WorldWideScience

Sample records for aerosol size distribution

  1. Elemental mass size distribution of the Debrecen urban aerosol

    International Nuclear Information System (INIS)

    Kertesz, Zs.; Szoboszlai, Z.; Dobos, E.; Borbely-Kiss, I.

    2007-01-01

    Complete text of publication follows. Size distribution is one of the basic properties of atmospheric aerosol. It is closely related to the origin, chemical composition and age of the aerosol particles, and it influences the optical properties, environmental effects and health impact of aerosol. As part of the ongoing aerosol research in the Group of Ion Beam Applications of the Atomki, elemental mass size distribution of urban aerosol were determined using particle induced X-ray emission (PIXE) analytical technique. Aerosol sampling campaigns were carried out with 9-stage PIXE International cascade impactors, which separates the aerosol into 10 size fractions in the 0.05-30 ?m range. Five 48-hours long samplings were done in the garden of the Atomki, in April and in October, 2007. Both campaigns included weekend and working day samplings. Basically two different kinds of particles could be identified according to the size distribution. In the size distribution of Al, Si, Ca, Fe, Ba, Ti, Mn and Co one dominant peak can be found around the 3 m aerodynamic diameter size range, as it is shown on Figure 1. These are the elements of predominantly natural origin. Elements like S, Cl, K, Zn, Pb and Br appears with high frequency in the 0.25-0.5 mm size range as presented in Figure 2. These elements are originated mainly from anthropogenic sources. However sometimes in the size distribution of these elements a 2 nd , smaller peak appears at the 2-4 μm size ranges, indicating different sources. Differences were found between the size distribution of the spring and autumn samples. In the case of elements of soil origin the size distribution was shifted towards smaller diameters during October, and a 2 nd peak appeared around 0.5 μm. A possible explanation to this phenomenon can be the different meteorological conditions. No differences were found between the weekend and working days in the size distribution, however the concentration values were smaller during the weekend

  2. Radioactive Aerosol Size Distribution Measured in Nuclear Workplaces

    International Nuclear Information System (INIS)

    Kravchik, T.; Oved, S.; German, U.

    2002-01-01

    Inhalation is the main route for internal exposure of workers to radioactive aerosols in the nuclear industry.Aerosol's size distribution and in particular its activity median aerodynamic diameter (AMAD)is important for determining the fractional deposition of inhaled particles in the respiratory tract and the resulting doses. Respiratory tract models have been published by the International Commission on radiological Protection (ICRP).The former model has recommended a default AMAD of 1 micron for the calculation of dose coefficients for workers in the nuclear industry [1].The recent model recommends a 5 microns default diameter for occupational exposure which is considered to be more representative of workplace aerosols [2]. Several researches on radioactive aerosol's size distribution in nuclear workplaces has supported this recommendation [3,4].This paper presents the results of radioactive aerosols size distribution measurements taken at several workplaces of the uranium production process

  3. Aerosol Size Distributions In Auckland.

    Czech Academy of Sciences Publication Activity Database

    Coulson, G.; Olivares, G.; Talbot, Nicholas

    2016-01-01

    Roč. 50, č. 1 (2016), s. 23-28 E-ISSN 1836-5876 Institutional support: RVO:67985858 Keywords : aerosol size distribution * particle number concentration * roadside Subject RIV: CF - Physical ; Theoretical Chemistry

  4. A new stochastic algorithm for inversion of dust aerosol size distribution

    Science.gov (United States)

    Wang, Li; Li, Feng; Yang, Ma-ying

    2015-08-01

    Dust aerosol size distribution is an important source of information about atmospheric aerosols, and it can be determined from multiwavelength extinction measurements. This paper describes a stochastic inverse technique based on artificial bee colony (ABC) algorithm to invert the dust aerosol size distribution by light extinction method. The direct problems for the size distribution of water drop and dust particle, which are the main elements of atmospheric aerosols, are solved by the Mie theory and the Lambert-Beer Law in multispectral region. And then, the parameters of three widely used functions, i.e. the log normal distribution (L-N), the Junge distribution (J-J), and the normal distribution (N-N), which can provide the most useful representation of aerosol size distributions, are inversed by the ABC algorithm in the dependent model. Numerical results show that the ABC algorithm can be successfully applied to recover the aerosol size distribution with high feasibility and reliability even in the presence of random noise.

  5. Size distributions of aerosols produced from substitute materials by the Laskin cold DOP aerosol generator

    International Nuclear Information System (INIS)

    Hinds, W.; Macher, J.; First, M.W.

    1981-01-01

    Test aerosols of di(2-ethylhexyl)phthalate (DOP) produced by Laskin nozzle aerosol generators are widely used for in-place filter testing and respirator fit testing. Concern for the health effects of this material has led to a search for substitute materials for test aerosols. Aerosols were generated with a Laskin generator and diluted 6000-fold with clean air. Size distributions were measured for DOP, di(2-ethylhexyl)sebecate, polyethylene glycol, mineral oil, and corn oil aerosols with a PMS ASAS-X optical particle counter. Distributions were slightly bimodal with count median diameters from 0.22 to 0.30 μm. Size distributions varied little with aerosol material, operating pressure, or liquid level. Mineral oil and corn oil gave the best agreement with the DOP size distribution

  6. Size distribution measurements and chemical analysis of aerosol components

    Energy Technology Data Exchange (ETDEWEB)

    Pakkanen, T.A.

    1995-12-31

    The principal aims of this work were to improve the existing methods for size distribution measurements and to draw conclusions about atmospheric and in-stack aerosol chemistry and physics by utilizing size distributions of various aerosol components measured. A sample dissolution with dilute nitric acid in an ultrasonic bath and subsequent graphite furnace atomic absorption spectrometric analysis was found to result in low blank values and good recoveries for several elements in atmospheric fine particle size fractions below 2 {mu}m of equivalent aerodynamic particle diameter (EAD). Furthermore, it turned out that a substantial amount of analyses associated with insoluble material could be recovered since suspensions were formed. The size distribution measurements of in-stack combustion aerosols indicated two modal size distributions for most components measured. The existence of the fine particle mode suggests that a substantial fraction of such elements with two modal size distributions may vaporize and nucleate during the combustion process. In southern Norway, size distributions of atmospheric aerosol components usually exhibited one or two fine particle modes and one or two coarse particle modes. Atmospheric relative humidity values higher than 80% resulted in significant increase of the mass median diameters of the droplet mode. Important local and/or regional sources of As, Br, I, K, Mn, Pb, Sb, Si and Zn were found to exist in southern Norway. The existence of these sources was reflected in the corresponding size distributions determined, and was utilized in the development of a source identification method based on size distribution data. On the Finnish south coast, atmospheric coarse particle nitrate was found to be formed mostly through an atmospheric reaction of nitric acid with existing coarse particle sea salt but reactions and/or adsorption of nitric acid with soil derived particles also occurred. Chloride was depleted when acidic species reacted

  7. Measurement of size distribution for 220Rn progeny attached aerosols

    International Nuclear Information System (INIS)

    Zhang Lei; Guo Qiuju; Zhuo Weihai

    2008-01-01

    The size distribution of radioactive aerosols is a very important factor for evaluating the inner exposure dose contributed by radon and thoron progeny in environments. In order to measure the size distribution of thoron progeny attached radioactive aerosols, a device was developed using wire screens. The count median diameter (CMD) and the geometric standard deviation (GSD) of attached radioactive aerosols were calculated by collecting ThB and using CR-39 as detector. Field measurement results at Yangjiang City in Guangdong Province show that the CMDs distribute between 30 and 130 nm, and the GSDs are between 1.9 and 3.3. It also shows that the more humid country, the smaller CMDs, and the ventilation has great influence on the size distribution of aerosols. The CMDs of adobe house are smaller than that of the concrete houses. (authors)

  8. Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions

    Energy Technology Data Exchange (ETDEWEB)

    Chandrakar, Kamal Kant; Cantrell, Will; Chang, Kelken; Ciochetto, David; Niedermeier, Dennis; Ovchinnikov, Mikhail; Shaw, Raymond A.; Yang, Fan

    2016-11-28

    The influence of aerosol concentration on cloud droplet size distribution is investigated in a laboratory chamber that enables turbulent cloud formation through moist convection. The experiments allow steady-state microphysics to be achieved, with aerosol input balanced by cloud droplet growth and fallout. As aerosol concentration is increased the cloud droplet mean diameter decreases as expected, but the width of the size distribution also decreases sharply. The aerosol input allows for cloud generation in the limiting regimes of fast microphysics (τc < τt) for high aerosol concentration, and slow microphysics (τc > τt) for low aerosol concentration; here, τc is the phase relaxation time and τt is the turbulence correlation time. The increase in the width of the droplet size distribution for the low aerosol limit is consistent with larger variability of supersaturation due to the slow microphysical response. A stochastic differential equation for supersaturation predicts that the standard deviation of the squared droplet radius should increase linearly with a system time scale defined as τs-1c-1 + τt-1, and the measurements are in excellent agreement with this finding. This finding underscores the importance of droplet size dispersion for the aerosol indirect effect: increasing aerosol concentration not only suppresses precipitation formation through reduction of the mean droplet diameter, but perhaps more importantly, through narrowing of the droplet size distribution due to reduced supersaturation fluctuations. Supersaturation fluctuations in the low aerosol / slow microphysics limit are likely of leading importance for precipitation formation.

  9. Retrieval of size distribution for urban aerosols using multispectral optical data

    International Nuclear Information System (INIS)

    Kocifaj, M; Horvath, H

    2005-01-01

    We are dealing with retrieval of aerosol size distribution using multispectral extinction data collected in highly industrialized urban region. Especially, a role of the particle morphology is in the focus of this work. As well known, at present, still many retrieval algorithms are based on simple Lorenz-Mie's theory applicable for perfectly spherical and homogeneous particles, because that approach is fast and can handle the whole size distribution of particles. However, the solid-phase aerosols never render simple geometries, and rather than being spherical or spheroidal they are quite irregular. It is shown, that identification of the modal radius a M of both, the size distribution f(a) and the distribution of geometrical cross section s(a) of aerosol particles is not significantly influenced by the particle's morphology in case the aspect ratio is smaller than 2 and the particles are randomly oriented in the atmospheric environment. On the other hand, the amount of medium-sized particles (radius of which is larger than the modal radius) can be underestimated if distribution of non-spherical grains is substituted by system of volume equivalent spheres. Retrieved volume content of fine aerosols (as characterized by PM 2.5 and PM 1.0 ) can be potentially affected by inappropriate assumption on the particle shape

  10. Aerosol particle size distribution in the stratosphere retrieved from SCIAMACHY limb measurements

    Science.gov (United States)

    Malinina, Elizaveta; Rozanov, Alexei; Rozanov, Vladimir; Liebing, Patricia; Bovensmann, Heinrich; Burrows, John P.

    2018-04-01

    health, stratospheric aerosol plays an important role in atmospheric chemistry and climate change. In particular, information about the amount and distribution of stratospheric aerosols is required to initialize climate models, as well as validate aerosol microphysics models and investigate geoengineering. In addition, good knowledge of stratospheric aerosol loading is needed to increase the retrieval accuracy of key trace gases (e.g. ozone or water vapour) when interpreting remote sensing measurements of the scattered solar light. The most commonly used characteristics to describe stratospheric aerosols are the aerosol extinction coefficient and Ångström coefficient. However, the use of particle size distribution parameters along with the aerosol number density is a more optimal approach. In this paper we present a new retrieval algorithm to obtain the particle size distribution of stratospheric aerosol from space-borne observations of the scattered solar light in the limb-viewing geometry. While the mode radius and width of the aerosol particle size distribution are retrieved, the aerosol particle number density profile remains unchanged. The latter is justified by a lower sensitivity of the limb-scattering measurements to changes in this parameter. To our knowledge this is the first data set providing two parameters of the particle size distribution of stratospheric aerosol from space-borne measurements of scattered solar light. Typically, the mode radius and w can be retrieved with an uncertainty of less than 20 %. The algorithm was successfully applied to the tropical region (20° N-20° S) for 10 years (2002-2012) of SCIAMACHY observations in limb-viewing geometry, establishing a unique data set. Analysis of this new climatology for the particle size distribution parameters showed clear increases in the mode radius after the tropical volcanic eruptions, whereas no distinct behaviour of the absolute distribution width could be identified. A tape recorder

  11. Pan-Arctic aerosol number size distributions: seasonality and transport patterns

    Science.gov (United States)

    Freud, Eyal; Krejci, Radovan; Tunved, Peter; Leaitch, Richard; Nguyen, Quynh T.; Massling, Andreas; Skov, Henrik; Barrie, Leonard

    2017-07-01

    The Arctic environment has an amplified response to global climatic change. It is sensitive to human activities that mostly take place elsewhere. For this study, a multi-year set of observed aerosol number size distributions in the diameter range of 10 to 500 nm from five sites around the Arctic Ocean (Alert, Villum Research Station - Station Nord, Zeppelin, Tiksi and Barrow) was assembled and analysed.A cluster analysis of the aerosol number size distributions revealed four distinct distributions. Together with Lagrangian air parcel back-trajectories, they were used to link the observed aerosol number size distributions with a variety of transport regimes. This analysis yields insight into aerosol dynamics, transport and removal processes, on both an intra- and an inter-monthly scale. For instance, the relative occurrence of aerosol number size distributions that indicate new particle formation (NPF) event is near zero during the dark months, increases gradually to ˜ 40 % from spring to summer, and then collapses in autumn. Also, the likelihood of Arctic haze aerosols is minimal in summer and peaks in April at all sites.The residence time of accumulation-mode particles in the Arctic troposphere is typically long enough to allow tracking them back to their source regions. Air flow that passes at low altitude over central Siberia and western Russia is associated with relatively high concentrations of accumulation-mode particles (Nacc) at all five sites - often above 150 cm-3. There are also indications of air descending into the Arctic boundary layer after transport from lower latitudes.The analysis of the back-trajectories together with the meteorological fields along them indicates that the main driver of the Arctic annual cycle of Nacc, on the larger scale, is when atmospheric transport covers the source regions for these particles in the 10-day period preceding the observations in the Arctic. The scavenging of these particles by precipitation is shown to be

  12. Simulating SAL formation and aerosol size distribution during SAMUM-I

    KAUST Repository

    Khan, Basit Ali

    2015-04-01

    To understand the formation mechanisms of Saharan Air Layer (SAL), we combine model simulations and dust observations collected during the first stage of the Saharan Mineral Dust Experiment (SAMUM-I), which sampled dust events that extended from Morocco to Portugal, and investigated the spatial distribution and the microphysical, optical, chemical, and radiative properties of Saharan mineral dust. We employed the Weather Research Forecast model coupled with the Chemistry/Aerosol module (WRF-Chem) to reproduce the meteorological environment and spatial and size distributions of dust. The experimental domain covers northwest Africa including the southern Sahara, Morocco and part of the Atlantic Ocean with 5 km horizontal grid spacing and 51 vertical layers. The experiments were run from 20 May to 9 June 2006, covering the period of most intensive dust outbreaks. Comparisons of model results with available airborne and ground-based observations show that WRF-Chem reproduces observed meteorological fields as well as aerosol spatial distribution across the entire region and along the airplane\\'s tracks. We evaluated several aerosol uplift processes and found that orographic lifting, aerosol transport through the land/sea interface with steep gradients of meteorological characteristics, and interaction of sea breezes with the continental outflow are key mechanisms that form a surface-detached aerosol plume over the ocean. Comparisons of simulated dust size distributions with airplane and ground-based observations are generally good, but suggest that more detailed treatment of microphysics in the model is required to capture the full-scale effect of large aerosol particles.

  13. Measurement of particle size distribution and mass concentration of nuclear fuel aerosols

    International Nuclear Information System (INIS)

    Pickering, S.

    1982-01-01

    The particle size distribution and particle mass concentration of a nuclear fuel aerosol is measured by admitting the aerosol into a vertically-extending container, positioning an alpha particle detector within the container so that its window is horizontal and directed vertically, stopping the admission of aerosol into the container, detecting the alpha-activity of the particles of the aerosol sedimenting onto the detector window (for example in a series of equal time intervals until a constant level is reached), and converting the alpha-activity measurements into particle size distribution and/or particle mass concentration measurements. The detector is attached to a pivotted arm and by raising a counterweight can be lowered from the container for cleaning. (author)

  14. A statistical analysis of North East Atlantic (submicron aerosol size distributions

    Directory of Open Access Journals (Sweden)

    M. Dall'Osto

    2011-12-01

    Full Text Available The Global Atmospheric Watch research station at Mace Head (Ireland offers the possibility to sample some of the cleanest air masses being imported into Europe as well as some of the most polluted being exported out of Europe. We present a statistical cluster analysis of the physical characteristics of aerosol size distributions in air ranging from the cleanest to the most polluted for the year 2008. Data coverage achieved was 75% throughout the year. By applying the Hartigan-Wong k-Means method, 12 clusters were identified as systematically occurring. These 12 clusters could be further combined into 4 categories with similar characteristics, namely: coastal nucleation category (occurring 21.3 % of the time, open ocean nucleation category (occurring 32.6% of the time, background clean marine category (occurring 26.1% of the time and anthropogenic category (occurring 20% of the time aerosol size distributions. The coastal nucleation category is characterised by a clear and dominant nucleation mode at sizes less than 10 nm while the open ocean nucleation category is characterised by a dominant Aitken mode between 15 nm and 50 nm. The background clean marine aerosol exhibited a clear bimodality in the sub-micron size distribution, with although it should be noted that either the Aitken mode or the accumulation mode may dominate the number concentration. However, peculiar background clean marine size distributions with coarser accumulation modes are also observed during winter months. By contrast, the continentally-influenced size distributions are generally more monomodal (accumulation, albeit with traces of bimodality. The open ocean category occurs more often during May, June and July, corresponding with the North East (NE Atlantic high biological period. Combined with the relatively high percentage frequency of occurrence (32.6%, this suggests that the marine biota is an important source of new nano aerosol particles in NE Atlantic Air.

  15. Measurement and analysis of the concentration and size distribution of aerosols in a copper mine

    International Nuclear Information System (INIS)

    Li Dehong; Zhuo Weihai; Huang Gang; Su Xu; Sun Quanfu

    2008-01-01

    Objective: To explore the general characteristics of the concentration and size distribution of aerosols in a mine. Methods: In different areas of a non-uranium mine, the particle number and mass concentration of aerosols were surveyed with a condensation particle counter and a personal aerosol monitor, respectively, and the size distribution of aerosols larger than 1 μm in size was estimated according to the size- selective measurements of mass concentrations. The size distribution of submicron aerosols was evaluated based on the method of screen diffusion battery (SOB), and the measurements were performed in both inside and outside of a control room. Results: The mass concentration of inhaled particles (PM10) was averaged to be 0.42 mg/m 3 in the whole mine, and it varied with different working areas and significantly affected with human activities. In the mine, particles lager than 1 μm in size widely distributed, while the particles less than 5 nm in size were seldom observed. Conclusions: The characteristics of aerosol significantly change with different working areas, human activities and Antilation condition in mine. The dose contribution from inhaled radioactive particles larger than 1 μm in size should be considered in mine. (authors)

  16. Simultaneous aerosol size distribution and turbidity measurements over St. Louis during METROMEX 1975

    International Nuclear Information System (INIS)

    Laulainen, N.S.; Alkezweeny, A.J.; Thorp, J.M.

    1978-01-01

    An experiment designed to measure aerosol size distributions and turbidity simultaneously over a metropolitan area is described. The particle volume size distributions measured in the city plume are found to be bimodal, with the total particle volume in the fine or submicron mode decreasing dramatically above the inversion. Aerosol extinction coefficients derived from sunphotometer optical depth measurements at four wavelengths are compared to those calculated from the measured size distributions using Mie theory with several different particle refractive indices. The accuracy of the experimental method for determining the aerosol extinction coefficient prevented any meaningful choice of the real part of particle refractive index between 1.5--1.6 and an imaginary part between 0 and -0.1i. Improvements to this type of experiment are discussed

  17. Determination of the particle size distribution of aerosols by means of a diffusion battery

    International Nuclear Information System (INIS)

    Maigne, J.P.

    1978-09-01

    The different methods allowing to determine the particle size distribution of aerosols by means of diffusion batteries are described. To that purpose, a new method for the processing of experimental data (percentages of particles trapped by the battery vs flow rate) was developed on the basis of calculation principles which are described and assessed. This method was first tested by numerical simulation from a priori particle size distributions and then verified experimentally using a fine uranine aerosol whose particle size distribution as determined by our method was compared with the distribution previously obtained by electron microscopy. The method can be applied to the determination of particle size distribution spectra of fine aerosols produced by 'radiolysis' of atmospheric gaseous impurities. Two other applications concern the detection threshold of the condensation nuclei counter and the 'critical' radii of 'radiolysis' particles [fr

  18. Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution

    Science.gov (United States)

    Veselovskii, Igor; Kolgotin, Alexei; Griaznov, Vadim; Müller, Detlef; Franke, Kathleen; Whiteman, David N.

    2004-02-01

    We report on the feasibility of deriving microphysical parameters of bimodal particle size distributions from Mie-Raman lidar based on a triple Nd:YAG laser. Such an instrument provides backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm. The inversion method employed is Tikhonov's inversion with regularization. Special attention has been paid to extend the particle size range for which this inversion scheme works to ~10 μm, which makes this algorithm applicable to large particles, e.g., investigations concerning the hygroscopic growth of aerosols. Simulations showed that surface area, volume concentration, and effective radius are derived to an accuracy of ~50% for a variety of bimodal particle size distributions. For particle size distributions with an effective radius of rims along which anthropogenic pollution mixes with marine aerosols. Measurement cases obtained from the Institute for Tropospheric Research six-wavelength aerosol lidar observations during the Indian Ocean Experiment were used to test the capabilities of the algorithm for experimental data sets. A benchmark test was attempted for the case representing anthropogenic aerosols between a broken cloud deck. A strong contribution of particle volume in the coarse mode of the particle size distribution was found.

  19. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation

    Science.gov (United States)

    Shiraiwa, Manabu; Yee, Lindsay D.; Schilling, Katherine A.; Loza, Christine L.; Craven, Jill S.; Zuend, Andreas; Ziemann, Paul J.; Seinfeld, John H.

    2013-01-01

    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process. PMID:23818634

  20. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation.

    Science.gov (United States)

    Shiraiwa, Manabu; Yee, Lindsay D; Schilling, Katherine A; Loza, Christine L; Craven, Jill S; Zuend, Andreas; Ziemann, Paul J; Seinfeld, John H

    2013-07-16

    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process.

  1. Particle size distribution of UO sub 2 aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Raghunath, B. (Radiation Safety Systems Div., BARC, Bombay (India)); Ramachandran, R.; Majumdar, S. (Radiometallurgy Div., BARC, Bombay (India))

    1991-12-01

    The Anderson cascade impactor has been used to determine the activity mean aerodynamic diameter and the particle size distribution of UO{sub 2} powders dispersed in the form of stable aerosols in an air medium. The UO{sub 2} powders obtained by the calcination of ammonium uranyl carbonate (AUC) and ammonium diuranate (ADU) precipitates have been used. (orig./MM).

  2. A model study of the size and composition distribution of aerosols in an aircraft exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Sorokin, A.A. [SRC `ECOLEN`, Moscow (Russian Federation)

    1997-12-31

    A two-dimensional, axisymmetric flow field model which includes water and sulphate aerosol formation represented by moments of the size and composition distribution function is used to calculate the effect of radial turbulent jet mixing on the aerosol size distribution and mean modal composition. (author) 6 refs.

  3. A model study of the size and composition distribution of aerosols in an aircraft exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Sorokin, A A [SRC ` ECOLEN` , Moscow (Russian Federation)

    1998-12-31

    A two-dimensional, axisymmetric flow field model which includes water and sulphate aerosol formation represented by moments of the size and composition distribution function is used to calculate the effect of radial turbulent jet mixing on the aerosol size distribution and mean modal composition. (author) 6 refs.

  4. Study of particle size distribution and formation mechanism of radioactive aerosols generated in high-energy neutron fields

    CERN Document Server

    Endo, A; Noguchi, H; Tanaka, S; Iida, T; Furuichi, S; Kanda, Y; Oki, Y

    2003-01-01

    The size distributions of sup 3 sup 8 Cl, sup 3 sup 9 Cl, sup 8 sup 2 Br and sup 8 sup 4 Br aerosols generated by irradiations of argon and krypton gases containing di-octyl phthalate (DOP) aerosols with 45 MeV and 65 MeV quasi-monoenergetic neutrons were measured in order to study the formation mechanism of radioactive particles in high energy radiation fields. The effects of the size distribution of the radioactive aerosols on the size of the added DOP aerosols, the energy of the neutrons and the kinds of nuclides were studied. The observed size distributions of the radioactive particles were explained by attachment of the radioactive atoms generated by the neutron-induced reactions to the DOP aerosols. (author)

  5. Rapid Measurements of Aerosol Size Distribution and Hygroscopic Growth via Image Processing with a Fast Integrated Mobility Spectrometer (FIMS)

    Science.gov (United States)

    Wang, Y.; Pinterich, T.; Spielman, S. R.; Hering, S. V.; Wang, J.

    2017-12-01

    Aerosol size distribution and hygroscopicity are among key parameters in determining the impact of atmospheric aerosols on global radiation and climate change. In situ submicron aerosol size distribution measurements commonly involve a scanning mobility particle sizer (SMPS). The SMPS scanning time is in the scale of minutes, which is often too slow to capture the variation of aerosol size distribution, such as for aerosols formed via nucleation processes or measurements onboard research aircraft. To solve this problem, a Fast Integrated Mobility Spectrometer (FIMS) based on image processing was developed for rapid measurements of aerosol size distributions from 10 to 500 nm. The FIMS consists of a parallel plate classifier, a condenser, and a CCD detector array. Inside the classifier an electric field separates charged aerosols based on electrical mobilities. Upon exiting the classifier, the aerosols pass through a three stage growth channel (Pinterich et al. 2017; Spielman et al. 2017), where aerosols as small as 7 nm are enlarged to above 1 μm through water or heptanol condensation. Finally, the grown aerosols are illuminated by a laser sheet and imaged onto a CCD array. The images provide both aerosol concentration and position, which directly relate to the aerosol size distribution. By this simultaneous measurement of aerosols with different sizes, the FIMS provides aerosol size spectra nearly 100 times faster than the SMPS. Recent deployment onboard research aircraft demonstrated that the FIMS is capable of measuring aerosol size distributions in 1s (Figure), thereby offering a great advantage in applications requiring high time resolution (Wang et al. 2016). In addition, the coupling of the FIMS with other conventional aerosol instruments provides orders of magnitude more rapid characterization of aerosol optical and microphysical properties. For example, the combination of a differential mobility analyzer, a relative humidity control unit, and a FIMS was

  6. Atmospheric aerosols size distribution properties in winter and pre-monsoon over western Indian Thar Desert location

    Energy Technology Data Exchange (ETDEWEB)

    Panwar, Chhagan, E-mail: chhaganpanwar@gmail.com; Vyas, B. M. [Department of Physics, M.L. Sukhadia University, Udaipur-313001 (India)

    2016-05-06

    The first ever experimental results over Indian Thar Desert region concerning to height integrated aerosols size distribution function in particles size ranging between 0.09 to 2 µm such as, aerosols columnar size distribution (CSD), effective radius (R{sub eff}), integrated content of total aerosols (N{sub t}), columnar content of accumulation and coarse size aerosols particles concentration (N{sub a}) (size < 0.5 µm) and (N{sub c}) (size between 0.5 to 2 µm) have been described specifically during winter (a stable weather condition and intense anthropogenic pollution activity period) and pre-monsoon (intense dust storms of natural mineral aerosols as well as unstable atmospheric weather condition period) at Jaisalmer (26.90°N, 69.90°E, 220 m above surface level (asl)) located in central Thar desert vicinity of western Indian site. The CSD and various derived other aerosols size parameters are retrieved from their average spectral characteristics of Aerosol Optical Thickness (AOT) from UV to Infrared wavelength spectrum measured from Multi-Wavelength solar Radiometer (MWR). The natures of CSD are, in general, bio-modal character, instead of uniformly distributed character and power law distributions. The observed primary peaks in CSD plots are seen around about 10{sup 13} m{sup 2} μm{sup −1} at radius range 0.09-0.20 µm during both the seasons. But, in winter months, secondary peaks of relatively lower CSD values of 10{sup 10} to 10{sup 11} m{sup 2}/μm{sup −1} occur within a lower radius size range 0.4 to 0.6 µm. In contrast to this, while in dust dominated and hot season, the dominated secondary maxima of the higher CSD of about 10{sup 12} m{sup 2}μm{sup −3} is found of bigger aerosols size particles in a rage of 0.6 to 1.0 µm which is clearly demonstrating the characteristics of higher aerosols laden of bigger size aerosols in summer months relative to their prevailed lower aerosols loading of smaller size aerosols particles (0

  7. An investigation of processes controlling the evolution of the boundary layer aerosol size distribution properties at the Swedish background station Aspvreten

    Directory of Open Access Journals (Sweden)

    P. Tunved

    2004-01-01

    Full Text Available Aerosol size distributions have been measured at the Swedish background station Aspvreten (58.8° N, 17.4° E. Different states of the aerosol were determined using a novel application of cluster analysis. The analysis resulted in eight different clusters capturing different stages of the aerosol lifecycle. The atmospheric aerosol size distributions were interpreted as belonging to fresh, intermediate and aged types of size distribution. With aid of back trajectory analysis we present statistics concerning the relation of source area and different meteorological parameters using a non-Lagrangian approach. Source area is argued to be important although not sufficient to describe the observed aerosol properties. Especially processing by clouds and precipitation is shown to be crucial for the evolution of the aerosol size distribution. As much as 60% of the observed size distributions present features that are likely to be related to cloud processes or wet deposition. The lifetime properties of different sized aerosols are discussed by means of measured variability of the aerosol size distribution. Processing by clouds and precipitation is shown to be especially crucial in the size range 100 nm and larger. This indicates an approximate limit for activation in clouds to 100 nm in this type of environment. The aerosol lifecycle is discussed. Size distributions indicating signs of recent new particle formation (~30% of the observed size distributions represent the first stage in the lifecycle. Aging of the aerosol size distribution may follow two branches: either growth by condensation and coagulation or processing by non-precipitating clouds. In both cases mass is accumulated. Wet removal is the main process capable of removing aerosol mass. Wet deposition is argued to be an important mechanism in reaching a state where nucleation may occur (i.e. sufficiently low aerosol surface area in environments similar to the one studied.

  8. Measurement of aerosol size distribution by impaction and sedimentation An experimental study and data reduction

    International Nuclear Information System (INIS)

    Diouri, Mohamed.

    1981-09-01

    This study concerns essentially solid aerosols produced by combustion and more particulary the aerosol liberated by a sodium fire taken into account in safety studies related to sodium cooled nuclear reactors. The accurate determination of the aerosol size distribution depends on the selection device use. An experimental study of the parameters affecting the solid aerosol collection efficiency was made with the Andersen Mark II cascade impactor (blow off and bounce, electrical charge of particles, wall-loss). A sedimentation chamber was built and calibrated for the range between 4 and 10 μm. The second part describes a comparative study of different data reduction methods for the impactor and a new method for setting up the aerosol size distribution with data obtained by the sedimentation chamber [fr

  9. A Merging Algorithm for Aerosol Size Distribution from Multiple Instruments

    Czech Academy of Sciences Publication Activity Database

    Ondráček, Jakub; Ždímal, Vladimír; Smolík, Jiří; Lazaridis, M.

    2009-01-01

    Roč. 199, 1-4 (2009), s. 219-233 ISSN 0049-6979 Grant - others:MTKD(XE) CT-2004-513849 Institutional research plan: CEZ:AV0Z40720504 Keywords : aerosols * merging particle size distribution * multilognormal model Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.676, year: 2009

  10. Aerosol Size Distributions During ACE-Asia: Retrievals From Optical Thickness and Comparisons With In-situ Measurements

    Science.gov (United States)

    Kuzmanoski, M.; Box, M.; Box, G. P.; Schmidt, B.; Russell, P. B.; Redemann, J.; Livingston, J. M.; Wang, J.; Flagan, R. C.; Seinfeld, J. H.

    2002-12-01

    As part of the ACE-Asia experiment, conducted off the coast of China, Korea and Japan in spring 2001, measurements of aerosol physical, chemical and radiative characteristics were performed aboard the Twin Otter aircraft. Of particular importance for this paper were spectral measurements of aerosol optical thickness obtained at 13 discrete wavelengths, within 354-1558 nm wavelength range, using the AATS-14 sunphotometer. Spectral aerosol optical thickness can be used to obtain information about particle size distribution. In this paper, we use sunphotometer measurements to retrieve size distribution of aerosols during ACE-Asia. We focus on four cases in which layers influenced by different air masses were identified. Aerosol optical thickness of each layer was inverted using two different techniques - constrained linear inversion and multimodal. In the constrained linear inversion algorithm no assumption about the mathematical form of the distribution to be retrieved is made. Conversely, the multimodal technique assumes that aerosol size distribution is represented as a linear combination of few lognormal modes with predefined values of mode radii and geometric standard deviations. Amplitudes of modes are varied to obtain best fit of sum of optical thicknesses due to individual modes to sunphotometer measurements. In this paper we compare the results of these two retrieval methods. In addition, we present comparisons of retrieved size distributions with in situ measurements taken using an aerodynamic particle sizer and differential mobility analyzer system aboard the Twin Otter aircraft.

  11. Real-Time Measurement of Electronic Cigarette Aerosol Size Distribution and Metals Content Analysis.

    Science.gov (United States)

    Mikheev, Vladimir B; Brinkman, Marielle C; Granville, Courtney A; Gordon, Sydney M; Clark, Pamela I

    2016-09-01

    Electronic cigarette (e-cigarette) use is increasing worldwide and is highest among both daily and nondaily smokers. E-cigarettes are perceived as a healthier alternative to combustible tobacco products, but their health risk factors have not yet been established, and one of them is lack of data on aerosol size generated by e-cigarettes. We applied a real-time, high-resolution aerosol differential mobility spectrometer to monitor the evolution of aerosol size and concentration during puff development. Particles generated by e-cigarettes were immediately delivered for analysis with minimal dilution and therefore with minimal sample distortion, which is critically important given the highly dynamic aerosol/vapor mixture inherent to e-cigarette emissions. E-cigarette aerosols normally exhibit a bimodal particle size distribution: nanoparticles (11-25nm count median diameter) and submicron particles (96-175nm count median diameter). Each mode has comparable number concentrations (10(7)-10(8) particles/cm(3)). "Dry puff" tests conducted with no e-cigarette liquid (e-liquid) present in the e-cigarette tank demonstrated that under these conditions only nanoparticles were generated. Analysis of the bulk aerosol collected on the filter showed that e-cigarette emissions contained a variety of metals. E-cigarette aerosol size distribution is different from that of combustible tobacco smoke. E-cigarettes generate high concentrations of nanoparticles and their chemical content requires further investigation. Despite the small mass of nanoparticles, their toxicological impact could be significant. Toxic chemicals that are attached to the small nanoparticles may have greater adverse health effects than when attached to larger submicron particles. The e-cigarette aerosol size distribution is different from that of combustible tobacco smoke and typically exhibits a bimodal behavior with comparable number concentrations of nanoparticles and submicron particles. While vaping the e

  12. Size distributions and chemical properties of aerosol at Ny Ålesund, Svalbard

    Science.gov (United States)

    Covert, David S.; Heintzenberg, Jost

    Physical and chemical parameters of the arctic aerosol were investigated at Ny Ålesund, Svalbard, in March and April 1989 in connection with the third Arctic Gas and Aerosol Project (AGASP III). The number size distribution of the particles was measured over the range of 0.02-1.0 μm. Filter samples were analysed for elemental composition and two integral chemical properties, hygroscopic growth and volatility, were measured. Along with the latter measurements, the distribution of these properties at specific particle sizes, i.e. the degree of internal mixing, was determined. Both clean, marine conditions and "arctic haze" episodes were included in the series of measurements. The number size distribution indicated that the aerosol was well aged based on its narrowness and the relative low concentration of nuclei mode particles. It had a number mode at 0.22 μm diameter and geometric standard deviation of 1.4. Generally the particles exhibited uniform hygroscopic growth properties, i.e. they were largely internally mixed. The growth factor was 1.45 at 90% relative humidity. Approximately 40% of the overall particulate mass was volatile at a temperature of 50°C. The volatile fraction varied form particle to particle, i.e. the particles were externally mixed with respect to volatility.

  13. Inverse problem for particle size distributions of atmospheric aerosols using stochastic particle swarm optimization

    International Nuclear Information System (INIS)

    Yuan Yuan; Yi Hongliang; Shuai Yong; Wang Fuqiang; Tan Heping

    2010-01-01

    As a part of resolving optical properties in atmosphere radiative transfer calculations, this paper focuses on obtaining aerosol optical thicknesses (AOTs) in the visible and near infrared wave band through indirect method by gleaning the values of aerosol particle size distribution parameters. Although various inverse techniques have been applied to obtain values for these parameters, we choose a stochastic particle swarm optimization (SPSO) algorithm to perform an inverse calculation. Computational performances of different inverse methods are investigated and the influence of swarm size on the inverse problem of computation particles is examined. Next, computational efficiencies of various particle size distributions and the influences of the measured errors on computational accuracy are compared. Finally, we recover particle size distributions for atmospheric aerosols over Beijing using the measured AOT data (at wavelengths λ=0.400, 0.690, 0.870, and 1.020 μm) obtained from AERONET at different times and then calculate other AOT values for this band based on the inverse results. With calculations agreeing with measured data, the SPSO algorithm shows good practicability.

  14. Measurement of an electronic cigarette aerosol size distribution during a puff

    Science.gov (United States)

    Belka, Miloslav; Lizal, Frantisek; Jedelsky, Jan; Jicha, Miroslav; Pospisil, Jiri

    Electronic cigarettes (e-cigarettes) have become very popular recently because they are marketed as a healthier alternative to tobacco smoking and as a useful tool to smoking cessation. E-cigarettes use a heating element to create an aerosol from a solution usually consisting of propylene glycol, glycerol, and nicotine. Despite the wide spread of e-cigarettes, information about aerosol size distributions is rather sparse. This can be caused by the relative newness of e-cigarettes and by the difficulty of the measurements, in which one has to deal with high concentration aerosol containing volatile compounds. Therefore, we assembled an experimental setup for size measurements of e-cigarette aerosol in conjunction with a piston based machine in order to simulate a typical puff. A TSI scanning mobility particle sizer 3936 was employed to provide information about particle concentrations and sizes. An e-cigarette commercially available on the Czech Republic market was tested and the results were compared with a conventional tobacco cigarette. The particles emitted from the e-cigarette were smaller than those of the conventional cigarette having a CMD of 150 and 200 nm. However, the total concentration of particles from e-cigarette was higher.

  15. Measurement of an electronic cigarette aerosol size distribution during a puff

    Directory of Open Access Journals (Sweden)

    Belka Miloslav

    2017-01-01

    Full Text Available Electronic cigarettes (e-cigarettes have become very popular recently because they are marketed as a healthier alternative to tobacco smoking and as a useful tool to smoking cessation. E-cigarettes use a heating element to create an aerosol from a solution usually consisting of propylene glycol, glycerol, and nicotine. Despite the wide spread of e-cigarettes, information about aerosol size distributions is rather sparse. This can be caused by the relative newness of e-cigarettes and by the difficulty of the measurements, in which one has to deal with high concentration aerosol containing volatile compounds. Therefore, we assembled an experimental setup for size measurements of e-cigarette aerosol in conjunction with a piston based machine in order to simulate a typical puff. A TSI scanning mobility particle sizer 3936 was employed to provide information about particle concentrations and sizes. An e-cigarette commercially available on the Czech Republic market was tested and the results were compared with a conventional tobacco cigarette. The particles emitted from the e-cigarette were smaller than those of the conventional cigarette having a CMD of 150 and 200 nm. However, the total concentration of particles from e-cigarette was higher.

  16. Determination of the columnar aerosol size distribution by inversion of spectral aerosol optical depth measurements at different areas in Egypt

    International Nuclear Information System (INIS)

    EI-Metwally, M.; Madkour, M.A.

    2006-01-01

    Aerosols have a great effects on nuclear safety calculations and atmospheric environment. The aerosol optical depth measurements are carried out at four areas in Egypt: Cairo and Helwan as urban/industrial areas, Aswan as an arid area and Mansoura as an agricultural area covering the period from Jun 1992 to May 1993. These measurements were recorded by ground-based pyrheliometers with large band-pass filters. Monthly average values of aerosol optical depth (AOD) showed a pronounced temporal trend, with a maximum AOD during summer and the transition seasons (spring and autumn) at all sites. Levels of AODs are higher at both urban and industrial areas than at other areas. Variation of Angstrom exponent a with the AOD was clear at most sites and the a value depends on the spectral range used in its determination. The mean contribution of anthropogenic sources to AOD over Cairo was at the range of 25.1-54.3%, whereas those values in Helwan were at the range of 34.5-59.8%. Finally, columnar aerosol size distributions have been inferred by inverting particularly AOD measurements as a function of wavelength. The Junge (type I) and bimodal (type III) distributions are dominant at urban and arid areas (Cairo and Aswan), whereas mono dispersion distribution (type II) are dominant in industrial and agricultural areas (Helwan and Mansoura). In Cairo and Aswan, the peak of columnar size distribution for the fine mode at radius r is around 0.1 and 0.2 μm respectively, while it is around 1.0 and 2.0 μm for the coarse mode. .Also, the peak of size distribution for the mono dispersion mode was marked at radius around 0.2 μm at both Helwan and Mansoura. A comprehensive comparison of our results with literature size distributions is very sparse, nevertheless, our size distributions in general agree with them

  17. Algorithm of Data Reduce in Determination of Aerosol Particle Size Distribution at Damps/C

    International Nuclear Information System (INIS)

    Muhammad-Priyatna; Otto-Pribadi-Ruslanto

    2001-01-01

    The analysis had to do for algorithm of data reduction on Damps/C (Differential Mobility Particle Sizer with Condensation Particle Counter) system, this is for determine aerosol particle size distribution with range 0,01 μm to 1 μm in diameter. Damps/C (Differential Mobility Particle Sizer with Condensation Particle Counter) system contents are software and hardware. The hardware used determine of mobilities of aerosol particle and so the software used determine aerosol particle size distribution in diameter. The mobilities and diameter particle had connection in the electricity field. That is basic program for reduction of data and particle size conversion from particle mobility become particle diameter. The analysis to get transfer function value, Ω, is 0.5. The data reduction program to do conversation mobility basis become diameter basis with number efficiency correction, transfer function value, and poly charge particle. (author)

  18. Interpretation of aerosol trace metal particle size distributions

    International Nuclear Information System (INIS)

    Johansson, T.B.; Van Grieken, R.E.; Winchester, J.W.

    1974-01-01

    Proton-induced X-ray emission (PIXE) analysis is capable of rapid routine determination of 10--15 elements present in amounts greater than or equal to 1 ng simultaneously in aerosol size fractions as collected by single orifice impactors over short periods of time. This enables detailed study of complex relationships between elements detected. Since absolute elemental concentrations may be strongly influenced by meteorological and topographical conditions, it is useful to normalize to a reference element. Comparison between the ratios of concentrations with aerosol and corresponding values for anticipated sources may lead to the identification of important sources for the elements. Further geochemical insights may be found through linear correlation coefficients, regression analysis, and cluster analysis. By calculating correlations for elemental pairs, an indication of the degree of covariance between the elements is obtained. Preliminary results indicate that correlations may be particle size dependent. A high degree of covariance may be caused either by a common source or may only reflect the conservative nature of the aerosol. In a regression analysis, by plotting elemental pairs and estimating the regression coefficients, we may be able to conclude if there is more than one source operating for a given element in a certain size range. Analysis of clustering of several elements, previously investigated for aerosol filter samples, can be applied to the analysis of aerosol size fractions. Careful statistical treatment of elemental concentrations as a function of aerosol particle size may thus yield significant information on the generation, transport and deposition of trace metals in the atmosphere

  19. Simulating Aerosol Size Distribution and Mass Concentration with Simultaneous Nucleation, Condensation/Coagulation, and Deposition with the GRAPES-CUACE

    Science.gov (United States)

    Zhou, Chunhong; Shen, Xiaojing; Liu, Zirui; Zhang, Yangmei; Xin, Jinyuan

    2018-04-01

    A coupled aerosol-cloud model is essential for investigating the formation of haze and fog and the interaction of aerosols with clouds and precipitation. One of the key tasks of such a model is to produce correct mass and number size distributions of aerosols. In this paper, a parameterization scheme for aerosol size distribution in initial emission, which took into account the measured mass and number size distributions of aerosols, was developed in the GRAPES-CUACE [Global/Regional Assimilation and PrEdiction System-China Meteorological Administration (CMA) Unified Atmospheric Chemistry Environment model]—an online chemical weather forecast system that contains microphysical processes and emission, transport, and chemical conversion of sectional multi-component aerosols. In addition, the competitive mechanism between nucleation and condensation for secondary aerosol formation was improved, and the dry deposition was also modified to be in consistent with the real depositing length. Based on the above improvements, the GRAPES-CUACE simulations were verified against observational data during 1-31 January 2013, when a series of heavy regional haze-fog events occurred in eastern China. The results show that the aerosol number size distribution from the improved experiment was much closer to the observation, whereas in the old experiment the number concentration was higher in the nucleation mode and lower in the accumulation mode. Meanwhile, the errors in aerosol number size distribution as diagnosed by its sectional mass size distribution were also reduced. Moreover, simulations of organic carbon, sulfate, and other aerosol components were improved and the overestimation as well as underestimation of PM2.5 concentration in eastern China was significantly reduced, leading to increased correlation coefficient between simulated and observed PM2.5 by more than 70%. In the remote areas where bad simulation results were produced previously, the correlation coefficient

  20. Growth Kinetics and Size Distribution Dynamics of Viscous Secondary Organic Aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Zaveri, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Atmospheric Science and Global Change Div. (ASGC); Shilling, John E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Atmospheric Science and Global Change Div. (ASGC); Zelenyuk, Alla [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Physical Sciences Div.; Liu, Jiumeng [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Atmospheric Science and Global Change Div. (ASGC); Bell, David M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Physical Sciences Div.; Paul Scherrer Inst. (PSI), Villigen (Switzerland). Lab. of Atmospheric Chemistry; D’Ambro, Emma L. [Univ. of Washington, Seattle, WA (United States). Dept. of Atmospheric Sciences and Dept. of Chemistry; Gaston, Cassandra J. [Univ. of Washington, Seattle, WA (United States). Dept. of Atmospheric Sciences; Univ. of Miami, Miami, FL (United States). Rosenstiel School of Marine and Atmospheric Science; Thornton, Joel A. [Univ. of Washington, Seattle, WA (United States). Dept. of Atmospheric Sciences and Dept. of Chemistry; Laskin, Alexander [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Purdue Univ., West Lafayette, IN (United States). Dept. of Chemistry; Lin, Peng [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Purdue Univ., West Lafayette, IN (United States). Dept. of Chemistry; Wilson, Jacqueline [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Physical Sciences Div.; Easter, Richard C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Atmospheric Science and Global Change Div. (ASGC); Wang, Jian [Brookhaven National Lab. (BNL), Upton, NY (United States). Environmental & Climate Sciences Dept.; Bertram, Allan K. [Univ. of British Columbia, Vancouver, BC (Canada). Dept. of Chemistry; Martin, Scot T. [Harvard Univ., Cambridge, MA (United States). School of Engineering and Applied Sciences (SEAS) and Dept. of Earth and Planetary Sciences; Seinfeld, John H. [California Inst. of Technology (CalTech), Pasadena, CA (United States). Div. of Chemistry and Chemical Engineering and Div. of Engineering and Applied Science; Worsnop, Douglas R. [Aerodyne Research, Billerica, MA (United States). Center for Aerosol and Cloud Chemistry

    2017-12-15

    Low bulk diffusivity inside viscous semisolid atmospheric secondary organic aerosol (SOA) can prolong equilibration time scale, but its broader impacts on aerosol growth and size distribution dynamics are poorly understood. In this article, we present quantitative insights into the effects of bulk diffusivity on the growth and evaporation kinetics of SOA formed under dry conditions from photooxidation of isoprene in the presence of a bimodal aerosol consisting of Aitken (ammonium sulfate) and accumulation (isoprene or α-pinene SOA) mode particles. Aerosol composition measurements and evaporation kinetics indicate that isoprene SOA is composed of several semivolatile organic compounds (SVOCs), with some reversibly reacting to form oligomers. Model analysis shows that liquid-like bulk diffusivities can be used to fit the observed evaporation kinetics of accumulation mode particles but fail to explain the growth kinetics of bimodal aerosol by significantly under-predicting the evolution of the Aitken mode. In contrast, the semisolid scenario successfully reproduces both evaporation and growth kinetics, with the interpretation that hindered partitioning of SVOCs into large viscous particles effectively promotes the growth of smaller particles that have shorter diffusion time scales. This effect has important implications for the growth of atmospheric ultrafine particles to climatically active sizes.

  1. The evolution of biomass-burning aerosol size distributions due to coagulation: dependence on fire and meteorological details and parameterization

    Directory of Open Access Journals (Sweden)

    K. M. Sakamoto

    2016-06-01

    Full Text Available Biomass-burning aerosols have a significant effect on global and regional aerosol climate forcings. To model the magnitude of these effects accurately requires knowledge of the size distribution of the emitted and evolving aerosol particles. Current biomass-burning inventories do not include size distributions, and global and regional models generally assume a fixed size distribution from all biomass-burning emissions. However, biomass-burning size distributions evolve in the plume due to coagulation and net organic aerosol (OA evaporation or formation, and the plume processes occur on spacial scales smaller than global/regional-model grid boxes. The extent of this size-distribution evolution is dependent on a variety of factors relating to the emission source and atmospheric conditions. Therefore, accurately accounting for biomass-burning aerosol size in global models requires an effective aerosol size distribution that accounts for this sub-grid evolution and can be derived from available emission-inventory and meteorological parameters. In this paper, we perform a detailed investigation of the effects of coagulation on the aerosol size distribution in biomass-burning plumes. We compare the effect of coagulation to that of OA evaporation and formation. We develop coagulation-only parameterizations for effective biomass-burning size distributions using the SAM-TOMAS large-eddy simulation plume model. For the most-sophisticated parameterization, we use the Gaussian Emulation Machine for Sensitivity Analysis (GEM-SA to build a parameterization of the aged size distribution based on the SAM-TOMAS output and seven inputs: emission median dry diameter, emission distribution modal width, mass emissions flux, fire area, mean boundary-layer wind speed, plume mixing depth, and time/distance since emission. This parameterization was tested against an independent set of SAM-TOMAS simulations and yields R2 values of 0.83 and 0.89 for Dpm and modal width

  2. The evolution of biomass-burning aerosol size distributions due to coagulation: dependence on fire and meteorological details and parameterization

    Science.gov (United States)

    Sakamoto, Kimiko M.; Laing, James R.; Stevens, Robin G.; Jaffe, Daniel A.; Pierce, Jeffrey R.

    2016-06-01

    Biomass-burning aerosols have a significant effect on global and regional aerosol climate forcings. To model the magnitude of these effects accurately requires knowledge of the size distribution of the emitted and evolving aerosol particles. Current biomass-burning inventories do not include size distributions, and global and regional models generally assume a fixed size distribution from all biomass-burning emissions. However, biomass-burning size distributions evolve in the plume due to coagulation and net organic aerosol (OA) evaporation or formation, and the plume processes occur on spacial scales smaller than global/regional-model grid boxes. The extent of this size-distribution evolution is dependent on a variety of factors relating to the emission source and atmospheric conditions. Therefore, accurately accounting for biomass-burning aerosol size in global models requires an effective aerosol size distribution that accounts for this sub-grid evolution and can be derived from available emission-inventory and meteorological parameters. In this paper, we perform a detailed investigation of the effects of coagulation on the aerosol size distribution in biomass-burning plumes. We compare the effect of coagulation to that of OA evaporation and formation. We develop coagulation-only parameterizations for effective biomass-burning size distributions using the SAM-TOMAS large-eddy simulation plume model. For the most-sophisticated parameterization, we use the Gaussian Emulation Machine for Sensitivity Analysis (GEM-SA) to build a parameterization of the aged size distribution based on the SAM-TOMAS output and seven inputs: emission median dry diameter, emission distribution modal width, mass emissions flux, fire area, mean boundary-layer wind speed, plume mixing depth, and time/distance since emission. This parameterization was tested against an independent set of SAM-TOMAS simulations and yields R2 values of 0.83 and 0.89 for Dpm and modal width, respectively. The

  3. Chemical Composition Based Aerosol Optical Properties According to Size Distribution and Mixture Types during Smog and Asian Dust Events in Seoul, Korea

    Science.gov (United States)

    Jung, Chang Hoon; Lee, Ji Yi; Um, Junshik; Lee, Seung Soo; Kim, Yong Pyo

    2018-02-01

    This study investigated the optical properties of aerosols involved in different meteorological events, including smog and Asian dust days. Carbonaceous components and inorganic species were measured in Seoul, Korea between 25 and 31 March 2012. Based on the measurements, the optical properties of aerosols were calculated by considering composition, size distribution, and mixing state of aerosols. To represent polydisperse size distributions of aerosols, a lognormal size distribution with a wide range of geometric mean diameters and geometric standard deviations was used. For the optical property calculations, the Mie theory was used to compute single-scattering properties of aerosol particles with varying size and composition. Analysis of the sampled data showed that the water-soluble components of organic matter increased on smog days, whereas crustal elements increased on dust days. The water content significantly influenced the optical properties of aerosols during the smog days as a result of high relative humidity and an increase in the water-soluble component. The absorption coefficients depended on the aerosol mixture type and the aerosol size distributions. Therefore, to improve our knowledge on radiative impacts of aerosols, especially the regional impacts of aerosols in East Asia, accurate measurements of aerosols, such as size distribution, composition, and mixture type, under different meteorological conditions are required.

  4. Aerosol number size distributions over a coastal semi urban location: Seasonal changes and ultrafine particle bursts

    Energy Technology Data Exchange (ETDEWEB)

    Babu, S. Suresh, E-mail: s_sureshbabu@vssc.gov.in [Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram 695022 (India); Kompalli, Sobhan Kumar [Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram 695022 (India); Moorthy, K. Krishna [Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore 560 012 (India)

    2016-09-01

    Number-size distribution is one of the important microphysical properties of atmospheric aerosols that influence aerosol life cycle, aerosol-radiation interaction as well as aerosol-cloud interactions. Making use of one-yearlong measurements of aerosol particle number-size distributions (PNSD) over a broad size spectrum (~ 15–15,000 nm) from a tropical coastal semi-urban location-Trivandrum (Thiruvananthapuram), the size characteristics, their seasonality and response to mesoscale and synoptic scale meteorology are examined. While the accumulation mode contributed mostly to the annual mean concentration, ultrafine particles (having diameter < 100 nm) contributed as much as 45% to the total concentration, and thus constitute a strong reservoir, that would add to the larger particles through size transformation. The size distributions were, in general, bimodal with well-defined modes in the accumulation and coarse regimes, with mode diameters lying in the range 141 to 167 nm and 1150 to 1760 nm respectively, in different seasons. Despite the contribution of the coarse sized particles to the total number concentration being meager, they contributed significantly to the surface area and volume, especially during transport of marine air mass highlighting the role of synoptic air mass changes. Significant diurnal variation occurred in the number concentrations, geometric mean diameters, which is mostly attributed to the dynamics of the local coastal atmospheric boundary layer and the effect of mesoscale land/sea breeze circulation. Bursts of ultrafine particles (UFP) occurred quite frequently, apparently during periods of land-sea breeze transitions, caused by the strong mixing of precursor-rich urban air mass with the cleaner marine air mass; the resulting turbulence along with boundary layer dynamics aiding the nucleation. These ex-situ particles were observed at the surface due to the transport associated with boundary layer dynamics. The particle growth rates from

  5. Aerosol number size distributions over a coastal semi urban location: Seasonal changes and ultrafine particle bursts

    International Nuclear Information System (INIS)

    Babu, S. Suresh; Kompalli, Sobhan Kumar; Moorthy, K. Krishna

    2016-01-01

    Number-size distribution is one of the important microphysical properties of atmospheric aerosols that influence aerosol life cycle, aerosol-radiation interaction as well as aerosol-cloud interactions. Making use of one-yearlong measurements of aerosol particle number-size distributions (PNSD) over a broad size spectrum (~ 15–15,000 nm) from a tropical coastal semi-urban location-Trivandrum (Thiruvananthapuram), the size characteristics, their seasonality and response to mesoscale and synoptic scale meteorology are examined. While the accumulation mode contributed mostly to the annual mean concentration, ultrafine particles (having diameter < 100 nm) contributed as much as 45% to the total concentration, and thus constitute a strong reservoir, that would add to the larger particles through size transformation. The size distributions were, in general, bimodal with well-defined modes in the accumulation and coarse regimes, with mode diameters lying in the range 141 to 167 nm and 1150 to 1760 nm respectively, in different seasons. Despite the contribution of the coarse sized particles to the total number concentration being meager, they contributed significantly to the surface area and volume, especially during transport of marine air mass highlighting the role of synoptic air mass changes. Significant diurnal variation occurred in the number concentrations, geometric mean diameters, which is mostly attributed to the dynamics of the local coastal atmospheric boundary layer and the effect of mesoscale land/sea breeze circulation. Bursts of ultrafine particles (UFP) occurred quite frequently, apparently during periods of land-sea breeze transitions, caused by the strong mixing of precursor-rich urban air mass with the cleaner marine air mass; the resulting turbulence along with boundary layer dynamics aiding the nucleation. These ex-situ particles were observed at the surface due to the transport associated with boundary layer dynamics. The particle growth rates from

  6. Particle size distribution of aerosols sprayed from household hand-pump sprays containing fluorine-based and silicone-based compounds.

    Science.gov (United States)

    Kawakami, Tsuyoshi; Isama, Kazuo; Ikarashi, Yoshiaki

    2015-01-01

    Japan has published safety guideline on waterproof aerosol sprays. Furthermore, the Aerosol Industry Association of Japan has adopted voluntary regulations on waterproof aerosol sprays. Aerosol particles of diameter less than 10 µm are considered as "fine particles". In order to avoid acute lung injury, this size fraction should account for less than 0.6% of the sprayed aerosol particles. In contrast, the particle size distribution of aerosols released by hand-pump sprays containing fluorine-based or silicone-based compounds have not been investigated in Japan. Thus, the present study investigated the aerosol particle size distribution of 16 household hand-pump sprays. In 4 samples, the ratio of fine particles in aerosols exceeded 0.6%. This study confirmed that several hand-pump sprays available in the Japanese market can spray fine particles. Since the hand-pump sprays use water as a solvent and their ingredients may be more hydrophilic than those of aerosol sprays, the concepts related to the safety of aerosol-sprays do not apply to the hand pump sprays. Therefore, it may be required for the hand-pump spray to develop a suitable method for evaluating the toxicity and to establish the safety guideline.

  7. Season-dependent size distribution of aerosols over the tropical coastal environment of south-west India

    Science.gov (United States)

    Aryasree, S.; Nair, Prabha R.

    2018-01-01

    This paper presents the results of a detailed study on the size characteristics of aerosols at the tropical coastal site Thiruvananthapuram based on the in-situ measurements of size resolved aerosol number density using an aerosol spectrometer, covering a period of 28 months from September 2011 to December 2013. The diurnal pattern of aerosol number density is characterized by day time low and a two-fold increase during nighttime and these changes are closely associated with the strong mesoscale features namely the sea breeze and land breeze prevailing at the site. Aerosol Number Size Distribution (NSD) depicts a multi-modal nature with two prominent modes, one ≤0.1 μm and other ∼1 μm. Two other less pronounced modes are also observed in the NSD, one ∼0.3-0.5 μm and other ∼5-8 μm. The NSDs also exhibited strong seasonal changes linked with the synoptic meteorological feature of this region namely the South Asian monsoon. The seasonal NSDs were parameterized and analyzed. In addition to this, the effects of meteorological parameters temperature, relative humidity, and wind speed and airflow patterns on aerosol number density as revealed by partial correlation analysis were found to be aerosol size dependent.

  8. A scattering methodology for droplet sizing of e-cigarette aerosols.

    Science.gov (United States)

    Pratte, Pascal; Cosandey, Stéphane; Goujon-Ginglinger, Catherine

    2016-10-01

    Knowledge of the droplet size distribution of inhalable aerosols is important to predict aerosol deposition yield at various respiratory tract locations in human. Optical methodologies are usually preferred over the multi-stage cascade impactor for high-throughput measurements of aerosol particle/droplet size distributions. Evaluate the Laser Aerosol Spectrometer technology based on Polystyrene Sphere Latex (PSL) calibration curve applied for the experimental determination of droplet size distributions in the diameter range typical of commercial e-cigarette aerosols (147-1361 nm). This calibration procedure was tested for a TSI Laser Aerosol Spectrometer (LAS) operating at a wavelength of 633 nm and assessed against model di-ethyl-hexyl-sebacat (DEHS) droplets and e-cigarette aerosols. The PSL size response was measured, and intra- and between-day standard deviations calculated. DEHS droplet sizes were underestimated by 15-20% by the LAS when the PSL calibration curve was used; however, the intra- and between-day relative standard deviations were e-cigarette aerosols ranged from 130-191 nm to 225-293 nm, respectively, similar to published values. The LAS instrument can be used to measure e-cigarette aerosol droplet size distributions with a bias underestimating the expected value by 15-20% when using a precise PSL calibration curve. Controlled variability of DEHS size measurements can be achieved with the LAS system; however, this method can only be applied to test aerosols having a refractive index close to that of PSL particles used for calibration.

  9. A case study of the impact of boundary layer aerosol size distribution on the surface UV irradiance

    Energy Technology Data Exchange (ETDEWEB)

    Kikas, U.; Reinhart, A. [University of Tartu (Estonia). Institute of Environmental Physics; Vaht, M. [Parnu Institute of Health Resort Treatment and Medical Rehabilitation (Estonia); Veismann, U. [Tartu Observatory (Estonia)

    2001-07-01

    The relationship between scattering characteristics of surface aerosol and surface UV irradiance was examined on the basis of the measurements carried out in June-August 1999 in Parnu, Estonia on the Eastern coast of the Baltic Sea (58{sup o}22'27 ''N, 24{sup o}30'43 ''E) The UV radiation spectra (300-34Onm) were measured with the Ocean Optics Inc. UV spectrometer PC 1000, the aerosol size distributions (3-1000nm) were measured with the electric aerosol spectrometer EAS. A case study was conducted for six sequential cloudless days, when the decrease of the surface UV irradiance was seemingly influenced by atmospheric aerosol. Aerosol radiative properties were calculated from the measured size distributions that represented the maritime polar (North Atlantic) and mixed maritime-continental air. The aerosol optical depths at 500nm for the North Atlantic air were estimated to be from 0.08 to 0. 13. The spectral aerosol optical depth agreed well with the Angstrom law, the Angstrom exponent ({alpha} varied from day to day between values of 0.52-0.90. Aerosol asymmetry factor at 300nm changed between values of 0.76 and 0.80, and was highly correlated with the mean radius of aerosol number distribution. The total aerosol UV scattering was mostly influenced by changes in aerosol with a diameter of 100-560nm. The aerosol scattering coefficients were positively correlated with the relative humidity of air. The ground aerosol properties were used for calculating the surface UV irradiance from the radiative transfer model of Bird and Riordan (J. Climate Appl. Meteorol. 25 (1986)). The calculated UV irradiances correlated quite well with the measured ones, showing that the use of ground aerosol data for radiative transfer calculations turned out reasonable results. However, ignoring the changes in the aerosol vertical distribution resulted in overestimation of aerosol optical depth on hazy days. (author)

  10. Difference in inhaled aerosol deposition patterns in the lungs due to three different sized aerosols

    International Nuclear Information System (INIS)

    Miki, M.; Isawa, T.; Teshima, T.; Anazawa, Y.; Motomiya, M.

    1992-01-01

    Deposition patterns of inhaled aerosol in the lungs were studied in five normal subjects and 20 patients with lung disease by inhaling radioaerosols with three different particle size distributions. Particle size distributions were 0.84, 1.04 and 1.93 μm in activity median aerodynamic diameter (AMAD) with its geometric standard deviation (σg) of 1.73, 1.71 and 1.52, respectively. Deposition patterns of inhaled aerosols were compared qualitatively and quantitatively by studying six different parameters: alveolar deposition ratio (ALDR), X max , X mean , standard deviation (S.D.), skewness and kurtosis of the radioactive distribution in the lungs following inhalation. It has been found that aerosol deposition patterns varied with particle size. The unevenness of aerosol deposition, X max , X mean and the number of 'hot spots' became more prominent with increase in particle size, whereas values of ALDR and S.D. decreased as particle size increased. (author)

  11. Size distribution and hygroscopic properties of aerosol particles from dry-season biomass burning in Amazonia

    Directory of Open Access Journals (Sweden)

    J. Rissler

    2006-01-01

    Full Text Available Aerosol particle number size distributions and hygroscopic properties were measured at a pasture site in the southwestern Amazon region (Rondonia. The measurements were performed 11 September-14 November 2002 as part of LBA-SMOCC (Large scale Biosphere atmosphere experiment in Amazonia - SMOke aerosols, Clouds, rainfall and Climate, and cover the later part of the dry season (with heavy biomass burning, a transition period, and the onset of the wet period. Particle number size distributions were measured with a DMPS (Differential Mobility Particle Sizer, 3-850nm and an APS (Aerodynamic Particle Sizer, extending the distributions up to 3.3 µm in diameter. An H-TDMA (Hygroscopic Tandem Differential Mobility Analyzer measured the hygroscopic diameter growth factors (Gf at 90% relative humidity (RH, for particles with dry diameters (dp between 20-440 nm, and at several occasions RH scans (30-90% RH were performed for 165nm particles. These data provide the most extensive characterization of Amazonian biomass burning aerosol, with respect to particle number size distributions and hygroscopic properties, presented until now. The evolution of the convective boundary layer over the course of the day causes a distinct diel variation in the aerosol physical properties, which was used to get information about the properties of the aerosol at higher altitudes. The number size distributions averaged over the three defined time periods showed three modes; a nucleation mode with geometrical median diameters (GMD of ~12 nm, an Aitken mode (GMD=61-92 nm and an accumulation mode (GMD=128-190 nm. The two larger modes were shifted towards larger GMD with increasing influence from biomass burning. The hygroscopic growth at 90% RH revealed a somewhat external mixture with two groups of particles; here denoted nearly hydrophobic (Gf~1.09 for 100 nm particles and moderately hygroscopic (Gf~1.26. While the hygroscopic growth factors were surprisingly similar over the

  12. Atmospheric Aerosols in Suburb of Prague: The Dynamics of Particle Size Distributions

    Czech Academy of Sciences Publication Activity Database

    Řimnáčová, Daniela; Ždímal, Vladimír; Schwarz, Jaroslav; Smolík, Jiří; Řimnáč, Martin

    2011-01-01

    Roč. 101, č. 3 (2011), s. 539-552 ISSN 0169-8095 Grant - others:MF NF(CZ) CZ0049 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z10300504 Keywords : atm ospheric aerosols * atm ospheric nucleation * part size distribution Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.911, year: 2011

  13. Preliminary study of elemental mass size distribution of urban aerosol collected in Debrecen

    International Nuclear Information System (INIS)

    Kertesz, Zs.; Borbely-Kiss, I.; Kiss, A.Z.; Koltay, E.; Szabo, Gy.

    2000-01-01

    Complete text of publication follows. Aerosol sampling campaigns were performed during January-February 1998 and August 1998 at an urban location (in the yard of the Institute of Nuclear Research), where aerosol sampling has been carried out continuously since 1991 with single stage Nuclepore filter holders, and since 1994 with 2-stage Gent stacked filter units (SFU). In the winter period in four weekdays 24-hours samplings were performed with a 7-stage PIXE International Cascade Impactor (PCI) and simultaneously with a SFU. On 19-25 August 1998, a week-long aerosol sampling campaign was carried out with the PCI (24-hour samplings), a SFU (24-hour samplings), and a streaker sampler (168-hour continuous sampling). For this period meteorological data were also obtained by a micro-meteorological station installed at the same location by the Radon Group. Elemental concentrations for Al, Si, P, S, Cl, K, Ca, Ti, V, Mn, Fe, Ni, Cu, Zn, Ba and Pb of the aerosol samples were determined by PIXE using the 2 MeV energy proton beam of the 5 MeV Van de Graaff accelerator of the Institute. The obtained average elemental concentrations and the seasonal variation in the elemental concentrations show good correlation with the results obtained from the analysis of the samples collected in previous years. In winter the elemental concentrations are usually lower than in summer, except Cl. The Cl concentration in the coarse fraction is higher with a factor of 10 than in summer due to the salting of the roads and pavements. The summer period included a long weekend with a national holiday. During the weekend the elemental concentrations and also the total mass decreased, and in the beginning of the following week it started to increase. Size distribution: the impactor we have used separate the aerosol within the size range of 0.25 μm and 30 μm into 7 fractions. The mass size distribution for elements of natural origin, like Si, Ca, Ti, Fe, and Mn has one mode: the coarse mode. The

  14. Seasonal variability of aerosol concentration and size distribution in Cape Verde using a continuous aerosol optical spectrometer

    Directory of Open Access Journals (Sweden)

    Casimiro Adrião Pio

    2014-05-01

    Full Text Available One year of, almost continuous, measurements of aerosol optical properties and chemical composition were performed at the outskirts of Praia, Santiago Island, Cape Verde, within the framework of CV-DUST (Atmospheric aerosol in Cape Verde region: seasonal evaluation of composition, sources and transport research project, during 2011. This article reports the aerosol number and mass concentration measurements using a GRIMM Optical Aerosol Spectrometer that provides number size discrimination into 31 size ranges from 0.25 to 32 µm. Time series of 5 min average PM10 concentrations revealed peak values higher than 1000 µg.m-3 during winter dust storm events originating over Northern Africa. The 24 hours average concentrations exceeded the World Health Organization (WHO guidelines for PM2.5 and PM10 in 20% and 30% of the 2001 days, respectively. Annual average mass concentrations (±standard deviation for PM1, PM2.5 and PM10 were 5±5, 19±21 and 48±64 µg.m-3, respectively. The annual PM2.5 and PM10 values were also above the limits prescribed by the WHO (10 and 20 µg.m-3, respectively. The aerosol mass size distribution revealed two main modes for particles smaller than 10 µm: a fine mode (0.7-0.8 µm, which possibly results of gas to particle conversion processes; and a coarse mode with maxima at 3-4 µm, which is associated with desert dust and sea salt sources. Within the coarse mode two sub-modes with maxima at 5-6 µm and 10-12 µm were frequently present.

  15. [Size distributions of aerosol during the Spring Festival in Nanjing].

    Science.gov (United States)

    Wang, Hong-Lei; Zhu, Bin; Shen, Li-Juan; Liu, Xiao-Hui; Zhang, Ze-Feng; Yang, Yang

    2014-02-01

    In order to investigate the firework burning impacts on spectrum distribution of atmospheric aerosol during the Spring Festival in Nanjing, number concentration and mass concentration of aerosol as well as mass concentration of gas pollutants were measured during January 19-31, 2012. The results indicated that the concentration of aerosol between 10-20 nm decreased, aerosol concentration in the range of 50-100 nm, 100-200 nm and 200-500 nm increased during the firework burning period comparing to those during the non-burning period. However, there was no obvious variation for aerosol between 20-50 nm and 0.5-10 microm. The spectrum distribution of number concentration was bimodal during the non-burning period and unimodal during the burning period, with the peak value shifting to large diameter section. The mass concentration presented a bimodal distribution, the value of PM2.5/PM10 and PM10/PM10 increased by 10% during the burning period. The firework burning events had big influence on the density of aerosol between 1.0-2.1 microm.

  16. Unattached fraction and the aerosol size distribution of the radon progeny in a natural cave and mine atmospheres

    International Nuclear Information System (INIS)

    Butterweck, G.; Porstendoerfer, J.; Reineking, A.; Kesten, J.

    1992-01-01

    Measurements of the activity size distribution of aerosol-attached radon progeny and the amount of unattached radon daughters have been performed in mine atmospheres and a tourist cave. During working hours a large number (10 5 -10 6 cm -3 ) of aerosol particles is generated in mines, mainly by diesel engines. The activity size distribution of these aerosol particles has smaller median diameters (AMAD about 200 nm) than the aged aerosol existing in the mine during non-working hours (AMAD about 350 nm). Strictly correlated to the aerosol concentration, the unattached fraction of the radon progeny, f p , in the tourist cave (3000 particles per cm 3 ) is higher (f p = 0.1) than in mines (f p 0.01) during working hours. This yields 1.4-2.5 times higher radiation dose conversion factors in the natural cave than in mines under working conditions. (author)

  17. Bimodal Nanoparticle Size Distributions Produced by Laser Ablation of Microparticles in Aerosols

    International Nuclear Information System (INIS)

    Nichols, William T.; Malyavanatham, Gokul; Henneke, Dale E.; O'Brien, Daniel T.; Becker, Michael F.; Keto, John W.

    2002-01-01

    Silver nanoparticles were produced by laser ablation of a continuously flowing aerosol of microparticles in nitrogen at varying laser fluences. Transmission electron micrographs were analyzed to determine the effect of laser fluence on the nanoparticle size distribution. These distributions exhibited bimodality with a large number of particles in a mode at small sizes (3-6-nm) and a second, less populated mode at larger sizes (11-16-nm). Both modes shifted to larger sizes with increasing laser fluence, with the small size mode shifting by 35% and the larger size mode by 25% over a fluence range of 0.3-4.2-J/cm 2 . Size histograms for each mode were found to be well represented by log-normal distributions. The distribution of mass displayed a striking shift from the large to the small size mode with increasing laser fluence. These results are discussed in terms of a model of nanoparticle formation from two distinct laser-solid interactions. Initially, laser vaporization of material from the surface leads to condensation of nanoparticles in the ambient gas. Material evaporation occurs until the plasma breakdown threshold of the microparticles is reached, generating a shock wave that propagates through the remaining material. Rapid condensation of the vapor in the low-pressure region occurs behind the traveling shock wave. Measurement of particle size distributions versus gas pressure in the ablation region, as well as, versus microparticle feedstock size confirmed the assignment of the larger size mode to surface-vaporization and the smaller size mode to shock-formed nanoparticles

  18. Size distribution and ionic composition of marine summer aerosol at the continental Antarctic site Kohnen

    Science.gov (United States)

    Weller, Rolf; Legrand, Michel; Preunkert, Susanne

    2018-02-01

    We measured aerosol size distributions and conducted bulk and size-segregated aerosol sampling during two summer campaigns in January 2015 and January 2016 at the continental Antarctic station Kohnen (Dronning Maud Land). Physical and chemical aerosol properties differ conspicuously during the episodic impact of a distinctive low-pressure system in 2015 (LPS15) compared to the prevailing clear sky conditions. The approximately 3-day LPS15 located in the eastern Weddell Sea was associated with the following: marine boundary layer air mass intrusion; enhanced condensation particle concentrations (1400 ± 700 cm-3 compared to 250 ± 120 cm-3 under clear sky conditions; mean ± SD); the occurrence of a new particle formation event exhibiting a continuous growth of particle diameters (Dp) from 12 to 43 nm over 44 h (growth rate 0.6 nm h-1); peaking methane sulfonate (MS-), non-sea-salt sulfate (nss-SO42-), and Na+ concentrations (190 ng m-3 MS-, 137 ng m-3 nss-SO42-, and 53 ng m-3 Na+ compared to 24 ± 15, 107 ± 20, and 4.1 ± 2.2 ng m-3, respectively, during clear sky conditions); and finally an increased MS- / nss-SO42- mass ratio βMS of 0.4 up to 2.3 (0.21 ± 0.1 under clear sky conditions) comparable to typical values found at coastal Antarctic sites. Throughout the observation period a larger part of MS- could be found in super-micron aerosol compared to nss-SO42-, i.e., (10 ± 2) % by mass compared to (3.2 ± 2) %, respectively. On the whole, under clear sky conditions aged aerosol characterized by usually mono-modal size distributions around Dp = 60 nm was observed. Although our observations indicate that the sporadic impacts of coastal cyclones were associated with enhanced marine aerosol entry, aerosol deposition on-site during austral summer should be largely dominated by typical steady clear sky conditions.

  19. An effective inversion algorithm for retrieving bimodal aerosol particle size distribution from spectral extinction data

    Science.gov (United States)

    He, Zhenzong; Qi, Hong; Yao, Yuchen; Ruan, Liming

    2014-12-01

    The Ant Colony Optimization algorithm based on the probability density function (PDF-ACO) is applied to estimate the bimodal aerosol particle size distribution (PSD). The direct problem is solved by the modified Anomalous Diffraction Approximation (ADA, as an approximation for optically large and soft spheres, i.e., χ⪢1 and |m-1|⪡1) and the Beer-Lambert law. First, a popular bimodal aerosol PSD and three other bimodal PSDs are retrieved in the dependent model by the multi-wavelength extinction technique. All the results reveal that the PDF-ACO algorithm can be used as an effective technique to investigate the bimodal PSD. Then, the Johnson's SB (J-SB) function and the modified beta (M-β) function are employed as the general distribution function to retrieve the bimodal PSDs under the independent model. Finally, the J-SB and M-β functions are applied to recover actual measurement aerosol PSDs over Beijing and Shanghai obtained from the aerosol robotic network (AERONET). The numerical simulation and experimental results demonstrate that these two general functions, especially the J-SB function, can be used as a versatile distribution function to retrieve the bimodal aerosol PSD when no priori information about the PSD is available.

  20. A Nanometer Aerosol Size Analyzer (nASA) for Rapid Measurement of High-concentration Size Distributions

    International Nuclear Information System (INIS)

    Han, H.-S.; Chen, D.-R.; Pui, David Y.H.; Anderson, Bruce E.

    2000-01-01

    We have developed a fast-response nanometer aerosol size analyzer (nASA) that is capable of scanning 30 size channels between 3 and 100 nm in a total time of 3 s. The analyzer includes a bipolar charger (Po 210 ), an extended-length nanometer differential mobility analyzer (Nano-DMA), and an electrometer (TSI 3068). This combination of components provides particle size spectra at a scan rate of 0.1 s per channel free of uncertainties caused by response-time-induced smearing. The nASA thus offers a fast response for aerosol size distribution measurements in high-concentration conditions and also eliminates the need for applying a de-smearing algorithm to resulting data. In addition, because of its thermodynamically stable means of particle detection, the nASA is useful for applications requiring measurements over a broad range of sample pressures and temperatures. Indeed, experimental transfer functions determined for the extended-length Nano-DMA using the tandem differential mobility analyzer (TDMA) technique indicate the nASA provides good size resolution at pressures as low as 200 Torr. Also, as was demonstrated in tests to characterize the soot emissions from the J85-GE engine of a T-38 aircraft, the broad dynamic concentration range of the nASA makes it particularly suitable for studies of combustion or particle formation processes. Further details of the nASA performance as well as results from calibrations, laboratory tests and field applications are presented below

  1. Characterization of water-soluble organic aerosol in coastal New England: Implications of variations in size distribution

    Science.gov (United States)

    Ziemba, L. D.; Griffin, R. J.; Whitlow, S.; Talbot, R. W.

    2011-12-01

    Size distributions up to 10-micron aerosol diameter ( DP) of organic carbon (OC) and water-soluble organic carbon (WSOC) were measured at two sites in coastal New England, slightly inland at Thompson Farm (TF) and offshore at Isles of Shoals (IOS). Significant OC concentrations were measured across the full size distribution at TF and IOS, respectively. The WSOC fraction (WSOC/OC) was largest in the accumulation mode with values of 0.86 and 0.93 and smallest in the coarse mode with values of 0.61 and 0.79 at TF and IOS, respectively. Dicarboxylic acids containing up to five carbon atoms (C 5) were concentrated in droplet and accumulation mode aerosol with only minor contributions in the coarse mode. C 1-C 3 monocarboxylic acids were generally near or below detection limits. Results from proton nuclear magnetic resonance (H +-NMR) spectroscopy analyses showed that the organic functional group characterized by protons in the alpha position to an unsaturated carbon atoms ([H-C-C dbnd ]) was the dominant WSOC functionality at both TF and IOS, constituting 34 and 43% of carbon-weighted H +-NMR signal, respectively. Size distributions of each H +-NMR-resolved organic functionality are presented. Source apportionment using H +-NMR fingerprints is also presented, and results indicate that nearly all of the WSOC at TF and IOS spectroscopically resembled secondary organic aerosol, regardless of DP.

  2. Particle size distributions of radioactive aerosols measured in workplaces

    International Nuclear Information System (INIS)

    Dorrian, M.-D.; Bailey, M.R.

    1995-01-01

    A survey of published values of Activity Median Aerodynamic Diameter (AMAD) measured in working environments was conducted to assist in the selection of a realistic default AMAD for occupational exposures. Results were compiled from 52 publications covering a wide variety of industries and workplaces. Reported values of AMAD from all studies ranged from 0.12 μm to 25 μm, and most were well fitted by a log-normal distribution with a median value of 4.4 μm. This supports the choice of a 5 μm default AMAD, as a realistic rounded value for occupational exposures, by the ICRP Task Group on Human Respiratory Tract Models for Radiological Protection and its acceptance by ICRP. Both the nuclear power and nuclear fuel handling industries gave median values of approximately 4 μm. Uranium mills gave a median value of 6.8 μm with AMADs frequently greater than 10 μm. High temperature and arc saw cutting operations generated submicron particles and occasionally, biomodal log-normal particle size distributions. It is concluded that in view of the wide range of AMADs found in the surveyed literature, greater emphasis should be placed on air sampling to characterise aerosol particle size distributions for individual work practices, especially as doses estimated with the new 5 μm default AMAD will not always be conservative. (author)

  3. Size distributions of aerosols in an indoor environment with engineered nanoparticle synthesis reactors operating under different scenarios

    International Nuclear Information System (INIS)

    Sahu, Manoranjan; Biswas, Pratim

    2010-01-01

    Size distributions of nanoparticles in the vicinity of synthesis reactors will provide guidelines for safe operation and protection of workers. Nanoparticle concentrations and size distributions were measured in a research academic laboratory environment with two different types of gas-phase synthesis reactors under a variety of operating conditions. The variation of total particle number concentration and size distribution at different distances from the reactor, off-design state of the fume hood, powder handling during recovery, and maintenance of reactors are established. Significant increases in number concentration were observed at all the locations during off-design conditions (i.e., failure of the exhaust system). Clearance of nanoparticles from the work environment was longer under off-design conditions (20 min) compared to that under normal hood operating conditions (4-6 min). While lower particle number concentrations are observed during operation of furnace aerosol reactors in comparison to flame aerosol reactors, the handling, processing, and maintenance operations result in elevated concentrations in the work area.

  4. Size distributions of various radioactive aerosols in the ground-level atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, G.; Baust, E.

    1963-11-15

    To know the size spectra of radioactive aerosols is important for many reasons. Among others, the efficiency of measuring devices or biological processes, as for instance, retention in the lungs, depend on particle size.The work described deals mainly with two different components of radioactive aerosols in the atmosphere: the natural radon daughters and the fission products originating from nuclear test explosions.

