WorldWideScience

Sample records for affect gene activity

  1. Activation and clustering of a Plasmodium falciparum var gene are affected by subtelomeric sequences.

    Science.gov (United States)

    Duffy, Michael F; Tang, Jingyi; Sumardy, Fransisca; Nguyen, Hanh H T; Selvarajah, Shamista A; Josling, Gabrielle A; Day, Karen P; Petter, Michaela; Brown, Graham V

    2017-01-01

    The Plasmodium falciparum var multigene family encodes the cytoadhesive, variant antigen PfEMP1. P. falciparum antigenic variation and cytoadhesion specificity are controlled by epigenetic switching between the single, or few, simultaneously expressed var genes. Most var genes are maintained in perinuclear clusters of heterochromatic telomeres. The active var gene(s) occupy a single, perinuclear var expression site. It is unresolved whether the var expression site forms in situ at a telomeric cluster or whether it is an extant compartment to which single chromosomes travel, thus controlling var switching. Here we show that transcription of a var gene did not require decreased colocalisation with clusters of telomeres, supporting var expression site formation in situ. However following recombination within adjacent subtelomeric sequences, the same var gene was persistently activated and did colocalise less with telomeric clusters. Thus, participation in stable, heterochromatic, telomere clusters and var switching are independent but are both affected by subtelomeric sequences. The var expression site colocalised with the euchromatic mark H3K27ac to a greater extent than it did with heterochromatic H3K9me3. H3K27ac was enriched within the active var gene promoter even when the var gene was transiently repressed in mature parasites and thus H3K27ac may contribute to var gene epigenetic memory. © 2016 Federation of European Biochemical Societies.

  2. Abscisic acid affects transcription of chloroplast genes via protein phosphatase 2C-dependent activation of nuclear genes: repression by guanosine-3'-5'-bisdiphosphate and activation by sigma factor 5.

    Science.gov (United States)

    Yamburenko, Maria V; Zubo, Yan O; Börner, Thomas

    2015-06-01

    Abscisic acid (ABA) represses the transcriptional activity of chloroplast genes (determined by run-on assays), with the exception of psbD and a few other genes in wild-type Arabidopsis seedlings and mature rosette leaves. Abscisic acid does not influence chloroplast transcription in the mutant lines abi1-1 and abi2-1 with constitutive protein phosphatase 2C (PP2C) activity, suggesting that ABA affects chloroplast gene activity by binding to the pyrabactin resistance (PYR)/PYR1-like or regulatory component of ABA receptor protein family (PYR/PYL/RCAR) and signaling via PP2Cs and sucrose non-fermenting protein-related kinases 2 (SnRK2s). Further we show by quantitative PCR that ABA enhances the transcript levels of RSH2, RSH3, PTF1 and SIG5. RelA/SpoT homolog 2 (RSH2) and RSH3 are known to synthesize guanosine-3'-5'-bisdiphosphate (ppGpp), an inhibitor of the plastid-gene-encoded chloroplast RNA polymerase. We propose, therefore, that ABA leads to an inhibition of chloroplast gene expression via stimulation of ppGpp synthesis. On the other hand, sigma factor 5 (SIG5) and plastid transcription factor 1 (PTF1) are known to be necessary for the transcription of psbD from a specific light- and stress-induced promoter (the blue light responsive promoter, BLRP). We demonstrate that ABA activates the psbD gene by stimulation of transcription initiation at BLRP. Taken together, our data suggest that ABA affects the transcription of chloroplast genes by a PP2C-dependent activation of nuclear genes encoding proteins involved in chloroplast transcription. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  3. AMP-Activated Protein Kinase Interacts with the Peroxisome Proliferator-Activated Receptor Delta to Induce Genes Affecting Fatty Acid Oxidation in Human Macrophages.

    Directory of Open Access Journals (Sweden)

    Marina Kemmerer

    Full Text Available AMP-activated protein kinase (AMPK maintains energy homeostasis by suppressing cellular ATP-consuming processes and activating catabolic, ATP-producing pathways such as fatty acid oxidation (FAO. The transcription factor peroxisome proliferator-activated receptor δ (PPARδ also affects fatty acid metabolism, stimulating the expression of genes involved in FAO. To question the interplay of AMPK and PPARδ in human macrophages we transduced primary human macrophages with lentiviral particles encoding for the constitutively active AMPKα1 catalytic subunit, followed by microarray expression analysis after treatment with the PPARδ agonist GW501516. Microarray analysis showed that co-activation of AMPK and PPARδ increased expression of FAO genes, which were validated by quantitative PCR. Induction of these FAO-associated genes was also observed upon infecting macrophages with an adenovirus coding for AMPKγ1 regulatory subunit carrying an activating R70Q mutation. The pharmacological AMPK activator A-769662 increased expression of several FAO genes in a PPARδ- and AMPK-dependent manner. Although GW501516 significantly increased FAO and reduced the triglyceride amount in very low density lipoproteins (VLDL-loaded foam cells, AMPK activation failed to potentiate this effect, suggesting that increased expression of fatty acid catabolic genes alone may be not sufficient to prevent macrophage lipid overload.

  4. Gene expression profiling in cells with enhanced gamma-secretase activity.

    Directory of Open Access Journals (Sweden)

    Alexandra I Magold

    2009-09-01

    Full Text Available Processing by gamma-secretase of many type-I membrane protein substrates triggers signaling cascades by releasing intracellular domains (ICDs that, following nuclear translocation, modulate the transcription of different genes regulating a diverse array of cellular and biological processes. Because the list of gamma-secretase substrates is growing quickly and this enzyme is a cancer and Alzheimer's disease therapeutic target, the mapping of gamma-secretase activity susceptible gene transcription is important for sharpening our view of specific affected genes, molecular functions and biological pathways.To identify genes and molecular functions transcriptionally affected by gamma-secretase activity, the cellular transcriptomes of Chinese hamster ovary (CHO cells with enhanced and inhibited gamma-secretase activity were analyzed and compared by cDNA microarray. The functional clustering by FatiGO of the 1,981 identified genes revealed over- and under-represented groups with multiple activities and functions. Single genes with the most pronounced transcriptional susceptibility to gamma-secretase activity were evaluated by real-time PCR. Among the 21 validated genes, the strikingly decreased transcription of PTPRG and AMN1 and increased transcription of UPP1 potentially support data on cell cycle disturbances relevant to cancer, stem cell and neurodegenerative diseases' research. The mapping of interactions of proteins encoded by the validated genes exclusively relied on evidence-based data and revealed broad effects on Wnt pathway members, including WNT3A and DVL3. Intriguingly, the transcription of TERA, a gene of unknown function, is affected by gamma-secretase activity and was significantly altered in the analyzed human Alzheimer's disease brain cortices.Investigating the effects of gamma-secretase activity on gene transcription has revealed several affected clusters of molecular functions and, more specifically, 21 genes that hold significant

  5. Toxic Diatom Aldehydes Affect Defence Gene Networks in Sea Urchins.

    Directory of Open Access Journals (Sweden)

    Stefano Varrella

    Full Text Available Marine organisms possess a series of cellular strategies to counteract the negative effects of toxic compounds, including the massive reorganization of gene expression networks. Here we report the modulated dose-dependent response of activated genes by diatom polyunsaturated aldehydes (PUAs in the sea urchin Paracentrotus lividus. PUAs are secondary metabolites deriving from the oxidation of fatty acids, inducing deleterious effects on the reproduction and development of planktonic and benthic organisms that feed on these unicellular algae and with anti-cancer activity. Our previous results showed that PUAs target several genes, implicated in different functional processes in this sea urchin. Using interactomic Ingenuity Pathway Analysis we now show that the genes targeted by PUAs are correlated with four HUB genes, NF-κB, p53, δ-2-catenin and HIF1A, which have not been previously reported for P. lividus. We propose a working model describing hypothetical pathways potentially involved in toxic aldehyde stress response in sea urchins. This represents the first report on gene networks affected by PUAs, opening new perspectives in understanding the cellular mechanisms underlying the response of benthic organisms to diatom exposure.

  6. Functional Gene Discovery and Characterization of Genes and Alleles Affecting Wood Biomass Yield and Quality in Populus

    Energy Technology Data Exchange (ETDEWEB)

    Busov, Victor [Michigan Technological Univ., Houghton, MI (United States)

    2017-02-12

    Adoption of biofuels as economically and environmentally viable alternative to fossil fuels would require development of specialized bioenergy varieties. A major goal in the breeding of such varieties is the improvement of lignocellulosic biomass yield and quality. These are complex traits and understanding the underpinning molecular mechanism can assist and accelerate their improvement. This is particularly important for tree bioenergy crops like poplars (species and hybrids from the genus Populus), for which breeding progress is extremely slow due to long generation cycles. A variety of approaches have been already undertaken to better understand the molecular bases of biomass yield and quality in poplar. An obvious void in these undertakings has been the application of mutagenesis. Mutagenesis has been instrumental in the discovery and characterization of many plant traits including such that affect biomass yield and quality. In this proposal we use activation tagging to discover genes that can significantly affect biomass associated traits directly in poplar, a premier bioenergy crop. We screened a population of 5,000 independent poplar activation tagging lines under greenhouse conditions for a battery of biomass yield traits. These same plants were then analyzed for changes in wood chemistry using pyMBMS. As a result of these screens we have identified nearly 800 mutants, which are significantly (P<0.05) different when compared to wild type. Of these majority (~700) are affected in one of ten different biomass yield traits and 100 in biomass quality traits (e.g., lignin, S/G ration and C6/C5 sugars). We successfully recovered the position of the tag in approximately 130 lines, showed activation in nearly half of them and performed recapitulation experiments with 20 genes prioritized by the significance of the phenotype. Recapitulation experiments are still ongoing for many of the genes but the results are encouraging. For example, we have shown successful

  7. Patterns of prokaryotic lateral gene transfers affecting parasitic microbial eukaryotes

    DEFF Research Database (Denmark)

    Alsmark, Cecilia; Foster, Peter G; Sicheritz-Pontén, Thomas

    2013-01-01

    BACKGROUND: The influence of lateral gene transfer on gene origins and biology in eukaryotes is poorly understood compared with those of prokaryotes. A number of independent investigations focusing on specific genes, individual genomes, or specific functional categories from various eukaryotes have...... approach to systematically investigate lateral gene transfer affecting the proteomes of thirteen, mainly parasitic, microbial eukaryotes, representing four of the six eukaryotic super-groups. All of the genomes investigated have been significantly affected by prokaryote-to-eukaryote lateral gene transfers...... indicated that lateral gene transfer does indeed affect eukaryotic genomes. However, the lack of common methodology and criteria in these studies makes it difficult to assess the general importance and influence of lateral gene transfer on eukaryotic genome evolution. RESULTS: We used a phylogenomic...

  8. A parasitic selfish gene that affects host promiscuity.

    Science.gov (United States)

    Giraldo-Perez, Paulina; Goddard, Matthew R

    2013-11-07

    Selfish genes demonstrate transmission bias and invade sexual populations despite conferring no benefit to their hosts. While the molecular genetics and evolutionary dynamics of selfish genes are reasonably well characterized, their effects on hosts are not. Homing endonuclease genes (HEGs) are one well-studied family of selfish genes that are assumed to be benign. However, we show that carrying HEGs is costly for Saccharomyces cerevisiae, demonstrating that these genetic elements are not necessarily benign but maybe parasitic. We estimate a selective load of approximately 1-2% in 'natural' niches. The second aspect we examine is the ability of HEGs to affect hosts' sexual behaviour. As all selfish genes critically rely on sex for spread, then any selfish gene correlated with increased host sexuality will enjoy a transmission advantage. While classic parasites are known to manipulate host behaviour, we are not aware of any evidence showing a selfish gene is capable of affecting host promiscuity. The data presented here show a selfish element may increase the propensity of its eukaryote host to undergo sex and along with increased rates of non-Mendelian inheritance, this may counterbalance mitotic selective load and promote spread. Demonstration that selfish genes are correlated with increased promiscuity in eukaryotes connects with ideas suggesting that selfish genes promoted the evolution of sex initially.

  9. Maternal protein restriction affects gene expression and enzyme activity of intestinal disaccharidases in adult rat offspring

    International Nuclear Information System (INIS)

    Pinheiro, D.F.; Pacheco, P.D.G.; Alvarenga, P.V.; Buratini, J. Jr; Castilho, A.C.S.; Lima, P.F.; Sartori, D.R.S.; Vicentini-Paulino, M.L.M.

    2013-01-01

    This study investigated the consequences of intrauterine protein restriction on the gastrointestinal tract and particularly on the gene expression and activity of intestinal disaccharidases in the adult offspring. Wistar rat dams were fed isocaloric diets containing 6% protein (restricted, n = 8) or 17% protein (control, n = 8) throughout gestation. Male offspring (n = 5-8 in each group) were evaluated at 3 or 16 weeks of age. Maternal protein restriction during pregnancy produced offspring with growth restriction from birth (5.7 ± 0.1 vs 6.3 ± 0.1 g; mean ± SE) to weaning (42.4 ± 1.3 vs 49.1 ± 1.6 g), although at 16 weeks of age their body weight was similar to control (421.7 ± 8.9 and 428.5 ± 8.5 g). Maternal protein restriction also increased lactase activity in the proximal (0.23 ± 0.02 vs 0.15 ± 0.02), medial (0.30 ± 0.06 vs 0.14 ± 0.01) and distal (0.43 ± 0.07 vs 0.07 ± 0.02 U·g -1 ·min -1 ) small intestine, and mRNA lactase abundance in the proximal intestine (7.96 ± 1.11 vs 2.38 ± 0.47 relative units) of 3-week-old offspring rats. In addition, maternal protein restriction increased sucrase activity (1.20 ± 0.02 vs 0.91 ± 0.02 U·g -1 ·min -1 ) and sucrase mRNA abundance (4.48 ± 0.51 vs 1.95 ± 0.17 relative units) in the duodenum of 16-week-old rats. In conclusion, the present study shows for the first time that intrauterine protein restriction affects gene expression of intestinal enzymes in offspring

  10. Maternal protein restriction affects gene expression and enzyme activity of intestinal disaccharidases in adult rat offspring

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, D.F.; Pacheco, P.D.G.; Alvarenga, P.V.; Buratini, J. Jr; Castilho, A.C.S.; Lima, P.F.; Sartori, D.R.S.; Vicentini-Paulino, M.L.M. [Departamento de Fisiologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP (Brazil)

    2013-03-15

    This study investigated the consequences of intrauterine protein restriction on the gastrointestinal tract and particularly on the gene expression and activity of intestinal disaccharidases in the adult offspring. Wistar rat dams were fed isocaloric diets containing 6% protein (restricted, n = 8) or 17% protein (control, n = 8) throughout gestation. Male offspring (n = 5-8 in each group) were evaluated at 3 or 16 weeks of age. Maternal protein restriction during pregnancy produced offspring with growth restriction from birth (5.7 ± 0.1 vs 6.3 ± 0.1 g; mean ± SE) to weaning (42.4 ± 1.3 vs 49.1 ± 1.6 g), although at 16 weeks of age their body weight was similar to control (421.7 ± 8.9 and 428.5 ± 8.5 g). Maternal protein restriction also increased lactase activity in the proximal (0.23 ± 0.02 vs 0.15 ± 0.02), medial (0.30 ± 0.06 vs 0.14 ± 0.01) and distal (0.43 ± 0.07 vs 0.07 ± 0.02 U·g{sup -1}·min{sup -1}) small intestine, and mRNA lactase abundance in the proximal intestine (7.96 ± 1.11 vs 2.38 ± 0.47 relative units) of 3-week-old offspring rats. In addition, maternal protein restriction increased sucrase activity (1.20 ± 0.02 vs 0.91 ± 0.02 U·g{sup -1}·min{sup -1}) and sucrase mRNA abundance (4.48 ± 0.51 vs 1.95 ± 0.17 relative units) in the duodenum of 16-week-old rats. In conclusion, the present study shows for the first time that intrauterine protein restriction affects gene expression of intestinal enzymes in offspring.

  11. Activation tagging of the two closely linked genes LEP and VAS independently affects vascular cell number

    DEFF Research Database (Denmark)

    van der Graaff, Eric; Hooykaas, Paul J J; Keller, Beat

    2002-01-01

    report that in addition to this leafy petiole phenotype, the size of the vascular bundles is increased in all aerial organs in let as a result of an increase in the number of xylem, phloem (pro)cambial and pericycle cells. This vascular phenotype is caused by activation tagging of the two genes VASCULAR......-promoting factor. The activation tagging of VAS only resulted in a specific increase in phloem (pro)cambial and pericycle cells. We conclude that activation tagging of LEP and VAS results in additive phenotypes. Insertional mutants for LEP and VAS display wild-type vascular development, indicating the relevance...... of activation tagging for functional analysis of novel genes involved in plant development....

  12. BRAIN NETWORKS. Correlated gene expression supports synchronous activity in brain networks.

    Science.gov (United States)

    Richiardi, Jonas; Altmann, Andre; Milazzo, Anna-Clare; Chang, Catie; Chakravarty, M Mallar; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Conrod, Patricia; Fauth-Bühler, Mira; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Garavan, Hugh; Gowland, Penny; Heinz, Andreas; Lemaître, Hervé; Mann, Karl F; Martinot, Jean-Luc; Nees, Frauke; Paus, Tomáš; Pausova, Zdenka; Rietschel, Marcella; Robbins, Trevor W; Smolka, Michael N; Spanagel, Rainer; Ströhle, Andreas; Schumann, Gunter; Hawrylycz, Mike; Poline, Jean-Baptiste; Greicius, Michael D

    2015-06-12

    During rest, brain activity is synchronized between different regions widely distributed throughout the brain, forming functional networks. However, the molecular mechanisms supporting functional connectivity remain undefined. We show that functional brain networks defined with resting-state functional magnetic resonance imaging can be recapitulated by using measures of correlated gene expression in a post mortem brain tissue data set. The set of 136 genes we identify is significantly enriched for ion channels. Polymorphisms in this set of genes significantly affect resting-state functional connectivity in a large sample of healthy adolescents. Expression levels of these genes are also significantly associated with axonal connectivity in the mouse. The results provide convergent, multimodal evidence that resting-state functional networks correlate with the orchestrated activity of dozens of genes linked to ion channel activity and synaptic function. Copyright © 2015, American Association for the Advancement of Science.

  13. Assessment of chitosan-affected metabolic response by peroxisome proliferator-activated receptor bioluminescent imaging-guided transcriptomic analysis.

    Directory of Open Access Journals (Sweden)

    Chia-Hung Kao

    Full Text Available Chitosan has been widely used in food industry as a weight-loss aid and a cholesterol-lowering agent. Previous studies have shown that chitosan affects metabolic responses and contributes to anti-diabetic, hypocholesteremic, and blood glucose-lowering effects; however, the in vivo targeting sites and mechanisms of chitosan remain to be clarified. In this study, we constructed transgenic mice, which carried the luciferase genes driven by peroxisome proliferator-activated receptor (PPAR, a key regulator of fatty acid and glucose metabolism. Bioluminescent imaging of PPAR transgenic mice was applied to report the organs that chitosan acted on, and gene expression profiles of chitosan-targeted organs were further analyzed to elucidate the mechanisms of chitosan. Bioluminescent imaging showed that constitutive PPAR activities were detected in brain and gastrointestinal tract. Administration of chitosan significantly activated the PPAR activities in brain and stomach. Microarray analysis of brain and stomach showed that several pathways involved in lipid and glucose metabolism were regulated by chitosan. Moreover, the expression levels of metabolism-associated genes like apolipoprotein B (apoB and ghrelin genes were down-regulated by chitosan. In conclusion, these findings suggested the feasibility of PPAR bioluminescent imaging-guided transcriptomic analysis on the evaluation of chitosan-affected metabolic responses in vivo. Moreover, we newly identified that downregulated expression of apoB and ghrelin genes were novel mechanisms for chitosan-affected metabolic responses in vivo.

  14. Promoter polymorphisms in genes involved in porcine myogenesis influence their transcriptional activity.

    Science.gov (United States)

    Bongiorni, Silvia; Tilesi, Francesca; Bicorgna, Silvia; Iacoponi, Francesca; Willems, Daniela; Gargani, Maria; D'Andrea, MariaSilvia; Pilla, Fabio; Valentini, Alessio

    2014-11-07

    Success of meat production and selection for improvement of meat quality is among the primary aims in animal production. Meat quality traits are economically important in swine; however, the underlying genetic nature is very complex. Therefore, an improved pork production strongly depends on identifying and studying how genetic variations contribute to modulate gene expression. Promoters are key regions in gene modulation as they harbour several binding motifs to transcription regulatory factors. Therefore, polymorphisms in these regions are likely to deeply affect RNA levels and consequently protein synthesis. In this study, we report the identification of single nucleotide polymorphisms (SNPs) in promoter regions of candidate genes involved in development, cellular differentiation and muscle growth in Sus scrofa. We identified SNPs in the promoter regions of genes belonging to the Myogenic Regulatory Factors (MRF) gene family (the Myogenic Differentiation gene, MYOD1) and to Growth and Differentiation Factors (GDF) gene family (Myostatin gene, MSTN, GDF8), in Casertana and Large White breeds. The purpose of this study was to investigate if polymorphisms in the promoters could affect the transcriptional activity of these genes. With this aim, we evaluated in vitro the functional activity of the luciferase reporter gene luc2 activity, driven by two constructs carrying different promoter haplotypes. We tested the effects of the G302A (U12574) transition on the promoter efficiency in MYOD1 gene. We ascertained a difference in transcription efficiency for the two variants. A stronger activity of the A-carrying construct is more evident in C2C12. The luciferase expression driven by the MYOD1-A allelic variant displayed a 3.8-fold increased transcriptional activity. We investigated the activity of two haplotype variants (AY527152) in the promoter of GDF8 gene. The haploptype-1 (A435-A447-A879) up-regulated the expression of the reporter gene by a two-fold increase, and

  15. Multiple controls affect arsenite oxidase gene expression in Herminiimonas arsenicoxydans

    Directory of Open Access Journals (Sweden)

    Coppée Jean-Yves

    2010-02-01

    Full Text Available Abstract Background Both the speciation and toxicity of arsenic are affected by bacterial transformations, i.e. oxidation, reduction or methylation. These transformations have a major impact on environmental contamination and more particularly on arsenic contamination of drinking water. Herminiimonas arsenicoxydans has been isolated from an arsenic- contaminated environment and has developed various mechanisms for coping with arsenic, including the oxidation of As(III to As(V as a detoxification mechanism. Results In the present study, a differential transcriptome analysis was used to identify genes, including arsenite oxidase encoding genes, involved in the response of H. arsenicoxydans to As(III. To get insight into the molecular mechanisms of this enzyme activity, a Tn5 transposon mutagenesis was performed. Transposon insertions resulting in a lack of arsenite oxidase activity disrupted aoxR and aoxS genes, showing that the aox operon transcription is regulated by the AoxRS two-component system. Remarkably, transposon insertions were also identified in rpoN coding for the alternative N sigma factor (σ54 of RNA polymerase and in dnaJ coding for the Hsp70 co-chaperone. Western blotting with anti-AoxB antibodies and quantitative RT-PCR experiments allowed us to demonstrate that the rpoN and dnaJ gene products are involved in the control of arsenite oxidase gene expression. Finally, the transcriptional start site of the aoxAB operon was determined using rapid amplification of cDNA ends (RACE and a putative -12/-24 σ54-dependent promoter motif was identified upstream of aoxAB coding sequences. Conclusion These results reveal the existence of novel molecular regulatory processes governing arsenite oxidase expression in H. arsenicoxydans. These data are summarized in a model that functionally integrates arsenite oxidation in the adaptive response to As(III in this microorganism.

  16. A Key Gene, PLIN1, Can Affect Porcine Intramuscular Fat Content Based on Transcriptome Analysis.

    Science.gov (United States)

    Li, Bojiang; Weng, Qiannan; Dong, Chao; Zhang, Zengkai; Li, Rongyang; Liu, Jingge; Jiang, Aiwen; Li, Qifa; Jia, Chao; Wu, Wangjun; Liu, Honglin

    2018-04-04

    Intramuscular fat (IMF) content is an important indicator for meat quality evaluation. However, the key genes and molecular regulatory mechanisms affecting IMF deposition remain unclear. In the present study, we identified 75 differentially expressed genes (DEGs) between the higher (H) and lower (L) IMF content of pigs using transcriptome analysis, of which 27 were upregulated and 48 were downregulated. Notably, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that the DEG perilipin-1 ( PLIN1 ) was significantly enriched in the fat metabolism-related peroxisome proliferator-activated receptor (PPAR) signaling pathway. Furthermore, we determined the expression patterns and functional role of porcine PLIN1. Our results indicate that PLIN1 was highly expressed in porcine adipose tissue, and its expression level was significantly higher in the H IMF content group when compared with the L IMF content group, and expression was increased during adipocyte differentiation. Additionally, our results confirm that PLIN1 knockdown decreases the triglyceride (TG) level and lipid droplet (LD) size in porcine adipocytes. Overall, our data identify novel candidate genes affecting IMF content and provide new insight into PLIN1 in porcine IMF deposition and adipocyte differentiation.

  17. A Key Gene, PLIN1, Can Affect Porcine Intramuscular Fat Content Based on Transcriptome Analysis

    Directory of Open Access Journals (Sweden)

    Bojiang Li

    2018-04-01

    Full Text Available Intramuscular fat (IMF content is an important indicator for meat quality evaluation. However, the key genes and molecular regulatory mechanisms affecting IMF deposition remain unclear. In the present study, we identified 75 differentially expressed genes (DEGs between the higher (H and lower (L IMF content of pigs using transcriptome analysis, of which 27 were upregulated and 48 were downregulated. Notably, Kyoto Encyclopedia of Genes and Genomes (KEGG enrichment analysis indicated that the DEG perilipin-1 (PLIN1 was significantly enriched in the fat metabolism-related peroxisome proliferator-activated receptor (PPAR signaling pathway. Furthermore, we determined the expression patterns and functional role of porcine PLIN1. Our results indicate that PLIN1 was highly expressed in porcine adipose tissue, and its expression level was significantly higher in the H IMF content group when compared with the L IMF content group, and expression was increased during adipocyte differentiation. Additionally, our results confirm that PLIN1 knockdown decreases the triglyceride (TG level and lipid droplet (LD size in porcine adipocytes. Overall, our data identify novel candidate genes affecting IMF content and provide new insight into PLIN1 in porcine IMF deposition and adipocyte differentiation.

  18. Downregulation of RWA genes in hybrid aspen affects xylan acetylation and wood saccharification.

    Science.gov (United States)

    Pawar, Prashant Mohan-Anupama; Ratke, Christine; Balasubramanian, Vimal K; Chong, Sun-Li; Gandla, Madhavi Latha; Adriasola, Mathilda; Sparrman, Tobias; Hedenström, Mattias; Szwaj, Klaudia; Derba-Maceluch, Marta; Gaertner, Cyril; Mouille, Gregory; Ezcurra, Ines; Tenkanen, Maija; Jönsson, Leif J; Mellerowicz, Ewa J

    2017-06-01

    High acetylation of angiosperm wood hinders its conversion to sugars by glycoside hydrolases, subsequent ethanol fermentation and (hence) its use for biofuel production. We studied the REDUCED WALL ACETYLATION (RWA) gene family of the hardwood model Populus to evaluate its potential for improving saccharification. The family has two clades, AB and CD, containing two genes each. All four genes are expressed in developing wood but only RWA-A and -B are activated by master switches of the secondary cell wall PtNST1 and PtMYB21. Histochemical analysis of promoter::GUS lines in hybrid aspen (Populus tremula × tremuloides) showed activation of RWA-A and -B promoters in the secondary wall formation zone, while RWA-C and -D promoter activity was diffuse. Ectopic downregulation of either clade reduced wood xylan and xyloglucan acetylation. Suppressing both clades simultaneously using the wood-specific promoter reduced wood acetylation by 25% and decreased acetylation at position 2 of Xylp in the dimethyl sulfoxide-extracted xylan. This did not affect plant growth but decreased xylose and increased glucose contents in the noncellulosic monosaccharide fraction, and increased glucose and xylose yields of wood enzymatic hydrolysis without pretreatment. Both RWA clades regulate wood xylan acetylation in aspen and are promising targets to improve wood saccharification. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  19. Dietary Resveratrol Does Not Affect Life Span, Body Composition, Stress Response, and Longevity-Related Gene Expression in Drosophila melanogaster.

    Science.gov (United States)

    Staats, Stefanie; Wagner, Anika E; Kowalewski, Bianca; Rieck, Florian T; Soukup, Sebastian T; Kulling, Sabine E; Rimbach, Gerald

    2018-01-11

    In this study, we tested the effect of the stilbene resveratrol on life span, body composition, locomotor activity, stress response, and the expression of genes encoding proteins centrally involved in ageing pathways in the model organism Drosophila melanogaster . Male and female w 1118 D. melanogaster were fed diets based on sucrose, corn meal, and yeast. Flies either received a control diet or a diet supplemented with 500 µmol/L resveratrol. Dietary resveratrol did not affect mean, median, and maximal life span of male and female flies. Furthermore, body composition remained largely unchanged following the resveratrol supplementation. Locomotor activity, as determined by the climbing index, was not significantly different between control and resveratrol-supplemented flies. Resveratrol-fed flies did not exhibit an improved stress response towards hydrogen peroxide as compared to controls. Resveratrol did not change mRNA steady levels of antioxidant ( catalase , glutathione-S-transferase , NADH dehydrogenase , glutathione peroxidase , superoxide dismutase 2 ) and longevity-related genes, including sirtuin 2 , spargel , and I'm Not Dead Yet . Collectively, present data suggest that resveratrol does not affect life span, body composition, locomotor activity, stress response, and longevity-associated gene expression in w 1118 D. melanogaster .

  20. Dietary Resveratrol Does Not Affect Life Span, Body Composition, Stress Response, and Longevity-Related Gene Expression in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Stefanie Staats

    2018-01-01

    Full Text Available In this study, we tested the effect of the stilbene resveratrol on life span, body composition, locomotor activity, stress response, and the expression of genes encoding proteins centrally involved in ageing pathways in the model organism Drosophila melanogaster. Male and female w1118 D. melanogaster were fed diets based on sucrose, corn meal, and yeast. Flies either received a control diet or a diet supplemented with 500 µmol/L resveratrol. Dietary resveratrol did not affect mean, median, and maximal life span of male and female flies. Furthermore, body composition remained largely unchanged following the resveratrol supplementation. Locomotor activity, as determined by the climbing index, was not significantly different between control and resveratrol-supplemented flies. Resveratrol-fed flies did not exhibit an improved stress response towards hydrogen peroxide as compared to controls. Resveratrol did not change mRNA steady levels of antioxidant (catalase, glutathione-S-transferase, NADH dehydrogenase, glutathione peroxidase, superoxide dismutase 2 and longevity-related genes, including sirtuin 2, spargel, and I’m Not Dead Yet. Collectively, present data suggest that resveratrol does not affect life span, body composition, locomotor activity, stress response, and longevity-associated gene expression in w1118 D. melanogaster.

  1. Omission and Resupply of Nitrogen Affect Physiological and Enzymatic Activities and the Gene Expression of Eucalypt Clones

    Directory of Open Access Journals (Sweden)

    Loane Vaz Fernandes

    Full Text Available ABSTRACT: The mineral nutrient uptake of plants in the field occurs in pulses, due to variations in the substance concentrations at the root surface. The fluctuations in nutrient supply probably induce changes in the plant, which are to date unknown for Eucalyptus. This study evaluated these changes in plant growth, nutritional status, photosynthesis, and gene expression, which can serve as biomarkers of the nitrogen status, of four eucalypt clones exposed to N omission and resupply. A greenhouse experiment with four Eucalyptus clones was installed, and after initial growth exposed to N omission for 21 d, followed by N resupply in nutrient solution for 14 d. Nitrogen omission decreased the total N and photosynthetic pigments, net photosynthesis and photochemical dissipation, and increased enzyme activity especially in leaves and the gene expression in leaves and roots. Nitrogen resupply decreased these variations, indicating recovery. The total N concentration was highly and significantly correlated with net photosynthesis, enzyme activity, expression of genes GS2;1 and Gln1;3 in the leaves and AMT1;2 in the roots, contents of chlorophyll a and b, and photochemical energy dissipation. The enzymes GS and NR in the leaves and the genes AMT1;2, GS2;1 and Gln1;3 proved to be sensitive N indicators.

  2. Profiling gene expression induced by protease-activated receptor 2 (PAR2 activation in human kidney cells.

    Directory of Open Access Journals (Sweden)

    Jacky Y Suen

    Full Text Available Protease-Activated Receptor-2 (PAR2 has been implicated through genetic knockout mice with cytokine regulation and arthritis development. Many studies have associated PAR2 with inflammatory conditions (arthritis, airways inflammation, IBD and key events in tumor progression (angiogenesis, metastasis, but they have relied heavily on the use of single agonists to identify physiological roles for PAR2. However such probes are now known not to be highly selective for PAR2, and thus precisely what PAR2 does and what mechanisms of downstream regulation are truly affected remain obscure. Effects of PAR2 activation on gene expression in Human Embryonic Kidney cells (HEK293, a commonly studied cell line in PAR2 research, were investigated here by comparing 19,000 human genes for intersecting up- or down-regulation by both trypsin (an endogenous protease that activates PAR2 and a PAR2 activating hexapeptide (2f-LIGRLO-NH(2. Among 2,500 human genes regulated similarly by both agonists, there were clear associations between PAR2 activation and cellular metabolism (1,000 genes, the cell cycle, the MAPK pathway, HDAC and sirtuin enzymes, inflammatory cytokines, and anti-complement function. PAR-2 activation up-regulated four genes more than 5 fold (DUSP6, WWOX, AREG, SERPINB2 and down-regulated another six genes more than 3 fold (TXNIP, RARG, ITGB4, CTSD, MSC and TM4SF15. Both PAR2 and PAR1 activation resulted in up-regulated expression of several genes (CD44, FOSL1, TNFRSF12A, RAB3A, COPEB, CORO1C, THBS1, SDC4 known to be important in cancer. This is the first widespread profiling of specific activation of PAR2 and provides a valuable platform for better understanding key mechanistic roles of PAR2 in human physiology. Results clearly support the development of both antagonists and agonists of human PAR2 as potential disease modifying therapeutic agents.

  3. Dual gene activation and knockout screen reveals directional dependencies in genetic networks. | Office of Cancer Genomics

    Science.gov (United States)

    Understanding the direction of information flow is essential for characterizing how genetic networks affect phenotypes. However, methods to find genetic interactions largely fail to reveal directional dependencies. We combine two orthogonal Cas9 proteins from Streptococcus pyogenes and Staphylococcus aureus to carry out a dual screen in which one gene is activated while a second gene is deleted in the same cell. We analyze the quantitative effects of activation and knockout to calculate genetic interaction and directionality scores for each gene pair.

  4. Inoculum pretreatment affects bacterial survival, activity and catabolic gene expression during phytoremediation of diesel contaminated soil.

    Science.gov (United States)

    Khan, Sumia; Afzal, Muhammad; Iqbal, Samina; Mirza, Muhammad Sajjad; Khan, Qaiser M

    2013-04-01

    Plant-bacteria partnership is a promising approach for remediating soil contaminated with organic pollutants. The colonization and metabolic activity of an inoculated microorganism depend not only on environmental conditions but also on the physiological condition of the applied microorganisms. This study assessed the influence of different inoculum pretreatments on survival, gene abundance and catabolic gene expression of an applied strain (Pantoea sp. strain BTRH79) in the rhizosphere of ryegrass vegetated in diesel contaminated soil. Maximum bacterium survival, gene abundance and expression were observed in the soil inoculated with bacterial cells that had been pregrown on complex medium, and hydrocarbon degradation and genotoxicity reduction were also high in this soil. These findings propose that use of complex media for growing plant inocula may enhance bacterial survival and colonization and subsequently the efficiency of pollutant degradation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Systematic identification of novel, essential host genes affecting bromovirus RNA replication.

    Directory of Open Access Journals (Sweden)

    Brandi L Gancarz

    Full Text Available Positive-strand RNA virus replication involves viral proteins and cellular proteins at nearly every replication step. Brome mosaic virus (BMV is a well-established model for dissecting virus-host interactions and is one of very few viruses whose RNA replication, gene expression and encapsidation have been reproduced in the yeast Saccharomyces cerevisiae. Previously, our laboratory identified ∼100 non-essential host genes whose loss inhibited or enhanced BMV replication at least 3-fold. However, our isolation of additional BMV-modulating host genes by classical genetics and other results underscore that genes essential for cell growth also contribute to BMV RNA replication at a frequency that may be greater than that of non-essential genes. To systematically identify novel, essential host genes affecting BMV RNA replication, we tested a collection of ∼900 yeast strains, each with a single essential gene promoter replaced by a doxycycline-repressible promoter, allowing repression of gene expression by adding doxycycline to the growth medium. Using this strain array of ∼81% of essential yeast genes, we identified 24 essential host genes whose depleted expression reproducibly inhibited or enhanced BMV RNA replication. Relevant host genes are involved in ribosome biosynthesis, cell cycle regulation and protein homeostasis, among other cellular processes. BMV 2a(Pol levels were significantly increased in strains depleted for a heat shock protein (HSF1 or proteasome components (PRE1 and RPT6, suggesting these genes may affect BMV RNA replication by directly or indirectly modulating 2a(Pol localization, post-translational modification or interacting partners. Investigating the diverse functions of these newly identified essential host genes should advance our understanding of BMV-host interactions and normal cellular pathways, and suggest new modes of virus control.

  6. Genes affecting β-cell function in type 1 diabetes

    DEFF Research Database (Denmark)

    Fløyel, Tina; Kaur, Simranjeet; Pociot, Flemming

    2015-01-01

    Type 1 diabetes (T1D) is a multifactorial disease resulting from an immune-mediated destruction of the insulin-producing pancreatic β cells. Several environmental and genetic risk factors predispose to the disease. Genome-wide association studies (GWAS) have identified around 50 genetic regions...... that affect the risk of developing T1D, but the disease-causing variants and genes are still largely unknown. In this review, we discuss the current status of T1D susceptibility loci and candidate genes with focus on the β cell. At least 40 % of the genes in the T1D susceptibility loci are expressed in human...... islets and β cells, where they according to recent studies modulate the β-cell response to the immune system. As most of the risk variants map to noncoding regions of the genome, i.e., promoters, enhancers, intergenic regions, and noncoding genes, their possible involvement in T1D pathogenesis as gene...

  7. Regulation of myelin genes implicated in psychiatric disorders by functional activity in axons

    Directory of Open Access Journals (Sweden)

    Philip R Lee

    2009-06-01

    Full Text Available Myelination is a highly dynamic process that continues well into adulthood in humans. Several recent gene expression studies have found abnormal expression of genes involved in myelination in the prefrontal cortex of brains from patients with schizophrenia and other psychiatric illnesses. Defects in myelination could contribute to the pathophysiology of psychiatric illness by impairing information processing as a consequence of altered impulse conduction velocity and synchrony between cortical regions carrying out higher level cognitive functions. Myelination can be altered by impulse activity in axons and by environmental experience. Psychiatric illness is treated by psychotherapy, behavioral modification, and drugs affecting neurotransmission, raising the possibility that myelinating glia may not only contribute to such disorders, but that activity-dependent effects on myelinating glia could provide one of the cellular mechanisms contributing to the therapeutic effects of these treatments. This review examines evidence showing that genes and gene networks important for myelination can be regulated by functional activity in axons.

  8. Nitrogenase activity of Herbaspirillum seropedicae grown under low iron levels requires the products of nifXorf1 genes.

    Science.gov (United States)

    Klassen, Giseli; de Oliveira Pedrosa, Fábio; de Souza, Emanuel M; Yates, M Geoffrey; Rigo, Liu Un

    2003-07-29

    Herbaspirillum seropedicae strains mutated in the nifX or orf1 genes showed 90% or 50% reduction in nitrogenase activity under low levels of iron or molybdenum respectively. Mutations in nifX or orf1 genes did not affect nif gene expression since a nifH::lacZ fusion was fully active in both mutants. nifX and the contiguous gene orf1 are essential for maximum nitrogen fixation under iron limitation and are probably involved in synthesis of nitrogenase iron or iron-molybdenum clusters.

  9. Vitrification affects nuclear maturation and gene expression of immature human oocytes

    Directory of Open Access Journals (Sweden)

    Abbas Shahedi

    2017-02-01

    Full Text Available Background: Vitrification of oocytes is a fast-freezing technique, which may affect the quality of the human oocyte, and consequently affects the embryo development, pregnancy and birth. The aim of the current study was to investigate the consequence of in-vitro vitrification on maturation status of immature human oocytes, additionally, expression levels of stress, and apoptosis related genes. Materials and Methods: The total of 213 human immature oocytes which routinely discarded from assisted reproduction clinics were collected and divided into two groups including: (I fresh germinal vesicle (GV oocytes (n=106 (matured in-vitro  (fIVM , and  (II GV oocytes (n=107 that initially vitrified, then matured in  in-vitro (vIVM. After 36 hours of incubation, the oocytes were evaluated for nuclear maturation and expression level of DNA methyltransferase (DNMT1, stress related genes (Sod1 and Hsp70, and apoptotic related genes (Bax and Bcl-2 by quantitative Real-Time PCR. Results: Oocyte maturation rates were reduced in vIVM compared to fIVM oocytes (P=0.001. The expression of stress (Sod1 and Hsp70, and apoptotic-related genes (Bax and Bcl-2 in vIVM were significantly higher compared to the fIVM group. Additionally, pro-apoptotic gene up-regulated 4.3 times more than anti-apoptotic gene in vIVM oocyte. However, DNMT1 gene expression was reduced in vIVM oocyte (P = 0.047. Conclusions: The low survival rate of vitrified In-vitro matured GV oocytes could definitely be explained by the alterations of their gene expression profile. 

  10. Litter environment affects behavior and brain metabolic activity of adult knockout mice

    Directory of Open Access Journals (Sweden)

    David Crews

    2009-08-01

    Full Text Available In mammals, the formative environment for social and anxiety-related behaviors is the family unit; in the case of rodents, this is the litter and the mother-young bond. A deciding factor in this environment is the sex ratio of the litter and, in the case of mice lacking functional copies of gene(s, the ratio of the various genotypes in the litter. Both Sex and Genotype ratios of the litter affect the nature and quality of the individual’s behavior later in adulthood, as well as metabolic activity in brain nuclei that underlie these behaviors. Mice were raised in litters reconstituted shortly after to birth to control for Sex ratio and Genotype ratio (wild type pups vs. pups lacking a functional estrogen receptor α. In both males and females the Sex and Genotype of siblings in the litter affected aggressive behaviors as well as patterns of metabolic activity in limbic nuclei in the social behavior network later in adulthood. Further, this pattern in males varied depending upon the Genotype of their brothers and sisters. Principal Components Analysis revealed two components comprised of several amygdalar and hypothalamic nuclei; the VMH showed strong correlations in both clusters, suggesting its pivotal nature in the organization of two neural networks.

  11. Don't worry, be active: positive affect and habitual physical activity.

    Science.gov (United States)

    Pasco, Julie A; Jacka, Felice N; Williams, Lana J; Brennan, Sharon L; Leslie, Eva; Berk, Michael

    2011-12-01

    The aim of ths study was to examine the association between habitual physical activity and positive and negative affect. This cross-sectional study included 276 women aged 20 +, from the Geelong Osteoporosis Study. Habitual physical activity and other lifestyle exposures were assessed by questionnaire, concurrent with anthropometric assessments. Physical activity was categorized as very active, moderately active or sedentary. Positive and negative affect scores were derived from the validated 20 item Positive and Negative Affect Schedule (PANAS) self-report and were categorized into tertiles. There was a pattern of lower positive affect scores for lower levels of physical activity. With very active as the reference category, the odds for having a positive affect score in the highest tertile were sequentially lower for those who were moderately active (OR = 0.53, 95%CI 0.28-1.01) and sedentary (OR = 0.28, 95%CI 0.10-0.75). Associations were sustained after adjusting for body mass index and polypharmacy (OR = 0.50, 95%CI 0.26-0.96 and OR = 0.25, 95%CI 0.09-0.72, respectively). These associations were not explained by age, negative affect score or other exposures. No association was detected between physical activity and negative affect scores. This study reports that higher positive affect scores, encompassing emotions such as interest, excitement, enthusiasm and alertness, are associated with higher levels of habitual physical activity. These observations warrant further investigations into possible mechanistic interplay between neurobiological and psychosocial factors that underpin this association.

  12. Affect and subsequent physical activity: An ambulatory assessment study examining the affect-activity association in a real-life context

    Directory of Open Access Journals (Sweden)

    Christina eNiermann

    2016-05-01

    Full Text Available Traditionally, cognitive, motivational and volitional determinants have been used to explain and predict health behaviors such as physical activity. Recently, the role of affect in influencing and regulating health behaviors received more attention. Affects as internal cues may automatically activate unconscious processes of behavior regulation. The aim of our study was to examine the association between affect and physical activity in daily life. In addition, we studied the influence of the habit of being physically active on this relationship.An ambulatory assessment study in 89 persons (33.7% male, 25 to 65 years, M=45.2, SD=8.1 was conducted. Affect was assessed in the afternoon on 5 weekdays using smartphones. Physical activity was measured continuously objectively using accelerometers and subjectively using smartphones in the evening. Habit strength was assessed at the beginning of the diary period. The outcomes were objectively and subjectively measured moderate-to-vigorous physical activity (MVPA performed after work. Multilevel regression models were used to analyze the association between affect and after work MVPA. In addition, the cross-level interaction of habit strength and affect on after work MVPA was tested.Positive affect was positively related to objectively measured and self-reported after work MVPA: the greater the positive affect the more time persons subsequently spent on MVPA. An inverse relationship was found for negative affect: the greater the negative affect the less time persons spent on MVPA. The cross-level interaction effect was significant only for objectively measured MVPA. A strong habit seems to strengthen both the positive influence of positive affect and the negative influence of negative affect.The results of this study confirm previous results and indicate that affect plays an important role for the regulation of physical activity behavior in daily life. The results for positive affect were consistent

  13. Affect and Subsequent Physical Activity: An Ambulatory Assessment Study Examining the Affect-Activity Association in a Real-Life Context.

    Science.gov (United States)

    Niermann, Christina Y N; Herrmann, Christian; von Haaren, Birte; van Kann, Dave; Woll, Alexander

    2016-01-01

    Traditionally, cognitive, motivational, and volitional determinants have been used to explain and predict health behaviors such as physical activity. Recently, the role of affect in influencing and regulating health behaviors received more attention. Affects as internal cues may automatically activate unconscious processes of behavior regulation. The aim of our study was to examine the association between affect and physical activity in daily life. In addition, we studied the influence of the habit of being physically active on this relationship. An ambulatory assessment study in 89 persons (33.7% male, 25 to 65 years, M = 45.2, SD = 8.1) was conducted. Affect was assessed in the afternoon on 5 weekdays using smartphones. Physical activity was measured continuously objectively using accelerometers and subjectively using smartphones in the evening. Habit strength was assessed at the beginning of the diary period. The outcomes were objectively and subjectively measured moderate-to-vigorous physical activity (MVPA) performed after work. Multilevel regression models were used to analyze the association between affect and after work MVPA. In addition, the cross-level interaction of habit strength and affect on after work MVPA was tested. Positive affect was positively related to objectively measured and self-reported after work MVPA: the greater the positive affect the more time persons subsequently spent on MVPA. An inverse relationship was found for negative affect: the greater the negative affect the less time persons spent on MVPA. The cross-level interaction effect was significant only for objectively measured MVPA. A strong habit seems to strengthen both the positive influence of positive affect and the negative influence of negative affect. The results of this study confirm previous results and indicate that affect plays an important role for the regulation of physical activity behavior in daily life. The results for positive affect were consistent. However, in

  14. SHI/STY Genes Affect Pre- and Post-meiotic Anther Processes in Auxin Sensing Domains in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Leandro H. Estornell

    2018-02-01

    Full Text Available In flowering plants, mature sperm cells are enclosed in pollen grains formed in structures called anthers. Several cell layers surrounding the central sporogenous cells of the anther are essential for directing the developmental processes that lead to meiosis, pollen formation, and the subsequent pollen release. The specification and function of these tissues are regulated by a large number of genetic factors. Additionally, the plant hormone auxin has previously been shown to play important roles in the later phases of anther development. Using the R2D2 auxin sensor system we here show that auxin is sensed also in the early phases of anther cell layer development, suggesting that spatiotemporal regulation of auxin levels is important for early anther morphogenesis. Members of the SHI/STY transcription factor family acting as direct regulators of YUC auxin biosynthesis genes have previously been demonstrated to affect early anther patterning. Using reporter constructs we show that SHI/STY genes are dynamically active throughout anther development and their expression overlaps with those of three additional downstream targets, PAO5, EOD3 and PGL1. Characterization of anthers carrying mutations in five SHI/STY genes clearly suggests that SHI/STY transcription factors affect anther organ identity. In addition, their activity is important to repress periclinal cell divisions as well as premature entrance into programmed cell death and cell wall lignification, which directly influences the timing of anther dehiscence and the pollen viability. The SHI/STY proteins also prevent premature pollen germination suggesting that they may play a role in the induction or maintenance of pollen dormancy.

  15. Effect of biotin on activity and gene expression of biotin-dependent carboxylases in the liver of dairy cows.

    Science.gov (United States)

    Ferreira, G; Weiss, W P

    2007-03-01

    Biotin is a cofactor of the gluconeogenic enzymes pyruvate carboxylase (PC) and propionyl-coenzyme A carboxylase (PCC). We hypothesized that biotin supplementation increases the activity and gene expression of PC and PCC and the gene expression of phosphoenol-pyruvate carboxykinase (PEPCK) in the liver of lactating dairy cows. Eight multiparous Holstein cows (40 +/- 2 kg/d of milk yield and 162 +/- 35 d in milk) were randomly assigned to 1 of 2 diet sequences in a crossover design with two 22-d periods. Treatments consisted of a basal diet (60% concentrate) containing 0 or 0.96 mg/kg of supplemental biotin. On d 21 of each period, liver tissue was collected by percutaneous liver biopsy. Activities of PC and PCC were determined by measuring the fixation of [14C]O2 in liver homogenates. Abundance of mRNA for PCC, PC, and PEPCK was determined by quantitative reverse-transcription PCR. Biotin supplementation did not affect milk production or composition. Biotin supplementation increased the activity of PC but had no effect on PCC activity. Biotin supplementation did not affect the gene expression of PC, PCC, and PEPCK. The increased activity of PC without changes in mRNA abundance may have been caused by increased activation of the apoenzymes by holocarboxylase synthetase. In conclusion, biotin supplementation affected the activity of PC in the liver of lactating dairy cows, but whether biotin supplementation increases glucose production in the liver remains to be determined.

  16. Do dopaminergic gene polymorphisms affect mesolimbic reward activation of music listening response? Therapeutic impact on Reward Deficiency Syndrome (RDS).

    Science.gov (United States)

    Blum, Kenneth; Chen, Thomas J H; Chen, Amanda L H; Madigan, Margaret; Downs, B William; Waite, Roger L; Braverman, Eric R; Kerner, Mallory; Bowirrat, Abdalla; Giordano, John; Henshaw, Harry; Gold, Mark S

    2010-03-01

    Using fMRI, Menon and Levitin [9] clearly found for the first time that listening to music strongly modulates activity in a network of mesolimbic structures involved in reward processing including the nucleus accumbens (NAc) and the ventral tegmental area (VTA), as well as the hypothalamus, and insula, which are thought to be involved in regulating autonomic and physiological responses to rewarding and emotional stimuli. Importantly, responses in the NAc and VTA were strongly correlated pointing to an association between dopamine release and NAc response to music. Listing to pleasant music induced a strong response and significant activation of the VTA-mediated interaction of the NAc with the hypothalamus, insula, and orbitofrontal cortex. Blum et al. [10] provided the first evidence that the dopamine D2 receptor gene (DRD2) Taq 1 A1 allele significantly associated with severe alcoholism whereby the author's suggested that they found the first "reward gene" located in the mesolimbic system. The enhanced functional and effective connectivity between brain regions mediating reward, autonomic, and cognitive processing provides insight into understanding why listening to music is one of the most rewarding and pleasurable human experiences. However, little is known about why some people have a more or less powerful mesolimbic experience when they are listening to music. It is well-known that music may induce an endorphinergic response that is blocked by naloxone, a known opioid antagonist (Goldstein [19]). Opioid transmission in the NAc is associated with dopamine release in the VTA. Moreover, dopamine release in the VTA is linked to polymorphisms of the DRD2 gene and even attention-deficit hyperactivity disorder (ADHD), whereby carriers of the DRD2 A1 allele show a reduced NAc release of dopamine (DA). Thus it is conjectured that similar mechanisms in terms of adequate dopamine release and subsequent activation of reward circuitry by listening to music might also be

  17. Advanced Glycation End-Products affect transcription factors regulating insulin gene expression

    International Nuclear Information System (INIS)

    Puddu, A.; Storace, D.; Odetti, P.; Viviani, G.L.

    2010-01-01

    Advanced Glycation End-Products (AGEs) are generated by the covalent interaction of reducing sugars with proteins, lipids or nucleic acids. AGEs are implicated in diabetic complications and pancreatic β-cell dysfunction. We previously demonstrated that exposure of the pancreatic islet cell line HIT-T15 to high concentrations of AGEs leads to a significant decrease of insulin secretion and content. Insulin gene transcription is positively regulated by the beta cell specific transcription factor PDX-1 (Pancreatic and Duodenal Homeobox-1). On the contrary, the forkhead transcription factor FoxO1 inhibits PDX-1 gene transcription. Activity of FoxO1 is regulated by post-translational modifications: phosphorylation deactivates FoxO1, and acetylation prevents FoxO1 ubiquitination. In this work we investigated whether AGEs affect expression and subcellular localization of PDX-1 and FoxO1. HIT-T15 cells were cultured for 5 days in presence of AGEs. Cells were then lysed and processed for subcellular fractionation. We determined intracellular insulin content, then we assessed the expression and subcellular localization of PDX-1, FoxO1, phosphoFoxO1 and acetylFoxO1. As expected intracellular insulin content was lower in HIT-T15 cells cultured with AGEs. The results showed that AGEs decreased expression and nuclear localization of PDX-1, reduced phosphorylation of FoxO1, and increased expression and acetylation of FoxO1. These results suggest that AGEs decrease insulin content unbalancing transcription factors regulating insulin gene expression.

  18. A TAD further: exogenous control of gene activation.

    Science.gov (United States)

    Mapp, Anna K; Ansari, Aseem Z

    2007-01-23

    Designer molecules that can be used to impose exogenous control on gene transcription, artificial transcription factors (ATFs), are highly desirable as mechanistic probes of gene regulation, as potential therapeutic agents, and as components of cell-based devices. Recently, several advances have been made in the design of ATFs that activate gene transcription (activator ATFs), including reports of small-molecule-based systems and ATFs that exhibit potent activity. However, the many open mechanistic questions about transcriptional activators, in particular, the structure and function of the transcriptional activation domain (TAD), have hindered rapid development of synthetic ATFs. A compelling need thus exists for chemical tools and insights toward a more detailed portrait of the dynamic process of gene activation.

  19. DISC1 gene and affective psychopathology: a combined structural and functional MRI study.

    Science.gov (United States)

    Opmeer, Esther M; van Tol, Marie-José; Kortekaas, Rudie; van der Wee, Nic J A; Woudstra, Saskia; van Buchem, Mark A; Penninx, Brenda W; Veltman, Dick J; Aleman, André

    2015-02-01

    The gene Disrupted-In-Schizophrenia-1 (DISC1) has been indicated as a determinant of psychopathology, including affective disorders, and shown to influence prefrontal cortex (PFC) and hippocampus functioning, regions of major interest for affective disorders. We aimed to investigate whether DISC1 differentially modulates brain function during executive and memory processing, and morphology in regions relevant for depression and anxiety disorders (affective disorders). 128 participants, with (n = 103) and without (controls; n = 25) affective disorders underwent genotyping for Ser704Cys (with Cys-allele considered as risk-allele) and structural and functional (f) Magnetic Resonance Imaging (MRI) during visuospatial planning and emotional episodic memory tasks. For both voxel-based morphometry and fMRI analyses, we investigated the effect of genotype in controls and explored genotypeXdiagnosis interactions. Results are reported at p < 0.05 FWE small volume corrected. In controls, Cys-carriers showed smaller bilateral (para)hippocampal volumes compared with Ser-homozygotes, and lower activation in the anterior cingulate cortex (ACC) and dorsolateral PFC during visuospatial planning. In anxiety patients, Cys-carriers showed larger (para)hippocampal volumes and more ACC activation during visuospatial planning. In depressive patients, no effect of genotype was observed and overall, no effect of genotype on episodic memory processing was detected. We demonstrated that Ser704Cys-genotype influences (para)hippocampal structure and functioning the dorsal PFC during executive planning, most prominently in unaffected controls. Results suggest that presence of psychopathology moderates Ser704Cys effects. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Huntingtin gene repeat size variations affect risk of lifetime depression

    DEFF Research Database (Denmark)

    Gardiner, Sarah L.; van Belzen, Martine J.; Boogaard, Merel W.

    2017-01-01

    Huntington disease (HD) is a severe neuropsychiatric disorder caused by a cytosine-adenine-guanine (CAG) repeat expansion in the HTT gene. Although HD is frequently complicated by depression, it is still unknown to what extent common HTT CAG repeat size variations in the normal range could affect...

  1. Activation tagging of the LEAFY PETIOLE gene affects leaf petiole development in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    van der Graaff, Eric; Dulk-Ras, A D; Hooykaas, P J

    2000-01-01

    In a screen for leaf developmental mutants we have isolated an activator T-DNA-tagged mutant that produces leaves without a petiole. In addition to that leafy petiole phenotype this lettuce (let) mutant shows aberrant inflorescence branching and silique shape. The LEAFY PETIOLE (LEP) gene...

  2. Identification of two novel mutations in the SLC45A2 gene in a Hungarian pedigree affected by unusual OCA type 4.

    Science.gov (United States)

    Tóth, Lola; Fábos, Beáta; Farkas, Katalin; Sulák, Adrienn; Tripolszki, Kornélia; Széll, Márta; Nagy, Nikoletta

    2017-03-15

    Oculocutaneous albinism (OCA) is a clinically and genetically heterogenic group of pigmentation abnormalities. OCA type IV (OCA4, OMIM 606574) develops due to homozygous or compound heterozygous mutations in the solute carrier family 45, member 2 (SLC45A2) gene. This gene encodes a membrane-associated transport protein, which regulates tyrosinase activity and, thus, melanin content by changing melanosomal pH and disrupting the incorporation of copper into tyrosinase. Here we report two Hungarian siblings affected by an unusual OCA4 phenotype. After genomic DNA was isolated from peripheral blood of the patients, the coding regions of the SLC45A2 gene were sequenced. In silico tools were applied to identify the functional impact of the newly detected mutations. Direct sequencing of the SLC45A2 gene revealed two novel, heterozygous mutations, one missense (c.1226G > A, p.Gly409Asp) and one nonsense (c.1459C > T, p.Gln437*), which were present in both patients, suggesting the mutations were compound heterozygous. In silico tools suggest that these variations are disease causing mutations. The newly identified mutations may affect the transmembrane domains of the protein, and could impair transport function, resulting in decreases in both melanosomal pH and tyrosinase activity. Our study provides expands on the mutation spectrum of the SLC45A2 gene and the genetic background of OCA4.

  3. Affect and subsequent physical activity: An ambulatory assessment study examining the affect-activity association in a real-life context

    OpenAIRE

    Christina eNiermann; Christian eHerrmann; Birte evon Haaren; Dave evan Kann; Alexander eWoll

    2016-01-01

    Traditionally, cognitive, motivational, and volitional determinants have been used to explain and predict health behaviors such as physical activity. Recently, the role of affect in influencing and regulating health behaviors received more attention. Affects as internal cues may automatically activate unconscious processes of behavior regulation. The aim of our study was to examine the association between affect and physical activity in daily life. In addition, we studied the influence of the...

  4. c-Myc Antagonises the Transcriptional Activity of the Androgen Receptor in Prostate Cancer Affecting Key Gene Networks.

    Science.gov (United States)

    Barfeld, Stefan J; Urbanucci, Alfonso; Itkonen, Harri M; Fazli, Ladan; Hicks, Jessica L; Thiede, Bernd; Rennie, Paul S; Yegnasubramanian, Srinivasan; DeMarzo, Angelo M; Mills, Ian G

    2017-04-01

    Prostate cancer (PCa) is the most common non-cutaneous cancer in men. The androgen receptor (AR), a ligand-activated transcription factor, constitutes the main drug target for advanced cases of the disease. However, a variety of other transcription factors and signaling networks have been shown to be altered in patients and to influence AR activity. Amongst these, the oncogenic transcription factor c-Myc has been studied extensively in multiple malignancies and elevated protein levels of c-Myc are commonly observed in PCa. Its impact on AR activity, however, remains elusive. In this study, we assessed the impact of c-Myc overexpression on AR activity and transcriptional output in a PCa cell line model and validated the antagonistic effect of c-MYC on AR-targets in patient samples. We found that c-Myc overexpression partially reprogrammed AR chromatin occupancy and was associated with altered histone marks distribution, most notably H3K4me1 and H3K27me3. We found c-Myc and the AR co-occupy a substantial number of binding sites and these exhibited enhancer-like characteristics. Interestingly, c-Myc overexpression antagonised clinically relevant AR target genes. Therefore, as an example, we validated the antagonistic relationship between c-Myc and two AR target genes, KLK3 (alias PSA, prostate specific antigen), and Glycine N-Methyltransferase (GNMT), in patient samples. Our findings provide unbiased evidence that MYC overexpression deregulates the AR transcriptional program, which is thought to be a driving force in PCa. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  5. c-Myc Antagonises the Transcriptional Activity of the Androgen Receptor in Prostate Cancer Affecting Key Gene Networks

    Directory of Open Access Journals (Sweden)

    Stefan J. Barfeld

    2017-04-01

    Full Text Available Prostate cancer (PCa is the most common non-cutaneous cancer in men. The androgen receptor (AR, a ligand-activated transcription factor, constitutes the main drug target for advanced cases of the disease. However, a variety of other transcription factors and signaling networks have been shown to be altered in patients and to influence AR activity. Amongst these, the oncogenic transcription factor c-Myc has been studied extensively in multiple malignancies and elevated protein levels of c-Myc are commonly observed in PCa. Its impact on AR activity, however, remains elusive. In this study, we assessed the impact of c-Myc overexpression on AR activity and transcriptional output in a PCa cell line model and validated the antagonistic effect of c-MYC on AR-targets in patient samples. We found that c-Myc overexpression partially reprogrammed AR chromatin occupancy and was associated with altered histone marks distribution, most notably H3K4me1 and H3K27me3. We found c-Myc and the AR co-occupy a substantial number of binding sites and these exhibited enhancer-like characteristics. Interestingly, c-Myc overexpression antagonised clinically relevant AR target genes. Therefore, as an example, we validated the antagonistic relationship between c-Myc and two AR target genes, KLK3 (alias PSA, prostate specific antigen, and Glycine N-Methyltransferase (GNMT, in patient samples. Our findings provide unbiased evidence that MYC overexpression deregulates the AR transcriptional program, which is thought to be a driving force in PCa.

  6. Interspecies Systems Biology Uncovers Metabolites Affecting C. elegans Gene Expression and Life History Traits

    Science.gov (United States)

    Watson, Emma; MacNeil, Lesley T.; Ritter, Ashlyn D.; Yilmaz, L. Safak; Rosebrock, Adam P.; Caudy, Amy A.; Walhout, Albertha J. M.

    2014-01-01

    SUMMARY Diet greatly influences gene expression and physiology. In mammals, elucidating the effects and mechanisms of individual nutrients is challenging due to the complexity of both the animal and its diet. Here we used an interspecies systems biology approach with Caenorhabditis elegans and two if its bacterial diets, Escherichia coli and Comamonas aquatica, to identify metabolites that affect the animal’s gene expression and physiology. We identify vitamin B12 as the major dilutable metabolite provided by Comamonas aq. that regulates gene expression, accelerates development and reduces fertility, but does not affect lifespan. We find that vitamin B12 has a dual role in the animal: it affects development and fertility via the methionine/S-Adenosylmethionine (SAM) cycle and breaks down the short-chain fatty acid propionic acid preventing its toxic buildup. Our interspecies systems biology approach provides a paradigm for understanding complex interactions between diet and physiology. PMID:24529378

  7. Rapid and preferential activation of the c-jun gene during the mammalian UV response

    International Nuclear Information System (INIS)

    Devary, Y.; Gottlieb, R.A.; Lau, L.F.; Karin, M.

    1991-01-01

    Exposure of mammalian cells to DNA-damaging agents leads to activation of a genetic response known as the UV response. Because several previously identified UV-inducible genes contain AP-1 binding sites within their promoters, we investigated the induction of AP-1 activity by DNA-damaging agents. We found that expression of both c-jun and c-fos, which encode proteins that participate in formation of the AP-1 complex, is rapidly induced by two different DNA-damaging agents: UV and H2O2. Interestingly, the c-jun gene is far more responsive to UV than any other immediate-early gene that was examined, including c-fos. Other jun and fos genes were only marginally affected by UV or H2O2. Furthermore, UV is a much more efficient inducer of c-jun than phorbol esters, the standard inducers of c-jun expression. This preferential response of the c-jun gene is mediated by its 5' control region and requires the TPA response element, suggesting that this element also serves as an early target for the signal transduction pathway elicited by DNA damage. Both UV and H2O2 lead to a long-lasting increase in AP-1 binding activity, suggesting that AP-1 may mediate the induction of other damage-inducible genes such as human collagenase

  8. Differentially expressed genes in embryonic cardiac tissues of mice lacking Folr1 gene activity

    Directory of Open Access Journals (Sweden)

    Schwartz Robert J

    2007-11-01

    Full Text Available Abstract Background Heart anomalies are the most frequently observed among all human congenital defects. As with the situation for neural tube defects (NTDs, it has been demonstrated that women who use multivitamins containing folic acid peri-conceptionally have a reduced risk for delivering offspring with conotruncal heart defects 123. Cellular folate transport is mediated by a receptor or binding protein and by an anionic transporter protein system. Defective function of the Folr1 (also known as Folbp1; homologue of human FRα gene in mice results in inadequate transport, accumulation, or metabolism of folate during cardiovascular morphogenesis. Results We have observed cardiovascular abnormalities including outflow tract and aortic arch arterial defects in genetically compromised Folr1 knockout mice. In order to investigate the molecular mechanisms underlying the failure to complete development of outflow tract and aortic arch arteries in the Folr1 knockout mouse model, we examined tissue-specific gene expression difference between Folr1 nullizygous embryos and morphologically normal heterozygous embryos during early cardiac development (14-somite stage, heart tube looping (28-somite stage, and outflow track septation (38-somite stage. Microarray analysis was performed as a primary screening, followed by investigation using quantitative real-time PCR assays. Gene ontology analysis highlighted the following ontology groups: cell migration, cell motility and localization of cells, structural constituent of cytoskeleton, cell-cell adhesion, oxidoreductase, protein folding and mRNA processing. This study provided preliminary data and suggested potential candidate genes for further description and investigation. Conclusion The results suggested that Folr1 gene ablation and abnormal folate homeostasis altered gene expression in developing heart and conotruncal tissues. These changes affected normal cytoskeleton structures, cell migration and

  9. Gene Expression Profiles in Paired Gingival Biopsies from Periodontitis-Affected and Healthy Tissues Revealed by Massively Parallel Sequencing

    Science.gov (United States)

    Båge, Tove; Lagervall, Maria; Jansson, Leif; Lundeberg, Joakim; Yucel-Lindberg, Tülay

    2012-01-01

    Periodontitis is a chronic inflammatory disease affecting the soft tissue and bone that surrounds the teeth. Despite extensive research, distinctive genes responsible for the disease have not been identified. The objective of this study was to elucidate transcriptome changes in periodontitis, by investigating gene expression profiles in gingival tissue obtained from periodontitis-affected and healthy gingiva from the same patient, using RNA-sequencing. Gingival biopsies were obtained from a disease-affected and a healthy site from each of 10 individuals diagnosed with periodontitis. Enrichment analysis performed among uniquely expressed genes for the periodontitis-affected and healthy tissues revealed several regulated pathways indicative of inflammation for the periodontitis-affected condition. Hierarchical clustering of the sequenced biopsies demonstrated clustering according to the degree of inflammation, as observed histologically in the biopsies, rather than clustering at the individual level. Among the top 50 upregulated genes in periodontitis-affected tissues, we investigated two genes which have not previously been demonstrated to be involved in periodontitis. These included interferon regulatory factor 4 and chemokine (C-C motif) ligand 18, which were also expressed at the protein level in gingival biopsies from patients with periodontitis. In conclusion, this study provides a first step towards a quantitative comprehensive insight into the transcriptome changes in periodontitis. We demonstrate for the first time site-specific local variation in gene expression profiles of periodontitis-affected and healthy tissues obtained from patients with periodontitis, using RNA-seq. Further, we have identified novel genes expressed in periodontitis tissues, which may constitute potential therapeutic targets for future treatment strategies of periodontitis. PMID:23029519

  10. Overexpression of maize anthocyanin regulatory gene Lc affects rice fertility.

    Science.gov (United States)

    Li, Yuan; Zhang, Tao; Shen, Zhong-Wei; Xu, Yu; Li, Jian-Yue

    2013-01-01

    Seventeen independent transgenic rice plants with the maize anthocyanin regulatory gene Lc under control of the CaMV 35S promoter were obtained and verified by molecular identification. Ten plants showed red spikelets during early development of florets, and the degenerate florets were still red after heading. Additionally, these plants exhibited intense pigmentation on the surface of the anther and the bottom of the ovary. They were unable to properly bloom and were completely sterile. Following pollination with normal pollen, these plants yielded red caryopses but did not mature normally. QRT-PCR analysis indicated that mRNA accumulation of the CHS-like gene encoding a chalcone synthase-related protein was increased significantly in the sterile plant. This is the first report to suggest that upregulation of the CHS gene expression may result in rice sterility and affect the normal development of rice seeds.

  11. Interspecies systems biology uncovers metabolites affecting C. elegans gene expression and life history traits.

    Science.gov (United States)

    Watson, Emma; MacNeil, Lesley T; Ritter, Ashlyn D; Yilmaz, L Safak; Rosebrock, Adam P; Caudy, Amy A; Walhout, Albertha J M

    2014-02-13

    Diet greatly influences gene expression and physiology. In mammals, elucidating the effects and mechanisms of individual nutrients is challenging due to the complexity of both the animal and its diet. Here, we used an interspecies systems biology approach with Caenorhabditis elegans and two of its bacterial diets, Escherichia coli and Comamonas aquatica, to identify metabolites that affect the animal's gene expression and physiology. We identify vitamin B12 as the major dilutable metabolite provided by Comamonas aq. that regulates gene expression, accelerates development, and reduces fertility but does not affect lifespan. We find that vitamin B12 has a dual role in the animal: it affects development and fertility via the methionine/S-Adenosylmethionine (SAM) cycle and breaks down the short-chain fatty acid propionic acid, preventing its toxic buildup. Our interspecies systems biology approach provides a paradigm for understanding complex interactions between diet and physiology. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. A Cbx8-containing polycomb complex facilitates the transition to gene activation during ES cell differentiation.

    Directory of Open Access Journals (Sweden)

    Catherine Creppe

    2014-12-01

    Full Text Available Polycomb proteins play an essential role in maintaining the repression of developmental genes in self-renewing embryonic stem cells. The exact mechanism allowing the derepression of polycomb target genes during cell differentiation remains unclear. Our project aimed to identify Cbx8 binding sites in differentiating mouse embryonic stem cells. Therefore, we used a genome-wide chromatin immunoprecipitation of endogenous Cbx8 coupled to direct massive parallel sequencing (ChIP-Seq. Our analysis identified 171 high confidence peaks. By crossing our data with previously published microarray analysis, we show that several differentiation genes transiently recruit Cbx8 during their early activation. Depletion of Cbx8 partially impairs the transcriptional activation of these genes. Both interaction analysis, as well as chromatin immunoprecipitation experiments support the idea that activating Cbx8 acts in the context of an intact PRC1 complex. Prolonged gene activation results in eviction of PRC1 despite persisting H3K27me3 and H2A ubiquitination. The composition of PRC1 is highly modular and changes when embryonic stem cells commit to differentiation. We further demonstrate that the exchange of Cbx7 for Cbx8 is required for the effective activation of differentiation genes. Taken together, our results establish a function for a Cbx8-containing complex in facilitating the transition from a Polycomb-repressed chromatin state to an active state. As this affects several key regulatory differentiation genes this mechanism is likely to contribute to the robust execution of differentiation programs.

  13. Oxygen and tissue culture affect placental gene expression.

    Science.gov (United States)

    Brew, O; Sullivan, M H F

    2017-07-01

    Placental explant culture is an important model for studying placental development and functions. We investigated the differences in placental gene expression in response to tissue culture, atmospheric and physiologic oxygen concentrations. Placental explants were collected from normal term (38-39 weeks of gestation) placentae with no previous uterine contractile activity. Placental transcriptomic expressions were evaluated with GeneChip ® Human Genome U133 Plus 2.0 arrays (Affymetrix). We uncovered sub-sets of genes that regulate response to stress, induction of apoptosis programmed cell death, mis-regulation of cell growth, proliferation, cell morphogenesis, tissue viability, and protection from apoptosis in cultured placental explants. We also identified a sub-set of genes with highly unstable pattern of expression after exposure to tissue culture. Tissue culture irrespective of oxygen concentration induced dichotomous increase in significant gene expression and increased enrichment of significant pathways and transcription factor targets (TFTs) including HIF1A. The effect was exacerbated by culture at atmospheric oxygen concentration, where further up-regulation of TFTs including PPARA, CEBPD, HOXA9 and down-regulated TFTs such as JUND/FOS suggest intrinsic heightened key biological and metabolic mechanisms such as glucose use, lipid biosynthesis, protein metabolism; apoptosis, inflammatory responses; and diminished trophoblast proliferation, differentiation, invasion, regeneration, and viability. These findings demonstrate that gene expression patterns differ between pre-culture and cultured explants, and the gene expression of explants cultured at atmospheric oxygen concentration favours stressed, pro-inflammatory and increased apoptotic transcriptomic response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Hepatocyte-specific deletion of the keap1 gene activates Nrf2 and confers potent resistance against acute drug toxicity

    International Nuclear Information System (INIS)

    Okawa, Hiromi; Motohashi, Hozumi; Kobayashi, Akira; Aburatani, Hiroyuki; Kensler, Thomas W.; Yamamoto, Masayuki

    2006-01-01

    Nrf2 is a key regulator of many detoxifying enzyme genes, and cytoplasmic protein Keap1 represses the Nrf2 activity under quiescent conditions. Germ line deletion of the keap1 gene results in constitutive activation of Nrf2, but the pups unexpectedly died before weaning. To investigate how constitutive activation of Nrf2 influences the detoxification system in adult mice, we generated mice bearing a hepatocyte-specific disruption of the keap1 gene. Homozygous mice were viable and their livers displayed no apparent abnormalities, but nuclear accumulation of Nrf2 is elevated. Microarray analysis revealed that, while many detoxifying enzyme genes are highly expressed, some of the typical Nrf2-dependent genes are only marginally increased in the Keap1-deficient liver. The mutant mice were significantly more resistant to toxic doses of acetaminophen than control animals. These results demonstrate that chronic activation of Nrf2 confers animals with resistance to xenobiotics without affecting the morphological and physiological integrity of hepatocytes

  15. Association between the dopamine D3 receptor gene locus (DRD3) and unipolar affective disorder.

    Science.gov (United States)

    Dikeos, D G; Papadimitriou, G N; Avramopoulos, D; Karadima, G; Daskalopoulou, E G; Souery, D; Mendlewicz, J; Vassilopoulos, D; Stefanis, C N

    1999-12-01

    Dopamine neurotransmission has been implicated in the pathophysiology of schizophrenia and, more recently, affective disorders. Among the dopamine receptors, D3 can be considered as particularly related to affective disorders due to its neuroanatomical localization in the limbic region of the brain and its relation to the serotoninergic activity of the CNS. The possible involvement of dopamine receptor D3 in unipolar (UP) major depression was investigated by a genetic association study of the D3 receptor gene locus (DRD3) on 36 UP patients and 38 ethnically matched controls. An allelic association of DRD3 (Bal I polymorphism) and UP illness was observed, with the Gly-9 allele (allele '2', 206/98 base-pairs long) being more frequent in patients than in controls (49% vs 29%, P < 0.02). The genotypes containing this allele (1-2 and 2-2) were found in 75% of patients vs 50% of controls (P < 0.03, odds ratio = 3.00, 95% CI = 1.12-8.05). The effect of the genotype remained significant (P < 0.02) after sex and family history were controlled by a multiple linear regression analysis. These results further support the hypothesis that dopaminergic mechanisms may be implicated in the pathogenesis of affective disorder. More specifically, the '2' allele of the dopamine receptor D3 gene seems to be associated with unipolar depression and can be considered as a 'phenotypic modifier' for major psychiatric disorders.

  16. Genetic association between the phospholipase A2 gene and unipolar affective disorder: a multicentre case-control study.

    Science.gov (United States)

    Papadimitriou, George N; Dikeos, Dimitris G; Souery, Daniel; Del-Favero, Jurgen; Massat, Isabelle; Avramopoulos, Dimitrios; Blairy, Sylvie; Cichon, Sven; Ivezic, Sladjana; Kaneva, Radka; Karadima, Georgia; Lilli, Roberta; Milanova, Vihra; Nöthen, Markus; Oruc, Lilijana; Rietschel, Marcella; Serretti, Alessandro; Van Broeckhoven, Christine; Stefanis, Costas N; Mendlewicz, Julien

    2003-12-01

    The co-segregation in one pedigree of bipolar affective disorder with Darier's disease whose gene is on chromosome 12q23-q24.1, and findings from linkage and association studies with the neighbouring gene of phospholipase A2 (PLA2) indicate that PLA2 may be considered as a candidate gene for affective disorders. All relevant genetic association studies, however, were conducted on bipolar patients. In the present study, the possible association between the PLA2 gene and unipolar affective disorder was examined on 321 unipolar patients and 604 controls (all personally interviewed), recruited from six countries (Belgium, Bulgaria, Croatia, Germany, Greece, and Italy) participating in the European Collaborative Project on Affective Disorders. After controlling for population group and gender, one of the eight alleles of the investigated marker (allele 7) was found to be more frequent among unipolar patients with more than three major depressive episodes than among controls (P<0.01); genotypic association was also observed, under the dominant model of genetic transmission (P<0.02). In addition, presence of allele 7 was correlated with a higher frequency of depressive episodes (P<0.02). These findings suggest that structural variations at the PLA2 gene or the chromosomal region around it may confer susceptibility for unipolar affective disorder.

  17. The garlic allelochemical diallyl disulfide affects tomato root growth by influencing cell division, phytohormone balance and expansin gene expression

    Directory of Open Access Journals (Sweden)

    Fang Cheng

    2016-08-01

    Full Text Available Diallyl disulfide (DADS is a volatile organosulfur compound derived from garlic (Allium sativum L., and it is known as an allelochemical responsible for the strong allelopathic potential of garlic. The anticancer properties of DADS have been studied in experimental animals and various types of cancer cells, but to date, little is known about its mode of action as an allelochemical at the cytological level. The current research presents further studies on the effects of DADS on tomato (Solanum lycopersicum L. seed germination, root growth, mitotic index and cell size in root meristem, as well as the phytohormone levels and expression profile of auxin biosynthesis genes (FZYs, auxin transport genes (SlPINs and expansin genes (EXPs in tomato root. The results showed a biphasic, dose-dependent effect on tomato seed germination and root growth under different DADS concentrations. Lower concentrations (0.01-0.62 mM of DADS significantly promoted root growth, whereas higher levels (6.20-20.67 mM showed inhibitory effects. Cytological observations showed that the cell length of root meristem was increased and that the mitotic activity of meristematic cells in seedling root tips was enhanced at lower concentrations of DADS. In contrast, DADS at higher concentrations inhibited root growth by affecting both the length and division activity of meristematic cells. However, the cell width of the root meristem was not affected. Additionally, DADS increased the IAA and ZR contents of seedling roots in a dose-dependent manner. The influence on IAA content may be mediated by the up-regulation of FZYs and PINs. Further investigation into the underlying mechanism revealed that the expression levels of tomato EXPs were significantly affected by DADS. The expression levels of EXPB2 and beta-expansin precursor were increased after 3 d, and those of EXP1, EXPB3 and EXLB1 were increased after 5 d of DADS treatment (0.41 mM. This result suggests that tomato root growth

  18. Evolutionary rate of a gene affected by chromosomal position.

    Science.gov (United States)

    Perry, J; Ashworth, A

    1999-09-09

    Genes evolve at different rates depending on the strength of selective pressure to maintain their function. Chromosomal position can also have an influence [1] [2]. The pseudoautosomal region (PAR) of mammalian sex chromosomes is a small region of sequence identity that is the site of an obligatory pairing and recombination event between the X and Y chromosomes during male meiosis [3] [4] [5] [6]. During female meiosis, X chromosomes can pair and recombine along their entire length. Recombination in the PAR is therefore approximately 10 times greater in male meiosis compared with female meiosis [4] [5] [6]. The gene Fxy (also known as MID1 [7]) spans the pseudoautosomal boundary (PAB) in the laboratory mouse (Mus musculus domesticus, C57BL/6) such that the 5' three exons of the gene are located on the X chromosome but the seven exons encoding the carboxy-terminal two-thirds of the protein are located within the PAR and are therefore present on both the X and Y chromosomes [8]. In humans [7] [9], the rat, and the wild mouse species Mus spretus, the gene is entirely X-unique. Here, we report that the rate of sequence divergence of the 3' end of the Fxy gene is much higher (estimated at 170-fold higher for synonymous sites) when pseudoautosomal (present on both the X and Y chromosomes) than when X-unique. Thus, chromosomal position can directly affect the rate of evolution of a gene. This finding also provides support for the suggestion that regions of the genome with a high recombination frequency, such as the PAR, may have an intrinsically elevated rate of sequence divergence.

  19. Identification of nonviable genes affecting touch sensitivity in Caenorhabditis elegans using neuronally enhanced feeding RNA interference.

    Science.gov (United States)

    Chen, Xiaoyin; Cuadros, Margarete Diaz; Chalfie, Martin

    2015-01-09

    Caenorhabditis elegans senses gentle touch along the body via six touch receptor neurons. Although genetic screens and microarray analyses have identified several genes needed for touch sensitivity, these methods miss pleiotropic genes that are essential for the viability, movement, or fertility of the animals. We used neuronally enhanced feeding RNA interference to screen genes that cause lethality or paralysis when mutated, and we identified 61 such genes affecting touch sensitivity, including five positive controls. We confirmed 18 genes by using available alleles, and further studied one of them, tag-170, now renamed txdc-9. txdc-9 preferentially affects anterior touch response but is needed for tubulin acetylation and microtubule formation in both the anterior and posterior touch receptor neurons. Our results indicate that neuronally enhanced feeding RNA interference screens complement traditional mutageneses by identifying additional nonviable genes needed for specific neuronal functions. Copyright © 2015 Chen et al.

  20. Peroxisome Proliferator-Activated Receptor Alpha Target Genes

    Directory of Open Access Journals (Sweden)

    Maryam Rakhshandehroo

    2010-01-01

    Full Text Available The peroxisome proliferator-activated receptor alpha (PPARα is a ligand-activated transcription factor involved in the regulation of a variety of processes, ranging from inflammation and immunity to nutrient metabolism and energy homeostasis. PPARα serves as a molecular target for hypolipidemic fibrates drugs which bind the receptor with high affinity. Furthermore, PPARα binds and is activated by numerous fatty acids and fatty acid-derived compounds. PPARα governs biological processes by altering the expression of a large number of target genes. Accordingly, the specific role of PPARα is directly related to the biological function of its target genes. Here, we present an overview of the involvement of PPARα in lipid metabolism and other pathways through a detailed analysis of the different known or putative PPARα target genes. The emphasis is on gene regulation by PPARα in liver although many of the results likely apply to other organs and tissues as well.

  1. The lysine-peptoid hybrid LP5 maintain activity under physiological conditions and affects virulence gene expression in Staphylococcus aureus

    DEFF Research Database (Denmark)

    Gottschalk, Sanne; Ingmer, Hanne; Thomsen, Line E.

    2016-01-01

    The antimicrobial peptide, LP5, is a lysine-peptoid hybrid, with antimicrobial activity against clinically relevant bacteria. Here, we investigated how various environmental conditions affect the antimicrobial activity of LP5 against Staphylococcus aureus (S. aureus). We found that LP5 maintained...

  2. Affected pathways and transcriptional regulators in gene expression response to an ultra-marathon trail: Global and independent activity approaches.

    Directory of Open Access Journals (Sweden)

    Maria Maqueda

    Full Text Available Gene expression (GE analyses on blood samples from marathon and half-marathon runners have reported significant impacts on the immune and inflammatory systems. An ultra-marathon trail (UMT represents a greater effort due to its more testing conditions. For the first time, we report the genome-wide GE profiling in a group of 16 runners participating in an 82 km UMT competition. We quantified their differential GE profile before and after the race using HuGene2.0st microarrays (Affymetrix Inc., California, US. The results obtained were decomposed by means of an independent component analysis (ICA targeting independent expression modes. We observed significant differences in the expression levels of 5,084 protein coding genes resulting in an overrepresentation of 14% of the human biological pathways from the Kyoto Encyclopedia of Genes and Genomes database. These were mainly clustered on terms related with protein synthesis repression, altered immune system and infectious diseases related mechanisms. In a second analysis, 27 out of the 196 transcriptional regulators (TRs included in the Open Regulatory Annotation database were overrepresented. Among these TRs, we identified transcription factors from the hypoxia-inducible factors (HIF family EPAS1 (p< 0.01 and HIF1A (p<0.001, and others jointly described in the gluconeogenesis program such as HNF4 (p< 0.001, EGR1 (p<0.001, CEBPA (p< 0.001 and a highly specific TR, YY1 (p<0.01. The five independent components, obtained from ICA, further revealed a down-regulation of 10 genes distributed in the complex I, III and V from the electron transport chain. This mitochondrial activity reduction is compatible with HIF-1 system activation. The vascular endothelial growth factor (VEGF pathway, known to be regulated by HIF, also emerged (p<0.05. Additionally, and related to the brain rewarding circuit, the endocannabinoid signalling pathway was overrepresented (p<0.05.

