WorldWideScience

Sample records for aerosol assisted chemical

  1. Hybrid chemical vapour and nanoceramic aerosol assisted deposition for multifunctional nanocomposite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Warwick, Michael E.A.; Dunnill, Charles W.; Goodall, Josie; Darr, Jawwad A.; Binions, Russell, E-mail: uccarbi@ucl.ac.uk

    2011-07-01

    Hybrid atmospheric pressure chemical vapour and aerosol assisted deposition via the reaction of vanadium acetylacetonate and a suspension of preformed titanium dioxide or cerium dioxide nanoparticles, led to the production of vanadium dioxide nanocomposite thin films on glass substrates. The preformed nanoparticle oxides used for the aerosol were synthesised using a continuous hydrothermal flow synthesis route involving the rapid reaction of a metal salt solution with a flow of supercritical water in a flow reactor. Multifunctional nanocomposite thin films from the hybrid deposition process were characterised using scanning electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The functional properties of the films were evaluated using variable temperature optical measurements to assess thermochromic behaviour and methylene blue photodecolourisation experiments to assess photocatalytic activity. The tests show that the films are multifunctional in that they are thermochromic (having a large change in infra-red reflectivity upon exceeding the thermochromic transition temperature) and have significant photocatalytic activity under irradiation with 254 nm light.

  2. Capacitive behavior of Ag doped V2O5 grown by aerosol assisted chemical vapour deposition

    International Nuclear Information System (INIS)

    Vernardou, D.; Marathianou, I.; Katsarakis, N.; Koudoumas, E.; Kazadojev, I.I.; O’Brien, S.; Pemble, M.E.; Povey, I.M.

    2016-01-01

    The growth of silver doped vanadium pentoxide was performed by aerosol assisted chemical vapour deposition and found to be optimal at 450° C. Additionally, an increase in crystallinity and a change in preferred orientation of V 2 O 5 was observed upon increasing the silver content. Silver incorporation also resulted in morphological changes in the thin films from rod to pellet-like structures. For higher silver content films the amount of incorporated charge increased and reversibility and repeatability was demonstrated for 500 cycles. Electrochemical impedance spectroscopy determined that the transfer and diffusion of Li+ ions through the cathode-electrolyte interface was assisted by silver loading, hence, enhancing the capacitive performance.

  3. Nanoparticulate cerium dioxide and cerium dioxide-titanium dioxide composite thin films on glass by aerosol assisted chemical vapour deposition

    International Nuclear Information System (INIS)

    Qureshi, Uzma; Dunnill, Charles W.; Parkin, Ivan P.

    2009-01-01

    Two series of composite thin films were deposited on glass by aerosol assisted chemical vapour deposition (AACVD)-nanoparticulate cerium dioxide and nanoparticulate cerium dioxide embedded in a titanium dioxide matrix. The films were analysed by a range of techniques including UV-visible absorption spectroscopy, X-ray diffraction, scanning electron microscopy and energy dispersive analysis by X-rays. The AACVD prepared films showed the functional properties of photocatalysis and super-hydrophilicity. The CeO 2 nanoparticle thin films displaying photocatalysis and photo-induced hydrophilicity almost comparable to that of anatase titania.

  4. Photocatalytic activity of tin-doped TiO{sub 2} film deposited via aerosol assisted chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chua, Chin Sheng, E-mail: cschua@simtech.a-star.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, 638075 (Singapore); Tan, Ooi Kiang; Tse, Man Siu [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Ding, Xingzhao [Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, 638075 (Singapore)

    2013-10-01

    Tin-doped TiO{sub 2} films are deposited via aerosol assisted chemical vapor deposition using a precursor mixture composing of titanium tetraisopropoxide and tetrabutyl tin. The amount of tin doping in the deposited films is controlled by the volume % concentration ratio of tetrabutyl tin over titanium tetraisopropoxide in the mixed precursor solution. X-ray diffraction analysis results reveal that the as-deposited films are composed of pure anatase TiO{sub 2} phase. Red-shift in the absorbance spectra is observed attributed to the introduction of Sn{sup 4+} band states below the conduction band of TiO{sub 2}. The effect of tin doping on the photocatalytic property of TiO{sub 2} films is studied through the degradation of stearic acid under UV light illumination. It is found that there is a 10% enhancement on the degradation rate of stearic acid for the film with 3.8% tin doping in comparison with pure TiO{sub 2} film. This improvement of photocatalytic performance with tin incorporation could be ascribed to the reduction of electron-hole recombination rate through charge separation and an increased amount of OH radicals which are crucial for the degradation of stearic acid. Further increase in tin doping results in the formation of recombination site and large anatase grains, which leads to a decrease in the degradation rate. - Highlights: ► Deposition of tin-doped TiO{sub 2} film via aerosol assisted chemical vapor deposition ► Deposited anatase films show red-shifted in UV–vis spectrum with tin-dopants. ► Photoactivity improves at low tin concentration but reduces at higher concentration. ► Improvement in photoactivity due to bandgap narrowing from Sn{sup 4+} band states ► Maximum photoactivity achieved occurs for films with 3.8% tin doping.

  5. Electrochemical properties of amorphous WO3 coatings grown on polycarbonate by aerosol-assisted CVD

    International Nuclear Information System (INIS)

    Vernardou, D.; Drosos, H.; Spanakis, E.; Koudoumas, E.; Katsarakis, N.; Pemble, M.E.

    2012-01-01

    Highlights: ► Tungsten oxide is aerosol assisted chemically vapor deposited on polycarbonate. ► Their properties are dependent on the Ar:O 2 ratio during deposition. ► The porous structure enhances their electrochemical performance. - Abstract: Tungsten oxide coatings are chemically vapor deposited on polycarbonate via aerosol assisted at 125 °C. The effect of the Ar:O 2 ratio on the structural, morphological and electrochemical properties of the samples is investigated. The coating grown using Ar:O 2 ratio of 50:50, exhibits the best electrochemical activity and the fastest colouration-bleaching response. At the same time it offers a high specific capacitance that does not degrade upon at least 1000 successive charging–discharging cycles as studied by voltammetry in a solution of 1 M LiClO 4 . The importance of morphology towards the enhancement of the electrochromic behaviour of the coatings is discussed.

  6. Aerosol-assisted chemical vapor deposition of V2O5 cathodes with high rate capabilities for magnesium-ion batteries

    Science.gov (United States)

    Drosos, Charalampos; Jia, Chenglin; Mathew, Shiny; Palgrave, Robert G.; Moss, Benjamin; Kafizas, Andreas; Vernardou, Dimitra

    2018-04-01

    The growth of orthorhombic vanadium pentoxide nanostructures was accomplished using an aerosol-assisted chemical vapor deposition process. These materials showed excellent electrochemical performance for magnesium-ion storage in an aqueous electrolyte; showing specific discharge capacities of up to 427 mAh g-1 with a capacity retention of 82% after 2000 scans under a high specific current of 5.9 A g-1. The high rate capability suggested good structural stability and high reversibility. We believe the development of low-cost and large-area coating methods, such as the technique used herein, will be essential for the upscalable fabrication of next-generation rechargeable battery technologies.

  7. Aerosol chemical physics

    International Nuclear Information System (INIS)

    Marlow, W.H.

    1982-01-01

    A classification of the research fields in the chemical physics of aerosol microparticles is given. The emphasis lies on the microphysics of isolated particles and clusters and on physical transformations and thermodynamics. (LDN)

  8. Aerosol Chemical Speciation Monitor (ACSM) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Thomas B. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-08-15

    The Aerodyne Aerosol Chemical Speciation Monitor (ACSM) measures particle mass loading and chemical composition in real time for non-refractory sub-micron aerosol particles. The ACSM is designed for long-term unattended deployment and routine monitoring applications.

  9. Microstructural, chemical and textural characterization of ZnO nanorods synthesized by aerosol assisted chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Sáenz-Trevizo, A.; Amézaga-Madrid, P.; Fuentes-Cobas, L.; Pizá-Ruiz, P.; Antúnez-Flores, W.; Ornelas-Gutiérrez, C. [Centro de Investigación en Materiales Avanzados, S.C., Chihuahua, Chihuahua 31109 (Mexico); Pérez-García, S.A. [Centro de Investigación en Materiales Avanzados, S.C., Unidad Monterrey, Apodaca, Nuevo León 66600 (Mexico); Miki-Yoshida, M., E-mail: mario.miki@cimav.edu.mx [Centro de Investigación en Materiales Avanzados, S.C., Chihuahua, Chihuahua 31109 (Mexico)

    2014-12-15

    ZnO nanorods were synthesized by aerosol assisted chemical vapor deposition onto TiO{sub 2} covered borosilicate glass substrates. Deposition parameters were optimized and kept constant. Solely the effect of different nozzle velocities on the growth of ZnO nanorods was evaluated in order to develop a dense and uniform structure. The crystalline structure was characterized by conventional X-ray diffraction in grazing incidence and Bragg–Brentano configurations. In addition, two-dimensional grazing incidence synchrotron radiation diffraction was employed to determine the preferred growth direction of the nanorods. Morphology and growth characteristics analyzed by electron microscopy were correlated with diffraction outcomes. Chemical composition was established by X-ray photoelectron spectroscopy. X-ray diffraction results and X-ray photoelectron spectroscopy showed the presence of wurtzite ZnO and anatase TiO{sub 2} phases. Morphological changes noticed when the deposition velocity was lowered to the minimum, indicated the formation of relatively vertically oriented nanorods evenly distributed onto the TiO{sub 2} buffer film. By coupling two-dimensional X-ray diffraction and computational modeling with ANAELU it was proved that a successful texture determination was achieved and confirmed by scanning electron microscopy analysis. Texture analysis led to the conclusion of a preferred growth direction in [001] having a distribution width Ω = 20° ± 2°. - Highlights: • Uniform and pure single-crystal ZnO nanorods were obtained by AACVD technique. • Longitudinal and transversal axis parallel to the [001] and [110] directions, respectively. • Texture was determined by 2D synchrotron diffraction and electron microscopy analysis. • Nanorods have its [001] direction distributed close to the normal of the substrate. • Angular spread about the preferred orientation is 20° ± 2°.

  10. Transforming a Simple Commercial Glue into Highly Robust Superhydrophobic Surfaces via Aerosol-Assisted Chemical Vapor Deposition.

    Science.gov (United States)

    Zhuang, Aoyun; Liao, Ruijin; Lu, Yao; Dixon, Sebastian C; Jiamprasertboon, Arreerat; Chen, Faze; Sathasivam, Sanjayan; Parkin, Ivan P; Carmalt, Claire J

    2017-12-06

    Robust superhydrophobic surfaces were synthesized as composites of the widely commercially available adhesives epoxy resin (EP) and polydimethylsiloxane (PDMS). The EP layer provided a strongly adhered micro/nanoscale structure on the substrates, while the PDMS was used as a post-treatment to lower the surface energy. In this study, the depositions of EP films were taken at a range of temperatures, deposition times, and substrates via aerosol-assisted chemical vapor deposition (AACVD). A novel dynamic deposition temperature approach was developed to create multiple-layered periodic micro/nanostructures that significantly improved the surface mechanical durability. Water droplet contact angles (CA) of 160° were observed with droplet sliding angles (SA) frequently UV testing (365 nm, 3.7 mW/cm 2 , 120 h) were carried out to exhibit the environmental stability of the films. Self-cleaning behavior was demonstrated in clearing the surfaces of various contaminating powders and aqueous dyes. This facile and flexible method for fabricating highly durable superhydrophobic polymer films points to a promising future for AACVD in their scalable and low-cost production.

  11. Linking remotely sensed aerosol types to their chemical composition

    Science.gov (United States)

    Dawson, K. W.; Kacenelenbogen, M. S.; Johnson, M. S.; Burton, S. P.; Hostetler, C. A.; Meskhidze, N.

    2016-12-01

    Aerosol types measured during the Ship-Aircraft Bio-Optical Research (SABOR) experiment are related to GEOS-Chem model chemical composition. The application for this procedure to link model chemical components to aerosol type is desirable for understanding aerosol evolution over time. The Mahalanobis distance (DM) statistic is used to cluster model groupings of five chemical components (organic carbon, black carbon, sea salt, dust and sulfate) in a way analogous to the methods used by Burton et al. [2012] and Russell et al. [2014]. First, model-to-measurement evaluation is performed by collocating vertically resolved aerosol extinction from SABOR High Spectral Resolution LiDAR (HSRL) to the GEOS-Chem nested high-resolution data. Comparisons of modeled-to-measured aerosol extinction are shown to be within 35% ± 14%. Second, the model chemical components are calculation into five variables to calculate the DM and cluster means and covariances for each HSRL-retrieved aerosol type. The layer variables from the model are aerosol optical depth (AOD) ratios of (i) sea salt and (ii) dust to total AOD, mass ratios of (iii) total carbon (i.e. sum of organic and black carbon) to the sum of total carbon and sulfate (iv) organic carbon to black carbon, and (v) the natural log of the aerosol-to-molecular extinction ratio. Third, the layer variables and at most five out of twenty SABOR flights are used to form the pre-specified clusters for calculating DM and to assign an aerosol type. After determining the pre-specified clusters, model aerosol types are produced for the entire vertically resolved GEOS-Chem nested domain over the United States and the model chemical component distributions relating to each type are recorded. Resulting aerosol types are Dust/Dusty Mix, Maritime, Smoke, Urban and Fresh Smoke (separated into `dark' and `light' by a threshold of the organic to black carbon ratio). Model-calculated DM not belonging to a specific type (i.e. not meeting a threshold

  12. Microwave-Irradiation-Assisted HVAC Filtration for Inactivation of Viral Aerosols (Postprint)

    Science.gov (United States)

    2012-02-01

    Baggiani, A. and Senesi, S. (2004). Effect of Microwave Radiation on Bacillus subtilis Spores . J. Appl. Microbiol. 97: 1220–1227. Damit, B., Lee, C.N...AFRL-RX-TY-TP-2012-0020 MICROWAVE-IRRADIATION-ASSISTED HVAC FILTRATION FOR INACTIVATION OF VIRAL AEROSOLS POSTPRINT Myung-Heui Woo and...12-APR-2011 -- 11-DEC-2011 Microwave Irradiation-Assisted HVAC Filtration for Inactivation of Viral Aerosols (POSTPRINT) FA8650-06-C-5913 0602102F

  13. Aerosols in Northern Morocco: Input pathways and their chemical fingerprint

    Science.gov (United States)

    Benchrif, A.; Guinot, B.; Bounakhla, M.; Cachier, H.; Damnati, B.; Baghdad, B.

    2018-02-01

    The Mediterranean basin is one of the most sensitive regions in the world regarding climate change and air quality. Deserts and marine aerosols combine with combustion aerosols from maritime traffic, large urban centers, and at a larger scale from populated industrialized regions in Europe. From Tetouan city located in the North of Morocco, we attempted to better figure out the main aerosol transport pathways and their respective aerosol load and chemical profile by examining air mass back trajectory patterns and aerosol chemical compositions from May 2011 to April 2012. The back trajectory analysis throughout the sampling period led to four clusters, for which meteorological conditions and aerosol chemical characteristics have been investigated. The most frequent cluster (CL3: 39%) corresponds to polluted air masses coming from the Mediterranean Basin, characterized by urban and marine vessels emissions out of Spain and of Northern Africa. Two other polluted clusters were characterized. One is of local origin (CL1: 22%), with a marked contribution from urban aerosols (Rabat, Casablanca) and from biomass burning aerosols. The second (CL2: 32%) defines air masses from the near Atlantic Ocean, affected by pollutants emitted from the Iberian coast. A fourth cluster (CL4: 7%) is characterized by rather clean, fast and rainy oceanic air masses, influenced during their last 24 h before reaching Tetouan by similar sources with those affecting CL2, but to a lesser extent. The chemical data show that carbonaceous species are found in the fine aerosols fraction and are generally from local primary sources (low OC/EC) rather than long-range transported. In addition to fresh traffic and maritime vessel aerosols, our results suggest the contribution of local biomass burning.

  14. Aerosol simulation including chemical and nuclear reactions

    International Nuclear Information System (INIS)

    Marwil, E.S.; Lemmon, E.C.