  5. Quantifying dust plume formation and aerosol size distribution during the Saharan Mineral Dust Experiment in North Africa

    KAUST Repository

    Khan, Basit Ali

    2015-01-01

    Dust particles mixed in the free troposphere have longer lifetimes than airborne particles near the surface. Their cumulative radiative impact on earth’s meteorological processes and climate might be significant despite their relatively small contribution to total dust abundance. One example is the elevated dust--laden Saharan Air Layer (SAL) over the equatorial North Atlantic, which cools the sea surface and likely suppresses hurricane activity. To understand the formation mechanisms of SAL, we combine model simulations and dust observations collected during the first stage of the Saharan Mineral Dust Experiment (SAMUM--I), which sampled dust events that extended from Morocco to Portugal, and investigated the spatial distribution and the microphysical, optical, chemical, and radiative properties of Saharan mineral dust. We employed the Weather Research Forecast model coupled with the Chemistry/Aerosol module (WRF--Chem) to reproduce the meteorological environment and spatial and size distributions of dust. The experimental domain covers northwest Africa including the southern Sahara, Morocco and part of the Atlantic Ocean with 5 km horizontal grid spacing and 51 vertical layers. The experiments were run from 20 May to 9 June 2006, covering the period of most intensive dust outbreaks. Comparisons of model results with available airborne and ground--based observations show that WRF--Chem reproduces observed meteorological fields as well as aerosol distribution across the entire region and along the airplane’s tracks. We evaluated several aerosol uplift processes and found that orographic lifting, aerosol transport through the land/sea interface with steep gradients of meteorological characteristics, and interaction of sea breezes with the continental outflow are key mechanisms that form a surface--detached aerosol plume over the ocean. Comparisons of simulated dust size distributions with airplane and ground--based observations are generally good, but suggest

  6. Aerosol size characteristics in selected working areas

    International Nuclear Information System (INIS)

    Ahmed, K.

    1984-05-01

    This report presents the work done to study the aerosol activity size distributions and their respirable fractions in some selected areas of the Juelich Nuclear Research Center. Anderson cascade impactors were used to find the aerodynamic size ranges of the airborne particles for subsequent analysis of activity associated with each size group. The aerosols were found to follow in general log-normal distributions in the hot cells with values of AMAD between 5 and 10 μm. Measurements in the AVR containment and decontamination laboratory in Uranit GmbH showed deviations from log-normal distribution. In the waste press area the distribution is sometimes log-normal and sometimes not, depending upon the origin of waste. The values of AMAD are in the range of 2 to 4 μm in these areas. The respirable fractions were calculated using ACGIH definition for respirable dust to be < 25% in hot cells and < 60% in other areas. Pulmonary depositions according to ICRP model were < 10% and < 15% respectively. (orig./HP)

  7. Determination of the particle size distribution of an aerosol using a diffusion battery

    International Nuclear Information System (INIS)

    Maigne, Jean-Pierre

    1974-02-01

    The principal methods for the treatment of concentration measurements both upstream and downstream of a diffusion battery are reviewed and discussed, the purpose of the measurements being the determination of the aerosol particle size distribution. It is then demonstrated that the resolution of the equations arising from the problem leads to the imposing of physical constraints on the distribution sought, these constraints being more and more restrictive with increasing experimental inaccuracies. An algorithm is proposed which provides an approximate solution to the system of equations, certain predetermined criteria, and the constraints imposed on the distribution being taken into account. (author)

  8. Atmospheric aerosol sampling campaign in Budapest and K-puszta. Part 1. Elemental concentrations and size distributions

    International Nuclear Information System (INIS)

    Dobos, E.; Borbely-Kiss, I.; Kertesz, Zs.; Szabo, Gy.; Salma, I.

    2004-01-01

    Complete text of publication follows. Atmospheric aerosol samples were collected in a sampling campaign from 24 July to 1 Au- gust, 2003 in Hungary. The sampling were performed in two places simultaneously: in Budapest (urban site) and K-puszta (remote area). Two PIXE International 7-stage cascade impactors were used for aerosol sampling with 24 hours duration. These impactors separate the aerosol into 7 size ranges. The elemental concentrations of the samples were obtained by proton-induced X-ray Emission (PIXE) analysis. Size distributions of S, Si, Ca, W, Zn, Pb and Fe elements were investigated in K-puszta and in Budapest. Average rates (shown in Table 1) of the elemental concentrations was calculated for each stage (in %) from the obtained distributions. The elements can be grouped into two parts on the basis of these data. The majority of the particle containing Fe, Si, Ca, (Ti) are in the 2-8 μm size range (first group). These soil origin elements were found usually in higher concentration in Budapest than in K-puszta (Fig.1.). The second group consisted of S, Pb and (W). The majority of these elements was found in the 0.25-1 μm size range and was much higher in Budapest than in K-puszta. W was measured only in samples collected in Budapest. Zn has uniform distribution in Budapest and does not belong to the above mentioned groups. This work was supported by the National Research and Development Program (NRDP 3/005/2001). (author)

  9. An inverse modeling procedure to determine particle growth and nucleation rates from measured aerosol size distributions

    Directory of Open Access Journals (Sweden)

    B. Verheggen

    2006-01-01

    Full Text Available Classical nucleation theory is unable to explain the ubiquity of nucleation events observed in the atmosphere. This shows a need for an empirical determination of the nucleation rate. Here we present a novel inverse modeling procedure to determine particle nucleation and growth rates based on consecutive measurements of the aerosol size distribution. The particle growth rate is determined by regression analysis of the measured change in the aerosol size distribution over time, taking into account the effects of processes such as coagulation, deposition and/or dilution. This allows the growth rate to be determined with a higher time-resolution than can be deduced from inspecting contour plots ('banana-plots''. Knowing the growth rate as a function of time enables the evaluation of the time of nucleation of measured particles of a certain size. The nucleation rate is then obtained by integrating the particle losses from time of measurement to time of nucleation. The regression analysis can also be used to determine or verify the optimum value of other parameters of interest, such as the wall loss or coagulation rate constants. As an example, the method is applied to smog chamber measurements. This program offers a powerful interpretive tool to study empirical aerosol population dynamics in general, and nucleation and growth in particular.

  10. Particle size distribution of radioactive aerosols after the Fukushima and the Chernobyl accidents.

    Science.gov (United States)

    Malá, Helena; Rulík, Petr; Bečková, Vera; Mihalík, Ján; Slezáková, Miriam

    2013-12-01

    Following the Fukushima accident, a series of aerosol samples were taken between 24th March and 13th April 2011 by cascade impactors in the Czech Republic to obtain the size distribution of (131)I, (134)Cs, (137)Cs, and (7)Be aerosols. All distributions could be considered monomodal. The arithmetic means of the activity median aerodynamic diameters (AMADs) for artificial radionuclides and for (7)Be were 0.43 and 0.41 μm with GDSs 3.6 and 3.0, respectively. The time course of the AMADs of (134)Cs, (137)Cs and (7)Be in the sampled period showed a slight decrease at a significance level of 0.05, whereas the AMAD pertaining to (131)I increased at a significance level of 0.1. Results obtained after the Fukushima accident were compared with results obtained after the Chernobyl accident. The radionuclides released during the Chernobyl accident for which we determined the AMAD fell into two categories: refractory radionuclides ((140)Ba, (140)La (141)Ce, (144)Ce, (95)Zr and (95)Nb) and volatile radionuclides ((134)Cs, (137)Cs, (103)Ru, (106)Ru, (131)I, and (132)Te). The AMAD of the refractory radionuclides was approximately 3 times higher than the AMAD of the volatile radionuclides; nevertheless, the size distributions for volatile radionuclides having a mean AMAD value of 0.51 μm were very close to the distributions after the Fukushima accident. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. An effective inversion algorithm for retrieving bimodal aerosol particle size distribution from spectral extinction data

    International Nuclear Information System (INIS)

    He, Zhenzong; Qi, Hong; Yao, Yuchen; Ruan, Liming

    2014-01-01

    The Ant Colony Optimization algorithm based on the probability density function (PDF-ACO) is applied to estimate the bimodal aerosol particle size distribution (PSD). The direct problem is solved by the modified Anomalous Diffraction Approximation (ADA, as an approximation for optically large and soft spheres, i.e., χ⪢1 and |m−1|⪡1) and the Beer–Lambert law. First, a popular bimodal aerosol PSD and three other bimodal PSDs are retrieved in the dependent model by the multi-wavelength extinction technique. All the results reveal that the PDF-ACO algorithm can be used as an effective technique to investigate the bimodal PSD. Then, the Johnson's S B (J-S B ) function and the modified beta (M-β) function are employed as the general distribution function to retrieve the bimodal PSDs under the independent model. Finally, the J-S B and M-β functions are applied to recover actual measurement aerosol PSDs over Beijing and Shanghai obtained from the aerosol robotic network (AERONET). The numerical simulation and experimental results demonstrate that these two general functions, especially the J-S B function, can be used as a versatile distribution function to retrieve the bimodal aerosol PSD when no priori information about the PSD is available. - Highlights: • Bimodal PSDs are retrieved by ACO based on probability density function accurately. • J-S B and M-β functions can be used as the versatile function to recover bimodal PSDs. • Bimodal aerosol PSDs can be estimated by J-S B function more reasonably

  12. The effect of increase in humidity on the size and activity distributions of radon progeny laden aerosols from hydrocarbon combustion

    International Nuclear Information System (INIS)

    Khan, Atika; Phillips, C.R.

    1988-01-01

    The effects of a humidity increase on the distributions of aerosol size and activity for hydrocarbon combustion aerosols laden with radon progeny were determined. Pre-humidification aerosol conditions were 20 0 C and 35% RH. Post-humidification aerosol conditions were 37 0 C and 100% RH, intended to simulate conditions in the human respiratory tract. Using kerosene combustion aerosols, a growth factor of 1.3 ± 0.2 (standard deviation) was found for both the aerosol median diameter and the activity median diameter. (author)

  13. Mass and chemically speciated size distribution of Prague aerosol using an aerosol dryer - The influence of air mass origin

    Czech Academy of Sciences Publication Activity Database

    Schwarz, Jaroslav; Štefancová, Lucia; Maenhaut, W.; Smolík, Jiří; Ždímal, Vladimír

    2012-01-01

    Roč. 437, OCT 15 (2012), s. 348-362 ISSN 0048-9697 R&D Projects: GA ČR GA205/09/2055; GA ČR GAP209/11/1342; GA MŠk ME 941 Grant - others:SRF GU(BE) 01S01306 Institutional support: RVO:67985858 Keywords : atmospheric aerosols * mass size distribution * chemical composition Subject RIV: DI - Air Pollution ; Quality Impact factor: 3.258, year: 2012

  14. Spatial Variability of CCN Sized Aerosol Particles

    Science.gov (United States)

    Asmi, A.; Väänänen, R.

    2014-12-01

    The computational limitations restrict the grid size used in GCM models, and for many cloud types they are too large when compared to the scale of the cloud formation processes. Several parameterizations for e.g. convective cloud formation exist, but information on spatial subgrid variation of the cloud condensation nuclei (CCNs) sized aerosol concentration is not known. We quantify this variation as a function of the spatial scale by using datasets from airborne aerosol measurement campaigns around the world including EUCAARI LONGREX, ATAR, INCA, INDOEX, CLAIRE, PEGASOS and several regional airborne campaigns in Finland. The typical shapes of the distributions are analyzed. When possible, we use information obtained by CCN counters. In some other cases, we use particle size distribution measured by for example SMPS to get approximated CCN concentration. Other instruments used include optical particle counters or condensational particle counters. When using the GCM models, the CCN concentration used for each the grid-box is often considered to be either flat, or as an arithmetic mean of the concentration inside the grid-box. However, the aircraft data shows that the concentration values are often lognormal distributed. This, combined with the subgrid variations in the land use and atmospheric properties, might cause that the aerosol-cloud interactions calculated by using mean values to vary significantly from the true effects both temporary and spatially. This, in turn, can cause non-linear bias into the GCMs. We calculate the CCN aerosol concentration distribution as a function of different spatial scales. The measurements allow us to study the variation of these distributions within from hundreds of meters up to hundreds of kilometers. This is used to quantify the potential error when mean values are used in GCMs.

  15. Seasonal variations in size distribution, water-soluble ions, and carbon content of size-segregated aerosols over New Delhi.

    Science.gov (United States)

    Kumar, Pawan; Kumar, Sushil; Yadav, Sudesh

    2018-02-01

    Size distribution, water-soluble inorganic ions (WSII), and organic carbon (OC) and elemental carbon (EC) in size-segregated aerosols were investigated during a year-long sampling in 2010 over New Delhi. Among different size fractions of PM 10 , PM 0.95 was the dominant fraction (45%) followed by PM 3-7.2 (20%), PM 7.2-10 (15%), PM 0.95-1.5 (10%), and PM 1.5-3 (10%). All size fractions exceeded the ambient air quality standards of India for PM 2.5 . Annual average mass size distributions of ions were specific to size and ion(s); Ca 2+ , Mg 2+ , K + , NO 3 - , and Cl - followed bimodal distribution while SO 4 2- and NH 4 + ions showed one mode in PM 0.95 . The concentrations of secondary WSII (NO 3 - , SO 4 2- , and NH 4 + ) increased in winters due to closed and moist atmosphere whereas open atmospheric conditions in summers lead to dispersal of pollutants. NH 4 + and Ca 2+ were dominant neutralization ions but in different size fractions. The summer-time dust transport from upwind region by S SW winds resulted in significantly high concentrations of PM 0.95 and PM 3-7.2 and PM 7.2-10 . This indicted influence of dust generation in Thar Desert and its transport is size selective in nature in downwind direction. The mixing of different sources (geogenic, coal combustions, biomass burning, plastic burning, incinerators, and vehicular emissions sources) for soluble ions in different size fractions was noticed in principle component analysis. Total carbon (TC = EC + OC) constituted 8-31% of the total PM 0.95 mass, and OC dominated over EC. Among EC, char (EC1) dominated over soot (EC2 + EC3). High SOC contribution (82%) to OC and OC/EC ratio of 2.7 suggested possible role of mineral dust and high photochemical activity in SOC production. Mass concentrations of aerosols and WSII and their contributions to each size fraction of PM 10 are governed by nature of sources, emission strength of source(s), and seasonality in meteorological parameters.

  16. Quantifying dust plume formation and aerosol size distribution during the Saharan Mineral Dust Experiment in North Africa

    KAUST Repository

    Khan, Basit Ali; Stenchikov, Georgiy L.; Weinzierl, Bernadett; Kalenderski, Stoitchko; Osipov, Sergey

    2015-01-01

    outflow are key mechanisms that form a surface--detached aerosol plume over the ocean. Comparisons of simulated dust size distributions with airplane and ground--based observations are generally good, but suggest that more detailed treatment

  17. Portable diffusion battery. It's application to measuring aerosol size characteristics

    International Nuclear Information System (INIS)

    Sinclair, D.

    1972-01-01

    A miniature portable cluster-tube diffusion battery for measurement of the size and size distribution of submicron aerosols (1-100 nm) is described. A series of commercially available Collimated Holes Structures are mounted in sleeves with O-rings so that aerosol penetration can be measured at a number of outlets along the series. The CHS are stainless-steel discs of several different diameters and thicknesses, containing a large number of nearly circular holes. The actual length of the apparatus is about 2 ft but the equivalent length is 3.25 mi. Calculated curves of penetration versus particle size are used to evaluate size distribution and show that the equivalent size frequently reported from one measurement with a rectangular diffusion battery is practically meaningless. The value depends as much on the characteristics and mode of the operation of the diffusion battery as on the aerosol; the longer the battery and the lower the air flow, the greater the equivalent size will appear to be. Graphical plots of the cumulative size distribution of room aerosol and silver aerosol are illustrated for large battery and miniature battery measurements and appear to be in close agreement. Measurements on radon daughters in uranium mines with the miniature batteries show activity median diameters from 0.1 to 0.17 micron, with standard deviations from 2 to 4. Two similar measurements made in the laboratory on room air tagged with about 50 pCi/l radon daughters show activity median diameters of 0.15 and 0.17 micron, with geometric standard deviations of 2.2 and 2.6, respectively

  18. Particle size of radioactive aerosols generated during machine operation in high-energy proton accelerators

    International Nuclear Information System (INIS)

    Oki, Yuichi; Kanda, Yukio; Kondo, Kenjiro; Endo, Akira

    2000-01-01

    In high-energy accelerators, non-radioactive aerosols are abundantly generated due to high radiation doses during machine operation. Under such a condition, radioactive atoms, which are produced through various nuclear reactions in the air of accelerator tunnels, form radioactive aerosols. These aerosols might be inhaled by workers who enter the tunnel just after the beam stop. Their particle size is very important information for estimation of internal exposure doses. In this work, focusing on typical radionuclides such as 7 Be and 24 Na, their particle size distributions are studied. An aluminum chamber was placed in the EP2 beam line of the 12-GeV proton synchrotron at High Energy Accelerator Research Organization (KEK). Aerosol-free air was introduced to the chamber, and aerosols formed in the chamber were sampled during machine operation. A screen-type diffusion battery was employed in the aerosol-size analysis. Assuming that the aerosols have log-normal size distributions, their size distributions were obtained from the radioactivity concentrations at the entrance and exit of the diffusion battery. Radioactivity of the aerosols was measured with Ge detector system, and concentrations of non-radioactive aerosols were obtained using condensation particle counter (CPC). The aerosol size (radius) for 7 Be and 24 Na was found to be 0.01-0.04 μm, and was always larger than that for non-radioactive aerosols. The concentration of non-radioactive aerosols was found to be 10 6 - 10 7 particles/cm 3 . The size for radioactive aerosols was much smaller than ordinary atmospheric aerosols. Internal doses due to inhalation of the radioactive aerosols were estimated, based on the respiratory tract model of ICRP Pub. 66. (author)

  19. Raman Lidar Measurements of Aerosol Extinction and Backscattering. Report 2; Derivation of Aerosol Real Refractive Index, Single-Scattering Albedo, and Humidification Factor using Raman Lidar and Aircraft Size Distribution

    Science.gov (United States)

    Ferrare, R. A.; Melfi, S. H.; Whiteman, D. N.; Evans, K. D.; Poellot, M.; Kaufman, Y. J.

    1998-01-01

    Aerosol backscattering and extinction profiles measured by the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) during the remote cloud sensing (RCS) intensive operations period (IOP) at the Department of Energy Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) site during two nights in April 1994 are discussed. These profiles are shown to be consistent with the simultaneous aerosol size distribution measurements made by a PCASP (Passive Cavity Aerosol Spectrometer Probe) optical particle counter flown on the University of North Dakota Citation aircraft. We describe a technique which uses both lidar and PCASP measurements to derive the dependence of particle size on relative humidity, the aerosol real refractive index n, and estimate the effective single-scattering albedo Omega(sub 0). Values of n ranged between 1.4-1.5 (dry) and 1.37-1.47 (wet); Omega(sub 0) varied between 0.7 and 1.0. The single-scattering albedo derived from this technique is sensitive to the manner in which absorbing particles are represented in the aerosol mixture; representing the absorbing particles as an internal mixture rather than the external mixture assumed here results in generally higher values of Omega(sub 0). The lidar measurements indicate that the change in particle size with relative humidity as measured by the PCASP can be represented in the form discussed by Hattel with the exponent gamma = 0.3 + or - 0.05. The variations in aerosol optical and physical characteristics captured in the lidar and aircraft size distribution measurements are discussed in the context of the meteorological conditions observed during the experiment.

  20. Fission-nuclide concentrations of ambient aerosol separated by size

    International Nuclear Information System (INIS)

    Csepregi, T.; Kovacs, L.; Maschek, I.; Szterjopulos, K.

    1984-01-01

    Examinations were carried on the radionuclides in aerosol deposited on filters of an air-conditioning plant with high air flow rate. For nuclide concentration of ambient air qualitative and quantitative analyses were made by gamma spectrometry. Methods have been developed for sample preparation, size fractionation by sedimentation technique and measurement of air flow. The collected aerosol particles was separated into five size fractions from 1 to 5 μm and the aerosol fractions were analysed. The mass/size distribution of the particles processed by sedimentation has been compared with that of the ambient aerosol separated by a slot impactor Hungarian type. Because the aggregation caused by the resuspensationtechnique would be assumed, electronmicrophotos were made on processed and unprocessed aerosols. On the basis of them the particle aggregation may be negligible. Otherwise, the derivation of concentration needs to know the exact air volume. For this aim the technical parameters of the aerodynamic system have also been measured in two different ways. The paper reports on the size dependence of fission products originating from the present global late fallout for a two years monitoring period. The results are compared with the daily beta activity concentration of aerosol samples taken by an other sampling unit. (Author)

  1. Measurement of the atmospheric aerosol particle size distribution in a highly polluted mega-city in Southeast Asia (Dhaka-Bangladesh)

    Science.gov (United States)

    Salam, Abdus; Mamoon, Hassan Al; Ullah, Md. Basir; Ullah, Shah M.

    2012-11-01

    Aerosol particle size distribution was measured with an aerodynamic particle sizer (APS) spectrometer continuously from January 21 to April 24, 2006 in Dhaka, Bangladesh. Particles number, surface and mass distributions data were stored automatically with Aerosol Instrument Manager (AIM) software on average every half an hour in a computer attached to the APS. The grand total average of number, surface and mass concentrations were 8.2 × 103 ± 7.8 × 103 particles cm-3, 13.3 × 103 ± 11.8 × 103 μm2 cm-3 and 3.04 ± 2.10 mg m-3, respectively. Fine particles with diameter smaller than 1.0 μm aerodynamic diameter (AD) dominated the number concentration, accounted for 91.7% of the total particles indicating vehicular emissions were dominating in Dhaka air either from fossil fuel burning or compressed natural gas (CNGs). The surface and mass concentrations between 0.5 and 1.0 μm AD were about 56.0% and 26.4% of the total particles, respectively. Remarkable seasonal differences were observed between winter and pre-monsoon seasons with the highest monthly average in January and the lowest in April. Aerosol particles in winter were 3.79 times higher for number, 3.15 times for surface and 2.18 times for mass distributions than during the pre-monsoon season. Weekends had lower concentrations than weekdays due to less vehicular traffic in the streets. Aerosol particles concentrations were about 15.0% (ranging from 9.4% to 17.3%) higher during traffic peak hours (6:00am-8:00pm) than off hours (8:00pm-6:00am). These are the first aerosol size distribution measurements with respect to number, surface and mass concentrations in real time at Dhaka, Bangladesh.

  2. Size-segregated concentration of heavy metals in an urban aerosol of the Balkans region (Belgrade

    Directory of Open Access Journals (Sweden)

    Đorđević D.

    2013-04-01

    Full Text Available This work focuses on the heavy metals contents of the size-segregated urban aerosol of the continental area of Balkans. The distribution of nano/micron heavy metals in the size-segregated urban aerosol of Belgrade center was studied during the summer–autumn of 2008. The particle size distribution in the size ranges Dp ≤ 0.49 μm, 0.49 ≤ Dp ≤ 0.95 μm, 0.95 ≤ Dp ≤ 1.5 μm, 1.5 ≤ Dp ≤ 3.0 μm, 3.0 ≤ Dp ≤ 7.2 μm and Dp ≥ 7.2 μm was measured. The aerosol samples were submitted to gravimetric and chemical analyses. The obtained mean mass concentration of the PM fractions was in accordance with an urban aerosol distribution. The aerosol mass concentrations were determined by gravimetric measurements (mGM and, for heavy metals analyzed by ICP/MS.

  3. Concentrations and size distributions of fine aerosol particles measured at roof level in urban zone

    Science.gov (United States)

    Despiau, S.; Croci, D.

    2007-05-01

    During the experimental Field Experiments to Constrain Models of Atmospheric Pollution and Transport of Emissions (ESCOMPTE) campaign in June-July 2001, concentrations and size distributions of fine particles (14-722 nm) were measured at roof level in downtown Marseille (France). Part of the campaign was dedicated to the study of aerosol behavior in relation to strong photochemical events (which were identified as "IOP" days) and their regional modeling. The analysis of the concentration variations and the evolution of average diurnal size distribution showed that an "IOP day" is not characterized by a specific concentration or its variation, nor by a specific evolution of the average size distribution. The morning traffic rush is detected at roof level by a net increase in particle concentration over the whole size range measured, indicating a production of ultrafine particles by the traffic but also the raising to roof level of particles of the accumulation mode. The increase is observed about 1 hour after the traffic peak at street level, which is characterized by strong increases in NOx and CO concentrations. The corresponding flux of particles at roof level has been estimated around 3 × 104 cm-2 s-1. A specific signature characterized by a strong and rapid burst of concentration (factor 2 to 4 in 15 min) of particles between 25 and 50 nm, independent of the traffic source, has been detected on six occasions during the campaign. These events occur systematically around noon, in cases of strong radiation, low relative humidity, and common wind direction. Despite the high-diameter value of these particles, it is suggested that they could result from a specific "secondary aerosol process" event involving ozone, biogenic, and/or anthropogenic gas precursors like iodine and VOCs.

  4. Study of particle size and trace metal distribution in atmospheric aerosols of islamabad

    International Nuclear Information System (INIS)

    Shah, M.H.; Shaheen, N.

    2009-01-01

    Atmospheric aerosol samples were collected on glass fibre filters using high volume air samplers Half of each aerosol sample was solubilized in nitric acid/hydrochloric acid based wet digestion method and the concentration of trace metals was determined through flame atomic absorption spectrophotometer. Among the eight trace metals analyzed, mean concentration recorded for Zn (844 ng/m3), Fe (642 ng/m3) and Pb (253 ng/m3), was found to be higher than mean levels of Mn, Cr and Co. The size distribution of the collected particulate samples was carried out on mastersizer, which revealed PM/sub 100-10/ as the major fraction (55 %) followed by PM/sub 2.5-10/ (28 %). The correlation study evidenced a strong tendency of trace metals to be associated with fine particulate fractions. The atmospheric trace metal levels showed that the mean metal concentrations in the atmosphere of Islamabad are far higher than background and European urban sites mainly due to the anthropogenic emissions. (author)

  5. Geophysical applicability of aerosol size distribution measurements using cascade impactors and proton induced X-ray emission

    International Nuclear Information System (INIS)

    Van Grieken, R.E.; Johansson, T.B.; Akselsson, K.R.; Winchester, J.W.; Nelson, J.W.; Chapman, K.R.

    1976-01-01

    Proton Induced X-ray Emission, (PIXE), is capable of high precision analysis for trace element components of aerosol particle size fractions sampled by cascade impactor. A statistical evaluation of data quality has been carried out in order to distinguish between analytical uncertainties in the PIXE procedure, errors caused by cascade impactor performance and by other factors in the sampling procedure, and geophysical causes of differences in composition and particle size distributions of the elements in aerosols. Replicate analyses and simultaneous samplings taken in north Florida and St. Louis have been used for the data evaluation. In addition to the analytical error the sampling procedure contributes an error of approximately 10% to be added quadratically. The resulting precision is sufficient to evaluate the data in geophysical terms. This is illustrated by means of sample sets taken simultaneously in an urban, forest and coastal environment of the same region. (author)

  6. Size distribution of natural aerosols and radioactive particles issued from radon, in marine and hardly polluted urban atmospheres

    International Nuclear Information System (INIS)

    Tymen, Georges.

    1979-03-01

    With a view to studying the natural radioactive particles produced by atttachment of 222 Rn daughters on environmental aerosol particles, the behaviours of CASELLA MK2 and ANDERSEN cascade impactors were first investigated. Their characteristic stage diameters were determined and size distributions of airborne particles were obtained in various situations. Moreover, an experimental and automatic equipment for measuring radon was devised and a method was developed in order to evaluate RaA, RaB, RaC concentrations in the free atmosphere. A degree of radioactive desequilibrium between 222 Rn and its daughters, more important than that in other locations was thus demonstrated. Furthermore, by means of various aerosol collection systems (ion tubes, diffusion batteries, cascade impactors, filters), the cumulative size distribution of natural radioactivity was established in the air, at ground level. Finally, from a theory of attachment of small radioactive ions on atmospheric particles, a tentative explanation of experimental results was made [fr

  7. African and local wind-blown dist contributions at three rural sites in SE Spain: the aerosol size distribution

    International Nuclear Information System (INIS)

    Orza, J. A. G.; Cabello, M.; Lidon, V.; Martinez, J.

    2009-01-01

    The entrainment of particulate material into the atmosphere by wind action on surface soils both disturbed and natural, as well as directly due to human activities like agricultural practices, mineral industry operations, construction works and traffic, is a significant contribution to the aerosol load in Mediterranean semi-arid areas. A further crustal contribution in the region comes from the frequent arrival of African mineral dust plumes. We summarize some of the results obtained after 4-6 month campaigns at three rural sites in SE Spain where the aerosol number size distribution (31 size bins between 0.25 and 32 μm) was continuously measured. The influence of both local wind speed and the arrival of air masses loaded with African dust on the airborne particulate distribution is assessed. Similarities and differences between the three locations give information that allows a better understanding of the influence of both local wind speed and African dust outbreaks (ADO), while highlight what is mostly related to local features. (Author)

  8. Test of methods for retrospective activity size distribution determination from filter samples

    International Nuclear Information System (INIS)

    Meisenberg, Oliver; Tschiersch, Jochen

    2015-01-01

    Determining the activity size distribution of radioactive aerosol particles requires sophisticated and heavy equipment, which makes measurements at large number of sites difficult and expensive. Therefore three methods for a retrospective determination of size distributions from aerosol filter samples in the laboratory were tested for their applicability. Extraction into a carrier liquid with subsequent nebulisation showed size distributions with a slight but correctable bias towards larger diameters compared with the original size distribution. Yields in the order of magnitude of 1% could be achieved. Sonication-assisted extraction into a carrier liquid caused a coagulation mode to appear in the size distribution. Sonication-assisted extraction into the air did not show acceptable results due to small yields. The method of extraction into a carrier liquid without sonication was applied to aerosol samples from Chernobyl in order to calculate inhalation dose coefficients for 137 Cs based on the individual size distribution. The effective dose coefficient is about half of that calculated with a default reference size distribution. - Highlights: • Activity size distributions can be recovered after aerosol sampling on filters. • Extraction into a carrier liquid and subsequent nebulisation is appropriate. • This facilitates the determination of activity size distributions for individuals. • Size distributions from this method can be used for individual dose coefficients. • Dose coefficients were calculated for the workers at the new Chernobyl shelter

  9. Confinement of surface waves at the air-water interface to control aerosol size and dispersity

    Science.gov (United States)

    Nazarzadeh, Elijah; Wilson, Rab; King, Xi; Reboud, Julien; Tassieri, Manlio; Cooper, Jonathan M.

    2017-11-01

    The precise control over the size and dispersity of droplets, produced within aerosols, is of great interest across many manufacturing, food, cosmetic, and medical industries. Amongst these applications, the delivery of new classes of high value drugs to the lungs has recently attracted significant attention from pharmaceutical companies. This is commonly achieved through the mechanical excitation of surface waves at the air liquid interface of a parent liquid volume. Previous studies have established a correlation between the wavelength on the surface of liquid and the final aerosol size. In this work, we show that the droplet size distribution of aerosols can be controlled by constraining the liquid inside micron-sized cavities and coupling surface acoustic waves into different volumes of liquid inside micro-grids. In particular, we show that by reducing the characteristic physical confinement size (i.e., either the initial liquid volume or the cavities' diameters), higher harmonics of capillary waves are revealed with a consequent reduction of both aerosol mean size and dispersity. In doing so, we provide a new method for the generation and fine control of aerosols' sizes distribution.

  10. Seasonal variation of aerosol size distributions in the free troposphere and residual layer at the puy de Dôme station, France

    Directory of Open Access Journals (Sweden)

    H. Venzac

    2009-02-01

    Full Text Available Particle number concentration and size distribution are important variables needed to constrain the role of atmospheric particles in the Earth radiation budget, both directly and indirectly through CCN activation. They are also linked to regulated variables such as particle mass (PM and therefore of interest to air quality studies. However, data on their long-term variability are scarce, in particular at high altitudes. In this paper, we investigate the diurnal and seasonal variability of the aerosol total number concentration and size distribution at the puy de Dôme research station (France, 1465 m a.s.l.. We report a variability of aerosol particle total number concentration measured over a five-year (2003–2007 period for particles larger than 10 nm and aerosol size distributions between 10 and 500 nm over a two-year period (January 2006 to December 2007. Concentrations show a strong seasonality with maxima during summer and minima during winter. A diurnal variation is also observed with maxima between 12:00 and 18:00 UTC. At night (00:00–06:00 UTC, the median hourly total concentration varies from 600 to 800 cm−3 during winter and from 1700 to 2200 cm−3 during summer. During the day (08:00–18:00 UTC, the concentration is in the range of 700 to 1400 cm−3 during winter and of 2500 to 3500 cm−3 during summer. An averaged size distribution of particles (10–500 nm was calculated for each season. The total aerosol number concentrations are dominated by the Aitken mode integral concentrations, which drive most of the winter to summer total concentrations increase. The night to day increase in dominated by the nucleation mode integral number concentration. Because the site is located in the free troposphere only a fraction of the time, in particular at night and during the winter season, we have subsequently analyzed the variability for nighttime and free tropospheric (FT/residual layer (RL

  11. The effects of deep convection on the concentration and size distribution of aerosol particles within the upper troposphere: A case study

    Science.gov (United States)

    Yin, Yan; Chen, Qian; Jin, Lianji; Chen, Baojun; Zhu, Shichao; Zhang, Xiaopei

    2012-11-01

    A cloud resolving model coupled with a spectral bin microphysical scheme was used to investigate the effects of deep convection on the concentration and size distribution of aerosol particles within the upper troposphere. A deep convective storm that occurred on 1 December, 2005 in Darwin, Australia was simulated, and was compared with available radar observations. The results showed that the radar echo of the storm in the developing stage was well reproduced by the model. Sensitivity tests for aerosol layers at different altitudes were conducted in order to understand how the concentration and size distribution of aerosol particles within the upper troposphere can be influenced by the vertical transport of aerosols as a result of deep convection. The results indicated that aerosols originating from the boundary layer can be more efficiently transported upward, as compared to those from the mid-troposphere, due to significantly increased vertical velocity through the reinforced homogeneous freezing of droplets. Precipitation increased when aerosol layers were lofted at different altitudes, except for the case where an aerosol layer appeared at 5.4-8.0 km, in which relatively more efficient heterogeneous ice nucleation and subsequent Wegener-Bergeron-Findeisen process resulted in more pronounced production of ice crystals, and prohibited the formation of graupel particles via accretion. Sensitivity tests revealed, at least for the cases considered, that the concentration of aerosol particles within the upper troposphere increased by a factor of 7.71, 5.36, and 5.16, respectively, when enhanced aerosol layers existed at 0-2.2 km, 2.2-5.4 km, and 5.4-8.0 km, with Aitken mode and a portion of accumulation mode (0.1-0.2μm) particles being the most susceptible to upward transport.

  12. Size distributions of n-alkanes, fatty acids and fatty alcohols in springtime aerosols from New Delhi, India.

    Science.gov (United States)

    Kang, Mingjie; Fu, Pingqing; Aggarwal, Shankar G; Kumar, Sudhanshu; Zhao, Ye; Sun, Yele; Wang, Zifa

    2016-12-01

    Size-segregated aerosol samples were collected in New Delhi, India from March 6 to April 6, 2012. Homologous series of n-alkanes (C 19 C 33 ), n-fatty acids (C 12 C 30 ) and n-alcohols (C 16 C 32 ) were measured using gas chromatography/mass spectrometry. Results showed a high-variation in the concentrations and size distributions of these chemicals during non-haze, haze, and dust storm days. In general, n-alkanes, n-fatty acids and n-alcohols presented a bimodal distribution, peaking at 0.7-1.1 μm and 4.7-5.8 μm for fine modes and coarse modes, respectively. Overall, the particulate matter mainly existed in the coarse mode (≥2.1 μm), accounting for 64.8-68.5% of total aerosol mass. During the haze period, large-scale biomass burning emitted substantial fine hydrophilic smoke particles into the atmosphere, which leads to relatively larger GMDs (geometric mean diameter) of n-alkanes in the fine mode than those during the dust storms and non-haze periods. Additionally, the springtime dust storms transported a large quantity of coarse particles from surrounding or local areas into the atmosphere, enhancing organic aerosol concentration and inducing a remarkable size shift towards the coarse mode, which are consistent with the larger GMDs of most organic compounds especially in total and coarse modes. Our results suggest that fossil fuel combustion (e.g., vehicular and industrial exhaust), biomass burning, residential cooking, and microbial activities could be the major sources of lipid compounds in the urban atmosphere in New Delhi. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Size measurement of radioactive aerosol particles in intense radiation fields using wire screens and imaging plates

    Energy Technology Data Exchange (ETDEWEB)

    Oki, Yuichi; Tanaka, Toru; Takamiya, Koichi; Ishi, Yoshihiro; UesugI, Tomonori; Kuriyama, Yasutoshi; Sakamoto, Masaaki; Ohtsuki, Tsutomu [Kyoto University Research Reactor Institute, Osaka (Japan); Nitta, Shinnosuke [Graduate School of Engineering, Kyoto University, Kyoto (Japan); Osada, Naoyuki [Advanced Science Research Center, Okayama University, Okayama (Japan)

    2016-09-15

    Very fine radiation-induced aerosol particles are produced in intense radiation fields, such as high-intensity accelerator rooms and containment vessels such as those in the Fukushima Daiichi nuclear power plant (FDNPP). Size measurement of the aerosol particles is very important for understanding the behavior of radioactive aerosols released in the FDNPP accident and radiation safety in high-energy accelerators. A combined technique using wire screens and imaging plates was developed for size measurement of fine radioactive aerosol particles smaller than 100 nm in diameter. This technique was applied to the radiation field of a proton accelerator room, in which radioactive atoms produced in air during machine operation are incorporated into radiation-induced aerosol particles. The size of 11C-bearing aerosol particles was analyzed using the wire screen technique in distinction from other positron emitters in combination with a radioactive decay analysis. The size distribution for 11C-bearing aerosol particles was found to be ca. 70 μm in geometric mean diameter. The size was similar to that for 7Be-bearing particles obtained by a Ge detector measurement, and was slightly larger than the number-based size distribution measured with a scanning mobility particle sizer. The particle size measuring method using wire screens and imaging plates was successfully applied to the fine aerosol particles produced in an intense radiation field of a proton accelerator. This technique is applicable to size measurement of radioactive aerosol particles produced in the intense radiation fields of radiation facilities.

  14. Aerosol Size and Chemical Composition in the Canadian High Arctic

    Science.gov (United States)

    Chang, R. Y. W.; Hayes, P. L.; Leaitch, W. R.; Croft, B.; O'Neill, N. T.; Fogal, P.; Drummond, J. R.; Sloan, J. J.

    2015-12-01

    Arctic aerosol have a strong annual cycle, with winter months dominated by long range transport from lower latitudes resulting in high mass loadings. Conversely, local emissions are more prominent in the summer months because of the decreased influence of transported aerosol, allowing us to regularly observe both transported and local aerosol. This study will present observations of aerosol chemical composition and particle number size distribution collected at the Polar Environment Artic Research Laboratory and the Alert Global Atmospheric Watch Observatory at Eureka (80N, 86W) and Alert (82N, 62W), Nunavut, respectively. Summer time observations of the number size distribution reveal a persistent mode of particles centered between 30-50 nm, with occasional bursts of smaller particles. The non-refractory aerosol chemical composition, measured by the Canadian Network for the Detection of Atmospheric Change quadrupole aerosol mass spectrometer, is primarily organic, with contributions from both aged and fresher organic aerosol. Factor analysis will be conducted to better understand these sources. The site at Eureka is more susceptible to long range transport since it is at the top of a mountain ridge (610 m above sea level) and will be compared to the site at Alert on an elevated plain (200 m above sea level). This will allow us to determine the relative contributions from processes and sources at the sites at different elevations. Comparisons with aerosol optical depth and GEOS-Chem model output will also be presented to put these surface measurements into context with the overlying and regional atmosphere. Results from this study contribute to our knowledge of aerosol in the high Arctic.

  15. Dust plume formation in the free troposphere and aerosol size distribution during the Saharan Mineral Dust Experiment in North Africa

    KAUST Repository

    Khan, Basit Ali

    2015-11-27

    Dust particles mixed in the free troposphere have longer lifetimes than airborne particles near the surface. Their cumulative radiative impact on earth’s meteorological processes and climate might be significant despite their relatively small contribution to total dust abundance. One example is the elevated dust-laden Saharan Air Layer (SAL) over the tropical and subtropical North Atlantic, which cools the sea surface. To understand the formation mechanisms of a dust layer in the free troposphere, this study combines model simulations and dust observations collected during the first stage of the Saharan Mineral Dust Experiment (SAMUM-I), which sampled dust events that extended from Morocco to Portugal, and investigated the spatial distribution and the microphysical, optical, chemical, and radiative properties of Saharan mineral dust. The Weather Research Forecast model coupled with the Chemistry/Aerosol module (WRF-Chem) is employed to reproduce the meteorological environment and spatial and size distributions of dust. The model domain covers northwest Africa and adjacent water with 5 km horizontal grid spacing and 51 vertical layers. The experiments were run from 20 May to 9 June 2006, covering the period of the most intensive dust outbreaks. Comparisons of model results with available airborne and ground-based observations show that WRF-Chem reproduces observed meteorological fields as well as aerosol distribution across the entire region and along the airplane’s tracks. Several mechanisms that cause aerosol entrainment into the free troposphere are evaluated and it is found that orographic lifting, and interaction of sea breeze with the continental outflow are key mechanisms that form a surface-detached aerosol plume over the ocean. The model dust emission scheme is tuned to simultaneously fit the observed total optical depth and the ratio of aerosol optical depths generated by fine and coarse dust modes. Comparisons of simulated dust size distributions with

  16. Dust plume formation in the free troposphere and aerosol size distribution during the Saharan Mineral Dust Experiment in North Africa

    Directory of Open Access Journals (Sweden)

    Basit Khan

    2015-11-01

    Full Text Available Dust particles mixed in the free troposphere have longer lifetimes than airborne particles near the surface. Their cumulative radiative impact on earth's meteorological processes and climate might be significant despite their relatively small contribution to total dust abundance. One example is the elevated dust-laden Saharan Air Layer (SAL over the tropical and subtropical North Atlantic, which cools the sea surface. To understand the formation mechanisms of a dust layer in the free troposphere, this study combines model simulations and dust observations collected during the first stage of the Saharan Mineral Dust Experiment (SAMUM-I, which sampled dust events that extended from Morocco to Portugal, and investigated the spatial distribution and the microphysical, optical, chemical, and radiative properties of Saharan mineral dust. The Weather Research Forecast model coupled with the Chemistry/Aerosol module (WRF-Chem is employed to reproduce the meteorological environment and spatial and size distributions of dust. The model domain covers northwest Africa and adjacent water with 5 km horizontal grid spacing and 51 vertical layers. The experiments were run from 20 May to 9 June 2006, covering the period of the most intensive dust outbreaks. Comparisons of model results with available airborne and ground-based observations show that WRF-Chem reproduces observed meteorological fields as well as aerosol distribution across the entire region and along the airplane's tracks. Several mechanisms that cause aerosol entrainment into the free troposphere are evaluated and it is found that orographic lifting, and interaction of sea breeze with the continental outflow are key mechanisms that form a surface-detached aerosol plume over the ocean. The model dust emission scheme is tuned to simultaneously fit the observed total optical depth and the ratio of aerosol optical depths generated by fine and coarse dust modes. Comparisons of simulated dust size

  17. Particle size distribution of the radon progeny and ambient aerosols in the Underground Tourist Route "Liczyrzepa" Mine in Kowary Adit

    Science.gov (United States)

    Wołoszczuk, Katarzyna; Skubacz, Krystian

    2018-01-01

    Central Laboratory for Radiological Protection, in cooperation with Central Mining Institute performed measurements of radon concentration in air, potential alpha energy concentration (PAEC), particle size distribution of the radon progeny and ambient aerosols in the Underground Tourist-Educational Route "Liczyrzepa" Mine in Kowary Adit. A research study was developed to investigate the appropriate dose conversion factors for short-lived radon progeny. The particle size distribution of radon progeny was determined using Radon Progeny Particle Size Spectrometer (RPPSS). The device allows to receive the distribution of PAEC in the particle size range from 0.6 nm to 2494 nm, based on their activity measured on 8 stages composed of impaction plates or diffusion screens. The measurements of the ambient airborne particle size distribution were performed in the range from a few nanometres to about 20 micrometres using Aerodynamic Particle Sizer (APS) spectrometer and the Scanning Mobility Particle Sizer Spectrometer (SMPS).

  18. Particle Size Distribution of E-Cigarette Aerosols and the Relationship to Cambridge Filter Pad Collection Efficiency

    Directory of Open Access Journals (Sweden)

    Alderman Steven L.

    2015-01-01

    Full Text Available The relatively volatile nature of the particulate matter fraction of e-cigarette aerosols presents an experimental challenge with regard to particle size distribution measure-ments. This is particularly true for instruments requiring a high degree of aerosol dilution. This was illustrated in a previous study, where average particle diameters in the 10-50 nm range were determined by a high-dilution, electrical mobility method. Total particulate matter (TPM masses calculated based on those diameters were orders of magnitude smaller than gravimetrically determined TPM. This discrepancy was believed to result from almost complete particle evaporation at the dilution levels of the electrical mobility analysis. The same study described a spectral transmission measurement of e-cigarette particle size in an undiluted state, and reported particles from 210-380 nm count median diameter. Observed particle number concentrations were in the 109 particles/cm3 range. Additional particle size measurements described here also found e-cigarette particle size to be in the 260-320 nm count median diameter range. Cambridge filter pads have been used for decades to determine TPM yields of tobacco burning cigarettes, and collection of e-cigarette TPM by fibrous filters is predicted to be a highly efficient process over a wide range of filtration flow rates. The results presented in this work provide support for this hypothesis.

  19. The penetration of fibrous media by aerosols as a function of particle size

    Energy Technology Data Exchange (ETDEWEB)

    Dyment, J.

    1963-11-15

    This paper is concerned with the accurate experimental determination of the penetration of fibrous filter media by aerosols as a function of particle size, a topic about which previous papers give partial and conflicting data. in the present work, a heterogeneous sodium chloride aerosol was sampled before and after passing through the glass fiber filter medium by means of an electrostatic precipitator and the samples were examined under the electron microscope; the relation between particle size and penetration was derives at different gas velocities by comparison of the size distribution of the filtered and unfiltered clouds. As an extension of this work, size analyses have been made of plutonium aerosols occurring in glove boxes and enclosures during typical working operations. This information is considered in relation to the penetration of plutonium and other high density aerosol materials through filters. (auth)

  20. Modeling the Hydrological Cycle in the Atmosphere of Mars: Influence of a Bimodal Size Distribution of Aerosol Nucleation Particles

    Science.gov (United States)

    Shaposhnikov, Dmitry S.; Rodin, Alexander V.; Medvedev, Alexander S.; Fedorova, Anna A.; Kuroda, Takeshi; Hartogh, Paul

    2018-02-01

    We present a new implementation of the hydrological cycle scheme into a general circulation model of the Martian atmosphere. The model includes a semi-Lagrangian transport scheme for water vapor and ice and accounts for microphysics of phase transitions between them. The hydrological scheme includes processes of saturation, nucleation, particle growth, sublimation, and sedimentation under the assumption of a variable size distribution. The scheme has been implemented into the Max Planck Institute Martian general circulation model and tested assuming monomodal and bimodal lognormal distributions of ice condensation nuclei. We present a comparison of the simulated annual variations, horizontal and vertical distributions of water vapor, and ice clouds with the available observations from instruments on board Mars orbiters. The accounting for bimodality of aerosol particle distribution improves the simulations of the annual hydrological cycle, including predicted ice clouds mass, opacity, number density, and particle radii. The increased number density and lower nucleation rates bring the simulated cloud opacities closer to observations. Simulations show a weak effect of the excess of small aerosol particles on the simulated water vapor distributions.

  1. Aerosol ionic components at Mt. Heng in central southern China: abundances, size distribution, and impacts of long-range transport.

    Science.gov (United States)

    Gao, Xiaomei; Xue, Likun; Wang, Xinfeng; Wang, Tao; Yuan, Chao; Gao, Rui; Zhou, Yang; Nie, Wei; Zhang, Qingzhu; Wang, Wenxing

    2012-09-01

    Water-soluble ions in PM(2.5) were continuously measured, along with the measurements of many other species and collection of size-resolved aerosol samples, at the summit of Mt. Heng in the spring of 2009, to understand the sources of aerosols in rural central southern China. The mean concentrations of SO(4)(2-), NH(4)(+) and NO(3)(-) in PM(2.5) were 8.02, 2.94 and 1.47 μg/m(3), indicating a moderate aerosol pollution level at Mt. Heng. Water-soluble ions composed approximately 40% of the PM(2.5) mass on average. PM(2.5) was weakly acidic with about 66% of the samples being acidic. SO(4)(2-), NO(3)(-) and NH(4)(+) exhibited similar diurnal patterns with a broad afternoon maximum. SO(4)(2-) and NH(4)(+) were mainly present in the fine aerosols with a peak in the droplet mode of 0.56-1 μm, suggesting the important role of cloud processing in the formation of aerosol sulfate. NO(3)(-) was largely distributed in the coarse particles with a predominant peak in the size-bin of 3.2-5.6 μm. Long-distance transport of processed air masses, dust aerosols, and cloud/fog processes were the major factors determining the variations of fine aerosol at Mt. Heng. The results at Mt. Heng were compared with those obtained from our previous study at Mt. Tai in north China. The comparison revealed large differences in the aerosol characteristics and processes between southern and northern China. Backward trajectories indicated extensive transport of anthropogenic pollution from the coastal regions of eastern/northern China and the Pearl River Delta (PRD) to Mt. Heng in spring, highlighting the need for regionally coordinated control measures for the secondary pollutants. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Measurement of the size distributions of radon progeny in indoor air

    International Nuclear Information System (INIS)

    Hopke, P.K.; Ramamurthi, M.; Li, C.S.

    1990-01-01

    A major problem in evaluating the health risk posed by airborne radon progeny in indoor atmospheres is the lack of available information on the activity-weighted size distributions that occur in the domestic environment. With an automated, semicontinuous, graded screen array system, we made a series of measurements of activity-weighted size distributions in several houses in the northeastern United States. Measurements were made in an unoccupied house, in which human aerosol-generating activities were simulated. The time evolution of the aerosol size distribution was measured in each situation. Results of these measurements are presented

  3. Size distribution of salbutamol/ipratropium aerosols produced by different nebulizers in the absence and presence of heat and humidification.

    Science.gov (United States)

    Yang, Ssu-Han; Yang, Tsung-Ming; Lin, Hui-Ling; Tsai, Ying-Huang; Fang, Tien-Pei; Wan, Gwo-Hwa

    2018-02-01

    Few studies have evaluated the size distribution of inhaled and exhaled aerosolized drugs, or the effect of heated humidification on particle size and lung deposition. The present study evaluated these aspects of bronchodilator (salbutamol/ipratropium) delivery using a lung model in the absence and presence of heat and humidification. We positioned filters to collect and measure the initial drug, inhaled drug, and exhaled drug. Particle size distribution was evaluated using an 8-stage Marple personal cascade impactor with 0.2-μm polycarbonate filters. A greater inhaled drug mass was delivered using a vibrating mesh nebulizer (VMN) than by using a small volume nebulizer (SVN), when heated humidifiers were not employed. When heated and humidified medical gas was used, there was no significant difference between the inhaled drug mass delivered by the VMN and that delivered by the SVN. A significantly greater mass of inhaled 1.55-μm drug particles was produced by the VMN than with the SVN, under heated and humidified conditions. However, the mass median aerodynamic diameters (MMADs) of the aerosolized drug produced by the SVN and VMN did not differ significantly under the same conditions. The VMN produced more fine particles of salbutamol/ipratropium, and the drug particle size clearly increased in the presence of heat and humidification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Particle size distribution measurements of radionuclides from Chernobyl

    International Nuclear Information System (INIS)

    Georgi, B.; Tschiersch, J.

    1988-01-01

    Characteristics of the size distribution of the Chernobyl aerosol have been measured at four locations along the trajectory of the cloud. Changes in time and differences between 131 I and the other isotopes are explained by aerosol physical processes. The relevance of the measurements for dose calculations are discussed

  5. Submicron-sized aerosol and radon progeny measurements in an uranium mine

    International Nuclear Information System (INIS)

    Boulaud, D.; Chouard, J.C.

    1992-01-01

    Submicron-sized aerosol was studied in an uranium mine using an Electrical Aerosol Analyzer and a Differential Mobility Particle Sizer. In addition radon progeny particle size distributions were measured using a prototype instrument developed by us (SDI 2000). With cascade impactor the number weighted mean electrical mobility diameters and the geometric standard deviations ranged respectively from 0.05 to 0.1 μm and 1.8 to 2. The gross alpha activity weighted mean thermodynamic diameters ranged typically from 0.1 to 0.2 μm. 6 refs., 3 figs

  6. The size distribution of marine atmospheric aerosol with regard to primary biological aerosol particles over the South Atlantic Ocean

    Science.gov (United States)

    Matthias-Maser, Sabine; Brinkmann, Jutta; Schneider, Wilhelm

    The marine atmosphere is characterized by particles which originate from the ocean and by those which reached the air by advection from the continent. The bubble-burst mechanism produces both sea salt as well as biological particles. The following article describes the determination of the size distribution of marine aerosol particles with special emphasis on the biological particles. Th data were obtained on three cruises with the German Research Vessel "METEOR" crossing the South Atlantic Ocean. The measurements showed that biological particles amount to 17% in number and 10% in volume concentration. Another type of particle became obvious in the marine atmosphere, the biologically contaminated particle, i.e. particles which consist partly (approximately up to one-third) of biological matter. Their concentration in the evaluated size class ( r>2 μm) is higher than the concentration of the pure biological particles. The concentrations vary over about one to two orders of magnitude during all cruises.

  7. Aerosol size and chemical composition measurements at the Polar Environment Atmospheric Research Lab (PEARL) in Eureka, Nunavut

    Science.gov (United States)

    Hayes, P. L.; Tremblay, S.; Chang, R. Y. W.; Leaitch, R.; Kolonjari, F.; O'Neill, N. T.; Chaubey, J. P.; AboEl Fetouh, Y.; Fogal, P.; Drummond, J. R.

    2016-12-01

    This study presents observations of aerosol chemical composition and particle number size distribution at the Polar Environment Atmospheric Research Laboratory (PEARL) in the Canadian High Arctic (80N, 86W). The current aerosol measurement program at PEARL has been ongoing for more than a year providing long-term observations of Arctic aerosol size distributions for both coarse and fine modes. Particle nucleation events were frequently observed during the summers of 2015 and 2016. The size distribution data are also compared against similar measurements taken at the Alert Global Atmospheric Watch Observatory (82N, 62W) for July and August 2015. The nucleation events are correlated at the two sites, despite a distance of approximately 500 km, suggesting regional conditions favorable for particle nucleation and growth during this period. Size resolved chemical composition measurements were also carried out using an aerosol mass spectrometer. The smallest measured particles between 40 and 60 nm are almost entirely organic aerosol (OA) indicating that the condensation of organic vapors is responsible for particle growth events and possibly particle nucleation. This conclusion is further supported by the relatively high oxygen content of the OA, which is consistent with secondary formation of OA via atmospheric oxidation.Lastly, surface measurements of the aerosol scattering coefficient are compared against the coefficient values calculated using Mie theory and the measured aerosol size distribution. Both the actual and the calculated scattering coefficients are then compared to sun photometer measurements to understand the relationship between surface and columnar aerosol optical properties. The measurements at PEARL provide a unique combination of surface and columnar data sets on aerosols in the High Arctic, a region where such measurements are scarce despite the important impact of aerosols on Arctic climate.PEARL research is supported by the Natural Sciences and

  8. Aerosol distribution measurements by laser - Doppler - spectroscopy

    International Nuclear Information System (INIS)

    Baldassari, J.

    1977-01-01

    Laser-Doppler-Spectroscopy is used to study particle size distribution, especially sodium aerosols, in the presence of uncondensable gases. Theoretical basis are given, and an experimental technique is described. First theoretical results show reasonably good agreement with experimental data available; this method seems to be a promising one. (author)

  9. Diurnal and seasonal variations of concentration and size distribution of nano aerosols (10-1100 nm) enclosing radon decay products in the Postojna Cave, Slovenia

    International Nuclear Information System (INIS)

    Bezek, M.; Gregoric, A.; Kavasi, N.; Vaupotic, J.

    2012-01-01

    At the lowest point along the tourist route in the Postojna Cave, the activity concentration of radon ( 222 Rn) short-lived decay products and number concentration and size distribution of background aerosol particles in the size range of 10-1100 nm were measured. In the warm yearly season, aerosol concentration was low (52 cm -3 ) with 21 % particles smaller than 50 nm, while in the cold season, it was higher (1238 cm -3 ) with 8 % of -3 , and fractions of unattached radon decay products were 0.62 and 0.13, respectively. (authors)

  10. Particle size distribution of the radon progeny and ambient aerosols in the Underground Tourist Route “Liczyrzepa” Mine in Kowary Adit

    Directory of Open Access Journals (Sweden)

    Wołoszczuk Katarzyna

    2018-01-01

    Full Text Available Central Laboratory for Radiological Protection, in cooperation with Central Mining Institute performed measurements of radon concentration in air, potential alpha energy concentration (PAEC, particle size distribution of the radon progeny and ambient aerosols in the Underground Tourist-Educational Route “Liczyrzepa” Mine in Kowary Adit. A research study was developed to investigate the appropriate dose conversion factors for short-lived radon progeny. The particle size distribution of radon progeny was determined using Radon Progeny Particle Size Spectrometer (RPPSS. The device allows to receive the distribution of PAEC in the particle size range from 0.6 nm to 2494 nm, based on their activity measured on 8 stages composed of impaction plates or diffusion screens. The measurements of the ambient airborne particle size distribution were performed in the range from a few nanometres to about 20 micrometres using Aerodynamic Particle Sizer (APS spectrometer and the Scanning Mobility Particle Sizer Spectrometer (SMPS.

  11. Aerosol particle size distribution in the stratosphere retrieved from SCIAMACHY limb measurements

    Directory of Open Access Journals (Sweden)

    E. Malinina

    2018-04-01

    Full Text Available w can be retrieved with an uncertainty of less than 20 %. The algorithm was successfully applied to the tropical region (20° N–20° S for 10 years (2002–2012 of SCIAMACHY observations in limb-viewing geometry, establishing a unique data set. Analysis of this new climatology for the particle size distribution parameters showed clear increases in the mode radius after the tropical volcanic eruptions, whereas no distinct behaviour of the absolute distribution width could be identified. A tape recorder, which describes the time lag as the perturbation propagates to higher altitudes, was identified for both parameters after the volcanic eruptions. A quasi-biannual oscillation (QBO pattern at upper altitudes (28–32 km is prominent in the anomalies of the analysed parameters. A comparison of the aerosol effective radii derived from SCIAMACHY and SAGE II data was performed. The average difference is found to be around 30 % at the lower altitudes, decreasing with increasing height to almost zero around 30 km. The data sample available for the comparison is, however, relatively small.

  12. Boundary layer aerosol size distribution, mass concentration and mineralogical composition in Morocco and at Cape Verde Islands during SAMUM I-II

    Science.gov (United States)

    Kandler, K.; Lieke, K.

    2009-04-01

    The Saharan Mineral Dust Experiment (SAMUM) is dedicated to the understanding of the radiative effects of mineral dust. Two major field experiments were performed: A first joint field campaign took place at Ouarzazate and near Zagora, southern Morocco, from May 13 to June 7, 2006. Aircraft and ground based measurements of aerosol physical and chemical properties were carried out to collect a data set of surface and atmospheric columnar information within a major dust source. This data set combined with satellite data provides the base of the first thorough columnar radiative closure tests in Saharan dust. A second field experiment was conducted during January-February 2008, in the Cape Verde Islands region, where about 300 Tg of mineral dust are transported annually from Western Africa across the Atlantic towards the Caribbean Sea and the Amazon basin. Along its transport path, the mineral dust is expected to influence significantly the radiation budget - by direct and indirect effects - of the subtropical North Atlantic. We are lacking a radiative closure in the Saharan air plume. One focus of the investigation within the trade wind region is the spatial distribution of mixed dust/biomass/sea salt aerosol and their physical and chemical properties, especially with regard to radiative effects. We report on measurements of size distributions, mass concentrations and mineralogical composition conducted at the Zagora (Morocco) and Praia (Cape Verde islands) ground stations. The aerosol size distribution was measured from 20 nm to 500

  13. Density and radioactivity distribution of respirable range human serum albumin aerosol

    International Nuclear Information System (INIS)

    Raghunath, B.; Somasundaram, S.; Soni, P.S.

    1988-01-01

    Dry human serum albumin (HSA) aerosol in the respirable size range was generated using the BARC nebulizer. The aerosol was sampled using Lovelace Aerosol Particle Separator (LAPS) and the density of HSA was determined. Labelling of HSA with 99m TcO 4 - was done, both in HSA solution and with dry denatured HSA particles, to study the distribution of radioactivity in both cases. The results are discussed. (author)

  14. A seasonal time history of the size resolved composition of fine aerosol in Manchester UK

    Science.gov (United States)

    Choularton, Thomas; Martin, Claire; Allan, James; Coe, Hugh; Bower, Keith; Gallagher, Martin

    2010-05-01

    Numerous studies have been conducted in urban centres now using sophisticated instruments that measure aerosol properties needed to determine their effects on human health, air quality and climate change) showing that a significant fraction of urban aerosols (mainly from automotive sources) are composed of organic compounds with implications for human health. In this project we have produced the first seasonal aerosol composition and emission database for the City of Manchester in the UK Several recent projects have been conducted by SEAES looking at fundamental properties of urban atmospheric aerosol to understand their influence on climate. This work is now expanding through collaboration with the School of Geography & Centre for Occupational & Environmental Health to investigate urban aerosol emission impacts on human health In this paper we present a compendium of data from field campaigns in Manchester city centre over the past decade. The data are from six different campaigns, between 2001 - 2007, each campaign was between 2 weeks and 2 months long predominantly from January and June periods . The data analysis includes air parcel trajectory examination and comparisons with external data, including PM10, CO and NOx data from AURN fixed monitoring sites Six Manchester fine aerosol datasets from the past decade have been quality controlled and analysed regarding averages of the size distributions of Organic, NO3, NH4 and SO4 mass loadings. It was found that: Organic material is the largest single component of the aerosol with primary aliphatic material dominating the smallest sizes, but with oxygenated secondary organic material being important in the accumulation mode. In the accumulation mode the organic material seems to be internally mixed with sulphate and nitrate. The accumulation mode particles were effective as cloud condensation nuclei. Seasonal effects surrounding atmospheric stability and photochemistry were found to play an important role in the

  15. Diurnal and seasonal variations of concentration and size distribution of nano aerosols (10-1100 nm) enclosing radon decay products in the Postojna Cave, Slovenia.

    Science.gov (United States)

    Bezek, M; Gregoric, A; Kávási, N; Vaupotic, J

    2012-11-01

    At the lowest point along the tourist route in the Postojna Cave, the activity concentration of radon ((222)Rn) short-lived decay products and number concentration and size distribution of background aerosol particles in the size range of 10-1100 nm were measured. In the warm yearly season, aerosol concentration was low (52 cm(-3)) with 21 % particles smaller than 50 nm, while in the cold season, it was higher (1238 cm(-3)) with 8 % of <50 nm particles. Radon activity concentrations were 4489 and 1108 Bq m(-3), and fractions of unattached radon decay products were 0.62 and 0.13, respectively.

  16. Underground measurements of aerosol in radon and thoron progeny activity distributions

    International Nuclear Information System (INIS)

    Khan, A.; Bandi, F.; Phillips, C.R.; Duport, P.

    1990-01-01

    Aerosol and activity distributions of 218 Polonium, 214 Lead, 214 Bismuth, and 212 Lead were determined in two different underground mining environments by means of an optimized time-delay counting scheme and diffusion batteries. In one environment, diesel equipment was operating; and in the other, electrically powered equipment. The two environments differed significantly in total aerosol concentration. In the diesel environment, in particular, aerosol concentrations were unsteady, and fluctuated with vehicular traffic and mining activities. As measured by radon progeny disequilibrium, the age of the air ranged from about 25 to 60 minutes. Thoron working levels were of the same order as radon working levels. In this paper, comparisons are made between the aerosol and activity size distributions in both the diesel and electric mine

  17. Experimental study of the effect of wearing dust-proof mask on inhaled aerosol particle size

    International Nuclear Information System (INIS)

    Lu Shunguang; Mei Chongsheng; Wu Yuangqing; Ren Liuan.

    1985-01-01

    This paper describes a method for measuring particle size of inhaled aerosol with a phantom of human head wearing dust-proof mask and a cascade impactor. The results showed that AMAD of inhaled aerosol was degraded and the size distribution of particles changed when the dust-proof mask was wearing. The leak rate of mask increased as the size of dust particles decreased. The results are applicable to estimate internal exposure dose and to evaluate the dust-proof capacity of mask

  18. The effect of changes in humidity on the size of submicron aerosols

    International Nuclear Information System (INIS)

    Phillips, C.R.; Khan, A.

    1987-06-01

    The effect of humidity on inhaled aerosols in the respiratory tract is to cause an increase in particle size of up to several times if the aerosol particle is hygroscopic. The presence of ionizing radiation and air ions (for example, from uranium and radon/thoron) increases the tendency of water vapour to nucleate. The desposition of particles in the lung is enhanced by high charge density (>10 charges/particle). Radon has been reported to play an important role in the formation of sulphate and nitrate particles in the atmosphere. A detailed overview of the effect of humidity on aerosols is presented in the present work. Results of experimental measurements made on NaCl (hygroscopic) and kerosene combustion (hydrophobic) aerosols under ambient and humid conditions are reported. Initial aerosol conditions were 20 degrees C and 35% R.H. Final aerosol conditions were maintained at 37 degrees C and 100% R.H. in order to simulate the conditions inside the respiratory tract. An average growth factor of 1.9 ± 0.4 (standard deviation) was observed for the NaCl aerosol and 1.3 ± 0.2 (standard deviation) for the kerosene aerosol. For the activity size distribution, however, the NaCl aerosols were observed to grow by an average factor of only 1.2 ± 0.1 (standard deviation) whereas the kerosene aerosols grew by a factor of 1.3 ± 0.2 (standard deviation)

  19. Estimating particle number size distributions from multi-instrument observations with Kalman Filtering

    Energy Technology Data Exchange (ETDEWEB)

    Viskari, T.

    2012-07-01

    Atmospheric aerosol particles have several important effects on the environment and human society. The exact impact of aerosol particles is largely determined by their particle size distributions. However, no single instrument is able to measure the whole range of the particle size distribution. Estimating a particle size distribution from multiple simultaneous measurements remains a challenge in aerosol physical research. Current methods to combine different measurements require assumptions concerning the overlapping measurement ranges and have difficulties in accounting for measurement uncertainties. In this thesis, Extended Kalman Filter (EKF) is presented as a promising method to estimate particle number size distributions from multiple simultaneous measurements. The particle number size distribution estimated by EKF includes information from prior particle number size distributions as propagated by a dynamical model and is based on the reliabilities of the applied information sources. Known physical processes and dynamically evolving error covariances constrain the estimate both over time and particle size. The method was tested with measurements from Differential Mobility Particle Sizer (DMPS), Aerodynamic Particle Sizer (APS) and nephelometer. The particle number concentration was chosen as the state of interest. The initial EKF implementation presented here includes simplifications, yet the results are positive and the estimate successfully incorporated information from the chosen instruments. For particle sizes smaller than 4 micrometers, the estimate fits the available measurements and smooths the particle number size distribution over both time and particle diameter. The estimate has difficulties with particles larger than 4 micrometers due to issues with both measurements and the dynamical model in that particle size range. The EKF implementation appears to reduce the impact of measurement noise on the estimate, but has a delayed reaction to sudden

  20. Optical extinction dependence on wavelength and size distribution of airborne dust

    Science.gov (United States)

    Pangle, Garrett E.; Hook, D. A.; Long, Brandon J. N.; Philbrick, C. R.; Hallen, Hans D.

    2013-05-01

    The optical scattering from laser beams propagating through atmospheric aerosols has been shown to be very useful in describing air pollution aerosol properties. This research explores and extends that capability to particulate matter. The optical properties of Arizona Road Dust (ARD) samples are measured in a chamber that simulates the particle dispersal of dust aerosols in the atmospheric environment. Visible, near infrared, and long wave infrared lasers are used. Optical scattering measurements show the expected dependence of laser wavelength and particle size on the extinction of laser beams. The extinction at long wavelengths demonstrates reduced scattering, but chemical absorption of dust species must be considered. The extinction and depolarization of laser wavelengths interacting with several size cuts of ARD are examined. The measurements include studies of different size distributions, and their evolution over time is recorded by an Aerodynamic Particle Sizer. We analyze the size-dependent extinction and depolarization of ARD. We present a method of predicting extinction for an arbitrary ARD size distribution. These studies provide new insights for understanding the optical propagation of laser beams through airborne particulate matter.

  1. Disentangling the major source areas for an intense aerosol advection in the Central Mediterranean on the basis of Potential Source Contribution Function modeling of chemical and size distribution measurements

    Science.gov (United States)

    Petroselli, Chiara; Crocchianti, Stefano; Moroni, Beatrice; Castellini, Silvia; Selvaggi, Roberta; Nava, Silvia; Calzolai, Giulia; Lucarelli, Franco; Cappelletti, David

    2018-05-01

    In this paper, we combined a Potential Source Contribution Function (PSCF) analysis of daily chemical aerosol composition data with hourly aerosol size distributions with the aim to disentangle the major source areas during a complex and fast modulating advection event impacting on Central Italy in 2013. Chemical data include an ample set of metals obtained by Proton Induced X-ray Emission (PIXE), main soluble ions from ionic chromatography and elemental and organic carbon (EC, OC) obtained by thermo-optical measurements. Size distributions have been recorded with an optical particle counter for eight calibrated size classes in the 0.27-10 μm range. We demonstrated the usefulness of the approach by the positive identification of two very different source areas impacting during the transport event. In particular, biomass burning from Eastern Europe and desert dust from Sahara sources have been discriminated based on both chemistry and size distribution time evolution. Hourly BT provided the best results in comparison to 6 h or 24 h based calculations.

  2. The self-preserving size distribution theory. I. Effects of the Knudsen number on aerosol agglomerate growth.

    Science.gov (United States)

    Dekkers, Petrus J; Friedlander, Sheldon K

    2002-04-15

    Gas-phase synthesis of fine solid particles leads to fractal-like structures whose transport and light scattering properties differ from those of their spherical counterparts. Self-preserving size distribution theory provides a useful methodology for analyzing the asymptotic behavior of such systems. Apparent inconsistencies in previous treatments of the self-preserving size distributions in the free molecule regime are resolved. Integro-differential equations for fractal-like particles in the continuum and near continuum regimes are derived and used to calculate the self-preserving and quasi-self-preserving size distributions for agglomerates formed by Brownian coagulation. The results for the limiting case (the continuum regime) were compared with the results of other authors. For these cases the finite difference method was in good in agreement with previous calculations in the continuum regime. A new analysis of aerosol agglomeration for the entire Knudsen number range was developed and compared with a monodisperse model; Higher agglomeration rates were found for lower fractal dimensions, as expected from previous studies. Effects of fractal dimension, pressure, volume loading and temperature on agglomerate growth were investigated. The agglomeration rate can be reduced by decreasing volumetric loading or by increasing the pressure. In laminar flow, an increase in pressure can be used to control particle growth and polydispersity. For D(f)=2, an increase in pressure from 1 to 4 bar reduces the collision radius by about 30%. Varying the temperature has a much smaller effect on agglomerate coagulation.

  3. Aerosol Hygroscopicity Distribution and Mixing State Determined by Cloud Condensation Nuclei (CCN) Measurements

    Science.gov (United States)

    Su, H.; Rose, D.; Cheng, Y.; Gunthe, S. S.; Wiedensohler, A.; Andreae, M. O.; Pöschl, U.

    2009-12-01

    This paper presents, firstly the concept of hygroscopicity distribution and its application in the analysis of cloud condensation nuclei (CCN) measurement data. The cumulative particle hygroscopicity distribution function N(κ) is defined as the number concentration of particles with a hygroscopicity parameter, κ, smaller than a certain value of κ. Since the measured CCN (at supersaturation S) can be considered as those particles with κ larger than a certain value, the CCN efficiency spectra (activation curve) can be easily converted to N(κ) distributions. Unlike studies calculating only one hygroscopicity parameter from a CCN activation curve, the concept of N(κ) shows the usefulness of all points on the activation curve. Modeling studies of three assumed N(κ) distributions are used to illustrate the new concept N(κ) and how it is related to the size-resolved CCN measurements. Secondly, we discuss the aerosol mixing state information that can be obtained from the shape of N(κ). A case study is performed based on the CCN measurements during the CAREBEIJING 2006 campaign. In the campaign-averaged N(κ) distribution, most particles (>80%) lie in a mode with a geometric mean κ around 0.2-0.4, and an increasing trend in the mean κ is found as particle size increases. There seems to be another less hygroscopic mode but the κ resolution (depending on the size resolution) in the campaign is not high enough to interpret it. It is also clear that N(κ) is not a monodisperse distribution (implying an internal mixture of the aerosols). The dispersion parameter σg,κ, which is the geometric standard deviation of N(κ), can be used as an indicator for the aerosol mixing state. The indicator σg,κ shows good agreement with the soot mixing state measured by a volatility tandem differential mobility analyzer (VTDMA) during the CAREBEIJING 2006 campaign. The concept of N(κ) can be widely used to study aerosol mixing states, especially in the lab experiment where a

  4. Sensitivity of cloud albedo to aerosol concentration and spectral dispersion of cloud droplet size distribution

    Energy Technology Data Exchange (ETDEWEB)

    Iorga, G. [Faculty of Chemistry, University of Bucharest, Bucharest (Romania)]. E-mail: giorga@gw-chimie.math.unibuc.ro; Stefan, S. [Faculty of Physics, University of Bucharest, Bucharest (Romania)

    2007-07-15

    Both the enhancement of the aerosol number concentration and the relative dispersion of the cloud droplet size distribution (spectral dispersion) on a regional scale can modify the cloud reflectivity. This work is focused on the role that pre-cloud aerosol plays in cloud reflectivity. Log-normal aerosol size distributions were used to describe two aerosol types: marine and rural. The number of aerosols that activate to droplets was obtained based on Abdul-Razzak and Ghan's (2000) activation parameterization. The cloud albedo taking into account the spectral dispersion effect in the parameterization of cloud effective radius and in the scattering asymmetry factor has been estimated. Two different scaling factors to account for dispersion were used. The sensitivity of cloud albedo to spectral dispersion-cloud droplet number concentration relationship in connection to the changes in liquid water content (LWC), and the cloud droplet effective radius has been also investigated. We obtained higher values of effective radius when dispersion is taken into account, with respect to the base case (without considering dispersion). The inferred absolute differences in effective radius values between calculations with each of the scaling factors are below 0.8 {mu}m as LWC ranges between 0.1 and 1.0 g m-3. The optical depth decreased by up to 14% (marine), and up to 29% (continental) when dispersion is considered in both effective radius and asymmetry factor ({beta}LDR scaling factor). Correspondingly, the relative change in cloud albedo is up to 6% (marine) and up to 11% (continental) clouds. For continental clouds, the calculated effective radius when dispersion is considered fits well within the measured range of effective radius in SCAR-B project. The calculated cloud albedo when dispersion is considered shows better agreement with the estimated cloud albedo from measured effective radius in SCAR-B project than the cloud albedo calculated without dispersion. In cleaner

  5. In situ measurements of aerosol optical properties and number size distributions in a coastal region of Norway during the summer of 2008

    Directory of Open Access Journals (Sweden)

    S. Mogo

    2012-07-01

    Full Text Available In situ measurements of aerosol optical properties and particle size distributions were made in the summer of 2008 at the ALOMAR station facility (69°16' N, 16°00' E, located in a rural site in the north of the island of Andøya (Vesterålen archipelago, approximately 300 km north of the Arctic Circle. The extended three-month campaign was part of the POLARCAT Project (Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate, Chemistry, Aerosols, and Transport of the International Polar Year (IPY-2007-2008. Our goal was to characterize the aerosols of this sub-Arctic area, which are frequently transported to the Arctic region.

    Data from 13 June to 26 August 2008 were available and the statistical data for all instruments were calculated based on the hourly averages. The overall data coverage was approximately 72%. The hourly mean values of the light-scattering coefficient, σs, and the light-absorption coefficient, σa, at 550 nm were 5.41 Mm−1 (StD = 3.55 Mm−1 and 0.40 Mm−1 (StD = 0.27 Mm−1, respectively. The scattering/absorption Ångström exponents, αs,a, were used in a detailed analysis of the variations of the spectral shape of σs,a. While αs indicates the presence of two particle sizes corresponding to two types of aerosols, αa indicates only one type of absorbing aerosol particle. αa values greater than 1 were not observed. The single-scattering albedo, ω0, ranged from 0.62 to 0.99 (mean = 0.91, StD = 0.05, and the relationships between this parameter and the absorption/scattering coefficients and the Ångström exponents are presented. Any absorption value may lead to the lowest values of ω0, whereas only the lowest scattering values were observed in the lowest range of ω0. For a given absorption value, lower ω0 were

  6. Classifying previously undefined days from eleven years of aerosol-particle-size distribution data from the SMEAR II station, Hyytiälä, Finland

    Directory of Open Access Journals (Sweden)

    S. Buenrostro Mazon

    2009-01-01

    Full Text Available Studies of secondary aerosol-particle formation depend on identifying days in which new particle formation occurs and, by comparing them to days with no signs of particle formation, identifying the conditions favourable for formation. Continuous aerosol size distribution data has been collected at the SMEAR II station in a boreal forest in Hyytiälä, Finland, since 1996, making it the longest time series of aerosol size distributions available worldwide. In previous studies, the data have been classified as particle-formation event, nonevent, and undefined days, with almost 40% of the dataset classified as undefined. In the present study, eleven years (1996–2006 of undefined days (1630 days were reanalyzed and subdivided into three new classes: failed events (37% of all previously undefined days, ultrafine-mode concentration peaks (34%, and pollution-related concentration peaks (19%. Unclassified days (10% comprised the rest of the previously undefined days. The failed events were further subdivided into tail events (21%, where a tail of a formation event presumed to be advected to Hyytiälä from elsewhere, and quasi events (16% where new particles appeared at sizes 3–10 nm, but showed unclear growth, the mode persisted for less than an hour, or both. The ultrafine concentration peaks days were further subdivided into nucleation-mode peaks (24% and Aitken-mode peaks (10%, depending on the size range where the particles occurred. The mean annual distribution of the failed events has a maximum during summer, whereas the two peak classes have maxima during winter. The summer minimum previously found in the seasonal distribution of event days partially offsets a summer maximum in failed-event days. Daily-mean relative humidity and condensation sink values are useful in discriminating the new classes from each other. Specifically, event days had low values of relative humidity and condensation sink relative to nonevent days. Failed-event days

  7. Particulate size growth in a buoyant aerosol cloud

    International Nuclear Information System (INIS)

    Bathula, Sreekanth; Anand, S.; Sapra, B.K.; Chaturvedi, Shashank; Chaudhury, Probal; Pradeepkumar, K.S.

    2018-01-01

    Intentional/accidental release of Chemical, Biological, Radiological or Nuclear (CBRN) contaminant into environment create air and ground contamination. Preparedness and response towards such incidents require reliable models to predict the contamination levels. If the released contaminant is a gas, then it will undergo dilution by mixing with the atmospheric air hence air concentration will reduce to a greater extent and ground contamination may not be possible unless by means of wet deposition. But if the released contaminant is in the form of an aerosol cloud, significant ground deposition is possible due to dry deposition as well as wet deposition along with the air concentration. Particle size distribution inside the cloud is essential information required in computing the air concentration as well as ground concentration. The particle size distribution inside the cloud also undergoes temporal variation due to microscopic processes like particle-particle interactions (coagulation) and macroscopic like buoyancy, air entrainment and volume expansion etc. In this paper, the numerical computation of particle size and particle number concentration in an instantaneous, uniformly mixed, buoyant spherical puff released from a pressurised container is presented

  8. A global off-line model of size-resolved aerosol microphysics: I. Model development and prediction of aerosol properties

    Directory of Open Access Journals (Sweden)

    D. V. Spracklen

    2005-01-01

    Full Text Available A GLObal Model of Aerosol Processes (GLOMAP has been developed as an extension to the TOMCAT 3-D Eulerian off-line chemical transport model. GLOMAP simulates the evolution of the global aerosol size distribution using a sectional two-moment scheme and includes the processes of aerosol nucleation, condensation, growth, coagulation, wet and dry deposition and cloud processing. We describe the results of a global simulation of sulfuric acid and sea spray aerosol. The model captures features of the aerosol size distribution that are well established from observations in the marine boundary layer and free troposphere. Modelled condensation nuclei (CN>3nm vary between about 250–500 cm-3 in remote marine boundary layer regions and are generally in good agreement with observations. Modelled continental CN concentrations are lower than observed, which may be due to lack of some primary aerosol sources or the neglect of nucleation mechanisms other than binary homogeneous nucleation of sulfuric acid-water particles. Remote marine CN concentrations increase to around 2000–10 000 cm (at standard temperature and pressure in the upper troposphere, which agrees with typical observed vertical profiles. Cloud condensation nuclei (CCN at 0.2% supersaturation vary between about 1000 cm-3 in polluted regions and between 10 and 500 cm-3 in the remote marine boundary layer. New particle formation through sulfuric acid-water binary nucleation occurs predominantly in the upper troposphere, but the model results show that these particles contribute greatly to aerosol concentrations in the marine boundary layer. For this sulfur-sea salt system it is estimated that sea spray emissions account for only ~10% of CCN in the tropical marine boundary layer, but between 20 and 75% in the mid-latitude Southern Ocean. In a run with only natural sulfate and sea salt emissions the global mean surface CN concentration is more than 60% of that from a run with 1985 anthropogenic

  9. Measurement of the ambient organic aerosol volatility distribution: application during the Finokalia Aerosol Measurement Experiment (FAME-2008

    Directory of Open Access Journals (Sweden)

    B. H. Lee

    2010-12-01

    Full Text Available A variable residence time thermodenuder (TD was combined with an Aerodyne Aerosol Mass Spectrometer (AMS and a Scanning Mobility Particle Sizer (SMPS to measure the volatility distribution of aged organic aerosol in the Eastern Mediterranean during the Finokalia Aerosol Measurement Experiment in May of 2008 (FAME-2008. A new method for the quantification of the organic aerosol volatility distribution was developed combining measurements of all three instruments together with an aerosol dynamics model.

    Challenges in the interpretation of ambient thermodenuder-AMS measurements include the potential resistances to mass transfer during particle evaporation, the effects of particle size on the evaporated mass fraction, the changes in the AMS collection efficiency and particle density as the particles evaporate partially in the TD, and finally potential losses inside the TD. Our proposed measurement and data analysis method accounts for all of these problems combining the AMS and SMPS measurements.

    The AMS collection efficiency of the aerosol that passed through the TD was found to be approximately 10% lower than the collection efficiency of the aerosol that passed through the bypass. The organic aerosol measured at Finokalia is approximately 2 or more orders of magnitude less volatile than fresh laboratory-generated monoterpene (α-pinene, β-pinene and limonene under low NOx conditions secondary organic aerosol. This low volatility is consistent with its highly oxygenated AMS mass spectrum. The results are found to be highly sensitive to the mass accommodation coefficient of the evaporating species. This analysis is based on the assumption that there were no significant reactions taking place inside the thermodenuder.

  10. Size Distributions and Formation Pathways of Organic and Inorganic Constituents in Spring Aerosols from Okinawa Island in the Western North Pacific Rim: An Outflow Region of Asian Dusts

    Science.gov (United States)

    Deshmukh, D. K.; Lazaar, M.; Kawamura, K.; Kunwar, B.; Tachibana, E.; Boreddy, S. K. R.