  3. Gene-physical activity interactions and their impact on diabetes

    DEFF Research Database (Denmark)

    Oskari Kilpeläinen, Tuomas; Franks, Paul W

    2014-01-01

    to an equal bout of physical activity. Individuals with specific genetic profiles are also expected to be more responsive to the beneficial effects of physical activity in the prevention of type 2 diabetes. Identification of such gene-physical activity interactions could give new insights into the biological...... the reader to the recent advances in the genetics of type 2 diabetes, summarize the current evidence on gene-physical activity interactions in relation to type 2 diabetes, and outline how information on gene-physical activity interactions might help improve the prevention and treatment of type 2 diabetes....... Finally, we will discuss the existing and emerging strategies that might enhance our ability to identify and exploit gene-physical activity interactions in the etiology of type 2 diabetes. © 2014 S. Karger AG, Basel....

  4. Detection of differentially expressed genes in broiler pectoralis major muscle affected by White Striping - Wooden Breast myopathies.

    Science.gov (United States)

    Zambonelli, Paolo; Zappaterra, Martina; Soglia, Francesca; Petracci, Massimiliano; Sirri, Federico; Cavani, Claudio; Davoli, Roberta

    2016-12-01

    White Striping and Wooden Breast (WS/WB) are abnormalities increasingly occurring in the fillets of high breast yield and growth rate chicken hybrids. These defects lead to consistent economic losses for poultry meat industry, as affected broiler fillets present an impaired visual appearance that negatively affects consumers' acceptability. Previous studies have highlighted in affected fillets a severely damaged muscle, showing profound inflammation, fibrosis, and lipidosis. The present study investigated the differentially expressed genes and pathways linked to the compositional changes observed in WS/WB breast muscles, in order to outline a more complete framework of the gene networks related to the occurrence of this complex pathological picture. The biochemical composition was performed on 20 pectoralis major samples obtained from high breast yield and growth rate broilers (10 affected vs. 10 normal) and 12 out of the 20 samples were used for the microarray gene expression profiling (6 affected vs. 6 normal). The obtained results indicate strong changes in muscle mineral composition, coupled to an increased deposition of fat. In addition, 204 differentially expressed genes (DEG) were found: 102 up-regulated and 102 down-regulated in affected breasts. The gene expression pathways found more altered in WS/WB muscles are those related to muscle development, polysaccharide metabolic processes, proteoglycans synthesis, inflammation, and calcium signaling pathway. On the whole, the findings suggest that a multifactorial and complex etiology is associated with the occurrence of WS/WB muscle abnormalities, contributing to further defining the transcription patterns associated with these myopathies. © 2016 Poultry Science Association Inc.

  5. Activity-regulated genes as mediators of neural circuit plasticity.

    Science.gov (United States)

    Leslie, Jennifer H; Nedivi, Elly

    2011-08-01

    Modifications of neuronal circuits allow the brain to adapt and change with experience. This plasticity manifests during development and throughout life, and can be remarkably long lasting. Evidence has linked activity-regulated gene expression to the long-term structural and electrophysiological adaptations that take place during developmental critical periods, learning and memory, and alterations to sensory map representations in the adult. In all these cases, the cellular response to neuronal activity integrates multiple tightly coordinated mechanisms to precisely orchestrate long-lasting, functional and structural changes in brain circuits. Experience-dependent plasticity is triggered when neuronal excitation activates cellular signaling pathways from the synapse to the nucleus that initiate new programs of gene expression. The protein products of activity-regulated genes then work via a diverse array of cellular mechanisms to modify neuronal functional properties. Synaptic strengthening or weakening can reweight existing circuit connections, while structural changes including synapse addition and elimination create new connections. Posttranscriptional regulatory mechanisms, often also dependent on activity, further modulate activity-regulated gene transcript and protein function. Thus, activity-regulated genes implement varied forms of structural and functional plasticity to fine-tune brain circuit wiring. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Arabidopsis flower specific defense gene expression patterns affect resistance to pathogens

    KAUST Repository

    Ederli, Luisa

    2015-02-20

    We investigated whether the Arabidopsis flower evolved protective measures to increase reproductive success. Firstly, analyses of available transcriptome data show that the most highly expressed transcripts in the closed sepal (stage 12) are enriched in genes with roles in responses to chemical stimuli and cellular metabolic processes. At stage 15, there is enrichment in transcripts with a role in responses to biotic stimuli. Comparative analyses between the sepal and petal in the open flower mark an over-representation of transcripts with a role in responses to stress and catalytic activity. Secondly, the content of the biotic defense-associated phytohormone salicylic acid (SA) in sepals and petals is significantly higher than in leaves. To understand whether the high levels of stress responsive transcripts and the higher SA content affect defense, wild-type plants (Col-0) and transgenic plants defective in SA accumulation (nahG) were challenged with the biotrophic fungus Golovinomyces cichoracearum, the causal agent of powdery mildew, and the necrotrophic fungus Botrytis cinerea. NahG leaves were more sensitive than those of Col-0, suggesting that in leaves SA has a role in the defense against biotrophs. In contrast, sepals and petals of both genotypes were resistant to G. cichoracearum, indicating that in the flower, resistance to the biotrophic pathogen is not critically dependent on SA, but likely dependent on the up-regulation of stress-responsive genes. Since sepals and petals of both genotypes are equally susceptible to B. cinerea, we conclude that neither stress-response genes nor increased SA accumulation offers protection against the necrotrophic pathogen. These results are interpreted in the light of the distinctive role of the flower and we propose that in the early stages, the sepal may act as a chemical defense barrier of the developing reproductive structures against biotrophic pathogens.

  7. Positive affect and physical activity: Testing effects on goal setting, activation, prioritisation, and attainment.

    Science.gov (United States)

    Cameron, David S; Bertenshaw, Emma J; Sheeran, Paschal

    2018-02-01

    The present research tested whether incidental positive affect promotes pursuit of physical activity goals. Four key features of goal pursuit were examined - setting physical activity goals (Study 1), goal activation (Study 2), and goal prioritization and goal attainment (Study 3). Participants (N s = 80, 81, and 59, in Studies 1-3, respectively) were randomized to positive affect (joy, hope) or neutral affect (control) conditions in each study. Questionnaire measures of goal level, goal commitment, and means selection (Study 1); a lexical decision task indexed goal activation (Study 2), a choice task captured goal prioritization and MET minutes quantified goal attainment (Study 3). Study 1 showed that positive affect led to a greater number of intended physical activities, and that joy engendered greater willingness to try activities. In Study 2, a positive affect induction led to heightened activation of the physical activity goal compared to the control condition. The joy induction in Study 3 led to greater physical activity, and a trend towards greater goal prioritization. These findings suggest that positive affect enhances the pursuit of physical activity goals. Implications for health behavior theories and interventions are outlined.

  8. Methods for interpreting lists of affected genes obtained in a DNA microarray experiment

    Directory of Open Access Journals (Sweden)

    Hedegaard Jakob

    2009-07-01

    Full Text Available Abstract Background The aim of this paper was to describe and compare the methods used and the results obtained by the participants in a joint EADGENE (European Animal Disease Genomic Network of Excellence and SABRE (Cutting Edge Genomics for Sustainable Animal Breeding workshop focusing on post analysis of microarray data. The participating groups were provided with identical lists of microarray probes, including test statistics for three different contrasts, and the normalised log-ratios for each array, to be used as the starting point for interpreting the affected probes. The data originated from a microarray experiment conducted to study the host reactions in broilers occurring shortly after a secondary challenge with either a homologous or heterologous species of Eimeria. Results Several conceptually different analytical approaches, using both commercial and public available software, were applied by the participating groups. The following tools were used: Ingenuity Pathway Analysis, MAPPFinder, LIMMA, GOstats, GOEAST, GOTM, Globaltest, TopGO, ArrayUnlock, Pathway Studio, GIST and AnnotationDbi. The main focus of the approaches was to utilise the relation between probes/genes and their gene ontology and pathways to interpret the affected probes/genes. The lack of a well-annotated chicken genome did though limit the possibilities to fully explore the tools. The main results from these analyses showed that the biological interpretation is highly dependent on the statistical method used but that some common biological conclusions could be reached. Conclusion It is highly recommended to test different analytical methods on the same data set and compare the results to obtain a reliable biological interpretation of the affected genes in a DNA microarray experiment.

  9. Gene Expression Profiling Identifies Important Genes Affected by R2 Compound Disrupting FAK and P53 Complex

    International Nuclear Information System (INIS)

    Golubovskaya, Vita M.; Ho, Baotran; Conroy, Jeffrey; Liu, Song; Wang, Dan; Cance, William G.

    2014-01-01

    Focal Adhesion Kinase (FAK) is a non-receptor kinase that plays an important role in many cellular processes: adhesion, proliferation, invasion, angiogenesis, metastasis and survival. Recently, we have shown that Roslin 2 or R2 (1-benzyl-15,3,5,7-tetraazatricyclo[3.3.1.1~3,7~]decane) compound disrupts FAK and p53 proteins, activates p53 transcriptional activity, and blocks tumor growth. In this report we performed a microarray gene expression analysis of R2-treated HCT116 p53 +/+ and p53 −/− cells and detected 1484 genes that were significantly up- or down-regulated (p < 0.05) in HCT116 p53 +/+ cells but not in p53 −/− cells. Among up-regulated genes in HCT p53 +/+ cells we detected critical p53 targets: Mdm-2, Noxa-1, and RIP1. Among down-regulated genes, Met, PLK2, KIF14, BIRC2 and other genes were identified. In addition, a combination of R2 compound with M13 compound that disrupts FAK and Mmd-2 complex or R2 and Nutlin-1 that disrupts Mdm-2 and p53 decreased clonogenicity of HCT116 p53 +/+ colon cancer cells more significantly than each agent alone in a p53-dependent manner. Thus, the report detects gene expression profile in response to R2 treatment and demonstrates that the combination of drugs targeting FAK, Mdm-2, and p53 can be a novel therapy approach

  10. G0/G1 switch gene-2 regulates human adipocyte lipolysis by affecting activity and localization of adipose triglyceride lipase

    NARCIS (Netherlands)

    Schweiger, M.; Paar, M.; Eder, C.; Brandis, J.; Moser, E.; Gorkiewisz, G.; Grond, S.; Radner, F.P.W.; Cerk, I.; Cornaciu, I.; Oberer, M.; Kersten, A.H.; Zechner, R.; Zimmermann, M.B.; Lass, A.

    2012-01-01

    The hydrolysis of triglycerides in adipocytes, termed lipolysis, provides free fatty acids as energy fuel. Murine lipolysis largely depends on the activity of adipose triglyceride lipase (ATGL)5, which is regulated by two proteins annotated as comparative gene identification-58 (CGI-58) and G0/G1

  11. Mosaicism for the FMR1 gene influences adaptive skills development in fragile X-affected males

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, I.L.; Sudhalter, V.; Nolin, S.L. [New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY (United States)

    1996-08-09

    Fragile X syndrome is one of the most common forms of inherited mental retardation, and the first of a new class of genetic disorders associated with expanded trinucleotide repeats. Previously, we found that about 41% of affected males are mosaic for this mutation in that some of their blood cells have an active fragile X gene and others do not. It has been hypothesized that these mosaic cases should show higher levels of functioning than those who have only the inactive full mutation gene, but previous studies have provided negative or equivocal results. In the present study, the cross-sectional development of communication, self-care, socialization, and motor skills was studied in 46 males with fragile X syndrome under age 20 years as a function of two variables: age and the presence or absence of mosaicism. The rate of adaptive skills development was 2-4 times as great in mosaic cases as in full mutation cases. There was also a trend for cases with autism to be more prevalent in the full-mutation group. These results have implications for prognosis, for the utility of gene or protein replacement therapies for this disorder, and for understanding the association between mental retardation, developmental disorders, and fragile X syndrome. 21 refs., 3 figs.

  12. Momentary assessment of contextual influences on affective response during physical activity.

    Science.gov (United States)

    Dunton, Genevieve Fridlund; Liao, Yue; Intille, Stephen; Huh, Jimi; Leventhal, Adam

    2015-12-01

    Higher positive and lower negative affective response during physical activity may reinforce motivation to engage in future activity. However, affective response during physical activity is typically examined under controlled laboratory conditions. This research used ecological momentary assessment (EMA) to examine social and physical contextual influences on momentary affective response during physical activity in naturalistic settings. Participants included 116 adults (mean age = 40.3 years, 73% female) who completed 8 randomly prompted EMA surveys per day for 4 days across 3 semiannual waves. EMA surveys measured current activity level, social context, and physical context. Participants also rated their current positive and negative affect. Multilevel models assessed whether momentary physical activity level moderated differences in affective response across contexts controlling for day of the week, time of day, and activity intensity (measured by accelerometer). The Activity Level × Alone interaction was significant for predicting positive affect (β = -0.302, SE = 0.133, p = .024). Greater positive affect during physical activity was reported when with other people (vs. alone). The Activity Level × Outdoors interaction was significant for predicting negative affect (β = -0.206, SE = 0.097, p = .034). Lower negative affect during physical activity was reported outdoors (vs. indoors). Being with other people may enhance positive affective response during physical activity, and being outdoors may dampen negative affective response during physical activity. (c) 2015 APA, all rights reserved).

  13. Social context-induced song variation affects female behavior and gene expression.

    Directory of Open Access Journals (Sweden)

    Sarah C Woolley

    2008-03-01

    Full Text Available Social cues modulate the performance of communicative behaviors in a range of species, including humans, and such changes can make the communication signal more salient. In songbirds, males use song to attract females, and song organization can differ depending on the audience to which a male sings. For example, male zebra finches (Taeniopygia guttata change their songs in subtle ways when singing to a female (directed song compared with when they sing in isolation (undirected song, and some of these changes depend on altered neural activity from a specialized forebrain-basal ganglia circuit, the anterior forebrain pathway (AFP. In particular, variable activity in the AFP during undirected song is thought to actively enable syllable variability, whereas the lower and less-variable AFP firing during directed singing is associated with more stereotyped song. Consequently, directed song has been suggested to reflect a "performance" state, and undirected song a form of vocal motor "exploration." However, this hypothesis predicts that directed-undirected song differences, despite their subtlety, should matter to female zebra finches, which is a question that has not been investigated. We tested female preferences for this natural variation in song in a behavioral approach assay, and we found that both mated and socially naive females could discriminate between directed and undirected song-and strongly preferred directed song. These preferences, which appeared to reflect attention especially to aspects of song variability controlled by the AFP, were enhanced by experience, as they were strongest for mated females responding to their mate's directed songs. We then measured neural activity using expression of the immediate early gene product ZENK, and found that social context and song familiarity differentially modulated the number of ZENK-expressing cells in telencephalic auditory areas. Specifically, the number of ZENK-expressing cells in the

  14. Tumor SHB gene expression affects disease characteristics in human acute myeloid leukemia.

    Science.gov (United States)

    Jamalpour, Maria; Li, Xiujuan; Cavelier, Lucia; Gustafsson, Karin; Mostoslavsky, Gustavo; Höglund, Martin; Welsh, Michael

    2017-10-01

    The mouse Shb gene coding for the Src Homology 2-domain containing adapter protein B has recently been placed in context of BCRABL1-induced myeloid leukemia in mice and the current study was performed in order to relate SHB to human acute myeloid leukemia (AML). Publicly available AML databases were mined for SHB gene expression and patient survival. SHB gene expression was determined in the Uppsala cohort of AML patients by qPCR. Cell proliferation was determined after SHB gene knockdown in leukemic cell lines. Despite a low frequency of SHB gene mutations, many tumors overexpressed SHB mRNA compared with normal myeloid blood cells. AML patients with tumors expressing low SHB mRNA displayed longer survival times. A subgroup of AML exhibiting a favorable prognosis, acute promyelocytic leukemia (APL) with a PMLRARA translocation, expressed less SHB mRNA than AML tumors in general. When examining genes co-expressed with SHB in AML tumors, four other genes ( PAX5, HDAC7, BCORL1, TET1) related to leukemia were identified. A network consisting of these genes plus SHB was identified that relates to certain phenotypic characteristics, such as immune cell, vascular and apoptotic features. SHB knockdown in the APL PMLRARA cell line NB4 and the monocyte/macrophage cell line MM6 adversely affected proliferation, linking SHB gene expression to tumor cell expansion and consequently to patient survival. It is concluded that tumor SHB gene expression relates to AML survival and its subgroup APL. Moreover, this gene is included in a network of genes that plays a role for an AML phenotype exhibiting certain immune cell, vascular and apoptotic characteristics.

  15. Light regimes differentially affect baseline transcript abundance of stress-axis and (neurodevelopment-related genes in zebrafish (Danio rerio, Hamilton 1822 AB and TL larvae

    Directory of Open Access Journals (Sweden)

    Ruud van den Bos

    2017-11-01

    Full Text Available Many strains of zebrafish (Danio rerio are readily available. Earlier we observed differences between AB and Tupfel long-fin (TL larvae regarding baseline hypothalamus-pituitary-interrenal (HPI axis activity and (neurodevelopment. Light regimes, i.e. 14 h light:10 h dark and 24 h continuous dark or light, affect hatching rate and larval growth. Here, we assessed baseline transcript abundance of HPI-axis-related genes and (neurodevelopment-related genes of AB and TL larvae (5 days post fertilisation using these light regimes. A principal component analysis revealed that in AB larvae the baseline expression of HPI-axis-related genes was higher the more hours of light, while the expression of (neurodevelopment-related genes was higher under 14 h light:10 h dark than under both continuous light or dark. In TL larvae, a complex pattern emerged regarding baseline expression of HPI-axis-related and (neurodevelopment-related genes. These data extend data of earlier studies by showing that light regimes affect gene-expression in larvae, and more importantly so, strengthen the notion of differences between larvae of the AB and TL strain. The latter finding adds to the growing database of phenotypical differences between zebrafish of the AB and TL strain.

  16. Physical activity and negative affective reactivity in daily life.

    Science.gov (United States)

    Puterman, Eli; Weiss, Jordan; Beauchamp, Mark R; Mogle, Jacqueline; Almeida, David M

    2017-12-01

    The results from experimental studies indicate that physically active individuals remain calmer and report less anxiety after the induction of a standardized stressor. The current study extends this research to real life, and examines whether daily physical activity attenuates negative affect that occurs in response to naturally occurring daily stressors. The current study used data from the second wave of the National Study of Daily Experiences, a sub-study of the second wave of the Midlife in the United States Study (MIDUS-II) of 2,022 individuals aged 33-84 questioned nightly for eight consecutive days about their general affect and affective responses to stressful events and their engagement in physical activity. Results indicated that while negative affect is significantly elevated on days with stressful events compared to days free of events in all individuals, these effects are attenuated in those who remain physically active when compared to those who were underactive. This was also true for any day participants were physically active. Importantly, negative affect in response to any specific stressor was reduced the closer in time that the stressor occurred to the bout of exercise in underactive participants, while, in active participants, negative affect in response to any stressor remained low throughout the entire day that participants reported that they were active. Given the significant mental and physical health implications of elevated affective reactivity observed in previous studies, the current study sheds further light on the importance of remaining physically active in times of stress. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  17. Alteration of BRCA1 expression affects alcohol-induced transcription of RNA Pol III-dependent genes.

    Science.gov (United States)

    Zhong, Qian; Shi, Ganggang; Zhang, Yanmei; Lu, Lei; Levy, Daniel; Zhong, Shuping

    2015-02-01

    Emerging evidence has indicated that alcohol consumption is an established risk factor for breast cancer. Deregulation of RNA polymerase III (Pol III) transcription enhances cellular Pol III gene production, leading to an increase in translational capacity to promote cell transformation and tumor formation. We have reported that alcohol intake increases Pol III gene transcription to promote cell transformation and tumor formation in vitro and in vivo. Studies revealed that tumor suppressors, pRb, p53, PTEN and Maf1 repress the transcription of Pol III genes. BRCA1 is a tumor suppressor and its mutation is tightly related to breast cancer development. However, it is not clear whether BRCA1 expression affects alcohol-induced transcription of Pol III genes. At the present studies, we report that restoring BRCA1 in HCC 1937 cells, which is a BRCA1 deficient cell line, represses Pol III gene transcription. Expressing mutant or truncated BRCA1 in these cells does not affect the ability of repression on Pol III genes. Our analysis has demonstrated that alcohol induces Pol III gene transcription. More importantly, overexpression of BRCA1 in estrogen receptor positive (ER+) breast cancer cells (MCF-7) decreases the induction of tRNA(Leu) and 5S rRNA genes by alcohol, whereas reduction of BRCA1 by its siRNA slightly increases the transcription of the class of genes. This suggests that BRCA1 is associated with alcohol-induced deregulation of Pol III genes. These studies for the first time demonstrate the role of BRCA1 in induction of Pol III genes by alcohol and uncover a novel mechanism of alcohol-associated breast cancer. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Over-expression of KdSOC1 gene affected plantlet morphogenesis in Kalanchoe daigremontiana.

    Science.gov (United States)

    Zhu, Chen; Wang, Li; Chen, Jinhua; Liu, Chenglan; Zeng, Huiming; Wang, Huafang

    2017-07-17

    Kalanchoe daigremontiana reproduces asexually by producing plantlets along the leaf margin. The aim of this study was to identify the function of the SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 gene in Kalanchoe daigremontiana (KdSOC1) during plantlet morphogenesis. In this study, KdSOC1 gene expression was detected at stem cell niche during in vitro somatic embryogenesis and plantlet morphogenesis. Disrupting endogenous auxin transportation suppressed the KdSOC1 gene response. Knockdown of the KdSOC1 gene caused a defect in cotyledon formation during the early heart stage of somatic embryogenesis. Over-expression (OE) of the KdSOC1 gene resulted in asymmetric plantlet distribution, a reduced number of plantlets, thicker leaves, and thicker vascular fibers. Higher KdPIN1 gene expression and auxin content were found in OE plant compared to those of wild-type plant leaves, which indicated possible KdSOC1 gene role in affecting auxin distribution and accumulation. KdSOC1 gene OE in DR5-GUS Arabidopsis reporting lines resulted in an abnormal auxin response pattern during different stages of somatic embryogenesis. In summary, the KdSOC1 gene OE might alter auxin distribution and accumulation along leaf margin to initiate plantlet formation and distribution, which is crucial for plasticity during plantlet formation under various environmental conditions.

  19. Cognitive-Affective Dimensions of Female Orgasm: The Role of Automatic Thoughts and Affect During Sexual Activity.

    Science.gov (United States)

    Tavares, Inês M; Laan, Ellen T M; Nobre, Pedro J

    2017-06-01

    Cognitive-affective factors contribute to female sexual dysfunctions, defined as clinically significant difficulties in the ability to respond sexually or to experience sexual pleasure. Automatic thoughts and affect presented during sexual activity are acknowledged as maintenance factors for these difficulties. However, there is a lack of studies on the influence of these cognitive-affective dimensions regarding female orgasm. To assess the role of automatic thoughts and affect during sexual activity in predicting female orgasm occurrence and to investigate the mediator role of these variables in the relation between sexual activity and orgasm occurrence. Nine hundred twenty-six sexually active heterosexual premenopausal women reported on frequency of sexual activities and frequency of orgasm occurrence, cognitive factors, and social desirability. Participants completed the Sexual Modes Questionnaire-Automatic Thoughts Subscale, the Positive and Negative Affect Schedule, and the Socially Desirable Response Set. Multiple linear regressions and mediation analyses were performed, controlling for the effect of covariates such as social desirability, sociodemographic and medical characteristics, and relationship factors. The main outcome measurement was orgasm frequency as predicted and mediated by automatic thoughts and affect experienced during sexual activities. The presence of failure thoughts and lack of erotic thoughts during sexual activity significantly and negatively predicted female orgasm, whereas positive affect experienced during sexual activity significantly and positively predicted female orgasm. Moreover, negative automatic thoughts and positive affect during sexual activity were found to mediate the relation between sexual activity and female orgasm occurrence. These data suggest that the cognitive aspects of sexual involvement are critical to enhancing female orgasm experience and can aid the development of strategies that contemplate the central role

  20. Gene expression in IFN-g-activated murine macrophages

    Directory of Open Access Journals (Sweden)

    Pereira C.A.

    2004-01-01

    Full Text Available Macrophages are critical for natural immunity and play a central role in specific acquired immunity. The IFN-gamma activation of macrophages derived from A/J or BALB/c mice yielded two different patterns of antiviral state in murine hepatitis virus 3 infection, which were related to a down-regulation of the main virus receptor. Using cDNA hybridization to evaluate mRNA accumulation in the cells, we were able to identify several genes that are differently up- or down-regulated by IFN-gamma in A/J (267 and 266 genes, respectively, up- and down-regulated or BALB/c (297 and 58 genes, respectively, up- and down-regulated mouse macrophages. Macrophages from mice with different genetic backgrounds behave differently at the molecular level and comparison of the patterns of non-activated and IFN-gamma-activated A/J or BALB/c mouse macrophages revealed, for instance, an up-regulation and a down-regulation of genes coding for biological functions such as enzymatic reactions, nucleic acid synthesis and transport, protein synthesis, transport and metabolism, cytoskeleton arrangement and extracellular matrix, phagocytosis, resistance and susceptibility to infection and tumors, inflammation, and cell differentiation or activation. The present data are reported in order to facilitate future correlation of proteomic/transcriptomic findings as well as of results obtained from a classical approach for the understanding of biological phenomena. The possible implication of the role of some of the gene products relevant to macrophage biology can now be further scrutinized. In this respect, a down-regulation of the main murine hepatitis virus 3 receptor gene was detected only in IFN-gamma-activated macrophages of resistant mice.

  1. Gene Transfer in Eukaryotic Cells Using Activated Dendrimers

    Science.gov (United States)

    Dennig, Jörg

    Gene transfer into eukaryotic cells plays an important role in cell biology. Over the last 30 years a number of transfection methods have been developed to mediate gene transfer into eukaryotic cells. Classical methods include co-precipitation of DNA with calcium phosphate, charge-dependent precipitation of DNA with DEAE-dextran, electroporation of nucleic acids, and formation of transfection complexes between DNA and cationic liposomes. Gene transfer technologies based on activated PAMAM-dendrimers provide another class of transfection reagents. PAMAM-dendrimers are highly branched, spherical molecules. Activation of newly synthesized dendrimers involves hydrolytic removal of some of the branches, and results in a molecule with a higher degree of flexibility. Activated dendrimers assemble DNA into compact structures via charge interactions. Activated dendrimer - DNA complexes bind to the cell membrane of eukaryotic cells, and are transported into the cell by non-specific endocytosis. A structural model of the activated dendrimer - DNA complex and a potential mechanism for its uptake into cells will be discussed.

  2. Cloning of Bacteroides fragilis plasmid genes affecting metronidazole resistance and ultraviolet survival in Escherichia coli

    International Nuclear Information System (INIS)

    Wehnert, G.U.; Abratt, V.R.; Goodman, H.J.; Woods, D.R.

    1990-01-01

    Since reduced metronidazole causes DNA damage, resistance to metronidazole was used as a selection method for the cloning of Bacteroides fragilis genes affecting DNA repair mechanisms in Escherichia coli. Genes from B. fragilis Bf-2 were cloned on a recombinant plasmid pMT100 which made E. coli AB1157 and uvrA, B, and C mutant strains more resistant to metronidazole, but more sensitive to far uv irradiation under aerobic conditions. The loci affecting metronidazole resistance and uv sensitivity were linked and located on a 5-kb DNA fragment which originated from the small 6-kb cryptic plasmid pBFC1 present in B. fragilis Bf-2 cells

  3. Affect, exercise, and physical activity among healthy adolescents.

    Science.gov (United States)

    Schneider, Margaret; Dunn, Andrea; Cooper, Daniel

    2009-12-01

    Many adolescents do not meet public health recommendations for moderate-to-vigorous physical activity (MVPA). In studies of variables influencing adolescent MVPA, one that has been understudied is the affective response to exercise. We hypothesized that adolescents with a more positive affective response to acute exercise would be more active. Adolescents (N = 124; 46% male) completed two 30-min exercise tasks (above and below the ventilatory threshold [VT]), and wore ActiGraph accelerometers for 6.5 +/- 0.7 days. Affective valence was assessed before, during, and after each task. A more positive affective response during exercise below the VT was associated with greater participation in MVPA (p positive affective response to exercise will engage in more MVPA. To promote greater participation in MVPA among adolescents, programs should be designed to facilitate a positive affective experience during exercise.

  4. Activating human genes with zinc finger proteins, transcription activator-like effectors and CRISPR/Cas9 for gene therapy and regenerative medicine.

    Science.gov (United States)

    Gersbach, Charles A; Perez-Pinera, Pablo

    2014-08-01

    New technologies have recently been developed to control the expression of human genes in their native genomic context by engineering synthetic transcription factors that can be targeted to any DNA sequence. The ability to precisely regulate any gene as it occurs naturally in the genome provides a means to address a variety of diseases and disorders. This approach also circumvents some of the traditional challenges of gene therapy. In this editorial, we review the technologies that have enabled targeted human gene activation, including the engineering of transcription factors based on zinc finger proteins, transcription activator-like effectors and the CRISPR/Cas9 system. Additionally, we highlight examples in which these methods have been developed for therapeutic applications and discuss challenges and opportunities.

  5. Gene program-specific regulation of PGC-1{alpha} activity

    DEFF Research Database (Denmark)

    Schmidt, Søren F; Mandrup, Susanne

    2011-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1 α (PGC-1α) activation coordinates induction of the hepatic fasting response through coactivation of numerous transcription factors and gene programs. In the June 15, 2011, issue of Genes & Development, Lustig and colleagues (pp....... 1232-1244) demonstrated that phosphorylation of PGC-1α by the p70 ribosomal protein S6 kinase 1 (S6K1) specifically interfered with the interaction between PGC-1α and HNF4α in liver and blocked the coactivation of the gluconeogenic target genes. This demonstrates how independent fine-tuning of gene...

  6. Reconstructing Dynamic Promoter Activity Profiles from Reporter Gene Data

    DEFF Research Database (Denmark)

    Kannan, Soumya; Sams, Thomas; Maury, Jérôme

    2018-01-01

    activity despite the fact that the observed output may be dynamic and is a number of steps away from the transcription process. In fact, some promoters that are often thought of as constitutive can show changes in activity when growth conditions change. For these reasons, we have developed a system......Accurate characterization of promoter activity is important when designing expression systems for systems biology and metabolic engineering applications. Promoters that respond to changes in the environment enable the dynamic control of gene expression without the necessity of inducer compounds......, for example. However, the dynamic nature of these processes poses challenges for estimating promoter activity. Most experimental approaches utilize reporter gene expression to estimate promoter activity. Typically the reporter gene encodes a fluorescent protein that is used to infer a constant promoter...

  7. Porcine E. coli: virulence-associated genes, resistance genes and adhesion and probiotic activity tested by a new screening method.

    Science.gov (United States)

    Schierack, Peter; Rödiger, Stefan; Kuhl, Christoph; Hiemann, Rico; Roggenbuck, Dirk; Li, Ganwu; Weinreich, Jörg; Berger, Enrico; Nolan, Lisa K; Nicholson, Bryon; Römer, Antje; Frömmel, Ulrike; Wieler, Lothar H; Schröder, Christian

    2013-01-01

    We established an automated screening method to characterize adhesion of Escherichia coli to intestinal porcine epithelial cells (IPEC-J2) and their probiotic activity against infection by enteropathogenic E. coli (EPEC). 104 intestinal E. coli isolates from domestic pigs were tested by PCR for the occurrence of virulence-associated genes, genes coding for resistances to antimicrobial agents and metals, and for phylogenetic origin by PCR. Adhesion rates and probiotic activity were examined for correlation with the presence of these genes. Finally, data were compared with those from 93 E. coli isolates from wild boars. Isolates from domestic pigs carried a broad variety of all tested genes and showed great diversity in gene patterns. Adhesions varied with a maximum of 18.3 or 24.2 mean bacteria adherence per epithelial cell after 2 or 6 hours respectively. Most isolates from domestic pigs and wild boars showed low adherence, with no correlation between adhesion/probiotic activity and E. coli genes or gene clusters. The gene sfa/foc, encoding for a subunit of F1C fimbriae did show a positive correlative association with adherence and probiotic activity; however E. coli isolates from wild boars with the sfa/foc gene showed less adhesion and probiotic activity than E. coli with the sfa/foc gene isolated from domestic pigs after 6 hour incubation. In conclusion, screening porcine E. coli for virulence associated genes genes, adhesion to intestinal epithelial cells, and probiotic activity revealed a single important adhesion factor, several probiotic candidates, and showed important differences between E. coli of domestic pigs and wild boars.

  8. Porcine E. coli: virulence-associated genes, resistance genes and adhesion and probiotic activity tested by a new screening method.

    Directory of Open Access Journals (Sweden)

    Peter Schierack

    Full Text Available We established an automated screening method to characterize adhesion of Escherichia coli to intestinal porcine epithelial cells (IPEC-J2 and their probiotic activity against infection by enteropathogenic E. coli (EPEC. 104 intestinal E. coli isolates from domestic pigs were tested by PCR for the occurrence of virulence-associated genes, genes coding for resistances to antimicrobial agents and metals, and for phylogenetic origin by PCR. Adhesion rates and probiotic activity were examined for correlation with the presence of these genes. Finally, data were compared with those from 93 E. coli isolates from wild boars. Isolates from domestic pigs carried a broad variety of all tested genes and showed great diversity in gene patterns. Adhesions varied with a maximum of 18.3 or 24.2 mean bacteria adherence per epithelial cell after 2 or 6 hours respectively. Most isolates from domestic pigs and wild boars showed low adherence, with no correlation between adhesion/probiotic activity and E. coli genes or gene clusters. The gene sfa/foc, encoding for a subunit of F1C fimbriae did show a positive correlative association with adherence and probiotic activity; however E. coli isolates from wild boars with the sfa/foc gene showed less adhesion and probiotic activity than E. coli with the sfa/foc gene isolated from domestic pigs after 6 hour incubation. In conclusion, screening porcine E. coli for virulence associated genes genes, adhesion to intestinal epithelial cells, and probiotic activity revealed a single important adhesion factor, several probiotic candidates, and showed important differences between E. coli of domestic pigs and wild boars.

  9. Human activities affecting trace gases and climate

    International Nuclear Information System (INIS)

    Braatz, B.; Ebert, C.

    1990-01-01

    The Earth's climate has been in a constant state of change throughout geologic time due to natural perturbations in the global geobiosphere. However, various human activities have the potential to cause future global warming over a relatively short amount of time. These activities, which affect the Earth's climate by altering the concentrations of trace gases in the atmosphere, include energy consumption, particularly fossil-fuel consumption; industrial processes (production and use of chlorofluorocarbons, halons, and chlorocarbons, landfilling of wastes, and cement manufacture); changes in land use patterns, particularly deforestation and biomass burning; and agricultural practices (waste burning, fertilizer usage, rice production, and animal husbandry). Population growth is an important underlying factor affecting the level of growth in each activity. This paper describes how the human activities listed above contribute to atmospheric change, the current pattern of each activity, and how levels of each activity have changed since the early part of this century

  10. Bacillus subtilis from Soybean Food Shows Antimicrobial Activity for Multidrug-Resistant Acinetobacter baumannii by Affecting the adeS Gene.

    Science.gov (United States)

    Wang, Tieshan; Su, Jianrong

    2016-12-28

    Exploring novel antibiotics is necessary for multidrug-resistant pathogenic bacteria. Because the probiotics in soybean food have antimicrobial activities, we investigated their effects on multidrug-resistant Acinetobacter baumannii . Nineteen multidrug-resistant A. baumannii strains were clinifcally isolated as an experimental group and 11 multidrug-sensitive strains as controls. The growth rates of all bacteria were determined by using the analysis for xCELLigence Real-Time Cell. The combination of antibiotics showed synergistic effects on the strains in the control group but no effect on the strains in the experimental group. Efflux pump gene adeS was absent in all the strains from the control group, whereas it exists in all the strains from the experimental group. Furthermore, all the strains lost multidrug resistance when an adeS inhibitor was used. One strain of probiotics isolated from soybean food showed high antimicrobial activity for multidrug-resistant A. baumannii . The isolated strain belongs to Bacillus subtilis according to 16S RNA analysis. Furthermore, E. coli showed multidrug resistance when it was transformed with the adeS gene from A. baumannii whereas the resistant bacteria could be inhibited completely by isolated Bacillus subtilis . Thus, probiotics from soybean food provide potential antibiotics against multidrug-resistant pathogenic bacteria.

  11. Menin and RNF20 recruitment is associated with dynamic histone modifications that regulate signal transducer and activator of transcription 1 (STAT1-activated transcription of the interferon regulatory factor 1 gene (IRF1

    Directory of Open Access Journals (Sweden)

    Buro Lauren J

    2010-09-01

    Full Text Available Abstract Background Signal transducer and activator of transcription (STAT activation of gene expression is both rapid and transient, and when properly executed it affects growth, differentiation, homeostasis and the immune response, but when dysregulated it contributes to human disease. Transcriptional activation is regulated by alterations to the chromatin template. However, the role of histone modification at gene loci that are activated for transcription in response to STAT signaling is poorly defined. Results Using chromatin immunoprecipitation, we profiled several histone modifications during STAT1 activation of the interferon regulatory factor 1 gene (IRF1. Methylated lysine histone proteins H3K4me2, H3K4me3, H3K79me3, H3K36me3 and monoubiquitinated histone ubH2B are dynamic and correlate with interferon (IFNγ induction of STAT1 activity. Chemical inhibition of H3K4 methylation downregulates IRF1 transcription and decreases RNA polymerase II (Pol II occupancy at the IRF1 promoter. MEN1, a component of a complex proteins associated with Set1 (COMPASS-like complex and the hBRE1 component, RNF20, are localized to IRF1 in the uninduced state and are further recruited when IRF1 is activated. RNAi-mediated depletion of RNF20 lowers both ubH2B and H3K4me3, but surprisingly, upregulates IFNγ induced IRF1 transcription. The dynamics of phosphorylation in the C-terminal domain (CTD of Pol II are disrupted during gene activation as well. Conclusions H2B monoubiquitination promotes H3K4 methylation, but the E3 ubiquitin ligase, RNF20, is repressive of inducible transcription at the IRF1 gene locus, suggesting that ubH2B can, directly or indirectly, affect Pol II CTD phosphorylation cycling to exert control on ongoing transcription.

  12. GCN5 Regulates FGF Signaling and Activates Selective MYC Target Genes during Early Embryoid Body Differentiation

    Directory of Open Access Journals (Sweden)

    Li Wang

    2018-01-01

    Full Text Available Precise control of gene expression during development is orchestrated by transcription factors and co-regulators including chromatin modifiers. How particular chromatin-modifying enzymes affect specific developmental processes is not well defined. Here, we report that GCN5, a histone acetyltransferase essential for embryonic development, is required for proper expression of multiple genes encoding components of the fibroblast growth factor (FGF signaling pathway in early embryoid bodies (EBs. Gcn5−/− EBs display deficient activation of ERK and p38, mislocalization of cytoskeletal components, and compromised capacity to differentiate toward mesodermal lineage. Genomic analyses identified seven genes as putative direct targets of GCN5 during early differentiation, four of which are cMYC targets. These findings established a link between GCN5 and the FGF signaling pathway and highlighted specific GCN5-MYC partnerships in gene regulation during early differentiation.

  13. Insulators target active genes to transcription factories and polycomb-repressed genes to polycomb bodies.

    Directory of Open Access Journals (Sweden)

    Hua-Bing Li

    2013-04-01

    Full Text Available Polycomb bodies are foci of Polycomb proteins in which different Polycomb target genes are thought to co-localize in the nucleus, looping out from their chromosomal context. We have shown previously that insulators, not Polycomb response elements (PREs, mediate associations among Polycomb Group (PcG targets to form Polycomb bodies. Here we use live imaging and 3C interactions to show that transgenes containing PREs and endogenous PcG-regulated genes are targeted by insulator proteins to different nuclear structures depending on their state of activity. When two genes are repressed, they co-localize in Polycomb bodies. When both are active, they are targeted to transcription factories in a fashion dependent on Trithorax and enhancer specificity as well as the insulator protein CTCF. In the absence of CTCF, assembly of Polycomb bodies is essentially reduced to those representing genomic clusters of Polycomb target genes. The critical role of Trithorax suggests that stable association with a specialized transcription factory underlies the cellular memory of the active state.

  14. Antifungal Activity of Eucalyptus Oil against Rice Blast Fungi and the Possible Mechanism of Gene Expression Pattern.

    Science.gov (United States)

    Zhou, Li-Jun; Li, Fu-Rong; Huang, Li-Jie; Yang, Zhi-Rong; Yuan, Shu; Bai, Lin-Han

    2016-05-12

    Eucalyptus oil possesses a wide spectrum of biological activity, including anti-microbial, fungicidal, herbicidal, acaricidal and nematicidal properties. We studied anti-fungal activities of the leaf oil extracted from Eucalyptus. grandis × E. urophylla. Eleven plant pathogenic fungi were tested based on the mycelium growth rates with negative control. The results showed that Eucalyptus oil has broad-spectrum inhibitory effects toward these fungi. Remarkable morphological and structural alterations of hypha have been observed for Magnaporthe grisea after the treatment. The mRNA genome array of M. grisea was used to detect genes that were differentially expressed in the test strains treated by the Eucalyptus oil than the normal strains. The results showed 1919 genes were significantly affected, among which 1109 were down-regulated and 810 were up-regulated (p 2). According to gene ontology annotation analysis, these differentially expressed genes may cause abnormal structures and physiological function disorders, which may reduce the fungus growth. These results show the oil has potential for use in the biological control of plant disease as a green biopesticide.

  15. Oleuropein potentiates anti-tumor activity of cisplatin against HepG2 through affecting proNGF/NGF balance.

    Science.gov (United States)

    Sherif, Iman O; Al-Gayyar, Mohammed M H

    2018-04-01

    Oleuropein is considered as a new chemotherapeutic agent in human hepatocellular carcinoma (HCC) while, its exact underlying molecular mechanism still not yet explored. In addition, cisplatin is a standard anticancer drug against solid tumors with toxic side effects. Therefore, we conducted this study to assess antitumor activity of oleuropein either alone or in combination with cisplatin against HepG2, human HCC cell lines, via targeting pro-NGF/NGF signaling pathway. HepG2 cells were treated with cisplatin (20, 50, 100 μM) and oleuropein (100, 200, 300 and 400 μM) as well as some of the cells were treated with 50 μM cisplatin and different concentrations of oleuropein. Gene expressions of nerve growth factor (NGF), matrix metalloproteinase-7 (MMP-7) and caspase-3 were evaluated by real time-PCR. In addition, protein levels of NGF and pro-form of NGF (pro-NGF) were measured by ELISA while, nitric oxide (NO) content was determined colorimetrically. Cisplatin treatment showed a significant elevation of NO content and pro-NGF protein level with a marked reduction of NGF protein level in addition to the upregulation of caspase-3 along with downregulation of MMP-7 gene expressions in a dose-dependent manner. However, the combination of 50 μM cisplatin and 200 μM oleuropein showed the most potent effect on the molecular level when compared with oleuropein or cisplatin alone. Our results showed for the first time that the anti-tumor activity of oleuropein against HCC could be attributed to influencing the pro-NGF/NGF balance via affecting MMP-7 activity without affecting the gene expression of NGF. Concurrent treatment with both oleuropein and cisplatin could lead to more effective chemotherapeutic combination against HCC. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Behavioral science and the study of gene-nutrition and gene-physical activity interactions in obesity research.

    Science.gov (United States)

    Faith, Myles S

    2008-12-01

    This report summarizes emerging opportunities for behavioral science to help advance the field of gene-environment and gene-behavior interactions, based on presentations at The National Cancer Institute (NCI) Workshop, "Gene-Nutrition and Gene-Physical Activity Interactions in the Etiology of Obesity." Three opportunities are highlighted: (i) designing potent behavioral "challenges" in experiments, (ii) determining viable behavioral phenotypes for genetics studies, and (iii) identifying specific measures of the environment or environmental exposures. Additional points are underscored, including the need to incorporate novel findings from neuroimaging studies regarding motivation and drive for eating and physical activity. Advances in behavioral science theory and methods can play an important role in advancing understanding of gene-brain-behavior relationships in obesity onset.

  17. Identification of susceptibility genes for bipolar affective disorder and schizophrenia on chromosome 22q13

    DEFF Research Database (Denmark)

    Severinsen, Jacob Eg

    2006-01-01

    Linkage analyses suggest that chromosome 22q12-13 may harbor one or more shared susceptibility loci for bipolar affective disorder (BPD) and schizophrenia (SZ). In a study of distantly related cases and control individuals from the Faeroe Islands our group has previously reported that chromosome 22...... samples (total of 1,751 individuals), and by bioinformatic and expression analyses of a subset of disease associated genes and gene variants. In total 67 single nucleotide polymorphisms (SNPs) located in 18 positional candidate genes, and 4 microsattelite markers were investigated, using a Scottish case...

  18. Gene expression profiling of low-grade endometrial stromal sarcoma indicates fusion protein-mediated activation of the Wnt signaling pathway.

    Science.gov (United States)

    Przybyl, Joanna; Kidzinski, Lukasz; Hastie, Trevor; Debiec-Rychter, Maria; Nusse, Roel; van de Rijn, Matt

    2018-05-01

    Low-grade endometrial stromal sarcomas (LGESS) harbor chromosomal translocations that affect proteins associated with chromatin remodeling Polycomb Repressive Complex 2 (PRC2), including SUZ12, PHF1 and EPC1. Roughly half of LGESS also demonstrate nuclear accumulation of β-catenin, which is a hallmark of Wnt signaling activation. However, the targets affected by the fusion proteins and the role of Wnt signaling in the pathogenesis of these tumors remain largely unknown. Here we report the results of a meta-analysis of three independent gene expression profiling studies on LGESS and immunohistochemical evaluation of nuclear expression of β-catenin and Lef1 in 112 uterine sarcoma specimens obtained from 20 LGESS and 89 LMS patients. Our results demonstrate that 143 out of 310 genes overexpressed in LGESS are known to be directly regulated by SUZ12. In addition, our gene expression meta-analysis shows activation of multiple genes implicated in Wnt signaling. We further emphasize the role of the Wnt signaling pathway by demonstrating concordant nuclear expression of β-catenin and Lef1 in 7/16 LGESS. Based on our findings, we suggest that LGESS-specific fusion proteins disrupt the repressive function of the PRC2 complex similar to the mechanism seen in synovial sarcoma, where the SS18-SSX fusion proteins disrupt the mSWI/SNF (BAF) chromatin remodeling complex. We propose that these fusion proteins in LGESS contribute to overexpression of Wnt ligands with subsequent activation of Wnt signaling pathway and formation of an active β-catenin/Lef1 transcriptional complex. These observations could lead to novel therapeutic approaches that focus on the Wnt pathway in LGESS. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Archaeal promoter architecture and mechanism of gene activation

    DEFF Research Database (Denmark)

    Peng, Nan; Ao, Xiang; Liang, Yun Xiang

    2011-01-01

    element named ara box directing arabinose-inducible expression and the basal promoter element TATA, serving as the binding site for the TATA-binding protein. Strikingly, these promoters possess a modular structure that allows an essentially inactive basal promoter to be strongly activated. The invoked...... mechanisms include TFB (transcription factor B) recruitment by the ara-box-binding factor to activate gene expression and modulation of TFB recruitment efficiency to yield differential gene expression....

  20. Corrugator Activity Confirms Immediate Negative Affect in Surprise

    Directory of Open Access Journals (Sweden)

    Sascha eTopolinski

    2015-02-01

    Full Text Available The emotion of surprise entails a complex of immediate responses, such as cognitive interruption, attention allocation to, and more systematic processing of the surprising stimulus. All these processes serve the ultimate function to increase processing depth and thus cognitively master the surprising stimulus. The present account introduces phasic negative affect as the underlying mechanism responsible for these consequences. Surprising stimuli are schema-discrepant and thus entail cognitive disfluency, which elicits immediate negative affect. This affect in turn works like a phasic cognitive tuning switching the current processing mode from more automatic and heuristic to more systematic and reflective processing. Directly testing the initial elicitation of negative affect by suprising events, the present experiment presented high and low surprising neutral trivia statements to N = 28 participants while assessing their spontaneous facial expressions via facial electromyography. High compared to low suprising trivia elicited higher corrugator activity, indicative of negative affect and mental effort, while leaving zygomaticus (positive affect and frontalis (cultural surprise expression activity unaffected. Future research shall investigate the mediating role of negative affect in eliciting surprise-related outcomes.

  1. The Varicella-Zoster Virus Immediate-Early 63 protein affects chromatin controlled gene transcription in a cell-type dependent manner

    Directory of Open Access Journals (Sweden)

    Bontems Sébastien

    2007-10-01

    Full Text Available Abstract Background Varicella Zoster Virus Immediate Early 63 protein (IE63 has been shown to be essential for VZV replication, and critical for latency establishment. The activity of the protein as a transcriptional regulator is not fully clear yet. Using transient transfection assays, IE63 has been shown to repress viral and cellular promoters containing typical TATA boxes by interacting with general transcription factors. Results In this paper, IE63 regulation properties on endogenous gene expression were evaluated using an oligonucleotide-based micro-array approach. We found that IE63 modulates the transcription of only a few genes in HeLa cells including genes implicated in transcription or immunity. Furthermore, we showed that this effect is mediated by a modification of RNA POL II binding on the promoters tested and that IE63 phosphorylation was essential for these effects. In MeWo cells, the number of genes whose transcription was modified by IE63 was somewhat higher, including genes implicated in signal transduction, transcription, immunity, and heat-shock signalling. While IE63 did not modify the basal expression of several NF-κB dependent genes such as IL-8, ICAM-1, and IκBα, it modulates transcription of these genes upon TNFα induction. This effect was obviously correlated with the amount of p65 binding to the promoter of these genes and with histone H3 acetylation and HDAC-3 removal. Conclusion While IE63 only affected transcription of a small number of cellular genes, it interfered with the TNF-inducibility of several NF-κB dependent genes by the accelerated resynthesis of the inhibitor IκBα.

  2. Bioaerosols from a Food Waste Composting Plant Affect Human Airway Epithelial Cell Remodeling Genes

    Science.gov (United States)

    Chang, Ming-Wei; Lee, Chung-Ru; Hung, Hsueh-Fen; Teng, Kuo-Sheng; Huang, Hsin; Chuang, Chun-Yu

    2013-01-01

    The composting procedure in food waste plants generates airborne bioaerosols that have the potential to damage human airway epithelial cells. Persistent inflammation and repair responses induce airway remodeling and damage to the respiratory system. This study elucidated the expression changes of airway remodeling genes in human lung mucoepidermoid NCI-H292 cells exposed to bioaerosols from a composting plant. Different types of microorganisms were detectable in the composting plant, using the agar culture method. Real-time polymerase chain reaction was used to quantify the level of Aspergillus fumigatus and the profile of remodeling genes. The real-time PCR results indicated that the amount of A. fumigatus in the composting hall was less than 102 conidia. The endotoxins in the field bioaerosols were determined using a limulus amebocyte lysate test. The endotoxin levels depended on the type of particulate matter (PM), with coarse particles (2.5–10 μm) having higher endotoxin levels than did fine particles (0.5–2.5 μm). After exposure to the conditioned medium of field bioaerosol samples, NCI-H292 cells showed increased pro-inflammatory interleukin (IL)-6 release and activated epidermal growth factor receptor (EGFR), transforming growth factor (TGF)-β1 and cyclin-dependent kinase inhibitor 1 (p21WAF1/CIP1) gene expression, but not of matrix metallopeptidase (MMP)-9. Airborne endotoxin levels were higher inside the composting hall than they were in other areas, and they were associated with PM. This suggested that airborne bioaerosols in the composting plant contained endotoxins and microorganisms besides A. fumigatus that cause the inflammatory cytokine secretion and augment the expression of remodeling genes in NCI-H292 cells. It is thus necessary to monitor potentially hazardous materials from bioaerosols in food composting plants, which could affect the health of workers. PMID:24368426

  3. Bioaerosols from a food waste composting plant affect human airway epithelial cell remodeling genes.

    Science.gov (United States)

    Chang, Min-Wei; Lee, Chung-Ru; Hung, Hsueh-Fen; Teng, Kuo-Sheng; Huang, Hsin; Chuang, Chun-Yu

    2013-12-24

    The composting procedure in food waste plants generates airborne bioaerosols that have the potential to damage human airway epithelial cells. Persistent inflammation and repair responses induce airway remodeling and damage to the respiratory system. This study elucidated the expression changes of airway remodeling genes in human lung mucoepidermoid NCI-H292 cells exposed to bioaerosols from a composting plant. Different types of microorganisms were detectable in the composting plant, using the agar culture method. Real-time polymerase chain reaction was used to quantify the level of Aspergillus fumigatus and the profile of remodeling genes. The real-time PCR results indicated that the amount of A. fumigatus in the composting hall was less than 10(2) conidia. The endotoxins in the field bioaerosols were determined using a limulus amebocyte lysate test. The endotoxin levels depended on the type of particulate matter (PM), with coarse particles (2.5-10 μm) having higher endotoxin levels than did fine particles (0.5-2.5 μm). After exposure to the conditioned medium of field bioaerosol samples, NCI-H292 cells showed increased pro-inflammatory interleukin (IL)-6 release and activated epidermal growth factor receptor (EGFR), transforming growth factor (TGF)-β1 and cyclin-dependent kinase inhibitor 1 (p21 WAF1/CIP1) gene expression, but not of matrix metallopeptidase (MMP)-9. Airborne endotoxin levels were higher inside the composting hall than they were in other areas, and they were associated with PM. This suggested that airborne bioaerosols in the composting plant contained endotoxins and microorganisms besides A. fumigatus that cause the inflammatory cytokine secretion and augment the expression of remodeling genes in NCI-H292 cells. It is thus necessary to monitor potentially hazardous materials from bioaerosols in food composting plants, which could affect the health of workers.

  4. [The effect of goal framing on the activation of affective representations].

    Science.gov (United States)

    Takehashi, Hiroki; Karasawa, Kaori

    2007-10-01

    Guided by regulatory focus theory, this study examined the effects of goal framing on the subjective experience of affect and the accessibility of affective representations. Study I examined lay persons' beliefs concerning the relationship between goal framing and certain kinds of affective experiences. The results indicated that a promotion focus was associated with happiness and disappointment, whereas a prevention focus was associated with relaxation and tension. Study 2 examined the effect of goal framing on the activation of affective representations, and found that a promotion focus activated both gain-related representations (happy and disappointment) and loss-related representations (relaxation and tension), whereas a prevention focus activated only loss-related representations. These results suggest that goal framing activates particular affective representations, and the activated affective representations may influence the interpretation of positive or negative experiences. The discussion considered the function of the activation of affective representations as a mediator between goal framing and its cognitive and behavioral consequences.

  5. Land use type significantly affects microbial gene transcription in soil.

    Science.gov (United States)

    Nacke, Heiko; Fischer, Christiane; Thürmer, Andrea; Meinicke, Peter; Daniel, Rolf

    2014-05-01

    Soil microorganisms play an essential role in sustaining biogeochemical processes and cycling of nutrients across different land use types. To gain insights into microbial gene transcription in forest and grassland soil, we isolated mRNA from 32 sampling sites. After sequencing of generated complementary DNA (cDNA), a total of 5,824,229 sequences could be further analyzed. We were able to assign nonribosomal cDNA sequences to all three domains of life. A dominance of bacterial sequences, which were affiliated to 25 different phyla, was found. Bacterial groups capable of aromatic compound degradation such as Phenylobacterium and Burkholderia were detected in significantly higher relative abundance in forest soil than in grassland soil. Accordingly, KEGG pathway categories related to degradation of aromatic ring-containing molecules (e.g., benzoate degradation) were identified in high abundance within forest soil-derived metatranscriptomic datasets. The impact of land use type forest on community composition and activity is evidently to a high degree caused by the presence of wood breakdown products. Correspondingly, bacterial groups known to be involved in lignin degradation and containing ligninolytic genes such as Burkholderia, Bradyrhizobium, and Azospirillum exhibited increased transcriptional activity in forest soil. Higher solar radiation in grassland presumably induced increased transcription of photosynthesis-related genes within this land use type. This is in accordance with high abundance of photosynthetic organisms and plant-infecting viruses in grassland.

  6. Gain-of-function screen for genes that affect Drosophila muscle pattern formation.

    Directory of Open Access Journals (Sweden)

    Nicole Staudt

    2005-10-01

    Full Text Available This article reports the production of an EP-element insertion library with more than 3,700 unique target sites within the Drosophila melanogaster genome and its use to systematically identify genes that affect embryonic muscle pattern formation. We designed a UAS/GAL4 system to drive GAL4-responsive expression of the EP-targeted genes in developing apodeme cells to which migrating myotubes finally attach and in an intrasegmental pattern of cells that serve myotubes as a migration substrate on their way towards the apodemes. The results suggest that misexpression of more than 1.5% of the Drosophila genes can interfere with proper myotube guidance and/or muscle attachment. In addition to factors already known to participate in these processes, we identified a number of enzymes that participate in the synthesis or modification of protein carbohydrate side chains and in Ubiquitin modifications and/or the Ubiquitin-dependent degradation of proteins, suggesting that these processes are relevant for muscle pattern formation.

  7. Controlling nuclear JAKs and STATs for specific gene activation by IFNγ

    International Nuclear Information System (INIS)

    Noon-Song, Ezra N.; Ahmed, Chulbul M.; Dabelic, Rea; Canton, Johnathan; Johnson, Howard M.

    2011-01-01

    Highlights: → Gamma interferon (IFNγ) and its receptor subunit, IFNGR1, interact with the promoter region of IFNγ-associated genes along with transcription factor STAT1α. → We show that activated Janus kinases pJAK2 and pJAK1 also associate with IFNGR1 in the nucleus. → The activated Janus kinases are responsible for phosphorylation of tyrosine 41 on histone H3, an important epigenetic event for specific gene activation. -- Abstract: We previously showed that gamma interferon (IFNγ) and its receptor subunit, IFNGR1, interacted with the promoter region of IFNγ-activated genes along with transcription factor STAT1α. Recent studies have suggested that activated Janus kinases pJAK2 and pJAK1 also played a role in gene activation by phosphorylation of histone H3 on tyrosine 41. This study addresses the question of the role of activated JAKs in specific gene activation by IFNγ. We carried out chromatin immunoprecipitation (ChIP) followed by PCR in IFNγ treated WISH cells and showed association of pJAK1, pJAK2, IFNGR1, and STAT1 on the same DNA sequence of the IRF-1 gene promoter. The β-actin gene, which is not activated by IFNγ, did not show this association. The movement of activated JAK to the nucleus and the IRF-1 promoter was confirmed by the combination of nuclear fractionation, confocal microscopy and DNA precipitation analysis using the biotinylated GAS promoter. Activated JAKs in the nucleus was associated with phosphorylated tyrosine 41 on histone H3 in the region of the GAS promoter. Unphosphorylated JAK2 was found to be constitutively present in the nucleus and was capable of undergoing activation in IFNγ treated cells, most likely via nuclear IFNGR1. Association of pJAK2 and IFNGR1 with histone H3 in IFNγ treated cells was demonstrated by histone H3 immunoprecipitation. Unphosphorylated STAT1 protein was associated with histone H3 of untreated cells. IFNγ treatment resulted in its disassociation and then re-association as pSTAT1. The

  8. Activation of the alpha-globin gene expression correlates with dramatic upregulation of nearby non-globin genes and changes in local and large-scale chromatin spatial structure.

    Science.gov (United States)

    Ulianov, Sergey V; Galitsyna, Aleksandra A; Flyamer, Ilya M; Golov, Arkadiy K; Khrameeva, Ekaterina E; Imakaev, Maxim V; Abdennur, Nezar A; Gelfand, Mikhail S; Gavrilov, Alexey A; Razin, Sergey V

    2017-07-11

    In homeotherms, the alpha-globin gene clusters are located within permanently open genome regions enriched in housekeeping genes. Terminal erythroid differentiation results in dramatic upregulation of alpha-globin genes making their expression comparable to the rRNA transcriptional output. Little is known about the influence of the erythroid-specific alpha-globin gene transcription outburst on adjacent, widely expressed genes and large-scale chromatin organization. Here, we have analyzed the total transcription output, the overall chromatin contact profile, and CTCF binding within the 2.7 Mb segment of chicken chromosome 14 harboring the alpha-globin gene cluster in cultured lymphoid cells and cultured erythroid cells before and after induction of terminal erythroid differentiation. We found that, similarly to mammalian genome, the chicken genomes is organized in TADs and compartments. Full activation of the alpha-globin gene transcription in differentiated erythroid cells is correlated with upregulation of several adjacent housekeeping genes and the emergence of abundant intergenic transcription. An extended chromosome region encompassing the alpha-globin cluster becomes significantly decompacted in differentiated erythroid cells, and depleted in CTCF binding and CTCF-anchored chromatin loops, while the sub-TAD harboring alpha-globin gene cluster and the upstream major regulatory element (MRE) becomes highly enriched with chromatin interactions as compared to lymphoid and proliferating erythroid cells. The alpha-globin gene domain and the neighboring loci reside within the A-like chromatin compartment in both lymphoid and erythroid cells and become further segregated from the upstream gene desert upon terminal erythroid differentiation. Our findings demonstrate that the effects of tissue-specific transcription activation are not restricted to the host genomic locus but affect the overall chromatin structure and transcriptional output of the encompassing

  9. Unstable Expression of Commonly Used Reference Genes in Rat Pancreatic Islets Early after Isolation Affects Results of Gene Expression Studies.

    Directory of Open Access Journals (Sweden)

    Lucie Kosinová

    Full Text Available The use of RT-qPCR provides a powerful tool for gene expression studies; however, the proper interpretation of the obtained data is crucially dependent on accurate normalization based on stable reference genes. Recently, strong evidence has been shown indicating that the expression of many commonly used reference genes may vary significantly due to diverse experimental conditions. The isolation of pancreatic islets is a complicated procedure which creates severe mechanical and metabolic stress leading possibly to cellular damage and alteration of gene expression. Despite of this, freshly isolated islets frequently serve as a control in various gene expression and intervention studies. The aim of our study was to determine expression of 16 candidate reference genes and one gene of interest (F3 in isolated rat pancreatic islets during short-term cultivation in order to find a suitable endogenous control for gene expression studies. We compared the expression stability of the most commonly used reference genes and evaluated the reliability of relative and absolute quantification using RT-qPCR during 0-120 hrs after isolation. In freshly isolated islets, the expression of all tested genes was markedly depressed and it increased several times throughout the first 48 hrs of cultivation. We observed significant variability among samples at 0 and 24 hrs but substantial stabilization from 48 hrs onwards. During the first 48 hrs, relative quantification failed to reflect the real changes in respective mRNA concentrations while in the interval 48-120 hrs, the relative expression generally paralleled the results determined by absolute quantification. Thus, our data call into question the suitability of relative quantification for gene expression analysis in pancreatic islets during the first 48 hrs of cultivation, as the results may be significantly affected by unstable expression of reference genes. However, this method could provide reliable information

  10. T-cell activation and early gene response in dogs.

    Directory of Open Access Journals (Sweden)

    Sally-Anne Mortlock

    Full Text Available T-cells play a crucial role in canine immunoregulation and defence against invading pathogens. Proliferation is fundamental to T-cell differentiation, homeostasis and immune response. Initiation of proliferation following receptor mediated stimuli requires a temporally programmed gene response that can be identified as immediate-early, mid- and late phases. The immediate-early response genes in T-cell activation engage the cell cycle machinery and promote subsequent gene activation events. Genes involved in this immediate-early response in dogs are yet to be identified. The present study was undertaken to characterise the early T-cell gene response in dogs to improve understanding of the genetic mechanisms regulating immune function. Gene expression profiles were characterised using canine gene expression microarrays and quantitative reverse transcription PCR (qRT-PCR, and paired samples from eleven dogs. Significant functional annotation clusters were identified following stimulation with phytohemagluttinin (PHA (5μg/ml, including the Toll-like receptor signaling pathway and phosphorylation pathways. Using strict statistical criteria, 13 individual genes were found to be differentially expressed, nine of which have ontologies that relate to proliferation and cell cycle control. These included, prostaglandin-endoperoxide synthase 2 (PTGS2/COX2, early growth response 1 (EGR1, growth arrest and DNA damage-inducible gene (GADD45B, phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1, V-FOS FBJ murine osteosarcoma viral oncogene homolog (FOS, early growth response 2 (EGR2, hemogen (HEMGN, polo-like kinase 2 (PLK2 and polo-like kinase 3 (PLK3. Differential gene expression was re-examined using qRT-PCR, which confirmed that EGR1, EGR2, PMAIP1, PTGS2, FOS and GADD45B were significantly upregulated in stimulated cells and ALAS2 downregulated. PTGS2 and EGR1 showed the highest levels of response in these dogs. Both of these genes are involved in

  11. Changes in gravitational force affect gene expression in developing organ systems at different developmental times

    Directory of Open Access Journals (Sweden)

    Moorman Stephen J

    2005-05-01

    Full Text Available Abstract Background Little is known about the affect of microgravity on gene expression, particularly in vivo during embryonic development. Using transgenic zebrafish that express the gfp gene under the influence of a β-actin promoter, we examined the affect of simulated-microgravity on GFP expression in the heart, notochord, eye, somites, and rohon beard neurons. We exposed transgenic zebrafish to simulated-microgravity for different durations at a variety of developmental times in an attempt to determine periods of susceptibility for the different developing organ systems. Results The developing heart had a period of maximum susceptibility between 32 and 56 hours after fertilization when there was an approximately 30% increase in gene expression. The notochord, eye, somites, and rohon beard neurons all showed periods of susceptibility occurring between 24 and 72 hours after fertilization. In addition, the notochord showed a second period of susceptibility between 8 and 32 hours after fertilization. Interestingly, all organs appeared to be recovering by 80 hours after fertilization despite continued exposure to simulated-microgravity. Conclusion These results support the idea that exposure to microgravity can cause changes in gene expression in a variety of developing organ systems in live embryos and that there are periods of maximum susceptibility to the effects.

  12. Activation of silenced cytokine gene promoters by the synergistic effect of TBP-TALE and VP64-TALE activators.

    Science.gov (United States)

    Anthony, Kim; More, Abhijit; Zhang, Xiaoliu

    2014-01-01

    Recent work has shown that the combinatorial use of multiple TALE activators can selectively activate certain cellular genes in inaccessible chromatin regions. In this study, we aimed to interrogate the activation potential of TALEs upon transcriptionally silenced immune genes in the context of non-immune cells. We designed a unique strategy, in which a single TALE fused to the TATA-box binding protein (TBP-TALE) is coupled with multiple VP64-TALE activators. We found that our strategy is significantly more potent than multiple TALE activators alone in activating expression of IL-2 and GM-CSF in diverse cell origins in which both genes are otherwise completely silenced. Chromatin analysis revealed that the gene activation was due in part to displacement of a distinctly positioned nucleosome. These studies provide a novel epigenetic mechanism for artificial gene induction and have important implications for targeted cancer immunotherapy, DNA vaccine development, as well as rational design of TALE activators.

  13. Reconstructing Dynamic Promoter Activity Profiles from Reporter Gene Data.

    Science.gov (United States)

    Kannan, Soumya; Sams, Thomas; Maury, Jérôme; Workman, Christopher T

    2018-03-16

    Accurate characterization of promoter activity is important when designing expression systems for systems biology and metabolic engineering applications. Promoters that respond to changes in the environment enable the dynamic control of gene expression without the necessity of inducer compounds, for example. However, the dynamic nature of these processes poses challenges for estimating promoter activity. Most experimental approaches utilize reporter gene expression to estimate promoter activity. Typically the reporter gene encodes a fluorescent protein that is used to infer a constant promoter activity despite the fact that the observed output may be dynamic and is a number of steps away from the transcription process. In fact, some promoters that are often thought of as constitutive can show changes in activity when growth conditions change. For these reasons, we have developed a system of ordinary differential equations for estimating dynamic promoter activity for promoters that change their activity in response to the environment that is robust to noise and changes in growth rate. Our approach, inference of dynamic promoter activity (PromAct), improves on existing methods by more accurately inferring known promoter activity profiles. This method is also capable of estimating the correct scale of promoter activity and can be applied to quantitative data sets to estimate quantitative rates.

  14. Massive activation of archaeal defense genes during viral infection.

    Science.gov (United States)

    Quax, Tessa E F; Voet, Marleen; Sismeiro, Odile; Dillies, Marie-Agnes; Jagla, Bernd; Coppée, Jean-Yves; Sezonov, Guennadi; Forterre, Patrick; van der Oost, John; Lavigne, Rob; Prangishvili, David

    2013-08-01

    Archaeal viruses display unusually high genetic and morphological diversity. Studies of these viruses proved to be instrumental for the expansion of knowledge on viral diversity and evolution. The Sulfolobus islandicus rod-shaped virus 2 (SIRV2) is a model to study virus-host interactions in Archaea. It is a lytic virus that exploits a unique egress mechanism based on the formation of remarkable pyramidal structures on the host cell envelope. Using whole-transcriptome sequencing, we present here a global map defining host and viral gene expression during the infection cycle of SIRV2 in its hyperthermophilic host S. islandicus LAL14/1. This information was used, in combination with a yeast two-hybrid analysis of SIRV2 protein interactions, to advance current understanding of viral gene functions. As a consequence of SIRV2 infection, transcription of more than one-third of S. islandicus genes was differentially regulated. While expression of genes involved in cell division decreased, those genes playing a role in antiviral defense were activated on a large scale. Expression of genes belonging to toxin-antitoxin and clustered regularly interspaced short palindromic repeat (CRISPR)-Cas systems was specifically pronounced. The observed different degree of activation of various CRISPR-Cas systems highlights the specialized functions they perform. The information on individual gene expression and activation of antiviral defense systems is expected to aid future studies aimed at detailed understanding of the functions and interplay of these systems in vivo.

  15. Single Nucleotide Polymorphisms in the HIRA Gene Affect Litter Size in Small Tail Han Sheep

    Directory of Open Access Journals (Sweden)

    Mei Zhou

    2018-05-01

    Full Text Available Maintenance of appropriate levels of fecundity is critical for efficient sheep production. Opportunities to increase sheep litter size include identifying single gene mutations with major effects on ovulation rate and litter size. Whole-genome sequencing (WGS data of 89 Chinese domestic sheep from nine different geographical locations and ten Australian sheep were analyzed to detect new polymorphisms affecting litter size. Comparative genomic analysis of sheep with contrasting litter size detected a novel set of candidate genes. Two SNPs, g.71874104G>A and g.71833755T>C, were genotyped in 760 Small Tail Han sheep and analyzed for association with litter size. The two SNPs were significantly associated with litter size, being in strong linkage disequilibrium in the region 71.80–71.87 Mb. This haplotype block contains one gene that may affect litter size, Histone Cell Cycle Regulator (HIRA. HIRA mRNA levels in sheep with different lambing ability were significantly higher in ovaries of Small Tail Han sheep (high fecundity than in Sunite sheep (low fecundity. Moreover, the expression levels of HIRA in eight tissues of uniparous Small Tail Han sheep were significantly higher than in multiparous Small Tail Han sheep (p < 0.05. HIRA SNPs significantly affect litter size in sheep and are useful as genetic markers for litter size.

  16. Epstein-Barr virus immediate-early gene product trans-activates gene expression from the human immunodeficiency virus long terminal repeat

    International Nuclear Information System (INIS)

    Kenney, S.; Kamine, J.; Markovitz, D.; Fenrick, R.; Pagano, J.

    1988-01-01

    Acquired immunodeficiency syndrome patients are frequently coinfected with Epstein-Barr virus (EBV). In this report, the authors demonstrate that an EBV immediate-early gene product, BamHI MLF1, stimulates expression of the bacterial chloramphenicol acetyltransferase (CAT) gene linked to the human immunodeficiency virus (HIV) promoter. The HIV promoter sequences necessary for trans-activation by EBV do not include the tat-responsive sequences. In addition, in contrast to the other herpesvirus trans-activators previously studied, the EBV BamHI MLF1 gene product appears to function in part by a posttranscriptional mechanism, since it increases pHIV-CAT protein activity more than it increases HIV-CAT mRNA. This ability of an EBV gene product to activate HIV gene expression may have biologic consequences in persons coinfected with both viruses

  17. [Analysis of SOX10 gene mutation in a family affected with Waardenburg syndrome type II].

    Science.gov (United States)

    Zheng, Lei; Yan, Yousheng; Chen, Xue; Zhang, Chuan; Zhang, Qinghua; Feng, Xuan; Hao, Shen

    2018-02-10

    OBJECTIVE To detect potential mutation of SOX10 gene in a pedigree affected with Warrdenburg syndrome type II. METHODS Genomic DNA was extracted from peripheral blood samples of the proband and his family members. Exons and flanking sequences of MITF, PAX3, SOX10, SNAI2, END3 and ENDRB genes were analyzed by chip capturing and high throughput sequencing. Suspected mutations were verified with Sanger sequencing. RESULTS A c.127C>T (p.R43X) mutation of the SOX10 gene was detected in the proband, for which both parents showed a wild-type genotype. CONCLUSION The c.127C>T (p.R43X) mutation of SOX10 gene probably underlies the ocular symptoms and hearing loss of the proband.

  18. Association between the GABA(A) receptor alpha5 subunit gene locus (GABRA5) and bipolar affective disorder.

    Science.gov (United States)

    Papadimitriou, G N; Dikeos, D G; Karadima, G; Avramopoulos, D; Daskalopoulou, E G; Vassilopoulos, D; Stefanis, C N

    1998-02-07

    Genetic factors seem to play an important role in the pathogenesis of affective disorder. The candidate gene strategies are being used, among others, to identify the genes conferring vulnerability to the disease. The genes coding for the receptors of gamma-aminobutyric acid (GABA) have been proposed as candidates for affective disorder, since the GABA neurotransmitter system has been implicated in the pathogenesis of the illness. We examined the possible genetic association between the GABA(A) receptor alpha5 subunit gene locus (GABRA5) on chromosome 15 and affective disorder, in 48 bipolar patients (BP), 40 unipolar patients (UP), and 50 healthy individuals, age- and sex-matched to the patients. All patients and controls were unrelated Greeks. Diagnoses were made after direct interviews according to the DSM-IV and ICD-10 criteria. For the genotyping, a dinucleotide (CA) repeat marker was used. The polymerase chain reaction (PCR) products found were nine alleles with lengths between 272 and 290 base pairs (bp). The distribution of allelic frequencies of the GABRA5 locus differed significantly between BP patients and controls with the 282-bp allele found to be associated with BP affective disorder, while no such difference was observed between the groups of UP patients and controls nor between the two patient groups. The presence or absence of the 282-bp allele in the genotype of BP patients was not shown to influence the age of onset and the overall clinical severity, but was found to be associated with a preponderance of manic over depressive episodes in the course of the illness.

  19. 16 CFR 801.3 - Activities in or affecting commerce.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Activities in or affecting commerce. 801.3... in or affecting commerce. Section 7A(a)(1) is satisfied if any entity included within the acquiring person, or any entity included within the acquired person, is engaged in commerce or in any activity...

  20. Do recreational activities affect coastal biodiversity?

    Science.gov (United States)

    Riera, Rodrigo; Menci, Cristiano; Sanabria-Fernández, José Antonio; Becerro, Mikel A.

    2016-09-01

    Human activities are largely affecting coastal communities worldwide. Recreational perturbations have been overlooked in comparison to other perturbations, yet they are potential threats to marine biodiversity. They affect coastal communities in different ways, underpinning consistent shifts in fish and invertebrates assemblages. Several sites were sampled subjected to varying effects by recreational fishermen (low and high pressure) and scuba divers (low and high) in an overpopulated Atlantic island. Non-consistent differences in ecological, trophic and functional diversity were found in coastal communities, considering both factors (;diving; and ;fishing;). Multivariate analyses only showed significant differences in benthic invertebrates between intensively-dived and non-dived sites. The lack of clear trends may be explained by the depletion of coastal resources in the study area, an extensively-affected island by overfishing.

  1. Interleukin-21 gene polymorphism rs2221903 is associated with disease activity in patients with rheumatoid arthritis.

    Science.gov (United States)

    Malinowski, Damian; Paradowska-Gorycka, Agnieszka; Safranow, Krzysztof; Pawlik, Andrzej

    2017-08-01

    Interleukin-21 (IL-21) is a cytokine which plays a significant role in the pathogenesis and disease activity of rheumatoid arthritis (RA). Genetic polymorphisms in the IL-21 gene may alter the synthesis of IL-21. The aim of this study was to examine IL-21 and IL-21R polymorphisms in patients with RA. We examined 422 patients with RA and 338 healthy controls. Single nucleotide polymorphisms (SNPs) within the IL-21 (rs6822844 G>T, rs6840978 C>T, rs2221903 T>C) and IL-21R (rs2285452 G>A) genes were genotyped using TaqMan genotyping assays. There were no statistically significant differences in the distribution of studied genotypes and alleles between RA patients and the control group. To examine whether IL-21 polymorphisms affect disease activity in RA patients, we compared the distribution of IL-21 genotypes between patients with DAS28 ≤ 2.5 (patients with remission of disease symptoms) and patients with DAS28 > 2.5 (patients with active RA). Among patients with DAS28 > 2.5, increased prevalence of rs2221903 CT and CC genotypes was observed (OR = 1.54; 95% CI: 1.04-2.28; p = 0.035). The results of this study suggest that IL-21 and IL-21R gene polymorphisms are not risk loci for RA susceptibility, whereas the IL-21 rs2221903 polymorphism is associated with disease activity.

  2. Affective mapping: An activation likelihood estimation (ALE) meta-analysis.

    Science.gov (United States)

    Kirby, Lauren A J; Robinson, Jennifer L

    2017-11-01

    Functional neuroimaging has the spatial resolution to explain the neural basis of emotions. Activation likelihood estimation (ALE), as opposed to traditional qualitative meta-analysis, quantifies convergence of activation across studies within affective categories. Others have used ALE to investigate a broad range of emotions, but without the convenience of the BrainMap database. We used the BrainMap database and analysis resources to run separate meta-analyses on coordinates reported for anger, anxiety, disgust, fear, happiness, humor, and sadness. Resultant ALE maps were compared to determine areas of convergence between emotions, as well as to identify affect-specific networks. Five out of the seven emotions demonstrated consistent activation within the amygdala, whereas all emotions consistently activated the right inferior frontal gyrus, which has been implicated as an integration hub for affective and cognitive processes. These data provide the framework for models of affect-specific networks, as well as emotional processing hubs, which can be used for future studies of functional or effective connectivity. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Dietary Immunogen® modulated digestive enzyme activity and immune gene expression in Litopenaeus vannamei post larvae.

    Science.gov (United States)

    Miandare, Hamed Kolangi; Mirghaed, Ali Taheri; Hosseini, Marjan; Mazloumi, Nastaran; Zargar, Ashkan; Nazari, Sajad

    2017-11-01

    Pacific white shrimp Litopenaeus vannamei (Boone, 1931) is an important economical shrimp species worldwide, especially in the Middle East region, and farming activities of this species have been largely affected by diseases, mostly viral and bacterial diseases. Scientists have started to use prebiotics for bolstering the immune status of the animal. This study aimed to investigate the influence of Immunogen ® on growth, digestive enzyme activity and immune related gene expression of Litopenaeus vannamei post-larvae. All post-larvae were acclimated to the laboratory condition for 14 days. Upon acclimation, shrimps were fed on different levels of Immunogen ® (0, 0.5, 1 and 1.5 g kg -1 ) for 60 days. No significant differences were detected in weight gain, specific growth rate (SGR) and food conversion ratio (FCR) in shrimp post-larvae in which fed with different levels of Immunogen ® and control diet. The results showed that digestive enzymes activity including protease and lipase increased with different amounts of Immunogen ® in the shrimp diet. Protease activity increased with 1.5 g kg -1 Immunogen ® after 60 days and lipase activity increased with 1 and 1.5 g kg -1 Immunogen ® after 30 and 60 days of the trial respectively (P  0.05). The expression of immune related genes including, prophenoloxidase, crustin and g-type lysozyme increased with diet 1.5 g kg -1 Immunogen ® (P < 0.05) while expression of penaeidin gene increased only with experimental diet 1 g kg -1 of Immunogen ® . These results indicated that increase in digestive enzymes activity and expression of immune related genes could modulate the Immunogen ® in the innate immune system in L. vannamei in this study. Copyright © 2017. Published by Elsevier Ltd.

  4. Pleiotropic Genes Affecting Carcass Traits in Bos indicus (Nellore Cattle Are Modulators of Growth.

    Directory of Open Access Journals (Sweden)

    Anirene G T Pereira

    Full Text Available Two complementary methods, namely Multi-Trait Meta-Analysis and Versatile Gene-Based Test for Genome-wide Association Studies (VEGAS, were used to identify putative pleiotropic genes affecting carcass traits in Bos indicus (Nellore cattle. The genotypic data comprised over 777,000 single-nucleotide polymorphism markers scored in 995 bulls, and the phenotypic data included deregressed breeding values (dEBV for weight measurements at birth, weaning and yearling, as well visual scores taken at weaning and yearling for carcass finishing precocity, conformation and muscling. Both analyses pointed to the pleomorphic adenoma gene 1 (PLAG1 as a major pleiotropic gene. VEGAS analysis revealed 224 additional candidates. From these, 57 participated, together with PLAG1, in a network involved in the modulation of the function and expression of IGF1 (insulin like growth factor 1, IGF2 (insulin like growth factor 2, GH1 (growth hormone 1, IGF1R (insulin like growth factor 1 receptor and GHR (growth hormone receptor, suggesting that those pleiotropic genes operate as satellite regulators of the growth pathway.

  5. Precursor Amino Acids Inhibit Polymyxin E Biosynthesis in Paenibacillus polymyxa, Probably by Affecting the Expression of Polymyxin E Biosynthesis-Associated Genes

    Directory of Open Access Journals (Sweden)

    Zhiliang Yu

    2015-01-01

    Full Text Available Polymyxin E belongs to cationic polypeptide antibiotic bearing four types of direct precursor amino acids including L-2,4-diaminobutyric acid (L-Dab, L-Leu, D-Leu, and L-Thr. The objective of this study is to evaluate the effect of addition of precursor amino acids during fermentation on polymyxin E biosynthesis in Paenibacillus polymyxa. The results showed that, after 35 h fermentation, addition of direct precursor amino acids to certain concentration significantly inhibited polymyxin E production and affected the expression of genes involved in its biosynthesis. L-Dab repressed the expression of polymyxin synthetase genes pmxA and pmxE, as well as 2,4-diaminobutyrate aminotransferase gene ectB; both L-Leu and D-Leu repressed the pmxA expression. In addition, L-Thr affected the expression of not only pmxA, but also regulatory genes spo0A and abrB. As L-Dab precursor, L-Asp repressed the expression of ectB, pmxA, and pmxE. Moreover, it affected the expression of spo0A and abrB. In contrast, L-Phe, a nonprecursor amino acid, had no obvious effect on polymyxin E biosynthesis and those biosynthesis-related genes expression. Taken together, our data demonstrated that addition of precursor amino acids during fermentation will inhibit polymyxin E production probably by affecting the expression of its biosynthesis-related genes.

  6. Alteration of Neurokinin B Gene Expression and Hypothalamic-Pituitary- Gonadal Axis in Response to One-month Regular Moderate Physical Activity

    Directory of Open Access Journals (Sweden)

    Nazli Khajehnasiri

    2017-08-01

    Full Text Available Abstract Background: The advantageous effects of the regular moderate physical activity (Exercise on reproduction is widely accepted, but until now, the alterations of the expression of hypothalamic arcuate nuclei gene affecting on reproduction axis in response to this type of physical activity are not clear. Therefore, the goal of the present investigation was to study the effect of one –month regular moderate physical activity on neurokinin B gene expression and reproductive axis hormonal changes. Materials and Methods: In the experimental study, fourteen adult male Wistar rats were randomly divided into control and one- month regular moderate exercise groups. After one - month physical activity (20m/min, the arcuate nucleus was isolated from brain and stored in -80 refrigerators for neurokinin B gene expression assay by Real-time PCR method. In addition, serum samples were taken to assess the corticosterone, luteinizing hormone and testosterone levels by ELISA method. Data were analyzed by Independent t-test in SPSS. Results: Neurokinin-B gene expression level was lower in the group which received physical activity than the control group(p<0.05. Also, corticosterone serum concentration was decreased in the physical activity group(p<0.05. By contrast, the physical activity induced luteinizing hormone and Testosterone serum levels evaluation in exersice group compared with control group (p<0.05. Conclusion: Regular moderate physical activity may improve male reproductive performance by reducing the corticosterone hormone level and decreasing neurokinin B expression.

  7. [Analysis of USH2A gene mutation in a Chinese family affected with Usher syndrome].

    Science.gov (United States)

    Li, Pengcheng; Liu, Fei; Zhang, Mingchang; Wang, Qiufen; Liu, Mugen

    2015-08-01

    To investigate the disease-causing mutation in a Chinese family affected with Usher syndrome type II. All of the 11 members from the family underwent comprehensive ophthalmologic examination and hearing test, and their genomic DNA were isolated from venous leukocytes. PCR and direct sequencing of USH2A gene were performed for the proband. Wild type and mutant type minigene vectors containing exon 42, intron 42 and exon 43 of the USH2A gene were constructed and transfected into Hela cells by lipofectamine reagent. Reverse transcription (RT)-PCR was carried out to verify the splicing of the minigenes. Pedigree analysis and clinical diagnosis indicated that the patients have suffered from autosomal recessive Usher syndrome type II. DNA sequencing has detected a homozygous c.8559-2A>G mutation of the USH2A gene in the proband, which has co-segregated with the disease in the family. The mutation has affected a conserved splice site in intron 42, which has led to inactivation of the splice site. Minigene experiment has confirmed the retaining of intron 42 in mature mRNA. The c.8559-2A>G mutation in the USH2A gene probably underlies the Usher syndrome type II in this family. The splice site mutation has resulted in abnormal splicing of USH2A pre-mRNA.

  8. RNA-Guided Activation of Pluripotency Genes in Human Fibroblasts

    DEFF Research Database (Denmark)

    Xiong, Kai; Zhou, Yan; Blichfeld, Kristian Aabo

    2017-01-01

    -associated protein 9 (dCas9)-VP64 (CRISPRa) alone, or a combination of dCas9-VP64 and MS2-P65-HSF1 [synergistic activation mediator (SAM) system] mediated activation of five pluripotency genes: KLF4 (K), LIN28 (L), MYC (M), OCT4 (O), and SOX2 (S) in human cells (HEK293T, HeLa, HepG2, and primary fibroblasts...... could be obtained from these SAM fibroblasts. In conclusion, our study showed that CRISPR/Cas9-based ATFs are potent to activate and maintain transcription of endogenous human pluripotent genes. However, future improvements of the system are still required to improve activation efficiency and cellular...