    1985-01-01

    The numerical simulation of aerosol transport, including the effects of chemical and nuclear reactions presents a challenging dynamic accounting problem. Particles of different sizes agglomerate and settle out due to various mechanisms, such as diffusion, diffusiophoresis, thermophoresis, gravitational settling, turbulent acceleration, and centrifugal acceleration. Particles also change size, due to the condensation and evaporation of materials on the particle. Heterogeneous chemical reactions occur at the interface between a particle and the suspending medium, or a surface and the gas in the aerosol. Homogeneous chemical reactions occur within the aersol suspending medium, within a particle, and on a surface. These reactions may include a phase change. Nuclear reactions occur in all locations. These spontaneous transmutations from one element form to another occur at greatly varying rates and may result in phase or chemical changes which complicate the accounting process. This paper presents an approach for inclusion of these effects on the transport of aerosols. The accounting system is very complex and results in a large set of stiff ordinary differential equations (ODEs). The techniques for numerical solution of these ODEs require special attention to achieve their solution in an efficient and affordable manner. 4 refs

  15. Iron selenide films by aerosol assisted chemical vapor deposition from single source organometallic precursor in the presence of surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Raja Azadar [Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad (Pakistan); Badshah, Amin, E-mail: aminbadshah@yahoo.com [Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad (Pakistan); Younis, Adnan [School of Materials Science and Engineering, University of New South Wales, Sydney 2052, NSW (Australia); Khan, Malik Dilshad [Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad (Pakistan); Akhtar, Javeed [Department of Physics, COMSATS Institute of Information Technology, Park Road, Chak Shahzad, Islamabad (Pakistan)

    2014-09-30

    This article presents the synthesis and characterization (multinuclear nuclear magnetic resonance, Fourier transform infrared spectroscopy, carbon–hydrogen–nitrogen–sulfur analyzer, atomic absorption spectrometry and thermogravimetric analysis) of a single source organometallic precursor namely 1-acetyl-3-(4-ferrocenylphenyl)selenourea for the fabrication of iron selenide (FeSe) films on glass substrates using aerosol assisted chemical vapor deposition (AACVD). The changes in the morphologies of the films have been monitored by the use of two different surfactants i.e. triton X-100 and tetraoctylphosphonium bromide during AACVD. The role of surfactant has been evaluated by examining the interaction of the surfactants with the precursor by using UV–vis spectroscopy and cyclic voltammetry. The fabricated FeSe films have been characterized with powder X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. - Highlights: • Ferrocene incorporated selenourea (FIS) has been synthesized and characterized. • FeSe thin films have been fabricated from FIS. • Mechanism of film growth was studied with cyclic voltammetry and UV–vis spectroscopy.

  16. Influence of aerosol acidity on the chemical composition of secondary organic aerosol from β-caryophyllene

    Directory of Open Access Journals (Sweden)

    E. M. Knipping

    2011-02-01

    Full Text Available The secondary organic aerosol (SOA yield of β-caryophyllene photooxidation is enhanced by aerosol acidity. In the present study, the influence of aerosol acidity on the chemical composition of β-caryophyllene SOA is investigated using ultra performance liquid chromatography/electrospray ionization-time-of-flight mass spectrometry (UPLC/ESI-TOFMS. A number of first-, second- and higher-generation gas-phase products having carbonyl and carboxylic acid functional groups are detected in the particle phase. Particle-phase reaction products formed via hydration and organosulfate formation processes are also detected. Increased acidity leads to different effects on the abundance of individual products; significantly, abundances of organosulfates are correlated with aerosol acidity. To our knowledge, this is the first detection of organosulfates and nitrated organosulfates derived from a sesquiterpene. The increase of certain particle-phase reaction products with increased acidity provides chemical evidence to support the acid-enhanced SOA yields. Based on the agreement between the chromatographic retention times and accurate mass measurements of chamber and field samples, three β-caryophyllene products (i.e., β-nocaryophyllon aldehyde, β-hydroxynocaryophyllon aldehyde, and β-dihydroxynocaryophyllon aldehyde are suggested as chemical tracers for β-caryophyllene SOA. These compounds are detected in both day and night ambient samples collected in downtown Atlanta, GA and rural Yorkville, GA during the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS.

  17. Aerosol Chemical Mass Closure during the EUROTRAC-2 AEROSOL Intercomparison 2000

    Czech Academy of Sciences Publication Activity Database

    Maenhaut, W.; Schwarz, Jaroslav; Cafmeyer, J.; Chi, X.

    2002-01-01

    Roč. 186, - (2002), s. 233-237 ISSN 0168-583X Institutional research plan: CEZ:AV0Z4072921 Keywords : ion chromatography * chemical composition * atmospheric aerosols Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.158, year: 2002

  18. Influence of trace aromatics on the chemical growth mechanisms of Titan aerosol analogues

    Science.gov (United States)

    Gautier, Thomas; Sebree, Joshua A.; Li, Xiang; Pinnick, Veronica T.; Grubisic, Andrej; Loeffler, Mark J.; Getty, Stephanie A.; Trainer, Melissa G.; Brinckerhoff, William B.

    2017-06-01

    The chemical structure and formation pathways of Titan aerosols remain largely unknown. In this work, we studied the effect of trace aromatics on the chemical composition and formation pathways of laboratory analogues of Titan's organic aerosols. The aerosol analogues were produced using four different trace aromatic molecules, comprised of one or two aromatic rings, each with or without a nitrogen heteroatom. Samples were then analyzed by laser desorption/ionization Mass Spectrometry (LDMS), revealing a high variability in the sample composition depending on the trace aromatic used. Our work reveals that the final chemical structure of the aerosols depends strongly on the number of aromatic rings in the trace molecule, leading either to a polymeric or to a random co-polymeric growth of the sample. These different chemical structures can affect the physical properties of the aerosol. Future analysis of Titan's aerosols using better resolution could potentially determine whether either of the growth hypotheses are preferred.

  19. Chemical, physical, and optical evolution of biomass burning aerosols: a case study

    Science.gov (United States)

    Adler, G.; Flores, J. M.; Abo Riziq, A.; Borrmann, S.; Rudich, Y.

    2011-02-01

    In-situ chemical composition measurements of ambient aerosols have been used for characterizing the evolution of submicron aerosols from a large anthropogenic biomass burning (BB) event in Israel. A high resolution Time of Flight Aerosol Mass Spectrometer (HR-RES-TOF-AMS) was used to follow the chemical evolution of BB aerosols during a night-long, extensive nationwide wood burning event and during the following day. While these types of extensive BB events are not common in this region, burning of agricultural waste is a common practice. The aging process of the BB aerosols was followed through their chemical, physical and optical properties. Mass spectrometric analysis of the aerosol organic component showed that aerosol aging is characterized by shifting from less oxidized fresh BB aerosols to more oxidized aerosols. Evidence for aerosol aging during the day following the BB event was indicated by an increase in the organic mass, its oxidation state, the total aerosol concentration, and a shift in the modal particle diameter. The effective broadband refractive index (EBRI) was derived using a white light optical particle counter (WELAS). The average EBRI for a mixed population of aerosols dominated by open fires was m = 1.53(±0.03) + 0.07i(±0.03), during the smoldering phase of the fires we found the EBRI to be m = 1.54(±0.01) + 0.04i(±0.01) compared to m = 1.49(±0.01) + 0.02i(±0.01) of the aged aerosols during the following day. This change indicates a decrease in the overall aerosol absorption and scattering. Elevated levels of particulate Polycyclic Aromatic Hydrocarbons (PAHs) were detected during the entire event, which suggest possible implications for human health during such extensive event.

  20. Chemically aged and mixed aerosols over the Central Atlantic Ocean - Potential impacts

    NARCIS (Netherlands)

    Astitha, M.; Kallos, G.; Spyrou, C.; O'Hirok, W.; Lelieveld, J.; Denier Gon, H.A.C. van der

    2010-01-01

    Detailed information on the chemical and physical properties of aerosols is important for assessing their role in air quality and climate. This work explores the origin and fate of continental aerosols transported over the Central Atlantic Ocean, in terms of chemical composition, number and size

  1. Chemical evolution of Titan’s aerosol analogues under VUV irradiation

    Science.gov (United States)

    Carrasco, Nathalie; Gavilan, Lisseth; Tigrine, Sarah; Vettier, Ludovic; Nahon, Laurent; Pernot, Pascal

    2017-10-01

    Since the Cassini-CAPS measurements, organic aerosols are known to be present and formed at high altitudes in the diluted and partially ionized medium that is Titan’s ionosphere [1].After production in the ionosphere, Titan’s aerosols evolve through microphysics during their sedimentation down to Titan’s surface [2]. Starting with a few nanomers size in the upper atmosphere, they reach a fractal structure of a few hundreds nanometers close to the surface [3]. During sedimentation, aerosols are also submitted to solar irradiation. As laboratory analogs of Titan’s atmospheric aerosols (tholins) show a strong UV absorption [4], we suspect that VUV irradiation could also induce a chemical evolution of Titan’s aerosols during their descent in Titan’s atmosphere.The aim of this work ist to simulate the irradiation process occuring on the aerosols in Titan’s atmosphere and to address whether this irradiation impacts the chemical composition of the organic solids. First aerosol analogues were produced in a N2-CH4 plasma discharge as thin organic films of a few hundreds of nanometers thick [5]. Then those were irradiated at Lyman-α wavelength, the strongest VUV line in the solar spectrum, with a high photon flux on a synchrotron VUV beamline. We will present and discuss the significant chemical evolutions observed on the analogues after VUV irradiation by mid-IR absorption spectroscopy.[1] Waite et al. (2009) Science , 316, p. 870[2] Lavvas et al. (2011) Astrophysical Journal, 728:80[3] Tomasko et al. (2008) Planetary and Space Science, 56, p. 669[4] Mahjoub et al. (2012) Icarus 221, P. 670[5] Carrasco et al. (2016) Planetary and Space Science, 128, p. 52

  2. The physico-chemical evolution of atmospheric aerosols and the gas-particle partitioning of inorganic aerosol during KORUS-AQ

    Science.gov (United States)

    Lee, T.; Park, T.; Lee, J. B.; Lim, Y. J.; Ahn, J.; Park, J. S.; Soo, C. J.; Desyaterik, Y.; Collett, J. L., Jr.

    2017-12-01

    Aerosols influence climate change directly by scattering and absorption and indirectly by acting as cloud condensation nuclei and some of the effects of aerosols are reduction in visibility, deterioration of human health, and deposition of pollutants to ecosystems. Urban area is large source of aerosols and aerosol precursors. Aerosol sources are both local and from long-range transport. Long-range transport processed aerosol are often dominant sources of aerosol pollution in Korea. To improve our knowledge of aerosol chemistry, Korea and U.S-Air Quality (KORUS-AQ) of Aircraft-based aerosol measurement took place in and around Seoul, Korea during May and June 2016. KORUS-AQ campaigns were conducted to study the chemical characterization and processes of pollutants in the Seoul Metropolitan area to regional scales of Korean peninsula. Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed on aircraft platforms on-board DC-8 (NASA) aircraft. We characterized aerosol chemical properties and mass concentrations of sulfate, nitrate, ammonium and organics in polluted air plumes and investigate the spatial and vertical distribution of the species. The results of studies show that organics is predominant in Aerosol and a significant fraction of the organics is oxygenated organic aerosol (OOA) at the high altitude. Both Nitrate and sulfate can partition between the gas and particle phases. The ratios for HNO3/(N(V) (=gaseous HNO3 + particulate Nitrate) and SO2/(SO2+Sulfate) were found to exhibit quite different distributions between the particles and gas phase for the locations during KORUS-AQ campaign, representing potential for formation of additional particulate nitrate and sulfate. The results of those studies can provide highly resolved temporal and spatial air pollutant, which are valuable for air quality model input parameters for aerosol behaviour.

  3. Direct aerosol chemical composition measurements to evaluate the physicochemical differences between controlled sea spray aerosol generation schemes

    Directory of Open Access Journals (Sweden)

    D. B. Collins

    2014-11-01

    Full Text Available Controlled laboratory studies of the physical and chemical properties of sea spray aerosol (SSA must be under-pinned by a physically and chemically accurate representation of the bubble-mediated production of nascent SSA particles. Bubble bursting is sensitive to the physico-chemical properties of seawater. For a sample of seawater, any important differences in the SSA production mechanism are projected into the composition of the aerosol particles produced. Using direct chemical measurements of SSA at the single-particle level, this study presents an intercomparison of three laboratory-based, bubble-mediated SSA production schemes: gas forced through submerged sintered glass filters ("frits", a pulsed plunging-waterfall apparatus, and breaking waves in a wave channel filled with natural seawater. The size-resolved chemical composition of SSA particles produced by breaking waves is more similar to particles produced by the plunging waterfall than those produced by sintered glass filters. Aerosol generated by disintegrating foam produced by sintered glass filters contained a larger fraction of organic-enriched particles and a different size-resolved elemental composition, especially in the 0.8–2 μm dry diameter range. Interestingly, chemical differences between the methods only emerged when the particles were chemically analyzed at the single-particle level as a function of size; averaging the elemental composition of all particles across all sizes masked the differences between the SSA samples. When dried, SSA generated by the sintered glass filters had the highest fraction of particles with spherical morphology compared to the more cubic structure expected for pure NaCl particles produced when the particle contains relatively little organic carbon. In addition to an intercomparison of three SSA production methods, the role of the episodic or "pulsed" nature of the waterfall method on SSA composition was under-taken. In organic

  4. Aerosol Size and Chemical Composition in the Canadian High Arctic

    Science.gov (United States)

    Chang, R. Y. W.; Hayes, P. L.; Leaitch, W. R.; Croft, B.; O'Neill, N. T.; Fogal, P.; Drummond, J. R.; Sloan, J. J.

    2015-12-01

    Arctic aerosol have a strong annual cycle, with winter months dominated by long range transport from lower latitudes resulting in high mass loadings. Conversely, local emissions are more prominent in the summer months because of the decreased influence of transported aerosol, allowing us to regularly observe both transported and local aerosol. This study will present observations of aerosol chemical composition and particle number size distribution collected at the Polar Environment Artic Research Laboratory and the Alert Global Atmospheric Watch Observatory at Eureka (80N, 86W) and Alert (82N, 62W), Nunavut, respectively. Summer time observations of the number size distribution reveal a persistent mode of particles centered between 30-50 nm, with occasional bursts of smaller particles. The non-refractory aerosol chemical composition, measured by the Canadian Network for the Detection of Atmospheric Change quadrupole aerosol mass spectrometer, is primarily organic, with contributions from both aged and fresher organic aerosol. Factor analysis will be conducted to better understand these sources. The site at Eureka is more susceptible to long range transport since it is at the top of a mountain ridge (610 m above sea level) and will be compared to the site at Alert on an elevated plain (200 m above sea level). This will allow us to determine the relative contributions from processes and sources at the sites at different elevations. Comparisons with aerosol optical depth and GEOS-Chem model output will also be presented to put these surface measurements into context with the overlying and regional atmosphere. Results from this study contribute to our knowledge of aerosol in the high Arctic.

  5. Aerosol Chemical Composition and its Effects on Cloud-Aerosol Interactions during the 2007 CHAPS Experiment

    Science.gov (United States)

    Lee, Y.; Alexander, L.; Newburn, M.; Jayne, J.; Hubbe, J.; Springston, S.; Senum, G.; Andrews, B.; Ogren, J.; Kleinman, L.; Daum, P.; Berg, L.; Berkowitz, C.

    2007-12-01

    Chemical composition of submicron aerosol particles was determined using an Aerodyne Time-of-Flight Aerosol Mass Spectrometer (AMS) outfitted on the DOE G-1 aircraft during the Cumulus Humilis Aerosol Processing Study (CHAPS) conducted in Oklahoma City area in June 2007. The primary objective of CHAPS was to investigate the effects of urban emissions on cloud aerosol interactions as a function of processing of the emissions. Aerosol composition was typically determined at three different altitudes: below, in, and above cloud, in both upwind and downwind regions of the urban area. Aerosols were sampled from an isokinetic inlet with an upper size cut-off of ~1.5 micrometer. During cloud passages, the AMS also sampled particles that were dried from cloud droplets collected using a counter-flow virtual impactor (CVI) sampler. The aerosol mass concentrations were typically below 10 microgram per cubic meter, and were dominated by organics and sulfate. Ammonium was often less than required for complete neutralization of sulfate. Aerosol nitrate levels were very low. We noted that nitrate levels were significantly enhanced in cloud droplets compared to aerosols, most likely resulting from dissolution of gaseous nitric acid. Organic to sulfate ratios appeared to be lower in cloud droplets than in aerosols, suggesting cloud condensation nuclei properties of aerosol particles might be affected by loading and nature of the organic components in aerosols. In-cloud formation of sulfate was considered unimportant because of the very low SO2 concentration in the region. A detailed examination of the sources of the aerosol organic components (based on hydrocarbons determined using a proton transfer reaction mass spectrometer) and their effects on cloud formation as a function of atmospheric processing (based on the degree of oxidation of the organic components) will be presented.