    2015-12-01

    Size-segregated aerosols (9-stages) were collected at Okinawa Island in the western North Pacific Rim in spring 2008. The samples were analyzed for diacids (C2-C12), ω-oxoacids (ωC2-ωC9), a-dicarbonyls (C2-C3), organic carbon (OC), water-soluble OC (WSOC) and major ions to understand the sources and atmospheric processes in the outflow region of Asian pollutants. The molecular distribution of diacids showed the predominance of oxalic acid (C2) followed by malonic and succinic acids in all the size-segregated aerosols. ω-Oxoacids showed the predominance of glyoxylic acid (ωC2) whereas glyoxal (Gly) was more abundant than methylglyoxal in all the sizes. The abundant presence of sulfate as well as phthalic and adipic acids in Okinawa aerosols suggested a significant contribution of anthropogenic sources in East Asia via long-range atmospheric transport. Diacids (C2-C5), ωC2 and Gly as well as WSOC and OC peaked at 0.65-1.1 µm in fine mode whereas azelaic (C9) and 9-oxononanoic (ωC9) acids peaked at 3.3-4.7 µm in coarse mode. Sulfate and ammonium are enriched in fine mode whereas sodium and chloride are in coarse mode. An important mechanism for the formation of these organic species in Okinawa aerosols is probably gas phase oxidation of VOCs and subsequent in-cloud processing during long-range transport. Their characteristics size distribution implies that fine particles enriched with these organic and inorganic species could act as CCN to develop the cloud cover over the western North Pacific. The major peak of C9 and ωC9 on coarse mode suggest that they are produced by photooxidation of unsaturated fatty acids mainly derived from phytoplankton via heterogeneous reactions on sea spray particles. This study demonstrates that anthropogenic aerosols emitted from East Asia have significant influence on the compositions of organic and inorganic aerosols in the western North Pacific Rim.

  11. Size Determination of Au Aerosol Nanoparticles by Off-Line TEM/STEM Observations

    Science.gov (United States)

    Karlsson, Lisa S.; Deppert, Knut; Malm, Jan-Olle

    2006-12-01

    Determination of particle size distributions of Au aerosol nanoparticles has been performed by a TEM/STEM investigation. The particles are generated by an evaporation/condensation method and are size-selected by differential mobility analyzers (DMA) based on their electrical mobility. Off-line TEM measurements resulted in equivalent projected area diameters assuming that the particles are spherical in shape. In this paper critical factors such as magnification calibration, sampling, image analysis, beam exposure and, particle shape are treated. The study shows that the measures of central tendency; mean, median and mode, are equal as expected from a narrow size distribution. Moreover, the correlation between TEM/STEM and DMA are good, in practice 1:1. Also, STEM has the advantage over TEM due to enhanced contrast and is proposed as an alternative route for determination of particle size distributions of nanoparticles with lower contrast.

  12. Size Determination of Au Aerosol Nanoparticles by Off-Line TEM/STEM Observations

    International Nuclear Information System (INIS)

    Karlsson, Lisa S.; Deppert, Knut; Malm, Jan-Olle

    2006-01-01

    Determination of particle size distributions of Au aerosol nanoparticles has been performed by a TEM/STEM investigation. The particles are generated by an evaporation/condensation method and are size-selected by differential mobility analyzers (DMA) based on their electrical mobility. Off-line TEM measurements resulted in equivalent projected area diameters assuming that the particles are spherical in shape. In this paper critical factors such as magnification calibration, sampling, image analysis, beam exposure and, particle shape are treated. The study shows that the measures of central tendency; mean, median and mode, are equal as expected from a narrow size distribution. Moreover, the correlation between TEM/STEM and DMA are good, in practice 1:1. Also, STEM has the advantage over TEM due to enhanced contrast and is proposed as an alternative route for determination of particle size distributions of nanoparticles with lower contrast

  13. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Aerosol Optical Depth and Aerosol Particle Size Distribution Environmental Data Record (EDR) from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of aerosol optical depth (AOD) and particle size from the Visible Infrared Imaging...

  14. Aerosol spectral optical depths and size characteristics at a coastal industriallocation in India - effect of synoptic and mesoscale weather

    Directory of Open Access Journals (Sweden)

    K. Niranjan

    2004-06-01

    Full Text Available The aerosol spectral optical depths at ten discrete channels in the visible and near IR bands, obtained from a ground-based passive multi-wavelength solar radiometer at a coastal industrial location, Visakhapatnam, on the east coast of India, are used to study the response of the aerosol optical properties and size distributions to the changes in atmospheric humidity, wind speed and direction. It is observed that during high humidity conditions, the spectral optical depths show about 30% higher growth factors, and the size distributions show the generation of a typical new mode around 0.4 microns. The surface wind speed and direction also indicate the formation of new particles when the humid marine air mass interacts with the industrial air mass. This is interpreted in terms of new particle formation and subsequent particle growth by condensation and self-coagulation. The results obtained on the surface-size segregated aerosol mass distribution from a co-located Quartz Crystal Microbalance during different humidity conditions also show a large mass increase in the sub-micron size range with an increase in atmospheric humidity, indicating new particle formation at the sub-micron size range.

  15. Aerosol particle measurements at three stationary sites in the megacity of Paris during summer 2009: meteorology and air mass origin dominate aerosol particle composition and size distribution

    Directory of Open Access Journals (Sweden)

    F. Freutel

    2013-01-01

    Full Text Available During July 2009, a one-month measurement campaign was performed in the megacity of Paris. Amongst other measurement platforms, three stationary sites distributed over an area of 40 km in diameter in the greater Paris region enabled a detailed characterization of the aerosol particle and gas phase. Simulation results from the FLEXPART dispersion model were used to distinguish between different types of air masses sampled. It was found that the origin of air masses had a large influence on measured mass concentrations of the secondary species particulate sulphate, nitrate, ammonium, and oxygenated organic aerosol measured with the Aerodyne aerosol mass spectrometer in the submicron particle size range: particularly high concentrations of these species (about 4 μg m−3, 2 μg m−3, 2 μg m−3, and 7 μg m−3, respectively were measured when aged material was advected from continental Europe, while for air masses originating from the Atlantic, much lower mass concentrations of these species were observed (about 1 μg m−3, 0.2 μg m−3, 0.4 μg m−3, and 1–3 μg m−3, respectively. For the primary emission tracers hydrocarbon-like organic aerosol, black carbon, and NOx it was found that apart from diurnal source strength variations and proximity to emission sources, local meteorology had the largest influence on measured concentrations, with higher wind speeds leading to larger dilution and therefore smaller measured concentrations. Also the shape of particle size distributions was affected by wind speed and air mass origin. Quasi-Lagrangian measurements performed under connected flow conditions between the three stationary sites were used to estimate the influence of the Paris emission plume onto its surroundings, which was found to be rather small. Rough estimates for the impact of the Paris emission plume on the suburban areas can be

  16. Aerosol Delivery for Amendment Distribution in Contaminated Vadose Zones

    Science.gov (United States)

    Hall, R. J.; Murdoch, L.; Riha, B.; Looney, B.

    2011-12-01

    Remediation of contaminated vadose zones is often hindered by an inability to effectively distribute amendments. Many amendment-based approaches have been successful in saturated formations, however, have not been widely pursued when treating contaminated unsaturated materials due to amendment distribution limitations. Aerosol delivery is a promising new approach for distributing amendments in contaminated vadose zones. Amendments are aerosolized and injected through well screens. During injection the aerosol particles are transported with the gas and deposited on the surfaces of soil grains. Resulting distributions are radially and vertically broad, which could not be achieved by injecting pure liquid-phase solutions. The objectives of this work were A) to characterize transport and deposition behaviors of aerosols; and B) to develop capabilities for predicting results of aerosol injection scenarios. Aerosol transport and deposition processes were investigated by conducting lab-scale injection experiments. These experiments involved injection of aerosols through a 2m radius, sand-filled wedge. A particle analyzer was used to measure aerosol particle distributions with time, and sand samples were taken for amendment content analysis. Predictive capabilities were obtained by constructing a numerical model capable of simulating aerosol transport and deposition in porous media. Results from tests involving vegetable oil aerosol injection show that liquid contents appropriate for remedial applications could be readily achieved throughout the sand-filled wedge. Lab-scale tests conducted with aqueous aerosols show that liquid accumulation only occurs near the point of injection. Tests were also conducted using 200 g/L salt water as the aerosolized liquid. Liquid accumulations observed during salt water tests were minimal and similar to aqueous aerosol results. However, particles were measured, and salt deposited distal to the point of injection. Differences between

  17. Sectional modeling of nanoparticle size and charge distributions in dusty plasmas

    International Nuclear Information System (INIS)

    Agarwal, Pulkit; Girshick, Steven L

    2012-01-01

    Sectional models of the dynamics of aerosol populations are well established in the aerosol literature but have received relatively less attention in numerical models of dusty plasmas, where most modeling studies have assumed the existence of monodisperse dust particles. In the case of plasmas in which nanoparticles nucleate and grow, significant polydispersity can exist in particle size distributions, and stochastic charging can cause particles of given size to have a broad distribution of charge states. Sectional models, while computationally expensive, are well suited to treating such distributions. This paper presents an overview of sectional modeling of nanodusty plasmas, and presents examples of simulation results that reveal important qualitative features of the spatiotemporal evolution of such plasmas, many of which could not be revealed by models that consider only monodisperse dust particles and average particle charge. These features include the emergence of bimodal particle populations consisting of very small neutral particles and larger negatively charged particles, the effects of size and charge distributions on coagulation, spreading and structure of the particle cloud, and the dynamics of dusty plasma afterglows. (paper)

  18. SIZE DISTRIBUTION AND RATE OF PRODUCTION OF AIRBORNE PARTICULATE MATTER GENERATED DURING METAL CUTTING

    International Nuclear Information System (INIS)

    Ebadian, M.A.; Dua, S.K.; Hillol Guha

    2001-01-01

    During deactivation and decommissioning activities, thermal cutting tools, such as plasma torch, laser, and gasoline torch, are used to cut metals. These activities generate fumes, smoke and particulates. These airborne species of matter, called aerosols, may be inhaled if suitable respiratory protection is not used. Inhalation of the airborne metallic aerosols has been reported to cause ill health effects, such as acute respiratory syndrome and chromosome damage in lymphocytes. In the nuclear industry, metals may be contaminated with radioactive materials. Cutting these metals, as in size reduction of gloveboxes and tanks, produces high concentrations of airborne transuranic particles. Particles of the respirable size range (size < 10 microm) deposit in various compartments of the respiratory tract, the fraction and the site in the respiratory tract depending on the size of the particles. The dose delivered to the respiratory tract depends on the size distribution of the airborne particulates (aerosols) and their concentration and radioactivity/toxicity. The concentration of airborne particulate matter in an environment is dependent upon the rate of their production and the ventilation rate. Thus, measuring aerosol size distribution and generation rate is important for (1) the assessment of inhalation exposures of workers, (2) the selection of respiratory protection equipment, and (3) the design of appropriate filtration systems. Size distribution of the aerosols generated during cutting of different metals by plasma torch was measured. Cutting rates of different metals, rate of generation of respirable mass, as well as the fraction of the released kerf that become respirable were determined. This report presents results of these studies. Measurements of the particles generated during cutting of metal plates with a plasma arc torch revealed the presence of particles with mass median aerodynamic diameters of particles close to 0.2 micro

  19. Influence of particle size and chemistry on the cloud nucleating properties of aerosols

    Directory of Open Access Journals (Sweden)

    P. K. Quinn

    2008-02-01

    Full Text Available The ability of an aerosol particle to act as a cloud condensation nuclei (CCN is a function of the size of the particle, its composition and mixing state, and the supersaturation of the cloud. In-situ data from field studies provide a means to assess the relative importance of these parameters. During the 2006 Texas Air Quality – Gulf of Mexico Atmospheric Composition and Climate Study (TexAQS-GoMACCS, the NOAA RV Ronald H. Brown encountered a wide variety of aerosol types ranging from marine near the Florida panhandle to urban and industrial in the Houston-Galveston area. These varied sources provided an opportunity to investigate the role of aerosol sources and chemistry in the potential activation of particles to form cloud droplets. Measurements were made of CCN concentrations, aerosol chemical composition in the size range relevant for particle activation in warm clouds, and aerosol size distributions. Variability in aerosol composition was parameterized by the mass fraction of Hydrocarbon-like Organic Aerosol (HOA for particle diameters less than 200 nm (vacuum aerodynamic. The HOA mass fraction in this size range was lowest for marine aerosol and highest for aerosol sampled close to anthropogenic sources. Combining all data from the experiment reveals that composition (defined by HOA mass fraction explains 40% of the variance in the critical diameter for particle activation at the instrumental supersaturation (S of 0.44%. Correlations between HOA mass fraction and aerosol mean diameter show that these two parameters are essentially independent of one another for this data set. We conclude that, based on the variability of the HOA mass fraction observed during TexAQS-GoMACCS, variability in particle composition played a significant role in determining the fraction of particles that could activate to form cloud droplets. Using a simple model based on Köhler theory and the assumption that HOA is insoluble, we estimate the

  20. Comprehensive Measurement of Atmospheric Aerosols with a Wide Range Aerosol Spectrometer

    International Nuclear Information System (INIS)

    Keck, L; Pesch, M; Grimm, H

    2011-01-01

    A wide range aerosol spectrometer (WRAS) was used for comprehensive long term measurements of aerosol size distributions. The system combines the results of an optical aerosol spectrometer with the results of a Scanning Mobility Particle Sizer (SMPS) to record essentially the full size range (5 nm - 32 μm) of atmospheric particles in 72 channels. Measurements were carried out over one year (2009) at the Global Atmospheric Watch (GAW)-Station Hohenpeissenberg, Bavaria. Total particle number concentrations obtained from the aerosol size distributions were compared to the total number concentrations measured by a Condensation Particle Counter (CPC). The comparison showed an excellent agreement of the data. The high time resolution of 5 minutes allows the combination of the measured size distributions with meteorological data and correlations to gaseous pollutants (CO, NOx and SO2). A good correlation of particle number and CO concentrations was found for long distance transported small particles, which were probably mainly soot particles. Correlations to NOx were observed for aerosols from local sources such as traffic emissions. The formation of secondary aerosols from gaseous precursors was also observed. Episodes of relatively high concentration of particles in the range of 2-3 μm were probably caused by pollen.

  1. Variations of aerosol size distribution, chemical composition and optical properties from roadside to ambient environment: A case study in Hong Kong, China

    Science.gov (United States)

    Zhang, Qian; Ning, Zhi; Shen, Zhenxing; Li, Guoliang; Zhang, Junke; Lei, Yali; Xu, Hongmei; Sun, Jian; Zhang, Leiming; Westerdahl, Dane; Gali, Nirmal Kumar; Gong, Xuesong

    2017-10-01

    This study investigated the ;roadside-to-ambient; evolution of particle physicochemical and optical properties in typical urban atmospheres of Hong Kong through collection of chemically-resolved PM2.5 data and PM2.5 size distribution at a roadside and an ambient site. Roadside particle size distribution showed typical peaks in the nuclei mode (30-40 nm) while ambient measurements peaked in the Aitken mode (50-70 nm), revealing possible condensation and coagulation growth of freshly emitted particles during aging processes. Much higher levels of anthropogenic chemical components, i.e. nitrate, sulfate, ammonium, organic carbon (OC) and elemental carbon (EC), but lower levels of OC/EC and secondary inorganic aerosols (SIA)/EC ratios appeared in roadside than ambient particles. The high OC/EC and SIA/EC ratios in ambient particles implied high contributions from secondary aerosols. Black carbon (BC), a strong light absorbing material, showed large variations in optical properties when mixed with other inorganic and organic components. Particle-bound polycyclic aromatic hydrocarbons (p-PAHs), an indicator of brown carbon (BrC), showed significant UV-absorbing ability. The average BC and p-PAHs concentrations were 3.8 and 87.6 ng m-3, respectively, at the roadside, but were only 1.5 and 18.1 ng m-3 at the ambient site, suggesting BC and p-PAHs concentrations heavily driven by traffic emissions. In contrast, PM2.5 UV light absorption coefficients (babs-BrC,370nm) at the ambient site (4.2 Mm-1) and at the roadside site (4.1 Mm-1) were similar, emphasizing that particle aging processes enhanced UV light-absorbing properties, a conclusion that was also supported by the finding that the Absorption Ångström coefficient (AAC) value at UV wavelengths (AAC_UV band) at the ambient site were ∼1.7 times higher than that at the roadside. Both aqueous reaction and photochemically produced secondary organic aerosol (SOA) for ambient aerosols contributed to the peak values of babs

  2. Aerosol particle size distribution in building and caves: impact to the radon-related dose evaluation

    International Nuclear Information System (INIS)

    Berka, Z.; Thinova, L.; Brandejsova, E.; Zdimal, V.; Fronka, A.; Milka, D.

    2004-01-01

    The results of evaluation of the aerosol particle size spectra observed in the Bozkov cave are presented and compared with the spectra observed in residential areas. The radon-to-dose conversion factor is discussed, as is the correction factor referred to as the cave factor. (P.A.)

  3. Size-selective performance evaluation of candidate aerosol inlets using polydisperse aerosols

    Data.gov (United States)

    U.S. Environmental Protection Agency — Presented are detailed techniques for the generation, collection, and analysis of polydisperse calibration aerosols for wind tunnel evaluation of size-selective...

  4. How the Assumed Size Distribution of Dust Minerals Affects the Predicted Ice Forming Nuclei

    Science.gov (United States)

    Perlwitz, Jan P.; Fridlind, Ann M.; Garcia-Pando, Carlos Perez; Miller, Ron L.; Knopf, Daniel A.

    2015-01-01

    The formation of ice in clouds depends on the availability of ice forming nuclei (IFN). Dust aerosol particles are considered the most important source of IFN at a global scale. Recent laboratory studies have demonstrated that the mineral feldspar provides the most efficient dust IFN for immersion freezing and together with kaolinite for deposition ice nucleation, and that the phyllosilicates illite and montmorillonite (a member of the smectite group) are of secondary importance.A few studies have applied global models that simulate mineral specific dust to predict the number and geographical distribution of IFN. These studies have been based on the simple assumption that the mineral composition of soil as provided in data sets from the literature translates directly into the mineral composition of the dust aerosols. However, these tables are based on measurements of wet-sieved soil where dust aggregates are destroyed to a large degree. In consequence, the size distribution of dust is shifted to smaller sizes, and phyllosilicates like illite, kaolinite, and smectite are only found in the size range 2 m. In contrast, in measurements of the mineral composition of dust aerosols, the largest mass fraction of these phyllosilicates is found in the size range 2 m as part of dust aggregates. Conversely, the mass fraction of feldspar is smaller in this size range, varying with the geographical location. This may have a significant effect on the predicted IFN number and its geographical distribution.An improved mineral specific dust aerosol module has been recently implemented in the NASA GISS Earth System ModelE2. The dust module takes into consideration the disaggregated state of wet-sieved soil, on which the tables of soil mineral fractions are based. To simulate the atmospheric cycle of the minerals, the mass size distribution of each mineral in aggregates that are emitted from undispersed parent soil is reconstructed. In the current study, we test the null

  5. Characterization of free amino acids, bacteria and fungi in size-segregated atmospheric aerosols in boreal forest: seasonal patterns, abundances and size distributions

    Science.gov (United States)

    Helin, Aku; Sietiö, Outi-Maaria; Heinonsalo, Jussi; Bäck, Jaana; Riekkola, Marja-Liisa; Parshintsev, Jevgeni

    2017-11-01

    Primary biological aerosol particles (PBAPs) are ubiquitous in the atmosphere and constitute ˜ 30 % of atmospheric aerosol particle mass in sizes > 1 µm. PBAP components, such as bacteria, fungi and pollen, may affect the climate by acting as cloud-active particles, thus having an effect on cloud and precipitation formation processes. In this study, size-segregated aerosol samples ( 10 µm) were collected in boreal forest (Hyytiälä, Finland) during a 9-month period covering all seasons and analysed for free amino acids (FAAs), DNA concentration and microorganism (bacteria, Pseudomonas and fungi). Measurements were performed using tandem mass spectrometry, spectrophotometry and qPCR, respectively. Meteorological parameters and statistical analysis were used to study their atmospheric implication for results. Distinct annual patterns of PBAP components were observed, late spring and autumn being seasons of dominant occurrence. Elevated abundances of FAAs and bacteria were observed during the local pollen season, whereas fungi were observed at the highest level during autumn. Meteorological parameters such as air and soil temperature, radiation and rainfall were observed to possess a close relationship with PBAP abundances on an annual scale.

  6. Fog and Cloud Induced Aerosol Modification Observed by AERONET

    Science.gov (United States)

    Eck, T. F.; Holben, B. N.; Reid, J. S.; Giles, D. M.; Rivas, M. A.; Singh, R. P.; Tripathi, S. N.; Bruegge, C. J.; Platnick, S. E.; Arnold, G. T.; hide

    2011-01-01

    Large fine mode (sub-micron radius) dominated aerosols in size distributions retrieved from AERONET have been observed after fog or low-altitude cloud dissipation events. These column-integrated size distributions have been obtained at several sites in many regions of the world, typically after evaporation of low altitude cloud such as stratocumulus or fog. Retrievals with cloud processed aerosol are sometimes bimodal in the accumulation mode with the larger size mode often approx.0.4 - 0.5 microns radius (volume distribution); the smaller mode typically approx.0.12 to aprrox.0.20 microns may be interstitial aerosol that were not modified by incorporation in droplets and/or aerosol that are less hygroscopic in nature. Bimodal accumulation mode size distributions have often been observed from in situ measurements of aerosols that have interacted with clouds, and AERONET size distribution retrievals made after dissipation of cloud or fog are in good agreement with particle sizes measured by in situ techniques for cloud-processed aerosols. Aerosols of this type and large size range (in lower concentrations) may also be formed by cloud processing in partly cloudy conditions and may contribute to the shoulder of larger size particles in the accumulation mode retrievals, especially in regions where sulfate and other soluble aerosol are a significant component of the total aerosol composition. Observed trends of increasing aerosol optical depth (AOD) as fine mode radius increased suggests higher AOD in the near cloud environment and therefore greater aerosol direct radiative forcing than typically obtained from remote sensing, due to bias towards sampling at low cloud fraction.

  7. Particle size distribution of selected electronic nicotine delivery system products.

    Science.gov (United States)

    Oldham, Michael J; Zhang, Jingjie; Rusyniak, Mark J; Kane, David B; Gardner, William P

    2018-03-01

    Dosimetry models can be used to predict the dose of inhaled material, but they require several parameters including particle size distribution. The reported particle size distributions for aerosols from electronic nicotine delivery system (ENDS) products vary widely and don't always identify a specific product. A low-flow cascade impactor was used to determine the particle size distribution [mass median aerodynamic diameter (MMAD); geometric standard deviation (GSD)] from 20 different cartridge based ENDS products. To assess losses and vapor phase amount, collection efficiency of the system was measured by comparing the collected mass in the impactor to the difference in ENDS product mass. The levels of nicotine, glycerin, propylene glycol, water, and menthol in the formulations of each product were also measured. Regardless of the ENDS product formulation, the MMAD of all tested products was similar and ranged from 0.9 to 1.2 μm with a GSD ranging from 1.7 to 2.2. There was no consistent pattern of change in the MMAD and GSD as a function of number of puffs (cartridge life). The collection efficiency indicated that 9%-26% of the generated mass was deposited in the collection system or was in the vapor phase. The particle size distribution data are suitable for use in aerosol dosimetry programs. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Long-term observations of cloud condensation nuclei in the Amazon rain forest – Part 1: Aerosol size distribution, hygroscopicity, and new model parametrizations for CCN prediction

    Directory of Open Access Journals (Sweden)

    M. L. Pöhlker

    2016-12-01

    Full Text Available Size-resolved long-term measurements of atmospheric aerosol and cloud condensation nuclei (CCN concentrations and hygroscopicity were conducted at the remote Amazon Tall Tower Observatory (ATTO in the central Amazon Basin over a 1-year period and full seasonal cycle (March 2014–February 2015. The measurements provide a climatology of CCN properties characteristic of a remote central Amazonian rain forest site.The CCN measurements were continuously cycled through 10 levels of supersaturation (S  =  0.11 to 1.10 % and span the aerosol particle size range from 20 to 245 nm. The mean critical diameters of CCN activation range from 43 nm at S  =  1.10 % to 172 nm at S  =  0.11 %. The particle hygroscopicity exhibits a pronounced size dependence with lower values for the Aitken mode (κAit  =  0.14 ± 0.03, higher values for the accumulation mode (κAcc  =  0.22 ± 0.05, and an overall mean value of κmean  =  0.17 ± 0.06, consistent with high fractions of organic aerosol.The hygroscopicity parameter, κ, exhibits remarkably little temporal variability: no pronounced diurnal cycles, only weak seasonal trends, and few short-term variations during long-range transport events. In contrast, the CCN number concentrations exhibit a pronounced seasonal cycle, tracking the pollution-related seasonality in total aerosol concentration. We find that the variability in the CCN concentrations in the central Amazon is mostly driven by aerosol particle number concentration and size distribution, while variations in aerosol hygroscopicity and chemical composition matter only during a few episodes.For modeling purposes, we compare different approaches of predicting CCN number concentration and present a novel parametrization, which allows accurate CCN predictions based on a small set of input data.

  9. Annual cycle of size-resolved organic aerosol characterization in an urbanized desert environment

    Science.gov (United States)

    Cahill, Thomas M.

    2013-06-01

    Studies of size-resolved organic speciation of aerosols are still relatively rare and are generally only conducted over short durations. However, size-resolved organic data can both suggest possible sources of the aerosols and identify the human exposure to the chemicals since different aerosol sizes have different lung capture efficiencies. The objective of this study was to conduct size-resolved organic aerosol speciation for a calendar year in Phoenix, Arizona to determine the seasonal variations in both chemical concentrations and size profiles. The results showed large seasonal differences in combustion pollutants where the highest concentrations were observed in winter. Summertime aerosols have a greater proportion of biological compounds (e.g. sugars and fatty acids) and the biological compounds represent the largest fraction of the organic compounds detected. These results suggest that standard organic carbon (OC) measurements might be heavily influenced by primary biological compounds particularly if the samples are PM10 and TSP samples. Several large dust storms did not significantly alter the organic aerosol profile since Phoenix resides in a dusty desert environment, so the soil and plant tracer of trehalose was almost always present. The aerosol size profiles showed that PAHs were generally most abundant in the smallest aerosol size fractions, which are most likely to be captured by the lung, while the biological compounds were almost exclusively found in the coarse size fraction.

  10. Variations in Tropospheric Submicron Particle Size Distributions Across the European Continent 2008–2009

    Czech Academy of Sciences Publication Activity Database

    Beddows, D.C.S.; Dall’Osto, M.; Harrison, R. M.; Kulmala, M.; Asmi, A.; Wiedensohler, A.; Laj, P.; Fjaeraa, A.M.; Sellegri, K.; Birmili, W.; Bukowiecki, N.; Weingartner, E.; Baltensperger, U.; Ždímal, Vladimír; Zíková, Naděžda; Putaud, J.-P.; Marinoni, A.; Tunved, P.; Hansson, H.-C.; Feibig, M.; Kivekäs, N.; Swietlicki, E.; Lihavainen, H.; Asmi, E.; Ulevicius, V.; Aalto, P.P.; Mihalopoulos, N.; Kalivitis, N.; Kalapov, I.; Kiss, G.; de Leeuw, G.; Henzing, B.; O'Dowd, C.; Jennings, S.G.; Flentje, H.; Meinhardt, F.; Ries, L.; Denier van der Gon19, H.A.C.; Visschedijk, A.J.H.; Swietlicki, E.

    2014-01-01

    Roč. 14, č. 8 (2014), s. 4327-4348 ISSN 1680-7316 EU Projects: European Commission(XE) 36833 - EUCAARI; European Commission(XE) 26140 - EUSAAR Institutional support: RVO:67985858 Keywords : particle size distribution * clusters * aerosol size distribution Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.053, year: 2014

  11. Evaluation of Decontamination Factor of Aerosol in Pool Scrubber according to Bubble Shape and Size

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Hyun Joung; Ha, Kwang Soon; Jang, Dong Soon [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The scrubbing pool could play an important role in the wet type FCVS because a large amount of aerosol is captured in the water pool. The pool scrubbing phenomena have been modelled and embedded in several computer codes, such as SPARC (Suppression Pool Aerosol Removal Code), BUSCA (BUbble Scrubbing Algorithm) and SUPRA (Suppression Pool Retention Analysis). These codes aim at simulating the pool scrubbing process and estimating the decontamination factors (DFs) of the radioactive aerosol and iodine gas in the water pool, which is defined as the ratio of initial mass of the specific radioactive material to final massy after passing through the water pool. The pool scrubbing models were reviewed and an aerosol scrubbing code has been prepared to calculate decontamination factor through the pool. The developed code has been verified using the experimental results and parametric studies the decontamination factor according to bubble shape and size. To evaluate the decontamination factor more accurate whole pool scrubber phenomena, the code was improved to consider the variety shape and size of bubbles. The decontamination factor were largely evaluated in ellipsoid bubble rather than in sphere bubble. The pool scrubbing models will be enhanced to apply more various model such as aerosol condensation of hygroscopic. And, it is need to experiment to measure to bubble shape and size distribution in pool to improve bubble model.

  12. Aerosol formation from high-velocity uranium drops: Comparison of number and mass distributions. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rader, D.J.; Benson, D.A.

    1995-05-01

    This report presents the results of an experimental study of the aerosol produced by the combustion of high-velocity molten-uranium droplets produced by the simultaneous heating and electromagnetic launch of uranium wires. These tests are intended to simulate the reduction of high-velocity fragments into aerosol in high-explosive detonations or reactor accidents involving nuclear materials. As reported earlier, the resulting aerosol consists mainly of web-like chain agglomerates. A condensation nucleus counter was used to investigate the decay of the total particle concentration due to coagulation and losses. Number size distributions based on mobility equivalent diameter obtained soon after launch with a Differential Mobility Particle Sizer showed lognormal distributions with an initial count median diameter (CMD) of 0.3 {mu}m and a geometric standard deviation, {sigma}{sub g} of about 2; the CMD was found to increase and {sigma}{sub g} decrease with time due to coagulation. Mass size distributions based on aerodynamic diameter were obtained for the first time with a Microorifice Uniform Deposit Impactor, which showed lognormal distributions with mass median aerodynamic diameters of about 0.5 {mu}m and an aerodynamic geometric standard deviation of about 2. Approximate methods for converting between number and mass distributions and between mobility and aerodynamic equivalent diameters are presented.

  13. Aerosol formation from high-velocity uranium drops: Comparison of number and mass distributions. Final report

    International Nuclear Information System (INIS)

    Rader, D.J.; Benson, D.A.

    1995-05-01

    This report presents the results of an experimental study of the aerosol produced by the combustion of high-velocity molten-uranium droplets produced by the simultaneous heating and electromagnetic launch of uranium wires. These tests are intended to simulate the reduction of high-velocity fragments into aerosol in high-explosive detonations or reactor accidents involving nuclear materials. As reported earlier, the resulting aerosol consists mainly of web-like chain agglomerates. A condensation nucleus counter was used to investigate the decay of the total particle concentration due to coagulation and losses. Number size distributions based on mobility equivalent diameter obtained soon after launch with a Differential Mobility Particle Sizer showed lognormal distributions with an initial count median diameter (CMD) of 0.3 μm and a geometric standard deviation, σ g of about 2; the CMD was found to increase and σ g decrease with time due to coagulation. Mass size distributions based on aerodynamic diameter were obtained for the first time with a Microorifice Uniform Deposit Impactor, which showed lognormal distributions with mass median aerodynamic diameters of about 0.5 μm and an aerodynamic geometric standard deviation of about 2. Approximate methods for converting between number and mass distributions and between mobility and aerodynamic equivalent diameters are presented

  14. Simulation of size-dependent aerosol deposition in a realistic model of the upper human airways

    NARCIS (Netherlands)

    Frederix, E.M.A.; Kuczaj, Arkadiusz K.; Nordlund, Markus; Belka, M.; Lizal, F.; Elcner, J.; Jicha, M.; Geurts, Bernardus J.

    An Eulerian internally mixed aerosol model is used for predictions of deposition inside a realistic cast of the human upper airways. The model, formulated in the multi-species and compressible framework, is solved using the sectional discretization of the droplet size distribution function to

  15. Explicit Cloud Nucleation from Arbitrary Mixtures of Aerosol Types and Sizes Using an Ultra-Efficient In-Line Aerosol Bin Model in High-Resolution Simulations of Hurricanes

    Science.gov (United States)

    Walko, R. L.; Ashby, T.; Cotton, W. R.

    2017-12-01

    The fundamental role of atmospheric aerosols in the process of cloud droplet nucleation is well known, and there is ample evidence that the concentration, size, and chemistry of aerosols can strongly influence microphysical, thermodynamic, and ultimately dynamic properties and evolution of clouds and convective systems. With the increasing availability of observation- and model-based environmental representations of different types of anthropogenic and natural aerosols, there is increasing need for models to be able to represent which aerosols nucleate and which do not in supersaturated conditions. However, this is a very complex process that involves competition for water vapor between multiple aerosol species (chemistries) and different aerosol sizes within each species. Attempts have been made to parameterize the nucleation properties of mixtures of different aerosol species, but it is very difficult or impossible to represent all possible mixtures that may occur in practice. As part of a modeling study of the impact of anthropogenic and natural aerosols on hurricanes, we developed an ultra-efficient aerosol bin model to represent nucleation in a high-resolution atmospheric model that explicitly represents cloud- and subcloud-scale vertical motion. The bin model is activated at any time and location in a simulation where supersaturation occurs and is potentially capable of activating new cloud droplets. The bins are populated from the aerosol species that are present at the given time and location and by multiple sizes from each aerosol species according to a characteristic size distribution, and the chemistry of each species is represented by its absorption or adsorption characteristics. The bin model is integrated in time increments that are smaller than that of the atmospheric model in order to temporally resolve the peak supersaturation, which determines the total nucleated number. Even though on the order of 100 bins are typically utilized, this leads only

  16. Synthesis of nanoparticles in a flame aerosol reactor with independent and strict control of their size, crystal phase and morphology

    International Nuclear Information System (INIS)

    Jiang Jingkun; Chen, D-R; Biswas, Pratim

    2007-01-01

    A flame aerosol reactor (FLAR) was developed to synthesize nanoparticles with desired properties (crystal phase and size) that could be independently controlled. The methodology was demonstrated for TiO 2 nanoparticles, and this is the first time that large sets of samples with the same size but different crystal phases (six different ratios of anatase to rutile in this work) were synthesized. The degree of TiO 2 nanoparticle agglomeration was determined by comparing the primary particle size distribution measured by scanning electron microscopy (SEM) to the mobility-based particle size distribution measured by online scanning mobility particle spectrometry (SMPS). By controlling the flame aerosol reactor conditions, both spherical unagglomerated particles and highly agglomerated particles were produced. To produce monodisperse nanoparticles, a high throughput multi-stage differential mobility analyser (MDMA) was used in series with the flame aerosol reactor. Nearly monodisperse nanoparticles (geometric standard deviation less than 1.05) could be collected in sufficient mass quantities (of the order of 10 mg) in reasonable time (1 h) that could be used in other studies such as determination of functionality or biological effects as a function of size

  17. Synthesis of nanoparticles in a flame aerosol reactor with independent and strict control of their size, crystal phase and morphology

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Jingkun; Chen, D-R; Biswas, Pratim [Aerosol and Air Quality Research Laboratory, Department of Energy, Environmental and Chemical Engineering, Washington University in St Louis, Campus Box 1180, St Louis, MO 63130 (United States)

    2007-07-18

    A flame aerosol reactor (FLAR) was developed to synthesize nanoparticles with desired properties (crystal phase and size) that could be independently controlled. The methodology was demonstrated for TiO{sub 2} nanoparticles, and this is the first time that large sets of samples with the same size but different crystal phases (six different ratios of anatase to rutile in this work) were synthesized. The degree of TiO{sub 2} nanoparticle agglomeration was determined by comparing the primary particle size distribution measured by scanning electron microscopy (SEM) to the mobility-based particle size distribution measured by online scanning mobility particle spectrometry (SMPS). By controlling the flame aerosol reactor conditions, both spherical unagglomerated particles and highly agglomerated particles were produced. To produce monodisperse nanoparticles, a high throughput multi-stage differential mobility analyser (MDMA) was used in series with the flame aerosol reactor. Nearly monodisperse nanoparticles (geometric standard deviation less than 1.05) could be collected in sufficient mass quantities (of the order of 10 mg) in reasonable time (1 h) that could be used in other studies such as determination of functionality or biological effects as a function of size.

  18. Air-Sea exchange of biogenic volatile organic compounds and the impact on aerosol particle size distributions

    Science.gov (United States)

    Kim, Michelle J.; Novak, Gordon A.; Zoerb, Matthew C.; Yang, Mingxi; Blomquist, Byron W.; Huebert, Barry J.; Cappa, Christopher D.; Bertram, Timothy H.

    2017-04-01

    We report simultaneous, underway eddy covariance measurements of the vertical flux of isoprene, total monoterpenes, and dimethyl sulfide (DMS) over the Northern Atlantic Ocean during fall. Mean isoprene and monoterpene sea-to-air vertical fluxes were significantly lower than mean DMS fluxes. While rare, intense monoterpene sea-to-air fluxes were observed, coincident with elevated monoterpene mixing ratios. A statistically significant correlation between isoprene vertical flux and short wave radiation was not observed, suggesting that photochemical processes in the surface microlayer did not enhance isoprene emissions in this study region. Calculations of secondary organic aerosol production rates (PSOA) for mean isoprene and monoterpene emission rates sampled here indicate that PSOA is on average <0.1 μg m-3 d-1. Despite modest PSOA, low particle number concentrations permit a sizable role for condensational growth of monoterpene oxidation products in altering particle size distributions and the concentration of cloud condensation nuclei during episodic monoterpene emission events from the ocean.

  19. In situ acidity and pH of size-fractionated aerosols during a recent smoke-haze episode in Southeast Asia.

    Science.gov (United States)

    Behera, Sailesh N; Cheng, Jinping; Balasubramanian, Rajasekhar

    2015-10-01

    The characterization of aerosol acidity has received increased attention in recent years due to its influence on atmospheric visibility, climate change and human health. Distribution of water soluble inorganic (WSI) ions in 12 different size fractions of aerosols was investigated under two different atmospheric conditions (smoke-haze and non-haze periods) in 2012 using the Micro-Orifice Uniform Deposit Impactor (MOUDI) and nano-MOUDI for the first time in Singapore. To estimate the in situ acidity ([H(+)]Ins) and in situ aerosol pH (pHIS), the Aerosol Inorganic Model version-IV under deliquescent mode of airborne particles was used at prevailing ambient temperature and relative humidity. The study revealed an increase in the levels of airborne particulate matter (PM) mass and concentrations of WSI ions for all size fractions during the smoke-haze period, which was caused by the trans-boundary transport of biomass burning-impacted air masses from Indonesia. A bimodal distribution was observed for concentrations of SO4(2-), NO3(-), Cl(-), K(+) and Na(+), whereas concentrations of NH4(+), Ca(2+) and Mg(2+) showed a single mode distribution. The concentration of WSI ions in PM1.8 during the smoke-haze period increased by 3.8 (for SO4(2-)) to 10.5 (for K(+)) times more than those observed during the non-haze period. The pHIS were observed to be lower during the smoke-haze period than that during the non-haze period for all size fractions of PM, indicating that atmospheric aerosols were more acidic due to the influence of biomass burning emissions. The particles in the accumulation mode were more acidic than those in the coarse mode.

  20. Indoor radon progeny aerosol size measurements in urban, suburban, and rural regions

    International Nuclear Information System (INIS)

    Tu, K.W.; Knutson, E.O.; George, A.C.

    1991-01-01

    By using direct and indirect methods, the authors conducted size distribution measurements of radon progeny particles in a variety of indoor environments in urban, suburban, and rural areas. The radon progeny particle size distribution owing to indoor activities has two definable source categories: (1) gas combustion from stoves and kerosene heaters - particles were found to be smaller than 0.1 μm in diameter, mostly in the range 0.02-0.08 μm; and (2) cigarette smoking and food frying - particles were found to be larger, in the size range 0.1-0.2 μm. The radon progeny particle size distribution, without significant indoor activities, such as cooking, was found to be larger in rural areas than in urban or suburban areas. The modal diameters of the size spectra in the rural areas were two to three times larger than those in urban or suburban areas, around 0.3-0.4 bs. 0.1-0.2 μm. Results obtained by applying the attachment theory to the measured number-weighted size spectra from an electrical aerosol size analyzer support this finding. These results, if confirmed by more extensive studies, will be useful for the assessment of the risk from the inhalation of radon progeny in various indoor environments

  1. Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions

    Directory of Open Access Journals (Sweden)

    A. Wiedensohler

    2012-03-01

    Full Text Available Mobility particle size spectrometers often referred to as DMPS (Differential Mobility Particle Sizers or SMPS (Scanning Mobility Particle Sizers have found a wide range of applications in atmospheric aerosol research. However, comparability of measurements conducted world-wide is hampered by lack of generally accepted technical standards and guidelines with respect to the instrumental set-up, measurement mode, data evaluation as well as quality control. Technical standards were developed for a minimum requirement of mobility size spectrometry to perform long-term atmospheric aerosol measurements. Technical recommendations include continuous monitoring of flow rates, temperature, pressure, and relative humidity for the sheath and sample air in the differential mobility analyzer.

    We compared commercial and custom-made inversion routines to calculate the particle number size distributions from the measured electrical mobility distribution. All inversion routines are comparable within few per cent uncertainty for a given set of raw data.

    Furthermore, this work summarizes the results from several instrument intercomparison workshops conducted within the European infrastructure project EUSAAR (European Supersites for Atmospheric Aerosol Research and ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network to determine present uncertainties especially of custom-built mobility particle size spectrometers. Under controlled laboratory conditions, the particle number size distributions from 20 to 200 nm determined by mobility particle size spectrometers of different design are within an uncertainty range of around ±10% after correcting internal particle losses, while below and above this size range the discrepancies increased. For particles larger than 200 nm, the uncertainty range increased to 30%, which could not be explained. The network reference mobility spectrometers with identical design agreed within ±4% in the

  2. The ion–aerosol interactions from the ion mobility and aerosol ...

    Indian Academy of Sciences (India)

    2005-02-18

    aerosol interactions from the ion mobility and aerosol particle size distribution measurements on January 17 and February 18, 2005 at Maitri, Antarctica – A case study. Devendraa Siingh Vimlesh Pant A K Kamra. Volume 120 Issue 4 August ...

  3. Attachment of radon progeny to cigarette-smoke aerosols

    International Nuclear Information System (INIS)

    Biermann, A.H.; Sawyer, S.R.

    1995-05-01

    The daughter products of radon gas are now recognized as a significant contributor to radiation exposure to the general public. It is also suspected that a synergistic effect exists with the combination cigarette smoking and radon exposure. We have conducted an experimental investigation to determine the physical nature of radon progeny interactions with cigarette smoke aerosols. The size distributions of the aerosols are characterized and attachment rates of radon progeny to cigarette-smoke aerosols are determined. Both the mainstream and sidestream portions of the smoke aerosol are investigated. Unattached radon progeny are very mobile and, in the presence of aerosols, readily attach to the particle surfaces. In this study, an aerosol chamber is used to contain the radon gas, progeny and aerosol mixture while allowing the attachment process to occur. The rate of attachment is dependent on the size distribution, or diffusion coefficient, of the radon progeny as well as the aerosol size distribution. The size distribution of the radon daughter products is monitored using a graded-screen diffusion battery. The diffusion battery also enables separation of the unattached radon progeny from those attached to the aerosol particles. Analysis of the radon decay products is accomplished using alpha spectrometry. The aerosols of interest are size fractionated with the aid of a differential mobility analyzer and cascade impactor. The measured attachment rates of progeny to the cigarette smoke are compared to those found in similar experiments using an ambient aerosol. The lowest attachment coefficients observed, ∼10 -6 cm 3 /s, occurred for the ambient aerosol. The sidestream and mainstream smoke aerosols exhibited higher attachment rates in that order. The results compared favorably with theories describing the coagulation process of aerosols

  4. Measurements of Aerosol Characteristics in Skocjan Caves

    International Nuclear Information System (INIS)

    Jovanovic, P.

    2013-01-01

    Measurements of radon concentration and radon progeny concentration (attached and unattached) have been performed in Skocjan caves. In the same time also aerosol concentration (PM 10 ), aerosol size distribution with ten stage Hauke impactor and Scanning Mobility Particle Sizer - SMPS have been performed. The idea was to find impact of outer air and visitors to the aerosol characteristics of cave air. Measurements with impactor have been implemented in summer and winter period, with SMPS only in summer period. Radon concentrations ranged in winter period in region from 500 to 1000 Bq/m 3 , equilibrium factor was about 55 %. In summer period radon concentration increased up to 10 kBq/m 3 , equilibrium factor was about 45 %, and unattached fraction went up to 20 %. Measurements of aerosol size distribution show lower aerosol sizes in winter season (around 1 μm) and bigger aerosol sizes in summer season (around 3 - 6 μm). We could not find good correlation between unattached fraction and aerosol size distribution. Also we could not find clear impact of visitors to the air characteristics in cave. Probably our measuring location was too close to the entrance and the impact of outer air was too high. We will repeat measurements deeper in cave to find better results.(author)

  5. Physicochemical characterization of Capstone depleted uranium aerosols I: uranium concentration in aerosols as a function of time and particle size.

    Science.gov (United States)

    Parkhurst, Mary Ann; Cheng, Yung Sung; Kenoyer, Judson L; Traub, Richard J

    2009-03-01

    During the Capstone Depleted Uranium (DU) Aerosol Study, aerosols containing DU were produced inside unventilated armored vehicles (i.e., Abrams tanks and Bradley Fighting Vehicles) by perforation with large-caliber DU penetrators. These aerosols were collected and characterized, and the data were subsequently used to assess human health risks to personnel exposed to DU aerosols. The DU content of each aerosol sample was first quantified by radioanalytical methods, and selected samples, primarily those from the cyclone separator grit chambers, were analyzed radiochemically. Deposition occurred inside the vehicles as particles settled on interior surfaces. Settling rates of uranium from the aerosols were evaluated using filter cassette samples that collected aerosol as total mass over eight sequential time intervals. A moving filter was used to collect aerosol samples over time, particularly within the first minute after a shot. The results demonstrate that the peak uranium concentration in the aerosol occurred in the first 10 s after perforation, and the concentration decreased in the Abrams tank shots to about 50% within 1 min and to less than 2% after 30 min. The initial and maximum uranium concentrations were lower in the Bradley vehicle than those observed in the Abrams tank, and the concentration levels decreased more slowly. Uranium mass concentrations in the aerosols as a function of particle size were evaluated using samples collected in a cyclone sampler, which collected aerosol continuously for 2 h after perforation. The percentages of uranium mass in the cyclone separator stages ranged from 38 to 72% for the Abrams tank with conventional armor. In most cases, it varied with particle size, typically with less uranium associated with the smaller particle sizes. Neither the Abrams tank with DU armor nor the Bradley vehicle results were specifically correlated with particle size and can best be represented by their average uranium mass concentrations of 65

  6. Interaction of radon progeny with atmospheric aerosols

    International Nuclear Information System (INIS)

    Morawska, Lidia

    1994-01-01

    The radiological health hazard due to the airborne radon progeny depends on three factors (i) radon concentration in the air, (ii) radon progeny concentration, and (iii) active particle size distribution. Conclusions as to the health hazard cannot be drawn without full understanding of the interaction mechanisms between radon progeny and atmospheric aerosols. The aim of this work was to study the interaction mechanisms between radon progeny, natural environmental aerosols and environmental tobacco smoke (ETS). The experiments were performed under controlled laboratory conditions of radon concentration (1.85 and 3.70 Bq m -3 ), relative humidity (35, 50, 75 and 95%) and ETS generation. The size distribution of radioactivity carrying aerosols was measured using a wire screen diffusion battery system and size distribution of all airborne aerosols using a differential mobility particle sizer. The paper presents and discusses the results of activity size distribution and radon progeny concentration measurements for different environmental conditions. 7 refs., 2 tabs

  7. Changes in concentration and size distribution of aerosols during ...

    Indian Academy of Sciences (India)

    It is proposed that the preferential growth and sedimentation of the coarse mode hygroscopic particles in the ... ing of aerosols by fog droplets during their sedi- mentation to the .... drawn through individual silicon conductive tubes of 0.5 cm ...

  8. Submicron aerosol distributions and CCN activity measured in and around the Korean Peninsula during KORUS-AQ

    Science.gov (United States)

    Park, M.; Kim, N.; Yum, S. S.; Thornhill, K. L., II; Anderson, B. E.; Kim, D. S.; Kim, H. J.; Jeon, H. E.; Park, Y. S.; Lee, S. B.

    2017-12-01

    KORUS-AQ is a field campaign aimed at investigating formation of ozone and aerosol and interactions between chemistry, transport and various sources in the Korean Peninsula which is the region affected both by long-range transport and local emission. Aerosol number concentration and size distribution, and CCN number concentration were measured on board the NASA DC-8 research aircraft and at a ground site at Olympic Park in Seoul, capital city of Korea during the KORUS-AQ campaign (May 2nd to June 10th, 2017). There were 20 flights during the KORUS-AQ campaign and total flight time was about 150 hours. CCN counter (CCNC) on the airborne platform was operated at the fixed internal supersaturation of 0.6% and CCNC at the ground site was operated at five different supersaturations (0.2%, 0.4%, 0.6%, 0.8%, and 1.0%). Aerosol hygroscopic parameter κ was also estimated from CCN number concentration and aerosol size distribution. Airborne measurements showed a large spatio-temporal variation of aerosol number concentration and CCN activity in and around the Korean peninsula, and the ground measurements also showed a large temporal variation. The campaign period can be classified into long-range transport dominant cases, local emission dominant cases due to stagnant air mass, and others. Aerosol number concentration in the Korean Peninsula measured in stagnant air mass period was higher than those in long-range transport period, but CCN number concentration showed an opposite tendency. Both aerosol and CCN number concentrations over the Yellow Sea in local emission period were slightly higher than those in long-range transport period. Since CCN activity is different depending on time and space, our focus is on understanding how CCN activity and aerosol hygroscopicity vary with the source of aerosol. Comprehensive analysis results will be shown at the conference.

  9. Simulating SAL formation and aerosol size distribution during SAMUM-I

    KAUST Repository

    Khan, Basit Ali; Stenchikov, Georgiy L.; Weinzierl,  Bernadett; Kalenderski, Stoitchko; Osipov, Sergey

    2015-01-01

    -Chem) to reproduce the meteorological environment and spatial and size distributions of dust. The experimental domain covers northwest Africa including the southern Sahara, Morocco and part of the Atlantic Ocean with 5 km horizontal grid spacing and 51 vertical

  10. Particle number size distributions in urban air before and after volatilisation

    Directory of Open Access Journals (Sweden)

    W. Birmili

    2010-05-01

    Full Text Available Aerosol particle number size distributions (size range 0.003–10 μm in the urban atmosphere of Augsburg (Germany were examined with respect to the governing anthropogenic sources and meteorological factors. The two-year average particle number concentration between November 2004 and November 2006 was 12 200 cm−3, i.e. similar to previous observations in other European cities. A seasonal analysis yielded twice the total particle number concentrations in winter as compared to summer as consequence of more frequent inversion situations and enhanced particulate emissions. The diurnal variations of particle number were shaped by a remarkable maximum in the morning during the peak traffic hours. After a mid-day decrease along with the onset of vertical mixing, an evening concentration maximum could frequently be observed, suggesting a re-stratification of the urban atmosphere. Overall, the mixed layer height turned out to be the most influential meteorological parameter on the particle size distribution. Its influence was even greater than that of the geographical origin of the prevailing synoptic-scale air mass.

    Size distributions below 0.8 μm were also measured downstream of a thermodenuder (temperature: 300 °C, allowing to retrieve the volume concentration of non-volatile compounds. The balance of particle number upstream and downstream of the thermodenuder suggests that practically all particles >12 nm contain a non-volatile core while additional nucleation of particles smaller than 6 nm could be observed after the thermodenuder as an interfering artifact of the method. The good correlation between the non-volatile volume concentration and an independent measurement of the aerosol absorption coefficient (R2=0.9 suggests a close correspondence of the refractory and light-absorbing particle fractions. Using the "summation method", an average diameter ratio of particles before and after volatilisation could

  11. The statistical distribution of aerosol properties in sourthern West Africa

    Science.gov (United States)

    Haslett, Sophie; Taylor, Jonathan; Flynn, Michael; Bower, Keith; Dorsey, James; Crawford, Ian; Brito, Joel; Denjean, Cyrielle; Bourrianne, Thierry; Burnet, Frederic; Batenburg, Anneke; Schulz, Christiane; Schneider, Johannes; Borrmann, Stephan; Sauer, Daniel; Duplissy, Jonathan; Lee, James; Vaughan, Adam; Coe, Hugh

    2017-04-01

    The population and economy in southern West Africa have been growing at an exceptional rate in recent years and this trend is expected to continue, with the population projected to more than double to 800 million by 2050. This will result in a dramatic increase in anthropogenic pollutants, already estimated to have tripled between 1950 and 2000 (Lamarque et al., 2010). It is known that aerosols can modify the radiative properties of clouds. As such, the entrainment of anthropogenic aerosol into the large banks of clouds forming during the onset of the West African Monsoon could have a substantial impact on the region's response to climate change. Such projections, however, are greatly limited by the scarcity of observations in this part of the world. As part of the Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) project, three research aircraft were deployed, each carrying equipment capable of measuring aerosol properties in-situ. Instrumentation included Aerosol Mass Spectrometers (AMS), Single Particle Soot Photometers (SP2), Condensation Particle Counters (CPC) and Scanning Mobility Particle Sizers (SMPS). Throughout the intensive aircraft campaign, 155 hours of scientific flights covered an area including large parts of Benin, Togo, Ghana and parts of Côte D'Ivoire. Approximately 70 hours were dedicated to the measurement of cloud-aerosol interactions, with many other flights producing data contributing towards this objective. Using datasets collected during this campaign period, it is possible to build a robust statistical understanding of aerosol properties in this region for the first time, including size distributions and optical and chemical properties. Here, we describe preliminary results from aerosol measurements on board the three aircraft. These have been used to describe aerosol properties throughout the region and time period encompassed by the DACCIWA aircraft campaign. Such statistics will be invaluable for improving future

  12. Mass size distribution of particle-bound water

    Science.gov (United States)

    Canepari, S.; Simonetti, G.; Perrino, C.

    2017-09-01

    The thermal-ramp Karl-Fisher method (tr-KF) for the determination of PM-bound water has been applied to size-segregated PM samples collected in areas subjected to different environmental conditions (protracted atmospheric stability, desert dust intrusion, urban atmosphere). This method, based on the use of a thermal ramp for the desorption of water from PM samples and the subsequent analysis by the coulometric KF technique, had been previously shown to differentiate water contributes retained with different strength and associated to different chemical components in the atmospheric aerosol. The application of the method to size-segregated samples has revealed that water showed a typical mass size distribution in each one of the three environmental situations that were taken into consideration. A very similar size distribution was shown by the chemical PM components that prevailed during each event: ammonium nitrate in the case of atmospheric stability, crustal species in the case of desert dust, road-dust components in the case of urban sites. The shape of the tr-KF curve varied according to the size of the collected particles. Considering the size ranges that better characterize the event (fine fraction for atmospheric stability, coarse fraction for dust intrusion, bi-modal distribution for urban dust), this shape is coherent with the typical tr-KF shape shown by water bound to the chemical species that predominate in the same PM size range (ammonium nitrate, crustal species, secondary/combustion species - road dust components).

  13. Particle size distribution properties in mixed-phase monsoon clouds from in situ measurements during CAIPEEX

    Science.gov (United States)

    Patade, Sachin; Prabha, T. V.; Axisa, D.; Gayatri, K.; Heymsfield, A.

    2015-10-01

    A comprehensive analysis of particle size distributions measured in situ with airborne instrumentation during the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) is presented. In situ airborne observations in the developing stage of continental convective clouds during premonsoon (PRE), transition, and monsoon (MON) period at temperatures from 25 to -22°C are used in the study. The PRE clouds have narrow drop size and particle size distributions compared to monsoon clouds and showed less development of size spectra with decrease in temperature. Overall, the PRE cases had much lower values of particle number concentrations and ice water content compared to MON cases, indicating large differences in the ice initiation and growth processes between these cloud regimes. This study provided compelling evidence that in addition to dynamics, aerosol and moisture are important for modulating ice microphysical processes in PRE and MON clouds through impacts on cloud drop size distribution. Significant differences are observed in the relationship of the slope and intercept parameters of the fitted particle size distributions (PSDs) with temperature in PRE and MON clouds. The intercept values are higher in MON clouds than PRE for exponential distribution which can be attributed to higher cloud particle number concentrations and ice water content in MON clouds. The PRE clouds tend to have larger values of dispersion of gamma size distributions than MON clouds, signifying narrower spectra. The relationships between PSDs parameters are presented and compared with previous observations.

  14. From nanoparticles to large aerosols: Ultrafast measurement methods for size and concentration

    International Nuclear Information System (INIS)

    Keck, Lothar; Spielvogel, Juergen; Grimm, Hans

    2009-01-01

    A major challenge in aerosol technology is the fast measurement of number size distributions with good accuracy and size resolution. The dedicated instruments are frequently based on particle charging and electric detection. Established fast systems, however, still feature a number of shortcomings. We have developed a new instrument that constitutes of a high flow Differential Mobility Analyser (high flow DMA) and a high sensitivity Faraday Cup Electrometer (FCE). The system enables variable flow rates of up to 150 lpm, and the scan time for size distribution can be shortened considerably due to the short residence time of the particles in the DMA. Three different electrodes can be employed in order to cover a large size range. First test results demonstrate that the scan time can be reduced to less than 1 s for small particles, and that the results from the fast scans feature no significant difference to the results from established slow method. The fields of application for the new instrument comprise the precise monitoring of fast processes with nanoparticles, including monitoring of engine exhaust in automotive research.

  15. From nanoparticles to large aerosols: Ultrafast measurement methods for size and concentration

    Science.gov (United States)

    Keck, Lothar; Spielvogel, Jürgen; Grimm, Hans

    2009-05-01

    A major challenge in aerosol technology is the fast measurement of number size distributions with good accuracy and size resolution. The dedicated instruments are frequently based on particle charging and electric detection. Established fast systems, however, still feature a number of shortcomings. We have developed a new instrument that constitutes of a high flow Differential Mobility Analyser (high flow DMA) and a high sensitivity Faraday Cup Electrometer (FCE). The system enables variable flow rates of up to 150 lpm, and the scan time for size distribution can be shortened considerably due to the short residence time of the particles in the DMA. Three different electrodes can be employed in order to cover a large size range. First test results demonstrate that the scan time can be reduced to less than 1 s for small particles, and that the results from the fast scans feature no significant difference to the results from established slow method. The fields of application for the new instrument comprise the precise monitoring of fast processes with nanoparticles, including monitoring of engine exhaust in automotive research.

  16. [Airborne Fungal Aerosol Concentration and Distribution Characteristics in Air- Conditioned Wards].

    Science.gov (United States)

    Zhang, Hua-ling; Feng, He-hua; Fang, Zi-liang; Wang, Ben-dong; Li, Dan

    2015-04-01

    The effects of airborne fungus on human health in the hospital environment are related to not only their genera and concentrations, but also their particle sizes and distribution characteristics. Moreover, the mechanisms of aerosols with different particle sizes on human health are different. Fungal samples were obtained in medicine wards of Chongqing using a six-stage sampler. The airborne fungal concentrations, genera and size distributions of all the sampling wards were investigated and identified in detail. Results showed that airborne fungal concentrations were not correlated to the diseases or personnel density, but were related to seasons, temperature, and relative humidity. The size distribution rule had roughly the same for testing wards in winter and summer. The size distributions were not related with diseases and seasons, the percentage of airborne fungal concentrations increased gradually from stage I to stage III, and then decreased dramatically from stage V to stage VI, in general, the size of airborne fungi was a normal distribution. There was no markedly difference for median diameter of airborne fungi which was less 3.19 μm in these wards. There were similar dominant genera in all wards. They were Aspergillus spp, Penicillium spp and Alternaria spp. Therefore, attention should be paid to improve the filtration efficiency of particle size of 1.1-4.7 μm for air conditioning system of wards. It also should be targeted to choose appropriate antibacterial methods and equipment for daily hygiene and air conditioning system operation management.

  17. Aerosol vertical distribution, new particle formation, and jet aircraft particle emissions in the free troposhere and tropopause region; Vertikalverteilung und Neubildungsprozesse des Aerosols und partikelfoermige Flugzeugemissionen in der freien Troposphaere und Tropopausenregion

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, F P

    2000-07-01

    A contribution to the understanding of natural and anthropogenously induced particle formation as well as aerosol physical transformation processes within the free troposphere (FT) is introduced. Documentation and interpretation of empirical data relevant with respect to possible climatologic impact of anthropogenous aerosol emissions into the atmosphere is presented. The first section describes new technique for high spatial resolution measurements of ultrafine aerosol particles by condensation nucleus counters (CNCs), a necessary prerequisite for the observation of natural particle formation and jet aircraft emissions. The second section illustrates vertical distribution and variability ranges of the aerosol in the FT and the tropopause region (TP). Typical microphysical states of the atmospheric aerosol within the Northern Hemisphere are documented by means of systematic measurements during more than 60 flight missions. Simple mathematical parameterizations of the aerosol vertical distribution and aerosol size distributions are developed. Important aerosol sources within the FT are localized and possible aerosol formation processes are discussed. The third section is focussed on jet-engine particle emissions within the FT and TP. A unique inflight experiment for detection of extremely high concentrations (>10{sup 6} cm{sup -3}) of extremely small (donw to <3 nm) aerosols inside the exhaust plumes of several jet aircraft is described. Particle emission indices and emission-controlling parameters are deduced. Most important topic is the impact of fuel sulfur content of kerosine on number, size and chemical composition of jet particle emissions. Generalized results are parameterized in form of lognormal aerosol particle size distributions. (orig.) [German] Ein Beitrag zum Verstaendnis natuerlicher und anthropogen induzierter Aerosolneubildung sowie physikalischer Aerosolumwandlung in der freien Troposphaere wird vorgestellt. Empirisch gewonnenes Datenmaterial wird

  18. Modification, calibration, and performance of the Ultra-High Sensitivity Aerosol Spectrometer for particle size distribution and volatility measurements during the Atmospheric Tomography Mission (ATom) airborne campaign

    Science.gov (United States)

    Kupc, Agnieszka; Williamson, Christina; Wagner, Nicholas L.; Richardson, Mathews; Brock, Charles A.

    2018-01-01

    Atmospheric aerosol is a key component of the chemistry and climate of the Earth's atmosphere. Accurate measurement of the concentration of atmospheric particles as a function of their size is fundamental to investigations of particle microphysics, optical characteristics, and chemical processes. We describe the modification, calibration, and performance of two commercially available, Ultra-High Sensitivity Aerosol Spectrometers (UHSASs) as used on the NASA DC-8 aircraft during the Atmospheric Tomography Mission (ATom). To avoid sample flow issues related to pressure variations during aircraft altitude changes, we installed a laminar flow meter on each instrument to measure sample flow directly at the inlet as well as flow controllers to maintain constant volumetric sheath flows. In addition, we added a compact thermodenuder operating at 300 °C to the inlet line of one of the instruments. With these modifications, the instruments are capable of making accurate (ranging from 7 % for Dp 0.13 µm), precise ( 1000 to 225 hPa, while simultaneously providing information on particle volatility.We assessed the effect of uncertainty in the refractive index (n) of ambient particles that are sized by the UHSAS assuming the refractive index of ammonium sulfate (n = 1.52). For calibration particles with n between 1.44 and 1.58, the UHSAS diameter varies by +4/-10 % relative to ammonium sulfate. This diameter uncertainty associated with the range of refractive indices (i.e., particle composition) translates to aerosol surface area and volume uncertainties of +8.4/-17.8 and +12.4/-27.5 %, respectively. In addition to sizing uncertainty, low counting statistics can lead to uncertainties of 1000 cm-3.Examples of thermodenuded and non-thermodenuded aerosol number and volume size distributions as well as propagated uncertainties are shown for several cases encountered during the ATom project. Uncertainties in particle number concentration were limited by counting statistics

  19. Method for measuring the size distribution of airborne rhinovirus

    International Nuclear Information System (INIS)

    Russell, M.L.; Goth-Goldstein, R.; Apte, M.G.; Fisk, W.J.

    2002-01-01

    About 50% of viral-induced respiratory illnesses are caused by the human rhinovirus (HRV). Measurements of the concentrations and sizes of bioaerosols are critical for research on building characteristics, aerosol transport, and mitigation measures. We developed a quantitative reverse transcription-coupled polymerase chain reaction (RT-PCR) assay for HRV and verified that this assay detects HRV in nasal lavage samples. A quantitation standard was used to determine a detection limit of 5 fg of HRV RNA with a linear range over 1000-fold. To measure the size distribution of HRV aerosols, volunteers with a head cold spent two hours in a ventilated research chamber. Airborne particles from the chamber were collected using an Andersen Six-Stage Cascade Impactor. Each stage of the impactor was analyzed by quantitative RT-PCR for HRV. For the first two volunteers with confirmed HRV infection, but with mild symptoms, we were unable to detect HRV on any stage of the impactor

  20. Method for measuring the size distribution of airborne rhinovirus

    Energy Technology Data Exchange (ETDEWEB)

    Russell, M.L.; Goth-Goldstein, R.; Apte, M.G.; Fisk, W.J.

    2002-01-01

    About 50% of viral-induced respiratory illnesses are caused by the human rhinovirus (HRV). Measurements of the concentrations and sizes of bioaerosols are critical for research on building characteristics, aerosol transport, and mitigation measures. We developed a quantitative reverse transcription-coupled polymerase chain reaction (RT-PCR) assay for HRV and verified that this assay detects HRV in nasal lavage samples. A quantitation standard was used to determine a detection limit of 5 fg of HRV RNA with a linear range over 1000-fold. To measure the size distribution of HRV aerosols, volunteers with a head cold spent two hours in a ventilated research chamber. Airborne particles from the chamber were collected using an Andersen Six-Stage Cascade Impactor. Each stage of the impactor was analyzed by quantitative RT-PCR for HRV. For the first two volunteers with confirmed HRV infection, but with mild symptoms, we were unable to detect HRV on any stage of the impactor.

  1. Aerosol Optical Properties in Southeast Asia From AERONET Observations

    Science.gov (United States)

    Eck, T. F.; Holben, B. N.; Boonjawat, J.; Le, H. V.; Schafer, J. S.; Reid, J. S.; Dubovik, O.; Smirnov, A.

    2003-12-01

    There is little published data available on measured optical properties of aerosols in the Southeast Asian region. The AERONET project and collaborators commenced monitoring of aerosol optical properties in February 2003 at four sites in Thailand and two sites in Viet Nam to measure the primarily anthropogenic aerosols generated by biomass burning and fossil fuel combustion/ industrial emissions. Automatic sun/sky radiometers at each site measured spectral aerosol optical depth in 7 wavelengths from 340 to 1020 nm and combined with directional radiances in the almucantar, retrievals were made of spectral single scattering albedo and aerosol size distributions. Angstrom exponents, size distributions and spectral single scattering albedo of primarily biomass burning aerosols at rural sites are compared to measurements made at AERONET sites in other major biomass burning regions in tropical southern Africa, South America, and in boreal forest regions. Additionally, the aerosol single scattering albedo and size distributions measured in Bangkok, Thailand are compared with those measured at other urban sites globally. The influences of aerosols originating from other regions outside of Southeast Asia are analyzed using trajectory analyses. Specifically, cases of aerosol transport and mixing from Southern China and from India are presented.

  2. Aerosols, clouds, and precipitation in the North Atlantic trades observed during the Barbados aerosol cloud experiment – Part 1: Distributions and variability

    Directory of Open Access Journals (Sweden)

    E. Jung

    2016-07-01

    Full Text Available Shallow marine cumulus clouds are by far the most frequently observed cloud type over the Earth's oceans; but they are poorly understood and have not been investigated as extensively as stratocumulus clouds. This study describes and discusses the properties and variations of aerosol, cloud, and precipitation associated with shallow marine cumulus clouds observed in the North Atlantic trades during a field campaign (Barbados Aerosol Cloud Experiment- BACEX, March–April 2010, which took place off Barbados where African dust periodically affects the region. The principal observing platform was the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS Twin Otter (TO research aircraft, which was equipped with standard meteorological instruments, a zenith pointing cloud radar and probes that measured aerosol, cloud, and precipitation characteristics.The temporal variation and vertical distribution of aerosols observed from the 15 flights, which included the most intense African dust event during all of 2010 in Barbados, showed a wide range of aerosol conditions. During dusty periods, aerosol concentrations increased substantially in the size range between 0.5 and 10 µm (diameter, particles that are large enough to be effective giant cloud condensation nuclei (CCN. The 10-day back trajectories showed three distinct air masses with distinct vertical structures associated with air masses originating in the Atlantic (typical maritime air mass with relatively low aerosol concentrations in the marine boundary layer, Africa (Saharan air layer, and mid-latitudes (continental pollution plumes. Despite the large differences in the total mass loading and the origin of the aerosols, the overall shapes of the aerosol particle size distributions were consistent, with the exception of the transition period.The TO was able to sample many clouds at various phases of growth. Maximum cloud depth observed was less than ∼ 3 km, while most

  3. Determination of the aerosol size distribution by analytic inversion of the extinction spectrum in the complex anomalous diffraction approximation.

    Science.gov (United States)

    Franssens, G; De Maziére, M; Fonteyn, D

    2000-08-20

    A new derivation is presented for the analytical inversion of aerosol spectral extinction data to size distributions. It is based on the complex analytic extension of the anomalous diffraction approximation (ADA). We derive inverse formulas that are applicable to homogeneous nonabsorbing and absorbing spherical particles. Our method simplifies, generalizes, and unifies a number of results obtained previously in the literature. In particular, we clarify the connection between the ADA transform and the Fourier and Laplace transforms. Also, the effect of the particle refractive-index dispersion on the inversion is examined. It is shown that, when Lorentz's model is used for this dispersion, the continuous ADA inverse transform is mathematically well posed, whereas with a constant refractive index it is ill posed. Further, a condition is given, in terms of Lorentz parameters, for which the continuous inverse operator does not amplify the error.

  4. INDOOR-OUTDOOR AEROSOL CONCENTRATIONS IN TWO PORTUGUESE CITIES AND THE GLOBAL WARMING SCENARIO

    Energy Technology Data Exchange (ETDEWEB)

    Antonio F. Miguel; A. Heitor Reis [Department of Physics, University of Evora (Portugal); Marta Melgao [Geophysics Centre of Evora (Portugal)

    2008-09-30

    Aerosols play a major role both in climate change and in air quality. They affect climate through interfering with radiative transfer and hence the atmospheric temperature, and also the air quality. Many epidemiological studies have confirmed that a relation exists between elevated aerosol particle concentration and adverse human health effects. Aerosol particle number and size distributions were measured both indoors and outdoors in the urban areas of Evora and Lisbon. We investigated the indoor-to-outdoor relationship of aerosol particles and the aerosol size distributions. The impact of the occurrence of a residential fire in the aerosol size distribution is also analyzed. Finally, we speculate of how global increase in temperature can affect concentration of aerosols in the atmosphere, via increased boundary layer convection.

  5. Mass and number size distributions of emitted particulates at five important operation units in a hazardous industrial waste incineration plant.

    Science.gov (United States)

    Lin, Chi-Chi; Huang, Hsiao-Lin; Hsiao, Wen-Yuan

    2016-01-01

    Past studies indicated particulates generated by waste incineration contain various hazardous compounds. The aerosol characteristics are very important for particulate hazard control and workers' protection. This study explores the detailed characteristics of emitted particulates from each important operation unit in a rotary kiln-based hazardous industrial waste incineration plant. A dust size analyzer (Grimm 1.109) and a scanning mobility particle sizer (SMPS) were used to measure the aerosol mass concentration, mass size distribution, and number size distribution at five operation units (S1-S5) during periods of normal operation, furnace shutdown, and annual maintenance. The place with the highest measured PM10 concentration was located at the area of fly ash discharge from air pollution control equipment (S5) during the period of normal operation. Fine particles (PM2.5) constituted the majority of the emitted particles from the incineration plant. The mass size distributions (elucidated) made it clear that the size of aerosols caused by the increased particulate mass, resulting from work activities, were mostly greater than 1.5 μm. Whereas the number size distributions showed that the major diameters of particulates that caused the increase of particulate number concentrations, from work activities, were distributed in the sub micrometer range. The process of discharging fly ash from air pollution control equipment can significantly increase the emission of nanoparticles. The mass concentrations and size distributions of emitted particulates were different at each operation unit. This information is valuable for managers to take appropriate strategy to reduce the particulate emission and associated worker exposure.

  6. Unattached fraction and the size distribution of the radon progeny in indoor air

    International Nuclear Information System (INIS)

    Yamasaki, K.; Shimo, M.

    1992-01-01

    The size-distribution of the aerosol-attached radon progeny and the unattached (cluster) fraction were measured by using a low pressure cascade impactor and a single wire screen in a building of the nuclear facility. The radon concentration at the condition of ventilation 'ON' was about 50 Bq m -3 , but it increased exponentially after ventilation 'OFF' and reached to the saturated concentration of about 600 Bq m -3 . At the condition of low aerosol concentration without additional aerosol, the activity median aerodynamic diameter, the geometric standard deviation and the unattached fraction were, respectively, 0.4 μm, 2.7-2.9 and 0.3-0.5. On the other hand, at the condition of high aerosol concentration with burning a mosquito coil, these were, 0.4 μm, 2.1 and 0.02-0.03. These yield 2.5 times higher radiation dose conversion factors at the low aerosol condition than the high aerosol condition. (author)

  7. Aerosol Extinction Profile Mapping with Lognormal Distribution Based on MPL Data

    Science.gov (United States)

    Lin, T. H.; Lee, T. T.; Chang, K. E.; Lien, W. H.; Liu, G. R.; Liu, C. Y.

    2017-12-01

    This study intends to challenge the profile mapping of aerosol vertical distribution by mathematical function. With the similarity in distribution pattern, lognormal distribution is examined for mapping the aerosol extinction profile based on MPL (Micro Pulse LiDAR) in situ measurements. The variables of lognormal distribution are log mean (μ) and log standard deviation (σ), which will be correlated with the parameters of aerosol optical depht (AOD) and planetary boundary layer height (PBLH) associated with the altitude of extinction peak (Mode) defined in this study. On the base of 10 years MPL data with single peak, the mapping results showed that the mean error of Mode and σ retrievals are 16.1% and 25.3%, respectively. The mean error of σ retrieval can be reduced to 16.5% under the cases of larger distance between PBLH and Mode. The proposed method is further applied to MODIS AOD product in mapping extinction profile for the retrieval of PM2.5 in terms of satellite observations. The results indicated well agreement between retrievals and ground measurements when aerosols under 525 meters are well-mixed. The feasibility of proposed method to satellite remote sensing is also suggested by the case study. Keyword: Aerosol extinction profile, Lognormal distribution, MPL, Planetary boundary layer height (PBLH), Aerosol optical depth (AOD), Mode

  8. Climatology of Aerosol Optical Properties in Southern Africa

    Science.gov (United States)

    Queface, Antonio J.; Piketh, Stuart J.; Eck, Thomas F.; Tsay, Si-Chee

    2011-01-01

    A thorough regionally dependent understanding of optical properties of aerosols and their spatial and temporal distribution is required before we can accurately evaluate aerosol effects in the climate system. Long term measurements of aerosol optical depth, Angstrom exponent and retrieved single scattering albedo and size distribution, were analyzed and compiled into an aerosol optical properties climatology for southern Africa. Monitoring of aerosol parameters have been made by the AERONET program since the middle of the last decade in southern Africa. This valuable information provided an opportunity for understanding how aerosols of different types influence the regional radiation budget. Two long term sites, Mongu in Zambia and Skukuza in South Africa formed the core sources of data in this study. Results show that seasonal variation of aerosol optical thicknesses at 500 nm in southern Africa are characterized by low seasonal multi-month mean values (0.11 to 0.17) from December to May, medium values (0.20 to 0.27) between June and August, and high to very high values (0.30 to 0.46) during September to November. The spatial distribution of aerosol loadings shows that the north has high magnitudes than the south in the biomass burning season and the opposite in none biomass burning season. From the present aerosol data, no long term discernable trends are observable in aerosol concentrations in this region. This study also reveals that biomass burning aerosols contribute the bulk of the aerosol loading in August-October. Therefore if biomass burning could be controlled, southern Africa will experience a significant reduction in total atmospheric aerosol loading. In addition to that, aerosol volume size distribution is characterized by low concentrations in the non biomass burning period and well balanced particle size contributions of both coarse and fine modes. In contrast high concentrations are characteristic of biomass burning period, combined with

  9. Experimental verification of the attachment theory of radon progeny onto ambient aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Tokonami, Shinji

    2000-01-01

    The attachment theory of radon progeny onto ambient aerosols was experimentally verified with a cascade impactor and a graded screen array at the EML environmental chamber. Monodisperse aerosols in the size range of 70 to 500 nm were generated with Carnauba wax by means of the evaporation-condensation method. The temperature and the relative humidity in the chamber were set at 20 C and 20%, respectively, throughout the entire experiment. When the aerosols were being injected into the chamber, both the number size distribution and the activity-weighted size distribution of attached radon progeny were stable. The activity-weighted size distribution was compared with the attachment rate distribution obtained by measuring the number size distribution with the SMPS and multiplying the size-dependent attachment coefficient. There was a relatively good agreement between the two distributions.

  10. Data Descriptor : Collocated observations of cloud condensation nuclei, particle size distributions, and chemical composition

    NARCIS (Netherlands)

    Schmale, Julia; Henning, Silvia; Henzing, Bas; Keskinen, Helmi; Sellegri, Karine; Ovadnevaite, Jurgita; Bougiatioti, Aikaterini; Kalivitis, Nikos; Stavroulas, Iasonas; Jefferson, Anne; Park, Minsu; Schlag, Patrick; Kristensson, Adam; Iwamoto, Yoko; Pringle, Kirsty; Reddington, Carly; Aalto, Pasi; Äijälä, Mikko; Baltensperger, Urs; Bialek, Jakub; Birmili, Wolfram; Bukowiecki, Nicolas; Ehn, Mikael; Fjæraa, Ann Mari; Fiebig, Markus; Frank, Göran; Fröhlich, Roman; Frumau, Arnoud; Furuya, Masaki; Hammer, Emanuel; Heikkinen, Liine; Herrmann, Erik; Holzinger, Rupert; Hyono, Hiroyuki; Kanakidou, Maria; Kiendler-Scharr, Astrid; Kinouchi, Kento; Kos, Gerard P A; Kulmala, Markku; Mihalopoulos, Nikolaos; Motos, Ghislain; Nenes, Athanasios; O'Dowd, Colin; Paramonov, Mikhail; Petäjä, Tuukka; Picard, David; Poulain, Laurent; Prévôt, André Stephan Henry; Slowik, Jay; Sonntag, Andre; Swietlicki, Erik; Svenningsson, Birgitta; Tsurumaru, Hiroshi; Wiedensohler, Alfred; Wittbom, Cerina; Ogren, John A.; Matsuki, Atsushi; Yum, Seong Soo; Myhre, Cathrine Lund; Carslaw, Ken; Stratmann, Frank; Gysel, Martin

    2017-01-01

    Cloud condensation nuclei (CCN) number concentrations alongside with submicrometer particle number size distributions and particle chemical composition have been measured at atmospheric observatories of the Aerosols, Clouds, and Trace gases Research InfraStructure (ACTRIS) as well as other

  11. Modification, calibration, and performance of the Ultra-High Sensitivity Aerosol Spectrometer for particle size distribution and volatility measurements during the Atmospheric Tomography Mission (ATom airborne campaign

    Directory of Open Access Journals (Sweden)

    A. Kupc

    2018-01-01

    % for volume with 10 s time resolution. The UHSAS reduction in counting efficiency was corrected for concentrations > 1000 cm−3.Examples of thermodenuded and non-thermodenuded aerosol number and volume size distributions as well as propagated uncertainties are shown for several cases encountered during the ATom project. Uncertainties in particle number concentration were limited by counting statistics, especially in the tropical upper troposphere where accumulation-mode concentrations were sometimes < 20 cm−3 (counting rates  ∼  5 Hz at standard temperature and pressure.

  12. Devices and methods for generating an aerosol

    KAUST Repository

    Bisetti, Fabrizio

    2016-03-03

    Aerosol generators and methods of generating aerosols are provided. The aerosol can be generated at a stagnation interface between a hot, wet stream and a cold, dry stream. The aerosol has the benefit that the properties of the aerosol can be precisely controlled. The stagnation interface can be generated, for example, by the opposed flow of the hot stream and the cold stream. The aerosol generator and the aerosol generation methods are capable of producing aerosols with precise particle sizes and a narrow size distribution. The properties of the aerosol can be controlled by controlling one or more of the stream temperatures, the saturation level of the hot stream, and the flow times of the streams.

  13. Modelling size and structure of nanoparticles formed from drying of submicron solution aerosols

    International Nuclear Information System (INIS)

    Bandyopadhyay, Arpan A.; Pawar, Amol A.; Venkataraman, Chandra; Mehra, Anurag

    2015-01-01

    Drying of submicron solution aerosols, under controlled conditions, has been explored to prepare nanoparticles for drug delivery applications. A computational model of solution drop evaporation is developed to study the evolution of solute gradients inside the drop and predict the size and shell thickness of precipitating nanoparticles. The model considers evaporation as a two-stage process involving droplet shrinkage and shell growth. It was corroborated that droplet evaporation rate controls the solute distribution within a droplet and the resulting particle structure (solid or shell type). At higher gas temperatures, rapid build-up of solute near drop surface from high evaporation rates results in early attainment of critical supersaturation solubility and a steeper solute gradient, which favours formation of larger, shell-type particles. At lower gas temperatures, formation of smaller, solid nanoparticles is indicated. The computed size and shell thickness are in good agreement with experimentally prepared lipid nanoparticles. This study indicates that solid or shell structure of precipitated nanoparticles is strongly affected by evaporation rate, while initial solute concentration in the precursor solution and atomized droplet size affect shell thickness. For the gas temperatures considered, evaporative cooling leads to droplet temperature below the melting point of the lipid solute. Thus, we conclude that control over nanoparticle size and structure, of thermolabile precursor materials suitable for drug delivery, can be achieved by controlling evaporation rates, through selection of aerosol processing conditions

  14. Modelling size and structure of nanoparticles formed from drying of submicron solution aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, Arpan A.; Pawar, Amol A.; Venkataraman, Chandra; Mehra, Anurag, E-mail: mehra@iitb.ac.in [Indian Institute of Technology Bombay, Department of Chemical Engineering (India)

    2015-01-15

    Drying of submicron solution aerosols, under controlled conditions, has been explored to prepare nanoparticles for drug delivery applications. A computational model of solution drop evaporation is developed to study the evolution of solute gradients inside the drop and predict the size and shell thickness of precipitating nanoparticles. The model considers evaporation as a two-stage process involving droplet shrinkage and shell growth. It was corroborated that droplet evaporation rate controls the solute distribution within a droplet and the resulting particle structure (solid or shell type). At higher gas temperatures, rapid build-up of solute near drop surface from high evaporation rates results in early attainment of critical supersaturation solubility and a steeper solute gradient, which favours formation of larger, shell-type particles. At lower gas temperatures, formation of smaller, solid nanoparticles is indicated. The computed size and shell thickness are in good agreement with experimentally prepared lipid nanoparticles. This study indicates that solid or shell structure of precipitated nanoparticles is strongly affected by evaporation rate, while initial solute concentration in the precursor solution and atomized droplet size affect shell thickness. For the gas temperatures considered, evaporative cooling leads to droplet temperature below the melting point of the lipid solute. Thus, we conclude that control over nanoparticle size and structure, of thermolabile precursor materials suitable for drug delivery, can be achieved by controlling evaporation rates, through selection of aerosol processing conditions.