  9. Silver nanoparticles administered to chicken affect VEGFA and FGF2 gene expression in breast muscle and heart

    DEFF Research Database (Denmark)

    Hotowy, Anna Malgorzata; Sawosz, Ewa; Pineda, Lane Manalili

    2012-01-01

    Nanoparticles of colloidal silver (AgNano) can influence gene expression. Concerning trials of AgNano application in poultry as antimicrobial and metabolic agents, it is useful to reveal whether they affect the expression of genes crucial for bird development. AgNano were administered to broiler...... chickens as a water solution in two concentrations (10 and 20 ppm). After dissection of the birds, breast muscles and hearts were collected. Gene expression of FGF2 and VEGF on the mRNA and protein levels were evaluated using qPCR and ELISA methods. The results for gene expression in breast muscle revealed...

  10. Possible role of calcium dependent protein phosphorylation in the modulation of wound induced HRGP gene activation in potatoes after gamma irradiation

    International Nuclear Information System (INIS)

    Ussuf, K.K.; Laxmi, N.H.; Nair, P.M.

    1996-01-01

    Hydroxyproline rich glycoprotein (HRGP) gene is induced in both control and gamma irradiated potato tubers after wounding. The enhanced RNA synthesis in response to wounding correlated well with the accumulation of both HRGP gene transcripts and protein. Initially, the level of HRGP gene expression in gamma irradiated potatoes in response to wounding was 30% more than the corresponding controls. After post irradiation storage of 3-5 weeks, HRGP gene expression in response to wounding was significantly lower than the unirradiated samples. This low level of HRGP gene expression in irradiated potatoes was partially retrieved by 5 mM Ca 2+ treatment. Prior treatment with trifluoperazine, a calcium channel blocker resulted in 35% reduction in wound induced HRGP gene expression in control potatoes, further providing evidence for the involvement of Ca 2+ dependency for HRGP gene activation. A comparative study on in vivo protein phosphorylation induced by wounding in control and irradiated potatoes exhibited significant differences. A good correlation was observed in the modulation of phosphorylation and HRGP gene expression by Ca 2+ in irradiated potatoes. Wound induced signal transduction system and subsequent Ca 2+ dependent protein phosphorylation for the activation of HRGP gene is affected in potatoes after gamma irradiation, thus impairing the wound healing process adversely. (author). 25 refs., 5 figs

  11. Variants in Complement Factor H and Complement Factor H-Related Protein Genes, CFHR3 and CFHR1, Affect Complement Activation in IgA Nephropathy.

    Science.gov (United States)

    Zhu, Li; Zhai, Ya-Ling; Wang, Feng-Mei; Hou, Ping; Lv, Ji-Cheng; Xu, Da-Min; Shi, Su-Fang; Liu, Li-Jun; Yu, Feng; Zhao, Ming-Hui; Novak, Jan; Gharavi, Ali G; Zhang, Hong

    2015-05-01

    Complement activation is common in patients with IgA nephropathy (IgAN) and associated with disease severity. Our recent genome-wide association study of IgAN identified susceptibility loci on 1q32 containing the complement regulatory protein-encoding genes CFH and CFHR1-5, with rs6677604 in CFH as the top single-nucleotide polymorphism and CFHR3-1 deletion (CFHR3-1∆) as the top signal for copy number variation. In this study, to explore the clinical effects of variation in CFH, CFHR3, and CFHR1 on IgAN susceptibility and progression, we enrolled two populations. Group 1 included 1178 subjects with IgAN and available genome-wide association study data. Group 2 included 365 subjects with IgAN and available clinical follow-up data. In group 1, rs6677604 was associated with mesangial C3 deposition by genotype-phenotype correlation analysis. In group 2, we detected a linkage between the rs6677604-A allele and CFHR3-1∆ and found that the rs6677604-A allele was associated with higher serum levels of CFH and lower levels of the complement activation split product C3a. Furthermore, CFH levels were positively associated with circulating C3 levels and negatively associated with mesangial C3 deposition. Moreover, serum levels of the pathogenic galactose-deficient glycoform of IgA1 were also associated with the degree of mesangial C3 deposition in patients with IgAN. Our findings suggest that genetic variants in CFH, CFHR3, and CFHR1 affect complement activation and thereby, predispose patients to develop IgAN. Copyright © 2015 by the American Society of Nephrology.

  12. Anticipated affective consequences of physical activity adoption and maintenance.

    Science.gov (United States)

    Dunton, Genevieve Fridlund; Vaughan, Elaine

    2008-11-01

    The expected emotional consequences of future actions are thought to play an important role in health behavior change. This research examined whether anticipated affective consequences of success and failure vary across stages of physical activity change and differentially predict physical activity adoption as compared to maintenance. Using a prospective design over a 3-month period, a community sample of 329 healthy, middle-aged adults were assessed at 2 time points. Anticipated positive and negative emotions, stage of behavior change (precontemplation [PC], contemplation [C], preparation [P], action [A], maintenance [M]), and level of physical activity. At baseline, anticipated positive emotions were greater in C versus PC, whereas anticipated negative emotions were greater in M versus A and in M versus P. Higher anticipated positive but not negative emotions predicted physical activity adoption and maintenance after 3 months. Although the expected affective consequences of future success and failure differentiated among individuals in the early and later stages of physical activity change, respectively; only the anticipated affective consequences of success predicted future behavior.

  13. Affective mediators of a physical activity intervention for depression in multiple sclerosis.

    Science.gov (United States)

    Kratz, Anna L; Ehde, Dawn M; Bombardier, Charles H

    2014-02-01

    Previous analyses showed that a telephone-based intervention to increase physical activity in individuals with multiple sclerosis (MS) and depression resulted in significantly improved depressive symptoms compared to a wait-list control group. The aim of this study was to test positive affect and negative affect as mediators of the effect of the physical activity counseling on depressive symptoms. Ninety-two adults with MS, who met diagnostic criteria for either major depression or dysthymia and who reported low levels of physical activity, were randomized 1:1 to a 12-week telephone-based motivational interviewing (MI) intervention to improve physical activity (n = 44) or to a 12-week wait-list control group (n = 48). Self-reported positive and negative affect, physical activity, and depressive symptoms were gathered at baseline and postintervention. Path-analysis was used to test whether positive affect and negative affect mediated the positive effects of the intervention on depressive symptoms. Both positive and negative affect were significant mediators of the effects of the intervention on depressive symptoms; however, only positive affect mediated the association between changes in physical activity and improved depressive symptoms. Findings support physical activity and positive affect as key mediators of the MI treatment effect on improved mood. Decreases in negative affect were also evident in the treatment group, but were not related to improved physical activity. Findings may suggest the use of exercise-based interventions in conjunction with treatments that specifically target negative affective mechanisms for depression. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  14. Biased perception about gene technology: How perceived naturalness and affect distort benefit perception.

    Science.gov (United States)

    Siegrist, Michael; Hartmann, Christina; Sütterlin, Bernadette

    2016-01-01

    In two experiments, the participants showed biased responses when asked to evaluate the benefits of gene technology. They evaluated the importance of additional yields in corn fields due to a newly introduced variety, which would increase a farmer's revenues. In one condition, the newly introduced variety was described as a product of traditional breeding; in the other, it was identified as genetically modified (GM). The two experiments' findings showed that the same benefits were perceived as less important for a farmer when these were the result of GM crops compared with traditionally bred crops. Mediation analyses suggest that perceived naturalness and the affect associated with the technology per se influence the interpretation of the new information. The lack of perceived naturalness of gene technology seems to be the reason for the participants' perceived lower benefits of a new corn variety in the gene technology condition compared with the perceptions of the participants assigned to the traditional breeding condition. The strategy to increase the acceptance of gene technology by introducing plant varieties that better address consumer and producer needs may not work because people discount its associated benefits. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. HEATING AND ULTRAVIOLET LIGHT ACTIVATE ANTI-STRESS GENE FUNCTIONS IN HUMANS

    Directory of Open Access Journals (Sweden)

    Victor Fadeevitch Semenkov

    2015-07-01

    Full Text Available All types of cell stress are accompanied by the activation of anti-stress genes that can suppress ROS synthesis. We hypothesized that different environmental factors would affect organisms through the activation of anti-stress genes by autologous serum (AS proteins, followed by the synthesis of molecules that increase cell resistance to oxidative stress. The goal of this work was to study the influence of AS on ROS production by peripheral blood neutrophils isolated from donors in different age groups. Neutrophils were isolated from 59 donors (38-94 years old. AS was heated at 100˚C for 30 sec. or irradiated by ultraviolet light (UV at 200-280 nm and 8 W for 10 min. Neutrophils were exposed to heat shock at 42˚C for 1 min. (short-term heating stress or 43˚C for 10 min., followed by the determination of the chemiluminescence reaction induced by zymosan. AS can increase or decrease ROS production by neutrophils depending on the structure of the proteins in the serum; these structures can be changed by heating or UV treatment and the temperature of their interaction (4˚C or 37˚C. We propose that the effect of environmental factors on AS proteins can cause an adverse increase in oxidative stress levels due to the functional reduction of anti-stress genes. We found a negative correlation between the quantity of intracellular Hsp70 and levels of intracellular ROS production following 10 minutes of heat shock at 43°C. Short-term heating stress (1 minute at 42°C was followed by a prominent reduction in ROS production. This effect may be a result of the impact of the hormone adrenaline on the functions of anti-stress genes. Indeed, the same effect was observed after treatment of the neutrophils with adrenaline at concentrations of 10-4 M and 10-5 M. In contrast, dexamethasone from the other stress hormone group did not evoke the same effect at the same concentrations.

  16. The FRIABLE1 gene product affects cell adhesion in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Lutz Neumetzler

    Full Text Available Cell adhesion in plants is mediated predominantly by pectins, a group of complex cell wall associated polysaccharides. An Arabidopsis mutant, friable1 (frb1, was identified through a screen of T-DNA insertion lines that exhibited defective cell adhesion. Interestingly, the frb1 plants displayed both cell and organ dissociations and also ectopic defects in organ separation. The FRB1 gene encodes a Golgi-localized, plant specific protein with only weak sequence similarities to known proteins (DUF246. Unlike other cell adhesion deficient mutants, frb1 mutants do not have reduced levels of adhesion related cell wall polymers, such as pectins. Instead, FRB1 affects the abundance of galactose- and arabinose-containing oligosaccharides in the Golgi. Furthermore, frb1 mutants displayed alteration in pectin methylesterification, cell wall associated extensins and xyloglucan microstructure. We propose that abnormal FRB1 action has pleiotropic consequences on wall architecture, affecting both the extensin and pectin matrices, with consequent changes to the biomechanical properties of the wall and middle lamella, thereby influencing cell-cell adhesion.

  17. An adeno-associated virus-based intracellular sensor of pathological nuclear factor-κB activation for disease-inducible gene transfer.

    Directory of Open Access Journals (Sweden)

    Abdelwahed Chtarto

    Full Text Available Stimulation of resident cells by NF-κB activating cytokines is a central element of inflammatory and degenerative disorders of the central nervous system (CNS. This disease-mediated NF-κB activation could be used to drive transgene expression selectively in affected cells, using adeno-associated virus (AAV-mediated gene transfer. We have constructed a series of AAV vectors expressing GFP under the control of different promoters including NF-κB -responsive elements. As an initial screen, the vectors were tested in vitro in HEK-293T cells treated with TNF-α. The best profile of GFP induction was obtained with a promoter containing two blocks of four NF-κB -responsive sequences from the human JCV neurotropic polyoma virus promoter, fused to a new tight minimal CMV promoter, optimally distant from each other. A therapeutical gene, glial cell line-derived neurotrophic factor (GDNF cDNA under the control of serotype 1-encapsidated NF-κB -responsive AAV vector (AAV-NF was protective in senescent cultures of mouse cortical neurons. AAV-NF was then evaluated in vivo in the kainic acid (KA-induced status epilepticus rat model for temporal lobe epilepsy, a major neurological disorder with a central pathophysiological role for NF-κB activation. We demonstrate that AAV-NF, injected in the hippocampus, responded to disease induction by mediating GFP expression, preferentially in CA1 and CA3 neurons and astrocytes, specifically in regions where inflammatory markers were also induced. Altogether, these data demonstrate the feasibility to use disease-activated transcription factor-responsive elements in order to drive transgene expression specifically in affected cells in inflammatory CNS disorders using AAV-mediated gene transfer.

  18. Associations of Affective Responses During Free-Living Physical Activity and Future Physical Activity Levels: an Ecological Momentary Assessment Study.

    Science.gov (United States)

    Liao, Yue; Chou, Chih-Ping; Huh, Jimi; Leventhal, Adam; Dunton, Genevieve

    2017-08-01

    Affective response during physical activity may influence motivation to perform future physical activity behavior. However, affective response during physical activity is often assessed under controlled laboratory conditions. The current study used ecological momentary assessment (EMA) to capture affective responses during free-living physical activity performed by adults, and determined whether these affective responses predict future moderate-to-vigorous physical activity (MVPA) levels after 6 and 12 months. At baseline, electronic EMA surveys were randomly prompted across 4 days asking about current activities and affective states (e.g., happy, stressed, energetic, tired). Affective response during physical activity was operationalized as the level of positive or negative affect reported when concurrent physical activity (e.g., exercise or sports) was also reported. Data were available for 82 adults. Future levels of moderate-to-vigorous physical activity (MVPA) were measured using accelerometers, worn for seven consecutive days at 6 and 12 months after the baseline assessment. Feeling more energetic during physical activity was associated with performing more minutes of daily MVPA after both 6 and 12 months. Feeling less negative affect during physical activity was associated with engaging in more daily MVPA minutes after 12 months only. This study demonstrated how EMA can be used to capture affective responses during free-living physical activity. Results found that feelings more energetic and less negative during physical activity were associated with more future physical activity, suggesting that positive emotional benefits may reinforce behavior.

  19. Network Analysis Reveals Putative Genes Affecting Meat Quality in Angus Cattle.

    Science.gov (United States)

    Mateescu, Raluca G; Garrick, Dorian J; Reecy, James M

    2017-01-01

    Improvements in eating satisfaction will benefit consumers and should increase beef demand which is of interest to the beef industry. Tenderness, juiciness, and flavor are major determinants of the palatability of beef and are often used to reflect eating satisfaction. Carcass qualities are used as indicator traits for meat quality, with higher quality grade carcasses expected to relate to more tender and palatable meat. However, meat quality is a complex concept determined by many component traits making interpretation of genome-wide association studies (GWAS) on any one component challenging to interpret. Recent approaches combining traditional GWAS with gene network interactions theory could be more efficient in dissecting the genetic architecture of complex traits. Phenotypic measures of 23 traits reflecting carcass characteristics, components of meat quality, along with mineral and peptide concentrations were used along with Illumina 54k bovine SNP genotypes to derive an annotated gene network associated with meat quality in 2,110 Angus beef cattle. The efficient mixed model association (EMMAX) approach in combination with a genomic relationship matrix was used to directly estimate the associations between 54k SNP genotypes and each of the 23 component traits. Genomic correlated regions were identified by partial correlations which were further used along with an information theory algorithm to derive gene network clusters. Correlated SNP across 23 component traits were subjected to network scoring and visualization software to identify significant SNP. Significant pathways implicated in the meat quality complex through GO term enrichment analysis included angiogenesis, inflammation, transmembrane transporter activity, and receptor activity. These results suggest that network analysis using partial correlations and annotation of significant SNP can reveal the genetic architecture of complex traits and provide novel information regarding biological mechanisms

  20. Evolutionary relationships between miRNA genes and their activity.

    Science.gov (United States)

    Zhu, Yan; Skogerbø, Geir; Ning, Qianqian; Wang, Zhen; Li, Biqing; Yang, Shuang; Sun, Hong; Li, Yixue

    2012-12-22

    The emergence of vertebrates is characterized by a strong increase in miRNA families. MicroRNAs interact broadly with many transcripts, and the evolution of such a system is intriguing. However, evolutionary questions concerning the origin of miRNA genes and their subsequent evolution remain unexplained. In order to systematically understand the evolutionary relationship between miRNAs gene and their function, we classified human known miRNAs into eight groups based on their evolutionary ages estimated by maximum parsimony method. New miRNA genes with new functional sequences accumulated more dynamically in vertebrates than that observed in Drosophila. Different levels of evolutionary selection were observed over miRNA gene sequences with different time of origin. Most genic miRNAs differ from their host genes in time of origin, there is no particular relationship between the age of a miRNA and the age of its host genes, genic miRNAs are mostly younger than the corresponding host genes. MicroRNAs originated over different time-scales are often predicted/verified to target the same or overlapping sets of genes, opening the possibility of substantial functional redundancy among miRNAs of different ages. Higher degree of tissue specificity and lower expression level was found in young miRNAs. Our data showed that compared with protein coding genes, miRNA genes are more dynamic in terms of emergence and decay. Evolution patterns are quite different between miRNAs of different ages. MicroRNAs activity is under tight control with well-regulated expression increased and targeting decreased over time. Our work calls attention to the study of miRNA activity with a consideration of their origin time.

  1. BAY 87-2243, a highly potent and selective inhibitor of hypoxia-induced gene activation has antitumor activities by inhibition of mitochondrial complex I

    International Nuclear Information System (INIS)

    Ellinghaus, Peter; Heisler, Iring; Unterschemmann, Kerstin; Haerter, Michael; Beck, Hartmut; Greschat, Susanne; Ehrmann, Alexander; Summer, Holger; Flamme, Ingo; Oehme, Felix; Thierauch, Karlheinz; Michels, Martin; Hess-Stumpp, Holger; Ziegelbauer, Karl

    2013-01-01

    The activation of the transcription factor hypoxia-inducible factor-1 (HIF-1) plays an essential role in tumor development, tumor progression, and resistance to chemo- and radiotherapy. In order to identify compounds targeting the HIF pathway, a small molecule library was screened using a luciferase-driven HIF-1 reporter cell line under hypoxia. The high-throughput screening led to the identification of a class of aminoalkyl-substituted compounds that inhibited hypoxia-induced HIF-1 target gene expression in human lung cancer cell lines at low nanomolar concentrations. Lead structure BAY 87-2243 was found to inhibit HIF-1α and HIF-2α protein accumulation under hypoxic conditions in non-small cell lung cancer (NSCLC) cell line H460 but had no effect on HIF-1α protein levels induced by the hypoxia mimetics desferrioxamine or cobalt chloride. BAY 87-2243 had no effect on HIF target gene expression levels in RCC4 cells lacking Von Hippel–Lindau (VHL) activity nor did the compound affect the activity of HIF prolyl hydroxylase-2. Antitumor activity of BAY 87-2243, suppression of HIF-1α protein levels, and reduction of HIF-1 target gene expression in vivo were demonstrated in a H460 xenograft model. BAY 87-2243 did not inhibit cell proliferation under standard conditions. However under glucose depletion, a condition favoring mitochondrial ATP generation as energy source, BAY 87-2243 inhibited cell proliferation in the nanomolar range. Further experiments revealed that BAY 87-2243 inhibits mitochondrial complex I activity but has no effect on complex III activity. Interference with mitochondrial function to reduce hypoxia-induced HIF-1 activity in tumors might be an interesting therapeutic approach to overcome chemo- and radiotherapy-resistance of hypoxic tumors

  2. Nonsense mutations in the human β-globin gene affect mRNA metabolism

    International Nuclear Information System (INIS)

    Baserga, S.J.; Benz, E.J. Jr.

    1988-01-01

    A number of premature translation termination mutations (nonsense mutations) have been described in the human α- and β-globin genes. Studies on mRNA isolated from patients with β 0 -thalassemia have shown that for both the β-17 and the β-39 mutations less than normal levels of β-globin mRNA accumulate in peripheral blood cells. (The codon at which the mutation occurs designates the name of the mutation; there are 146 codons in human β-globin mRNA). In vitro studies using the cloned β-39 gene have reproduced this effect in a heterologous transfection system and have suggested that the defect resides in intranuclear metabolism. The authors have asked if this phenomenon of decreased mRNA accumulation is a general property of nonsense mutations and if the effect depends on the location or the type of mutation. Toward this end, they have studied the effect of five nonsense mutations and two missense mutations on the expression of human β-globin mRNA in a heterologous transfection system. In all cases studied, the presence of a translation termination codon correlates with a decrease in the steady-state level of mRNA. The data suggest that the metabolism of a mammalian mRNA is affected by the presence of a mutation that affects translation

  3. Gene activation regresses atherosclerosis, promotes health, and enhances longevity

    Directory of Open Access Journals (Sweden)

    Luoma Pauli V

    2010-07-01

    Full Text Available Abstract Background Lifestyle factors and pharmacological compounds activate genetic mechanisms that influence the development of atherosclerotic and other diseases. This article reviews studies on natural and pharmacological gene activation that promotes health and enhances longevity. Results Living habits including healthy diet and regular physical activity, and pharmacotherapy, upregulate genes encoding enzymes and apolipoprotein and ATP-binding cassette transporters, acting in metabolic processes that promote health and increase survival. Cytochrome P450-enzymes, physiological factors in maintaining cholesterol homeostasis, generate oxysterols for the elimination of surplus cholesterol. Hepatic CTP:phosphocholine cytidylyltransferase-α is an important regulator of plasma HDL-C level. Gene-activators produce plasma lipoprotein profile, high HDL-C, HDL2-C and HDL-C/cholesterol ratio, which is typical of low risk of atherosclerotic disease, and also of exceptional longevity together with reduced prevalence of cardiovascular, metabolic and other diseases. High HDL contributes to protection against inflammation, oxidation and thrombosis, and associates with good cognitive function in very old people. Avoiding unhealthy stress and managing it properly promotes health and increases life expectancy. Conclusions Healthy living habits and gene-activating xenobiotics upregulate mechanisms that produce lipoprotein pattern typical of very old people and enhance longevity. Lipoprotein metabolism and large HDL2 associate with the process of living a very long life. Major future goals for health promotion are the improving of commitment to both wise lifestyle choices and drug therapy, and further the developing of new and more effective and well tolerated drugs and treatments.

  4. Vanillin Differentially Affects Azoxymethane-Injected Rat Colon Carcinogenesis and Gene Expression

    Science.gov (United States)

    Ho, Ket Li; Chong, Pei Pei; Yazan, Latifah Saiful

    2012-01-01

    Abstract Vanillin is the substance responsible for the flavor and smell of vanilla, a widely used flavoring agent. Previous studies reported that vanillin is a good antimutagen and anticarcinogen. However, there are also some contradicting findings showing that vanillin was a comutagen and cocarcinogen. This study investigated whether vanillin is an anticarcinogen or a cocarcinogen in rats induced with azoxymethane (AOM). Rats induced with AOM will develop aberrant crypt foci (ACF). AOM-challenged rats were treated with vanillin orally and intraperitoneally at low and high concentrations and ACF density, multiplicity, and distribution were observed. The gene expression of 14 colorectal cancer-related genes was also studied. Results showed that vanillin consumed orally had no effect on ACF. However, high concentrations (300 mg/kg body weight) of vanillin administered through intraperitoneal injection could increase ACF density and ACF multiplicity. ACF were mainly found in the distal colon rather than in the mid-section and proximal colon. The expression of colorectal cancer biomarkers, protooncogenes, recombinational repair, mismatch repair, and cell cycle arrest, and tumor suppressor gene expression were also affected by vanillin. Vanillin was not cocarcinogenic when consumed orally. However, it was cocarcinogenic when being administered intraperitoneally at high concentration. Hence, the use of vanillin in food should be safe but might have cocarcinogenic potential when it is used in high concentration for therapeutic purposes. PMID:23216109

  5. Mechanical stress activates Smad pathway through PKCδ to enhance interleukin-11 gene transcription in osteoblasts.

    Directory of Open Access Journals (Sweden)

    Shinsuke Kido

    Full Text Available BACKGROUND: Mechanical stress rapidly induces ΔFosB expression in osteoblasts, which binds to interleukin (IL-11 gene promoter to enhance IL-11 expression, and IL-11 enhances osteoblast differentiation. Because bone morphogenetic proteins (BMPs also stimulate IL-11 expression in osteoblasts, there is a possibility that BMP-Smad signaling is involved in the enhancement of osteoblast differentiation by mechanical stress. The present study was undertaken to clarify whether mechanical stress affects BMP-Smad signaling, and if so, to elucidate the role of Smad signaling in mechanical stress-induced enhancement of IL-11 gene transcription. METHODOLOGY/PRINCIPAL FINDINGS: Mechanical loading by fluid shear stress (FSS induced phosphorylation of BMP-specific receptor-regulated Smads (BR-Smads, Smad1/5, in murine primary osteoblasts (mPOBs. FSS rapidly phosphorylated Y311 of protein kinase C (PKCδ, and phosphorylated PKCδ interacted with BR-Smads to phosphorylate BR-Smads. Transfection of PKCδ siRNA or Y311F mutant PKCδ abrogated BR-Smads phosphorylation and suppressed IL-11 gene transcription enhanced by FSS. Activated BR-Smads bound to the Smad-binding element (SBE of IL-11 gene promoter and formed complex with ΔFosB/JunD heterodimer via binding to the C-terminal region of JunD. Site-directed mutagenesis in the SBE and the AP-1 site revealed that both SBE and AP-1 sites were required for full activation of IL-11 gene promoter by FSS. CONCLUSIONS/SIGNIFICANCE: These results demonstrate that PKCδ-BR-Smads pathway plays an important role in the intracellular signaling in response to mechanical stress, and that a cross-talk between PKCδ-BR-Smads and ΔFosB/JunD pathways synergistically stimulates IL-11 gene transcription in response to mechanical stress.

  6. Factors affecting expression of the recF gene of Escherichia coli K-12.

    Science.gov (United States)

    Sandler, S J; Clark, A J

    1990-01-31

    This report describes four factors which affect expression of the recF gene from strong upstream lambda promoters under temperature-sensitive cIAt2-encoded repressor control. The first factor was the long mRNA leader sequence consisting of the Escherichia coli dnaN gene and 95% of the dnaA gene and lambda bet, N (double amber) and 40% of the exo gene. When most of this DNA was deleted, RecF became detectable in maxicells. The second factor was the vector, pBEU28, a runaway replication plasmid. When we substituted pUC118 for pBEU28, RecF became detectable in whole cells by the Coomassie blue staining technique. The third factor was the efficiency of initiation of translation. We used site-directed mutagenesis to change the mRNA leader, ribosome-binding site and the 3 bp before and after the translational start codon. Monitoring the effect of these mutational changes by translational fusion to lacZ, we discovered that the efficiency of initiation of translation was increased 30-fold. Only an estimated two- or threefold increase in accumulated levels of RecF occurred, however. This led us to discover the fourth factor, namely sequences in the recF gene itself. These sequences reduce expression of the recF-lacZ fusion genes 100-fold. The sequences responsible for this decrease in expression occur in four regions in the N-terminal half of recF. Expression is reduced by some sequences at the transcriptional level and by others at the translational level.

  7. Evaluating Transcription Factor Activity Changes by Scoring Unexplained Target Genes in Expression Data.

    Directory of Open Access Journals (Sweden)

    Evi Berchtold

    Full Text Available Several methods predict activity changes of transcription factors (TFs from a given regulatory network and measured expression data. But available gene regulatory networks are incomplete and contain many condition-dependent regulations that are not relevant for the specific expression measurement. It is not known which combination of active TFs is needed to cause a change in the expression of a target gene. A method to systematically evaluate the inferred activity changes is missing. We present such an evaluation strategy that indicates for how many target genes the observed expression changes can be explained by a given set of active TFs. To overcome the problem that the exact combination of active TFs needed to activate a gene is typically not known, we assume a gene to be explained if there exists any combination for which the predicted active TFs can possibly explain the observed change of the gene. We introduce the i-score (inconsistency score, which quantifies how many genes could not be explained by the set of activity changes of TFs. We observe that, even for these minimal requirements, published methods yield many unexplained target genes, i.e. large i-scores. This holds for all methods and all expression datasets we evaluated. We provide new optimization methods to calculate the best possible (minimal i-score given the network and measured expression data. The evaluation of this optimized i-score on a large data compendium yields many unexplained target genes for almost every case. This indicates that currently available regulatory networks are still far from being complete. Both the presented Act-SAT and Act-A* methods produce optimal sets of TF activity changes, which can be used to investigate the difficult interplay of expression and network data. A web server and a command line tool to calculate our i-score and to find the active TFs associated with the minimal i-score is available from https://services.bio.ifi.lmu.de/i-score.

  8. A Simple Network to Remove Interference in Surface EMG Signal from Single Gene Affected Phenylketonuria Patients for Proper Diagnosis

    Science.gov (United States)

    Mohanty, Madhusmita; Basu, Mousumi; Pattanayak, Deba Narayan; Mohapatra, Sumant Kumar

    2018-04-01

    Recently Autosomal Recessive Single Gene (ARSG) diseases are highly effective to the children within the age of 5-10 years. One of the most ARSG disease is a Phenylketonuria (PKU). This single gene disease is associated with mutations in the gene that encodes the enzyme phenylalanine hydroxylase (PAH, Gene 612349). Through this mutation process, PAH of the gene affected patient can not properly manufacture PAH as a result the patients suffer from decreased muscle tone which shows abnormality in EMG signal. Here the extraction of the quality of the PKU affected EMG (PKU-EMG) signal is a keen interest, so it is highly necessary to remove the added ECG signal as well as the biological and instrumental noises. In the Present paper we proposed a method for detection and classification of the PKU affected EMG signal. Here Discrete Wavelet Transformation is implemented for extraction of the features of the PKU affected EMG signal. Adaptive Neuro-Fuzzy Inference System (ANFIS) network is used for the classification of the signal. Modified Particle Swarm Optimization (MPSO) and Modified Genetic Algorithm (MGA) are used to train the ANFIS network. Simulation result shows that the proposed method gives better performance as compared to existing approaches. Also it gives better accuracy of 98.02% for the detection of PKU-EMG signal. The advantages of the proposed model is to use MGA and MPSO to train the parameters of ANFIS network for classification of ECG and EMG signal of PKU affected patients. The proposed method obtained the high SNR (18.13 ± 0.36 dB), SNR (0.52 ± 1.62 dB), RE (0.02 ± 0.32), MSE (0.64 ± 2.01), CC (0.99 ± 0.02), RMSE (0.75 ± 0.35) and MFRE (0.01 ± 0.02), RMSE (0.75 ± 0.35) and MFRE (0.01 ± 0.02). From authors knowledge, this is the first time a composite method is used for diagnosis of PKU affected patients. The accuracy (98.02%), sensitivity (100%) and specificity (98.59%) helps for proper clinical treatment. It can help for readers

  9. Hierarchy in the home cage affects behaviour and gene expression in group-housed C57BL/6 male mice.

    Science.gov (United States)

    Horii, Yasuyuki; Nagasawa, Tatsuhiro; Sakakibara, Hiroyuki; Takahashi, Aki; Tanave, Akira; Matsumoto, Yuki; Nagayama, Hiromichi; Yoshimi, Kazuto; Yasuda, Michiko T; Shimoi, Kayoko; Koide, Tsuyoshi

    2017-08-01

    Group-housed male mice exhibit aggressive behaviour towards their cage mates and form a social hierarchy. Here, we describe how social hierarchy in standard group-housed conditions affects behaviour and gene expression in male mice. Four male C57BL/6 mice were kept in each cage used in the study, and the social hierarchy was determined from observation of video recordings of aggressive behaviour. After formation of a social hierarchy, the behaviour and hippocampal gene expression were analysed in the mice. Higher anxiety- and depression-like behaviours and elevated gene expression of hypothalamic corticotropin-releasing hormone and hippocampal serotonin receptor subtypes were observed in subordinate mice compared with those of dominant mice. These differences were alleviated by orally administering fluoxetine, which is an antidepressant of the selective serotonin reuptake inhibitor class. We concluded that hierarchy in the home cage affects behaviour and gene expression in male mice, resulting in anxiety- and depression-like behaviours being regulated differently in dominant and subordinate mice.

  10. The role of affects and emotions in physical activity maintenance

    Directory of Open Access Journals (Sweden)

    Benjamin Wienke

    2016-08-01

    Full Text Available Although previous research has shown that affective variables are consistently associated with physical activity behavior, the working mechanisms are not understood to the extent of creating an intervention. The aim of this study is to identify situations and aspects of physical activity, which lead to positive affective reactions in people taking part in regular and long-term exercise. In this study 24 adults (12 female, 12 male distributed over three age groups (young, middle, and late adulthood that took part in sport programs (individual or team sport for at least five years. Semi-structured in depth interviews with questions about physical activity, long term participation and affective response in a sporting environment were conducted in order to ascertain those situations and aspects of the exercise program triggering positive affective states. Interviews were transcribed verbatim and followed Grounded Theory principles. Emerging concepts were grouped and merged into different categories representing the key aspects of exercise. Four factors were identified which are associated with emergence of positive emotions in sport and exercise. Firstly, perceived competence is one of the major factors influencing affective states during physical activity representing individual and collective success and progress, competition and challenge. Secondly, perceived social interaction is another factor comprising of all sorts of peer-related aspects such as communication with others, being part of a group and creating close relationships or friendships. Thirdly, novelty experience in contrast to other none-sporting activities such as work, family or other leisure activities was another factor. The last factor found was the perceived physical exertion comprising the degree of exhaustion, a possibly delayed turnaround in the affective response and the aspect of sport being a physical compensation for everyday sedentary life. The results of this study

  11. Cognitive-Affective Dimensions of Female Orgasm: The Role of Automatic Thoughts and Affect During Sexual Activity

    NARCIS (Netherlands)

    Tavares, Inês M.; Laan, Ellen T. M.; Nobre, Pedro J.

    2017-01-01

    Cognitive-affective factors contribute to female sexual dysfunctions, defined as clinically significant difficulties in the ability to respond sexually or to experience sexual pleasure. Automatic thoughts and affect presented during sexual activity are acknowledged as maintenance factors for these

  12. Linkage of the VNTR/insulin-gene and type I diabetes mellitus: Increased gene sharing in affected sibling pairs

    Energy Technology Data Exchange (ETDEWEB)

    Owerbach, D.; Gabbay, K.H. (Baylor College of Medicine, Houston, TX (United States))

    1994-05-01

    Ninety-six multiplex type I diabetic families were typed at the 5' flanking region of the insulin gene by using a PCR assay that better resolves the VNTR into multiple alleles. Affected sibling pairs shared 2, 1, and 0 VNTR alleles - identical by descent - at a frequency of .47, .45, and .08, respectively, a ratio that deviated from the expected 1:2:1 ratio (P<.001). These results confirm linkage of the chromosome 11p15.5 region with type I diabetes mellitus susceptibility. 20 refs., 2 tabs.

  13. A parasitic selfish gene that affects host promiscuity

    OpenAIRE

    Giraldo-Perez, Paulina; Goddard, Matthew R.

    2013-01-01

    Selfish genes demonstrate transmission bias and invade sexual populations despite conferring no benefit to their hosts. While the molecular genetics and evolutionary dynamics of selfish genes are reasonably well characterized, their effects on hosts are not. Homing endonuclease genes (HEGs) are one well-studied family of selfish genes that are assumed to be benign. However, we show that carrying HEGs is costly for Saccharomyces cerevisiae, demonstrating that these genetic elements are not nec...

  14. TALE activators regulate gene expression in a position- and strand-dependent manner in mammalian cells.

    Science.gov (United States)

    Uhde-Stone, Claudia; Cheung, Edna; Lu, Biao

    2014-01-24

    Transcription activator-like effectors (TALEs) are a class of transcription factors that are readily programmable to regulate gene expression. Despite their growing popularity, little is known about binding site parameters that influence TALE-mediated gene activation in mammalian cells. We demonstrate that TALE activators modulate gene expression in mammalian cells in a position- and strand-dependent manner. To study the effects of binding site location, we engineered TALEs customized to recognize specific DNA sequences located in either the promoter or the transcribed region of reporter genes. We found that TALE activators robustly activated reporter genes when their binding sites were located within the promoter region. In contrast, TALE activators inhibited the expression of reporter genes when their binding sites were located on the sense strand of the transcribed region. Notably, this repression was independent of the effector domain utilized, suggesting a simple blockage mechanism. We conclude that TALE activators in mammalian cells regulate genes in a position- and strand-dependent manner that is substantially different from gene activation by native TALEs in plants. These findings have implications for optimizing the design of custom TALEs for genetic manipulation in mammalian cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Investigation on the Metabolic Regulation of pgi gene knockout Escherichia coli by Enzyme Activities and Intracellular Metabolite Concentrations

    Directory of Open Access Journals (Sweden)

    Nor ‘Aini, A. R.

    2006-01-01

    Full Text Available An integrated analysis of the cell growth characteristics, enzyme activities, intracellular metabolite concentrations was made to investigate the metabolic regulation of pgi gene knockout Escherichia coli based on batch culture and continuous culture which was performed at the dilution rate of 0.2h-1. The enzymatic study identified that pathways of pentose phosphate, ED pathway and glyoxylate shunt were all active in pgi mutant. The glycolysis enzymes i.e glyceraldehyde-3-phosphate dehydrogenase, fructose diphosphatase, pyruvate kinase, triose phosphate isomerase were down regulated implying that the inactivation of pgi gene reduced the carbon flux through glycolytic pathway. Meanwhile, the pentose phosphate pathway was active as a major route for intermediary carbohydrate metabolism instead of glycolysis. The pentose phosphate pathway generates most of the major reducing co-factor NADPH as shown by the increased of NADPH/NADP+ ratio in the mutant when compared with the parent strain. The fermentative enzymes such as acetate kinase and lactate dehydrogenase were down regulated in the mutant. Knockout of pgi gene results in the significant increase in the intracellular concentration of glucose-6-phosphate and decrease in the concentration of oxaloacetate. The slow growth rate of the mutant was assumed to be affected by the accumulation of glucose-6-phosphate and imbalance of NADPH reoxidation.

  16. Neighboring Genes Show Correlated Evolution in Gene Expression

    Science.gov (United States)

    Ghanbarian, Avazeh T.; Hurst, Laurence D.

    2015-01-01

    When considering the evolution of a gene’s expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking. PMID:25743543

  17. Diversity of the Genes Implicated in Algerian Patients Affected by Usher Syndrome.

    Science.gov (United States)

    Abdi, Samia; Bahloul, Amel; Behlouli, Asma; Hardelin, Jean-Pierre; Makrelouf, Mohamed; Boudjelida, Kamel; Louha, Malek; Cheknene, Ahmed; Belouni, Rachid; Rous, Yahia; Merad, Zahida; Selmane, Djamel; Hasbelaoui, Mokhtar; Bonnet, Crystel; Zenati, Akila; Petit, Christine

    2016-01-01

    Usher syndrome (USH) is an autosomal recessive disorder characterized by a dual sensory impairment affecting hearing and vision. USH is clinically and genetically heterogeneous. Ten different causal genes have been reported. We studied the molecular bases of the disease in 18 unrelated Algerian patients by targeted-exome sequencing, and identified the causal biallelic mutations in all of them: 16 patients carried the mutations at the homozygous state and 2 at the compound heterozygous state. Nine of the 17 different mutations detected in MYO7A (1 of 5 mutations), CDH23 (4 of 7 mutations), PCDH15 (1 mutation), USH1C (1 mutation), USH1G (1 mutation), and USH2A (1 of 2 mutations), had not been previously reported. The deleterious consequences of a missense mutation of CDH23 (p.Asp1501Asn) and the in-frame single codon deletion in USH1G (p.Ala397del) on the corresponding proteins were predicted from the solved 3D-structures of extracellular cadherin (EC) domains of cadherin-23 and the sterile alpha motif (SAM) domain of USH1G/sans, respectively. In addition, we were able to show that the USH1G mutation is likely to affect the binding interface between the SAM domain and USH1C/harmonin. This should spur the use of 3D-structures, not only of isolated protein domains, but also of protein-protein interaction interfaces, to predict the functional impact of mutations detected in the USH genes.

  18. Temporal dynamics of physical activity and affect in depressed and nondepressed individuals.

    Science.gov (United States)

    Stavrakakis, Nikolaos; Booij, Sanne H; Roest, Annelieke M; de Jonge, Peter; Oldehinkel, Albertine J; Bos, Elisabeth H

    2015-12-01

    The association between physical activity and affect found in longitudinal observational studies is generally small to moderate. It is unknown how this association generalizes to individuals. The aim of the present study was to investigate interindividual differences in the bidirectional dynamic relationship between physical activity and affect, in depressed and nondepressed individuals, using time-series analysis. A pair-matched sample of 10 depressed and 10 nondepressed participants (mean age = 36.6, SD = 8.9, 30% males) wore accelerometers and completed electronic questionnaires 3 times a day for 30 days. Physical activity was operationalized as the total energy expenditure (EE) per day segment (i.e., 6 hr). The multivariate time series (T = 90) of every individual were analyzed using vector autoregressive modeling (VAR), with the aim to assess direct as well as lagged (i.e., over 1 day) effects of EE on positive and negative affect, and vice versa. Large interindividual differences in the strength, direction and temporal aspects of the relationship between physical activity and positive and negative affect were observed. An exception was the direct (but not the lagged) effect of physical activity on positive affect, which was positive in nearly all individuals. This study showed that the association between physical activity and affect varied considerably across individuals. Thus, while at the group level the effect of physical activity on affect may be small, in some individuals the effect may be clinically relevant. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  19. Recombination activating activity of XRCC1 analogous genes in X-ray sensitive and resistant CHO cell lines

    International Nuclear Information System (INIS)

    Golubnitchaya-Labudova, O.; Hoefer, M.; Portele, A.; Vacata, V.; Rink, H.; Lubec, G.

    1997-01-01

    The XRCC1 gene (X-ray repair cross complementing) complements the DNA repair deficiency of the radiation sensitive Chinese hamster ovary (CHO) mutant cell line EM9 but the mechanism of the correction is not elucidated yet. XRCC1 shows substantial homology to the RAG2 gene (recombination activating gene) and we therefore tried to answer the question, whether structural similarities (sequence of a putative recombination activating domain, aa 332-362 for XRCC1 and aa 286-316 in RAG2) would reflect similar functions of the homologous, putative recombination activating domain. PCR experiments revealed that no sequence homologous to the structural part of human XRCC1 was present in cDNA of CHO. Differential display demonstrated two putative recombination activating in the parental CHO line AA8 and one in the radiosensitive mutant EM9. Southern blot experiments showed the presence of several genes with partial homology to human XRCC1. Recombination studies consisted of expressing amplified target domains within chimeric proteins in recA - bacteria and subsequent detection of recombination events by sequencing the recombinant plasmids. Recombination experiments demonstrated recombination activating activity of all putative recombination activating domains amplified from AA8 and EM9 genomes as reflected by deletions within the inserts of the recombinant plasmids. The recombination activating activity of XRCC1 analogues could explain a mechanism responsible for the correction of the DNA repair defect in EM9. (author)

  20. Regional brain activation and affective response to physical activity among healthy adolescents

    OpenAIRE

    Schneider, Margaret; Graham, Dan; Grant, Arthur; King, Pamela; Cooper, Dan

    2009-01-01

    Research has shown that frontal brain activation, assessed via electroencephalographic (EEG) asymmetry, predicts the post-exercise affective response to exercise among adults. Building on this evidence, the present study investigates the utility of resting cortical asymmetry for explaining variance in the affective response both during and after exercise at two different intensities among healthy adolescents. Resting EEG was obtained from 98 adolescents (55% male), who also completed two 30-m...

  1. Novel Genes Affecting the Interaction between the Cabbage Whitefly and Arabidopsis Uncovered by Genome-Wide Association Mapping.

    Directory of Open Access Journals (Sweden)

    Colette Broekgaarden

    Full Text Available Plants have evolved a variety of ways to defend themselves against biotic attackers. This has resulted in the presence of substantial variation in defense mechanisms among plants, even within a species. Genome-wide association (GWA mapping is a useful tool to study the genetic architecture of traits, but has so far only had limited exploitation in studies of plant defense. Here, we study the genetic architecture of defense against the phloem-feeding insect cabbage whitefly (Aleyrodes proletella in Arabidopsis thaliana. We determined whitefly performance, i.e. the survival and reproduction of whitefly females, on 360 worldwide selected natural accessions and subsequently performed GWA mapping using 214,051 SNPs. Substantial variation for whitefly adult survival and oviposition rate (number of eggs laid per female per day was observed between the accessions. We identified 39 candidate SNPs for either whitefly adult survival or oviposition rate, all with relatively small effects, underpinning the complex architecture of defense traits. Among the corresponding candidate genes, i.e. genes in linkage disequilibrium (LD with candidate SNPs, none have previously been identified as a gene playing a role in the interaction between plants and phloem-feeding insects. Whitefly performance on knock-out mutants of a number of candidate genes was significantly affected, validating the potential of GWA mapping for novel gene discovery in plant-insect interactions. Our results show that GWA analysis is a very useful tool to gain insight into the genetic architecture of plant defense against herbivorous insects, i.e. we identified and validated several genes affecting whitefly performance that have not previously been related to plant defense against herbivorous insects.

  2. Candidate genes affecting fat deposition, carcass composition and meat quality traits in pigs

    OpenAIRE

    Gandolfi, Greta

    2011-01-01

    Pig meat quality is determined by several parameters, such as lipid content, tenderness, water-holding capacity, pH, color and flavor, that affect consumers’ acceptance and technological properties of meat. Carcass quality parameters are important for the production of fresh and dry-cure high-quality products, in particular the fat deposition and the lean cut yield. The identification of genes and markers associated with meat and carcass quality traits is of prime interest, for the possibilit...

  3. Antisense long noncoding RNAs regulate var gene activation in the malaria parasite Plasmodium falciparum.

    Science.gov (United States)

    Amit-Avraham, Inbar; Pozner, Guy; Eshar, Shiri; Fastman, Yair; Kolevzon, Netanel; Yavin, Eylon; Dzikowski, Ron

    2015-03-03

    The virulence of Plasmodium falciparum, the causative agent of the deadliest form of human malaria, is attributed to its ability to evade human immunity through antigenic variation. These parasites alternate between expression of variable antigens, encoded by members of a multicopy gene family named var. Immune evasion through antigenic variation depends on tight regulation of var gene expression, ensuring that only a single var gene is expressed at a time while the rest of the family is maintained transcriptionally silent. Understanding how a single gene is chosen for activation is critical for understanding mutually exclusive expression but remains a mystery. Here, we show that antisense long noncoding RNAs (lncRNAs) initiating from var introns are associated with the single active var gene at the time in the cell cycle when the single var upstream promoter is active. We demonstrate that these antisense transcripts are incorporated into chromatin, and that expression of these antisense lncRNAs in trans triggers activation of a silent var gene in a sequence- and dose-dependent manner. On the other hand, interference with these lncRNAs using complement peptide nucleic acid molecules down-regulated the active var gene, erased the epigenetic memory, and induced expression switching. Altogether, our data provide evidence that these antisense lncRNAs play a key role in regulating var gene activation and mutually exclusive expression.

  4. Early developmental gene enhancers affect subcortical volumes in the adult human brain.

    Science.gov (United States)

    Becker, Martin; Guadalupe, Tulio; Franke, Barbara; Hibar, Derrek P; Renteria, Miguel E; Stein, Jason L; Thompson, Paul M; Francks, Clyde; Vernes, Sonja C; Fisher, Simon E

    2016-05-01

    Genome-wide association screens aim to identify common genetic variants contributing to the phenotypic variability of complex traits, such as human height or brain morphology. The identified genetic variants are mostly within noncoding genomic regions and the biology of the genotype-phenotype association typically remains unclear. In this article, we propose a complementary targeted strategy to reveal the genetic underpinnings of variability in subcortical brain volumes, by specifically selecting genomic loci that are experimentally validated forebrain enhancers, active in early embryonic development. We hypothesized that genetic variation within these enhancers may affect the development and ultimately the structure of subcortical brain regions in adults. We tested whether variants in forebrain enhancer regions showed an overall enrichment of association with volumetric variation in subcortical structures of >13,000 healthy adults. We observed significant enrichment of genomic loci that affect the volume of the hippocampus within forebrain enhancers (empirical P = 0.0015), a finding which robustly passed the adjusted threshold for testing of multiple brain phenotypes (cutoff of P < 0.0083 at an alpha of 0.05). In analyses of individual single nucleotide polymorphisms (SNPs), we identified an association upstream of the ID2 gene with rs7588305 and variation in hippocampal volume. This SNP-based association survived multiple-testing correction for the number of SNPs analyzed but not for the number of subcortical structures. Targeting known regulatory regions offers a way to understand the underlying biology that connects genotypes to phenotypes, particularly in the context of neuroimaging genetics. This biology-driven approach generates testable hypotheses regarding the functional biology of identified associations. Hum Brain Mapp 37:1788-1800, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. System-level analysis of genes and functions affecting survival during nutrient starvation in Saccharomyces cerevisiae.

    Science.gov (United States)

    Gresham, David; Boer, Viktor M; Caudy, Amy; Ziv, Naomi; Brandt, Nathan J; Storey, John D; Botstein, David

    2011-01-01

    An essential property of all cells is the ability to exit from active cell division and persist in a quiescent state. For single-celled microbes this primarily occurs in response to nutrient deprivation. We studied the genetic requirements for survival of Saccharomyces cerevisiae when starved for either of two nutrients: phosphate or leucine. We measured the survival of nearly all nonessential haploid null yeast mutants in mixed populations using a quantitative sequencing method that estimates the abundance of each mutant on the basis of frequency of unique molecular barcodes. Starvation for phosphate results in a population half-life of 337 hr whereas starvation for leucine results in a half-life of 27.7 hr. To measure survival of individual mutants in each population we developed a statistical framework that accounts for the multiple sources of experimental variation. From the identities of the genes in which mutations strongly affect survival, we identify genetic evidence for several cellular processes affecting survival during nutrient starvation, including autophagy, chromatin remodeling, mRNA processing, and cytoskeleton function. In addition, we found evidence that mitochondrial and peroxisome function is required for survival. Our experimental and analytical methods represent an efficient and quantitative approach to characterizing genetic functions and networks with unprecedented resolution and identified genotype-by-environment interactions that have important implications for interpretation of studies of aging and quiescence in yeast.

  6. Addiction, adolescence, and innate immune gene induction

    Directory of Open Access Journals (Sweden)

    Fulton T Crews

    2011-04-01

    Full Text Available Repeated drug use/abuse amplifies psychopathology, progressively reducing frontal lobe behavioral control and cognitive flexibility while simultaneously increasing limbic temporal lobe negative emotionality. The period of adolescence is a neurodevelopmental stage characterized by poor behavioral control as well as strong limbic reward and thrill seeking. Repeated drug abuse and/or stress during this stage increase the risk of addiction and elevate activator innate immune signaling in the brain. Nuclear factor-kappa-light-chain-enhancer of activated B cells (NF-κB is a key glial transcription factor that regulates proinflammatory chemokines, cytokines, oxidases, proteases, and other innate immune genes. Induction of innate brain immune gene expression (e.g., NF-κB facilitates negative affect, depression-like behaviors, and inhibits hippocampal neurogenesis. In addition, innate immune gene induction alters cortical neurotransmission consistent with loss of behavioral control. Studies with anti-oxidant, anti-inflammatory, and anti-depressant drugs as well as opiate antagonists link persistent innate immune gene expression to key behavioral components of addiction, e.g. negative affect-anxiety and loss of frontal cortical behavioral control. This review suggests that persistent and progressive changes in innate immune gene expression contribute to the development of addiction. Innate immune genes may represent a novel new target for addiction therapy.

  7. A deletion affecting an LRR-RLK gene co-segregates with the fruit flat shape trait in peach.

    Science.gov (United States)

    López-Girona, Elena; Zhang, Yu; Eduardo, Iban; Mora, José Ramón Hernández; Alexiou, Konstantinos G; Arús, Pere; Aranzana, María José

    2017-07-27

    In peach, the flat phenotype is caused by a partially dominant allele in heterozygosis (Ss), fruits from homozygous trees (SS) abort a few weeks after fruit setting. Previous research has identified a SSR marker (UDP98-412) highly associated with the trait, found suitable for marker assisted selection (MAS). Here we report a ∼10 Kb deletion affecting the gene PRUPE.6G281100, 400 Kb upstream of UDP98-412, co-segregating with the trait. This gene is a leucine-rich repeat receptor-like kinase (LRR-RLK) orthologous to the Brassinosteroid insensitive 1-associated receptor kinase 1 (BAK1) group. PCR markers suitable for MAS confirmed its strong association with the trait in a collection of 246 cultivars. They were used to evaluate the DNA from a round fruit derived from a somatic mutation of the flat variety 'UFO-4', revealing that the mutation affected the flat associated allele (S). Protein BLAST alignment identified significant hits with genes involved in different biological processes. Best protein hit occurred with AtRLP12, which may functionally complement CLAVATA2, a key regulator that controls the stem cell population size. RT-PCR analysis revealed the absence of transcription of the partially deleted allele. The data support PRUPE.6G281100 as a candidate gene for flat shape in peach.

  8. The co-repressor SMRT delays DNA damage-induced caspase activation by repressing pro-apoptotic genes and modulating the dynamics of checkpoint kinase 2 activation.

    Directory of Open Access Journals (Sweden)

    Claudio Scafoglio

    Full Text Available Checkpoint kinase 2 (Chk2 is a major regulator of DNA damage response and can induce alternative cellular responses: cell cycle arrest and DNA repair or programmed cell death. Here, we report the identification of a new role of Chk2 in transcriptional regulation that also contributes to modulating the balance between survival and apoptosis following DNA damage. We found that Chk2 interacts with members of the NCoR/SMRT transcriptional co-regulator complexes and serves as a functional component of the repressor complex, being required for recruitment of SMRT on the promoter of pro-apoptotic genes upon DNA damage. Thus, the co-repressor SMRT exerts a critical protective action against genotoxic stress-induced caspase activation, repressing a functionally important cohort of pro-apoptotic genes. Amongst them, SMRT is responsible for basal repression of Wip1, a phosphatase that de-phosphorylates and inactivates Chk2, thus affecting a feedback loop responsible for licensing the correct timing of Chk2 activation and the proper execution of the DNA repair process.

  9. Effects of current physical activity on affective response to exercise: physical and social-cognitive mechanisms.

    Science.gov (United States)

    Magnan, Renee E; Kwan, Bethany M; Bryan, Angela D

    2013-01-01

    Affective responses during exercise are often important determinants of exercise initiation and maintenance. Current physical activity may be one individual difference that is associated with the degree to which individuals have positive (or negative) affective experiences during exercise. The objective of this study was to explore physical and cognitive explanations of the relationship between current activity status (more versus less active) and affective response during a 30-minute bout of moderate-intensity exercise. Participants reported their current level of physical activity, exercise self-efficacy and affect during a 30-minute bout of moderate-intensity exercise. More active individuals experienced higher levels of positive affect and tranquillity and lower levels of negative affect and fatigue during exercise. Multivariate models for each affective state indicated separate processes through which physical activity may be associated with changes in affect during exercise. These models indicate that affect experienced during physical activity is related to the current activity level and these relationships can be partially explained by the physical and cognitive factors explored in this study. Recommendations for future research to elucidate whether positive affective response to physical activity improves as a function of becoming more active over time are discussed.

  10. Digestion of a single meal affects gene expression of ion and ammonia transporters and glutamine synthetase activity in the gastrointestinal tract of freshwater rainbow trout.

    Science.gov (United States)

    Bucking, Carol; Wood, Chris M

    2012-04-01

    Experiments on freshwater rainbow trout, Oncorhynchus mykiss, demonstrated how digestion affected the transcriptional expression of gastrointestinal transporters following a single satiating meal (~3% body mass ration) after a 1-week fast. Quantitative real-time polymerase chain reaction was employed to measure the relative mRNA expression of three previously cloned and sequenced transporters [H(+)-K(+)-ATPase (HKA), Na(+)/HCO(3)(-) cotransporter (NBC), and the Rhesus glycoprotein (Rhbg1; an ammonia transporter)] over a 24-h time course following feeding. Plasma total ammonia increased about threefold from pre-feeding levels to 288 μmol l(-1), whereas total ammonia levels in chyme supernatant reached a sixfold higher value (1.8 mmol l(-1)) than plasma levels. Feeding did not appear to have a statistically significant effect on the relative mRNA expression of the gastric HKA or Rhbg1. However, the relative mRNA expression of gastric NBC was increased 24 h following the ingestion of a meal. Along the intestinal tract, feeding increased the relative mRNA expression of Rhbg1, but had no effect on the expression of NBC. Expression of the gastric HKA was undetectable in the intestinal tract of freshwater rainbow trout. Digestion increased the activity of glutamine synthetase in the posterior intestine at 12 and 24 h following feeding. This study is among the first to show that there are digestion-associated changes in gene expression and enzyme activity in the gastrointestinal tract of teleost fish illustrating the dynamic plasticity of this organ. These post-prandial changes occur over the relative short-term duration of digesting a single meal.

  11. Mediatised affective activism

    DEFF Research Database (Denmark)

    Reestorff, Camilla Møhring

    2014-01-01

    bodies by addressing affective registers. The mediatised ‘affective environment’ (Massumi, 2009) cues bodies and generates spreadability, yet it also produces disconnections. These disconnections might redistribute the ‘economy of recognizability’ (Butler and Athanasiou, 2013); however, the Femen...

  12. Beyond Neuronal Activity Markers: Select Immediate Early Genes in Striatal Neuron Subtypes Functionally Mediate Psychostimulant Addiction

    Directory of Open Access Journals (Sweden)

    Ramesh Chandra

    2017-06-01

    Full Text Available Immediate early genes (IEGs were traditionally used as markers of neuronal activity in striatum in response to stimuli including drugs of abuse such as psychostimulants. Early studies using these neuronal activity markers led to important insights in striatal neuron subtype responsiveness to psychostimulants. Such studies have helped identify striatum as a critical brain center for motivational, reinforcement and habitual behaviors in psychostimulant addiction. While the use of IEGs as neuronal activity markers in response to psychostimulants and other stimuli persists today, the functional role and implications of these IEGs has often been neglected. Nonetheless, there is a subset of research that investigates the functional role of IEGs in molecular, cellular and behavioral alterations by psychostimulants through striatal medium spiny neuron (MSN subtypes, the two projection neuron subtypes in striatum. This review article will address and highlight the studies that provide a functional mechanism by which IEGs mediate psychostimulant molecular, cellular and behavioral plasticity through MSN subtypes. Insight into the functional role of IEGs in striatal MSN subtypes could provide improved understanding into addiction and neuropsychiatric diseases affecting striatum, such as affective disorders and compulsive disorders characterized by dysfunctional motivation and habitual behavior.

  13. Occupational Styrene Exposure Induces Stress-Responsive Genes Involved in Cytoprotective and Cytotoxic Activities

    Science.gov (United States)

    Strafella, Elisabetta; Bracci, Massimo; Staffolani, Sara; Manzella, Nicola; Giantomasi, Daniele; Valentino, Matteo; Amati, Monica; Tomasetti, Marco; Santarelli, Lory

    2013-01-01

    Objective The aim of this study was to evaluate the expression of a panel of genes involved in toxicology in response to styrene exposure at levels below the occupational standard setting. Methods Workers in a fiber glass boat industry were evaluated for a panel of stress- and toxicity-related genes and associated with biochemical parameters related to hepatic injury. Urinary styrene metabolites (MA+PGA) of subjects and environmental sampling data collected for air at workplace were used to estimate styrene exposure. Results Expression array analysis revealed massive upregulation of genes encoding stress-responsive proteins (HSPA1L, EGR1, IL-6, IL-1β, TNSF10 and TNFα) in the styrene-exposed group; the levels of cytokines released were further confirmed in serum. The exposed workers were then stratified by styrene exposure levels. EGR1 gene upregulation paralleled the expression and transcriptional protein levels of IL-6, TNSF10 and TNFα in styrene exposed workers, even at low level. The activation of the EGR1 pathway observed at low-styrene exposure was associated with a slight increase of hepatic markers found in highly exposed subjects, even though they were within normal range. The ALT and AST levels were not affected by alcohol consumption, and positively correlated with urinary styrene metabolites as evaluated by multiple regression analysis. Conclusion The pro-inflammatory cytokines IL-6 and TNFα are the primary mediators of processes involved in the hepatic injury response and regeneration. Here, we show that styrene induced stress responsive genes involved in cytoprotection and cytotoxicity at low-exposure, that proceed to a mild subclinical hepatic toxicity at high-styrene exposure. PMID:24086524

  14. Participation of SRM5/CDC28, SRM8/NET1 and SRM12/HF11 genes in activation of checkpoints of Yeast Saccharomyces Cerevisiae

    International Nuclear Information System (INIS)

    Kadyshevskaya, E.Yu.; Koltovaya, N.A.

    2007-01-01

    It is known that there are about twenty checkpoint genes in yeast Saccharomyces cerevisiae. We study participation of SRM genes selected as genes affecting genetic stability and radiosensitivity. It has been shown that srm5/cdc28-srm, srm8/net1-srm, srm12/hfil-srm mutations prevent checkpoint activation by DNA damage, particularly G0/S-checkpoint (srm5, srm8), G1/S-checkpoint (srm5, srm8, srm12), S-checkpoint (srm5, srm12) and G2-checkpoint (srm5). These data indicate, at least in budding yeast, CDC28/SRM5, HF11/ADA1/SRM12 and NET1/SRM8 genes mediate cellular response induced by DNA damage including checkpoint control

  15. Dyslipidemia rather than Type 2 Diabetes Mellitus or Chronic Periodontitis Affects the Systemic Expression of Pro- and Anti-Inflammatory Genes.

    Science.gov (United States)

    Nepomuceno, Rafael; Villela, Bárbara Scoralick; Corbi, Sâmia Cruz Tfaile; Bastos, Alliny De Souza; Dos Santos, Raquel Alves; Takahashi, Catarina Satie; Orrico, Silvana Regina Perez; Scarel-Caminaga, Raquel Mantuaneli

    2017-01-01

    A high percentage of type 2 diabetes mellitus (T2D) patients are also affected by dyslipidemia and chronic periodontitis (CP), but no studies have determined the gene expression in patients that are simultaneously affected by all three diseases. We investigated the systemic expression of immune-related genes in T2D, dyslipidemia, and CP patients. One hundred and fifty patients were separated into five groups containing 30 individuals each: (G1) poorly controlled T2D with dyslipidemia and CP; (G2) well-controlled T2D with dyslipidemia and CP; (G3) normoglycemic individuals with dyslipidemia and CP; (G4) healthy individuals with CP; (G5) systemic and periodontally healthy individuals. Blood analyses of lipid and glycemic profiles were carried out. The expression of genes, including IL10, JAK1, STAT3, SOCS3, IP10, ICAM1, IFNA, IFNG, STAT1, and IRF1, was investigated by RT-qPCR. Patients with dyslipidemia demonstrated statistically higher expression of the IL10 and IFNA genes, while IFNG, IP10, IRF1, JAK1, and STAT3 were lower in comparison with nondyslipidemic patients. Anti-inflammatory genes, such as IL10 , positively correlated with parameters of glucose, lipid, and periodontal profiles, while proinflammatory genes, such as IFNG , were negatively correlated with these parameters. We conclude that dyslipidemia appears to be the primary disease that is associated with gene expression of immune-related genes, while parameters of T2D and CP were correlated with the expression of these important immune genes.

  16. Diversity of the Genes Implicated in Algerian Patients Affected by Usher Syndrome.

    Directory of Open Access Journals (Sweden)

    Samia Abdi

    Full Text Available Usher syndrome (USH is an autosomal recessive disorder characterized by a dual sensory impairment affecting hearing and vision. USH is clinically and genetically heterogeneous. Ten different causal genes have been reported. We studied the molecular bases of the disease in 18 unrelated Algerian patients by targeted-exome sequencing, and identified the causal biallelic mutations in all of them: 16 patients carried the mutations at the homozygous state and 2 at the compound heterozygous state. Nine of the 17 different mutations detected in MYO7A (1 of 5 mutations, CDH23 (4 of 7 mutations, PCDH15 (1 mutation, USH1C (1 mutation, USH1G (1 mutation, and USH2A (1 of 2 mutations, had not been previously reported. The deleterious consequences of a missense mutation of CDH23 (p.Asp1501Asn and the in-frame single codon deletion in USH1G (p.Ala397del on the corresponding proteins were predicted from the solved 3D-structures of extracellular cadherin (EC domains of cadherin-23 and the sterile alpha motif (SAM domain of USH1G/sans, respectively. In addition, we were able to show that the USH1G mutation is likely to affect the binding interface between the SAM domain and USH1C/harmonin. This should spur the use of 3D-structures, not only of isolated protein domains, but also of protein-protein interaction interfaces, to predict the functional impact of mutations detected in the USH genes.

  17. Gene conversion of ribosomal DNA in Nicotiana tabacum is associated with undermethylated, decondensed and probably active gene units.

    Science.gov (United States)

    Lim, K Y; Kovarik, A; Matýăsek, R; Bezdĕk, M; Lichtenstein, C P; Leitch, A R

    2000-06-01

    We examined the structure, intranuclear distribution and activity of ribosomal DNA (rDNA) in Nicotiana sylvestris (2n = 2x = 24) and N. tomentosiformis (2n = 2x = 24) and compared these with patterns in N. tabacum (tobacco, 2n = 4x = 48). We also examined a long-established N. tabacum culture, TBY-2. Nicotiana tabacum is an allotetraploid thought to be derived from ancestors of N. sylvestris (S-genome donor) and N. tomentosiformis (T-genome donor). Nicotiana sylvestris has three rDNA loci, one locus each on chromosomes 10, 11, and 12. In root-tip meristematic interphase cells, the site on chromosome 12 remains condensed and inactive, while the sites on chromosomes 10 and 11 show activity at the proximal end of the locus only. Nicotiana tomentosiformis has one major locus on chromosome 3 showing activity and a minor, inactive locus on chromosome 11. In N. tabacum cv. 095-55, there are four rDNA loci on T3, S10, S11/t and S12 (S11/t carries a small T-genome translocation). The locus on S12 remains condensed and inactive in root-tip meristematic cells while the others show activity, including decondensation at interphase and secondary constrictions at metaphase. Nicotiana tabacum DNA digested with methylcytosine-sensitive enzymes revealed a hybridisation pattern for rDNA that resembled that of N. tomentosiformis and not N. sylvestris. The data indicate that active, undermethylated genes are of the N. tomentosiformis type. Since S-genome chromosomes of N. tabacum show rDNA expression, the result indicates rDNA gene conversion of the active rDNA units on these chromosomes. Gene conversion in N. tabacum is consistent with the results of previous work. However, using primers specific for the S-genome rDNA intergenic sequences (IGS) in the polymerase chain reaction (PCR) show that rDNA gene conversion has not gone to completion in N. tabacum. Furthermore, using methylation-insensitive restriction enzymes we demonstrate that about 8% of the rDNA units remain of the N

  18. Identification of a mutation in the CHAT gene of Old Danish Pointing Dogs affected with congenital myasthenic syndrome

    DEFF Research Database (Denmark)

    Proschowsky, Helle Friis; Flagstad, Annette; Cirera, Susanna

    2007-01-01

    The presence of a recessive inherited muscle disease in Old Danish Pointing Dogs has been well known for years. Comparisons of this disease with myasthenic diseases of other dog breeds and humans have pointed toward a defect in the synthesis of the neurotransmitter acetylcholine possibly due...... to decreased activity of the enzyme choline acetyltransferase. We sequenced exons 5-18 of the gene encoding choline acetyltransferase (CHAT) in 2 affected and 2 unaffected dogs and identified a G to A missense mutation in exon 6. The mutation causes a valine to methionine substitution and segregates...... in agreement with the inheritance of the disease. The mutation was not detected in 50 dogs representing 25 other dog breeds. A DNA test has been developed and is now available to the breeders of Old Danish Pointing Dogs....

  19. Gene delivery to the lungs: pulmonary gene therapy for cystic fibrosis.

    Science.gov (United States)

    Villate-Beitia, Ilia; Zarate, Jon; Puras, Gustavo; Pedraz, José Luis

    2017-07-01

    Cystic fibrosis (CF) is a monogenic autosomal recessive disorder where the defective gene, the cystic fibrosis transmembrane conductance regulator (CFTR), is well identified. Moreover, the respiratory tract can be targeted through noninvasive aerosolized formulations for inhalation. Therefore, gene therapy is considered a plausible strategy to address this disease. Conventional gene therapy strategies rely on the addition of a correct copy of the CFTR gene into affected cells in order to restore the channel activity. In recent years, genome correction strategies have emerged, such as zinc-finger nucleases, transcription activator-like effector nucleases and clustered regularly interspaced short palindromic repeats associated to Cas9 nucleases. These gene editing tools aim to repair the mutated gene at its original genomic locus with high specificity. Besides, the success of gene therapy critically depends on the nucleic acids carriers. To date, several clinical studies have been carried out to add corrected copies of the CFTR gene into target cells using viral and non-viral vectors, some of them with encouraging results. Regarding genome editing systems, preliminary in vitro studies have been performed in order to repair the CFTR gene. In this review, after briefly introducing the basis of CF, we discuss the up-to-date gene therapy strategies to address the disease. The review focuses on the main factors to take into consideration when developing gene delivery strategies, such as the design of vectors and plasmid DNA, in vitro/in vivo tests, translation to human use, administration methods, manufacturing conditions and regulatory issues.

  20. Mitogen activated protein kinases selectively regulate palytoxin-stimulated gene expression in mouse keratinocytes

    International Nuclear Information System (INIS)

    Zeliadt, Nicholette A.; Warmka, Janel K.; Wattenberg, Elizabeth V.

    2003-01-01

    We have been investigating how the novel skin tumor promoter palytoxin transmits signals through mitogen activated protein kinases (MAPKs). Palytoxin activates three major MAPKs, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38, in a keratinocyte cell line derived from initiated mouse skin (308). We previously showed that palytoxin requires ERK to increase matrix metalloproteinase-13 (MMP-13) gene expression, an enzyme implicated in carcinogenesis. Diverse stimuli require JNK and p38 to increase MMP-13 gene expression, however. We therefore used the JNK and p38 inhibitors SP 600125 and SB 202190, respectively, to investigate the role of these MAPKs in palytoxin-induced MMP-13 gene expression. Surprisingly, palytoxin does not require JNK and p38 to increase MMP-13 gene expression. Accordingly, ERK activation, independent of palytoxin and in the absence of JNK and p38 activation, is sufficient to induce MMP-13 gene expression in 308 keratinocytes. Dexamethasone, a synthetic glucocorticoid that inhibits activator protein-1 (AP-1), blocked palytoxin-stimulated MMP-13 gene expression. Therefore, the AP-1 site present in the promoter of the MMP-13 gene appears to be functional and to play a key role in palytoxin-stimulated gene expression. Previous studies showed that palytoxin simulates an ERK-dependent selective increase in the c-Fos content of AP-1 complexes that bind to the promoter of the MMP-13 gene. JNK and p38 can also modulate c-Fos. Palytoxin does not require JNK or p38 to increase c-Fos binding, however. Altogether, these studies indicate that ERK plays a distinctly essential role in transmitting palytoxin-stimulated signals to specific nuclear targets in keratinocytes derived from initiated mouse skin

  1. When silence is noise: infantile-onset Barth syndrome caused by a synonymous substitution affecting TAZ gene transcription

    NARCIS (Netherlands)

    Ferri, L.; Dionisi-Vici, C.; Taurisano, R.; Vaz, F. M.; Guerrini, R.; Morrone, A.

    2016-01-01

    Barth syndrome (BTHS) is an X-linked inborn error of metabolism which affects males. The main manifestations are cardiomyopathy, myopathy, hypotonia, growth delay, intermittent neutropenia and 3-methylglutaconic aciduria. Diagnosis is confirmed by mutational analysis of the TAZ gene and biochemical

  2. The Liver X Receptor Ligand T0901317 Down-regulates APOA5 GeneExpression through Activation of SREBP-1c

    Energy Technology Data Exchange (ETDEWEB)

    Jakel, Heidelinde; Nowak, Maxime; Moitrot, Emanuelle; Dehondt, Helene; Hum, Dean W.; Pennacchio, Len A.; Fruchart-Najib, Jamila; Fruchart,Jean-Charles

    2004-07-23

    Alterations in the expression of the recently discovered apolipoprotein A5 gene strongly affect plasma triglyceride levels. In this study, we investigated the contribution of APOA5 to the liver X-receptor (LXR) ligand mediated effect on plasma triglyceride levels.Following treatment with the LXR ligand T0901317, we found that APOA5mRNA levels were decreased in hepatoma cell lines. The observation that no down-regulation of APOA5 promoter activity was obtained by LXR-retinoid X receptor (RXR) co-transfection prompted us to explore the possible involvement of the known LXR target gene SREBP-1c (sterol regulatory element-binding protein 1c). In fact, we found that co-transfection with the active form of SREBP-1c down-regulated APOA5promoter activity in a dose-dependent manner. We then scanned the human APOA5 promoter sequence and identified two putative E-box elements that were able to bind specifically SREBP-1c in gel-shift assays and were shown to be functional by mutation analysis. Subsequent suppression of SREBP-1 mRNA through small interfering RNA interference abolished the decrease of APOA5 mRNA in response to T0901317. Finally, administration of T0901317 to hAPOA5 transgenic mice revealed a significant decrease OF APOA5 mRNA in liver tissue and circulating apolipoprotein AV protein in plasma, confirming that the described down-regulation also occurs in vivo. Taken together, our results demonstrate that APOA5 gene expression is regulated by the LXR ligand T0901317 in a negative manner through SREBP-1c. These findings may provide a new mechanism responsible for the elevation of plasma triglyceride levels by LXR ligands and support the development of selective LXR agonists, not affecting SREBP-1c, as beneficial modulators of lipid metabolism.

  3. Association of peroxisome proliferator-activated receptor single-nucleotide polymorphisms and gene-gene interactions with the lipoprotein(a)

    Institute of Scientific and Technical Information of China (English)

    解惠坚

    2014-01-01

    Objective To examine the associations of 10 singlenucleotide polymorphisms(SNPs)in peroxisome proliferator-activated receptor(PPARs)gene with lipoprotein(a)level,and to investigate if there is gene-gene interaction among the SNPs on lipoprotein(a)level.Methods Totally 644 subjects(234 men and 410 women)were enrolled from Prevention of Multiple Metabolic Disorders and Metabolic Syndrome Study Cohort,which was an urban community survey study conducted in Jiangsu province.Ten SNPs in PPARα(rs135539,rs4253778,

  4. Redox-active antibiotics control gene expression and community behavior in divergent bacteria.

    Science.gov (United States)

    Dietrich, Lars E P; Teal, Tracy K; Price-Whelan, Alexa; Newman, Dianne K

    2008-08-29

    It is thought that bacteria excrete redox-active pigments as antibiotics to inhibit competitors. In Pseudomonas aeruginosa, the endogenous antibiotic pyocyanin activates SoxR, a transcription factor conserved in Proteo- and Actinobacteria. In Escherichia coli, SoxR regulates the superoxide stress response. Bioinformatic analysis coupled with gene expression studies in P. aeruginosa and Streptomyces coelicolor revealed that the majority of SoxR regulons in bacteria lack the genes required for stress responses, despite the fact that many of these organisms still produce redox-active small molecules, which indicates that redox-active pigments play a role independent of oxidative stress. These compounds had profound effects on the structural organization of colony biofilms in both P. aeruginosa and S. coelicolor, which shows that "secondary metabolites" play important conserved roles in gene expression and development.

  5. A functional polymorphism in the prodynorphin gene affects cognitive flexibility and brain activation during reversal learning.

    Directory of Open Access Journals (Sweden)

    Mikhail eVotinov

    2015-07-01

    Full Text Available Whether the opioid system plays a role in the ability to flexibly adapt behavior is still unclear. We used fMRI to investigate the effect of a nucleotide tandem repeat (68-bp VNTR functional polymorphism of the prodynorphin gene on cerebral activation during a reversal learning task in which participants had to flexibly adapt stimulus-response associations. Past studies suggested that alleles with 3 or 4 repeats (HH genotype of this polymorphism are associated with higher levels of dynorphin peptides than alleles with 1 or 2 repeats (LL genotype. On the behavioral level, the HH group made more perseverative errors than the LL group. On the neural level, the HH group demonstrated less engagement of left orbitofrontal cortex (lOFC and cortico-striatal circuitry, and lower effective connectivity of lOFC with anterior midcingulate cortex and anterior insula/ventrolateral prefrontal cortex during reversal learning and processing negative feedback. This points to a lower ability of the HH genotype to monitor or adapt to changes in reward contingencies. These findings provide first evidence that dynorphins may contribute to individual differences in reversal learning, and that considering the opioid system may shed new light on the neurochemical correlates of decision-making and behavioral regulation.

  6. Gene expression and activity of antioxidant enzymes in rice plants, cv. BRS AG, under saline stress.

    Science.gov (United States)

    Rossatto, Tatiana; do Amaral, Marcelo Nogueira; Benitez, Letícia Carvalho; Vighi, Isabel Lopes; Braga, Eugenia Jacira Bolacel; de Magalhães Júnior, Ariano Martins; Maia, Mara Andrade Colares; da Silva Pinto, Luciano

    2017-10-01

    The rice cultivar ( Oryza sativa L.) BRS AG, developed by Embrapa Clima Temperado, is the first cultivar designed for purposes other than human consumption. It may be used in ethanol production and animal feed. Different abiotic stresses negatively affect plant growth. Soil salinity is responsible for a serious reduction in productivity. Therefore, the objective of this study was to evaluate the gene expression and the activity of antioxidant enzymes (SOD, CAT, APX and GR) and identify their functions in controlling ROS levels in rice plants, cultivar BRS AG, after a saline stress period. The plants were grown in vitro with two NaCl concentrations (0 and 136 mM), collected at 10, 15 and 20 days of cultivation. The results indicated that the activity of the enzymes evaluated promotes protection against oxidative stress. Although, there was an increase of reactive oxygen species, there was no increase in MDA levels. Regarding genes encoding isoforms of antioxidant enzymes, it was observed that OsSOD3 - CU/Zn , OsSOD2 - Cu/Zn , OsSOD - Cu/Zn , OsSOD4 - Cu/Zn , OsSODCc1 - Cu/Zn , OsSOD - Fe , OsAPX1 , OsCATB and OsGR2 were the most responsive. The increase in the transcription of all genes among evaluated isoforms, except for OsAPX6 , which remained stable, contributed to the increase or the maintenance of enzyme activity. Thus, it is possible to infer that the cv. BRS AG has defense mechanisms against salt stress.

  7. Walk on the bright side: physical activity and affect in major depressive disorder.

    Science.gov (United States)

    Mata, Jutta; Thompson, Renee J; Jaeggi, Susanne M; Buschkuehl, Martin; Jonides, John; Gotlib, Ian H

    2012-05-01

    Although prescribed exercise has been found to improve affect and reduce levels of depression, we do not know how self-initiated everyday physical activity influences levels of positive affect (PA) and negative affect (NA) in depressed persons. Fifty-three individuals diagnosed with Major Depressive Disorder (MDD) and 53 never-depressed controls participated in a seven-day experience sampling study. Participants were prompted randomly eight times per day and answered questions about their physical activity and affective state. Over the week, the two groups of participants did not differ in average level of physical activity. As expected, participants with MDD reported lower average PA and higher average NA than did never-depressed controls. Both participants with MDD and controls reported higher levels of PA at prompts after physical activity than at prompts after inactive periods; moreover, for both groups of participants, PA increased from a prompt after an inactive period to a subsequent prompt at which activity was reported. Depressed participants in particular showed a dose-response effect of physical activity on affect: longer duration and/or higher intensity of physical activity increased their PA significantly more than did short duration and/or lower intensity physical activity. Physical activity did not influence NA in either group. In contrast to previous treatment studies that examined the effects of prescribed structured exercise, this investigation showed that self-initiated physical activity influences PA. These findings also underscore the importance of distinguishing between PA and NA to gain a more comprehensive understanding of the effects of physical activity on affect in MDD.

  8. H-RAS, K-RAS, and N-RAS gene activation in human bladder cancers.

    Science.gov (United States)

    Przybojewska, B; Jagiello, A; Jalmuzna, P

    2000-08-01

    Bladder cancer is one of the leading causes of cancer death in most developed countries. In this work, 19 bladder cancer specimens, along with their infiltrations of the urinary bladder wall from the same patients, were examined for the presence of H-RAS, K-RAS, and N-RAS activation using a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay. The H-RAS activation was found in 15 (about 84%) of the 19 bladder cancers studied. The same results were obtained in the infiltrating urinary bladder wall samples. N-RAS gene mutations were observed in all cases (except 1) in which H-RAS gene mutations were detected. The results suggest a strong relationship between H-RAS and N-RAS gene activation in bladder cancer. Changes in the K-RAS gene in bladder cancers seem to be a rare event; this is in agreement with findings of other authors. We found activation of the gene in one specimen of bladder cancer and its infiltration of the urinary bladder wall in the same patient.

  9. Sequencing and transcriptional analysis of the Streptococcus thermophilus histamine biosynthesis gene cluster: factors that affect differential hdcA expression

    DEFF Research Database (Denmark)

    Calles-Enríquez, Marina; Hjort, Benjamin Benn; Andersen, Pia Skov

    2010-01-01

    to produce histamine. The hdc clusters of S. thermophilus CHCC1524 and CHCC6483 were sequenced, and the factors that affect histamine biosynthesis and histidine-decarboxylating gene (hdcA) expression were studied. The hdc cluster began with the hdcA gene, was followed by a transporter (hdcP), and ended...... with the hdcB gene, which is of unknown function. The three genes were orientated in the same direction. The genetic organization of the hdc cluster showed a unique organization among the lactic acid bacterial group and resembled those of Staphylococcus and Clostridium species, thus indicating possible...... acquisition through a horizontal transfer mechanism. Transcriptional analysis of the hdc cluster revealed the existence of a polycistronic mRNA covering the three genes. The histidine-decarboxylating gene (hdcA) of S. thermophilus demonstrated maximum expression during the stationary growth phase, with high...

  10. Calling genotypes from public RNA-sequencing data enables identification of genetic variants that affect gene-expression levels

    NARCIS (Netherlands)

    Deelen, Patrick; Zhernakova, Daria V.; de Haan, Mark; van der Sijde, Marijke; Bonder, Marc Jan; Karjalainen, Juha; van der Velde, K. Joeri; Abbott, Kristin M.; Fu, Jingyuan; Wijmenga, Cisca; Sinke, Richard J.; Swertz, Morris A.; Franke, Lude

    2015-01-01

    Background: RNA-sequencing (RNA-seq) is a powerful technique for the identification of genetic variants that affect gene-expression levels, either through expression quantitative trait locus (eQTL) mapping or through allele-specific expression (ASE) analysis. Given increasing numbers of RNA-seq

  11. Differential inhibition of activity, activation and gene expression of MMP-9 in THP-1 cells by azithromycin and minocycline versus bortezomib: A comparative study.

    Directory of Open Access Journals (Sweden)

    Jennifer Vandooren

    Full Text Available Gelatinase B or matrix metalloproteinase-9 (MMP-9 (EC 3.4.24.35 is increased in inflammatory processes and cancer, and is associated with disease progression. In part, this is due to MMP-9-mediated degradation of extracellular matrix, facilitating influx of leukocytes into inflamed tissues and invasion or metastasis of cancer cells. MMP-9 is produced as proMMP-9 and its propeptide is subsequently removed by other proteases to generate proteolytically active MMP-9. The significance of MMP-9 in pathologies triggered the development of specific inhibitors of this protease. However, clinical trials with synthetic inhibitors of MMPs in the fight against cancer were disappointing. Reports on active compounds which inhibit MMP-9 should be carefully examined in this regard. In a considerable set of recent publications, two antibiotics (minocycline and azythromycin and the proteasome inhibitor bortezomib, used in cancers, were reported to inhibit MMP-9 at different stages of its expression, activation or activity. The current study was undertaken to compare and to verify the impact of these compounds on MMP-9. With exception of minocycline at high concentrations (>100 μM, the compounds did not affect processing of proMMP-9 into MMP-9, nor did they affect direct MMP-9 gelatinolytic activity. In contrast, azithromycin specifically reduced MMP-9 mRNA and protein levels without affecting NF-κB in endotoxin-challenged monocytic THP-1 cells. Bortezomib, although being highly toxic, had no MMP-9-specific effects but significantly upregulated cyclooxygenase-2 (COX-2 activity and PGE2 levels. Overall, our study clarified that azithromycin decreased the levels of MMP-9 by reduction of gene and protein expression while minocycline inhibits proteolytic activity at high concentrations.

  12. The NDE1 genomic locus can affect treatment of psychiatric illness through gene expression changes related to microRNA-484.

    Science.gov (United States)

    Bradshaw, Nicholas J; Ukkola-Vuoti, Liisa; Pankakoski, Maiju; Zheutlin, Amanda B; Ortega-Alonso, Alfredo; Torniainen-Holm, Minna; Sinha, Vishal; Therman, Sebastian; Paunio, Tiina; Suvisaari, Jaana; Lönnqvist, Jouko; Cannon, Tyrone D; Haukka, Jari; Hennah, William

    2017-11-01

    Genetic studies of familial schizophrenia in Finland have observed significant associations with a group of biologically related genes, DISC1 , NDE1 , NDEL1 , PDE4B and PDE4D , the 'DISC1 network'. Here, we use gene expression and psychoactive medication use data to study their biological consequences and potential treatment implications. Gene expression levels were determined in 64 individuals from 18 families, while prescription medication information has been collected over a 10-year period for 931 affected individuals. We demonstrate that the NDE1 SNP rs2242549 associates with significant changes in gene expression for 2908 probes (2542 genes), of which 794 probes (719 genes) were replicable. A significant number of the genes altered were predicted targets of microRNA-484 ( p = 3.0 × 10 -8 ), located on a non-coding exon of NDE1 Variants within the NDE1 locus also displayed significant genotype by gender interaction to early cessation of psychoactive medications metabolized by CYP2C19. Furthermore, we demonstrate that miR-484 can affect the expression of CYP2C19 in a cell culture system. Thus, variation at the NDE1 locus may alter risk of mental illness, in part through modification of miR-484, and such modification alters treatment response to specific psychoactive medications, leading to the potential for use of this locus in targeting treatment. © 2017 The Authors.

  13. Subinhibitory concentrations of antibiotics affect stress and virulence gene expression in Listeria monocytogenes and cause enhanced stress sensitivity but do not affect Caco‐2 cell invasion

    DEFF Research Database (Denmark)

    Knudsen, Gitte Maegaard; Holch, Anne; Gram, Lone

    2012-01-01

    with promoter fusions, 14 of 16 antibiotics induced or repressed expression of one or more stress and/or virulence genes. Despite ampicillin‐induced up‐regulation of PinlA‐lacZ expression, Caco‐2 cell invasion was not affected. Subinhibitory concentrations of ampicillin and tetracycline caused up‐ and down...