  6. Eddy covariance measurements with high-resolution time-of-flight aerosol mass spectrometry: a new approach to chemically resolved aerosol fluxes

    Directory of Open Access Journals (Sweden)

    D. K. Farmer

    2011-06-01

    Full Text Available Although laboratory studies show that biogenic volatile organic compounds (VOCs yield substantial secondary organic aerosol (SOA, production of biogenic SOA as indicated by upward fluxes has not been conclusively observed over forests. Further, while aerosols are known to deposit to surfaces, few techniques exist to provide chemically-resolved particle deposition fluxes. To better constrain aerosol sources and sinks, we have developed a new technique to directly measure fluxes of chemically-resolved submicron aerosols using the high-resolution time-of-flight aerosol mass spectrometer (HR-AMS in a new, fast eddy covariance mode. This approach takes advantage of the instrument's ability to quantitatively identify both organic and inorganic components, including ammonium, sulphate and nitrate, at a temporal resolution of several Hz. The new approach has been successfully deployed over a temperate ponderosa pine plantation in California during the BEARPEX-2007 campaign, providing both total and chemically resolved non-refractory (NR PM1 fluxes. Average deposition velocities for total NR-PM1 aerosol at noon were 2.05 ± 0.04 mm s−1. Using a high resolution measurement of the NH2+ and NH3+ fragments, we demonstrate the first eddy covariance flux measurements of particulate ammonium, which show a noon-time deposition velocity of 1.9 ± 0.7 mm s−1 and are dominated by deposition of ammonium sulphate.

  7. Hygroscopic Properties and Chemical Composition of Aerosol Particles at the High Alpine Site Jungfraujoch

    Energy Technology Data Exchange (ETDEWEB)

    Weingarter, E.; Gysel, M.; Sjoegren, S.; Baltesperger, U.; Alfarra, R.; Bower, K.; Coe, H.

    2004-03-01

    The hygroscopic properties of aerosols play a significant role in atmospheric phenomena such as acid deposition, visibility degradation and climate change. Due to the hygroscopic growth of the particles, water is often the dominant component of the ambient aerosol at high relative humidity (RH) conditions. The ability to absorb water depends on the particle chemical composition, dry size, and shape. The aim of this study is to link the chemical composition of the atmospheric aerosol to its hygroscopic properties. (author)

  8. Effects of intermittent atomization on the properties of Al-doped ZnO thin films deposited by aerosol-assisted chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Linjie; Wang, Lixin [Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004 (China); Qin, Xiujuan, E-mail: qinxj@ysu.edu.cn [Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004 (China); Cui, Li [Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004 (China); Shao, Guangjie [Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004 (China); State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China)

    2016-04-30

    Al-doped ZnO (AZO) thin films were prepared on glass substrates with different atomization interval times by aerosol-assisted chemical vapor deposition method. The structure, morphology, and optical and electrical properties were investigated by X-ray diffractometer, atomic force microscope, UV-vis double beam spectrophotometer and 4 point probe method. ZnO thin films exhibited strong growth orientation along the (002) plane and the crystalline was affected by the atomization interval time. All the films had high transmittance and the films with interval times of 2 min and 4 min had good haze values for the transparent conducting oxide silicon solar cell applications. The AZO thin film had the best optical and electrical properties when the atomization interval time was 4 min. This is very important for the optoelectronic device applications. The surface morphology of AZO films depended on the atomization interval time. - Highlights: • Intermittent atomization is proved to be an effective measure. • Atomization interval time has an important influence on the crystallinity of films. • The surface morphology of ZnO films depends on atomization interval time. • Different hazes can be obtained by changing the atomization interval time.

  9. Effects of intermittent atomization on the properties of Al-doped ZnO thin films deposited by aerosol-assisted chemical vapor deposition

    International Nuclear Information System (INIS)

    Liu, Linjie; Wang, Lixin; Qin, Xiujuan; Cui, Li; Shao, Guangjie

    2016-01-01

    Al-doped ZnO (AZO) thin films were prepared on glass substrates with different atomization interval times by aerosol-assisted chemical vapor deposition method. The structure, morphology, and optical and electrical properties were investigated by X-ray diffractometer, atomic force microscope, UV-vis double beam spectrophotometer and 4 point probe method. ZnO thin films exhibited strong growth orientation along the (002) plane and the crystalline was affected by the atomization interval time. All the films had high transmittance and the films with interval times of 2 min and 4 min had good haze values for the transparent conducting oxide silicon solar cell applications. The AZO thin film had the best optical and electrical properties when the atomization interval time was 4 min. This is very important for the optoelectronic device applications. The surface morphology of AZO films depended on the atomization interval time. - Highlights: • Intermittent atomization is proved to be an effective measure. • Atomization interval time has an important influence on the crystallinity of films. • The surface morphology of ZnO films depends on atomization interval time. • Different hazes can be obtained by changing the atomization interval time.

  10. Aerosol Optical Properties Measured Onboard the Ronald H. Brown During ACE Asia as a Function of Aerosol Chemical Composition and Source Region

    Science.gov (United States)

    Quinn, P. K.; Coffman, D. J.; Bates, T. S.; Welton, E. J.; Covert, D. S.; Miller, T. L.; Johnson, J. E.; Maria, S.; Russell, L.; Arimoto, R.

    2004-01-01

    During the ACE Asia intensive field campaign conducted in the spring of 2001 aerosol properties were measured onboard the R/V Ronald H. Brown to study the effects of the Asian aerosol on atmospheric chemistry and climate in downwind regions. Aerosol properties measured in the marine boundary layer included chemical composition; number size distribution; and light scattering, hemispheric backscattering, and absorption coefficients. In addition, optical depth and vertical profiles of aerosol 180 deg backscatter were measured. Aerosol within the ACE Asia study region was found to be a complex mixture resulting from marine, pollution, volcanic, and dust sources. Presented here as a function of air mass source region are the mass fractions of the dominant aerosol chemical components, the fraction of the scattering measured at the surface due to each component, mass scattering efficiencies of the individual components, aerosol scattering and absorption coefficients, single scattering albedo, Angstrom exponents, optical depth, and vertical profiles of aerosol extinction. All results except aerosol optical depth and the vertical profiles of aerosol extinction are reported at a relative humidity of 55 +/- 5%. An over-determined data set was collected so that measured and calculated aerosol properties could be compared, internal consistency in the data set could be assessed, and sources of uncertainty could be identified. By taking into account non-sphericity of the dust aerosol, calculated and measured aerosol mass and scattering coefficients agreed within overall experimental uncertainties. Differences between measured and calculated aerosol absorption coefficients were not within reasonable uncertainty limits, however, and may indicate the inability of Mie theory and the assumption of internally mixed homogeneous spheres to predict absorption by the ACE Asia aerosol. Mass scattering efficiencies of non-sea salt sulfate aerosol, sea salt, submicron particulate organic

  11. Microbiology and atmospheric processes: chemical interactions of primary biological aerosols

    Directory of Open Access Journals (Sweden)

    L. Deguillaume

    2008-07-01

    Full Text Available This paper discusses the influence of primary biological aerosols (PBA on atmospheric chemistry and vice versa through microbiological and chemical properties and processes. Several studies have shown that PBA represent a significant fraction of air particulate matter and hence affect the microstructure and water uptake of aerosol particles. Moreover, airborne micro-organisms, namely fungal spores and bacteria, can transform chemical constituents of the atmosphere by metabolic activity. Recent studies have emphasized the viability of bacteria and metabolic degradation of organic substances in cloud water. On the other hand, the viability and metabolic activity of airborne micro-organisms depend strongly on physical and chemical atmospheric parameters such as temperature, pressure, radiation, pH value and nutrient concentrations. In spite of recent advances, however, our knowledge of the microbiological and chemical interactions of PBA in the atmosphere is rather limited. Further targeted investigations combining laboratory experiments, field measurements, and modelling studies will be required to characterize the chemical feedbacks, microbiological activities at the air/snow/water interface supplied to the atmosphere.

  12. New trajectory-driven aerosol and chemical process model Chemical and Aerosol Lagrangian Model (CALM

    Directory of Open Access Journals (Sweden)

    P. Tunved

    2010-11-01

    Full Text Available A new Chemical and Aerosol Lagrangian Model (CALM has been developed and tested. The model incorporates all central aerosol dynamical processes, from nucleation, condensation, coagulation and deposition to cloud formation and in-cloud processing. The model is tested and evaluated against observations performed at the SMEAR II station located at Hyytiälä (61° 51' N, 24° 17' E over a time period of two years, 2000–2001. The model shows good agreement with measurements throughout most of the year, but fails in reproducing the aerosol properties during the winter season, resulting in poor agreement between model and measurements especially during December–January. Nevertheless, through the rest of the year both trends and magnitude of modal concentrations show good agreement with observation, as do the monthly average size distribution properties. The model is also shown to capture individual nucleation events to a certain degree. This indicates that nucleation largely is controlled by the availability of nucleating material (as prescribed by the [H2SO4], availability of condensing material (in this model 15% of primary reactions of monoterpenes (MT are assumed to produce low volatile species and the properties of the size distribution (more specifically, the condensation sink. This is further demonstrated by the fact that the model captures the annual trend in nuclei mode concentration. The model is also used, alongside sensitivity tests, to examine which processes dominate the aerosol size distribution physical properties. It is shown, in agreement with previous studies, that nucleation governs the number concentration during transport from clean areas. It is also shown that primary number emissions almost exclusively govern the CN concentration when air from Central Europe is advected north over Scandinavia. We also show that biogenic emissions have a large influence on the amount of potential CCN observed

  13. Aerosol chemical composition at Cabauw, the Netherlands as observed in two intensive periods in May 2008 and March 2009

    NARCIS (Netherlands)

    Mensah, A.A.; Holzinger, R.; Otjes, R.; Trimborn, A.; Mentel, T.F.; Brink, H. ten; Henzing, B.; Kiendler-Scharr, A.

    2012-01-01

    Observations of aerosol chemical composition in Cabauw, the Netherlands, are presented for two intensive measurement periods in May 2008 and March 2009. Sub-micron aerosol chemical composition was measured by an Aerodyne Aerosol Mass Spectrometer (AMS) and is compared to observations from aerosol

  14. Modelling the chemically aged and mixed aerosols over the eastern central Atlantic Ocean-potential impacts

    NARCIS (Netherlands)

    Astitha, M.; Kallos, G.; Spyrou, C.; O'Hirok, W.; Lelieveld, J.; Denier Gon, H.A.C. van der

    2010-01-01

    Detailed information on the chemical and physical properties of aerosols is important for assessing their role in air quality and climate. This work explores the origin and fate of continental aerosols transported over the Central Atlantic Ocean, in terms of chemical composition, number and size

  15. Aerosolization, Chemical Characterization, Hygroscopicity and Ice Formation of Marine Biogenic Particles

    Science.gov (United States)

    Alpert, P. A.; Radway, J.; Kilthau, W.; Bothe, D.; Knopf, D. A.; Aller, J. Y.

    2013-12-01

    The oceans cover the majority of the earth's surface, host nearly half the total global primary productivity and are a major source of atmospheric aerosol particles. However, effects of biological activity on sea spray generation and composition, and subsequent cloud formation are not well understood. Our goal is to elucidate these effects which will be particularly important over nutrient rich seas, where microorganisms can reach concentrations of 10^9 per mL and along with transparent exopolymer particles (TEP) can become aerosolized. Here we report the results of mesocosm experiments in which bubbles were generated by two methods, either recirculating impinging water jets or glass frits, in natural or artificial seawater containing bacteria and unialgal cultures of three representative phytoplankton species, Thalassiosira pseudonana, Emiliania huxleyi, and Nannochloris atomus. Over time we followed the size distribution of aerosolized particles as well as their hygroscopicity, heterogeneous ice nucleation potential, and individual physical-chemical characteristics. Numbers of cells and the mass of dissolved and particulate organic carbon (DOC, POC), TEP (which includes polysaccharide-containing microgels and nanogels >0.4 μm in diameter) were determined in the bulk water, the surface microlayer, and aerosolized material. Aerosolized particles were also impacted onto substrates for ice nucleation and water uptake experiments, elemental analysis using computer controlled scanning electron microscopy and energy dispersive analysis of X-rays (CCSEM/EDX), and determination of carbon bonding with scanning transmission X-ray microscopy and near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Regardless of bubble generation method, the overall concentration of aerosol particles, TEP, POC and DOC increased as concentrations of bacterial and phytoplankton cells increased, stabilized, and subsequently declined. Particles cloud formation and potential

  16. Modelling the chemically aged and mixed aerosols over the eastern central Atlantic Ocean – potential impacts

    Directory of Open Access Journals (Sweden)

    M. Astitha

    2010-07-01

    Full Text Available Detailed information on the chemical and physical properties of aerosols is important for assessing their role in air quality and climate. This work explores the origin and fate of continental aerosols transported over the Central Atlantic Ocean, in terms of chemical composition, number and size distribution, using chemistry-transport models, satellite data and in situ measurements. We focus on August 2005, a period with intense hurricane and tropical storm activity over the Atlantic Ocean. A mixture of anthropogenic (sulphates, nitrates, natural (desert dust, sea salt and chemically aged (sulphate and nitrate on dust aerosols is found entering the hurricane genesis region, most likely interacting with clouds in the area. Results from our modelling study suggest rather small amounts of accumulation mode desert dust, sea salt and chemically aged dust aerosols in this Atlantic Ocean region. Aerosols of smaller size (Aitken mode are more abundant in the area and in some occasions sulphates of anthropogenic origin and desert dust are of the same magnitude in terms of number concentrations. Typical aerosol number concentrations are derived for the vertical layers near shallow cloud formation regimes, indicating that the aerosol number concentration can reach several thousand particles per cubic centimetre. The vertical distribution of the aerosols shows that the desert dust particles are often transported near the top of the marine cloud layer as they enter into the region where deep convection is initiated. The anthropogenic sulphate aerosol can be transported within a thick layer and enter the cloud deck through multiple ways (from the top, the base of the cloud, and by entrainment. The sodium (sea salt related aerosol is mostly found below the cloud base. The results of this work may provide insights relevant for studies that consider aerosol influences on cloud processes and storm development in the Central Atlantic region.

  17. Chemical ageing and transformation of diffusivity in semi-solid multi-component organic aerosol particles

    Science.gov (United States)

    Pfrang, C.; Shiraiwa, M.; Pöschl, U.

    2011-07-01

    Recent experimental evidence underlines the importance of reduced diffusivity in amorphous semi-solid or glassy atmospheric aerosols. This paper investigates the impact of diffusivity on the ageing of multi-component reactive organic particles approximating atmospheric cooking aerosols. We apply and extend the recently developed KM-SUB model in a study of a 12-component mixture containing oleic and palmitoleic acids. We demonstrate that changes in the diffusivity may explain the evolution of chemical loss rates in ageing semi-solid particles, and we resolve surface and bulk processes under transient reaction conditions considering diffusivities altered by oligomerisation. This new model treatment allows prediction of the ageing of mixed organic multi-component aerosols over atmospherically relevant timescales and conditions. We illustrate the impact of changing diffusivity on the chemical half-life of reactive components in semi-solid particles, and we demonstrate how solidification and crust formation at the particle surface can affect the chemical transformation of organic aerosols.

  18. Chemical ageing and transformation of diffusivity in semi-solid multi-component organic aerosol particles

    Directory of Open Access Journals (Sweden)

    C. Pfrang

    2011-07-01

    Full Text Available Recent experimental evidence underlines the importance of reduced diffusivity in amorphous semi-solid or glassy atmospheric aerosols. This paper investigates the impact of diffusivity on the ageing of multi-component reactive organic particles approximating atmospheric cooking aerosols. We apply and extend the recently developed KM-SUB model in a study of a 12-component mixture containing oleic and palmitoleic acids. We demonstrate that changes in the diffusivity may explain the evolution of chemical loss rates in ageing semi-solid particles, and we resolve surface and bulk processes under transient reaction conditions considering diffusivities altered by oligomerisation. This new model treatment allows prediction of the ageing of mixed organic multi-component aerosols over atmospherically relevant timescales and conditions. We illustrate the impact of changing diffusivity on the chemical half-life of reactive components in semi-solid particles, and we demonstrate how solidification and crust formation at the particle surface can affect the chemical transformation of organic aerosols.

  19. Optical and Chemical Characterization of Aerosols Produced from Cooked Meats

    Science.gov (United States)

    Niedziela, R. F.; Foreman, E.; Blanc, L. E.