  15. The size distribution of chemical elements of atmospheric aerosol at a semi-rural coastal site in Venice (Italy). The role of atmospheric circulation.

    Science.gov (United States)

    Masiol, Mauro; Squizzato, Stefania; Ceccato, Daniele; Pavoni, Bruno

    2015-01-01

    The concentrations of selected elemental tracers were determined in the aerosol of a semi-rural coastal site near Venice (Italy). Size-segregated aerosol samples were collected using an 8-stage cascade impactor set at 15m above ground, during the cold season (late autumn and winter), when high levels of many pollutants are known to cause risks for human health. From the experimental data, information was extracted on potential pollutant sources by investigating the relationships between elements in the different size fractions. Moreover, an approach to highlight the importance of local atmospheric circulation and air mass origin in influencing the PM composition and fractional distribution is proposed. Anthropogenic elements are strongly inter-correlated in the submicrometric (4 μm) Fe and Zn are well correlated and are probably linked to tire and brake wear emissions. Regarding atmospheric circulation, results show increasing levels of elements related to pollution sources (S, K, Mn, Ni, Cu, Zn) when air masses come from Central and Eastern Europe direction and on the ground wind blows from NWN-N-NE (from mainland Venice). Low wind speed and high percentage of wind calm hours favor element accumulation in the submicrometric and intermediate modes. Furthermore, strong winds favor the formation of sea-spray and the increase of Si in the coarse mode due to the resuspension of sand fine particles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Water-soluble ions and carbon content of size-segregated aerosols in New Delhi, India: direct and indirect influences of firework displays.

    Science.gov (United States)

    Kumar, Pawan; Kumar, Rakesh; Yadav, Sudesh

    2016-10-01

    The particle size distribution and water-soluble inorganic ion (WSII) and carbonaceous species in size-segregated aerosols, Dp firework displays in New Delhi, India. The firework activity had the maximum contribution to the mass loading of PM 0.95 (786 μg/m 3 ) followed by PM 0.95-1.5 (216 μg/m 3 ) with all other three fractions accounting to a total of 214 μg/m 3 . The percentage contributions of WSII to the total mass of aerosols were highest in first two size fractions (39 and 40 %, respectively), compared to other fractions. The firework marker ion (Mg 2+ , Cl - , and K + ) mass concentration shows higher values in PM 0.95 during Diwali compared to before Diwali period. The mass size distribution of particles, NH 4 + , K + , Cl - , SO 4 2- , Mg 2+ , and NO 3 - , also showed changes on the Diwali night compared to previous and after days. The high Cl - /Na + (5.6) and OC/EC (3.4) ratio of PM 0.95 can be used as the indicators of firework displays. The lowering of mixing height on Diwali night to 50 m compared to before (277 mts) and after (269 mts) Diwali period further concentrated the aerosols in ambient atmosphere. Therefore, the firework display not only released the gaseous or elemental constituent but also influenced the temperature profile and both put together result in high aerosol concentrations, WSII, OC, and BC contents in ambient atmosphere. The alveolar, respirable, and inhalable fractions accounted for 64.6, 90.8, and 97.8 %, respectively, of the total PM 10 mass. People stay exposed to such high pollution level in short span of 6-8 h and experience adverse health impacts due to high mass concentrations and the chemical components of fine aerosols.

  17. Comparison of two different dust emission mechanisms over the Horqin Sandy Land area: Aerosols contribution and size distributions

    Science.gov (United States)

    Ju, Tingting; Li, Xiaolan; Zhang, Hongsheng; Cai, Xuhui; Song, Yu

    2018-03-01

    Dust aerosols (PM10) emission fluxes due to convective turbulent dust emissions (CTDE) and saltation-bombardment and/or aggregation-disintegration dust emissions (SADE) events were comparatively studied using the data obtained from the Naiman station over the Horqin Sandy Land area in Inner Mongolia, China from 2011 to 2015. The annual cumulative dust fluxes released by CTDE events was about one third of that by SADE events, with the order of 103∼104 μg m-2 s-1. The particle size distributions (PSDs) with diameter between 0.1 and 20 μm during CTDE and SADE events over the Horqin Sandy Land area were simulated based on the fragmentation theory, respectively. The results indicated that an improved equation based on fragmentation theory could be applied to describe the PSDs over the Horqin site which may be because the scale-invariant fragmentation theory mainly explains the PSDs of free dust particles on the surface, which differ from the PSDs of suspend airborne dust and the improved equation was more applicable to the PSDs of SADE events because the dust emission mechanism of SADE are saltation bombardment and aggregation disintegration. The number-related mean aerosol diameters (DN) barely varied under different friction velocity (u*) for SADE events, while the volume-related mean aerosol diameters (DV) changed distinctly with the change of u*. For CTDE events, the DN and DV had no obvious relationship with the change of u* because the dominating influence factor during CTDE event was thermal convection rather than u*. The mass-related PSDs usually exhibited a peak between 0.45 and 0.70 μm during SADE events, while for CTDE events there was a wide peak in the range of 0.10 0.70 μm. The results suggest that DN should be not be recommended as an individual parameter to describe the PSDs. The mass-related PSDs can effectively distinguish the SADE and CTDE events.

  18. Nonurban aerosol composition near Beijing, China

    International Nuclear Information System (INIS)

    Winchester, J.W.; Darzi, M.; Leslie, A.C.D.; Wang, M.; Ren, L.; Lue, W.; Hansson, H.C.; Lannefors, H.

    1981-01-01

    The urban aerosol plume of Beijing has been sampled as a function of particle size and time at a site 110 km NE of the city, 9-16 March 1980, during the season for space heating by coal combustion. A fine particle mode, contained mostly in the 0.5-2 μm aerodynamic diameter range, could be distinguished from a coarse mode of dust having terrestrial composition by reference to the size distribution of Ca. Elemental composition determined by PIXE analysis for 17 elements, including S and heavy metals, indicates fine mode concentrations higher than background aerosol but with a similarity to cleaner air with respect to both relative elemental abundances and elemental particle size distributions. The results indicate that elements contained in aged coal combustion aerosol occur mainly in 0.5-2 μMAD particles, not smaller, and the aerosol is not substantially different from background aerosol except in overall concentrations. This result may simplify the prediction of the impact of coal combustion on air quality. The results also hint that the background aerosol in more remote continental areas may also be combustion derived. (orig.)

  19. Study of uranium mine aerosols

    International Nuclear Information System (INIS)

    Barzic, J.-Y.

    1976-05-01

    With a view to radiation protection of uranium-miners a study was made of the behaviour of radioactive and non-radioactive aerosols in the atmosphere of an experimental mine where temperature, pressure, relative himidity and ventilation are kept constant and in the air of a working area where the nature of the aerosol is dependent on the stage of work. Measurements of radon and daughter products carried out in various points of working areas showed that the gas was quickly diluted, equilibrium between radon and its daughter products (RaA, RaB, RaC) was never reached and the radon-aerosol contact was of short duration (a few minutes). Using a seven-stage Andersen impactor particle size distribution of the mine aerosol (particle diameter >0.3μm) was studied. The characteristic diameters were determined for each stage of the Andersen impactor and statistical analysis verified that aerosol distributions on the lower stages of the impactor were log-normal in most cases. Finally, determination of size distribution of α-radioactivity showed it was retained on fine particles. The percentage of free α-activity was evaluated using a diffusion battery [fr

  20. The impact of precipitation evaporation on the atmospheric aerosol distribution in EC-Earth v3.2.0

    Science.gov (United States)

    de Bruine, Marco; Krol, Maarten; van Noije, Twan; Le Sager, Philippe; Röckmann, Thomas

    2018-04-01

    The representation of aerosol-cloud interaction in global climate models (GCMs) remains a large source of uncertainty in climate projections. Due to its complexity, precipitation evaporation is either ignored or taken into account in a simplified manner in GCMs. This research explores various ways to treat aerosol resuspension and determines the possible impact of precipitation evaporation and subsequent aerosol resuspension on global aerosol burdens and distribution. The representation of aerosol wet deposition by large-scale precipitation in the EC-Earth model has been improved by utilising additional precipitation-related 3-D fields from the dynamical core, the Integrated Forecasting System (IFS) general circulation model, in the chemistry and aerosol module Tracer Model, version 5 (TM5). A simple approach of scaling aerosol release with evaporated precipitation fraction leads to an increase in the global aerosol burden (+7.8 to +15 % for different aerosol species). However, when taking into account the different sizes and evaporation rate of raindrops following Gong et al. (2006), the release of aerosols is strongly reduced, and the total aerosol burden decreases by -3.0 to -8.5 %. Moreover, inclusion of cloud processing based on observations by Mitra et al. (1992) transforms scavenged small aerosol to coarse particles, which enhances removal by sedimentation and hence leads to a -10 to -11 % lower aerosol burden. Finally, when these two effects are combined, the global aerosol burden decreases by -11 to -19 %. Compared to the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations, aerosol optical depth (AOD) is generally underestimated in most parts of the world in all configurations of the TM5 model and although the representation is now physically more realistic, global AOD shows no large improvements in spatial patterns. Similarly, the agreement of the vertical profile with Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP

  1. A recirculation aerosol wind tunnel for evaluating aerosol samplers and measuring particle penetration through protective clothing materials.

    Science.gov (United States)

    Jaques, Peter A; Hsiao, Ta-Chih; Gao, Pengfei

    2011-08-01

    A recirculation aerosol wind tunnel was designed to maintain a uniform airflow and stable aerosol size distribution for evaluating aerosol sampler performance and determining particle penetration through protective clothing materials. The oval-shaped wind tunnel was designed to be small enough to fit onto a lab bench, have optimized dimensions for uniformity in wind speed and particle size distributions, sufficient mixing for even distribution of particles, and minimum particle losses. Performance evaluation demonstrates a relatively high level of spatial uniformity, with a coefficient of variation of 1.5-6.2% for wind velocities between 0.4 and 2.8 m s(-1) and, in this range, 0.8-8.5% for particles between 50 and 450 nm. Aerosol concentration stabilized within the first 5-20 min with, approximately, a count median diameter of 135 nm and geometric standard deviation of 2.20. Negligible agglomerate growth and particle loss are suggested. The recirculation design appears to result in unique features as needed for our research.

  2. The primary volcanic aerosol emission from Mt Etna: Size-resolved particles with SO2 and role in plume reactive halogen chemistry

    Science.gov (United States)

    Roberts, T. J.; Vignelles, D.; Liuzzo, M.; Giudice, G.; Aiuppa, A.; Coltelli, M.; Salerno, G.; Chartier, M.; Couté, B.; Berthet, G.; Lurton, T.; Dulac, F.; Renard, J.-B.

    2018-02-01

    Volcanoes are an important source of aerosols to the troposphere. Within minutes after emission, volcanic plume aerosol catalyses conversion of co-emitted HBr, HCl into highly reactive halogens (e.g. BrO, OClO) through chemical cycles that cause substantial ozone depletion in the dispersing downwind plume. This study quantifies the sub-to-supramicron primary volcanic aerosol emission (0.2-5 μm diameter) and its role in this process. An in-situ ground-based study at Mt Etna (Italy) during passive degassing co-deployed an optical particle counter and Multi-Gas SO2 sensors at high time resolution (0.1 Hz) enabling to characterise the aerosol number, size-distribution and emission flux. A tri-modal volcanic aerosol size distribution was found, to which lognormal distributions are fitted. Total particle volume correlates to SO2 (as a plume tracer). The measured particle volume:SO2 ratio equates to a sulfate:SO2 ratio of 1-2% at the observed meteorological conditions (40% Relative Humidity). A particle mass flux of 0.7 kg s-1 is calculated for the measured Mt Etna SO2 flux of 1950 tonnes/day. A numerical plume atmospheric chemistry model is used to simulate the role of the hygroscopic primary aerosol surface area and its humidity dependence on volcanic plume BrO and OClO chemistry. As well as predicting volcanic BrO formation and O3 depletion, the model achieves OClO/SO2 in broad quantitative agreement with recently reported Mt Etna observations, with a predicted maximum a few minutes downwind. In addition to humidity - that enhances aerosols surface area for halogen cycling - background ozone is predicted to be an important control on OClO/SO2. Dependence of BrO/SO2 on ambient humidity is rather low near-to-source but increases further downwind. The model plume chemistry also exhibits strong across-plume spatial variations between plume edge and centre.

  3. Vertical profiles of black carbon concentration and particle number size distribution in the North China Plain

    Science.gov (United States)

    Ran, L.; Deng, Z.

    2013-12-01

    The vertical distribution of aerosols is of great importance to our understanding in the impacts of aerosols on radiation balance and climate, as well as air quality and public health. To better understand and estimate the effects of atmospheric components including trace gases and aerosols on atmospheric environment and climate, an intensive field campaign, Vertical Observations of trace Gases and Aerosols in the North China Plain (VOGA-NCP), was carried out from late July to early August 2013 over a rural site in the polluted NCP. During the campaign, vertical profiles of black carbon (BC) concentration and particle number size distribution were measured respectively by a micro-Aethalometer and an optical particle counter attached to a tethered balloon within 1000 m height. Meteorological parameters, including temperature, relative humidity, wind speed and wind direction, were measured simultaneously by a radiosonde also attached to the tethered balloon. Preliminary results showed distinct diurnal variations of the vertical distribution of aerosol total number concentration and BC concentration, following the development of the mixing layer. Generally, there was a well mixing of aerosols within the mixing layer and a sharp decrease above the mixing layer. Particularly, a small peak of BC concentrations was observed around 400-500 m height for several profiles. Further analysis would be needed to explain such phenomenon. It was also found that measured vertical profiles of BC using the filter-based method might be affected by the vertical distribution of relative humidity.

  4. Influential parameters on particle concentration and size distribution in the mainstream of e-cigarettes

    International Nuclear Information System (INIS)

    Fuoco, F.C.; Buonanno, G.; Stabile, L.; Vigo, P.

    2014-01-01

    Electronic cigarette-generated mainstream aerosols were characterized in terms of particle number concentrations and size distributions through a Condensation Particle Counter and a Fast Mobility Particle Sizer spectrometer, respectively. A thermodilution system was also used to properly sample and dilute the mainstream aerosol. Different types of electronic cigarettes, liquid flavors, liquid nicotine contents, as well as different puffing times were tested. Conventional tobacco cigarettes were also investigated. The total particle number concentration peak (for 2-s puff), averaged across the different electronic cigarette types and liquids, was measured equal to 4.39 ± 0.42 × 10 9 part. cm −3 , then comparable to the conventional cigarette one (3.14 ± 0.61 × 10 9 part. cm −3 ). Puffing times and nicotine contents were found to influence the particle concentration, whereas no significant differences were recognized in terms of flavors and types of cigarettes used. Particle number distribution modes of the electronic cigarette-generated aerosol were in the 120–165 nm range, then similar to the conventional cigarette one. -- Highlights: • High particle number concentrations measured in e-cigarettes' mainstream aerosol. • Particle concentrations were higher than conventional tobacco cigarette ones. • Nicotine content and puffing times influenced particle concentrations. • Flavoring and type of cigarette did not affect the particle number concentration. • Particle number distribution mode of e-cigarette aerosol was equal to 120–165 nm. -- The mainstream aerosol generated by electronic cigarettes was characterized and the effect of each operating parameter was evaluated: results were similar to conventional cigarette ones

  5. Size Resolved Measurements of Springtime Aerosol Particles over the Northern South China Sea

    Science.gov (United States)

    Atwood, Samuel A.; Reid, Jeffrey S.; Kreidenweis, Sonia M.; Cliff, Stephen S.; Zhao, Yongjing; Lin, Neng-Huei; Tsay, Si-Chee; Chu, Yu-Chi; Westphal, Douglas L.

    2012-01-01

    Large sources of aerosol particles and their precursors are ubiquitous in East Asia. Such sources are known to impact the South China Sea (henceforth SCS), a sometimes heavily polluted region that has been suggested as particularly vulnerable to climate change. To help elucidate springtime aerosol transport into the SCS, an intensive study was performed on the remote Dongsha (aka Pratas) Islands Atoll in spring 2010. As part of this deployment, a Davis Rotating-drum Uniform size-cut Monitor (DRUM) cascade impactor was deployed to collect size-resolved aerosol samples at the surface that were analyzed by X-ray fluorescence for concentrations of selected elements. HYSPLIT backtrajectories indicated that the transport of aerosol observed at the surface at Dongsha was occurring primarily from regions generally to the north and east. This observation was consistent with the apparent persistence of pollution and dust aerosol, along with sea salt, in the ground-based dataset. In contrast to the sea-level observations, modeled aerosol transport suggested that the westerly flow aloft (w700 hPa) transported smoke-laden air toward the site from regions from the south and west. Measured aerosol optical depth at the site was highest during time periods of modeled heavy smoke loadings aloft. These periods did not coincide with elevated aerosol concentrations at the surface, although the model suggested sporadic mixing of this free-tropospheric aerosol to the surface over the SCS. A biomass burning signature was not clearly identified in the surface aerosol composition data, consistent with this aerosol type remaining primarily aloft and not mixing strongly to the surface during the study. Significant vertical wind shear in the region also supports the idea that different source regions lead to varying aerosol impacts in different vertical layers, and suggests the potential for considerable vertical inhomogeneity in the SCS aerosol environment.

  6. Determination of Aerosol Particle Diameter Using Cascade Impactor Procedure

    International Nuclear Information System (INIS)

    Bunawas; Ruslanto, P. O

    1998-01-01

    Determination of aerosol particle size distribution has been done using a low pressure Andersen's cascade impactor with 13 stages. The aerosol has been sampled with flow rate of aerosol sampling of 28.3 Ipm. Preliminary study result shows that aerosol in the simulation chamber was spread in monomodal distribution with Mass Median Aerodynamic Diameter of 4.9 μm. The aerosol measurement in Japan Power Demonstration Reactor has been spread in trimodal distribution with Activity Median Aerodynamic Diameter equal to 13.3 μm. The use of mylar as impaction plate instead of aluminum foil gives good result

  7. Adsorption of radioactive ions on carnauba-wax aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Paul, A.; Keyser, U. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany)

    1998-08-01

    A new method based on parallel aerosol size spectrometry and {gamma}-spectrometry is introduced for the measurement of short-lived radioactive ions, fission products or super-heavy elements produced at accelerators. Furthermore a new aerosol generator is presented.The possibility of controlling and changing the aerosol size distribution in the helium aerosol jet produced by the aerosol generator allows the process of the adsorption and transport of radioactive ions on aerosols to be examined for the first time. This is due to the fact that the distribution is surveyed on-line using a negligible part of its total volume and parallel to the transporting flow. The radioactivity of the transported ions is measured by a germanium detector in offline position. In principle, both an on- or offline position with narrow multi-detector geometry (e.g. {beta}{gamma}{gamma}) is possible. (orig.) With 8 figs., 14 refs.

  8. Functional characterization of the water-soluble organic carbon of size-fractionated aerosol in the southern Mississippi Valley

    Science.gov (United States)

    Chalbot, M.-C. G.; Brown, J.; Chitranshi, P.; Gamboa da Costa, G.; Pollock, E. D.; Kavouras, I. G.

    2014-06-01

    The chemical content of water-soluble organic carbon (WSOC) as a function of particle size was characterized in Little Rock, Arkansas in winter and spring 2013. The objectives of this study were to (i) compare the functional characteristics of coarse, fine and ultrafine WSOC and (ii) reconcile the sources of WSOC for periods when carbonaceous aerosol was the most abundant particulate component. The WSOC accounted for 5% of particle mass for particles with dp > 0.96 μm and 10% of particle mass for particles with dp magnetic resonance (1H-NMR). The total non-exchangeable organic hydrogen concentrations varied from 4.1 ± 0.1 nmol m-3 for particles with 1.5 fingerprints of fine particles. Sucrose, fructose, glucose, formate and acetate were associated with coarse particles. These qualitative differences of 1H-NMR profiles for different particle sizes indicated the possible contribution of biological aerosols and a mixture of aliphatic and oxygenated compounds from biomass burning and traffic exhausts. The concurrent presence of ammonium and amines also suggested the presence of ammonium/aminium nitrate and sulfate secondary aerosol. The size-dependent origin of WSOC was further corroborated by the increasing δ13C abundance from -26.81 ± 0.18‰ for the smallest particles to -25.93 ± 0.31‰ for the largest particles and the relative distribution of the functional groups as compared to those previously observed for marine, biomass burning and secondary organic aerosol. The latter also allowed for the differentiation of urban combustion-related aerosol and biological particles. The five types of organic hydrogen accounted for the majority of WSOC for particles with dp > 3.0 μm and dp < 0.96 μm.

  9. Functional characterization of the water-soluble organic carbon of size fractionated aerosol in the Southern Mississippi Valley

    Science.gov (United States)

    Chalbot, M.-C. G.; Brown, J.; Chitranshi, P.; Gamboa da Costa, G.; Pollock, E. D.; Kavouras, I. G.

    2014-02-01

    The chemical content of the water soluble organic carbon (WSOC) as a function of particle size was characterized in Little Rock, Arkansas in winter and spring 2013. The objectives of this study were to: (i) compare the functional characteristics of coarse, fine and ultrafine WSOC and (ii) reconcile the sources of WSOC for the period when carbonaceous aerosol was the most abundant particulate component. The WSOC accounted for 5% of particle mass for particles with dp > 0.96 μm and 10% of particle mass for particles with dp magnetic resonance. The total non-exchangeable organic hydrogen concentrations varied from 4.1 ± 0.1 nmol m-3 for particles with 0.96 fingerprints of fine particles. Sucrose, fructose, glucose, formate and acetate were associated with coarse particles. These qualitative differences of 1H-NMR profiles for different particle sizes indicated the possible contribution of biological aerosol and a mixture of aliphatic and oxygenated compounds from biomass burning and traffic exhausts. The concurrent presence of ammonium and amines also suggested the presence of ammonium/aminium nitrate and sulfate secondary aerosol. The size-dependent origin of WSOC was further corroborated by the increasing δ13C abundance from -26.81 ± 0.18‰ for the smallest particles to -25.93 ± 0.31‰ for the largest particles and the relative distribution of the functional groups as compared to those previously observed for marine, biomass burning and secondary organic aerosol. The latter also allowed for the differentiation of urban combustion-related aerosol and biological particles. The five types of organic hydrogen accounted for the majority of WSOC for particles with dp > 3.0 μm and dp < 0.96 μm.

  10. Micron-sized and submicron-sized aerosol deposition in a new ex vivo preclinical model.

    Science.gov (United States)

    Perinel, Sophie; Leclerc, Lara; Prévôt, Nathalie; Deville, Agathe; Cottier, Michèle; Durand, Marc; Vergnon, Jean-Michel; Pourchez, Jérémie

    2016-07-07

    The knowledge of where particles deposit in the respiratory tract is crucial for understanding the health effects associated with inhaled drug particles. An ex vivo study was conducted to assess regional deposition patterns (thoracic vs. extrathoracic) of radioactive polydisperse aerosols with different size ranges [0.15 μm-0.5 μm], [0.25 μm-1 μm] and [1 μm-9 μm]. SPECT/CT analyses were performed complementary in order to assess more precisely the regional deposition of aerosols within the pulmonary tract. Experiments were set using an original respiratory tract model composed of a human plastinated head connected to an ex vivo porcine pulmonary tract. The model was ventilated by passive expansion, simulating pleural depressions. Aerosol was administered during nasal breathing. Planar scintigraphies allowed to calculate the deposited aerosol fractions for particles in the three size ranges from sub-micron to micron The deposited fractions obtained, for thoracic vs. extra-thoracic regions respectively, were 89 ± 4 % vs. 11 ± 4 % for [0.15 μm-0.5 μm], 78 ± 5 % vs. 22 ± 5 % for [0.25 μm-1 μm] and 35 ± 11 % vs.65 ± 11 % for [1 μm-9 μm]. Results obtained with this new ex vivo respiratory tract model are in good agreement with the in vivo data obtained in studies with baboons and humans.

  11. Evaluation of simulated aerosol properties with the aerosol-climate model ECHAM5-HAM using observations from the IMPACT field campaign

    NARCIS (Netherlands)

    Roelofs, G.-J.; Brink, H. ten; Kiendler-Scharr, A.; Leeuw, G. de; Mensah, A.; Minikin, A.; Otjes, R.

    2010-01-01

    In May 2008, the measurement campaign IMPACT for observation of atmospheric aerosol and cloud properties was conducted in Cabauw, The Netherlands. With a nudged version of the coupled aerosol-climate model ECHAM5-HAM we simulate the size distribution and chemical composition of the aerosol and the

  12. A Novel Fireball Analysis for an Explosive Aerosolization Study

    International Nuclear Information System (INIS)

    Sharon, A.; Halevy, I.; Sattinger, D.; Banaim, P.; Yaar, I.; Krantz, L.; Pinhas, M.

    2014-01-01

    The final consequent risk following an explosion of radiological dispersal device (RDD) is highly depends on final radioactive particles’ size distribution creates by detonation shock wave. Respirable, aerosols contribute to risk in a different way when compare it to non respirable aerosols or to ballistic, inertial, particles or even larger fragments. While aerosols (both, respirable and non respirable) are moving downwind with the cloud, heavier, inertial particles escape the initial fireball and deposited on the ground at a short distances from the ground zero (GZ) point. Respirable aerosols are risky when inhaled into the body (internal radiation) while non respirable have risk as an external exposure on the skin and from a distance. Hence, knowing the size distribution of the radioactive particles will, thus, enable more realistic risk assessment predictions. We show here that detonation fireball fast multispectral radiometrycan be a novel tool that can be indicative to the final particles size distribution

  13. Size distributions of dicarboxylic acids, ketoacids, α-dicarbonyls, sugars, WSOC, OC, EC and inorganic ions in atmospheric particles over Northern Japan: implication for long-range transport of Siberian biomass burning and East Asian polluted aerosols

    Science.gov (United States)

    Agarwal, S.; Aggarwal, S. G.; Okuzawa, K.; Kawamura, K.

    2010-07-01

    To better understand the size-segregated chemical composition of aged organic aerosols in the western North Pacific rim, day- and night-time aerosol samples were collected in Sapporo, Japan during summer 2005 using an Andersen impactor sampler with 5 size bins: Dp7.0 μm. Samples were analyzed for the molecular composition of dicarboxylic acids, ketoacids, α-dicarbonyls, and sugars, together with water-soluble organic carbon (WSOC), organic carbon (OC), elemental carbon (EC) and inorganic ions. Based on the analyses of backward trajectories and chemical tracers, we found that during the campaign, air masses arrived from Siberia (a biomass burning source region) on 8-9 August, from China (an anthropogenic source region) on 9-10 August, and from the East China Sea/Sea of Japan (a mixed source receptor region) on 10-11 August. Most of the diacids, ketoacids, dicarbonyls, levoglucosan, WSOC, and inorganic ions (i.e., SO42-, NH4+ and K+) were enriched in fine particles (PM1.1) whereas Ca2+, Mg2+ and Cl- peaked in coarse sizes (>1.1 μm). Interestingly, OC, most sugar compounds and NO3- showed bimodal distributions in fine and coarse modes. In PM1.1, diacids in biomass burning-influenced aerosols transported from Siberia (mean: 252 ng m-3) were more abundant than those in the aerosols originating from China (209 ng m-3) and ocean (142 ng m-3), whereas SO42- concentrations were highest in the aerosols from China (mean: 3970 ng m-3) followed by marine- (2950 ng m-3) and biomass burning-influenced (1980 ng m-3) aerosols. Higher loadings of WSOC (2430 ng m-3) and OC (4360 ng m-3) were found in the fine mode, where biomass-burning products such as levoglucosan are abundant. This paper presents a case study of long-range transported aerosols illustrating that biomass burning episodes in the Siberian region have a significant influence on the chemical composition of carbonaceous aerosols in the western North Pacific rim.

  14. Vertically-resolved particle size distribution within and above the mixing layer over the Milan metropolitan area

    Directory of Open Access Journals (Sweden)

    L. Ferrero

    2010-04-01

    Full Text Available Vertical aerosol profiles were directly measured over the city of Milan during three years (2005–2008 of field campaigns. An optical particle counter, a portable meteorological station and a miniaturized cascade impactor were deployed on a tethered balloon. More than 300 vertical profiles were measured, both in winter and summer, mainly in conditions of clear, dry skies.

    The mixing height was determined from the observed vertical aerosol concentration gradient, and from potential temperature and relative humidity profiles. Results show that inter-consistent mixing heights can be retrieved highlighting good correlations between particle dispersion in the atmosphere and meteorological parameters. Mixing height growth speed was calculated for both winter and summer showing the low potential atmospheric dispersion in winter.

    Aerosol number size distribution and chemical composition profiles allowed us to investigate particle behaviour along height. Aerosol measurements showed changes in size distribution according to mixing height. Coarse particle profiles (dp>1.6 μm were distributed differently than the fine ones (dp<1.6 μm were, at different heights of the mixing layer. The sedimentation process influenced the coarse particle profiles, and led to a reduction in mean particle diameter for those particles observed by comparing data above the mixing height with ground data (−14.9±0.6% in winter and −10.7±1.0% in summer. Conversely, the mean particle diameter of fine particles increased above the mixing height under stable atmospheric conditions; the average increase, observed by comparing data above the mixing height with ground data, was +2.1±0.1% in winter and +3.9±0.3% in summer. A hierarchical statistical model was created to describe the changes in the size distribution of fine particles along height. The proposed model can be used to estimate the typical vertical

  15. Biogenic, anthropogenic and sea salt sulfate size-segregated aerosols in the Arctic summer

    Directory of Open Access Journals (Sweden)

    R. Ghahremaninezhad

    2016-04-01

    Full Text Available Size-segregated aerosol sulfate concentrations were measured on board the Canadian Coast Guard Ship (CCGS Amundsen in the Arctic during July 2014. The objective of this study was to utilize the isotopic composition of sulfate to address the contribution of anthropogenic and biogenic sources of aerosols to the growth of the different aerosol size fractions in the Arctic atmosphere. Non-sea-salt sulfate is divided into biogenic and anthropogenic sulfate using stable isotope apportionment techniques. A considerable amount of the average sulfate concentration in the fine aerosols with a diameter  <  0.49 µm was from biogenic sources (>  63 %, which is higher than in previous Arctic studies measuring above the ocean during fall (<  15 % (Rempillo et al., 2011 and total aerosol sulfate at higher latitudes at Alert in summer (>  30 % (Norman et al., 1999. The anthropogenic sulfate concentration was less than that of biogenic sulfate, with potential sources being long-range transport and, more locally, the Amundsen's emissions. Despite attempts to minimize the influence of ship stack emissions, evidence from larger-sized particles demonstrates a contribution from local pollution. A comparison of δ34S values for SO2 and fine aerosols was used to show that gas-to-particle conversion likely occurred during most sampling periods. δ34S values for SO2 and fine aerosols were similar, suggesting the same source for SO2 and aerosol sulfate, except for two samples with a relatively high anthropogenic fraction in particles  <  0.49 µm in diameter (15–17 and 17–19 July. The high biogenic fraction of sulfate fine aerosol and similar isotope ratio values of these particles and SO2 emphasize the role of marine organisms (e.g., phytoplankton, algae, bacteria in the formation of fine particles above the Arctic Ocean during the productive summer months.

  16. A Pure Marine Aerosol Model, for Use in Remote Sensing Applications

    Science.gov (United States)

    Sayer, A. M.; Smirnov, A.; Hsu, N. C.; Holben, B. N.

    2011-01-01

    Retrievals of aerosol optical depth (AOD) and related parameters from satellite measurements typically involve prescribed models of aerosol size and composition, and are therefore dependent on how well these models are able to represent the radiative behaviour of real aerosols, This study uses aerosol volume size distributions retrieved from Sun-photometer measurements at 11 Aerosol Robotic Network (AERONET) island sites, spread throughout the world's oceans, as a basis to define such a model for unpolluted maritime aerosols. Size distributions are observed to be bimodal and approximately lognormal, although the coarse mode is skewed with a long tail on the low-radius end, The relationship of AOD and size distribution parameters to meteorological conditions is also examined, As wind speed increases, so do coarse-mode volume and radius, The AOD and Angstrom exponent (alpha) show linear relationships with wind speed, although there is considerable scatter in all these relationships, limiting their predictive power. Links between aerosol properties and near-surface relative humidity, columnar water vapor, and sea surface temperature are also explored. A recommended bimodal maritime model, which is able to reconstruct the AERONET AOD with accuracy of order 0.01-0.02, is presented for use in aerosol remote sensing applications. This accuracy holds at most sites and for wavelengths between 340 nm and 1020 nm. Calculated lidar ratios are also provided, and differ significantly from those currently used in Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) processing.

  17. Aerosol particle mixing state, refractory particle number size distributions and emission factors in a polluted urban environment: Case study of Metro Manila, Philippines

    Science.gov (United States)

    Kecorius, Simonas; Madueño, Leizel; Vallar, Edgar; Alas, Honey; Betito, Grace; Birmili, Wolfram; Cambaliza, Maria Obiminda; Catipay, Grethyl; Gonzaga-Cayetano, Mylene; Galvez, Maria Cecilia; Lorenzo, Genie; Müller, Thomas; Simpas, James B.; Tamayo, Everlyn Gayle; Wiedensohler, Alfred

    2017-12-01

    Ultrafine soot particles (black carbon, BC) in urban environments are related to adverse respiratory and cardiovascular effects, increased cases of asthma and premature deaths. These problems are especially pronounced in developing megacities in South-East Asia, Latin America, and Africa, where unsustainable urbanization ant outdated environmental protection legislation resulted in severe degradation of urban air quality in terms of black carbon emission. Since ultrafine soot particles do often not lead to enhanced PM10 and PM2.5 mass concentration, the risks related to ultrafine particle pollution may therefore be significantly underestimated compared to the contribution of secondary aerosol constituents. To increase the awareness of the potential toxicological relevant problems of ultrafine black carbon particles, we conducted a case study in Metro Manila, the capital of the Philippines. Here, we present a part of the results from a detailed field campaign, called Manila Aerosol Characterization Experiment (MACE, 2015). Measurements took place from May to June 2015 with the focus on the state of mixing of aerosol particles. The results were alarming, showing the abundance of externally mixed refractory particles (soot proxy) at street site with a maximum daily number concentration of approximately 15000 #/cm3. That is up to 10 times higher than in cities of Western countries. We also found that the soot particle mass contributed from 55 to 75% of total street site PM2.5. The retrieved refractory particle number size distribution appeared to be a superposition of 2 ultrafine modes at 20 and 80 nm with a corresponding contribution to the total refractory particle number of 45 and 55%, respectively. The particles in the 20 nm mode were most likely ash from metallic additives in lubricating oil, tiny carbonaceous particles and/or nucleated and oxidized organic polymers, while bigger ones (80 nm) were soot agglomerates. To the best of the authors' knowledge, no other

  18. Workplace aerosol mass concentration measurement using optical particle counters.

    Science.gov (United States)

    Görner, Peter; Simon, Xavier; Bémer, Denis; Lidén, Göran

    2012-02-01

    Direct-reading aerosol measurement usually uses the optical properties of airborne particles to detect and measure particle concentration. In the case of occupational hygiene, mass concentration measurement is often required. Two aerosol monitoring methods are based on the principle of light scattering: optical particle counting (OPC) and photometry. The former analyses the light scattered by a single particle, the latter by a cloud of particles. Both methods need calibration to transform the quantity of scattered light detected into particle concentration. Photometers are simpler to use and can be directly calibrated to measure mass concentration. However, their response varies not only with aerosol concentration but also with particle size distribution, which frequently contributes to biased measurement. Optical particle counters directly measure the particle number concentration and particle size that allows assessment of the particle mass provided the particles are spherical and of known density. An integrating algorithm is used to calculate the mass concentration of any conventional health-related aerosol fraction. The concentrations calculated thus have been compared with simultaneous measurements by conventional gravimetric sampling to check the possibility of field OPC calibration with real workplace aerosols with a view to further monitoring particle mass concentration. Aerosol concentrations were measured in the food industry using the OPC GRIMM® 1.108 and the CIP 10-Inhalable and CIP 10-Respirable (ARELCO®) aerosol samplers while meat sausages were being brushed and coated with calcium carbonate. Previously, the original OPC inlet had been adapted to sample inhalable aerosol. A mixed aerosol of calcium carbonate and fungi spores was present in the workplace. The OPC particle-size distribution and an estimated average particle density of both aerosol components were used to calculate the mass concentration. The inhalable and respirable aerosol fractions

  19. The Spatial and Temporal Distributions of Absorbing Aerosols over East Asia

    Directory of Open Access Journals (Sweden)

    Litai Kang

    2017-10-01

    Full Text Available Absorbing aerosols can strongly absorb solar radiation and have a profound impact on the global and regional climate. Black carbon (BC, organic carbon (OC and dust are three major types of absorbing aerosols. In order to deepen the overall understanding of absorbing aerosols over East Asia and provide a basis for further investigation of its role in enhanced warming in drylands, the spatial-temporal distribution of absorbing aerosols over East Asia for the period of 2005–2016 was investigated based on the Ozone Monitoring Instrument (OMI satellite retrievals. Overall, high values of Aerosol Absorption Optical Depth (AAOD mainly distribute near dust sources as well as BC and OC sources. AAOD reaches its maximum during spring over East Asia as a result of dust activity and biomass burning. Single-scattering albedo (SSA is comparatively high (>0.96 in the most part of East Asia in the summer, indicating the dominance of aerosol scattering. Hyper-arid regions have the highest Aerosol Optical Depth (AOD and AAOD among the five climatic regions, with springtime values up to 0.72 and 0.04, respectively. Humid and sub-humid regions have relatively high AOD and AAOD during the spring and winter and the highest SSA during the summer. AAOD in some areas shows significant upward trends, which is likely due to the increase of BC and OC emission. SSA shows overall downward trends, indicating the enhancement of the aerosol absorption. Analysis of emission inventory and dust index data shows that BC and OC emissions mainly come from the humid regions, while dust sources mainly distribute in drylands.

  20. Chemical composition of size-segregated aerosols in Lhasa city, Tibetan Plateau

    Science.gov (United States)

    Wan, Xin; Kang, Shichang; Xin, Jinyuan; Liu, Bin; Wen, Tianxue; Wang, Pengling; Wang, Yuesi; Cong, Zhiyuan

    2016-06-01

    To reveal the chemical characteristics of size-segregated aerosols in the high-altitude city of Tibetan Plateau, eight-size aerosol samples were collected in Lhasa from March 2013 to February 2014. The annual mean of online PM2.5 was 25.0 ± 16.0 μg m- 3, which was much lower than Asian cities but similar with some European cities. The annual mean concentrations of organic carbon (OC, 7.92 μg m- 3 in PM2.1 and 12.66 μg m- 3 in PM9.0) and elemental carbon (EC, 1.00 μg m- 3 in PM2.1 and 1.21 μg m- 3 in PM9.0) in Lhasa aerosols were considerably lower than those heavily polluted cities such as Beijing and Xi'an, China and Kathmandu, Nepal. Sulfate, NO3-, NH4+ and Ca2 + were 0.75 ± 0.31, 0.82 ± 0.35, 0.38 ± 0.34 and 0.57 ± 0.29 μg m- 3 in fine particles while in coarse particles they were 0.57 ± 0.37, 0.73 ± 0.23, 0.07 ± 0.03 and 2.52 ± 1.37 μg m- 3, respectively. Secondary water-soluble ions composed 35.8% of the total ionic components in fine particles according to the established electroneutrality, while in coarse particles they took up only 9.3%. Ca2 + (40.6%) was the major component of the coarse particles. For seasonality, the concentrations of OC, EC, SO42 -, NH4+, K+, Ca2 +, Mg2 +, Cl- and Na+ presented higher values during late autumn and winter but were relatively lower in spring and summer. Nevertheless, NO3- was considerably higher in summer and autumn, presumably due to increased tourist-vehicle emissions. During winter and spring, [Ca2 +]/[NO3-+ SO42 -] ratios in coarse particles showed higher values of 7.31 and 6.17, respectively, emphasizing the dust influence. [NO3-]/[SO42 -] ratios in fine particles during spring, summer and autumn exceeding 1 indicated that the currently predominant vehicle exhaust makes a greater contribution to the aerosols. While more stationary sources such as coal and biomass burning existed in winter since the [NO3-]/[SO42 -] ratio was less than 1. Different sources and formation processes lead to a bimodal size

  1. Characterization of distinct Arctic aerosol accumulation modes and their sources

    Science.gov (United States)

    Lange, R.; Dall'Osto, M.; Skov, H.; Nøjgaard, J. K.; Nielsen, I. E.; Beddows, D. C. S.; Simo, R.; Harrison, R. M.; Massling, A.

    2018-06-01

    In this work we use cluster analysis of long term particle size distribution data to expand an array of different shorter term atmospheric measurements, thereby gaining insights into longer term patterns and properties of Arctic aerosol. Measurements of aerosol number size distributions (9-915 nm) were conducted at Villum Research Station (VRS), Station Nord in North Greenland during a 5 year record (2012-2016). Alongside this, measurements of aerosol composition, meteorological parameters, gaseous compounds and cloud condensation nuclei (CCN) activity were performed during different shorter occasions. K-means clustering analysis of particle number size distributions on daily basis identified several clusters. Clusters of accumulation mode aerosols (main size modes > 100 nm) accounted for 56% of the total aerosol during the sampling period (89-91% during February-April, 1-3% during June-August). By association to chemical composition, cloud condensation nuclei properties, and meteorological variables, three typical accumulation mode aerosol clusters were identified: Haze (32% of the time), Bimodal (14%) and Aged (6%). In brief: (1) Haze accumulation mode aerosol shows a single mode at 150 nm, peaking in February-April, with highest loadings of sulfate and black carbon concentrations. (2) Accumulation mode Bimodal aerosol shows two modes, at 38 nm and 150 nm, peaking in June-August, with the highest ratio of organics to sulfate concentrations. (3) Aged accumulation mode aerosol shows a single mode at 213 nm, peaking in September-October and is associated with cloudy and humid weather conditions during autumn. The three aerosol clusters were considered alongside CCN concentrations. We suggest that organic compounds, that are likely marine biogenic in nature, greatly influence the Bimodal cluster and contribute significantly to its CCN activity. This stresses the importance of better characterizing the marine ecosystem and the aerosol-mediated climate effects in the

  2. Aerosol science: theory and practice

    International Nuclear Information System (INIS)

    Williams, M.M.R.; Loyalka, S.K.

    1991-01-01

    The purpose of this book is twofold. First, it is intended to give a thorough treatment of the fundamentals of aerosol behavior with rigorous proofs and detailed derivations of the basic equations and removal mechanisms. Second, it is intended to provide practical examples with special attention to radioactive particles and their distribution in size following a radioactive release arising from an accident with a nuclear system. We start with a brief introduction to the applications of aerosol science and the characteristics of aerosols in Chapter 1. In Chapter 2, we devote considerable attention to single and two particle motion with respect to both translation and rotation. Chapter 3 contains extensive discussion of the aerosol general dynamical equation and the dependences of aerosol distributions on size, shape, space, composition, radioactivity, and charge. Important particle rate processes of coagulation, condensation, and deposition/resuspension are discussed in the chapters 4, 6 and 7, respectively. In Chapter 5, we provide a thorough treatment of the analytical and numerical methods used in solving the various forms of the aerosol dynamical equation. We discuss the importance and applications of aerosol science to nuclear technology and, in particular, the nuclear source term in Chapter 8. Our focus in this chapter is on discussions of nuclear accidents that can potentially release large amount of radioactivity to environment. We also discuss the progress that has been made in understanding the natural and engineered aerosol processes that limit or affect such releases. (author)

  3. Polar organic marker compounds in atmospheric aerosols during the LBA-SMOCC 2002 biomass burning experiment in Rondônia, Brazil: sources and source processes, time series, diel variations and size distributions

    Directory of Open Access Journals (Sweden)

    M. Claeys

    2010-10-01

    Full Text Available Measurements of polar organic marker compounds were performed on aerosols that were collected at a pasture site in the Amazon basin (Rondônia, Brazil using a high-volume dichotomous sampler (HVDS and a Micro-Orifice Uniform Deposit Impactor (MOUDI within the framework of the 2002 LBA-SMOCC (Large-Scale Biosphere Atmosphere Experiment in Amazônia – Smoke Aerosols, Clouds, Rainfall, and Climate: Aerosols From Biomass Burning Perturb Global and Regional Climate campaign. The campaign spanned the late dry season (biomass burning, a transition period, and the onset of the wet season (clean conditions. In the present study a more detailed discussion is presented compared to previous reports on the behavior of selected polar marker compounds, including levoglucosan, malic acid, isoprene secondary organic aerosol (SOA tracers and tracers for fungal spores. The tracer data are discussed taking into account new insights that recently became available into their stability and/or aerosol formation processes. During all three periods, levoglucosan was the most dominant identified organic species in the PM2.5 size fraction of the HVDS samples. In the dry period levoglucosan reached concentrations of up to 7.5 μg m−3 and exhibited diel variations with a nighttime prevalence. It was closely associated with the PM mass in the size-segregated samples and was mainly present in the fine mode, except during the wet period where it peaked in the coarse mode. Isoprene SOA tracers showed an average concentration of 250 ng m−3 during the dry period versus 157 ng m−3 during the transition period and 52 ng m−3 during the wet period. Malic acid and the 2-methyltetrols exhibited a different size distribution pattern, which is consistent with different aerosol formation processes (i.e., gas-to-particle partitioning in the case of malic acid and heterogeneous formation from gas-phase precursors in the case of

  4. Fast Multispectral Fireball Analyses and the Relation to Particles’ Aerosolization

    International Nuclear Information System (INIS)

    Sharon, A.; Halevy, I.; Sattinger, D.; Berenstein, Z.; Neuman, R.; Banaim, P.; Pinhas, M.; Yaar, I.

    2014-01-01

    One of the key questions in analyzing the consequent risk following an explosion of radiological dispersal device (RDD) is the final radioactive particles’ size distribution caused by the detonation. Fine, respirable, aerosols behave different when compare it to large, non respirable, aerosols or to inertial particles. While aerosols (both, respirable and non respirable) are trapped inside the detonation cloud moving downwind with the cloud, heavier, inertial particles escape the initial fireball and settled on the ground at a short distances due to hydrodynamic drug. Respirable aerosols are mostly risky when inhaled into the body (internal radiation) while non respirable are risky as an external exposure agents (both on the skin and from a distance). Knowing the size distribution of the radioactive particles will, thus, enable more realistic risk assessment predictions of such events. Fast multispectral radiometry of detonation fireballs can be used as novel tool for the estimation of the RA material final size distribution

  5. Aerosol activation and cloud processing in the global aerosol-climate model ECHAM5-HAM

    Directory of Open Access Journals (Sweden)

    G. J. Roelofs

    2006-01-01

    Full Text Available A parameterization for cloud processing is presented that calculates activation of aerosol particles to cloud drops, cloud drop size, and pH-dependent aqueous phase sulfur chemistry. The parameterization is implemented in the global aerosol-climate model ECHAM5-HAM. The cloud processing parameterization uses updraft speed, temperature, and aerosol size and chemical parameters simulated by ECHAM5-HAM to estimate the maximum supersaturation at the cloud base, and subsequently the cloud drop number concentration (CDNC due to activation. In-cloud sulfate production occurs through oxidation of dissolved SO2 by ozone and hydrogen peroxide. The model simulates realistic distributions for annually averaged CDNC although it is underestimated especially in remote marine regions. On average, CDNC is dominated by cloud droplets growing on particles from the accumulation mode, with smaller contributions from the Aitken and coarse modes. The simulations indicate that in-cloud sulfate production is a potentially important source of accumulation mode sized cloud condensation nuclei, due to chemical growth of activated Aitken particles and to enhanced coalescence of processed particles. The strength of this source depends on the distribution of produced sulfate over the activated modes. This distribution is affected by uncertainties in many parameters that play a direct role in particle activation, such as the updraft velocity, the aerosol chemical composition and the organic solubility, and the simulated CDNC is found to be relatively sensitive to these uncertainties.

  6. The effect of varying physical and chemical characteristics of inhaled plutonium aerosols on metabolism and excretion

    International Nuclear Information System (INIS)

    Mewhinney, J.A.; Muggenburg, B.A.; McClellan, R.O.; Miglio, J.J.

    1976-01-01

    The effects of different chemical and physical parameters of plutonium aerosols on lung retention, tissue distribution and excretion patterns were evaluated in beagle dogs. Polydisperse aerosols of 239 Pu of different chemical form were produced by heating droplets nebulized from a solution of 239 PuIV in 1M HC1 to temperatures ranging from 325 0 C to 1150 0 C. Droplets containing 238 Pu(OH) 4 were treated at 1150 0 C and the resultant polydisperse aerosol used or separated into monodisperse size groups. Beagle dogs were exposed by inhalation to provide initial lung burdens in the range of 0.75 to 1.0μCi. The aerosols were characterized as to particle size and size distribution, and an in-vitro solubility measurement was made on samples of the aerosol from each animal exposure. Different production temperatures for the 239 Pu aerosols resulted in lung retention half-times that increased as the production temperature increased. The 239 Pu tissue distribution and urinary excretion patterns were correlated with lung retention. Faecal excretion was greater for aerosols produced at lower temperatures. Lung retention half-times for 238 Pu monodisperse aerosols were not greatly different from particle sizes of 0.8 and 1.9μm activity median aerodynamic diameter (AMAD). The third monodisperse aerosol intended to be 3.0μm AMAD had a bimodal particle size distribution and contained a significant fraction of readily soluble material. The 238 Pu polydisperse aerosol had a slightly lower lung retention, increased urinary excretion and translocation to tissues than the comparable 239 Pu polydisperse material. This study serves to emphasize the importance of complete analysis of the aerosol material as well as early excretion data following accidental human exposure to aerosols containing plutonium. The role of chemical form and aerosol particle size in evaluation of such cases is discussed. (author)

  7. Studies on aerosol properties during ICARB–2006 campaign period ...

    Indian Academy of Sciences (India)

    Continuous and campaign-based aerosol field measurements are essential in understanding funda- ... aerosol mass concentration and aerosol particle size distribution were carried out during the cam- .... the details provided by the supplier, the calibration ..... solar flux at the surface, derived from principal-plane sky.

  8. Aerosol number size distribution and new particle formation at a rural/coastal site in Pearl River Delta (PRD) of China

    Science.gov (United States)

    Liu, Shang; Hu, Min; Wu, Zhijun; Wehner, Birgit; Wiedensohler, Alfred; Cheng, Yafang

    Continuous measurements of aerosol number size distribution in the range of 3 nm-10 μm were performed in Pearl River Delta (PRD), China. These measurements were made during the period of 3 October to 5 November in 2004 at rural/coastal site, Xinken (22°37'N, 113°35'E, 6 m above sea level), in the south suburb of Guangzhou City (22°37'N, 113°35'E, 6 m above sea level), using a Twin Differential Mobility Particle Sizer (TDMPS) combined with an Aerodynamic Particle Sizer (APS). The aerosol particles at Xinken were divided into four groups according to the observation results: nucleation mode particles (3-30 nm), Aitken mode particles (30-130 nm), accumulation mode particles (130-1000 nm) and coarse mode particles (1-10 μm). Concentrations of nucleation mode, Aitken mode and accumulation mode particles were observed in the same order of magnitude (about 10,000 cm -3), among which the concentration of Aitken mode particle was the highest. The Aitken mode particles usually had two peaks: the morning peak may be caused by the land-sea circulation, which is proven to be important for transporting aged aerosols back to the sampling site, while the noon peak was ascribed to the condensational growth of new particles. New particle formation events were found on 7 days of 27 days, the new particle growth rates ranged from 2.2 to 19.8 nm h -1 and the formation rates ranged from 0.5 to 5.2 cm -3 s -1, both of them were in the range of typical observed formation rates (0.01-10 cm -3 s -1) and typical particle growth rates (1-20 nm h -1). The sustained growth of the new particles for several hours under steady northeast wind indicated that the new particle formation events may occur in a large homogeneous air mass.

  9. Characterization of a monodispersed aerosol exposure system for beagle dogs

    International Nuclear Information System (INIS)

    Cannon, W.C.; Herring, J.P.; Craig, D.K.

    1978-01-01

    A monodispersed aerosol exposure system for dogs is described and data are presented on aerosol depositions in the exposure system which could affect the aerosol presented to the animals by reducing the concentration and changing the particle size distribution

  10. The attachment of radon daughters to submicron aerosol particles

    International Nuclear Information System (INIS)

    Grenier, M.G.; Bigu, J.

    1984-04-01

    A study of the effects of aerosol concentration, aerosol size distribution and relative humidity on the Working Level and the radon daughter concentration was conducted in a 3000 L radon environmental chamber. Typical values of the aerosol concentration varied in the 1 x 10 3 particles/cm 3 to 4.5 x 10 5 particles/cm 3 range. Various size distributions of aerosols that have mean diffusional aerodynamic diameters of .025 μm, .045 μm and .090 μm were tested. A good correlation was found between the Working Level and the aerosol concentration as well as the relative humidity. Most of the activity seems to be associated with particles of diameter between .05 μm and .2 μm. The results presented here are in agreement with work done by other investigators in the health physics field

  11. Time Dependence of Aerosol Light Scattering Downwind of Forest Fires

    Science.gov (United States)

    Kleinman, L. I.; Sedlacek, A. J., III; Wang, J.; Lewis, E. R.; Springston, S. R.; Chand, D.; Shilling, J.; Arnott, W. P.; Freedman, A.; Onasch, T. B.; Fortner, E.; Zhang, Q.; Yokelson, R. J.; Adachi, K.; Buseck, P. R.

    2017-12-01

    In the first phase of BBOP (Biomass Burn Observation Project), a Department of Energy (DOE) sponsored study, wildland fires in the Pacific Northwest were sampled from the G-1 aircraft via sequences of transects that encountered emission whose age (time since emission) ranged from approximately 15 minutes to four hours. Comparisons between transects allowed us to determine the near-field time evolution of trace gases, aerosol particles, and optical properties. The fractional increase in aerosol concentration with plume age was typically less than a third of the fractional increase in light scattering. In some fires the increase in light scattering exceeded a factor of two. Two possible causes for the discrepancy between scattering and aerosol mass are i) the downwind formation of refractory tar balls that are not detected by the AMS and therefore contribute to scattering but not to aerosol mass and ii) changes to the aerosol size distribution. Both possibilities are considered. Our information on tar balls comes from an analysis of TEM grids. A direct determination of size changes is complicated by extremely high aerosol number concentrations that caused coincidence problems for the PCASP and UHSAS probes. We instead construct a set of plausible log normal size distributions and for each member of the set do Mie calculations to determine mass scattering efficiency (MSE), angstrom exponents, and backscatter ratios. Best fit size distributions are selected by comparison with observed data derived from multi-wavelength scattering measurements, an extrapolated FIMS size distribution, and mass measurements from an SP-AMS. MSE at 550 nm varies from a typical near source value of 2-3 to about 4 in aged air.

  12. Studies on aerosol properties during ICARB–2006 campaign period ...

    Indian Academy of Sciences (India)

    Synchronous measurements of Aerosol Optical Depth (AOD), Black Carbon (BC) aerosol mass concentration and aerosol particle size distribution were carried out during the campaign period at tropical urban regions of Hyderabad, India. Daily satellite datasets of DMSP-OLS were processed for night-time forest fires over ...

  13. Inverse estimation of the particle size distribution using the Fruit Fly Optimization Algorithm

    International Nuclear Information System (INIS)

    He, Zhenzong; Qi, Hong; Yao, Yuchen; Ruan, Liming

    2015-01-01

    The Fruit Fly Optimization Algorithm (FOA) is applied to retrieve the particle size distribution (PSD) for the first time. The direct problems are solved by the modified Anomalous Diffraction Approximation (ADA) and the Lambert–Beer Law. Firstly, three commonly used monomodal PSDs, i.e. the Rosin–Rammer (R–R) distribution, the normal (N–N) distribution and the logarithmic normal (L–N) distribution, and the bimodal Rosin–Rammer distribution function are estimated in the dependent model. All the results show that the FOA can be used as an effective technique to estimate the PSDs under the dependent model. Then, an optimal wavelength selection technique is proposed to improve the retrieval results of bimodal PSD. Finally, combined with two general functions, i.e. the Johnson's S B (J-S B ) function and the modified beta (M-β) function, the FOA is employed to recover actual measurement aerosol PSDs over Beijing and Hangzhou obtained from the aerosol robotic network (AERONET). All the numerical simulations and experiment results demonstrate that the FOA can be used to retrieve actual measurement PSDs, and more reliable and accurate results can be obtained, if the J-S B function is employed

  14. Whole-body nanoparticle aerosol inhalation exposures.

    Science.gov (United States)

    Yi, Jinghai; Chen, Bean T; Schwegler-Berry, Diane; Frazer, Dave; Castranova, Vince; McBride, Carroll; Knuckles, Travis L; Stapleton, Phoebe A; Minarchick, Valerie C; Nurkiewicz, Timothy R

    2013-05-07

    Inhalation is the most likely exposure route for individuals working with aerosolizable engineered nano-materials (ENM). To properly perform nanoparticle inhalation toxicology studies, the aerosols in a chamber housing the experimental animals must have: 1) a steady concentration maintained at a desired level for the entire exposure period; 2) a homogenous composition free of contaminants; and 3) a stable size distribution with a geometric mean diameter generation of aerosols containing nanoparticles is quite challenging because nanoparticles easily agglomerate. This is largely due to very strong inter-particle forces and the formation of large fractal structures in tens or hundreds of microns in size (6), which are difficult to be broken up. Several common aerosol generators, including nebulizers, fluidized beds, Venturi aspirators and the Wright dust feed, were tested; however, none were able to produce nanoparticle aerosols which satisfy all criteria (5). A whole-body nanoparticle aerosol inhalation exposure system was fabricated, validated and utilized for nano-TiO2 inhalation toxicology studies. Critical components: 1) novel nano-TiO2 aerosol generator; 2) 0.5 m(3) whole-body inhalation exposure chamber; and 3) monitor and control system. Nano-TiO2 aerosols generated from bulk dry nano-TiO2 powders (primary diameter of 21 nm, bulk density of 3.8 g/cm(3)) were delivered into the exposure chamber at a flow rate of 90 LPM (10.8 air changes/hr). Particle size distribution and mass concentration profiles were measured continuously with a scanning mobility particle sizer (SMPS), and an electric low pressure impactor (ELPI). The aerosol mass concentration (C) was verified gravimetrically (mg/m(3)). The mass (M) of the collected particles was determined as M = (Mpost-Mpre), where Mpre and Mpost are masses of the filter before and after sampling (mg). The mass concentration was calculated as C = M/(Q*t), where Q is sampling flowrate (m(3)/min), and t is the sampling

  15. Detection limit improvements forecasted at CTBTO IMS radionuclide stations based on size separation of aerosols by aerodynamic diameter

    International Nuclear Information System (INIS)

    Biegalski, S.; Ezekoye, O.A.; Pena, J.M.; Waye, S.; Pickering, M.

    2008-01-01

    Studies show that aerosols with natural activity have an aerodynamic diameter in the range of 0.1 to 1 μm. In contrast, nuclear explosions generally produce radioactive aerosols with aerodynamic diameters less than 0.1 μm and greater than 1 μm. These differences in aerosol sizes are quite fortuitous because they allow aerosol aerodynamic diameter to be utilized as a physical property to separate aerosols of natural origin from those produced in a nuclear explosion. Data collected in Austin, TX and at U.S. CTBT IMS radionuclide stations have been utilized to forecast detection limit improvements possible given an aerosol size separation capability. (author)

  16. Size-resolved mass concentrations of iron oxide aerosols and size-resolved number concentrations of iron oxide aerosols collected from King Air aircraft in Yellow Sea and East China Sea from 2013-02-14 to 2013-03-10 (NCEI Accession 0162201)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains size-resolved mass concentrations of iron oxide aerosols and size-resolved number concentrations of iron oxide aerosols, measured using the...

  17. Raman microscopy of size-segregated aerosol particles, collected at the Sonnblick Observatory in Austria

    Science.gov (United States)

    Ofner, Johannes; Kasper-Giebl, Anneliese; Kistler, Magdalena; Matzl, Julia; Schauer, Gerhard; Hitzenberger, Regina; Lohninger, Johann; Lendl, Bernhard

    2014-05-01

    Size classified aerosol samples were collected using low pressure impactors in July 2013 at the high alpine background site Sonnnblick. The Sonnblick Observatory is located in the Austrian Alps, at the summit of Sonnblick 3100 m asl. Sampling was performed in parallel on the platform of the Observatory and after the aerosol inlet. The inlet is constructed as a whole air inlet and is operated at an overall sampling flow of 137 lpm and heated to 30 °C. Size cuts of the eight stage low pressure impactors were from 0.1 to 12.8 µm a.d.. Alumina foils were used as sample substrates for the impactor stages. In addition to the size classified aerosol sampling overall aerosol mass (Sharp Monitor 5030, Thermo Scientific) and number concentrations (TSI, CPC 3022a; TCC-3, Klotz) were determined. A Horiba LabRam 800HR Raman microscope was used for vibrational mapping of an area of about 100 µm x 100 µm of the alumina foils at a resolution of about 0.5 µm. The Raman microscope is equipped with a laser with an excitation wavelength of 532 nm and a grating with 300 gr/mm. Both optical images and the related chemical images were combined and a chemometric investigation of the combined images was done using the software package Imagelab (Epina Software Labs). Based on the well-known environment, a basic assignment of Raman signals of single particles is possible at a sufficient certainty. Main aerosol constituents e.g. like sulfates, black carbon and mineral particles could be identified. First results of the chemical imaging of size-segregated aerosol, collected at the Sonnblick Observatory, will be discussed with respect to standardized long-term measurements at the sampling station. Further, advantages and disadvantages of chemical imaging with subsequent chemometric investigation of the single images will be discussed and compared to the established methods of aerosol analysis. The chemometric analysis of the dataset is focused on mixing and variation of single compounds at

  18. Characterization of aerosols produced by surgical procedures

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, H.C.; Muggenburg, B.A.; Lundgren, D.L.; Guilmette, R.A.; Snipes, M.B.; Jones, R.K. [Inhalation Toxicology Research Institute, Albuquerque, NM (United States); Turner, R.S. [Lovelace Health Systems, Albuquerque, NM (United States)

    1994-07-01

    In many surgeries, especially orthopedic procedures, power tools such as saws and drills are used. These tools may produce aerosolized blood and other biological material from bone and soft tissues. Surgical lasers and electrocautery tools can also produce aerosols when tissues are vaporized and condensed. Studies have been reported in the literature concerning production of aerosols during surgery, and some of these aerosols may contain infectious material. Garden et al. (1988) reported the presence of papilloma virus DNA in the fumes produced from laser surgery, but the infectivity of the aerosol was not assessed. Moon and Nininger (1989) measured the size distribution and production rate of emissions from laser surgery and found that particles were generally less than 0.5 {mu}m diameter. More recently there has been concern expressed over the production of aerosolized blood during surgical procedures that require power tools. In an in vitro study, the production of an aerosol containing the human immunodeficiency virus (HIV) was reported when power tools were used to cut tissues with blood infected with HIV. Another study measured the size distribution of blood aerosols produced by surgical power tools and found blood-containing particles in a number of size ranges. Health care workers are anxious and concerned about whether surgically produced aerosols are inspirable and can contain viable pathogens such as HIV. Other pathogens such as hepatitis B virus (HBV) are also of concern. The Occupational Safety and Health funded a project at the National Institute for Inhalation Toxicology Research Institute to assess the extent of aerosolization of blood and other tissues during surgical procedures. This document reports details of the experimental and sampling approach, methods, analyses, and results on potential production of blood-associated aerosols from surgical procedures in the laboratory and in the hospital surgical suite.

  19. Lidar measurements of ozone and aerosol distributions during the 1992 airborne Arctic stratospheric expedition

    Science.gov (United States)

    Browell, Edward V.; Butler, Carolyn F.; Fenn, Marta A.; Grant, William B.; Ismail, Syed; Carter, Arlen F.

    1994-01-01

    The NASA Langley airborne differential absorption lidar system was operated from the NASA Ames DC-8 aircraft during the 1992 Airborne Arctic Stratospheric Expedition to investigate the distribution of stratospheric aerosols and ozone (O3) across the Arctic vortex from January to March 1992. Aerosols from the Mt. Pinatubo eruption were found outside and inside the Arctic vortex with distinctly different scattering characteristics and spatial distributions in the two regions. The aerosol and O3 distributions clearly identified the edge of the vortex and provided additional information on vortex dynamics and transport processes. Few polar stratospheric clouds were observed during the AASE-2; however, those that were found had enhanced scattering and depolarization over the background Pinatubo aerosols. The distribution of aerosols inside the vortex exhibited relatively minor changes during the AASE-2. Ozone depletion inside the vortex as limited to less than or equal to 20 percent in the altitude region from 15-20 km.

  20. Characterizing and Understanding Aerosol Optical Properties: CARES - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Cappa, Christopher D [Univ. of California, Davis, CA (United States); Atkinson, Dean B [Portland State Univ., Portland, OR (United States)

    2017-12-17

    The scientific focus of this study was to use ambient measurements to develop new insights into the understanding of the direct radiative forcing by atmospheric aerosol particles. The study used data collected by the PI’s and others as part of both the 2010 U.S. Department of Energy (DOE) sponsored Carbonaceous Aerosols and Radiative Effects Study (CARES), which took place in and around Sacramento, CA, and the 2012 Clean Air for London (ClearfLo) study. We focus on measurements that were made of aerosol particle optical properties, namely the wavelength-dependent light absorption, scattering and extinction. Interpretation of these optical property measurements is facilitated through consideration of complementary measurements of the aerosol particle chemical composition and size distributions. With these measurements, we addressed the following general scientific questions: 1. How does light scattering and extinction by atmospheric aerosol particles depend on particle composition, water uptake, and size? 2. To what extent is light absorption by aerosol particles enhanced through the mixing of black carbon with other particulate components? 3. What relationships exist between intensive aerosol particle optical properties, and how do these depend on particle source and photochemical aging? 4. How well do spectral deconvolution methods, which are commonly used in remote sensing, retrieve information about particle size distributions?

  1. Particle size distribution of mainstream tobacco and marijuana smoke. Analysis using the electrical aerosol analyzer.

    Science.gov (United States)

    Anderson, P J; Wilson, J D; Hiller, F C

    1989-07-01

    Accurate measurement of cigarette smoke particle size distribution is important for estimation of lung deposition. Most prior investigators have reported a mass median diameter (MMD) in the size range of 0.3 to 0.5 micron, with a small geometric standard deviation (GSD), indicating few ultrafine (less than 0.1 micron) particles. A few studies, however, have suggested the presence of ultrafine particles by reporting a smaller count median diameter (CMD). Part of this disparity may be due tot he inefficiency to previous sizing methods in measuring ultrafine size range, to evaluate size distribution of smoke from standard research cigarettes, commercial filter cigarettes, and from marijuana cigarettes with different delta 9-tetrahydrocannabinol contents. Four 35-cm3, 2-s puffs were generated at 60-s intervals, rapidly diluted, and passed through a charge neutralizer and into a 240-L chamber. Size distribution for six cigarettes of each type was measured, CMD and GSD were determined from a computer-generated log probability plot, and MMD was calculated. The size distribution parameters obtained were similar for all cigarettes tested, with an average CMD of 0.1 micron, a MMD of 0.38 micron, and a GSD of 2.0. The MMD found using the EAA is similar to that previously reported, but the CMD is distinctly smaller and the GSD larger, indicating the presence of many more ultrafine particles. These results may explain the disparity of CMD values found in existing data. Ultrafine particles are of toxicologic importance because their respiratory tract deposition is significantly higher than for particles 0.3 to 0.5 micron and because their large surface area facilitates adsorption and delivery of potentially toxic gases to the lung.

  2. Characterisation of a uranium fire aerosol

    International Nuclear Information System (INIS)

    Leuscher, A.H.

    1976-01-01

    Uranium swarf, which can burn spontaneously in air, creates an aerosol which is chemically toxic and radiotoxic. The uptake of uranium oxide in the respiratory system is determined to a large extent by the characteristics of the aerosol. A study has been made of the methods by which aerosols can be characterised. The different measured and defined characteristics of particles are given. The normal and lognormal particle size distributions are discussed. Shape factors interrelating characteristics are explained. Experimental techniques for the characterisation of an aerosol are discussed, as well as the instruments that have been used in this study; namely the Andersen impactor, point-to-plane electrostatic precipitator and the Pollak counter. Uranium swarf was made to burn with a heated filament, and the resulting aerosol was measured. Optical and electron microscopy have been used for the determination of the projected area diameters, and the aerodynamic diameters have been determined with the impactor. The uranium fire aerosol can be represented by a bimodal, or monomodal, lognormal particle size distribution depending on the way in which the swarf burns. The determined activity median aerodynamic diameter of the two peaks were 0,49μm and 6,0μm respectively [af

  3. Filter-based Aerosol Measurement Experiments using Spherical Aerosol Particles under High Temperature and High Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Chan; Jung, Woo Young; Lee, Hyun Chul; Lee, Doo Young [FNC TECH., Yongin (Korea, Republic of)

    2016-05-15

    Optical Particle Counter (OPC) is used to provide real-time measurement of aerosol concentration and size distribution. Glass fiber membrane filter also be used to measure average mass concentration. Three tests (MTA-1, 2 and 3) have been conducted to study thermal-hydraulic effect, a filtering tendency at given SiO{sub 2} particles. Based on the experimental results, the experiment will be carried out further with a main carrier gas of steam and different aerosol size. The test results will provide representative behavior of the aerosols under various conditions. The aim of the tests, MTA 1, 2 and 3, are to be able to 1) establish the test manuals for aerosol generation, mixing, sampling and measurement system, which defines aerosol preparation, calibration, operating and evaluation method under high pressure and high temperature 2) develop commercial aerosol test modules applicable to the thermal power plant, environmental industry, automobile exhaust gas, chemical plant, HVAC system including nuclear power plant. Based on the test results, sampled aerosol particles in the filter indicate that important parameters affecting aerosol behavior aerosols are 1) system temperature to keep above a evaporation temperature of ethanol and 2) aerosol losses due to the settling by ethanol liquid droplet.

  4. Instrumentation for tropospheric aerosol characterization

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Z.; Young, S.E.; Becker, C.H.; Coggiola, M.J. [SRI International, Menlo Park, CA (United States); Wollnik, H. [Giessen Univ. (Germany)

    1997-12-31

    A new instrument has been developed that determines the abundance, size distribution, and chemical composition of tropospheric and lower stratospheric aerosols with diameters down to 0.2 {mu}m. In addition to aerosol characterization, the instrument also monitors the chemical composition of the ambient gas. More than 25.000 aerosol particle mass spectra were recorded during the NASA-sponsored Subsonic Aircraft: Contrail and Cloud Effects Special Study (SUCCESS) field program using NASA`s DC-8 research aircraft. (author) 7 refs.

  5. Instrumentation for tropospheric aerosol characterization

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Z; Young, S E; Becker, C H; Coggiola, M J [SRI International, Menlo Park, CA (United States); Wollnik, H [Giessen Univ. (Germany)

    1998-12-31

    A new instrument has been developed that determines the abundance, size distribution, and chemical composition of tropospheric and lower stratospheric aerosols with diameters down to 0.2 {mu}m. In addition to aerosol characterization, the instrument also monitors the chemical composition of the ambient gas. More than 25.000 aerosol particle mass spectra were recorded during the NASA-sponsored Subsonic Aircraft: Contrail and Cloud Effects Special Study (SUCCESS) field program using NASA`s DC-8 research aircraft. (author) 7 refs.

  6. On the sub-micron aerosol size distribution in a coastal-rural site at El Arenosillo Station (SW – Spain

    Directory of Open Access Journals (Sweden)

    M. Sorribas

    2011-11-01

    Full Text Available This study focuses on the analysis of the sub-micron aerosol characteristics at El Arenosillo Station, a rural and coastal environment in South-western Spain between 1 August 2004 and 31 July 2006 (594 days. The mean total concentration (NT was 8660 cm−3 and the mean concentrations in the nucleation (NNUC, Aitken (NAIT and accumulation (NACC particle size ranges were 2830 cm−3, 4110 cm−3 and 1720 cm−3, respectively. Median size distribution was characterised by a single-modal fit, with a geometric diameter, median number concentration and geometric standard deviation of 60 nm, 5390 cm−3 and 2.31, respectively. Characterisation of primary emissions, secondary particle formation, changes to meteorology and long-term transport has been necessary to understand the seasonal and annual variability of the total and modal particle concentration. Number concentrations exhibited a diurnal pattern with maximum concentrations around noon. This was governed by the concentrations of the nucleation and Aitken modes during the warm seasons and only by the nucleation mode during the cold seasons. Similar monthly mean total concentrations were observed throughout the year due to a clear inverse variation between the monthly mean NNUC and NACC. It was related to the impact of desert dust and continental air masses on the monthly mean particle levels. These air masses were associated with high values of NACC which suppressed the new particle formation (decreasing NNUC. Each day was classified according to a land breeze flow or a synoptic pattern influence. The median size distribution for desert dust and continental aerosol was dominated by the Aitken and accumulation modes, and marine air masses were dominated by the nucleation and Aitken modes. Particles

  7. AEROSOL VARIABILITY OBSERVED WITH RPAS

    Directory of Open Access Journals (Sweden)

    B. Altstädter

    2013-08-01

    Full Text Available To observe the origin, vertical and horizontal distribution and variability of aerosol particles, and especially ultrafine particles recently formed, we plan to employ the remotely piloted aircraft system (RPAS Carolo-P360 "ALADINA" of TU Braunschweig. The goal of the presented project is to investigate the vertical and horizontal distribution, transport and small-scale variability of aerosol particles in the atmospheric boundary layer using RPAS. Two additional RPAS of type MASC of Tübingen University equipped with turbulence instrumentation add the opportunity to study the interaction of the aerosol concentration with turbulent transport and exchange processes of the surface and the atmosphere. The combination of different flight patterns of the three RPAS allows new insights in atmospheric boundary layer processes. Currently, the different aerosol sensors are miniaturized at the Leibniz Institute for Tropospheric Research, Leipzig and together with the TU Braunschweig adapted to fit into the RPAS. Moreover, an additional meteorological payload for measuring temperature, humidity and turbulence properties is constructed by Tübingen University. Two condensation particle counters determine the total aerosol number with a different lower detection threshold in order to investigate the horizontal and vertical aerosol variability and new particle formation (aerosol particles of some nm diameter. Further the aerosol size distribution in the range from about 0.300 to ~5 μm is given by an optical particle counter.

  8. Black carbon's contribution to aerosol absorption optical depth over S. Korea

    Science.gov (United States)

    Lamb, K.; Perring, A. E.; Beyersdorf, A. J.; Anderson, B. E.; Segal-Rosenhaimer, M.; Redemann, J.; Holben, B. N.; Schwarz, J. P.

    2017-12-01

    Aerosol absorption optical depth (AAOD) monitored by ground-based sites (AERONET, SKYNET, etc.) is used to constrain climate radiative forcing from black carbon (BC) and other absorbing aerosols in global models, but few validation studies between in situ aerosol measurements and ground-based AAOD exist. AAOD is affected by aerosol size distributions, composition, mixing state, and morphology. Megacities provide appealing test cases for this type of study due to their association with very high concentrations of anthropogenic aerosols. During the KORUS-AQ campaign in S. Korea, which took place in late spring and early summer of 2016, in situ aircraft measurements over the Seoul Metropolitan Area and Taehwa Research Forest (downwind of Seoul) were repeated three times per flight over a 6 week period, providing significant temporal coverage of vertically resolved aerosol properties influenced by different meteorological conditions and sources. Measurements aboard the NASA DC-8 by the NOAA Humidified Dual Single Particle Soot Photometers (HD-SP2) quantified BC mass, size distributions, mixing state, and the hygroscopicity of BC containing aerosols. The in situ BC mass vertical profiles are combined with estimated absorption enhancement calculated from observed optical size and hygroscopicity using Mie theory, and then integrated over the depth of the profile to calculate BC's contribution to AAOD. Along with bulk aerosol size distributions and hygroscopicity, bulk absorbing aerosol optical properties, and on-board sky radiance measurements, these measurements are compared with ground-based AERONET site measurements of AAOD to evaluate closure between in situ vertical profiles of BC and AAOD measurements. This study will provide constraints on the relative importance of BC (including lensing and hygroscopicity effects) and non-BC components to AAOD over S. Korea.

  9. Dependence of columnar aerosol size distribution, optical properties, and chemical components on regional transport in Beijing

    Science.gov (United States)

    Wang, Shuo; Zhao, Weixiong; Xu, Xuezhe; Fang, Bo; Zhang, Qilei; Qian, Xiaodong; Zhang, Weijun; Chen, Weidong; Pu, Wei; Wang, Xin

    2017-11-01

    Seasonal dependence of the columnar aerosol optical and chemical properties on regional transport in Beijing over 10 years (from January 2005 to December 2014) were analyzed by using the ground-based remote sensing combined with backward trajectory analysis. Daily air mass backward trajectories terminated in Beijing were computed with HYSPLIT-4 model and were categorized into five clusters. The columnar mass concentrations of black carbon (BC), brown carbon (BrC), dust (DU), aerosol water content (AW), and ammonium sulfate like aerosol (AS) of each cluster were retrieved from the optical data obtained from the Aerosol Robotic NETwork (AERONET) with five-component model. It was found that the columnar aerosol properties in different seasons were changed, and they were related to the air mass origins. In spring, aerosol was dominated by coarse particles. Summer was characterized by higher single scattering albedo (SSA), lower real part of complex refractive index (n), and obvious hygroscopic growth due to humid air from the south. During autumn and winter, there was an observable increase in absorption aerosol optical thickness (AAOT) and the imaginary part of complex refraction (k), with high levels of retrieved BC and BrC. However, concentrations of BC showed less dependence on the clusters during the two seasons owing to the widely spread coal heating in north China.

  10. A study of the attachment of thoron decay products to aerosols using an aerosol centrifuge

    International Nuclear Information System (INIS)

    Balakrishnan, V.

    1979-01-01

    The physical attachment of radioactive decay products (particulate, not gas) to polydisperse fluorescein aerosal particles in two size ranges 0.1 μM-0.33 μM radius and 0.25 μM-1.35 μM radius has been studied under dynamic conditions with a view to find the fraction of thoron decay products attached to the aerosals and the particle size distribution of the host aerosols in the atmosphere of uranium mines. The experimental set-up and procedure are described. An aerosol cloud of fluorescein was introduced into a reaction chamber containing a steady source of thoron and decay products were allowed to interact and attach to the aerosols in the chamber. To simulate conditions normally encountered in uranium mining and milling operations, the concentration of aerosol particles was kept high as compared to the number of decay products. The Lovelace Aerosol Particle Separator, which is an advanced, continuous centrifugal aerosol separator, was used to sample and separate the tagged aerosols into various size groups. The radioactivity associated with each group was determined. The results show the same dependence of attachment of decay products on the size of aerosol particles as predicted by the diffusion theory proposed by Lassen and Rau (1960), even though the experimental conditions of the present study do not conform to those required to satisfy the above mentioned diffusion theory. The method employed in this work to study attachment is reproducible and simple and can be adopted in uranium and thorium mines and associated processing industries. (M.G.B.)

  11. The impact of aerosol vertical distribution on aerosol optical depth retrieval using CALIPSO and MODIS data: Case study over dust and smoke regions

    Science.gov (United States)

    Wu, Yerong; de Graaf, Martin; Menenti, Massimo

    2017-08-01

    Global quantitative aerosol information has been derived from MODerate Resolution Imaging SpectroRadiometer (MODIS) observations for decades since early 2000 and widely used for air quality and climate change research. However, the operational MODIS Aerosol Optical Depth (AOD) products Collection 6 (C6) can still be biased, because of uncertainty in assumed aerosol optical properties and aerosol vertical distribution. This study investigates the impact of aerosol vertical distribution on the AOD retrieval. We developed a new algorithm by considering dynamic vertical profiles, which is an adaptation of MODIS C6 Dark Target (C6_DT) algorithm over land. The new algorithm makes use of the aerosol vertical profile extracted from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) measurements to generate an accurate top of the atmosphere (TOA) reflectance for the AOD retrieval, where the profile is assumed to be a single layer and represented as a Gaussian function with the mean height as single variable. To test the impact, a comparison was made between MODIS DT and Aerosol Robotic Network (AERONET) AOD, over dust and smoke regions. The results show that the aerosol vertical distribution has a strong impact on the AOD retrieval. The assumed aerosol layers close to the ground can negatively bias the retrievals in C6_DT. Regarding the evaluated smoke and dust layers, the new algorithm can improve the retrieval by reducing the negative biases by 3-5%.

  12. Properties of aerosol floating in the air in a nuclear power plant workplace environment

    International Nuclear Information System (INIS)

    Karasawa, H.; Funabashi, M.; Ito, M.

    1992-01-01

    An investigation was carried out on properties of radioactive aerosol floating in the air at several workplaces in nuclear power plant. The principal results are as follows: the aerosol particle size distributions consisted of two particle groups, whose aerodynamic diameters ranged from 4 to 7 microns and from 0.4 to 0.6 microns; the radioactive aerosol particle size distribution were unimodal. The mean activity median aerodynamic diameter (AMAD) was 6 microns, with geometric standard deviation microns; and, the average density of the aerosol was about 2.2g/cm 3 . (author)

  13. An instrument for the simultaneous acquisition of size, shape, and spectral fluorescence data from single aerosol particles

    Science.gov (United States)

    Hirst, Edwin; Kaye, Paul H.; Foot, Virginia E.; Clark, James M.; Withers, Philip B.

    2004-12-01

    We describe the construction of a bio-aerosol monitor designed to capture and record intrinsic fluorescence spectra from individual aerosol particles carried in a sample airflow and to simultaneously capture data relating to the spatial distribution of elastically scattered light from each particle. The spectral fluorescence data recorded by this PFAS (Particle Fluorescence and Shape) monitor contains information relating to the particle material content and specifically to possible biological fluorophores. The spatial scattering data from PFAS yields information relating to particle size and shape. The combination of these data can provide a means of aiding the discrimination of bio-aerosols from background or interferent aerosol particles which may have similar fluorescence properties but exhibit shapes and/or sizes not normally associated with biological particles. The radiation used both to excite particle fluorescence and generate the necessary spatially scattered light flux is provided by a novel compact UV fiber laser operating at 266nm wavelength. Particles drawn from the ambient environment traverse the laser beam in single file. Intrinsic particle fluorescence in the range 300-570nm is collected via an ellipsoidal concentrator into a concave grating spectrometer, the spectral data being recorded using a 16-anode linear array photomultiplier detector. Simultaneously, the spatial radiation pattern scattered by the particle over 5°-30° scattering angle and 360° of azimuth is recorded using a custom designed 31-pixel radial hybrid photodiode array. Data from up to ~5,000 particles per second may be acquired for analysis, usually performed by artificial neural network classification.