  14. Wolbachia infection in Aedes aegypti mosquitoes alters blood meal excretion and delays oviposition without affecting trypsin activity.

    Science.gov (United States)

    Pimenta de Oliveira, Sofia; Dantas de Oliveira, Caroline; Viana Sant'Anna, Mauricio Roberto; Carneiro Dutra, Heverton Leandro; Caragata, Eric Pearce; Moreira, Luciano Andrade

    2017-08-01

    Blood feeding in Aedes aegypti is essential for reproduction, but also permits the mosquito to act as a vector for key human pathogens such as the Zika and dengue viruses. Wolbachia pipientis is an endosymbiotic bacterium that can manipulate the biology of Aedes aegypti mosquitoes, making them less competent hosts for many pathogens. Yet while Wolbachia affects other aspects of host physiology, it is unclear whether it influences physiological processes associated with blood meal digestion. To that end, we examined the effects of wMel Wolbachia infection in Ae. aegypti, on survival post-blood feeding, blood meal excretion, rate of oviposition, expression levels of key genes involved in oogenesis, and activity levels of trypsin blood digestion enzymes. We observed that wMel infection altered the rate and duration of blood meal excretion, delayed the onset of oviposition and was associated with a greater number of eggs being laid later. wMel-infected Ae. aegypti also had lower levels of key yolk protein precursor genes necessary for oogenesis. However, all of these effects occurred without a change in trypsin activity. These results suggest that Wolbachia infection may disrupt normal metabolic processes associated with blood feeding and reproduction in Ae. aegypti. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. When silence is noise: infantile-onset Barth syndrome caused by a synonymous substitution affecting TAZ gene transcription.

    Science.gov (United States)

    Ferri, L; Dionisi-Vici, C; Taurisano, R; Vaz, F M; Guerrini, R; Morrone, A

    2016-11-01

    Barth syndrome (BTHS) is an X-linked inborn error of metabolism which affects males. The main manifestations are cardiomyopathy, myopathy, hypotonia, growth delay, intermittent neutropenia and 3-methylglutaconic aciduria. Diagnosis is confirmed by mutational analysis of the TAZ gene and biochemical dosage of the monolysocardiolipin/tetralinoleoyl cardiolipin (MLCL:L4-CL) ratio. We report a 6-year-old boy who presented with severe hypoglycemia, lactic acidosis and severe dilated cardiomyopathy soon after birth. The MLCL:L4-CL ratio confirmed BTHS (3.90 on patient's fibroblast, normal: 0-0.3). Subsequent sequencing of the TAZ gene revealed only the new synonymous variant NM_000116.3 (TAZ):c.348C>T p.(Gly116Gly), which did not appear to affect the protein sequence. In silico prediction analysis suggested the new c.348C>T nucleotide change could alter the TAZ mRNA splicing processing. We analyzed TAZ mRNAs in the patient's fibroblasts and found an abnormal skipping of 24 bases (NM_000116.3:c.346_371), with the consequent ablation of 8 amino acid residues in the tafazzin protein (NP_000107.1:p.Lys117_Gly124del). Molecular analysis of at risk female family members identified the patient's sister and mother as heterozygous carriers. Apparently harmless synonymous variants in the TAZ gene can damage gene expression. Such findings widen our knowledge of molecular heterogeneity in BTHS. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Platelet-derived growth factor (PDGF) B-chain gene expression by activated blood monocytes precedes the expression of the PDGF A-chain gene

    International Nuclear Information System (INIS)

    Martinet, Y.; Jaffe, H.A.; Yamauchi, K.; Betsholtz, C.; Westermark, B.; Heldin, C.H.; Crystal, R.G.

    1987-01-01

    When activated, normal human blood monocytes are known to express the c-sis proto-oncogene coding for PDGF B-chain. Since normal human platelet PDGF molecules are dimers of A and B chains and platelets and monocytes are derived from the same marrow precursors, activated blood monocytes were simultaneously evaluated for their expression of PDGF A and B chain genes. Human blood monocytes were purified by adherence, cultured with or without activation by lipopolysaccharide and poly(A)+ RNA evaluated using Northern analysis and 32 P-labeled A-chain and B-chain (human c-sis) probes. Unstimulated blood monocytes did not express either A-chain or B-chain genes. In contrast, activated monocytes expressed a 4.2 kb mRNA B-chain transcript at 4 hr, but the B-chain mRNA levels declined significantly over the next 18 hr. In comparison, activated monocytes expressed very little A-chain mRNA at 4 hr, but at 12 hr 1.9, 2.3, and 2.8 kb transcripts were observed and persisted through 24 hr. Thus, activation of blood monocytes is followed by PDGF B-chain gene expression preceding PDGF A-chain gene expression, suggesting a difference in the regulation of the expression of the genes for these two chains by these cells

  17. Identification of a single-nucleotide insertion in the promoter region affecting the sodC promoter activity in Brucella neotomae.

    Directory of Open Access Journals (Sweden)

    Dina A Moustafa

    Full Text Available Brucella neotomae is not known to be associated with clinical disease in any host species. Previous research suggested that B. neotomae might not express detectable levels of Cu/Zn superoxide dismutase (SOD, a periplasmic enzyme known to be involved in protecting Brucella from oxidative bactericidal effects of host phagocytes. This study was undertaken to investigate the genetic basis for the disparity in SOD expression in B. neotomae. Our Western blot and SOD enzyme assay analyses indicated that B. neotomae does express SOD, but at a substantially reduced level. Nucleotide sequence analysis of region upstream to the sodC gene identified a single-nucleotide insertion in the potential promoter region. The same single-nucleotide insertion was also detected in the sodC promoter of B. suis strain Thomsen, belonging to biovar 2 in which SOD expression was undetectable previously. Examination of the sodC promoter activities using translational fusion constructs with E. coli β-galactosidase demonstrated that the B. neotomae and B. suis biovar 2 promoters were very weak in driving gene expression. Site-directed mutation studies indicated that the insertion of A in the B. neotomae sodC promoter reduced the promoter activity. Increasing the level of SOD expression in B. neotomae through complementation with B. abortus sodC gene did not alter the bacterial survival in J774A.1 macrophage-like cells and in tissues of BALB/c and C57BL/6 mice. These results for the first time demonstrate the occurrence of a single-nucleotide polymorphism affecting promoter function and gene expression in Brucella.

  18. * Three-Dimensional Bioprinting of Polycaprolactone Reinforced Gene Activated Bioinks for Bone Tissue Engineering.

    Science.gov (United States)

    Cunniffe, Gráinne M; Gonzalez-Fernandez, Tomas; Daly, Andrew; Sathy, Binulal N; Jeon, Oju; Alsberg, Eben; Kelly, Daniel J

    2017-09-01

    Regeneration of complex bone defects remains a significant clinical challenge. Multi-tool biofabrication has permitted the combination of various biomaterials to create multifaceted composites with tailorable mechanical properties and spatially controlled biological function. In this study we sought to use bioprinting to engineer nonviral gene activated constructs reinforced by polymeric micro-filaments. A gene activated bioink was developed using RGD-γ-irradiated alginate and nano-hydroxyapatite (nHA) complexed to plasmid DNA (pDNA). This ink was combined with bone marrow-derived mesenchymal stem cells (MSCs) and then co-printed with a polycaprolactone supporting mesh to provide mechanical stability to the construct. Reporter genes were first used to demonstrate successful cell transfection using this system, with sustained expression of the transgene detected over 14 days postbioprinting. Delivery of a combination of therapeutic genes encoding for bone morphogenic protein and transforming growth factor promoted robust osteogenesis of encapsulated MSCs in vitro, with enhanced levels of matrix deposition and mineralization observed following the incorporation of therapeutic pDNA. Gene activated MSC-laden constructs were then implanted subcutaneously, directly postfabrication, and were found to support superior levels of vascularization and mineralization compared to cell-free controls. These results validate the use of a gene activated bioink to impart biological functionality to three-dimensional bioprinted constructs.

  19. Visualization of ecdysteroid activity using a reporter gene in the crustacean, Daphnia.

    Science.gov (United States)

    Asada, Miki; Kato, Yasuhiko; Matsuura, Tomoaki; Watanabe, Hajime

    2014-02-01

    Ecdysone is a hormone known to play a pivotal role in crustaceans and insects. In order to evaluate the ecdysone activities in the environment and within the organism, we have developed a biomonitoring Daphnia strain by introducing a reporter gene. In this study, the ecdysone response element was inserted in the upstream region of a reporter gene, and the DNA construct was injected into Daphnia eggs. The expression of the reporter gene was detected during the early embryonic development stage. In addition, when the eggs expressing the reporter gene were exposed to ecdysone, there was enhanced expression of the reporter gene at detectable levels, while the presence of an antagonist led to its downregulation. These results suggested that this system could be potentially developed for monitoring ecdysone activities in media. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Impact of physical activity and doping on epigenetic gene regulation.

    Science.gov (United States)

    Schwarzenbach, Heidi

    2011-10-01

    To achieve success in sports, many athletes consume doping substances, such as anabolic androgenic steroids and growth hormones, and ignore the negative influence of these drugs on their health. Apart from the unethical aspect of doping in sports, it is essential to consider the tremendous risk it represents to their physical condition. The abuse of pharmaceuticals which improve athletic performance may alter the expression of specific genes involved in muscle and bone metabolism by epigenetic mechanisms, such as DNA methylation and histone modifications. Moreover, excessive and relentless training to increase the muscle mass, may also have an influence on the health of the athletes. This stress releases neurotransmitters and growth factors, and may affect the expression of endogenous genes by DNA methylation, too. This paper focuses on the relationship between epigenetic mechanisms and sports, highlights the potential consequences of abuse of doping drugs on gene expression, and describes methods to molecularly detect epigenetic changes of gene markers reflecting the physiological or metabolic effects of doping agents. Copyright © 2011 John Wiley & Sons, Ltd.

  1. A mutation in the aroE gene affects pigment production, virulence, and chemotaxis in Xanthomonas oryzae pv. oryzae.

    Science.gov (United States)

    Kim, Hong-Il; Noh, Tae-Hwan; Lee, Chang-Soo; Park, Young-Jin

    2015-01-01

    Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight (BB) in rice. To study its function, a random insertion mutation library of Xoo was constructed using the Tn5 transposon. A mutant strain with decreased virulence against the susceptible rice cultivar IR24 was isolated from the library (aroE mutant), which also had extremely low pigment production. Thermal asymmetric interlaced-polymerase chain reaction (TAIL-PCR) and sequence analysis of the mutant revealed that the transposon was inserted into the aroE gene (encoding shikimate dehydrogenase). To investigate gene expression changes in the pigment- and virulence-deficient mutant, DNA microarray analysis was performed, which showed downregulation of 20 genes involved in the chemotaxis of Xoo. Our findings reveal that mutation of the aroE gene affects virulence and pigment production, as well as expression of genes involved in Xoo chemotaxis. Copyright © 2014 Elsevier GmbH. All rights reserved.

  2. Distinguishing the rates of gene activation from phenotypic variations

    OpenAIRE

    Chen, Ye; Lv, Cheng; Li, Fangting; Li, Tiejun

    2015-01-01

    Background Stochastic genetic switching driven by intrinsic noise is an important process in gene expression. When the rates of gene activation/inactivation are relatively slow, fast, or medium compared with the synthesis/degradation rates of mRNAs and proteins, the variability of protein and mRNA levels may exhibit very different dynamical patterns. It is desirable to provide a systematic approach to identify their key dynamical features in different regimes, aiming at distinguishing which r...

  3. Novel somatic mutations in large granular lymphocytic leukemia affecting the STAT-pathway and T-cell activation

    International Nuclear Information System (INIS)

    Andersson, E I; Rajala, H L M; Eldfors, S; Ellonen, P; Olson, T; Jerez, A; Clemente, M J; Kallioniemi, O; Porkka, K; Heckman, C; Loughran, T P Jr; Maciejewski, J P; Mustjoki, S

    2013-01-01

    T-cell large granular lymphocytic (T-LGL) leukemia is a clonal disease characterized by the expansion of mature CD3+CD8+ cytotoxic T cells. It is often associated with autoimmune disorders and immune-mediated cytopenias. Our recent findings suggest that up to 40% of T-LGL patients harbor mutations in the STAT3 gene, whereas STAT5 mutations are present in 2% of patients. In order to identify putative disease-causing genetic alterations in the remaining T-LGL patients, we performed exome sequencing from three STAT mutation-negative patients and validated the findings in 113 large granular lymphocytic (LGL) leukemia patients. On average, 11 CD8+ LGL leukemia cell-specific high-confidence nonsynonymous somatic mutations were discovered in each patient. Interestingly, all patients had at least one mutation that affects either directly the STAT3-pathway (such as PTPRT) or T-cell activation (BCL11B, SLIT2 and NRP1). In all three patients, the STAT3 pathway was activated when studied by RNA expression or pSTAT3 analysis. Screening of the remaining 113 LGL leukemia patients did not reveal additional patients with same mutations. These novel mutations are potentially biologically relevant and represent rare genetic triggers for T-LGL leukemia, and are associated with similar disease phenotype as observed in patients with mutations in the STAT3 gene

  4. The interaction between endogenous 30S ribosomal subunit protein S11 and Cucumber mosaic virus LS2b protein affects viral replication, infection and gene silencing suppressor activity.

    Directory of Open Access Journals (Sweden)

    Ruilin Wang

    Full Text Available Cucumber mosaic virus (CMV is a model virus for plant-virus protein interaction and mechanism research because of its wide distribution, high-level of replication and simple genome structure. The 2b protein is a multifunctional protein encoded by CMV that suppresses RNA silencing-based antiviral defense and contributes to CMV virulence in host plants. In this report, 12 host proteins were identified as CMV LS2b binding partners using the yeast two-hybrid screen system from the Arabidopsis thaliana cDNA library. Among the host proteins, 30S ribosomal subunit protein S11 (RPS11 was selected for further studies. The interaction between LS2b and full-length RPS11 was confirmed using the yeast two-hybrid system. Bimolecular fluorescence complementation (BIFC assays observed by confocal laser microscopy and Glutathione S-transferase (GST pull-down assays were used to verify the interaction between endogenous NbRPS11 and viral CMVLS2b both in vivo and in vitro. TRV-based gene silencing vector was used to knockdown NbRPS11 transcription, and immunoblot analysis revealed a decline in infectious viral RNA replication and a decrease in CMV infection in RPS11 down-regulated Nicotiana benthamiana plants. Thus, the knockdown of RPS11 likely inhibited CMV replication and accumulation. The gene silencing suppressor activity of CMV2b protein was reduced by the RPS11 knockdown. This study demonstrated that the function of viral LS2b protein was remarkably affected by the interaction with host RPS11 protein.

  5. HLA non-class II genes may confer type I diabetes susceptibility in a Mapuche (Amerindian) affected family.

    Science.gov (United States)

    Pérez-Bravo, Francisco; Martinez-Laso, Jorge; Martin-Villa, Jose M; Moscoso, Juan; Moreno, Almudena; Serrano-Vela, Juan I; Zamora, Jorge; Asenjo, Silvia; Gleisner, Andrea; Arnaiz-Villena, Antonio

    2006-01-01

    A rare case of type I diabetes is studied in an Amerindian (Mapuche) family from Chile, analyzing glutamic acid decarboxylase, islet-cell autoantibodies and human leukocyte antigen (HLA) genes. The affected sib is the only one that has one specific HLA haplotype combination that differs from the other sibs only in the HLA class I genes. It is concluded that HLA diabetes susceptibility factors may be placed outside the class II region or even that susceptibility factors do not exist in the HLA region in this Amerindian family.

  6. Quantitative Structure-Activity Relationships and Docking Studies of Calcitonin Gene-Related Peptide Antagonists

    DEFF Research Database (Denmark)

    Jenssen, Håvard; Mehrabian, Mohadeseh; Kyani, Anahita

    2012-01-01

    Defining the role of calcitonin gene-related peptide in migraine pathogenesis could lead to the application of calcitonin gene-related peptide antagonists as novel migraine therapeutics. In this work, quantitative structure-activity relationship modeling of biological activities of a large range...... of calcitonin gene-related peptide antagonists was performed using a panel of physicochemical descriptors. The computational studies evaluated different variable selection techniques and demonstrated shuffling stepwise multiple linear regression to be superior over genetic algorithm-multiple linear regression....... The linear quantitative structure-activity relationship model revealed better statistical parameters of cross-validation in comparison with the non-linear support vector regression technique. Implementing only five peptide descriptors into this linear quantitative structure-activity relationship model...

  7. Distinct mutations in yeast TAF(II)25 differentially affect the composition of TFIID and SAGA complexes as well as global gene expression patterns.

    Science.gov (United States)

    Kirschner, Doris B; vom Baur, Elmar; Thibault, Christelle; Sanders, Steven L; Gangloff, Yann-Gaël; Davidson, Irwin; Weil, P Anthony; Tora, Làszlò

    2002-05-01

    The RNA polymerase II transcription factor TFIID, composed of the TATA-binding protein (TBP) and TBP-associated factors (TAF(II)s), nucleates preinitiation complex formation at protein-coding gene promoters. SAGA, a second TAF(II)-containing multiprotein complex, is involved in transcription regulation in Saccharomyces cerevisiae. One of the essential protein components common to SAGA and TFIID is yTAF(II)25. We define a minimal evolutionarily conserved 91-amino-acid region of TAF(II)25 containing a histone fold domain that is necessary and sufficient for growth in vivo. Different temperature-sensitive mutations of yTAF(II)25 or chimeras with the human homologue TAF(II)30 arrested cell growth at either the G(1) or G(2)/M cell cycle phase and displayed distinct phenotypic changes and gene expression patterns. Immunoprecipitation studies revealed that TAF(II)25 mutation-dependent gene expression and phenotypic changes correlated at least partially with the integrity of SAGA and TFIID. Genome-wide expression analysis revealed that the five TAF(II)25 temperature-sensitive mutant alleles individually affect the expression of between 18 and 33% of genes, whereas taken together they affect 64% of all class II genes. Thus, different yTAF(II)25 mutations induce distinct phenotypes and affect the regulation of different subsets of genes, demonstrating that no individual TAF(II) mutant allele reflects the full range of its normal functions.

  8. Affective decision-making and externalizing behaviors: the role of autonomic activity.

    Science.gov (United States)

    Bubier, Jennifer L; Drabick, Deborah A G

    2008-08-01

    We tested a conceptual model involving the inter-relations among affective decision-making (indexed by a gambling task), autonomic nervous system (ANS) activity, and attention-deficit/hyperactivity disorder (ADHD) and oppositional defiant disorder (ODD) symptoms in a largely impoverished, inner city sample of first through third grade children (N=63, 54% male). The present study hypothesized that impaired affective decision-making and decreased sympathetic and parasympathetic activation would be associated with higher levels of ADHD and ODD symptoms, and that low sympathetic and parasympathetic activation during an emotion-inducing task would mediate the relation between affective decision-making and child externalizing symptoms. In support of our model, disadvantageous decision-making on a gambling task was associated with ADHD hyperactivity/impulsivity symptoms among boys, and attenuated sympathetic activation during an emotion-inducing task mediated this relation. Support for the model was not found among girls.

  9. LWD–TCP complex activates the morning gene CCA1 in Arabidopsis

    Science.gov (United States)

    Wu, Jing-Fen; Tsai, Huang-Lung; Joanito, Ignasius; Wu, Yi-Chen; Chang, Chin-Wen; Li, Yi-Hang; Wang, Ying; Hong, Jong Chan; Chu, Jhih-Wei; Hsu, Chao-Ping; Wu, Shu-Hsing

    2016-01-01

    A double-negative feedback loop formed by the morning genes CIRCADIAN CLOCK ASSOCIATED1 (CCA1)/LATE ELONGATED HYPOCOTYL (LHY) and the evening gene TIMING OF CAB EXPRESSION1 (TOC1) contributes to regulation of the circadian clock in Arabidopsis. A 24-h circadian cycle starts with the peak expression of CCA1 at dawn. Although CCA1 is targeted by multiple transcriptional repressors, including PSEUDO-RESPONSE REGULATOR9 (PRR9), PRR7, PRR5 and CCA1 HIKING EXPEDITION (CHE), activators of CCA1 remain elusive. Here we use mathematical modelling to infer a co-activator role for LIGHT-REGULATED WD1 (LWD1) in CCA1 expression. We show that the TEOSINTE BRANCHED 1-CYCLOIDEA-PCF20 (TCP20) and TCP22 proteins act as LWD-interacting transcriptional activators. The concomitant binding of LWD1 and TCP20/TCP22 to the TCP-binding site in the CCA1 promoter activates CCA1. Our study reveals activators of the morning gene CCA1 and provides an action mechanism that ensures elevated expression of CCA1 at dawn to sustain a robust clock. PMID:27734958

  10. LWD-TCP complex activates the morning gene CCA1 in Arabidopsis.

    Science.gov (United States)

    Wu, Jing-Fen; Tsai, Huang-Lung; Joanito, Ignasius; Wu, Yi-Chen; Chang, Chin-Wen; Li, Yi-Hang; Wang, Ying; Hong, Jong Chan; Chu, Jhih-Wei; Hsu, Chao-Ping; Wu, Shu-Hsing

    2016-10-13

    A double-negative feedback loop formed by the morning genes CIRCADIAN CLOCK ASSOCIATED1 (CCA1)/LATE ELONGATED HYPOCOTYL (LHY) and the evening gene TIMING OF CAB EXPRESSION1 (TOC1) contributes to regulation of the circadian clock in Arabidopsis. A 24-h circadian cycle starts with the peak expression of CCA1 at dawn. Although CCA1 is targeted by multiple transcriptional repressors, including PSEUDO-RESPONSE REGULATOR9 (PRR9), PRR7, PRR5 and CCA1 HIKING EXPEDITION (CHE), activators of CCA1 remain elusive. Here we use mathematical modelling to infer a co-activator role for LIGHT-REGULATED WD1 (LWD1) in CCA1 expression. We show that the TEOSINTE BRANCHED 1-CYCLOIDEA-PCF20 (TCP20) and TCP22 proteins act as LWD-interacting transcriptional activators. The concomitant binding of LWD1 and TCP20/TCP22 to the TCP-binding site in the CCA1 promoter activates CCA1. Our study reveals activators of the morning gene CCA1 and provides an action mechanism that ensures elevated expression of CCA1 at dawn to sustain a robust clock.

  11. Exposure of Lactating Dairy Cows to Acute Pre-Ovulatory Heat Stress Affects Granulosa Cell-Specific Gene Expression Profiles in Dominant Follicles

    Science.gov (United States)

    Vanselow, Jens; Vernunft, Andreas; Koczan, Dirk; Spitschak, Marion; Kuhla, Björn

    2016-01-01

    High environmental temperatures induce detrimental effects on various reproductive processes in cattle. According to the predicted global warming the number of days with unfavorable ambient temperatures will further increase. The objective of this study was to investigate effects of acute heat stress during the late pre-ovulatory phase on morphological, physiological and molecular parameters of dominant follicles in cycling cows during lactation. Eight German Holstein cows in established lactation were exposed to heat stress (28°C) or thermoneutral conditions (15°C) with pair-feeding for four days. After hormonal heat induction growth of the respective dominant follicles was monitored by ultrasonography for two days, then an ovulatory GnRH dose was given and follicular steroid hormones and granulosa cell-specific gene expression profiles were determined 23 hrs thereafter. The data showed that the pre-ovulatory growth of dominant follicles and the estradiol, but not the progesterone concentrations tended to be slightly affected. mRNA microarray and hierarchical cluster analysis revealed distinct expression profiles in granulosa cells derived from heat stressed compared to pair-fed animals. Among the 255 affected genes heatstress-, stress- or apoptosis associated genes were not present. But instead, we found up-regulation of genes essentially involved in G-protein coupled signaling pathways, extracellular matrix composition, and several members of the solute carrier family as well as up-regulation of FST encoding follistatin. In summary, the data of the present study show that acute pre-ovulatory heat stress can specifically alter gene expression profiles in granulosa cells, however without inducing stress related genes and pathways and suggestively can impair follicular growth due to affecting the activin-inhibin-follistatin system. PMID:27532452

  12. Examination of Csr regulatory circuitry using epistasis analysis with RNA-seq (Epi-seq) confirms that CsrD affects gene expression via CsrA, CsrB and CsrC.

    Science.gov (United States)

    Potts, Anastasia H; Leng, Yuanyuan; Babitzke, Paul; Romeo, Tony

    2018-03-29

    The Csr global regulatory system coordinates gene expression in response to metabolic status. This system utilizes the RNA binding protein CsrA to regulate gene expression by binding to transcripts of structural and regulatory genes, thus affecting their structure, stability, translation, and/or transcription elongation. CsrA activity is controlled by sRNAs, CsrB and CsrC, which sequester CsrA away from other transcripts. CsrB/C levels are partly determined by their rates of turnover, which requires CsrD to render them susceptible to RNase E cleavage. Previous epistasis analysis suggested that CsrD affects gene expression through the other Csr components, CsrB/C and CsrA. However, those conclusions were based on a limited analysis of reporters. Here, we reassessed the global behavior of the Csr circuitry using epistasis analysis with RNA seq (Epi-seq). Because CsrD effects on mRNA levels were entirely lost in the csrA mutant and largely eliminated in a csrB/C mutant under our experimental conditions, while the majority of CsrA effects persisted in the absence of csrD, the original model accounts for the global behavior of the Csr system. Our present results also reflect a more nuanced role of CsrA as terminal regulator of the Csr system than has been recognized.

  13. Abundance and genetic diversity of nifH gene sequences in anthropogenically affected Brazilian mangrove sediments.

    Science.gov (United States)

    Dias, Armando Cavalcante Franco; Pereira e Silva, Michele de Cassia; Cotta, Simone Raposo; Dini-Andreote, Francisco; Soares, Fábio Lino; Salles, Joana Falcão; Azevedo, João Lúcio; van Elsas, Jan Dirk; Andreote, Fernando Dini

    2012-11-01

    Although mangroves represent ecosystems of global importance, the genetic diversity and abundance of functional genes that are key to their functioning scarcely have been explored. Here, we present a survey based on the nifH gene across transects of sediments of two mangrove systems located along the coast line of São Paulo state (Brazil) which differed by degree of disturbance, i.e., an oil-spill-affected and an unaffected mangrove. The diazotrophic communities were assessed by denaturing gradient gel electrophoresis (DGGE), quantitative PCR (qPCR), and clone libraries. The nifH gene abundance was similar across the two mangrove sediment systems, as evidenced by qPCR. However, the nifH-based PCR-DGGE profiles revealed clear differences between the mangroves. Moreover, shifts in the nifH gene diversities were noted along the land-sea transect within the previously oiled mangrove. The nifH gene diversity depicted the presence of nitrogen-fixing bacteria affiliated with a wide range of taxa, encompassing members of the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, and also a group of anaerobic sulfate-reducing bacteria. We also detected a unique mangrove-specific cluster of sequences denoted Mgv-nifH. Our results indicate that nitrogen-fixing bacterial guilds can be partially endemic to mangroves, and these communities are modulated by oil contamination, which has important implications for conservation strategies.

  14. Abundance and Genetic Diversity of nifH Gene Sequences in Anthropogenically Affected Brazilian Mangrove Sediments

    Science.gov (United States)

    Dias, Armando Cavalcante Franco; Pereira e Silva, Michele de Cassia; Cotta, Simone Raposo; Dini-Andreote, Francisco; Soares, Fábio Lino; Salles, Joana Falcão; Azevedo, João Lúcio; van Elsas, Jan Dirk

    2012-01-01

    Although mangroves represent ecosystems of global importance, the genetic diversity and abundance of functional genes that are key to their functioning scarcely have been explored. Here, we present a survey based on the nifH gene across transects of sediments of two mangrove systems located along the coast line of São Paulo state (Brazil) which differed by degree of disturbance, i.e., an oil-spill-affected and an unaffected mangrove. The diazotrophic communities were assessed by denaturing gradient gel electrophoresis (DGGE), quantitative PCR (qPCR), and clone libraries. The nifH gene abundance was similar across the two mangrove sediment systems, as evidenced by qPCR. However, the nifH-based PCR-DGGE profiles revealed clear differences between the mangroves. Moreover, shifts in the nifH gene diversities were noted along the land-sea transect within the previously oiled mangrove. The nifH gene diversity depicted the presence of nitrogen-fixing bacteria affiliated with a wide range of taxa, encompassing members of the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, and also a group of anaerobic sulfate-reducing bacteria. We also detected a unique mangrove-specific cluster of sequences denoted Mgv-nifH. Our results indicate that nitrogen-fixing bacterial guilds can be partially endemic to mangroves, and these communities are modulated by oil contamination, which has important implications for conservation strategies. PMID:22941088

  15. A mutation in the dam gene of Vibrio cholerae: 2-aminopurine sensitivity with intact GATC methylase activity

    International Nuclear Information System (INIS)

    Bandyopadhyay, R.; Sengupta, A.; Das, J.

    1989-01-01

    Vibrio cholerae mutants sensitive to 2-aminopurine (2AP) but with DNA adenine methylase activity similar to parental cells have been isolated. The mutant strains were sensitive to ultraviolet light (UV), methyl methanesulfonate (MMS) and 9-aminoacridine. The spontaneous mutation frequency of the mutants were not significantly affected. Attempts to isolate dam V. cholerae cells by screening 2AP sensitive cells have not been successful. All the mutant phenotypes could be suppressed by introducing the plasmid pRB103 carrying the dam gene of Escherichia coli into the mutant cells

  16. Mutations that abrogate transactivational activity of the feline leukemia virus long terminal repeat do not affect virus replication

    International Nuclear Information System (INIS)

    Abujamra, Ana L.; Faller, Douglas V.; Ghosh, Sajal K.

    2003-01-01

    The U3 region of the LTR of oncogenic Moloney murine leukemia virus (Mo-MuLV) and feline leukemia viruses (FeLV) have been previously reported to activate expression of specific cellular genes in trans, such as MHC class I, collagenase IV, and MCP-1, in an integration-independent manner. It has been suggested that transactivation of these specific cellular genes by leukemia virus U3-LTR may contribute to the multistage process of leukemogenesis. The U3-LTR region, necessary for gene transactivational activity, also contains multiple transcription factor-binding sites that are essential for normal virus replication. To dissect the promoter activity and the gene transactivational activity of the U3-LTR, we conducted mutational analysis of the U3-LTR region of FeLV-A molecular clone 61E. We identified minimal nucleotide substitution mutants on the U3 LTR that did not disturb transcription factor-binding sites but abrogated its ability to transactivate the collagenase gene promoter. To determine if these mutations actually have altered any uncharacterized important transcription factor-binding site, we introduced these U3-LTR mutations into the full-length infectious molecular clone 61E. We demonstrate that the mutant virus was replication competent but could not transactivate cellular gene expression. These results thus suggest that the gene transactivational activity is a distinct property of the LTR and possibly not related to its promoter activity. The cellular gene transactivational activity-deficient mutant FeLV generated in this study may also serve as a valuable reagent for testing the biological significance of LTR-mediated cellular gene activation in the tumorigenesis caused by leukemia viruses

  17. Live-cell Imaging of Pol II Promoter Activity to Monitor Gene expression with RNA IMAGEtag reporters

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ilchung [Ames Laboratory; Ray, Judhajeet [Ames Laboratory; Gupta, Vinayak [Iowa State University; Ilgu, Muslum [Ames Laboratory; Beasley, Jonathan [Iowa State University; Bendickson, Lee [Ames Laboratory; Mehanovic, Samir [Molecular Express; Kraus, George A. [Iowa State University; Nilsen-Hamilton, Marit [Ames Laboratory

    2014-04-20

    We describe a ribonucleic acid (RNA) reporter system for live-cell imaging of gene expression to detect changes in polymerase II activity on individual promoters in individual cells. The reporters use strings of RNA aptamers that constitute IMAGEtags (Intracellular MultiAptamer GEnetic tags) that can be expressed from a promoter of choice. For imaging, the cells are incubated with their ligands that are separately conjugated with one of the FRET pair, Cy3 and Cy5. The IMAGEtags were expressed in yeast from the GAL1, ADH1 or ACT1 promoters. Transcription from all three promoters was imaged in live cells and transcriptional increases from the GAL1 promoter were observed with time after adding galactose. Expression of the IMAGEtags did not affect cell proliferation or endogenous gene expression. Advantages of this method are that no foreign proteins are produced in the cells that could be toxic or otherwise influence the cellular response as they accumulate, the IMAGEtags are short lived and oxygen is not required to generate their signals. The IMAGEtag RNA reporter system provides a means of tracking changes in transcriptional activity in live cells and in real time.

  18. Engaging Students in a Bioinformatics Activity to Introduce Gene Structure and Function

    Directory of Open Access Journals (Sweden)

    Barbara J. May

    2013-02-01

    Full Text Available Bioinformatics spans many fields of biological research and plays a vital role in mining and analyzing data. Therefore, there is an ever-increasing need for students to understand not only what can be learned from this data, but also how to use basic bioinformatics tools.  This activity is designed to provide secondary and undergraduate biology students to a hands-on activity meant to explore and understand gene structure with the use of basic bioinformatic tools.  Students are provided an “unknown” sequence from which they are asked to use a free online gene finder program to identify the gene. Students then predict the putative function of this gene with the use of additional online databases.

  19. Multiple Taf subunits of TFIID interact with Ino2 activation domains and contribute to expression of genes required for yeast phospholipid biosynthesis.

    Science.gov (United States)

    Hintze, Stefan; Engelhardt, Maike; van Diepen, Laura; Witt, Eric; Schüller, Hans-Joachim

    2017-12-01

    Expression of phospholipid biosynthetic genes in yeast requires activator protein Ino2 which can bind to the UAS element inositol/choline-responsive element (ICRE) and trigger activation of target genes, using two separate transcriptional activation domains, TAD1 and TAD2. However, it is still unknown which cofactors mediate activation by TADs of Ino2. Here, we show that multiple subunits of basal transcription factor TFIID (TBP-associated factors Taf1, Taf4, Taf6, Taf10 and Taf12) are able to interact in vitro with activation domains of Ino2. Interaction was no longer observed with activation-defective variants of TAD1. We were able to identify two nonoverlapping regions in the N-terminus of Taf1 (aa 1-100 and aa 182-250) each of which could interact with TAD1 of Ino2 as well as with TAD4 of activator Adr1. Specific missense mutations within Taf1 domain aa 182-250 affecting basic and hydrophobic residues prevented interaction with wild-type TAD1 and caused reduced expression of INO1. Using chromatin immunoprecipitation we demonstrated Ino2-dependent recruitment of Taf1 and Taf6 to ICRE-containing promoters INO1 and CHO2. Transcriptional derepression of INO1 was no longer possible with temperature-sensitive taf1 and taf6 mutants cultivated under nonpermissive conditions. This result supports the hypothesis of Taf-dependent expression of structural genes activated by Ino2. © 2017 John Wiley & Sons Ltd.

  20. Gene expression profiling of placentas affected by pre-eclampsia

    DEFF Research Database (Denmark)

    Hoegh, Anne Mette; Borup, Rehannah; Nielsen, Finn Cilius

    2010-01-01

    Several studies point to the placenta as the primary cause of pre-eclampsia. Our objective was to identify placental genes that may contribute to the development of pre-eclampsia. RNA was purified from tissue biopsies from eleven pre-eclamptic placentas and eighteen normal controls. Messenger RNA...... expression from pooled samples was analysed by microarrays. Verification of the expression of selected genes was performed using real-time PCR. A surprisingly low number of genes (21 out of 15,000) were identified as differentially expressed. Among these were genes not previously associated with pre-eclampsia...... as bradykinin B1 receptor and a 14-3-3 protein, but also genes that have already been connected with pre-eclampsia, for example, inhibin beta A subunit and leptin. A low number of genes were repeatedly identified as differentially expressed, because they may represent the endpoint of a cascade of events...

  1. Serine Proteolytic Pathway Activation Reveals an Expanded Ensemble of Wound Response Genes in Drosophila

    Science.gov (United States)

    Patterson, Rachel A.; Juarez, Michelle T.; Hermann, Anita; Sasik, Roman; Hardiman, Gary; McGinnis, William

    2013-01-01

    After injury to the animal epidermis, a variety of genes are transcriptionally activated in nearby cells to regenerate the missing cells and facilitate barrier repair. The range and types of diffusible wound signals that are produced by damaged epidermis and function to activate repair genes during epidermal regeneration remains a subject of very active study in many animals. In Drosophila embryos, we have discovered that serine protease function is locally activated around wound sites, and is also required for localized activation of epidermal repair genes. The serine protease trypsin is sufficient to induce a striking global epidermal wound response without inflicting cell death or compromising the integrity of the epithelial barrier. We developed a trypsin wounding treatment as an amplification tool to more fully understand the changes in the Drosophila transcriptome that occur after epidermal injury. By comparing our array results with similar results on mammalian skin wounding we can see which evolutionarily conserved pathways are activated after epidermal wounding in very diverse animals. Our innovative serine protease-mediated wounding protocol allowed us to identify 8 additional genes that are activated in epidermal cells in the immediate vicinity of puncture wounds, and the functions of many of these genes suggest novel genetic pathways that may control epidermal wound repair. Additionally, our data augments the evidence that clean puncture wounding can mount a powerful innate immune transcriptional response, with different innate immune genes being activated in an interesting variety of ways. These include puncture-induced activation only in epidermal cells in the immediate vicinity of wounds, or in all epidermal cells, or specifically in the fat body, or in multiple tissues. PMID:23637905

  2. Robust, synergistic regulation of human gene expression using TALE activators.

    Science.gov (United States)

    Maeder, Morgan L; Linder, Samantha J; Reyon, Deepak; Angstman, James F; Fu, Yanfang; Sander, Jeffry D; Joung, J Keith

    2013-03-01

    Artificial activators designed using transcription activator-like effector (TALE) technology have broad utility, but previous studies suggest that these monomeric proteins often exhibit low activities. Here we demonstrate that TALE activators can robustly function individually or in synergistic combinations to increase expression of endogenous human genes over wide dynamic ranges. These findings will encourage applications of TALE activators for research and therapy, and guide design of monomeric TALE-based fusion proteins.

  3. Inherited Variation in Cytokine, Acute Phase Response, and Calcium Metabolism Genes Affects Susceptibility to Infective Endocarditis

    Directory of Open Access Journals (Sweden)

    Anastasia V. Ponasenko

    2017-01-01

    Full Text Available Infective endocarditis (IE is a septic inflammation of the endocardium. Recognition of microbial patterns, cytokine and acute phase responses, hemostasis features, and alterations in plasma lipid and calcium profile all have been reported to affect pathogenesis and clinical course of IE. Having recruited 123 patients with IE and 300 age-, sex-, and ethnicity-matched healthy blood donors, we profiled their genomic DNA for 35 functionally significant polymorphisms within the 22 selected genes involved in the abovementioned pathways, with the further genetic association analysis. We found that the G/A genotype of the rs1143634 polymorphism within the IL1B gene, the G/T genotype of the rs3212227 polymorphism within the IL12B gene, the A/G genotype of the rs1130864 polymorphism within the CRP gene, and the G allele of the rs1801197 polymorphism within the CALCR gene were associated with a decreased risk of IE whereas the T/T genotype of the rs1205 polymorphism within the CRP gene was associated with a higher risk of IE. Furthermore, heterozygous genotypes of the rs1143634 and rs3212227 polymorphisms were associated with the higher plasma levels of IL-1β and IL-12, respectively. Our results indicate that inherited variation in the cytokine, acute phase response, and calcium metabolism pathways may be linked to IE.

  4. Inherited Variation in Cytokine, Acute Phase Response, and Calcium Metabolism Genes Affects Susceptibility to Infective Endocarditis

    Science.gov (United States)

    Rutkovskaya, Natalia V.; Kondyukova, Natalia V.; Odarenko, Yuri N.; Kazachek, Yana V.; Tsepokina, Anna V.; Barbarash, Leonid S.

    2017-01-01

    Infective endocarditis (IE) is a septic inflammation of the endocardium. Recognition of microbial patterns, cytokine and acute phase responses, hemostasis features, and alterations in plasma lipid and calcium profile all have been reported to affect pathogenesis and clinical course of IE. Having recruited 123 patients with IE and 300 age-, sex-, and ethnicity-matched healthy blood donors, we profiled their genomic DNA for 35 functionally significant polymorphisms within the 22 selected genes involved in the abovementioned pathways, with the further genetic association analysis. We found that the G/A genotype of the rs1143634 polymorphism within the IL1B gene, the G/T genotype of the rs3212227 polymorphism within the IL12B gene, the A/G genotype of the rs1130864 polymorphism within the CRP gene, and the G allele of the rs1801197 polymorphism within the CALCR gene were associated with a decreased risk of IE whereas the T/T genotype of the rs1205 polymorphism within the CRP gene was associated with a higher risk of IE. Furthermore, heterozygous genotypes of the rs1143634 and rs3212227 polymorphisms were associated with the higher plasma levels of IL-1β and IL-12, respectively. Our results indicate that inherited variation in the cytokine, acute phase response, and calcium metabolism pathways may be linked to IE. PMID:28659664

  5. HFE gene variants affect iron in the brain.

    Science.gov (United States)

    Nandar, Wint; Connor, James R

    2011-04-01

    Iron accumulation in the brain and increased oxidative stress are consistent observations in many neurodegenerative diseases. Thus, we have begun examination into gene mutations or allelic variants that could be associated with loss of iron homeostasis. One of the mechanisms leading to iron overload is a mutation in the HFE gene, which is involved in iron metabolism. The 2 most common HFE gene variants are C282Y (1.9%) and H63D (8.9%). The C282Y HFE variant is more commonly associated with hereditary hemochromatosis, which is an autosomal recessive disorder, characterized by iron overload in a number of systemic organs. The H63D HFE variant appears less frequently associated with hemochromatosis, but its role in the neurodegenerative diseases has received more attention. At the cellular level, the HFE mutant protein resulting from the H63D HFE gene variant is associated with iron dyshomeostasis, increased oxidative stress, glutamate release, tau phosphorylation, and alteration in inflammatory response, each of which is under investigation as a contributing factor to neurodegenerative diseases. Therefore, the HFE gene variants are proposed to be genetic modifiers or a risk factor for neurodegenerative diseases by establishing an enabling milieu for pathogenic agents. This review will discuss the current knowledge of the association of the HFE gene variants with neurodegenerative diseases: amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease, and ischemic stroke. Importantly, the data herein also begin to dispel the long-held view that the brain is protected from iron accumulation associated with the HFE mutations.

  6. Targeted Editing of Myostatin Gene in Sheep by Transcription Activator-like Effector Nucleases

    Directory of Open Access Journals (Sweden)

    Xinxia Zhao

    2016-03-01

    Full Text Available Myostatin (MSTN is a secreted growth factor expressed in skeletal muscle and adipose tissue that negatively regulates skeletal muscle mass. Gene knockout of MSTN can result in increasing muscle mass in sheep. The objectives were to investigate whether myostatin gene can be edited in sheep by transcription activator-like effector nucleases (TALENs in tandem with single-stranded DNA oligonucleotides (ssODNs. We designed a pair of TALENs to target a highly conserved sequence in the coding region of the sheep MSTN gene. The activity of the TALENs was verified by using luciferase single-strand annealing reporter assay in HEK 293T cell line. Co-transfection of TALENs and ssODNs oligonucleotides induced precise gene editing of myostatin gene in sheep primary fibroblasts. MSTN gene-edited cells were successfully used as nuclear donors for generating cloned embryos. TALENs combined with ssDNA oligonucleotides provide a useful approach for precise gene modification in livestock animals.

  7. Process and genes for expression and overexpression of active [FeFe] hydrogenases

    Science.gov (United States)

    Seibert, Michael; King, Paul W; Ghirardi, Maria Lucia; Posewitz, Matthew C; Smolinski, Sharon L

    2014-09-16

    A process for expression of active [FeFe]-hydrogenase in a host organism that does not contain either the structural gene(s) for [FeFe]-hydrogenases and/or homologues for the maturation genes HydE, HydF and HyG, comprising: cloning the structural hydrogenase gene(s) and/or the maturation genes HydE, HydF and HydG from an organisms that contains these genes into expression plasmids; transferring the plasmids into an organism that lacks a native [FeFe]-hydrogenase or that has a disrupted [FeFe]-hydrogenase and culturing it aerobically; and inducing anaerobiosis to provide [FeFe] hydrogenase biosynthesis and H?2#191 production.

  8. Behavioral meaningful opioidergic stimulation activates kappa receptor gene expression

    International Nuclear Information System (INIS)

    Teodorov, E.; Ferrari, M.F.R.; Fior-Chadi, D.R.; Camarini, R.; Felício, L.F.

    2012-01-01

    The periaqueductal gray (PAG) has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc) or 0.9% saline (up to 1 mL/kg) and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05) because a lower percentage of U69593 group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR). A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05) and lactating female rats (P < 0.01), with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in female

  9. Behavioral meaningful opioidergic stimulation activates kappa receptor gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Teodorov, E. [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Paulo, SP (Brazil); Ferrari, M.F.R. [Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Fior-Chadi, D.R. [Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Camarini, R. [Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil); Felício, L.F. [Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP (Brazil)

    2012-06-01

    The periaqueductal gray (PAG) has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc) or 0.9% saline (up to 1 mL/kg) and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05) because a lower percentage of U69593 group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR). A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05) and lactating female rats (P < 0.01), with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in female

  10. Behavioral meaningful opioidergic stimulation activates kappa receptor gene expression

    Directory of Open Access Journals (Sweden)

    E. Teodorov

    2012-10-01

    Full Text Available The periaqueductal gray (PAG has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc or 0.9% saline (up to 1 mL/kg and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05 because a lower percentage of kappa group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR. A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05 and lactating female rats (P < 0.01, with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in

  11. Imaging cortical activity following affective stimulation with a high temporal and spatial resolution

    Directory of Open Access Journals (Sweden)

    Catani Claudia

    2009-07-01

    Full Text Available Abstract Background The affective and motivational relevance of a stimulus has a distinct impact on cortical processing, particularly in sensory areas. However, the spatial and temporal dynamics of this affective modulation of brain activities remains unclear. The purpose of the present study was the development of a paradigm to investigate the affective modulation of cortical networks with a high temporal and spatial resolution. We assessed cortical activity with MEG using a visual steady-state paradigm with affective pictures. A combination of a complex demodulation procedure with a minimum norm estimation was applied to assess the temporal variation of the topography of cortical activity. Results Statistical permutation analyses of the results of the complex demodulation procedure revealed increased steady-state visual evoked field amplitudes over occipital areas following presentation of affective pictures compared to neutral pictures. This differentiation shifted in the time course from occipital regions to parietal and temporal regions. Conclusion It can be shown that stimulation with affective pictures leads to an enhanced activity in occipital region as compared to neutral pictures. However, the focus of differentiation is not stable over time but shifts into temporal and parietal regions within four seconds of stimulation. Thus, it can be crucial to carefully choose regions of interests and time intervals when analyzing the affective modulation of cortical activity.

  12. Investigation of the mechanisms by which UV irradiation activates the tyrosinase gene

    International Nuclear Information System (INIS)

    Bao, Y.

    2000-04-01

    Tyrosinase, tyrosinase related protein-1 (TRP-1) and tyrosinase related protein-2 (TRP-2) are the enzymes involved in melanin pigment synthesis. They are expressed specifically in melanocytic cells. UV irradiation is the major physiological stimulant of melanogenesis. Tyrosinase is the rate-limiting enzyme in melanin synthesis and its activity is regulated by UV irradiation in melanocytes. The molecular mechanism underlying the activation of tyrosinase by UV is still not clear. In this thesis, the effects of UV irradiation on tyrosinase, TRP-1 and TRP-2 gene expression in mouse B16 melanoma cells were studied as well as the effects of UV irradiation on the activity of the tyrosinase promoter in mouse, and human melanoma cells. UV irradiation caused an increase in tyrosinase mRNA level, without change in either TRP-1 or TRP-2 mRNA levels, as determined by Northern blot analysis. In order to determine whether UV- induced increase of tyrosinase mRNA expression involved modulation of tyrosinase promoter activity, transient transfection approaches involving a series of constructs containing either chloramphenicol acetyl transferase (CAT) or luciferase reporter genes linked to different lengths of the tyrosinase gene- promoter were used. UV irradiation specifically induced CAT gene expression from both the mouse and the human tyrosinase promoters, suggesting that UV irradiation induced the transcription of the tyrosinase gene. These observations indicated that the promoter region between -250 and -150 bp of the human tyrosinase promoter may contain important cis-regulatory elements involved in the UV response. To localise the cis-regulatory elements responsible for the UV response of the tyrosinase promoter, the 100-bp between -250 bp and -150 bp of the tyrosinase promoter was inserted upstream of a CAT reporter. It was shown that transcription from the 100-bp promoter fragment was activated by UV irradiation. Mutations of a potential cAMP response element (CRE) motif

  13. Iron Content Affects Lipogenic Gene Expression in the Muscle of Nelore Beef Cattle.

    Directory of Open Access Journals (Sweden)

    Wellison Jarles da Silva Diniz

    Full Text Available Iron (Fe is an essential mineral for metabolism and plays a central role in a range of biochemical processes. Therefore, this study aimed to identify differentially expressed (DE genes and metabolic pathways in Longissimus dorsi (LD muscle from cattle with divergent iron content, as well as to investigate the likely role of these DE genes in biological processes underlying beef quality parameters. Samples for RNA extraction for sequencing and iron, copper, manganese, and zinc determination were collected from LD muscles at slaughter. Eight Nelore steers, with extreme genomic estimated breeding values for iron content (Fe-GEBV, were selected from a reference population of 373 animals. From the 49 annotated DE genes (FDR<0.05 found between the two groups, 18 were up-regulated and 31 down-regulated for the animals in the low Fe-GEBV group. The functional enrichment analyses identified several biological processes, such as lipid transport and metabolism, and cell growth. Lipid metabolism was the main pathway observed in the analysis of metabolic and canonical signaling pathways for the genes identified as DE, including the genes FASN, FABP4, and THRSP, which are functional candidates for beef quality, suggesting reduced lipogenic activities with lower iron content. Our results indicate metabolic pathways that are partially influenced by iron, contributing to a better understanding of its participation in skeletal muscle physiology.

  14. Ultrasound-responsive gene-activated matrices for osteogenic gene therapy using matrix-assisted sonoporation.

    Science.gov (United States)

    Nomikou, N; Feichtinger, G A; Saha, S; Nuernberger, S; Heimel, P; Redl, H; McHale, A P

    2018-01-01

    Gene-activated matrix (GAM)-based therapeutics for tissue regeneration are limited by efficacy, the lack of spatiotemporal control and availability of target cells, all of which impact negatively on their translation to the clinic. Here, an advanced ultrasound-responsive GAM is described containing target cells that facilitates matrix-assisted sonoporation (MAS) to induce osteogenic differentiation. Ultrasound-responsive GAMs consisting of fibrin/collagen hybrid-matrices containing microbubbles, bone morphogenetic protein BMP2/7 coexpression plasmids together with C2C12 cells were treated with ultrasound either in vitro or following parenteral intramuscular implantation in vivo. Using direct measurement for alkaline phosphatase activity, von Kossa staining and immunohistochemical analysis for osteocalcin expression, MAS-stimulated osteogenic differentiation was confirmed in the GAMs in vitro 7 days after treatment with ultrasound. At day 30 post-treatment with ultrasound, ectopic osteogenic differentiation was confirmed in vivo using X-ray microcomputed tomography and histological analysis. Osteogenic differentiation was indicated by the presence of ectopic bone structures in all animals treated with MAS. In addition, bone volumes in this group were statistically greater than those in the control groups. This novel approach of incorporating a MAS capability into GAMs could be exploited to facilitate ex vivo gene transfer with subsequent surgical implantation or alternatively provide a minimally invasive means of stimulating in situ transgene delivery for osteoinductive gene-based therapies. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Common inversion polymorphism at 17q21.31 affects expression of multiple genes in tissue-specific manner.

    Science.gov (United States)

    de Jong, Simone; Chepelev, Iouri; Janson, Esther; Strengman, Eric; van den Berg, Leonard H; Veldink, Jan H; Ophoff, Roel A

    2012-09-06

    Chromosome 17q21.31 contains a common inversion polymorphism of approximately 900 kb in populations with European ancestry. Two divergent MAPT haplotypes, H1 and H2 are described with distinct linkage disequilibrium patterns across the region reflecting the inversion status at this locus. The MAPT H1 haplotype has been associated with progressive supranuclear palsy, corticobasal degeneration, Parkinson's disease and Alzheimer's disease, while the H2 is linked to recurrent deletion events associated with the 17q21.31 microdeletion syndrome, a disease characterized by developmental delay and learning disability. In this study, we investigate the effect of the inversion on the expression of genes in the 17q21.31 region. We find the expression of several genes in and at the borders of the inversion to be affected; specific either to whole blood or different regions of the human brain. The H1 haplotype was found to be associated with an increased expression of LRRC37A4, PLEKH1M and MAPT. In contrast, a decreased expression of MGC57346, LRRC37A and CRHR1 was associated with H1. Studies thus far have focused on the expression of MAPT in the inversion region. However, our results show that the inversion status affects expression of other genes in the 17q21.31 region as well. Given the link between the inversion status and different neurological diseases, these genes may also be involved in disease pathology, possibly in a tissue-specific manner.

  16. Detailed assessment of gene activation levels by multiple hypoxia-responsive elements under various hypoxic conditions.

    Science.gov (United States)

    Takeuchi, Yasuto; Inubushi, Masayuki; Jin, Yong-Nan; Murai, Chika; Tsuji, Atsushi B; Hata, Hironobu; Kitagawa, Yoshimasa; Saga, Tsuneo

    2014-12-01

    HIF-1/HRE pathway is a promising target for the imaging and the treatment of intractable malignancy (HIF-1; hypoxia-inducible factor 1, HRE; hypoxia-responsive element). The purposes of our study are: (1) to assess the gene activation levels resulting from various numbers of HREs under various hypoxic conditions, (2) to evaluate the bidirectional activity of multiple HREs, and (3) to confirm whether multiple HREs can induce gene expression in vivo. Human colon carcinoma HCT116 cells were transiently transfected by the constructs containing a firefly luciferase reporter gene and various numbers (2, 4, 6, 8, 10, and 12) of HREs (nHRE+, nHRE-). The relative luciferase activities were measured under various durations of hypoxia (6, 12, 18, and 24 h), O2 concentrations (1, 2, 4, 8, and 16 %), and various concentrations of deferoxamine mesylate (20, 40, 80, 160, and 320 µg/mL growth medium). The bidirectional gene activation levels by HREs were examined in the constructs (dual-luc-nHREs) containing firefly and Renilla luciferase reporter genes at each side of nHREs. Finally, to test whether the construct containing 12HRE and the NIS reporter gene (12HRE-NIS) can induce gene expression in vivo, SPECT imaging was performed in a mouse xenograft model. (1) gene activation levels by HREs tended to increase with increasing HRE copy number, but a saturation effect was observed in constructs with more than 6 or 8 copies of an HRE, (2) gene activation levels by HREs increased remarkably during 6-12 h of hypoxia, but not beyond 12 h, (3) gene activation levels by HREs decreased with increasing O2 concentrations, but could be detected even under mild hypoxia at 16 % O2, (4) the bidirectionally proportional activity of the HRE was confirmed regardless of the hypoxic severity, and (5) NIS expression driven by 12 tandem copies of an HRE in response to hypoxia could be visualized on in vivo SPECT imaging. The results of this study will help in the understanding and assessment of

  17. Exposure to atrazine affects the expression of key genes in metabolic pathways integral to energy homeostasis in Xenopus laevis tadpoles

    International Nuclear Information System (INIS)

    Zaya, Renee M.; Amini, Zakariya; Whitaker, Ashley S.; Ide, Charles F.

    2011-01-01

    In our laboratory, Xenopus laevis tadpoles exposed throughout development to 200 or 400 μg/L atrazine, concentrations reported to periodically occur in puddles, vernal ponds and runoff soon after application, were smaller and had smaller fat bodies (the tadpole's lipid storage organ) than controls. It was hypothesized that these changes were due to atrazine-related perturbations of energy homeostasis. To investigate this hypothesis, selected metabolic responses to exposure at the transcriptional and biochemical levels in atrazine-exposed tadpoles were measured. DNA microarray technology was used to determine which metabolic pathways were affected after developmental exposure to 400 μg/L atrazine. From these data, genes representative of the affected pathways were selected for assay using quantitative real time polymerase chain reaction (qRT-PCR) to measure changes in expression during a 2-week exposure to 400 μg/L. Finally, ATP levels were measured from tadpoles both early in and at termination of exposure to 200 and 400 μg/L. Microarray analysis revealed significant differential gene expression in metabolic pathways involved with energy homeostasis. Pathways with increased transcription were associated with the conversion of lipids and proteins into energy. Pathways with decreased transcription were associated with carbohydrate metabolism, fat storage, and protein synthesis. Using qRT-PCR, changes in gene expression indicative of an early stress response to atrazine were noted. Exposed tadpoles had significant decreases in acyl-CoA dehydrogenase (AD) and glucocorticoid receptor protein (GR) mRNA after 24 h of exposure, and near-significant (p = 0.07) increases in peroxisome proliferator-activated receptor β (PPAR-β) mRNA by 72 h. Decreases in AD suggested decreases in fatty acid β-oxidation while decreases in GR may have been a receptor desensitization response to a glucocorticoid surge. Involvement of PPAR-β, an energy homeostasis regulatory molecule

  18. Exposure to atrazine affects the expression of key genes in metabolic pathways integral to energy homeostasis in Xenopus laevis tadpoles

    Energy Technology Data Exchange (ETDEWEB)

    Zaya, Renee M., E-mail: renee.zaya@wmich.edu [Great Lakes Environmental and Molecular Sciences Center, Department of Biological Sciences, 3425 Wood Hall, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008 (United States); Amini, Zakariya, E-mail: zakariya.amini@wmich.edu [Great Lakes Environmental and Molecular Sciences Center, Department of Biological Sciences, 3425 Wood Hall, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008 (United States); Whitaker, Ashley S., E-mail: ashley.s.whitaker@wmich.edu [Great Lakes Environmental and Molecular Sciences Center, Department of Biological Sciences, 3425 Wood Hall, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008 (United States); Ide, Charles F., E-mail: charles.ide@wmich.edu [Great Lakes Environmental and Molecular Sciences Center, Department of Biological Sciences, 3425 Wood Hall, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008 (United States)

    2011-08-15

    In our laboratory, Xenopus laevis tadpoles exposed throughout development to 200 or 400 {mu}g/L atrazine, concentrations reported to periodically occur in puddles, vernal ponds and runoff soon after application, were smaller and had smaller fat bodies (the tadpole's lipid storage organ) than controls. It was hypothesized that these changes were due to atrazine-related perturbations of energy homeostasis. To investigate this hypothesis, selected metabolic responses to exposure at the transcriptional and biochemical levels in atrazine-exposed tadpoles were measured. DNA microarray technology was used to determine which metabolic pathways were affected after developmental exposure to 400 {mu}g/L atrazine. From these data, genes representative of the affected pathways were selected for assay using quantitative real time polymerase chain reaction (qRT-PCR) to measure changes in expression during a 2-week exposure to 400 {mu}g/L. Finally, ATP levels were measured from tadpoles both early in and at termination of exposure to 200 and 400 {mu}g/L. Microarray analysis revealed significant differential gene expression in metabolic pathways involved with energy homeostasis. Pathways with increased transcription were associated with the conversion of lipids and proteins into energy. Pathways with decreased transcription were associated with carbohydrate metabolism, fat storage, and protein synthesis. Using qRT-PCR, changes in gene expression indicative of an early stress response to atrazine were noted. Exposed tadpoles had significant decreases in acyl-CoA dehydrogenase (AD) and glucocorticoid receptor protein (GR) mRNA after 24 h of exposure, and near-significant (p = 0.07) increases in peroxisome proliferator-activated receptor {beta} (PPAR-{beta}) mRNA by 72 h. Decreases in AD suggested decreases in fatty acid {beta}-oxidation while decreases in GR may have been a receptor desensitization response to a glucocorticoid surge. Involvement of PPAR-{beta}, an energy

  19. Functional validation of candidate genes detected by genomic feature models

    DEFF Research Database (Denmark)

    Rohde, Palle Duun; Østergaard, Solveig; Kristensen, Torsten Nygaard

    2018-01-01

    Understanding the genetic underpinnings of complex traits requires knowledge of the genetic variants that contribute to phenotypic variability. Reliable statistical approaches are needed to obtain such knowledge. In genome-wide association studies, variants are tested for association with trait...... then functionally assessed whether the identified candidate genes affected locomotor activity by reducing gene expression using RNA interference. In five of the seven candidate genes tested, reduced gene expression altered the phenotype. The ranking of genes within the predictive GO term was highly correlated...

  20. Directed mutagenesis affects recombination in Azospirillum brasilense nif genes

    Directory of Open Access Journals (Sweden)

    C.P. Nunes

    2000-12-01

    Full Text Available In order to improve the gene transfer/mutagenesis system for Azospirillum brasilense, gene-cartridge mutagenesis was used to replace the nifD gene with the Tn5 kanamycin resistance gene. The construct was transferred to A. brasilense by electrotransformation. Of the 12 colonies isolated using the suicide plasmid pSUP202 as vector, only four did not show vector integration into the chromosome. Nevertheless, all 12 colonies were deficient in acetylene reduction, indicating an Nif- phenotype. Four Nif- mutants were analyzed by Southern blot, using six different probes spanning the nif and Km r genes and the plasmid vector. Apparently, several recombination events occurred in the mutant genomes, probably caused mainly by gene disruption owing to the mutagenesis technique used: resistance gene-cartridge mutagenesis combined with electrotransformation.Com o objetivo de melhorar os sistemas de transferência gênica e mutagênese para Azospirillum brasilense, a técnica de mutagênese através do uso de um gene marcador ("gene-cartridge mutagenesis" foi utilizada para substituir a região genômica de A. brasilense correspondente ao gene nifD por um segmento de DNA do transposon Tn5 contendo o gene que confere resistência ao antibiótico canamicina. A construção foi transferida para a linhagem de A. brasilense por eletrotransformação. Doze colônias transformantes foram isoladas com o plasmídeo suicida pSUP202 servindo como vetor. Dessas, somente quatro não possuíam o vetor integrado no cromossomo da bactéria. Independentemente da integração ou não do vetor, as 12 colônias foram deficientes na redução do gás acetileno, evidenciando o fenótipo Nif -. Quatro mutantes Nif - foram analisados através da técnica de Southern blot, utilizando-se seis diferentes fragmentos contendo genes nif, de resistência à canamicina e do vetor como sondas. Os resultados sugerem a ocorrência de eventos recombinacionais variados no genoma dos mutantes. A

  1. Functional validation of candidate genes detected by genomic feature models

    DEFF Research Database (Denmark)

    Rohde, Palle Duun; Østergaard, Solveig; Kristensen, Torsten Nygaard

    2018-01-01

    to investigate locomotor activity, and applied genomic feature prediction models to identify gene ontology (GO) cate- gories predictive of this phenotype. Next, we applied the covariance association test to partition the genomic variance of the predictive GO terms to the genes within these terms. We...... then functionally assessed whether the identified candidate genes affected locomotor activity by reducing gene expression using RNA interference. In five of the seven candidate genes tested, reduced gene expression altered the phenotype. The ranking of genes within the predictive GO term was highly correlated......Understanding the genetic underpinnings of complex traits requires knowledge of the genetic variants that contribute to phenotypic variability. Reliable statistical approaches are needed to obtain such knowledge. In genome-wide association studies, variants are tested for association with trait...

  2. Distinguishing the rates of gene activation from phenotypic variations.

    Science.gov (United States)

    Chen, Ye; Lv, Cheng; Li, Fangting; Li, Tiejun

    2015-06-18

    Stochastic genetic switching driven by intrinsic noise is an important process in gene expression. When the rates of gene activation/inactivation are relatively slow, fast, or medium compared with the synthesis/degradation rates of mRNAs and proteins, the variability of protein and mRNA levels may exhibit very different dynamical patterns. It is desirable to provide a systematic approach to identify their key dynamical features in different regimes, aiming at distinguishing which regime a considered gene regulatory network is in from their phenotypic variations. We studied a gene expression model with positive feedbacks when genetic switching rates vary over a wide range. With the goal of providing a method to distinguish the regime of the switching rates, we first focus on understanding the essential dynamics of gene expression system in different cases. In the regime of slow switching rates, we found that the effective dynamics can be reduced to independent evolutions on two separate layers corresponding to gene activation and inactivation states, and the transitions between two layers are rare events, after which the system goes mainly along deterministic ODE trajectories on a particular layer to reach new steady states. The energy landscape in this regime can be well approximated by using Gaussian mixture model. In the regime of intermediate switching rates, we analyzed the mean switching time to investigate the stability of the system in different parameter ranges. We also discussed the case of fast switching rates from the viewpoint of transition state theory. Based on the obtained results, we made a proposal to distinguish these three regimes in a simulation experiment. We identified the intermediate regime from the fact that the strength of cellular memory is lower than the other two cases, and the fast and slow regimes can be distinguished by their different perturbation-response behavior with respect to the switching rates perturbations. We proposed a

  3. CHD1 regulates cell fate determination by activation of differentiation-induced genes

    DEFF Research Database (Denmark)

    Baumgart, Simon J; Najafova, Zeynab; Hossan, Tareq

    2017-01-01

    The coordinated temporal and spatial activation of gene expression is essential for proper stem cell differentiation. The Chromodomain Helicase DNA-binding protein 1 (CHD1) is a chromatin remodeler closely associated with transcription and nucleosome turnover downstream of the transcriptional start...... site (TSS). In this study, we show that CHD1 is required for the induction of osteoblast-specific gene expression, extracellular-matrix mineralization and ectopic bone formation in vivo. Genome-wide occupancy analyses revealed increased CHD1 occupancy around the TSS of differentiation-activated genes....... Furthermore, we observed that CHD1-dependent genes are mainly induced during osteoblast differentiation and are characterized by higher levels of CHD1 occupancy around the TSS. Interestingly, CHD1 depletion resulted in increased pausing of RNA Polymerase II (RNAPII) and decreased H2A.Z occupancy close...

  4. Zooming into daily life: within-person associations between physical activity and affect in young adults.

    Science.gov (United States)

    Haas, Petra; Schmid, Johanna; Stadler, Gertraud; Reuter, Merle; Gawrilow, Caterina

    2017-05-01

    Negative affect in daily life is linked to poorer mental and physical health. Activity could serve as an effective, low-cost intervention to improve affect. However, few prior studies have assessed physical activity and affect in everyday life, limiting the ecological validity of prior findings. This study investigates whether daily activity is associated with negative and positive evening affect in young adults. Young adults (N = 189, Mdn = 23.00) participated in an intensive longitudinal study over 10 consecutive days. Participants wore accelerometers to objectively assess moderate-to-vigorous physical activity continuously throughout the day and reported their affect in time-stamped online evening diaries before going to sleep. On days when participants engaged in more activity than usual, they reported not only less depressed and angry evening affect but also more vigour and serenity in the evening. Young adults showed both less negative and more positive affect on days with more activity. Physical activity is a promising health promotion strategy for physical and mental well-being.

  5. Type 1 plaminogen activator inhibitor gene: Functional analysis and glucocorticoid regulation of its promoter

    International Nuclear Information System (INIS)

    Van Zonneveld, A.J.; Curriden, S.A.; Loskutoff, D.J.

    1988-01-01

    Plasminogen activator inhibitor type 1 is an important component of the fibrinolytic system and its biosynthesis is subject to complex regulation. To study this regulation at the level of transcription, the authors have identified and sequenced the promoter of the human plasminogen activator inhibitor type 1 gene. Nuclease protection experiments were performed by using endothelial cell mRNA and the transcription initiation (cap) site was established. Sequence analysis of the 5' flanking region of the gene revealed a perfect TATA box at position -28 to position -23, the conserved distance from the cap site. Comparative functional studies with the firefly luciferase gene as a reporter gene showed that fragments derived from this 5' flanking region exhibited high promoter activity when transfected into bovine aortic endothelial cells and mouse Ltk - fibroblasts but were inactive when introduced into HeLa cells. These studies indicate that the fragments contain the plasminogen activator inhibitor type 1 promoter and that it is expressed in a tissue-specific manner. Although the fragments were also silent in rat FTO2B hepatoma cells, their promoter activity could be induced up to 40-fold with the synthetic glucocorticoid dexamethasone. Promoter deletion mapping experiments and studies involving the fusion of promoter fragments to a heterologous gene indicated that dexamethasone induction is mediated by a glucocorticoid responsive element with enhancer-like properties located within the region between nucleotides -305 and +75 of the plasminogen activator inhibitor type 1 gene

  6. Using activity triggered e-diaries to reveal the associations between physical activity and affective states in older adult's daily living.

    Science.gov (United States)

    Kanning, Martina; Ebner-Priemer, Ulrich; Schlicht, Wolfgang

    2015-09-17

    Evidence suggests that older adults show positive affects after participating in exercise bouts. However, it is less clear, if and how physical activities in daily living enhance affective states, too. This is dissatisfying, as most of older adults' physical activities are part of their daily living. To answer these questions we used activity-triggered e-diaries to investigate the within-subject effects of physical activity on three dimensions of affective states (valence, energetic arousal, calmness) during everyday life. Older adults (N = 74) between 50 and 70 years took part in the study during three consecutive days. Physical activity in daily living was objectively assessed using accelerometers. Affects were measured 10 min after a study participant surpassed a predefined threshold for activity or inactivity. The participants were prompted by an acoustic signal to assess their momentary affective states on an e-diary. Data were analyzed with hierarchical multilevel analyses. Whenever older individuals were more physically active, they felt more energized (energetic arousal) and agitated (calmness). However, they did not feel better (valence). Interestingly, body mass index (BMI) and valence were associated in a significant cross-level interaction. BMI acts as a moderating variable in the way that lower BMI scores were associated with higher levels of valence scores after being physically active. The innovative ambulatory assessment used here affords an interesting insight to the affective effects of daily activity of older adults. These effects are no simple and no linear ones, i.e. physical activity is not associated with positive affects per se as shown several times in experimental studies with single activity bouts. Rather there is a differentiating association seen as an enhanced feeling of energy and agitation, which is not accompanied by a better feeling. Socio-emotional selectivity theory may support the finding that older individuals are

  7. Perinatal exposure to diesel exhaust affects gene expression in mouse cerebrum

    Energy Technology Data Exchange (ETDEWEB)

    Tsukue, Naomi [Tokyo University of Science, Department of Hygiene Chemistry, Faculty of Pharmaceutical Sciences, Noda, Chiba (Japan); Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Kawaguchi, Saitama (Japan); Japan Automobile Research Institute, Health Effects Research Group, Energy and Environment Research Division, Tsukuba, Ibaraki (Japan); Watanabe, Manabu; Kumamoto, Takayuki; Takeda, Ken [Tokyo University of Science, Department of Hygiene Chemistry, Faculty of Pharmaceutical Sciences, Noda, Chiba (Japan); Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Kawaguchi, Saitama (Japan); Takano, Hirohisa [Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Kawaguchi, Saitama (Japan); National Institute for Environmental Studies, Pathophysiology Research Team, Tsukuba, Ibaraki (Japan)

    2009-11-15

    Many environmental toxins alter reproductive function and affect the central nervous system (CNS). Gonadal steroid hormones cause differentiation of neurons and affect brain function and behavior during the perinatal period, and the CNS is thought to be particularly susceptible to toxic insult during this period. It was, therefore, hypothesized that inhalation of diesel exhaust (DE) during the fetal or suckling period would disrupt the sexual differentiation of brain function in mice, and the effects of exposure to DE during the perinatal period on sexual differentiation related gene expression of the brain were investigated. In the fetal period exposure group, pregnant ICR mice were exposed to DE from 1.5 days post-coitum (dpc) until 16 dpc. In the neonatal period exposure group, dams and their offspring were exposed to DE from the day of birth [postnatal day (PND)-0] until PND-16. Then, the cerebrums of males and females at PND-2, -5, and -16 from both groups were analyzed for expression level of mRNA encoding stress-related proteins [cytochrome P450 1A1 (CYP1A1), heme oxygenase-1 (HO-1)] and steroid hormone receptors [estrogen receptor alpha (ER alpha), estrogen receptor beta (ER beta), androgen receptor (AR)]. Expression levels of ER alpha and ER beta mRNA were increased in the cerebrum of newborns in the DE exposure groups as well as mRNA for CYP1A1 and HO-1. Results indicate that perinatal exposure to DE during the critical period of sexual differentiation of the brain may affect endocrine function. (orig.)

  8. Redox-Active Antibiotics Control Gene Expression and Community Behavior in Divergent Bacteria

    OpenAIRE

    Dietrich, Lars E. P.; Teal, Tracy K.; Price-Whelan, Alexa; Newman, Dianne K.

    2008-01-01

    It is thought that bacteria excrete redox-active pigments as antibiotics to inhibit competitors. In Pseudomonas aeruginosa, the endogenous antibiotic pyocyanin activates SoxR, a transcription factor conserved in Proteo- and Actinobacteria. In Escherichia coli, SoxR regulates the superoxide stress response. Bioinformatic analysis coupled with gene expression studies in P. aeruginosa and Streptomyces coelicolor revealed that the majority of SoxR regulons in bacteria lack the genes required for ...

  9. A novel familial mutation in the PCSK1 gene that alters the oxyanion hole residue of proprotein convertase 1/3 and impairs its enzymatic activity.

    Directory of Open Access Journals (Sweden)

    Michael Wilschanski

    Full Text Available Four siblings presented with congenital diarrhea and various endocrinopathies. Exome sequencing and homozygosity mapping identified five regions, comprising 337 protein-coding genes that were shared by three affected siblings. Exome sequencing identified a novel homozygous N309K mutation in the proprotein convertase subtilisin/kexin type 1 (PCSK1 gene, encoding the neuroendocrine convertase 1 precursor (PC1/3 which was recently reported as a cause of Congenital Diarrhea Disorder (CDD. The PCSK1 mutation affected the oxyanion hole transition state-stabilizing amino acid within the active site, which is critical for appropriate proprotein maturation and enzyme activity. Unexpectedly, the N309K mutant protein exhibited normal, though slowed, prodomain removal and was secreted from both HEK293 and Neuro2A cells. However, the secreted enzyme showed no catalytic activity, and was not processed into the 66 kDa form. We conclude that the N309K enzyme is able to cleave its own propeptide but is catalytically inert against in trans substrates, and that this variant accounts for the enteric and systemic endocrinopathies seen in this large consanguineous kindred.

  10. Identification of Differentially Expressed Genes through Integrated Study of Alzheimer's Disease Affected Brain Regions.

    Directory of Open Access Journals (Sweden)

    Nisha Puthiyedth

    Full Text Available Alzheimer's disease (AD is the most common form of dementia in older adults that damages the brain and results in impaired memory, thinking and behaviour. The identification of differentially expressed genes and related pathways among affected brain regions can provide more information on the mechanisms of AD. In the past decade, several studies have reported many genes that are associated with AD. This wealth of information has become difficult to follow and interpret as most of the results are conflicting. In that case, it is worth doing an integrated study of multiple datasets that helps to increase the total number of samples and the statistical power in detecting biomarkers. In this study, we present an integrated analysis of five different brain region datasets and introduce new genes that warrant further investigation.The aim of our study is to apply a novel combinatorial optimisation based meta-analysis approach to identify differentially expressed genes that are associated to AD across brain regions. In this study, microarray gene expression data from 161 samples (74 non-demented controls, 87 AD from the Entorhinal Cortex (EC, Hippocampus (HIP, Middle temporal gyrus (MTG, Posterior cingulate cortex (PC, Superior frontal gyrus (SFG and visual cortex (VCX brain regions were integrated and analysed using our method. The results are then compared to two popular meta-analysis methods, RankProd and GeneMeta, and to what can be obtained by analysing the individual datasets.We find genes related with AD that are consistent with existing studies, and new candidate genes not previously related with AD. Our study confirms the up-regualtion of INFAR2 and PTMA along with the down regulation of GPHN, RAB2A, PSMD14 and FGF. Novel genes PSMB2, WNK1, RPL15, SEMA4C, RWDD2A and LARGE are found to be differentially expressed across all brain regions. Further investigation on these genes may provide new insights into the development of AD. In addition, we

  11. Momentary assessment of affect, physical feeling states, and physical activity in children.

    Science.gov (United States)

    Dunton, Genevieve F; Huh, Jimi; Leventhal, Adam M; Riggs, Nathaniel; Hedeker, Donald; Spruijt-Metz, Donna; Pentz, Mary Ann

    2014-03-01

    Most research on the interplay of affective and physical feelings states with physical activity in children has been conducted under laboratory conditions and fails to capture intraindividual covariation. The current study used Ecological Momentary Assessment (EMA) to bidirectionally examine how affective and physical feeling states are related to objectively measured physical activity taking place in naturalistic settings during the course of children's everyday lives. Children (N = 119, ages 9-13 years, 52% male, 32% Hispanic) completed 8 days of EMA monitoring, which measured positive affect (PA), negative affect (NA), feeling tired, and feeling energetic up to 7 times per day. EMA responses were time-matched to accelerometer assessed moderate-to-vigorous physical activity (MVPA) in the 30 min before and after each EMA survey. Higher ratings of feeling energetic and lower ratings of feeling tired were associated with more MVPA in the 30 min after the EMA prompt. More MVPA in the 30 min before the EMA prompt was associated with higher ratings of PA and feeling energetic and lower ratings of NA. Between-subjects analyses indicated that mean hourly leisure-time MVPA was associated with less intraindividual variability in PA and NA. Physical feeling states predict subsequent physical activity levels, which in turn, predict subsequent affective states in children. Active children demonstrated higher positive and negative emotional stability. Although the strength of these associations were of modest magnitude and their clinical relevance is unclear, understanding the antecedents to and consequences of physical activity may have theoretical and practical implications for the maintenance and promotion of physical activity and psychological well-being in children. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  12. Disruption of plant carotenoid biosynthesis through virus-induced gene silencing affects oviposition behaviour of the butterfly Pieris rapae

    NARCIS (Netherlands)

    Zheng, S.J.; Snoeren, T.A.L.; Hogewoning, S.W.; Loon, van J.J.A.; Dicke, M.

    2010-01-01

    Optical plant characteristics are important cues to plant-feeding insects. In this article, we demonstrate for the first time that silencing the phytoene desaturase (PDS) gene, encoding a key enzyme in plant carotenoid biosynthesis, affects insect oviposition site selection behaviour. Virus-induced

  13. Iron depletion affects nitrogenase activity and expression of nifH and nifA genes in Herbaspirillum seropedicae.

    Science.gov (United States)

    Rosconi, Federico; Souza, Emanuel M; Pedrosa, Fabio O; Platero, Raúl A; González, Cecilia; González, Marcela; Batista, Silvia; Gill, Paul R; Fabiano, Elena R

    2006-05-01

    Herbaspirillum seropedicae Z67 is a nitrogen-fixing bacterium able to colonize the rhizosphere and the interior of several plants. As iron is a key element for nitrogen fixation, we examined the response of this microorganism to iron deficiency under nitrogen fixing conditions. We identified a H. seropedicae exbD gene that was induced in response to iron limitation and is involved in iron homeostasis. We found that an exbD mutant grown in iron-chelated medium is unable to fix nitrogen. Moreover, we provide evidence that expression of the nifH and nifA genes is iron dependent in a H. seropedicae genetic background.

  14. Transcriptomic analysis to uncover genes affecting cold resistance in the Chinese honey bee (Apis cerana cerana).

    Science.gov (United States)

    Xu, Kai; Niu, Qingsheng; Zhao, Huiting; Du, Yali; Jiang, Yusuo

    2017-01-01

    The biological activity and geographical distribution of honey bees is strongly temperature-dependent, due to their ectothermic physiology. In China, the endemic Apis cerana cerana exhibits stronger cold hardiness than Western honey bees, making the former species important pollinators of winter-flowering plants. Although studies have examined behavioral and physiological mechanisms underlying cold resistance in bees, data are scarce regarding the exact molecular mechanisms. Here, we investigated gene expression in A. c. cerana under two temperature treatments, using transcriptomic analysis to identify differentially expressed genes (DEGs) and relevant biological processes, respectively. Across the temperature treatments, 501 DEGs were identified. A gene ontology analysis showed that DEGs were enriched in pathways related to sugar and amino acid biosynthesis and metabolism, as well as calcium ion channel activity. Additionally, heat shock proteins, zinc finger proteins, and serine/threonine-protein kinases were differentially expressed between the two treatments. The results of this study provide a general digital expression profile of thermoregulation genes responding to cold hardiness in A. c. cerana. Our data should prove valuable for future research on cold tolerance mechanisms in insects, and may be beneficial in breeding efforts to improve bee hardiness.

  15. Transcriptomic analysis to uncover genes affecting cold resistance in the Chinese honey bee (Apis cerana cerana.

    Directory of Open Access Journals (Sweden)

    Kai Xu

    Full Text Available The biological activity and geographical distribution of honey bees is strongly temperature-dependent, due to their ectothermic physiology. In China, the endemic Apis cerana cerana exhibits stronger cold hardiness than Western honey bees, making the former species important pollinators of winter-flowering plants. Although studies have examined behavioral and physiological mechanisms underlying cold resistance in bees, data are scarce regarding the exact molecular mechanisms. Here, we investigated gene expression in A. c. cerana under two temperature treatments, using transcriptomic analysis to identify differentially expressed genes (DEGs and relevant biological processes, respectively. Across the temperature treatments, 501 DEGs were identified. A gene ontology analysis showed that DEGs were enriched in pathways related to sugar and amino acid biosynthesis and metabolism, as well as calcium ion channel activity. Additionally, heat shock proteins, zinc finger proteins, and serine/threonine-protein kinases were differentially expressed between the two treatments. The results of this study provide a general digital expression profile of thermoregulation genes responding to cold hardiness in A. c. cerana. Our data should prove valuable for future research on cold tolerance mechanisms in insects, and may be beneficial in breeding efforts to improve bee hardiness.

  16. PDGF-receptor beta-targeted adenovirus redirects gene transfer from hepatocytes to activated stellate cells

    NARCIS (Netherlands)

    Schoemaker, Marieke H.; Rots, Marianne G.; Beljaars, Leonie; Ypma, Arjen Y.; Jansen, Peter L. M.; Poelstra, Klaas; Moshage, Albert; Haisma, Hidde J.

    2008-01-01

    Chronic liver damage may lead to liver fibrosis. In this process, hepatic activated stellate cells are the key players. Thus, activated stellate cells are attractive targets for antifibrotic gene therapy. Recombinant, adenovirus is a promising vehicle for delivering therapeutic genes to liver cells.

  17. Generalist genes and learning disabilities.

    Science.gov (United States)

    Plomin, Robert; Kovas, Yulia

    2005-07-01

    The authors reviewed recent quantitative genetic research on learning disabilities that led to the conclusion that genetic diagnoses differ from traditional diagnoses in that the effects of relevant genes are largely general rather than specific. This research suggests that most genes associated with common learning disabilities--language impairment, reading disability, and mathematics disability--are generalists in 3 ways. First, genes that affect common learning disabilities are largely the same genes responsible for normal variation in learning abilities. Second, genes that affect any aspect of a learning disability affect other aspects of the disability. Third, genes that affect one learning disability are also likely to affect other learning disabilities. These quantitative genetic findings have far-reaching implications for molecular genetics and neuroscience as well as psychology. Copyright 2005 APA, all rights reserved.

  18. Screening to Identify Commonly Used Chinese Herbs That Affect ERBB2 and ESR1 Gene Expression Using the Human Breast Cancer MCF-7 Cell Line

    Directory of Open Access Journals (Sweden)

    Jen-Hwey Chiu

    2014-01-01

    Full Text Available Aim. Our aim the was to screen the commonly used Chinese herbs in order to detect changes in ERBB2 and ESR1 gene expression using MCF-7 cells. Methods. Using the MCF-7 human breast cancer cell line, cell cytotoxicity and proliferation were evaluated by MTT and trypan blue exclusion assays, respectively. A luciferase reporter assay was established by transient transfecting MCF-7 cells with plasmids containing either the ERBB2 or the ESR1 promoter region linked to the luciferase gene. Chinese herbal extracts were used to treat the cells at 24 h after transfection, followed by measurement of their luciferase activity. The screening results were verified by Western blotting to measure HER2 and ERα protein expression. Results. At concentrations that induced little cytotoxicity, thirteen single herbal extracts and five compound recipes were found to increase either ERBB2 or ESR1 luciferase activity. By Western blotting, Si-Wu-Tang, Kuan-Shin-Yin, and Suan-Tsao-Ren-Tang were found to increase either HER2 or ERα protein expression. In addition, Ligusticum chuanxiong was shown to have a great effect on ERBB2 gene expression and synergistically with estrogen to stimulate MCF-7 cell growth. Conclusion. Our results provide important information that should affect clinical treatment strategies among breast cancer patients who are receiving hormonal or targeted therapies.

  19. Need Satisfaction Moderates the Association Between Physical Activity and Affective States in Adults Aged 50+: an Activity-Triggered Ambulatory Assessment.

    Science.gov (United States)

    Kanning, Martina; Hansen, Sylvia

    2017-02-01

    Substantial evidence shows that physical activities of daily living are positively correlated with affective states in middle-aged and older adults. However, people's physical activity decreases when they grow older, and conditions that enhance older individuals' physical activities of daily living are not well understood. This study investigated need satisfaction (competence, relatedness, and autonomy) and its moderating effect on the within-subject relation between physical activities of daily living and three dimensions of affective states (valence, energetic arousal, and calmness) based on an ambulatory assessment that used activity-triggered e-diaries. The physical activities of daily living of 68 adults aged 50+ (mean age = 60.1 ± 7.1) were measured objectively for three consecutive days, and need satisfaction and affective states were assessed as a function of the amount of physical activity during the preceding 10 min before the affect measurement (in activity-triggered e-diaries). Hierarchical multilevel analyses were performed. Need satisfaction was significantly and positively correlated with the three dimensions of affective states. Further, physical activities of daily living were significantly associated with energetic arousal and calmness, but not valence. However, when physical activities of daily living were more autonomously regulated, the association of physical activities of daily living and valence became significant and positive. The findings regarding the significant moderating effects of need satisfaction are crucial for interventions aiming to improve the health-enhancing effects of physical activity in adults aged 50+. Positive feelings owing to physical activities in daily living depend on the extent that psychological needs are satisfied.