    2011-12-01

    Cooking processes can release a variety compounds into the air immediately above a cooking surface. The distribution of compounds will largely depend on the type of food that is being processed and the temperatures at which the food is prepared. High temperatures release compounds from foods like meats and carry them away from the preparation surface into cooler regions where condensation into particles can occur. Aerosols formed in this manner can impact air quality, particularly in urban areas where the amount of food preparation is high. Reported here are the results of laboratory experiments designed to optically and chemically characterize aerosols derived from cooking several types of meats including ground beef, salmon, chicken, and pork both in an inert atmosphere and in synthetic air. The laboratory-generated aerosols are studied using a laminar flow cell that is configured to accommodate simultaneous optical characterization in the mid-infrared and collection of particles for subsequent chemical analysis by gas chromatography. Preliminary optical results in the visible and ultra-violet will also be presented.

  20. Aerosol Vacuum-Assisted Plasma Ionization (Aero-VaPI) Coupled to Ion Mobility-Mass Spectrometry

    Science.gov (United States)

    Blair, Sandra L.; Ng, Nga L.; Zambrzycki, Stephen C.; Li, Anyin; Fernández, Facundo M.

    2018-02-01

    In this communication, we report on the real-time analysis of organic aerosol particles by Vacuum-assisted Plasma Ionization-Mass Spectrometry (Aero-VaPI-MS) using a home-built VaPI ion source coupled to a Synapt G2-S HDMS ion mobility-mass spectrometry (IM-MS) system. Standards of organic molecules of interest in prebiotic chemistry were used to generate aerosols. Monocaprin and decanoic acid aerosol particles were successfully detected in both the positive and negative ion modes, respectively. A complex aerosol mixture of different sizes of polymers of L-malic acid was also examined through ion mobility (IM) separations, resulting in the detection of polymers of up to eight monomeric units. This noncommercial plasma ion source is proposed as a low cost alternative to other plasma ionization platforms used for aerosol analysis, and a higher-performance alternative to more traditional aerosol mass spectrometers. VaPI provides robust online ionization of organics in aerosols without extensive ion activation, with the coupling to IM-MS providing higher peak capacity and excellent mass accuracy. [Figure not available: see fulltext.

  1. Chemical Properties of Brown Carbon Aerosol Generated at the Missoula Fire Sciences Laboratory

    Science.gov (United States)

    Washenfelder, R. A.; Womack, C.; Franchin, A.; Middlebrook, A. M.; Wagner, N.; Manfred, K.

    2017-12-01

    Aerosol scattering and absorption are still among the largest uncertainties in quantifying radiative forcing. Biomass burning is a major source of light-absorbing carbonaceous aerosol in the United States. These aerosol are generally classified into two categories: black carbon (graphitic-like aerosol that absorbs broadly across the ultraviolet and visible spectral regions) and brown carbon (organic aerosol that absorbs strongly in the ultraviolet and near-visible spectral regions). The composition, volatility, and chemical aging of brown carbon are poorly known, but are important to understanding its radiative effects. We deployed three novel instruments to the Missoula Fire Sciences Laboratory in 2016 to measure brown carbon absorption: a photoacoustic spectrometer, broadband cavity enhanced spectrometer, and particle-into-liquid sampler coupled to a liquid waveguide capillary cell. The instruments sampled from a shared inlet with well-characterized dilution and thermal denuding. We sampled smoke from 32 controlled burns of fuels relevant to western U.S. wildfires. We use these measurements to determine the volatility of water-soluble brown carbon, and compare this to the volatility of water-soluble organic aerosol and total organic aerosol. We further examine the wavelength-dependence of the water-soluble brown carbon absorption as a function of denuder temperature. Together this gives new information about the solubility, volatility, and chemical composition of brown carbon.

  2. Lidar sprectroscopy instrument (LISSI): An infrastructure facility for chemical aerosol profiling at the University of Hertfordshire

    Science.gov (United States)

    Tesche, Matthias; Tatarov, Boyan; Noh, Youngmin; Müller, Detlef

    2018-04-01

    The lidar development at the University of Hertfordshire explores the feasibility of using Raman backscattering for chemical aerosol profiling. This paper provides an overview of the new facility. A high-power Nd:YAG/OPO setup is used to excite Raman backscattering at a wide range of wavelengths. The receiver combines a spectrometer with a 32-channel detector or an ICCD camera to resolve Raman signals of various chemical compounds. The new facility will open new avenues for chemical profiling of aerosol pollution from measurements of Raman scattering by selected chemical compounds, provide data that allow to close the gap between optical and microphysical aerosol profiling with lidar and enables connecting lidar measurements to parameters used in atmospheric modelling.

  3. The effect of varying physical and chemical characteristics of inhaled plutonium aerosols on metabolism and excretion

    International Nuclear Information System (INIS)

    Mewhinney, J.A.; Muggenburg, B.A.; McClellan, R.O.; Miglio, J.J.

    1976-01-01

    The effects of different chemical and physical parameters of plutonium aerosols on lung retention, tissue distribution and excretion patterns were evaluated in beagle dogs. Polydisperse aerosols of 239 Pu of different chemical form were produced by heating droplets nebulized from a solution of 239 PuIV in 1M HC1 to temperatures ranging from 325 0 C to 1150 0 C. Droplets containing 238 Pu(OH) 4 were treated at 1150 0 C and the resultant polydisperse aerosol used or separated into monodisperse size groups. Beagle dogs were exposed by inhalation to provide initial lung burdens in the range of 0.75 to 1.0μCi. The aerosols were characterized as to particle size and size distribution, and an in-vitro solubility measurement was made on samples of the aerosol from each animal exposure. Different production temperatures for the 239 Pu aerosols resulted in lung retention half-times that increased as the production temperature increased. The 239 Pu tissue distribution and urinary excretion patterns were correlated with lung retention. Faecal excretion was greater for aerosols produced at lower temperatures. Lung retention half-times for 238 Pu monodisperse aerosols were not greatly different from particle sizes of 0.8 and 1.9μm activity median aerodynamic diameter (AMAD). The third monodisperse aerosol intended to be 3.0μm AMAD had a bimodal particle size distribution and contained a significant fraction of readily soluble material. The 238 Pu polydisperse aerosol had a slightly lower lung retention, increased urinary excretion and translocation to tissues than the comparable 239 Pu polydisperse material. This study serves to emphasize the importance of complete analysis of the aerosol material as well as early excretion data following accidental human exposure to aerosols containing plutonium. The role of chemical form and aerosol particle size in evaluation of such cases is discussed. (author)

  4. Decadal trends in aerosol chemical composition at Barrow, Alaska: 1976–2008

    Directory of Open Access Journals (Sweden)

    G. E. Shaw

    2009-11-01

    Full Text Available Aerosol measurements at Barrow, Alaska during the past 30 years have identified the long range transport of pollution associated with Arctic Haze as well as ocean-derived aerosols of more local origin. Here, we focus on measurements of aerosol chemical composition to assess (1 trends in Arctic Haze aerosol and implications for source regions, (2 the interaction between pollution-derived and ocean-derived aerosols and the resulting impacts on the chemistry of the Arctic boundary layer, and (3 the response of aerosols to a changing climate. Aerosol chemical composition measured at Barrow, AK during the Arctic haze season is compared for the years 1976–1977 and 1997–2008. Based on these two data sets, concentrations of non-sea salt (nss sulfate (SO4= and non-crustal (nc vanadium (V have decreased by about 60% over this 30 year period. Consistency in the ratios of nss SO4=/ncV and nc manganese (Mn/ncV between the two data sets indicates that, although emissions have decreased in the source regions, the source regions have remained the same over this time period. The measurements from 1997–2008 indicate that, during the haze season, the nss SO4= aerosol at Barrow is becoming less neutralized by ammonium (NH4+ yielding an increasing sea salt aerosol chloride (Cl deficit. The expected consequence is an increase in the release of Cl atoms to the atmosphere and a change in the lifetime of volatile organic compounds (VOCs including methane. In addition, summertime concentrations of biogenically-derived methanesulfonate (MSA and nss SO4= are increasing at a rate of 12 and 8% per year, respectively. Further research is required to assess the environmental factors behind the increasing concentrations of biogenic aerosol.

  5. Bioaerosol detection by aerosol TOF-mass spectrometry: Application of matrix assisted laser desorption/ionisation

    NARCIS (Netherlands)

    Wuijckhuijse, A.L. van; Stowers, M.A.; Kientz, Ch.E.; Marijnissen, J.C.M.; Scarlett, B.

    2000-01-01

    In previous publications the use of an aerosol time of flight mass spectrometer was reported for the on-line measurements of aerosols (Weiss 1997, Kievit 1995). The apparatus is capable of measuring the size as well as the chemical composition, by the use of Laser Desorption/Ionisation (LDI), of an

  6. Lidar sprectroscopy instrument (LISSI: An infrastructure facility for chemical aerosol profiling at the University of Hertfordshire

    Directory of Open Access Journals (Sweden)

    Tesche Matthias

    2018-01-01

    The new facility will open new avenues for chemical profiling of aerosol pollution from measurements of Raman scattering by selected chemical compounds, provide data that allow to close the gap between optical and microphysical aerosol profiling with lidar and enables connecting lidar measurements to parameters used in atmospheric modelling.

  7. Neutralization of Aerosolized Bio-Agents by Filled Nanocomposite Materials through Thermal and Chemical Inactivation Mechanisms

    Science.gov (United States)

    2016-06-01

    Bio -agents by Filled Nanocomposite Materials through Thermal and Chemical Inactivation Mechanisms Distribution Statement A. Approved for public...of Cincinnati Project Title: Neutralization of Aerosolized Bio -agents by Filled Nanocomposite Materials through Thermal and Chemical Inactivation...fire ball, where they will not effectively interact with any viable bio -aerosol. 1.1.4. Conclusions Cryo-milling is necessary to achieve a

  8. Chemical characteristics of submicron particles at the central Tibetan Plateau: insights from aerosol mass spectrometry

    Science.gov (United States)

    Xu, Jianzhong; Zhang, Qi; Shi, Jinsen; Ge, Xinlei; Xie, Conghui; Wang, Junfeng; Kang, Shichang; Zhang, Ruixiong; Wang, Yuhang

    2018-01-01

    Recent studies have revealed a significant influx of anthropogenic aerosol from South Asia to the Himalayas and Tibetan Plateau (TP) during pre-monsoon period. In order to characterize the chemical composition, sources, and transport processes of aerosol in this area, we carried out a field study during June 2015 by deploying a suite of online instruments including an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS) and a multi-angle absorption photometer (MAAP) at Nam Co station (90°57' E, 30°46' N; 4730 m a.s.l.) at the central of the TP. The measurements were made at a period when the transition from pre-monsoon to monsoon occurred. The average ambient mass concentration of submicron particulate matter (PM1) over the whole campaign was ˜ 2.0 µg m-3, with organics accounting for 68 %, followed by sulfate (15 %), black carbon (8 %), ammonium (7 %), and nitrate (2 %). Relatively higher aerosol mass concentration episodes were observed during the pre-monsoon period, whereas persistently low aerosol concentrations were observed during the monsoon period. However, the chemical composition of aerosol during the higher aerosol concentration episodes in the pre-monsoon season was on a case-by-case basis, depending on the prevailing meteorological conditions and air mass transport routes. Most of the chemical species exhibited significant diurnal variations with higher values occurring during afternoon and lower values during early morning, whereas nitrate peaked during early morning in association with higher relative humidity and lower air temperature. Organic aerosol (OA), with an oxygen-to-carbon ratio (O / C) of 0.94, was more oxidized during the pre-monsoon period than during monsoon (average O / C ratio of 0.72), and an average O / C was 0.88 over the entire campaign period, suggesting overall highly oxygenated aerosol in the central TP. Positive matrix factorization of the high-resolution mass spectra of OA identified two oxygenated

  9. Unraveling different chemical fingerprints between a champagne wine and its aerosols.

    Science.gov (United States)

    Liger-Belair, Gérard; Cilindre, Clara; Gougeon, Régis D; Lucio, Marianna; Gebefügi, Istvan; Jeandet, Philippe; Schmitt-Kopplin, Philippe

    2009-09-29

    As champagne or sparkling wine is poured into a glass, the myriad of ascending bubbles collapse and radiate a multitude of tiny droplets above the free surface into the form of very characteristic and refreshing aerosols. Ultrahigh-resolution MS was used as a nontargeted approach to discriminate hundreds of surface active compounds that are preferentially partitioning in champagne aerosols; thus, unraveling different chemical fingerprints between the champagne bulk and its aerosols. Based on accurate exact mass analysis and database search, tens of these compounds overconcentrating in champagne aerosols were unambiguously discriminated and assigned to compounds showing organoleptic interest or being aromas precursors. By drawing a parallel between the fizz of the ocean and the fizz in Champagne wines, our results closely link bursting bubbles and flavor release; thus, supporting the idea that rising and collapsing bubbles act as a continuous paternoster lift for aromas in every glass of champagne.

  10. Chemical characteristics of submicron particles at the central Tibetan Plateau: insights from aerosol mass spectrometry

    Directory of Open Access Journals (Sweden)

    J. Xu

    2018-01-01

    Full Text Available Recent studies have revealed a significant influx of anthropogenic aerosol from South Asia to the Himalayas and Tibetan Plateau (TP during pre-monsoon period. In order to characterize the chemical composition, sources, and transport processes of aerosol in this area, we carried out a field study during June 2015 by deploying a suite of online instruments including an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS and a multi-angle absorption photometer (MAAP at Nam Co station (90°57′ E, 30°46′ N; 4730 m a.s.l. at the central of the TP. The measurements were made at a period when the transition from pre-monsoon to monsoon occurred. The average ambient mass concentration of submicron particulate matter (PM1 over the whole campaign was  ∼  2.0 µg m−3, with organics accounting for 68 %, followed by sulfate (15 %, black carbon (8 %, ammonium (7 %, and nitrate (2 %. Relatively higher aerosol mass concentration episodes were observed during the pre-monsoon period, whereas persistently low aerosol concentrations were observed during the monsoon period. However, the chemical composition of aerosol during the higher aerosol concentration episodes in the pre-monsoon season was on a case-by-case basis, depending on the prevailing meteorological conditions and air mass transport routes. Most of the chemical species exhibited significant diurnal variations with higher values occurring during afternoon and lower values during early morning, whereas nitrate peaked during early morning in association with higher relative humidity and lower air temperature. Organic aerosol (OA, with an oxygen-to-carbon ratio (O ∕ C of 0.94, was more oxidized during the pre-monsoon period than during monsoon (average O ∕ C ratio of 0.72, and an average O ∕ C was 0.88 over the entire campaign period, suggesting overall highly oxygenated aerosol in the central TP. Positive matrix factorization of the

  11. Long-term measurement of aerosol chemical composition in Athens, Greece.

    Science.gov (United States)

    Paraskevopoulou, Despina; Liakakou, Eleni; Theodosi, Christina; Gerasopoulos, Evangelos; Mihalopoulos, Nikolaos

    2014-05-01

    The collection of our samples was conducted for a period of five years (2008 - 2013) in Athens, Greece. The site is situated at the premises of the National Observatory of Athens on Penteli Hill, northeast Athens suburbs, and is considered an urban background station. The aim of our study was a first long-term estimation of the chemical mass closure of aerosol. For the purposes of the study, we applied three filter samplers during the sampling period: two Partisol FRM Model 2000 air samplers (one of them collecting PM10 and the other PM2.5 fractions of aerosol) and one Dichotomous Partisol auto-sampler (with PM2.5 and PM2.5-10 inlet). Aerosols were collected on Whatman QM-A quartz fiber filters and the mass of the collected samples was estimated by weighing the pre-combusted filters before and after sampling, under controlled conditions, using a microbalance. All quartz filters were analysed for organic (OC) and elemental carbon (EC) by a thermal - optical transmission technique. The concentration of water soluble organic carbon (WSOC) was defined for each filter using a total organic carbon analyzer, while the content in main water soluble ions (Cl-, Br-, NO-3, SO4-2, PO4-3, C2O4-2, NH4+, K+, Na+, Mg+2, Ca+2) was determined by ion chromatography. Additionally the filters were analyzed for trace metals by inductively coupled plasma optical emission spectrometry (ICP-OES). Aerosol chemical mass closure calculations were conducted for the PM2.5 fraction. The area of Athens is characterized by aged aerosol that can originate from the marine boundary layer, the European mainland and occasionally from North African desert areas. The contribution of dust and particulate organic matter on PM levels was estimated taking into consideration the location of the sampling site, while identification and evaluation of sources was performed. Additionally, non-sea salt concentrations of the main ions were estimated to complete the chemical closure in the extended area. According to

  12. Effect of Heterogeneous Chemical Reactions on the Köhler Activation of Aqueous Organic Aerosols.

    Science.gov (United States)

    Djikaev, Yuri S; Ruckenstein, Eli

    2018-05-03

    We study some thermodynamic aspects of the activation of aqueous organic aerosols into cloud droplets considering the aerosols to consist of liquid solution of water and hydrophilic and hydrophobic organic compounds, taking into account the presence of reactive species in the air. The hydrophobic (surfactant) organic molecules on the surface of such an aerosol can be processed by chemical reactions with some atmospheric species; this affects the hygroscopicity of the aerosol and hence its ability to become a cloud droplet either via nucleation or via Köhler activation. The most probable pathway of such processing involves atmospheric hydroxyl radicals that abstract hydrogen atoms from hydrophobic organic molecules located on the aerosol surface (first step), the resulting radicals being quickly oxidized by ubiquitous atmospheric oxygen molecules to produce surface-bound peroxyl radicals (second step). These two reactions play a crucial role in the enhancement of the Köhler activation of the aerosol and its evolution into a cloud droplet. Taking them and a third reaction (next in the multistep chain of relevant heterogeneous reactions) into account, one can derive an explicit expression for the free energy of formation of a four-component aqueous droplet on a ternary aqueous organic aerosol as a function of four independent variables of state of a droplet. The results of numerical calculations suggest that the formation of cloud droplets on such (aqueous hydrophilic/hydrophobic organic) aerosols is most likely to occur as a Köhler activation-like process rather than via nucleation. The model allows one to determine the threshold parameters of the system necessary for the Köhler activation of such aerosols, which are predicted to be very sensitive to the equilibrium constant of the chain of three heterogeneous reactions involved in the chemical aging of aerosols.