  14. PIXE–PIGE analysis of size-segregated aerosol samples from remote areas

    Energy Technology Data Exchange (ETDEWEB)

    Calzolai, G., E-mail: calzolai@fi.infn.it [Department of Physics and Astronomy, University of Florence and National Institute of Nuclear Physics (INFN), Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Chiari, M.; Lucarelli, F.; Nava, S.; Taccetti, F. [Department of Physics and Astronomy, University of Florence and National Institute of Nuclear Physics (INFN), Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Becagli, S.; Frosini, D.; Traversi, R.; Udisti, R. [Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Italy)

    2014-01-01

    The chemical characterization of size-segregated samples is helpful to study the aerosol effects on both human health and environment. The sampling with multi-stage cascade impactors (e.g., Small Deposit area Impactor, SDI) produces inhomogeneous samples, with a multi-spot geometry and a non-negligible particle stratification. At LABEC (Laboratory of nuclear techniques for the Environment and the Cultural Heritage), an external beam line is fully dedicated to PIXE–PIGE analysis of aerosol samples. PIGE is routinely used as a sidekick of PIXE to correct the underestimation of PIXE in quantifying the concentration of the lightest detectable elements, like Na or Al, due to X-ray absorption inside the individual aerosol particles. In this work PIGE has been used to study proper attenuation correction factors for SDI samples: relevant attenuation effects have been observed also for stages collecting smaller particles, and consequent implications on the retrieved aerosol modal structure have been evidenced.

  15. MATRIX (Multiconfiguration Aerosol TRacker of mIXing state: an aerosol microphysical module for global atmospheric models

    Directory of Open Access Journals (Sweden)

    S. E. Bauer

    2008-10-01

    Full Text Available A new aerosol microphysical module MATRIX, the Multiconfiguration Aerosol TRacker of mIXing state, and its application in the Goddard Institute for Space Studies (GISS climate model (ModelE are described. This module, which is based on the quadrature method of moments (QMOM, represents nucleation, condensation, coagulation, internal and external mixing, and cloud-drop activation and provides aerosol particle mass and number concentration and particle size information for up to 16 mixed-mode aerosol populations. Internal and external mixing among aerosol components sulfate, nitrate, ammonium, carbonaceous aerosols, dust and sea-salt particles are represented. The solubility of each aerosol population, which is explicitly calculated based on its soluble and insoluble components, enables calculation of the dependence of cloud drop activation on the microphysical characterization of multiple soluble aerosol populations.

    A detailed model description and results of box-model simulations of various aerosol population configurations are presented. The box model experiments demonstrate the dependence of cloud activating aerosol number concentration on the aerosol population configuration; comparisons to sectional models are quite favorable. MATRIX is incorporated into the GISS climate model and simulations are carried out primarily to assess its performance/efficiency for global-scale atmospheric model application. Simulation results were compared with aircraft and station measurements of aerosol mass and number concentration and particle size to assess the ability of the new method to yield data suitable for such comparison. The model accurately captures the observed size distributions in the Aitken and accumulation modes up to particle diameter 1 μm, in which sulfate, nitrate, black and organic carbon are predominantly located; however the model underestimates coarse-mode number concentration and size, especially in the marine environment

  16. Evaluating the Sensitivity of the Mass-Based Particle Removal Calculations for HVAC Filters in ISO 16890 to Assumptions for Aerosol Distributions

    Directory of Open Access Journals (Sweden)

    Brent Stephens

    2018-02-01

    Full Text Available High efficiency particle air filters are increasingly being recommended for use in heating, ventilating, and air-conditioning (HVAC systems to improve indoor air quality (IAQ. ISO Standard 16890-2016 provides a methodology for approximating mass-based particle removal efficiencies for PM1, PM2.5, and PM10 using size-resolved removal efficiency measurements for 0.3 µm to 10 µm particles. Two historical volume distribution functions for ambient aerosol distributions are assumed to represent ambient air in urban and rural areas globally. The goals of this work are to: (i review the ambient aerosol distributions used in ISO 16890, (ii evaluate the sensitivity of the mass-based removal efficiency calculation procedures described in ISO 16890 to various assumptions that are related to indoor and outdoor aerosol distributions, and (iii recommend several modifications to the standard that can yield more realistic estimates of mass-based removal efficiencies for HVAC filters, and thus provide a more realistic representation of a greater number of building scenarios. The results demonstrate that knowing the PM mass removal efficiency estimated using ISO 16890 is not sufficient to predict the PM mass removal efficiency in all of the environments in which the filter might be used. The main reason for this insufficiency is that the assumptions for aerosol number and volume distributions can substantially impact the results, albeit with some exceptions.

  17. The penetration of aerosols through fine capillaries

    International Nuclear Information System (INIS)

    Mitchell, J.P.; Edwards, R.T.; Ball, M.H.E.

    1989-10-01

    A novel experimental technique has been developed to study the penetration of aerosol particles ranging from about 1 to 15 μm aerodynamic diameter through capillaries varying from 20 to 80 μm bore and from 10 to 50 mm in length. When the driving pressure was 100 kPa, the penetration of the airborne particles was considerably smaller than expected from a simple comparison of particle diameter with the bore of the capillary. Particle size distributions determined after penetration through the capillaries were in almost all cases similar to the particle size distribution of the aerosol at the capillary entrance. This lack of size-selectivity can be explained in terms of the capillary behaving as a conventional suction-based sampler from a near still (calm) air environment. The resulting particle penetration data are important in assessing the potential for the leakage of aerosols through seals in containers used to transport radioactive materials. (author)

  18. The boiling point of stratospheric aerosols.

    Science.gov (United States)

    Rosen, J. M.

    1971-01-01

    A photoelectric particle counter was used for the measurement of aerosol boiling points. The operational principle involves raising the temperature of the aerosol by vigorously heating a portion of the intake tube. At or above the boiling point, the particles disintegrate rather quickly, and a noticeable effect on the size distribution and concentration is observed. Stratospheric aerosols appear to have the same volatility as a solution of 75% sulfuric acid. Chemical analysis of the aerosols indicates that there are other substances present, but that the sulfate radical is apparently the major constituent.

  19. Variability of aerosol vertical distribution in the Sahel

    Directory of Open Access Journals (Sweden)

    O. Cavalieri

    2010-12-01

    Full Text Available In this work, we have studied the seasonal and inter-annual variability of the aerosol vertical distribution over Sahelian Africa for the years 2006, 2007 and 2008, characterizing the different kind of aerosols present in the atmosphere in terms of their optical properties observed by ground-based and satellite instruments, and their sources searched for by using trajectory analysis. This study combines data acquired by three ground-based micro lidar systems located in Banizoumbou (Niger, Cinzana (Mali and M'Bour (Senegal in the framework of the African Monsoon Multidisciplinary Analysis (AMMA, by the AEROsol RObotic NETwork (AERONET sun-photometers and by the space-based Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP onboard the CALIPSO satellite (Cloud-Aerosol Lidar and Infrared Pathfinder Observations.

    During winter, the lower levels air masses arriving in the Sahelian region come mainly from North, North-West and from the Atlantic area, while in the upper troposphere air flow generally originates from West Africa, crossing a region characterized by the presence of large biomass burning sources. The sites of Cinzana, Banizoumbou and M'Bour, along a transect of aerosol transport from East to West, are in fact under the influence of tropical biomass burning aerosol emission during the dry season, as revealed by the seasonal pattern of the aerosol optical properties, and by back-trajectory studies.

    Aerosol produced by biomass burning are observed mainly during the dry season and are confined in the upper layers of the atmosphere. This is particularly evident for 2006, which was characterized by a large presence of biomass burning aerosols in all the three sites.

    Biomass burning aerosol is also observed during spring when air masses originating from North and East Africa pass over sparse biomass burning sources, and during summer when biomass burning aerosol is transported from the southern part of the

  20. On the Redox Activity of Urban Aerosol Particles: Implications for Size Distribution and Relationships with Organic Aerosol Components

    Directory of Open Access Journals (Sweden)

    Constantini Samara

    2017-10-01

    Full Text Available This article presents the distribution of the dithiothreitol-based (DTT redox activity of water-soluble airborne particulate matter (PM from two urban sites in the city of Thessaloniki, northern Greece in four size ranges (<0.49, 0.49–0.97, 0.97–3.0 and >3 μm. Seasonal and spatial variations are examined. The correlations of the mass-normalized DTT activity with the content of PM in water-soluble organic carbon (WSOC and non-water-soluble carbonaceous species, such as organic and elemental carbon, as well as with solvent-extractable trace organic compounds (polycyclic aromatic hydrocarbons and nitro-derivatives, polychlorinated biphenyls, organochlorines, polybrominated biphenyl ethers and polar organic markers (dicarboxylic acids and levoglucosan, are investigated. Our study provides new and additional insights into the ambient size distribution of the DTT activity of the water-soluble fraction of airborne PM at urban sites and its associations with organic PM components.

  1. Seasonal cycle and modal structure of particle number size distribution at Dome C, Antarctica

    Directory of Open Access Journals (Sweden)

    E. Järvinen

    2013-08-01

    Full Text Available We studied new particle formation and modal behavior of ultrafine aerosol particles on the high East Antarctic plateau at the Concordia station, Dome C (75°06' S, 123°23' E. Aerosol particle number size distributions were measured in the size range 10–600 nm from 14 December 2007 to 7 November 2009. We used an automatic algorithm for fitting up to three modes to the size distribution data. The total particle number concentration was low with the median of 109 cm−3. There was a clear seasonal cycle in the total particle number and the volume concentrations. The concentrations were at their highest during the austral summer with the median values of 260 cm−3 and 0.086 μm3 cm−3, and at their lowest during the austral winter with corresponding values of 15 cm−3 and 0.009 μm3 cm−3. New particle formation events were determined from the size distribution data. During the measurement period, natural new particle formation was observed on 60 days and for 15 of these days the particle growth rates from 10 to 25 nm in size could be determined. The median particle growth rate during all these events was 2.5 nm h−1 and the median formation rate of 10 nm particles was 0.023 cm−3 s−1. Most of the events were similar to those observed at other continental locations, yet also some variability in event types was observed. Exceptional features in Dome C were the winter events that occurred during dark periods, as well as the events for which the growth could be followed during several consecutive days. We called these latter events slowly growing events. This paper is the first one to analyze long-term size distribution data from Dome C, and also the first paper to show that new particle formation events occur in central Antarctica.

  2. Multi-Instrument Manager Tool for Data Acquisition and Merging of Optical and Electrical Mobility Size Distributions

    International Nuclear Information System (INIS)

    Tritscher, Torsten; Kykal, Carsten; Bischof, Oliver F; Koched, Amine; Filimundi, Eric; Han, Hee-Siew; Johnson, Tim; Elzey, Sherrie; Avenido, Aaron

    2015-01-01

    Electrical mobility classification (EC) followed by Condensation Particle Counter (CPC) detection is the technique combined in Scanning Mobility Particle Sizers(SMPS) to retrieve nanoparticle size distributions in the range from 2.5 nm to 1 μm. The detectable size range of SMPS systems can be extended by the addition of an Optical Particle Sizer(OPS) that covers larger sizes from 300 nm to 10 μm. This optical sizing method reports an optical equivalent diameter, which is often different from the electrical mobility diameter measured by the standard SMPS technique. Multi-Instrument Manager (MIM TM ) software developed by TSI incorporates algorithms that facilitate merging SMPS data sets with data based on optical equivalent diameter to compile single, wide-range size distributions. Here we present MIM 2.0, the next-generation of the data merging tool that offers many advanced features for data merging and post-processing. MIM 2.0 allows direct data acquisition with OPS and NanoScan SMPS instruments to retrieve real-time particle size distributions from 10 nm to 10 μm, which we show in a case study at a fireplace. The merged data can be adjusted using one of the merging options, which automatically determines an overall aerosol effective refractive index. As a result an indirect and average characterization of aerosol optical and shape properties is possible. The merging tool allows several pre-settings, data averaging and adjustments, as well as the export of data sets and fitted graphs. MIM 2.0 also features several post-processing options for SMPS data and differences can be visualized in a multi-peak sample over a narrow size range. (paper)

  3. Vertical distribution of optical and microphysical properties of smog aerosols measured by multi-wavelength polarization lidar in Xi'an, China

    Science.gov (United States)

    Di, Huige; Hua, Hangbo; Cui, Yan; Hua, Dengxin; He, Tingyao; Wang, Yufeng; Yan, Qing

    2017-02-01

    In this study, a multi-wavelength polarization lidar was developed at the Lidar Center for Atmosphere Remote Sensing, in Xi'an, China to study the vertical distribution of the optical and microphysical properties of smog aerosols. To better understand smog, two events with different haze conditions observed in January 2015 were analyzed in detail. Using these data, we performed a vertical characterization of smog evolution using the lidar range-squared-corrected signal and the aerosol depolarization ratio. Using inversion with regularization, we retrieved the vertical distribution of aerosol microphysical properties, including volume size distribution, volume concentration, number concentration and effective radius. We also used the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model to analyze aerosol sources during the two episodes. Our results show that the most polluted area in the lower troposphere during smog episodes is located below a height of 1 km above the ground level; under more severe smog conditions, it can be below 0.5 km. In the case of severe smog, we found a large number of spherical and fine particles concentrated in the very low troposphere, even below 0.5 km. Surprisingly, a dust layer with a slight depolarization ratio was observed above the smog layer.

  4. Size distributions of hydrophilic and hydrophobic fractions of water-soluble organic carbon in an urban atmosphere in Hong Kong

    Science.gov (United States)

    Wang, Nijing; Yu, Jian Zhen

    2017-10-01

    Water-soluble organic carbon (WSOC) is a significant part of ambient aerosol and plays an active role in contributing to aerosol's effect on visibility degradation and radiation budget through its interactions with atmospheric water. Size-segregated aerosol samples in the range of 0.056-18 μm were collected using a ten-stage impactor sampler at an urban site in Hong Kong over one-year period. The WSOC samples were separated into hydrophilic (termed WSOC_h) and hydrophobic fractions (i.e., the humic-like substances (HULIS) fraction) through solid-phase extraction procedure. Carbon in HULIS accounted for 40 ± 14% of WSOC. The size distribution of HULIS was consistently characterized in all seasons with a dominant droplet mode (46-71%) and minor condensation (9.0-18%) and coarse modes (20-35%). The droplet mode had a mass median aerodynamic diameter in the range of 0.7-0.8 μm. This size mode showed the largest seasonal variation in abundance, lowest in the summer (0.41 μg/m3) and highest in the winter (3.3 μg/m3). WSOC_h also had a dominant droplet mode, but was more evenly distributed among different size modes. Inter-species correlations within the same size mode suggest that the condensation-mode HULIS was partly associated with combustion sources and the droplet-mode was strongly associated with secondary sulfate formation and biomass burning particle aging processes. There is evidence to suggest that the coarse-mode HULIS largely originated from coagulation of condensation-mode HULIS with coarse soil/sea salt particles. The formation process and possible sources of WSOC_h was more complicated and multiple than HULIS and need further investigation. Our measurements indicate that WSOC components contributed a dominant fraction of water-soluble aerosol mass in particles smaller than 0.32 μm while roughly 20-30% in the larger particles.

  5. MATRIX-VBS (v1.0): Implementing an Evolving Organic Aerosol Volatility in an Aerosol Microphysics Model

    Science.gov (United States)

    Gao, Chloe Y.; Tsigaridis, Kostas; Bauer, Susanne E.

    2017-01-01

    The gas-particle partitioning and chemical aging of semi-volatile organic aerosol are presented in a newly developed box model scheme, where its effect on the growth, composition, and mixing state of particles is examined. The volatility-basis set (VBS) framework is implemented into the aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state), which resolves mass and number aerosol concentrations and in multiple mixing-state classes. The new scheme, MATRIX-VBS, has the potential to significantly advance the representation of organic aerosols in Earth system models by improving upon the conventional representation as non-volatile particulate organic matter, often also with an assumed fixed size distribution. We present results from idealized cases representing Beijing, Mexico City, a Finnish forest, and a southeastern US forest, and investigate the evolution of mass concentrations and volatility distributions for organic species across the gas and particle phases, as well as assessing their mixing state among aerosol populations. Emitted semi-volatile primary organic aerosols evaporate almost completely in the intermediate-volatility range, while they remain in the particle phase in the low-volatility range. Their volatility distribution at any point in time depends on the applied emission factors, oxidation by OH radicals, and temperature. We also compare against parallel simulations with the original scheme, which represented only the particulate and non-volatile component of the organic aerosol, examining how differently the condensed-phase organic matter is distributed across the mixing states in the model. The results demonstrate the importance of representing organic aerosol as a semi-volatile aerosol, and explicitly calculating the partitioning of organic species between the gas and particulate phases.

  6. Dust generation in powders: Effect of particle size distribution

    Directory of Open Access Journals (Sweden)

    Chakravarty Somik

    2017-01-01

    Full Text Available This study explores the relationship between the bulk and grain-scale properties of powders and dust generation. A vortex shaker dustiness tester was used to evaluate 8 calcium carbonate test powders with median particle sizes ranging from 2μm to 136μm. Respirable aerosols released from the powder samples were characterised by their particle number and mass concentrations. All the powder samples were found to release respirable fractions of dust particles which end up decreasing with time. The variation of powder dustiness as a function of the particle size distribution was analysed for the powders, which were classified into three groups based on the fraction of particles within the respirable range. The trends we observe might be due to the interplay of several mechanisms like de-agglomeration and attrition and their relative importance.

  7. Saharan Dust Particle Size And Concentration Distribution In Central Ghana

    Science.gov (United States)

    Sunnu, A. K.

    2010-12-01

    A.K. Sunnu*, G. M. Afeti* and F. Resch+ *Department of Mechanical Engineering, Kwame Nkrumah University of Science and Technology (KNUST) Kumasi, Ghana. E-mail: albertsunnu@yahoo.com +Laboratoire Lepi, ISITV-Université du Sud Toulon-Var, 83162 La Valette cedex, France E-mail: resch@univ-tln.fr Keywords: Atmospheric aerosol; Saharan dust; Particle size distributions; Particle concentrations. Abstract The Saharan dust that is transported and deposited over many countries in the West African atmospheric environment (5°N), every year, during the months of November to March, known locally as the Harmattan season, have been studied over a 13-year period, between 1996 and 2009, using a location at Kumasi in central Ghana (6° 40'N, 1° 34'W) as the reference geographical point. The suspended Saharan dust particles were sampled by an optical particle counter, and the particle size distributions and concentrations were analysed. The counter gives the total dust loads as number of particles per unit volume of air. The optical particle counter used did not discriminate the smoke fractions (due to spontaneous bush fires during the dry season) from the Saharan dust. Within the particle size range measured (0.5 μm-25 μm.), the average inter-annual mean particle diameter, number and mass concentrations during the northern winter months of January and February were determined. The average daily number concentrations ranged from 15 particles/cm3 to 63 particles/cm3 with an average of 31 particles/cm3. The average daily mass concentrations ranged from 122 μg/m3 to 1344 μg/m3 with an average of 532 μg/m3. The measured particle concentrations outside the winter period were consistently less than 10 cm-3. The overall dust mean particle diameter, analyzed from the peak representative Harmattan periods over the 13-year period, ranged from 0.89 μm to 2.43 μm with an average of 1.5 μm ± 0.5. The particle size distributions exhibited the typical distribution pattern for

  8. Climate implications of carbonaceous aerosols: An aerosol microphysical study using the GISS/MATRIX climate model

    International Nuclear Information System (INIS)

    Bauer, Susanne E.; Menon, Surabi; Koch, Dorothy; Bond, Tami; Tsigaridis, Kostas

    2010-01-01

    Recently, attention has been drawn towards black carbon aerosols as a likely short-term climate warming mitigation candidate. However the global and regional impacts of the direct, cloud-indirect and semi-direct forcing effects are highly uncertain, due to the complex nature of aerosol evolution and its climate interactions. Black carbon is directly released as particle into the atmosphere, but then interacts with other gases and particles through condensation and coagulation processes leading to further aerosol growth, aging and internal mixing. A detailed aerosol microphysical scheme, MATRIX, embedded within the global GISS modelE includes the above processes that determine the lifecycle and climate impact of aerosols. This study presents a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative forcing. Our best estimate for net direct and indirect aerosol radiative forcing change is -0.56 W/m 2 between 1750 and 2000. However, the direct and indirect aerosol effects are very sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative forcing change can vary between -0.32 to -0.75 W/m 2 depending on these carbonaceous particle properties. Assuming that sulfates, nitrates and secondary organics form a coating shell around a black carbon core, rather than forming a uniformly mixed particles, changes the overall net radiative forcing from a negative to a positive number. Black carbon mitigation scenarios showed generally a benefit when mainly black carbon sources such as diesel emissions are reduced, reducing organic and black carbon sources such as bio-fuels, does not lead to reduced warming.

  9. Intercomparison test of various aerosol measurement techniques

    International Nuclear Information System (INIS)

    Cherdron, W.; Hassa, C.; Jordan, S.

    1984-01-01

    At the suggestion of the CONT group (Containment Loading and Response), which is a subgroup of the Safety Working Group of the Fast Reactor Coordinating Committee, a group of experts undertook a comparison of the techniques of sodium aerosol measurement used in various laboratories in the EC. The following laboratories took part in the exercise: CEN-Mol (Belgium), CEA-Cadarache (France), CEA-Fontenay-aux-Roses (France), KfK-Karlsruhe (Federal Republic of Germany), ENEA-Bologna (Italy), and UKAEA-Winfrith (United Kingdom). The objective of the aerosol measurement workshop was to assess the applicability and reliability of specific aerosol measuring instruments. Measurements performed with equipment from the participating laboratories were evaluated using a standard procedure. This enabled an estimate of the accuracy of the experimental data to be provided for the verification of aerosol codes. Thus these results can be used as input for the physical modelling of aerosol behaviour, and the work reported here is a contribution to the definition of the radioactive source term for severe accidents in LMFBRs. The aerosol experts participating in the exercise agreed to concentrate on the techniques of measuring aerosol particle size distributions. The tests were performed at the FAUNA test facility using the aerosol loop. A sodium spray fire, which provides a continuous aerosol source of variable concentration, was produced under open-loop conditions in this facility. Although the primary objective of the workshop was to determine the particle size distributions of the aerosols, measurements of the sodium mass concentration were also made

  10. Aerosol size-dependent below-cloud scavenging by rain and snow in the ECHAM5-HAM

    Directory of Open Access Journals (Sweden)

    R. Posselt

    2009-07-01

    Full Text Available Wet deposition processes are highly efficient in the removal of aerosols from the atmosphere, and thus strongly influence global aerosol concentrations, and clouds, and their respective radiative forcings. In this study, physically detailed size-dependent below-cloud scavenging parameterizations for rain and snow are implemented in the ECHAM5-HAM global aerosol-climate model. Previously, below-cloud scavenging by rain in the ECHAM5-HAM was simply a function of the aerosol mode, and then scaled by the rainfall rate. The below-cloud scavenging by snow was a function of the snowfall rate alone. The global mean aerosol optical depth, and sea salt burden are sensitive to the below-cloud scavenging coefficients, with reductions near to 15% when the more vigorous size-dependent below-cloud scavenging by rain and snow is implemented. The inclusion of a prognostic rain scheme significantly reduces the fractional importance of below-cloud scavenging since there is higher evaporation in the lower troposphere, increasing the global mean sea salt burden by almost 15%. Thermophoretic effects are shown to produce increases in the global and annual mean number removal of Aitken size particles of near to 10%, but very small increases (near 1% in the global mean below-cloud mass scavenging of carbonaceous and sulfate aerosols. Changes in the assumptions about the below-cloud scavenging by rain of particles with radius smaller than 10 nm do not cause any significant changes to the global and annual mean aerosol mass or number burdens, despite a change in the below-cloud number removal rate for nucleation mode particles by near to five-fold. Annual and zonal mean nucleation mode number concentrations are enhanced by up to 30% in the lower troposphere with the more vigourous size-dependent below-cloud scavenging. Closer agreement with different observations is found when the more physically detailed below-cloud scavenging parameterization is employed in the ECHAM5

  11. Behavior of generated aerosols in decommissioning of reactor

    International Nuclear Information System (INIS)

    Tomii, H.; Nakamura, K.

    1999-01-01

    Generated aerosols in dismantling of the JPDR were investigated for making an estimation of air contamination. The maximum dose equivalent rate at the surface of each reactor component was 9.4 Sv/h for core shroud, 80 mSv/h for pressure vessel, 2.0 mSv/h for biological shield, respectively. An under-water cutting method with remote handling plasma torch was used for dismantling of the core shroud and the pressure vessel. The biological shield was dismantled by an in-air cutting method and a controlled blasting method. Pipes connected to recirculation system were dismounted by a conventional mechanical and thermal cutting machine in the air. Generated radioactive aerosols were collected in the exhaust air of green house which enclosed the upper part of the reactor room to control the air contamination. An Andersen sampler was used for the measurement of particle distribution in the aerosols. Most of the particle size was below 0.1 μm in the under-water cutting method. The particle size distribution in the in-air cutting method, however, was divided into two parts at 0.1 μm and 0.3 μm. Dispersion rate of aerosol into the atmosphere was decreased exponentially with the depth of water. The dispersion rate and the size distribution of aerosol generated during cutting of the stainless steel pipes and blasting of the biological shield are also reported in the paper. (Suetake, M.)

  12. How the Emitted Size Distribution and Mixing State of Feldspar Affect Ice Nucleating Particles in a Global Model

    Science.gov (United States)

    Perlwitz, J. P.; Fridlind, A. M.; Knopf, D. A.; Miller, R. L.; Pérez García-Pando, C.

    2017-12-01

    The effect of aerosol particles on ice nucleation and, in turn, the formation of ice and mixed phase clouds is recognized as one of the largest sources of uncertainty in climate prediction. We apply an improved dust mineral specific aerosol module in the NASA GISS Earth System ModelE, which takes into account soil aggregates and their fragmentation at emission as well as the emission of large particles. We calculate ice nucleating particle concentrations from K-feldspar abundance for an active site parameterization for a range of activation temperatures and external and internal mixing assumption. We find that the globally averaged INP concentration is reduced by a factor of two to three, compared to a simple assumption on the size distribution of emitted dust minerals. The decrease can amount to a factor of five in some geographical regions. The results vary little between external and internal mixing and different activation temperatures, except for the coldest temperatures. In the sectional size distribution, the size range 2-4 μm contributes the largest INP number.

  13. How the Emitted Size Distribution and Mixing State of Feldspar Affect Ice Nucleating Particles in a Global Model

    Science.gov (United States)

    Perlwitz, Jan P.; Fridlind, Ann M.; Knopf, Daniel A.; Miller, Ron L.; García-Pando, Carlos Perez

    2017-01-01

    The effect of aerosol particles on ice nucleation and, in turn, the formation of ice and mixed phase clouds is recognized as one of the largest sources of uncertainty in climate prediction. We apply an improved dust mineral specific aerosol module in the NASA GISS Earth System ModelE, which takes into account soil aggregates and their fragmentation at emission as well as the emission of large particles. We calculate ice nucleating particle concentrations from K-feldspar abundance for an active site parameterization for a range of activation temperatures and external and internal mixing assumption. We find that the globally averaged INP concentration is reduced by a factor of two to three, compared to a simple assumption on the size distribution of emitted dust minerals. The decrease can amount to a factor of five in some geographical regions. The results vary little between external and internal mixing and different activation temperatures, except for the coldest temperatures. In the sectional size distribution, the size range 24 micrometer contributes the largest INP number.

  14. Aerosol characterization in smoke plumes from a wetlands fire

    International Nuclear Information System (INIS)

    Woods, D.C.; Cofer, W.R. III; Levine, J.S.; Chuan, R.L.

    1991-01-01

    In this chapter, the authors present results from airborne measurements of aerosol mass loading, size distribution, and elemental composition obtained in a smoke plume from the burning of vegetation at a Florida wildlife refuge. These are important parameters in assessing the impact of biomass burning on the atmosphere. The results show that there was a high concentration of carbon-containing aerosols and salt crystals in the 0.1 μm to 0.2 μm size range, giving rise to a relatively strong fine particle size mode, during the hot flaming phase of the burning, compared to that during the smoldering phase, when a higher concentration of coarse particles were produced. They also found that the composition and morphology of the aerosols differed with size. They used the aerosol mass concentration along with CO 2 concentrations to calculate ratios or aerosol and CO 2 , which we found to be higher for the smoldering phase than for the flaming phase of combustion

  15. Aerosol and NOx emission factors and submicron particle number size distributions in two road tunnels with different traffic regimes

    Directory of Open Access Journals (Sweden)

    D. Imhof

    2006-01-01

    Full Text Available Measurements of aerosol particle number size distributions (18–700 nm, mass concentrations (PM2.5 and PM10 and NOx were performed in the Plabutsch tunnel, Austria, and in the Kingsway tunnel, United Kingdom. These two tunnels show different characteristics regarding the roadway gradient, the composition of the vehicle fleet and the traffic frequency. The submicron particle size distributions contained a soot mode in the diameter range D=80–100 nm and a nucleation mode in the range of D=20–40 nm. In the Kingsway tunnel with a significantly lower particle number and volume concentration level than in the Plabutsch tunnel, a clear diurnal variation of nucleation and soot mode particles correlated to the traffic density was observed. In the Plabutsch tunnel, soot mode particles also revealed a diurnal variation, whereas no substantial variation was found for the nucleation mode particles. During the night a higher number concentration of nucleation mode particles were measured than soot mode particles and vice versa during the day. In this tunnel with very high soot emissions during daytime due to the heavy-duty vehicle (HDV share of 18% and another 40% of diesel driven light-duty vehicles (LDV semivolatile species condense on the pre-existing soot surface area rather than forming new particles by homogeneous nucleation. With the low concentration of soot mode particles in the Kingsway tunnel, also the nucleation mode particles exhibit a diurnal variation. From the measured parameters real-world traffic emission factors were estimated for the whole vehicle fleet as well as differentiated into the two categories LDV and HDV. In the particle size range D=18–700 nm, each vehicle of the mixed fleet emits (1.50±0.08×1014 particles km-1 (Plabutsch and (1.26±0.10×1014 particles km-1 (Kingsway, while particle volume emission factors of 0.209±0.008 cm3 km-1 and 0.036±0.004 cm3 km-1, respectively, were obtained. PM1 emission factors of 104±4 mg

  16. Aerosol particle transport modeling for preclosure safety studies of nuclear waste repositories

    International Nuclear Information System (INIS)

    Gelbard, F.

    1989-01-01

    An important concern for preclosure safety analysis of a nuclear waste repository is the potential release to the environment of respirable aerosol particles. Such particles, less than 10 μm in aerodynamic diameter, may have significant adverse health effects if inhaled. To assess the potential health effects of these particles, it is not sufficient to determine the mass fraction of respirable aerosol. The chemical composition of the particles is also of importance since different radionuclides may pose vastly different health hazards. Thus, models are needed to determine under normal and accident conditions the particle size and the chemical composition distributions of aerosol particles as a function of time and of position in the repository. In this work a multicomponent sectional aerosol model is used to determine the aerosol particle size and composition distributions in the repository. A range of aerosol mass releases with varying mean particle sizes and chemical compositions is used to demonstrate the sensitivities and uncertainties of the model. Decontamination factors for some locations in the repository are presented. 8 refs., 1 tab

  17. [Optical properties of aerosol during haze-fog episodes in Beijing].

    Science.gov (United States)

    Yu, Xing-Na; Li, Xin-Mei; Deng, Zen-Grandeng; De, Qing-Yangzong; Yuan, Shuai

    2012-04-01

    The purpose of this study is to investigate the optical properties of aerosol during haze-fog episodes in Beijing. The aerosol optical depth (AOD), Angstrom exponent (alpha), size distribution and single scattering albedo (omega) during haze-fog episodes were analyzed between 2002 and 2008 using AERONENT data. During haze-fog episodes, the aerosol optical depth showed a decreasing trend with wavelengths, and showed high values with an average 1.34 at 440 nm. The magnitude of Angstrom exponent was relatively high during haze-fog episodes and the mean values reached 1.11. The frequency distribution of alpha was up to 94% when alpha > 0.9, indicating the predominance of fine particles during haze-fog episodes in Beijing. The aerosol volume size distributions presented a bimodal structure (fine and coarse modes). The maxima (peaks) radius of fine mode showed an increasing trend with AOD, however, those of coarse mode showed a decreasing trend with AOD. The size distribution showed a distinct difference in dominant mode for the different AOD. The single scattering albedo showed an increasing trend with AOD during haze-fog episodes in Beijing. The mean value of omega was 0.89 at the four wavelengths and the omega exhibited a low sensitivity to wavelengths.

  18. Nuclear aerosol behavior during reactor accidents

    International Nuclear Information System (INIS)

    Williams, M.M.R.

    1990-01-01

    Some early reactor accidents are recalled together with their associated environmental consequences. One such consequence is the generation of radioactive aerosol. We described the various physical processes that such an aerosol cloud undergoes within the secondary containment building. These physical processes are then brought together quantitatively in a balance equation for the aerosol size spectrum as a function of position and time. Methods for solving this equation are discussed and illustrated by the method of moments based upon log-normal and modified gamma distributions. Current problems are outlined and directions for future work into aerosol behavior are suggested. (author)

  19. Dicarboxylic acids, oxoacids, benzoic acid, α-dicarbonyls, WSOC, OC, and ions in spring aerosols from Okinawa Island in the western North Pacific Rim: size distributions and formation processes

    Science.gov (United States)

    Deshmukh, Dhananjay K.; Kawamura, Kimitaka; Lazaar, Manuel; Kunwar, Bhagawati; Boreddy, Suresh K. R.

    2016-04-01

    Size-segregated aerosols (nine stages from 11.3 µm in diameter) were collected at Cape Hedo, Okinawa, in spring 2008 and analyzed for water-soluble diacids (C2-C12), ω-oxoacids (ωC2-ωC9), pyruvic acid, benzoic acid, and α-dicarbonyls (C2-C3) as well as water-soluble organic carbon (WSOC), organic carbon (OC), and major ions (Na+, NH4+, K+, Mg2+, Ca2+, Cl-, NO3-, SO42-, and MSA-). In all the size-segregated aerosols, oxalic acid (C2) was found to be the most abundant species, followed by malonic and succinic acids, whereas glyoxylic acid (ωC2) was the dominant oxoacid and glyoxal (Gly) was more abundant than methylglyoxal. Diacids (C2-C5), ωC2, and Gly as well as WSOC and OC peaked at fine mode (0.65-1.1 µm) whereas azelaic (C9) and 9-oxononanoic (ωC9) acids peaked at coarse mode (3.3-4.7 µm). Sulfate and ammonium were enriched in fine mode, whereas sodium and chloride were in coarse mode. Strong correlations of C2-C5 diacids, ωC2 and Gly with sulfate were observed in fine mode (r = 0.86-0.99), indicating a commonality in their secondary formation. Their significant correlations with liquid water content in fine mode (r = 0.82-0.95) further suggest an importance of the aqueous-phase production in Okinawa aerosols. They may also have been directly emitted from biomass burning in fine mode as supported by strong correlations with potassium (r = 0.85-0.96), which is a tracer of biomass burning. Bimodal size distributions of longer-chain diacid (C9) and oxoacid (ωC9) with a major peak in the coarse mode suggest that they were emitted from the sea surface microlayers and/or produced by heterogeneous oxidation of biogenic unsaturated fatty acids on sea salt particles.

  20. The generation of diesel exhaust particle aerosols from a bulk source in an aerodynamic size range similar to atmospheric particles

    Directory of Open Access Journals (Sweden)

    Daniel J Cooney

    2008-08-01

    Full Text Available Daniel J Cooney1, Anthony J Hickey21Department of Biomedical Engineering; 2School of Pharmacy, University of North Carolina, Chapel Hill, NC, USAAbstract: The influence of diesel exhaust particles (DEP on the lungs and heart is currently a topic of great interest in inhalation toxicology. Epidemiological data and animal studies have implicated airborne particulate matter and DEP in increased morbidity and mortality due to a number of cardiopulmonary diseases including asthma, chronic obstructive pulmonary disorder, and lung cancer. The pathogeneses of these diseases are being studied using animal models and cell culture techniques. Real-time exposures to freshly combusted diesel fuel are complex and require significant infrastructure including engine operations, dilution air, and monitoring and control of gases. A method of generating DEP aerosols from a bulk source in an aerodynamic size range similar to atmospheric DEP would be a desirable and useful alternative. Metered dose inhaler technology was adopted to generate aerosols from suspensions of DEP in the propellant hydrofluoroalkane 134a. Inertial impaction data indicated that the particle size distributions of the generated aerosols were trimodal, with count median aerodynamic diameters less than 100 nm. Scanning electron microscopy of deposited particles showed tightly aggregated particles, as would be expected from an evaporative process. Chemical analysis indicated that there were no major changes in the mass proportion of 2 specific aromatic hydrocarbons (benzo[a]pyrene and benzo[k]fluoranthene in the particles resulting from the aerosolization process.Keywords: diesel exhaust particles, aerosol, inhalation toxicology

  1. Relative humidity impact on aerosol parameters in a Paris suburban area

    Directory of Open Access Journals (Sweden)

    H. Randriamiarisoa

    2006-01-01

    Full Text Available Measurements of relative humidity (RH and aerosol parameters (scattering cross section, size distributions and chemical composition, performed in ambient atmospheric conditions, have been used to study the influence of relative humidity on aerosol properties. The data were acquired in a suburban area south of Paris, between 18 and 24 July 2000, in the framework of the 'Etude et Simulation de la Qualité de l'air en Ile-de-France' (ESQUIF program. According to the origin of the air masses arriving over the Paris area, the aerosol hygroscopicity is more or less pronounced. The aerosol chemical composition data were used as input of a thermodynamic model to simulate the variation of the aerosol water mass content with ambient RH and to determine the main inorganic salt compounds. The coupling of observations and modelling reveals the presence of deliquescence processes with hysteresis phenomenon in the hygroscopic growth cycle. Based on the Hänel model, parameterisations of the scattering cross section, the modal radius of the accumulation mode of the size distribution and the aerosol water mass content, as a function of increasing RH, have been assessed. For the first time, a crosscheck of these parameterisations has been performed and shows that the hygroscopic behaviour of the accumulation mode can be coherently characterized by combined optical, size distribution and chemical measurements.

  2. Code Development on Fission Product Behavior under Severe Accident-Validation of Aerosol Sedimentation

    International Nuclear Information System (INIS)

    Ha, Kwang Soon; Kim, Sung Il; Jang, Jin Sung; Kim, Dong Ha

    2016-01-01

    The gas and aerosol phases of the radioactive materials move through the reactor coolant systems and containments as loaded on the carrier gas or liquid, such as steam or water. Most radioactive materials might escape in the form of aerosols from a nuclear power plant during a severe reactor accident, and it is very important to predict the behavior of these radioactive aerosols in the reactor cooling system and in the containment building under severe accident conditions. Aerosols are designated as very small solid particles or liquid droplets suspended in a gas phase. The suspended solid or liquid particles typically have a range of sizes of 0.01 m to 20 m. Aerosol concentrations in reactor accident analyses are typically less than 100 g/m3 and usually less than 1 g/m3. When there are continuing sources of aerosol to the gas phase or when there are complicated processes involving engineered safety features, much more complicated size distributions develop. It is not uncommon for aerosols in reactor containments to have bimodal size distributions for at least some significant periods of time early during an accident. Salient features of aerosol physics under reactor accident conditions that will affect the nature of the aerosols are (1) the formation of aerosol particles, (2) growth of aerosol particles, (3) shape of aerosol particles. At KAERI, a fission product module has been developed to predict the behaviors of the radioactive materials in the reactor coolant system under severe accident conditions. The fission product module consists of an estimation of the initial inventories, species release from the core, aerosol generation, gas transport, and aerosol transport. The final outcomes of the fission product module designate the radioactive gas and aerosol distribution in the reactor coolant system. The aerosol sedimentation models in the fission product module were validated using ABCOVE and LACE experiments. There were some discrepancies on the predicted

  3. Code Development on Fission Product Behavior under Severe Accident-Validation of Aerosol Sedimentation

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Kwang Soon; Kim, Sung Il; Jang, Jin Sung; Kim, Dong Ha [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The gas and aerosol phases of the radioactive materials move through the reactor coolant systems and containments as loaded on the carrier gas or liquid, such as steam or water. Most radioactive materials might escape in the form of aerosols from a nuclear power plant during a severe reactor accident, and it is very important to predict the behavior of these radioactive aerosols in the reactor cooling system and in the containment building under severe accident conditions. Aerosols are designated as very small solid particles or liquid droplets suspended in a gas phase. The suspended solid or liquid particles typically have a range of sizes of 0.01 m to 20 m. Aerosol concentrations in reactor accident analyses are typically less than 100 g/m3 and usually less than 1 g/m3. When there are continuing sources of aerosol to the gas phase or when there are complicated processes involving engineered safety features, much more complicated size distributions develop. It is not uncommon for aerosols in reactor containments to have bimodal size distributions for at least some significant periods of time early during an accident. Salient features of aerosol physics under reactor accident conditions that will affect the nature of the aerosols are (1) the formation of aerosol particles, (2) growth of aerosol particles, (3) shape of aerosol particles. At KAERI, a fission product module has been developed to predict the behaviors of the radioactive materials in the reactor coolant system under severe accident conditions. The fission product module consists of an estimation of the initial inventories, species release from the core, aerosol generation, gas transport, and aerosol transport. The final outcomes of the fission product module designate the radioactive gas and aerosol distribution in the reactor coolant system. The aerosol sedimentation models in the fission product module were validated using ABCOVE and LACE experiments. There were some discrepancies on the predicted

  4. Anthropogenic influence on the distribution of tropospheric sulphate aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Langner, J; Rodhe, H; Crutzen, P J; Zimmermann, P [Swedish Meteorological and Hydrological Institute, Norrkoeping (Sweden)

    1992-10-22

    Human activities have increased global emissions of sulphur gases by about a factor of three during the past century, leading to increased sulphate aerosol concentrations, mainly in the Northern Hemisphere. Sulphate aerosols can affect the climate directly, by increasing the backscattering of solar radiation in cloud-free air, and indirectly, by providing additional cloud condensation nuclei. Here a global transport-chemistry model is used to estimate the changes in the distribution of tropospheric sulphate aerosol and deposition of non-seasalt sulphur that have occurred since pre-industrial times. The increase in sulphate aerosol concentration is small over the Southern Hemisphere oceans, but reaches a factor of 100 over northern Europe in winter. Calculations indicate, however, that at most 6% of the anthropogenic sulphur emissions is available for the formation of new aerosol particles. This is because about one-half of the sulphur dioxide is deposited on the Earth's surface, and most of the remainder is oxidized in cloud droplets so that the sulphate becomes associated with pre-existing particles. Even so, the rate of formation of new sulphate particles may have doubled since pre-industrial times. 18 refs., 3 figs.

  5. PIXE analysis of atmospheric aerosol and hydrometeor particles

    International Nuclear Information System (INIS)

    Groeneveld, K.O.; Hofmann, D.; Georgii, H.W.

    1993-01-01

    Atmospheric aerosol and hydrometeor particles act decisively on our weather, climate and thereby on all living conditions on Earth. Particle induced X-ray emission (PIXE) analysis has been demonstrated to be an extremely valuable tool for quantitative and qualitative elemental analysis of aerosol particles and hydrometeors. Reliability and detection limits of PIXE are determined, including comparison with other techniques. Aerosol particles are collected on a global scale in ground stations, or by ships and by planes. Correlation between wind direction and elemental composition of atmospheric aerosols, elemental particle size distributions of the tropospheric aerosol, aerosol elemental composition in particle size fractions in the case of long range transport, transport pathways of pollution aerosol, and trace element content precipitation are discussed. Hydrometeors were studied in the form of rain, snow, fog, dew and frost. The time dependence of the melting process of snow was studied in detail, in particular the washout phenomena of impurity ions. (orig.)

  6. Photoacoustic measurements of photokinetics in single optically trapped aerosol droplets

    Science.gov (United States)

    Covert, Paul; Cremer, Johannes; Signorell, Ruth; Thaler, Klemens; Haisch, Christoph

    2017-04-01

    It is well established that interaction of light with atmospheric aerosols has a large impact on the Earth's climate. However, uncertainties in the magnitude of this impact remain large, due in part to broad distributions of aerosol size, composition, and chemical reactivity. In this context, photoacoustic spectroscopy is commonly used to measure light absorption by aerosols. Here, we present photoacoustic measurements of single, optically-trapped nanodroplets to reveal droplet size-depencies of photochemical and physical processes. Theoretical considerations have pointed to a size-dependence in the magnitude and phase of the photoacoustic response from aerosol droplets. This dependence is thought to originate from heat transfer processes that are slow compared to the acoustic excitation frequency. In the case of a model aerosol, our measurements of single particle absorption cross-section versus droplet size confirm these theoretical predictions. In a related study, using the same model aerosol, we also demonstrate a droplet size-dependence of photochemical reaction rates [1]. Within sub-micron sized particles, photolysis rates were observed to be an order of magnitude greater than those observed in larger droplets. [1] J. W. Cremer, K. M. Thaler, C. Haisch, and R. Signorell. Photoacoustics of single laser-trapped nanodroplets for the direct observation of nanofocusing in aerosol photokinetics. Nat. Commun., 7:10941, 2016.

  7. Optical extinction of size-controlled aerosols generated from squid chromatophore pigments

    Directory of Open Access Journals (Sweden)

    Sean R. Dinneen

    2017-10-01

    Full Text Available Nanophotonic granules populate the interior of cephalopod chromatophores, contributing to their visible color by selectively absorbing and scattering light. Inspired by the performance of these granules, we fabricated nanostructured aerosols by nebulizing a pigment solution extracted from native squid chromatophores. We determined their optical extinction using cavity ring-down spectroscopy and show how extinction cross section is dependent on both particle concentration and size. This work not only advances the fundamental knowledge of the optical properties of chromatophore pigments but also serves as a proof-of-concept method that can be adapted to develop coatings derived from these pigmentary aerosols.

  8. Size resolved mass concentration and elemental composition of atmospheric aerosols over the Eastern Mediterranean area

    Directory of Open Access Journals (Sweden)

    J. Smolík

    2003-01-01

    Full Text Available A Berner low pressure impactor was used to collect size-segregated aerosol samples at Finokalia, located on the north-eastern coast of Crete, Greece during July 2000 and January 2001. Several samples were also collected during the summer campaign aboard the research vessel "AEGAIEO" in the Aegean Sea. Gravimetric analysis and inversion techniques yielded daily PM1 and PM10 mass concentrations. The samples were also analysed by PIXE giving the elemental size distributions of Al, Si, K, Ca, Ti, Mn, Fe, Sr, S, Cl, Ni, V, Cu, Cr, Zn, and Pb. The crustal elements and sea-salt had a unimodal supermicron size distribution. Sulphur was found predominantly in submicron fractions. K, V, and Ni exhibited a bimodal distribution with a submicron mode produced by forest fires and oil combustion. The anthropogenic elements had broad and not well-defined distributions. The time series for PM1 and PM10 mass and elemental concentrations showed both daily and seasonal variation. Higher mass concentrations were observed during two incursions of Saharan dust, whilst higher concentrations of S, Cu, Zn, and Pb were encountered in samples collected in air masses arriving from northern Greece or the western coast of Turkey. Elevated concentrations of chlorine were found in samples with air masses either originating above the Atlantic Ocean and arriving at Finokalia via western Europe or recirculating over the western coast of the Black Sea.

  9. Aerosol particle size does not predict pharmacokinetic determined lung dose in children

    DEFF Research Database (Denmark)

    Bønnelykke, Klaus; Chawes, Bo L K; Vindfeld, Signe

    2013-01-01

    In vitro measures of aerosol particles size, such as the fine particle mass, play a pivotal role for approval of inhaled anti-asthmatic drugs. However, the validity as a measure of dose to the lungs in children lacks evidence. In this study we investigated for the first time the association between...... an in vivo estimate of lung dose of inhaled drug in children and the corresponding particle size segments assessed ex vivo. Lung dose of fluticasone propionate after inhalation from a dry powder inhaler (Diskus®) was studied in 23 children aged 4-7 and 12-15 years with mild asthma. Six-hour pharmacokinetics...... was assessed after single inhalation. The corresponding emitted mass of drug in segments of aerosol particle size was assessed ex vivo by replicating the inhalation flows recorded by transducers built into the Diskus® inhaler and re-playing them in a breathing simulator. There was no correlation between any...

  10. Studies on aerosol optical properties over urban and semi-urban environments of Hyderabad and Anantapur

    International Nuclear Information System (INIS)

    Lata, K.M.; Badarinath, K.V.S.; Rao, T.V. Ramakrishna; Reddy, R.R.; Ahammed, Y. Nazeer; Gopal, K. Rama; Azeem, P. Abdul

    2003-01-01

    Aerosols in the troposphere exert an important influence on global climate and the environment through scattering, transmission and absorption of radiation as well as acting as nuclei for cloud formation. Atmospheric aerosol particles influence the earth's radiation balance directly by scattering of infrared energy and indirectly by modifying the properties of clouds through microphysical processes. The present study addresses visibility, radiative forcing, size distribution and attenuation of aerosols over the period from January to May, 2001 for urban and semi-urban regions of Hyderabad and Anantapur. High aerosol loading has been observed over urban environment compared to semi-urban environment. Aerosol optical depth values increased from January to April and then decreased during May over both urban and semi-urban regions. Over urban region, visibility decreased from January to April and increased during May. Similar trend has been observed over semi-urban region with relatively higher values of visibility. Radiative forcing estimated using aerosol optical depth values increased from January to April and then decreased during the month of May over urban and semi-urban areas. High visibility and low radiative forcing has been noticed over semi-urban area due to less aerosol loading. Wavelength exponent and turbidity coefficient registered high values over urban environment compared to semi-urban environment. Attenuation coefficient showed high values over urban region compared to semi-urban region. It reveals that semi-urban environment receives high solar flux than urban environment. Using 10 channel quartz crystal microbalance, measurements of total mass concentration and mass size distribution of near surface aerosols has been made over semi-urban environment and compared with size distribution derived from inversion methods based on aerosol optical depth variation with wavelength. The sensitivity of constrained linear inversions for inferring columnar

  11. Evolution of aerosol downwind of a major highway

    Science.gov (United States)

    Liggio, J.; Staebler, R. M.; Brook, J.; Li, S.; Vlasenko, A. L.; Sjostedt, S. J.; Gordon, M.; Makar, P.; Mihele, C.; Evans, G. J.; Jeong, C.; Wentzell, J. J.; Lu, G.; Lee, P.

    2010-12-01

    Primary aerosol from traffic emissions can have a considerable impact local and regional scale air quality. In order to assess the effect of these emissions and of future emissions scenarios, air quality models are required which utilize emissions representative of real world conditions. Often, the emissions processing systems which provide emissions input for the air quality models rely on laboratory testing of individual vehicles under non-ambient conditions. However, on the sub-grid scale particle evolution may lead to changes in the primary emitted size distribution and gas-particle partitioning that are not properly considered when the emissions are ‘instantly mixed’ within the grid volume. The affect of this modeling convention on model results is not well understood. In particular, changes in organic gas/particle partitioning may result in particle evaporation or condensation onto pre-existing aerosol. The result is a change in the particle distribution and/or an increase in the organic mass available for subsequent gas-phase oxidation. These effects may be missing from air-quality models, and a careful analysis of field data is necessary to quantify their impact. A study of the sub-grid evolution of aerosols (FEVER; Fast Evolution of Vehicle Emissions from Roadways) was conducted in the Toronto area in the summer of 2010. The study included mobile measurements of particle size distributions with a Fast mobility particle sizer (FMPS), aerosol composition with an Aerodyne aerosol mass spectrometer (AMS), black carbon (SP2, PA, LII), VOCs (PTR-MS) and other trace gases. The mobile laboratory was used to measure the concentration gradient of the emissions at perpendicular distances from the highway as well as the physical and chemical evolution of the aerosol. Stationary sites at perpendicular distances and upwind from the highway also monitored the particle size distribution. In addition, sonic anemometers mounted on the mobile lab provided measurements of

  12. Physical properties of aerosols at Maitri, Antarctica

    Indian Academy of Sciences (India)

    Measurements of the submicron aerosol size distribution made at the Indian Antarctic station, Maitri (70° 45′S, 11° 44′E) from January 10th to February 24th, 1997, are reported. Total aerosol concentrations normally range from 800 to 1200 particles cm-3 which are typical values for the coastal stations at Antarctica in ...

  13. The Dependence of Cloud Particle Size on Non-Aerosol-Loading Related Variables

    Energy Technology Data Exchange (ETDEWEB)

    Shao, H.; Liu, G.

    2005-03-18

    An enhanced concentration of aerosol may increase the number of cloud drops by providing more cloud condensation nuclei (CCN), which in turn results in a higher cloud albedo at a constant cloud liquid water path. This process is often referred to as the aerosol indirect effect (AIE). Many in situ and remote sensing observations support this hypothesis (Ramanathan et al. 2001). However, satellite observed relations between aerosol concentration and cloud drop size are not always in agreement with the AIE. Based on global analysis of cloud effective radius (r{sub e}) and aerosol number concentration (N{sub a}) derived from satellite data, Sekiguchi et al. (2003) found that the correlations between the two variables can be either negative, or positive, or none, depending on the location of the clouds. They discovered that significantly negative r{sub e} - N{sub a} correlation can only be identified along coastal regions of the continents where abundant continental aerosols inflow from land, whereas Feingold et al. (2001) found that the response of r{sub e} to aerosol loading is the greatest in the region where aerosol optical depth ({tau}{sub a}) is the smallest. The reason for the discrepancy is likely due to the variations in cloud macroscopic properties such as geometrical thickness (Brenguier et al. 2003). Since r{sub e} is modified not only by aerosol but also by cloud geometrical thickness (H), the correlation between re and {tau}{sub a} actually reflects both the aerosol indirect effect and dependence of H. Therefore, discussing AIE based on the r{sub e}-{tau}{sub a} correlation without taking into account variations in cloud geometrical thickness may be misleading. This paper is motivated to extract aerosols' effect from overall effects using the independent measurements of cloud geometrical thickness, {tau}{sub a} and r{sub e}.

  14. Size distribution and origin of lead-210, bismuth-210, and polonium-210 on airborne particles in the troposphere

    International Nuclear Information System (INIS)

    Moore, H.E.; Poet, S.E.; Martell, E.A.

    1980-01-01

    Data are presented on the concentration, specific activity and percent of 210 Pb, 210 Bi, and 210 Po vs particle size interval for ground level air samples. Similar data for 90 Sr in air and 226 Ra and 210 Pb in one soil sample are given. Calculated mean aerosol residence times increase with increasing particle size interval; however, specific activities and percent of each isotope decrease with increasing particle size interval. These variations, along with comparision to soil data, suggest that the distribution of these isotopes reflects the initial attachment distribution plus a smaller component due to entrainment of particles from soil and other surfaces

  15. Seasonal variation of the particle size distribution of n-alkanes and polycyclic aromatic hydrocarbons (PAHs) in urban aerosol of Guangzhou, China.

    Science.gov (United States)

    Tang, X L; Bi, X H; Sheng, G Y; Tan, J H; Fu, J M

    2006-06-01

    Seasonal aerosol samples have been collected by Andersen Hi-Vol pumping system equipped with a five stage cascade impactor and a backup filter (size range: 10-7.2 microm, 7.2-3.0 microm, 3.0-1.5 microm, 1.5-0.95 microm, 0.95-0.49 microm, gas chromatography and PAHs were measured using gas chromatography/mass spectrometry analysis. The bimodal log-normal distributions of n-alkanes and semi-volatile PAHs were found, while for non-volatile PAHs that was unimodal, so much as the mode of semi-volatile PAHs was similar with that of the particles. The n-alkanes and PAHs were preferably associated with fine particles. C (max) (carbon number maximum) (C(22)-C(26)), CPI (carbon preference index) (1.12-1.21), U/R (unresolved to resolved components ratio) (7.42-10.7), wax% (0.9-3.12%) and the diagnostic ratios for PAHs revealed that vehicular emission was the major source of these organic compounds during the study periods, while the contribution of epicuticular waxes emitted by terrestrial plants was minor. CPI(2) (values for petrogenic hydrocarbons), CPI(3) (values for biogenic n-alkanes) and wax% revealed that the natural preferentially accumulated in the larger aerosol while the anthropogenic in the smaller. In addition, the different MMDs (mass median diameters) for n-alkanes and PAHs were observed in different seasons. The MMDs for n-alkanes and PAHs were higher in autumn/winter than those in spring/summer. The seasonal effect was related to the hydrocarbon content in the individual particulate fractions, showing a preferential association of n-alkanes and PAHs with larger particles in the autumn/winter season.

  16. Lidar Investigation of Aerosol Pollution Distribution near a Coal Power Plant

    Science.gov (United States)

    Mitsev, TS.; Kolarov, G.

    1992-01-01

    Using aerosol lidars with high spatial and temporal resolution with the possibility of real-time data interpretation can solve a large number of ecological problems related to the aerosol-field distribution and variation and the structure of convective flows. Significantly less expensive specialized lidars are used in studying anthropogenic aerosols in the planetary boundary layer. Here, we present results of lidar measurements of the mass-concentration field around a coal-fired power plant with intensive local aerosol sources. We studied the pollution evolution as a function of the emission dynamics and the presence of retaining layers. The technique used incorporates complex analysis of three types of lidar mapping: horizontal map of the aerosol field, vertical cross-section map, and a series of profiles along a selected path. The lidar-sounding cycle was performed for the time of atmosphere's quasi-stationarity.

  17. Lidar investigation of aerosol pollution distribution near a coal power plant

    International Nuclear Information System (INIS)

    Mitsev, T.S.; Kolarov, G.

    1992-01-01

    Using aerosol lidars with high spatial and temporal resolution with the possibility of real-time data interpretation can solve a large number of ecological problems related to the aerosol-field distribution and variation and the structure of convective flows. Significantly less expensive specialized lidars are used in studying anthropogenic aerosols in the planetary boundary layer. Here, results are presented of lidar measurements of the mass-concentration field around a coal-fired power plant with intensive local aerosol sources. The authors studied the pollution evolution as a function of the emission dynamics and the presence of retaining layers. The technique used incorporates complex analysis of three types of lidar mapping: horizontal map of the aerosol field, vertical cross-section map, and a series of profiles along a selected path. The lidar-sounding cycle was performed for the time of atmosphere's quasi-stationarity

  18. Size distribution and sources of humic-like substances in particulate matter at an urban site during winter.

    Science.gov (United States)

    Park, Seungshik; Son, Se-Chang

    2016-01-01

    This study investigates the size distribution and possible sources of humic-like substances (HULIS) in ambient aerosol particles collected at an urban site in Gwangju, Korea during the winter of 2015. A total of 10 sets of size-segregated aerosol samples were collected using a 10-stage Micro-Orifice Uniform Deposit Impactor (MOUDI), and the samples were analyzed to determine the mass as well as the presence of ionic species (Na(+), NH4(+), K(+), Ca(2+), Mg(2+), Cl(-), NO3(-), and SO4(2-)), water-soluble organic carbon (WSOC) and HULIS. The separation and quantification of the size-resolved HULIS components from the MOUDI samples was accomplished using a Hydrophilic-Lipophilic Balanced (HLB) solid phase extraction method and a total organic carbon analyzer, respectively. The entire sampling period was divided into two periods: non-Asian dust (NAD) and Asian dust (AD) periods. The contributions of water-soluble organic mass (WSOM = 1.9 × WSOC) and HULIS (=1.9 × HULIS-C) to fine particles (PM1.8) were approximately two times higher in the NAD samples (23.2 and 8.0%) than in the AD samples (12.8 and 4.2%). However, the HULIS-C/WSOC ratio in PM1.8 showed little difference between the NAD (0.35 ± 0.07) and AD (0.35 ± 0.05) samples. The HULIS exhibited a uni-modal size distribution (@0.55 μm) during NAD and a bimodal distribution (@0.32 and 1.8 μm) during AD, which was quite similar to the mass size distributions of particulate matter, WSOC, NO3(-), SO4(2-), and NH4(+) in both the NAD and AD samples. The size distribution characteristics and the results of the correlation analyses indicate that the sources of HULIS varied according to the particle size. In the fine mode (≤1.8 μm), the HULIS composition during the NAD period was strongly associated with secondary organic aerosol (SOA) formation processes similar to those of secondary ionic species (cloud processing and/or heterogeneous reactions) and primary emissions during the biomass burning period, and during

  19. Plutonium-containing aerosols found within containment enclosures in industrial mixed-oxide reactor fuel fabrication

    International Nuclear Information System (INIS)

    Newton, G.J.; Yeh, H.C.; Stanley, J.A.

    1977-01-01

    Mixed oxide (PuO 2 and UO 2 ) nuclear reactor fuel pellets are fabricated within safety enclosures at Babcock and Wilcox's Park Township site near Apollo, PA. Forty-two sample runs of plutonium-containing aerosols were taken from within glove boxes during routine industrial operations. A small, seven-stage cascade impactor and the Lovelace Aerosol Particle Separator (LAPS) were used to determine aerodynamic size distribution and gross alpha aerosol concentration. Powder comminution and blending produced aerosols with lognormal size distributions characterized by activity median aerodynamic diameters (AMAD) of 1.89 +- 0.33 μm, sigma/sub g/ = 1.62 +- 0.09 and a gross alpha aerosol concentration range of 0.1 to 150 nCi/l. Slug pressing and grinding produced aerosols of AMAD = 3.08 +- 0.1 μm, sigma/sub g/ = 1.53 +- 0.01 and AMAD = 2.26 +- 0.16 μm, sigma/sub g/ = 1.68 +- 0.20, respectively. Gross alpha aerosol concentrations ranged from 3.4 to 450 nCi/l. Centerless grinding produced similar-sized aerosols but the gross alpha concentration ranged from 220 to 1690 nCi/l. In vitro solubility studies on selected LAPS samples in a lung fluid simulant indicate that plutonium mixed-oxide aerosols are more soluble than laboratory-produced plutonium aerosols

  20. Installation of aerosol behavior model into multi-dimensional thermal hydraulic analysis code AQUA

    International Nuclear Information System (INIS)

    Kisohara, Naoyuki; Yamaguchi, Akira

    1997-12-01

    The safety analysis of FBR plant system for sodium leak phenomena needs to evaluate the deposition of the aerosol particle to the components in the plant, the chemical reaction of aerosol to humidity in the air and the effect of the combustion heat through aerosol to the structural component. For this purpose, ABC-INTG (Aerosol Behavior in Containment-INTeGrated Version) code has been developed and used until now. This code calculates aerosol behavior in the gas area of uniform temperature and pressure by 1 cell-model. Later, however, more detailed calculation of aerosol behavior requires the installation of aerosol model into multi-cell thermal hydraulic analysis code AQUA. AQUA can calculate the carrier gas flow, temperature and the distribution of the aerosol spatial concentration. On the other hand, ABC-INTG can calculate the generation, deposition to the wall and flower, agglomeration of aerosol particle and figure out the distribution of the aerosol particle size. Thus, the combination of these two codes enables to deal with aerosol model coupling the distribution of the aerosol spatial concentration and that of the aerosol particle size. This report describes aerosol behavior model, how to install the aerosol model to AQUA and new subroutine equipped to the code. Furthermore, the test calculations of the simple structural model were executed by this code, appropriate results were obtained. Thus, this code has prospect to predict aerosol behavior by the introduction of coupling analysis with multi-dimensional gas thermo-dynamics for sodium combustion evaluation. (J.P.N.)

  1. Stable Carbon Fractionation In Size Segregated Aerosol Particles Produced By Controlled Biomass Burning

    Science.gov (United States)

    Masalaite, Agne; Garbaras, Andrius; Garbariene, Inga; Ceburnis, Darius; Martuzevicius, Dainius; Puida, Egidijus; Kvietkus, Kestutis; Remeikis, Vidmantas

    2014-05-01

    Biomass burning is the largest source of primary fine fraction carbonaceous particles and the second largest source of trace gases in the global atmosphere with a strong effect not only on the regional scale but also in areas distant from the source . Many studies have often assumed no significant carbon isotope fractionation occurring between black carbon and the original vegetation during combustion. However, other studies suggested that stable carbon isotope ratios of char or BC may not reliably reflect carbon isotopic signatures of the source vegetation. Overall, the apparently conflicting results throughout the literature regarding the observed fractionation suggest that combustion conditions may be responsible for the observed effects. The purpose of the present study was to gather more quantitative information on carbonaceous aerosols produced in controlled biomass burning, thereby having a potential impact on interpreting ambient atmospheric observations. Seven different biomass fuel types were burned under controlled conditions to determine the effect of the biomass type on the emitted particulate matter mass and stable carbon isotope composition of bulk and size segregated particles. Size segregated aerosol particles were collected using the total suspended particle (TSP) sampler and a micro-orifice uniform deposit impactor (MOUDI). The results demonstrated that particle emissions were dominated by the submicron particles in all biomass types. However, significant differences in emissions of submicron particles and their dominant sizes were found between different biomass fuels. The largest negative fractionation was obtained for the wood pellet fuel type while the largest positive isotopic fractionation was observed during the buckwheat shells combustion. The carbon isotope composition of MOUDI samples compared very well with isotope composition of TSP samples indicating consistency of the results. The measurements of the stable carbon isotope ratio in

  2. The Role of Aerosols on Precipitation Processes: Cloud Resolving Model Simulations

    Science.gov (United States)

    Tao, Wei-Kuo; Li, X.; Matsui, T.

    2012-01-01

    Cloud microphysics is inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, a detailed spectral-bin microphysical scheme was implemented into the Goddard Cumulus Ensemble (GCE) model. The formulation for the explicit spectral bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e. pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e., 33 bins). Atmospheric aerosols are also described using number density size-distribution functions. The model is tested by studying the evolution of deep cloud systems in the west Pacific warm pool region, the sub-tropics (Florida) and midlatitudes using identical thermodynamic conditions but with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. Results indicate that the low CCN concentration case produces rainfall at the surface sooner than the high CeN case but has less cloud water mass aloft. Because the spectral-bin model explicitly calculates and allows for the examination of both the mass and number concentration of species in each size category, a detailed analysis of the instantaneous size spectrum can be obtained for these cases. It is shown that since the low (CN case produces fewer droplets, larger sizes develop due to greater condensational and collection growth, leading to a broader size spectrum in comparison to the high CCN case. Sensitivity tests were performed to

  3. Aerosol physical and optical properties in the Eastern Mediterranean Basin, Crete, from Aerosol Robotic Network data

    Directory of Open Access Journals (Sweden)

    A. Fotiadi

    2006-01-01

    Full Text Available In this study, we investigate the aerosol optical properties, namely aerosol extinction optical thickness (AOT, Angström parameter and size distribution over the Eastern Mediterranean Basin, using spectral measurements from the recently established FORTH (Foundation for Research and Technology-Hellas AERONET station in Crete, for the two-year period 2003–2004. The location of the FORTH-AERONET station offers a unique opportunity to monitor aerosols from different sources. Maximum values of AOT are found primarily in spring, which together with small values of the Angström parameter indicate dust transported from African deserts, whereas the minimum values of AOT occur in winter. In autumn, large AOT values observed at near-infrared wavelengths arise also from dust transport. In summer, large AOT values at ultraviolet (340 nm and visible wavelengths (500 nm, together with large values of the Angström parameter, are associated with transport of fine aerosols of urban/industrial and biomass burning origin. The Angström parameter values vary on a daily basis within the range 0.05–2.20, and on a monthly basis within the range 0.68–1.9. This behaviour, together with broad frequency distributions and back-trajectory analyses, indicates a great variety of aerosol types over the study region including dust, urban-industrial and biomass-burning pollution, and maritime, as well as mixed aerosol types. Large temporal variability is observed in AOT, Angström parameter, aerosol content and size. The fine and coarse aerosol modes persist throughout the year, with the coarse mode dominant except in summer. The highest values of AOT are related primarily to southeasterly winds, associated with coarse aerosols, and to a less extent to northwesterly winds associated with fine aerosols. The results of this study show that the FORTH AERONET station in Crete is well suited for studying the transport and mixing of different types of aerosols from a variety

  4. Impact of aerosols on ice crystal size

    Science.gov (United States)

    Zhao, Bin; Liou, Kuo-Nan; Gu, Yu; Jiang, Jonathan H.; Li, Qinbin; Fu, Rong; Huang, Lei; Liu, Xiaohong; Shi, Xiangjun; Su, Hui; He, Cenlin

    2018-01-01

    The interactions between aerosols and ice clouds represent one of the largest uncertainties in global radiative forcing from pre-industrial time to the present. In particular, the impact of aerosols on ice crystal effective radius (Rei), which is a key parameter determining ice clouds' net radiative effect, is highly uncertain due to limited and conflicting observational evidence. Here we investigate the effects of aerosols on Rei under different meteorological conditions using 9-year satellite observations. We find that the responses of Rei to aerosol loadings are modulated by water vapor amount in conjunction with several other meteorological parameters. While there is a significant negative correlation between Rei and aerosol loading in moist conditions, consistent with the "Twomey effect" for liquid clouds, a strong positive correlation between the two occurs in dry conditions. Simulations based on a cloud parcel model suggest that water vapor modulates the relative importance of different ice nucleation modes, leading to the opposite aerosol impacts between moist and dry conditions. When ice clouds are decomposed into those generated from deep convection and formed in situ, the water vapor modulation remains in effect for both ice cloud types, although the sensitivities of Rei to aerosols differ noticeably between them due to distinct formation mechanisms. The water vapor modulation can largely explain the difference in the responses of Rei to aerosol loadings in various seasons. A proper representation of the water vapor modulation is essential for an accurate estimate of aerosol-cloud radiative forcing produced by ice clouds.

  5. Atmospheric aerosol system: An overview

    International Nuclear Information System (INIS)

    Prospero, J.M.; Charlson, R.J.; Mohnen, V.; Jaenicke, R.; Delany, A.C.; Moyers, J.; Zoller, W.; Rahn, K.

    1983-01-01

    Aerosols could play a critical role in many processes which impact on our lives either indirectly (e.g., climate) or directly (e.g., health). However, our ability to assess these possible impacts is constrained by our limited knowledge of the physical and chemical properties of aerosols, both anthropogenic and natural. This deficiency is attributable in part to the fact that aerosols are the end product of a vast array of chemical and physical processes. Consequently, the properties of the aerosol can exhibit a great deal of variability in both time and space. Furthermore, most aerosol studies have focused on measurements of a single aerosol characteristic such as composition or size distribution. Such information is generally not useful for the assessment of impacts because the degree of impact may depend on the integral properties of the aerosol, for example, the aerosol composition as a function of particle size. In this overview we discuss recent work on atmospheric aerosols that illustrates the complex nature of the aerosol chemical and physical system, and we suggest strategies for future research. A major conclusion is that man has had a great impact on the global budgets of certain species, especially sulfur and nitrogen, that play a dominant role in the atmospheric aerosol system. These changes could conceivably affect climate. Large-scale impacts are implied because it has recently been demonstrated that natural and pollutant aerosol episodes can be propagated over great distances. However, at present there is no evidence linking anthropogenic activities with a persistent increase in aerosol concentrations on a global scale. A major problem in assessing man's impact on the atmospheric aerosol system and on global budgets is the absence of aerosol measurements in remote marine and continental areas

  6. The Influence of Emission Location on the Magnitude and Spatial Distribution of Aerosols' Climate Effects

    Science.gov (United States)

    Persad, G.; Caldeira, K.

    2017-12-01

    The global distribution of anthropogenic aerosol emissions has evolved continuously since the preindustrial era - from 20th century North American and Western European emissions hotspots to present-day South and East Asian ones. With this comes a relocation of the regional radiative, dynamical, and hydrological impacts of aerosol emissions, which may influence global climate differently depending on where they occur. A lack of understanding of this relationship between aerosol emissions' location and their global climate effects, however, obscures the potential influence that aerosols' evolving geographic distribution may have on global and regional climate change—a gap which we address in this work. Using a novel suite of experiments in the CESM CAM5 atmospheric general circulation model coupled to a slab ocean, we systematically test and analyze mechanisms behind the relative climate impact of identical black carbon and sulfate aerosol emissions located in each of 8 past, present, or projected future major emissions regions. Results indicate that historically high emissions regions, such as North America and Western Europe, produce a stronger cooling effect than current and projected future high emissions regions. Aerosol emissions located in Western Europe produce 3 times the global mean cooling (-0.34 °C) as those located in East Africa or India (-0.11 °C). The aerosols' in-situ radiative effects remain relatively confined near the emissions region, but large distal cooling results from remote feedback processes - such as ice albedo and cloud changes - that are excited more strongly by emissions from certain regions than others. Results suggest that aerosol emissions from different countries should not be considered equal in the context of climate mitigation accounting, and that the evolving geographic distribution of aerosol emissions may have a substantial impact on the magnitude and spatial distribution of global climate change.

  7. Size spectra for trace elements in urban aerosol particles by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Ondov, J.M.; Divita, F. Jr.

    1993-01-01

    Size-fractionated aerosol samples collected with micro-orifice impactors at Camden, NJ, a heavily industrialized urban area, and at two sites near Washington, DC, were analyzed for elemental constituents determined instrumentally from short-lived neutron activation products. A least-squares peak-fitting method was used with impactor calibration data to determine log-normal distribution parameters, i.e., mass median aerodynamic diameter (MMAD) and geometric standard deviation (σ g ) for particles bearing S, V, Br, and I. For these elements, MMADs ranged from 0.24 to 0.65 μm; 0.23 to 0.53 μm; 0.22 to 0.61 μm, and 0.20 to 0.48 μm, respectively. (author) 15 refs.; 4 figs.; 2 tabs

  8. Determination of Atmospheric Aerosol Characteristics from the Polarization of Scattered Radiation

    Science.gov (United States)

    Harris, F. S., Jr.; McCormick, M. P.

    1973-01-01

    Aerosols affect the polarization of radiation in scattering, hence measured polarization can be used to infer the nature of the particles. Size distribution, particle shape, real and absorption parts of the complex refractive index affect the scattering. From Lorenz-Mie calculations of the 4-Stokes parameters as a function of scattering angle for various wavelengths the following polarization parameters were plotted: total intensity, intensity of polarization in plane of observation, intensity perpendicular to the plane of observation, polarization ratio, polarization (using all 4-Stokes parameters), plane of the polarization ellipse and its ellipticity. A six-component log-Gaussian size distribution model was used to study the effects of the nature of the polarization due to variations in the size distribution and complex refractive index. Though a rigorous inversion from measurements of scattering to detailed specification of aerosol characteristics is not possible, considerable information about the nature of the aerosols can be obtained. Only single scattering from aerosols was used in this paper. Also, the background due to Rayleigh gas scattering, the reduction of effects as a result of multiple scattering and polarization effects of possible ground background (airborne platforms) were not included.

  9. The Effect of Aerosol Hygroscopicity and Volatility on Aerosol Optical Properties During Southern Oxidant and Aerosol Study

    Science.gov (United States)

    Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.

    2014-12-01

    Secondary organic aerosol (SOA) from biogenic sources can influence optical properties of ambient aerosol by altering its hygroscopicity and contributing to light absorption directly via formation of brown carbon and indirectly by enhancing light absorption by black carbon ("lensing effect"). The magnitude of these effects remains highly uncertain. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of relative humidity and temperature on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). The sample-conditioning system provided measurements at ambient RH, 10%RH ("dry"), 85%RH ("wet"), and 200 C ("TD"). In parallel to these measurements, a long residence time temperature-stepping thermodenuder (TD) and a variable residence time constant temperature TD in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. We will present results of the on-going analysis of the collected data set. We will show that both temperature and relative humidity have a strong effect on aerosol optical properties. SOA appears to increase aerosol light absorption by about 10%. TD measurements suggest that aerosol equilibrated fairly quickly, within 2 s. Evaporation varied substantially with ambient aerosol loading and composition and meteorology.

  10. Systematic Relationships Between Lidar Observables and Sizes And Mineral Composition Of Dust Aerosols

    Science.gov (United States)

    Van Diedenhoven, Bastiaan; Stangl, Alexander; Perlwitz, Jan; Fridlind, Ann M.; Chowdhary, Jacek; Cairns, Brian

    2015-01-01

    The physical and chemical properties of soil dust aerosol particles fundamentally affect their interaction with climate, including shortwave absorption and radiative forcing, nucleation of cloud droplets and ice crystals, heterogeneous formation of sulfates and nitrates on the surface of dust particles, and atmospheric processing of iron into bioavailable forms that increase the productivity of marine phytoplankton. Lidar measurements, such as extinction-to-backscatter, color and depolarization ratios, are frequently used to distinguish between aerosol types with different physical and chemical properties. The chemical composition of aerosol particles determines their complex refractive index, hence affecting their backscattering properties. Here we present a study on how dust aerosol backscattering and depolarization properties at wavelengths of 355, 532 and 1064 nm are related to size and complex refractive index, which varies with the mineral composition of the dust. Dust aerosols are represented by collections of spheroids with a range of prolate and oblate aspect ratios and their optical properties are obtained using T-matrix calculations. We find simple, systematic relationships between lidar observables and the dust size and complex refractive index that may aid the use of space-based or airborne lidars for direct retrieval of dust properties or for the evaluation of chemical transport models using forward simulated lidar variables. In addition, we present first results on the spatial variation of forward-simulated lidar variables based on a dust model that accounts for the atmospheric cycle of eight different mineral types plus internal mixtures of seven mineral types with iron oxides, which was recently implemented in the NASA GISS Earth System ModelE2.

  11. Stratospheric aerosols

    International Nuclear Information System (INIS)

    Rosen, J.; Ivanov, V.A.

    1993-01-01

    Stratospheric aerosol measurements can provide both spatial and temporal data of sufficient resolution to be of use in climate models. Relatively recent results from a wide range of instrument techniques for measuring stratospheric aerosol parameters are described. Such techniques include impactor sampling, lidar system sensing, filter sampling, photoelectric particle counting, satellite extinction-sensing using the sun as a source, and optical depth probing, at sites mainly removed from tropospheric aerosol sources. Some of these techniques have also had correlative and intercomparison studies. The main methods for determining the vertical profiles of stratospheric aerosols are outlined: lidar extinction measurements from satellites; impactor measurements from balloons and aircraft; and photoelectric particle counter measurements from balloons, aircraft, and rockets. The conversion of the lidar backscatter to stratospheric aerosol mass loading is referred to. Absolute measurements of total solar extinction from satellite orbits can be used to extract the aerosol extinction, and several examples of vertical profiles of extinction obtained with the SAGE satellite are given. Stratospheric mass loading can be inferred from extinction using approximate linear relationships but under restrictive conditions. Impactor sampling is essentially the only method in which the physical nature of the stratospheric aerosol is observed visually. Vertical profiles of stratospheric aerosol number concentration using impactor data are presented. Typical profiles using a dual-size-range photoelectric dustsonde particle counter are given for volcanically disturbed and inactive periods. Some measurements of the global distribution of stratospheric aerosols are also presented. Volatility measurements are described, indicating that stratospheric aerosols are composed primarily of about 75% sulfuric acid and 25% water

  12. Size distributions of dicarboxylic acids, ketoacids, α-dicarbonyls, sugars, WSOC, OC, EC and inorganic ions in atmospheric particles over Northern Japan: implication for long-range transport of Siberian biomass burning and East Asian polluted aerosols

    Directory of Open Access Journals (Sweden)

    S. Agarwal

    2010-07-01

    Full Text Available To better understand the size-segregated chemical composition of aged organic aerosols in the western North Pacific rim, day- and night-time aerosol samples were collected in Sapporo, Japan during summer 2005 using an Andersen impactor sampler with 5 size bins: Dp<1.1, 1.1–2.0, 2.0–3.3, 3.3–7.0, >7.0 μm. Samples were analyzed for the molecular composition of dicarboxylic acids, ketoacids, α-dicarbonyls, and sugars, together with water-soluble organic carbon (WSOC, organic carbon (OC, elemental carbon (EC and inorganic ions. Based on the analyses of backward trajectories and chemical tracers, we found that during the campaign, air masses arrived from Siberia (a biomass burning source region on 8–9 August, from China (an anthropogenic source region on 9–10 August, and from the East China Sea/Sea of Japan (a mixed source receptor region on 10–11 August. Most of the diacids, ketoacids, dicarbonyls, levoglucosan, WSOC, and inorganic ions (i.e., SO42−, NH4+ and K+ were enriched in fine particles (PM1.1 whereas Ca2+, Mg2+ and Cl peaked in coarse sizes (>1.1 μm. Interestingly, OC, most sugar compounds and NO3 showed bimodal distributions in fine and coarse modes. In PM1.1, diacids in biomass burning-influenced aerosols transported from Siberia (mean: 252 ng m−3 were more abundant than those in the aerosols originating from China (209 ng m−3 and ocean (142 ng m−3, whereas SO42− concentrations were highest in the aerosols from China (mean: 3970 ng m−3 followed by marine- (2950 ng m−3 and biomass burning-influenced (1980 ng m−3 aerosols. Higher loadings of WSOC (2430 ng m−3 and OC (4360 ng m−3 were found in the fine mode, where biomass-burning products such as

  13. Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity

    Directory of Open Access Journals (Sweden)

    G. W. Mann

    2014-05-01

    Full Text Available Many of the next generation of global climate models will include aerosol schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical properties and cloud condensation nuclei (CCN concentrations to be determined by fundamental aerosol processes, which should lead to a more physically based simulation of aerosol direct and indirect radiative forcings. This study examines the global variation in particle size distribution simulated by 12 global aerosol microphysics models to quantify model diversity and to identify any common biases against observations. Evaluation against size distribution measurements from a new European network of aerosol supersites shows that the mean model agrees quite well with the observations at many sites on the annual mean, but there are some seasonal biases common to many sites. In particular, at many of these European sites, the accumulation mode number concentration is biased low during winter and Aitken mode concentrations tend to be overestimated in winter and underestimated in summer. At high northern latitudes, the models strongly underpredict Aitken and accumulation particle concentrations compared to the measurements, consistent with previous studies that have highlighted the poor performance of global aerosol models in the Arctic. In the marine boundary layer, the models capture the observed meridional variation in the size distribution, which is dominated by the Aitken mode at high latitudes, with an increasing concentration of accumulation particles with decreasing latitude. Considering vertical profiles, the models reproduce the observed peak in total particle concentrations in the upper troposphere due to new particle formation, although modelled peak concentrations tend to be biased high over Europe. Overall, the multi-model-mean data set simulates the global variation of the particle size distribution with a good degree

  14. Vicarious calibration of the solar reflection channels of radiometers onboard satellites through the field campaigns with measurements of refractive index and size distribution of aerosols

    Science.gov (United States)

    Arai, K.

    A comparative study on vicarious calibration for the solar reflection channels of radiometers onboard satellite through the field campaigns between with and without measurements of refractive index and size distribution of aerosols is made. In particular, it is noticed that the influence due to soot from the cars exhaust has to be care about for the test sites near by a heavy trafficked roads. It is found that the 0.1% inclusion of soot induces around 10% vicarious calibration error so that it is better to measure refractive index properly at the test site. It is found that the vicarious calibration coefficients with the field campaigns at the different test site, Ivanpah (near road) and Railroad (distant from road) shows approximately 10% discrepancy. It seems that one of the possible causes for the difference is the influence due to soot from cars exhaust.

  15. Particle size dependence of biogenic secondary organic aerosol molecular composition

    Science.gov (United States)

    Tu, Peijun; Johnston, Murray V.

    2017-06-01

    Formation of secondary organic aerosol (SOA) is initiated by the oxidation of volatile organic compounds (VOCs) in the gas phase whose products subsequently partition to the particle phase. Non-volatile molecules have a negligible evaporation rate and grow particles at their condensation rate. Semi-volatile molecules have a significant evaporation rate and grow particles at a much slower rate than their condensation rate. Particle phase chemistry may enhance particle growth if it transforms partitioned semi-volatile molecules into non-volatile products. In principle, changes in molecular composition as a function of particle size allow non-volatile molecules that have condensed from the gas phase (a surface-limited process) to be distinguished from those produced by particle phase reaction (a volume-limited process). In this work, SOA was produced by β-pinene ozonolysis in a flow tube reactor. Aerosol exiting the reactor was size-selected with a differential mobility analyzer, and individual particle sizes between 35 and 110 nm in diameter were characterized by on- and offline mass spectrometry. Both the average oxygen-to-carbon (O / C) ratio and carbon oxidation state (OSc) were found to decrease with increasing particle size, while the relative signal intensity of oligomers increased with increasing particle size. These results are consistent with oligomer formation primarily in the particle phase (accretion reactions, which become more favored as the volume-to-surface-area ratio of the particle increases). Analysis of a series of polydisperse SOA samples showed similar dependencies: as the mass loading increased (and average volume-to-surface-area ratio increased), the average O / C ratio and OSc decreased, while the relative intensity of oligomer ions increased. The results illustrate the potential impact that particle phase chemistry can have on biogenic SOA formation and the particle size range where this chemistry becomes important.