  20. Characteristics of the activity-affect association in inactive people: an ambulatory assessment study in daily life.

    Directory of Open Access Journals (Sweden)

    Birte eVon Haaren

    2013-04-01

    Full Text Available Acute and regular exercise as well as physical activity is related to wellbeing and positive affect. Recent studies have shown that even daily, unstructured physical activities increase positive affect. However, the attempt to achieve adherence to physical activity or exercise in inactive people through public health interventions has often been unsuccessful. Most studies analyzing the activity-affect association in daily life, did not report participants´ habitual activity behavior. Thus, samples included active and inactive people, but they did not necessarily exhibit the same affective reactions to physical activity in daily life. Therefore the present study investigated whether the association between physical activity and subsequent affective state in daily life can also be observed in inactive individuals. We conducted a pilot study with 29 inactive university students (mean age 21.3 yrs ± 1.7 using the method of ambulatory assessment. Affect was assessed via electronic diary and physical activity was measured with accelerometers. Participants had to rate affect every two hours on a six item bipolar scale reflecting the three basic mood dimensions energetic arousal, valence and calmness. We calculated activity intensity level (mean Metabolic Equivalent (MET value and the amount of time spent in light activity over the last 15 minutes before every diary prompt and conducted within-subject correlations. We did not find significant associations between activity intensity and the three mood dimensions. Due to the high variability in within-subject correlations we conclude that not all inactive people show the same affective reactions to physical activity in daily life. Analyzing the physical activity-affect association of inactive people was difficult due to little variance and distribution of the assessed variables. Interactive assessment and randomized controlled trials might help solving these problems. Future studies should examine

  1. Sulfate reducing bacteria and their activities in oil sands process-affected water biofilm

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hong; Yu, Tong, E-mail: tong.yu@ualberta.ca; Liu, Yang, E-mail: yang.liu@ualberta.ca

    2015-12-01

    Biofilm reactors were constructed to grow stratified multispecies biofilm in oil sands process-affected water (OSPW) supplemented with growth medium. The development of sulfate reducing bacteria (SRB) within the biofilm and the biofilm treatment of OSPW were evaluated. The community structure and potential activity of SRB in the biofilm were investigated with H{sub 2}S microsensor measurements, dsrB gene-based denaturing gradient gel electrophoresis (DGGE), and the real time quantitative polymerase chain reaction (qPCR). Multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H{sub 2}S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the stratified biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. The study expands current knowledge of biofilm treatment of OSPW and the function of anaerobic SRB in OSPW biofilm, and thus provides information for future bioreactor development in the reclamation of OSPW. - Graphical abstract: The development of sulfate reducing bacteria (SRB) within Oil Sands Process-affected Water (OSPW) biofilm and the biofilm treatment of OSPW were evaluated by Liu and coworkers. Combined microsensor and molecular biology techniques were utilized in this study. Their results demonstrated that multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H{sub 2}S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. - Highlights: • Biofilm in oil sands wastewater was developed on engineered biocarriers. • Bacterial community and in situ activity of SRB were studied in the

  2. Sulfate reducing bacteria and their activities in oil sands process-affected water biofilm

    International Nuclear Information System (INIS)

    Liu, Hong; Yu, Tong; Liu, Yang

    2015-01-01

    Biofilm reactors were constructed to grow stratified multispecies biofilm in oil sands process-affected water (OSPW) supplemented with growth medium. The development of sulfate reducing bacteria (SRB) within the biofilm and the biofilm treatment of OSPW were evaluated. The community structure and potential activity of SRB in the biofilm were investigated with H 2 S microsensor measurements, dsrB gene-based denaturing gradient gel electrophoresis (DGGE), and the real time quantitative polymerase chain reaction (qPCR). Multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H 2 S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the stratified biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. The study expands current knowledge of biofilm treatment of OSPW and the function of anaerobic SRB in OSPW biofilm, and thus provides information for future bioreactor development in the reclamation of OSPW. - Graphical abstract: The development of sulfate reducing bacteria (SRB) within Oil Sands Process-affected Water (OSPW) biofilm and the biofilm treatment of OSPW were evaluated by Liu and coworkers. Combined microsensor and molecular biology techniques were utilized in this study. Their results demonstrated that multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H 2 S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. - Highlights: • Biofilm in oil sands wastewater was developed on engineered biocarriers. • Bacterial community and in situ activity of SRB were studied in the biofilm.

  3. Synergistic and Antagonistic Interplay between Myostatin Gene Expression and Physical Activity Levels on Gene Expression Patterns in Triceps Brachii Muscles of C57/BL6 Mice

    Science.gov (United States)

    Caetano-Anollés, Kelsey; Mishra, Sanjibita; Rodriguez-Zas, Sandra L.

    2015-01-01

    Levels of myostatin expression and physical activity have both been associated with transcriptome dysregulation and skeletal muscle hypertrophy. The transcriptome of triceps brachii muscles from male C57/BL6 mice corresponding to two genotypes (wild-type and myostatin-reduced) under two conditions (high and low physical activity) was characterized using RNA-Seq. Synergistic and antagonistic interaction and ortholog modes of action of myostatin genotype and activity level on genes and gene pathways in this skeletal muscle were uncovered; 1,836, 238, and 399 genes exhibited significant (FDR-adjusted P-value myostatin-reduced relative to active and inactive wild-type, (ii) inactive myostatin-reduced and active wild-type, and (iii) inactive myostatin-reduced and inactive wild-type. Several remarkable genes and gene pathways were identified. The expression profile of nascent polypeptide-associated complex alpha subunit (Naca) supports a synergistic interaction between activity level and myostatin genotype, while Gremlin 2 (Grem2) displayed an antagonistic interaction. Comparison between activity levels revealed expression changes in genes encoding for structural proteins important for muscle function (including troponin, tropomyosin and myoglobin) and for fatty acid metabolism (some linked to diabetes and obesity, DNA-repair, stem cell renewal, and various forms of cancer). Conversely, comparison between genotype groups revealed changes in genes associated with G1-to-S-phase transition of the cell cycle of myoblasts and the expression of Grem2 proteins that modulate the cleavage of the myostatin propeptide. A number of myostatin-feedback regulated gene products that are primarily regulatory were uncovered, including microRNA impacting central functions and Piezo proteins that make cationic current-controlling mechanosensitive ion channels. These important findings extend hypotheses of myostatin and physical activity master regulation of genes and gene pathways

  4. Reprogramming Methods Do Not Affect Gene Expression Profile of Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Trevisan, Marta; Desole, Giovanna; Costanzi, Giulia; Lavezzo, Enrico; Palù, Giorgio; Barzon, Luisa

    2017-01-20

    Induced pluripotent stem cells (iPSCs) are pluripotent cells derived from adult somatic cells. After the pioneering work by Yamanaka, who first generated iPSCs by retroviral transduction of four reprogramming factors, several alternative methods to obtain iPSCs have been developed in order to increase the yield and safety of the process. However, the question remains open on whether the different reprogramming methods can influence the pluripotency features of the derived lines. In this study, three different strategies, based on retroviral vectors, episomal vectors, and Sendai virus vectors, were applied to derive iPSCs from human fibroblasts. The reprogramming efficiency of the methods based on episomal and Sendai virus vectors was higher than that of the retroviral vector-based approach. All human iPSC clones derived with the different methods showed the typical features of pluripotent stem cells, including the expression of alkaline phosphatase and stemness maker genes, and could give rise to the three germ layer derivatives upon embryoid bodies assay. Microarray analysis confirmed the presence of typical stem cell gene expression profiles in all iPSC clones and did not identify any significant difference among reprogramming methods. In conclusion, the use of different reprogramming methods is equivalent and does not affect gene expression profile of the derived human iPSCs.

  5. Nerve Growth Factor Gene Therapy Activates Neuronal Responses in Alzheimer’s Disease

    Science.gov (United States)

    Tuszynski, Mark H.; Yang, Jennifer H.; Barba, David; U, H S.; Bakay, Roy; Pay, Mary M.; Masliah, Eliezer; Conner, James M.; Kobalka, Peter; Roy, Subhojit; Nagahara, Alan H.

    2016-01-01

    IMPORTANCE Alzheimer’s disease (AD) is the most common neurodegenerative disorder, and lacks effective disease modifying therapies. In 2001 we initiated a clinical trial of Nerve Growth Factor (NGF) gene therapy in AD, the first effort at gene delivery in an adult neurodegenerative disorder. This program aimed to determine whether a nervous system growth factor prevents or reduces cholinergic neuronal degeneration in AD patients. We present post-mortem findings in 10 subjects with survival times ranging from 1 to 10 years post-treatment. OBJECTIVE To determine whether degenerating neurons in AD retain an ability to respond to a nervous system growth factor delivered after disease onset. DESIGN, SETTING, AND PARTICIPANTS 10 patients with early AD underwent NGF gene therapy using either ex vivo or in vivo gene transfer. The brains of all eight patients in the first Phase 1 ex vivo trial and two patients in a subsequent Phase 1 in vivo trial were examined. MAIN OUTCOME MEASURES Brains were immunolabeled to evaluate in vivo gene expression, cholinergic neuronal responses to NGF, and activation of NGF-related cell signaling. In two cases, NGF protein levels were measured by ELISA. RESULTS Degenerating neurons in the AD brain respond to NGF. All patients exhibited a trophic response to NGF, in the form of axonal sprouting toward the NGF source. Comparing treated and non-treated sides of the brain in three patients that underwent unilateral gene transfer, cholinergic neuronal hypertrophy occurred on the NGF-treated side (P>0.05). Activation of cellular signaling and functional markers were present in two patients that underwent AAV2-mediated NGF gene transfer. Neurons exhibiting tau pathology as well as neurons free of tau expressed NGF, indicating that degenerating cells can be infected with therapeutic genes with resulting activation of cell signaling. No adverse pathological effects related to NGF were observed. CONCLUSIONS AND RELEVANCE These findings indicate that

  6. Normally occurring environmental and behavioral influences on gene activity: from central dogma to probabilistic epigenesis.

    Science.gov (United States)

    Gottlieb, G

    1998-10-01

    The central dogma of molecular biology holds that "information" flows from the genes to the structure of the proteins that the genes bring about through the formula DNA-->RNA-->Protein. In this view, a set of master genes activates the DNA necessary to produce the appropriate proteins that the organism needs during development. In contrast to this view, probabilistic epigenesis holds that necessarily there are signals from the internal and external environment that activate DNA to produce the appropriate proteins. To support this view, a substantial body of evidence is reviewed showing that external environmental influences on gene activation are normally occurring events in a large variety of organisms, including humans. This demonstrates how genes and environments work together to produce functional organisms, thus extending the author's model of probabilistic epigenesis.

  7. Peripartal alterations of calcitonin gene-related peptide and minerals in dairy cows affected by milk fever.

    Science.gov (United States)

    Zebeli, Qendrim; Beitz, Donald C; Bradford, Barry J; Dunn, Suzanna M; Ametaj, Burim N

    2013-03-01

    Milk fever, a metabolic disease of dairy cattle, is associated with perturbations of calcium homeostasis, the pathogenesis of which is not yet completely understood. The aim of this study was to investigate plasma concentrations of calcitonin gene-related peptide and selected minerals and metabolites in periparturient cows with and without milk fever. Plasma concentrations of calcitonin gene-related peptide, as well as calcium, phosphate, magnesium, iron, glucose, lactate, and cortisol, were determined in multiple plasma samples from Jersey cows with and without spontaneous milk fever. Cows affected by milk fever (n = 5) had lower concentrations of calcitonin gene-related peptide (P = .038) and inorganic phosphate (P cows tended to have lower calcium concentrations (P = .071). Magnesium, iron, lactate, glucose, and cortisol concentrations were comparable between both groups of cows (P > .10). Around the day of calving, plasma concentrations of lactate, glucose, and cortisol increased and the concentration of iron decreased in all cows (P ≤ .01). Despite the limited number of cows evaluated, this report is the first to indicate lowered concentrations of calcitonin gene-related peptide as part of the metabolic changes during milk fever in cows. Further work with a larger cohort of animals is warranted to understand the precise role of calcitonin gene-related peptide and the potential associations with disturbances in plasma minerals typically observed during milk fever. © 2013 American Society for Veterinary Clinical Pathology.

  8. Optimizations of siRNA design for the activation of gene transcription by targeting the TATA-box motif.

    Directory of Open Access Journals (Sweden)

    Miaomiao Fan

    Full Text Available Small interfering RNAs (siRNAs are widely used to repress gene expression by targeting mRNAs. Some reports reveal that siRNAs can also activate or inhibit gene expression through targeting the gene promoters. Our group has found that microRNAs (miRNAs could activate gene transcription via interaction with the TATA-box motif in gene promoters. To investigate whether siRNA targeting the same region could upregulate the promoter activity, we test the activating efficiency of siRNAs targeting the TATA-box motif of 16 genes and perform a systematic analysis to identify the common features of the functional siRNAs for effective activation of gene promoters. Further, we try various modifications to improve the activating efficiency of siRNAs and find that it is quite useful to design the promoter-targeting activating siRNA by following several rules such as (a complementary to the TATA-box-centered region; (b UA usage at the first two bases of the antisense strand; (c twenty-three nucleotides (nts in length; (d 2'-O-Methyl (2'-OMe modification at the 3' terminus of the antisense strand; (e avoiding mismatches at the 3' end of the antisense strand. The optimized activating siRNAs potently enhance the expression of interleukin-2 (IL-2 gene in human and mouse primary CD4+ T cells with a long-time effect. Taken together, our study provides a guideline for rational design the promoter-targeting siRNA to sequence-specifically enhance gene expression.

  9. Over-expression of XIST, the Master Gene for X Chromosome Inactivation, in Females With Major Affective Disorders

    Directory of Open Access Journals (Sweden)

    Baohu Ji

    2015-08-01

    Research in context: Due to lack of biological markers, diagnosis and treatment of psychiatric disorders are subjective. There is utmost urgency to identify biomarkers for clinics, research, and drug development. We found that XIST and KDM5C gene expression may be used as a biological marker for diagnosis of major affective disorders in a significantly large subset of female patients from the general population. Our studies show that over-expression of XIST and some X-linked escapee genes may be a common mechanism for development of psychiatric disorders between the patients with rare genetic diseases (XXY or XXX and the general population of female psychiatric patients.

  10. Transcription factor organic cation transporter 1 (OCT-1 affects the expression of porcine Klotho (KL gene

    Directory of Open Access Journals (Sweden)

    Yan Li

    2016-07-01

    Full Text Available Klotho (KL, originally discovered as an aging suppressor, is a membrane protein that shares sequence similarity with the β-glucosidase enzymes. Recent reports showed Klotho might play a role in adipocyte maturation and systemic glucose metabolism. However, little is known about the transcription factors involved in regulating the expression of porcine KL gene. Deletion fragment analysis identified KL-D2 (−418 bp to −3 bp as the porcine KL core promoter. MARC0022311SNP (A or G in KL intron 1 was detected in Landrace × DIV pigs using the Porcine SNP60 BeadChip. The pGL-D2-A and pGL-D2-G were constructed with KL-D2 and the intron fragment of different alleles and relative luciferase activity of pGL3-D2-G was significantly higher than that of pGL3-D2-A in the PK cells and ST cells. This was possibly the result of a change in KL binding ability with transcription factor organic cation transporter 1 (OCT-1, which was confirmed using electrophoretic mobility shift assays (EMSA and chromatin immune-precipitation (ChIP. Moreover, OCT-1 regulated endogenous KL expression by RNA interference experiments. Our study indicates SNP MARC0022311 affects porcine KL expression by regulating its promoter activity via OCT-1.

  11. SATB1 packages densely-looped, transciptionally-active chromatinfor coordinated expression of cytokine genes

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Shutao; Lee, Charles C.; Kohwi-Shigematsu, Terumi

    2006-05-23

    SATB1 is an important regulator of nuclear architecture that anchors specialized DNA sequences onto its cage-like network and recruits chromatin remodeling/modifying factors to control gene transcription. We studied the role of SATB1 in regulating the coordinated expression of Il5, Il4, and Il13 from the 200kb cytokine gene cluster region of mouse chromosome 11 during T-helper 2 (Th2)-cell activation. We show that upon cell activation, SATB1 is rapidly induced to form a unique transcriptionally-active chromatin structure that includes the cytokine gene region. Chromatin is folded into numerous small loops all anchored by SATB1, is histone H3 acetylated at lysine 9/14, and associated with Th2-specific factors, GATA3, STAT6, c-Maf, the chromatin-remodeling enzyme Brg-1, and RNA polymerase II across the 200kb region. Before activation, the chromatin displays some of these features, such as association with GATA3 and STAT6, but these were insufficient for cytokine gene expression. Using RNA interference (RNAi), we show that upon cell activation, SATB1 is not only required for chromatin folding into dense loops, but also for c-Maf induction and subsequently for Il4, Il5, and Il13 transcription. Our results show that SATB1 is an important determinant for chromatin architecture that constitutes a novel higher-order, transcriptionally-active chromatin structure upon Th2-cell activation.

  12. Design of chimeric expression elements that confer high-level gene activity in chromoplasts.

    Science.gov (United States)

    Caroca, Rodrigo; Howell, Katharine A; Hasse, Claudia; Ruf, Stephanie; Bock, Ralph

    2013-02-01

    Non-green plastids, such as chromoplasts, generally have much lower activity of gene expression than chloroplasts in photosynthetically active tissues. Suppression of plastid genes in non-green tissues occurs through a complex interplay of transcriptional and translational control, with the contribution of regulation of transcript abundance versus translational activity being highly variable between genes. Here, we have investigated whether the low expression of the plastid genome in chromoplasts results from inherent limitations in gene expression capacity, or can be overcome by designing appropriate combinations of promoters and translation initiation signals in the 5' untranslated region (5'-UTR). We constructed chimeric expression elements that combine promoters and 5'-UTRs from plastid genes, which are suppressed during chloroplast-to-chromoplast conversion in Solanum lycopersicum (tomato) fruit ripening, either just at the translational level or just at the level of mRNA accumulation. These chimeric expression elements were introduced into the tomato plastid genome by stable chloroplast transformation. We report the identification of promoter-UTR combinations that confer high-level gene expression in chromoplasts of ripe tomato fruits, resulting in the accumulation of reporter protein GFP to up to 1% of total cellular protein. Our work demonstrates that non-green plastids are capable of expressing genes to high levels. Moreover, the chimeric cis-elements for chromoplasts developed here are widely applicable in basic and applied research using transplastomic methods. © 2012 The Authors The Plant Journal © 2012 Blackwell Publishing Ltd.

  13. Progranulin gene variation affects serum progranulin levels differently in Danish bipolar individuals compared with healthy controls.

    Science.gov (United States)

    Buttenschøn, Henriette N; Nielsen, Marit N; Thotakura, Gangadaar; Lee, Chris W; Nykjær, Anders; Mors, Ole; Glerup, Simon

    2017-06-01

    The identification of peripheral biomarkers for bipolar disorder is of great importance and has the potential to improve diagnosis, treatment and prognosis. Recent studies have reported lower plasma progranulin levels in bipolar individuals compared with controls and association with single nucleotide polymorphisms (SNPs) within the progranulin gene (GRN). In the present study, we investigated the effect of GRN and sortilin (SORT1) gene variation on serum progranulin levels in bipolar individuals and controls. In a Danish cohort of individuals with bipolar disorder and controls, we analysed the serum progranulin level (nbipolar=80, ncontrols=76) and five SNPs located within GRN and two SNPs near the SORT1 gene encoding sortilin, a progranulin scavenger receptor known to affect circulating progranulin levels (nbipolar=166, ncontrols=186). We observed no significant difference in the serum progranulin level between cases and controls and none of the analysed SNPs located within GRN or close to SORT1 were associated with bipolar disorder. Crude and adjusted (adjusted for case-control status, sex and age) linear regression analyses showed no effect of any SNPs on the serum progranulin level. However, we observed that the mean serum progranulin level in cases and controls is affected differently depending on the genotypes of two SNPs within GRN (rs2879096 and rs4792938). The sample size is relatively small and detailed information on medication and polarity of the disorder is not available. No correction for multiple testing was performed. Our study suggests that the potential of progranulin as a biomarker for bipolar disorder is genotype dependent.

  14. Nerve Growth Factor Gene Therapy: Activation of Neuronal Responses in Alzheimer Disease.

    Science.gov (United States)

    Tuszynski, Mark H; Yang, Jennifer H; Barba, David; U, Hoi-Sang; Bakay, Roy A E; Pay, Mary M; Masliah, Eliezer; Conner, James M; Kobalka, Peter; Roy, Subhojit; Nagahara, Alan H

    2015-10-01

    Alzheimer disease (AD) is the most common neurodegenerative disorder and lacks effective disease-modifying therapies. In 2001, we initiated a clinical trial of nerve growth factor (NGF) gene therapy in AD, the first effort at gene delivery in an adult neurodegenerative disorder. This program aimed to determine whether a nervous system growth factor prevents or reduces cholinergic neuronal degeneration in patients with AD. We present postmortem findings in 10 patients with survival times ranging from 1 to 10 years after treatment. To determine whether degenerating neurons in AD retain an ability to respond to a nervous system growth factor delivered after disease onset. Patients in this anatomicopathological study were enrolled in clinical trials from March 2001 to October 2012 at the University of California, San Diego, Medical Center in La Jolla. Ten patients with early AD underwent NGF gene therapy using ex vivo or in vivo gene transfer. The brains of all 8 patients in the first phase 1 ex vivo trial and of 2 patients in a subsequent phase 1 in vivo trial were examined. Brains were immunolabeled to evaluate in vivo gene expression, cholinergic neuronal responses to NGF, and activation of NGF-related cell signaling. In 2 patients, NGF protein levels were measured by enzyme-linked immunosorbent assay. Among 10 patients, degenerating neurons in the AD brain responded to NGF. All patients exhibited a trophic response to NGF in the form of axonal sprouting toward the NGF source. Comparing treated and nontreated sides of the brain in 3 patients who underwent unilateral gene transfer, cholinergic neuronal hypertrophy occurred on the NGF-treated side (P < .05). Activation of cellular signaling and functional markers was present in 2 patients who underwent adeno-associated viral vectors (serotype 2)-mediated NGF gene transfer. Neurons exhibiting tau pathology and neurons free of tau expressed NGF, indicating that degenerating cells can be infected with therapeutic

  15. Depletion of polycistronic transcripts using short interfering RNAs: cDNA synthesis method affects levels of non-targeted genes determined by quantitative PCR.

    Science.gov (United States)

    Hanning, Jennifer E; Groves, Ian J; Pett, Mark R; Coleman, Nicholas

    2013-05-21

    Short interfering RNAs (siRNAs) are often used to deplete viral polycistronic transcripts, such as those encoded by human papillomavirus (HPV). There are conflicting data in the literature concerning how siRNAs targeting one HPV gene can affect levels of other genes in the polycistronic transcripts. We hypothesised that the conflict might be partly explained by the method of cDNA synthesis used prior to transcript quantification. We treated HPV16-positive cervical keratinocytes with siRNAs targeting the HPV16 E7 gene and used quantitative PCR to compare transcript levels of E7 with those of E6 and E2, viral genes located upstream and downstream of the target site respectively. We compared our findings from cDNA generated using oligo-dT primers alone with those from cDNA generated using a combination of random hexamer and oligo-dT primers. Our data show that when polycistronic transcripts are targeted by siRNAs, there is a period when untranslatable cleaved mRNA upstream of the siRNA binding site remains detectable by PCR, if cDNA is generated using random hexamer primers. Such false indications of mRNA abundance are avoided using oligo-dT primers. The period corresponds to the time taken for siRNA activity and degradation of the cleaved transcripts. Genes downstream of the siRNA binding site are detectable during this interval, regardless of how the cDNA is generated. These data emphasise the importance of the cDNA synthesis method used when measuring transcript abundance following siRNA depletion of polycistronic transcripts. They provide a partial explanation for erroneous reports suggesting that siRNAs targeting HPV E7 can have gene-specific effects.

  16. Physical activity and affect in elementary school children's daily lives

    OpenAIRE

    Kühnhausen, Jan; Leonhardt, Anja; Dirk, Judith; Schmiedek, Florian

    2013-01-01

    A positive influence of physical activity (PA) on affect has been shown in numerous studies. However, this relationship has not yet been studied in the daily life of children. We present a part of the FLUX study that attempts to contribute to filling that gap. To this end, a proper way to measure PA and affect in the daily life of children is needed. In pre-studies of the FLUX study, we were able to show that affect can be measured in children with self-report items that are answered using sm...

  17. Role of Cdx and Hox genes in posterior axial extension in the mouse

    NARCIS (Netherlands)

    Young, T.

    2009-01-01

    Hox and Cdx genes are phylogenetically related transcription factor-encoding genes that control positional tissue identity during embryonic develop- ment. In addition, mutations impairing Cdx activity in mice elicit poste- rior body truncations, affecting the axial skeleton, the neuraxis and cau-

  18. Agrobacterium rhizogenes rolB gene affects photosynthesis and chlorophyll content in transgenic tomato (Solanum lycopersicum L.) plants.

    Science.gov (United States)

    Bettini, Priscilla P; Marvasi, Massimiliano; Fani, Fabiola; Lazzara, Luigi; Cosi, Elena; Melani, Lorenzo; Mauro, Maria Luisa

    2016-10-01

    Insertion of Agrobacterium rhizogenes rolB gene into plant genome affects plant development, hormone balance and defence. However, beside the current research, the overall transcriptional response and gene expression of rolB as a modulator in plant is unknown. Transformed rolB tomato plant (Solanum lycopersicum L.) cultivar Tondino has been used to investigate the differential expression profile. Tomato is a well-known model organism both at the genetic and molecular level, and one of the most important commercial food crops in the world. Through the construction and characterization of a cDNA subtracted library, we have investigated the differential gene expression between transgenic clones of rolB and control tomato and have evaluated genes specifically transcribed in transgenic rolB plants. Among the selected genes, five genes encoding for chlorophyll a/b binding protein, carbonic anhydrase, cytochrome b 6 /f complex Fe-S subunit, potassium efflux antiporter 3, and chloroplast small heat-shock protein, all involved in chloroplast function, were identified. Measurement of photosynthesis efficiency by the level of three different photosynthetic parameters (F v /F m , rETR, NPQ) showed rolB significant increase in non-photochemical quenching and a, b chlorophyll content. Our results point to highlight the role of rolB on plant fitness by improving photosynthesis. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. Screening of the Enterocin-Encoding Genes and Antimicrobial Activity in Enterococcus Species.

    Science.gov (United States)

    Ogaki, Mayara Baptistucci; Rocha, Katia Real; Terra, MÁrcia Regina; Furlaneto, MÁrcia Cristina; Maia, Luciana Furlaneto

    2016-06-28

    In the current study, a total of 135 enterococci strains from different sources were screened for the presence of the enterocin-encoding genes entA, entP, entB, entL50A, and entL50B. The enterocin genes were present at different frequencies, with entA occurring the most frequently, followed by entP and entB; entL50A and L50B were not detected. The occurrence of single enterocin genes was higher than the occurrence of multiple enterocin gene combinations. The 80 isolates that harbor at least one enterocin-encoding gene (denoted "Gene(+) strains") were screened for antimicrobial activity. A total of 82.5% of the Gene(+) strains inhibited at least one of the indicator strains, and the isolates harboring multiple enterocin-encoding genes inhibited a larger number of indicator strains than isolates harboring a single gene. The indicator strains that exhibited growth inhibition included Listeria innocua strain CLIP 12612 (ATCC BAA-680), Listeria monocytogenes strain CDC 4555, Enterococcus faecalis ATCC 29212, Staphylococcus aureus ATCC 25923, S. aureus ATCC 29213, S. aureus ATCC 6538, Salmonella enteritidis ATCC 13076, Salmonella typhimurium strain UK-1 (ATCC 68169), and Escherichia coli BAC 49LT ETEC. Inhibition due to either bacteriophage lysis or cytolysin activity was excluded. The growth inhibition of antilisterial Gene+ strains was further tested under different culture conditions. Among the culture media formulations, the MRS agar medium supplemented with 2% (w/v) yeast extract was the best solidified medium for enterocin production. Our findings extend the current knowledge of enterocin-producing enterococci, which may have potential applications as biopreservatives in the food industry due to their capability of controlling food spoilage pathogens.

  20. Heat Stress Affects Pi-related Genes Expression and Inorganic Phosphate Deposition/Accumulation in Barley

    DEFF Research Database (Denmark)

    Pacak, Andrzej; Barciszewska-Pacak, Maria; Swida-Barteczka, Aleksandra

    2016-01-01

    Phosphorus (P) in plants is taken from soil as an inorganic phosphate (Pi) and is one of the most important macroelements in growth and development. Plants actively react to Pi starvation by the induced expression of Pi transporters, MIR399, MIR827, and miR399 molecular sponge - IPS1 genes...... and by the decreased expression of the ubiquitin-conjugating enzyme E2 (PHOSPHATE2 - PHO2) and Pi sensing and transport SPX-MFS genes. The PHO2 protein is involved in the degradation of Pi transporters PHT1;1 (from soil to roots) and PHO1 (from roots to shoots). The decreased expression of PHO2 leads to Pi....... In shoots, the PHO2 mRNA level is decreased, leading to an increased Pi level. We concluded that Pi homeostasis in barley during heat stress is maintained by dynamic changes in Pi-related genes expression....

  1. Retinoid X receptor and peroxisome proliferator-activated receptor activate an estrogen responsive gene independent of the estrogen receptor.

    Science.gov (United States)

    Nuñez, S B; Medin, J A; Braissant, O; Kemp, L; Wahli, W; Ozato, K; Segars, J H

    1997-03-14

    Estrogen receptors regulate transcription of genes essential for sexual development and reproductive function. Since the retinoid X receptor (RXR) is able to modulate estrogen responsive genes and both 9-cis RA and fatty acids influenced development of estrogen responsive tumors, we hypothesized that estrogen responsive genes might be modulated by RXR and the fatty acid receptor (peroxisome proliferator-activated receptor, PPAR). To test this hypothesis, transfection assays in CV-1 cells were performed with an estrogen response element (ERE) coupled to a luciferase reporter construct. Addition of expression vectors for RXR and PPAR resulted in an 11-fold increase in luciferase activity in the presence of 9-cis RA. Furthermore, mobility shift assays demonstrated binding of RXR and PPAR to the vitellogenin A2-ERE and an ERE in the oxytocin promoter. Methylation interference assays demonstrated that specific guanine residues required for RXR/PPAR binding to the ERE were similar to residues required for ER binding. Moreover, RXR domain-deleted constructs in transfection assays showed that activation required RXR since an RXR delta AF-2 mutant completely abrogated reporter activity. Oligoprecipitation binding studies with biotinylated ERE and (35)S-labeled in vitro translated RXR constructs confirmed binding of delta AF-2 RXR mutant to the ERE in the presence of baculovirus-expressed PPAR. Finally, in situ hybridization confirmed RXR and PPAR mRNA expression in estrogen responsive tissues. Collectively, these data suggest that RXR and PPAR are present in reproductive tissues, are capable of activating estrogen responsive genes and suggest that the mechanism of activation may involve direct binding of the receptors to estrogen response elements.

  2. Suppression of PCD-related genes affects salt tolerance in Arabidopsis.

    Science.gov (United States)

    Bahieldin, Ahmed; Alqarni, Dhafer A M; Atef, Ahmed; Gadalla, Nour O; Al-matary, Mohammed; Edris, Sherif; Al-Kordy, Magdy A; Makki, Rania M; Al-Doss, Abdullah A; Sabir, Jamal S M; Mutwakil, Mohammed H Z; El-Domyati, Fotouh M

    2016-01-01

    This work aims at examining a natural exciting phenomenon suggesting that suppression of genes inducing programmed cell death (PCD) might confer tolerance against abiotic stresses in plants. PCD-related genes were induced in tobacco under oxalic acid (OA) treatment (20 mM), and plant cells were characterized to confirm the incidence of PCD. The results indicated that PCD was triggered 24 h after the exposure to OA. Then, RNAs were extracted from tobacco cells 0, 2, 6, 12 and 24 h after treatment for deep sequencing. RNA-Seq analyses were done with a special emphasis to clusters whose PCD-related genes were upregulated after 2 h of OA exposure. Accordingly, 23 tobacco PCD-related genes were knocked down via virus-induced gene silencing (VIGS), whereas our results indicated the influence of five of them on inducing or suppressing PCD. Knockout T-DNA insertion mutants of these five genes in Arabidopsis were tested under salt stress (0, 100, 150, and 200 mM NaCl), and the results indicated that a mutant of an antiapoptotic gene, namely Bax Inhibitor-1 (BI-1), whose VIGS induced PCD in tobacco, was salt sensitive, while a mutant of an apoptotic gene, namely mildew resistance locus O (Mlo), whose VIGS suppressed PCD, was salt tolerant as compared to the WT (Col) control. These data support our hypothesis that retarding PCD-inducing genes can result in higher levels of salt tolerance, while retarding PCD-suppressing genes can result in lower levels of salt tolerance in plants. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  3. Exposure to atrazine affects the expression of key genes in metabolic pathways integral to energy homeostasis in Xenopus laevis tadpoles.

    Science.gov (United States)

    Zaya, Renee M; Amini, Zakariya; Whitaker, Ashley S; Ide, Charles F

    2011-08-01

    In our laboratory, Xenopus laevis tadpoles exposed throughout development to 200 or 400 μg/L atrazine, concentrations reported to periodically occur in puddles, vernal ponds and runoff soon after application, were smaller and had smaller fat bodies (the tadpole's lipid storage organ) than controls. It was hypothesized that these changes were due to atrazine-related perturbations of energy homeostasis. To investigate this hypothesis, selected metabolic responses to exposure at the transcriptional and biochemical levels in atrazine-exposed tadpoles were measured. DNA microarray technology was used to determine which metabolic pathways were affected after developmental exposure to 400 μg/L atrazine. From these data, genes representative of the affected pathways were selected for assay using quantitative real time polymerase chain reaction (qRT-PCR) to measure changes in expression during a 2-week exposure to 400 μg/L. Finally, ATP levels were measured from tadpoles both early in and at termination of exposure to 200 and 400 μg/L. Microarray analysis revealed significant differential gene expression in metabolic pathways involved with energy homeostasis. Pathways with increased transcription were associated with the conversion of lipids and proteins into energy. Pathways with decreased transcription were associated with carbohydrate metabolism, fat storage, and protein synthesis. Using qRT-PCR, changes in gene expression indicative of an early stress response to atrazine were noted. Exposed tadpoles had significant decreases in acyl-CoA dehydrogenase (AD) and glucocorticoid receptor protein (GR) mRNA after 24 h of exposure, and near-significant (p=0.07) increases in peroxisome proliferator-activated receptor β (PPAR-β) mRNA by 72 h. Decreases in AD suggested decreases in fatty acid β-oxidation while decreases in GR may have been a receptor desensitization response to a glucocorticoid surge. Involvement of PPAR-β, an energy homeostasis regulatory molecule, also

  4. Correlating Gene-specific DNA Methylation Changes with Expression and Transcriptional Activity of Astrocytic KCNJ10 (Kir4.1).

    Science.gov (United States)

    Nwaobi, Sinifunanya E; Olsen, Michelle L

    2015-09-26

    DNA methylation serves to regulate gene expression through the covalent attachment of a methyl group onto the C5 position of a cytosine in a cytosine-guanine dinucleotide. While DNA methylation provides long-lasting and stable changes in gene expression, patterns and levels of DNA methylation are also subject to change based on a variety of signals and stimuli. As such, DNA methylation functions as a powerful and dynamic regulator of gene expression. The study of neuroepigenetics has revealed a variety of physiological and pathological states that are associated with both global and gene-specific changes in DNA methylation. Specifically, striking correlations between changes in gene expression and DNA methylation exist in neuropsychiatric and neurodegenerative disorders, during synaptic plasticity, and following CNS injury. However, as the field of neuroepigenetics continues to expand its understanding of the role of DNA methylation in CNS physiology, delineating causal relationships in regards to changes in gene expression and DNA methylation are essential. Moreover, in regards to the larger field of neuroscience, the presence of vast region and cell-specific differences requires techniques that address these variances when studying the transcriptome, proteome, and epigenome. Here we describe FACS sorting of cortical astrocytes that allows for subsequent examination of a both RNA transcription and DNA methylation. Furthermore, we detail a technique to examine DNA methylation, methylation sensitive high resolution melt analysis (MS-HRMA) as well as a luciferase promoter assay. Through the use of these combined techniques one is able to not only explore correlative changes between DNA methylation and gene expression, but also directly assess if changes in the DNA methylation status of a given gene region are sufficient to affect transcriptional activity.

  5. Gene activation by UV light, fungal elicitor or fungal infection in Petroselinum crispum is correlated with repression of cell cycle-related genes

    International Nuclear Information System (INIS)

    Logemann, E.; Wu ShengCheng; Schröder, J.; Schmelzer, E.; Somssich, I.E.; Hahlbrock, K.

    1995-01-01

    The effects of UV light or fungal elicitors on plant cells have so far been studied mostly with respect to defense-related gene activation. Here, an inverse correlation of these stimulatory effects with the activities of several cell cycle-related genes is demonstrated. Concomitant with the induction of flavonoid biosynthetic enzymes in UV-irradiated cell suspension cultures of parsley (Petroselinum crispum), total histone synthesis declined to about half the initial rate. A subclass of the histone H3 gene family was selected to demonstrate the close correlation of its expression with cell division, both in intact plants and cultured cells. Using RNA-blot and run-on transcription assays, it was shown that one arbitrarily selected subclass of each of the histone H2A, H2B, H3 and H4 gene families and of the genes encoding a p34cdc2 protein kinase and a mitotic cyclin were transcriptionally repressed in UV-irradiated as well as fungal elicitor-treated parsley cells. The timing and extent of repression differed between the two stimuli; the response to light was more transient and smaller in magnitude. These differential responses to light and elicitor were inversely correlated with the induction of phenylalanine ammonia-lyase, a key enzyme of phenylpropanoid metabolism. Essentially the same result was obtained with a defined oligopeptide elicitor, indicating that the same signaling pathway is responsible for defense-related gene activation and cell cycle-related gene repression. A temporary (UV light) or long-lasting (fungal elicitor) cessation of cell culture growth is most likely due to an arrest of cell division which may be a prerequisite for full commitment of the cells to transcriptional activation of full commitment of the cells to transcriptional activation of pathways involved in UV protection or pathogen defense. This conclusion is corroborated by the observation that the histone H3 mRNA level greatly declined around fungal infection sites in young parsley

  6. RNA-Seq reveals seven promising candidate genes affecting the proportion of thick egg albumen in layer-type chickens.

    Science.gov (United States)

    Wan, Yi; Jin, Sihua; Ma, Chendong; Wang, Zhicheng; Fang, Qi; Jiang, Runshen

    2017-12-22

    Eggs with a much higher proportion of thick albumen are preferred in the layer industry, as they are favoured by consumers. However, the genetic factors affecting the thick egg albumen trait have not been elucidated. Using RNA sequencing, we explored the magnum transcriptome in 9 Rhode Island white layers: four layers with phenotypes of extremely high ratios of thick to thin albumen (high thick albumen, HTA) and five with extremely low ratios (low thick albumen, LTA). A total of 220 genes were differentially expressed, among which 150 genes were up-regulated and 70 were down-regulated in the HTA group compared with the LTA group. Gene Ontology (GO) analysis revealed that the up-regulated genes in HTA were mainly involved in a wide range of regulatory functions. In addition, a large number of these genes were related to glycosphingolipid biosynthesis, focal adhesion, ECM-receptor interactions and cytokine-cytokine receptor interactions. Based on functional analysis, ST3GAL4, FUT4, ITGA2, SDC3, PRLR, CDH4 and GALNT9 were identified as promising candidate genes for thick albumen synthesis and metabolism during egg formation. These results provide new insights into the molecular mechanisms of egg albumen traits and may contribute to future breeding strategies that optimise the proportion of thick egg albumen.

  7. Identification of a new gene regulatory circuit involving B cell receptor activated signaling using a combined analysis of experimental, clinical and global gene expression data

    Science.gov (United States)

    Schrader, Alexandra; Meyer, Katharina; Walther, Neele; Stolz, Ailine; Feist, Maren; Hand, Elisabeth; von Bonin, Frederike; Evers, Maurits; Kohler, Christian; Shirneshan, Katayoon; Vockerodt, Martina; Klapper, Wolfram; Szczepanowski, Monika; Murray, Paul G.; Bastians, Holger; Trümper, Lorenz; Spang, Rainer; Kube, Dieter

    2016-01-01

    To discover new regulatory pathways in B lymphoma cells, we performed a combined analysis of experimental, clinical and global gene expression data. We identified a specific cluster of genes that was coherently expressed in primary lymphoma samples and suppressed by activation of the B cell receptor (BCR) through αIgM treatment of lymphoma cells in vitro. This gene cluster, which we called BCR.1, includes numerous cell cycle regulators. A reduced expression of BCR.1 genes after BCR activation was observed in different cell lines and also in CD10+ germinal center B cells. We found that BCR activation led to a delayed entry to and progression of mitosis and defects in metaphase. Cytogenetic changes were detected upon long-term αIgM treatment. Furthermore, an inverse correlation of BCR.1 genes with c-Myc co-regulated genes in distinct groups of lymphoma patients was observed. Finally, we showed that the BCR.1 index discriminates activated B cell-like and germinal centre B cell-like diffuse large B cell lymphoma supporting the functional relevance of this new regulatory circuit and the power of guided clustering for biomarker discovery. PMID:27166259

  8. DMPD: Genetic regulation of macrophage priming/activation: the Lsh gene story. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 1757110 Genetic regulation of macrophage priming/activation: the Lsh gene story. Bl... (.svg) (.html) (.csml) Show Genetic regulation of macrophage priming/activation: the Lsh gene story. Pubmed...ID 1757110 Title Genetic regulation of macrophage priming/activation: the Lsh gen

  9. Affective neural responses modulated by serotonin transporter genotype in clinical anxiety and depression.

    Directory of Open Access Journals (Sweden)

    Desmond J Oathes

    Full Text Available Serotonin transporter gene variants are known to interact with stressful life experiences to increase chances of developing affective symptoms, and these same variants have been shown to influence amygdala reactivity to affective stimuli in non-psychiatric populations. The impact of these gene variants on affective neurocircuitry in anxiety and mood disorders has been studied less extensively. Utilizing a triallelic assay (5-HTTLPR and rs25531 to assess genetic variation linked with altered serotonin signaling, this fMRI study investigated genetic influences on amygdala and anterior insula activity in 50 generalized anxiety disorder patients, 26 of whom also met DSM-IV criteria for social anxiety disorder and/or major depressive disorder, and 39 healthy comparison subjects. A Group x Genotype interaction was observed for both the amygdala and anterior insula in a paradigm designed to elicit responses in these brain areas during the anticipation of and response to aversive pictures. Patients who are S/L(G carriers showed less activity than their L(A/L(A counterparts in both regions and less activity than S/L(G healthy comparison subjects in the amygdala. Moreover, patients with greater insula responses reported higher levels of intolerance of uncertainty, an association that was particularly pronounced for patients with two LA alleles. A genotype effect was not established in healthy controls. These findings link the serotonin transporter gene to affective circuitry findings in anxiety and depression psychopathology and further suggest that its impact on patients may be different from effects typically observed in healthy populations.

  10. Fluoride at non-toxic dose affects odontoblast gene expression in vitro

    International Nuclear Information System (INIS)

    Wurtz, Tilmann; Houari, Sophia; Mauro, Nicole; MacDougall, Mary; Peters, Heiko; Berdal, Ariane

    2008-01-01

    Elevated fluoride intake may lead to local tissue disturbances, known as fluorosis. Towards an understanding of this effect, fluoride-induced molecular responses were analyzed in MO6-G3 cultured odontoblasts cells. NaF at 1 mM changed expression of genes implicated in tissue formation and growth, without affecting cell proliferation or inducing stress factor RNAs. Up to 1 mM NaF, DNA accumulation was not inhibited, whereas at 3 mM, cells detached from their support and did not proliferate. Intracellular structures, characterized by EM, were normal up to 1 mM, but at 3 mM, necrotic features were evident. No sign of apoptotic transformation appeared at any NaF concentration. Fluoride-sensitive genes were identified by microarray analysis; expression levels of selected RNAs were determined by conventional and real-time RT-PCR. At 1 mM fluoride, RNAs encoding the extracellular matrix proteins asporin and fibromodulin, and the cell membrane associated proteins periostin and IMT2A were 10-fold reduced. RNA coding for signaling factor TNF-receptor 9 was diminished to one-third, whereas that for the chemokine Scya-5 was enhanced 2.5-fold. These RNAs are present in vivo in tooth forming cells. This was demonstrated by in situ hybridization and RT-PCR on RNA from dissected tissue samples; for the presence and functioning of fibromodulin in dentin matrix, a more comprehensive study has earlier been performed by others [Goldberg, M., Septier, D., Oldberg, A., Young, M.F., Ameye, L.G., 2006. Fibromodulin deficient mice display impaired collagen fibrillogenesis in predentin as well as altered dentin mineralization and enamel formation. J. Histochem. Cytochem. 54, 525-537]. Expression of most other RNA species, in particular of stress factor coding RNAs, was not altered. It was concluded that fluoride could influence the transcription pattern without inducing cell stress or apoptosis. In odontoblasts in vivo, aberrant expression of these fluoride-sensitive genes may impair the

  11. Hyperthyroidism caused by a germline activating mutation of the thyrotropin receptor gene: difficulties in diagnosis and therapy.

    Science.gov (United States)

    Bertalan, Rita; Sallai, Agnes; Sólyom, János; Lotz, Gábor; Szabó, István; Kovács, Balázs; Szabó, Eva; Patócs, Attila; Rácz, Károly

    2010-03-01

    Germline activating mutations of the thyrotropin receptor (TSHR) gene have been considered as the only known cause of sporadic nonautoimmune hyperthyroidism in the pediatric population. Here we describe the long-term follow-up and evaluation of a patient with sporadic nonautoimmune primary hyperthyroidism who was found to have a de novo germline activating mutation of the TSHR gene. The patient was an infant who presented at the age of 10 months in an unconscious state with exsiccation, wet skin, fever, and tachycardia. Nonautoimmune primary hyperthyroidism was diagnosed, and brain magnetic resonance imaging and computed tomography showed also Arnold-Chiari malformation type I. Continuous propylthiouracil treatment resulted in a prolonged clinical cure lasting for 10 years. At the age of 11 years and 5 months the patient underwent subtotal thyroidectomy because of symptoms of trachea compression caused by a progressive multinodular goiter. However, 2 months after surgery, hormonal evaluation indicated recurrent hyperthyroidism and the patient was treated with propylthiouracil during the next 4 years. At the age of 15 years the patient again developed symptoms of trachea compression. Radioiodine treatment resulted in a regression of the recurrent goiter and a permanent cure of hyperthyroidism without relapse during the last 3 years of his follow-up. Sequencing of exon 10 of the TSHR gene showed a de novo heterozygous germline I630L mutation, which has been previously described as activating mutation at somatic level in toxic thyroid nodules. The I630L mutation of the TSHR gene occurs not only at somatic level in toxic thyroid nodules, but also its presence in germline is associated with nonautoimmune primary hyperthyroidism. Our case report demonstrates that in this disorder a continuous growth of the thyroid occurs without any evidence of elevated TSH due to antithyroid drug overdosing. This may justify previous recommendations for early treatment of affected

  12. Physical activity and affect in elementary school children’s daily lives

    Directory of Open Access Journals (Sweden)

    Jan eKühnhausen

    2013-07-01

    Full Text Available A positive influence of physical activity (PA on affect has been shown in numerous studies. However, this relationship has not yet been studied in the daily life of children. We present a part of the FLUX study that attempts to contribute to filling that gap. To this end, a proper way to measure PA and affect in the daily life of children is needed. In pre-studies of the FLUX study, we were able to show that affect can be measured in children with self-report items that are answered using smartphones. In the current article, we show that it is feasible to objectively measure children’s PA with accelerometers for a period of several weeks and report descriptive information on the amount of activity of 51 children from 3rd and 4th grade. Additionally, we investigate the influence of daily PA on daily affect in children. Mixed effects models show no effect of PA on any of the four measured dimensions of affect. We discuss that this might be due to effects taking place at shorter time intervals, which can be investigated in future analyses.

  13. Association of catalase gene polymorphisms with catalase activity and susceptibility to systemic lupus erythematosus in the Suez Canal area, Egypt.

    Science.gov (United States)

    Ghaly, M S; Ghattas, M H; Labib, S M

    2012-10-01

    The present study evaluated the relationship of genetic variants in both promoter (-262 C/T) and in exonic (389 C/T) regions of the catalase (CAT) gene to CAT activity and risk of systemic lupus erythematosus (SLE) in Suez Canal-area patients. CAT gene polymorphisms were assessed by using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). CAT activity was measured by using a spectrophotometer. We compared the frequencies of CAT 389 C/T and -262 C/T polymorphic variants between SLE patients (n = 103) and healthy controls (n = 103). CAT 389 C/T is associated with SLE susceptibility, with the T allele being significantly more frequent among SLE patients than healthy controls. There was no association, however, between CAT activity and genotypes of 389 C/T. We did not observe significant differences in the prevalence of CAT -262 C/T polymorphic variants in SLE patients and controls, however, we found that patients with the CAT -262 CT and TT genotypes had low CAT activity, and these genotypes showed a significant association with thrombocytopaenia, leukopaenia and the presence of anti-snRNP in SLE patients. In conclusion, the present study supports the notion of in vivo oxidative stress in SLE as indicated by the decrease in CAT activity. The allelic variations in the CAT gene -262 are more likely to affect the expression or the function of the enzyme. Since CAT may be pathogenetically linked to SLE, and owing to its free-radical origin, it appears reasonable to target lipid peroxidation by dietary and/or pharmacological antioxidants.

  14. Serotonin transporter gene-linked polymorphism affects detection of facial expressions.

    Directory of Open Access Journals (Sweden)

    Ai Koizumi

    Full Text Available Previous studies have demonstrated that the serotonin transporter gene-linked polymorphic region (5-HTTLPR affects the recognition of facial expressions and attention to them. However, the relationship between 5-HTTLPR and the perceptual detection of others' facial expressions, the process which takes place prior to emotional labeling (i.e., recognition, is not clear. To examine whether the perceptual detection of emotional facial expressions is influenced by the allelic variation (short/long of 5-HTTLPR, happy and sad facial expressions were presented at weak and mid intensities (25% and 50%. Ninety-eight participants, genotyped for 5-HTTLPR, judged whether emotion in images of faces was present. Participants with short alleles showed higher sensitivity (d' to happy than to sad expressions, while participants with long allele(s showed no such positivity advantage. This effect of 5-HTTLPR was found at different facial expression intensities among males and females. The results suggest that at the perceptual stage, a short allele enhances the processing of positive facial expressions rather than that of negative facial expressions.

  15. Affective dysfunction in a mouse model of Rett syndrome: Therapeutic effects of environmental stimulation and physical activity.

    Science.gov (United States)

    Kondo, Mari A; Gray, Laura J; Pelka, Gregory J; Leang, Sook-Kwan; Christodoulou, John; Tam, Patrick P L; Hannan, Anthony J

    2016-02-01

    Rett syndrome (RTT) is a neurodevelopmental disorder associated with mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (MeCP2) and consequent dysregulation of brain maturation. Patients suffer from a range of debilitating physical symptoms, however, behavioral and emotional symptoms also severely affect their quality of life. Here, we present previously unreported and clinically relevant affective dysfunction in the female heterozygous Mecp2(tm1Tam) mouse model of RTT (129sv and C57BL6 mixed background). The affective dysfunction and aberrant anxiety-related behavior of the Mecp2(+/-) mice were found to be reversible with environmental enrichment (EE) from 4 weeks of age. The effect of exercise alone (via wheel running) was also explored, providing the first evidence that increased voluntary physical activity in an animal model of RTT is beneficial for some phenotypes. Mecp2(+/-) mutants displayed elevated corticosterone despite decreased Crh expression, demonstrating hypothalamic-pituitary-adrenal axis dysregulation. EE of Mecp2(+/-) mice normalized basal serum corticosterone and hippocampal BDNF protein levels. The enrichment-induced rescue appears independent of the transcriptional regulation of the MeCP2 targets Bdnf exon 4 and Crh. These findings provide new insight into the neurodevelopmental role of MeCP2 and pathogenesis of RTT, in particular the affective dysfunction. The positive outcomes of environmental stimulation and physical exercise have implications for the development of therapies targeting the affective symptoms, as well as behavioral and cognitive dimensions, of this devastating neurodevelopmental disorder. © 2015 Wiley Periodicals, Inc.

  16. Loss of activating EGFR mutant gene contributes to acquired resistance to EGFR tyrosine kinase inhibitors in lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Keisuke Tabara

    Full Text Available Non-small-cell lung cancer harboring epidermal growth factor receptor (EGFR mutations attains a meaningful response to EGFR-tyrosine kinase inhibitors (TKIs. However, acquired resistance to EGFR-TKIs could affect long-term outcome in almost all patients. To identify the potential mechanisms of resistance, we established cell lines resistant to EGFR-TKIs from the human lung cancer cell lines PC9 and11-18, which harbored activating EGFR mutations. One erlotinib-resistant cell line from PC9 and two erlotinib-resistant cell lines and two gefitinib-resistant cell lines from 11-18 were independently established. Almost complete loss of mutant delE746-A750 EGFR gene was observed in the erlotinib-resistant cells isolated from PC9, and partial loss of the mutant L858R EGFR gene copy was specifically observed in the erlotinib- and gefitinib-resistant cells from 11-18. However, constitutive activation of EGFR downstream signaling, PI3K/Akt, was observed even after loss of the mutated EGFR gene in all resistant cell lines even in the presence of the drug. In the erlotinib-resistant cells from PC9, constitutive PI3K/Akt activation was effectively inhibited by lapatinib (a dual TKI of EGFR and HER2 or BIBW2992 (pan-TKI of EGFR family proteins. Furthermore, erlotinib with either HER2 or HER3 knockdown by their cognate siRNAs also inhibited PI3K/Akt activation. Transfection of activating mutant EGFR complementary DNA restored drug sensitivity in the erlotinib-resistant cell line. Our study indicates that loss of addiction to mutant EGFR resulted in gain of addiction to both HER2/HER3 and PI3K/Akt signaling to acquire EGFR-TKI resistance.

  17. Photoperiodic regulation of the sucrose transporter StSUT4 affects the expression of circadian-regulated genes and ethylene production

    Directory of Open Access Journals (Sweden)

    Izabela eChincinska

    2013-02-01

    Full Text Available Several recent publications report different subcellular localisation of members of the SUT4 subfamily of sucrose transporters. The physiological function of SUT4 sucrose transporters is still not entirely clarified as down-regulation of members of the SUT4 clade had very different effects in rice, poplar and potato. Here, we provide new data on the localization and function of the Solanaceous StSUT4 protein, further elucidating involvement in the onset of flowering, tuberization and in the shade avoidance syndrome of potato plants.Induction of early flowering and tuberization in SUT4-inhibited potato plants correlates with increased sucrose export from leaves and increased sucrose and starch accumulation in terminal sink organs such as developing tubers. SUT4 does not only affect the expression of gibberellin and ethylene biosynthetic enzymes, but also the rate of ethylene synthesis in potato. In SUT4-inhibited plants, the ethylene production no longer follows a diurnal rhythm, leading to the assumption that StSUT4 controls circadian gene expression, potentially by regulating sucrose export from leaves. Furthermore, SUT4 expression affects clock-regulated genes such as StFT, StSOC1 and StCO, which might also be involved in a photoperiod-dependently controlled tuberization. A model is proposed in which StSUT4 controls a phloem-mobile signalling molecule generated in leaves which together with enhanced sucrose export affects developmental switches in apical meristems. SUT4 seems to link photoreceptor-perceived information about the light quality and day length, with phytohormone biosynthesis and the expression of circadian genes.

  18. Aberrant activity of NKL homeobox gene NKX3-2 in a T-ALL subset

    Science.gov (United States)

    Meyer, Corinna; Kaufmann, Maren; Zaborski, Margarete; MacLeod, Roderick A. F.; Drexler, Hans G.

    2018-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is a hematopoietic malignancy originating from T-cell progenitors in which differentiation is blocked at early stages. Physiological expression of specific NKL homeobox genes obeys a hematopoietic NKL-code implicated in the process of lymphopoiesis while in differentiated T-cells these genes are silenced. We propose that this developmental expression pattern underlies the observation that NKL homeobox genes are the most ubiquitous group of transcription factors deregulated in T-ALL, including TLX1, TLX3, NKX2-5 and NKX3-1. Here, we describe a novel member of the NKL homeobox gene subclass, NKX3-2 (BAPX1), which is aberrantly activated in 18% of pediatric T-ALL patients analyzed while being normally expressed in developing spleen. Identification of NKX3-2 expression in T-ALL cell line CCRF-CEM qualified these cells to model its deregulation and function in a leukemic context. Genomic and chromosomal analyses demonstrated normal configuration of the NKX3-2 locus at chromosome 4p15, thus excluding cytogenetic dysregulation. Comparative expression profiling analysis of NKX3-2 patient data revealed deregulated activity of BMP- and MAPK-signalling. These candidate pathways were experimentally confirmed to mediate aberrant NKX3-2 expression. We also show that homeobox gene SIX6, plus MIR17HG and GATA3 are downstream targets of NKX3-2 and plausibly contribute to the pathogenesis of this malignancy by suppressing T-cell differentiation. Finally, NKL homeobox gene NKX2-5 was activated by NKX3-2 in CCRF-CEM and by FOXG1 in PEER, representing mutually inhibitory activators of this translocated oncogene. Together, our findings reveal a novel oncogenic NKL homeobox gene subclass member which is aberrantly expressed in a large subset of T-ALL patients and participates in a deregulated gene network likely to arise in developing spleen. PMID:29746601

  19. A time-lagged momentary assessment study on daily life physical activity and affect.

    Science.gov (United States)

    Wichers, Marieke; Peeters, Frenk; Rutten, Bart P F; Jacobs, Nele; Derom, Catherine; Thiery, Evert; Delespaul, Philippe; van Os, Jim

    2012-03-01

    Novel study designs using within-subject methodology and frequent and prospective measurements are required to unravel direction of causality and dynamic processes of behavior over time. The current study examined the effects of physical activity on affective state. A primary and within-study replication sample was derived from twin pairs. Female twins (n = 504) participated in an experience sampling method study at baseline. Positive and negative affective changes were examined before and following daily life increases in physical activity. Neuroticism was measured at baseline and depressive symptoms were assessed at baseline and at each of four follow-up assessments. Diagnoses, derived by Structured Clinical Interview for Diagnostic and Statistical Manual for Mental Health-IV axis I disorders, (A. P. A., 1994) were obtained at baseline. A significant increase in positive affect (PA) following the moment of increase in physical activity was replicated across both samples up to 180 min after physical activity. There was no effect of physical activity on negative affect (NA). Across the two samples, a history of fulfilling diagnostic criteria for depression at least once moderated the effect of physical activity on PA, in that the effect was lost more rapidly. The study supports a causal effect of physical activity on PA. However, people with past experience of clinical depression may benefit less from the PA-inducing effect of physical activity. These findings have implications for the use of physical exercise in clinical practice.

  20. Systematic screening for mutations in the 5{prime}-regulatory region of the human dopamine D{sub 1} receptor (DRD1) gene in patients with schizophrenia and bipolar affective disorder

    Energy Technology Data Exchange (ETDEWEB)

    Cichon, S.; Noethen, M.M.; Stoeber, G. [Univ. of Bonn (Germany)] [and others

    1996-07-26

    A possible dysregulation of dopaminergic neurotransmission has been implicated in a variety of neuropsychiatric diseases. In the present study we systematically searched for the presence of mutations in the 5{prime}-flanking region of the dopamine D{sub 1} receptor (DRD1) gene. This region has previously been shown to contain a functional promoter. We investigated 119 unrelated individuals (including 36 schizophrenic patients, 38 bipolar affective patients, and 45 healthy controls) using single-strand conformation analysis (SSCA). Eleven overlapping PCR fragments covered 2,189 bp of DNA sequence. We identified six single base substitutions: -2218T/C, -2102C/A, -2030T/C, -1992G/A, -1251G/C, and -800T/C. None of the mutations was found to be located in regions which have important influence on the level of transcriptional activity. Allele frequencies were similar in patients and controls, indicating that genetic variation in the 5{prime}-regulatory region of the DRD1 gene is unlikely to play a frequent, major role in the genetic predisposition to either schizophrenia or bipolar affective disorder. 31 refs., 3 tabs.

  1. Reprogramming Methods Do Not Affect Gene Expression Profile of Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Marta Trevisan

    2017-01-01

    Full Text Available Induced pluripotent stem cells (iPSCs are pluripotent cells derived from adult somatic cells. After the pioneering work by Yamanaka, who first generated iPSCs by retroviral transduction of four reprogramming factors, several alternative methods to obtain iPSCs have been developed in order to increase the yield and safety of the process. However, the question remains open on whether the different reprogramming methods can influence the pluripotency features of the derived lines. In this study, three different strategies, based on retroviral vectors, episomal vectors, and Sendai virus vectors, were applied to derive iPSCs from human fibroblasts. The reprogramming efficiency of the methods based on episomal and Sendai virus vectors was higher than that of the retroviral vector-based approach. All human iPSC clones derived with the different methods showed the typical features of pluripotent stem cells, including the expression of alkaline phosphatase and stemness maker genes, and could give rise to the three germ layer derivatives upon embryoid bodies assay. Microarray analysis confirmed the presence of typical stem cell gene expression profiles in all iPSC clones and did not identify any significant difference among reprogramming methods. In conclusion, the use of different reprogramming methods is equivalent and does not affect gene expression profile of the derived human iPSCs.

  2. SCREENING OF ANTIMICROBIAL ACTIVITY AND GENES CODING POLYKETIDE SYNTHETASE AND NONRIBOSOMAL PEPTIDE SYNTHETASE OF ACTINOMYCETE ISOLATES

    Directory of Open Access Journals (Sweden)

    Silvia Kovácsová

    2013-12-01

    Full Text Available The aim of this study was to observe antimicrobial activity using agar plate diffusion method and screening genes coding polyketide synthetase (PKS-I and nonribosomal peptide synthetase (NRPS from actinomycetes. A total of 105 actinomycete strains were isolated from arable soil. Antimicrobial activity was demonstrated at 54 strains against at least 1 of total 12 indicator organisms. Antifungal properties were recorded more often than antibacterial properties. The presence of PKS-I and NRPS genes were founded at 61 of total 105 strains. The number of strains with mentioned biosynthetic enzyme gene fragments matching the anticipated length were 19 (18% and 50 (47% respectively. Overall, five actinomycete strains carried all the biosynthetical genes, yet no antimicrobial activity was found against any of tested pathogens. On the other hand, twenty-one strains showed antimicrobial activity even though we were not able to amplify any of the PKS or NRPS genes from them. Combination of the two methods showed broad-spectrum antimicrobial activity of actinomycetes isolated from arable soil, which indicate that actinomycetes are valuable reservoirs of novel bioactive compounds.

  3. Interferon-β induces cellular senescence in cutaneous human papilloma virus-transformed human keratinocytes by affecting p53 transactivating activity.

    Directory of Open Access Journals (Sweden)

    Maria V Chiantore

    Full Text Available Interferon (IFN-β inhibits cell proliferation and affects cell cycle in keratinocytes transformed by both mucosal high risk Human Papilloma Virus (HPV and cutaneous HPV E6 and E7 proteins. In particular, upon longer IFN-β treatments, cutaneous HPV38 expressing cells undergo senescence. IFN-β appears to induce senescence by upregulating the expression of the tumor suppressor PML, a well known IFN-induced gene. Indeed, experiments in gene silencing via specific siRNAs have shown that PML is essential in the execution of the senescence programme and that both p53 and p21 pathways are involved. IFN-β treatment leads to a modulation of p53 phosphorylation and acetylation status and a reduction in the expression of the p53 dominant negative ΔNp73. These effects allow the recovery of p53 transactivating activity of target genes involved in the control of cell proliferation. Taken together, these studies suggest that signaling through the IFN pathway might play an important role in cellular senescence. This additional understanding of IFN antitumor action and mechanisms influencing tumor responsiveness or resistance appears useful in aiding further promising development of biomolecular strategies in the IFN therapy of cancer.

  4. Gender differences in association between serotonin transporter gene polymorphism and resting-state EEG activity.

    Science.gov (United States)

    Volf, N V; Belousova, L V; Knyazev, G G; Kulikov, A V

    2015-01-22

    Human brain oscillations represent important features of information processing and are highly heritable. Gender has been observed to affect association between the 5-HTTLPR (serotonin-transporter-linked polymorphic region) polymorphism and various endophenotypes. This study aimed to investigate the effects of 5-HTTLPR on the spontaneous electroencephalography (EEG) activity in healthy male and female subjects. DNA samples extracted from buccal swabs and resting EEG recorded at 60 standard leads were collected from 210 (101 men and 109 women) volunteers. Spectral EEG power estimates and cortical sources of EEG activity were investigated. It was shown that effects of 5-HTTLPR polymorphism on electrical activity of the brain vary as a function of gender. Women with the S/L genotype had greater global EEG power compared to men with the same genotype. In men, current source density was markedly different among genotype groups in only alpha 2 and alpha 3 frequency ranges: S/S allele carriers had higher current source density estimates in the left inferior parietal lobule in comparison with the L/L group. In women, genotype difference in global power asymmetry was found in the central-temporal region. Contrasting L/L and S/L genotype carriers also yielded significant effects in the right hemisphere inferior parietal lobule and the right postcentral gyrus with L/L genotype carriers showing lower current source density estimates than S/L genotype carriers in all but gamma bands. So, in women, the effects of 5-HTTLPR polymorphism were associated with modulation of the EEG activity in a wide range of EEG frequencies. The significance of the results lies in the demonstration of gene by sex interaction with resting EEG that has implications for understanding sex-related differences in affective states, emotion and cognition. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. In vitro anti-plasmodial activity of Dicoma anomala subsp. gerrardii (Asteraceae): identification of its main active constituent, structure-activity relationship studies and gene expression profiling.

    Science.gov (United States)

    Becker, John V W; van der Merwe, Marina M; van Brummelen, Anna C; Pillay, Pamisha; Crampton, Bridget G; Mmutlane, Edwin M; Parkinson, Chris; van Heerden, Fanie R; Crouch, Neil R; Smith, Peter J; Mancama, Dalu T; Maharaj, Vinesh J

    2011-10-11

    Anti-malarial drug resistance threatens to undermine efforts to eliminate this deadly disease. The resulting omnipresent requirement for drugs with novel modes of action prompted a national consortium initiative to discover new anti-plasmodial agents from South African medicinal plants. One of the plants selected for investigation was Dicoma anomala subsp. gerrardii, based on its ethnomedicinal profile. Standard phytochemical analysis techniques, including solvent-solvent extraction, thin-layer- and column chromatography, were used to isolate the main active constituent of Dicoma anomala subsp. gerrardii. The crystallized pure compound was identified using nuclear magnetic resonance spectroscopy, mass spectrometry and X-ray crystallography. The compound was tested in vitro on Plasmodium falciparum cultures using the parasite lactate dehydrogenase (pLDH) assay and was found to have anti-malarial activity. To determine the functional groups responsible for the activity, a small collection of synthetic analogues was generated - the aim being to vary features proposed as likely to be related to the anti-malarial activity and to quantify the effect of the modifications in vitro using the pLDH assay. The effects of the pure compound on the P. falciparum transcriptome were subsequently investigated by treating ring-stage parasites (alongside untreated controls), followed by oligonucleotide microarray- and data analysis. The main active constituent was identified as dehydrobrachylaenolide, a eudesmanolide-type sesquiterpene lactone. The compound demonstrated an in vitro IC50 of 1.865 μM against a chloroquine-sensitive strain (D10) of P. falciparum. Synthetic analogues of the compound confirmed an absolute requirement that the α-methylene lactone be present in the eudesmanolide before significant anti-malarial activity was observed. This feature is absent in the artemisinins and suggests a different mode of action. Microarray data analysis identified 572 unique genes that

  6. Effects of stress and adrenalectomy on activity-regulated cytoskeleton protein (Arc) gene expression

    DEFF Research Database (Denmark)

    Mikkelsen, Jens D; Larsen, Marianne Hald

    2006-01-01

    Activity-regulated cytoskeletal-associated protein (Arc) is an effector immediate early gene induced by novelty and involved in consolidation of long-term memory. Since activation of glucocorticoid receptors is a prerequisite for memory consolidation, we therefore aimed to study the effect of acute...... restraint stress on Arc gene expression in adrenalectomized rats. Acute stress produced a significant increase in Arc gene expression in the medial prefrontal cortex, but not in the parietal cortex or in the pyramidal cell layer of the hippocampus. The basal level of Arc mRNA in adrenalectomized animals...... was high in the medial prefrontal cortex and unaffected by acute stress in these animals. These data are consistent with the role of Arc as an integrative modulator of synaptic plasticity by emphasizing the potential role of stress and glucocorticoids in the control of Arc gene expression....

  7. The Relationships Between Positive-Negative Affectivity and Individual-Organizational Level Aggressiveness: The Role of Physical Activity

    Directory of Open Access Journals (Sweden)

    Mahmut ÖZDEVECİOĞLU

    2013-06-01

    Full Text Available The main aim of the present study is to find out the relationships between, positive and negative affectivity, physical activity, personal level aggressiveness - organization level aggressiveness and mediation effect of physical activity. The universe of the research is employees of Kayseri Organized Industrial Zone businesses in which physical activity is done. The size of the research is 273. According to the results, there is a significant and negative oriented relationship between positive affectivity and individual level aggressiveness. There is a significant and positive oriented relationship between negative affectivity and individual level aggressiveness. There is a significant and positive oriented relationship between positive affectivity and physical activity. There is a significant and negative oriented relationship between negative affectivity and physical activity. There is a significant and negative oriented relationship between physical activity and individual level aggressiveness. There is a significant and positive oriented relationship between individual level aggressiveness and organization level aggressiveness. Separately physical activity has a significant mediation role between positive-negative affectivity and individual level aggressiveness.

  8. Evaluation of the effects of a VEGFR-2 inhibitor compound on alanine aminotransferase gene expression and enzymatic activity in the rat liver.

    Science.gov (United States)

    Fuentealba, Carmen; Bera, Monali; Jessen, Bart; Sace, Fred; Stevens, Greg J; Trajkovic, Dusko; Yang, Amy H; Evering, Winston

    2011-08-17

    Traditional assessment of drug-induced hepatotoxicity includes morphological examination of the liver and evaluation of liver enzyme activity in serum. The objective of the study was to determine the origin of drug-related elevation in serum alanine aminotransferase (ALT) activity in the absence of morphologic changes in the liver by utilizing molecular and immunohistochemical techniques. Sixteen female Sprague-Dawley rats were divided into 2 groups (control and treated, n = 4 per group) and treated rats were dosed orally twice daily (400 mg/kg/day) for 7 days with a VEGFR-2 compound (AG28262), which in a previous study caused ALT elevation without morphological changes. Serum of both treated and control animals were evaluated on day 3 of treatment and at day 8. Three separate liver lobes (caudate, right medial, and left lateral) were examined for determination of ALT tissue activity, ALT gene expression and morphological changes. ALT activity was significantly (p < 0.01) elevated on day 3 and further increased on day 8. Histologic changes or increase in TUNEL and caspase3 positive cells were not observed in the liver lobes examined. ALT gene expression in the caudate lobe was significantly up-regulated by 63%. ALT expression in the left lateral lobe was not significantly affected. Statistically significant increased liver ALT enzymatic activity occurred in the caudate (96%) and right medial (41%) lobes but not in the left lateral lobe. AG28262, a VEFG-r2 inhibitor, causes an increase in serum ALT, due in part to both gene up-regulation. Differences between liver lobes may be attributable to differential distribution of blood from portal circulation. Incorporation of molecular data, such as gene and protein expression, and sampling multiple liver lobes may shed mechanistic insight to the evaluation of hepatotoxicity.

  9. Resveratrol stimulates c-Fos gene transcription via activation of ERK1/2 involving multiple genetic elements.

    Science.gov (United States)

    Thiel, Gerald; Rössler, Oliver G

    2018-06-05

    The polyphenol resveratrol is found in many plant and fruits and is a constituent of our diet. Resveratrol has been proposed to have chemopreventive and anti-inflammatory activities. On the cellular level, resveratrol activates stimulus-regulated transcription factors. To identify resveratrol-responsive elements within a natural gene promoter, the molecular pathway leading to c-Fos gene expression by resveratrol was dissected. The c-Fos gene encodes a basic region leucine zipper transcription factor and is a prototype of an immediate-early gene that is regulated by a wide range of signaling molecules. We analyzed chromatin-integrated c-Fos promoter-luciferase reporter genes where transcription factor binding sites were destroyed by point mutations or deletion mutagenesis. The results show that mutation of the binding sites for serum response factor (SRF), activator protein-1 (AP-1) and cAMP response element binding protein (CREB) significantly reduced reporter gene transcription following stimulation of the cells with resveratrol. Inactivation of the binding sites for signal transducer and activator of transcription (STAT) or ternary complex factors did not influence resveratrol-regulated c-Fos promoter activity. Thus, the c-Fos promoter contains three resveratrol-responsive elements, the cAMP response element (CRE), and the binding sites for SRF and AP-1. Moreover, we show that the transcriptional activation potential of the c-Fos protein is increased in resveratrol-stimulated cells, indicating that the biological activity of c-Fos is elevated by resveratrol stimulation. Pharmacological and genetic experiments revealed that the protein kinase ERK1/2 is the signal transducer that connects resveratrol treatment with the c-Fos gene. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Regulated expression of the human cytomegalovirus pp65 gene: Octamer sequence in the promoter is required for activation by viral gene products

    International Nuclear Information System (INIS)

    Depto, A.S.; Stenberg, R.M.

    1989-01-01

    To better understand the regulation of late gene expression in human cytomegalovirus (CMV)-infected cells, the authors examined expression of the gene that codes for the 65-kilodalton lower-matrix phosphoprotein (pp65). Analysis of RNA isolated at 72 h from cells infected with CMV Towne or ts66, a DNA-negative temperature-sensitive mutant, supported the fact that pp65 is expressed at low levels prior to viral DNA replication but maximally expressed after the initiation of viral DNA replication. To investigate promoter activation in a transient expression assay, the pp65 promoter was cloned into the indicator plasmid containing the gene for chloramphenicol acetyltransferase (CAT). Transfection of the promoter-CAT construct and subsequent superinfection with CMV resulted in activation of the promoter at early times after infection. Cotransfection with plasmids capable of expressing immediate-early (IE) proteins demonstrated that the promoter was activated by IE proteins and that both IE regions 1 and 2 were necessary. These studies suggest that interactions between IE proteins and this octamer sequence may be important for the regulation and expression of this CMV gene

  11. Selective activation of human heat shock gene transcription by nitrosourea antitumor drugs mediated by isocyanate-induced damage and activation of heat shock transcription factor.

    Science.gov (United States)

    Kroes, R A; Abravaya, K; Seidenfeld, J; Morimoto, R I

    1991-01-01

    Treatment of cultured human tumor cells with the chloroethylnitrosourea antitumor drug 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) selectively induces transcription and protein synthesis of a subset of the human heat shock or stress-induced genes (HSP90 and HSP70) with little effect on other stress genes or on expression of the c-fos, c-myc, or beta-actin genes. The active component of BCNU and related compounds appears to be the isocyanate moiety that causes carbamoylation of proteins and nucleic acids. Transcriptional activation of the human HSP70 gene by BCNU is dependent on the heat shock element and correlates with the level of heat shock transcription factor and its binding to the heat shock element in vivo. Unlike activation by heat or heavy metals, BCNU-mediated activation is strongly dependent upon new protein synthesis. This suggests that BCNU-induced, isocyanate-mediated damage to newly synthesized protein(s) may be responsible for activation of the heat shock transcription factor and increased transcription of the HSP90 and HSP70 genes. Images PMID:2052560

  12. Cis-acting sequences from a human surfactant protein gene confer pulmonary-specific gene expression in transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Korfhagen, T.R.; Glasser, S.W.; Wert, S.E.; Bruno, M.D.; Daugherty, C.C.; McNeish, J.D.; Stock, J.L.; Potter, S.S.; Whitsett, J.A. (Cincinnati College of Medicine, OH (USA))

    1990-08-01

    Pulmonary surfactant is produced in late gestation by developing type II epithelial cells lining the alveolar epithelium of the lung. Lack of surfactant at birth is associated with respiratory distress syndrome in premature infants. Surfactant protein C (SP-C) is a highly hydrophobic peptide isolated from pulmonary tissue that enhances the biophysical activity of surfactant phospholipids. Like surfactant phospholipid, SP-C is produced by epithelial cells in the distal respiratory epithelium, and its expression increases during the latter part of gestation. A chimeric gene containing 3.6 kilobases of the promoter and 5{prime}-flanking sequences of the human SP-C gene was used to express diphtheria toxin A. The SP-C-diphtheria toxin A fusion gene was injected into fertilized mouse eggs to produce transgenic mice. Affected mice developed respiratory failure in the immediate postnatal period. Morphologic analysis of lungs from affected pups showed variable but severe cellular injury confined to pulmonary tissues. Ultrastructural changes consistent with cell death and injury were prominent in the distal respiratory epithelium. Proximal components of the tracheobronchial tree were not severely affected. Transgenic animals were of normal size at birth, and structural abnormalities were not detected in nonpulmonary tissues. Lung-specific diphtheria toxin A expression controlled by the human SP-C gene injured type II epithelial cells and caused extensive necrosis of the distal respiratory epithelium. The absence of type I epithelial cells in the most severely affected transgenic animals supports the concept that developing type II cells serve as precursors to type I epithelial cells.

  13. Affective regulation of stereotype activation: It’s the (accessible) thought that counts

    Science.gov (United States)

    Huntsinger, Jeffrey R.; Sinclair, Stacey; Dunn, Elizabeth; Clore, Gerald L.

    2010-01-01

    Extant research demonstrates that positive affect, compared to negative affect, increases stereotyping. In four experiments we explore whether the link between affect and stereotyping depends, critically, on the relative accessibility of stereotype-relevant thoughts and response tendencies. As well as manipulating mood, we measured or manipulated the accessibility of egalitarian response tendencies (Experiments 1-2) and counter-stereotypic thoughts (Experiments 3-4). In the absence of such response tendencies and thoughts, people in positive moods displayed greater stereotype activation —consistent with past research. By contrast, in the presence of accessible egalitarian response tendencies or counter-stereotypic thoughts, people in positive moods exhibited less stereotype activation than those in negative moods. PMID:20363909

  14. Gene expression profile of endoscopically active and inactive ulcerative colitis: preliminary data.

    Science.gov (United States)

    Ţieranu, Cristian George; Dobre, Maria; Mănuc, Teodora Ecaterina; Milanesi, Elena; Pleşea, Iancu Emil; Popa, Caterina; Mănuc, Mircea; Ţieranu, Ioana; Preda, Carmen Monica; Diculescu, Mihai Mircea; Ionescu, Elena Mirela; Becheanu, Gabriel

    2017-01-01

    Multiple cytokines and chemokines related to immune response, apoptosis and inflammation have been identified as molecules implicated in ulcerative colitis (UC) pathogenesis. The aim of this study was to identify the differences at gene expression level of a panel of candidate genes in mucosa from patients with active UC (UCA), patients in remission (UCR), and normal controls. Eleven individuals were enrolled in the study: eight UC patients (four with active lesions, four with mucosal healing) and three controls without inflammatory bowel disease (IBD) seen on endoscopy. All the individuals underwent mucosal biopsy during colonoscopy. Gene expression profile was evaluated by polymerase chain reaction (PCR) array, investigating 84 genes implicated in apoptosis, inflammation, immune response, cellular adhesion, tissue remodeling and mucous secretion. Seventeen and three genes out of 84 were found significantly differentially expressed in UCA and UCR compared to controls, respectively. In particular, REG1A and CHI3L1 genes reported an up-regulation in UCA with a fold difference above 200. In UCR patients, the levels of CASP1, LYZ and ISG15 were different compared to controls. However, since a significant up-regulation of both CASP1 and LYZ was observed also in the UCA group, only ISG15 levels remained associated to the remission state. ISG15, that plays a key role in the innate immune response, seemed to be specifically associated to the UC remission state. These preliminary data represent a starting point for defining the gene profile of UC in different stages in Romanian population. Identification of genes implicated in UC pathogenesis could be useful to select new therapeutic targets.

  15. Angiotensin-converting enzyme activity in Cavalier King Charles Spaniels with an ACE gene polymorphism and myxomatous mitral valve disease

    DEFF Research Database (Denmark)

    Meurs, Kathryn M.; Olsen, Lisbeth H.; Reimann, Maria J.

    2018-01-01

    a canine ACE gene polymorphism associated with a decrease in angiotensin-converting enzyme (ACE) activity. The aim of this study was to evaluate for the prevalence of the ACE polymorphism in CKCS with mitral valve disease and to determine whether the presence of the polymorphism is associated......Objectives Myxomatous mitral valve disease (MMVD) is the most common heart disease in the dog. It is particularly common in the Cavalier King Charles Spaniel (CKCS) breed and affected dogs are frequently managed with angiotensin-converting enzyme inhibitors (ACE-I). We have previously identified...... with alterations in ACE activity at different stages of cardiac disease. Methods Seventy-three dogs with a diagnosis of mitral valve disease were evaluated and a blood sample was drawn for ACE polymorphism genotyping and ACE activity measurement. Results Forty-three dogs were homozygous for the ACE polymorphism...

  16. Fungicidal activity of peptides encoded by immunoglobulin genes

    OpenAIRE

    Polonelli, Luciano; Ciociola, Tecla; Sperind?, Martina; Giovati, Laura; D?Adda, Tiziana; Galati, Serena; Travassos, Luiz R.; Magliani, Walter; Conti, Stefania

    2017-01-01

    Evidence from previous works disclosed the antimicrobial, antiviral, anti-tumour and/or immunomodulatory activity exerted, through different mechanisms of action, by peptides expressed in the complementarity-determining regions or even in the constant region of antibodies, independently from their specificity and isotype. Presently, we report the selection, from available databases, of peptide sequences encoded by immunoglobulin genes for the evaluation of their potential biological activitie...

  17. Mastication markedly affects mandibular condylar cartilage growth, gene expression, and morphology.

    Science.gov (United States)

    Enomoto, Akiko; Watahiki, Junichi; Nampo, Tomoki; Irie, Tarou; Ichikawa, Yuuta; Tachikawa, Tetsuhiko; Maki, Koutaro

    2014-09-01

    Mandibular growth is believed to be strongly related to mastication. Furthermore, mandibular condylar cartilage is known to be derived from neural crest cells. We examined whether the degree of chewing affects condylar cartilage growth of the mandible. Mice were fed diets with varying hardness. Genes specific to neural crest-derived cells were measured by real-time polymerase chain reaction to compare the expression changes between the mandibular and tibia cartilages. The mandibular condylar cartilage was then evaluated histologically, and proliferation was evaluated using proliferating cell nuclear antigen. Immunostaining was conducted for osteopontin, type X collagen, and Musashi1, and real-time polymerase chain reaction was used to assess the expression levels of osteopontin and type X collagen. Markers including P75, Wnt-1, Musashi1, and Nestin were upregulated in the mandibular condylar cartilage as compared with the tibial cartilage. Histologic assessment of the mandibular cartilage showed that the hypertrophic chondrocyte zone was statistically significantly thicker in mice fed a hard diet. Chondrocyte proliferation and Musashi1 expression were lower in mice fed a hard diet. After 4 weeks, numerous osteopontin and type X collagen-positive cells were observed in mice fed a mixed diet. Mastication affects the balance between differentiation and proliferation in the mandibular condylar cartilage. This phenomenon might be attributed to the presence of neural crest-derived cells. Copyright © 2014 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  18. Decreased enzymatic activity of 5,10-methylene tetrahydrofolate reductase affects the development of several diseases

    Directory of Open Access Journals (Sweden)

    Maša Vidmar

    2016-07-01

    Full Text Available The importance of folates in human physiology is well known, as are various pathologies associated with low folate status. Folate deficiency can occur due to low dietary intake, genetic predisposition or treatment with medicines affecting the folate status. The aim of this paper is to explore the importance of determining genetic polymorphisms which influence the levels of biologically active folate. MTHFR is involved in the transformation of 5,10-methylene-THF to 5-methyl-THF. Polymorphisms of the MTHRF gene are associated with decreased enzymatic activity.Only 9.3 % of the population in Slovenia displays full activity of the MTHFR enzyme; these subjects are non-mutated homozygotes (wild-type alleles. In contrast, the average enzymatic activity in subjects with mutated alleles is between 50 and 60 %. MTHFR polymorphism is associated with an increased risk of hyperhomocysteinemia and cardiovascular diseases, neurological disorders and various types of cancer. There is also an increased risk for congenital malformations. Folic acid food fortification was introduced in some countries in order to assure an adequate folate status in the population. However, this approach does not address the decreased activity of MTHFR.Polymorphism in the key enzymes of the folate cycle is common. Determination of the genetic predisposition is therefore plausible in the most vulnerable groups of the population, such as pregnant women and patients receiving medicines influencing the folate cycle in various ways, e.g. 5-fluorouracil, methotrexate and 6-mercaptopurine. Genotyping would allow the identification of patients at high risk for suboptimal folate status.

  19. Two rare deletions upstream of the NRXN1 gene (2p16.3) affecting the non-coding mRNA AK127244 segregate with diverse psychopathological phenotypes in a family

    DEFF Research Database (Denmark)

    Duong, L. T. T.; Hoeffding, L. K.; Petersen, K. B.

    2015-01-01

    127244 in addition to the pathogenic 15q11.2 deletion in distinct family members. The two deletions upstream of the NRXN1 gene were found to segregate with psychiatric disorders in the family and further similar deletions have been observed in patients diagnosed with autism spectrum disorder. Thus, we...... susceptibility. In this study, we describe a family affected by a wide range of psychiatric disorders including early onset schizophrenia, schizophreniform disorder, and affective disorders. Microarray analysis identified two rare deletions immediately upstream of the NRXN1 gene affecting the non-coding mRNA AK...... suggest that non-coding regions upstream of the NRXN1 gene affecting AK127244 might (as NRXN1) contain susceptibility regions for a wide spectrum of neuropsychiatric disorders. (C) 2015 Elsevier Masson SAS. All rights reserved....

  20. Binding of TFIIIC to sine elements controls the relocation of activity-dependent neuronal genes to transcription factories.