  13. Optical properties of the urban aerosol and their relation to chemical composition

    International Nuclear Information System (INIS)

    Leaderer, B.P.; Stolwijk, J.A.J.

    1980-01-01

    Light extinction and resulting visibility degradation in an unsaturated precipitation-free atmosphere are determined by light absorption and scattering and are caused by a complex mix of natural components and anthropogenic pollutants. The paper reviews correlation studies relating light scattering and light extinction (visibility) to concentrations of sulfate mass, nitrate mass, the remainder of the mass, and in some cases organic aerosol mass, while accounting for variations in relative humidity. It is found that sulfate aerosol mass is the dominant chemical aerosol species affecting light scattering and extinction. The dominant effect of sulfate mass on light scattering and extinction, even when sulfates account for a relatively small fraction of the total mass, results from the fact that sulfates are secondary aerosols and are mostly found in the 0.1-1.0 micron size range

  14. Secondary organic aerosol in the global aerosolchemical transport model Oslo CTM2

    Directory of Open Access Journals (Sweden)

    I. S. A. Isaksen

    2007-11-01

    Full Text Available The global chemical transport model Oslo CTM2 has been extended to include the formation, transport and deposition of secondary organic aerosol (SOA. Precursor hydrocarbons which are oxidised to form condensible species include both biogenic species such as terpenes and isoprene, as well as species emitted predominantly by anthropogenic activities (toluene, m-xylene, methylbenzene and other aromatics. A model simulation for 2004 gives an annual global SOA production of approximately 55 Tg. Of this total, 2.5 Tg is found to consist of the oxidation products of anthropogenically emitted hydrocarbons, and about 15 Tg is formed by the oxidation products of isoprene. The global production of SOA is increased to about 69 Tg yr−1 by allowing semi-volatile species to partition to ammonium sulphate aerosol. This brings modelled organic aerosol values closer to those observed, however observations in Europe remain significantly underestimated. Allowing SOA to partition into ammonium sulphate aerosol increases the contribution of anthropogenic SOA from about 4.5% to 9.4% of the total production. Total modelled organic aerosol (OA values are found to represent a lower fraction of the measured values in winter (when primary organic aerosol (POA is the dominant OA component than in summer, which may be an indication that estimates of POA emissions are too low. Additionally, for measurement stations where the summer OA values are higher than in winter, the model generally underestimates the increase in summertime OA. In order to correctly model the observed increase in OA in summer, additional SOA sources or formation mechanisms may be necessary. The importance of NO3 as an oxidant of SOA precursors is found to vary regionally, causing up to 50%–60% of the total amount of SOA near the surface in polluted regions and less than 25% in more remote areas, if the yield of condensible oxidation products for β-pinene is used for NO3 oxidation of all terpenes

  15. Long-term Chemical Characterization of Submicron Aerosol Particles in the Amazon Forest - ATTO Station

    Science.gov (United States)

    Carbone, S.; Brito, J.; Rizzo, L. V.; Holanda, B. A.; Cirino, G. G.; Saturno, J.; Krüger, M. L.; Pöhlker, C.; Ng, N. L.; Xu, L.; Andreae, M. O.; Artaxo, P.

    2015-12-01

    The study of the chemical composition of aerosol particles in the Amazon forest represents a step forward to understand the strong coupling between the atmosphere and the forest. For this reason submicron aerosol particles were investigated in the Amazon forest, where biogenic and anthropogenic aerosol particles coexist at the different seasons (wet/dry). The measurements were performed at the ATTO station, which is located about 150 km northeast of Manaus. At ATTO station the Aerosol chemical speciation monitor (ACSM, Aerodyne) and the Multiangle absorption photometer (MAAP, Thermo 5012) have been operated continuously from March 2014 to July 2015. In this study, long-term measurements (near-real-time, ~30 minutes) of PM1 chemical composition were investigated for the first time in this environment.The wet season presented lower concentrations than the dry season (~5 times). In terms of chemical composition, both seasons were dominated by organics (75 and 63%) followed by sulfate (11 and 13%). Nitrate presented different ratio values between the mass-to-charges 30 to 46 (main nitrate fragments) suggesting the presence of nitrate as inorganic and organic nitrate during both seasons. The results indicated that about 75% of the nitrate signal was from organic nitrate during the dry season. In addition, several episodes with elevated amount of chloride, likely in the form of sea-salt from the Atlantic Ocean, were observed during the wet season. During those episodes, chloride comprised up to 7% of the PM1. During the dry season, chloride was also observed; however, with different volatility, which suggested that Chloride was present in different form and source. Moreover, the constant presence of sulfate and BC during the wet season might be related to biomass burning emissions from Africa. BC concentration was 2.5 times higher during the dry season. Further characterization of the organic fraction was accomplished with the positive matrix factorization (PMF), which

  16. Assessment of microphysical and chemical factors of aerosols over seas of the Russian Artic Eastern Section

    Science.gov (United States)

    Golobokova, Liudmila; Polkin, Victor

    2014-05-01

    The newly observed kickoff of the Northern Route development drew serious attention to state of the Arctic Resource environment. Occurring climatic and environmental changes are more sensitively seen in polar areas in particular. Air environment control allows for making prognostic assessments which are required for planning hazardous environmental impacts preventive actions. In August - September 2013, RV «Professor Khlustin» Northern Sea Route expeditionary voyage took place. En-route aerosol sampling was done over the surface of the Beringov, Chukotka and Eastern-Siberia seas (till the town of Pevek). The purpose of sampling was to assess spatio-temporal variability of optic, microphysical and chemical characteristics of aerosol particles of the surface layer within different areas adjacent to the Northern Sea Route. Aerosol test made use of automated mobile unit consisting of photoelectric particles counter AZ-10, aetalometr MDA-02, aspirator on NBM-1.2 pump chassis, and the impactor. This set of equipment allows for doing measurements of number concentration, dispersed composition of aerosols within sizes d=0.3-10 mkm, mass concentration of submicron sized aerosol, and filter-conveyed aerosols sampling. Filter-conveyed aerosols sampling was done using method accepted by EMEP and EANET monitoring networks. The impactor channel was upgraded to separate particles bigger than 1 mkm in size, and the fine grain fraction settled down on it. Reverse 5-day and 10-day trajectories of air mass transfer executed at heights of 10, 1500 and 3500 m were analyzed. The heights were selected by considerations that 3000 m is the height which characterizes air mass trend in the lower troposphere. 1500 m is the upper border of the atmospheric boundary layer, and the sampling was done in the Earth's surface layer at less than 10 m. Minimum values of the bespoken microphysical characteristics are better characteristic of higher latitudes where there are no man induced sources of

  17. Chemical interactions between aerosols and vapors in the primary circuit of an LWR during a severe accident

    International Nuclear Information System (INIS)

    Wheatley, C.J.

    1988-01-01

    Aerosol formation, agglomeration, convection and deposition within the primary circuit of an LWR during a severe accident significantly affect the transport of fission products, even though they may compose only a small fraction of the aerosol material. Intra-particle and vapor chemical interactions are important to this through mass transfer between the aerosol and vapor. The authors will describe a model that attempts to account for these processes and of the two-way coupling that exists with the thermal hydraulics. They will discuss what agglomeration and deposition mechanisms must be included, alternatives for treating intra-particle chemical interactions, mechanisms of aerosol formation, and methods for solving the resulting equations. Results will be presented that illustrate the importance of treating the two-way coupling and the extent to which disequilibrium between the aerosol and vapor affects fission product behavior

  18. Aerosol sources and their contribution to the chemical composition of aerosols in the Eastern Mediterranean Sea during summertime

    Directory of Open Access Journals (Sweden)

    J. Sciare

    2003-01-01

    Full Text Available A detailed study on the temporal variability of compounds important in controlling aerosol chemical composition was performed during a one-month experiment conducted during summer 2000 at a background site on Crete, in the Eastern Mediterranean Sea. Contribution of different aerosol sources in the Eastern Mediterranean Basin could be investigated at this location since the site is influenced by a wide range of air masses originating mainly in Europe and Africa. Chemical apportionment was performed for various air mass origins and showed a strong impact of anthropogenic emissions in the Turkey and Central Europe sectors, with black carbon (BC and non-sea-salt sulfate (nss-SO4 concentrations higher than observed in the Eastern and Western Europe sectors. High levels of non-sea-salt calcium (nss-Ca were associated with air masses from Africa but also from Central Turkey. Evidence was found that BC calculation based on light absorbance during dust events was biased. This quality-controlled high temporal resolution dataset allowed to investigate in detail the source-receptor relationships responsible for the levels of BC, nss-SO4 and sulfur dioxide (SO2, observed in Crete. Among the results obtained from this model, the major contribution of Turkey and Central Europe was confirmed in terms of anthropogenic emissions. Comparisons with remote optical properties obtained from Satellite observations (SEAWIFS north of Crete indicates that our ground based aerosol characterization was suitable for describing aerosol properties in the atmospheric column for most of the time during the campaign.

  19. Estimation of aerosol water and chemical composition from AERONET at Cabauw, the Netherlands, Atmos. Chem. Phys. Discuss., 13, ,

    NARCIS (Netherlands)

    Beelen, A.J. van; Roelofs, G.J.H.; Hasekamp, O.P.; Henzing, J.S.; Röckmann, T.

    2013-01-01

    This study is of our particular interest as the quality of our chemical transport model Lotos-Euros can be improved by our understanding of the aerosol-light interaction. In this study we derive aerosol water and chemical composition by a modeling approach that combines in situ measured and remotely

  20. Chemical and microphysical properties of the aerosol during foggy and nonfoggy episodes: a relationship between organic and inorganic content of the aerosol

    Science.gov (United States)

    Kaul, D. S.; Gupta, T.; Tripathi, S. N.

    2012-06-01

    An extensive field measurement during winter was carried out at a site located in the Indo-Gangetic Plain (IGP) which gets heavily influenced by the fog during winter almost every year. The chemical and microphysical properties of the aerosols during foggy and nonfoggy episodes and chemical composition of the fogwater are presented. Positive matrix factorization (PMF) as a tool for the source apportionment was employed to understand the sources of pollution. Four major sources viz. biomass burning, refractory, secondary and mineral dust were identified. Aerosols properties during foggy episodes were heavily influenced by almost all the sources and they caused considerable loading of almost all the organic and inorganic species during the period. The biomass generated aerosols were removed from the atmosphere by scavenging during foggy episodes. The wet removal of almost all the species by the fog droplets was observed. The K+, water soluble organic carbon (WSOC), water soluble inorganic carbon (WSIC) and NO3- were most heavily scavenged among the species and their concentrations consequently became lower than the nonfoggy episode concentrations. The production of secondary inorganic aerosol, mainly sulfate and ammonium, during foggy episodes was considerably higher than nitrate which was rather heavily scavenged and removed by the fog droplets. The fogwater analysis showed that dissolved inorganic species play a vital role in processing of organic carbon such as the formation of organo-sulfate and organo-nitrate inside the fog droplets. The formation of organo-sulfate and organo-nitrate in aerosol and the influence of acidity on the secondary organic aerosol (SOA) formation were rather found to be negligible. The study average inorganic component of the aerosol was considerably higher than the carbonaceous component during both foggy and nonfoggy episode. The secondary production of the aerosol changed the microphysical properties of aerosol which was reflected by

  1. Broadband optical properties of biomass-burning aerosol and identification of brown carbon chromophores: OPTICAL AND CHEMICAL PROPERTIES OF BROWN CARBON AEROSOLS

    Energy Technology Data Exchange (ETDEWEB)

    Bluvshtein, Nir [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel; Lin, Peng [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland Washington USA; Flores, J. Michel [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel; Segev, Lior [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel; Mazar, Yinon [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel; Tas, Eran [The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot Israel; Snider, Graydon [Department of Physics and Atmospheric Science, Dalhousie University, Halifax Nova Scotia Canada; Weagle, Crystal [Department of Chemistry, Dalhousie University, Halifax Nova Scotia Canada; Brown, Steven S. [Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder Colorado USA; Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder Colorado USA; Laskin, Alexander [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland Washington USA; Rudich, Yinon [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel

    2017-05-23

    The radiative effects of biomass burning aerosols on regional and global scale is substantial. Accurate modeling of the radiative effects of smoke aerosols require wavelength-dependent measurements and parameterizations of their optical properties in the UV and visible spectral ranges along with improved description of their chemical composition. To address this issue, we used a recently developed approach to retrieve the time- and spectral-dependent optical properties of ambient biomass burning aerosols between 300 and 650 nm wavelength during a regional bonfire festival in Israel. During the biomass burning event, the overall absorption at 400 nm increased by about two orders of magnitude, changing the size-weighted single scattering albedo from a background level of 0.95 to 0.7. Based on the new retrieval method, we provide parameterizations of the wavelength-dependent effective complex refractive index from 350 to 650 nm for freshly emitted and aged biomass burning aerosols. In addition, PM2.5 filter samples were collected for detailed off-line chemical analysis of the water soluble organics that contribute to light absorption. Nitrophenols were identified as the main organic species responsible for the increased absorption at 400-500 nm. These include species such as 4- nitrocatechol, 4-nitrophenol, nitro-syringol and nitro-guaiacol; oxidation-nitration products of methoxyphenols, known products of lignin pyrolysis. Our findings emphasize the importance of both primary and secondary organic aerosol from biomass burning in absorption of solar radiation and in effective radiative forcing.

  2. Chemical Thermodynamics of Aqueous Atmospheric Aerosols: Modeling and Microfluidic Measurements

    Science.gov (United States)

    Nandy, L.; Dutcher, C. S.

    2017-12-01

    Accurate predictions of gas-liquid-solid equilibrium phase partitioning of atmospheric aerosols by thermodynamic modeling and measurements is critical for determining particle composition and internal structure at conditions relevant to the atmosphere. Organic acids that originate from biomass burning, and direct biogenic emission make up a significant fraction of the organic mass in atmospheric aerosol particles. In addition, inorganic compounds like ammonium sulfate and sea salt also exist in atmospheric aerosols, that results in a mixture of single, double or triple charged ions, and non-dissociated and partially dissociated organic acids. Statistical mechanics based on a multilayer adsorption isotherm model can be applied to these complex aqueous environments for predictions of thermodynamic properties. In this work, thermodynamic analytic predictive models are developed for multicomponent aqueous solutions (consisting of partially dissociating organic and inorganic acids, fully dissociating symmetric and asymmetric electrolytes, and neutral organic compounds) over the entire relative humidity range, that represent a significant advancement towards a fully predictive model. The model is also developed at varied temperatures for electrolytes and organic compounds the data for which are available at different temperatures. In addition to the modeling approach, water loss of multicomponent aerosol particles is measured by microfluidic experiments to parameterize and validate the model. In the experimental microfluidic measurements, atmospheric aerosol droplet chemical mimics (organic acids and secondary organic aerosol (SOA) samples) are generated in microfluidic channels and stored and imaged in passive traps until dehydration to study the influence of relative humidity and water loss on phase behavior.

  3. Chemical composition of aerosol measurements in the air pollution plume during KORUS-AQ

    Science.gov (United States)

    Park, T.; Lee, J. B.; Lim, Y. J.; Ahn, J.; Park, J. S.; Soo, C. J.; Kim, J.; Park, S.; Lee, Y.; Desyaterik, Y.; Collett, J. L., Jr.; Lee, T.