  16. Particle size dependence of biogenic secondary organic aerosol molecular composition

    Directory of Open Access Journals (Sweden)

    P. Tu

    2017-06-01

    Full Text Available Formation of secondary organic aerosol (SOA is initiated by the oxidation of volatile organic compounds (VOCs in the gas phase whose products subsequently partition to the particle phase. Non-volatile molecules have a negligible evaporation rate and grow particles at their condensation rate. Semi-volatile molecules have a significant evaporation rate and grow particles at a much slower rate than their condensation rate. Particle phase chemistry may enhance particle growth if it transforms partitioned semi-volatile molecules into non-volatile products. In principle, changes in molecular composition as a function of particle size allow non-volatile molecules that have condensed from the gas phase (a surface-limited process to be distinguished from those produced by particle phase reaction (a volume-limited process. In this work, SOA was produced by β-pinene ozonolysis in a flow tube reactor. Aerosol exiting the reactor was size-selected with a differential mobility analyzer, and individual particle sizes between 35 and 110 nm in diameter were characterized by on- and offline mass spectrometry. Both the average oxygen-to-carbon (O ∕ C ratio and carbon oxidation state (OSc were found to decrease with increasing particle size, while the relative signal intensity of oligomers increased with increasing particle size. These results are consistent with oligomer formation primarily in the particle phase (accretion reactions, which become more favored as the volume-to-surface-area ratio of the particle increases. Analysis of a series of polydisperse SOA samples showed similar dependencies: as the mass loading increased (and average volume-to-surface-area ratio increased, the average O ∕ C ratio and OSc decreased, while the relative intensity of oligomer ions increased. The results illustrate the potential impact that particle phase chemistry can have on biogenic SOA formation and the particle size range where this chemistry becomes

  17. Aerosol Optical Depth Distribution in Extratropical Cyclones over the Northern Hemisphere Oceans

    Science.gov (United States)

    Naud, Catherine M.; Posselt, Derek J.; van den Heever, Susan C.

    2016-01-01

    Using Moderate Resolution Imaging Spectroradiometer and an extratropical cyclone database,the climatological distribution of aerosol optical depth (AOD) in extratropical cyclones is explored based solely on observations. Cyclone-centered composites of aerosol optical depth are constructed for the Northern Hemisphere mid-latitude ocean regions, and their seasonal variations are examined. These composites are found to be qualitatively stable when the impact of clouds and surface insolation or brightness is tested. The larger AODs occur in spring and summer and are preferentially found in the warm frontal and in the post-cold frontal regions in all seasons. The fine mode aerosols dominate the cold sector AODs, but the coarse mode aerosols display large AODs in the warm sector. These differences between the aerosol modes are related to the varying source regions of the aerosols and could potentially have different impacts on cloud and precipitation within the cyclones.

  18. Size distributions and temporal variations of biological aerosol particles in the Amazon rainforest characterized by microscopy and real-time UV-APS fluorescence techniques during AMAZE-08

    Directory of Open Access Journals (Sweden)

    J. A. Huffman

    2012-12-01

    Full Text Available As a part of the AMAZE-08 campaign during the wet season in the rainforest of central Amazonia, an ultraviolet aerodynamic particle sizer (UV-APS was operated for continuous measurements of fluorescent biological aerosol particles (FBAP. In the coarse particle size range (> 1 μm the campaign median and quartiles of FBAP number and mass concentration were 7.3 × 104 m−3 (4.0–13.2 × 104 m−3 and 0.72 μg m−3 (0.42–1.19 μg m−3, respectively, accounting for 24% (11–41% of total particle number and 47% (25–65% of total particle mass. During the five-week campaign in February–March 2008 the concentration of coarse-mode Saharan dust particles was highly variable. In contrast, FBAP concentrations remained fairly constant over the course of weeks and had a consistent daily pattern, peaking several hours before sunrise, suggesting observed FBAP was dominated by nocturnal spore emission. This conclusion was supported by the consistent FBAP number size distribution peaking at 2.3 μm, also attributed to fungal spores and mixed biological particles by scanning electron microscopy (SEM, light microscopy and biochemical staining. A second primary biological aerosol particle (PBAP mode between 0.5 and 1.0 μm was also observed by SEM, but exhibited little fluorescence and no true fungal staining. This mode may have consisted of single bacterial cells, brochosomes, various fragments of biological material, and small Chromalveolata (Chromista spores. Particles liquid-coated with mixed organic-inorganic material constituted a large fraction of observations, and these coatings contained salts likely from primary biological origin. We provide key support for the suggestion that real-time laser-induce fluorescence (LIF techniques using 355 nm excitation provide size-resolved concentrations of FBAP as a lower limit for the atmospheric abundance of biological particles in a pristine

  19. A stratospheric aerosol increase

    Science.gov (United States)

    Rosen, J. M.; Hofmann, D. J.

    1980-01-01

    Large disturbances were noted in the stratospheric aerosol content in the midlatitude Northern Hemisphere commencing about 7 months after the eruption of La Soufriere and less than 1 month after the eruption of Sierra Negra. The aerosol was characterized by a very steep size distribution in the 0.15 to 0.25 micron radius range and contained a volatile component. Measurements near the equator and at the South Pole indicate that the disturbance was widespread. These observations were made before the May 18 eruption of Mt. St. Helens.

  20. Impact of aerosols on ice crystal size

    Directory of Open Access Journals (Sweden)

    B. Zhao

    2018-01-01

    Full Text Available The interactions between aerosols and ice clouds represent one of the largest uncertainties in global radiative forcing from pre-industrial time to the present. In particular, the impact of aerosols on ice crystal effective radius (Rei, which is a key parameter determining ice clouds' net radiative effect, is highly uncertain due to limited and conflicting observational evidence. Here we investigate the effects of aerosols on Rei under different meteorological conditions using 9-year satellite observations. We find that the responses of Rei to aerosol loadings are modulated by water vapor amount in conjunction with several other meteorological parameters. While there is a significant negative correlation between Rei and aerosol loading in moist conditions, consistent with the "Twomey effect" for liquid clouds, a strong positive correlation between the two occurs in dry conditions. Simulations based on a cloud parcel model suggest that water vapor modulates the relative importance of different ice nucleation modes, leading to the opposite aerosol impacts between moist and dry conditions. When ice clouds are decomposed into those generated from deep convection and formed in situ, the water vapor modulation remains in effect for both ice cloud types, although the sensitivities of Rei to aerosols differ noticeably between them due to distinct formation mechanisms. The water vapor modulation can largely explain the difference in the responses of Rei to aerosol loadings in various seasons. A proper representation of the water vapor modulation is essential for an accurate estimate of aerosol–cloud radiative forcing produced by ice clouds.

  1. Wintertime Arctic Ocean sea water properties and primary marine aerosol concentrations

    Directory of Open Access Journals (Sweden)

    J. Zábori

    2012-11-01

    Full Text Available Sea spray aerosols are an important part of the climate system through their direct and indirect effects. Due to the diminishing sea ice, the Arctic Ocean is one of the most rapidly changing sea spray aerosol source areas. However, the influence of these changes on primary particle production is not known.

    In laboratory experiments we examined the influence of Arctic Ocean water temperature, salinity, and oxygen saturation on primary particle concentration characteristics. Sea water temperature was identified as the most important of these parameters. A strong decrease in sea spray aerosol production with increasing water temperature was observed for water temperatures between −1°C and 9°C. Aerosol number concentrations decreased from at least 1400 cm−3 to 350 cm−3. In general, the aerosol number size distribution exhibited a robust shape with one mode close to dry diameter Dp 0.2 μm with approximately 45% of particles at smaller sizes. Changes in sea water temperature did not result in pronounced change of the shape of the aerosol size distribution, only in the magnitude of the concentrations. Our experiments indicate that changes in aerosol emissions are most likely linked to changes of the physical properties of sea water at low temperatures. The observed strong dependence of sea spray aerosol concentrations on sea water temperature, with a large fraction of the emitted particles in the typical cloud condensation nuclei size range, provide strong arguments for a more careful consideration of this effect in climate models.

  2. Scanning vertical distributions of typical aerosols along the Yangtze River using elastic lidar.

    Science.gov (United States)

    Fan, Shidong; Liu, Cheng; Xie, Zhouqing; Dong, Yunsheng; Hu, Qihou; Fan, Guangqiang; Chen, Zhengyi; Zhang, Tianshu; Duan, Jingbo; Zhang, Pengfei; Liu, Jianguo

    2018-07-01

    In recent years, China has experienced heavy air pollution, especially haze caused by particulate matter (PM). The compositions, horizontal distributions, transport, and chemical formation mechanisms of PM and its precursors have been widely investigated in China based on near-ground measurements. However, the understanding of the distributions and physical and chemical processes of PM in the vertical direction remains limited. In this study, an elastic lidar was employed to investigate the vertical profiles of aerosols along the Yangtze River during the Yangtze River Campaign of winter 2015. Some typical aerosols were identified and some events were analyzed in three cases. Dust aerosols can be transported from the Gobi Desert to the Yangtze River basin across a long distance at both low and high altitudes in early December. The transport route was perpendicular to the ship track, suggesting that the dust aerosols may have affected a large area. Moreover, during transport, some dust was also affected by the areas below its transport route since some anthropogenic pollutants were mixed with the dust and changed some of its optical properties. Biomass-burning aerosols covering a distant range along the Yangtze River were identified. This result directly shows the impact areas of biomass-burning aerosols in some agricultural fields. Some directly emitted aerosol plumes were observed, and direct effects of such plumes were limited both temporally and spatially. In addition, an aerosol plume with very low linear depolarization ratios, probably formed through secondary processes, was also observed. These results can help us better understand aerosols in large spatial scales in China and can be useful to regional haze studies. Copyright © 2018. Published by Elsevier B.V.

  3. Chemical characteristics of size-resolved atmospheric aerosols in Iasi, north-eastern Romania: nitrogen-containing inorganic compounds control aerosol chemistry in the area

    Science.gov (United States)

    Giorgiana Galon-Negru, Alina; Iulian Olariu, Romeo; Arsene, Cecilia

    2018-04-01

    This study assesses the effects of particle size and season on the content of the major inorganic and organic aerosol ionic components in the Iasi urban area, north-eastern Romania. Continuous measurements were carried out over 2016 using a cascade Dekati low-pressure impactor (DLPI) performing aerosol size classification in 13 specific fractions over the 0.0276-9.94 µm size range. Fine-particulate Cl-, NO3-, NH4+, and K+ exhibited clear minima during the warm season and clear maxima over the cold season, mainly due to trends in emission sources, changes in the mixing layer depth and specific meteorological conditions. Fine-particulate SO42- did not show much variation with respect to seasons. Particulate NH4+ and NO3- ions were identified as critical parameters controlling aerosol chemistry in the area, and their measured concentrations in fine-mode (PM2.5) aerosols were found to be in reasonable good agreement with modelled values for winter but not for summer. The likely reason is that NH4NO3 aerosols are lost due to volatility over the warm season. We found that NH4+ in PM2.5 is primarily associated with SO42- and NO3- but not with Cl-. Actually, indirect ISORROPIA-II estimations showed that the atmosphere in the Iasi area might be ammonia rich during both the cold and warm seasons, enabling enough NH3 to be present to neutralize H2SO4, HNO3, and HCl acidic components and to generate fine-particulate ammonium salts, in the form of (NH4)2SO4, NH4NO3, and NH4Cl. ISORROPIA-II runs allowed us to estimate that over the warm season ˜ 35 % of the total analysed samples had very strongly acidic pH (0-3), a fraction that rose to ˜ 43 % over the cold season. Moreover, while in the cold season the acidity is mainly accounted for by inorganic acids, in the warm ones there is an important contribution by other compounds, possibly organic. Indeed, changes in aerosol acidity would most likely impact the gas-particle partitioning of semi-volatile organic acids. Overall, we

  4. Experimental determination of submicron aerosol dry deposition velocity onto rural canopies: influence of aerosol size, of micro meteorological parameters and of the substrate

    International Nuclear Information System (INIS)

    Damay, P.

    2010-04-01

    To evaluate the impact of accidental or chronic pollutant releases on ecosystems, we must study the dry deposition of aerosols in rural areas. The lack of experimental data on the dry deposition velocity of particle sizes below 1 μm over rural environments leads to uncertainties regarding models and differences between them, which exceed one order of magnitude. The aim of this study is to develop a method, especially using an Electrical Low Pressure Impactor (Outdoor ELPIDEKATI) to determine aerosol dry deposition velocities (Vd) over rural areas through experimental measurements. This method is based on eddy covariance flux calculation and spectral analysis correction. Dry deposition velocities were obtained for atmospheric aerosols sizing from 7 nm to 2 μm, in the South-West of France on a flat terrain under varied meteorological conditions and varied substrates (maize, grass and earth). Vd was analysed as a function of the particle diameters, and the impact of micro meteorological parameters was studied. (author)

  5. Do detailed simulations with size-resolved microphysics reproduce basic features of observed cirrus ice size distributions?

    Science.gov (United States)

    Fridlind, A. M.; Atlas, R.; van Diedenhoven, B.; Ackerman, A. S.; Rind, D. H.; Harrington, J. Y.; McFarquhar, G. M.; Um, J.; Jackson, R.; Lawson, P.

    2017-12-01

    It has recently been suggested that seeding synoptic cirrus could have desirable characteristics as a geoengineering approach, but surprisingly large uncertainties remain in the fundamental parameters that govern cirrus properties, such as mass accommodation coefficient, ice crystal physical properties, aggregation efficiency, and ice nucleation rate from typical upper tropospheric aerosol. Only one synoptic cirrus model intercomparison study has been published to date, and studies that compare the shapes of observed and simulated ice size distributions remain sparse. Here we amend a recent model intercomparison setup using observations during two 2010 SPARTICUS campaign flights. We take a quasi-Lagrangian column approach and introduce an ensemble of gravity wave scenarios derived from collocated Doppler cloud radar retrievals of vertical wind speed. We use ice crystal properties derived from in situ cloud particle images, for the first time allowing smoothly varying and internally consistent treatments of nonspherical ice capacitance, fall speed, gravitational collection, and optical properties over all particle sizes in our model. We test two new parameterizations for mass accommodation coefficient as a function of size, temperature and water vapor supersaturation, and several ice nucleation scenarios. Comparison of results with in situ ice particle size distribution data, corrected using state-of-the-art algorithms to remove shattering artifacts, indicate that poorly constrained uncertainties in the number concentration of crystals smaller than 100 µm in maximum dimension still prohibit distinguishing which parameter combinations are more realistic. When projected area is concentrated at such sizes, the only parameter combination that reproduces observed size distribution properties uses a fixed mass accommodation coefficient of 0.01, on the low end of recently reported values. No simulations reproduce the observed abundance of such small crystals when the

  6. Activity size distributions for long-lived radon decay products in aerosols collected in Barcelona (Spain)

    International Nuclear Information System (INIS)

    Camacho, A.; Valles, I.; Vargas, A.; Gonzalez-Perosanz, M.; Ortega, X.

    2009-01-01

    The activity median aerodynamic diameters (AMADs) of long-lived radon decay product ( 210 Pb, 210 Po) in aerosols collected in the Barcelona area (Northeast Spain) during the period from April 2006 to February 2008 are presented. The 210 Po mean AMAD was 420 nm, while the 210 Pb mean AMAD was 500 nm. The temporal evolution of 210 Pb and 210 Po AMADs shows maxima in autumn and winter and minima in spring and summer. 210 Pb AMAD are being used to estimate the mean-residence time of atmospheric aerosols.

  7. Dicarboxylic acids, oxoacids, benzoic acid, α-dicarbonyls, WSOC, OC, and ions in spring aerosols from Okinawa Island in the western North Pacific Rim: size distributions and formation processes

    Directory of Open Access Journals (Sweden)

    D. K. Deshmukh

    2016-04-01

    Full Text Available Size-segregated aerosols (nine stages from < 0.43 to > 11.3 µm in diameter were collected at Cape Hedo, Okinawa, in spring 2008 and analyzed for water-soluble diacids (C2–C12, ω-oxoacids (ωC2–ωC9, pyruvic acid, benzoic acid, and α-dicarbonyls (C2–C3 as well as water-soluble organic carbon (WSOC, organic carbon (OC, and major ions (Na+, NH4+, K+, Mg2+, Ca2+, Cl−, NO3−, SO42−, and MSA−. In all the size-segregated aerosols, oxalic acid (C2 was found to be the most abundant species, followed by malonic and succinic acids, whereas glyoxylic acid (ωC2 was the dominant oxoacid and glyoxal (Gly was more abundant than methylglyoxal. Diacids (C2–C5, ωC2, and Gly as well as WSOC and OC peaked at fine mode (0.65–1.1 µm whereas azelaic (C9 and 9-oxononanoic (ωC9 acids peaked at coarse mode (3.3–4.7 µm. Sulfate and ammonium were enriched in fine mode, whereas sodium and chloride were in coarse mode. Strong correlations of C2–C5 diacids, ωC2 and Gly with sulfate were observed in fine mode (r =  0.86–0.99, indicating a commonality in their secondary formation. Their significant correlations with liquid water content in fine mode (r =  0.82–0.95 further suggest an importance of the aqueous-phase production in Okinawa aerosols. They may also have been directly emitted from biomass burning in fine mode as supported by strong correlations with potassium (r =  0.85–0.96, which is a tracer of biomass burning. Bimodal size distributions of longer-chain diacid (C9 and oxoacid (ωC9 with a major peak in the coarse mode suggest that they were emitted from the sea surface microlayers and/or produced by heterogeneous oxidation of biogenic unsaturated fatty acids on sea salt particles.

  8. Characterization of aerosol particles at the forested site in Lithuania

    Science.gov (United States)

    Rimselyte, I.; Garbaras, A.; Kvietkus, K.; Remeikis, V.

    2009-04-01

    Atmospheric particulate matter (PM), especially fine particles (particles with aerodynamic diameter less than 1 m, PM1), has been found to play an important role in global climate change, air quality, and human health. The continuous study of aerosol parameters is therefore imperative for better understanding the environmental effects of the atmospheric particles, as well as their sources, formation and transformation processes. The particle size distribution is particularly important, since this physical parameter determines the mass and number density, lifetime and atmospheric transport, or optical scattering behavior of the particles in the atmosphere (Jaenicke, 1998). Over the years several efforts have been made to improve the knowledge about the chemical composition of atmospheric particles as a function of size (Samara and Voutsa, 2005) and to characterize the relative contribution of different components to the fine particulate matter. It is well established that organic materials constitute a highly variable fraction of the atmospheric aerosol. This fraction is predominantly found in the fine size mode in concentrations ranging from 10 to 70% of the total dry fine particle mass (Middlebrook et al., 1998). Although organic compounds are major components of the fine particles, the composition, formation mechanism of organic aerosols are not well understood. This is because particulate organic matter is part of a complex atmospheric system with hundreds of different compounds, both natural and anthropogenic, covering a wide range of chemical properties. The aim of this study was to characterize the forest PM1, and investigate effects of air mass transport on the aerosol size distribution and chemical composition, estimate and provide insights into the sources and characteristics of carbonaceous aerosols through analysis ^13C/12C isotopic ratio as a function of the aerosol particles size. The measurements were performed at the Rugšteliškis integrated

  9. The detection and measurement of the electrical mobility size distributions associated with radon decay products

    International Nuclear Information System (INIS)

    Fei, Lin.

    1996-04-01

    The potential risk of lung cancer has evoked interest in the properties of radon decay products. There are two forms of this progeny: either attached to ambient aerosols, or still in the status of ions/molecules/small clusters. This ''unattached'' activity would give a higher dose per unit of airborne activity than the ''attached'' progeny that are rather poorly deposited. In this thesis, a system for determining unattached radon decay products electrical mobility size distribution by measuring their electrical mobilities was developed, based on the fact that about 88% of 218 Po atoms have unit charge at the end of their recoil after decay from 222 Rn, while the remainder are neutral. Essential part of the setup is the radon-aerosol chamber with the Circular Electrical Mobility Spectrometer (CEMS) inside. CEMS is used for sampling and classifying the charged radioactive clusters produced in the chamber. An alpha- sensitive plastic, CR-39 disk, is placed in CEMS as an inlaid disk electrode and the alpha particle detector. CEMS showed good performance in fine inactive particles' classification. If it also works well for radon decay products, it can offer a convenient size distribution measurement for radioactive ultrafine particles. However, the experiments did not obtain an acceptable resolution. Suggestions are made for solving this problem

  10. Characterization of aerosols containing fissionable elements using solid-state track recorders

    International Nuclear Information System (INIS)

    Roberts, J.H.; Kafalenos, V.P.; Yule, T.J.

    1976-01-01

    An aerosol of U 3 O 3 highly enriched in 235 U was generated with a nebulizer from a suspension of U 3 O 8 powder in distilled water. The aerosol was collected on a membrane filter. Polycarbonate plastic, placed in good contact with the filter, was used to record fission tracks when the package was exposed to known fluences of slow neutrons. Fission-track stars associated with individual particles of U 3 O 8 were observed in the plastic. The fission-track distributions were converted to a particle size distribution for the aerosol. For a log normal distribution the geometric mean and standard deviation can be determined with better than 5% accuracy. This method can be applied to plutonium and other transuranic aerosols. (orig.) [de

  11. Influences of in-cloud aerosol scavenging parameterizations on aerosol concentrations and wet deposition in ECHAM5-HAM

    Directory of Open Access Journals (Sweden)

    B. Croft

    2010-02-01

    Full Text Available A diagnostic cloud nucleation scavenging scheme, which determines stratiform cloud scavenging ratios for both aerosol mass and number distributions, based on cloud droplet, and ice crystal number concentrations, is introduced into the ECHAM5-HAM global climate model. This scheme is coupled with a size-dependent in-cloud impaction scavenging parameterization for both cloud droplet-aerosol, and ice crystal-aerosol collisions. The aerosol mass scavenged in stratiform clouds is found to be primarily (>90% scavenged by cloud nucleation processes for all aerosol species, except for dust (50%. The aerosol number scavenged is primarily (>90% attributed to impaction. 99% of this impaction scavenging occurs in clouds with temperatures less than 273 K. Sensitivity studies are presented, which compare aerosol concentrations, burdens, and deposition for a variety of in-cloud scavenging approaches: prescribed fractions, a more computationally expensive prognostic aerosol cloud processing treatment, and the new diagnostic scheme, also with modified assumptions about in-cloud impaction and nucleation scavenging. Our results show that while uncertainties in the representation of in-cloud scavenging processes can lead to differences in the range of 20–30% for the predicted annual, global mean aerosol mass burdens, and near to 50% for accumulation mode aerosol number burden, the differences in predicted aerosol mass concentrations can be up to one order of magnitude, particularly for regions of the middle troposphere with temperatures below 273 K where mixed and ice phase clouds exist. Different parameterizations for impaction scavenging changed the predicted global, annual mean number removal attributed to ice clouds by seven-fold, and the global, annual dust mass removal attributed to impaction by two orders of magnitude. Closer agreement with observations of black carbon profiles from aircraft (increases near to one order of magnitude for mixed phase clouds

  12. Evaluating model parameterizations of submicron aerosol scattering and absorption with in situ data from ARCTAS 2008

    Directory of Open Access Journals (Sweden)

    M. J. Alvarado

    2016-07-01

    Full Text Available Accurate modeling of the scattering and absorption of ultraviolet and visible radiation by aerosols is essential for accurate simulations of atmospheric chemistry and climate. Closure studies using in situ measurements of aerosol scattering and absorption can be used to evaluate and improve models of aerosol optical properties without interference from model errors in aerosol emissions, transport, chemistry, or deposition rates. Here we evaluate the ability of four externally mixed, fixed size distribution parameterizations used in global models to simulate submicron aerosol scattering and absorption at three wavelengths using in situ data gathered during the 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS campaign. The four models are the NASA Global Modeling Initiative (GMI Combo model, GEOS-Chem v9-02, the baseline configuration of a version of GEOS-Chem with online radiative transfer calculations (called GC-RT, and the Optical Properties of Aerosol and Clouds (OPAC v3.1 package. We also use the ARCTAS data to perform the first evaluation of the ability of the Aerosol Simulation Program (ASP v2.1 to simulate submicron aerosol scattering and absorption when in situ data on the aerosol size distribution are used, and examine the impact of different mixing rules for black carbon (BC on the results. We find that the GMI model tends to overestimate submicron scattering and absorption at shorter wavelengths by 10–23 %, and that GMI has smaller absolute mean biases for submicron absorption than OPAC v3.1, GEOS-Chem v9-02, or GC-RT. However, the changes to the density and refractive index of BC in GC-RT improve the simulation of submicron aerosol absorption at all wavelengths relative to GEOS-Chem v9-02. Adding a variable size distribution, as in ASP v2.1, improves model performance for scattering but not for absorption, likely due to the assumption in ASP v2.1 that BC is present at a constant mass

  13. Retrieval of cloud droplet size distribution parameters from polarized reflectance measurements

    Directory of Open Access Journals (Sweden)

    M. Alexandrov

    2011-09-01

    Full Text Available We present an algorithm for retrieval of cloud droplet size distribution parameters (effective radius and variance from the Research Scanning Polarimeter (RSP measurements. The RSP is an airborne prototype for the Aerosol Polarimetery Sensor (APS, which is due to be launched as part of the NASA Glory Project. This instrument measures both polarized and total reflectances in 9 spectral channels with center wavelengths ranging from 410 to 2250 nm. For cloud droplet size retrievals we utilize the polarized reflectances in the scattering angle range between 140 and 170 degrees where they exhibit rainbow. The shape of the rainbow is determined mainly by single-scattering properties of the cloud particles, that simplifies the inversions and reduces retrieval uncertainties. The retrieval algorithm was tested using realistically simulated cloud radiation fields. Our retrievals of cloud droplet sizes from actual RSP measurements made during two recent field campaigns were compared with the correlative in situ observations.

  14. Aerosols generated by 239PU and 233U droplets burning in air

    International Nuclear Information System (INIS)

    Nelson, L.S.; Raabe, O.G.

    1978-01-01

    The inhalation hazards of radioactive aerosols produced by the explosive disruption and subsequent combustion of metallic plutonium in air are not adequately understood. Results of a study to determine whether uranium can be substituted for plutonium in such a situation in which experiments were performed under identical conditions with laser-ignited, single, freely falling droplets of 239 Pu and 233 U are reported. The total amounts of aerosol produced were studied quantitatively as a function of time during the combustion. Also, particle size distributions of selected aerosols were studied with aerodynamic particle separation techniques. Results showed that the ultimate quantity of aerosols, their final particle size distributions, and depositions as a function of time are not identical mainly because of the different vapor pressures of the metals, and the unlike degrees of violence of the explosions of the droplets

  15. Charge distribution on plutonium-containing aerosols produced in mixed-oxide reactor fuel fabrication and the laboratory

    International Nuclear Information System (INIS)

    Yeh, H.C.; Newton, G.J.; Teague, S.V.

    1976-01-01

    The inhalation toxicity of potentially toxic aerosols may be affected by the electrostatic charge on the particles. Charge may influence the deposition site during inhalation and therefore its subsequent clearance and dose patterns. The electrostatic charge distributions on plutonium-containing aerosols were measured with a miniature, parallel plate, aerosol electrical mobility spectrometer. Two aerosols were studied: a laboratory-produced 238 PuO 2 aerosol (15.8 Ci/g) and a plutonium mixed-oxide aerosol (PU-MOX, natural UO 2 plus PuO 2 , 0.02 Ci/g) formed during industrial centerless grinding of mixed-oxide reactor fuel pellets. Plutonium-238 dioxide particles produced in the laboratory exhibited a small net positive charge within a few minutes after passing through a 85 Kr discharger due to alpha particle emission removal of valence electrons. PU-MOX aerosols produced during centerless grinding showed a charge distribution essentially in Boltzmann equilibrium. The gross alpha aerosol concentrations (960-1200 nCi/l) within the glove box were sufficient to provide high ion concentrations capable of discharging the charge induced by mechanical and/or nuclear decay processes

  16. Aerosol characterizaton in El Paso-Juarez airshed using optical methods

    Science.gov (United States)

    Esparza, Angel Eduardo

    2011-12-01

    The assessment and characterization of atmospheric aerosols and their optical properties are of great significance for several applications such as air pollution studies, atmospheric visibility, remote sensing of the atmosphere, and impacts on climate change. Decades ago, the interest in atmospheric aerosols was primarily for visibility impairment problems; however, recently interest has intensified with efforts to quantify the optical properties of aerosols, especially because of the uncertainties surrounding the role of aerosols in climate change. The main objective of the optical characterization of aerosols is to understand their properties. These properties are determined by the aerosols' chemical composition, size, shape and concentration. The general purpose of this research was to contribute to a better characterization of the aerosols present in the Paso del Norte Basin. This study permits an alternative approach in the understanding of air pollution for this zone by analyzing the predominant components and their contributions to the local environment. This dissertation work had three primary objectives, in which all three are intertwined by the general purpose of the aerosol characterization in the Paso del Norte region. The first objective was to retrieve the columnar aerosol size distribution for two different cases (clean and polluted scenarios) at each season (spring, summer, fall and winter) of the year 2009. In this project, instruments placed in buildings within the University of Texas at El Paso (UTEP) as well as a monitoring site (CAMS 12) from the Texas Commission on Environmental Quality (TCEQ) provided the measurements that delimited the aerosol size distribution calculated by our model, the Environmental Physics Inverse Reconstruction (EPIRM) model. The purpose of this objective was to provide an alternate method of quantifying and size-allocating aerosols in situ, by using the optical properties of the aerosols and inversely reconstruct and

  17. Geochemical, Sulfur Isotopic Characteristics and Source Contributions of Size-Aggregated Aerosols Collected in Baring Head, New Zealand.

    Science.gov (United States)

    Li, J.; Michalski, G. M.; Davy, P.; Harvey, M.; Wilkins, B. P.; Katzman, T. L.

    2017-12-01

    Sulfate aerosols are critical to the climate, human health, and the hydrological cycle in the atmosphere, yet the sources of sulfate in aerosols are not completely understood. In this work, we evaluated the sources of sulfate in size-aggregated aerosols from the Southern Pacific Ocean and the land of New Zealand using geochemical and isotopic analyses. Aerosols were collected at Baring Head, New Zealand between 6/30/15 to 8/4/16 using two collectors, one only collects Southern Pacific Ocean derived aerosols (open-ocean collector), the other collects aerosols from both the ocean and the land (all-direction collector). Each collector is equipped with two filters to sample size-aggregated aerosols (fine aerosols: NSS-SO42-, 70%), while coarse aerosols are dominated by sea-salt sulfate. However, some NSS-SO42- was also observed in coarse aerosols collected in summer, suggesting the presence of accumulation mode NSS-SO42- aerosols, which is possibly due to high summer biogenic DMS flux. The sources of sulfur in NSS-SO42- could be further determined by their d34S values. DMS emission is likely the sole sulfur source in the open-ocean collector as it shows constant DMS-like d34S signatures (15-18‰) throughout the year. Meanwhile, the d34S of NSS-SO42- in the all-direction collector display a seasonal trend: summer time d34S values are higher and DMS-like (15-18‰), indicating DMS emission is the dominant sulfur source; winter time d34S values are lower ( 6-12‰), therefore the sulfur is likely sourced from both DMS emission and terrestrial S input with low d34S values, such as volcanic activities, fossil fuel and wood burning.

  18. Source apportionment of size and time resolved trace elements and organic aerosols from an urban courtyard site in Switzerland

    Science.gov (United States)

    Richard, A.; Gianini, M. F. D.; Mohr, C.; Furger, M.; Bukowiecki, N.; Minguillón, M. C.; Lienemann, P.; Flechsig, U.; Appel, K.; Decarlo, P. F.; Heringa, M. F.; Chirico, R.; Baltensperger, U.; Prévôt, A. S. H.

    2011-09-01

    Time and size resolved data of trace elements were obtained from measurements with a rotating drum impactor (RDI) and subsequent X-ray fluorescence spectrometry. Trace elements can act as indicators for the identification of sources of particulate matter Switzerland. Eight different sources were identified for the three examined size ranges (PM1-0.1, PM2.5-1 and PM10-2.5): secondary sulfate, wood combustion, fire works, road traffic, mineral dust, de-icing salt, industrial and local anthropogenic activities. The major component was secondary sulfate for the smallest size range; the road traffic factor was found in all three size ranges. This trace element analysis is complemented with data from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (AMS), assessing the PM1 fraction of organic aerosols. A separate PMF analysis revealed three factors related to three of the sources found with the RDI: oxygenated organic aerosol (OOA, related to inorganic secondary sulfate), hydrocarbon-like organic aerosol (HOA, related to road traffic) and biomass burning organic aerosol (BBOA), explaining 60 %, 22 % and 17 % of total measured organics, respectively. Since different compounds are used for the source classification, a higher percentage of the ambient PM10 mass concentration can be apportioned to sources by the combination of both methods.

  19. Final Report, The Influence of Organic-Aerosol Emissions and Aging on Regional and Global Aerosol Size Distributions and the CCN Number Budget

    Energy Technology Data Exchange (ETDEWEB)

    Donahue, Neil M. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2015-12-23

    We conducted laboratory experiments and analyzed data on aging of organic aerosol and analysis of field data on volatility and CCN activity. With supplemental ASR funding we participated in the FLAME-IV campaign in Missoula MT in the Fall of 2012, deploying a two-chamber photochemical aging system to enable experimental exploration of photochemical aging of biomass burning emissions. Results from that campaign will lead to numerous publications, including demonstration of photochemical production of Brown Carbon (BrC) from secondary organic aerosol associated with biomass burning emissions as well as extensive characterization of the effect of photochemical aging on the overall concentrations of biomass burning organic aerosol. Excluding publications arising from the FLAME-IV campaign, project research resulted in 8 papers: [11, 5, 3, 10, 12, 4, 8, 7], including on in Nature Geoscience addressing the role of organic compounds in nanoparticle growth [11

  20. A size-composition resolved aerosol model for simulating the dynamics of externally mixed particles: SCRAM (v 1.0)

    Science.gov (United States)

    Zhu, S.; Sartelet, K. N.; Seigneur, C.

    2015-06-01

    The Size-Composition Resolved Aerosol Model (SCRAM) for simulating the dynamics of externally mixed atmospheric particles is presented. This new model classifies aerosols by both composition and size, based on a comprehensive combination of all chemical species and their mass-fraction sections. All three main processes involved in aerosol dynamics (coagulation, condensation/evaporation and nucleation) are included. The model is first validated by comparison with a reference solution and with results of simulations using internally mixed particles. The degree of mixing of particles is investigated in a box model simulation using data representative of air pollution in Greater Paris. The relative influence on the mixing state of the different aerosol processes (condensation/evaporation, coagulation) and of the algorithm used to model condensation/evaporation (bulk equilibrium, dynamic) is studied.

  1. Vertical distribution of Martian aerosols from SPICAM/Mars-Express limb observations

    Science.gov (United States)

    Fedorova, A.; Korablev, O.; Bertaux, J.-L.; Rodin, A.; Perrier, S.; Moroz, V. I.

    Limb spectroscopic observations provide invaluable information about vertical distribution of main atmospheric components in the Martian atmosphere, in particular vertical distribution and structure of aerosols, which play an important role in the heat balance of the planet. Only limited set of successful limb spectroscopic observations have been carried out on Mars so far, including those by MGS/TES spectrometer and Thermoscan and Auguste experiments of Phobos mission. Currently SPICAM instrument onboard Mars-Express spacecraft has accomplished several sequences of limb observations. First analysis of limb sounding data received by SPICAM IR and UV channels, which imply the presence of fine, deep, optically thin aerosol fraction extended over broad range of altitudes, is presented.

  2. Influence of inspiratory flow rate, particle size, and airway caliber on aerosolized drug delivery to the lung.

    Science.gov (United States)

    Dolovich, M A

    2000-06-01

    A number of studies in the literature support the use of fine aerosols of drug, inhaled at low IFRs to target peripheral airways, with the objective of improving clinical responses to inhaled therapy (Fig. 8). Attempts have been made to separate response due to changes in total administered dose or the surface concentration of the dose from response due to changes in site of deposition--both are affected by the particle size of the aerosol, with IFR additionally influencing the latter. The tools for measuring dose and distribution have improved over the last 10-15 years, and thus we should expect greater accuracy in these measurements for assessing drug delivery to the lung. There are still issues, though, in producing radiolabeled (99m)technetium aerosols that are precise markers for the pharmaceutical product being tested and in quantitating absolute doses deposited in the lung. PET isotopes may provide the means for directly labelling a drug and perhaps can offer an alternative for making these measurements in the future, but deposition measurements should not be used in isolation; protocols should incorporate clinical tests to provide parallel therapeutic data in response to inhalation of the drug by the various patient populations being studied.

  3. Fission-fragment attachment to aerosols and their transport through capillary tubes

    International Nuclear Information System (INIS)

    Novick, V.J.; Alvarez, J.L.; Greenwood, R.C.

    1981-01-01

    The transport of radioactive aerosols was studied using equipment, collectively called the Helium jet, that has been constructed to provide basic nuclear physics data on fission product nuclides. The transport of the fission products in the system depends on their attachment to aerosol particles. The system consists of 1) a tube furnace which generates aerosols by the sublimation or evaporation of source material, 2) a helium stream used to transport the aerosols, 3) a 25 m settling tube to eliminate the larger aerosols and smaller aerosols that would deposit in the capillary, 4) a Californium-252 self-fissioning source of fission product nuclides, and 5) a small capillary to carry the radioactive aerosols from the hot cell to the laboratory. Different source materials were aerosolized but NaCl is generally used because it yielded the highest transport efficiencies through the capillary. Particle size measurments were made with NaCl aerosols by using a cascade impactor, an optical light scattering device, and the capillary itself as a diffusion battery by performing radiation measurements and/or electrical conductivity measurements. Both radioactive and nonradioactive aerosols were measured in order to investigate the possibility of a preferential size range for fission product attachment. The measured size distributions were then used to calculate attachment coefficients and finally an attachment time

  4. Study of aerosol diffusion behaviors in dismantling nuclear facilities. Contract research

    International Nuclear Information System (INIS)

    Shimada, Taro; Tachibana, Mitsuo; Yanagihara, Satoshi

    2001-09-01

    To evaluate aerosol diffusion behaviors under dismantling of nuclear facilities, plasma arc cuttings were conducted in the enclosure. The flow of air and high temperature gas in the enclosure were visualized, and the temperature distributions in the enclosure and the number density and size distribution of aerosol and the temperature in air of outlet flow were measured in the experiments. As a result, it was confirmed that ascending high temperature gas flow produced by the plasma arc is corresponded with aerosol diffusion behavior during cutting. It was also confirmed that after completing the cuttings the aerosol tends to fall due to decreasing of flow velocity of high temperature gas and the aerosol which reaches near the floor is resuspended by relatively high velocity exhaust flow. (author)

  5. A contribution to the study of atmospheric aerosols in urban, marine and oceanic areas

    International Nuclear Information System (INIS)

    Butor, Jean-Francois

    1980-01-01

    A study of atmospheric aerosols, especially marine aerosols, was carried out, using impactors and nuclepore filters in association with electron microscopy techniques. The performances of the experimental device were first determined carefully and a generator of monodisperse aerosols was built at the laboratory in order to measure the efficiency of the filters used. It was demonstrated that the chief atmospheric particulate constituents could be determined by electron microscopy. The particle-size distribution of oceanic aerosols was next studied on the basis of the results of three measurement campaigns carried out in the Atlantic ocean. In Brest, where urban aerosols more or less affected by the meteorological conditions can be found superimposed to marine aerosols, an assessment was made of the effects of moderate anthropogeneous pollution on marine aerosols as measured in the Atlantic ocean. Two cases of marine aerosol disturbance, the former by an accidental marine pollution, the latter linked to a natural local phenomenon are related and a model of the marine aerosol in the Northern Atlantic ocean is proposed which takes into account the mean particle size spectra, the characteristic parameters of its three-modal distribution and the qualitative analysis of particles. (author) [fr

  6. Size-differentiated composition of inorganic atmospheric aerosols of both marine and polluted continental origin

    Science.gov (United States)

    Harrison, Roy M.; Pio, Casimiro A.

    Atmospheric aerosols were sampled with a high volume impactor/diffusion battery system and the collected fractions analysed for their major water-soluble inorganic constituents. Sulphate, nitrate and chloride showed bimodal distributions; sulphate and nitrate were mainly associated with NH 4+, having approximately log-normal distributions with modes at 1.0 μm. In unpolluted maritime air, chlorides appeared as salts of sodium and magnesium with average modes at c. 5 μm, whilst in polluted air masses significant concentrations of ammonium chloride sub-μm aerosols were detected. Sodium nitrate and sodium sulphate aerosols having average modes of c. 3.5 μm were observed in mixed maritime/polluted air masses. The dimensions of these particles indicate formation from absorption of H 2SO 4 and HNO 3 at the surface of marine NaCl particles. The concentration of H + was very low, but the possibility of its neutralization by atmospheric ammonia during sampling was ruled out by parallel air sampling using an 'ammonia denuder'.

  7. Transient variation of aerosol size distribution in an underground subway station.

    Science.gov (United States)

    Kwon, Soon-Bark; Namgung, Hyeong-Gyu; Jeong, Wootae; Park, Duckshin; Eom, Jin Ki

    2016-06-01

    As the number of people using rapid transit systems (subways) continues to rise in major cities worldwide, increasing attention has been given to the indoor air quality of underground stations. This study intended to observe the change of PM distribution by size in an underground station with PSDs installed located near the main road in downtown Seoul, as well as to examine causes for the changes. The results indicate that the PM suspended in the tunnel flowed into the platform area even in a subway station where the effect of train-induced wind is blocked by installed PSDs, as this flow occurred when the PSDs were opened. The results also indicate that coarse mode particles generated by mechanical friction in the tunnel, such as that between wheels and rail, also flowed into the platform area. The PM either settled or was re-suspended according to size and whether the ventilation in the platform area was in operation or if the platform floor had been washed. The ventilation system was more effective in removing PM of smaller sizes (fine particles) while the wash-out performed after train operations had stopped reduced the suspension of coarse mode particles the next morning. Despite installation of the completely sealed PSDs, inflow of coarse mode particles from the tunnel seems unavoidable, indicating the need for measures to decrease the PM generated there to lower subway user exposure since those particles cannot be reduced by mechanical ventilation alone. This research implicate that coarse PM containing heavy metals (generated from tunnel side) proliferated especially during rush hours, during which it is very important to control those PM in order to reduce subway user exposure to this hazardous PM.

  8. Properties of aerosols and formation mechanisms over southern China during the monsoon season

    Science.gov (United States)

    Chen, Weihua; Wang, Xuemei; Blake Cohen, Jason; Zhou, Shengzhen; Zhang, Zhisheng; Chang, Ming; Chan, Chuen-Yu

    2016-10-01

    Measurements of size-resolved aerosols from 0.25 to 18 µm were conducted at three sites (urban, suburban and background sites) and used in tandem with an atmospheric transport model to study the size distribution and formation of atmospheric aerosols in southern China during the monsoon season (May-June) in 2010. The mass distribution showed the majority of chemical components were found in the smaller size bins (water and anticorrelated with atmospheric SO2, hinting at aqueous-phase reactions being the main formation pathway. Nitrate was the only major species that showed a bimodal distribution at the urban site and was dominated by the coarse mode in the other two sites, suggesting that an important component of nitrate formation is chloride depletion of sea salt transported from the South China Sea. In addition to these aqueous-phase reactions and interactions with sea salt aerosols, new particle formation, chemical aging, and long-range transport from upwind urban or biomass burning regions was also found to be important in at least some of the sites on some of the days. This work therefore summarizes the different mechanisms that significantly impact the aerosol chemical composition during the monsoon over southern China.

  9. Design of Nanomaterial Synthesis by Aerosol Processes

    Science.gov (United States)

    Buesser, Beat; Pratsinis, Sotiris E.

    2013-01-01

    Aerosol synthesis of materials is a vibrant field of particle technology and chemical reaction engineering. Examples include the manufacture of carbon blacks, fumed SiO2, pigmentary TiO2, ZnO vulcanizing catalysts, filamentary Ni, and optical fibers, materials that impact transportation, construction, pharmaceuticals, energy, and communications. Parallel to this, development of novel, scalable aerosol processes has enabled synthesis of new functional nanomaterials (e.g., catalysts, biomaterials, electroceramics) and devices (e.g., gas sensors). This review provides an access point for engineers to the multiscale design of aerosol reactors for the synthesis of nanomaterials using continuum, mesoscale, molecular dynamics, and quantum mechanics models spanning 10 and 15 orders of magnitude in length and time, respectively. Key design features are the rapid chemistry; the high particle concentrations but low volume fractions; the attainment of a self-preserving particle size distribution by coagulation; the ratio of the characteristic times of coagulation and sintering, which controls the extent of particle aggregation; and the narrowing of the aggregate primary particle size distribution by sintering. PMID:22468598

  10. Realization of nuclear track filters and their applications to the study of environmental aerosol samples

    International Nuclear Information System (INIS)

    Guo Shilun

    1993-01-01

    Detailed study of the behaviours of radon decay products requires the knowledge of environmental aerosols. A combination of devices and instruments have been tested to be superior in study of aerosol characteristics. Nuclear track filters and cascade track filter impactor are basic devices, which bring the functions of α -spectrometer, scanning electron microscope and electron microprobe into full play. This paper describes how to use these devices and instruments to collect aerosols, to determine aerosol radioactivity, size distribution and elemental compositions and to determine the concentration of aerosols in air as a function of aerosol sizes, which are important parameters in dominating the interactions between aerosol and radon decay products. (author). 15 refs, 7 figs

  11. Improving aerosol drug delivery during invasive mechanical ventilation with redesigned components.

    Science.gov (United States)

    Longest, P Worth; Azimi, Mandana; Golshahi, Laleh; Hindle, Michael

    2014-05-01

    Patients receiving invasive mechanical ventilation with an endotracheal tube (ETT) can often benefit from pharmaceutical aerosols; however, drug delivery through the ventilator circuit is known to be very inefficient. The objective of this study was to improve the delivery of aerosol through an invasive mechanical ventilation system by redesigning circuit components using a streamlining approach. Redesigned components were the T-connector interface between the nebulizer and ventilator line and the Y-connector leading to the ETT. The streamlining approach seeks to minimize aerosol deposition and loss by eliminating sharp changes in flow direction and tubing diameter that lead to flow disruption. Both in vitro experiments and computational fluid dynamic (CFD) simulations were applied to analyze deposition and emitted dose of drug for multiple droplet size distributions, flows, and ETT sizes used in adults. The experimental results demonstrated that the streamlined components improved delivery through the circuit by factors ranging from 1.3 to 1.5 compared with a commercial system for adult ETT sizes of 8 and 9 mm. The overall delivery efficiency was based on the bimodal aspect of the aerosol distributions and could not be predicted by median diameter alone. CFD results indicated a 20-fold decrease in turbulence in the junction region for the streamlined Y resulting in a maximum 9-fold decrease in droplet deposition. The relative effectiveness of the streamlined designs was found to increase with increasing particle size and increasing flow, with a maximum improvement in emitted dose of 1.9-fold. Streamlined components can significantly improve the delivery of pharmaceutical aerosols during mechanical ventilation based on an analysis of multiple aerosol generation devices, ETT sizes, and flows.

  12. New trajectory-driven aerosol and chemical process model Chemical and Aerosol Lagrangian Model (CALM

    Directory of Open Access Journals (Sweden)

    P. Tunved

    2010-11-01

    Full Text Available A new Chemical and Aerosol Lagrangian Model (CALM has been developed and tested. The model incorporates all central aerosol dynamical processes, from nucleation, condensation, coagulation and deposition to cloud formation and in-cloud processing. The model is tested and evaluated against observations performed at the SMEAR II station located at Hyytiälä (61° 51' N, 24° 17' E over a time period of two years, 2000–2001. The model shows good agreement with measurements throughout most of the year, but fails in reproducing the aerosol properties during the winter season, resulting in poor agreement between model and measurements especially during December–January. Nevertheless, through the rest of the year both trends and magnitude of modal concentrations show good agreement with observation, as do the monthly average size distribution properties. The model is also shown to capture individual nucleation events to a certain degree. This indicates that nucleation largely is controlled by the availability of nucleating material (as prescribed by the [H2SO4], availability of condensing material (in this model 15% of primary reactions of monoterpenes (MT are assumed to produce low volatile species and the properties of the size distribution (more specifically, the condensation sink. This is further demonstrated by the fact that the model captures the annual trend in nuclei mode concentration. The model is also used, alongside sensitivity tests, to examine which processes dominate the aerosol size distribution physical properties. It is shown, in agreement with previous studies, that nucleation governs the number concentration during transport from clean areas. It is also shown that primary number emissions almost exclusively govern the CN concentration when air from Central Europe is advected north over Scandinavia. We also show that biogenic emissions have a large influence on the amount of potential CCN observed

  13. Future aerosols of the southwest - Implications for fundamental aerosol research

    International Nuclear Information System (INIS)

    Friedlander, S.K.

    1980-01-01

    It is shown that substantial increases in the use of coal in the U.S. will lead to substantial increases in emissions of particulate matter, SO/sub x/, and NO/sub x/ in the part of the U.S. west of the Mississippi. A shift in the primary particulate emissions from coarse to submicron particles is predicted. Attention is given to the nature of the submicron aerosol in the southwest, the distribution of sulfur with respect to particle size, the formation of new particles in the atmosphere, and the ammonium nitrate equilibrium. It is concluded that increased coal use will result in a 50% increase in SO/sub x/ emissions and a doubling of NO/sub x/ emissions in the western U.S. by the year 2000, that ambient levels of aerosol sulfates and nitrates will increase, and that a large increase in submicron aerosol mass is likely

  14. Natural and Anthropogenic Influences on Atmospheric Aerosol Variability

    Energy Technology Data Exchange (ETDEWEB)

    Asmi, A.

    2012-07-01

    Aerosol particles are everywhere in the atmosphere. They are a key factor in many important processes in the atmosphere, including cloud formation, scattering of incoming solar radiation and air chemistry. The aerosol particles have relatively short lifetimes in lower atmosphere, typically from days to weeks, and thus they have a high spatial and temporal variability. This thesis concentrates on the extent and reasons of sub-micron aerosol particle variability in the lower atmosphere, using both global atmospheric models and analysis of observational data. Aerosol number size distributions in the lower atmosphere are affected strongly by the new particle formation. Perhaps more importantly, a strong influence new particle formation is also evident in the cloud condensation nuclei (CCN) concentrations, suggesting a major role of the sulphuric acid driven new particle formation in the climate system. In this thesis, the sub-micron aerosol number size distributions in the European regional background air were characterized for the first time from consistent, homogenized and comparable datasets. Some recent studies have suggested that differences in aerosol emissions between weekdays could also affect the weather via aerosol-cloud interactions. In this thesis, the weekday-to-weekday variation of CCN sized aerosol number concentrations in Europe were found to be much smaller than expected from earlier studies, based on particle mass measurements. This result suggests that a lack of week-day variability in meteorology is not necessarily a sign of weak aerosol-cloud interactions. An analysis of statistically significant trends in past decades of measured aerosol number concentrations from Europe, North America, Pacific islands and Antarctica generally show decreases in concentrations. The analysis of these changes show that a potential explanation for the decreasing trends is the general reduction of anthropogenic emissions, especially SO{sub 2}, although a combination of

  15. Comparison of outdoor activity size distributions of 220 Rn and 222 Rn progeny and their Influences on lung dosimetry distributions

    International Nuclear Information System (INIS)

    Mohamed, A.; El-Hussein, A.; Ahmed, A.

    2005-01-01

    In the case of internally deposited radionuclides, direct measurement of the energy absorbed from ionizing radiation emitted by the decaying radionuclides is rarely, if ever, possible. Therefore, one must rely on dosimetric models to obtain estimates of the spatial and temporal patterns of energy deposition in human lung. T These models always need some information about the parameters of activity size distributions of thoron and radon progeny. In the present work, the attached and unattached activity size distributions of thoron and radon progeny were measured in outdoor air of El-Minia, Egypt. The attached samples were collected using a low pressure Berner cascade impactor technique, while a constructed screen diffusion b attery was used for collecting the unattached samples. Most of the attached activities for 222 Rn and 220 Rn progeny were associated with the aerosol particles of the accumulation mode. The activity size distribution of thoron progeny was found to be shifted to slightly smaller particle size, compared to radon progeny. An analytical method has been developed to compute the local energy deposition of 2l2 Bi alpha particles in a target volume of 1 jam spheres located at different depths in bronchial epithelium. In order to reach the target, alpha particles travel either through tissue alone (near-wall dose) or through air and tissue (far-wall dose). It was found that the contribution of near-wall dose is higher than that of the far wall dose. While the depth-dose distributions for nuclides uniformly distributed within the epithelium are practically constant with

  16. ANALYSIS OF RESPIRATORY DESPOSITION DOSE OF INHALED AMBIENT AEROSOLS FOR DIFFERENT SIZE FRACTIONS

    Science.gov (United States)

    ANALYSIS OF RESPIRATORY DEPOSITION DOSE OF INHALED AMBIENT AEROSOLS FOR DIFFERENT SIZE FRACTIONS. Chong S. Kim, SC. Hu**, PA Jaques*, US EPA, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC 27711; **IIT Research Institute, Chicago, IL; *S...

  17. Labeling suspended aerosol particles with short-lived radionuclides for determination of particle deposition

    International Nuclear Information System (INIS)

    Smith, M.F.; Bryant, S.; Welch, S.; Digenis, G.A.

    1984-01-01

    Radiotracer techniques were developed to examine parameters that characterize pressurized aerosols designed to deliver insoluble particles suspended in the aerosol formulation. Microaggregated bovine serum albumin microspheres that were to be suspended were labeled with iodine-131 (t1/2 . 8 d). This iodination procedure (greater than 80% effective) is also applicable to iodine-123, which possesses superior characteristics for external imaging and further in vivo studies. This report shows that for pressurized aerosols containing suspended particles, each metered dose is approximately equal (not including the priming doses and the emptying doses). Increase in the delivery of the albumin particles out of the canister was best achieved by pretreating the valve assembly with a solution of 2% (w/v) bovine serum albumin in phosphate buffer. Use of a cascade impactor delineated the particle size distribution of the micropheres, with the majority of particles ranging in size from 2 to 8 microns. The data disclosed here indicate that the techniques developed with short-lived radionuclides can be used to quantitate each metered dose, characterize the particle size distribution profile of the aerosol contents, and determine the extent of deposition of the particles in the aerosol canister and all of its components

  18. Size distribution and optical properties of mineral dust aerosols transported in the western Mediterranean

    Directory of Open Access Journals (Sweden)

    C. Denjean

    2016-02-01

    Full Text Available This study presents in situ aircraft measurements of Saharan mineral dust transported over the western Mediterranean basin in June–July 2013 during the ChArMEx/ADRIMED (the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region airborne campaign. Dust events differing in terms of source region (Algeria, Tunisia and Morocco, time of transport (1–5 days and height of transport were sampled. Mineral dust were transported above the marine boundary layer, which conversely was dominated by pollution and marine aerosols. The dust vertical structure was extremely variable and characterized by either a single layer or a more complex and stratified structure with layers originating from different source regions. Mixing of mineral dust with pollution particles was observed depending on the height of transport of the dust layers. Dust layers carried a higher concentration of pollution particles below 3 km above sea level (a.s.l. than above 3 km a.s.l., resulting in a scattering Ångström exponent up to 2.2 below 3 km a.s.l. However, the optical properties of the dust plumes remained practically unchanged with respect to values previously measured over source regions, regardless of the altitude. Moderate absorption of light by the dust plumes was observed with values of aerosol single scattering albedo at 530 nm ranging from 0.90 to 1.00. Concurrent calculations from the aerosol chemical composition revealed a negligible contribution of pollution particles to the absorption properties of the dust plumes that was due to a low contribution of refractory black carbon in regards to the fraction of dust and sulfate particles. This suggests that, even in the presence of moderate pollution, likely a persistent feature in the Mediterranean, the optical properties of the dust plumes could be assumed similar to those of native dust in radiative transfer simulations, modelling

  19. Properties of aerosols and formation mechanisms over southern China during the monsoon season

    Directory of Open Access Journals (Sweden)

    W. Chen

    2016-10-01

    Full Text Available Measurements of size-resolved aerosols from 0.25 to 18 µm were conducted at three sites (urban, suburban and background sites and used in tandem with an atmospheric transport model to study the size distribution and formation of atmospheric aerosols in southern China during the monsoon season (May–June in 2010. The mass distribution showed the majority of chemical components were found in the smaller size bins (< 2.5 µm. Sulfate was found to be strongly correlated with aerosol water and anticorrelated with atmospheric SO2, hinting at aqueous-phase reactions being the main formation pathway. Nitrate was the only major species that showed a bimodal distribution at the urban site and was dominated by the coarse mode in the other two sites, suggesting that an important component of nitrate formation is chloride depletion of sea salt transported from the South China Sea. In addition to these aqueous-phase reactions and interactions with sea salt aerosols, new particle formation, chemical aging, and long-range transport from upwind urban or biomass burning regions was also found to be important in at least some of the sites on some of the days. This work therefore summarizes the different mechanisms that significantly impact the aerosol chemical composition during the monsoon over southern China.

  20. Capstone Depleted Uranium Aerosols: Generation and Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Parkhurst, MaryAnn; Szrom, Fran; Guilmette, Ray; Holmes, Tom; Cheng, Yung-Sung; Kenoyer, Judson L.; Collins, John W.; Sanderson, T. Ellory; Fliszar, Richard W.; Gold, Kenneth; Beckman, John C.; Long, Julie

    2004-10-19

    In a study designed to provide an improved scientific basis for assessing possible health effects from inhaling depleted uranium (DU) aerosols, a series of DU penetrators was fired at an Abrams tank and a Bradley fighting vehicle. A robust sampling system was designed to collect aerosols in this difficult environment and continuously monitor the sampler flow rates. Aerosols collected were analyzed for uranium concentration and particle size distribution as a function of time. They were also analyzed for uranium oxide phases, particle morphology, and dissolution in vitro. The resulting data provide input useful in human health risk assessments.

  1. Application of simulated annealing for simultaneous retrieval of particle size distribution and refractive index

    International Nuclear Information System (INIS)

    Ma, Lin; Kranendonk, Laura; Cai, Weiwei; Zhao, Yan; Baba, Justin S.

    2009-01-01

    This paper describes the application of the simulated annealing technique for the simultaneous retrieval of particle size distribution and refractive index based on polarization modulated scattering (PMS) measurements. The PMS technique is a well-established method to measure multiple elements of the Mueller scattering matrix. However, the inference of the scatterers properties (e.g., the size distribution function and refractive index) from such measurements involves solving an ill-conditioned inverse problem. In this paper, a new inversion technique was demonstrated to infer particle properties from PMS measurements. The new technique formulated the inverse problem into a minimization problem, which is then solved by the simulated annealing technique. Both numerical and experimental investigation on the new inversion technique was presented in the paper. The results obtained demonstrated the robustness and reliability of the new algorithm, and supported its expanded applications in scientific and technological areas involving particulates/aerosols.

  2. Light-Absorbing Aerosol during NASA GRIP: Overview of Observations in the Free Troposphere and Associated with Tropical Storm Systems

    Science.gov (United States)

    Ziemba, L. D.; Beyersdorf, A. J.; Chen, G.; Corr, C. A.; Craig, L.; Dhaniyala, S.; Dibb, J. E.; Hudgins, C. H.; Ismail, S.; Latham, T.; Nenes, A.; Thornhill, K. L.; Winstead, E.; Anderson, B. E.

    2010-12-01

    Aerosols play a significant role in regulating Earth’s climate. Absorbing aerosols typically constitute a small fraction of ambient particle mass but can contribute significantly to direct and indirect climate forcing depending on size, mixing state, concentration, chemical composition, and vertical and spatial distribution. Aerosols may also significantly affect tropical storm/hurricane dynamics through direct light absorption and activation as cloud nuclei. An extensive suite of instrumentation measuring aerosol chemical, physical, and optical properties was deployed aboard the NASA DC-8 to characterize aerosol during the NASA GRIP (Genesis and Rapid Intensification Processes; August-September 2010) mission. The majority of flight time was spent at high altitude (greater than 9 km) and thus much of the sampling was done in the free troposphere, including extensive sampling in the vicinity of tropical storm systems and more diffuse cirrus clouds. With operations based in Fort Lauderdale, FL and St. Croix, U.S. Virgin Islands, a large geographic region was sampled including much of the Gulf of Mexico and tropical Atlantic Ocean. Observations are reported for light-absorbing carbon aerosol (mainly black carbon, BC) primarily using a single particle soot photometer (SP2). The SP2 employs single-particle laser-induced incandescence to provide a mass-specific measurement not subject to scattering interference that is optimal for the low concentration environments like those encountered during GRIP. BC mass concentrations, 100-500 nm size distributions, and mixing state (i.e. coating thickness of scattering material) are presented. Total and sub-micron aerosol absorption coefficients (principally from BC and dust aerosol) are reported using a particle soot absorption photometer (PSAP) along with comparisons with calculated absorption coefficients derived from SP2 observations in various conditions. In addition, dust aerosol is specifically identified using optical and

  3. Attachment behavior of fission products to solution aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Takamiya, Koichi; Tanaka, Toru; Nitta, Shinnosuke; Itosu, Satoshi; Sekimoto, Shun; Oki, Yuichi; Ohtsuki, Tsutomu [Research Reactor Institute, Kyoto University, Osaka (Japan)

    2016-12-15

    Various characteristics such as size distribution, chemical component and radioactivity have been analyzed for radioactive aerosols released from Fukushima Daiichi Nuclear Power Plant. Measured results for radioactive aerosols suggest that the potential transport medium for radioactive cesium was non-sea-salt sulfate. This result indicates that cesium isotopes would preferentially attach with sulfate compounds. In the present work the attachment behavior of fission products to aqueous solution aerosols of sodium salts has been studied using a generation system of solution aerosols and spontaneous fission source of {sup 248}Cm. Attachment ratios of fission products to the solution aerosols were compared among the aerosols generated by different solutions of sodium salt. A significant difference according as a solute of solution aerosols was found in the attachment behavior. The present results suggest the existence of chemical effects in the attachment behavior of fission products to solution aerosols.

  4. Toward a minimal representation of aerosols in climate models: description and evaluation in the Community Atmosphere Model CAM5

    Directory of Open Access Journals (Sweden)

    X. Liu

    2012-05-01

    Full Text Available A modal aerosol module (MAM has been developed for the Community Atmosphere Model version 5 (CAM5, the atmospheric component of the Community Earth System Model version 1 (CESM1. MAM is capable of simulating the aerosol size distribution and both internal and external mixing between aerosol components, treating numerous complicated aerosol processes and aerosol physical, chemical and optical properties in a physically-based manner. Two MAM versions were developed: a more complete version with seven lognormal modes (MAM7, and a version with three lognormal modes (MAM3 for the purpose of long-term (decades to centuries simulations. In this paper a description and evaluation of the aerosol module and its two representations are provided. Sensitivity of the aerosol lifecycle to simplifications in the representation of aerosol is discussed.

    Simulated sulfate and secondary organic aerosol (SOA mass concentrations are remarkably similar between MAM3 and MAM7. Differences in primary organic matter (POM and black carbon (BC concentrations between MAM3 and MAM7 are also small (mostly within 10%. The mineral dust global burden differs by 10% and sea salt burden by 30–40% between MAM3 and MAM7, mainly due to the different size ranges for dust and sea salt modes and different standard deviations of the log-normal size distribution for sea salt modes between MAM3 and MAM7. The model is able to qualitatively capture the observed geographical and temporal variations of aerosol mass and number concentrations, size distributions, and aerosol optical properties. However, there are noticeable biases; e.g., simulated BC concentrations are significantly lower than measurements in the Arctic. There is a low bias in modeled aerosol optical depth on the global scale, especially in the developing countries. These biases in aerosol simulations clearly indicate the need for improvements of aerosol processes (e.g., emission fluxes of anthropogenic aerosols and

  5. Performance of multiple HEPA filters against plutonium aerosols

    International Nuclear Information System (INIS)

    Gonzales, M.; Elder, J.; Ettinger, H.

    1975-01-01

    Performance of multiple stages of High Efficiency Particulate Air (HEPA) filters against aerosols similar to those produced by plutonium processing facilities has been verified as part of an experimental program. A system of three HEPA filters in series was tested against 238 PuO 2 aerosol concentrations as high as 3.3 x 10 10 d/s-m 3 . An air nebulization aerosol generation system, using ball milled plutonium oxide suspended in water, provided test aerosols with size characteristics similar to those defined by a field sampling program at several different AEC plutonium processing facilities. Aerosols have been produced ranging from 0.22 μm activity median aerodynamic diameter (amad) to 1.6 μm amad. The smaller size distributions yield 10 to 30 percent of the total activity in the less than 0.22 μm size range allowing efficiency measurement as a function of size for the first two HEPA filters in series. The low level of activity on the sampler downstream of the third HEPA filter (approximately 0.01 c/s) precludes aerosol size characterization downstream of this filter. For the first two HEPA filters, overall efficiency, and efficiency as a function of size, exceeds 99.98 percent including the <0.12 μm and the 0.12 to 0.22 μm size intervals. Efficiency of the third HEPA filter is somewhat lower with an overall average efficiency of 99.8 percent and an apparent minimum efficiency of 99.5 percent. This apparently lower efficiency is an artifact due to the low level of activity on the sampler downstream of HEPA No. 3 and the variations due to counting statistics. Recent runs with higher concentrations, thereby improving statistical variations, show efficiencies well within minimum requirements. (U.S.)

  6. Size-segregated aerosol in a hot-spot pollution urban area: Chemical composition and three-way source apportionment.

    Science.gov (United States)

    Bernardoni, V; Elser, M; Valli, G; Valentini, S; Bigi, A; Fermo, P; Piazzalunga, A; Vecchi, R

    2017-12-01

    In this work, a comprehensive characterisation and source apportionment of size-segregated aerosol collected using a multistage cascade impactor was performed. The samples were collected during wintertime in Milan (Italy), which is located in the Po Valley, one of the main pollution hot-spot areas in Europe. For every sampling, size-segregated mass concentration, elemental and ionic composition, and levoglucosan concentration were determined. Size-segregated data were inverted using the program MICRON to identify and quantify modal contributions of all the measured components. The detailed chemical characterisation allowed the application of a three-way (3-D) receptor model (implemented using Multilinear Engine) for size-segregated source apportionment and chemical profiles identification. It is noteworthy that - as far as we know - this is the first time that three-way source apportionment is attempted using data of aerosol collected by traditional cascade impactors. Seven factors were identified: wood burning, industry, resuspended dust, regional aerosol, construction works, traffic 1, and traffic 2. Further insights into size-segregated factor profiles suggested that the traffic 1 factor can be associated to diesel vehicles and traffic 2 to gasoline vehicles. The regional aerosol factor resulted to be the main contributor (nearly 50%) to the droplet mode (accumulation sub-mode with modal diameter in the range 0.5-1 μm), whereas the overall contribution from the two factors related to traffic was the most important one in the other size modes (34-41%). The results showed that applying a 3-D receptor model to size-segregated samples allows identifying factors of local and regional origin while receptor modelling on integrated PM fractions usually singles out factors characterised by primary (e.g. industry, traffic, soil dust) and secondary (e.g. ammonium sulphate and nitrate) origin. Furthermore, the results suggested that the information on size

  7. Effects of aerosol/cloud interactions on the global radiation budget

    International Nuclear Information System (INIS)

    Chuang, C.C.; Penner, J.E.

    1994-01-01

    Aerosols may modify the microphysics of clouds by acting as cloud condensation nuclei (CCN), thereby enhancing the cloud reflectivity. Aerosols may also alter precipitation development by affecting the mean droplet size, thereby influencing cloud lifetimes and modifying the hydrological cycle. Clouds have a major effect on climate, but aerosol/cloud interactions have not been accounted for in past climate model simulations. However, the worldwide steady rise of global pollutants and emissions makes it imperative to investigate how atmospheric aerosols affect clouds and the global radiation budget. In this paper, the authors examine the relationship between aerosol and cloud drop size distributions by using a detailed micro-physical model. They parameterize the cloud nucleation process in terms of local aerosol characteristics and updraft velocity for use in a coupled climate/chemistry model to predict the magnitude of aerosol cloud forcing. Their simulations indicate that aerosol/cloud interactions may result in important increases in reflected solar radiation, which would mask locally the radiative forcing from increased greenhouse gases. This work is aimed at improving the assessment of the effects of anthropogenic aerosols on cloud optical properties and the global radiation budget

  8. Research on aerosol formation, aerosol behaviour, aerosol filtration, aerosol measurement techniques and sodium fires at the Laboratory for Aerosol Physics and Filter Technology at the Nuclear Research Center Karlsruhe

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, S; Schikarski, W; Schoeck, W [Gesellschaft fuer Kernforschung mbH, Karlsruhe (Germany)

    1977-01-01

    The behaviour of aerosols in LMFBR plant systems is of great importance for a number of problems, both normal operational and accident kind. This paper covers the following: aerosol modelling for LMFBR containment systems; aerosol size spectrometry by laser light scattering; experimental facilities and experimental results concerned with aerosol release under accident conditions; filtration of sodium oxide aerosols by multilayer sand bed filters.

  9. Research on aerosol formation, aerosol behaviour, aerosol filtration, aerosol measurement techniques and sodium fires at the Laboratory for Aerosol Physics and Filter Technology at the Nuclear Research Center Karlsruhe

    International Nuclear Information System (INIS)

    Jordan, S.; Schikarski, W.; Schoeck, W.

    1977-01-01

    The behaviour of aerosols in LMFBR plant systems is of great importance for a number of problems, both normal operational and accident kind. This paper covers the following: aerosol modelling for LMFBR containment systems; aerosol size spectrometry by laser light scattering; experimental facilities and experimental results concerned with aerosol release under accident conditions; filtration of sodium oxide aerosols by multilayer sand bed filters

  10. Direct on-strip analysis of size- and time-resolved aerosol impactor samples using laser induced fluorescence spectra excited at 263 and 351 nm

    International Nuclear Information System (INIS)

    Wang, Chuji; Pan, Yong-Le; James, Deryck; Wetmore, Alan E.; Redding, Brandon

    2014-01-01

    Highlights: • A dual wavelength UV-LIF spectra-rotating drum impactor (RDI) technique was developed. • The technique was demonstrated by direct on-strip analysis of size- and time-resolved LIF spectra of atmospheric aerosol particles. • More than 2000 LIF spectra of atmospheric aerosol particles collected over three weeks in Djibouti were obtained and assigned to various fluorescence clusters. • The LIF spectra showed size- and time-sensitivity behavior with a time resolution of 3.6 h. - Abstract: We report a novel atmospheric aerosol characterization technique, in which dual wavelength UV laser induced fluorescence (LIF) spectrometry marries an eight-stage rotating drum impactor (RDI), namely UV-LIF-RDI, to achieve size- and time-resolved analysis of aerosol particles on-strip. The UV-LIF-RDI technique measured LIF spectra via direct laser beam illumination onto the particles that were impacted on a RDI strip with a spatial resolution of 1.2 mm, equivalent to an averaged time resolution in the aerosol sampling of 3.6 h. Excited by a 263 nm or 351 nm laser, more than 2000 LIF spectra within a 3-week aerosol collection time period were obtained from the eight individual RDI strips that collected particles in eight different sizes ranging from 0.09 to 10 μm in Djibouti. Based on the known fluorescence database from atmospheric aerosols in the US, the LIF spectra obtained from the Djibouti aerosol samples were found to be dominated by fluorescence clusters 2, 5, and 8 (peaked at 330, 370, and 475 nm) when excited at 263 nm and by fluorescence clusters 1, 2, 5, and 6 (peaked at 390 and 460 nm) when excited at 351 nm. Size- and time-dependent variations of the fluorescence spectra revealed some size and time evolution behavior of organic and biological aerosols from the atmosphere in Djibouti. Moreover, this analytical technique could locate the possible sources and chemical compositions contributing to these fluorescence clusters. Advantages, limitations, and

  11. Direct on-strip analysis of size- and time-resolved aerosol impactor samples using laser induced fluorescence spectra excited at 263 and 351 nm

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chuji [U.S. Army Research Laboratory, Adelphi, MD 20783 (United States); Mississippi State University, Starkville, MS, 39759 (United States); Pan, Yong-Le, E-mail: yongle.pan.civ@mail.mil [U.S. Army Research Laboratory, Adelphi, MD 20783 (United States); James, Deryck; Wetmore, Alan E. [U.S. Army Research Laboratory, Adelphi, MD 20783 (United States); Redding, Brandon [Yale University, New Haven, CT 06510 (United States)

    2014-04-01

    Highlights: • A dual wavelength UV-LIF spectra-rotating drum impactor (RDI) technique was developed. • The technique was demonstrated by direct on-strip analysis of size- and time-resolved LIF spectra of atmospheric aerosol particles. • More than 2000 LIF spectra of atmospheric aerosol particles collected over three weeks in Djibouti were obtained and assigned to various fluorescence clusters. • The LIF spectra showed size- and time-sensitivity behavior with a time resolution of 3.6 h. - Abstract: We report a novel atmospheric aerosol characterization technique, in which dual wavelength UV laser induced fluorescence (LIF) spectrometry marries an eight-stage rotating drum impactor (RDI), namely UV-LIF-RDI, to achieve size- and time-resolved analysis of aerosol particles on-strip. The UV-LIF-RDI technique measured LIF spectra via direct laser beam illumination onto the particles that were impacted on a RDI strip with a spatial resolution of 1.2 mm, equivalent to an averaged time resolution in the aerosol sampling of 3.6 h. Excited by a 263 nm or 351 nm laser, more than 2000 LIF spectra within a 3-week aerosol collection time period were obtained from the eight individual RDI strips that collected particles in eight different sizes ranging from 0.09 to 10 μm in Djibouti. Based on the known fluorescence database from atmospheric aerosols in the US, the LIF spectra obtained from the Djibouti aerosol samples were found to be dominated by fluorescence clusters 2, 5, and 8 (peaked at 330, 370, and 475 nm) when excited at 263 nm and by fluorescence clusters 1, 2, 5, and 6 (peaked at 390 and 460 nm) when excited at 351 nm. Size- and time-dependent variations of the fluorescence spectra revealed some size and time evolution behavior of organic and biological aerosols from the atmosphere in Djibouti. Moreover, this analytical technique could locate the possible sources and chemical compositions contributing to these fluorescence clusters. Advantages, limitations, and

  12. Aircraft exhaust aerosol formation and growth

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R C; Miake-Lye, R C; Anderson, M R; Kolb, C E [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics

    1998-12-31

    Aerosol formation and growth in the exhaust plume of the ATTAS aircraft at an altitude of approximately 9 km, burning fuels with 2 ppmm sulfur (`low`) and 266 ppmm (`high`) sulfur has been modeled using an aerosol dynamics model for nucleation, vapor condensation and coagulation, coupled to a 2-dimensional, axisymmetric flow code to treat plume dilution and turbulent mixing. For both the `low` and `high` sulfur fuels, approximately 60% of the available water had condensed within the first 200 m downstream of the exhaust exit. The contrail particle diameters ranged between 0.4 to 1.6 {mu}m. However, the size distributions as a function of radial position for the `low` sulfur plume were broader than the corresponding distributions for the `high` sulfur plume. The model results indicate for a fuel sulfur mass loading of 2 ppmm, sulfuric acid remains a viable activating agent and that the differences in the contrail particle size distributions for sulfur mass loadings between 2 ppmm and 260 ppmm would be difficult to detect. (author) 12 refs.

  13. Aircraft exhaust aerosol formation and growth

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.C.; Miake-Lye, R.C.; Anderson, M.R.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics

    1997-12-31

    Aerosol formation and growth in the exhaust plume of the ATTAS aircraft at an altitude of approximately 9 km, burning fuels with 2 ppmm sulfur (`low`) and 266 ppmm (`high`) sulfur has been modeled using an aerosol dynamics model for nucleation, vapor condensation and coagulation, coupled to a 2-dimensional, axisymmetric flow code to treat plume dilution and turbulent mixing. For both the `low` and `high` sulfur fuels, approximately 60% of the available water had condensed within the first 200 m downstream of the exhaust exit. The contrail particle diameters ranged between 0.4 to 1.6 {mu}m. However, the size distributions as a function of radial position for the `low` sulfur plume were broader than the corresponding distributions for the `high` sulfur plume. The model results indicate for a fuel sulfur mass loading of 2 ppmm, sulfuric acid remains a viable activating agent and that the differences in the contrail particle size distributions for sulfur mass loadings between 2 ppmm and 260 ppmm would be difficult to detect. (author) 12 refs.

  14. Deposition Pattern of Inhaled Thoron Progeny Size Distribution in Human Lung

    International Nuclear Information System (INIS)

    Mohamed, A.

    2005-01-01

    One of the important factors controlling the distribution of radiation dose to the different portions of the human respiratory tract is the deposition pattern of thoron progeny containing aerosol. Based on the activity size distribution parameters of thoron progeny, which were measured in El-Minia University, the deposition behavior of thoron progeny (attached and unattached) has been studied by using a stochastic deposition model. The measurements were performed with a wire screen diffusion battery and a low pressure cascade impactor (type Berner). The bronchial deposition efficiencies of particles in the size range of attached thoron progeny were found to be lower than those of unattached progeny. The effect of thoron progeny deposition by adult male has been also studied for various levels of physical exertion. An increase in the breathing rate was found to decrease the efficiencies with which inhaled progeny were deposited in the bronchi. As the ventilation rate increases from 0.54 to 1.5 m3 h-1, the average deposition efficiencies of airway generation 1 through 8 are expected to decrease by 22 % for 1.4 nm particles and by 38 % for 150 nm particles

  15. Effect of relative humidity on growth of sodium oxide aerosols

    International Nuclear Information System (INIS)

    Sundarajan, A.R.; Mitragotri, D.S.; Mukunda Rao, S.R.

    1982-01-01

    Behavior of aerosol resulting from sodium fires in a closed vessel is investigated and the changes in the particle size distribution of the aerosol due to coagulation and humidity have been studied. The initial mass concentration is in the range of 80 -- 500 mg/m 3 and the relative humidity is varied between 50 to 98%. The initial size of the released aerosol is found to be 0.9 μm. Equilibrium diameters of particles growing in humid air have been computed for various humidity levels using water activity of sodium hydroxide. Both theoretical and experimental results have yielded growth ratios of about 3 at about 95% relative humidity. It is recommended that the computer codes dealing with aerosol coagulation behavior in reactor containment should include an appropriate humidity-growth function. (author)

  16. Diurnal cycling of urban aerosols under different weather regimes

    Science.gov (United States)

    Gregorič, Asta; Drinovec, Luka; Močnik, Griša; Remškar, Maja; Vaupotič, Janja; Stanič, Samo

    2016-04-01

    A one month measurement campaign was performed in summer 2014 in Ljubljana, the capital of Slovenia (population 280,000), aiming to study temporal and spatial distribution of urban aerosols and the mixing state of primary and secondary aerosols. Two background locations were chosen for this purpose, the first one in the city center (urban background - KIS) and the second one in the suburban background (Brezovica). Simultaneous measurements of black carbon (BC) and particle number size distribution of submicron aerosols (PM1) were conducted at both locations. In the summer season emission from traffic related sources is expected to be the main local contribution to BC concentration. Concentrations of aerosol species and gaseous pollutants within the planetary boundary layer are controlled by the balance between emission sources of primary aerosols and gases, production of secondary aerosols, chemical reactions of precursor gases under solar radiation and the rate of dilution by mixing within the planetary boundary layer (PBL) as well as with tropospheric air. Only local emission sources contribute to BC concentration during the stable PBL with low mixing layer height, whereas during the time of fully mixed PBL, regionally transported BC and other aerosols can contribute to the surface measurements. The study describes the diurnal behaviour of the submicron aerosol at the urban and suburban background location under different weather regimes. Particles in three size modes - nucleation (humidity, wind speed and direction), diurnal profile differs for sunny, cloudy and rainy days. Nucleation mode particles were found to be subjected to lower daily variation and only slightly influenced by weather, as opposed to Aitken and accumulation mode particles. The highest correlation between BC and particle number concentration is observed during stable atmospheric conditions in the night and morning hours and is attributed to different particle size modes, depending on the

  17. Maritime Aerosol optical properties measured by ship-borne sky radiometer

    Science.gov (United States)

    Aoki, K.

    2017-12-01

    Maritime aerosols play an important role in the earth climate change. We started the measurements of aerosol optical properties since 1994 by using ship-borne sky radiometer (POM-01 MK-II and III; Prede Co. Ltd., Japan) over the ocean. We report the results of an aerosol optical properties over the ocean by using Research Vessel of the ship-borne sky radiometers. Aerosol optical properties observation were made in MR10-02 to MR16-09 onboard the R/V Mirai, JAMSTEC. The sky radiometer measure the direct and diffuse solar radiance with seven interference filters (0.315, 0.4, 0.5, 0.675, 0.87, 0.94, and 1.02 µm). Observation interval was made every five minutes by once, only in daytime under the clear sky conditions. GPS provides the position with longitude and latitude and heading direction of the vessel, and azimuth and elevation angle of the sun. The aerosol optical properties were computed using the SKYRAD.pack version 4.2. The obtained Aerosol optical properties (Aerosol optical thickness, Ångström exponent, Single scattering albedo, and etc.) and size distribution volume clearly showed spatial and temporal variability over the ocean. Aerosol optical thickness found over the near the coast (Asia and Tropical area) was high and variable. The size distribution volume have peaks at small particles at Asian coast and large particles at Tropical coast area. We provide the information, in this presentation, on the aerosol optical properties measurements with temporal and spatial variability in the Maritime Aerosol. This project is validation satellite of GCOM-C/SGLI, JAXA and other. The GCOM-C satellite scheduled to be launched in 2017 JFY.

  18. Reduction of photosynthetically active radiation under extreme stratospheric-aerosol loads

    International Nuclear Information System (INIS)

    Gerstl, S.A.W.; Zardecki, A.

    1981-01-01

    The recently published hypothesis that the Cretaceous-Tertiary extinctions might be caused by an obstruction of sunlight is tested by model calculations. First we compute the total mass of stratospheric aerosols under normal atmospheric conditions for four different (measured) aerosol size distributions and vertical profiles. For comparison, the stratospheric dust masses after four volcanic eruptions are also evaluated. Detailed solar radiative transfer calculations are then performed for artificially increased aerosol amounts until the postulated darkness scenario is obtained. Thus we find that a total stratospheric aerosol mass between 1 and 4 times 10 16 g is sufficient to reduce photosynthesis to 10 3 of normal. We also infer from this result that the impact of a 0.4- to 3-km-diameter asteroid or a close encounter with a Halley-size comet may deposit that amount of particulates into the stratosphere. The darkness scenario of Alvarez et al., is thus shown to be a possible extinction mechanism, even with smaller size asteroids or comets than previously estimated

  19. Reduction of photosynthetically active radiation under extreme stratospheric aerosol loads

    International Nuclear Information System (INIS)

    Gerstl, S.A.W.; Zardecki, A.