    Directory of Open Access Journals (Sweden)

    Luca Crepaldi

    Full Text Available In neurons, the timely and accurate expression of genes in response to synaptic activity relies on the interplay between epigenetic modifications of histones, recruitment of regulatory proteins to chromatin and changes to nuclear structure. To identify genes and regulatory elements responsive to synaptic activation in vivo, we performed a genome-wide ChIPseq analysis of acetylated histone H3 using somatosensory cortex of mice exposed to novel enriched environmental (NEE conditions. We discovered that Short Interspersed Elements (SINEs located distal to promoters of activity-dependent genes became acetylated following exposure to NEE and were bound by the general transcription factor TFIIIC. Importantly, under depolarizing conditions, inducible genes relocated to transcription factories (TFs, and this event was controlled by TFIIIC. Silencing of the TFIIIC subunit Gtf3c5 in non-stimulated neurons induced uncontrolled relocation to TFs and transcription of activity-dependent genes. Remarkably, in cortical neurons, silencing of Gtf3c5 mimicked the effects of chronic depolarization, inducing a dramatic increase of both dendritic length and branching. These findings reveal a novel and essential regulatory function of both SINEs and TFIIIC in mediating gene relocation and transcription. They also suggest that TFIIIC may regulate the rearrangement of nuclear architecture, allowing the coordinated expression of activity-dependent neuronal genes.

  1. Binding of TFIIIC to sine elements controls the relocation of activity-dependent neuronal genes to transcription factories.

    Science.gov (United States)

    Crepaldi, Luca; Policarpi, Cristina; Coatti, Alessandro; Sherlock, William T; Jongbloets, Bart C; Down, Thomas A; Riccio, Antonella

    2013-01-01

    In neurons, the timely and accurate expression of genes in response to synaptic activity relies on the interplay between epigenetic modifications of histones, recruitment of regulatory proteins to chromatin and changes to nuclear structure. To identify genes and regulatory elements responsive to synaptic activation in vivo, we performed a genome-wide ChIPseq analysis of acetylated histone H3 using somatosensory cortex of mice exposed to novel enriched environmental (NEE) conditions. We discovered that Short Interspersed Elements (SINEs) located distal to promoters of activity-dependent genes became acetylated following exposure to NEE and were bound by the general transcription factor TFIIIC. Importantly, under depolarizing conditions, inducible genes relocated to transcription factories (TFs), and this event was controlled by TFIIIC. Silencing of the TFIIIC subunit Gtf3c5 in non-stimulated neurons induced uncontrolled relocation to TFs and transcription of activity-dependent genes. Remarkably, in cortical neurons, silencing of Gtf3c5 mimicked the effects of chronic depolarization, inducing a dramatic increase of both dendritic length and branching. These findings reveal a novel and essential regulatory function of both SINEs and TFIIIC in mediating gene relocation and transcription. They also suggest that TFIIIC may regulate the rearrangement of nuclear architecture, allowing the coordinated expression of activity-dependent neuronal genes.

  2. Situational motivation and perceived intensity: their interaction in predicting changes in positive affect from physical activity.

    Science.gov (United States)

    Guérin, Eva; Fortier, Michelle S

    2012-01-01

    There is evidence that affective experiences surrounding physical activity can contribute to the proper self-regulation of an active lifestyle. Motivation toward physical activity, as portrayed by self-determination theory, has been linked to positive affect, as has the intensity of physical activity, especially of a preferred nature. The purpose of this experimental study was to examine the interaction between situational motivation and intensity [i.e., ratings of perceived exertion (RPE)] in predicting changes in positive affect following an acute bout of preferred physical activity, namely, running. Fourty-one female runners engaged in a 30-minute self-paced treadmill run in a laboratory context. Situational motivation for running, pre- and post-running positive affect, and RPE were assessed via validated self-report questionnaires. Hierarchical regression analyses revealed a significant interaction effect between RPE and introjection (P positive affect was considerable, with higher RPE ratings being associated with greater increases in positive affect. The implications of the findings in light of SDT principles as well as the potential contingencies between the regulations and RPE in predicting positive affect among women are discussed.

  3. Activation of the human beta interferon gene by the adenovirus type 12 E1B gene

    International Nuclear Information System (INIS)

    Shiroki, K.; Toth, M.

    1988-01-01

    The transcription of endogenous beta interferon mRNA was activated in human embryo kidney (HEK) cells infected with adenovirus 12 (Ad12) but was activated only inefficiently or not at all in HEK cells infected with Ad5 and rc-1 (Ad5 dl312 containing the Ad12 E1A region). The analysis with Ad12 mutants showed that Ad12 E1B products, especially the 19K protein, were important for the expression of the endogenous beta interferon gene and Ad12 E1A products were not involved in the expression. The expression of exogeneously transfected pIFN-CAT (a hybrid plasmid having the human beta interferon promoter fused with the CAT gene) was activated in HEK and chicken embryo fibroblast (CEF) cells infected with either Ad12 or Ad5. The analysis of cotransfection of CEF cells with pIFN-CAT and plasmids containing fragments of Ad12 or Ad5 DNA showed that Ad12 or Ad5 E1B (possibly the 19K protein) was and E1A was not involved in the expression of the exogenous pIFN-CAT

  4. AMPK Activation Affects Glutamate Metabolism in Astrocytes

    DEFF Research Database (Denmark)

    Voss, Caroline Marie; Pajęcka, Kamilla; Stridh, Malin H

    2015-01-01

    acid (TCA) cycle was studied using high-performance liquid chromatography analysis supplemented with gas chromatography-mass spectrometry technology. It was found that AMPK activation had profound effects on the pathways involved in glutamate metabolism since the entrance of the glutamate carbon...... on glutamate metabolism in astrocytes was studied using primary cultures of these cells from mouse cerebral cortex during incubation in media containing 2.5 mM glucose and 100 µM [U-(13)C]glutamate. The metabolism of glutamate including a detailed analysis of its metabolic pathways involving the tricarboxylic...... skeleton into the TCA cycle was reduced. On the other hand, glutamate uptake into the astrocytes as well as its conversion to glutamine catalyzed by glutamine synthetase was not affected by AMPK activation. Interestingly, synthesis and release of citrate, which are hallmarks of astrocytic function, were...

  5. Turning lemonade into lemons: Dampening appraisals reduce positive affect and increase negative affect during positive activity scheduling.

    Science.gov (United States)

    Burr, Leigh-Anne; Javiad, Mahmood; Jell, Grace; Werner-Seidler, Aliza; Dunn, Barnaby D

    2017-04-01

    The way individuals appraise positive emotions may modulate affective experience during positive activity scheduling. Individuals may either engage in dampening appraisals (e.g., think "this is too good to last") or amplifying appraisals (e.g., think "I deserve this"). A cross-over randomized design was used to examine the consequences of these appraisal styles. Participants (N = 43) rated positive affect (PA) and negative affect (NA) during four daily walks in pleasant locations, whilst following dampening, emotion-focus amplifying (focusing on how good one feels), self-focus amplifying (focusing on positive self qualities), or control instructions. There was no difference between the two amplifying and control conditions, which all increased PA and reduced NA during the walks. However, the dampening condition significantly differed from all other conditions, reducing PA and increasing NA during the walk. Individual differences in anhedonia symptoms did not significantly moderate the pattern of findings. This evidence supports the view that dampening appraisals may be one mechanism driving anhedonia and may account for why positive activity scheduling can sometimes backfire when utilized in the clinic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. AAV-mediated gene transfer of the obesity-associated gene Etv5 in rat midbrain does not affect energy balance or motivated behavior.

    Directory of Open Access Journals (Sweden)

    Arjen J Boender

    Full Text Available Several genome-wide association studies have implicated the transcription factor E-twenty- six version 5 (Etv5 in the regulation of body mass index. Further substantiating the role of Etv5 in feeding behavior are the findings that targeted disruption of Etv5 in mice leads to decreased body weight gain and that expression of Etv5 is decreased in the ventral tegmental area and substantia nigra pars compacta (VTA/SNpc after food restriction. As Etv5 has been suggested to influence dopaminergic neurotransmission by driving the expression of genes that are responsible for the synthesis and release of dopamine, we investigated if expression levels of Etv5 are dependent on nutritional state and subsequently influence the expression levels of tyrosine hydroxylase. While it was shown that Etv5 expression in the VTA/SNpc increases after central administration of leptin and that Etv5 was able to drive expression of tyrosine hydroxylase in vitro, AAV-mediated gene transfer of Etv5 into the VTA/SNpc of rats did not alter expression of tyrosine hydroxylase in vivo. Moreover, AAV-mediated gene transfer of Etv5 in the VTA/SNpc did not affect measures of energy balance or performances in a progressive ratio schedule. Thus, these data do not support a role for increased expression of Etv5 in the VTA/SNpc in the regulation of feeding behavior.

  7. Mining pathway associations for disease-related pathway activity analysis based on gene expression and methylation data.

    Science.gov (United States)

    Lee, Hyeonjeong; Shin, Miyoung

    2017-01-01

    The problem of discovering genetic markers as disease signatures is of great significance for the successful diagnosis, treatment, and prognosis of complex diseases. Even if many earlier studies worked on identifying disease markers from a variety of biological resources, they mostly focused on the markers of genes or gene-sets (i.e., pathways). However, these markers may not be enough to explain biological interactions between genetic variables that are related to diseases. Thus, in this study, our aim is to investigate distinctive associations among active pathways (i.e., pathway-sets) shown each in case and control samples which can be observed from gene expression and/or methylation data. The pathway-sets are obtained by identifying a set of associated pathways that are often active together over a significant number of class samples. For this purpose, gene expression or methylation profiles are first analyzed to identify significant (active) pathways via gene-set enrichment analysis. Then, regarding these active pathways, an association rule mining approach is applied to examine interesting pathway-sets in each class of samples (case or control). By doing so, the sets of associated pathways often working together in activity profiles are finally chosen as our distinctive signature of each class. The identified pathway-sets are aggregated into a pathway activity network (PAN), which facilitates the visualization of differential pathway associations between case and control samples. From our experiments with two publicly available datasets, we could find interesting PAN structures as the distinctive signatures of breast cancer and uterine leiomyoma cancer, respectively. Our pathway-set markers were shown to be superior or very comparable to other genetic markers (such as genes or gene-sets) in disease classification. Furthermore, the PAN structure, which can be constructed from the identified markers of pathway-sets, could provide deeper insights into

  8. SNHG16 is regulated by the Wnt pathway in colorectal cancer and affects genes involved in lipid metabolism

    DEFF Research Database (Denmark)

    Christensen, Lise-Lotte; True, Kirsten; Hamilton, Mark P.

    2016-01-01

    It is well established that lncRNAs are aberrantly expressed in cancer where they have been shown to act as oncogenes or tumor suppressors. RNA profiling of 314 colorectal adenomas/adenocarcinomas and 292 adjacent normal colon mucosa samples using RNA-sequencing demonstrated that the snoRNA host...... gene 16 (SNHG16) is significantly up-regulated in adenomas and all stages of CRC. SNHG16 expression was positively correlated to the expression of Wnt-regulated transcription factors, including ASCL2, ETS2, and c-Myc. In vitro abrogation of Wnt signaling in CRC cells reduced the expression of SNHG16...... indicating that SNHG16 is regulated by the Wnt pathway. Silencing of SNHG16 resulted in reduced viability, increased apoptotic cell death and impaired cell migration. The SNHG16 silencing particularly affected expression of genes involved in lipid metabolism. A connection between SNHG16 and genes involved...

  9. Nestin-Cre Mice Are Affected by Hypopituitarism, Which Is Not Due to Significant Activity of the Transgene in the Pituitary Gland

    Science.gov (United States)

    Galichet, Christophe; Lovell-Badge, Robin; Rizzoti, Karine

    2010-01-01

    Nestin-Cre mice express Cre recombinase under control of the rat nestin promoter and central nervous system (CNS) enhancer. While endogenous Nestin is expressed in some other tissues including the pituitary gland, Nestin-Cre mice induce recombination predominantly in the CNS. For this reason, they have been widely used to explore gene function or cell fate in the latter. Pituitary hormonal deficiencies, or hypopituitarism, are associated with a wide range of symptoms and with a significant morbidity. These can have a neural and/or a pituitary origin as the gland's secretions are controlled by the hypothalamus. We report here that Nestin-Cre mice themselves are affected by mild hypopituitarism. Hence, physiological consequences are expected, especially in combination with defects resulting from Cre mediated deletion of any gene under investigation. To further investigate the origin of this phenotype, we re-examined the activity of the transgene. We compared it with expression of Nestin itself in the context of the hypothalamo-pituitary axis, especially in the light of a recent report showing pituitary Nestin-Cre activity, which contrasts with previous data. Our results disagree with those of this recent study and do not support the claim that Nestin positive cells are present in the pituitary anlagen, the Rathke's pouch (RP). Moreover we did not observe any significant activity in the post-natal pituitary, in agreement with the initial report. PMID:20625432

  10. Enhanced Virulence Gene Activity of Agrobacterium in Muskmelon (Cucumis melo L. cv. ‘Birdie’

    Directory of Open Access Journals (Sweden)

    Abul K.M. MOHIUDDIN

    2011-05-01

    Full Text Available Muskmelon (Cucumis melo L. cultivar ‘Birdie’, was evaluated for its response to the tumorigenic Agrobacterium tumefaciens and the oncogenic A. rhizogenes strains. Stem and petiole of three week-old in vitro-grown muskmelon plants were inoculated with five strains of A. tumefaciens and A. rhizogenes each and observed phenotypic expressions i.e. induction of crown galls and hairy roots. This phenotypic expression was efficaciously increased when virulence gene activity of different strains of two Agrobacterium species was enhanced. Intensive studies on enhancement of virulence gene activity of Agrobacterium found to be correlated to the appropriate light intensity (39.3 μmol m-2 s-1 with a specific concentration of monocyclic phenolic compound, acetosyringone (20 μM. The gene activity was also influenced by several other physical factors e.g. plant tissue type, Agrobacterium species and their strains, and plant tissue-Agrobacterium interaction. Among the different A. tumefaciens strains, LBA4404 showed the best virulence gene activity in both stem and petiole through the formation of higher rate of crown galls. On the other hand, strain 15834 of A. rhizogenes showed better gene activity in stem and 8196 in petiole through the formation of higher rate of hairy roots as well as higher average number of hairy roots. Among the two different types of explants, petiole was more susceptible to both Agrobacterium species. Thus it was concluded that future muskmelon transformation study can efficiently be carried out with LBA4404, 15834 and 8196 strains using petiole explants by adding 20 μM of acetosyringone in the medium.

  11. Methylation of miRNA genes and oncogenesis.

    Science.gov (United States)

    Loginov, V I; Rykov, S V; Fridman, M V; Braga, E A

    2015-02-01

    Interaction between microRNA (miRNA) and messenger RNA of target genes at the posttranscriptional level provides fine-tuned dynamic regulation of cell signaling pathways. Each miRNA can be involved in regulating hundreds of protein-coding genes, and, conversely, a number of different miRNAs usually target a structural gene. Epigenetic gene inactivation associated with methylation of promoter CpG-islands is common to both protein-coding genes and miRNA genes. Here, data on functions of miRNAs in development of tumor-cell phenotype are reviewed. Genomic organization of promoter CpG-islands of the miRNA genes located in inter- and intragenic areas is discussed. The literature and our own results on frequency of CpG-island methylation in miRNA genes from tumors are summarized, and data regarding a link between such modification and changed activity of miRNA genes and, consequently, protein-coding target genes are presented. Moreover, the impact of miRNA gene methylation on key oncogenetic processes as well as affected signaling pathways is discussed.

  12. Site- and horizon-specific patterns of microbial community structure and enzyme activities in permafrost-affected soils of Greenland

    Science.gov (United States)

    Gittel, Antje; Bárta, Jiří; Kohoutová, Iva; Schnecker, Jörg; Wild, Birgit; Čapek, Petr; Kaiser, Christina; Torsvik, Vigdis L.; Richter, Andreas; Schleper, Christa; Urich, Tim

    2014-01-01

    Permafrost-affected soils in the Northern latitudes store huge amounts of organic carbon (OC) that is prone to microbial degradation and subsequent release of greenhouse gasses to the atmosphere. In Greenland, the consequences of permafrost thaw have only recently been addressed, and predictions on its impact on the carbon budget are thus still highly uncertain. However, the fate of OC is not only determined by abiotic factors, but closely tied to microbial activity. We investigated eight soil profiles in northeast Greenland comprising two sites with typical tundra vegetation and one wet fen site. We assessed microbial community structure and diversity (SSU rRNA gene tag sequencing, quantification of bacteria, archaea and fungi), and measured hydrolytic and oxidative enzyme activities. Sampling site and thus abiotic factors had a significant impact on microbial community structure, diversity and activity, the wet fen site exhibiting higher potential enzyme activities and presumably being a hot spot for anaerobic degradation processes such as fermentation and methanogenesis. Lowest fungal to bacterial ratios were found in topsoils that had been relocated by cryoturbation (“buried topsoils”), resulting from a decrease in fungal abundance compared to recent (“unburied”) topsoils. Actinobacteria (in particular Intrasporangiaceae) accounted for a major fraction of the microbial community in buried topsoils, but were only of minor abundance in all other soil horizons. It was indicated that the distribution pattern of Actinobacteria and a variety of other bacterial classes was related to the activity of phenol oxidases and peroxidases supporting the hypothesis that bacteria might resume the role of fungi in oxidative enzyme production and degradation of phenolic and other complex substrates in these soils. Our study sheds light on the highly diverse, but poorly-studied communities in permafrost-affected soils in Greenland and their role in OC degradation. PMID

  13. Neurospora crassa glucose - repressible gene -1(Grg-1) promoter controls the expression of neurospora tyrosinase gene in a clock-controlled manner

    International Nuclear Information System (INIS)

    Tarawneh, A. K

    1997-01-01

    In this study sphareroplastes of white Neurospora crassa mutant auxotroph for aromatic am no acids a rom 9 q a-2 inv, was transformed by the pKF-Tyr7-wt DNA construct. This construct contains the promoter of neurospora crassa glucose-repressible gene-1 (G rg-1) usp stream of Neurospora tyrosinase gene. The co transformation of this mutant with pKF-Tyr-7-wt cincture's and the pKAL-1, a plasmid which contains the Neurospora q a-2+ gene transform it to photophor. The transform ant contains the tyrosinase gene which catalyzes the unique step in the synthesis of the black pigment melanin. The activity of the tyrosinase in this transform ant was followed by measuring the absorbance of the dark coloured pigment at 332 nm. The maximum of the tyrosinase activity was shown at 16.36 and 56 hours after the shift of the transformed mycelia from constant light (L L) to constant dark (Dd). The rate of the enzyme activity was changed according to ci radian cycle of 20 hours. This G rg 1/tyrosinase construct provides a good system to study to study the temporal control of gene expression and the interaction between the different environmental c uses that affects gene expression. (author). 20 refs., 4 figs

  14. Use of an activated beta-catenin to identify Wnt pathway target genes in caenorhabditis elegans, including a subset of collagen genes expressed in late larval development.

    Science.gov (United States)

    Jackson, Belinda M; Abete-Luzi, Patricia; Krause, Michael W; Eisenmann, David M

    2014-04-16

    The Wnt signaling pathway plays a fundamental role during metazoan development, where it regulates diverse processes, including cell fate specification, cell migration, and stem cell renewal. Activation of the beta-catenin-dependent/canonical Wnt pathway up-regulates expression of Wnt target genes to mediate a cellular response. In the nematode Caenorhabditis elegans, a canonical Wnt signaling pathway regulates several processes during larval development; however, few target genes of this pathway have been identified. To address this deficit, we used a novel approach of conditionally activated Wnt signaling during a defined stage of larval life by overexpressing an activated beta-catenin protein, then used microarray analysis to identify genes showing altered expression compared with control animals. We identified 166 differentially expressed genes, of which 104 were up-regulated. A subset of the up-regulated genes was shown to have altered expression in mutants with decreased or increased Wnt signaling; we consider these genes to be bona fide C. elegans Wnt pathway targets. Among these was a group of six genes, including the cuticular collagen genes, bli-1 col-38, col-49, and col-71. These genes show a peak of expression in the mid L4 stage during normal development, suggesting a role in adult cuticle formation. Consistent with this finding, reduction of function for several of the genes causes phenotypes suggestive of defects in cuticle function or integrity. Therefore, this work has identified a large number of putative Wnt pathway target genes during larval life, including a small subset of Wnt-regulated collagen genes that may function in synthesis of the adult cuticle.

  15. The expression of Hedgehog genes (Ihh, Dhh) and Hedgehog target genes (Ptc1, Gli1, Coup-TfII) is affected by estrogenic stimuli in the uterus of immature female rats

    International Nuclear Information System (INIS)

    Katayama, Seiichi; Ashizawa, Koji; Gohma, Hiroshi; Fukuhara, Tadahiro; Narumi, Kazunori; Tsuzuki, Yasuhiro; Tatemoto, Hideki; Nakada, Tadashi; Nagai, Kenji

    2006-01-01

    The objective of this study was to investigate the effects of estrogen receptor (ER) agonists and an ER antagonist on the expression of Hedgehog genes (Indian hedgehog: Ihh; Desert hedgehog: Dhh) and Hedgehog target genes (Patched 1: Ptc1; glioma-associated oncogene homolog 1: Gli1; chicken ovalbumin upstream promoter transcription factor II: Coup-TfII) in the rat uterus. Immature female rats were administered once with 17α-ethynyl estradiol (EE, an ER agonist), propyl pyrazole triole (PPT, an ERα-selective agonist), diarylpropionitrile (DPN, an ERβ-selective agonist), or ICI 182,780 (an ER antagonist). Expression of mRNA for Ihh, Dhh, and Ptc1 was dose-dependently downregulated by EE in the uterus of immature rats, mediated by ER as confirmed by coadministration of ICI 182,780. The mRNA expression levels of Ptc1, Gli1, and Coup-TfII were simultaneously downregulated during the period in which the mRNA expression levels of Ihh and Dhh were downregulated in the uterus after administration of EE. PPT downregulated the transcription of Ihh, Dhh, Ptc1, Gli1, and Coup-TfII, indicating that expression of these genes was regulated by the ERα-dependent pathway. DPN also downregulated the transcription of Ihh and Dhh, although the effect was weaker than that of PPT, indicating that the regulation of uterine Ihh and Dhh transcription was also affected by the ERβ-dependent pathway. These results suggest that the expression of Hedgehog genes (Ihh, Dhh) and Hedgehog target genes (Ptc1, Gli1, Coup-TfII) is affected by estrogenic stimuli in the uterus of immature female rats

  16. The expression of Hedgehog genes (Ihh, Dhh) and Hedgehog target genes (Ptc1, Gli1, Coup-TfII) is affected by estrogenic stimuli in the uterus of immature female rats.

    Science.gov (United States)

    Katayama, Seiichi; Ashizawa, Koji; Gohma, Hiroshi; Fukuhara, Tadahiro; Narumi, Kazunori; Tsuzuki, Yasuhiro; Tatemoto, Hideki; Nakada, Tadashi; Nagai, Kenji

    2006-12-15

    The objective of this study was to investigate the effects of estrogen receptor (ER) agonists and an ER antagonist on the expression of Hedgehog genes (Indian hedgehog: Ihh; Desert hedgehog: Dhh) and Hedgehog target genes (Patched 1: Ptc1; glioma-associated oncogene homolog 1: Gli1; chicken ovalbumin upstream promoter transcription factor II: Coup-TfII) in the rat uterus. Immature female rats were administered once with 17alpha-ethynyl estradiol (EE, an ER agonist), propyl pyrazole triole (PPT, an ERalpha-selective agonist), diarylpropionitrile (DPN, an ERbeta-selective agonist), or ICI 182,780 (an ER antagonist). Expression of mRNA for Ihh, Dhh, and Ptc1 was dose-dependently downregulated by EE in the uterus of immature rats, mediated by ER as confirmed by coadministration of ICI 182,780. The mRNA expression levels of Ptc1, Gli1, and Coup-TfII were simultaneously downregulated during the period in which the mRNA expression levels of Ihh and Dhh were downregulated in the uterus after administration of EE. PPT downregulated the transcription of Ihh, Dhh, Ptc1, Gli1, and Coup-TfII, indicating that expression of these genes was regulated by the ERalpha-dependent pathway. DPN also downregulated the transcription of Ihh and Dhh, although the effect was weaker than that of PPT, indicating that the regulation of uterine Ihh and Dhh transcription was also affected by the ERbeta-dependent pathway. These results suggest that the expression of Hedgehog genes (Ihh, Dhh) and Hedgehog target genes (Ptc1, Gli1, Coup-TfII) is affected by estrogenic stimuli in the uterus of immature female rats.

  17. Physical Activity, Mind Wandering, Affect, and Sleep: An Ecological Momentary Assessment.

    Science.gov (United States)

    Fanning, Jason; Mackenzie, Michael; Roberts, Sarah; Crato, Ines; Ehlers, Diane; McAuley, Edward

    2016-08-31

    A considerable portion of daily thought is spent in mind wandering. This behavior has been related to positive (eg, future planning, problem solving) and negative (eg, unhappiness, impaired cognitive performance) outcomes. Based on previous research suggesting future-oriented (ie, prospective) mind wandering may support autobiographical planning and self-regulation, this study examined associations between hourly mind wandering and moderate-to-vigorous physical activity (MVPA), and the impact of affect and daily sleep on these relations. College-aged adults (N=33) participated in a mobile phone-delivered ecological momentary assessment study for 1 week. Sixteen hourly prompts assessing mind wandering and affect were delivered daily via participants' mobile phones. Perceived sleep quality and duration was assessed during the first prompt each day, and participants wore an ActiGraph accelerometer during waking hours throughout the study week. Study findings suggest present-moment mind wandering was positively associated with future MVPA (P=.03), and this relationship was moderated by affective state (P=.04). Moreover, excessive sleep the previous evening was related to less MVPA across the following day (P=.007). Further, mind wandering was positively related to activity only among those who did not oversleep (P=.007). Together, these results have implications for multiple health behavior interventions targeting physical activity, affect, and sleep. Researchers may also build on this work by studying these relationships in the context of other important behaviors and psychosocial factors (eg, tobacco use, depression, loneliness).

  18. Macro optical projection tomography for large scale 3D imaging of plant structures and gene activity.

    Science.gov (United States)

    Lee, Karen J I; Calder, Grant M; Hindle, Christopher R; Newman, Jacob L; Robinson, Simon N; Avondo, Jerome J H Y; Coen, Enrico S

    2017-01-01

    Optical projection tomography (OPT) is a well-established method for visualising gene activity in plants and animals. However, a limitation of conventional OPT is that the specimen upper size limit precludes its application to larger structures. To address this problem we constructed a macro version called Macro OPT (M-OPT). We apply M-OPT to 3D live imaging of gene activity in growing whole plants and to visualise structural morphology in large optically cleared plant and insect specimens up to 60 mm tall and 45 mm deep. We also show how M-OPT can be used to image gene expression domains in 3D within fixed tissue and to visualise gene activity in 3D in clones of growing young whole Arabidopsis plants. A further application of M-OPT is to visualise plant-insect interactions. Thus M-OPT provides an effective 3D imaging platform that allows the study of gene activity, internal plant structures and plant-insect interactions at a macroscopic scale. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. Growth enhancement and gene expression of Arabidopsis thaliana irradiated with active oxygen species

    Science.gov (United States)

    Watanabe, Satoshi; Ono, Reoto; Hayashi, Nobuya; Shiratani, Masaharu; Tashiro, Kosuke; Kuhara, Satoru; Inoue, Asami; Yasuda, Kaori; Hagiwara, Hiroko

    2016-07-01

    The characteristics of plant growth enhancement effect and the mechanism of the enhancement induced by plasma irradiation are investigated using various active species in plasma. Active oxygen species in oxygen plasma are effective for growth enhancement of plants. DNA microarray analysis of Arabidopsis thaliana indicates that the genes coding proteins that counter oxidative stresses by eliminating active oxygen species are expressed at significantly high levels. The size of plant cells increases owing to oxygen plasma irradiation. The increases in gene expression levels and cell size suggest that the increase in the expression level of the expansin protein is essential for plant growth enhancement phenomena.

  20. Adaptive evolution of a key gene affecting queen and worker traits in the honey bee, Apis mellifera.

    Science.gov (United States)

    Kent, Clement F; Issa, Amer; Bunting, Alexandra C; Zayed, Amro

    2011-12-01

    The vitellogenin egg yolk precursor protein represents a well-studied case of social pleiotropy in the model organism Apis mellifera. Vitellogenin is associated with fecundity in queens and plays a major role in controlling division of labour in workers, thereby affecting both individual and colony-level fitness. We studied the molecular evolution of vitellogenin and seven other genes sequenced in a large population panel of Apis mellifera and several closely related species to investigate the role of social pleiotropy on adaptive protein evolution. We found a significant excess of nonsynonymous fixed differences between A. mellifera, A. cerana and A. florea relative to synonymous sites indicating high rates of adaptive evolution at vitellogenin. Indeed, 88% of amino acid changes were fixed by selection in some portions of the gene. Further, vitellogenin exhibited hallmark signatures of selective sweeps in A. mellifera, including a significant skew in the allele frequency spectrum, extreme levels of genetic differentiation and linkage disequilibrium. Finally, replacement polymorphisms in vitellogenin were significantly enriched in parts of the protein involved in binding lipid, establishing a link between the gene's structure, function and effects on fitness. Our case study provides unequivocal evidence of historical and ongoing bouts of adaptive evolution acting on a key socially pleiotropic gene in the honey bee. © 2011 Blackwell Publishing Ltd.

  1. Two distinct genomic regions, harbouring the period and fruitless genes, affect male courtship song in Drosophila montana.

    Science.gov (United States)

    Lagisz, M; Wen, S-Y; Routtu, J; Klappert, K; Mazzi, D; Morales-Hojas, R; Schäfer, M A; Vieira, J; Hoikkala, A; Ritchie, M G; Butlin, R K

    2012-06-01

    Acoustic signals often have a significant role in pair formation and in species recognition. Determining the genetic basis of signal divergence will help to understand signal evolution by sexual selection and its role in the speciation process. An earlier study investigated quantitative trait locus for male courtship song carrier frequency (FRE) in Drosophila montana using microsatellite markers. We refined this study by adding to the linkage map markers for 10 candidate genes known to affect song production in Drosophila melanogaster. We also extended the analyses to additional song characters (pulse train length (PTL), pulse number (PN), interpulse interval, pulse length (PL) and cycle number (CN)). Our results indicate that loci in two different regions of the genome control distinct features of the courtship song. Pulse train traits (PTL and PN) mapped to the X chromosome, showing significant linkage with the period gene. In contrast, characters related to song pulse properties (PL, CN and carrier FRE) mapped to the region of chromosome 2 near the candidate gene fruitless, identifying these genes as suitable loci for further investigations. In previous studies, the pulse train traits have been found to vary substantially between Drosophila species, and so are potential species recognition signals, while the pulse traits may be more important in intra-specific mate choice.

  2. The SBP-Box Gene VpSBP11 from Chinese Wild Vitis Is Involved in Floral Transition and Affects Leaf Development.

    Science.gov (United States)

    Hou, Hongmin; Yan, Xiaoxiao; Sha, Ting; Yan, Qin; Wang, Xiping

    2017-07-13

    Flowering occurs in angiosperms during a major developmental transition from vegetative growth to the reproductive phase. Squamosa promoter binding protein (SBP)-box genes have been found to play critical roles in regulating flower and fruit development, but their roles in grapevine have remained unclear. To better understand the functions of the grape SBP-box genes in both vegetative and reproductive growth phases, a full-length complementary DNA (cDNA) sequence of the putative SBP-box transcription factor gene, VpSBP11 , was obtained from Chinese wild grapevine Vitis pseudoreticulata Wen Tsai Wang (W. T. Wang) clone 'Baihe-35-1'. VpSBP11 encoded a putative polypeptide of 170 amino acids with a highly conserved SBP-domain with two zinc-binding sites of the Cx2C-x3-H-x11-C-x6-H (C2HCH) type and a nuclear localization signal. We confirmed that the VpSBP11 protein was targeted to the nucleus and possessed transcriptional activation activity by subcellular localization and trans -activation assay. Over-expression of VpSBP11 in Arabidopsis thaliana was shown to activate the FUL gene, and subsequently the AP1 and LFY genes, all of which were floral meristem identity genes, and to cause earlier flowering than in wild type (WT) plants. The pattern of vegetative growth was also different between the transgenic and WT plants. For example, in the VpSBP11 over-expressing transgenic plants, the number of rosette leaves was less than that of WT; the petiole was significantly elongated; and the rosette and cauline leaves curled upwards or downwards. These results were consistent with VpSBP11 acting as a transcription factor during the transition from the vegetative stage to the reproductive stage.

  3. Immediate-early gene region of human cytomegalovirus trans-activates the promoter of human immunodeficiency virus

    International Nuclear Information System (INIS)

    Davis, M.G.; Kenney, S.C.; Kamine, J.; Pagano, J.S.; Huang, E.S.

    1987-01-01

    Almost all homosexual patients with acquired immunodeficiency syndrome are also actively infected with human cytomegalovirus (HCMV). The authors have hypothesized that an interaction between HCMV and human immunodeficiency virus (HIV), the agent that causes acquired immunodeficiency syndrome, may exist at a molecular level and contribute to the manifestations of HIV infection. In this report, they demonstrate that the immediate-early gene region of HCMV, in particular immediate-early region 2, trans-activates the expression of the bacterial gene chloramphenicol acetyltransferase that is fused to the HIV long terminal repeat and carried by plasmid pHIV-CAT. The HCMV immediate-early trans-activator increases the level of mRNA from the plamid pHIV-CAT. The sequences of HIV that are responsive to trans-activation by the HDMV immediate-early region are distinct from HIV sequences that are required for response to the HIV tat. The stimulation of HIV gene expression by HDMV gene functions could enhance the consequences of HIV infection in persons with previous or concurrent HCMV infection

  4. Differential and correlation analyses of microarray gene expression data in the CEPH Utah families

    DEFF Research Database (Denmark)

    Tan, Qihua; Zhao, Jinghua; Li, Shuxia

    2008-01-01

    -regulated genes identifies cell-cell signaling as an important functional category implicated in human aging. Sex-dependent gene expression is characterized by genes that may escape X-inactivation and, most interestingly, such a pattern is not affected by the aging process. Analysis on sibship correlation on gene...... expression revealed a large number of significant genes suggesting the importance of a genetic mechanism in regulating transcriptional activities. In addition, we observe an interesting pattern of sibship correlation on gene expression that increases exponentially with the mean of gene expression reflecting...

  5. THE HUMAN ACTIVITY AS AFFECTIVE-COGNITIVE UNIT: A HISTORIC-CULTURAL APPROACH

    Directory of Open Access Journals (Sweden)

    Lígia Márcia Martins

    2017-01-01

    Full Text Available This article puts in question the affectional-cognitive unit which sustains the human activity, with the purpose to light incorrectness of approaches which dichotomize reason and emotion. It asserts that such dissociations are founded in theorical-methodological principles which set bounds for explanations about the human psychism, so that the overcoming of referred dualisms puts on as a method matter. For making explicit that assertion, it resorted to Historic-Cultural Psychology, based on that it explains about the psychism as subjective image of objective reality, of Vygotskyan criticisms to Cartesian dualism and the need of a historic-cultural approach on emotion studies, intend to analyzing the human activity as a affective-cognitive unit and the imbricated relations that are waged, within it, among affections, emotions, feelings and thoughts. Once presented the interrelations between emotions and cognitions this exhibition argues that the concepts are necessary as a minimum unit of analysis both of thought and feelings.

  6. Genes Important for Catalase Activity in Enterococcus faecalis

    Science.gov (United States)

    Baureder, Michael; Hederstedt, Lars

    2012-01-01

    Little in general is known about how heme proteins are assembled from their constituents in cells. The Gram-positive bacterium Enterococcus faecalis cannot synthesize heme and does not depend on it for growth. However, when supplied with heme in the growth medium the cells can synthesize two heme proteins; catalase (KatA) and cytochrome bd (CydAB). To identify novel factors important for catalase biogenesis libraries of E. faecalis gene insertion mutants were generated using two different types of transposons. The libraries of mutants were screened for clones deficient in catalase activity using a colony zymogram staining procedure. Analysis of obtained clones identified, in addition to katA (encoding the catalase enzyme protein), nine genes distributed over five different chromosomal loci. No factors with a dedicated essential role in catalase biogenesis or heme trafficking were revealed, but the results indicate the RNA degradosome (srmB, rnjA), an ABC-type oligopeptide transporter (oppBC), a two-component signal transducer (etaR), and NADH peroxidase (npr) as being important for expression of catalase activity in E. faecalis. It is demonstrated that catalase biogenesis in E. faecalis is independent of the CydABCD proteins and that a conserved proline residue in the N-terminal region of KatA is important for catalase assembly. PMID:22590595

  7. Denitrification nitrogen gas formation and gene expression in alpine grassland soil as affected by climate change conditions

    Science.gov (United States)

    Chen, Zhe; Wang, Changhui; Gschwendtner, Silvia; Schloter, Michael; Butterbach-Bahl, Klaus; Dannenmann, Michael

    2013-04-01

    Due to methodological problems, reliable data on soil dinitrogen (N2) emission by denitrification are extremely scarce, and the impacts of climate change on nitrogen (N) gas formation by denitrification and N gas product ratios as well as the underlying microbial drivers remain unclear. We combined the helium-gas-flow-soil-core technique for simultaneously quantification of nitrous oxide (N2O) and N2 emission with the reverse transcript qPCR technology. Our goals were to characterize denitrification dynamics and N gas product ratios in alpine grassland soil as affected by climate change conditions and to evaluate relationships between denitrification gene expression and N gas emission. We used soils from the pre-alpine grassland Terrestrial Environmental Observatory (TERENO), exposed to ambient temperature and precipitation (control treatment), or three years of simulated climate change conditions (increased temperature, reduction of summer precipitation and reduced snow cover). Soils were amended with glucose and nitrate and incubated subsequently at 1) 5°C and 20% oxygen; 2) 5°C and 0% oxygen; 3) 20°C and 0% oxygen until stabilization of N gas emissions in each incubation step. After switching incubation conditions to 0% oxygen and 20°C, N2O emission peaked immediately and declined again, followed by a delayed peak in N2 emission. The dynamics of cnorB gene expression, encoding the reduction of nitric oxide (NO) to N2O, followed the N2O emission pattern, while nosZ gene expression, encoding N2O reduction to N2 followed the course of N2 emission. The mean N2O:N2 ratios were 1.31 + 0.10 and 1.56 + 0.16 for control and climate change treatment respectively, but the denitrification potential was overall lower in climate change treatment. Hence, simulated climate change promoted N2O but lessened N2 emission. This stimulation of N2O was in accordance with increased cnorB gene expression in soil of the climate change treatment. N mass balance calculations revealed

  8. Conditional gene expression in the mouse using a Sleeping Beauty gene-trap transposon

    Directory of Open Access Journals (Sweden)

    Hackett Perry B

    2006-06-01

    Full Text Available Abstract Background Insertional mutagenesis techniques with transposable elements have been popular among geneticists studying model organisms from E. coli to Drosophila and, more recently, the mouse. One such element is the Sleeping Beauty (SB transposon that has been shown in several studies to be an effective insertional mutagen in the mouse germline. SB transposon vector studies have employed different functional elements and reporter molecules to disrupt and report the expression of endogenous mouse genes. We sought to generate a transposon system that would be capable of reporting the expression pattern of a mouse gene while allowing for conditional expression of a gene of interest in a tissue- or temporal-specific pattern. Results Here we report the systematic development and testing of a transposon-based gene-trap system incorporating the doxycycline-repressible Tet-Off (tTA system that is capable of activating the expression of genes under control of a Tet response element (TRE promoter. We demonstrate that the gene trap system is fully functional in vitro by introducing the "gene-trap tTA" vector into human cells by transposition and identifying clones that activate expression of a TRE-luciferase transgene in a doxycycline-dependent manner. In transgenic mice, we mobilize gene-trap tTA vectors, discover parameters that can affect germline mobilization rates, and identify candidate gene insertions to demonstrate the in vivo functionality of the vector system. We further demonstrate that the gene-trap can act as a reporter of endogenous gene expression and it can be coupled with bioluminescent imaging to identify genes with tissue-specific expression patterns. Conclusion Akin to the GAL4/UAS system used in the fly, we have made progress developing a tool for mutating and revealing the expression of mouse genes by generating the tTA transactivator in the presence of a secondary TRE-regulated reporter molecule. A vector like the gene

  9. Cell culture density affects the proliferation activity of human adipose tissue stem cells.

    Science.gov (United States)

    Kim, Dae Seong; Lee, Myoung Woo; Ko, Young Jong; Chun, Yong Hoon; Kim, Hyung Joon; Sung, Ki Woong; Koo, Hong Hoe; Yoo, Keon Hee

    2016-01-01

    In this study, we investigated the effect of cell density on the proliferation activity of human mesenchymal stem cells (MSCs) derived from adipose tissue (AT-MSCs) over time in culture. Passage #4 (P4) and #12 (P12) AT-MSCs from two donors were plated at a density of 200 (culture condition 1, CC1) or 5000 (culture condition 2, CC2) cells cm(-2) . After 7 days of incubation, P4 and P12 AT-MSCs cultured in CC1 were thin and spindle-shaped, whereas those cultured in CC2 had extensive cell-to-cell contacts and an expanded cell volume. In addition, P4 and P12 AT-MSCs in CC1 divided more than three times, while those in CC2 divided less than once on average. Flow cytometric analysis using 5(6)-carboxyfluorescein diacetate N-succinimidyl ester dye showed that the fluorescence intensity of AT-MSCs was lower in CC1 than in CC2. Furthermore, expression of proliferation-associated genes, such as CDC45L, CDC20A and KIF20A, in P4 AT-MSCs was higher in CC1 than in CC2, and this difference was also observed in P12 AT-MSCs. These data demonstrated that cell culture density affects the proliferation activity of MSCs, suggesting that it is feasible to design a strategy to prepare suitable MSCs using specific culture conditions. Copyright © 2016 John Wiley & Sons, Ltd.

  10. On the limits of Köhler activation theory: how do collision and coalescence affect the activation of aerosols?

    Science.gov (United States)

    Hoffmann, Fabian

    2017-07-01

    Activation is necessary to form a cloud droplet from an aerosol, and it is widely accepted that it occurs as soon as a wetted aerosol grows beyond its critical radius. Traditional Köhler theory assumes that this growth is driven by the diffusion of water vapor. However, if the wetted aerosols are large enough, the coalescence of two or more particles is an additional process for accumulating sufficient water for activation. This transition from diffusional to collectional growth marks the limit of traditional Köhler theory and it is studied using a Lagrangian cloud model in which aerosols and cloud droplets are represented by individually simulated particles within large-eddy simulations of shallow cumuli. It is shown that the activation of aerosols larger than 0. 1 µm in dry radius can be affected by collision and coalescence, and its contribution increases with a power-law relation toward larger radii and becomes the only process for the activation of aerosols larger than 0. 4-0. 8 µm depending on aerosol concentration. Due to the natural scarcity of the affected aerosols, the amount of aerosols that are activated by collection is small, with a maximum of 1 in 10 000 activations. The fraction increases as the aerosol concentration increases, but decreases again as the number of aerosols becomes too high and the particles too small to cause collections. Moreover, activation by collection is found to affect primarily aerosols that have been entrained above the cloud base.

  11. The role of sense of coherence and physical activity in positive and negative affect of Turkish adolescents.

    Science.gov (United States)

    Oztekin, Ceyda; Tezer, Esin

    2009-01-01

    This study investigated the role of sense of coherence and total physical activity in positive and negative affect. Participants were 376 (169 female, 206 male, and 1 missing value) student volunteers from different faculties of Middle East Technical University. Three questionnaires: Sense of Coherence Scale (SOC), Physical Activity Assessment Questionnaire (PAAQ), and Positive and Negative Affect Schedule (PANAS) were administered to the students together with the demographic information sheet. Two separate stepwise multiple linear regression analyses were conducted to examine the predictive power of sense of coherence and total physical activity on positive and negative affect scores. Results revealed that both sense of coherence and total physical activity predicted the positive affect whereas only the sense of coherence predicted the negative affect on university students. Findings are discussed in light of sense of coherence, physical activity, and positive and negative affect literature.

  12. Methanobactin from Methylocystis sp. strain SB2 affects gene expression and methane monooxygenase activity in Methylosinus trichosporium OB3b.

    Science.gov (United States)

    Farhan Ul-Haque, Muhammad; Kalidass, Bhagyalakshmi; Vorobev, Alexey; Baral, Bipin S; DiSpirito, Alan A; Semrau, Jeremy D

    2015-04-01

    Methanotrophs can express a cytoplasmic (soluble) methane monooxygenase (sMMO) or membrane-bound (particulate) methane monooxygenase (pMMO). Expression of these MMOs is strongly regulated by the availability of copper. Many methanotrophs have been found to synthesize a novel compound, methanobactin (Mb), that is responsible for the uptake of copper, and methanobactin produced by Methylosinus trichosporium OB3b plays a key role in controlling expression of MMO genes in this strain. As all known forms of methanobactin are structurally similar, it was hypothesized that methanobactin from one methanotroph may alter gene expression in another. When Methylosinus trichosporium OB3b was grown in the presence of 1 μM CuCl2, expression of mmoX, encoding a subunit of the hydroxylase component of sMMO, was very low. mmoX expression increased, however, when methanobactin from Methylocystis sp. strain SB2 (SB2-Mb) was added, as did whole-cell sMMO activity, but there was no significant change in the amount of copper associated with M. trichosporium OB3b. If M. trichosporium OB3b was grown in the absence of CuCl2, the mmoX expression level was high but decreased by several orders of magnitude if copper prebound to SB2-Mb (Cu-SB2-Mb) was added, and biomass-associated copper was increased. Exposure of Methylosinus trichosporium OB3b to SB2-Mb had no effect on expression of mbnA, encoding the polypeptide precursor of methanobactin in either the presence or absence of CuCl2. mbnA expression, however, was reduced when Cu-SB2-Mb was added in both the absence and presence of CuCl2. These data suggest that methanobactin acts as a general signaling molecule in methanotrophs and that methanobactin "piracy" may be commonplace. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Induction of innate immune genes in brain create the neurobiology of addiction.

    Science.gov (United States)

    Crews, F T; Zou, Jian; Qin, Liya

    2011-06-01

    Addiction occurs through repeated abuse of drugs that progressively reduce behavioral control and cognitive flexibility while increasing limbic negative emotion. Recent discoveries indicate neuroimmune signaling underlies addiction and co-morbid depression. Low threshold microglia undergo progressive stages of innate immune activation involving astrocytes and neurons with repeated drug abuse, stress, and/or cell damage signals. Increased brain NF-κB transcription of proinflammatory chemokines, cytokines, oxidases, proteases, TLR and other genes create loops amplifying NF-κB transcription and innate immune target gene expression. Human post-mortem alcoholic brain has increased NF-κB and NF-κB target gene message, increased microglial markers and chemokine-MCP1. Polymorphisms of human NF-κB1 and other innate immune genes contribute to genetic risk for alcoholism. Animal transgenic and genetic studies link NF-κB innate immune gene expression to alcohol drinking. Human drug addicts show deficits in behavioral flexibility modeled pre-clinically using reversal learning. Binge alcohol, chronic cocaine, and lesions link addiction neurobiology to frontal cortex, neuroimmune signaling and loss of behavioral flexibility. Addiction also involves increasing limbic negative emotion and depression-like behavior that is reflected in hippocampal neurogenesis. Innate immune activation parallels loss of neurogenesis and increased depression-like behavior. Protection against loss of neurogenesis and negative affect by anti-oxidant, anti-inflammatory, anti-depressant, opiate antagonist and abstinence from ethanol dependence link limbic affect to changes in innate immune signaling. The hypothesis that innate immune gene induction underlies addiction and affective disorders creates new targets for therapy. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. CHD1 regulates cell fate determination by activation of differentiation-induced genes.

    Science.gov (United States)

    Baumgart, Simon J; Najafova, Zeynab; Hossan, Tareq; Xie, Wanhua; Nagarajan, Sankari; Kari, Vijayalakshmi; Ditzel, Nicholas; Kassem, Moustapha; Johnsen, Steven A

    2017-07-27

    The coordinated temporal and spatial activation of gene expression is essential for proper stem cell differentiation. The Chromodomain Helicase DNA-binding protein 1 (CHD1) is a chromatin remodeler closely associated with transcription and nucleosome turnover downstream of the transcriptional start site (TSS). In this study, we show that CHD1 is required for the induction of osteoblast-specific gene expression, extracellular-matrix mineralization and ectopic bone formation in vivo. Genome-wide occupancy analyses revealed increased CHD1 occupancy around the TSS of differentiation-activated genes. Furthermore, we observed that CHD1-dependent genes are mainly induced during osteoblast differentiation and are characterized by higher levels of CHD1 occupancy around the TSS. Interestingly, CHD1 depletion resulted in increased pausing of RNA Polymerase II (RNAPII) and decreased H2A.Z occupancy close to the TSS, but not at enhancer regions. These findings reveal a novel role for CHD1 during osteoblast differentiation and provide further insights into the intricacies of epigenetic regulatory mechanisms controlling cell fate determination. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Circadian clock gene aryl hydrocarbon receptor nuclear translocator-like polymorphisms are associated with seasonal affective disorder: An Indian family study.

    Science.gov (United States)

    Rajendran, Bhagya; Janakarajan, Veeramahali Natarajan

    2016-01-01

    Polymorphisms in aryl hydrocarbon receptor nuclear translocator-like (ARNTL) gene, the key component of circadian clock manifests circadian rhythm abnormalities. As seasonal affective disorder (SAD) is associated with disrupted circadian rhythms, the main objective of this study was to screen an Indian family with SAD for ARNTL gene polymorphisms. In this study, 30 members of close-knit family with SAD, 30 age- and sex-matched controls of the same caste with no prior history of psychiatric illness and 30 age- and sex-matched controls belonging to 17 different castes with no prior history of psychiatric illness were genotyped for five different single nucleotide polymorphisms (SNPs) in ARNTL gene by TaqMan allele-specific genotyping assay. Statistical significance was assessed by more powerful quasi-likelihood score test-XM. Most of the family members carried the risk alleles and we observed a highly significant SNP rs2279287 (A/G) in ARNTL gene with an allelic frequency of 0.75. Polymorphisms in ARNTL gene disrupt circadian rhythms causing SAD and genetic predisposition becomes more deleterious in the presence of adverse environment.

  16. A Novel Prokaryotic Green Fluorescent Protein Expression System for Testing Gene Editing Tools Activity Like Zinc Finger Nuclease.

    Science.gov (United States)

    Sabzehei, Faezeh; Kouhpayeh, Shirin; Dastjerdeh, Mansoureh Shahbazi; Khanahmad, Hossein; Salehi, Rasoul; Naderi, Shamsi; Taghizadeh, Razieh; Rabiei, Parisa; Hejazi, Zahra; Shariati, Laleh

    2017-01-01

    Gene editing technology has created a revolution in the field of genome editing. The three of the most famous tools in gene editing technology are zinc finger nucleases (ZFNs), transcription activator-like effector nucleases, clustered regularly interspaced short palindromic repeats (CRISPR), and CRISPR-associated systems. As their predictable nature, it is necessary to assess their efficiency. There are some methods for this purpose, but most of them are time labor and complicated. Here, we introduce a new prokaryotic reporter system, which makes it possible to evaluate the efficiency of gene editing tools faster, cheaper, and simpler than previous methods. At first, the target sites of a custom ZFN, which is designed against a segment of ampicillin resistance gene, were cloned on both sides of green fluorescent protein (GFP) gene to construct pPRO-GFP. Then pPRO-GFP was transformed into Escherichia coli TOP10F' that contains pZFN (contains expression cassette of a ZFN against ampicillin resistant gene), or p15A-KanaR as a negative control. The transformed bacteria were cultured on three separate media that contained ampicillin, kanamycin, and ampicillin + kanamycin; then the resulted colonies were assessed by flow cytometry. The results of flow cytometry showed a significant difference between the case (bacteria contain pZFN) and control (bacteria contain p15A, KanaR) in MFI (Mean Fluorescence Intensity) ( P < 0.0001). According to ZFN efficiency, it can bind and cut the target sites, the bilateral cutting can affect the intensity of GFP fluorescence. Our flow cytometry results showed that this ZFN could reduce the intensity of GFP color and colony count of bacteria in media containing amp + kana versus control sample.

  17. Influence of the gene xthA in the activation of SOS response of Escherichia coli

    International Nuclear Information System (INIS)

    Dominguez M, V.

    2013-01-01

    The SOS response is one of the strategies that has Escherichia coli to counteract the lesions in the genetic material. The response is integrated for approximately 60 genes that when are activated they provide to the cell a bigger opportunity to survive. For the activation of this system is necessary that DNA regions of simple chain are generated, in such a way that most of the lesions should be processed, to be able to induce this answer. Some genes that intervene in this procedure, as recO, recB and recJ are recognized since when being exposed to the radiation, their activity SOS is smaller than in a wild strain. In previous works has been studied that to inactivate the genes that are involves in the lesions processing to generate DNA of simple chain, the SOS induction level diminishes with regard to a wild strain, but that when eliminating the genes that are involves directly in the repair, the SOS response increases. In this work a strain with defects in the gene xthA was built, which encodes for an endonuclease AP that participates in the repair mechanism by base excision and was evaluated their sensibility as the activity of the SOS response when exposing it to UV light and gamma radiation. The results showed that the lethality of the strain with the defect is very similar to the wild strain; while the activation level of the SOS response is bigger in comparison with the wild strain when being exposed to UV light; suggesting the existence of an enzyme that recognizes the lesions that produces this radiation, however, is not this the main repair channel, since the survival is similar to that of the wild strain. On the contrary, the results obtained with gamma radiation showed that the lethality diminishes in comparison to that of the wild strain, like the SOS activity; due surely to that the gene product intervenes in the repair for base excision, participating in the formation of the previous substrate to the activation of the SOS response. (Author)

  18. World’s First Clinical Case of Gene-Activated Bone Substitute Application

    Directory of Open Access Journals (Sweden)

    I. Y. Bozo

    2016-01-01

    Full Text Available Treatment of patients with large bone defects is a complex clinical problem. We have initiated the first clinical study of a gene-activated bone substitute composed of the collagen-hydroxyapatite scaffold and plasmid DNA encoding vascular endothelial growth factor. The first patient with two nonunions of previously reconstructed mandible was enrolled into the study. Scar tissues were excised; bone defects (5–14 mm between the mandibular fragments and nonvascularized rib-bone autograft were filled in with the gene-activated bone substitute. No adverse events were observed during 12 months of follow-up. In 3 months, the average density of newly formed tissues within the implantation zone was 402.21 ± 84.40 and 447.68 ± 106.75 HU in the frontal and distal regions, respectively, which correlated with the density of spongy bone. Complete distal bone defect repair with vestibular and lingual cortical plates formation was observed in 6 and 12 months after surgery; thereby the posterior nonunion was successfully eliminated. However, there was partial resorption of the proximal edge of the autograft entailed to relapse of the anterior nonunion. Thus, the first clinical data on the safety and efficacy of the gene-activated bone substitute were obtained. Given a high complexity of the clinical situation the treatment, results might be considered as promising. NCT02293031.

  19. Diaphanous gene mutation affects spiral cleavage and chirality in snails

    Science.gov (United States)

    Kuroda, Reiko; Fujikura, Kohei; Abe, Masanori; Hosoiri, Yuji; Asakawa, Shuichi; Shimizu, Miho; Umeda, Shin; Ichikawa, Futaba; Takahashi, Hiromi

    2016-01-01

    L-R (left and right) symmetry breaking during embryogenesis and the establishment of asymmetric body plan are key issues in developmental biology, but the onset including the handedness-determining gene locus still remains unknown. Using pure dextral (DD) and sinistral (dd) strains of the pond snail Lymnaea stagnalis as well as its F2 through to F10 backcrossed lines, the single handedness-determining-gene locus was mapped by genetic linkage analysis, BAC cloning and chromosome walking. We have identified the actin-related diaphanous gene Lsdia1 as the strongest candidate. Although the cDNA and derived amino acid sequences of the tandemly duplicated Lsdia1 and Lsdia2 genes are very similar, we could discriminate the two genes/proteins in our molecular biology experiments. The Lsdia1 gene of the sinistral strain carries a frameshift mutation that abrogates full-length LsDia1 protein expression. In the dextral strain, it is already translated prior to oviposition. Expression of Lsdia1 (only in the dextral strain) and Lsdia2 (in both chirality) decreases after the 1-cell stage, with no asymmetric localization throughout. The evolutionary relationships among body handedness, SD/SI (spiral deformation/spindle inclination) at the third cleavage, and expression of diaphanous proteins are discussed in comparison with three other pond snails (L. peregra, Physa acuta and Indoplanorbis exustus). PMID:27708420

  20. The TLR4 D299G and T399I SNPs are constitutively active to up-regulate expression of Trif-dependent genes.

    Directory of Open Access Journals (Sweden)

    Georgina L Hold

    Full Text Available Dysregulated Toll-Like Receptor (TLR signalling and genetic polymorphisms in these proteins are linked to many human diseases. We investigated TLR4 functional variants D299G and T399I to assess the impact on LPS-induced responsiveness in comparison to wild-type TLR4. The mechanism by which this occurs in unclear as these SNPs do not lie within the lipid A binding domain or dimerisation sites of the LPS-TLR4/MD2 receptor complexes. Transfection of TLR4D299G, TLR4T399I or TLR4D299G. T399I into HEK cells resulted in constitutive activation of an NF-κB reporter gene and a blunting of the LPS-induced reporter activation compared to WT-TLR4. Unstimulated human monocyte/macrophages, from patients with the D299G and T399I SNPs demonstrated a downregulation of many genes, particularly Tram/Trif signalling pathway constitutents compared to the TLR4 wild-type subjects supporting the concept of basal receptor activity. Monocyte/macrophages from carriers of the TLR4 D299G and T399I polymorphisms stimulated with LPS showed >6 fold lower levels of NF-κB and ∼12 fold higher IFN-β gene expression levels compared to wild-type subjects (P<0.05; MWU test and dramatically altered resultant cytokine profiles. We conclude that these TLR4 SNPs affect constitutive receptor activity which impacts on the hosts ability to respond to LPS challenge leading to a dysregulated sub-optimal immune response to infection.

  1. ERK pathway activation bidirectionally affects visual recognition memory and synaptic plasticity in the perirhinal cortex

    Directory of Open Access Journals (Sweden)

    Davide eSilingardi

    2011-12-01

    Full Text Available ERK 1,2 pathway mediates experience-dependent gene transcription in neurons and several studies have identified its pivotal role in experience-dependent synaptic plasticity and in forms of long term memory involving hippocampus, amygdala or striatum. The perirhinal cortex (PRHC plays an essential role in familiarity-based object recognition memory. It is still unknown whether ERK activation in PRHC is necessary for recognition memory consolidation. Most important, it is unknown whether by modulating the gain of the ERK pathway it is possible to bidirectionally affect visual recognition memory and PRHC synaptic plasticity.We have first pharmacologically blocked ERK activation in the PRHC of adult mice and found that this was sufficient to impair long term recognition memory in a familiarity-based task, the Object Recognition Task (ORT. We have then tested performance in the ORT in Ras-GRF1 knock-out (KO mice, which exhibit a reduced activation of ERK by neuronal activity, and in ERK1 KO mice, which have an increased activation of ERK2 and exhibit enhanced striatal plasticity and striatal mediated memory. We found that Ras-GRF1 KO mice have normal short-term memory but display a long term memory deficit; memory reconsolidation is also impaired. On the contrary, ERK1 KO mice exhibit a better performance than WT mice at 72 hour retention interval, suggesting a longer lasting recognition memory. In parallel with behavioural data, LTD was strongly reduced and LTP was significantly smaller in PRHC slices from Ras-GRF1 KO than in WT mice while enhanced LTP and LTD were found in PRHC slices from ERK1 KO mice.

  2. Situational Motivation and Perceived Intensity: Their Interaction in Predicting Changes in Positive Affect from Physical Activity

    Directory of Open Access Journals (Sweden)

    Eva Guérin

    2012-01-01

    Full Text Available There is evidence that affective experiences surrounding physical activity can contribute to the proper self-regulation of an active lifestyle. Motivation toward physical activity, as portrayed by self-determination theory, has been linked to positive affect, as has the intensity of physical activity, especially of a preferred nature. The purpose of this experimental study was to examine the interaction between situational motivation and intensity [i.e., ratings of perceived exertion (RPE] in predicting changes in positive affect following an acute bout of preferred physical activity, namely, running. Fourty-one female runners engaged in a 30-minute self-paced treadmill run in a laboratory context. Situational motivation for running, pre- and post-running positive affect, and RPE were assessed via validated self-report questionnaires. Hierarchical regression analyses revealed a significant interaction effect between RPE and introjection (P<.05 but not between RPE and identified regulation or intrinsic motivation. At low levels of introjection, the influence of RPE on the change in positive affect was considerable, with higher RPE ratings being associated with greater increases in positive affect. The implications of the findings in light of SDT principles as well as the potential contingencies between the regulations and RPE in predicting positive affect among women are discussed.

  3. Overexpression of an Arabidopsis heterogeneous nuclear ribonucleoprotein gene, AtRNP1, affects plant growth and reduces plant tolerance to drought and salt stresses

    International Nuclear Information System (INIS)

    Wang, Zhenyu; Zhao, Xiuyang; Wang, Bing; Liu, Erlong; Chen, Ni; Zhang, Wei; Liu, Heng

    2016-01-01

    Heterogeneous nuclear ribonucleoproteins (hnRNPs) participate in diverse regulations of plant growth and environmental stress responses. In this work, an Arabidopsis hnRNP of unknown function, AtRNP1, was investigated. We found that AtRNP1 gene is highly expressed in rosette and cauline leaves, and slightly induced under drought, salt, osmotic and ABA stresses. AtRNP1 protein is localized to both the nucleus and cytoplasm. We performed homologous overexpression of AtRNP1 and found that the transgenic plants showed shortened root length and plant height, and accelerated flowering. In addition, the transgenic plants also showed reduced tolerance to drought, salt, osmotic and ABA stresses. Further studies revealed that under both normal and stress conditions, the proline contents in the transgenic plants are markedly decreased, associated with reduced expression levels of a proline synthase gene and several stress-responsive genes. These results suggested that the overexpression of AtRNP1 negatively affects plant growth and abiotic stress tolerance. - Highlights: • AtRNP1 is a widely expressed gene and its expression is slightly induced under abiotic stresses. • AtRNP1 protein is localized to both the nucleus and cytoplasm. • Overexpression of AtRNP1 affects plant growth. • Overexpression of AtRNP1 reduces plant tolerance to drought and salt stresses. • AtRNP1 overexpression plants show decreased proline accumulation and stress-responsive gene expressions.

  4. Overexpression of an Arabidopsis heterogeneous nuclear ribonucleoprotein gene, AtRNP1, affects plant growth and reduces plant tolerance to drought and salt stresses

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhenyu, E-mail: wzy72609@163.com [Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030 (China); Zhao, Xiuyang, E-mail: xiuzh@psb.vib-ugent.be [Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030 (China); Wang, Bing, E-mail: wangbing@ibcas.ac.cn [Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030 (China); Liu, Erlong, E-mail: liuel14@lzu.edu.cn [Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030 (China); Chen, Ni, E-mail: 63710156@qq.com [Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030 (China); Zhang, Wei, E-mail: wzhang1216@yahoo.com [Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444 (China); Liu, Heng, E-mail: hengliu@lzu.edu.cn [Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030 (China)

    2016-04-01

    Heterogeneous nuclear ribonucleoproteins (hnRNPs) participate in diverse regulations of plant growth and environmental stress responses. In this work, an Arabidopsis hnRNP of unknown function, AtRNP1, was investigated. We found that AtRNP1 gene is highly expressed in rosette and cauline leaves, and slightly induced under drought, salt, osmotic and ABA stresses. AtRNP1 protein is localized to both the nucleus and cytoplasm. We performed homologous overexpression of AtRNP1 and found that the transgenic plants showed shortened root length and plant height, and accelerated flowering. In addition, the transgenic plants also showed reduced tolerance to drought, salt, osmotic and ABA stresses. Further studies revealed that under both normal and stress conditions, the proline contents in the transgenic plants are markedly decreased, associated with reduced expression levels of a proline synthase gene and several stress-responsive genes. These results suggested that the overexpression of AtRNP1 negatively affects plant growth and abiotic stress tolerance. - Highlights: • AtRNP1 is a widely expressed gene and its expression is slightly induced under abiotic stresses. • AtRNP1 protein is localized to both the nucleus and cytoplasm. • Overexpression of AtRNP1 affects plant growth. • Overexpression of AtRNP1 reduces plant tolerance to drought and salt stresses. • AtRNP1 overexpression plants show decreased proline accumulation and stress-responsive gene expressions.

  5. Olanzapine affects locomotor activity and meal size in male rats

    NARCIS (Netherlands)

    van der Zwaal, Esther M.; Luijendijk, Mieneke C. M.; Evers, Simon S.; la Fleur, Susanne E.; Adan, Roger A. H.

    2010-01-01

    Olanzapine is an antipsychotic drug that frequently induces weight gain accompanied by increased fat deposition as a side effect. To investigate how olanzapine affects different aspects of energy balance, we used male rats to determine effects on meal patterns, food preference, locomotor activity

  6. The importance of physical activity and sleep for affect on stressful days: Two intensive longitudinal studies.

    Science.gov (United States)

    Flueckiger, Lavinia; Lieb, Roselind; Meyer, Andrea H; Witthauer, Cornelia; Mata, Jutta

    2016-06-01

    We investigated the potential stress-buffering effect of 3 health behaviors-physical activity, sleep quality, and snacking-on affect in the context of everyday life in young adults. In 2 intensive longitudinal studies with up to 65 assessment days over an entire academic year, students (Study 1, N = 292; Study 2, N = 304) reported stress intensity, sleep quality, physical activity, snacking, and positive and negative affect. Data were analyzed using multilevel regression analyses. Stress and positive affect were negatively associated; stress and negative affect were positively associated. The more physically active than usual a person was on a given day, the weaker the association between stress and positive affect (Study 1) and negative affect (Studies 1 and 2). The better than usual a person's sleep quality had been during the previous night, the weaker the association between stress and positive affect (Studies 1 and 2) and negative affect (Study 2). The association between daily stress and positive or negative affect did not differ as a function of daily snacking (Studies 1 and 2). On stressful days, increasing physical activity or ensuring high sleep quality may buffer adverse effects of stress on affect in young adults. These findings suggest potential targets for health-promotion and stress-prevention programs, which could help reduce the negative impact of stress in young adults. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  7. A mutation in the tuft mouse disrupts TET1 activity and alters the expression of genes that are crucial for neural tube closure

    Directory of Open Access Journals (Sweden)

    Keith S. K. Fong

    2016-05-01

    Full Text Available Genetic variations affecting neural tube closure along the head result in malformations of the face and brain. Neural tube defects (NTDs are among the most common birth defects in humans. We previously reported a mouse mutant called tuft that arose spontaneously in our wild-type 3H1 colony. Adult tuft mice present midline craniofacial malformations with or without an anterior cephalocele. In addition, affected embryos presented neural tube closure defects resulting in insufficient closure of the anterior neuropore or exencephaly. Here, through whole-genome sequencing, we identified a nonsense mutation in the Tet1 gene, which encodes a methylcytosine dioxygenase (TET1, co-segregating with the tuft phenotype. This mutation resulted in premature termination that disrupts the catalytic domain that is involved in the demethylation of cytosine. We detected a significant loss of TET enzyme activity in the heads of tuft embryos that were homozygous for the mutation and had NTDs. RNA-Seq transcriptome analysis indicated that multiple gene pathways associated with neural tube closure were dysregulated in tuft embryo heads. Among them, the expressions of Cecr2, Epha7 and Grhl2 were significantly reduced in some embryos presenting neural tube closure defects, whereas one or more components of the non-canonical WNT signaling pathway mediating planar cell polarity and convergent extension were affected in others. We further show that the recombinant mutant TET1 protein was capable of entering the nucleus and affected the expression of endogenous Grhl2 in IMCD-3 (inner medullary collecting duct cells. These results indicate that TET1 is an epigenetic determinant for regulating genes that are crucial to closure of the anterior neural tube and its mutation has implications to craniofacial development, as presented by the tuft mouse.

  8. In vitro anti-plasmodial activity of Dicoma anomala subsp. gerrardii (Asteraceae: identification of its main active constituent, structure-activity relationship studies and gene expression profiling

    Directory of Open Access Journals (Sweden)

    van Heerden Fanie R

    2011-10-01

    . Microarray data analysis identified 572 unique genes that were differentially expressed as a result of the treatment and gene ontology analysis identified various biological processes and molecular functions that were significantly affected. Comparison of the dehydrobrachylaenolide treatment transcriptional dataset with a published artesunate (also a sesquiterpene lactone dataset revealed little overlap. These results strengthen the notion that the isolated compound and the artemisinins have differentiated modes of action. Conclusions The novel mode of action of dehydrobrachylaenolide, detected during these studies, will play an ongoing role in advancing anti-plasmodial drug discovery efforts.

  9. C282Y-HFE gene variant affects cholesterol metabolism in human neuroblastoma cells.

    Science.gov (United States)

    Ali-Rahmani, Fatima; Huang, Michael A; Schengrund, C-L; Connor, James R; Lee, Sang Y

    2014-01-01

    Although disruptions in the maintenance of iron and cholesterol metabolism have been implicated in several cancers, the association between variants in the HFE gene that is associated with cellular iron uptake and cholesterol metabolism has not been studied. The C282Y-HFE variant is a risk factor for different cancers, is known to affect sphingolipid metabolism, and to result in increased cellular iron uptake. The effect of this variant on cholesterol metabolism and its possible relevance to cancer phenotype was investigated using wild type (WT) and C282Y-HFE transfected human neuroblastoma SH-SY5Y cells. Expression of C282Y-HFE in SH-SY5Y cells resulted in a significant increase in total cholesterol as well as increased transcription of a number of genes involved in its metabolism compared to cells expressing WT-HFE. The marked increase in expression of NPC1L1 relative to that of most other genes, was accompanied by a significant increase in expression of NPC1, a protein that functions in cholesterol uptake by cells. Because inhibitors of cholesterol metabolism have been proposed to be beneficial for treating certain cancers, their effect on the viability of C282Y-HFE neuroblastoma cells was ascertained. C282Y-HFE cells were significantly more sensitive than WT-HFE cells to U18666A, an inhibitor of desmosterol Δ24-reductase the enzyme catalyzing the last step in cholesterol biosynthesis. This was not seen for simvastatin, ezetimibe, or a sphingosine kinase inhibitor. These studies indicate that cancers presenting in carriers of the C282Y-HFE allele might be responsive to treatment designed to selectively reduce cholesterol content in their tumor cells.

  10. A novel missense mutation in the gene EDARADD associated with an unusual phenotype of hypohidrotic ectodermal dysplasia.

    Science.gov (United States)

    Wohlfart, Sigrun; Söder, Stephan; Smahi, Asma; Schneider, Holm

    2016-01-01

    Hypohidrotic ectodermal dysplasia (HED) is a rare disorder characterized by deficient development of structures derived from the ectoderm including hair, nails, eccrine glands, and teeth. HED forms that are caused by mutations in the genes EDA, EDAR, or EDARADD may show almost identical phenotypes, explained by a common signaling pathway. Proper interaction of the proteins encoded by these three genes is important for the activation of the NF-κB signaling pathway and subsequent transcription of the target genes. Mutations in the gene EDARADD are most rarely implicated in HED. Here we describe a novel missense mutation, c.367G>A (p.Asp123Asn), in this gene which did not appear to influence the interaction between EDAR and EDARADD proteins, but led to an impaired ability to activate NF-κB signaling. Female members of the affected family showed either unilateral or bilateral amazia. In addition, an affected girl developed bilateral ovarian teratomas, possibly associated with her genetic condition. © 2015 Wiley Periodicals, Inc.

  11. Immunohistochemical loss of 5-hydroxymethylcytosine expression in acute myeloid leukaemia: relationship to somatic gene mutations affecting epigenetic pathways.

    Science.gov (United States)

    Magotra, Minoti; Sakhdari, Ali; Lee, Paul J; Tomaszewicz, Keith; Dresser, Karen; Hutchinson, Lloyd M; Woda, Bruce A; Chen, Benjamin J

    2016-12-01

    Genes affecting epigenetic pathways are frequently mutated in myeloid malignancies, including acute myeloid leukaemia (AML). The genes encoding TET2, IDH1 and IDH2 are among the most commonly mutated genes, and cause defective conversion of 5-methylcytosine into 5-hydroxymethylcytosine (5hmC), impairing demethylation of DNA, and presumably serving as driver mutations in leukaemogenesis. The aim of this study was to correlate 5hmC immunohistochemical loss with the mutation status of genes involved in epigenetic pathways in AML. Immunohistochemical staining with an anti-5hmC antibody was performed on 41 decalcified, formalin-fixed paraffin-embedded (FFPE) bone marrow biopsies from patients with AML. Archived DNA was subjected to next-generation sequencing for analysis of a panel of genes, including TET2, IDH1, IDH2, WT1 and DNMT3A. TET2, IDH1, IDH2, WT1 and DNMT3A mutations were found in 46% (19/41) of the cases. Ten of 15 cases (67%) with TET2, IDH1, IDH2 or WT1 mutations showed deficient 5hmC staining, whereas nine of 26 cases (35%) without a mutation in these genes showed loss of 5hmC. It is of note that all four cases with TET2 mutations showed deficient 5hmC staining. Overall, somatic mutations in TET2, IDH1, IDH2, WT1 and DNMT3A were common in our cohort of AML cases. Immunohistochemical staining for 5hmC was lost in the majority of cases harbouring mutations in these genes, reflecting the proposed relationship between dysfunctional epigenetic pathways and leukaemogenesis. © 2016 John Wiley & Sons Ltd.

  12. Effects of gene orientation and use of multiple promoters on the expression of XYL1 and XYL2 in Saccharomyces cerevisiae

    Science.gov (United States)

    Ju Yun Bae; Jose Laplaza; Thomas W. Jeffries

    2008-01-01

    Orientation of adjacent genes has been reported to affect their expression in eukaryotic systems, and metabolic engineering also often makes repeated use of a few promoters to obtain high expression. To improve transcriptional control in heterologous expression, we examined how these factors affect gene expression and enzymatic activity in Saccharomyces cerevisiae. We...

  13. 78 FR 46418 - Proposed Information Collection (Obligation To Report Factors Affecting Entitlement) Activity...

    Science.gov (United States)

    2013-07-31

    ... (Obligation To Report Factors Affecting Entitlement) Activity; Comment Request AGENCY: Veterans Benefits... use of other forms of information technology. Title: Obligation to Report Factors Affecting... entitlement factors. Individual factors such as income, marital status, and the beneficiary's number of...

  14. Activation of vitellogenin II gene expression by steroid hormones in the old Japanese quail.

    Science.gov (United States)

    Gupta, S; Upadhyay, R; Kanungo, M S

    1998-11-01

    Alterations in the basal transcription rates of eukaryotic genes are believed to involve the binding of trans-acting factor(s) with specific DNA sequences in the promoter. We show here two interrelated events for the VTGII gene of the old, non-egg laying Japanese quail: alterations in the structure of the chromatin encompassing the gene, and binding of trans-acting factors to the promoter of the gene. Estradiol/progesterone alone or together cause alterations in the conformation of the chromatin of the promoter region of the gene. This may allow free access of nuclear protein(s) to the cis-acting elements, ERE, PRE and NF1, in the promoter of the gene and cause activation of transcription.

  15. [Placental gene activity of significant angiogenetic factors in the background of intrauterine growth restriction].

    Science.gov (United States)

    Kovács, Péter; Rab, Attila; Szentpéteri, Imre; Joó, József Gábor; Kornya, László

    2017-04-01

    Placental vascular endothelial growth factor A (VEGF-A) gene and endoglin gene are both overexpressed in placental samples obtained from pregnancies with intrauterine growth restriction compared to normal pregnancies. In the background of these changes a mechanism can be supposed, in which the increased endoglin activity in intrauterine growth restriction (IUGR) leads to impaired placental circulation through an antioangiogenetic effect. This results in the development of placental vascular dysfunction and chronic fetal hypoxia. It is chronic hypoxia that turns on VEGF-A as a compensatory mechanism to improve fetal vascular blood supply by promoting placental blood vessel formation. Although the maternal serum placental growth factor (PlGF) level is a potential predictor for both IUGR and praeeclampsia, placental PlGF gene activity may be less of an active in the regulation of placental circulation in IUGR pregnancies during the later stages of gestation. Orv. Hetil., 2017, 158(16), 612-617.

  16. Olanzapine affects locomotor activity and meal size in male rats

    NARCIS (Netherlands)

    van der Zwaal, Esther M.; Luijendijk, Mieneke C. M.; Evers, Simon S.; la Fleur, Susanne E.; Adan, Roger A. H.

    2010-01-01

    Olanzapine is an antipsychotic drug that frequently induces weight gain accompanied by increased fat deposition as a side effect To investigate how olanzapine affects different aspects of energy balance we used male rats to determine effects on meal patterns food preference locomotor activity and

  17. Route of administration of pentobarbital affects activity of liver glycogen phosphorylase

    DEFF Research Database (Denmark)

    Mikines, K J; Sonne, B; Richter, Erik

    1986-01-01

    pentobarbital (5 mg/100 g body wt) either intraperitoneally, as a slow intravenous infusion, or as an intravenous or intracardial bolus. Times from administration of barbiturate to sampling of the liver were 10 min, 10 min, 85 +/- 32 s (mean +/- SE), and 53 +/- 10 s, respectively. Phosphorylase a activity...... in % of total phosphorylase activity was 40 +/- 2, 56 +/- 4, 82 +/- 3, and 92 +/- 2, respectively, all significantly different. Thus the route of administration of pentobarbital affects the phosphorylase a activity and should be considered when evaluating this activity. This fact can only be partially explained...

  18. Evidence of major genes affecting stress response in rainbow trout using Bayesian methods of complex segregation analysis

    DEFF Research Database (Denmark)

    Vallejo, R L; Rexroad III, C E; Silverstein, J T

    2009-01-01

    As a first step toward the genetic mapping of QTL affecting stress response variation in rainbow trout, we performed complex segregation analyses (CSA) fitting mixed inheritance models of plasma cortisol by using Bayesian methods in large full-sib families of rainbow trout. To date, no studies have...... been conducted to determine the mode of inheritance of stress response as measured by plasma cortisol response when using a crowding stress paradigm and CSA in rainbow trout. The main objective of this study was to determine the mode of inheritance of plasma cortisol after a crowding stress....... The results from fitting mixed inheritance models with Bayesian CSA suggest that 1 or more major genes with dominant cortisol-decreasing alleles and small additive genetic effects of a large number of independent genes likely underlie the genetic variation of plasma cortisol in the rainbow trout families...

  19. Culture medium composition affects the gene expression pattern and in vitro development potential of bovine somatic cell nuclear transfer (SCNT) embryos.

    Science.gov (United States)

    Arias, María E; Ross, Pablo J; Felmer, Ricardo N

    2013-01-01

    Different culture systems have been studied that support development of somatic cell nuclear transfer (SCNT) embryos up to the blastocyst stage. However, the use of sequential and two-step culture systems has been less studied. The objective of the present study was to examine the developmental potential and quality of bovine SCNT embryos cultured in different two-step culture media based on KSOM, SOF and the macromolecules FBS and BSA (K-K/FBS, K-S/BSA and K-K/BSA, respectively). No differences were observed in the cleavage rate for any of the culture systems. However, there was a significant difference (Pculture system yielding a higher rate of blastocysts (28%) compared to other treatments (18 and 15%, for K-S/BSA and K-K/BSA, respectively). Although quality of embryos, as assessed by the total number of cells, was not different, the apoptosis index was significantly affected in the sequential culture system (K-S/BSA). Gene expression analysis showed alterations of DNMT1, IGF2, LIF, and PRDX6 genes in embryos cultured in K-S/FBS and of SOD2 in embryos cultured in K-K/BSA. In conclusion, we demonstrated that culture medium may affect not only the developmental potential of SCNT embryos but also, more importantly, the gene expression pattern and apoptotic index, presenting the possibility to manipulate the culture medium composition to modulate global gene expression and improve the overall efficiency of this technique.

  20. Icariin Is A PPARα Activator Inducing Lipid Metabolic Gene Expression in Mice

    Directory of Open Access Journals (Sweden)

    Yuan-Fu Lu

    2014-11-01

    Full Text Available Icariin is effective in the treatment of hyperlipidemia. To understand the effect of icariin on lipid metabolism, effects of icariin on PPARα and its target genes were investigated. Mice were treated orally with icariin at doses of 0, 100, 200, and 400 mg/kg, or clofibrate (500 mg/kg for five days. Liver total RNA was isolated and the expressions of PPARα and lipid metabolism genes were examined. PPARα and its marker genes Cyp4a10 and Cyp4a14 were induced 2-4 fold by icariin, and 4-8 fold by clofibrate. The fatty acid (FA binding and co-activator proteins Fabp1, Fabp4 and Acsl1 were increased 2-fold. The mRNAs of mitochondrial FA β-oxidation enzymes (Cpt1a, Acat1, Acad1 and Hmgcs2 were increased 2-3 fold. The mRNAs of proximal β-oxidation enzymes (Acox1, Ech1, and Ehhadh were also increased by icariin and clofibrate. The expression of mRNAs for sterol regulatory element-binding factor-1 (Srebf1 and FA synthetase (Fasn were unaltered by icariin. The lipid lysis genes Lipe and Pnpla2 were increased by icariin and clofibrate. These results indicate that icariin is a novel PPARα agonist, activates lipid metabolism gene expressions in liver, which could be a basis for its lipid-lowering effects and its beneficial effects against diabetes.

  1. Overexpression of KCNJ3 gene splice variants affects vital parameters of the malignant breast cancer cell line MCF-7 in an opposing manner.

    Science.gov (United States)

    Rezania, S; Kammerer, S; Li, C; Steinecker-Frohnwieser, B; Gorischek, A; DeVaney, T T J; Verheyen, S; Passegger, C A; Tabrizi-Wizsy, N Ghaffari; Hackl, H; Platzer, D; Zarnani, A H; Malle, E; Jahn, S W; Bauernhofer, T; Schreibmayer, W

    2016-08-12

    Overexpression the KCNJ3, a gene that encodes subunit 1 of G-protein activated inwardly rectifying K(+) channel (GIRK1) in the primary tumor has been found to be associated with reduced survival times and increased lymph node metastasis in breast cancer patients. In order to survey possible tumorigenic properties of GIRK1 overexpression, a range of malignant mammary epithelial cells, based on the MCF-7 cell line that permanently overexpress different splice variants of the KCNJ3 gene (GIRK1a, GIRK1c, GIRK1d and as a control, eYFP) were produced. Subsequently, selected cardinal neoplasia associated cellular parameters were assessed and compared. Adhesion to fibronectin coated surface as well as cell proliferation remained unaffected. Other vital parameters intimately linked to malignancy, i.e. wound healing, chemoinvasion, cellular velocities / motilities and angiogenesis were massively affected by GIRK1 overexpression. Overexpression of different GIRK1 splice variants exerted differential actions. While GIRK1a and GIRK1c overexpression reinforced the affected parameters towards malignancy, overexpression of GIRK1d resulted in the opposite. Single channel recording using the patch clamp technique revealed functional GIRK channels in the plasma membrane of MCF-7 cells albeit at very low frequency. We conclude that GIRK1d acts as a dominant negative constituent of functional GIRK complexes present in the plasma membrane of MCF-7 cells, while overexpression of GIRK1a and GIRK1c augmented their activity. The core component responsible for the cancerogenic action of GIRK1 is apparently presented by a segment comprising aminoacids 235-402, that is present exclusively in GIRK1a and GIRK1c, but not GIRK1d (positions according to GIRK1a primary structure). The current study provides insight into the cellular and molecular consequences of KCNJ3 overexpression in breast cancer cells and the mechanism upon clinical outcome in patients suffering from breast cancer.

  2. Overexpression of KCNJ3 gene splice variants affects vital parameters of the malignant breast cancer cell line MCF-7 in an opposing manner

    International Nuclear Information System (INIS)

    Rezania, S.; Kammerer, S.; Li, C.; Steinecker-Frohnwieser, B.; Gorischek, A.; DeVaney, T. T. J.; Verheyen, S.; Passegger, C. A.; Tabrizi-Wizsy, N. Ghaffari; Hackl, H.; Platzer, D.; Zarnani, A. H.; Malle, E.; Jahn, S. W.; Bauernhofer, T.; Schreibmayer, W.

    2016-01-01

    Overexpression the KCNJ3, a gene that encodes subunit 1 of G-protein activated inwardly rectifying K + channel (GIRK1) in the primary tumor has been found to be associated with reduced survival times and increased lymph node metastasis in breast cancer patients. In order to survey possible tumorigenic properties of GIRK1 overexpression, a range of malignant mammary epithelial cells, based on the MCF-7 cell line that permanently overexpress different splice variants of the KCNJ3 gene (GIRK1a, GIRK1c, GIRK1d and as a control, eYFP) were produced. Subsequently, selected cardinal neoplasia associated cellular parameters were assessed and compared. Adhesion to fibronectin coated surface as well as cell proliferation remained unaffected. Other vital parameters intimately linked to malignancy, i.e. wound healing, chemoinvasion, cellular velocities / motilities and angiogenesis were massively affected by GIRK1 overexpression. Overexpression of different GIRK1 splice variants exerted differential actions. While GIRK1a and GIRK1c overexpression reinforced the affected parameters towards malignancy, overexpression of GIRK1d resulted in the opposite. Single channel recording using the patch clamp technique revealed functional GIRK channels in the plasma membrane of MCF-7 cells albeit at very low frequency. We conclude that GIRK1d acts as a dominant negative constituent of functional GIRK complexes present in the plasma membrane of MCF-7 cells, while overexpression of GIRK1a and GIRK1c augmented their activity. The core component responsible for the cancerogenic action of GIRK1 is apparently presented by a segment comprising aminoacids 235–402, that is present exclusively in GIRK1a and GIRK1c, but not GIRK1d (positions according to GIRK1a primary structure). The current study provides insight into the cellular and molecular consequences of KCNJ3 overexpression in breast cancer cells and the mechanism upon clinical outcome in patients suffering from breast cancer. The online

  3. Transformation of Inhibitor of Meristem Activity (IMA Gene into Jatropha curcas L.

    Directory of Open Access Journals (Sweden)

    Asri Pirade Paserang

    2015-09-01

    Full Text Available Jatropha is one of the many biodiesel plants developed in tropical countries. Efforts to increase its productivity can be done using various methods of breeding. One of the breeding methods is the introduction of genes into the Jatropha plant. The aim of this study is to assess the success of genetic transformation using the Inhibitor of Meristem Activity (IMA gene in Jatropha curcas. The research procedures included inoculation of explants with Agrobacterium tumefaciens, callus induction, screening test of selection media, regeneration, and gene expression analysis using Polymerase Chain Reaction (PCR. IMA is one of the genes that controls flowering genes and ovule development. It was first isolated from tomato plants and has been successfully overexpressed in these plants using the Cauliflower Mosaic Virus (CaMV 35S promoter. In this experiment, plant transformation was performed on J. curcas as the target. Explant callus formation in both the control and treated samples was good, but shoot formation decreased dramatically in the treated explants. PCR analysis indicated that IMA genes can be inserted into J. curcas with the size of the IMA gene is 500 bp.