    2017-12-01

    The Korean peninsula is a great place to study different sources of the aerosols: urban, rural and marine. In addition, Seoul is one of the large metropolitan areas in the world and has a variety of sources because half of the Korean population lives in Seoul, which comprises only 12% of the country's area. To understand the chemical composition of aerosol form long-range transport and local sources better, an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed on an airborne platform (NASA DC-8 aircraft). The HR-ToF-AMS is capable of measuring non-refractory size resolved chemical composition of submicron particle(NR-PM1) in the air pollution plume, including mass concentration of organic carbon, nitrate, sulfate, and ammonium with 10 seconds time resolution. The measurements were performed twenty times research flight for understanding characteristic of the air pollution from May to June, 2016 on the South Korean peninsula during KORUS-AQ 2016 campaign. The scientific goal of this study is to characterize aerosol chemical properties and mass concentration in order to understand the role of the long-range transport from northeast Asia to South Korea, and influence of the local sources. To brief, organics dominated during all of flights. Also, organics and nitrate were dominant around energy industrial complex near by Taean, South Korea. The presentation will provide an overview of the composition of NR-PM1 measured in air pollution plumes, and deliver detail information about width, depth and spatial distribution of the pollutant in the air pollution plumes. The results of this study will provide high temporal and spatial resolved details on the air pollution plumes, which are valuable input parameters of aerosol properties for the current air quality models.

  4. Measured Mass-Normalized Optical Cross Sections For Aerosolized Organophosphorus Chemical Warfare Simulants

    National Research Council Canada - National Science Library

    Gurton, Kristan P; Felton, Melvin; Dahmani, Rachid; Ligon, David

    2007-01-01

    We present newly measured results of an ongoing experimental program established to measure optical cross sections in the mid and long wave infrared for a variety of chemical and biologically based aerosols...

  5. Characterization of aerosol chemical composition with aerosol mass spectrometry in Central Europe: an overview

    Directory of Open Access Journals (Sweden)

    V. A. Lanz

    2010-11-01

    Full Text Available Real-time measurements of non-refractory submicron aerosols (NR-PM1 were conducted within the greater Alpine region (Switzerland, Germany, Austria, France and Liechtenstein during several week-long field campaigns in 2002–2009. This region represents one of the most important economic and recreational spaces in Europe. A large variety of sites was covered including urban backgrounds, motorways, rural, remote, and high-alpine stations, and also mobile on-road measurements were performed. Inorganic and organic aerosol (OA fractions were determined by means of aerosol mass spectrometry (AMS. The data originating from 13 different field campaigns and the combined data have been utilized for providing an improved temporal and spatial data coverage.

    The average mass concentration of NR-PM1 for the different campaigns typically ranged between 10 and 30 μg m−3. Overall, the organic portion was most abundant, ranging from 36% to 81% of NR-PM1. Other main constituents comprised ammonium (5–15%, nitrate (8–36%, sulfate (3–26%, and chloride (0–5%. These latter anions were, on average, fully neutralized by ammonium. As a major result, time of the year (winter vs. summer and location of the site (Alpine valleys vs. Plateau could largely explain the variability in aerosol chemical composition for the different campaigns and were found to be better descriptors for aerosol composition than the type of site (urban, rural etc.. Thus, a reassessment of classifications of measurements sites might be considered in the future, possibly also for other regions of the world.

    The OA data was further analyzed using positive matrix factorization (PMF and the multi-linear engine ME (factor analysis separating the total OA into its underlying components, such as oxygenated (mostly secondary organic aerosol (OOA, hydrocarbon-like and freshly emitted organic aerosol (HOA, as well as OA from biomass

  6. Chemical composition of aerosol in the atmospheric surface layer of the East Antarctica coastal zone

    Directory of Open Access Journals (Sweden)

    L. P. Golobokova

    2016-01-01

    Full Text Available Chemical composition of aerosol in the ground layer of the coastal zone in East Antarctica is analyzed in the article. The aerosol samples were taken in 2006–2015 during seasonal works of the Russian Antarctic Expeditions (RAE, namely, these were 52nd–53rd, 55th, and 58th–60th expeditions. Samples were taken in the 200‑km band of the sea-shore zone along routes of the research vessels (REV «Akademik Fedorov» and «Akademik Treshnikov» as well as on territories of the Russian stations Molodezhnaya and Mirny. Although the results obtained did show the wide range of the aerosol concentrations and a certain variability of their chemical composition, some common features of the variability were revealed. Thus, during the period from 2006 to 2014 a decrease of average values of the sums were noted. Spatially, a tendency of decreasing of the ion concentrations was found in the direction from the station Novolazarevskaya to the Molodezhnaya one, but the concentrations increased from the Molodezhnaya to the station Mirny. The sum of ions of the aerosol in the above mentioned coastal zone was, on the average, equal to 2.44 μg/m3, and it was larger than that on the territory of the Antarctic stations Molodezhnaya (0,29 μg/m3 and Mirny (0,50 ág / m3. The main part to the sum of the aerosol ions on the Antarctic stations was contributed by Na+, Ca2+, Cl−, SO4 2−. The main ions in aerosol composition in the coastal zone are ions Na+ and Cl−. The dominant contribution of the sea salt and SO4 2− can be traced in not only the composition of atmospheric aerosols, but also in the chemical composition of the fresh snow in the coastal areas of East Antarctica: at the Indian station Maitri, on the Larsemann Hills, and in a boring located in 55.3 km from the station Progress (K = 1.4÷6.1. It was noted that values of the coefficient of enrichment K of these ions decreases as someone moves from a shore to inland. Estimation of

  7. Measurements of the aerosol chemical composition and mixing state in the Po Valley using multiple spectroscopic techniques

    Science.gov (United States)

    Decesari, S.; Allan, J.; Plass-Duelmer, C.; Williams, B. J.; Paglione, M.; Facchini, M. C.; O'Dowd, C.; Harrison, R. M.; Gietl, J. K.; Coe, H.; Giulianelli, L.; Gobbi, G. P.; Lanconelli, C.; Carbone, C.; Worsnop, D.; Lambe, A. T.; Ahern, A. T.; Moretti, F.; Tagliavini, E.; Elste, T.; Gilge, S.; Zhang, Y.; Dall'Osto, M.

    2014-11-01

    The use of co-located multiple spectroscopic techniques can provide detailed information on the atmospheric processes regulating aerosol chemical composition and mixing state. So far, field campaigns heavily equipped with aerosol mass spectrometers have been carried out mainly in large conurbations and in areas directly affected by their outflow, whereas lesser efforts have been dedicated to continental areas characterised by a less dense urbanisation. We present here the results obtained at a background site in the Po Valley, Italy, in summer 2009. For the first time in Europe, six state-of-the-art spectrometric techniques were used in parallel: aerosol time-of-flight mass spectrometer (ATOFMS), two aerosol mass spectrometers (high-resolution time-of-flight aerosol mass spectrometer - HR-ToF-AMS and soot particle aerosol mass spectrometer - SP-AMS), thermal desorption aerosol gas chromatography (TAG), chemical ionisation mass spectrometry (CIMS) and (offline) proton nuclear magnetic resonance (1H-NMR) spectroscopy. The results indicate that, under high-pressure conditions, atmospheric stratification at night and early morning hours led to the accumulation of aerosols produced by anthropogenic sources distributed over the Po Valley plain. Such aerosols include primary components such as black carbon (BC), secondary semivolatile compounds such as ammonium nitrate and amines and a class of monocarboxylic acids which correspond to the AMS cooking organic aerosol (COA) already identified in urban areas. In daytime, the entrainment of aged air masses in the mixing layer is responsible for the accumulation of low-volatility oxygenated organic aerosol (LV-OOA) and also for the recycling of non-volatile primary species such as black carbon. According to organic aerosol source apportionment, anthropogenic aerosols accumulating in the lower layers overnight accounted for 38% of organic aerosol mass on average, another 21% was accounted for by aerosols recirculated in

  8. Geochemical perspectives from a new aerosol chemical mass closure

    Directory of Open Access Journals (Sweden)

    B. Guinot

    2007-01-01

    Full Text Available The aerosol chemical mass closure is revisited and a simple and inexpensive methodology is proposed. This methodology relies on data obtained for aerosol mass, and concentration of the major ions and the two main carbon components, the organic carbon (OC and the black carbon (BC. Atmospheric particles are separated into coarse (AD>2 μm and fine (AD<2 μm fractions and are treated separately. For the coarse fraction the carbonaceous component is minor and assumption is made for the conversion factor k of OC-to-POM (Particulate Organic Matter which is fixed to the value of 1.8 accounting for secondary species. The coarse soluble calcium is shown to display a correlation (regression coefficient f, y axis intercept b with the missing mass. Conversely, the fine fraction is dominated by organic species and assumption is made for dust which is assumed to have the same f factor as the coarse mode dust. The fine mode mass obtained from chemical analyses is then adjusted to the actual weighed mass by tuning the k conversion factor. The k coefficient is kept different in the two modes due to the expected different origins of the organic particles. Using the f and k coefficient obtained from the data set, the mass closure is reached for each individual sample with an undetermined fraction less than 10%. The procedure has been applied to different urban and peri-urban environments in Europe and in Beijing and its efficiency and uncertainties on f and k values are discussed. The f and k coefficients are shown to offer consistent geochemical indications on aerosol origin and transformations. f allows to retrieve dust mass and its value accounting for Ca abundance in dust at the site of investigation may serve as an indicator of dust origin and aerosol interactions with anthropogenic acids. f values were found to vary in the 0.08–0.12 range in European urban areas, and a broader range in Beijing (0.01–0.16. As expected, k appears to be a relevant proxy for

  9. X-ray methods for the chemical characterization of atmospheric aerosols

    International Nuclear Information System (INIS)

    Jaklevic, J.M.; Thompson, A.C.

    1981-05-01

    The development and use of several x-ray methods for the chemical characterization of atmospherical aerosol particulate samples are described. These methods are based on the emission, absorption, and scattering of x-ray photons with emphasis on the optimization for the non-destructive analysis of dilute specimens. Techniques discussed include photon induced energy dispersive x-ray fluorescence, extended x-ray absorption fine structure spectroscopy using synchrotron radiation and high-rate x-ray powder diffractometry using a position-sensitive gas proportional counter. These x-ray analysis methods were applied to the measurement of the chemical compositions of size-segregated aerosol particulate samples obtained with dichotomous samplers. The advantages of the various methods for use in such measurements are described and results are presented. In many cases, the complementary nature of the analytical information obtained from the various measurements is an important factor in the characterization of the sample. For example, the multiple elemental analyses obtained from x-ray fluorescence can be used as a cross check on the major compounds observed by powder diffraction

  10. Improved modelling of sodium-spray fires and sodium-combustion aerosol chemical evolution - 15488

    International Nuclear Information System (INIS)

    Mathe, E.; Kissane, M.; Petitprez, D.

    2015-01-01

    In the context of the Generation IV Initiative, the consequences of a severe-accident in sodium-cooled fast reactor (SFR) must be studied. Being pyrophoric, sodium will burn upon contact with air in a containment creating toxic aerosols and we must take into account these fire aerosols when assessing the source term. We have developed a numerical simulation named NATRAC to calculate the mass of aerosols produced during a spray fire in a SFR severe accident. The results show that the mass of oxide aerosols can involve more than 60% of the ejected sodium. In a second part we have developed a numerical simulation named STARK based on the Cooper model that models the physico-chemical transformations of the aerosols. However, this model has never been validated and the literature does not permit to do so. In these conditions, we have designed and performed our own experiment ESSTIA to obtain the missing values of the parameters that govern Cooper model. The modified Cooper model we propose with the new parameters reproduces correctly the ESSTIA experimental data. The only parameter that has not yet been measured is the tortuosity of the sodium-fire aerosols surface layers. A dedicated experiment using real sodium-fire aerosols could eliminate any doubts about the uncertainty of the proposed Cooper model

  11. XPS and EPXMA investigation and chemical speciation of aerosol samples formed in LWR core melting experiments

    International Nuclear Information System (INIS)

    Moers, H.; Jenett, H.; Kaufmann, R.; Klewe-Nebenius, H.; Pfennig, G.; Ache, H.J.

    1985-09-01

    Aerosol samples consisting of fission products and elements of light water reactor structural materials were collected during simulating in a laboratory scale the heat-up phase of a core melt accident. The aerosol particles were formed in a steam atmosphere at temperatures between 1200 and 1900 0 C of the melting charge. The investigation of the samples by use of X-ray photoelectron spectroscopy (XPS) permitted the chemical speciation of the detected aerosol constituents silver, cadmium, indium, tellurium, iodine, and cesium. A comparison of the elemental analysis results obtained from XPS with those achieved from electron probe X-ray micro analysis (EPXMA) revealed that aerosol particle surface and aerosol particle bulk are principally composed of the same elements and that these compositions vary with release temperature. In addition, quantitative differences between the composition of surface and bulk have only been observed for those aerosol samples which were collected at higher melting charge temperatures. In order to obtain direct information on chemical species below the surface selected samples were argon ion bombarded. Changes in composition and chemistry were monitored by XPS, and the results were interpreted in light of the effects, which were observed when appropriate standard samples were sputtered. (orig.) [de

  12. Two years of near real-time chemical composition of submicron aerosols in the region of Paris using an Aerosol Chemical Speciation Monitor (ACSM) and a multi-wavelength Aethalometer

    Science.gov (United States)

    Petit, J.-E.; Favez, O.; Sciare, J.; Crenn, V.; Sarda-Estève, R.; Bonnaire, N.; Močnik, G.; Dupont, J.-C.; Haeffelin, M.; Leoz-Garziandia, E.

    2015-03-01

    Aerosol mass spectrometer (AMS) measurements have been successfully used towards a better understanding of non-refractory submicron (PM1) aerosol chemical properties based on short-term campaigns. The recently developed Aerosol Chemical Speciation Monitor (ACSM) has been designed to deliver quite similar artifact-free chemical information but for low cost, and to perform robust monitoring over long-term periods. When deployed in parallel with real-time black carbon (BC) measurements, the combined data set allows for a quasi-comprehensive description of the whole PM1 fraction in near real time. Here we present 2-year long ACSM and BC data sets, between mid-2011 and mid-2013, obtained at the French atmospheric SIRTA supersite that is representative of background PM levels of the region of Paris. This large data set shows intense and time-limited (a few hours) pollution events observed during wintertime in the region of Paris, pointing to local carbonaceous emissions (mainly combustion sources). A non-parametric wind regression analysis was performed on this 2-year data set for the major PM1 constituents (organic matter, nitrate, sulfate and source apportioned BC) and ammonia in order to better refine their geographical origins and assess local/regional/advected contributions whose information is mandatory for efficient mitigation strategies. While ammonium sulfate typically shows a clear advected pattern, ammonium nitrate partially displays a similar feature, but, less expectedly, it also exhibits a significant contribution of regional and local emissions. The contribution of regional background organic aerosols (OA) is significant in spring and summer, while a more pronounced local origin is evidenced during wintertime, whose pattern is also observed for BC originating from domestic wood burning. Using time-resolved ACSM and BC information, seasonally differentiated weekly diurnal profiles of these constituents were investigated and helped to identify the main

  13. Evolution of biomass burning aerosol over the Amazon: airborne measurements of aerosol chemical composition, microphysical properties, mixing state and optical properties during SAMBBA

    Science.gov (United States)

    Morgan, W.; Allan, J. D.; Flynn, M.; Darbyshire, E.; Hodgson, A.; Liu, D.; O'Shea, S.; Bauguitte, S.; Szpek, K.; Johnson, B.; Haywood, J.; Longo, K.; Artaxo, P.; Coe, H.