    1981-08-01

    The recently published hypothesis that the Cretaceous-Tertiary extinctions might be caused by an obstruction of sunlight is tested by model calculations. First we compute the total mass of stratospheric aerosols under normal atmospheric conditions for four different (measured) aerosol size distributions and vertical profiles. For comparison, the stratospheric dust masses after four volcanic eruptions are also evaluated. Detailed solar radiative transfer calculations are then performed for artificially increased aerosol amounts until the postulated darkness scenario is obtained. Thus we find that a total stratospheric aerosol mass between 1 and 4 times 10 1 g is sufficient to reduce photosynthesis to 10 -3 of normal. We also infer from this result tha the impact of a 0.4- to 3-km-diameter asteroid or a close encounter with a Halley-size comet may deposit that amount of particulates into the stratosphere. The darkness scenario of Alvarez et al. is thus shown to be a possible extinction mechanism, even with smaller size asteroids of comets than previously estimated

  20. Cloud-Driven Changes in Aerosol Optical Properties - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

    2007-09-30

    The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

  1. Organic condensation: A vital link connecting aerosol formation to climate forcing (Invited)

    Science.gov (United States)

    Riipinen, I.; Pierce, J. R.; Yli-Juuti, T.; Nieminen, T.; Häkkinen, S.; Ehn, M.; Junninen, H.; Lehtipalo, K.; Petdjd, T. T.; Slowik, J. G.; Chang, R. Y.; Shantz, N. C.; Abbatt, J.; Leaitch, W. R.; Kerminen, V.; Worsnop, D. R.; Pandis, S. N.; Donahue, N. M.; Kulmala, M. T.

    2010-12-01

    Aerosol-cloud interactions represent the largest uncertainty in calculations of Earth’s radiative forcing. Number concentrations of atmospheric aerosol particles are in the core of this uncertainty, as they govern the numbers of cloud condensation nuclei (CCN) and influence the albedo and lifetime of clouds. Aerosols also impair air quality through their adverse effects on atmospheric visibility and human health. The ultrafine fraction ( 100 nm) and enhance the loss of ultrafine particles. Primary organic aerosol (POA) contributes to the large end of the aerosol size distribution, enhancing the scavenging of the ultrafine particles.

  2. Aerosol-Cloud Interactions and Cloud Microphysical Properties in the Asir Region of Saudi Arabia

    Science.gov (United States)

    Kucera, P. A.; Axisa, D.; Burger, R. P.; Li, R.; Collins, D. R.; Freney, E. J.; Buseck, P. R.

    2009-12-01

    In recent advertent and inadvertent weather modification studies, a considerable effort has been made to understand the impact of varying aerosol properties and concentration on cloud properties. Significant uncertainties exist with aerosol-cloud interactions for which complex microphysical processes link the aerosol and cloud properties. Under almost all environmental conditions, increased aerosol concentrations within polluted air masses will enhance cloud droplet concentration relative to that in unperturbed regions. The interaction between dust particles and clouds are significant, yet the conditions in which dust particles become cloud condensation nuclei (CCN) are uncertain. In order to quantify this aerosol effect on clouds and precipitation, a field campaign was launched in the Asir region, located adjacent to the Red Sea in the southwest region of Saudi Arabia. Ground measurements of aerosol size distributions, hygroscopic growth factors, CCN concentrations as well as aircraft measurements of cloud hydrometeor size distributions were observed in the Asir region in August 2009. The presentation will include a summary of the analysis and results with a focus on aerosol-cloud interactions and cloud microphysical properties observed during the convective season in the Asir region.

  3. Sources and atmospheric processing of organic aerosol in the Mediterranean: insights from aerosol mass spectrometer factor analysis

    Directory of Open Access Journals (Sweden)

    L. Hildebrandt

    2011-12-01

    Full Text Available Atmospheric particles were measured in the late winter (25 February–26 March 2009 at a remote coastal site on the island of Crete, Greece during the Finokalia Aerosol Measurement Experiment-2009. A quadrupole aerosol mass spectrometer (Q-AMS was employed to quantify the size-resolved chemical composition of non-refractory submicron aerosol, and a thermodenuder was used to analyze the organic aerosol (OA volatility. Complementary measurements included particle size distributions from a scanning mobility particle sizer, inorganic and organic particle composition from filter analysis, air ion concentrations, O3, NOx and NOy concentrations, and meteorological measurements. Factor analysis was performed on the OA mass spectra, and the variability in OA composition could best be explained with three OA components. The oxygenated organic aerosol (OOA was similar in composition and volatility to the summertime OA previously measured at this site and may represent an effective endpoint in particle-phase oxidation of organics. The two other OA components, one associated with amines (Amine-OA and the other probably associated with the burning of olive branches (OB-OA, had very low volatility but were less oxygenated. Hydrocarbon-like organic aerosol (HOA was not detected. The absence of OB-OA and Amine-OA in the summer data may be due to lower emissions and/or photochemical conversion of these components to OOA.

  4. Analysis of internal radiation and radiotoxicity source base on aerosol distribution in RMI

    International Nuclear Information System (INIS)

    Yuwono, I.

    2000-01-01

    Destructive testing of nuclear fuel element during post irradiation examination in radio metallurgy installation may cause air contamination in the working area in the form of radioactive aerosol. Inhalation of the radioactive aerosol by worker will to become internal radiation source. Potential hazard of radioactive particle in the body also depends on the particle size. Analysis of internal radiation source and radiotoxicity showed that in the normal operation only natural radioactive materials are found with high radiotoxicity, i.e. Pb-212 and Ac-228. High deposit in the alveolar instersial (Ai) is 95 % and lower in the bronchial area (BB) is 1 % for particle size 11.7 nm and 350 nm respectively. (author)

  5. Aerosol optical properties and direct radiative forcing based on measurements from the China Aerosol Remote Sensing Network (CARSNET) in eastern China

    Science.gov (United States)

    Che, Huizheng; Qi, Bing; Zhao, Hujia; Xia, Xiangao; Eck, Thomas F.; Goloub, Philippe; Dubovik, Oleg; Estelles, Victor; Cuevas-Agulló, Emilio; Blarel, Luc; Wu, Yunfei; Zhu, Jun; Du, Rongguang; Wang, Yaqiang; Wang, Hong; Gui, Ke; Yu, Jie; Zheng, Yu; Sun, Tianze; Chen, Quanliang; Shi, Guangyu; Zhang, Xiaoye

    2018-01-01

    Aerosol pollution in eastern China is an unfortunate consequence of the region's rapid economic and industrial growth. Here, sun photometer measurements from seven sites in the Yangtze River Delta (YRD) from 2011 to 2015 were used to characterize the climatology of aerosol microphysical and optical properties, calculate direct aerosol radiative forcing (DARF) and classify the aerosols based on size and absorption. Bimodal size distributions were found throughout the year, but larger volumes and effective radii of fine-mode particles occurred in June and September due to hygroscopic growth and/or cloud processing. Increases in the fine-mode particles in June and September caused AOD440 nm > 1.00 at most sites, and annual mean AOD440 nm values of 0.71-0.76 were found at the urban sites and 0.68 at the rural site. Unlike northern China, the AOD440 nm was lower in July and August (˜ 0.40-0.60) than in January and February (0.71-0.89) due to particle dispersion associated with subtropical anticyclones in summer. Low volumes and large bandwidths of both fine-mode and coarse-mode aerosol size distributions occurred in July and August because of biomass burning. Single-scattering albedos at 440 nm (SSA440 nm) from 0.91 to 0.94 indicated particles with relatively strong to moderate absorption. Strongly absorbing particles from biomass burning with a significant SSA wavelength dependence were found in July and August at most sites, while coarse particles in March to May were mineral dust. Absorbing aerosols were distributed more or less homogeneously throughout the region with absorption aerosol optical depths at 440 nm ˜ 0.04-0.06, but inter-site differences in the absorption Angström exponent indicate a degree of spatial heterogeneity in particle composition. The annual mean DARF was -93 ± 44 to -79 ± 39 W m-2 at the Earth's surface and ˜ -40 W m-2 at the top of the atmosphere (for the solar zenith angle range of 50 to 80°) under cloud-free conditions. The fine mode

  6. Modelling and measurements of urban aerosol processes on the neighborhood scale in Rotterdam, Oslo and Helsinki

    Science.gov (United States)

    Karl, M.; Kukkonen, J.; Keuken, M. P.; Lützenkirchen, S.; Pirjola, L.; Hussein, T.

    2015-12-01

    This study evaluates the influence of aerosol processes on the particle number (PN) concentrations in three major European cities on the temporal scale of one hour, i.e. on the neighborhood and city scales. We have used selected measured data of particle size distributions from previous campaigns in the cities of Helsinki, Oslo and Rotterdam. The aerosol transformation processes were evaluated using an aerosol dynamics model MAFOR, combined with a simplified treatment of roadside and urban atmospheric dispersion. We have compared the model predictions of particle number size distributions with the measured data, and conducted sensitivity analyses regarding the influence of various model input variables. We also present a simplified parameterization for aerosol processes, which is based on the more complex aerosol process computations; this simple model can easily be implemented to both Gaussian and Eulerian urban dispersion models. Aerosol processes considered in this study were (i) the coagulation of particles, (ii) the condensation and evaporation of n-alkanes, and (iii) dry deposition. The chemical transformation of gas-phase compounds was not taken into account. It was not necessary to model the nucleation of gas-phase vapors, as the computations were started with roadside conditions. Dry deposition and coagulation of particles were identified to be the most important aerosol dynamic processes that control the evolution and removal of particles. The effect of condensation and evaporation of organic vapors emitted by vehicles on particle numbers and on particle size distributions was examined. Under inefficient dispersion conditions, condensational growth contributed significantly to the evolution of PN from roadside to the neighborhood scale. The simplified parameterization of aerosol processes can predict particle number concentrations between roadside and the urban background with an inaccuracy of ∼ 10 %, compared to the fully size-resolved MAFOR model.

  7. Molecular size evolution of oligomers in organic aerosols collected in urban atmospheres and generated in a smog chamber.

    Science.gov (United States)

    Kalberer, Markus; Sax, Mirjam; Samburova, Vera

    2006-10-01

    Only a minor fraction of the total organic aerosol mass can be resolved on a molecular level. High molecular weight compounds in organic aerosols have recently gained much attention because this class of compound potentially explains a major fraction of the unexplained organic aerosol mass. These compounds have been identified with different mass spectrometric methods, and compounds with molecular masses up to 1000 Da are found in secondary organic aerosols (SOA) generated from aromatic and terpene precursors in smog chamber experiments. Here, we apply matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) to SOA particles from two biogenic precursors, alpha-pinene and isoprene. Similar oligomer patterns are found in these two SOA systems, but also in SOA from trimethylbenzene, an anthropogenic SOA precursor. However, different maxima molecular sizes were measured for these three SOA systems. While oligomers in alpha-pinene and isoprene have sizes mostly below 600-700 Da, they grow up to about 1000 Da in trimethylbenzene-SOA. The final molecular size of the oligomers is reached early during the particle aging process, whereas other particle properties related to aging, such as the overall acid concentration or the oligomer concentration, increase continuously over a much longer time scale. This kinetic behavior of the oligomer molecular size growth can be explained by a chain growth kinetic regime. Similar oligomer mass patterns were measured in aqueous extracts of ambient aerosol samples (measured with the same technique). Distinct differences between summer and winter were observed. In summer a few single mass peaks were measured with much higher intensity than in winter, pointing to a possible difference in the formation processes of these compounds in winter and summer.

  8. Variation in aerosol nucleation and growth in coal-fired power plant plumes due to background aerosol, meteorology and emissions: sensitivity analysis and parameterization.

    Science.gov (United States)

    Stevens, R. G.; Lonsdale, C. L.; Brock, C. A.; Reed, M. K.; Crawford, J. H.; Holloway, J. S.; Ryerson, T. B.; Huey, L. G.; Nowak, J. B.; Pierce, J. R.

    2012-04-01

    New-particle formation in the plumes of coal-fired power plants and other anthropogenic sulphur sources may be an important source of particles in the atmosphere. It remains unclear, however, how best to reproduce this formation in global and regional aerosol models with grid-box lengths that are 10s of kilometres and larger. The predictive power of these models is thus limited by the resultant uncertainties in aerosol size distributions. In this presentation, we focus on sub-grid sulphate aerosol processes within coal-fired power plant plumes: the sub-grid oxidation of SO2 with condensation of H2SO4 onto newly-formed and pre-existing particles. Based on the results of the System for Atmospheric Modelling (SAM), a Large-Eddy Simulation/Cloud-Resolving Model (LES/CRM) with online TwO Moment Aerosol Sectional (TOMAS) microphysics, we develop a computationally efficient, but physically based, parameterization that predicts the characteristics of aerosol formed within coal-fired power plant plumes based on parameters commonly available in global and regional-scale models. Given large-scale mean meteorological parameters, emissions from the power plant, mean background condensation sink, and the desired distance from the source, the parameterization will predict the fraction of the emitted SO2 that is oxidized to H2SO4, the fraction of that H2SO4 that forms new particles instead of condensing onto preexisting particles, the median diameter of the newly-formed particles, and the number of newly-formed particles per kilogram SO2 emitted. We perform a sensitivity analysis of these characteristics of the aerosol size distribution to the meteorological parameters, the condensation sink, and the emissions. In general, new-particle formation and growth is greatly reduced during polluted conditions due to the large preexisting aerosol surface area for H2SO4 condensation and particle coagulation. The new-particle formation and growth rates are also a strong function of the

  9. Global cloud condensation nuclei influenced by carbonaceous combustion aerosol

    Directory of Open Access Journals (Sweden)

    D. V. Spracklen

    2011-09-01

    Full Text Available Black carbon in carbonaceous combustion aerosol warms the climate by absorbing solar radiation, meaning reductions in black carbon emissions are often perceived as an attractive global warming mitigation option. However, carbonaceous combustion aerosol can also act as cloud condensation nuclei (CCN so they also cool the climate by increasing cloud albedo. The net radiative effect of carbonaceous combustion aerosol is uncertain because their contribution to CCN has not been evaluated on the global scale. By combining extensive observations of CCN concentrations with the GLOMAP global aerosol model, we find that the model is biased low (normalised mean bias = −77 % unless carbonaceous combustion aerosol act as CCN. We show that carbonaceous combustion aerosol accounts for more than half (52–64 % of global CCN with the range due to uncertainty in the emitted size distribution of carbonaceous combustion particles. The model predicts that wildfire and pollution (fossil fuel and biofuel carbonaceous combustion aerosol causes a global mean cloud albedo aerosol indirect effect of −0.34 W m−2, with stronger cooling if we assume smaller particle emission size. We calculate that carbonaceous combustion aerosol from pollution sources cause a global mean aerosol indirect effect of −0.23 W m−2. The small size of carbonaceous combustion particles from fossil fuel sources means that whilst pollution sources account for only one-third of the emitted mass they cause two-thirds of the cloud albedo aerosol indirect effect that is due to carbonaceous combustion aerosol. This cooling effect must be accounted for, along with other cloud effects not studied here, to ensure that black carbon emissions controls that reduce the high number concentrations of fossil fuel particles have the desired net effect on climate.

  10. Hygroscopic growth of atmospheric aerosol particles and its relation to nucleation scavenging in clouds

    Energy Technology Data Exchange (ETDEWEB)

    Svenningsson, B.

    1997-11-01

    Aerosol particles in the atmosphere are important in several aspects. Some major aerosol constituents that are deposited in ecosystems are acidic or fertilizers and some minor or trace constituents are toxic. Aerosol particles are also involved in the earth`s radiation balance, both directly by scattering the sunlight and indirectly by influencing the clouds. All these effects are influenced by the interaction between the aerosol particles and water vapour. A tandem differential mobility analyser (TDMA) has been designed to measure hygroscopic growth, i.e. the particle diameter change due to uptake of water at well defined relative humidities below 100%. Tests of the instrument performance have been made using aerosol particles of pure inorganic salts. Three field experiments have been performed as parts of large fog and cloud experiments. Bimodal hygroscopic growth spectra were found: less-hygroscopic particles containing a few percent and more-hygroscopic particles around 50% by volume of hygroscopically active material. In general the fraction of less-hygroscopic particles decreases with particle size and it is larger in polluted continental aerosols than in remote background aerosols. This external mixing cannot be fully understood using present views on the formation of aerosols. Evidence or the importance of the external mixing on the cloud nucleating properties of the particles are found in comparisons between hygroscopic growth spectra for the total aerosol, the interstitial aerosol in clouds, and cloud drop residuals. Cloud condensation nuclei spectra, calculated using aerosol particle size distributions and hygroscopic growth spectra, in combination with information on the major inorganic ions are presented. These CCN spectra reveal for instance that the influence of less-hygroscopic particles on the cloud droplets increases with increasing peak supersaturation. The fraction of the particles that were scavenged to cloud drops, as a function of particle

  11. Aerosol concentration measurements and correlations with air mass trajectories at the Pierre Auger Observatory

    Science.gov (United States)

    Micheletti, M. I.; Louedec, K.; Freire, M.; Vitale, P.; Piacentini, R. D.

    2017-06-01

    Aerosols play an important role in radiative transfer processes involved in different fields of study. In particular, their influence is crucial in the attenuation of light at astronomical and astrophysical observatories, and has to be taken into account in light transfer models employed to reconstruct the signals. The Andean Argentinean region is increasingly being considered as a good candidate to host such facilities, as well as the ones for solar-energy resources, and an adequate knowledge of aerosols characteristics there is needed, but it is not always possible due to the vast area involved and the scarce atmospheric data at ground. The aim of this work is to find correlations between aerosol data and particle trajectories that can give an insight into the origin and behaviour of aerosols in this zone and can be employed in situations in which one does not have local aerosol measurements. For this purpose, an aerosol spectrometer and dust monitor (Grimm 1.109) was installed at the Pierre Auger Observatory of ultra-high-energy cosmic rays, to record aerosol concentrations in different size intervals, at surface level. These measurements are analysed and correlated with air mass trajectories obtained from HYSPLIT (NOAA) model calculations. High aerosol concentrations are registered predominantly when air masses have travelled mostly over continental areas, mainly from the NE direction, while low aerosol concentrations are found in correspondence with air masses coming from the Pacific Ocean, from the NW direction. Different size distribution patterns were found for the aerosols depending on their origin: marine or continental. This work shows for the first time the size distribution of aerosols registered at the Pierre Auger Observatory. The correlations found between mass and particle concentrations (total and for different size ranges) and HYSPLIT air mass trajectories, confirm that the latter can be employed as a useful tool to infer the sources, evolution

  12. In Vitro Tests for Aerosol Deposition. V: Using Realistic Testing to Estimate Variations in Aerosol Properties at the Trachea.

    Science.gov (United States)

    Wei, Xiangyin; Hindle, Michael; Delvadia, Renishkumar R; Byron, Peter R

    2017-10-01

    The dose and aerodynamic particle size distribution (APSD) of drug aerosols' exiting models of the mouth and throat (MT) during a realistic inhalation profile (IP) may be estimated in vitro and designated Total Lung Dose, TLD in vitro , and APSD TLDin vitro , respectively. These aerosol characteristics likely define the drug's regional distribution in the lung. A general method was evaluated to enable the simultaneous determination of TLD in vitro and APSD TLDin vitro for budesonide aerosols' exiting small, medium and large VCU-MT models. Following calibration of the modified next generation pharmaceutical impactor (NGI) at 140 L/min, variations in aerosol dose and size exiting MT were determined from Budelin ® Novolizer ® across the IPs reported by Newman et al., who assessed drug deposition from this inhaler by scintigraphy. Values for TLD in vitro from the test inhaler determined by the general method were found to be statistically comparable to those using a filter capture method. Using new stage cutoffs determined by calibration of the modified NGI at 140 L/min, APSD TLDin vitro profiles and mass median aerodynamic diameters at the MT exit (MMAD TLDin vitro ) were determined as functions of MT geometric size across Newman's IPs. The range of mean values (n ≥ 5) for TLD in vitro and MMAD TLDin vitro for this inhaler extended from 6.2 to 103.0 μg (3.1%-51.5% of label claim) and from 1.7 to 3.6 μm, respectively. The method enables reliable determination of TLD in vitro and APSD TLDin vitro for aerosols likely to enter the trachea of test subjects in the clinic. By simulating realistic IPs and testing in different MT models, the effects of major variables on TLD in vitro and APSD TLDin vitro may be studied using the general method described in this study.

  13. The influence of aerosol density upon the performance of centrifugal spectrometers

    International Nuclear Information System (INIS)

    Martonen, T.B.

    1978-01-01

    Centrifugal instruments are valuable components for studying airborne particulate matter of health physics interest because a continuously graded aerodynamic diameter, Dae, spectrum is produced. Applications include the characterization of inhalation exposure aerosols, serving as particle monitors to measure respirable dose, and being the integral unit in a system to generate monodisperse aerosols. Some aerosols of health physics concern differ from the PSL aerosol used to calibrate centrifuges in two main respects: the particulate mass concentration, Cm, is large, and the aerosol gas is not air. The marked influence of these factors upon centrifuge performance is documented (T. B. Martonen, Ph.D. Thesis, University of Rochester, Rochester, NY, 1976). The phenomenon of cloud settling occurs when Cm is of sufficient magnitude. Aerosol gas effects can be defined in terms of the parameter K, the ratio of the aerosol gas to winnowing medium densities. Size classification is modified by diffusiophoretic forces when K 1. In all cases, erroneous size distribution data results. Laboratory procedures are presented which permit accurate particle size assessment when aerosols of large Cm and/or K≠1 are sampled. An engineering analysis of centrifuge physics has been completed which allows optimum operating conditions, which may be quite different for different aerosols, to be computed. Cigarette smoke was used as a test aerosol to check the experimental and theoretical findings. Although it is shown to be subject to both cloud settling and dense gas subsidence, accurate size classification was obtained. The differential equation describing particle motion in centrifuges has been formulated and solved. Further, techniques of dimensional analysis were applied to the equations modelling flow in centrifuges; results indicate how operating conditions and instrument geometry influence particle size classification. These theoretical studies will lead to the development of improved

  14. Experimental studies of caesium iodide aerosol condensation: theoretical interpretation

    International Nuclear Information System (INIS)

    Beard, A.M.; Benson, C.G.; Horton, K.D.; Buckle, E.R.

    1990-07-01

    Caesium iodide is predicted to be a significant source of fission product aerosols during the course of a severe accident in a pressurised water reactor (PWR). The nucleation and growth of caesium iodide aerosols have been studied using a plume chamber and the results compared with theoretical values calculated using the approach developed by Buckle for aerosol nucleation. The morphology of the particles was studied using scanning electron microscopy (SEM) and transmission optical microscopy (TOM), whilst the particle size distributions were determined from differential mobility (DMPS) and aerodynamic (APS) measurements. (author)

  15. Study of aerosol behaviour in an acoustic field

    International Nuclear Information System (INIS)

    Malherbe, C.

    1988-01-01

    The average size of an aerosol submitted to acoustic waves is increased. This results from coagulation of the finer particles on the larger ones. An experimental apparatus was developed in order to control the evolution of aerosol distribution in an acoustic field. Important deposition on the walls of the agglomeration chamber was observed as a consequence of the acoustically induced turbulent flow. Consequently, we experimentally evaluated the turbulent properties of the system. A granular bed submitted to an acoustic field and set downstream an agglomerator constitutes an almost absolute filter for an usually penetrating aerosol [fr

  16. Aerosol climatology over South Africa based on 10 years of Multiangle Imaging Spectroradiometer (MISR) data

    CSIR Research Space (South Africa)

    Tesfaye, M

    2011-10-01

    Full Text Available ; Eck et al., 2003; Freiman and Piketh, 2003; Ichoku et al., 2003; Ross et al., 2003; Liu, 2005; Winkler et al., 2008; Queface et al., 2011]. Those studies focused on a limited time scale, dur- ing biomass�burning seasons, and on the northern parts... to provide further information on particle size distribution of aerosols in the solar spectrum. Several authors have discussed how the spectral variation of a can provide information about the aerosol size distribution [e.g., Nakajima et al., 1986...

  17. Factors Affecting Aerosol Radiative Forcing

    Science.gov (United States)

    Wang, J.; Lin, J.; Ni, R.

    2016-12-01

    Rapid industrial and economic growth has meant large amount of aerosols in the atmosphere with strong radiative forcing (RF) upon the climate system. Over parts of the globe, the negative forcing of aerosols has overcompensated for the positive forcing of greenhouse gases. Aerosol RF is determined by emissions and various chemical-transport-radiative processes in the atmosphere, a multi-factor problem whose individual contributors have not been well quantified. In this study, we analyze the major factors affecting RF of secondary inorganic aerosols (SIOAs, including sulfate, nitrate and ammonium), primary organic aerosol (POA), and black carbon (BC). We analyze the RFof aerosols produced by 11 major regions across the globe, including but not limited to East Asia, Southeast Asia, South Asia, North America, and Western Europe. Factors analyzed include population size, per capita gross domestic production (GDP), emission intensity (i.e., emissionsper unit GDP), chemical efficiency (i.e., mass per unit emissions) and radiative efficiency (i.e., RF per unit mass). We find that among the 11 regions, East Asia produces the largest emissions and aerosol RF, due to relatively high emission intensity and a tremendous population size.South Asia produce the second largest RF of SIOA and BC and the highest RF of POA, in part due to its highest chemical efficiency among all regions. Although Southeast Asia also has large emissions,its aerosol RF is alleviated by its lowest chemical efficiency.The chemical efficiency and radiative efficiency of BC produced by the Middle East-North Africa are the highest across the regions, whereas its RF is loweredbyasmall per capita GDP.Both North America and Western Europe have low emission intensity, compensating for the effects on RF of large population sizes and per capita GDP. There has been a momentum to transfer industries to Southeast Asia and South Asia, and such transition is expected to continue in the coming years. The resulting

  18. Size-Resolved Penetration Through High-Efficiency Filter Media Typically Used for Aerosol Sampling

    Czech Academy of Sciences Publication Activity Database

    Zíková, Naděžda; Ondráček, Jakub; Ždímal, Vladimír

    2015-01-01

    Roč. 49, č. 4 (2015), s. 239-249 ISSN 0278-6826 R&D Projects: GA ČR(CZ) GBP503/12/G147 Institutional support: RVO:67985858 Keywords : filters * size-resolved penetration * atmospheric aerosol sampling Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.953, year: 2015

  19. Aerosol behaviour in an acoustic field

    International Nuclear Information System (INIS)

    Malherbe, C.

    1985-01-01

    The average size of an aerosol submitted to acoustic waves is increased. This results from coagulation of the finest particles on the largest ones. The mechanisms responsible for acoustic agglomeration are mentioned. An experimental apparatus was developed in order to control the evolution of aerosol distribution in an acoustic field. Important deposition on the walls of the agglomeration chamber was observed as a consequence of the acoustically induced turbulent flow. Finally, a dimensionless relationship was established between deposition rates and particle diameters as a function of experimental parameters (aeraulic and acoustic conditions, etc...) [fr

  20. Modeling and measurements of urban aerosol processes on the neighborhood scale in Rotterdam, Oslo and Helsinki

    Science.gov (United States)

    Karl, Matthias; Kukkonen, Jaakko; Keuken, Menno P.; Lützenkirchen, Susanne; Pirjola, Liisa; Hussein, Tareq

    2016-04-01

    This study evaluates the influence of aerosol processes on the particle number (PN) concentrations in three major European cities on the temporal scale of 1 h, i.e., on the neighborhood and city scales. We have used selected measured data of particle size distributions from previous campaigns in the cities of Helsinki, Oslo and Rotterdam. The aerosol transformation processes were evaluated using the aerosol dynamics model MAFOR, combined with a simplified treatment of roadside and urban atmospheric dispersion. We have compared the model predictions of particle number size distributions with the measured data, and conducted sensitivity analyses regarding the influence of various model input variables. We also present a simplified parameterization for aerosol processes, which is based on the more complex aerosol process computations; this simple model can easily be implemented to both Gaussian and Eulerian urban dispersion models. Aerosol processes considered in this study were (i) the coagulation of particles, (ii) the condensation and evaporation of two organic vapors, and (iii) dry deposition. The chemical transformation of gas-phase compounds was not taken into account. By choosing concentrations and particle size distributions at roadside as starting point of the computations, nucleation of gas-phase vapors from the exhaust has been regarded as post tail-pipe emission, avoiding the need to include nucleation in the process analysis. Dry deposition and coagulation of particles were identified to be the most important aerosol dynamic processes that control the evolution and removal of particles. The error of the contribution from dry deposition to PN losses due to the uncertainty of measured deposition velocities ranges from -76 to +64 %. The removal of nanoparticles by coagulation enhanced considerably when considering the fractal nature of soot aggregates and the combined effect of van der Waals and viscous interactions. The effect of condensation and

  1. Characterization of regional atmospheric aerosols over Hungary by PIXE elemental analysis

    International Nuclear Information System (INIS)

    Koltay, E.; Szabo, G.; Borbely Kiss, I.; Somorjai, E.; Kiss, A.Z.

    1994-01-01

    Studying the characteristic features of atmospheric aerosols emitted by natural and anthropogenic sources is of basic importance for a detailed understanding of the physics and chemistry of the atmosphere. Environmental pollution by atmospheric aerosols and their impact can be tested in the same way, too. The separation of natural and anthropogenic components of the aerosol can be done through enrichment factors and size distribution curves deduced from analytical information. The Particle Induced X-ray Emission (PIXE) technique has been applied in aerosol studies by the authors. Results obtained on atmospheric aerosols collected over Hungary and presented in terms of concentrations, enrichment factors, regional signatures, deposition velocities, transport properties and apportionment of sources illustrate the scope and proportions of the potential contribution of PIXE to the methodology of atmospheric aerosol studies. Continued activity planned in the framework of the present CRP may widen the scope of the investigations mainly in the field of size-fractioned sampling and - possibly - in the direction of individual characterization of aerosol particles. (author). 14 refs

  2. Source apportionment of size and time resolved trace elements and organic aerosols from an urban courtyard site in Switzerland

    Directory of Open Access Journals (Sweden)

    A. Richard

    2011-09-01

    Full Text Available Time and size resolved data of trace elements were obtained from measurements with a rotating drum impactor (RDI and subsequent X-ray fluorescence spectrometry. Trace elements can act as indicators for the identification of sources of particulate matter <10 μm (PM10 in ambient air. Receptor modeling was performed with positive matrix factorization (PMF for trace element data from an urban background site in Zürich, Switzerland. Eight different sources were identified for the three examined size ranges (PM1−0.1, PM2.5−1 and PM10−2.5: secondary sulfate, wood combustion, fire works, road traffic, mineral dust, de-icing salt, industrial and local anthropogenic activities. The major component was secondary sulfate for the smallest size range; the road traffic factor was found in all three size ranges. This trace element analysis is complemented with data from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (AMS, assessing the PM1 fraction of organic aerosols. A separate PMF analysis revealed three factors related to three of the sources found with the RDI: oxygenated organic aerosol (OOA, related to inorganic secondary sulfate, hydrocarbon-like organic aerosol (HOA, related to road traffic and biomass burning organic aerosol (BBOA, explaining 60 %, 22 % and 17 % of total measured organics, respectively. Since different compounds are used for the source classification, a higher percentage of the ambient PM10 mass concentration can be apportioned to sources by the combination of both methods.

  3. A Global Modeling Study on Carbonaceous Aerosol Microphysical Characteristics and Radiative Effects

    Science.gov (United States)

    Bauer, S. E.; Menon, S.; Koch, D.; Bond, T. C.; Tsigaridis, K.

    2010-01-01

    Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, indirect and semi-direct aerosol effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative effects. Our best estimate for net direct and indirect aerosol radiative flux change between 1750 and 2000 is -0.56 W/m2. However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative flux change can vary between -0.32 to -0.75 W/m2 depending on these carbonaceous particle properties at emission. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Absorption of black carbon aerosols is amplified by sulfate and nitrate coatings and, even more strongly, by organic coatings. Black carbon mitigation scenarios generally showed reduced radiative fluxeswhen sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to a reduction in positive radiative flux.

  4. Numerical simulations of homogeneous freezing processes in the aerosol chamber AIDA

    Directory of Open Access Journals (Sweden)

    W. Haag

    2003-01-01

    Full Text Available The homogeneous freezing of supercooled H2SO4/H2O aerosols in an aerosol chamber is investigated with a microphysical box model using the activity parameterization of the nucleation rate by Koop et al. (2000. The simulations are constrained by measurements of pressure, temperature, total water mixing ratio, and the initial aerosol size distribution, described in a companion paper Möhler et al. (2003. Model results are compared to measurements conducted in the temperature range between 194 and 235 K, with cooling rates in the range between 0.5 and 2.6 K min-1, and at air pressures between 170 and 1000 hPa. The simulations focus on the time history of relative humidity with respect to ice, aerosol size distribution, partitioning of water between gas and particle phase, onset times of freezing, freezing threshold relative humidities, aerosol chemical composition at the onset of freezing, and the number of nucleated ice crystals. The latter four parameters can be inferred from the experiments, the former three aid in interpreting the measurements. Sensitivity studies are carried out to address the relative importance of uncertainties of basic quantities such as temperature, total H2O mixing ratio, aerosol size spectrum, and deposition coefficient of H2O molecules on ice. The ability of the numerical simulations to provide detailed explanations of the observations greatly increases confidence in attempts to model this process under real atmospheric conditions, for instance with regard to the formation of cirrus clouds or polar stratospheric ice clouds, provided that accurate temperature and humidity measurements are available.

  5. Virtual cascade impactors for the collection of radioactive atmospheric aerosols

    International Nuclear Information System (INIS)

    Berner, A.

    1988-01-01

    Starting from impaction theory, the properties of virtual impaction stages are discussed and compared to classical impactors. Virtual impaction stages offer the benefit of sampling coarse particles without bouncing and reentrainment, but turbulent mixing affects the performance of virtual stages. Future research should concentrate on special configurations for reducing the effects of turbulent mixing. Virtual impaction stages for sampling radioactive aerosols are to be designed in regard of the analytical requirements, the purpose of the measurements, and the aerosol. Therefore, the aerosol components expected in radioactive aerosols are discussed on the background of the multimodal model, which relates the size distribution to the genesis and the history of the aerosol. Reference is made to recent data of the radioactive atmospheric aerosol

  6. Global direct radiative forcing by process-parameterized aerosol optical properties

    Science.gov (United States)

    KirkevâG, Alf; Iversen, Trond

    2002-10-01

    A parameterization of aerosol optical parameters is developed and implemented in an extended version of the community climate model version 3.2 (CCM3) of the U.S. National Center for Atmospheric Research. Direct radiative forcing (DRF) by monthly averaged calculated concentrations of non-sea-salt sulfate and black carbon (BC) is estimated. Inputs are production-specific BC and sulfate from [2002] and background aerosol size distribution and composition. The scheme interpolates between tabulated values to obtain the aerosol single scattering albedo, asymmetry factor, extinction coefficient, and specific extinction coefficient. The tables are constructed by full calculations of optical properties for an array of aerosol input values, for which size-distributed aerosol properties are estimated from theory for condensation and Brownian coagulation, assumed distribution of cloud-droplet residuals from aqueous phase oxidation, and prescribed properties of the background aerosols. Humidity swelling is estimated from the Köhler equation, and Mie calculations finally yield spectrally resolved aerosol optical parameters for 13 solar bands. The scheme is shown to give excellent agreement with nonparameterized DRF calculations for a wide range of situations. Using IPCC emission scenarios for the years 2000 and 2100, calculations with an atmospheric global cliamte model (AFCM) yield a global net anthropogenic DRF of -0.11 and 0.11 W m-2, respectively, when 90% of BC from biomass burning is assumed anthropogenic. In the 2000 scenario, the individual DRF due to sulfate and BC has separately been estimated to -0.29 and 0.19 W m-2, respectively. Our estimates of DRF by BC per BC mass burden are lower than earlier published estimates. Some sensitivity tests are included to investigate to what extent uncertain assumptions may influence these results.

  7. Evaluation and modelling of the size fractionated aerosol particle number concentration measurements nearby a major road in Helsinki - Part I: Modelling results within the LIPIKA project

    Science.gov (United States)

    Pohjola, M. A.; Pirjola, L.; Karppinen, A.; Härkönen, J.; Korhonen, H.; Hussein, T.; Ketzel, M.; Kukkonen, J.

    2007-08-01

    A field measurement campaign was conducted near a major road "Itäväylä" in an urban area in Helsinki in 17-20 February 2003. Aerosol measurements were conducted using a mobile laboratory "Sniffer" at various distances from the road, and at an urban background location. Measurements included particle size distribution in the size range of 7 nm-10 μm (aerodynamic diameter) by the Electrical Low Pressure Impactor (ELPI) and in the size range of 3-50 nm (mobility diameter) by Scanning Mobility Particle Sizer (SMPS), total number concentration of particles larger than 3 nm detected by an ultrafine condensation particle counter (UCPC), temperature, relative humidity, wind speed and direction, driving route of the mobile laboratory, and traffic density on the studied road. In this study, we have compared measured concentration data with the predictions of the road network dispersion model CAR-FMI used in combination with an aerosol process model MONO32. For model comparison purposes, one of the cases was additionally computed using the aerosol process model UHMA, combined with the CAR-FMI model. The vehicular exhaust emissions, and atmospheric dispersion and transformation of fine and ultrafine particles was evaluated within the distance scale of 200 m (corresponding to a time scale of a couple of minutes). We computed the temporal evolution of the number concentrations, size distributions and chemical compositions of various particle size classes. The atmospheric dilution rate of particles is obtained from the roadside dispersion model CAR-FMI. Considering the evolution of total number concentration, dilution was shown to be the most important process. The influence of coagulation and condensation on the number concentrations of particle size modes was found to be negligible on this distance scale. Condensation was found to affect the evolution of particle diameter in the two smallest particle modes. The assumed value of the concentration of condensable organic

  8. A case study of highly time-resolved evolution of aerosol chemical composition and optical properties during severe haze pollution in Shanghai, China

    Science.gov (United States)

    Zhu, W.; Cheng, Z.; Lou, S.

    2017-12-01

    Despite of extensive efforts into characterization of the sources in severe haze pollution periods in the megacity of Shanghai, the study of aerosol composition, mass-size distribution and optical properties to PM1 in the pollution periods remain poorly understood. Here we conducted a 47days real-time measurement of submicron aerosol (PM1) composition and size distribution by a High-Resolution Time-of-Flight Aerosol Mass spectrometer (HR-TOF-AMS), particle light scattering by a Cavity Attenuated Phase Shift ALBedo monitor (CAPS-ALB) and Photoacoustic Extinctionmeter (PAX) in Shanghai, China, from November 28, 2016 to January 12, 2017. The average PM1 concentration was 85.9(±14.7) μg/m3 during the pollution period, which was nearly 4 times higher than that of clean period. Increased scattering coefficient during EP was associated with higher secondary inorganic aerosols and organics. We also observed organics mass size distribution for different pollution extents showing different distribution characteristics. There were no obvious differences for ammonium nitrate and ammonium sulfate among the pollution periods, which represented single peak distributions, and peaks ranged at 650-700nm and 700nm, respectively. A strong relationship can be expected between PM1 compounds mass concentration size distribution and scattering coefficient, suggesting that chemical composition, size distribution of the particles and their variations could also contribute to the extinction coefficients. Organics and secondary inorganic species to particle light scattering were quantified. The results showed that organics and ammonium nitrate were the largest contribution to scattering coefficients of PM1. The contribution of (NH4)2SO4 to the light scattering exceeded that of NH4NO3 during clean period due to the enhanced sulfate concentrations. Our results elucidate substantial changes of aerosol composition, formation mechanisms, size distribution and optical properties due to local

  9. Size distributions of dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls and fatty acids in atmospheric aerosols from Tanzania, East Africa during wet and dry seasons

    Science.gov (United States)

    Mkoma, S. L.; Kawamura, K.

    2012-09-01

    Atmospheric aerosol samples of PM2.5 and PM10 were collected during the wet and dry seasons in 2011 from a rural site in Tanzania and analysed for water-soluble dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls and fatty acids using a gas chromatography (GC) and GC/mass spectrometry. Here we report the size distribution and sources of diacids and related compounds for wet and dry seasons. Oxalic acid (C2) was found as the most abundant diacid species followed by succinic and/or malonic acids whereas glyoxylic acid and glyoxal were the dominant ketoacids and α-dicarbonyls, respectively in both seasons in PM2.5 and PM10. Mean concentration of C2 in PM2.5 (121.5± 46.6 ng m-3) was lower in wet season than dry season (258.1± 69.5 ng m-3). Similarly, PM10 samples showed lower concentration of C2 (168.6 ± 42.4 ng m-3) in wet season than dry season (292.4± 164.8 ng m-3). Relative abundances of C2 in total diacids were 65.4% and 67.1% in PM2.5 and 64.6% and 63.9% in PM10 in the wet and dry seasons, respectively. Total concentrations of diacids (289-362 m-3), ketoacids (37.8-53.7ng m-3), and α-dicarbonyls (5.7-7.8 ng m-3) in Tanzania are higher to those reported at a rural background site in Nylsvley (South Africa) but comparable or lower to those reported from sites in Asia and Europe. Diacids and ketoacids were found to be present mainly in the fine fraction in both seasons (total α-dicarbonyls in the dry season), suggesting a production of organic aerosols from pyrogenic sources and photochemical oxidations. The averaged contributions of total diacid carbon to aerosol total carbon were 1.4% in PM2.5 and 2.1% in PM10 in wet season and 3.3% in PM2.5 and 3.9% in PM10 in dry season whereas those to water-soluble organic carbon were 2.2% and 4.7% inPM2.5 and 3.1% and 5.8% in PM10 during the wet and dry seasons, respectively. These ratios suggest an enhanced photochemical oxidation of organic precursors and heterogeneous reactions on aerosols under strong solar

  10. Simulation of processes of water aerosol coagulation-condensation growth using a combination of methods of groups and fractions

    International Nuclear Information System (INIS)

    Alexander G Godizov; Alexander D Efanov; Alexander A Lukianov; Olga V Supotnitskaya

    2005-01-01

    Full text of publication follows: To describe the phenomena involving aerosol, the model in lumped parameters is used, which is based on the kinetic integral-differential equation for the function of particle distribution of size and content of soluble and insoluble impurities with sources and collision integrals. By the function of particle size distribution, the integral parameters of aerosol can be determined: water content (mass of condensed moisture in a unit of volume), dust content (mass of insoluble condensation nuclei in a unit of volume), calculational concentration and the mean radius of particles. In the aerosol transfer problem being considered, the thermodynamic fields are the external data obtained with a thermal-hydraulic computer code. For numerical simulation of the kinetic equation describing aerosol behavior in coagulation-condensation processes, a hybrid method is used, which combines the method of groups and the method of fractions. To solve the complete equation of aerosol transfer, the method of fractions is used. The integral equation describing aerosol coagulation is solved by means of the group method. The group method based on the representation of particle size distribution in terms of a linear combination of δ-functions with time-dependent arguments makes it possible to calculate the integral parameters of spectrum: the moments of distribution function at a small number of groups. The test calculations were performed by giving the particle spectrum as a lognormal distribution and Γ- function. The hybrid method combined with the thermal-hydraulic computer code enables one to simulate volume condensation of steam at varying thermal-hydraulic conditions. (authors)

  11. Stratospheric aerosols and precursor gases

    Science.gov (United States)

    1982-01-01

    Measurements were made of the aerosol size, height and geographical distribution, their composition and optical properties, and their temporal variation with season and following large volcanic eruptions. Sulfur-bearing gases were measured in situ in the stratosphere, and studied of the chemical and physical processes which control gas-to-particle conversion were carried out in the laboratory.

  12. Size Distribution, Chemical Composition and Optical Properties of Atmospheric Dust in Israel: A Comparison of Urban and Desert Aerosols under Clear and Dusty Conditions.

    Science.gov (United States)

    1980-02-01

    counter (Royco 220). The instrument was calibrated with dry Latex particles of known sizes which were dispersed from a liquid suspension by the use of an...such spectra it is clear that samples from both sites contain significant amounts of gypsum, clay minerals, notably kaolin and montmorillonite clays...using a wavelength dispersive micro- probe. A comparison between aerosols from the Negev desert and Tel Aviv (under easterly flow) was conducted

  13. Tropospheric Aerosols

    Science.gov (United States)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    uncertainties by "the I-beams". Only an uncertainty range rather than a best estimate is presented for direct aerosol forcing by mineral dust and for indirect aerosol forcing. An assessment of the present level of scientific understanding is indicated at the bottom of the figure (reproduced by permission of Intergovernmental Panel on Climate Change). The importance of atmospheric aerosols to issues of societal concern has motivated much research intended to describe their loading, distribution, and properties and to develop understanding of the controlling processes to address such issues as air pollution, acid deposition, and climate influences of aerosols. However, description based wholly on measurements will inevitably be limited in its spatial and temporal coverage and in the limited characterization of aerosol properties. These limitations are even more serious for predictions of future emissions and provide motivation for concurrent theoretical studies and development of model-based description of atmospheric aerosols.An important long-range goal, which has already been partly realized, is to develop quantitative understanding of the processes that control aerosol loading, composition, and microphysical properties as well as the resultant optical and cloud-nucleating properties. An objective is to incorporate these results into chemical transport models that can be used for predictions. Such models are required, for example, to design approaches to achieve air quality standards and to assess and predict aerosol influences on climate change. Much current research is directed toward enhancing this understanding and to evaluating it by comparison of model results and observations. However, compared to gases, models involving particles are far more complex because of the need to specify additional parameters such as particle sizes and size distributions, compositions as a function of size, particle shapes, and temporal and spatial variations, including reactions that occur

  14. Aerosol typing - key information from aerosol studies

    Science.gov (United States)

    Mona, Lucia; Kahn, Ralph; Papagiannopoulos, Nikolaos; Holzer-Popp, Thomas; Pappalardo, Gelsomina

    2016-04-01

    Aerosol typing is a key source of aerosol information from ground-based and satellite-borne instruments. Depending on the specific measurement technique, aerosol typing can be used as input for retrievals or represents an output for other applications. Typically aerosol retrievals require some a priori or external aerosol type information. The accuracy of the derived aerosol products strongly depends on the reliability of these assumptions. Different sensors can make use of different aerosol type inputs. A critical review and harmonization of these procedures could significantly reduce related uncertainties. On the other hand, satellite measurements in recent years are providing valuable information about the global distribution of aerosol types, showing for example the main source regions and typical transport paths. Climatological studies of aerosol load at global and regional scales often rely on inferred aerosol type. There is still a high degree of inhomogeneity among satellite aerosol typing schemes, which makes the use different sensor datasets in a consistent way difficult. Knowledge of the 4d aerosol type distribution at these scales is essential for understanding the impact of different aerosol sources on climate, precipitation and air quality. All this information is needed for planning upcoming aerosol emissions policies. The exchange of expertise and the communication among satellite and ground-based measurement communities is fundamental for improving long-term dataset consistency, and for reducing aerosol type distribution uncertainties. Aerosol typing has been recognized as one of its high-priority activities of the AEROSAT (International Satellite Aerosol Science Network, http://aero-sat.org/) initiative. In the AEROSAT framework, a first critical review of aerosol typing procedures has been carried out. The review underlines the high heterogeneity in many aspects: approach, nomenclature, assumed number of components and parameters used for the

  15. On the functional form of particle number size distributions: influence of particle source and meteorological variables

    Science.gov (United States)

    Cugerone, Katia; De Michele, Carlo; Ghezzi, Antonio; Gianelle, Vorne; Gilardoni, Stefania

    2018-04-01

    Particle number size distributions (PNSDs) have been collected periodically in the urban area of Milan, Italy, during 2011 and 2012 in winter and summer months. Moreover, comparable PNSD measurements were carried out in the rural mountain site of Oga-San Colombano (2250 m a.s.l.), Italy, during February 2005 and August 2011. The aerosol data have been measured through the use of optical particle counters in the size range 0.3-25 µm, with a time resolution of 1 min. The comparison of the PNSDs collected in the two sites has been done in terms of total number concentration, showing higher numbers in Milan (often exceeding 103 cm-3 in winter season) compared to Oga-San Colombano (not greater than 2×102 cm-3), as expected. The skewness-kurtosis plane has been used in order to provide a synoptic view, and select the best distribution family describing the empirical PNSD pattern. The four-parameter Johnson system-bounded distribution (called Johnson SB or JSB) has been tested for this aim, due to its great flexibility and ability to assume different shapes. The PNSD pattern has been found to be generally invariant under site and season changes. Nevertheless, several PNSDs belonging to the Milan winter season (generally more than 30 %) clearly deviate from the standard empirical pattern. The seasonal increase in the concentration of primary aerosols due to combustion processes in winter and the influence of weather variables throughout the year, such as precipitation and wind speed, could be considered plausible explanations of PNSD dynamics.

  16. Water-soluble ions in atmospheric aerosols measured in five sites in the Yangtze River Delta, China: Size-fractionated, seasonal variations and sources

    Science.gov (United States)

    Wang, Honglei; Zhu, Bin; Shen, Lijuan; Xu, Honghui; An, Junlin; Xue, Guoqiang; Cao, Jinfei

    2015-12-01

    In order to investigate the regional variations of water-soluble ions (WSIs), size-resolved measurement of aerosol particles and WSIs was conducted by using Anderson Sampler and Ion Chromatography at five sites (Nanjing, Suzhou, Lin'an, Hangzhou and Ningbo) in the Yangtze River Delta (YRD) region, China in the Autumn of 2012 and Winter, Spring and Summer of 2013. WSIs exhibited obvious seasonal variations due to the monsoon conversion, with the highest level in winter and lowest level in summer. The aerosol mass concentrations and WSIs in different size segments varied with four seasons. The dominant ions concentrations in PM2.1 ranked in the order of SO42- > NO3- > NH4+ > Cl- > K+ > Ca2+, and the dominant ions concentrations in PM2.1-10 ranked in the order of Ca2+ > NO3- > SO42- > Cl- > NH4+ > Na+. The size spectra of mass and WSIs concentration peaked mostly at 0.43-0.65 μm in four seasons. The concentration discrepancies of WSIs in different cities were caused by the geographic locations and emission source. It's belonged to ammonium-rich distribution in PM2.1 and ammonium-poor distribution in PM2.1-10 in the YRD region. The impact of temperature on mass concentrations of NO3- and NH4+ in PM2.1 were stronger than those in PM2.1-10. PCA analysis shows that the sources of WSIs dominant by anthropogenic sources, soil particles or falling dust, sea salt and burning process.

  17. Determination of aerosol size distributions at uranium mill tailings remedial action project sites

    International Nuclear Information System (INIS)

    Newton, G.J.; Reif, R.H.; Hoover, M.D.

    1994-01-01

    The U.S. Department of Energy (DOE) has an ongoing program, the Uranium Mill Tailings Remedial Action (UMTRA) Project, to stabilize piles of uranium mill tailings in order to reduce the potential radiological hazards to the public. Protection of workers and the general public against airborne radioactivity during remedial action is a top priority at the UMTRA Project. The primary occupational radionuclides of concern are 230 Th, 226 Ra, 210 Pb, 210 Po, and the short-lived decay products of 222 Rn with 230 Th causing the majority of the committed effective dose equivalent (CEDE) from inhaling uranium mill tailings. Prior to this study, a default particle size of 1.0 μm activity median aerodynamic diameter (AMAD) was assumed for airborne radioactive tailings dust. Because of recent changes in DOE requirements, all DOE operations are now required to use the CEDE methodology, instead of the annual effective dose equivalent (AEDE) methodology, to evaluate internal radiation exposures. Under the transition from AEDE to CEDE, with a 1.0 μm AMAD particle size, lower bioassay action levels would be required for the UMTRA Project. This translates into an expanded internal dosimetry program where significantly more bioassay monitoring would be required at the UMTRA Project sites. However, for situations where the particle size distribution is known to differ significantly from 1.0 μm AMAD, the DOE allows for corrections to be made to both the estimated dose to workers and the derived air concentration (DAC) values. For particle sizes larger than 1.0 μm AMAD, the calculated CEDE from inhaling tailings would be relatively lower

  18. Surface aerosol measurements at Barrow during AGASP

    International Nuclear Information System (INIS)

    Bodhaine, B.A.; Dutton, E.G.; DeLuisi, J.J.

    1984-01-01

    Surface aerosol measurements were made at the Barrow GMCC Observatory during the AGASP flight series in March 1983. The condensation nucleus, scattering extinction coefficient, size distribution, and total aerosol optical depth measurements all clearly show conditions of background Arctic haze for March 9-11, a series of haze episodes during March 12-16, and a return to background haze for March 17-18. Angstrom exponents calculated from scattering coefficient data were low during March 9-11, relatively higher during March 12-14, and highest during March 15-18. Surface aerosol data and aerosol optical depth data are in good qualitative agreement for the 10-day period studied. Background haze was present when trajectories circled the Arctic basin, and haze episodes occurred when trajectories originated in western Asia and Europe

  19. Recent advances in understanding secondary organic aerosol: Implications for global climate forcing: Advances in Secondary Organic Aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Shrivastava, Manish [Pacific Northwest National Laboratory, Richland Washington USA; Cappa, Christopher D. [Department of Civil and Environmental Engineering, University of California, Davis California USA; Fan, Jiwen [Pacific Northwest National Laboratory, Richland Washington USA; Goldstein, Allen H. [Department of Environmental Science, Policy and Management and Department of Civil and Environmental Engineering, University of California, Berkeley California USA; Guenther, Alex B. [Department of Earth System Science, University of California, Irvine California USA; Jimenez, Jose L. [Cooperative Institute for Research in Environmental Sciences and Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder Colorado USA; Kuang, Chongai [Brookhaven National Laboratory, Upton New York USA; Laskin, Alexander [Pacific Northwest National Laboratory, Richland Washington USA; Martin, Scot T. [School of Engineering and Applied Sciences and Department of Earth and Planetary Sciences, Harvard University, Cambridge Massachusetts USA; Ng, Nga Lee [School of Chemical and Biomolecular Engineering and School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta Georgia USA; Petaja, Tuukka [Department of Physics, University of Helsinki, Helsinki Finland; Pierce, Jeffrey R. [Department of Atmospheric Science, Colorado State University, Fort Collins Colorado USA; Rasch, Philip J. [Pacific Northwest National Laboratory, Richland Washington USA; Roldin, Pontus [Department of Physics, Lund University, Lund Sweden; Seinfeld, John H. [Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena California USA; Shilling, John [Pacific Northwest National Laboratory, Richland Washington USA; Smith, James N. [Department of Earth System Science, University of California, Irvine California USA; Thornton, Joel A. [Department of Atmospheric Sciences, University of Washington, Seattle Washington USA; Volkamer, Rainer [Cooperative Institute for Research in Environmental Sciences and Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder Colorado USA; Wang, Jian [Brookhaven National Laboratory, Upton New York USA; Worsnop, Douglas R. [Aerodyne Research, Inc., Billerica Massachusetts USA; Zaveri, Rahul A. [Pacific Northwest National Laboratory, Richland Washington USA; Zelenyuk, Alla [Pacific Northwest National Laboratory, Richland Washington USA; Zhang, Qi [Department of Environmental Toxicology, University of California, Davis California USA

    2017-06-01

    Anthropogenic emissions and land-use changes have modified atmospheric aerosol concentrations and size distributions over time. Understanding pre-industrial conditions and changes in organic aerosol due to anthropogenic activities is important because these features 1) influence estimates of aerosol radiative forcing and 2) can confound estimates of the historical response of climate to increases in greenhouse gases (e.g. the ‘climate sensitivity’). Secondary organic aerosol (SOA), formed in the atmosphere by oxidation of organic gases, represents a major fraction of global submicron-sized atmospheric organic aerosol. Over the past decade, significant advances in understanding SOA properties and formation mechanisms have occurred through a combination of laboratory and field measurements, yet current climate models typically do not comprehensively include all important SOA-relevant processes. Therefore, major gaps exist at present between current measurement-based knowledge on the one hand and model implementation of organic aerosols on the other. The critical review herein summarizes some of the important developments in understanding SOA formation that could potentially have large impacts on our understanding of aerosol radiative forcing and climate. We highlight the importance of some recently discovered processes and properties that influence the growth of SOA particles to sizes relevant for clouds and radiative forcing, including: formation of extremely low-volatility organics in the gas-phase; isoprene epoxydiols (IEPOX) multi-phase chemistry; particle-phase oligomerization; and physical properties such as viscosity. In addition, this review also highlights some of the important processes that involve interactions between natural biogenic emissions and anthropogenic emissions, such as the role of sulfate and oxides of nitrogen (NOx) on SOA formation from biogenic volatile organic compounds. Studies that relate the observed evolution of organic aerosol

  20. The European aerosol budget in 2006

    Directory of Open Access Journals (Sweden)

    J. M. J. Aan de Brugh

    2011-02-01

    Full Text Available This paper presents the aerosol budget over Europe in 2006 calculated with the global transport model TM5 coupled to the size-resolved aerosol module M7. Comparison with ground observations indicates that the model reproduces the observed concentrations quite well with an expected slight underestimation of PM10 due to missing emissions (e.g. resuspension. We model that a little less than half of the anthropogenic aerosols emitted in Europe are exported and the rest is removed by deposition. The anthropogenic aerosols are removed mostly by rain (95% and only 5% is removed by dry deposition. For the larger natural aerosols, especially sea salt, a larger fraction is removed by dry processes (sea salt: 70%, mineral dust: 35%. We model transport of aerosols in the jet stream in the higher atmosphere and an import of Sahara dust from the south at high altitudes. Comparison with optical measurements shows that the model reproduces the Ångström parameter very well, which indicates a correct simulation of the aerosol size distribution. However, we underestimate the aerosol optical depth. Because the surface concentrations are close to the observations, the shortage of aerosol in the model is probably at higher altitudes. We show that the discrepancies are mainly caused by an overestimation of wet-removal rates. To match the observations, the wet-removal rates have to be scaled down by a factor of about 5. In that case the modelled ground-level concentrations of sulphate and sea salt increase by 50% (which deteriorates the match, while other components stay roughly the same. Finally, it is shown that in particular events, improved fire emission estimates may significantly improve the ability of the model to simulate the aerosol optical depth. We stress that discrepancies in aerosol models can be adequately analysed if all models would provide (regional aerosol budgets, as presented in the current study.

  1. Influence of Saharan dust outbreaks and atmospheric stability upon vertical profiles of size-segregated aerosols and water vapor

    Science.gov (United States)

    Giménez, Joaquín; Pastor, Carlos; Castañer, Ramón; Nicolás, José; Crespo, Javier; Carratalá, Adoración

    2010-01-01

    Vertical profiles of aerosols and meteorological parameters were obtained using a hot air balloon and motorized paraglider. They were studied under anticyclonic conditions in four different contexts. Three flights occurred near sunrise, and one took place in the central hours of the day. The effects of North African dust intrusions were analyzed, whose entrance to the study area took place above the Stable Boundary Layer (SBL) in flight 1 and below it in flight 2. These flights have been compared with a non-intrusion situation (flight 3). A fourth flight characterized the profiles in the central hours of the day with a well-formed Convective Boundary Layer (CBL). With respect to the particle number distribution, the results show that not all sizes increase within the presence of an intrusion; during the first flight the smallest particles were not affected. The particle sizes affected in the second flight fell within the 0.35-2.5 μm interval. Under situations of convective dynamics, the reduction percentage of the particle number concentration reduces with increasing altitude, independently of their size, with respect to stability conditions. The negative vertical gradient for aerosols and water vapor, characteristic of a highly stable SBL (flight 3) becomes a constant profile within a CBL (flight 4). There are two situations that seem to alter the negative vertical gradient of the water vapor mixing ratio within the SBL: the presence of an intrusion and the possible stratification of the SBL based on different degrees of stability.

  2. Physical metrology of aerosols; Metrologie physique des aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Boulaud, D.; Vendel, J. [CEA Saclay, 91 - Gif-sur-Yvette (France). Inst. de Protection et de Surete Nucleaire

    1996-12-31

    The various detection and measuring methods for aerosols are presented, and their selection is related to aerosol characteristics (size range, concentration or mass range), thermo-hydraulic conditions (carrier fluid temperature, pressure and flow rate) and to the measuring system conditions (measuring frequency, data collection speed, cost...). Methods based on aerosol dynamic properties (inertial, diffusional and electrical methods) and aerosol optical properties (localized and integral methods) are described and their performances and applications are compared

  3. Investigation of size-fractionated urban aerosol and trace gases in Budapest by nuclear-related and other analytical techniques

    International Nuclear Information System (INIS)

    Salma, I.; Maenhaut, W.; Zemplen-Papp, E.; Bobvos, J.

    1998-01-01

    An air pollution study was conducted at two urban residential sites in Budapest (one representing the downtown, the other representing a wooded suburb) from 9 April till 17 May 1996. Size-fractionated aerosol samples were simultaneously collected on a daily basis, and meteorological conditions were recorded at both sampling sites. Stacked filter units (SFUs) with an upper size inlet cut-off were used as sampling device separating the urban aerosol into a coarse (about 10-2 μm equivalent aerodynamic diameter, EAD) and a fine ( 2 , SO 2 , CO and the total mass of the suspended particulate matter were measured every half hour at one of the sampling sites by commercial equipment. The SFU filters were analyzed by gravimetry for the total particle mass, by a light reflectance technique for black carbon, by particle-induced X-ray emission analysis and instrumental neutron activation analysis for elemental composition (in combination for up to 40-45 elements). The analytical results were used for characterizing the levels and the multi-elemental composition of the urban aerosol at both sampling sites and for both size fractions, for investigating the atmospheric concentrations and diurnal variation of some criteria pollutants, and for comparing the time-trends of aerosols and trace gases. Identification of the major source types of the aerosol fractions and trace gases, and assessment of the relative contribution from these sources are to be accomplished by multivariate receptor modeling. The present paper reports on the status of the air pollution study, and gives a discussion of the results

  4. Decomposition of Atmospheric Aerosol Phase Function by Particle Size and Morphology via Single Particle Scattering Measurements

    Science.gov (United States)

    Aptowicz, K. B.; Pan, Y.; Martin, S.; Fernandez, E.; Chang, R.; Pinnick, R. G.

    2013-12-01

    We report upon an experimental approach that provides insight into how particle size and shape affect the scattering phase function of atmospheric aerosol particles. Central to our approach is the design of an apparatus that measures the forward and backward scattering hemispheres (scattering patterns) of individual atmospheric aerosol particles in the coarse mode range. The size and shape of each particle is discerned from the corresponding scattering pattern. In particular, autocorrelation analysis is used to differentiate between spherical and non-spherical particles, the calculated asphericity factor is used to characterize the morphology of non-spherical particles, and the integrated irradiance is used for particle sizing. We found the fraction of spherical particles decays exponentially with particle size, decreasing from 11% for particles on the order of 1 micrometer to less than 1% for particles over 5 micrometer. The average phase functions of subpopulations of particles, grouped by size and morphology, are determined by averaging their corresponding scattering patterns. The phase functions of spherical and non-spherical atmospheric particles are shown to diverge with increasing size. In addition, the phase function of non-spherical particles is found to vary little as a function of the asphericity factor.

  5. Urban particle size distributions during two contrasting dust events originating from Taklimakan and Gobi Deserts

    International Nuclear Information System (INIS)

    Zhao, Suping; Yu, Ye; Xia, Dunsheng; Yin, Daiying; He, Jianjun; Liu, Na; Li, Fang

    2015-01-01

    The dust origins of the two events were identified using HYSPLIT trajectory model and MODIS and CALIPSO satellite data to understand the particle size distribution during two contrasting dust events originated from Taklimakan and Gobi deserts. The supermicron particles significantly increased during the dust events. The dust event from Gobi desert affected significantly on the particles larger than 2.5 μm, while that from Taklimakan desert impacted obviously on the particles in 1.0–2.5 μm. It is found that the particle size distributions and their modal parameters such as VMD (volume median diameter) have significant difference for varying dust origins. The dust from Taklimakan desert was finer than that from Gobi desert also probably due to other influencing factors such as mixing between dust and urban emissions. Our findings illustrated the capacity of combining in situ, satellite data and trajectory model to characterize large-scale dust plumes with a variety of aerosol parameters. - Highlights: • Dust particle size distributions had large differences for varying origins. • Dust originating from Taklimakan Desert was finer than that from Gobi Desert. • Effect of dust on the supermicron particles was obvious. • PM_1_0 concentrations increased by a factor of 3.4–25.6 during the dust event. - Dust particle size distributions had large differences for varying origins, which may be also related to other factors such as mixing between dust and urban emissions.

  6. Distributions and climate effects of atmospheric aerosols from the preindustrial era to 2100 along Representative Concentration Pathways (RCPs simulated using the global aerosol model SPRINTARS

    Directory of Open Access Journals (Sweden)

    T. Takemura

    2012-12-01

    Full Text Available Global distributions and associated climate effects of atmospheric aerosols were simulated using a global aerosol climate model, SPRINTARS, from 1850 to the present day and projected forward to 2100. Aerosol emission inventories used by the Coupled Model Intercomparison Project Phase 5 (CMIP5 were applied to this study. Scenarios based on the Representative Concentration Pathways (RCPs were used for the future projection. Aerosol loading in the atmosphere has already peaked and is now reducing in Europe and North America. However, in Asia where rapid economic growth is ongoing, aerosol loading is estimated to reach a maximum in the first half of this century. Atmospheric aerosols originating from the burning of biomass have maintained high loadings throughout the 21st century in Africa, according to the RCPs. Evolution of the adjusted forcing by direct and indirect aerosol effects over time generally correspond to the aerosol loading. The probable future pathways of global mean forcing differ based on the aerosol direct effect for different RCPs. Because aerosol forcing will be close to the preindustrial level by the end of the 21st century for all RCPs despite the continuous increases in greenhouse gases, global warming will be accelerated with reduced aerosol negative forcing.

  7. Aerosol vertical distribution characteristics over the Tibetan Plateau

    International Nuclear Information System (INIS)

    Deng, Z Q; Han, Y X; Zhao, Q; Li, J

    2014-01-01

    The Stratospheric Aerosol and Gas Experiment II (SAGE II) aerosol products are widely used in climatic characteristic studies and stratospheric aerosol pattern research. Some SAGE II products, e.g., temperature, aerosol surface area density, 1020 nm aerosol extinction coefficient and dust storm frequency, from ground-based observations were analysed from 1984 to 2005. This analysis explored the time and spatial variations of tropospheric and stratospheric aerosols on the Tibet Plateau. The stratospheric aerosol extinction coefficient increased more than two orders of magnitude because of a large volcanic eruption. However, the tropospheric aerosol extinction coefficient decreased over the same period. Removing the volcanic eruption effect, the correlation coefficient for stratospheric AOD (Aerosol Optical Depth) and tropospheric AOD was 0.197. Moreover, the correlation coefficient for stratospheric AOD and dust storm frequency was 0.315. The maximum stratospheric AOD was attained in January, the same month as the tropospheric AOD, when the Qaidam Basin was the centre of low tropospheric AOD and the large mountains coincided with high stratospheric AOD. The vertical structure generated by westerly jet adjustment and the high altitude of the underlying surface of the Tibetan Plateau were important factors affecting winter stratospheric aerosols

  8. Global simulations of aerosol processing in clouds

    Directory of Open Access Journals (Sweden)

    C. Hoose

    2008-12-01

    Full Text Available An explicit and detailed representation of in-droplet and in-crystal aerosol particles in stratiform clouds has been introduced in the global aerosol-climate model ECHAM5-HAM. The new scheme allows an evaluation of the cloud cycling of aerosols and an estimation of the relative contributions of nucleation and collision scavenging, as opposed to evaporation of hydrometeors in the global aerosol processing by clouds. On average an aerosol particle is cycled through stratiform clouds 0.5 times. The new scheme leads to important changes in the simulated fraction of aerosol scavenged in clouds, and consequently in the aerosol wet deposition. In general, less aerosol is scavenged into clouds with the new prognostic treatment than what is prescribed in standard ECHAM5-HAM. Aerosol concentrations, size distributions, scavenged fractions and cloud droplet concentrations are evaluated and compared to different observations. While the scavenged fraction and the aerosol number concentrations in the marine boundary layer are well represented in the new model, aerosol optical thickness, cloud droplet number concentrations in the marine boundary layer and the aerosol volume in the accumulation and coarse modes over the oceans are overestimated. Sensitivity studies suggest that a better representation of below-cloud scavenging, higher in-cloud collision coefficients, or a reduced water uptake by seasalt aerosols could reduce these biases.

  9. Field characterization of plutonium aerosols in mixed-oxide fuel fabrication

    International Nuclear Information System (INIS)

    Newton, G.J.; Teague, S.V.; Yeh, H.C.

    1976-01-01

    Nuclear reactor fuel pellets of PuO 2 and UO 2 are fabricated within safety enclosures at Babcock and Wilcox's Parker Township Site near Apolla, Pa. Nineteen sample runs were taken from within glove boxes of aerosols formed during powder comminution and blending. Eight sampling runs were also taken of a centerless grinding operation during routine industrial operations. A small seven-stage cascade impactor and the Lovelace Aerosol Particle Separator (LAPS) were used to determine aerodynamic size distribution and gross alpha aerosol concentrations. The potential toxicity of inhaled plutonium originating in the nuclear fuel cycle following accidental releases of these aerosols and possible inhalation by industrial workers is considered

  10. Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) Science Plan

    Energy Technology Data Exchange (ETDEWEB)

    Fast, JD [Pacific Northwest National Laboratory; Berg, LK [Pacific Northwest National Laboratory

    2015-12-01

    Cumulus convection is an important component in the atmospheric radiation budget and hydrologic cycle over the Southern Great Plains and over many regions of the world, particularly during the summertime growing season when intense turbulence induced by surface radiation couples the land surface to clouds. Current convective cloud parameterizations contain uncertainties resulting in part from insufficient coincident data that couples cloud macrophysical and microphysical properties to inhomogeneities in boundary layer and aerosol properties. The Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) campaign is designed to provide a detailed set of measurements that are needed to obtain a more complete understanding of the life cycle of shallow clouds by coupling cloud macrophysical and microphysical properties to land surface properties, ecosystems, and aerosols. HI-SCALE consists of 2, 4-week intensive observational periods, one in the spring and the other in the late summer, to take advantage of different stages and distribution of “greenness” for various types of vegetation in the vicinity of the Atmospheric Radiation and Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) site as well as aerosol properties that vary during the growing season. Most of the proposed instrumentation will be deployed on the ARM Aerial Facility (AAF) Gulfstream 1 (G-1) aircraft, including those that measure atmospheric turbulence, cloud water content and drop size distributions, aerosol precursor gases, aerosol chemical composition and size distributions, and cloud condensation nuclei concentrations. Routine ARM aerosol measurements made at the surface will be supplemented with aerosol microphysical properties measurements. The G-1 aircraft will complete transects over the SGP Central Facility at multiple altitudes within the boundary layer, within clouds, and above clouds.

  11. Size selective isocyanate aerosols personal air sampling using porous plastic foams

    International Nuclear Information System (INIS)

    Cong Khanh Huynh; Trinh Vu Duc

    2009-01-01

    As part of a European project (SMT4-CT96-2137), various European institutions specialized in occupational hygiene (BGIA, HSL, IOM, INRS, IST, Ambiente e Lavoro) have established a program of scientific collaboration to develop one or more prototypes of European personal samplers for the collection of simultaneous three dust fractions: inhalable, thoracic and respirable. These samplers based on existing sampling heads (IOM, GSP and cassettes) use Polyurethane Plastic Foam (PUF) according to their porosity to support sampling and separator size of the particles. In this study, the authors present an original application of size selective personal air sampling using chemical impregnated PUF to perform isocyanate aerosols capturing and derivatizing in industrial spray-painting shops.

  12. Body size distribution of the dinosaurs.

    Directory of Open Access Journals (Sweden)

    Eoin J O'Gorman

    Full Text Available The distribution of species body size is critically important for determining resource use within a group or clade. It is widely known that non-avian dinosaurs were the largest creatures to roam the Earth. There is, however, little understanding of how maximum species body size was distributed among the dinosaurs. Do they share a similar distribution to modern day vertebrate groups in spite of their large size, or did they exhibit fundamentally different distributions due to unique evolutionary pressures and adaptations? Here, we address this question by comparing the distribution of maximum species body size for dinosaurs to an extensive set of extant and extinct vertebrate groups. We also examine the body size distribution of dinosaurs by various sub-groups, time periods and formations. We find that dinosaurs exhibit a strong skew towards larger species, in direct contrast to modern day vertebrates. This pattern is not solely an artefact of bias in the fossil record, as demonstrated by contrasting distributions in two major extinct groups and supports the hypothesis that dinosaurs exhibited a fundamentally different life history strategy to other terrestrial vertebrates. A disparity in the size distribution of the herbivorous Ornithischia and Sauropodomorpha and the largely carnivorous Theropoda suggests that this pattern may have been a product of a divergence in evolutionary strategies: herbivorous dinosaurs rapidly evolved large size to escape predation by carnivores and maximise digestive efficiency; carnivores had sufficient resources among juvenile dinosaurs and non-dinosaurian prey to achieve optimal success at smaller body size.

  13. Body size distribution of the dinosaurs.

    Science.gov (United States)

    O'Gorman, Eoin J; Hone, David W E

    2012-01-01

    The distribution of species body size is critically important for determining resource use within a group or clade. It is widely known that non-avian dinosaurs were the largest creatures to roam the Earth. There is, however, little understanding of how maximum species body size was distributed among the dinosaurs. Do they share a similar distribution to modern day vertebrate groups in spite of their large size, or did they exhibit fundamentally different distributions due to unique evolutionary pressures and adaptations? Here, we address this question by comparing the distribution of maximum species body size for dinosaurs to an extensive set of extant and extinct vertebrate groups. We also examine the body size distribution of dinosaurs by various sub-groups, time periods and formations. We find that dinosaurs exhibit a strong skew towards larger species, in direct contrast to modern day vertebrates. This pattern is not solely an artefact of bias in the fossil record, as demonstrated by contrasting distributions in two major extinct groups and supports the hypothesis that dinosaurs exhibited a fundamentally different life history strategy to other terrestrial vertebrates. A disparity in the size distribution of the herbivorous Ornithischia and Sauropodomorpha and the largely carnivorous Theropoda suggests that this pattern may have been a product of a divergence in evolutionary strategies: herbivorous dinosaurs rapidly evolved large size to escape predation by carnivores and maximise digestive efficiency; carnivores had sufficient resources among juvenile dinosaurs and non-dinosaurian prey to achieve optimal success at smaller body size.

  14. Body Size Distribution of the Dinosaurs

    Science.gov (United States)

    O’Gorman, Eoin J.; Hone, David W. E.

    2012-01-01

    The distribution of species body size is critically important for determining resource use within a group or clade. It is widely known that non-avian dinosaurs were the largest creatures to roam the Earth. There is, however, little understanding of how maximum species body size was distributed among the dinosaurs. Do they share a similar distribution to modern day vertebrate groups in spite of their large size, or did they exhibit fundamentally different distributions due to unique evolutionary pressures and adaptations? Here, we address this question by comparing the distribution of maximum species body size for dinosaurs to an extensive set of extant and extinct vertebrate groups. We also examine the body size distribution of dinosaurs by various sub-groups, time periods and formations. We find that dinosaurs exhibit a strong skew towards larger species, in direct contrast to modern day vertebrates. This pattern is not solely an artefact of bias in the fossil record, as demonstrated by contrasting distributions in two major extinct groups and supports the hypothesis that dinosaurs exhibited a fundamentally different life history strategy to other terrestrial vertebrates. A disparity in the size distribution of the herbivorous Ornithischia and Sauropodomorpha and the largely carnivorous Theropoda suggests that this pattern may have been a product of a divergence in evolutionary strategies: herbivorous dinosaurs rapidly evolved large size to escape predation by carnivores and maximise digestive efficiency; carnivores had sufficient resources among juvenile dinosaurs and non-dinosaurian prey to achieve optimal success at smaller body size. PMID:23284818

  15. Evaluation and modelling of the size fractionated aerosol particle number concentration measurements nearby a major road in Helsinki ─ Part I: Modelling results within the LIPIKA project

    Directory of Open Access Journals (Sweden)

    M. Ketzel

    2007-08-01

    Full Text Available A field measurement campaign was conducted near a major road "Itäväylä" in an urban area in Helsinki in 17–20 February 2003. Aerosol measurements were conducted using a mobile laboratory "Sniffer" at various distances from the road, and at an urban background location. Measurements included particle size distribution in the size range of 7 nm–10 μm (aerodynamic diameter by the Electrical Low Pressure Impactor (ELPI and in the size range of 3–50 nm (mobility diameter by Scanning Mobility Particle Sizer (SMPS, total number concentration of particles larger than 3 nm detected by an ultrafine condensation particle counter (UCPC, temperature, relative humidity, wind speed and direction, driving route of the mobile laboratory, and traffic density on the studied road. In this study, we have compared measured concentration data with the predictions of the road network dispersion model CAR-FMI used in combination with an aerosol process model MONO32. For model comparison purposes, one of the cases was additionally computed using the aerosol process model UHMA, combined with the CAR-FMI model. The vehicular exhaust emissions, and atmospheric dispersion and transformation of fine and ultrafine particles was evaluated within the distance scale of 200 m (corresponding to a time scale of a couple of minutes. We computed the temporal evolution of the number concentrations, size distributions and chemical compositions of various particle size classes. The atmospheric dilution rate of particles is obtained from the roadside dispersion model CAR-FMI. Considering the evolution of total number concentration, dilution was shown to be the most important process. The influence of coagulation and condensation on the number concentrations of particle size modes was found to be negligible on this distance scale. Condensation was found to affect the evolution of particle diameter in the two smallest particle modes. The assumed value of the concentration of

  16. Size-specific composition of aerosols in the El Chichon volcanic cloud

    Science.gov (United States)

    Woods, D. C.; Chuan, R. L.

    1983-01-01

    A NASA U-2 research aircraft flew sampling missions in April, May, July, November, and December 1982 aimed at obtaining in situ data in the stratospheric cloud produced from the March-April 1982 El Chichon eruptions. Post flight analyses provided information on the aerosol composition and morphology. The particles ranged in size from smaller than 0.05 m to larger than 20 m diameter and were quite complex in composition. In the April, May, and July samples the aerosol mass was dominated by magmatic and lithic particles larger than about 3 m. The submicron particles consisted largely of sulfuric acid. Halite particles, believed to be related to a salt dome beneath El Chichon, were collected in the stratosphere in April and May. On the July 23 flight, copper-zinc oxide particles were collected. In July, November, and December, in addition to the volcanic ash and acid particles, carbon-rich particles smaller than about 0.1 m aerodynamic diameter were abundant.

  17. Aerosol properties and unattached fraction of radon daughters close to the human face

    International Nuclear Information System (INIS)

    Eklund, P.; Bohgard, M

    1993-01-01

    The characterization of the air in a dwelling with a radon problem can be done by measuring several parameters, such as radon concentration, radon daughter concentration, passive and active aerosol size distribution, unattached fraction etc. This is often done by placing the monitors at a certain location in the room, for example 1 m above the floor and away from the walls. The question then is: is this sampled air representative for the air that we breathe, that is, the air close to the face. In this study we have investigated two of the parameters: the size distribution of the inactive aerosol, and the unattached fraction of the activity concentration. (author)

  18. Aerosol optical properties and direct radiative forcing based on measurements from the China Aerosol Remote Sensing Network (CARSNET in eastern China

    Directory of Open Access Journals (Sweden)

    H. Che

    2018-01-01

    Full Text Available Aerosol pollution in eastern China is an unfortunate consequence of the region's rapid economic and industrial growth. Here, sun photometer measurements from seven sites in the Yangtze River Delta (YRD from 2011 to 2015 were used to characterize the climatology of aerosol microphysical and optical properties, calculate direct aerosol radiative forcing (DARF and classify the aerosols based on size and absorption. Bimodal size distributions were found throughout the year, but larger volumes and effective radii of fine-mode particles occurred in June and September due to hygroscopic growth and/or cloud processing. Increases in the fine-mode particles in June and September caused AOD440 nm  >  1.00 at most sites, and annual mean AOD440 nm values of 0.71–0.76 were found at the urban sites and 0.68 at the rural site. Unlike northern China, the AOD440 nm was lower in July and August (∼ 0.40–0.60 than in January and February (0.71–0.89 due to particle dispersion associated with subtropical anticyclones in summer. Low volumes and large bandwidths of both fine-mode and coarse-mode aerosol size distributions occurred in July and August because of biomass burning. Single-scattering albedos at 440 nm (SSA440 nm from 0.91 to 0.94 indicated particles with relatively strong to moderate absorption. Strongly absorbing particles from biomass burning with a significant SSA wavelength dependence were found in July and August at most sites, while coarse particles in March to May were mineral dust. Absorbing aerosols were distributed more or less homogeneously throughout the region with absorption aerosol optical depths at 440 nm  ∼  0.04–0.06, but inter-site differences in the absorption Angström exponent indicate a degree of spatial heterogeneity in particle composition. The annual mean DARF was −93 ± 44 to −79 ± 39 W m−2 at the Earth's surface and ∼ −40 W m−2 at the top of the atmosphere (for

  19. Aerosol processing in stratiform clouds in ECHAM6-HAM

    Science.gov (United States)

    Neubauer, David; Lohmann, Ulrike; Hoose, Corinna

    2013-04-01

    Aerosol processing in stratiform clouds by uptake into cloud particles, collision-coalescence, chemical processing inside the cloud particles and release back into the atmosphere has important effects on aerosol concentration, size distribution, chemical composition and mixing state. Aerosol particles can act as cloud condensation nuclei. Cloud droplets can take up further aerosol particles by collisions. Atmospheric gases may also be transferred into the cloud droplets and undergo chemical reactions, e.g. the production of atmospheric sulphate. Aerosol particles are also processed in ice crystals. They may be taken up by homogeneous freezing of cloud droplets below -38° C or by heterogeneous freezing above -38° C. This includes immersion freezing of already immersed aerosol particles in the droplets and contact freezing of particles colliding with a droplet. Many clouds do not form precipitation and also much of the precipitation evaporates before it reaches the ground. The water soluble part of the aerosol particles concentrates in the hydrometeors and together with the insoluble part forms a single, mixed, larger particle, which is released. We have implemented aerosol processing into the current version of the general circulation model ECHAM6 (Stevens et al., 2013) coupled to the aerosol module HAM (Stier et al., 2005). ECHAM6-HAM solves prognostic equations for the cloud droplet number and ice crystal number concentrations. In the standard version of HAM, seven modes are used to describe the total aerosol. The modes are divided into soluble/mixed and insoluble modes and the number concentrations and masses of different chemical components (sulphate, black carbon, organic carbon, sea salt and mineral dust) are prognostic variables. We extended this by an explicit representation of aerosol particles in cloud droplets and ice crystals in stratiform clouds similar to Hoose et al. (2008a,b). Aerosol particles in cloud droplets are represented by 5 tracers for the

  20. Body Size Distribution of the Dinosaurs

    OpenAIRE

    O?Gorman, Eoin J.; Hone, David W. E.

    2012-01-01

    The distribution of species body size is critically important for determining resource use within a group or clade. It is widely known that non-avian dinosaurs were the largest creatures to roam the Earth. There is, however, little understanding of how maximum species body size was distributed among the dinosaurs. Do they share a similar distribution to modern day vertebrate groups in spite of their large size, or did they exhibit fundamentally different distributions due to unique evolutiona...

  1. Gas and Pressure Dependence for the Mean Size of Nanoparticles Produced by Laser Ablation of Flowing Aerosols

    International Nuclear Information System (INIS)

    Nichols, William T.; Malyavanatham, Gokul; Henneke, Dale E.; Brock, James R.; Becker, Michael F.; Keto, John W.; Glicksman, Howard D.

    2000-01-01

    Silver nanoparticles were produced by laser ablation of a continuously flowing aerosol of microparticles entrained in argon, nitrogen and helium at a variety of gas pressures. Nanoparticles produced in this new, high-volume nanoparticle production technique are compared with our earlier experiments using laser ablation of static microparticles. Transmission electron micrographs of the samples show the nanoparticles to be spherical and highly non-agglomerated under all conditions tested. These micrographs were analyzed to determine the effect of carrier gas type and pressure on size distributions. We conclude that mean diameters can be controlled from 4 to 20 nm by the choice of gas type and pressure. The smallest nanoparticles were produced in helium, with mean sizes increasing with increasing molecular weight of the carrier gas. These results are discussed in terms of a model based on cooling via collisional interaction of the nanoparticles, produced in the laser exploded microparticle, with the ambient gas

  2. Observation of radioactive aerosol particle sizes in 30-km zone of the ChNPP in 1986-1987 years

    International Nuclear Information System (INIS)

    Skitovich, V.I.; Budyka, A.K.; Ogorodnikov, B.I.