  4. Modulation of Colorectal Cancer Risk by Polymorphisms in 51Gln/His, 64Ile/Val, and 148Asp/Glu of APEX Gene; 23Gly/Ala of XPA Gene; and 689Ser/Arg of ERCC4 Gene

    Directory of Open Access Journals (Sweden)

    L. Dziki

    2017-01-01

    Full Text Available Polymorphisms in DNA repair genes may affect the activity of the BER (base excision repair and NER (nucleotide excision repair systems. Using DNA isolated from blood taken from patients (n=312 and a control group (n=320 with CRC, we have analyzed the polymorphisms of selected DNA repair genes and we have demonstrated that genotypes 51Gln/His and 148Asp/Glu of APEX gene and 23Gly/Ala of XPA gene may increase the risk of colorectal cancer. At the same time analyzing the gene-gene interactions, we suggest the thesis that the main factor to be considered when analyzing the impact of polymorphisms on the risk of malignant transformation should be intergenic interactions. Moreover, we are suggesting that some polymorphisms may have impact not only on the malignant transformation but also on the stage of the tumor.

  5. Resveratrol inhibits LXRα-dependent hepatic lipogenesis through novel antioxidant Sestrin2 gene induction

    Energy Technology Data Exchange (ETDEWEB)

    Jin, So Hee; Yang, Ji Hye; Shin, Bo Yeon; Seo, Kyuhwa; Shin, Sang Mi [College of Pharmacy, Chosun University, Gwangju 501-759 (Korea, Republic of); Cho, Il Je, E-mail: skek023@dhu.ac.kr [MRC-GHF, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbukdo 712-715 (Korea, Republic of); Ki, Sung Hwan, E-mail: shki@chosun.ac.kr [College of Pharmacy, Chosun University, Gwangju 501-759 (Korea, Republic of)

    2013-08-15

    Liver X receptor-α (LXRα), a member of the nuclear receptor superfamily of ligand-activated transcription factors, regulates de novo fatty acid synthesis that leads to stimulate hepatic steatosis. Although, resveratrol has beneficial effects on metabolic disease, it is not known whether resveratrol affects LXRα-dependent lipogenic gene expression. This study investigated the effect of resveratrol in LXRα-mediated lipogenesis and the underlying molecular mechanism. Resveratrol inhibited the ability of LXRα to activate sterol regulatory element binding protein-1c (SREBP-1c) and thereby inhibited target gene expression in hepatocytes. Moreover, resveratrol decreased LXRα–RXRα DNA binding activity and LXRE-luciferase transactivation. Resveratrol is known to activate Sirtuin 1 (Sirt1) and AMP-activated protein kinase (AMPK), although its precise mechanism of action remains controversial. We found that the ability of resveratrol to repress T0901317-induced SREBP-1c expression was not dependent on AMPK and Sirt1. It is well established that hepatic steatosis is associated with antioxidant and redox signaling. Our data showing that expression of Sestrin2 (Sesn2), which is a novel antioxidant gene, was significantly down-regulated in the livers of high-fat diet-fed mice. Moreover, resveratrol up-regulated Sesn2 expression, but not Sesn1 and Sesn3. Sesn2 overexpression repressed LXRα-activated SREBP-1c expression and LXRE-luciferase activity. Finally, Sesn2 knockdown using siRNA abolished the effect of resveratrol in LXRα-induced FAS luciferase gene transactivation. We conclude that resveratrol affects Sesn2 gene induction and contributes to the inhibition of LXRα-mediated hepatic lipogenesis. - Highlights: • We investigated the effect of resveratrol in LXRα-mediated lipogenesis. • Resveratrol attenuated the ability of the LXRα-mediated lipogenic gene expression. • Resveratrol’s effects on T090-induced lipogenesis is not dependent on Sirt1 or AMPK.

  6. Resveratrol inhibits LXRα-dependent hepatic lipogenesis through novel antioxidant Sestrin2 gene induction

    International Nuclear Information System (INIS)

    Jin, So Hee; Yang, Ji Hye; Shin, Bo Yeon; Seo, Kyuhwa; Shin, Sang Mi; Cho, Il Je; Ki, Sung Hwan

    2013-01-01

    Liver X receptor-α (LXRα), a member of the nuclear receptor superfamily of ligand-activated transcription factors, regulates de novo fatty acid synthesis that leads to stimulate hepatic steatosis. Although, resveratrol has beneficial effects on metabolic disease, it is not known whether resveratrol affects LXRα-dependent lipogenic gene expression. This study investigated the effect of resveratrol in LXRα-mediated lipogenesis and the underlying molecular mechanism. Resveratrol inhibited the ability of LXRα to activate sterol regulatory element binding protein-1c (SREBP-1c) and thereby inhibited target gene expression in hepatocytes. Moreover, resveratrol decreased LXRα–RXRα DNA binding activity and LXRE-luciferase transactivation. Resveratrol is known to activate Sirtuin 1 (Sirt1) and AMP-activated protein kinase (AMPK), although its precise mechanism of action remains controversial. We found that the ability of resveratrol to repress T0901317-induced SREBP-1c expression was not dependent on AMPK and Sirt1. It is well established that hepatic steatosis is associated with antioxidant and redox signaling. Our data showing that expression of Sestrin2 (Sesn2), which is a novel antioxidant gene, was significantly down-regulated in the livers of high-fat diet-fed mice. Moreover, resveratrol up-regulated Sesn2 expression, but not Sesn1 and Sesn3. Sesn2 overexpression repressed LXRα-activated SREBP-1c expression and LXRE-luciferase activity. Finally, Sesn2 knockdown using siRNA abolished the effect of resveratrol in LXRα-induced FAS luciferase gene transactivation. We conclude that resveratrol affects Sesn2 gene induction and contributes to the inhibition of LXRα-mediated hepatic lipogenesis. - Highlights: • We investigated the effect of resveratrol in LXRα-mediated lipogenesis. • Resveratrol attenuated the ability of the LXRα-mediated lipogenic gene expression. • Resveratrol’s effects on T090-induced lipogenesis is not dependent on Sirt1 or AMPK.

  7. Gene duplication and divergence affecting drug content in Cannabis sativa.

    Science.gov (United States)

    Weiblen, George D; Wenger, Jonathan P; Craft, Kathleen J; ElSohly, Mahmoud A; Mehmedic, Zlatko; Treiber, Erin L; Marks, M David

    2015-12-01

    Cannabis sativa is an economically important source of durable fibers, nutritious seeds, and psychoactive drugs but few economic plants are so poorly understood genetically. Marijuana and hemp were crossed to evaluate competing models of cannabinoid inheritance and to explain the predominance of tetrahydrocannabinolic acid (THCA) in marijuana compared with cannabidiolic acid (CBDA) in hemp. Individuals in the resulting F2 population were assessed for differential expression of cannabinoid synthase genes and were used in linkage mapping. Genetic markers associated with divergent cannabinoid phenotypes were identified. Although phenotypic segregation and a major quantitative trait locus (QTL) for the THCA/CBDA ratio were consistent with a simple model of codominant alleles at a single locus, the diversity of THCA and CBDA synthase sequences observed in the mapping population, the position of enzyme coding loci on the map, and patterns of expression suggest multiple linked loci. Phylogenetic analysis further suggests a history of duplication and divergence affecting drug content. Marijuana is distinguished from hemp by a nonfunctional CBDA synthase that appears to have been positively selected to enhance psychoactivity. An unlinked QTL for cannabinoid quantity may also have played a role in the recent escalation of drug potency. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  8. Mucosal CCR1 gene expression as a marker of molecular activity in Crohn's disease: preliminary data.

    Science.gov (United States)

    Dobre, Maria; Mănuc, Teodora Ecaterina; Milanesi, Elena; Pleşea, Iancu Emil; Ţieranu, Eugen Nicolae; Popa, Caterina; Mănuc, Mircea; Preda, Carmen Monica; Ţieranu, Ioana; Diculescu, Mihai Mircea; Ionescu, Elena Mirela; Becheanu, Gabriel

    2017-01-01

    A series of mechanisms of immune response, inflammation and apoptosis have been demonstrated to contribute to the appearance and evolution of Crohn's disease (CD) through the overexpression of several cytokines and chemokines in a susceptible host. The aim of this study was to identify the differences in gene expression profiles analyzing a panel of candidate genes in the mucosa from patients with active CD (CD-A), patients in remission (CD-R), and normal controls. Nine individuals were enrolled in the study: six CD patients (three with active lesions, three with mucosal healing) and three controls without inflammatory bowel disease (IBD) seen on endoscopy. All the individuals underwent mucosal biopsy during colonoscopy. Gene expression levels of 84 genes previously associated with CD were evaluated by polymerase chain reaction (PCR) array. Ten genes out of 84 were found significantly differentially expressed in CD-A (CCL11, CCL25, DEFA5, GCG, IL17A, LCN2, REG1A, STAT3, MUC1, CCR1) and eight genes in CD-R (CASP1, IL23A, STAT1, STAT3, TNF, CCR1, CCL5, and HSP90B1) when compared to controls. A quantitative gene expression analysis revealed that CCR1 gene was more expressed in CD-A than in CD-R. Our data suggest that CCR1 gene may be a putative marker of molecular activity of Crohn's disease. Following these preliminary data, a confirmation in larger cohort studies could represent a useful method in order to identify new therapeutic targets.

  9. Synergistic Effect of Auto-Activation and Small RNA Regulation on Gene Expression

    Science.gov (United States)

    Xiong, Li-Ping; Ma, Yu-Qiang; Tang, Lei-Han

    2010-09-01

    Auto-activation and small ribonucleic acid (RNA)-mediated regulation are two important mechanisms in controlling gene expression. We study the synergistic effect of these two regulations on gene expression. It is found that under this combinatorial regulation, gene expression exhibits bistable behaviors at the transition regime, while each of these two regulations, if working solely, only leads to monostability. Within the stochastic framework, the base pairing strength between sRNA and mRNA plays an important role in controlling the transition time between on and off states. The noise strength of protein number in the off state approaches 1 and is smaller than that in the on state. The noise strength also depends on which parameters, the feedback strength or the synthesis rate of small RNA, are tuned in switching the gene expression on and off. Our findings may provide a new insight into gene-regulation mechanism and can be applied in synthetic biology.

  10. Synergistic Effect of Auto-Activation and Small RNA Regulation on Gene Expression

    International Nuclear Information System (INIS)

    Li-Ping, Xiong; Yu-Qiang, Ma; Lei-Han, Tang

    2010-01-01

    Auto-activation and small ribonucleic acid (RNA)-mediated regulation are two important mechanisms in controlling gene expression. We study the synergistic effect of these two regulations on gene expression. It is found that under this combinatorial regulation, gene expression exhibits bistable behaviors at the transition regime, while each of these two regulations, if working solely, only leads to monostability. Within the stochastic framework, the base pairing strength between sRNA and mRNA plays an important role in controlling the transition time between on and off states. The noise strength of protein number in the off state approaches 1 and is smaller than that in the on state. The noise strength also depends on which parameters, the feedback strength or the synthesis rate of small RNA, are tuned in switching the gene expression on and off. Our findings may provide a new insight into gene-regulation mechanism and can be applied in synthetic biology

  11. How does exposure to nickel and cadmium affect the transcriptome of yellow perch (Perca flavescens) – Results from a 1000 candidate-gene microarray

    International Nuclear Information System (INIS)

    Bougas, Bérénice; Normandeau, Eric; Pierron, Fabien; Campbell, Peter G.C.; Bernatchez, Louis; Couture, Patrice

    2013-01-01

    Highlights: •The transcriptional responses of Perca flavescens to both metal and non metal stressors were measured with a 1000 candidate-gene microarray. •475, 287 and 176 genes were differentially transcribed depending on temperature, Ni and Cd concentrations, respectively. •Genes involved in iron metabolism, transcriptional and translational processes, vitamin metabolism, blood coagulation, and calcium transport were impacted by metals. •The developed microarray contributes to a better characterization of the impact of different stressors on the transcriptome. -- Abstract: The molecular mechanisms underlying nickel (Ni) and cadmium (Cd) toxicity and their specific effects on fish are poorly understood. Documenting gene transcription profiles offers a powerful approach toward identifying the molecular mechanisms affected by these metals and to discover biomarkers of their toxicity. However, confounding environmental factors can complicate the interpretation of the results and the detection of biomarkers for fish captured in their natural environment. In the present study, a 1000 candidate-gene microarray, developed from a previous RNA-seq study on a subset of individual fish from contrasting level of metal contamination, was used to investigate the transcriptional response to metal (Ni and Cd) and non metal (temperature, oxygen, and diet) stressors in yellow perch (Perca flavescens). Specifically, we aimed at (1) identifying transcriptional signatures specific to Ni and Cd exposure, (2) investigating the mechanisms of their toxicity, and (3) developing a predictive tool to identify the sublethal effects of Ni and Cd contaminants in fish sampled from natural environments. A total of 475 genes displayed significantly different transcription levels when temperature varied while 287 and 176 genes were differentially transcribed at different concentrations of Ni and Cd, respectively. These metals were found to mainly affect the transcription level of genes

  12. How does exposure to nickel and cadmium affect the transcriptome of yellow perch (Perca flavescens) – Results from a 1000 candidate-gene microarray

    Energy Technology Data Exchange (ETDEWEB)

    Bougas, Bérénice, E-mail: Berenice.Bougas@ete.inrs.ca [Institut National de la Recherche Scientifique, Centre INRS Eau Terre et Environnement, 490, rue de la Couronne, Québec, Québec G1K 9A9 (Canada); Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec G1V 0A6 (Canada); Normandeau, Eric [Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec G1V 0A6 (Canada); Pierron, Fabien [Université de Bordeaux, EPOC, UMR 5805, F-33400 Talence (France); CNRS, EPOC, UMR 5805, F-33400 Talence (France); Campbell, Peter G.C. [Institut National de la Recherche Scientifique, Centre INRS Eau Terre et Environnement, 490, rue de la Couronne, Québec, Québec G1K 9A9 (Canada); Bernatchez, Louis [Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec G1V 0A6 (Canada); Couture, Patrice [Institut National de la Recherche Scientifique, Centre INRS Eau Terre et Environnement, 490, rue de la Couronne, Québec, Québec G1K 9A9 (Canada)

    2013-10-15

    Highlights: •The transcriptional responses of Perca flavescens to both metal and non metal stressors were measured with a 1000 candidate-gene microarray. •475, 287 and 176 genes were differentially transcribed depending on temperature, Ni and Cd concentrations, respectively. •Genes involved in iron metabolism, transcriptional and translational processes, vitamin metabolism, blood coagulation, and calcium transport were impacted by metals. •The developed microarray contributes to a better characterization of the impact of different stressors on the transcriptome. -- Abstract: The molecular mechanisms underlying nickel (Ni) and cadmium (Cd) toxicity and their specific effects on fish are poorly understood. Documenting gene transcription profiles offers a powerful approach toward identifying the molecular mechanisms affected by these metals and to discover biomarkers of their toxicity. However, confounding environmental factors can complicate the interpretation of the results and the detection of biomarkers for fish captured in their natural environment. In the present study, a 1000 candidate-gene microarray, developed from a previous RNA-seq study on a subset of individual fish from contrasting level of metal contamination, was used to investigate the transcriptional response to metal (Ni and Cd) and non metal (temperature, oxygen, and diet) stressors in yellow perch (Perca flavescens). Specifically, we aimed at (1) identifying transcriptional signatures specific to Ni and Cd exposure, (2) investigating the mechanisms of their toxicity, and (3) developing a predictive tool to identify the sublethal effects of Ni and Cd contaminants in fish sampled from natural environments. A total of 475 genes displayed significantly different transcription levels when temperature varied while 287 and 176 genes were differentially transcribed at different concentrations of Ni and Cd, respectively. These metals were found to mainly affect the transcription level of genes

  13. Neuronal DNA Methyltransferases: Epigenetic Mediators between Synaptic Activity and Gene Expression?

    Science.gov (United States)

    Bayraktar, Gonca; Kreutz, Michael R

    2018-04-01

    DNMT3A and 3B are the main de novo DNA methyltransferases (DNMTs) in the brain that introduce new methylation marks to non-methylated DNA in postmitotic neurons. DNA methylation is a key epigenetic mark that is known to regulate important cellular processes in neuronal development and brain plasticity. Accumulating evidence disclosed rapid and dynamic changes in DNA methylation of plasticity-relevant genes that are important for learning and memory formation. To understand how DNMTs contribute to brain function and how they are regulated by neuronal activity is a prerequisite for a deeper appreciation of activity-dependent gene expression in health and disease. This review discusses the functional role of de novo methyltransferases and in particular DNMT3A1 in the adult brain with special emphasis on synaptic plasticity, memory formation, and brain disorders.

  14. Erythroid Kruppel-like factor (EKLF) is recruited to the γ-globin gene promoter as a co-activator and is required for γ-globin gene induction by short-chain fatty acid derivatives

    Science.gov (United States)

    Perrine, Susan P.; Mankidy, Rishikesh; Boosalis, Michael S.; Bieker, James J.; Faller, Douglas V.

    2011-01-01

    Objectives The erythroid Kruppel-like factor (EKLF) is an essential transcription factor for β-type globin gene switching, and specifically activates transcription of the adult β-globin gene promoter. We sought to determine if EKLF is also required for activation of the γ-globin gene by short-chain fatty acid (SCFA) derivatives, which are now entering clinical trials. Methods The functional and physical interaction of EKLF and co-regulatory molecules with the endogenous human globin gene promoters was studied in primary human erythroid progenitors and cell lines, using chromatin immunoprecipitation (ChIP) assays and genetic manipulation of the levels of EKLF and co-regulators. Results and conclusions Knockdown of EKLF prevents SCFA-induced expression of the γ-globin promoter in a stably expressed μLCRβprRlucAγprFluc cassette, and prevents induction of the endogenous γ-globin gene in primary human erythroid progenitors. EKLF is actively recruited to endogenous γ-globin gene promoters after exposure of primary human erythroid progenitors, and murine hematopoietic cell lines, to SCFA derivatives. The core ATPase BRG1 subunit of the human SWI/WNF complex, a ubiquitous multimeric complex that regulates gene expression by remodeling nucleosomal structure, is also required for γ-globin gene induction by SCFA derivatives. BRG1 is actively recruited to the endogenous γ-globin promoter of primary human erythroid progenitors by exposure to SCFA derivatives, and this recruitment is dependent upon the presence of EKLF. These findings demonstrate that EKLF, and the co-activator BRG1, previously demonstrated to be required for definitive or adult erythropoietic patterns of globin gene expression, are co-opted by SCFA derivatives to activate the fetal globin genes. PMID:19220418

  15. Systematic Expression Profiling Analysis Identifies Specific MicroRNA-Gene Interactions that May Differentiate between Active and Latent Tuberculosis Infection

    Directory of Open Access Journals (Sweden)

    Lawrence Shih-Hsin Wu

    2014-01-01

    Full Text Available Tuberculosis (TB is the second most common cause of death from infectious diseases. About 90% of those infected are asymptomatic—the so-called latent TB infections (LTBI, with a 10% lifetime chance of progressing to active TB. To further understand the molecular pathogenesis of TB, several molecular studies have attempted to compare the expression profiles between healthy controls and active TB or LTBI patients. However, the results vary due to diverse genetic backgrounds and study designs and the inherent complexity of the disease process. Thus, developing a sensitive and efficient method for the detection of LTBI is both crucial and challenging. For the present study, we performed a systematic analysis of the gene and microRNA profiles of healthy individuals versus those affected with TB or LTBI. Combined with a series of in silico analysis utilizing publicly available microRNA knowledge bases and published literature data, we have uncovered several microRNA-gene interactions that specifically target both the blood and lungs. Some of these molecular interactions are novel and may serve as potential biomarkers of TB and LTBI, facilitating the development for a more sensitive, efficient, and cost-effective diagnostic assay for TB and LTBI for the Taiwanese population.

  16. Systematic expression profiling analysis identifies specific microRNA-gene interactions that may differentiate between active and latent tuberculosis infection.

    Science.gov (United States)

    Wu, Lawrence Shih-Hsin; Lee, Shih-Wei; Huang, Kai-Yao; Lee, Tzong-Yi; Hsu, Paul Wei-Che; Weng, Julia Tzu-Ya

    2014-01-01

    Tuberculosis (TB) is the second most common cause of death from infectious diseases. About 90% of those infected are asymptomatic--the so-called latent TB infections (LTBI), with a 10% lifetime chance of progressing to active TB. To further understand the molecular pathogenesis of TB, several molecular studies have attempted to compare the expression profiles between healthy controls and active TB or LTBI patients. However, the results vary due to diverse genetic backgrounds and study designs and the inherent complexity of the disease process. Thus, developing a sensitive and efficient method for the detection of LTBI is both crucial and challenging. For the present study, we performed a systematic analysis of the gene and microRNA profiles of healthy individuals versus those affected with TB or LTBI. Combined with a series of in silico analysis utilizing publicly available microRNA knowledge bases and published literature data, we have uncovered several microRNA-gene interactions that specifically target both the blood and lungs. Some of these molecular interactions are novel and may serve as potential biomarkers of TB and LTBI, facilitating the development for a more sensitive, efficient, and cost-effective diagnostic assay for TB and LTBI for the Taiwanese population.

  17. Wakame and Nori in restructured meats included in cholesterol-enriched diets affect the antioxidant enzyme gene expressions and activities in Wistar rats.

    Science.gov (United States)

    Moreira, Adriana Schultz; González-Torres, Laura; Olivero-David, Raul; Bastida, Sara; Benedi, Juana; Sánchez-Muniz, Francisco J

    2010-09-01

    The effects of diets including restructured meats (RM) containing Wakame or Nori on total liver glutathione status, and several antioxidant enzyme gene expressions and activities were tested. Six groups of ten male growing Wistar rats each were fed a mix of 85% AIN-93 M diet and 15% freeze-dried RM for 35 days. The control group (C) consumed control RM, the Wakame (W) and the Nori (N) groups, RM with 5% Wakame and 5% Nori, respectively. Animals on added cholesterol diets (CC, CW, and CN) consumed their corresponding basal diets added with cholesterol (2%) and cholic acid (0.4%). Alga and dietary cholesterol significantly interact (P Nori-RM is a hypocholesterolemic food while Wakame-RM is an antioxidant food. This should be taken into account when including this kind of RM as potential functional foods in human.

  18. Antimicrobial medium- and long-chain free fatty acids prevent PrfA-dependent activation of virulence genes in Listeria monocytogenes

    DEFF Research Database (Denmark)

    Sternkopf Lillebæk, Eva Maria; Lambert Nielsen, Stine; Scheel Thomasen, Rikke

    2017-01-01

    of virulence factors required for bacterial entry, intracellular replication and cell-to-cell spread. PrfA-dependent activation of virulence genes occurs primarily in the blood and during intracellular infection. In contrast, PrfA does not play a significant role in regulation of virulence gene expression...... antimicrobial free fatty acids act to downregulate transcription of PrfA-activated virulence genes. Interestingly, the inhibitory effect is also evident in cells encoding a constitutively active variant of PrfA. Collectively, our data suggest that antimicrobial medium- and long-chain free fatty acids may act...... as signals to prevent PrfA-mediated activation of virulence genes in environments where PrfA activation is not required, such as in food and the gastrointestinal tract....

  19. Identifying pathways affected by cancer mutations.

    Science.gov (United States)

    Iengar, Prathima

    2017-12-16

    Mutations in 15 cancers, sourced from the COSMIC Whole Genomes database, and 297 human pathways, arranged into pathway groups based on the processes they orchestrate, and sourced from the KEGG pathway database, have together been used to identify pathways affected by cancer mutations. Genes studied in ≥15, and mutated in ≥10 samples of a cancer have been considered recurrently mutated, and pathways with recurrently mutated genes have been considered affected in the cancer. Novel doughnut plots have been presented which enable visualization of the extent to which pathways and genes, in each pathway group, are targeted, in each cancer. The 'organismal systems' pathway group (including organism-level pathways; e.g., nervous system) is the most targeted, more than even the well-recognized signal transduction, cell-cycle and apoptosis, and DNA repair pathway groups. The important, yet poorly-recognized, role played by the group merits attention. Pathways affected in ≥7 cancers yielded insights into processes affected. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Method for Screening Compounds That Influence Virulence Gene Expression in Staphylococcus aureus

    DEFF Research Database (Denmark)

    Nielsen, A.; Nielsen, Kristian Fog; Frees, D.

    2010-01-01

    We present a simple assay to examine effects of compounds on virulence gene expression in the human pathogen Staphylococcus aureus. The assay employs transcriptional reporter strains carrying lacZ fused to central virulence genes. Compounds affecting virulence gene expression and activity...... of the agr locus are scored based on color change in the presence of a chromogenic beta-galactosidase substrate. The assay can be used to screen for novel antivirulence compounds from many different sources, such as fungi, as demonstrated here....

  1. Systematically characterizing and prioritizing chemosensitivity related gene based on Gene Ontology and protein interaction network

    Directory of Open Access Journals (Sweden)

    Chen Xin

    2012-10-01

    Full Text Available Abstract Background The identification of genes that predict in vitro cellular chemosensitivity of cancer cells is of great importance. Chemosensitivity related genes (CRGs have been widely utilized to guide clinical and cancer chemotherapy decisions. In addition, CRGs potentially share functional characteristics and network features in protein interaction networks (PPIN. Methods In this study, we proposed a method to identify CRGs based on Gene Ontology (GO and PPIN. Firstly, we documented 150 pairs of drug-CCRG (curated chemosensitivity related gene from 492 published papers. Secondly, we characterized CCRGs from the perspective of GO and PPIN. Thirdly, we prioritized CRGs based on CCRGs’ GO and network characteristics. Lastly, we evaluated the performance of the proposed method. Results We found that CCRG enriched GO terms were most often related to chemosensitivity and exhibited higher similarity scores compared to randomly selected genes. Moreover, CCRGs played key roles in maintaining the connectivity and controlling the information flow of PPINs. We then prioritized CRGs using CCRG enriched GO terms and CCRG network characteristics in order to obtain a database of predicted drug-CRGs that included 53 CRGs, 32 of which have been reported to affect susceptibility to drugs. Our proposed method identifies a greater number of drug-CCRGs, and drug-CCRGs are much more significantly enriched in predicted drug-CRGs, compared to a method based on the correlation of gene expression and drug activity. The mean area under ROC curve (AUC for our method is 65.2%, whereas that for the traditional method is 55.2%. Conclusions Our method not only identifies CRGs with expression patterns strongly correlated with drug activity, but also identifies CRGs in which expression is weakly correlated with drug activity. This study provides the framework for the identification of signatures that predict in vitro cellular chemosensitivity and offers a valuable

  2. In Azospirillum brasilense, mutations in flmA or flmB genes affect polar flagellum assembly, surface polysaccharides, and attachment to maize roots.

    Science.gov (United States)

    Rossi, Fernando Ariel; Medeot, Daniela Beatriz; Liaudat, Juan Pablo; Pistorio, Mariano; Jofré, Edgardo

    2016-09-01

    Azospirillum brasilense is a soil bacterium capable of promoting plant growth. Several surface components were previously reported to be involved in the attachment of A. brasilense to root plants. Among these components are the exopolysaccharide (EPS), lipopolysaccharide (LPS) and the polar flagellum. Flagellin from polar flagellum is glycosylated and it was suggested that genes involved in such a posttranslational modification are the same ones involved in the biosynthesis of sugars present in the O-antigen of the LPS. In this work, we report on the characterization of two homologs present in A. brasilense Cd, to the well characterized flagellin modification genes, flmA and flmB, from Aeromonas caviae. We show that mutations in either flmA or flmB genes of A. brasilense resulted in non-motile cells due to alterations in the polar flagellum assembly. Moreover, these mutations also affected the capability of A. brasilense cells to adsorb to maize roots and to produce LPS and EPS. By generating a mutant containing the polar flagellum affected in their rotation, we show the importance of the bacterial motility for the early colonization of maize roots. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. Association of Single Nucleotide Polymorphisms in the ST3GAL4 Gene with VWF Antigen and Factor VIII Activity.

    Science.gov (United States)

    Song, Jaewoo; Xue, Cheng; Preisser, John S; Cramer, Drake W; Houck, Katie L; Liu, Guo; Folsom, Aaron R; Couper, David; Yu, Fuli; Dong, Jing-Fei

    2016-01-01

    VWF is extensively glycosylated with biantennary core fucosylated glycans. Most N-linked and O-linked glycans on VWF are sialylated. FVIII is also glycosylated, with a glycan structure similar to that of VWF. ST3GAL sialyltransferases catalyze the transfer of sialic acids in the α2,3 linkage to termini of N- and O-glycans. This sialic acid modification is critical for VWF synthesis and activity. We analyzed genetic and phenotypic data from the Atherosclerosis Risk in Communities (ARIC) study for the association of single nucleotide polymorphisms (SNPs) in the ST3GAL4 gene with plasma VWF levels and FVIII activity in 12,117 subjects. We also analyzed ST3GAL4 SNPs found in 2,535 subjects of 26 ethnicities from the 1000 Genomes (1000G) project for ethnic diversity, SNP imputation, and ST3GAL4 haplotypes. We identified 14 and 1,714 ST3GAL4 variants in the ARIC GWAS and 1000G databases respectively, with 46% being ethnically diverse in their allele frequencies. Among the 14 ST3GAL4 SNPs found in ARIC GWAS, the intronic rs2186717, rs7928391, and rs11220465 were associated with VWF levels and with FVIII activity after adjustment for age, BMI, hypertension, diabetes, ever-smoking status, and ABO. This study illustrates the power of next-generation sequencing in the discovery of new genetic variants and a significant ethnic diversity in the ST3GAL4 gene. We discuss potential mechanisms through which these intronic SNPs regulate ST3GAL4 biosynthesis and the activity that affects VWF and FVIII.

  4. Presence of activating KRAS mutations correlates significantly with expression of tumour suppressor genes DCN and TPM1 in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Rems Miran

    2009-08-01

    Full Text Available Abstract Background Despite identification of the major genes and pathways involved in the development of colorectal cancer (CRC, it has become obvious that several steps in these pathways might be bypassed by other as yet unknown genetic events that lead towards CRC. Therefore we wanted to improve our understanding of the genetic mechanisms of CRC development. Methods We used microarrays to identify novel genes involved in the development of CRC. Real time PCR was used for mRNA expression as well as to search for chromosomal abnormalities within candidate genes. The correlation between the expression obtained by real time PCR and the presence of the KRAS mutation was investigated. Results We detected significant previously undescribed underexpression in CRC for genes SLC26A3, TPM1 and DCN, with a suggested tumour suppressor role. We also describe the correlation between TPM1 and DCN expression and the presence of KRAS mutations in CRC. When searching for chromosomal abnormalities, we found deletion of the TPM1 gene in one case of CRC, but no deletions of DCN and SLC26A3 were found. Conclusion Our study provides further evidence of decreased mRNA expression of three important tumour suppressor genes in cases of CRC, thus implicating them in the development of this type of cancer. Moreover, we found underexpression of the TPM1 gene in a case of CRCs without KRAS mutations, showing that TPM1 might serve as an alternative path of development of CRC. This downregulation could in some cases be mediated by deletion of the TPM1 gene. On the other hand, the correlation of DCN underexpression with the presence of KRAS mutations suggests that DCN expression is affected by the presence of activating KRAS mutations, lowering the amount of the important tumour suppressor protein decorin.

  5. Impact of the 4G/5G polymorphism in the plasminogen activator inhibitor-1 gene on primary nephrotic syndrome.

    Science.gov (United States)

    Luo, Yuezhong; Wang, Chao; Tu, Haitao

    2014-03-01

    The aim of the present study was to investigate whether the four guanosines (4G)/five guanosines (5G) polymorphism in the gene coding for plasminogen activator inhibitor-1 (PAI-1) affects the clinical features of primary nephrotic syndrome (PNS). A cohort of 200 biopsy-diagnosed PNS patients was studied, with 40 healthy subjects as controls. The PAI-1 gene polymorphism was detected by polymerase chain reaction and DNA sequencing. Associations between the PAI-1 4G/5G polymorphism and clinical features and pathological types of PNS were analyzed. The results indicated that the PAI-1 genotype distribution is significantly different between patients with PNS and healthy controls, with significantly higher numbers of the 4G/4G genotype and lower numbers of the 5G5G genotype detected in PNS patients compared to controls (both P5G genotypes, as well as of the 4G allele. The increased 4G frequency was also detected in patients with minimal change disease (MCD). Significantly increased international normalized ratio (INR) and prolonged activated partial thromboplastin time (APTT) were observed in 4G/4G compared to 5G/5G PNS subjects. The response to steroids was not significantly different among the three genotypes. In conclusion, the 4G allele of the PAI-1 gene appears to be associated with PNS, especially in MN and IgAN patients. These findings suggest that specific targeting may be required for the treatment of PNS patients with the 4G/4G genotype.

  6. The Brakeless co-regulator can directly activate and repress transcription in early Drosophila embryos.

    Science.gov (United States)

    Crona, Filip; Holmqvist, Per-Henrik; Tang, Min; Singla, Bhumica; Vakifahmetoglu-Norberg, Helin; Fantur, Katrin; Mannervik, Mattias

    2015-11-01

    The Brakeless protein performs many important functions during Drosophila development, but how it controls gene expression is poorly understood. We previously showed that Brakeless can function as a transcriptional co-repressor. In this work, we perform transcriptional profiling of brakeless mutant embryos. Unexpectedly, the majority of affected genes are down-regulated in brakeless mutants. We demonstrate that genomic regions in close proximity to some of these genes are occupied by Brakeless, that over-expression of Brakeless causes a reciprocal effect on expression of these genes, and that Brakeless remains an activator of the genes upon fusion to an activation domain. Together, our results show that Brakeless can both repress and activate gene expression. A yeast two-hybrid screen identified the Mediator complex subunit Med19 as interacting with an evolutionarily conserved part of Brakeless. Both down- and up-regulated Brakeless target genes are also affected in Med19-depleted embryos, but only down-regulated targets are influenced in embryos depleted of both Brakeless and Med19. Our data provide support for a Brakeless activator function that regulates transcription by interacting with Med19. We conclude that the transcriptional co-regulator Brakeless can either activate or repress transcription depending on context. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. The non-psychoactive plant cannabinoid, cannabidiol affects cholesterol metabolism-related genes in microglial cells.

    Science.gov (United States)

    Rimmerman, Neta; Juknat, Ana; Kozela, Ewa; Levy, Rivka; Bradshaw, Heather B; Vogel, Zvi

    2011-08-01

    Cannabidiol (CBD) is a non-psychoactive plant cannabinoid that is clinically used in a 1:1 mixture with the psychoactive cannabinoid Δ(9)-tetrahydrocannabinol (THC) for the treatment of neuropathic pain and spasticity in multiple sclerosis. Our group previously reported that CBD exerts anti-inflammatory effects on microglial cells. In addition, we found that CBD treatment increases the accumulation of the endocannabinoid N-arachidonoyl ethanolamine (AEA), thus enhancing endocannabinoid signaling. Here we proceeded to investigate the effects of CBD on the modulation of lipid-related genes in microglial cells. Cell viability was tested using FACS analysis, AEA levels were measured using LC/MS/MS, gene array analysis was validated with real-time qPCR, and cytokine release was measured using ELISA. We report that CBD significantly upregulated the mRNAs of the enzymes sterol-O-acyl transferase (Soat2), which synthesizes cholesteryl esters, and of sterol 27-hydroxylase (Cyp27a1). In addition, CBD increased the mRNA of the lipid droplet-associated protein, perilipin2 (Plin2). Moreover, we found that pretreatment of the cells with the cholesterol chelating agent, methyl-β-cyclodextrin (MBCD), reversed the CBD-induced increase in Soat2 mRNA but not in Plin2 mRNA. Incubation with AEA increased the level of Plin2, but not of Soat2 mRNA. Furthermore, MBCD treatment did not affect the reduction by CBD of the LPS-induced release of the proinflammatory cytokine IL-1β. CBD treatment modulates cholesterol homeostasis in microglial cells, and pretreatment with MBCD reverses this effect without interfering with CBD's anti-inflammatory effects. The effects of the CBD-induced increase in AEA accumulation on lipid-gene expression are discussed.

  8. Physical activity, menopause, and quality of life: the role of affect and self-worth across time.

    Science.gov (United States)

    Elavsky, Steriani

    2009-01-01

    Physical activity has been shown to enhance quality of life (QOL); however, few investigations of these effects exist in women undergoing the menopausal transition. The present study examined the long-term effects of physical activity on menopause-related QOL and tested the mediating effects of physical self-worth and positive affect in this relationship. Middle-aged women previously enrolled in a 4-month randomized controlled trial involving walking and yoga, and a control group completed a follow-up mail-in survey 2 years after the end of the trial. The survey included a battery of psychological and physical activity measures, including measures of menopausal symptoms and menopause-related QOL. Longitudinal linear panel analysis was conducted within a covariance modeling framework to test whether physical self-worth and positive affect mediated the physical activity-QOL relationship over time. At the end of the trial, physical activity and menopausal symptoms were related to physical self-worth and positive affect, and in turn, greater levels of physical self-worth and positive affect were associated with higher levels of menopause-related QOL. Analyses indicated that increases in physical activity and decreases in menopausal symptoms over the 2-year period were related to increases in physical self-worth (betas = 0.23 and -0.52, physical activity and menopausal symptoms, respectively) and, for symptoms, also to decreased positive affect (beta = -0.47), and both physical self-worth (beta = 0.34) and affect (beta = 0.43) directly influenced enhancements in QOL (R = 0.775). The findings support the position that the effects of physical activity on QOL are mediated, in part, by intermediate psychological outcomes and that physical activity can have long-term benefits for women undergoing the menopausal transition.

  9. Expression of an Aspergillus niger Phytase Gene (phyA) in Saccharomyces cerevisiae

    Science.gov (United States)

    Han, Yanming; Wilson, David B.; Lei, Xin gen

    1999-01-01

    Phytase improves the bioavailability of phytate phosphorus in plant foods to humans and animals and reduces phosphorus pollution of animal waste. Our objectives were to express an Aspergillus niger phytase gene (phyA) in Saccharomyces cerevisiae and to determine the effects of glycosylation on the phytase’s activity and thermostability. A 1.4-kb DNA fragment containing the coding region of the phyA gene was inserted into the expression vector pYES2 and was expressed in S. cerevisiae as an active, extracellular phytase. The yield of total extracellular phytase activity was affected by the signal peptide and the medium composition. The expressed phytase had two pH optima (2 to 2.5 and 5 to 5.5) and a temperature optimum between 55 and 60°C, and it cross-reacted with a rabbit polyclonal antibody against the wild-type enzyme. Due to the heavy glycosylation, the expressed phytase had a molecular size of approximately 120 kDa and appeared to be more thermostable than the commercial enzyme. Deglycosylation of the phytase resulted in losses of 9% of its activity and 40% of its thermostability. The recombinant phytase was effective in hydrolyzing phytate phosphorus from corn or soybean meal in vitro. In conclusion, the phyA gene was expressed as an active, extracellular phytase in S. cerevisiae, and its thermostability was affected by glycosylation. PMID:10223979

  10. Truncating PREX2 mutations activate its GEF activity and alter gene expression regulation in NRAS-mutant melanoma

    KAUST Repository

    Lissanu Deribe, Yonathan

    2016-03-01

    PREX2 (phosphatidylinositol-3,4,5-triphosphate-dependent Rac-exchange factor 2) is a PTEN (phosphatase and tensin homolog deleted on chromosome 10) binding protein that is significantly mutated in cutaneous melanoma and pancreatic ductal adenocarcinoma. Here, genetic and biochemical analyses were conducted to elucidate the nature and mechanistic basis of PREX2 mutation in melanoma development. By generating an inducible transgenic mouse model we showed an oncogenic role for a truncating PREX2 mutation (PREX2E824*) in vivo in the context of mutant NRAS. Using integrative cross-species gene expression analysis, we identified deregulated cell cycle and cytoskeleton organization as significantly perturbed biological pathways in PREX2 mutant tumors. Mechanistically, truncation of PREX2 activated its Rac1 guanine nucleotide exchange factor activity, abolished binding to PTEN and activated the PI3K (phosphatidyl inositol 3 kinase)/Akt signaling pathway. We further showed that PREX2 truncating mutations or PTEN deletion induces down-regulation of the tumor suppressor and cell cycle regulator CDKN1C (also known as p57KIP2). This down-regulation occurs, at least partially, through DNA hypomethylation of a differentially methylated region in chromosome 11 that is a known regulatory region for expression of the CDKN1C gene. Together, these findings identify PREX2 as a mediator of NRAS-mutant melanoma development that acts through the PI3K/PTEN/Akt pathway to regulate gene expression of a cell cycle regulator.

  11. Truncating PREX2 mutations activate its GEF activity and alter gene expression regulation in NRAS-mutant melanoma.

    Science.gov (United States)

    Lissanu Deribe, Yonathan; Shi, Yanxia; Rai, Kunal; Nezi, Luigi; Amin, Samir B; Wu, Chia-Chin; Akdemir, Kadir C; Mahdavi, Mozhdeh; Peng, Qian; Chang, Qing Edward; Hornigold, Kirsti; Arold, Stefan T; Welch, Heidi C E; Garraway, Levi A; Chin, Lynda

    2016-03-01

    PREX2 (phosphatidylinositol-3,4,5-triphosphate-dependent Rac-exchange factor 2) is a PTEN (phosphatase and tensin homolog deleted on chromosome 10) binding protein that is significantly mutated in cutaneous melanoma and pancreatic ductal adenocarcinoma. Here, genetic and biochemical analyses were conducted to elucidate the nature and mechanistic basis of PREX2 mutation in melanoma development. By generating an inducible transgenic mouse model we showed an oncogenic role for a truncating PREX2 mutation (PREX2(E824)*) in vivo in the context of mutant NRAS. Using integrative cross-species gene expression analysis, we identified deregulated cell cycle and cytoskeleton organization as significantly perturbed biological pathways in PREX2 mutant tumors. Mechanistically, truncation of PREX2 activated its Rac1 guanine nucleotide exchange factor activity, abolished binding to PTEN and activated the PI3K (phosphatidyl inositol 3 kinase)/Akt signaling pathway. We further showed that PREX2 truncating mutations or PTEN deletion induces down-regulation of the tumor suppressor and cell cycle regulator CDKN1C (also known as p57(KIP2)). This down-regulation occurs, at least partially, through DNA hypomethylation of a differentially methylated region in chromosome 11 that is a known regulatory region for expression of the CDKN1C gene. Together, these findings identify PREX2 as a mediator of NRAS-mutant melanoma development that acts through the PI3K/PTEN/Akt pathway to regulate gene expression of a cell cycle regulator.

  12. Truncating PREX2 mutations activate its GEF activity and alter gene expression regulation in NRAS-mutant melanoma

    KAUST Repository

    Lissanu Deribe, Yonathan; Shi, Yanxia; Rai, Kunal; Nezi, Luigi; Amin, Samir B.; Wu, Chia-Chin; Akdemir, Kadir C.; Mahdavi, Mozhdeh; Peng, Qian; Chang, Qing Edward; Hornigold, Kirsti; Arold, Stefan T.; Welch, Heidi C. E.; Garraway, Levi A.; Chin, Lynda

    2016-01-01

    PREX2 (phosphatidylinositol-3,4,5-triphosphate-dependent Rac-exchange factor 2) is a PTEN (phosphatase and tensin homolog deleted on chromosome 10) binding protein that is significantly mutated in cutaneous melanoma and pancreatic ductal adenocarcinoma. Here, genetic and biochemical analyses were conducted to elucidate the nature and mechanistic basis of PREX2 mutation in melanoma development. By generating an inducible transgenic mouse model we showed an oncogenic role for a truncating PREX2 mutation (PREX2E824*) in vivo in the context of mutant NRAS. Using integrative cross-species gene expression analysis, we identified deregulated cell cycle and cytoskeleton organization as significantly perturbed biological pathways in PREX2 mutant tumors. Mechanistically, truncation of PREX2 activated its Rac1 guanine nucleotide exchange factor activity, abolished binding to PTEN and activated the PI3K (phosphatidyl inositol 3 kinase)/Akt signaling pathway. We further showed that PREX2 truncating mutations or PTEN deletion induces down-regulation of the tumor suppressor and cell cycle regulator CDKN1C (also known as p57KIP2). This down-regulation occurs, at least partially, through DNA hypomethylation of a differentially methylated region in chromosome 11 that is a known regulatory region for expression of the CDKN1C gene. Together, these findings identify PREX2 as a mediator of NRAS-mutant melanoma development that acts through the PI3K/PTEN/Akt pathway to regulate gene expression of a cell cycle regulator.

  13. Suppression of bcr-abl synthesis by siRNAs or tyrosine kinase activity by Glivec alters different oncogenes, apoptotic/antiapoptotic genes and cell proliferation factors (microarray study).

    Science.gov (United States)

    Zhelev, Zhivko; Bakalova, Rumiana; Ohba, Hideki; Ewis, Ashraf; Ishikawa, Mitsuru; Shinohara, Yasuo; Baba, Yoshinobu

    2004-07-16

    Short 21-mer double-stranded/small-interfering RNAs (ds/siRNAs) were designed to target bcr-abl mRNA in chronic myelogenous leukemia. The ds/siRNAs were transfected into bcr-abl-positive K-562 (derived from blast crisis chronic myelogenous leukemia), using lipofectamine. Penetrating of ds/siRNAs into the cells was detected by fluorescent confocal microscopy, using fluorescein-labeled ds/siRNAs. The cells were treated with mix of three siRNA sequences (3 x 60 nM) during 6 days with three repetitive transfections. The siRNA-treatment was accompanied with significant reduction of bcr-abl mRNA, p210, protein tyrosine kinase activity and cell proliferation index. Treatment of cells with Glivec (during 8 days with four repetitive doses, 180 nM single dose) resulted in analogous reduction of cell proliferation activity, stronger suppression of protein tyrosine kinase activity, and very low reduction of p210. siRNA-mix and Glivec did not affect significantly the viability of normal lymphocytes. Microarray analysis of siRNA- and Glivec-treated K-562 cells demonstrated that both pathways of bcr-abl suppression were accompanied with overexpression and suppression of many different oncogenes, apoptotic/antiapoptotic and cell proliferation factors. The following genes of interest were found to decrease in relatively equal degree in both siRNA- and Glivec-treated cells: Bcd orf1 and orf2 proto-oncogene, chromatin-specific transcription elongation factor FACT 140-kDa subunit mRNA, gene encoding splicing factor SF1, and mRNA for Tec protein tyrosine kinase. siRNA-mix and Glivec provoked overexpression of the following common genes: c-jun proto-oncogene, protein kinase C-alpha, pvt-1 oncogene homologue (myc activator), interleukin-6, 1-8D gene from interferon-inducible gene family, tumor necrosis factor receptor superfamily (10b), and STAT-induced STAT inhibitor.

  14. BDNF val(66)met affects hippocampal volume and emotion-related hippocampal memory activity

    NARCIS (Netherlands)

    Molendijk, M. L.; van Tol, M-J; Penninx, B. W. J. H.; van der Wee, N. J. A.; Aleman, A.; Veltman, D. J.; Spinhoven, P.; Elzinga, B. M.

    2012-01-01

    The val(66)met polymorphism on the BDNF gene has been reported to explain individual differences in hippocampal volume and memory-related activity. These findings, however, have not been replicated consistently and no studies to date controlled for the potentially confounding impact of early life

  15. Kaempferol stimulates gene expression of low-density lipoprotein receptor through activation of Sp1 in cultured hepatocytes

    Science.gov (United States)

    Ochiai, Ayasa; Miyata, Shingo; Iwase, Masamori; Shimizu, Makoto; Inoue, Jun; Sato, Ryuichiro

    2016-01-01

    A high level of plasma low-density lipoprotein (LDL) cholesterol is considered a risk factor for atherosclerosis. Because the hepatic LDL receptor (LDLR) is essential for clearing plasma LDL cholesterol, activation of LDLR is a promising therapeutic target for patients with atherosclerotic disease. Here we demonstrated how the flavonoid kaempferol stimulated the gene expression and activity of LDLR in HepG2 cells. The kaempferol-mediated stimulation of LDLR gene expression was completely inhibited by knockdown of Sp1 gene expression. Treatment of HepG2 cells with kaempferol stimulated the recruitment of Sp1 to the promoter region of the LDLR gene, as well as the phosphorylation of Sp1 on Thr-453 and Thr-739. Moreover, these kaempferol-mediated processes were inhibited in the presence of U0126, an ERK pathway inhibitor. These results suggest that kaempferol may increase the activity of Sp1 through stimulation of Sp1 phosphorylation by ERK1/2 and subsequent induction of LDLR expression and activity. PMID:27109240

  16. Tet1 oxidase regulates neuronal gene transcription, active DNA hydroxymethylation, object location memory, and threat recognition memory

    Directory of Open Access Journals (Sweden)

    Dinesh Kumar

    2015-10-01

    Full Text Available A dynamic equilibrium between DNA methylation and demethylation of neuronal activity-regulated genes is crucial for memory processes. However, the mechanisms underlying this equilibrium remain elusive. Tet1 oxidase has been shown to play a key role in the active DNA demethylation in the central nervous system. In this study, we used Tet1 gene knockout (Tet1KO mice to examine the involvement of Tet1 in memory consolidation and storage in the adult brain. We found that Tet1 ablation leads to altered expression of numerous neuronal activity-regulated genes, compensatory upregulation of active demethylation pathway genes, and upregulation of various epigenetic modifiers. Moreover, Tet1KO mice showed an enhancement in the consolidation and storage of threat recognition (cued and contextual fear conditioning and object location memories. We conclude that Tet1 plays a critical role in regulating neuronal transcription and in maintaining the epigenetic state of the brain associated with memory consolidation and storage.

  17. TAM receptors affect adult brain neurogenesis by negative regulation of microglial cell activation.

    Science.gov (United States)

    Ji, Rui; Tian, Shifu; Lu, Helen J; Lu, Qingjun; Zheng, Yan; Wang, Xiaomin; Ding, Jixiang; Li, Qiutang; Lu, Qingxian

    2013-12-15

    TAM tyrosine kinases play multiple functional roles, including regulation of the target genes important in homeostatic regulation of cytokine receptors or TLR-mediated signal transduction pathways. In this study, we show that TAM receptors affect adult hippocampal neurogenesis and loss of TAM receptors impairs hippocampal neurogenesis, largely attributed to exaggerated inflammatory responses by microglia characterized by increased MAPK and NF-κB activation and elevated production of proinflammatory cytokines that are detrimental to neuron stem cell proliferation and neuronal differentiation. Injection of LPS causes even more severe inhibition of BrdU incorporation in the Tyro3(-/-)Axl(-/-)Mertk(-/-) triple-knockout (TKO) brains, consistent with the LPS-elicited enhanced expression of proinflammatory mediators, for example, IL-1β, IL-6, TNF-α, and inducible NO synthase, and this effect is antagonized by coinjection of the anti-inflammatory drug indomethacin in wild-type but not TKO brains. Conditioned medium from TKO microglia cultures inhibits neuron stem cell proliferation and neuronal differentiation. IL-6 knockout in Axl(-/-)Mertk(-/-) double-knockout mice overcomes the inflammatory inhibition of neurogenesis, suggesting that IL-6 is a major downstream neurotoxic mediator under homeostatic regulation by TAM receptors in microglia. Additionally, autonomous trophic function of the TAM receptors on the proliferating neuronal progenitors may also promote progenitor differentiation into immature neurons.

  18. Genes on B chromosomes: old questions revisited with new tools.

    Science.gov (United States)

    Banaei-Moghaddam, Ali M; Martis, Mihaela M; Macas, Jiří; Gundlach, Heidrun; Himmelbach, Axel; Altschmied, Lothar; Mayer, Klaus F X; Houben, Andreas

    2015-01-01

    B chromosomes are supernumerary dispensable parts of the karyotype which appear in some individuals of some populations in some species. Often, they have been considered as 'junk DNA' or genomic parasites without functional genes. Due to recent advances in sequencing technologies, it became possible to investigate their DNA composition, transcriptional activity and effects on the host transcriptome profile in detail. Here, we review the most recent findings regarding the gene content of B chromosomes and their transcriptional activities and discuss these findings in the context of comparable biological phenomena, like sex chromosomes, aneuploidy and pseudogenes. Recent data suggest that B chromosomes carry transcriptionally active genic sequences which could affect the transcriptome profile of their host genome. These findings are gradually changing our view that B chromosomes are solely genetically inert selfish elements without any functional genes. This at one side could partly explain the deleterious effects which are associated with their presence. On the other hand it makes B chromosome a nice model for studying regulatory mechanisms of duplicated genes and their evolutionary consequences. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Thy-1 attenuates TNF-alpha-activated gene expression in mouse embryonic fibroblasts via Src family kinase.

    Directory of Open Access Journals (Sweden)

    Bin Shan

    Full Text Available Heterogeneous surface expression of Thy-1 in fibroblasts modulates inflammation and may thereby modulate injury and repair. As a paradigm, patients with idiopathic pulmonary fibrosis, a disease with pathologic features of chronic inflammation, demonstrate an absence of Thy-1 immunoreactivity within areas of fibrotic activity (fibroblast foci in contrast to the predominant Thy-1 expressing fibroblasts in the normal lung. Likewise, Thy-1 deficient mice display more severe lung fibrosis in response to an inflammatory injury than wildtype littermates. We investigated the role of Thy-1 in the response of fibroblasts to the pro-inflammatory cytokine TNF-alpha. Our study demonstrates distinct profiles of TNF-alpha-activated gene expression in Thy-1 positive (Thy-1+ and negative (Thy-1- subsets of mouse embryonic fibroblasts (MEF. TNF-alpha induced a robust activation of MMP-9, ICAM-1, and the IL-8 promoter driven reporter in Thy-1- MEFs, in contrast to only a modest increase in Thy-1+ counterparts. Consistently, ectopic expression of Thy-1 in Thy-1- MEFs significantly attenuated TNF-alpha-activated gene expression. Mechanistically, TNF-alpha activated Src family kinase (SFK only in Thy-1- MEFs. Blockade of SFK activation abrogated TNF-alpha-activated gene expression in Thy-1- MEFs, whereas restoration of SFK activation rescued the TNF-alpha response in Thy-1+ MEFs. Our findings suggest that Thy-1 down-regulates TNF-alpha-activated gene expression via interfering with SFK- and NF-kappaB-mediated transactivation. The current study provides a novel mechanistic insight to the distinct roles of fibroblast Thy-1 subsets in inflammation.

  20. Regulation of bacterial photosynthesis genes by the small noncoding RNA PcrZ.

    Science.gov (United States)

    Mank, Nils N; Berghoff, Bork A; Hermanns, Yannick N; Klug, Gabriele

    2012-10-02

    The small RNA PcrZ (photosynthesis control RNA Z) of the facultative phototrophic bacterium Rhodobacter sphaeroides is induced upon a drop of oxygen tension with similar kinetics to those of genes for components of photosynthetic complexes. High expression of PcrZ depends on PrrA, the response regulator of the PrrB/PrrA two-component system with a central role in redox regulation in R. sphaeroides. In addition the FnrL protein, an activator of some photosynthesis genes at low oxygen tension, is involved in redox-dependent expression of this small (s)RNA. Overexpression of full-length PcrZ in R. sphaeroides affects expression of a small subset of genes, most of them with a function in photosynthesis. Some mRNAs from the photosynthetic gene cluster were predicted to be putative PcrZ targets and results from an in vivo reporter system support these predictions. Our data reveal a negative effect of PcrZ on expression of its target mRNAs. Thus, PcrZ counteracts the redox-dependent induction of photosynthesis genes, which is mediated by protein regulators. Because PrrA directly activates photosynthesis genes and at the same time PcrZ, which negatively affects photosynthesis gene expression, this is one of the rare cases of an incoherent feed-forward loop including an sRNA. Our data identified PcrZ as a trans acting sRNA with a direct regulatory function in formation of photosynthetic complexes and provide a model for the control of photosynthesis gene expression by a regulatory network consisting of proteins and a small noncoding RNA.

  1. Transcriptional Activity of Nuclear Factor κB Family Genes in Patients with Systemic Sclerosis.

    Science.gov (United States)

    Lis-Święty, Anna; Gola, Joanna; Mazurek, Urszula; Brzezińska-Wcisło, Ligia

    2017-05-01

    Systemic sclerosis (SSc) is a connective tissue disease of unknown etiology and unclear pathogenesis. Evaluation of the activation of nuclear factor κB (NF-κB) family genes IκBα, p50, p52, p65, and c-Rel, potentially involved in the regulation of immunity, inflammation, angiogenesis, and tissue remodeling in SSc, was carried out. The study included 19 patients with limited SSc, 11 patients with early SSc, and 10 healthy persons constituting the control group. Real-time QRT-PCR was used to evaluate the mRNAs in peripheral blood samples. The patients with early SSc showed a decrease in transcriptional activity of IκBα inhibitor and c-Rel subunit. Transcriptional activity decrease in the other patients with limited SSc included genes encoding c-Rel and p50, subunits of NF-κB factor. Deregulation of intracellular signal transduction by NF-κB takes place at the beginning of SSc and in its fibrosis stage. Associations between clinical variables and NF-κB related gene expression as well as the activation of NF-κB family members in SSc patients should be addressed in future studies. © 2017 by the Association of Clinical Scientists, Inc.

  2. A large scale survey reveals that chromosomal copy-number alterations significantly affect gene modules involved in cancer initiation and progression

    Directory of Open Access Journals (Sweden)

    Cigudosa Juan C

    2011-05-01

    Full Text Available Abstract Background Recent observations point towards the existence of a large number of neighborhoods composed of functionally-related gene modules that lie together in the genome. This local component in the distribution of the functionality across chromosomes is probably affecting the own chromosomal architecture by limiting the possibilities in which genes can be arranged and distributed across the genome. As a direct consequence of this fact it is therefore presumable that diseases such as cancer, harboring DNA copy number alterations (CNAs, will have a symptomatology strongly dependent on modules of functionally-related genes rather than on a unique "important" gene. Methods We carried out a systematic analysis of more than 140,000 observations of CNAs in cancers and searched by enrichments in gene functional modules associated to high frequencies of loss or gains. Results The analysis of CNAs in cancers clearly demonstrates the existence of a significant pattern of loss of gene modules functionally related to cancer initiation and progression along with the amplification of modules of genes related to unspecific defense against xenobiotics (probably chemotherapeutical agents. With the extension of this analysis to an Array-CGH dataset (glioblastomas from The Cancer Genome Atlas we demonstrate the validity of this approach to investigate the functional impact of CNAs. Conclusions The presented results indicate promising clinical and therapeutic implications. Our findings also directly point out to the necessity of adopting a function-centric, rather a gene-centric, view in the understanding of phenotypes or diseases harboring CNAs.

  3. Elements of Design-Based Science Activities That Affect Students' Motivation

    Science.gov (United States)

    Jones, Brett D.; Chittum, Jessica R.; Akalin, Sehmuz; Schram, Asta B.; Fink, Jonathan; Schnittka, Christine; Evans, Michael A.; Brandt, Carol

    2015-01-01

    The primary purpose of this study was to examine the ways in which a 12-week after-school science and engineering program affected middle school students' motivation to engage in science and engineering activities. We used current motivation research and theory as a conceptual framework to assess 14 students' motivation through questionnaires,…

  4. Culture medium composition affects the gene expression pattern and in vitro development potential of bovine somatic cell nuclear transfer (SCNT embryos

    Directory of Open Access Journals (Sweden)

    María E Arias

    2013-01-01

    Full Text Available Different culture systems have been studied that support development of somatic cell nuclear transfer (SCNT embryos up to the blastocyst stage. However, the use of sequential and two-step culture systems has been less studied. The objective of the present study was to examine the developmental potential and quality of bovine SCNT embryos cultured in different two-step culture media based on KSOM, SOF and the macromolecules FBS and BSA (K-K/FBS, K-S/BSA and K-K/BSA, respectively. No differences were observed in the cleavage rate for any of the culture systems. However, there was a significant difference (P<0.01 in the rate of blastocyst development, with the K-K/ FBS culture system yielding a higher rate of blastocysts (28% compared to other treatments (18 and 15%, for K-S/BSA and K-K/BSA, respectively. Although quality of embryos, as assessed by the total number of cells, was not different, the apoptosis index was significantly affected in the sequential culture system (K-S/BSA. Gene expression analysis showed alterations of DNMT1, IGF2, LIF, and PRDX6 genes in embryos cultured in K-S/FBS and of SOD2 in embryos cultured in K-K/BSA. In conclusion, we demonstrated that culture medium may affect not only the developmental potential of SCNT embryos but also, more importantly, the gene expression pattern and apoptotic index, presenting the possibility to manipulate the culture medium composition to modulate global gene expression and improve the overall efficiency of this technique.

  5. Walk on the Bright Side: Physical Activity and Affect in Major Depressive Disorder

    OpenAIRE

    Mata, Jutta; Thompson, Renee J.; Jaeggi, Susanne M.; Buschkuehl, Martin; Jonides, John; Gotlib, Ian H.

    2011-01-01

    Although prescribed exercise has been found to improve affect and reduce levels of depression, we do not know how self-initiated everyday physical activity influences levels of positive affect (PA) and negative affect (NA) in depressed persons. Fifty-three individuals diagnosed with Major Depressive Disorder (MDD) and 53 never-depressed controls participated in a seven-day experience sampling study. Participants were prompted randomly eight times per day and answered questions about their phy...

  6. Mutational analysis of the Wolfram syndrome gene in two families with chromosome 4p-linked bipolar affective disorder.

    Science.gov (United States)

    Evans, K L; Lawson, D; Meitinger, T; Blackwood, D H; Porteous, D J

    2000-04-03

    Bipolar affective disorder (BPAD) is a complex disease with a significant genetic component. Heterozygous carriers of Wolfram syndrome (WFS) are at increased risk of psychiatric illness. A gene for WFS (WFS1) has recently been cloned and mapped to chromosome 4p, in the general region we previously reported as showing linkage to BPAD. Here we present sequence analysis of the WFS1 coding sequence in five affected individuals from two chromosome 4p-linked families. This resulted in the identification of six polymorphisms, two of which are predicted to change the amino acid sequence of the WFS1 protein, however none of the changes segregated with disease status. Am. J. Med. Genet. (Neuropsychiatr. Genet.) 96:158-160, 2000. Copyright 2000 Wiley-Liss, Inc.

  7. Does fragmentation of wetlands affect gene flow in sympatric Acrocephalus warblers with different migration strategies?

    OpenAIRE

    Ceresa, Francesco; Belda, E.J.; Kvist, Laura; Rguibi-Idrissi, Hamid; Monrós González, Juan Salvador

    2015-01-01

    Wetlands are naturally patchy habitats, but patchiness has been accentuated by the extensive wetlands loss due to human activities. In such a fragmented habitat, dispersal ability is especially important to maintain gene flow between populations. Here we studied population structure, genetic diversity and demographic history of Iberian and North African populations of two wetland passerines, the Eurasian reed warbler Acrocephalus scirpaceus and the moustached warbler Acrocephalus melanopogon....

  8. Radiation-induced gene expression in the nematode caenorhabditis elegans

    International Nuclear Information System (INIS)

    Nelson, G.A.; Jones, T.A.; Chesnut, A.; Smith, A.L.

    2002-01-01

    We used the nematode C. elegans to characterize the genotoxic and cytotoxic effects of ionizing radiation in a simple animal model emphasizing the unique effects of charged particle radiation. Here we demonstrate by reverse transcription polymerase chain reaction (RT-PCR) differential display and whole genome microarray hybridization experiments that gamma rays, accelerated protons and iron ions at the same physical dose lead to unique transcription profiles. 599 of 17871 genes analyzed (3.4%) showed differential expression 3 hrs after exposure to 3 Gy of radiation. 193 were up-regulated, 406 were down-regulated and 90% were affected only by a single species of radiation. A novel statistical clustering technique identified the regulatory relationships between the radiation-modulated genes and showed that genes affected by each radiation species were associated with unique regulatory clusters. This suggests that independent homeostatic mechanisms are activated in response to radiation exposure as a function of track structure or ionization density. (author)

  9. CFH Y402H polymorphism and the complement activation product C5a: effects on NF-κB activation and inflammasome gene regulation.

    Science.gov (United States)

    Cao, Sijia; Wang, Jay Ching Chieh; Gao, Jiangyuan; Wong, Matthew; To, Elliott; White, Valerie A; Cui, Jing Z; Matsubara, Joanne A

    2016-05-01

    The Y402H polymorphism in the complement factor H (CFH) gene is an important risk factor for age-related macular degeneration (AMD). Complement activation products and proinflammatory cytokines are associated with this polymorphism at the systemic level, but less is known of the associations in the outer retina of the genotyped eye. Here we investigate complement activation products and their role in nuclear factor (NF)-κB activation and gene expression of the NLRP3 inflammasome pathway. Postmortem donor eyes were genotyped for the CFH Y402H polymorphism and assessed for complement C3a, C5a, interleukin (IL)-18 and tumour necrosis factor (TNF)-α. ARPE19 cells were stimulated basolaterally with C5a or TNF-α in polarised cultures. NF-κB activation was assessed with a reporter cell line. Gene expression of inflammasome-related (NLRP3, caspase-1, IL-1β and IL-18) and classic inflammatory (IL-6 and IL-8) genes was studied. The distribution of inflammasome products, IL-1β and IL-18, was studied in postmortem donor eyes with AMD pathologies. Eyes with the homozygous at-risk variant demonstrated higher levels of C5a, IL-18 and TNF-α in Bruch's membrane and choroid. C5a promoted NF-κB activation and upregulation of IL-18 in polarised ARPE19. TNF-α promoted NF-κB activation and gene expression of caspase-1, IL-1β, IL-18, IL-6 and IL-8, but downregulated NLRP3. In eyes with geographic atrophy, strong immunoreactivity was observed for inflammasome products IL-1β and IL-18 compared with age-matched controls. The at-risk polymorphism of the CFH Y402H may contribute to AMD disease process through increased complement and NF-κB activation, and the upregulation of IL-18, a product of inflammasome activation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  10. Do circadian genes and ambient temperature affect substrate-borne signalling during Drosophila courtship?

    Directory of Open Access Journals (Sweden)

    Izarne Medina

    2015-11-01

    Full Text Available Courtship vibratory signals can be air-borne or substrate-borne. They convey distinct and species-specific information from one individual to its prospective partner. Here, we study the substrate-borne vibratory signals generated by the abdominal quivers of the Drosophila male during courtship; these vibrations travel through the ground towards courted females and coincide with female immobility. It is not known which physical parameters of the vibrations encode the information that is received by the females and induces them to pause. We examined the intervals between each vibratory pulse, a feature that was reported to carry information for animal communication. We were unable to find evidence of periodic variations in the lengths of these intervals, as has been reported for fly acoustical signals. Because it was suggested that the genes involved in the circadian clock may also regulate shorter rhythms, we search for effects of period on the interval lengths. Males that are mutant for the period gene produced vibrations with significantly altered interpulse intervals; also, treating wild type males with constant light results in similar alterations to the interpulse intervals. Our results suggest that both the clock and light/dark cycles have input into the interpulse intervals of these vibrations. We wondered if we could alter the interpulse intervals by other means, and found that ambient temperature also had a strong effect. However, behavioural analysis suggests that only extreme ambient temperatures can affect the strong correlation between female immobility and substrate-borne vibrations.

  11. Members of the barley NAC transcription factor gene family show differential co-regulation with senescence-associated genes during senescence of flag leaves

    DEFF Research Database (Denmark)

    Christiansen, Michael W; Gregersen, Per L.

    2014-01-01

    -expressed with members of the NAC gene family. In conclusion, a list of up to 15 NAC genes from barley that are strong candidates for being regulatory factors of importance for senescence and biotic stress-related traits affecting the productivity of cereal crop plants has been generated. Furthermore, a list of 71...... in the NAC transcription factor family during senescence of barley flag leaves was studied. Several members of the NAC transcription factor gene family were up-regulated during senescence in a microarray experiment, together with a large range of senescence-associated genes, reflecting the coordinated...... activation of degradation processes in senescing barley leaf tissues. This picture was confirmed in a detailed quantitative reverse transcription–PCR (qRT–PCR) experiment, which also showed distinct gene expression patterns for different members of the NAC gene family, suggesting a group of ~15 out of the 47...

  12. Ascophyllum nodosum Seaweed Extract Alleviates Drought Stress in Arabidopsis by Affecting Photosynthetic Performance and Related Gene Expression

    Directory of Open Access Journals (Sweden)

    Antonietta Santaniello

    2017-08-01

    Full Text Available Drought represents one of the most relevant abiotic stress affecting growth and yield of crop plants. In order to improve the agricultural productivity within the limited water and land resources, it is mandatory to increase crop yields in presence of unfavorable environmental stresses. The use of biostimulants, often containing seaweed extracts, represents one of the options for farmers willing to alleviate abiotic stress consequences on crops. In this work, we investigated the responses of Arabidopsis plants treated with an extract from the brown alga Ascophyllum nodosum (ANE, under drought stress conditions, demonstrating that ANE positively influences Arabidopsis survival. Pre-treatment with ANE induced a partial stomatal closure, associated with changes in the expression levels of genes involved in ABA-responsive and antioxidant system pathways. The pre-activation of these pathways results in a stronger ability of ANE-treated plants to maintain a better photosynthetic performance compared to untreated plants throughout the dehydration period, combined with a higher capacity to dissipate the excess of energy as heat in the reaction centers of photosystem II. Our results suggest that drought stressed plants treated with ANE are able to maintain a strong stomatal control and relatively higher values of both water use efficiency (WUE and mesophyll conductance during the last phase of dehydration. Simultaneously, the activation of a pre-induced antioxidant defense system, in combination with a more efficient energy dissipation mechanism, prevents irreversible damages to the photosynthetic apparatus. In conclusion, pre-treatment with ANE is effective to acclimate plants to the incoming stress, promoting an increased WUE and dehydration tolerance.

  13. Liver cell-derived microparticles activate hedgehog signaling and alter gene expression in hepatic endothelial cells.

    Science.gov (United States)

    Witek, Rafal P; Yang, Liu; Liu, Renshui; Jung, Youngmi; Omenetti, Alessia; Syn, Wing-Kin; Choi, Steve S; Cheong, Yeiwon; Fearing, Caitlin M; Agboola, Kolade M; Chen, Wei; Diehl, Anna Mae

    2009-01-01

    Angiogenesis contributes to vascular remodeling during cirrhosis. In cirrhotic livers, cholangiocytes, and myofibroblastic hepatic stellate cells (MF-HSC) produce Hedgehog (Hh) ligands. During embryogenesis Hh ligands are released from ligand-producing cells in microparticles and activate Hh signaling in endothelial cells. We studied whether adult liver cell-derived microparticles contain Hh ligands that alter hepatic sinusoidal endothelial cells (SEC). MF-HSC and cholangiocytes were exposed to platelet-derived growth factor to induce Hh ligands; microparticles were isolated from medium, analyzed by transmission electron microscopy and immunoblots, and applied to Hh-reporter-containing cells. Microparticles were obtained from serum and bile of rats after bile duct ligation (BDL) or sham surgery and applied to normal primary liver SEC with or without cyclopamine, an Hh signaling inhibitor. Effects on SEC gene expression were evaluated by quantitative reverse-transcription polymerase chain reaction and immunoblotting. Hh target gene expression and SEC activation markers were compared in primary SEC and in liver sections from healthy and BDL rats. Platelet-derived growth factor-treated MF-HSC and cholangiocytes released exosome-enriched microparticles containing biologically-active Hh ligands. BDL increased release of Hh-containing exosome-enriched microparticles into plasma and bile. Transmission electron microscopy and immunoblots revealed similarities among microparticles from all sources; all microparticles induced similar Hh-dependent changes in SEC gene expression. SEC from healthy livers did not express Hh target genes or activation markers, but both were up-regulated in SEC after BDL. Hh-containing exosome-enriched microparticles released from liver cells alter hepatic SEC gene expression, suggesting a novel mechanism for cirrhotic vasculopathy.

  14. Situational Motivation and Perceived Intensity: Their Interaction in Predicting Changes in Positive Affect from Physical Activity

    OpenAIRE

    Eva Guérin; Michelle S. Fortier

    2012-01-01

    There is evidence that affective experiences surrounding physical activity can contribute to the proper self-regulation of an active lifestyle. Motivation toward physical activity, as portrayed by self-determination theory, has been linked to positive affect, as has the intensity of physical activity, especially of a preferred nature. The purpose of this experimental study was to examine the interaction between situational motivation and intensity [i.e., ratings of perceived exertion (RPE)] i...

  15. ADHD and Disruptive behavior scores – associations with MAO-A and 5-HTT genes and with platelet MAO-B activity in adolescents

    Directory of Open Access Journals (Sweden)

    Larsson Jan-Olov

    2008-04-01

    Full Text Available Abstract Background Pharmacological and genetic studies suggest the importance of the dopaminergic, serotonergic, and noradrenergic systems in the pathogenesis of Attention Deficit Hyperactivity Disorder (ADHD and Disruptive Behavior Disorder (DBD. We have, in a population-based sample, studied associations between dimensions of the ADHD/DBD phenotype and Monoamine Oxidase B (MAO-B activity in platelets and polymorphisms in two serotonergic genes: the Monoamine Oxidase A Variable Number of Tandem Repeats (MAO-A VNTR and the 5-Hydroxytryptamine Transporter gene-Linked Polymorphic Region (5-HTT LPR. Methods A population-based sample of twins, with an average age of 16 years, was assessed for ADHD/DBD with a clinical interview; Kiddie Schedule for Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime Version (K-SADS-PL. Blood was drawn from 247 subjects and analyzed for platelet MAO-B activity and polymorphisms in the MAO-A and 5-HTT genes. Results We found an association in girls between low platelet MAO-B activity and symptoms of Oppositional Defiant Disorder (ODD. In girls, there was also an association between the heterozygote long/short 5-HTT LPR genotype and symptoms of conduct disorder. Furthermore the heterozygote 5-HTT LPR genotype in boys was found to be associated with symptoms of Conduct Disorder (CD. In boys, hemizygosity for the short MAO-A VNTR allele was associated with disruptive behavior. Conclusion Our study suggests that the serotonin system, in addition to the dopamine system, should be further investigated when studying genetic influences on the development of Disruptive Behavior Disorders.

  16. Light quality affects flavonoid production and related gene expression in Cyclocarya paliurus.

    Science.gov (United States)

    Liu, Yang; Fang, Shengzuo; Yang, Wanxia; Shang, Xulan; Fu, Xiangxiang

    2018-02-01

    Understanding the responses of plant growth and secondary metabolites to differential light conditions is very important to optimize cultivation conditions of medicinal woody plants. As a highly valued and multiple function tree species, Cyclocarya paliurus is planted and managed for timber production and medical use. In this study, LED-based light including white light (WL), blue light (BL), red light (RL), and green light (GL) were used to affect leaf biomass production, flavonoid accumulation and related gene expression of one-year C. paliurus seedlings in controlled environments. After the treatments of 60 days, the highest leaf biomass appeared in the treatment of WL, while the lowest leaf biomass was found under GL. Compared to WL, the total flavonoid contents of C. paliurus leaves were significantly higher in BL, RL, and GL, but the highest values of selected flavonoids (kaempferol, isoquercitrin and quercetin) were observed under BL. Furthermore, the greatest yields of total and selected flavonoids in C. paliurus leaves per seedling were also achieved under BL, indicating that blue light was effective for inducing the production of flavonoids in C. paliurus leaves. Pearson's correlation analysis showed that there were significantly positive correlations between leaf flavonoid content and relative gene expression of key enzymes (phenylalanine ammonia lyase, PAL; 4-coumaroyl CoA-ligase, 4CL; and chalcone synthase, CHS) in the upstream, which converting phenylalanine into the flavonoid skeleton of tetrahydroxy chalcone. It is concluded that manipulating light quality may be potential mean to achieve the highest yields of flavonoids in C. paliurus cultivation, however this needs to be further verified by more field trials. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Association of Polymorphisms in BDNF, MTHFR, and Genes Involved in the Dopaminergic Pathway with Memory in a Healthy Chinese Population

    Science.gov (United States)

    Yeh, Ting-Kuang; Hu, Chung-Yi; Yeh, Ting-Chi; Lin, Pei-Jung; Wu, Chung-Hsin; Lee, Po-Lei; Chang, Chun-Yen

    2012-01-01

    The contribution of genetic factors to the memory is widely acknowledged. Research suggests that these factors include genes involved in the dopaminergic pathway, as well as the genes for brain-derived neurotrophic factor (BDNF) and methylenetetrahydrofolate reductase (MTHFR). The activity of the products of these genes is affected by single…

  18. Promoter activity of polypyrimidine tract-binding protein genes of potato responds to environmental cues.

    Science.gov (United States)

    Butler, Nathaniel M; Hannapel, David J

    2012-12-01

    Polypyrimidine tract-binding (PTB) proteins are RNA-binding proteins that target specific RNAs for post-transcriptional processing by binding cytosine/uracil motifs. PTBs have established functions in a range of RNA processes including splicing, translation, stability and long-distance transport. Six PTB-like genes identified in potato have been grouped into two clades based on homology to other known plant PTBs. StPTB1 and StPTB6 are closely related to a PTB protein discovered in pumpkin, designated CmRBP50, and contain four canonical RNA-recognition motifs. CmRBP50 is expressed in phloem tissues and functions as the core protein of a phloem-mobile RNA/protein complex. Sequence from the potato genome database was used to clone the upstream sequence of these two PTB genes and analyzed to identify conserved cis-elements. The promoter of StPTB6 was enriched for regulatory elements for light and sucrose induction and defense. Upstream sequence of both PTB genes was fused to β-glucuronidase and monitored in transgenic potato lines. In whole plants, the StPTB1 promoter was most active in leaf veins and petioles, whereas StPTB6 was most active in leaf mesophyll. Both genes are active in new tubers and tuber sprouts. StPTB6 expression was induced in stems and stolon sections in response to sucrose and in leaves or petioles in response to light, heat, drought and mechanical wounding. These results show that CmRBP50-like genes of potato exhibit distinct expression patterns and respond to both developmental and environmental cues.

  19. The association between short periods of everyday life activities and affective states: a replication study using ambulatory assessment

    Directory of Open Access Journals (Sweden)

    Thomas eBossmann

    2013-04-01

    Full Text Available Regularly conducted exercise programs effectively influence affective states. Studies suggest that this is also true for short bouts of physical activity of ten minutes or less. Accordingly, everyday life activities of short duration might be used to regulate affective states. However, this association has rarely been studied in reference to unstructured activities in ongoing real-life situations. The current study examined the influence of various everyday life activities on three dimensions of mood (valence, calmness, energetic arousal in a predominantly inactive sample. Ambulatory Assessment (AA was used to investigate the association between actual physical activity (aPA and affective states during the course of one day. Seventy-seven students ages 19 - 30 participated in the study. aPA was assessed with accelerometers, and affective state assessments were conducted hourly using an e-diary with a six-item mood scale that was specially designed for AA. Multilevel analyses indicated that the mood dimensions energetic arousal (p = .001 and valence (p = .005 were positively influenced by the intensity of the activity carried out in the ten minutes prior to the assessment. As their activity increased, the participants’ positive feelings and energetic arousal increased. However, the students’ calmness was not affected by their activity levels. The findings highlight the importance of integrating short activity intervals of 10 minutes or less into everyday life routines to improve affective states.

  20. Identification of molecular pathways affected by pterostilbene, a natural dimethylether analog of resveratrol

    Directory of Open Access Journals (Sweden)

    Duke Stephen O

    2008-03-01

    Full Text Available Abstract Background Pterostilbene, a naturally occurring phenolic compound produced by agronomically important plant genera such as Vitis and Vacciunium, is a phytoalexin exhibiting potent antifungal activity. Additionally, recent studies have demonstrated several important pharmacological properties associated with pterostilbene. Despite this, a systematic study of the effects of pterostilbene on eukaryotic cells at the molecular level has not been previously reported. Thus, the aim of the present study was to identify the cellular pathways affected by pterostilbene by performing transcript profiling studies, employing the model yeast Saccharomyces cerevisiae. Methods S. cerevisiae strain S288C was exposed to pterostilbene at the IC50 concentration (70 μM for one generation (3 h. Transcript profiling experiments were performed on three biological replicate samples using the Affymetrix GeneChip Yeast Genome S98 Array. The data were analyzed using the statistical methods available in the GeneSifter microarray data analysis system. To validate the results, eleven differentially expressed genes were further examined by quantitative real-time RT-PCR, and S. cerevisiae mutant strains with deletions in these genes were analyzed for altered sensitivity to pterostilbene. Results Transcript profiling studies revealed that pterostilbene exposure significantly down-regulated the expression of genes involved in methionine metabolism, while the expression of genes involved in mitochondrial functions, drug detoxification, and transcription factor activity were significantly up-regulated. Additional analyses revealed that a large number of genes involved in lipid metabolism were also affected by pterostilbene treatment. Conclusion Using transcript profiling, we have identified the cellular pathways targeted by pterostilbene, an analog of resveratrol. The observed response in lipid metabolism genes is consistent with its known hypolipidemic properties, and the

  1. Factors affecting trip generation of motorcyclist for the purpose of non-mandatory activities

    Science.gov (United States)

    Anggraini, Renni; Sugiarto, Sugiarto; Pramanda, Heru

    2017-11-01

    The inadequate facilities and limited access to public transport reflect many people using private vehicles, in particular, motorcycle. The motorcycle is most widely used in Indonesia, recently, including Aceh Province. As a result, the number of motorcycle ownership is increasing significantly. The increasing number of motorcycles leads to complex traffic problems. Several factors tend to affect the trip generation of the motorcyclist, i.e., the social demographics of individuals and families, accessibility, etc. This study aims to analyze the characteristics of motorcyclists for non-mandatory activities, i.e. activities other than to work and school. It also aims to determine the dominant factors that affect their trips through trip generation models. The required data consist of primary data and secondary data. Primary data consists of a home interview survey that collects individual's daily trips. It is conducted by distributing the questionnaires to 400 families residing in Lhokseumawe City. Modeling the trip generation of the motorcyclist is done by multiple linear regression analysis. Parameters calibration uses OLS (Ordinary Least Square) method. The results showed that the dominant variables that affect the trip generation of motorcyclist for non-mandatory activities are license ownership, housewife, school-age children, middle-income household, and lower education level. It can be concluded that some factors affecting trip generation to non-work activities were female motorcyclists from the middle-income household with lower education level. As their status is mostly as the housewife, escorting children to non-school activities seems to the mother's task, instead of the father. It is clear that, most female ride motorcycle for doing household tasks. However, it should be noted that the use of the motorcycle in long-term does not suit for sustainable transportation.

  2. Coordinate gene regulation by fimbriae-induced signal transduction

    DEFF Research Database (Denmark)

    Schembri, Mark; Klemm, Per

    2001-01-01

    whether fimbriae expression can affect expression of other genes, Analysis of gene expression in two E.coli strains, differing in the fim locus, indicated the flu gene to be affected. The flu gene encodes the antigen 43 (Ag43) surface protein, specifically involved in bacterial aggregation...

  3. Single nucleotide polymorphisms linked to mitochondrial uncoupling protein genes UCP2 and UCP3 affect mitochondrial metabolism and healthy aging in female nonagenarians.

    Science.gov (United States)

    Kim, Sangkyu; Myers, Leann; Ravussin, Eric; Cherry, Katie E; Jazwinski, S Michal

    2016-08-01

    Energy expenditure decreases with age, but in the oldest-old, energy demand for maintenance of body functions increases with declining health. Uncoupling proteins have profound impact on mitochondrial metabolic processes; therefore, we focused attention on mitochondrial uncoupling protein genes. Alongside resting metabolic rate (RMR), two SNPs in the promoter region of UCP2 were associated with healthy aging. These SNPs mark potential binding sites for several transcription factors; thus, they may affect expression of the gene. A third SNP in the 3'-UTR of UCP3 interacted with RMR. This UCP3 SNP is known to impact UCP3 expression in tissue culture cells, and it has been associated with body weight and mitochondrial energy metabolism. The significant main effects of the UCP2 SNPs and the interaction effect of the UCP3 SNP were also observed after controlling for fat-free mass (FFM) and physical-activity related energy consumption. The association of UCP2/3 with healthy aging was not found in males. Thus, our study provides evidence that the genetic risk factors for healthy aging differ in males and females, as expected from the differences in the phenotypes associated with healthy aging between the two sexes. It also has implications for how mitochondrial function changes during aging.

  4. Physical activity enhances long-term quality of life in older adults: efficacy, esteem, and affective influences.

    Science.gov (United States)

    Elavsky, Steriani; McAuley, Edward; Motl, Robert W; Konopack, James F; Marquez, David X; Hu, Liang; Jerome, Gerald J; Diener, Ed

    2005-10-01

    Physical activity has been effective in enhancing quality of life (QOL) of older adults over relatively short periods of time. However, little is known about the long-term effects of physical activity and even less about the possible mediators of this relationship. We examined the mediating effects of psychological variables on the relationship between physical activity and global QOL (satisfaction with life) in older adults over a 4-year period. Participants (N = 174, M age = 66.7 years) completed a battery of psychosocial measures at 1 and 5 years following enrollment in a 6-month randomized controlled exercise trial. Panel analysis conducted within a covariance modeling framework indicated that physical activity was related to self-efficacy, physical self-esteem, and positive affect at 1 year, and in turn, greater levels of self-efficacy and positive affect were associated with higher levels of QOL. Analyses indicated that changes in physical activity over the 4-year period were related to increases in physical self-esteem and positive affect, but only positive affect directly influenced improvements in QOL. The findings lend support to the position that physical activity effects on QOL are in part mediated by intermediate psychological outcomes and that physical activity can have long-term effects on well-being.