    2013-12-01

    Biomass burning represents one of the largest sources of particulate matter to the atmosphere, resulting in a significant perturbation to the Earth's radiative balance coupled with serious impacts on public health. On regional scales, the impacts are substantial, particularly in areas such as the Amazon Basin where large, intense and frequent burning occurs on an annual basis for several months. Absorption by atmospheric aerosols is underestimated by models over South America, which points to significant uncertainties relating to Black Carbon (BC) aerosol properties. Initial results from the South American Biomass Burning Analysis (SAMBBA) field experiment, which took place during September and October 2012 over Brazil on-board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft, are presented here. Aerosol chemical composition was measured by an Aerodyne Aerosol Mass Spectrometer (AMS) and a DMT Single Particle Soot Photometer (SP2). The physical, chemical and optical properties of the aerosols across the region will be characterized in order to establish the impact of biomass burning on regional air quality, weather and climate. The aircraft sampled a range of conditions including sampling of pristine Rainforest, fresh biomass burning plumes, regional haze and elevated biomass burning layers within the free troposphere. The aircraft sampled biomass burning aerosol across the southern Amazon in the states of Rondonia and Mato Grosso, as well as in a Cerrado (Savannah-like) region in Tocantins state. This presented a range of fire conditions, in terms of their number, intensity, vegetation-type and their combustion efficiencies. Near-source sampling of fires in Rainforest environments suggested that smouldering combustion dominated, while flaming combustion dominated in the Cerrado. This led to significant differences in aerosol chemical composition, particularly in terms of the BC content, with BC being enhanced in the Cerrado

  14. Chemical character and probable origin of aerosols at the BARC site, Trombay

    International Nuclear Information System (INIS)

    Sequeira, R.; Kelkar, D.N.

    1975-01-01

    Measurements carried out on the dustload and concentration of sodium, potassium, ammonium, calcium, magnesium, iron, aluminium, silicon, chloride and sulphate in atmospheric air at the Bhabha Atomic Research Centre site, Trombay, the period November 1971-April 1972 have been reported. The average dustload is around 200μg/M 3 . About 50 percent of this could be accounted for, by the present analytical estimatioon of the individual chemical constituents : the water-soluble fraction obtained being 20 percent and the water-insoluble fraction accounting for the rest. Marine contribution to aerosol mass, calculated on the basis of water-soluble sodium concentration indicated that the sea is minor source of aerosols contributing 5 percent of the total aerosol mass. It was observed that the organic matter was about 20 percent of the total aerosol mass. If the local soil and fly-ash are the soil contributors to water-insoluble iron and potassium in aerosols, the respective contributions by these two sources were seen to be 13 percent and 48 percents. If all the organics and the non-marine fraction of the water-soluble mass are of industrial origin, the man-made fraction aerosols would constitute a maximum of 80 percent of the dustload in the Trombay air. The remaining 20 percent would be of natural origin, amounting to about 45 μg/M 3 , a value that represents unpolluted atmospheres. (author)

  15. Online Chemical Characterization of Food-Cooking Organic Aerosols: Implications for Source Apportionment.

    Science.gov (United States)

    Reyes-Villegas, Ernesto; Bannan, Thomas; Le Breton, Michael; Mehra, Archit; Priestley, Michael; Percival, Carl; Coe, Hugh; Allan, James D

    2018-04-11

    Food-cooking organic aerosols (COA) are one of the primary sources of submicron particulate matter in urban environments. However, there are still many questions surrounding source apportionment related to instrumentation as well as semivolatile partitioning because COA evolve rapidly in the ambient air, making source apportionment more complex. Online measurements of emissions from cooking different types of food were performed in a laboratory to characterize particles and gases. Aerosol mass spectrometer (AMS) measurements showed that the relative ionization efficiency for OA was higher (1.56-3.06) relative to a typical value of 1.4, concluding that AMS is over-estimating COA and suggesting that previous studies likely over-estimated COA concentrations. Food-cooking mass spectra were generated using AMS, and gas and particle food markers were identified with filter inlets for gases and aerosols-chemical ionization mass spectrometer (CIMS) measurements to be used in future food cooking-source apportionment studies. However, there is a considerable variability in both gas and particle markers, and dilution plays an important role in the particle mass budget, showing the importance of using these markers with caution during receptor modeling. These findings can be used to better understand the chemical composition of COA, and they provides useful information to be used in future source-apportionment studies.

  16. Size distributions and chemical properties of aerosol at Ny Ålesund, Svalbard

    Science.gov (United States)

    Covert, David S.; Heintzenberg, Jost

    Physical and chemical parameters of the arctic aerosol were investigated at Ny Ålesund, Svalbard, in March and April 1989 in connection with the third Arctic Gas and Aerosol Project (AGASP III). The number size distribution of the particles was measured over the range of 0.02-1.0 μm. Filter samples were analysed for elemental composition and two integral chemical properties, hygroscopic growth and volatility, were measured. Along with the latter measurements, the distribution of these properties at specific particle sizes, i.e. the degree of internal mixing, was determined. Both clean, marine conditions and "arctic haze" episodes were included in the series of measurements. The number size distribution indicated that the aerosol was well aged based on its narrowness and the relative low concentration of nuclei mode particles. It had a number mode at 0.22 μm diameter and geometric standard deviation of 1.4. Generally the particles exhibited uniform hygroscopic growth properties, i.e. they were largely internally mixed. The growth factor was 1.45 at 90% relative humidity. Approximately 40% of the overall particulate mass was volatile at a temperature of 50°C. The volatile fraction varied form particle to particle, i.e. the particles were externally mixed with respect to volatility.

  17. Chemical apportionment of aerosol optical properties during the Asia-Pacific Economic Cooperation summit in Beijing, China

    Science.gov (United States)

    Han, Tingting; Xu, Weiqi; Chen, Chen; Liu, Xingang; Wang, Qingqing; Li, Jie; Zhao, Xiujuan; Du, Wei; Wang, Zifa; Sun, Yele

    2015-12-01

    We have investigated the chemical and optical properties of aerosol particles during the 2014 Asia-Pacific Economic Cooperation (APEC) summit in Beijing, China, using the highly time-resolved measurements by a high-resolution aerosol mass spectrometer and a cavity attenuated phase shift extinction monitor. The average (±σ) extinction coefficient (bext) and absorption coefficient (bap) were 186.5 (±184.5) M m-1 and 23.3 (±21.9) M m-1 during APEC, which were decreased by 63% and 56%, respectively, compared to those before APEC primarily due to strict emission controls. The aerosol composition and size distributions showed substantial changes during APEC; as a response, the mass scattering efficiency (MSE) of PM1 was decreased from 4.7 m2 g-1 to 3.5 m2 g-1. Comparatively, the average single-scattering albedo (SSA) remained relatively unchanged, illustrating the synchronous reductions of bext and bap during APEC. MSE and SSA were found to increase as function of the oxidation degree of organic aerosol (OA), indicating a change of aerosol optical properties during the aging processes. The empirical relationships between chemical composition and particle extinction were established using a multiple linear regression model. Our results showed the largest contribution of ammonium nitrate to particle extinction, accounting for 35.1% and 29.3% before and during APEC, respectively. This result highlights the important role of ammonium nitrate in the formation of severe haze pollution during this study period. We also observed very different optical properties of primary and secondary aerosol. Owing to emission controls in Beijing and surrounding regions and also partly the influences of meteorological changes, the average bext of secondary aerosol during APEC was decreased by 71% from 372.3 M m-1 to 108.5 M m-1, whereas that of primary aerosol mainly from cooking, traffic, and biomass burning emissions showed a smaller reduction from 136.7 M m-1 to 71.3 M m-1. As a result

  18. Physical and chemical characterization of urban winter-time aerosols by mobile measurements in Helsinki, Finland

    Science.gov (United States)

    Pirjola, Liisa; Niemi, Jarkko V.; Saarikoski, Sanna; Aurela, Minna; Enroth, Joonas; Carbone, Samara; Saarnio, Karri; Kuuluvainen, Heino; Kousa, Anu; Rönkkö, Topi; Hillamo, Risto

    2017-06-01

    A two-week measurement campaign by a mobile laboratory van was performed in urban environments in the Helsinki metropolitan area, Finland, in winter 2012, to obtain a comprehensive view on aerosol properties and sources. The abundances and physico-chemical properties of particles varied strongly in time and space, depending on the main sources of aerosols. Four major types of winter aerosol were recognized: 1) clean background aerosol with low particle number (Ntot) and lung deposited surface area (LDSA) concentrations due to marine air flows from the Atlantic Ocean; 2) long-range transported (LRT) pollution aerosol due to air flows from eastern Europe where the particles were characterized by the high contribution of oxygenated organic aerosol (OOA) and inorganic species, particularly sulphate, but low BC contribution, and their size distribution possessed an additional accumulation mode; 3) fresh smoke plumes from residential wood combustion in suburban small houses, these particles were characterized by high biomass burning organic aerosol (BBOA) and black carbon (BC) concentrations; and 4) fresh emissions from traffic while driving on busy streets in the city centre and on the highways during morning rush hours. This aerosol was characterized by high concentration of Ntot, LDSA, small particles in the nucleation mode, as well as high hydrocarbon-like organic aerosol (HOA) and BC concentrations. In general, secondary components (OOA, NO3, NH4, and SO4) dominated the PM1 chemical composition during the LRT episode accounting for 70-80% of the PM1 mass, whereas fresh primary emissions (BC, HOA and BBOA) dominated the local traffic and wood burning emissions. The major individual particle types observed with electron microscopy analysis (TEM/EDX) were mainly related to residential wood combustion (K/S/C-rich, soot, other C-rich particles), traffic (soot, Si/Al-rich, Fe-rich), heavy fuel oil combustion in heat plants or ships (S with V-Ni-Fe), LRT pollutants (S

  19. Aerosol-assisted extraction of silicon nanoparticles from wafer slicing waste for lithium ion batteries.

    Science.gov (United States)

    Jang, Hee Dong; Kim, Hyekyoung; Chang, Hankwon; Kim, Jiwoong; Roh, Kee Min; Choi, Ji-Hyuk; Cho, Bong-Gyoo; Park, Eunjun; Kim, Hansu; Luo, Jiayan; Huang, Jiaxing

    2015-03-30

    A large amount of silicon debris particles are generated during the slicing of silicon ingots into thin wafers for the fabrication of integrated-circuit chips and solar cells. This results in a significant loss of valuable materials at about 40% of the mass of ingots. In addition, a hazardous silicon sludge waste is produced containing largely debris of silicon, and silicon carbide, which is a common cutting material on the slicing saw. Efforts in material recovery from the sludge and recycling have been largely directed towards converting silicon or silicon carbide into other chemicals. Here, we report an aerosol-assisted method to extract silicon nanoparticles from such sludge wastes and their use in lithium ion battery applications. Using an ultrasonic spray-drying method, silicon nanoparticles can be directly recovered from the mixture with high efficiency and high purity for making lithium ion battery anode. The work here demonstrated a relatively low cost approach to turn wafer slicing wastes into much higher value-added materials for energy applications, which also helps to increase the sustainability of semiconductor material and device manufacturing.

  20. Chemically-resolved aerosol volatility measurements from two megacity field studies

    Directory of Open Access Journals (Sweden)

    J. A. Huffman

    2009-09-01

    Full Text Available The volatilities of different chemical species in ambient aerosols are important but remain poorly characterized. The coupling of a recently developed rapid temperature-stepping thermodenuder (TD, operated in the range 54–230°C with a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS during field studies in two polluted megacities has enabled the first direct characterization of chemically-resolved urban particle volatility. Measurements in Riverside, CA and Mexico City are generally consistent and show ambient nitrate as having the highest volatility of any AMS standard aerosol species while sulfate showed the lowest volatility. Total organic aerosol (OA showed volatility intermediate between nitrate and sulfate, with an evaporation rate of 0.6%·K−1 near ambient temperature, although OA dominates the residual species at the highest temperatures. Different types of OA were characterized with marker ions, diurnal cycles, and positive matrix factorization (PMF and show significant differences in volatility. Reduced hydrocarbon-like OA (HOA, a surrogate for primary OA, POA, oxygenated OA (OOA, a surrogate for secondary OA, SOA, and biomass-burning OA (BBOA separated with PMF were all determined to be semi-volatile. The most aged OOA-1 and its dominant ion, CO2+, consistently exhibited the lowest volatility, with HOA, BBOA, and associated ions for each among the highest. The similar or higher volatility of HOA/POA compared to OOA/SOA contradicts the current representations of OA volatility in most atmospheric models and has important implications for aerosol growth and lifetime. A new technique using the AMS background signal was demonstrated to quantify the fraction of species up to four orders-of-magnitude less volatile than those detectable in the MS mode, which for OA represent ~5% of the non-refractory (NR OA signal. Our results strongly imply that all OA types should be considered

  1. Coastal Antarctic aerosol: the seasonal pattern of its chemical composition and radionuclide content

    International Nuclear Information System (INIS)

    Wagenbach, D.; Goerlach, U.; Moser, K.; Muennich, K.O.

    1988-01-01

    At the German Antarctic research station (70 degrees S, 8 degrees W), long-term observations of the chemical and radio-chemical composition of atmospheric particulate matter were started in spring 1983. Based on the analysis of high-volume aerosol filters sampled continuously for nearly 5 years, concentration records of the following aerosol components are presented here: (a) major ions (sea-salt, sulfate, nitrate); (b) cosmogenic 7 Be and terrigeneous 210 Pb; (c) trace elements (crustal Mn, heavy metal Pb). All species mentioned, with the exception of stable and radioactive Pb, show annual cycles. The maximum occurs in austral summer for 7 Be, sulfate, and crustal Mn. For sea-salt, however, the maximum is found in local autumn, and for nitrate in local spring. In local summer, the enhanced 7 Be to 210 Pb ratio is attributed to intenser large scale vertical mixing. The pattern of total sulfate seems to be controlled by the nss-sulfate production from marine organo-sulfur species during local summer, whereas in polar night, nss-sulfate shows very low or even negative concentration. Crustal aerosol (indicated by Mn) shows a mean summer contribution of 16 ng/SCM which exceeds the mean winter level by more than a factor of two. Based on a mean wash-out ratio of 0.27x10 6 observed for 210 Pb bearing aerosol particles, a Pb snow concentration of 3.0 pg/g is deduced from the mean air concentration of 11 pg/SCM. (authors)

  2. Source apportionment of submicron organic aerosol collected from Atlanta, Georgia, during 2014-2015 using the aerosol chemical speciation monitor (ACSM)

    Science.gov (United States)

    Rattanavaraha, Weruka; Canagaratna, Manjula R.; Budisulistiorini, Sri Hapsari; Croteau, Philip L.; Baumann, Karsten; Canonaco, Francesco; Prevot, Andre S. H.; Edgerton, Eric S.; Zhang, Zhenfa; Jayne, John T.; Worsnop, Douglas R.; Gold, Avram; Shaw, Stephanie L.; Surratt, Jason D.

    2017-10-01

    The Aerodyne Aerosol Chemical Speciation Monitor (ACSM) was redeployed at the Jefferson Street (JST) site in downtown Atlanta, Georgia (GA) for 1 year (March 20, 2014-February 08, 2015) to chemically characterize non-refractory submicron particulate matter (NR-PM1) in near real-time and to assess whether organic aerosol (OA) types and amounts change from year-to-year. Submicron organic aerosol (OA) mass spectra were analyzed by season using multilinear engine (ME-2) to apportion OA subtypes to potential sources and chemical processes. A suite of real-time collocated measurements from the Southeastern Aerosol Research and Characterization (SEARCH) network was compared with ME-2 factor solutions to aid in the interpretation of OA subtypes during each season. OA tracers measured from high-volume filter samples using gas chromatography interfaced with electron ionization-mass spectrometry (GC/EI-MS) also aided in identifying OA sources. The initial application of ME-2 to the yearlong ACSM dataset revealed that OA source apportionment by season was required to better resolve sporadic OA types. Spring and fall OA mass spectral datasets were separated into finer periods to capture potential OA sources resulting from non-homogeneous emissions during transitioning periods. NR-PM1 was highest in summer (16.7 ± 8.4 μg m-3) and lowest in winter (8.0 ± 5.7 μg m-3), consistent with prior studies. OA dominated NR-PM1 mass (56-74% on average) in all seasons. Hydrocarbon-like OA (HOA) from primary emissions was observed in all seasons, averaging 5-22% of total OA mass. Strong correlations of HOA with carbon monoxide (CO) (R = 0.71-0.88) and oxides of nitrogen (NOx) (R = 0.55-0.79) indicated that vehicular traffic was the likely source. Biomass burning OA (BBOA) was observed in all seasons, with lower contributions (2%) in summer and higher in colder seasons (averaging 8-20% of total OA mass). BBOA correlated strongly with levoglucosan (R = 0.78-0.95) during colder seasons

  3. Aerosol chemical and optical properties over the Paris area within ESQUIF project

    Directory of Open Access Journals (Sweden)

    A. Hodzic

    2006-01-01

    Full Text Available Aerosol chemical and optical properties are extensively investigated for the first time over the Paris Basin in July 2000 within the ESQUIF project. The measurement campaign offers an exceptional framework to evaluate the performances of the chemistry-transport model CHIMERE in simulating concentrations of gaseous and aerosol pollutants, as well as the aerosol-size distribution and composition in polluted urban environments against ground-based and airborne measurements. A detailed comparison of measured and simulated variables during the second half of July with particular focus on 19 and 31 pollution episodes reveals an overall good agreement for gas-species and aerosol components both at the ground level and along flight trajectories, and the absence of systematic biases in simulated meteorological variables such as wind speed, relative humidity and boundary layer height as computed by the MM5 model. A good consistency in ozone and NO concentrations demonstrates the ability of the model to reproduce the plume structure and location fairly well both on 19 and 31 July, despite an underestimation of the amplitude of ozone concentrations on 31 July. The spatial and vertical aerosol distributions are also examined by comparing simulated and observed lidar vertical profiles along flight trajectories on 31 July and confirm the model capacity to simulate the plume characteristics. The comparison of observed and modeled aerosol components in the southwest suburb of Paris during the second half of July indicates that the aerosol composition is rather correctly reproduced, although the total aerosol mass is underestimated by about 20%. The simulated Parisian aerosol is dominated by primary particulate matter that accounts for anthropogenic and biogenic primary particles (40%, and inorganic aerosol fraction (40% including nitrate (8%, sulfate (22% and ammonium (10%. The secondary organic aerosols (SOA represent 12% of the total aerosol mass, while the

  4. Physico-Chemical Evolution of Organic Aerosol from Wildfire Emissions

    Science.gov (United States)

    Croteau, P.; Jathar, S.; Akherati, A.; Galang, A.; Tarun, S.; Onasch, T. B.; Lewane, L.; Herndon, S. C.; Roscioli, J. R.; Yacovitch, T. I.; Fortner, E.; Xu, W.; Daube, C.; Knighton, W. B.; Werden, B.; Wood, E.