    1989-01-01

    Investigation into disperse composition of radioactive aerosols was conducted in the ChNPP spaces, over ruins of 4 block, on job site and separate points of the 30-km zone by multilayer filters from ultrathin fibers. In probes taken from the job site radioactive isotopes were grouped on the particles with more than 2,5 μcm diameter. Particle sizes in the room were less than near terrestrial layer of atmosphere on job site. It is shown that the aerosol sizes containing alpha active nuclides are idential with gamma radiating isotopes of refractory elements. 4 refs., 1 fig., 2 tabs

  3. Secondary Aerosol Formation over the ESCOMPTE Area: Results from airborne Aerosol and Trace Gas Measurements

    Science.gov (United States)

    van Dingenen, R.; Martins-Dos Santos, S.; Putaud, J. P.; Allet, C.; Bretton, E.; Perros, P.

    2003-04-01

    From June 10th to July 14th 2001, the ESCOMPTE campaign took place in the Marseille-Berre area in Southern France. The goal of the campaign was to produce a high quality 3-D data base from emissions, transport and air composition measurements during urban photochemical pollution episodes at the meso-scale. The CAATER AEROPLUM project was embedded within this international field campaign. AEROPLUM aimed at mapping size distributions of aerosols and photo-oxidants in the mixed layer over the ESCOMPTE domain, using the ARAT Fokker 27 as measurement platform. Aircraft sub-micrometer aerosol measurements are validated during overpasses against ground-based measurements, carried out with similar instrumentation. We will present and discuss data during periods of seabreeze, transporting coastal industrial and urban pollution land-inwards. This leads to intense photochemical activity, evidenced by elevated O_3 concentrations and aerosol levels.

  4. Impact of Aerosol Processing on Orographic Clouds

    Science.gov (United States)

    Pousse-Nottelmann, Sara; Zubler, Elias M.; Lohmann, Ulrike

    2010-05-01

    Aerosol particles undergo significant modifications during their residence time in the atmosphere. Physical processes like coagulation, coating and water uptake, and aqueous surface chemistry alter the aerosol size distribution and composition. At this, clouds play a primary role as physical and chemical processing inside cloud droplets contributes considerably to the changes in aerosol particles. A previous study estimates that on global average atmospheric particles are cycled three times through a cloud before being removed from the atmosphere [1]. An explicit and detailed treatment of cloud-borne particles has been implemented in the regional weather forecast and climate model COSMO-CLM. The employed model version includes a two-moment cloud microphysical scheme [2] that has been coupled to the aerosol microphysical scheme M7 [3] as described by Muhlbauer and Lohmann, 2008 [4]. So far, the formation, transfer and removal of cloud-borne aerosol number and mass were not considered in the model. Following the parameterization for cloud-borne particles developed by Hoose et al., 2008 [5], distinction between in-droplet and in-crystal particles is made to more physically account for processes in mixed-phase clouds, such as the Wegener-Bergeron-Findeisen process and contact and immersion freezing. In our model, this approach has been extended to allow for aerosol particles in five different hydrometeors: cloud droplets, rain drops, ice crystals, snow flakes and graupel. We account for nucleation scavenging, freezing and melting processes, autoconversion, accretion, aggregation, riming and selfcollection, collisions between interstitial aerosol particles and hydrometeors, ice multiplication, sedimentation, evaporation and sublimation. The new scheme allows an evaluation of the cloud cycling of aerosol particles by tracking the particles even when scavenged into hydrometeors. Global simulations of aerosol processing in clouds have recently been conducted by Hoose et al

  5. Some Technical Aspects of a CALIOP and MODIS Data Analysis that Examines Near-Cloud Aerosol Properties as a Function of Cloud Fraction

    Science.gov (United States)

    Varnai, Tamas; Yang, Weidong; Marshak, Alexander

    2016-01-01

    CALIOP shows stronger near-cloud changes in aerosol properties at higher cloud fractions. Cloud fraction variations explain a third of near-cloud changes in overall aerosol statistics. Cloud fraction and aerosol particle size distribution have a complex relationship.

  6. Wavelet and adaptive methods for time dependent problems and applications in aerosol dynamics

    Science.gov (United States)

    Guo, Qiang

    Time dependent partial differential equations (PDEs) are widely used as mathematical models of environmental problems. Aerosols are now clearly identified as an important factor in many environmental aspects of climate and radiative forcing processes, as well as in the health effects of air quality. The mathematical models for the aerosol dynamics with respect to size distribution are nonlinear partial differential and integral equations, which describe processes of condensation, coagulation and deposition. Simulating the general aerosol dynamic equations on time, particle size and space exhibits serious difficulties because the size dimension ranges from a few nanometer to several micrometer while the spatial dimension is usually described with kilometers. Therefore, it is an important and challenging task to develop efficient techniques for solving time dependent dynamic equations. In this thesis, we develop and analyze efficient wavelet and adaptive methods for the time dependent dynamic equations on particle size and further apply them to the spatial aerosol dynamic systems. Wavelet Galerkin method is proposed to solve the aerosol dynamic equations on time and particle size due to the fact that aerosol distribution changes strongly along size direction and the wavelet technique can solve it very efficiently. Daubechies' wavelets are considered in the study due to the fact that they possess useful properties like orthogonality, compact support, exact representation of polynomials to a certain degree. Another problem encountered in the solution of the aerosol dynamic equations results from the hyperbolic form due to the condensation growth term. We propose a new characteristic-based fully adaptive multiresolution numerical scheme for solving the aerosol dynamic equation, which combines the attractive advantages of adaptive multiresolution technique and the characteristics method. On the aspect of theoretical analysis, the global existence and uniqueness of

  7. Airborne lidar measurements of aerosol spatial distribution and optical properties over the Atlantic Ocean during a European pollution outbreak of ACE-2[Special issue with manuscripts related to the second Aerosol Characterization Experiment (ACE-2), 16 June-25 July 1997

    Energy Technology Data Exchange (ETDEWEB)

    Flamant, Cyrille; Pelon, Jaques; Trouillet, Vincent; Bruneau, Didier [CNRS-UPMC-UVSQ, Paris (France). Service d' Aeronomie; Chazette, Patrick; Leon, J.F. [CEA-CNRS, Gif-sur-Yvette (France). Lab. des Sciences du Climat et de l' Environment; Quinn, P.K.; Bates, T.S.; Johnson, James [National Oceanic and Atmospheric Administration, Seattle, WA (United States). Pacific Marine Environmental Lab.; Frouin, Robert [Scripps Inst. of Oceanography, La Jolla, CA (United States); Livingston, John [SRI International, Menlo Park, CA (United States)

    2000-04-01

    Airborne lidar measurements of the aerosol spatial distribution and optical properties associated with an European pollution outbreak which occurred during the Second Aerosol Characterization Experiment (ACE-2) are presented. Size distribution spectra measured over the ocean near Sagres (Portugal), on-board the Research Vessel Vodyanitsky and on-board the Avion de Recherche Atmospherique et Teledetection (ARAT) have been used to parameterize the aerosol vertical distribution. This parameterization, which is essential to the analysis of airborne lidar measurements, has been validated via closure experiments on extinction coefficient profiles and aerosol optical depth (AOD). During the studied event, AOD's retrieved from lidar measurements at 0.73 {mu}m range between 0.055 and 0.10. The parameterized aerosol vertical distribution has been used to shift AOD retrievals from 0.73 to 0.55 {mu}m to enable comparison with other remote sensing instruments. At the latter wavelength, AOD's retrieved from lidar measurements range between 0.08 and 0.14. An agreement better than 20% is obtained between AOD's derived from lidar and sunphotometer measurements made at the same time and place over the ocean near the coast. However, large differences are observed with the AOD estimated from Meteosat imagery in the same area. These differences are thought to be caused by large uncertainties associated with the Meteosat sensitivity for small AOD's or by the presence of thin scattered clouds. Lidar-derived particulate extinction profiles and scattering coefficient profiles measured by a nephelometer mounted on the ARAT, in a different part of the plume, were found in good agreement, which could be an indication that absorption by pollution aerosols is small and/or that soot is present in small amounts in the European pollution plume. Lidar measurements have also been used to differentiate the contribution of different aerosol layers to the total AOD. It is shown that

  8. Role of the Atmospheric General Circulation on the Temporal Variability of the Aerosol Distribution over Dakar (Senegal)

    Science.gov (United States)

    Senghor, Habib; Machu, Eric; Hourdin, Frederic; Thierno Gaye, Amadou; Gueye, Moussa; Simina Drame, Mamadou

    2016-04-01

    The natural or anthropogenic aerosols play an important role on the climate system and the human health through their optical and physical properties. To evaluate the potential impacts of these aerosols, it is necessary to better understand their temporal variability in relation with the atmospheric ciculation. Some previous case studies have pointed out the influence of the sea-breeze circulation on the vertical distribution of the aerosols along the Western African coast. In the present work, Lidar (Ceilometer CL31; located at Dakar) data are used for the period 2012-2014 together with Level-3 data from CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) between 2007 and 2014 for studying the seasonal cycle of the vertical distribution of aerosols over Dakar (17.5°W, 14.74°N). Both instruments show strong seasonal variability with a maximum of aerosol occurrence in May over Dakar. The CL31 shows a crucial impact of sea-breeze circulation on the diurnal cycle of the Mixed Atmospheric Boundary Layer and a strong dust signal in spring in the nocturnal low-level jet (LLJ) located between 500 and 1000 m altitudes over Dakar.

  9. Seasonal dependence of aerosol processing in urban Philadelphia

    Science.gov (United States)

    Avery, A. M.; Waring, M. S.; DeCarlo, P. F.

    2017-12-01

    Urban aerosols pose an important threat to human health due to the conflation of emissions and concentrated population exposed. Winter and summer aerosol and trace gas measurements were taken in downtown Philadelphia in 2016. Measurements included aerosol composition and size with an Aerodyne Aerosol Mass Spectrometer (AMS), particle size distributions with an SMPS, and an aethalometer. Trace gas measurements of O3, NO, CH4, CO, and CO2 were taken concurrently. Sampling in seasonal extremes provided contrast in aerosol and trace gas composition, aerosol processing, and emission factors. Inorganic aerosol components contributed approximately 60% of the submicron aerosol mass, while summertime aerosol composition was roughly 70% organic matter. Positive Matrix Factorization (PMF) on the organic aerosol (OA) matrix revealed three factors in common in each season, including an oxygenated organic aerosol (OOA) factor with different temporal behavior in each season. In summertime, OOA varied diurnally with ozone and daytime temperature, but in the wintertime, it was anti-correlated with ozone and temperature, and instead trended with calculated liquid water, indicating a seasonally-dependent processing of organic aerosol in Philadelphia's urban environment. Due to the inorganic dominant winter aerosol, liquid water much higher (2.65 μg/m3) in winter than in summer (1.54 μg/m3). Diurnally varying concentrations of background gas phase species (CH4, CO2) were higher in winter and varied less as a result of boundary layer conditions; ozone was also higher in background in winter than summer. Winter stagnation events with low windspeed showed large buildup of trace gases CH4, CO, CO2, and NO. Traffic related aerosol was also elevated with black carbon and hydrocarbon-like OA (HOA) plumes of each at 3-5 times higher than the winter the average value for each. Winter ratios of HOA to black carbon were significantly higher in the winter than the summer due to lower

  10. Assessment of aerosol models to AOD retrieval from HJ1 Satellites

    International Nuclear Information System (INIS)

    Yuhuan, Zhang; Zhengqiang, Li; Weizhen, Hou; Ying, Zhang; Yan, Ma; Li Donghui

    2014-01-01

    The Chinese environmental satellites HJ1 A and B can play a significant role in the aerosol retrieval due to their high spatial and temporal resolution. The current Aerosol Optical Depth (AOD) retrieval methods from HJ1-CCD are almost based on the LUT (Look-Up Table), by selecting the best fitting result to determine the AOD. However, aerosol model selection has an important impact on the retrieval results when creating the lookup table; inappropriate choice of aerosol model will significantly affect the accuracy and applicability of the method. This paper determined the local aerosol physical properties (such as complex refractive index, and size distribution) based on the observational data, thus we defined the aerosol type and retrieved the AOD of the local aerosol. Furthermore we compared the results retrieved from the measurement aerosol model with those retrieved from the inherent aerosol model in the radiative transfer model and then evaluate its effect on the aerosol type

  11. Modeling and measurements of urban aerosol processes on the neighborhood scale in Rotterdam, Oslo and Helsinki

    Directory of Open Access Journals (Sweden)

    M. Karl

    2016-04-01

    Full Text Available This study evaluates the influence of aerosol processes on the particle number (PN concentrations in three major European cities on the temporal scale of 1 h, i.e., on the neighborhood and city scales. We have used selected measured data of particle size distributions from previous campaigns in the cities of Helsinki, Oslo and Rotterdam. The aerosol transformation processes were evaluated using the aerosol dynamics model MAFOR, combined with a simplified treatment of roadside and urban atmospheric dispersion. We have compared the model predictions of particle number size distributions with the measured data, and conducted sensitivity analyses regarding the influence of various model input variables. We also present a simplified parameterization for aerosol processes, which is based on the more complex aerosol process computations; this simple model can easily be implemented to both Gaussian and Eulerian urban dispersion models. Aerosol processes considered in this study were (i the coagulation of particles, (ii the condensation and evaporation of two organic vapors, and (iii dry deposition. The chemical transformation of gas-phase compounds was not taken into account. By choosing concentrations and particle size distributions at roadside as starting point of the computations, nucleation of gas-phase vapors from the exhaust has been regarded as post tail-pipe emission, avoiding the need to include nucleation in the process analysis. Dry deposition and coagulation of particles were identified to be the most important aerosol dynamic processes that control the evolution and removal of particles. The error of the contribution from dry deposition to PN losses due to the uncertainty of measured deposition velocities ranges from −76 to +64 %. The removal of nanoparticles by coagulation enhanced considerably when considering the fractal nature of soot aggregates and the combined effect of van der Waals and viscous interactions. The effect of

  12. Exposure to aerosol and gaseous pollutants in a room ventilated with mixing air distribution

    DEFF Research Database (Denmark)

    Bivolarova, Mariya Petrova; Ondráček, Jakub; Ždímal, Vladimír

    2016-01-01

    The present study investigates the aerosol and gas dispersal in a mechanically ventilated room and the personal exposure to these contaminants. The study was performed in a full-scale climate chamber. The room was air conditioned via mixing total volume ventilation system. The room occupancy was ...... of the thermal manikin were measured. The results showed higher exposure to the contaminants measured at the breathing zone than at the ambient air. The behaviour of the tracer gas and the aerosols was similar.......The present study investigates the aerosol and gas dispersal in a mechanically ventilated room and the personal exposure to these contaminants. The study was performed in a full-scale climate chamber. The room was air conditioned via mixing total volume ventilation system. The room occupancy...... was simulated by a sitting dressed thermal manikin with realistic body shape. During the experiments monodisperse aerosols of three sizes and nitrous oxide tracer gas were generated simultaneously from one location in the room. The aerosol and gas concentrations in the bulk room air and in the breathing zone...

  13. Aerosol measurements at 60 m during April 1994 remote cloud study intensive operating period (RCS/IOP)

    Energy Technology Data Exchange (ETDEWEB)

    Leifer, R.; Albert, B.; Lee, N.; Knuth, R.H. [Department of Energy, New York, NY (United States)] [and others

    1996-04-01

    Aerosol measurements were made at the Southern Great Plains Site of the Atmospheric Radiation Measurement (ARM) program. Many types of air masses pass over this area, and on the data acquisition day, extremly low aerosol scattering coefficients were seen. A major effort was placed on providing some characterization of the aerosol size distribution. Data is currently available from the experimental center.

  14. Evaluation and application of passive and active optical remote sensing methods for the measurement of atmospheric aerosol properties

    Energy Technology Data Exchange (ETDEWEB)

    Mielonen, T.

    2010-07-01

    Atmospheric aerosol particles affect the atmosphere's radiation balance by scattering and absorbing sunlight. Moreover, the particles act as condensation nuclei for clouds and affect their reflectivity. In addition, aerosols have negative health effects and they reduce visibility. Aerosols are emitted into the atmosphere from both natural and anthropogenic sources. Different types of aerosols have different effects on the radiation balance, thus global monitoring and typing of aerosols is of vital importance. In this thesis, several remote sensing methods used in the measurement of atmospheric aerosols are evaluated. Remote sensing of aerosols can be done with active and passive instruments. Passive instruments measure radiation emitted by the sun and the Earth while active instruments have their own radiation source, for example a black body radiator or laser. The instruments utilized in these studies were sun photometers (PFR, Cimel), lidars (POLLYXT, CALIOP), transmissiometer (OLAF) and a spectroradiometer (MODIS). Retrieval results from spaceborne instruments (MODIS, CALIOP) were evaluated with ground based measurements (PFR, Cimel). In addition, effects of indicative aerosol model assumptions on the calculated radiative transfer were studied. Finally, aerosol particle mass at the ground level was approximated from satellite measurements and vertical profiles of aerosols measured with a lidar were analyzed. For the evaluation part, these studies show that the calculation of aerosol induced attenuation of radiation based on aerosol size distribution measurements is not a trivial task. In addition to dry aerosol size distribution, the effect of ambient relative humidity on the size distribution and the optical properties of the aerosols need to be known in order to achieve correct results from the calculations. Furthermore, the results suggest that aerosol size parameters retrieved from passive spaceborne measurements depend heavily on surgace reflectance

  15. Aerosol measurements at the Southern Great Plains Site: Design and surface installation

    Energy Technology Data Exchange (ETDEWEB)

    Leifer, R.; Knuth, R.H.; Guggenheim, S.F.; Albert, B. [Department of Energy, New York, NY (United States)

    1996-04-01

    To impropve the predictive capabilities of the Atmospheric Radiation Measurements (ARM) program radiation models, measurements of awserosol size distributions, condensation particle concentrations, aerosol scattering coefficients at a number of wavelenghts, and the aerosol absorption coefficients are needed at the Southern Great Plains (SGP) site. Alos, continuous measurements of ozone concnetrations are needed for model validation. The environmental Measuremenr Laboratory (EMK) has the responsibility to establish the surface aerosol measurements program at the SGP site. EML has designed a special sampling manifold.

  16. Experimental determination of size distributions: analyzing proper sample sizes

    International Nuclear Information System (INIS)

    Buffo, A; Alopaeus, V

    2016-01-01

    The measurement of various particle size distributions is a crucial aspect for many applications in the process industry. Size distribution is often related to the final product quality, as in crystallization or polymerization. In other cases it is related to the correct evaluation of heat and mass transfer, as well as reaction rates, depending on the interfacial area between the different phases or to the assessment of yield stresses of polycrystalline metals/alloys samples. The experimental determination of such distributions often involves laborious sampling procedures and the statistical significance of the outcome is rarely investigated. In this work, we propose a novel rigorous tool, based on inferential statistics, to determine the number of samples needed to obtain reliable measurements of size distribution, according to specific requirements defined a priori. Such methodology can be adopted regardless of the measurement technique used. (paper)

  17. Effects of explosively venting aerosol-sized particles through earth-containment systems on the cloud-stabilization height

    International Nuclear Information System (INIS)

    Dyckes, G.W.

    1980-07-01

    A method of approximating the cloud stabilization height for aerosol-sized particles vented explosively through earth containment systems is presented. The calculated values for stabilization heights are in fair agreement with those obtained experimentally

  18. Marine aerosol distribution and variability over the pristine Southern Indian Ocean

    Science.gov (United States)

    Mallet, Paul-Étienne; Pujol, Olivier; Brioude, Jérôme; Evan, Stéphanie; Jensen, Andrew

    2018-06-01

    This paper presents an 8-year (2005-2012 inclusive) study of the marine aerosol distribution and variability over the Southern Indian Ocean, precisely in the area { 10 °S - 40 °S ; 50 °E - 110 °E } which has been identified as one of the most pristine regions of the globe. A large dataset consisting of satellite data (POLDER, CALIOP), AERONET measurements at Saint-Denis (French Réunion Island) and model reanalysis (MACC), has been used. In spite of a positive bias of about 0.05 between the AOD (aerosol optical depth) given by POLDER and MACC on one hand and the AOD measured by AERONET on the other, consistent results for aerosol distribution and variability over the area considered have been obtained. First, aerosols are mainly confined below 2km asl (above sea level) and are dominated by sea salt, especially in the center of the area of interest, with AOD ≤ 0 . 1. This zone is the most pristine and is associated with the position of the Mascarene anticyclone. There, the direct radiative effect is assessed around - 9 Wm-2 at the top of the atmosphere and probability density functions of the AOD s are leptokurtic lognormal functions without any significant seasonal variation. It is also suggested that the Madden-Jullian oscillation impacts sea salt emissions in the northern part of the area considered by modifying the state of the ocean surface. Finally, this area is surrounded in the northeast and the southwest by seasonal Australian and South African intrusions (AOD > 0.1) ; throughout the year, the ITCZ seems to limit continental contaminations from Asia. Due to the long period of time considered (almost a decade), this paper completes and strengthens results of studies based on observations performed during previous specific field campaigns.

  19. Characterization of Sodium Spray Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, C. T.; Koontz, R. L.; Silberberg, M. [Atomics International, North American Rockwell Corporation, Canoga Park, CA (United States)

    1968-12-15

    The consequences of pool and spray fires require evaluation in the safety analysis of liquid metal-cooled fast breeder reactors. Sodium spray fires are characterized by high temperature and pressure, produced during the rapid combustion of sodium in air. Following the initial energy release, some fraction of the reaction products are available as aerosols which follow the normal laws of agglomeration, growth, settling, and plating. An experimental study is underway at Atomics International to study the characteristics of high concentration sprays of liquid sodium in reduced oxygen atmospheres and in air. The experiments are conducted in a 31.5 ft{sup 3} (2 ft diam. by 10 ft high) vessel, certified for a pressure of 100 lb/in{sup 2} (gauge). The spray injection apparatus consists of a heated sodium supply pot and a spray nozzle through which liquid sodium is driven by nitrogen pressure. Spray rate and droplet size can be varied by the injection velocity (nozzle size, nitrogen pressure, and sodium temperature). Aerosols produced in 0, 4, and 10 vol. % oxygen environments have been studied. The concentration and particle size distribution of the material remaining in the air after the spray injection and reaction period are measured. Fallout rates are found to be proportional to the concentration of aerosol which remains airborne following the spray period. (author)

  20. Distribution of sulfur aerosol precursors in the SPCZ released by continuous volcanic degassing at Ambrym, Vanuatu

    Science.gov (United States)

    Lefèvre, Jérôme; Menkes, Christophe; Bani, Philipson; Marchesiello, Patrick; Curci, Gabriele; Grell, Georg A.; Frouin, Robert

    2016-08-01

    The Melanesian Volcanic Arc (MVA) emits about 12 kT d- 1 of sulfur dioxide (SO2) to the atmosphere from continuous passive (non-explosive) volcanic degassing, which contributes 20% of the global SO2 emission from volcanoes. Here we assess, from up-to-date and long-term observations, the SO2 emission of the Ambrym volcano, one of the dominant volcanoes in the MVA, and we investigate its role as sulfate precursor on the regional distribution of aerosols, using both satellite observations and model results at 1° × 1° spatial resolution from WRF-Chem/GOCART. Without considering aerosol forcing on clouds, our model parameterizations for convection, vertical mixing and cloud properties provide a reliable chemical weather representation, making possible a cross-examination of model solution and observations. This preliminary work enables the identification of biases and limitations affecting both the model (missing sources) and satellite sensors and algorithms (for aerosol detection and classification) and leads to the implementation of improved transport and aerosol processes in the modeling system. On the one hand, the model confirms a 50% underestimation of SO2 emissions due to satellite swath sampling of the Ozone Monitoring Instrument (OMI), consistent with field studies. The OMI irregular sampling also produces a level of noise that impairs its monitoring capacity during short-term volcanic events. On the other hand, the model reveals a large sensitivity on aerosol composition and Aerosol Optical Depth (AOD) due to choices of both the source function in WRF-Chem and size parameters for sea-salt in FlexAOD, the post-processor used to compute offline the simulated AOD. We then proceed to diagnosing the role of SO2 volcanic emission in the regional aerosol composition. The model shows that both dynamics and cloud properties associated with the South Pacific Convergence Zone (SPCZ) have a large influence on the oxidation of SO2 and on the transport pathways of

  1. The impact of mass transfer limitations on size distributions of particle associated SVOCs in outdoor and indoor environments

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cong; Zhang, Yinping [Department of Building Science, Tsinghua University, Beijing (China); Weschler, Charles J., E-mail: weschlch@rwjms.rutgers.edu [Department of Building Science, Tsinghua University, Beijing (China); Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ (United States); International Center for Indoor Environment and Energy, Technical University of Denmark, Lyngby (Denmark)

    2014-11-01

    Semi-volatile organic compounds (SVOCs) partition between the gas phase and airborne particles. The size distribution of particle-associated SVOCs impacts their fate in outdoor and indoor environments, as well as human exposure to these compounds and subsequent health risks. Allen et al. (1996) previously proposed that the rate of mass transfer can impact polycyclic aromatic hydrocarbon (PAH) partitioning among different sized particles, especially for time scales relevant to urban aerosols. The present study quantitatively builds on this idea, presenting a model that incorporates dynamic SVOC/particle interaction and applying this model to typical outdoor and indoor scenarios. The model indicates that the impact of mass transfer limitations on the size distribution of a particle-associated SVOC can be evaluated by the ratio of the time to achieve gas–particle equilibrium relative to the residence time of particles. The higher this ratio, the greater the influence of mass transfer limitations on the size distribution of particle-associated SVOCs. The influence of such constraints is largest on the fraction of particle-associated SVOCs in the coarse mode (> 2 μm). Predictions from the model have been found to be in reasonable agreement with size distributions measured for PAHs at roadside and suburban locations in Japan. The model also quantitatively explains shifts in the size distributions of particle associated SVOCs compared to those for particle mass, and the manner in which these shifts vary with temperature and an SVOC's molecular weight. - Highlights: • Rate of mass transfer can impact SVOC partitioning among different sized particles. • Model was developed that incorporates dynamic SVOC/particle sorption. • Key parameters: mass-transfer coefficients, partition coefficient, residence time • Model explains observed SVOC size distribution shifts with temperature and MW. • Largest impact of mass transfer constraints: SVOC sorption to coarse

  2. Cloud Scavenging Effects on Aerosol Radiative and Cloud-nucleating Properties - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

    2009-03-05

    The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

  3. Factor analysis of combined organic and inorganic aerosol mass spectra from high resolution aerosol mass spectrometer measurements

    Directory of Open Access Journals (Sweden)

    Y. L. Sun

    2012-09-01

    Full Text Available Positive matrix factorization (PMF was applied to the merged high resolution mass spectra of organic and inorganic aerosols from aerosol mass spectrometer (AMS measurements to investigate the sources and evolution processes of submicron aerosols in New York City in summer 2009. This new approach is able to study the distribution of organic and inorganic species in different types of aerosols, the acidity of organic aerosol (OA factors, and the fragment ion patterns related to photochemical processing. In this study, PMF analysis of the unified AMS spectral matrix resolved 8 factors. The hydrocarbon-like OA (HOA and cooking OA (COA factors contain negligible amounts of inorganic species. The two factors that are primarily ammonium sulfate (SO4-OA and ammonium nitrate (NO3-OA, respectively, are overall neutralized. Among all OA factors the organic fraction of SO4-OA shows the highest degree of oxidation (O/C = 0.69. Two semi-volatile oxygenated OA (OOA factors, i.e., a less oxidized (LO-OOA and a more oxidized (MO-OOA, were also identified. MO-OOA represents local photochemical products with a diurnal profile exhibiting a pronounced noon peak, consistent with those of formaldehyde (HCHO and Ox(= O3 + NO2. The NO+/NO2+ ion ratio in MO-OOA is much higher than that in NO3-OA and in pure ammonium nitrate, indicating the formation of organic nitrates. The nitrogen-enriched OA (NOA factor contains ~25% of acidic inorganic salts, suggesting the formation of secondary OA via acid-base reactions of amines. The size distributions of OA factors derived from the size-resolved mass spectra show distinct diurnal evolving behaviors but overall a progressing evolution from smaller to larger particle mode as the oxidation degree of OA increases. Our results demonstrate that PMF analysis of the unified aerosol mass spectral matrix which contains both

  4. Characterization of aerosol particles from grass mowing by joint deployment of ToF-AMS and ATOFMS instruments

    Science.gov (United States)

    Drewnick, Frank; Dall'Osto, Manuel; Harrison, Roy

    During a measurement campaign at a semi-urban/industrial site a grass-cutting event was observed, when the lawn in the immediate surrounding of the measurement site was mowed. Using a wide variety of state-of-the-art aerosol measurement technology allowed a broad characterization of the aerosol generated by the lawn mowing. The instrumentation included two on-line aerosol mass spectrometers: an Aerodyne Time-of-Flight Aerosol Mass Spectrometer (ToF-AMS) and a TSI Aerosol Time-of-Flight Mass Spectrometer (ATOFMS); in addition, a selection of on-line aerosol concentration and size distribution instruments (OPC, APS, SMPS, CPC, FDMS-TEOM, MAAP) was deployed. From comparison of background aerosol measurements during most of the day with the aerosol measured during the lawn mowing, the grass cutting was found to generate mainly two different types of aerosol particles: an intense ultrafine particle mode (1 h average: 4 μg m -3) of almost pure hydrocarbon-like organics and a distinct particle mode in the upper sub-micrometer size range containing particles with potassium and nitrogen-organic compounds. The ultrafine particles are probably lubricating oil particles from the lawn mower exhaust; the larger particles are swirled-up plant debris particles from the mowing process. While these particle types were identified in the data from the two mass spectrometers, the on-line aerosol concentration and size distribution data support these findings. The results presented here show that the combination of quantitative aerosol particle ensemble mass spectrometry (ToF-AMS) and single particle mass spectrometry (ATOFMS) provides much deeper insights into the nature of the aerosol properties than each of the instruments could do alone. Therefore a combined deployment of both types of instruments is strongly recommended.

  5. Aerosol composition, oxidation properties, and sources in Beijing: results from the 2014 Asia-Pacific Economic Cooperation summit study

    Science.gov (United States)

    Xu, W. Q.; Sun, Y. L.; Chen, C.; Du, W.; Han, T. T.; Wang, Q. Q.; Fu, P. Q.; Wang, Z. F.; Zhao, X. J.; Zhou, L. B.; Ji, D. S.; Wang, P. C.; Worsnop, D. R.

    2015-12-01

    The mitigation of air pollution in megacities remains a great challenge because of the complex sources and formation mechanisms of aerosol particles. The 2014 Asia-Pacific Economic Cooperation (APEC) summit in Beijing serves as a unique experiment to study the impacts of emission controls on aerosol composition, size distributions, and oxidation properties. Herein, a high-resolution time-of-flight aerosol mass spectrometer was deployed in urban Beijing for real-time measurements of size-resolved non-refractory submicron aerosol (NR-PM1) species from 14 October to 12 November 2014, along with a range of collocated measurements. The average (±σ) PM1 was 41.6 (±38.9) μg m-3 during APEC, which was decreased by 53 % compared with that before APEC. The aerosol composition showed substantial changes owing to emission controls during APEC. Secondary inorganic aerosol (SIA: sulfate + nitrate + ammonium) showed significant reductions of 62-69 %, whereas organics presented much smaller decreases (35 %). The results from the positive matrix factorization of organic aerosol (OA) indicated that highly oxidized secondary organic aerosol (SOA) showed decreases similar to those of SIA during APEC. However, primary organic aerosol (POA) from cooking, traffic, and biomass-burning sources were comparable to those before APEC, indicating the presence of strong local source emissions. The oxidation properties showed corresponding changes in response to OA composition. The average oxygen-to-carbon level during APEC was 0.36 (±0.10), which is lower than the 0.43 (±0.13) measured before APEC, demonstrating a decrease in the OA oxidation degree. The changes in size distributions of primary and secondary species varied during APEC. SIA and SOA showed significant reductions in large accumulation modes with peak diameters shifting from ~ 650 to 400 nm during APEC, whereas those of POA remained relatively unchanged. The changes in aerosol composition, size distributions, and oxidation

  6. Aerosol dynamics within and above forest in relation to turbulent transport and dry deposition

    OpenAIRE

    Rannik, Üllar; Zhou, Luxi; Zhou, Putian; Gierens, Rosa; Mammarella, Ivan; Sogachev, Andrey; Boy, Michael

    2016-01-01

    A 1-D atmospheric boundary layer (ABL) model coupled with a detailed atmospheric chemistry and aerosol dynamical model, the model SOSAA, was used to predict the ABL and detailed aerosol population (characterized by the number size distribution) time evolution. The model was applied over a period of 10 days in May 2013 to a pine forest site in southern Finland. The period was characterized by frequent new particle formation events and simultaneous intensive aerosol transforma...

  7. Religious Burning as a Major Source of Atmospheric Fine Aerosols in Lhasa city in the Tibetan Plateau

    Science.gov (United States)

    Liu, S.; Cui, Y.; Zhixuan, B.; Bian, J.; McKeen, S. A.; Watts, L. A.; Ciciora, S. J.; Gao, R. S.

    2017-12-01

    Measurements of aerosols in the Tibetan Plateau are scant due to the high altitude and harsh climate. To bridge this gap, we carried out the first field measurements of aerosol size distributions in Lhasa, a major city in the Tibetan Plateau that has been experiencing fast urbanization and reduced air quality. Aerosol number size distribution was continuously measured using an optical particle size spectrometer near the center of Lhasa city during the Asian summer monsoon season in 2016. The mass concentration of fine particles was modulated by boundary layer dynamics, with an average of 11 µg m-3 and the high values exceeding 50 µg m-3 during religious holidays. Daytime high concentration coincided with the religious burning of biomass and incense in the temples during morning hours, which produced heavy smoke. Factor analysis revealed a factor that is likely induced by religious burning. The factor contributed 34% of the campaign-average fine particle mass and the contribution reached up to 80% during religious holidays. The mass size distribution of aerosols produced from religious burnings peaked at 500 nm, indicating that these particles could efficiently decrease visibility and promote health risk. Because of its significance, our results suggest that more attention should be paid to religious burning, a currently under-studied source, in the Tibetan Plateau and in other regions of the world where religious burnings are frequently practiced.

  8. Synergetic use of Aerosol Robotic Network (AERONET) and Moderate Image Spectrometer (MODIS)

    Science.gov (United States)

    Kaufman, Y.

    2004-01-01

    I shall describe several distinct modes in which AERONET data are used in conjunction with MODIS data to evaluate the global aerosol system and its impact on climate. These includes: 1) Evaluation of the aerosol diurnal cycle not available from MODIS, and the relationship between the aerosol properties derived from MODIS and the daily average of these properties; 2) Climatology of the aerosol size distribution and single scattering albedo. The climatology is used to formulate the assumptions used in the MODIS look up tables used in the inversion of MODIS data; 3) Measurement of the aerosol effect on irradiation of the surface, this is used in conjunction with the MODIS evaluation of the aerosol effect at the TOA; and 4) Assessment of the aerosol baseline on top off which the satellite data are used to find the amount of dust or anthropogenic aerosol.

  9. Evolution of size-segregated aerosol mass concentration during the Antarctic summer at Northern Foothills, Victoria Land

    Science.gov (United States)

    Illuminati, Silvia; Bau, Sébastien; Annibaldi, Anna; Mantini, Caterina; Libani, Giulia; Truzzi, Cristina; Scarponi, Giuseppe

    2016-01-01

    Within the framework of the Italian National Programm for Antarctic Research (PNRA), the first direct gravimetric measurements of size-segregated aerosol fractions were carried out at Faraglione Camp, ˜3-km far from the Italian station "M. Zucchelli" (Terra Nova Bay, Ross Sea), during the 2014-2015 austral summer. A six-stage high-volume cascade impactor with size classes between 10 μm and 0.49 μm, and, in parallel, for comparison purposes, a PM10 high-volume sampler (50% cut-off aerodynamic diameter of 10 μm) were used. A 10-day sampling strategy was adopted. Aerosol mass measurements were carried out before and after exposure by using a microbalance specifically designed for the filter weight and placed inside a glove bag in order to maintain stable temperature and humidity conditions during weighing sessions. Measured atmospheric concentrations (referred to the "actual air conditions" of mean temperature of 268 K and mean pressure of 975 hPa) of size-segregated aerosol fractions showed the following values, given as size range, means (interquartile range): Dp range 0.1-1.0 μm) and two coarse modes (CM1 in the range 1.0-3.0 μm, and CM2 in the range 3.0-10 μm). From 50% to 90% of the PM10 mass comes from particles of a size smaller than 1.0 μm. The two coarse modes represented from ˜5% to ˜35% of the PM10, showing opposite seasonal trends (CM1 decreased while CM2 increased). During summer, PM10 mass concentration increased to a maximum of ˜1.6 μg m-3 at mid-December, while in January it decreased to values that are typical of November. Both accumulation and upper super-micron fractions showed a maximum in the same period contributing to the PM10 peak of mid-summer.

  10. Aerosol optical properties in the southeastern United States in summer – Part 2: Sensitivity of aerosol optical depth to relative humidity and aerosol parameters

    Directory of Open Access Journals (Sweden)

    C. A. Brock

    2016-04-01

    Full Text Available Aircraft observations of meteorological, trace gas, and aerosol properties were made between May and September 2013 in the southeastern United States (US. Regionally representative aggregate vertical profiles of median and interdecile ranges of the measured parameters were constructed from 37 individual aircraft profiles made in the afternoon when a well-mixed boundary layer with typical fair-weather cumulus was present (Wagner et al., 2015. We use these 0–4 km aggregate profiles and a simple model to calculate the sensitivity of aerosol optical depth (AOD to changes in dry aerosol mass, relative humidity, mixed-layer height, the central diameter and width of the particle size distribution, hygroscopicity, and dry and wet refractive index, while holding the other parameters constant. The calculated sensitivity is a result of both the intrinsic sensitivity and the observed range of variation in these parameters. These observationally based sensitivity studies indicate that the relationship between AOD and dry aerosol mass in these conditions in the southeastern US can be highly variable and is especially sensitive to relative humidity (RH. For example, calculated AOD ranged from 0.137 to 0.305 as the RH was varied between the 10th and 90th percentile profiles with dry aerosol mass held constant. Calculated AOD was somewhat less sensitive to aerosol hygroscopicity, mean size, and geometric standard deviation, σg. However, some chemistry–climate models prescribe values of σg substantially larger than we or others observe, leading to potential high biases in model-calculated AOD of  ∼  25 %. Finally, AOD was least sensitive to observed variations in dry and wet aerosol refractive index and to changes in the height of the well-mixed surface layer. We expect these findings to be applicable to other moderately polluted and background continental air masses in which an accumulation mode between 0.1–0.5 µm diameter dominates

  11. Vertical distribution of aerosols over the Maritime Continent during El Niño

    Science.gov (United States)

    Blake Cohen, Jason; Loong Ng, Daniel Hui; Lun Lim, Alan Wei; Chua, Xin Rong

    2018-05-01

    The vertical distribution of aerosols over Southeast Asia, a critical factor impacting aerosol lifetime, radiative forcing, and precipitation, is examined for the 2006 post El Niño fire burning season. Combining these measurements with remotely sensed land, fire, and meteorological measurements, and fire plume modeling, we have reconfirmed that fire radiative power (FRP) is underestimated over Southeast Asia by MODIS measurements. These results are derived using a significantly different approach from other previously attempted approaches found in the literature. The horizontally constrained Maritime Continent's fire plume median height, using the maximum variance of satellite observed aerosol optical depth as the spatial and temporal constraint, is found to be 2.04 ± 1.52 km during the entirety of the 2006 El Niño fire season, and 2.19±1.50 km for October 2006. This is 0.83 km (0.98 km) higher than random sampling and all other past studies. Additionally, it is determined that 61 (+6-10) % of the bottom of the smoke plume and 83 (+8-11) % of the median of the smoke plume is in the free troposphere during the October maximum; while 49 (+7-9) % and 75 (+12-12) % of the total aerosol plume and the median of the aerosol plume, are correspondingly found in the free troposphere during the entire fire season. This vastly different vertical distribution will have impacts on aerosol lifetime and dispersal. Application of a simple plume rise model using measurements of fire properties underestimates the median plume height by 0.26 km over the entire fire season and 0.34 km over the maximum fire period. It is noted that the model underestimation over the bottom portions of the plume are much larger. The center of the plume can be reproduced when fire radiative power is increased by 20 % (with other parts of the plume ranging from an increase of 0 to 60 % depending on the portion of the plume and the length of the fire season considered). However, to reduce the biases

  12. Seasonal variation of spherical aerosols distribution in East Asia based on ground and space Lidar observation and a Chemical transport model

    Science.gov (United States)

    Hara, Y.; Yumimoto, K.; Uno, I.; Shimizu, A.; Sugimoto, N.; Ohara, T.

    2009-12-01

    The anthropogenic aerosols largely impact on not only human health but also global climate system, therefore air pollution in East Asia due to a rapid economic growth has been recognized as a significant environmental problem. Several international field campaigns had been conducted to elucidate pollutant gases, aerosols characteristics and radiative forcing in East Asia. (e.g., ACE-Asia, TRACE-P, ADEC, EAREX 2005). However, these experiments were mainly conducted in springtime, therefore seasonal variation of aerosols distribution has not been clarified well yet. National Institute for Environmental Studies (NIES) has been constructing a lidar networks by automated dual wavelength / polarization Mie-lidar systems to observe the atmospheric environment in Asian region since 2001. Furthermore, from June 2006, space-borne backscatter lidar, Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), onboard NASA/CALIPSO satellite, measures continuous global aerosol and cloud vertical distribution with very high spatial resolution. In this paper, we will show the seasonal variation of aerosols distribution in East Asia based on the NIES lidar network observation, Community Multi-scale Air Quality Modeling System (CMAQ) chemical transport model simulation and CALIOP observation over the period from July 2006 to December 2008. We found that CMAQ result explains the typical seasonal aerosol characteristics by lidar observations. For example, CMAQ and ground lidar showed a summertime peak of aerosol optical thickness (AOT) at Beijing, an autumn AOT peak at Guangzhou and summertime AOT trough at Hedo, Okinawa. These characteristics are mainly controlled by seasonal variations of Asian summer/winter monsoon system. We also examined the CMAQ seasonal average aerosol extinction profiles with ground lidar and CALIOP extinction data. These comparisons clarified that the CMAQ reproduced the observed aerosol layer depth well in the downwind region. Ground lidar and CALIOP seasonal

  13. Atmospheric aerosol characterization by means of impactor samples analyzed by PIXE

    International Nuclear Information System (INIS)

    Orsini, C.M.Q.; Boueres, L.C.S.

    1979-01-01

    Continuous size-distribution functions are generally considered as the dominant physical properties of the atmospheric aerosol (AA). The complexity of this physico-chemical system is manifest in the large number of investigative methods, the results of which are often difficult to compare. The cascade impactor and PIXE method, among these supplies th mass concentrations m sub(K,Z) of elements, with Z>13, detected in the K-stage of the impactor. In this paper we examine the AA characteristics which can be directly inferred from the data set (m sub(K,Z)) and elaborate a scheme that, under approximate conditions, allows for the interrelation of (m sub(K,Z)) and the size-distributions more commonly used in the mathematical treatment of aerosols, e.g., n(D) and n sub(ν) (D) of Friedlander. (Author) [pt

  14. Direct measurement of aerosol shape factors

    International Nuclear Information System (INIS)

    Zeller, W.

    1983-12-01

    The dynamic shape factor whereas the coagulation shape factor is an average over the total examined size range. The experiments have shown that the results of experiments with a certain aerosol system cannot be transferred to other aerosol systems without further consideration. The outer shape of particles of a certain size depends on the specific properties of the material as well as on the experimental conditions during the aerosol generation. For both aerosol systems examined the mean dynamic shape factor, averaged over the total examined size range, agrees roughly with the coagulation shape factor. (Description of aerosol centrifuge and of differential mobility analyzer). (orig./HP) [de

  15. Aerosol optical properties and direct radiative forcing at Taihu.

    Science.gov (United States)

    Lü, Rui; Yu, Xingna; Jia, Hailing; Xiao, Sihan

    2017-09-01

    Ground-based characteristics (optical, type, size, and radiative properties) of aerosols measured between 2005 and 2012 were investigated over the Taihu rim region, which encompasses the cities of Shanghai, Suzhou, Wuxi, and Changzhou. The aerosol optical depth (AOD) showed a distinct seasonal variation with the highest value in summer and the lowest AOD in winter. There was broadest frequency distribution with a multimodal structure in summer. The Ångström exponent (AE) showed high values during spring; the relative frequency of AE in the range of 0-0.8 was 5-10 times greater than that of other seasons. The samples with high AOD 440 and low AE 440-870 were mainly observed in spring, which is attributed to the relative abundance of coarse particles. The monthly aerosol volume size distributions presented a bimodal structure (fine and coarse modes). The coarse mode was dominant during spring, while the fine mode was predominant in other seasons. The main aerosol type over Taihu during all the seasons was the mixed small-particle category, followed by the urban/industrial category. The minimum single scattering albedo (SSA) occurred in winter, suggesting that atmosphere aerosol had a higher absorption. All monthly averaged asymmetry factors (ASY) had positive values and no distinct seasonal variation. Both high real (Re) and imaginary (Im) parts of the refractive index occurred in winter. The atmospheric warming effect of aerosol was more significant in winter compared with other seasons, with the averaged atmosphere aerosol radiative forcing (ARF) and the corresponding atmospheric heating rate up to +69.46  W·m -2 and 1.95  K·day -1 , respectively. There existed a significant positive correlation between AOD and ARF (absolute value), and the correlation coefficients (r) exceeded 0.86 in each season with maximum r in summer. Along with the increasing of the SSA, the aerosol radiative forcing efficiency (absolute value) showed a decreasing trend at the

  16. Electronic structure and size of TiO sub 2 nanoparticles of controlled size prepared by aerosol methods

    CERN Document Server

    Soriano, L; Sanchez-Agudo, M; Sanz, J M; Ahonen, P P; Kauppinen, E I; Palomares, F J; Bressler, P R

    2002-01-01

    A complete characterization of nanostructures has to deal both with electronic structure and dimensions. Here we present the characterization of TiO sub 2 nanoparticles of controlled size prepared by aerosol methods. The electronic structure of these nanoparticles was probed by x-ray absorption spectroscopy (XAS), the particle size by atomic force microscopy (AFM). XAS spectra show that the particles crystallize in the anatase phase upon heating at 500 sup o C, whereas further annealing at 700 sup o C give crystallites of 70 % anatase and 30 % rutile phases. Raising the temperature to 900 sup o C results in a complete transformation of the particles to rutile. AFM images reveal that the mean size of the anatase particles formed upon heating at 500 sup o C is 30 nm, whereas for the rutile particles formed upon annealing at 900 sup o C 90 nm were found. The results obtained by these techniques agree with XRD data. (author)

  17. Activity size distributions of some naturally occurring radionuclides 7Be, 40K and 212Pb in indoor and outdoor environments

    International Nuclear Information System (INIS)

    Mohamed, A.

    2005-01-01

    The activity size distributions of natural radionuclides 7 Be and 40 K were measured outdoor in El-Minia city, Egypt by means of gamma spectroscopy. A low-pressure Berner cascade impactor was used as a sampling device. The activity size distribution of both 7 Be and 40 K was described by one log-normal distribution, which was represented by the accumulation mode. The activity median aerodynamic diameter (AMAD) of 7 Be and 40 K was determined to be 530 and 1550nm with a relative geometric standard deviation (δ, which was defined as the dispersion of the peak) of 2.4 and 2, respectively. The same sampling device (Berner impactor) and a screen diffusion battery were used to measure the activity size distribution, activity concentration and unattached fraction (f P ) of 212 Pb in indoor air of El-Minia City, Egypt. The mean activity median aerodynamic diameter (AMAD) of the accumulation mode for attached 212 Pb was determined to be 250nm with a mean geometric standard deviation (δ) of 2.6. The mean value of the specific concentration of 212 Pb associated with that mode was determined to be 460+/-20mBqm -3 . The activity median thermodynamic diameter (AMTD) of unattached 212 Pb was determined to be 1.25nm with δ of 1.4. A mean unattached fraction (f p ) of 0.13+/-0.02 was obtained at a mean aerosol particle concentration of 1.8x10 3 cm -3 . The mean activity concentration of unattached 212 Pb was found to be 19+/-3mBqm -3 . It was found that the aerosol concentration played an important role in varying the unattached, attached activity concentration and unattached fraction (f P )

  18. An assessment of a spiral duct centrifuge using standard and high concentration aerosols

    International Nuclear Information System (INIS)

    Smith, A.D.

    1982-12-01

    The Stoeber spiral duct centrifuge has been calibrated by means of polystyrene latex microspheres for the subsequent measurement of aerosol particle size distributions. Intermediate (1 g m -3 ) ad high (100 g m -3 ) sodium chloride aerosol concentrations have been sampled by the centrifuge to determine possible limitations in the equipment. Corrections have to be made for the effect of Coriolis forces, and aerosol concentrations above 1 g m -3 should be diluted before sampling. The spiral duct centrifuge is an extremely versatile instrument for aerosol analysis, and shows a high degree of reliability when operated under well-defined conditions. (author)

  19. Toward a Minimal Representation of Aerosols in Climate Models: Description and Evaluation in the Community Atmosphere Model CAM5

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaohong; Easter, Richard C.; Ghan, Steven J.; Zaveri, Rahul A.; Rasch, Philip J.; Shi, Xiangjun; Lamarque, J.-F.; Gettelman, A.; Morrison, H.; Vitt, Francis; Conley, Andrew; Park, S.; Neale, Richard; Hannay, Cecile; Ekman, A. M.; Hess, Peter; Mahowald, N.; Collins, William D.; Iacono, Michael J.; Bretherton, Christopher S.; Flanner, M. G.; Mitchell, David

    2012-05-21

    A modal aerosol module (MAM) has been developed for the Community Atmosphere Model version 5 (CAM5), the atmospheric component of the Community Earth System Model version 1 (CESM1). MAM is capable of simulating the aerosol size distribution and both internal and external mixing between aerosol components, treating numerous complicated aerosol processes and aerosol physical, chemical and optical properties in a physically based manner. Two MAM versions were developed: a more complete version with seven-lognormal modes (MAM7), and a three-lognormal mode version (MAM3) for the purpose of long-term (decades to centuries) simulations. Major approximations in MAM3 include assuming immediate mixing of primary organic matter (POM) and black carbon (BC) with other aerosol components, merging of the MAM7 fine dust and fine sea salt modes into the accumulation mode, merging of the MAM7 coarse dust and coarse sea salt modes into the single coarse mode, and neglecting the explicit treatment of ammonia and ammonium cycles. Simulated sulfate and secondary organic aerosol (SOA) mass concentrations are remarkably similar between MAM3 and MAM7 as most ({approx}90%) of these aerosol species are in the accumulation mode. Differences of POM and BC concentrations between MAM3 and MAM7 are also small (mostly within 10%) because of the assumed hygroscopic nature of POM, so that freshly emitted POM and BC are wet-removed before mixing internally with soluble aerosol species. Sensitivity tests with the POM assumed to be hydrophobic and with slower aging process increase the POM and BC concentrations, especially at high latitudes (by several times). The mineral dust global burden differs by 10% and sea salt burden by 30-40% between MAM3 and MAM7 mainly due to the different size ranges for dust and sea salt modes and different standard deviations of log-normal size distribution for sea salt modes between MAM3 and MAM7. The model is able to qualitatively capture the observed geographical and

  20. INITIAL PLANETESIMAL SIZES AND THE SIZE DISTRIBUTION OF SMALL KUIPER BELT OBJECTS

    International Nuclear Information System (INIS)

    Schlichting, Hilke E.; Fuentes, Cesar I.; Trilling, David E.

    2013-01-01

    The Kuiper Belt is a remnant from the early solar system and its size distribution contains many important constraints that can be used to test models of planet formation and collisional evolution. We show, by comparing observations with theoretical models, that the observed Kuiper Belt size distribution is well matched by coagulation models, which start with an initial planetesimal population with radii of about 1 km, and subsequent collisional evolution. We find that the observed size distribution above R ∼ 30 km is primordial, i.e., it has not been modified by collisional evolution over the age of the solar system, and that the size distribution below R ∼ 30 km has been modified by collisions and that its slope is well matched by collisional evolution models that use published strength laws. We investigate in detail the resulting size distribution of bodies ranging from 0.01 km to 30 km and find that its slope changes several times as a function of radius before approaching the expected value for an equilibrium collisional cascade of material strength dominated bodies for R ∼< 0.1 km. Compared to a single power-law size distribution that would span the whole range from 0.01 km to 30 km, we find in general a strong deficit of bodies around R ∼ 10 km and a strong excess of bodies around 2 km in radius. This deficit and excess of bodies are caused by the planetesimal size distribution left over from the runaway growth phase, which left most of the initial mass in small planetesimals while only a small fraction of the total mass is converted into large protoplanets. This excess mass in small planetesimals leaves a permanent signature in the size distribution of small bodies that is not erased after 4.5 Gyr of collisional evolution. Observations of the small Kuiper Belt Object (KBO) size distribution can therefore test if large KBOs grew as a result of runaway growth and constrained the initial planetesimal sizes. We find that results from recent KBO

  1. Aerosol and rainfall variability over the Indian monsoon region: distributions, trends and coupling

    Directory of Open Access Journals (Sweden)

    R. Gautam

    2009-09-01

    Full Text Available Aerosol solar absorption over the Indian monsoon region has a potential role of modulating the monsoon circulation and rainfall distribution as suggested by recent studies based on model simulations. Prior to the onset of the monsoon, northern India is influenced by significant dust transport that constitutes the bulk of the regional aerosol loading over the Gangetic-Himalayan region. In this paper, a multi-sensor characterization of the increasing pre-monsoon aerosol loading over northern India, in terms of their spatial, temporal and vertical distribution is presented. Aerosol transport from the northwestern arid regions into the Indo-Gangetic Plains and over the foothills of the Himalayas is found to be vertically extended to elevated altitudes (up to 5 km as observed from the space-borne lidar measurements (CALIPSO. In relation with the enhanced pre-monsoon aerosol loading and the associated solar absorption effects on tropospheric temperature anomalies, this paper investigates the monsoon rainfall variability over India in recent past decades from an observational viewpoint. It is found that the early summer monsoon rainfall over India is on the rise since 1950s, as indicated by historical rainfall data, with over 20% increase for the period 1950–2004. This large sustained increase in the early summer rainfall is led by the observed strengthening of the pre-monsoon tropospheric land-sea thermal gradient over the Indian monsoon region as indicated by microwave satellite measurements (MSU of tropospheric temperatures from 1979–2007. Combined analysis of changes in tropospheric temperatures and summer monsoon rainfall in the past three decades, suggest a future possibility of an emerging rainfall pattern of a wetter monsoon over South Asia in early summer followed by a drier period.

  2. What Controls the Vertical Distribution of Aerosol? Relationships Between Process Sensitivity in HadGEM3-UKCA and Inter-Model Variation from AeroCom Phase II

    Science.gov (United States)

    Kipling, Zak; Stier, Philip; Johnson, Colin E.; Mann, Graham W.; Bellouin, Nicolas; Bauer, Susanne E.; Bergman, Tommi; Chin, Mian; Diehl, Thomas; Ghan, Steven J.; hide

    2016-01-01

    The vertical profile of aerosol is important for its radiative effects, but weakly constrained by observations on the global scale, and highly variable among different models. To investigate the controlling factors in one particular model, we investigate the effects of individual processes in HadGEM3-UKCA and compare the resulting diversity of aerosol vertical profiles with the inter-model diversity from the AeroCom Phase II control experiment. In this way we show that (in this model at least) the vertical profile is controlled by a relatively small number of processes, although these vary among aerosol components and particle sizes. We also show that sufficiently coarse variations in these processes can produce a similar diversity to that among different models in terms of the global-mean profile and, to a lesser extent, the zonal-mean vertical position. However, there are features of certain models' profiles that cannot be reproduced, suggesting the influence of further structural differences between models. In HadGEM3-UKCA, convective transport is found to be very important in controlling the vertical profile of all aerosol components by mass. In-cloud scavenging is very important for all except mineral dust. Growth by condensation is important for sulfate and carbonaceous aerosol (along with aqueous oxidation for the former and ageing by soluble material for the latter). The vertical extent of biomass-burning emissions into the free troposphere is also important for the profile of carbonaceous aerosol. Boundary-layer mixing plays a dominant role for sea salt and mineral dust, which are emitted only from the surface. Dry deposition and below-cloud scavenging are important for the profile of mineral dust only. In this model, the microphysical processes of nucleation, condensation and coagulation dominate the vertical profile of the smallest particles by number (e.g. total CN >3 nm), while the profiles of larger particles (e.g. CN>100 nm) are controlled by the

  3. Effect of phytoplackton-derived organic matter on the behavior of marine aerosols

    Science.gov (United States)

    Fuentes, E.; Coe, H.; McFiggans, G.; Green, D.

    2009-04-01

    The presence of significant concentrations of organic material in marine aerosols has been appreciated for several decades; however, only recently has significant progress been made towards demonstrating that this organic content is biogenically formed. Biogenic organics of placktonic life origin are incorporated in marine aerosol composition as a result of bubble bursting/breaking waves mechanisms that occur at the ocean surface. The presence of organic surfactants in the marine aerosol composition might have a significant impact on the properties of the generated aerosols by affecting the particles surface tension and solution balance properties. Nevertheless, it remains uncertain the role of such organics on the physical-chemical behavior of marine aerosols. In this work an experimental study was performed in order to determine the influence of biogenic marine organic compounds on the size distribution, hygroscopicity and cloud-nucleating properties of marine aerosols. For the experimental study a laboratory water recirculation system (bubble tank), designed for the simulation of bubble-burst aerosol formation, was used as marine aerosol generator. The bubble spectra produced by such system was characterized by means of an optical bubble measuring device (BMS) and it was found to be consistent with oceanic bubble spectra properties. Seawater proxy solutions were prepared from laboratory biologically-synthesized exudates produced by oceanic representative algal species and introduced in the tank for the generation of marine aerosol by bubble bursting. Two experimental methods were employed for seawater proxies preparation: the formation of surface monolayers from the biogenic surfactants extracted by a solid phase extraction technique (monolayer method) and the mixing of the exudates in the sea salt water bulk (bulk mixing method). Particle size distribution, hygroscopicity and cloud condensation nuclei experiments for different monolayers, and exudate mixtures

  4. Unimodal tree size distributions possibly result from relatively strong conservatism in intermediate size classes.

    Directory of Open Access Journals (Sweden)

    Yue Bin

    Full Text Available Tree size distributions have long been of interest to ecologists and foresters because they reflect fundamental demographic processes. Previous studies have assumed that size distributions are often associated with population trends or with the degree of shade tolerance. We tested these associations for 31 tree species in a 20 ha plot in a Dinghushan south subtropical forest in China. These species varied widely in growth form and shade-tolerance. We used 2005 and 2010 census data from that plot. We found that 23 species had reversed J shaped size distributions, and eight species had unimodal size distributions in 2005. On average, modal species had lower recruitment rates than reversed J species, while showing no significant difference in mortality rates, per capita population growth rates or shade-tolerance. We compared the observed size distributions with the equilibrium distributions projected from observed size-dependent growth and mortality. We found that observed distributions generally had the same shape as predicted equilibrium distributions in both unimodal and reversed J species, but there were statistically significant, important quantitative differences between observed and projected equilibrium size distributions in most species, suggesting that these populations are not at equilibrium and that this forest is changing over time. Almost all modal species had U-shaped size-dependent mortality and/or growth functions, with turning points of both mortality and growth at intermediate size classes close to the peak in the size distribution. These results show that modal size distributions do not necessarily indicate either population decline or shade-intolerance. Instead, the modal species in our study were characterized by a life history strategy of relatively strong conservatism in an intermediate size class, leading to very low growth and mortality in that size class, and thus to a peak in the size distribution at intermediate sizes.

  5. Formation of the natural sulfate aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Kerminen, V M; Hillamo, R; Maekinen, M; Virkkula, A; Maekelae, T; Pakkanen, T [Helsinki Univ. (Finland). Dept. of Physics

    1997-12-31

    Anthropogenic sulfate aerosol, together with particles from biomass burning, may significantly reduce the climatic warming due to man-made greenhouse gases. The radiative forcing of aerosol particles is based on their ability to scatter and absorb solar radiation (direct effect), and on their influences on cloud albedos and lifetimes (indirect effect). The direct aerosol effect depends strongly on the size, number and chemical composition of particles, being greatest for particles of 0.1-1 {mu}m in diameter. The indirect aerosol effect is dictated by the number of particles being able to act as cloud condensation nuclei (CCN). For sulfate particles, the minimum CCN size in tropospheric clouds is of the order of 0.05-0.2 {mu}m. To improve aerosol parameterizations in future climate models, it is required that (1) both primary and secondary sources of various particle types will be characterized at a greater accuracy, and (2) the influences of various atmospheric processes on the spatial and temporal distribution of these particles and their physico-chemical properties are known much better than at the present. In estimating the climatic forcing due to the sulfate particles, one of the major problems is to distinguish between sulfur from anthropogenic sources and that of natural origin. Global emissions of biogenic and anthropogenic sulfate pre-cursors are comparable in magnitude, but over regional scales either of these two source types may dominate. The current presentation is devoted to discussing the natural sulfate aerosol, including the formation of sulfur-derived particles in the marine environment, and the use of particulate methanesulfonic acid (MSA) as a tracer for the natural sulfate

  6. Formation of the natural sulfate aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Kerminen, V.M.; Hillamo, R.; Maekinen, M.; Virkkula, A.; Maekelae, T.; Pakkanen, T. [Helsinki Univ. (Finland). Dept. of Physics

    1996-12-31

    Anthropogenic sulfate aerosol, together with particles from biomass burning, may significantly reduce the climatic warming due to man-made greenhouse gases. The radiative forcing of aerosol particles is based on their ability to scatter and absorb solar radiation (direct effect), and on their influences on cloud albedos and lifetimes (indirect effect). The direct aerosol effect depends strongly on the size, number and chemical composition of particles, being greatest for particles of 0.1-1 {mu}m in diameter. The indirect aerosol effect is dictated by the number of particles being able to act as cloud condensation nuclei (CCN). For sulfate particles, the minimum CCN size in tropospheric clouds is of the order of 0.05-0.2 {mu}m. To improve aerosol parameterizations in future climate models, it is required that (1) both primary and secondary sources of various particle types will be characterized at a greater accuracy, and (2) the influences of various atmospheric processes on the spatial and temporal distribution of these particles and their physico-chemical properties are known much better than at the present. In estimating the climatic forcing due to the sulfate particles, one of the major problems is to distinguish between sulfur from anthropogenic sources and that of natural origin. Global emissions of biogenic and anthropogenic sulfate pre-cursors are comparable in magnitude, but over regional scales either of these two source types may dominate. The current presentation is devoted to discussing the natural sulfate aerosol, including the formation of sulfur-derived particles in the marine environment, and the use of particulate methanesulfonic acid (MSA) as a tracer for the natural sulfate

  7. Preliminary study of 7Be, 137Cs and 131I activity concentration distribution rule in Beijing aerosol

    International Nuclear Information System (INIS)

    Fan Yuanqing; Wang Shilian; Zhang Xinjun; Li Qi; Jia Huaimao; Zhao Yungang; Chen Zhanying; Chang Yinzhong; Liu Shujiang; Li Huijuan

    2013-01-01

    The process of aerosol sampling and measuring of Beijing Radionuclide Station and Beijing Radionuclide Laboratory of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) International Monitoring System (IMS) was described. Long time aerosol monitoring data of the station and the laboratory were analyzed through statistic method and the characteristic and rule of the concentration distribution of nuclides 7 Be, 137 Cs and 131 I were obtained. The foundation was formed for further studying the rule of the radionuclide distribution in atmosphere. (authors)

  8. Modeling and Evaluation of the Global Sea-Salt Aerosol Distribution: Sensitivity to Emission Schemes and Resolution Effects at Coastal/Orographic Sites

    Science.gov (United States)

    Spada, M.; Jorba, O.; Perez Garcia-Pando, C.; Janjic, Z.; Baldasano, J. M.

    2013-01-01

    One of the major sources of uncertainty in model estimates of the global sea-salt aerosol distribution is the emission parameterization. We evaluate a new sea-salt aerosol life cycle module coupled to the online multi-scale chemical transport model NMMB/BSC-CTM. We compare 5 year global simulations using five state-of-the-art sea-salt open-ocean emission schemes with monthly averaged coarse aerosol optical depth (AOD) from selected AERONET sun photometers, surface concentration measurements from the University of Miami's Ocean Aerosol Network, and measurements from two NOAA/PMEL cruises (AEROINDOEX and ACE1). Model results are highly sensitive to the introduction of sea-surface-temperature (SST)-dependent emissions and to the accounting of spume particles production. Emission ranges from 3888 teragrams per year to 8114 teragrams per year, lifetime varies between 7.3 hours and 11.3 hours, and the average column mass load is between 5.0 teragrams and 7.2 teragrams. Coarse AOD is reproduced with an overall correlation of around 0.5 and with normalized biases ranging from +8.8 percent to +38.8 percent. Surface concentration is simulated with normalized biases ranging from minus 9.5 percent to plus 28 percent and the overall correlation is around 0.5. Our results indicate that SST-dependent emission schemes improve the overall model performance in reproducing surface concentrations. On the other hand, they lead to an overestimation of the coarse AOD at tropical latitudes, although it may be affected by uncertainties in the comparison due to the use of all-sky model AOD, the treatment of water uptake, deposition and optical properties in the model and/or an inaccurate size distribution at emission.

  9. Aerosol climatology over the Mexico City basin: Characterization of optical properties

    Science.gov (United States)

    Carabali, Giovanni; Estévez, Héctor Raúl; Valdés-Barrón, Mauro; Bonifaz-Alfonzo, Roberto; Riveros-Rosas, David; Velasco-Herrera, Víctor Manuel; Vázquez-Gálvez, Felipe Adrián

    2017-09-01

    Climatology of Aerosol Optical Depth (AOD), Single Scattering Albedo (SSA), and aerosol particle-size distribution were analyzed using a 15-year (1999-2014) dataset from AErosol RObotic NETwork (AERONET) observations over the Mexico City (MC) basin. The atmosphere over this site is dominated by two main aerosol types, represented by urban/industrial pollution and biomass-burning particles. Due to the specific meteorological conditions within the basin, seasons are usually classified into three as follows: Dry Winter (DW) (November-February); Dry Spring (DS) (March-April), and the RAiny season (RA) (May-October), which are mentioned throughout this article. Using a CIMEL sun photometer, we conducted continuous observations over the MC urban area from January 1999 to December 2014. Aerosol Optical Depth (AOD), Ångström exponent (α440-870), Single Scattering Albedo (SSA), and aerosol particle-size distribution were derived from the observational data. The overall mean AOD500 during the 1999-2014 period was 0.34 ± 0.07. The monthly mean AOD reached a maximal value of 0.49 in May and a minimal value of 0.27 in February and March. The average α440-870 value for the period studied was 1.50 ± 0.16. The monthly average of α440-870 reached a minimal value of 1.32 in August and a maximal value of 1.61 in May. Average SSA at 440 nm was 0.89 throughout the observation period, indicating that aerosols over Mexico City are composed mainly of absorptive particles. Concentrations of fine- and coarse-mode aerosols over MC were highest in DS season compared with other seasons, especially for particles with radii measuring between 0.1 and 0.2 μm. Results from the Spectral De-convolution Algorithm (SDA) show that fine-mode aerosols dominated AOD variability in MC. In the final part of this article, we present a classification of aerosols in MC by using the graphical method proposed by Gobbi et al. (2007), which is based on the combined analysis of α and its spectral curvature

  10. Lessons learned from case studies of worker exposures to radioactive aerosols

    International Nuclear Information System (INIS)

    Hoover, M.D.; Guilmette, R.A.; Scott, B.R.

    1995-01-01

    Considerable efforts in the aerosol science and health protection communities are devoted to developing a defensible technical basis for measuring, modeling, and mitigating toxic aerosols. These efforts involve understanding aerosol source terms, projecting potential aerosol releases, describing their behavior in the workplace and environment, developing instruments and techniques to measure the aerosols, designing ways to contain or control the aerosols, modeling and measuring uptake by workers and other people, estimating health effects, and planning appropriate responses. To help in this effort, we have compiled a data base of case studies involving releases of aerosols and worker exposures in a wide range of industries. Sources of information have included personal communications, limited distribution reports, open literature publications, and reports of abnormal occurrences in U.S. Department of Energy facilities and among licensees of the U.S. Nuclear Regulatory Commission. The data base currently includes more than 100 cases. The case studies have been organized according to the radionuclides involved and the circumstances and consequences of the release. This information has been used to address a number of important questions, such as the adequacy of current aerosol sampling and monitoring procedures, areas needing improvement, and strategies for planning for or responding to accidents. One area of particular interest is related to strategies for prospective or retrospective characterization of aerosol source terms. In some cases, worker exposures have involved aerosols that are similar in particle size distribution, composition, and solubility to aerosols routinely produced in the normal process activities. In such cases, prospective characterization of aerosol source terms has provided relevant and useful information

  11. Intercomparison of modal and sectional aerosol microphysics representations within the same 3-D global chemical transport model

    Directory of Open Access Journals (Sweden)

    G. W. Mann

    2012-05-01

    Full Text Available In the most advanced aerosol-climate models it is common to represent the aerosol particle size distribution in terms of several log-normal modes. This approach, motivated by computational efficiency, makes assumptions about the shape of the particle distribution that may not always capture the properties of global aerosol. Here, a global modal aerosol microphysics module (GLOMAP-mode is evaluated and improved by comparing against a sectional version (GLOMAP-bin and observations in the same 3-D global offline chemistry transport model. With both schemes, the model captures the main features of the global particle size distribution, with sub-micron aerosol approximately unimodal in continental regions and bi-modal in marine regions. Initial bin-mode comparisons showed that the current values for two size distribution parameter settings in the modal scheme (mode widths and inter-modal separation sizes resulted in clear biases compared to the sectional scheme. By adjusting these parameters in the modal scheme, much better agreement is achieved against the bin scheme and observations. Annual mean surface-level mass of sulphate, sea-salt, black carbon (BC and organic carbon (OC are within 25% in the two schemes in nearly all regions. Surface level concentrations of condensation nuclei (CN, cloud condensation nuclei (CCN, surface area density and condensation sink also compare within 25% in most regions. However, marine CCN concentrations between 30° N and 30° S are systematically 25–60% higher in the modal model, which we attribute to differences in size-resolved particle growth or cloud-processing. Larger differences also exist in regions or seasons dominated by biomass burning and in free-troposphere and high-latitude regions. Indeed, in the free-troposphere, GLOMAP-mode BC is a factor 2–4 higher than GLOMAP-bin, likely due to differences in size-resolved scavenging. Nevertheless, in most parts of the atmosphere, we conclude that bin

  12. Radiative Importance of Aerosol-Cloud Interaction

    Science.gov (United States)

    Tsay, Si-Chee

    1999-01-01

    Aerosol particles are input into the troposphere by biomass burning, among other sources. These aerosol palls cover large expanses of the earth's surface. Aerosols may directly scatter solar radiation back to space, thus increasing the earth's albedo and act to cool the earth's surface and atmosphere. Aerosols also contribute to the earth's energy balance indirectly. Hygroscopic aerosol act as cloud condensation nuclei (CCN) and thus affects cloud properties. In 1977, Twomey theorized that additional available CCN would create smaller but more numerous cloud droplets in a cloud with a given amount of liquid water. This in turn would increase the cloud albedo which would scatter additional radiation back to space and create a similar cooling pattern as the direct aerosol effect. Estimates of the magnitude of the aerosol indirect effect on a global scale range from 0.0 to -4.8 W/sq m. Thus the indirect effect can be of comparable magnitude and opposite in sign to the estimates of global greenhouse gas forcing Aerosol-cloud interaction is not a one-way process. Just as aerosols have an influence on clouds through the cloud microphysics, clouds have an influence on aerosols. Cloud droplets are solutions of liquid water and CCN, now dissolved. When the cloud droplet evaporates it leaves behind an aerosol particle. This new particle does not have to have the same properties as the original CCN. In fact, studies show that aerosol particles that result from cloud processing are larger in size than the original CCN. Optical properties of aerosol particles are dependent on the size of the particles. Larger particles have a smaller backscattering fraction, and thus less incoming solar radiation will be backscattered to space if the aerosol particles are larger. Therefore, we see that aerosols and clouds modify each other to influence the radiative balance of the earth. Understanding and quantifying the spatial and seasonal patterns of the aerosol indirect forcing may have

  13. Synthesis and tissue distribution studies of two novel esters of haloperidol and the application of radiolabelling techniques using short-lived radionuclides in the study of the deposition characteristics of suspended aerosol particles

    International Nuclear Information System (INIS)

    Smith, M.F.

    1982-01-01

    In the present work, the Schotten-Baumann reaction conditions were modified to esterify the tertiary hydroxyl group of haloperidol. The rapid synthesis (less than 20 min) makes this procedure applicable to the preparation of esters of haloperidol containing fluorine-18 (t/sup (1/2)/ 110 min), a γ-emitting radioisotope useful in external scintigraphy. In vivo distribution studies of the synthesized tritiated esters and haloperidol in the rat demonstrated that neither ester prodrug achieved overall higher brain concentration levels than haloperidol. In this study, radiotracer techniques were developed to examine parameters that characterize pressurized aerosols designed to utilize insoluble particles suspended in the aerosol formulation. The suspended micro-aggregated bovine albumin microspheres were labelled with iodine-131 (t/sup (1/2)/ 8 days). The techniques developed illustrate the use of short-lived radionuclides for: 1) quantitation of each metered dose; 2) characterization of particle size distribution by the aerosol; and 3) determination of the extent of deposition of the particles in the aerosol and all of its components

  14. Eulerian-Lagranigan simulation of aerosol evolution in turbulent mixing layer

    KAUST Repository

    Zhou, Kun

    2016-09-23

    The formation and evolution of aerosol in turbulent flows are ubiquitous in both industrial processes and nature. The intricate interaction of turbulent mixing and aerosol evolution in a canonical turbulent mixing layer was investigated by a direct numerical simulation (DNS) in a recent study (Zhou, K., Attili, A., Alshaarawi, A., and Bisetti, F. Simulation of aerosol nucleation and growth in a turbulent mixing layer. Physics of Fluids, 26, 065106 (2014)). In this work, Monte Carlo (MC) simulation of aerosol evolution is carried out along Lagrangian trajectories obtained in the previous simulation, in order to quantify the error of the moment method used in the previous simulation. Moreover, the particle size distribution (PSD), not available in the previous works, is also investigated. Along a fluid parcel moving through the turbulent flow, temperature and vapor concentration exhibit complex fluctuations, triggering complicate aerosol processes and rendering complex PSD. However, the mean PSD is found to be bi-modal in most of the mixing layer except that a tri-modal distribution is found in the turbulent transition region. The simulated PSDs agree with the experiment observations available in the literature. A different explanation on the formation of such PSDs is provided.

  15. Alpha spectrometric characterization of process-related particle size distributions from active particle sampling at the Los Alamos National Laboratory uranium foundry

    Energy Technology Data Exchange (ETDEWEB)

    Plionis, Alexander A [Los Alamos National Laboratory; Peterson, Dominic S [Los Alamos National Laboratory; Tandon, Lav [Los Alamos National Laboratory; Lamont, Stephen P [Los Alamos National Laboratory

    2009-01-01

    Uranium particles within the respirable size range pose a significant hazard to the health and safety of workers. Significant differences in the deposition and incorporation patterns of aerosols within the respirable range can be identified and integrated into sophisticated health physics models. Data characterizing the uranium particle size distribution resulting from specific foundry-related processes are needed. Using personal air sampling cascade impactors, particles collected from several foundry processes were sorted by activity median aerodynamic diameter onto various Marple substrates. After an initial gravimetric assessment of each impactor stage, the substrates were analyzed by alpha spectrometry to determine the uranium content of each stage. Alpha spectrometry provides rapid nondestructive isotopic data that can distinguish process uranium from natural sources and the degree of uranium contribution to the total accumulated particle load. In addition, the particle size bins utilized by the impactors provide adequate resolution to determine if a process particle size distribution is: lognormal, bimodal, or trimodal. Data on process uranium particle size values and distributions facilitate the development of more sophisticated and accurate models for internal dosimetry, resulting in an improved understanding of foundry worker health and safety.

  16. Contribution to the study of nuclear aerosol: looking for the dynamic form factor of the aerosol of primary particles of sodium oxide

    International Nuclear Information System (INIS)

    Barbe, M.

    1982-09-01

    The dynamical form factor describes the entrainment of any non spherical particle, of inhomogeneous density, in relation to the entrainment of a spherical particle with the same volume and some sedimentation speed. Experimental study of the form factor and particle size distribution of sodium peroxide primary aerosols [fr

  17. Size effect on transfection and cytotoxicity of nanoscale plasmid DNA/polyethyleneimine complexes for aerosol gene delivery

    Energy Technology Data Exchange (ETDEWEB)

    Hoon Byeon, Jeong, E-mail: jbyeon@purdue.edu [Department of Chemistry, Purdue University, West Lafayette, Indiana 47907 (United States); Kim, Jang-Woo, E-mail: jwkim@hoseo.edu [Department of Digital Display Engineering, Hoseo University, Asan 336-795 (Korea, Republic of)

    2014-02-03

    Nanoscale plasmid DNA (pDNA)/polyethyleneimine (PEI) complexes were fabricated in the aerosol state using a nebulization system consisting of a collison atomizer and a cool-walled diffusion dryer. The aerosol fabricated nanoscale complexes were collected and employed to determine fundamental properties of the complexes, such as size, structure, surface charge, and in vitro gene transfection efficiency and cytotoxicity. The results showed that mass ratio between pDNA and PEI should be optimized to enhance gene transfection efficiency without a significant loss of cell viability. These findings may support practical advancements in the field of nonviral gene delivery.

  18. Aerosol Activation Properties within and above Mixing Layer in the North China Plain

    Science.gov (United States)

    Deng, Z.; Ran, L.

    2013-12-01

    Aerosol particles, serving as cloud condensation nuclei (CCN), may modify the properties of clouds and have an impact on climate. The vertical distribution of aerosols and their activation properties is critical to quantify the effect of aerosols on clouds. An intensive field campaign, Vertical Observations of trace Gases and Aerosols in the North China Plain (VOGA-NCP 2013), was conducted in the North China Plain during the late July and early August 2013 to measure the vertical profiles of atmospheric components in this polluted region and estimate their effects on atmospheric environment and climate. Aerosols were measured with in-situ instruments and Lidar. Particularly, the aerosols were collected at 1000 m height with a 1 m3 bag sampler attached to a tethered balloon, and subsequently measured with combined scanning mobility particle sizer (SMPS) and CCN counter. Comparisons of size-resolved activation ratios at ground level and 1000 m height showed that aerosols in upper atmosphere were not only less concentrated, but also less CCN-active than those at the surface. The difference in aerosol properties between upper atmosphere and the ground indicates that the analysis of impacts of aerosols on cloud might be misleading in heavily polluted region based on the relationship of cloud properties and surface aerosols or column without considering the vertical distribution of aerosol activation abilities.

  19. Properties of Arctic Aerosol Particles and Residuals of Warm Clouds: Cloud Activation Efficiency and the Aerosol Indirect Effect

    Science.gov (United States)

    Zelenyuk, A.; Imre, D. G.; Leaitch, R.; Ovchinnikov, M.; Liu, P.; Macdonald, A.; Strapp, W.; Ghan, S. J.; Earle, M. E.

    2012-12-01

    Single particle mass spectrometer, SPLAT II, was used to characterize the size, composition, number concentration, density, and shape of individual Arctic spring aerosol. Background particles, particles above and below the cloud, cloud droplet residuals, and interstitial particles were characterized with goal to identify the properties that separate cloud condensation nuclei (CCN) from background aerosol particles. The analysis offers a comparison between warm clouds formed on clean and polluted days, with clean days having maximum particle concentrations (Na) lower than ~250 cm-3, as compared with polluted days, in which maximum concentration was tenfold higher. On clean days, particles were composed of organics, organics mixed with sulfates, biomass burning (BB), sea salt (SS), and few soot and dust particles. On polluted days, BB, organics associated with BB, and their mixtures with sulfate dominated particle compositions. Based on the measured compositions and size distributions of cloud droplet residuals, background aerosols, and interstitial particles, we conclude that these three particle types had virtually the same compositions, which means that cloud activation probabilities were surprisingly nearly composition independent. Moreover, these conclusions hold in cases in which less than 20% or more than 90% of background particles got activated. We concluded that for the warm clouds interrogated in this study particle size played a more important factor on aerosol CCN activity. Comparative analysis of all studied clouds reveals that aerosol activation efficiency strongly depends on the aerosol concentrations, such that at Na <200 cm-3, nearly all particles activate, and at higher concentrations the activation efficiency is lower. For example, when Na was greater than 1500 cm-3, less than ~30% of particles activated. The data suggest that as the number of nucleated droplets increases, condensation on existing droplets effectively competes with particle

  20. Aerosol Optical Properties Derived from the DRAGON-NE Asia Campaign, and Implications for a Single-Channel Algorithm to Retrieve Aerosol Optical Depth in Spring from Meteorological Imager (MI) On-Board the Communication, Ocean, and Meteorological Satellite (COMS)

    Science.gov (United States)

    Kim, M.; Kim, J.; Jeong, U.; Kim, W.; Hong, H.; Holben, B.; Eck, T. F.; Lim, J.; Song, C.; Lee, S.; hide

    2016-01-01

    An aerosol model optimized for northeast Asia is updated with the inversion data from the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)-northeast (NE) Asia campaign which was conducted during spring from March to May 2012. This updated aerosol model was then applied to a single visible channel algorithm to retrieve aerosol optical depth (AOD) from a Meteorological Imager (MI) on-board the geostationary meteorological satellite, Communication, Ocean, and Meteorological Satellite (COMS). This model plays an important role in retrieving accurate AOD from a single visible channel measurement. For the single-channel retrieval, sensitivity tests showed that perturbations by 4 % (0.926 +/- 0.04) in the assumed single scattering albedo (SSA) can result in the retrieval error in AOD by over 20 %. Since the measured reflectance at the top of the atmosphere depends on both AOD and SSA, the overestimation of assumed SSA in the aerosol model leads to an underestimation of AOD. Based on the AErosol RObotic NETwork (AERONET) inversion data sets obtained over East Asia before 2011, seasonally analyzed aerosol optical properties (AOPs) were categorized by SSAs at 675 nm of 0.92 +/- 0.035 for spring (March, April, and May). After the DRAGON-NE Asia campaign in 2012, the SSA during spring showed a slight increase to 0.93 +/- 0.035. In terms of the volume size distribution, the mode radius of coarse particles was increased from 2.08 +/- 0.40 to 2.14 +/- 0.40. While the original aerosol model consists of volume size distribution and refractive indices obtained before 2011, the new model is constructed by using a total data set after the DRAGON-NE Asia campaign. The large volume of data in high spatial resolution from this intensive campaign can be used to improve the representative aerosol model for East Asia. Accordingly, the new AOD data sets retrieved from a single-channel algorithm, which uses a precalculated look-up table (LUT) with the new aerosol model, show