  5. The relationship among gene expression, the evolution of gene dosage, and the rate of protein evolution.

    Directory of Open Access Journals (Sweden)

    Jean-François Gout

    2010-05-01

    Full Text Available The understanding of selective constraints affecting genes is a major issue in biology. It is well established that gene expression level is a major determinant of the rate of protein evolution, but the reasons for this relationship remain highly debated. Here we demonstrate that gene expression is also a major determinant of the evolution of gene dosage: the rate of gene losses after whole genome duplications in the Paramecium lineage is negatively correlated to the level of gene expression, and this relationship is not a byproduct of other factors known to affect the fate of gene duplicates. This indicates that changes in gene dosage are generally more deleterious for highly expressed genes. This rule also holds for other taxa: in yeast, we find a clear relationship between gene expression level and the fitness impact of reduction in gene dosage. To explain these observations, we propose a model based on the fact that the optimal expression level of a gene corresponds to a trade-off between the benefit and cost of its expression. This COSTEX model predicts that selective pressure against mutations changing gene expression level or affecting the encoded protein should on average be stronger in highly expressed genes and hence that both the frequency of gene loss and the rate of protein evolution should correlate negatively with gene expression. Thus, the COSTEX model provides a simple and common explanation for the general relationship observed between the level of gene expression and the different facets of gene evolution.

  6. The KDM5 family is required for activation of pro-proliferative cell cycle genes during adipocyte differentiation

    DEFF Research Database (Denmark)

    Brier, Ann-Sofie B; Loft, Anne; Madsen, Jesper G S

    2017-01-01

    The KDM5 family of histone demethylases removes the H3K4 tri-methylation (H3K4me3) mark frequently found at promoter regions of actively transcribed genes and is therefore generally considered to contribute to corepression. In this study, we show that knockdown (KD) of all expressed members...... of the KDM5 family in white and brown preadipocytes leads to deregulated gene expression and blocks differentiation to mature adipocytes. KDM5 KD leads to a considerable increase in H3K4me3 at promoter regions; however, these changes in H3K4me3 have a limited effect on gene expression per se. By contrast......, genome-wide analyses demonstrate that KDM5A is strongly enriched at KDM5-activated promoters, which generally have high levels of H3K4me3 and are associated with highly expressed genes. We show that KDM5-activated genes include a large set of cell cycle regulators and that the KDM5s are necessary...

  7. Molecular Mechanism for Various Pharmacological Activities of NSAIDS

    Directory of Open Access Journals (Sweden)

    Tohru Mizushima

    2010-05-01

    Full Text Available The anti-inflammatory action of non-steroidal anti-inflammatory drugs (NSAIDs is mediated through their inhibitory effects on cyclooxygenase (COX activity. On the other hand, NSAID use is often associated with gastrointestinal complications. The inhibition of COX by NSAIDs is not the sole explanation for the gastrointestinal side effects of NSAIDs. Furthermore, recent epidemiological studies have revealed that prolonged NSAID use reduces the risk of cancer and Alzheimer’s disease (AD and a COX-independent unknown mechanism is suggested to be involved in these activities of NSAIDs. In this article, I review our recent work on the COX-independent mechanism involved in NSAID-induced gastric lesions and anti-tumor and anti-AD activities of NSAIDs. Using DNA microarray analysis, we found that NSAIDs affect expression of various genes in a COX-independent manner. We found that membrane permeabilization activity of NSAIDs and resulting NSAID-induced apoptosis are involved in NSAID-induced gastric lesions. On the other hand, induction of expression of tight junction-related genes and endoplasmic reticulum chaperones were suggested to be involved in anti-tumor and anti-AD, respectively, activities of NSAIDs. These results suggest that NSAIDs affect expression of various genes in a COX-independent manner, which is involved in various pharmacological activities of NSAIDs.

  8. Impact of Transgenic Brassica napus Harboring the Antifungal Synthetic Chitinase (NiC Gene on Rhizosphere Microbial Diversity and Enzyme Activities

    Directory of Open Access Journals (Sweden)

    Mohammad S. Khan

    2017-07-01

    Full Text Available Transgenic Brassica napus harboring the synthetic chitinase (NiC gene exhibits broad-spectrum antifungal resistance. As the rhizosphere microorganisms play an important role in element cycling and nutrient transformation, therefore, biosafety assessment of NiC containing transgenic plants on soil ecosystem is a regulatory requirement. The current study is designed to evaluate the impact of NiC gene on the rhizosphere enzyme activities and microbial community structure. The transgenic lines with the synthetic chitinase gene (NiC showed resistance to Alternaria brassicicola, a common disease causing fungal pathogen. The rhizosphere enzyme analysis showed no significant difference in the activities of fivesoil enzymes: alkalyine phosphomonoestarase, arylsulphatase, β-glucosidase, urease and sucrase between the transgenic and non-transgenic lines of B. napus varieties, Durr-e-NIFA (DN and Abasyne-95 (AB-95. However, varietal differences were observed based on the analysis of molecular variance. Some individual enzymes were significantly different in the transgenic lines from those of non-transgenic but the results were not reproducible in the second trail and thus were considered as environmental effect. Genotypic diversity of soil microbes through 16S–23S rRNA intergenic spacer region amplification was conducted to evaluate the potential impact of the transgene. No significant diversity (4% for bacteria and 12% for fungal between soil microbes of NiC B. napus and the non-transgenic lines was found. However, significant varietal differences were observed between DN and AB-95 with 79% for bacterial and 54% for fungal diversity. We conclude that the NiC B. napus lines may not affect the microbial enzyme activities and community structure of the rhizosphere soil. Varietal differences might be responsible for minor changes in the tested parameters.

  9. CNVs affecting cancer predisposing genes (CPGs) detected as incidental findings in routine germline diagnostic chromosomal microarray (CMA) testing.

    Science.gov (United States)

    Innes, Josie; Reali, Lisa; Clayton-Smith, Jill; Hall, Georgina; Lim, Derek Hk; Burghel, George J; French, Kim; Khan, Unzela; Walker, Daniel; Lalloo, Fiona; Evans, D Gareth R; McMullan, Dominic; Maher, Eamonn R; Woodward, Emma R

    2018-02-01

    Identification of CNVs through chromosomal microarray (CMA) testing is the first-line investigation in individuals with learning difficulties/congenital abnormalities. Although recognised that CMA testing may identify CNVs encompassing a cancer predisposition gene (CPG), limited information is available on the frequency and nature of such results. We investigated CNV gains and losses affecting 39 CPGs in 3366 pilot index case individuals undergoing CMA testing, and then studied an extended cohort (n=10 454) for CNV losses at 105 CPGs and CNV gains at 9 proto-oncogenes implicated in inherited cancer susceptibility. In the pilot cohort, 31/3366 (0.92%) individuals had a CNV involving one or more of 16/39 CPGs. 30/31 CNVs involved a tumour suppressor gene (TSG), and 1/30 a proto-oncogene (gain of MET ). BMPR1A , TSC2 and TMEM127 were affected in multiple cases. In the second stage analysis, 49/10 454 (0.47%) individuals in the extended cohort had 50 CNVs involving 24/105 CPGs. 43/50 CNVs involved a TSG and 7/50 a proto-oncogene (4 gains, 3 deletions). The most frequently involved genes, FLCN (n=10) and SDHA (n=7), map to the Smith-Magenis and cri-du-chat regions, respectively. Incidental identification of a CNV involving a CPG is not rare and poses challenges for future cancer risk estimation. Prospective data collection from CPG-CNV cohorts ascertained incidentally and through syndromic presentations is required to determine the risks posed by specific CNVs. In particular, ascertainment and investigation of adults with CPG-CNVs and adults with learning disability and cancer, could provide important information to guide clinical management and surveillance. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. Hypoxia and bicarbonate could limit the expression of iron acquisition genes in Strategy I plants by affecting ethylene synthesis and signaling in different ways.

    Science.gov (United States)

    García, María J; García-Mateo, María J; Lucena, Carlos; Romera, Francisco J; Rojas, Carmen L; Alcántara, Esteban; Pérez-Vicente, Rafael

    2014-01-01

    In a previous work, it was shown that bicarbonate (one of the most important factors causing Fe chlorosis in Strategy I plants) can limit the expression of several genes involved in Fe acquisition. Hypoxia is considered another important factor causing Fe chlorosis, mainly on calcareous soils. However, to date it is not known whether hypoxia aggravates Fe chlorosis by affecting bicarbonate concentration or by specific negative effects on Fe acquisition. Results found in this work show that hypoxia, generated by eliminating the aeration of the nutrient solution, can limit the expression of several Fe acquisition genes in Fe-deficient Arabidopsis, cucumber and pea plants, like the genes for ferric reductases AtFRO2, PsFRO1 and CsFRO1; iron transporters AtIRT1, PsRIT1 and CsIRT1; H(+) -ATPase CsHA1; and transcription factors AtFIT, AtbHLH38, and AtbHLH39. Interestingly, the limitation of the expression of Fe-acquisition genes by hypoxia did not occur in the Arabidopsis ethylene constitutive mutant ctr1, which suggests that the negative effect of hypoxia is related to ethylene, an hormone involved in the upregulation of Fe acquisition genes. As for hypoxia, results obtained by applying bicarbonate to the nutrient solution suggests that ethylene is also involved in its negative effect, since ACC (1-aminocyclopropane-1-carboxylic acid; ethylene precursor) partially reversed the negative effect of bicarbonate on the expression of Fe acquisition genes. Taken together, the results obtained show that hypoxia and bicarbonate could induce Fe chlorosis by limiting the expression of Fe acquisition genes, probably because each factor negatively affects different steps of ethylene synthesis and/or signaling. © 2013 Scandinavian Plant Physiology Society.

  11. Trichomonas vaginalis Cysteine Proteinases: Iron Response in Gene Expression and Proteolytic Activity

    Science.gov (United States)

    Cárdenas-Guerra, Rosa Elena; Figueroa-Angulo, Elisa Elvira; Puente-Rivera, Jonathan; Zamudio-Prieto, Olga; Ortega-López, Jaime

    2015-01-01

    We focus on the iron response of Trichomonas vaginalis to gene family products such as the cysteine proteinases (CPs) involved in virulence properties. In particular, we examined the effect of iron on the gene expression regulation and function of cathepsin L-like and asparaginyl endopeptidase-like CPs as virulence factors. We addressed some important aspects about CPs genomic organization and we offer possible explanations to the fact that only few members of this large gene family are expressed at the RNA and protein levels and the way to control their proteolytic activity. We also summarized all known iron regulations of CPs at transcriptional, posttranscriptional, and posttranslational levels along with new insights into the possible epigenetic and miRNA processes. PMID:26090464

  12. Environmental layout complexity affects neural activity during navigation in humans.

    Science.gov (United States)

    Slone, Edward; Burles, Ford; Iaria, Giuseppe

    2016-05-01

    Navigating large-scale surroundings is a fundamental ability. In humans, it is commonly assumed that navigational performance is affected by individual differences, such as age, sex, and cognitive strategies adopted for orientation. We recently showed that the layout of the environment itself also influences how well people are able to find their way within it, yet it remains unclear whether differences in environmental complexity are associated with changes in brain activity during navigation. We used functional magnetic resonance imaging to investigate how the brain responds to a change in environmental complexity by asking participants to perform a navigation task in two large-scale virtual environments that differed solely in interconnection density, a measure of complexity defined as the average number of directional choices at decision points. The results showed that navigation in the simpler, less interconnected environment was faster and more accurate relative to the complex environment, and such performance was associated with increased activity in a number of brain areas (i.e. precuneus, retrosplenial cortex, and hippocampus) known to be involved in mental imagery, navigation, and memory. These findings provide novel evidence that environmental complexity not only affects navigational behaviour, but also modulates activity in brain regions that are important for successful orientation and navigation. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. Gene expression analysis after receptor tyrosine kinase activation reveals new potential melanoma proteins

    International Nuclear Information System (INIS)

    Teutschbein, Janka; Haydn, Johannes M; Samans, Birgit; Krause, Michael; Eilers, Martin; Schartl, Manfred; Meierjohann, Svenja

    2010-01-01

    Melanoma is an aggressive tumor with increasing incidence. To develop accurate prognostic markers and targeted therapies, changes leading to malignant transformation of melanocytes need to be understood. In the Xiphophorus melanoma model system, a mutated version of the EGF receptor Xmrk (Xiphophorus melanoma receptor kinase) triggers melanomagenesis. Cellular events downstream of Xmrk, such as the activation of Akt, Ras, B-Raf or Stat5, were also shown to play a role in human melanomagenesis. This makes the elucidation of Xmrk downstream targets a useful method for identifying processes involved in melanoma formation. Here, we analyzed Xmrk-induced gene expression using a microarray approach. Several highly expressed genes were confirmed by realtime PCR, and pathways responsible for their induction were revealed using small molecule inhibitors. The expression of these genes was also monitored in human melanoma cell lines, and the target gene FOSL1 was knocked down by siRNA. Proliferation and migration of siRNA-treated melanoma cell lines were then investigated. Genes with the strongest upregulation after receptor activation were FOS-like antigen 1 (Fosl1), early growth response 1 (Egr1), osteopontin (Opn), insulin-like growth factor binding protein 3 (Igfbp3), dual-specificity phosphatase 4 (Dusp4), and tumor-associated antigen L6 (Taal6). Interestingly, most genes were blocked in presence of a SRC kinase inhibitor. Importantly, we found that FOSL1, OPN, IGFBP3, DUSP4, and TAAL6 also exhibited increased expression levels in human melanoma cell lines compared to human melanocytes. Knockdown of FOSL1 in human melanoma cell lines reduced their proliferation and migration. Altogether, the data show that the receptor tyrosine kinase Xmrk is a useful tool in the identification of target genes that are commonly expressed in Xmrk-transgenic melanocytes and melanoma cell lines. The identified molecules constitute new possible molecular players in melanoma development

  14. Gene expression analysis after receptor tyrosine kinase activation reveals new potential melanoma proteins

    Directory of Open Access Journals (Sweden)

    Krause Michael

    2010-07-01

    Full Text Available Abstract Background Melanoma is an aggressive tumor with increasing incidence. To develop accurate prognostic markers and targeted therapies, changes leading to malignant transformation of melanocytes need to be understood. In the Xiphophorus melanoma model system, a mutated version of the EGF receptor Xmrk (Xiphophorus melanoma receptor kinase triggers melanomagenesis. Cellular events downstream of Xmrk, such as the activation of Akt, Ras, B-Raf or Stat5, were also shown to play a role in human melanomagenesis. This makes the elucidation of Xmrk downstream targets a useful method for identifying processes involved in melanoma formation. Methods Here, we analyzed Xmrk-induced gene expression using a microarray approach. Several highly expressed genes were confirmed by realtime PCR, and pathways responsible for their induction were revealed using small molecule inhibitors. The expression of these genes was also monitored in human melanoma cell lines, and the target gene FOSL1 was knocked down by siRNA. Proliferation and migration of siRNA-treated melanoma cell lines were then investigated. Results Genes with the strongest upregulation after receptor activation were FOS-like antigen 1 (Fosl1, early growth response 1 (Egr1, osteopontin (Opn, insulin-like growth factor binding protein 3 (Igfbp3, dual-specificity phosphatase 4 (Dusp4, and tumor-associated antigen L6 (Taal6. Interestingly, most genes were blocked in presence of a SRC kinase inhibitor. Importantly, we found that FOSL1, OPN, IGFBP3, DUSP4, and TAAL6 also exhibited increased expression levels in human melanoma cell lines compared to human melanocytes. Knockdown of FOSL1 in human melanoma cell lines reduced their proliferation and migration. Conclusion Altogether, the data show that the receptor tyrosine kinase Xmrk is a useful tool in the identification of target genes that are commonly expressed in Xmrk-transgenic melanocytes and melanoma cell lines. The identified molecules constitute

  15. Natural variation in the VELVET gene bcvel1 affects virulence and light-dependent differentiation in Botrytis cinerea.

    Directory of Open Access Journals (Sweden)

    Julia Schumacher

    Full Text Available Botrytis cinerea is an aggressive plant pathogen causing gray mold disease on various plant species. In this study, we identified the genetic origin for significantly differing phenotypes of the two sequenced B. cinerea isolates, B05.10 and T4, with regard to light-dependent differentiation, oxalic acid (OA formation and virulence. By conducting a map-based cloning approach we identified a single nucleotide polymorphism (SNP in an open reading frame encoding a VELVET gene (bcvel1. The SNP in isolate T4 results in a truncated protein that is predominantly found in the cytosol in contrast to the full-length protein of isolate B05.10 that accumulates in the nuclei. Deletion of the full-length gene in B05.10 resulted in the T4 phenotype, namely light-independent conidiation, loss of sclerotial development and oxalic acid production, and reduced virulence on several host plants. These findings indicate that the identified SNP represents a loss-of-function mutation of bcvel1. In accordance, the expression of the B05.10 copy in T4 rescued the wild-type/B05.10 phenotype. BcVEL1 is crucial for full virulence as deletion mutants are significantly hampered in killing and decomposing plant tissues. However, the production of the two best known secondary metabolites, the phytotoxins botcinic acid and botrydial, are not affected by the deletion of bcvel1 indicating that other factors are responsible for reduced virulence. Genome-wide expression analyses of B05.10- and Δbcvel1-infected plant material revealed a number of genes differentially expressed in the mutant: while several protease- encoding genes are under-expressed in Δbcvel1 compared to the wild type, the group of over-expressed genes is enriched for genes encoding sugar, amino acid and ammonium transporters and glycoside hydrolases reflecting the response of Δbcvel1 mutants to nutrient starvation conditions.

  16. Natural variation in the VELVET gene bcvel1 affects virulence and light-dependent differentiation in Botrytis cinerea.

    Science.gov (United States)

    Schumacher, Julia; Pradier, Jean-Marc; Simon, Adeline; Traeger, Stefanie; Moraga, Javier; Collado, Isidro González; Viaud, Muriel; Tudzynski, Bettina

    2012-01-01

    Botrytis cinerea is an aggressive plant pathogen causing gray mold disease on various plant species. In this study, we identified the genetic origin for significantly differing phenotypes of the two sequenced B. cinerea isolates, B05.10 and T4, with regard to light-dependent differentiation, oxalic acid (OA) formation and virulence. By conducting a map-based cloning approach we identified a single nucleotide polymorphism (SNP) in an open reading frame encoding a VELVET gene (bcvel1). The SNP in isolate T4 results in a truncated protein that is predominantly found in the cytosol in contrast to the full-length protein of isolate B05.10 that accumulates in the nuclei. Deletion of the full-length gene in B05.10 resulted in the T4 phenotype, namely light-independent conidiation, loss of sclerotial development and oxalic acid production, and reduced virulence on several host plants. These findings indicate that the identified SNP represents a loss-of-function mutation of bcvel1. In accordance, the expression of the B05.10 copy in T4 rescued the wild-type/B05.10 phenotype. BcVEL1 is crucial for full virulence as deletion mutants are significantly hampered in killing and decomposing plant tissues. However, the production of the two best known secondary metabolites, the phytotoxins botcinic acid and botrydial, are not affected by the deletion of bcvel1 indicating that other factors are responsible for reduced virulence. Genome-wide expression analyses of B05.10- and Δbcvel1-infected plant material revealed a number of genes differentially expressed in the mutant: while several protease- encoding genes are under-expressed in Δbcvel1 compared to the wild type, the group of over-expressed genes is enriched for genes encoding sugar, amino acid and ammonium transporters and glycoside hydrolases reflecting the response of Δbcvel1 mutants to nutrient starvation conditions.

  17. Deletion of pH Regulator pac-3 Affects Cellulase and Xylanase Activity during Sugarcane Bagasse Degradation by Neurospora crassa.

    Directory of Open Access Journals (Sweden)

    Amanda Cristina Campos Antoniêto

    Full Text Available Microorganisms play a vital role in bioethanol production whose usage as fuel energy is increasing worldwide. The filamentous fungus Neurospora crassa synthesize and secrete the major enzymes involved in plant cell wall deconstruction. The production of cellulases and hemicellulases is known to be affected by the environmental pH; however, the regulatory mechanisms of this process are still poorly understood. In this study, we investigated the role of the pH regulator PAC-3 in N. crassa during their growth on sugarcane bagasse at different pH conditions. Our data indicate that secretion of cellulolytic enzymes is reduced in the mutant Δpac-3 at alkaline pH, whereas xylanases are positively regulated by PAC-3 in acidic (pH 5.0, neutral (pH 7.0, and alkaline (pH 10.0 medium. Gene expression profiles, evaluated by real-time qPCR, revealed that genes encoding cellulases and hemicellulases are also subject to PAC-3 control. Moreover, deletion of pac-3 affects the expression of transcription factor-encoding genes. Together, the results suggest that the regulation of holocellulase genes by PAC-3 can occur as directly as in indirect manner. Our study helps improve the understanding of holocellulolytic performance in response to PAC-3 and should thereby contribute to the better use of N. crassa in the biotechnology industry.

  18. Affective response to a loved one's pain: insula activity as a function of individual differences.

    Directory of Open Access Journals (Sweden)

    Viridiana Mazzola

    Full Text Available Individual variability in emotion processing may be associated with genetic variation as well as with psychological predispositions such as dispositional affect styles. Our previous fMRI study demonstrated that amygdala reactivity was independently predicted by affective-cognitive styles (phobic prone or eating disorders prone and genotype of the serotonin transporter in a discrimination task of fearful facial expressions. Since the insula is associated with the subjective evaluation of bodily states and is involved in human feelings, we explored whether its activity could also vary in function of individual differences. In the present fMRI study, the association between dispositional affects and insula reactivity has been examined in two groups of healthy participants categorized according to affective-cognitive styles (phobic prone or eating disorders prone. Images of the faces of partners and strangers, in both painful and neutral situations, were used as visual stimuli. Interaction analyses indicate significantly different activations in the two groups in reaction to a loved one's pain: the phobic prone group exhibited greater activation in the left posterior insula. These results demonstrate that affective-cognitive style is associated with insula activity in pain empathy processing, suggesting a greater involvement of the insula in feelings for a certain cohort of people. In the mapping of individual differences, these results shed new light on variability in neural networks of emotion.

  19. Mice Lacking EGR1 Have Impaired Clock Gene (BMAL1) Oscillation, Locomotor Activity, and Body Temperature.

    Science.gov (United States)

    Riedel, Casper Schwartz; Georg, Birgitte; Jørgensen, Henrik L; Hannibal, Jens; Fahrenkrug, Jan

    2018-01-01

    Early growth response transcription factor 1 (EGR1) is expressed in the suprachiasmatic nucleus (SCN) after light stimulation. We used EGR1-deficient mice to address the role of EGR1 in the clock function and light-induced resetting of the clock. The diurnal rhythms of expression of the clock genes BMAL1 and PER1 in the SCN were evaluated by semi-quantitative in situ hybridization. We found no difference in the expression of PER1 mRNA between wildtype and EGR1-deficient mice; however, the daily rhythm of BMAL1 mRNA was completely abolished in the EGR1-deficient mice. In addition, we evaluated the circadian running wheel activity, telemetric locomotor activity, and core body temperature of the mice. Loss of EGR1 neither altered light-induced phase shifts at subjective night nor affected negative masking. Overall, circadian light entrainment was found in EGR1-deficient mice but they displayed a reduced locomotor activity and an altered temperature regulation compared to wild type mice. When placed in running wheels, a subpopulation of EGR1-deficient mice displayed a more disrupted activity rhythm with no measurable endogenous period length (tau). In conclusion, the present study provides the first evidence that the circadian clock in the SCN is disturbed in mice deficient of EGR1.

  20. Assembly of the Genome of the Disease Vector Aedes aegypti onto a Genetic Linkage Map Allows Mapping of Genes Affecting Disease Transmission

    KAUST Repository

    Juneja, Punita

    2014-01-30

    The mosquito Aedes aegypti transmits some of the most important human arboviruses, including dengue, yellow fever and chikungunya viruses. It has a large genome containing many repetitive sequences, which has resulted in the genome being poorly assembled - there are 4,758 scaffolds, few of which have been assigned to a chromosome. To allow the mapping of genes affecting disease transmission, we have improved the genome assembly by scoring a large number of SNPs in recombinant progeny from a cross between two strains of Ae. aegypti, and used these to generate a genetic map. This revealed a high rate of misassemblies in the current genome, where, for example, sequences from different chromosomes were found on the same scaffold. Once these were corrected, we were able to assign 60% of the genome sequence to chromosomes and approximately order the scaffolds along the chromosome. We found that there are very large regions of suppressed recombination around the centromeres, which can extend to as much as 47% of the chromosome. To illustrate the utility of this new genome assembly, we mapped a gene that makes Ae. aegypti resistant to the human parasite Brugia malayi, and generated a list of candidate genes that could be affecting the trait. © 2014 Juneja et al.

  1. Effects of exogenous inosine monophosphate on growth performance, flavor compounds, enzyme activity, and gene expression of muscle tissues in chicken.

    Science.gov (United States)

    Yan, Junshu; Liu, Peifeng; Xu, Liangmei; Huan, Hailin; Zhou, Weiren; Xu, Xiaoming; Shi, Zhendan

    2018-04-01

    The goal of this experiment was to examine effects of diets supplemented with exogenous inosine monophosphate (IMP) on the growth performance, flavor compounds, enzyme activity and gene expression of chicken. A total of 1,500 healthy, 1-day-old male 3-yellow chickens were used for a 52-d experimental period. Individuals were randomly divided into 5 groups (group I, II, III, IV, V) with 6 replicates per group, and fed a basal diet supplemented with 0.0, 0.05, 0.1, 0.2, and 0.3% IMP, respectively. There was no significant response to the increasing dietary IMP level in average daily feed intake (ADFI), average daily gain (ADG), and feed:gain ratio (F/G) (P ≥ 0.05). IMP content of the breast and thigh muscle showed an exponential and linear response to the increasing dietary IMP level (P exogenous IMP was fed. There were significant effects of IMP level in diet on free amino acids (FAA) (exponential, linear and quadratic effect, P exogenous IMP was fed. Dietary IMP supplementation had a quadratic effect on 5΄-NT and the alkaline phosphatase (ALP) enzyme activity in the breast muscle (P exogenous IMP group had the highest (AMPD1) gene expression of the breast muscle and ATIC gene expression of the thigh muscle. These results indicate that dietary IMP did not affect the growth performance of chicken, the diet with 0.2 to 0.3% exogenous IMP is optimal to improve the meat flavor quality in chicken.

  2. Role of nuclear factor of activated T-cells and activator protein-1 in the inhibition of interleukin-2 gene transcription by cannabinol in EL4 T-cells.

    Science.gov (United States)

    Yea, S S; Yang, K H; Kaminski, N E

    2000-02-01

    We previously reported that immunosuppressive cannabinoids inhibited interleukin (IL)-2 steady-state mRNA expression and secretion by phorbol-12-myristate-13-acetate plus ionomycin-activated mouse splenocytes and EL4 murine T-cells. Here we show that inhibition of IL-2 production by cannabinol, a modest central nervous system-active cannabinoid, is mediated through the inhibition of IL-2 gene transcription. Moreover, electrophoretic mobility shift assays demonstrated that cannabinol markedly inhibited the DNA binding activity of nuclear factor of activated T-cells (NF-AT) and activator protein-1 (AP-1) in a time- and concentration-dependent manner in activated EL4 cells. The inhibitory effects produced by cannabinol on AP-1 DNA binding were quite transient, showing partial recovery by 240 min after cell activation and no effect on the activity of a reporter gene under the control of AP-1. Conversely, cannabinol-mediated inhibition of NF-AT was robust and sustained as demonstrated by an NF-AT-regulated reporter gene. Collectively, these results suggest that decreased IL-2 production by cannabinol in EL4 cells is due to the inhibition of transcriptional activation of the IL-2 gene and is mediated, at least in part, through a transient inhibition of AP-1 and a sustained inhibition of NF-AT.

  3. The ADRA2B gene in the production of false memories for affective information in healthy female volunteers.

    Science.gov (United States)

    Fairfield, Beth; Mammarella, Nicola; Di Domenico, Alberto; D'Aurora, Marco; Stuppia, Liborio; Gatta, Valentina

    2017-08-30

    False memories are common memory distortions in everyday life and seem to increase with affectively connoted complex information. In line with recent studies showing a significant interaction between the noradrenergic system and emotional memory, we investigated whether healthy volunteer carriers of the deletion variant of the ADRA2B gene that codes for the α2b-adrenergic receptor are more prone to false memories than non-carriers. In this study, we collected genotype data from 212 healthy female volunteers; 91 ADRA2B carriers and 121 non-carriers. To assess gene effects on false memories for affective information, factorial mixed model analysis of variances (ANOVAs) were conducted with genotype as the between-subjects factor and type of memory error as the within-subjects factor. We found that although carriers and non-carriers made comparable numbers of false memory errors, they showed differences in the direction of valence biases, especially for inferential causal errors. Specifically, carriers produced fewer causal false memory errors for scripts with a negative outcome, whereas non-carriers showed a more general emotional effect and made fewer causal errors with both positive and negative outcomes. These findings suggest that putatively higher levels of noradrenaline in deletion carriers may enhance short-term consolidation of negative information and lead to fewer memory distortions when facing negative events. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Letrozole induced low estrogen levels affected the expressions of duodenal and renal calcium-processing gene in laying hens.

    Science.gov (United States)

    Li, Qiao; Zhao, Xingkai; Wang, Shujie; Zhou, Zhenlei

    2018-01-01

    Estrogen regulates the calcium homeostasis in hens, but the mechanisms involved are still unclear fully. In this study, we investigated whether letrozole (LZ) induced low estrogen levels affected the calcium absorption and transport in layers. In the duodenum, we observed a significant decrease of mRNA expressions of Calbindin-28k (CaBP-28k) and plasma membrane Ca 2+ -ATPase (PMCA 1b) while CaBP-28k protein expression was declined in birds with LZ treatment, and the mRNA levels of duodenal transient receptor potential vanilloid 6 (TRPV6) and Na + /Ca 2+ exchanger 1 (NCX1) were not affected. Interestingly, we observed the different changes in the kidney. The renal mRNA expressions of TRPV6 and NCX1 were unregulated while the PMCA1b was down-regulated in low estrogen layers, however, the CaBP-28k gene and protein expressions were no changed in the kidney. Furthermore, it showed that the duodenal estradiol receptor 2 (ESR2) transcripts rather than parathyroid hormone 1 receptor (PTH1R) and calcitonin receptor (CALCR) played key roles to down-regulate calcium transport in LZ-treated birds. In conclusion, CaBP-28k, PMCA 1b and ESR2 genes in the duodenum may be primary targets for estrogen regulation in order to control calcium homeostasis in hens. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Persistent expression of activated notch in the developing hypothalamus affects survival of pituitary progenitors and alters pituitary structure.

    Science.gov (United States)

    Aujla, Paven K; Bogdanovic, Vedran; Naratadam, George T; Raetzman, Lori T

    2015-08-01

    As the pituitary gland develops, signals from the hypothalamus are necessary for pituitary induction and expansion. Little is known about the control of cues that regulate early signaling between the two structures. Ligands and receptors of the Notch signaling pathway are found in both the hypothalamus and Rathke's pouch. The downstream Notch effector gene Hes1 is required for proper pituitary formation; however, these effects could be due to the action of Hes1 in the hypothalamus, Rathke's pouch, or both. To determine the contribution of hypothalamic Notch signaling to pituitary organogenesis, we used mice with loss and gain of Notch function within the developing hypothalamus. We demonstrate that loss of Notch signaling by conditional deletion of Rbpj in the hypothalamus does not affect expression of Hes1 within the posterior hypothalamus or expression of Hes5. In contrast, expression of activated Notch within the hypothalamus results in ectopic Hes5 expression and increased Hes1 expression, which is sufficient to disrupt pituitary development and postnatal expansion. Taken together, our results indicate that Rbpj-dependent Notch signaling within the developing hypothalamus is not necessary for pituitary development, but persistent Notch signaling and ectopic Hes5 expression in hypothalamic progenitors affects pituitary induction and expansion. © 2015 Wiley Periodicals, Inc.

  6. Association between angiotensin II receptor gene polymorphism and serum angiotensin converting enzyme (SACE) activity in patients with sarcoidosis

    OpenAIRE

    Takemoto, Y.; Sakatani, M.; Takami, S.; Tachibana, T.; Higaki, J.; Ogihara, T.; Miki, T.; Katsuya, T.; Tsuchiyama, T.; Yoshida, A.; Yu, H.; Tanio, Y.; Ueda, E.

    1998-01-01

    BACKGROUND—Serum angiotensin converting enzyme (SACE) is considered to reflect disease activity in sarcoidosis. SACE activity is increased in many patients with active sarcoid lesions. The mechanism for the increased SACE activity in this disease has not been clarified. ACE insertion/deletion (I/D) gene polymorphism has been reported to have an association with SACE levels in sarcoidosis, but no evidence of an association between angiotensin II receptor gene polymorphism and SA...

  7. Isorhamnetin protects against oxidative stress by activating Nrf2 and inducing the expression of its target genes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ji Hye; Shin, Bo Yeon; Han, Jae Yun; Kim, Mi Gwang; Wi, Ji Eun [College of Pharmacy, Chosun University, Gwangju, 501-759 (Korea, Republic of); Kim, Young Woo; Cho, Il Je; Kim, Sang Chan [Medical Research Center for Globalization of Herbal Formulation, College of Korean Medicine, Daegu Haany University, Gyeongsan 712-715 (Korea, Republic of); Shin, Sang Mi [College of Pharmacy, Chosun University, Gwangju, 501-759 (Korea, Republic of); Ki, Sung Hwan, E-mail: shki@chosun.ac.kr [College of Pharmacy, Chosun University, Gwangju, 501-759 (Korea, Republic of)

    2014-01-15

    Isorhamentin is a 3′-O-methylated metabolite of quercetin, and has been reported to have anti-inflammatory and anti-proliferative effects. However, the effects of isorhamnetin on Nrf2 activation and on the expressions of its downstream genes in hepatocytes have not been elucidated. Here, we investigated whether isorhamnetin has the ability to activate Nrf2 and induce phase II antioxidant enzyme expression, and to determine the protective role of isorhamnetin on oxidative injury in hepatocytes. In HepG2 cells, isorhamnetin increased the nuclear translocation of Nrf2 in a dose- and time-dependent manner, and consistently, increased antioxidant response element (ARE) reporter gene activity and the protein levels of hemeoxygenase (HO-1) and of glutamate cysteine ligase (GCL), which resulted in intracellular GSH level increases. The specific role of Nrf2 in isorhamnetin-induced Nrf2 target gene expression was verified using an ARE-deletion mutant plasmid and Nrf2-knockout MEF cells. Deletion of the ARE in the promoter region of the sestrin2 gene, which is recently identified as the Nrf2 target gene by us, abolished the ability of isorhamnetin to increase luciferase activity. In addition, Nrf2 deficiency completely blocked the ability of isorhamnetin to induce HO-1 and GCL. Furthermore, isorhamnetin pretreatment blocked t-BHP-induced ROS production and reversed GSH depletion by t-BHP and consequently, due to reduced ROS levels, decreased t-BHP-induced cell death. In addition isorhamnetin increased ERK1/2, PKCδ and AMPK phosphorylation. Finally, we showed that Nrf2 deficiency blocked the ability of isorhamnetin to protect cells from injury induced by t-BHP. Taken together, our results demonstrate that isorhamnetin is efficacious in protecting hepatocytes against oxidative stress by Nrf2 activation and in inducing the expressions of its downstream genes. - Highlights: • We investigated the effect of isorhamnetin on Nrf2 activation. • Isorhamnetin increased Nrf2

  8. Identification of new developmentally regulated genes involved in Streptomyces coelicolor sporulation.

    Science.gov (United States)

    Salerno, Paola; Persson, Jessica; Bucca, Giselda; Laing, Emma; Ausmees, Nora; Smith, Colin P; Flärdh, Klas

    2013-12-05

    The sporulation of aerial hyphae of Streptomyces coelicolor is a complex developmental process. Only a limited number of the genes involved in this intriguing morphological differentiation programme are known, including some key regulatory genes. The aim of this study was to expand our knowledge of the gene repertoire involved in S. coelicolor sporulation. We report a DNA microarray-based investigation of developmentally controlled gene expression in S. coelicolor. By comparing global transcription patterns of the wild-type parent and two mutants lacking key regulators of aerial hyphal sporulation, we found a total of 114 genes that had significantly different expression in at least one of the two mutants compared to the wild-type during sporulation. A whiA mutant showed the largest effects on gene expression, while only a few genes were specifically affected by whiH mutation. Seven new sporulation loci were investigated in more detail with respect to expression patterns and mutant phenotypes. These included SCO7449-7451 that affect spore pigment biogenesis; SCO1773-1774 that encode an L-alanine dehydrogenase and a regulator-like protein and are required for maturation of spores; SCO3857 that encodes a protein highly similar to a nosiheptide resistance regulator and affects spore maturation; and four additional loci (SCO4421, SCO4157, SCO0934, SCO1195) that show developmental regulation but no overt mutant phenotype. Furthermore, we describe a new promoter-probe vector that takes advantage of the red fluorescent protein mCherry as a reporter of cell type-specific promoter activity. Aerial hyphal sporulation in S. coelicolor is a technically challenging process for global transcriptomic investigations since it occurs only as a small fraction of the colony biomass and is not highly synchronized. Here we show that by comparing a wild-type to mutants lacking regulators that are specifically affecting processes in aerial hypha, it is possible to identify previously

  9. Enrichment of conserved synaptic activity-responsive element in neuronal genes predicts a coordinated response of MEF2, CREB and SRF.

    Directory of Open Access Journals (Sweden)

    Fernanda M Rodríguez-Tornos

    Full Text Available A unique synaptic activity-responsive element (SARE sequence, composed of the consensus binding sites for SRF, MEF2 and CREB, is necessary for control of transcriptional upregulation of the Arc gene in response to synaptic activity. We hypothesize that this sequence is a broad mechanism that regulates gene expression in response to synaptic activation and during plasticity; and that analysis of SARE-containing genes could identify molecular mechanisms involved in brain disorders. To search for conserved SARE sequences in the mammalian genome, we used the SynoR in silico tool, and found the SARE cluster predominantly in the regulatory regions of genes expressed specifically in the nervous system; most were related to neural development and homeostatic maintenance. Two of these SARE sequences were tested in luciferase assays and proved to promote transcription in response to neuronal activation. Supporting the predictive capacity of our candidate list, up-regulation of several SARE containing genes in response to neuronal activity was validated using external data and also experimentally using primary cortical neurons and quantitative real time RT-PCR. The list of SARE-containing genes includes several linked to mental retardation and cognitive disorders, and is significantly enriched in genes that encode mRNA targeted by FMRP (fragile X mental retardation protein. Our study thus supports the idea that SARE sequences are relevant transcriptional regulatory elements that participate in plasticity. In addition, it offers a comprehensive view of how activity-responsive transcription factors coordinate their actions and increase the selectivity of their targets. Our data suggest that analysis of SARE-containing genes will reveal yet-undescribed pathways of synaptic plasticity and additional candidate genes disrupted in mental disease.

  10. Association of Single Nucleotide Polymorphisms in the ST3GAL4 Gene with VWF Antigen and Factor VIII Activity.

    Directory of Open Access Journals (Sweden)

    Jaewoo Song

    Full Text Available VWF is extensively glycosylated with biantennary core fucosylated glycans. Most N-linked and O-linked glycans on VWF are sialylated. FVIII is also glycosylated, with a glycan structure similar to that of VWF. ST3GAL sialyltransferases catalyze the transfer of sialic acids in the α2,3 linkage to termini of N- and O-glycans. This sialic acid modification is critical for VWF synthesis and activity. We analyzed genetic and phenotypic data from the Atherosclerosis Risk in Communities (ARIC study for the association of single nucleotide polymorphisms (SNPs in the ST3GAL4 gene with plasma VWF levels and FVIII activity in 12,117 subjects. We also analyzed ST3GAL4 SNPs found in 2,535 subjects of 26 ethnicities from the 1000 Genomes (1000G project for ethnic diversity, SNP imputation, and ST3GAL4 haplotypes. We identified 14 and 1,714 ST3GAL4 variants in the ARIC GWAS and 1000G databases respectively, with 46% being ethnically diverse in their allele frequencies. Among the 14 ST3GAL4 SNPs found in ARIC GWAS, the intronic rs2186717, rs7928391, and rs11220465 were associated with VWF levels and with FVIII activity after adjustment for age, BMI, hypertension, diabetes, ever-smoking status, and ABO. This study illustrates the power of next-generation sequencing in the discovery of new genetic variants and a significant ethnic diversity in the ST3GAL4 gene. We discuss potential mechanisms through which these intronic SNPs regulate ST3GAL4 biosynthesis and the activity that affects VWF and FVIII.

  11. Oestrogenic activity of a textile industrial wastewater treatment plant effluent evaluated by the E-screen test and MELN gene-reporter luciferase assay

    Energy Technology Data Exchange (ETDEWEB)

    Schiliro, Tiziana, E-mail: tiziana.schiliro@unito.it [Department of Public Health and Microbiology, University of Torino, Via Santena 5bis, 10126 Torino (Italy); Porfido, Arianna [Department of Public Health and Microbiology, University of Torino, Via Santena 5bis, 10126 Torino (Italy); Spina, Federica; Varese, Giovanna Cristina [Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, 10125 Torino (Italy); Gilli, Giorgio [Department of Public Health and Microbiology, University of Torino, Via Santena 5bis, 10126 Torino (Italy)

    2012-08-15

    This study quantified the biological oestrogenic activity in the effluent of a textile industrial wastewater treatment plant (IWWTP) in northwestern Italy. Samples of the IWWTP effluent were collected monthly, both before and after tertiary treatment (ozonation). After solid phase extraction, all samples were subjected to two in vitro tests of total estrogenic activity, the human breast cancer cell line (MCF-7 BUS) proliferation assay, or E-screen test, and the luciferase-transfected human breast cancer cell line (MELN) gene-reporter assay, to measure the 17{beta}-oestradiol equivalent quantity (EEQ). In the E-screen test, the mean EEQ values were 2.35 {+-} 1.68 ng/L pre-ozonation and 0.72 {+-} 0.58 ng/L post-ozonation; in the MELN gene-reporter luciferase assay, the mean EEQ values were 4.18 {+-} 3.54 ng/L pre-ozonation and 2.53 {+-} 2.48 ng/L post-ozonation. These results suggest that the post-ozonation IWWTP effluent had a lower oestrogenic activity (simple paired t-tests, p < 0.05). The average reduction of estrogenic activity of IWWTP effluent after ozonation was 67 {+-} 26% and 52 {+-} 27% as measured by E-screen test and MELN gene-reporter luciferase assay, respectively. There was a positive and significant correlation between the two tests (Rho S = 0.650, p = 0.022). This study indicates that the environmental risk is low because oestrogenic substances are deposited into the river via IWWTP at concentrations lower than those at which chronic exposure has been reported to affect the endocrine system of living organisms. -- Highlights: Black-Right-Pointing-Pointer The two in vitro tests are suited for oestrogenic activity assessment in textile WWTP. Black-Right-Pointing-Pointer There is a significant correlation between the results of the two in vitro tests. Black-Right-Pointing-Pointer The oestrogenic activity of the effluent is reduced by ozonation. Black-Right-Pointing-Pointer The input of estrogenic substances into the river via textile WWTP is low.

  12. Tet1 Oxidase Regulates Neuronal Gene Transcription, Active DNA Hydroxy-methylation, Object Location Memory, and Threat Recognition Memory.

    Science.gov (United States)

    Kumar, Dinesh; Aggarwal, Milan; Kaas, Garrett A; Lewis, John; Wang, Jing; Ross, Daniel L; Zhong, Chun; Kennedy, Andrew; Song, Hongjun; Sweatt, J David

    2015-10-01

    A dynamic equilibrium between DNA methylation and demethylation of neuronal activity-regulated genes is crucial for memory processes. However, the mechanisms underlying this equilibrium remain elusive. Tet1 oxidase has been shown to play a key role in the active DNA demethylation in the CNS. In this study, we used Tet1 gene knockout (Tet1KO) mice to examine the involvement of Tet1 in memory consolidation and storage in the adult brain. We found that Tet1 ablation leads to: altered expression of numerous neuronal activity-regulated genes, compensatory upregulation of active demethylation pathway genes, and upregulation of various epigenetic modifiers. Moreover, Tet1KO mice showed an enhancement in the consolidation and storage of threat recognition (cued and contextual fear conditioning) and object location memories. We conclude that Tet1 plays a critical role in regulating neuronal transcription and in maintaining the epigenetic state of the brain associated with memory consolidation and storage.

  13. Enhancement of antitumor activity of gammaretrovirus carrying IL-12 gene through genetic modification of envelope targeting HER2 receptor: a promising strategy for bladder cancer therapy.

    Science.gov (United States)

    Tsai, Y-S; Shiau, A-L; Chen, Y-F; Tsai, H-T; Tzai, T-S; Wu, C-L

    2010-01-01

    The objective of this study was to develop an HER2-targeted, envelope-modified Moloney murine leukemia virus (MoMLV)-based gammaretroviral vector carrying interleukin (IL)-12 gene for bladder cancer therapy. It displayed a chimeric envelope protein containing a single-chain variable fragment (scFv) antibody to the HER2 receptor and carried the mouse IL-12 gene. The fragment of anti-erbB2scFv was constructed into the proline-rich region of the viral envelope of the packaging vector lacking a transmembrane subunit of the carboxyl terminal region of surface subunit. As compared with envelope-unmodified gammaretroviruses, envelope-modified ones had extended viral tropism to human HER2-expressing bladder cancer cell lines, induced apoptosis, and affected cell cycle progression despite lower viral titers. Moreover, animal studies showed that envelope-modified gammaretroviruses carrying IL-12 gene exerted higher antitumor activity in terms of retarding tumor growth and prolonging the survival of tumor-bearing mice than unmodified ones, which were associated with enhanced tumor cell apoptosis as well as increased intratumoral levels of IL-12, interferon-gamma, IL-1beta, and tumor necrosis factor-alpha proteins. Therefore, the antitumor activity of gammaretroviruses carrying the IL-12 gene was enhanced through genetic modification of the envelope targeting HER2 receptor, which may be a promising strategy for bladder cancer therapy.

  14. Multilevel Regulation of Bacterial Gene Expression with the Combined STAR and Antisense RNA System.

    Science.gov (United States)

    Lee, Young Je; Kim, Soo-Jung; Moon, Tae Seok

    2018-03-16

    Synthetic small RNA regulators have emerged as a versatile tool to predictably control bacterial gene expression. Owing to their simple design principles, small size, and highly orthogonal behavior, these engineered genetic parts have been incorporated into genetic circuits. However, efforts to achieve more sophisticated cellular functions using RNA regulators have been hindered by our limited ability to integrate different RNA regulators into complex circuits. Here, we present a combined RNA regulatory system in Escherichia coli that uses small transcription activating RNA (STAR) and antisense RNA (asRNA) to activate or deactivate target gene expression in a programmable manner. Specifically, we demonstrated that the activated target output by the STAR system can be deactivated by expressing two different types of asRNAs: one binds to and sequesters the STAR regulator, affecting the transcription process, while the other binds to the target mRNA, affecting the translation process. We improved deactivation efficiencies (up to 96%) by optimizing each type of asRNA and then integrating the two optimized asRNAs into a single circuit. Furthermore, we demonstrated that the combined STAR and asRNA system can control gene expression in a reversible way and can regulate expression of a gene in the genome. Lastly, we constructed and simultaneously tested two A AND NOT B logic gates in the same cell to show sophisticated multigene regulation by the combined system. Our approach establishes a methodology for integrating multiple RNA regulators to rationally control multiple genes.

  15. Supplementation of chitosan alleviates high-fat diet-enhanced lipogenesis in rats via adenosine monophosphate (AMP)-activated protein kinase activation and inhibition of lipogenesis-associated genes.

    Science.gov (United States)

    Chiu, Chen-Yuan; Chan, Im-Lam; Yang, Tsung-Han; Liu, Shing-Hwa; Chiang, Meng-Tsan

    2015-03-25

    This study investigated the role of chitosan in lipogenesis in high-fat diet-induced obese rats. The lipogenesis-associated genes and their upstream regulatory proteins were explored. Diet supplementation of chitosan efficiently decreased the increased weights in body, livers, and adipose tissues in high-fat diet-fed rats. Chitosan supplementation significantly raised the lipolysis rate; attenuated the adipocyte hypertrophy, triglyceride accumulation, and lipoprotein lipase activity in epididymal adipose tissues; and decreased hepatic enzyme activities of lipid biosynthesis. Chitosan supplementation significantly activated adenosine monophosphate (AMP)-activated protein kinase (AMPK) phosphorylation and attenuated high-fat diet-induced protein expressions of lipogenic transcription factors (PPAR-γ and SREBP1c) in livers and adipose tissues. Moreover, chitosan supplementation significantly inhibited the expressions of downstream lipogenic genes (FAS, HMGCR, FATP1, and FABP4) in livers and adipose tissues of high-fat diet-fed rats. These results demonstrate for the first time that chitosan supplementation alleviates high-fat diet-enhanced lipogenesis in rats via AMPK activation and lipogenesis-associated gene inhibition.

  16. Characterization of microbial community and antibiotic resistance genes in activated sludge under tetracycline and sulfamethoxazole selection pressure

    International Nuclear Information System (INIS)

    Zhang, Yingying; Geng, Jinju; Ma, Haijun; Ren, Hongqiang; Xu, Ke; Ding, Lili

    2016-01-01

    To investigate the microbial community characteristics, antibiotic resistance genes (ARGs), and bioreactor effluent quality change under tetracycline (TC) and sulfamethoxazole (SMX) selection pressure, sequencing batch reactors (SBRs) were used with environmentally relevant concentration and high-level of TC and SMX concentrations (0, 5 ppb, 50 ppb and 10 ppm). Chemical oxygen demand (COD) and ammonia nitrogen (NH_4"+−N) removals appeared unchanged (p > 0.05) with 5 and 50 ppb, but decreased significantly with 10 ppm (p tetG > sul2 > tetA > intI1 > tetS > tetC. Pearson correlation analysis showed most ARGs (tetA, tetC, tetG, tetK, tetM, sul1) were significantly correlated with intI1 (p < 0.01). - Highlights: • COD and NH_4"+−N removals significantly decrease under 10 ppm TC or SMX. • Activated sludge EPS concentrations increase with increasing TC or SMX concentrations. • TC and SMX affect the microbial community diversity of activated sludge. • Actinobacteria abundances increase with increase of TC or SMX concentration. • ARGs abundance increases with addition of TC or SMX.

  17. Indirubin, a component of Ban-Lan-Gen, activates CYP3A4 gene transcription through the human pregnane X receptor.

    Science.gov (United States)

    Kumagai, Takeshi; Aratsu, Yusuke; Sugawara, Ryosuke; Sasaki, Takamitsu; Miyairi, Shinichi; Nagata, Kiyoshi

    2016-04-01

    Ban-Lan-Gen is the common name for the dried roots of indigo plants, including Polygonum tinctorium, Isatis indigotica, Isatis tinctoria, and Strobilanthes cusia. Ban-Lan-Gen is frequently used as an anti-inflammatory and an anti-viral for the treatment of hepatitis, influenza, and various types of inflammation. One of the cytochrome P450 (CYP) enzymes, CYP3A4, is responsible for the metabolism of a wide variety of xenobiotics, including an estimated 60% of all clinically used drugs. In this study, we investigated the effect of Ban-Lan-Gen on the transcriptional activation of the CYP3A4 gene. Ban-Lan-Gen extract increased CYP3A4 gene reporter activity in a dose-dependent manner. Indirubin, one of the biologically active ingredients in the Ban-Lan-Gen, also dose-dependently increased CYP3A4 gene reporter activity. Expression of short hairpin RNA for the human pregnane X receptor (hPXR-shRNA) inhibited CYP3A4 gene reporter activity, and overexpression of human PXR increased indirubin- and rifampicin-induced CYP3A4 gene reporter activity. Furthermore, indirubin induced CYP3A4 mRNA expression in HepG2 cells. Taken together, these results indicate that indirubin, a component of Ban-Lan-Gen, activated CYP3A4 gene transcription through the activation of the human PXR. Copyright © 2016. Published by Elsevier Ltd.

  18. Low Oxygen Tension Enhances Expression of Myogenic Genes When Human Myoblasts Are Activated from G0 Arrest

    DEFF Research Database (Denmark)

    Sellathurai, Jeeva; Nielsen, Joachim; Hejbøl, Eva Kildall

    2016-01-01

    -PCR, immunocytochemistry and western blot. RESULTS AND CONCLUSIONS: We found an increase in proliferation rate of myoblasts when activated at a low oxygen tension (1% O2) compared to 21% O2. In addition, the gene expression studies showed up regulation of the myogenesis related genes PAX3, PAX7, MYOD, MYOG (myogenin), MET......, NCAM, DES (desmin), MEF2A, MEF2C and CDH15 (M-cadherin), however, the fraction of DES and MYOD positive cells was not increased by low oxygen tension, indicating that 1% O2 may not have a functional effect on the myogenic response. Furthermore, the expression of genes involved in the TGFβ, Notch...... and Wnt signaling pathways were also up regulated in low oxygen tension. The differences in gene expression were most pronounced at day one after activation from G0-arrest, thus the initial activation of myoblasts seemed most sensitive to changes in oxygen tension. Protein expression of HES1 and β...

  19. Modeling the Activity of Single Genes

    Science.gov (United States)

    Mjolsness, Eric; Gibson, Michael

    1999-01-01

    The central dogma of molecular biology states that information is stored in DNA, transcribed to messenger RNA (mRNA) and then translated into proteins. This picture is significantly augmentated when we consider the action of certain proteins in regulating transcription. These transcription factors provide a feedback pathway by which genes can regulate one another's expression as mRNA and then as protein. To review: DNA, RNA and proteins have different functions. DNA is the molecular storehouse of genetic information. When cells divide, the DNA is replicated, so that each daughter cell maintains the same genetic information as the mother cell. RNA acts as a go-between from DNA to proteins. Only a single copy of DNA is present, but multiple copies of the same piece of RNA may be present, allowing cells to make huge amounts of protein. In eukaryotes (organisms with a nucleus), DNA is found in the nucleus only. RNA is copied in the nucleus then translocates(moves) outside the nucleus, where it is transcribed into proteins. Along the way, the RNA may be spliced, i.e., may have pieces cut out. RNA then attaches to ribosomes and is translated to proteins. Proteins are the machinery of the cell other than DNA and RNA, all the complex molecules of the cell are proteins. Proteins are specialized machines, each of which fulfills its own task, which may be transporting oxygen, catalyzing reactions, or responding to extracellular signals, just to name a few. One of the more interesting functions a protein may have is binding directly or indirectly to DNA to perform transcriptional regulation, thus forming a closed feedback loop of gene regulation. The structure of DNA and the central dogma were understood in the 50s; in the early 80s it became possible to make arbitrary modifications to DNA and use cellular machinery to transcribe and translate the resulting genes; more recently, genomes (i.e., the complete DNA sequence) of many organisms have been sequenced. This large

  20. Cell-wall polysaccharide composition and glycanase activity of Silene vulgaris callus transformed with rolB and rolC genes.

    Science.gov (United States)

    Günter, Elena A; Shkryl, Yury N; Popeyko, Oxana V; Veremeichik, Galina N; Bulgakov, Victor P

    2015-03-15

    The aim of this research is to investigate the effects of the Agrobacterium rhizogenes rol genes on the composition of cell-wall polysaccharides and glycanase activity in the campion callus. The expression of the rolC gene reduces the yield of campion pectin, while the expression of the rolB or rolC gene inhibits the volumetric production of both pectin and intracellular arabinogalactan. The rol genes are involved in regulating the activity of glycanases and esterases, thereby contributing to the modification of polysaccharide structures, their molecular weight (Mw) and the degree of pectin methyl esterification (DE). The increase in pectin arabinose residue appears to be connected to a decrease in intracellular and extracellular α-l-arabinofuranosidase activity in transgenic campion calluses. In transgenic calluses expressing the rolB and rolC genes, the increase in pectin galactose residue is likely due to a decrease in β-galactosidase activity. The decrease in the Mw of pectin and its d-galacturonic acid content appears to be connected to an increase in extracellular polygalacturonase activity. Finally, the increase in pectinesterase activity causes a decrease in the DE of pectin. Thus, the expression of rolB and rolC genes in campion callus has a considerable effect on pectin's sugar composition, DE and Mw, while it appears to have an insignificant influence on intracellular and extracellular arabinogalactans. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Gene activated by growth factors is related to the oncogene v-jun

    International Nuclear Information System (INIS)

    Ryder, K.; Lau, L.F.; Nathans, D.

    1988-01-01

    The authors have recently identified by cDNA cloning a set of genes that are rapidly activated in cultured mouse cells by protein growth factors. Here they report that the nucleotide sequence of a cDNA (clone 465) derived from one of these immediate early genes (hereafter called jun-B) encodes a protein homologous to that encoded by the avian sarcoma virus 17 oncogene v-jun. Homology between the jun-B and v-jun proteins is in two regions: one near the N terminus and the other at the C terminus. The latter sequence was shown to have regions of sequence similarity to the DNA-binding domain of the yeast transcriptional regulatory protein GCN4 and to the oncogenic protein fos. Southern blots of human, mouse, and chicken DNA demonstrate that jun-B and c-jun are different genes and that there may be other vertebrate genes related to jun-B and c-jun. These findings suggest that there is a jun family of genes encoding related transcriptional regulatory proteins. The jun-B protein, and perhaps other members of the jun family, may play a role in regulating the genomic response to growth factors

  2. NFκB-mediated activation of the cellular FUT3, 5 and 6 gene cluster by herpes simplex virus type 1.

    Science.gov (United States)

    Nordén, Rickard; Samuelsson, Ebba; Nyström, Kristina

    2017-11-01

    Herpes simplex virus type 1 has the ability to induce expression of a human gene cluster located on chromosome 19 upon infection. This gene cluster contains three fucosyltransferases (encoded by FUT3, FUT5 and FUT6) with the ability to add a fucose to an N-acetylglucosamine residue. Little is known regarding the transcriptional activation of these three genes in human cells. Intriguingly, herpes simplex virus type 1 activates all three genes simultaneously during infection, a situation not observed in uninfected tissue, pointing towards a virus specific mechanism for transcriptional activation. The aim of this study was to define the underlying mechanism for the herpes simplex virus type 1 activation of FUT3, FUT5 and FUT6 transcription. The transcriptional activation of the FUT-gene cluster on chromosome 19 in fibroblasts was specific, not involving adjacent genes. Moreover, inhibition of NFκB signaling through panepoxydone treatment significantly decreased the induction of FUT3, FUT5 and FUT6 transcriptional activation, as did siRNA targeting of p65, in herpes simplex virus type 1 infected fibroblasts. NFκB and p65 signaling appears to play an important role in the regulation of FUT3, FUT5 and FUT6 transcriptional activation by herpes simplex virus type 1 although additional, unidentified, viral factors might account for part of the mechanism as direct interferon mediated stimulation of NFκB was not sufficient to induce the fucosyltransferase encoding gene cluster in uninfected cells. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Negative regulation of human parathyroid hormone gene promoter by vitamin D3 through nuclear factor Y

    International Nuclear Information System (INIS)

    Jaeaeskelaeinen, T.; Huhtakangas, J.; Maeenpaeae, P.H.

    2005-01-01

    The negative regulation of the human parathyroid hormone (PTH) gene by biologically active vitamin D 3 (1,25-dihydroxyvitamin D 3 ; 1,25(OH) 2 D 3 ) was studied in rat pituitary GH4C1 cells, which express factors needed for the negative regulation. We report here that NF-Y binds to sequences downstream of the site previously reported to bind the vitamin D receptor (VDR). Additional binding sites for NF-Y reside in the near vicinity and were shown to be important for full activity of the PTH gene promoter. VDR and NF-Y were shown to exhibit mutually exclusive binding to the VDRE region. According to our results, sequestration of binding partners for NF-Y by VDR also affects transcription through a NF-Y consensus binding element in GH4C1 but not in ROS17/2.8 cells. These results indicate that 1,25(OH) 2 D 3 may affect transcription of the human PTH gene both by competitive binding of VDR and NF-Y, and by modulating transcriptional activity of NF-Y

  4. Aberrant neuronal activity-induced signaling and gene expression in a mouse model of RASopathy.

    Directory of Open Access Journals (Sweden)

    Franziska Altmüller

    2017-03-01

    Full Text Available Noonan syndrome (NS is characterized by reduced growth, craniofacial abnormalities, congenital heart defects, and variable cognitive deficits. NS belongs to the RASopathies, genetic conditions linked to mutations in components and regulators of the Ras signaling pathway. Approximately 50% of NS cases are caused by mutations in PTPN11. However, the molecular mechanisms underlying cognitive impairments in NS patients are still poorly understood. Here, we report the generation and characterization of a new conditional mouse strain that expresses the overactive Ptpn11D61Y allele only in the forebrain. Unlike mice with a global expression of this mutation, this strain is viable and without severe systemic phenotype, but shows lower exploratory activity and reduced memory specificity, which is in line with a causal role of disturbed neuronal Ptpn11 signaling in the development of NS-linked cognitive deficits. To explore the underlying mechanisms we investigated the neuronal activity-regulated Ras signaling in brains and neuronal cultures derived from this model. We observed an altered surface expression and trafficking of synaptic glutamate receptors, which are crucial for hippocampal neuronal plasticity. Furthermore, we show that the neuronal activity-induced ERK signaling, as well as the consecutive regulation of gene expression are strongly perturbed. Microarray-based hippocampal gene expression profiling revealed profound differences in the basal state and upon stimulation of neuronal activity. The neuronal activity-dependent gene regulation was strongly attenuated in Ptpn11D61Y neurons. In silico analysis of functional networks revealed changes in the cellular signaling beyond the dysregulation of Ras/MAPK signaling that is nearly exclusively discussed in the context of NS at present. Importantly, changes in PI3K/AKT/mTOR and JAK/STAT signaling were experimentally confirmed. In summary, this study uncovers aberrant neuronal activity

  5. Dysregulation of gene expression within the peroxisome proliferator activated receptor pathway in morbidly obese patients.

    Science.gov (United States)

    Hindle, A Katharine; Koury, Jadd; McCaffrey, Tim; Fu, Sidney W; Brody, Fred

    2009-06-01

    The causes of obesity are multifactorial but may include dysregulation of a family of related genes, such as the peroxisome proliferator activated receptor gamma (PPARgamma). When activated, the PPARgamma pathway promotes lipid metabolism. This study used microarray technology to evaluate differential gene expression profiles in obese patients undergoing bariatric surgery. The study enrolled six morbidly obese patients with a body mass index (BMI) exceeding 35 and four nonobese individuals. Blood samples were stabilized in PaxGene tubes (PreAnalytiX), and total RNA was extracted. Next, 100 ng of total RNA was amplified and labeled using the Ovation RNA Amplification System V2 with the Ovation whole-blood reagent (NuGen) before it was hybridized to an Affymetrix (Santa Clara, CA) focus array containing more than 8,500 verified genes. The data were analyzed using an analysis of variance (ANOVA) (p < 0.05) in the GeneSpring program, and potential pathways were identified with the Ingenuity program. Real-time quantitative reverse transcriptase-polymerase chain reaction was used to validate the array data. A total of 97 upregulated genes and 125 downregulated genes were identified. More than a 1.5-fold change was identified between the morbidly obese patients and the control subjects for a cluster of dysregulated genes involving pathways regulating cell metabolism and lipid formation. Specifically, the PPARgamma pathway showed a plethora of dysregulated genes including tumor necrosis factor-alpha (TNFalpha). In morbidly obese patients, TNFalpha expression was increased (upregulated) 1.6-fold. These findings were confirmed using quantitative polymerase chain reaction with a 2.8-fold change. Microarrays are a powerful tool for identifying biomarkers indicating morbid obesity by analyzing differential gene expression profiles. This study confirms the association of PPARgamma with morbid obesity. Also, these findings in blood support previous work documented in tissue

  6. Relationship between touch sensation of the affected hand and performance of valued activities in individuals with chronic stroke.

    Science.gov (United States)

    Hill, Valerie A; Fisher, Thomas; Schmid, Arlene A; Crabtree, Jeffrey; Page, Stephen J

    2014-01-01

    To investigate the association between touch sensation of the affected hand and performance and satisfaction with performance of valued activities in individuals with chronic stroke. Using a cross-sectional study design, this study correlated factors related to hand sensation and activity performance in individuals with chronic stroke. The Touch Test Evaluators and Canadian Occupational Performance Measure (COPM) were used. Correlations were used to determine the relationships between touch sensation of the affected hand and individuals' performance and satisfaction with performance of valued activities. There was a good to excellent relationship between sensation and performance and satisfaction with performance of valued activities for individuals with intact touch sensation of the affected hand who scored higher on the COPM. There was little to no relationship between touch sensation of the affected hand and performance of valued activities for individuals with impaired sensation. This is the first study to relate touch sensation of the affected hand and performance and satisfaction with performance of valued activities in individuals with stroke. The findings suggest that rehabilitation therapists need to continue to address sensory function in evaluation and intervention as it relates to performance in valued activities. This study serves as a foundation for future research in sensation and performance of valued activities in individuals with chronic stroke.

  7. Genomic organization of the mouse peroxisome proliferator-activated receptor beta/delta gene

    DEFF Research Database (Denmark)

    Larsen, Leif K; Amri, Ez-Zoubir; Mandrup, Susanne

    2002-01-01

    Peroxisome proliferator-activated receptor (PPAR) beta/delta is ubiquitously expressed, but the level of expression differs markedly between different cell types. In order to determine the molecular mechanisms governing PPARbeta/delta gene expression, we have isolated and characterized the mouse...

  8. Influence of UV-C irradiation on expansin and pectin-methylesterase gene expression in strawberry fruit

    International Nuclear Information System (INIS)

    Pombo, M.; Dotto, M.; Martinez, G.; Civello, P.

    2005-01-01

    Full text: The exposure to UV-C delays fruit softening, one of the main factors determining fruit post harvest life. This delay in softening may be caused by changes in the activities of enzymes and proteins involved in cell wall disassembly. Expansins are cell wall proteins involved in fruit softening, while pectin-melhylesterases (PME) are cell wall enzymes related to pectin demethylation, and their activity is affected by heating, another physical treatment based on abiotic stress. We analyzed FaPME 1 gene expression in irradiated strawberry fruits and also measured PME activity after treatment. An increase in PME activity immediately after the treatment was found. The expression of FaEXP2, FaEXP4 and FaEXP5 genes was analyzed in the same fruit samples, as well as expansin protein accumulation. For these three genes we found a decrease in expression 4 h after treatment and an increase after 24 h. The decrease in gene expression after treatment correlated with a diminution of expansins. (author)

  9. Genotyping of PPAR-γ gene polymorphism in Egyptian neonates affected with sepsis disease and its severity

    Directory of Open Access Journals (Sweden)

    Rabah M. Shawky

    2018-07-01

    Full Text Available Background: Peroxisome Proliferator-Activated Receptor gamma (PPARγ is a ligand-dependent transcription factor involved in inflammatory process. PPAR-γ gene was mentioned as having a modulating role in the pathological status of sepsis.The present study aimed to make a correlation between The Pro12Ala polymorphism in PPAR-γ gene and occurrence of neonatal sepsis and its severity among a sample of Egyptian neonates suffering sepsis. Subjects and methods: This case-control study included 30 neonates (11 females and19 males newly admitted with neonatal sepsis at the intensive care unit (NICU (mean age 10.3 days ± 6.23. The control group included 50 age and sex matched neonates (23 females and 27 males (mean age 10.20 days ± 5.36 days. All the neonates (preterm and full term included were with clinical signs and laboratory data consistent with neonatal sepsis. Genotyping for PPARγ gene region harboring the Pro12Ala variant locus were carried out using Tetra ARMS technique. Results: About 56.7% of the patients group was homozygote (GG for polymorphic locus (coding for Alanine/Alanine while 30% was heterozygote for polymorphic locus (CG (coding for Proline/Alanine and up to 13.3% was homozygote for the polymorphic locus (CC (coding for Proline/Proline. Compared to the control group where homozygotes for CC were the most prevalent (90% and the CG were 10% with absence of GG genotypes. There was a strong statistical significant difference between patients and the normal control group as regards prevalence of PPAR-γ gene polymorphism in occurrence of neonatal sepsis and its severity. Also, there were strong relation between genotype GG and low birth weight, neonatal fever, prematurity and depressed neonatal reflexes. Conclusion: PPAR-γ gene has been suggested to be a candidate gene for neonatal sepsis. Therefore, Pro12Ala polymorphism might be useful in predicting the risk factor of neonatal sepsis and its severity. Keywords: Sepsis, PPAR

  10. WRKY Transcription Factors Involved in Activation of SA Biosynthesis Genes

    Directory of Open Access Journals (Sweden)

    Bol John F

    2011-05-01

    Full Text Available Abstract Background Increased defense against a variety of pathogens in plants is achieved through activation of a mechanism known as systemic acquired resistance (SAR. The broad-spectrum resistance brought about by SAR is mediated through salicylic acid (SA. An important step in SA biosynthesis in Arabidopsis is the conversion of chorismate to isochorismate through the action of isochorismate synthase, encoded by the ICS1 gene. Also AVRPPHB SUSCEPTIBLE 3 (PBS3 plays an important role in SA metabolism, as pbs3 mutants accumulate drastically reduced levels of SA-glucoside, a putative storage form of SA. Bioinformatics analysis previously performed by us identified WRKY28 and WRKY46 as possible regulators of ICS1 and PBS3. Results Expression studies with ICS1 promoter::β-glucuronidase (GUS genes in Arabidopsis thaliana protoplasts cotransfected with 35S::WRKY28 showed that over expression of WRKY28 resulted in a strong increase in GUS expression. Moreover, qRT-PCR analyses indicated that the endogenous ICS1 and PBS3 genes were highly expressed in protoplasts overexpressing WRKY28 or WRKY46, respectively. Electrophoretic mobility shift assays indentified potential WRKY28 binding sites in the ICS1 promoter, positioned -445 and -460 base pairs upstream of the transcription start site. Mutation of these sites in protoplast transactivation assays showed that these binding sites are functionally important for activation of the ICS1 promoter. Chromatin immunoprecipitation assays with haemagglutinin-epitope-tagged WRKY28 showed that the region of the ICS1 promoter containing the binding sites at -445 and -460 was highly enriched in the immunoprecipitated DNA. Conclusions The results obtained here confirm results from our multiple microarray co-expression analyses indicating that WRKY28 and WRKY46 are transcriptional activators of ICS1 and PBS3, respectively, and support this in silico screening as a powerful tool for identifying new components of stress

  11. Increased PRPP synthetase activity in cultured rat hepatoma cells containing mutations in the hypoxanthine-guanine phosphoribosyltransferase gene.

    Science.gov (United States)

    Graf, L H; McRoberts, J A; Harrison, T M; Martin, D W

    1976-07-01

    Nine independently derived clones of mutagenized rat hepatoma cells selected for resistance to 6-mercaptopurine (6-MP) or 6-thioguanine (6-ThioG) have been isolated. Each has severely reduced catalytic activity of hypoxanthine-guanine phosphoribosyltransferase (HPRT) and seven of them possess significantly increased activities of phosphoribosylpyrophosphate (PRPP) synthetase. The degrees of elevations of PRPP synthetase activities do not correlate with the degrees of deficiencies of HPRT activities. The cells from one of these clones, 1020/12, posses 40% of the normal HPRT catalytic activity and overproduce purines. We have extensively examined the cells from this clone. Immunotration studies of 1020/12 cells indicate that there is a mutation in the structural gene for HPRT. Although they possess increased specific catalytic activities of the enzyme. PRPP synthetase, the catalytic parameters, heat stability, and isoelectric pH of PRPP synthetase from 1020/12 cells are indistinguishable from those of the enzyme from wild-type cells. The cause of purine overproduction by 1020/12 cells appears to be the elevated PRPP synthetase activity, rather than a PRPP "sparing" effect stemming from reduced HPRT activity. Support for this idea is provided by the observation that the complete loss of HPRT activity in a clone derived from 1020/12 cells does not further enhance the levels of PRPP synthetase or purine overproduction. We propose that the elevated levels of PRPP synthetase activity in these HPRT deficient cells result from a mutational event in the structural gene for HPRT, and that this causes the disruption of a previously undescribed regulatory function of this gene on the expression of the PRPP synthetase gene.

  12. Plasmalogens Inhibit APP Processing by Directly Affecting γ-Secretase Activity in Alzheimer's Disease

    Science.gov (United States)

    Rothhaar, Tatjana L.; Grösgen, Sven; Haupenthal, Viola J.; Burg, Verena K.; Hundsdörfer, Benjamin; Mett, Janine; Riemenschneider, Matthias; Grimm, Heike S.; Hartmann, Tobias; Grimm, Marcus O. W.

    2012-01-01

    Lipids play an important role as risk or protective factors in Alzheimer's disease (AD). Previously it has been shown that plasmalogens, the major brain phospholipids, are altered in AD. However, it remained unclear whether plasmalogens themselves are able to modulate amyloid precursor protein (APP) processing or if the reduced plasmalogen level is a consequence of AD. Here we identify the plasmalogens which are altered in human AD postmortem brains and investigate their impact on APP processing resulting in Aβ production. All tested plasmalogen species showed a reduction in γ-secretase activity whereas β- and α-secretase activity mainly remained unchanged. Plasmalogens directly affected γ-secretase activity, protein and RNA level of the secretases were unaffected, pointing towards a direct influence of plasmalogens on γ-secretase activity. Plasmalogens were also able to decrease γ-secretase activity in human postmortem AD brains emphasizing the impact of plasmalogens in AD. In summary our findings show that decreased plasmalogen levels are not only a consequence of AD but that plasmalogens also decrease APP processing by directly affecting γ-secretase activity, resulting in a vicious cycle: Aβ reduces plasmalogen levels and reduced plasmalogen levels directly increase γ-secretase activity leading to an even stronger production of Aβ peptides. PMID:22547976

  13. Potential late-onset Alzheimer's disease-associated mutations in the ADAM10 gene attenuate {alpha}-secretase activity.

    Science.gov (United States)

    Kim, Minji; Suh, Jaehong; Romano, Donna; Truong, Mimy H; Mullin, Kristina; Hooli, Basavaraj; Norton, David; Tesco, Giuseppina; Elliott, Kathy; Wagner, Steven L; Moir, Robert D; Becker, K David; Tanzi, Rudolph E

    2009-10-15

    ADAM10, a member of a disintegrin and metalloprotease family, is an alpha-secretase capable of anti-amyloidogenic proteolysis of the amyloid precursor protein. Here, we present evidence for genetic association of ADAM10 with Alzheimer's disease (AD) as well as two rare potentially disease-associated non-synonymous mutations, Q170H and R181G, in the ADAM10 prodomain. These mutations were found in 11 of 16 affected individuals (average onset age 69.5 years) from seven late-onset AD families. Each mutation was also found in one unaffected subject implying incomplete penetrance. Functionally, both mutations significantly attenuated alpha-secretase activity of ADAM10 (>70% decrease), and elevated Abeta levels (1.5-3.5-fold) in cell-based studies. In summary, we provide the first evidence of ADAM10 as a candidate AD susceptibility gene, and report two potentially pathogenic mutations with incomplete penetrance for late-onset familial AD.

  14. Metabolic activity of Streptococcus mutans biofilms and gene expression during exposure to xylitol and sucrose.

    Science.gov (United States)

    Decker, Eva-Maria; Klein, Christian; Schwindt, Dimitri; von Ohle, Christiane

    2014-12-01

    The objective of the study was to analyse Streptococcus mutans biofilms grown under different dietary conditions by using multifaceted methodological approaches to gain deeper insight into the cariogenic impact of carbohydrates. S. mutans biofilms were generated during a period of 24 h in the following media: Schaedler broth as a control medium containing endogenous glucose, Schaedler broth with an additional 5% sucrose, and Schaedler broth supplemented with 1% xylitol. The confocal laser scanning microscopy (CLSM)-based analyses of the microbial vitality, respiratory activity (5-cyano-2,3-ditolyl tetrazolium chloride, CTC) and production of extracellular polysaccharides (EPS) were performed separately in the inner, middle and outer biofilm layers. In addition to the microbiological sample testing, the glucose/sucrose consumption of the biofilm bacteria was quantified, and the expression of glucosyltransferases and other biofilm-associated genes was investigated. Xylitol exposure did not inhibit the viability of S. mutans biofilms, as monitored by the following experimental parameters: culture growth, vitality, CTC activity and EPS production. However, xylitol exposure caused a difference in gene expression compared to the control. GtfC was upregulated only in the presence of xylitol. Under xylitol exposure, gtfB was upregulated by a factor of 6, while under sucrose exposure, it was upregulated by a factor of three. Compared with glucose and xylitol, sucrose increased cell vitality in all biofilm layers. In all nutrient media, the intrinsic glucose was almost completely consumed by the cells of the S. mutans biofilm within 24 h. After 24 h of biofilm formation, the multiparametric measurements showed that xylitol in the presence of glucose caused predominantly genotypic differences but did not induce metabolic differences compared to the control. Thus, the availability of dietary carbohydrates in either a pure or combined form seems to affect the

  15. Metabolic activity of Streptococcus mutans biofilms and gene expression during exposure to xylitol and sucrose

    Institute of Scientific and Technical Information of China (English)

    Eva-Maria Decker; Christian Klein; Dimitri Schwindt; Christiane von Ohle

    2014-01-01

    The objective of the study was to analyse Streptococcus mutans biofilms grown under different dietary conditions by using multifaceted methodological approaches to gain deeper insight into the cariogenic impact of carbohydrates. S. mutans biofilms were generated during a period of 24 h in the following media:Schaedler broth as a control medium containing endogenous glucose, Schaedler broth with an additional 5%sucrose, and Schaedler broth supplemented with 1%xylitol. The confocal laser scanning microscopy (CLSM)-based analyses of the microbial vitality, respiratory activity (5-cyano-2,3-ditolyl tetrazolium chloride, CTC) and production of extracellular polysaccharides (EPS) were performed separately in the inner, middle and outer biofilm layers. In addition to the microbiological sample testing, the glucose/sucrose consumption of the biofilm bacteria was quantified, and the expression of glucosyltransferases and other biofilm-associated genes was investigated. Xylitol exposure did not inhibit the viability of S. mutans biofilms, as monitored by the following experimental parameters:culture growth, vitality, CTC activity and EPS production. However, xylitol exposure caused a difference in gene expression compared to the control. GtfC was upregulated only in the presence of xylitol. Under xylitol exposure, gtfB was upregulated by a factor of 6, while under sucrose exposure, it was upregulated by a factor of three. Compared with glucose and xylitol, sucrose increased cell vitality in all biofilm layers. In all nutrient media, the intrinsic glucose was almost completely consumed by the cells of the S. mutans biofilm within 24 h. After 24 h of biofilm formation, the multiparametric measurements showed that xylitol in the presence of glucose caused predominantly genotypic differences but did not induce metabolic differences compared to the control. Thus, the availability of dietary carbohydrates in either a pure or combined form seems to affect the cariogenic potential

  16. Pharmaceutical studies for gene therapy: expression of human Cu, Zn-superoxide dismutase gene transfected by lipofection in rat skin fibroblasts.

    Science.gov (United States)

    Nishiguchi, K; Ishida, K; Nakajima, M; Maeda, T; Komada, F; Iwakawa, S; Tanigawara, Y; Okumura, K

    1996-08-01

    To evaluate whether lipofection using Lipofectin is suitable for delivering foreign genes into skin fibroblasts as target cells, we performed experiments using human superoxide dismutase (hSOD) and neomycin-resistance (Neo) genes as models in rat skin fibroblasts (FR and primary cells) in vitro. The amounts of DNA used in the lipofection procedure significantly affected the transfection efficiencies, and the optimal amounts were determined for all cells used. However, the efficiencies in rat skin fibroblasts were about 20-fold higher than that in rat lung epithelial-like cells (L2 cells). The differences in plasmid vectors (pRc/RSV-SOD and pRc/CMV-SOD) hardly affected the transfection efficiencies. The amounts of Lipofectin significantly affected the transfection efficiencies, and the optimal amounts were determined for both types of skin fibroblasts. However, cytotoxic effects in both skin fibroblasts were observed with high doses of Lipofectin. On the other hand, with optimal amounts of DNA and Lipofectin, the reporter gene (NeoT) introduced into cells was mainly integrated into the host cell chromosome. Western blot analysis showed the continuous expression of hSOD protein for at least 45 d in skin fibroblasts transfected with the expression plasmid for hSOD by Lipofectin under the optimal conditions, and the cellular SOD activity fluctuated in parallel with the expression of hSOD protein. Differences in the type of cells also affected the expression of hSOD. These results indicate that it is necessary to set up optimal conditions for transfection using Lipofectin for each cell type, and that transfection with Lipofectin under optimal conditions may be an efficient method for introduction of foreign genes into skin fibroblasts for use as a clinical delivery system of therapeutic protein.

  17. Global Screening of Antiviral Genes that Suppress Baculovirus Transgene Expression in Mammalian Cells.

    Science.gov (United States)

    Wang, Chia-Hung; Naik, Nenavath Gopal; Liao, Lin-Li; Wei, Sung-Chan; Chao, Yu-Chan

    2017-09-15

    Although baculovirus has been used as a safe and convenient gene delivery vector in mammalian cells, baculovirus-mediated transgene expression is less effective in various mammalian cell lines. Identification of the negative regulators in host cells is necessary to improve baculovirus-based expression systems. Here, we performed high-throughput shRNA library screening, targeting 176 antiviral innate immune genes, and identified 43 host restriction factor genes in a human A549 lung carcinoma cell line. Among them, suppression of receptor interaction protein kinase 1 (RIP1, also known as RIPK1) significantly increased baculoviral transgene expression without resulting in significant cell death. Silencing of RIP1 did not affect viral entry or cell viability, but it did inhibit nuclear translocation of the IRF3 and NF-κB transcription factors. Also, activation of downstream signaling mediators (such as TBK1 and IRF7) was affected, and subsequent interferon and cytokine gene expression levels were abolished. Further, Necrostatin-1 (Nec-1)-an inhibitor of RIP1 kinase activity-dramatically increased baculoviral transgene expression in RIP1-silenced cells. Using baculovirus as a model system, this study presents an initial investigation of large numbers of human cell antiviral innate immune response factors against a "nonadaptive virus." In addition, our study has made baculovirus a more efficient gene transfer vector for some of the most frequently used mammalian cell systems.

  18. Ndrg2 is a PGC-1α/ERRα target gene that controls protein synthesis and expression of contractile-type genes in C2C12 myotubes.

    Science.gov (United States)

    Foletta, Victoria C; Brown, Erin L; Cho, Yoshitake; Snow, Rod J; Kralli, Anastasia; Russell, Aaron P

    2013-12-01

    The stress-responsive, tumor suppressor N-myc downstream-regulated gene 2 (Ndrg2) is highly expressed in striated muscle. In response to anabolic and catabolic signals, Ndrg2 is suppressed and induced, respectively, in mouse C2C12 myotubes. However, little is known about the mechanisms regulating Ndrg2 expression in muscle, as well as the biological role for Ndrg2 in differentiated myotubes. Here, we show that Ndrg2 is a target of a peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) and estrogen-related receptor alpha (ERRα) transcriptional program and is induced in response to endurance exercise, a physiological stress known also to increase PGC-1α/ERRα activity. Analyses of global gene and protein expression profiles in C2C12 myotubes with reduced levels of NDRG2, suggest that NDRG2 affects muscle growth, contractile properties, MAPK signaling, ion and vesicle transport and oxidative phosphorylation. Indeed, suppression of NDRG2 in myotubes increased protein synthesis and the expression of fast glycolytic myosin heavy chain isoforms, while reducing the expression of embryonic myosin Myh3, other contractile-associated genes and the MAPK p90 RSK1. Conversely, enhanced expression of NDRG2 reduced protein synthesis, and furthermore, partially blocked the increased protein synthesis rates elicited by a constitutively active form of ERRα. In contrast, suppressing or increasing levels of NDRG2 did not affect mRNA expression of genes involved in mitochondrial biogenesis that are regulated by PGC-1α or ERRα. This study shows that in C2C12 myotubes Ndrg2 is a novel PGC-1α/ERRα transcriptional target, which influences protein turnover and the regulation of genes involved in muscle contraction and function. © 2013 Elsevier B.V. All rights reserved.

  19. Inferring the functional effect of gene expression changes in signaling pathways

    Science.gov (United States)

    Sebastián-León, Patricia; Carbonell, José; Salavert, Francisco; Sanchez, Rubén; Medina, Ignacio; Dopazo, Joaquín

    2013-01-01

    Signaling pathways constitute a valuable source of information that allows interpreting the way in which alterations in gene activities affect to particular cell functionalities. There are web tools available that allow viewing and editing pathways, as well as representing experimental data on them. However, few methods aimed to identify the signaling circuits, within a pathway, associated to the biological problem studied exist and none of them provide a convenient graphical web interface. We present PATHiWAYS, a web-based signaling pathway visualization system that infers changes in signaling that affect cell functionality from the measurements of gene expression values in typical expression microarray case–control experiments. A simple probabilistic model of the pathway is used to estimate the probabilities for signal transmission from any receptor to any final effector molecule (taking into account the pathway topology) using for this the individual probabilities of gene product presence/absence inferred from gene expression values. Significant changes in these probabilities allow linking different cell functionalities triggered by the pathway to the biological problem studied. PATHiWAYS is available at: http://pathiways.babelomics.org/. PMID:23748960

  20. Influence of apolipoprotein-E gene on lipid profile, physical activity and body fat relationship

    Directory of Open Access Journals (Sweden)

    Thales Boaventura Rachid Nascimento

    2012-03-01

    Full Text Available Physical activity and body fat modify lipemia, and this effect seems to be influenced by apolipoprotein-E (APOE gene polymorphism. Thus, the purpose of this article was to review main results of studies that have analyzed the relation of APOE gene with physical activity and body fat on triglycerides, total cholesterol and low (LDL and high density lipoprotein (HDL concentrations. The Scientific Electronic Library Online – SciELO, Web of Science and PubMed database were used to locate the articles. The keywords used in combination were: apoe genotype, apolipoprotein-E polymorphism, physical exercise, physical activity, aerobic exercise, body fat and obesity. Originals scientific investigations performed with humans were included, and excluded those ones which involved samples with diseases, except obesity and/or lipemic disorders. It was observed a trend, that ε2 allele carriers are the ones with the greater improvements on lipemia from physical exercise. In addition, the body fat impact on the elevation of triglycerides and LDL are stronger in carriers of the ε2 and ε4 allele, respectively. Considering the small number of originals scientific investigations and their divergent results, reliable inferences can not be made about the APOE gene polymorphism influences on physical activity and body fat effect on lipemia. Thus, further studies with others populations and more volunteers for allele, as well as others exercise modalities and intensities, are necessary.