diabetes, and retinopathy.

  16. Chromosomal evolution of the PKD1 gene family in primates

    Directory of Open Access Journals (Sweden)

    Krawczak Michael

    2008-09-01

    Full Text Available Abstract Background The autosomal dominant polycystic kidney disease (ADPKD is mostly caused by mutations in the PKD1 (polycystic kidney disease 1 gene located in 16p13.3. Moreover, there are six pseudogenes of PKD1 that are located proximal to the master gene in 16p13.1. In contrast, no pseudogene could be detected in the mouse genome, only a single copy gene on chromosome 17. The question arises how the human situation originated phylogenetically. To address this question we applied comparative FISH-mapping of a human PKD1-containing genomic BAC clone and a PKD1-cDNA clone to chromosomes of a variety of primate species and the dog as a non-primate outgroup species. Results Comparative FISH with the PKD1-cDNA clone clearly shows that in all primate species studied distinct single signals map in subtelomeric chromosomal positions orthologous to the short arm of human chromosome 16 harbouring the master PKD1 gene. Only in human and African great apes, but not in orangutan, FISH with both BAC and cDNA clones reveals additional signal clusters located proximal of and clearly separated from the PKD1 master genes indicating the chromosomal position of PKD1 pseudogenes in 16p of these species, respectively. Indeed, this is in accordance with sequencing data in human, chimpanzee and orangutan. Apart from the master PKD1 gene, six pseudogenes are identified in both, human and chimpanzee, while only a single-copy gene is present in the whole-genome sequence of orangutan. The phylogenetic reconstruction of the PKD1-tree reveals that all human pseudogenes are closely related to the human PKD1 gene, and all chimpanzee pseudogenes are closely related to the chimpanzee PKD1 gene. However, our statistical analyses provide strong indication that gene conversion events may have occurred within the PKD1 family members of human and chimpanzee, respectively. Conclusion PKD1 must have undergone amplification very recently in hominid evolution. Duplicative

  17. Comment of the paper 'Chromosome aberrations induced by low doses of X-rays in human lymphocytes in vitro'

    International Nuclear Information System (INIS)

    Merkle, W.; Paretzke, H.G.

    1981-01-01

    This comment points out some problems in the statistical evaluation of the data of Ziemba-Zoltowska, E. Bocian, O. Rosiek and J. Sablinski (1980) on chromosome aberrations in irradiated human lymphocytes; comments are made on results derived from a an iteratively reweighted least squares procedure instead of the ordinary unweighted least squares method to establish first and second order dose-response curves for dicentric and centric rings. (U.K.)

  18. Condensins: universal organizers of chromosomes with diverse functions.

    Science.gov (United States)

    Hirano, Tatsuya

    2012-08-01

    Condensins are multisubunit protein complexes that play a fundamental role in the structural and functional organization of chromosomes in the three domains of life. Most eukaryotic species have two different types of condensin complexes, known as condensins I and II, that fulfill nonoverlapping functions and are subjected to differential regulation during mitosis and meiosis. Recent studies revealed that the two complexes contribute to a wide variety of interphase chromosome functions, such as gene regulation, recombination, and repair. Also emerging are their cell type- and tissue-specific functions and relevance to human disease. Biochemical and structural analyses of eukaryotic and bacterial condensins steadily uncover the mechanisms of action of this class of highly sophisticated molecular machines. Future studies on condensins will not only enhance our understanding of chromosome architecture and dynamics, but also help address a previously underappreciated yet profound set of questions in chromosome biology.

  19. A History of the Discovery of Random X Chromosome Inactivation in the Human Female and its Significance

    Directory of Open Access Journals (Sweden)

    Sophia Balderman

    2011-07-01

    Full Text Available Genetic determinants of sex in placental mammals developed by the evolution of primordial autosomes into the male and female sex chromosomes. The Y chromosome determines maleness by the action of the gene SRY, which encodes a protein that initiates a sequence of events prompting the embryonic gonads to develop into testes. The X chromosome in the absence of a Y chromosome results in a female by permitting the conversion of the embryonic gonads into ovaries. We trace the historical progress that resulted in the discovery that one X chromosome in the female is randomly inactivated in early embryogenesis, accomplishing approximate equivalency of X chromosome gene dosage in both sexes. This event results in half of the somatic cells in a tissue containing proteins encoded by the genes of the maternal X chromosome and half having proteins encoded by the genes of the paternal X chromosome, on average, accounting for the phenotype of a female heterozygote with an X chromosome mutation. The hypothesis of X chromosome inactivation as a random event early in embryogenesis was first described as a result of studies of variegated coat color in female mice. Similar results were found in women using the X chromosome-linked gene, glucose-6-phosphate dehydrogenase, studied in red cells. The random inactivation of the X chromosome-bearing genes for isoenzyme types A and B of glucose-6-phosphate dehydrogenase was used to establish the clonal origin of neoplasms in informative women with leiomyomas. Behind these discoveries are the stories of the men and women scientists whose research enlightened these aspects of X chromosome function and their implication for medicine.

  20. Molecular cloning of a cDNA and chromosomal localization of a human theta-class glutathione S-transferase gene (GSTT2) to chromosome 22

    Energy Technology Data Exchange (ETDEWEB)

    Tan, K.L.; Baker, R.T.; Board, P.G. [Australian National Univ., Canberra (Australia)] [and others

    1995-01-20

    Until recently the Theta-class glutathione S-transferases (GSTs) were largely overlooked due to their low activity with the model substrate 1-chloro-2,4-dinitrobenzene (CDNB) and their failure to bind to immobilized glutathione affinity matrices. Little is known about the number of genes in this class. Recently, Pemble et al. reported the cDNA cloning of a human Theta-class GST, termed GSTT1. In this study, we describe the molecular cloning of a cDNA encoding a second human Theta-class GST (GSTT2) from a {lambda}gt11 human liver 5{prime}-stretch cDNA library. The encoded protein contains 244 amino acids and has 78.3% sequence identity with the rat subunit 12 and only 55.0% identity with human GSTT1. GSTT2 has been mapped to chromosome 22 by somatic cell hybrid analysis. The precise position of the gene was localized to subband 22q11.2 by in situ hybridization. The absence of other regions of hybridization suggests that there are no closely related sequences (e.g., reverse transcribed pseudogenes) scattered throughout the genome and that if there are closely related genes, they must be clustered near GSTT2. Southern blot analysis of human DNA digested with BamHI shows that the size of the GSTT2 gene is relatively small, as the coding sequence falls within a 3.6-kb BamHI fragment. 35 refs., 6 figs.