    2017-12-01

    Wildfires are the largest combustion-related source of carbonaceous emissions to the atmosphere; these include direct emissions of black carbon (BC), primary organic aerosol (POA) and semi-volatile, intermediate-volatility, and volatile organic compounds (SVOCs, IVOCs, and VOCs). However, there are large uncertainties surrounding the evolution of these carbonaceous emissions as they are physically and chemically transformed in the atmosphere. To understand these transformations, we performed sixteen experiments using an environmental chamber to simulate day- and night-time chemistry of gas- and aerosol-phase emissions from 6 different fuels at the Fire Laboratory in Missoula, MT. Across the test matrix, the experiments simulated 2 to 8 hours of equivalent day-time aging (with the hydroxyl radical and ozone) or several hours of night-time aging (with the nitrate radical). Aging resulted in an average organic aerosol (OA) mass enhancement of 28% although the full range of OA mass enhancements varied between -10% and 254%. These enhancement findings were consistent with chamber and flow reactor experiments performed at the Fire Laboratory in 2010 and 2012 but, similar to previous studies, offered no evidence to link the OA mass enhancement to fuel type or oxidant exposure. Experiments simulating night-time aging resulted in an average OA mass enhancement of 10% and subsequent day-time aging resulted in a decrease in OA mass of 8%. While small, for the first time, these experiments highlighted the continuous nature of the OA evolution as the wildfire smoke cycled through night- and day-time processes. Ongoing work is focussed on (i) quantifying bulk compositional changes in OA, (ii) comparing the near-field aging simulated in this work with far-field aging simulated during the same campaign (via a mini chamber and flow tube) and (iii) integrating wildfire smoke aging datasets over the past decade to examine the relationship between OA mass enhancement ratios, modified

  5. Microwave-assisted extraction of metal elements from glass fibrous filters for aerosol sampling

    International Nuclear Information System (INIS)

    Li Dong-Mei; Zhang Li-Xing; Wang Xu-Hui; Liu Long-Bo

    2003-01-01

    Atmospheric aerosols are generally collected on filters according to the International Monitoring System (IMS) designed in the Comprehensive Nuclear-Test-Ban Treaty (CTBT). More information could be revealed when the filter sample is pretreated rather than measured directly by γ-ray spectrometer. Microwave-assisted extraction (MAE) is a suitable method that gives higher recoveries of elements from glass fibrous filters under different conditions. The results indicate that the MAE is a highly efficient and robust method for the treatment of glass fibrous filter samples. The recoveries of potential fission products from glass fibrous filter samples by microwave-assisted extraction meet the efficiency of the extraction by both aqua regia and 2% HCl. (author)

  6. Biomass burning aerosol over the Amazon during SAMBBA: impact of chemical composition on radiative properties

    Science.gov (United States)

    Morgan, William; Allan, James; Flynn, Michael; Darbyshire, Eoghan; Hodgson, Amy; Liu, Dantong; O'shea, Sebastian; Bauguitte, Stephane; Szpek, Kate; Langridge, Justin; Johnson, Ben; Haywood, Jim; Longo, Karla; Artaxo, Paulo; Coe, Hugh

    2014-05-01

    Biomass burning represents one of the largest sources of particulate matter to the atmosphere, resulting in a significant perturbation to the Earth's radiative balance coupled with serious impacts on public health. Globally, biomass burning aerosols are thought to exert a small warming effect but with the uncertainty being 4 times greater than the central estimate. On regional scales, the impact is substantially greater, particularly in areas such as the Amazon Basin where large, intense and frequent burning occurs on an annual basis for several months. Absorption by atmospheric aerosols is underestimated by models over South America, which points to significant uncertainties relating to Black Carbon (BC) aerosol properties. Initial results from the South American Biomass Burning Analysis (SAMBBA) field experiment, which took place during September and October 2012 over Brazil on-board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft, are presented here. Aerosol chemical composition was measured by an Aerodyne Aerosol Mass Spectrometer (AMS) and a DMT Single Particle Soot Photometer (SP2). The physical, chemical and optical properties of the aerosols across the region will be characterized in order to establish the impact of biomass burning on regional air quality, weather and climate. The aircraft sampled a range of conditions including sampling of pristine Rainforest, fresh biomass burning plumes, regional haze and elevated biomass burning layers within the free troposphere. The aircraft sampled biomass burning aerosol across the southern Amazon in the states of Rondonia and Mato Grosso, as well as in a Cerrado (Savannah-like) region in Tocantins state. This presented a range of fire conditions, both in terms of their number, intensity, vegetation-type and their combustion efficiencies. Near-source sampling of fires in Rainforest environments suggested that smouldering combustion dominated, while flaming combustion dominated

  7. Characterizing the Asian Tropopause Aerosol Layer (ATAL) Using Satellite Observations, Balloon Measurements and a Chemical Transport Model

    Science.gov (United States)

    Fairlie, T. D.; Vernier, J.-P.; Liu, H.; Deshler, T.; Natarajan, M.; Bedka, K.; Wegner, T.; Baker, N.; Gadhavi, H.; Ratnam, M. V.; hide

    2016-01-01

    Satellite observations and numerical modeling studies have demonstrated that the Asian Summer Monsoon (ASM) provide a conduit for gas-phase pollutants in south Asia to reach the lower stratosphere. Now, observations from the CALIPSO satellite have revealed the Asian Tropopause Aerosol Layer (ATAL), a summertime accumulation of aerosols in the upper troposphere and lower stratosphere (UTLS), associated with the ASM anticyclone. The ATAL has potential implications for regional cloud properties, climate, and chemical processes in the UTLS. Here, we show in situ measurements from balloon-borne instruments, aircraft, and satellite observations, together with trajectory and chemical transport model (CTM) simulations to explore the origin, composition, physical, and optical properties of aerosols in the ATAL. In particular, we show balloon-data from our BATAL-2015 field campaign to India and Saudi Arabia in summer 2015, which includes in situ backscatter measurements from COBALD instruments, and the first observations of size and volatility of aerosols in the ATAL layer using optical particle counters (OPCs). Back trajectory calculations initialized from CALIPSO observations point to deep convection over North India as a principal source of ATAL aerosols. Available aircraft observations suggest significant sulfur and carbonaceous components to the ATAL, which is supported by simulations using the GEOS-Chem CTM. Source elimination studies conducted with the GEOS-Chem indicate that ATAL aerosols originate primary from south Asian sources, in contrast with some earlier studies.

  8. GEM-AQ/EC, an on-line global multi-scale chemical weather modelling system: model development and evaluation of global aerosol climatology

    Directory of Open Access Journals (Sweden)

    S. L. Gong

    2012-09-01

    Full Text Available A global air quality modeling system GEM-AQ/EC was developed by implementing tropospheric chemistry and aerosol processes on-line into the Global Environmental Multiscale weather prediction model – GEM. Due to the multi-scale features of the GEM, the integrated model, GEM-AQ/EC, is able to investigate chemical weather at scales from global to urban domains. The current chemical mechanism is comprised of 50 gas-phase species, 116 chemical and 19 photolysis reactions, and is complemented by a sectional aerosol module CAM (The Canadian Aerosol Module with 5 aerosols types: sulphate, black carbon, organic carbon, sea-salt and soil dust. Monthly emission inventories of black carbon and organic carbon from boreal and temperate vegetation fires were assembled using the most reliable areas burned datasets by countries, from statistical databases and derived from remote sensing products of 1995–2004. The model was run for ten years from from 1995–2004 with re-analyzed meteorology on a global uniform 1° × 1° horizontal resolution domain and 28 hybrid levels extending up to 10 hPa. The simulating results were compared with various observations including surface network around the globe and satellite data. Regional features of global aerosols are reasonably captured including emission, surface concentrations and aerosol optical depth. For various types of aerosols, satisfactory correlations were achieved between modeled and observed with some degree of systematic bias possibly due to large uncertainties in the emissions used in this study. A global distribution of natural aerosol contributions to the total aerosols is obtained and compared with observations.

  9. Using different assumptions of aerosol mixing state and chemical composition to predict CCN concentrations based on field measurements in urban Beijing

    Science.gov (United States)

    Ren, Jingye; Zhang, Fang; Wang, Yuying; Collins, Don; Fan, Xinxin; Jin, Xiaoai; Xu, Weiqi; Sun, Yele; Cribb, Maureen; Li, Zhanqing

    2018-05-01

    Understanding the impacts of aerosol chemical composition and mixing state on cloud condensation nuclei (CCN) activity in polluted areas is crucial for accurately predicting CCN number concentrations (NCCN). In this study, we predict NCCN under five assumed schemes of aerosol chemical composition and mixing state based on field measurements in Beijing during the winter of 2016. Our results show that the best closure is achieved with the assumption of size dependent chemical composition for which sulfate, nitrate, secondary organic aerosols, and aged black carbon are internally mixed with each other but externally mixed with primary organic aerosol and fresh black carbon (external-internal size-resolved, abbreviated as EI-SR scheme). The resulting ratios of predicted-to-measured NCCN (RCCN_p/m) were 0.90 - 0.98 under both clean and polluted conditions. Assumption of an internal mixture and bulk chemical composition (INT-BK scheme) shows good closure with RCCN_p/m of 1.0 -1.16 under clean conditions, implying that it is adequate for CCN prediction in continental clean regions. On polluted days, assuming the aerosol is internally mixed and has a chemical composition that is size dependent (INT-SR scheme) achieves better closure than the INT-BK scheme due to the heterogeneity and variation in particle composition at different sizes. The improved closure achieved using the EI-SR and INT-SR assumptions highlight the importance of measuring size-resolved chemical composition for CCN predictions in polluted regions. NCCN is significantly underestimated (with RCCN_p/m of 0.66 - 0.75) when using the schemes of external mixtures with bulk (EXT-BK scheme) or size-resolved composition (EXT-SR scheme), implying that primary particles experience rapid aging and physical mixing processes in urban Beijing. However, our results show that the aerosol mixing state plays a minor role in CCN prediction when the κorg exceeds 0.1.

  10. Chemical properties and morphology of Marine Aerosol in the Mediterranean atmosphere: a mesocosm study

    Science.gov (United States)

    D'Anna, Barbara; Sellegri, Karine; Charrière, Bruno; Sempéré, Richard; Mas, Sébastien; Marchand, Nicolas; George, Christian; Même, Aurèlie; R'mili, Badr; Delmont, Anne; Schwier, Allison; Rose, Clémence; Colomb, Aurèlie; Pey, Jorge; Langley Dewitt, Helen

    2014-05-01

    The Mediterranean Sea is a special marine environment characterized by low biological activity and high anthropogenic pressure. It is often difficult to discriminate the contribution of Primary Sea Salt Aerosol formed at the sea surface from background level of the aerosol. An alternative tool to study the sea-air exchanges in a controlled environment is provided by the mesocosms, which represent an important link between field studies and laboratory experiments. The sea-air transfer of particles and gases was investigated in relation to water chemical composition and biological activity during a mesocosm experiment within the SAM project (Sources of marine Aerosol in the Mediterranean) at the Oceanographic and Marine Station STARESO in Western Corsica (May 2013). Three 2 m mesocosms were filled with screened (sensors and received different treatments: one was left unchanged as control and two were enriched by addition of nitrates and phosphates respecting Redfield ratio (N:P = 16). The evolution of the three systems was followed for 20 days. The set of sensors in each mesocosm was allowed to monitor, at high frequency (every 10 min), the water temperature, conductivity, pH, incident light, fluorescence of chlorophyll a and dissolved oxygen concentration. The mesocosm seawaters were daily sampled for chemical (colored dissolved organic matter, particulate matter and related polar compounds, transparent polysaccharides and nutrients concentration) and biological (chlorophyll a, virus, phytoplankton and zooplankton) analyses. Both dissolved and gaseous VOCs were also analyzed. In addition, few liters of seawater from each mesocosm were daily and immediately collected and transferred to a bubble-bursting apparatus to simulate nascent sea spray aerosol. On-line chemical analysis of the sub-micrometer fraction was performed by a TOF-AMS (Aerodyne). Off-line analysis included TEM-EDX for morphology and size distribution studies and a hybrid quadrupole-orbitrap mass

  11. The Impact of Aerosol Particle Mixing State on the Hygroscopicity of Sea Spray Aerosol.

    Science.gov (United States)

    Schill, Steven R; Collins, Douglas B; Lee, Christopher; Morris, Holly S; Novak, Gordon A; Prather, Kimberly A; Quinn, Patricia K; Sultana, Camille M; Tivanski, Alexei V; Zimmermann, Kathryn; Cappa, Christopher D; Bertram, Timothy H

    2015-06-24

    Aerosol particles influence global climate by determining cloud droplet number concentrations, brightness, and lifetime. Primary aerosol particles, such as those produced from breaking waves in the ocean, display large particle-particle variability in chemical composition, morphology, and physical phase state, all of which affect the ability of individual particles to accommodate water and grow into cloud droplets. Despite such diversity in molecular composition, there is a paucity of methods available to assess how particle-particle variability in chemistry translates to corresponding differences in aerosol hygroscopicity. Here, an approach has been developed that allows for characterization of the distribution of aerosol hygroscopicity within a chemically complex population of atmospheric particles. This methodology, when applied to the interpretation of nascent sea spray aerosol, provides a quantitative framework for connecting results obtained using molecular mimics generated in the laboratory with chemically complex ambient aerosol. We show that nascent sea spray aerosol, generated in situ in the Atlantic Ocean, displays a broad distribution of particle hygroscopicities, indicative of a correspondingly broad distribution of particle chemical compositions. Molecular mimics of sea spray aerosol organic material were used in the laboratory to assess the volume fractions and molecular functionality required to suppress sea spray aerosol hygroscopicity to the extent indicated by field observations. We show that proper accounting for the distribution and diversity in particle hygroscopicity and composition are important to the assessment of particle impacts on clouds and global climate.

  12. Comparison of three aerosol chemical characterization techniques utilizing PTR-ToF-MS: a study on freshly formed and aged biogenic SOA

    Science.gov (United States)

    Gkatzelis, Georgios I.; Tillmann, Ralf; Hohaus, Thorsten; Müller, Markus; Eichler, Philipp; Xu, Kang-Ming; Schlag, Patrick; Schmitt, Sebastian H.; Wegener, Robert; Kaminski, Martin; Holzinger, Rupert; Wisthaler, Armin; Kiendler-Scharr, Astrid

    2018-03-01

    An intercomparison of different aerosol chemical characterization techniques has been performed as part of a chamber study of biogenic secondary organic aerosol (BSOA) formation and aging at the atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction chamber). Three different aerosol sampling techniques - the aerosol collection module (ACM), the chemical analysis of aerosol online (CHARON) and the collection thermal-desorption unit (TD) were connected to proton transfer reaction time-of-flight mass spectrometers (PTR-ToF-MSs) to provide chemical characterization of the SOA. The techniques were compared among each other and to results from an aerosol mass spectrometer (AMS) and a scanning mobility particle sizer (SMPS). The experiments investigated SOA formation from the ozonolysis of β-pinene, limonene, a β-pinene-limonene mix and real plant emissions from Pinus sylvestris L. (Scots pine). The SOA was subsequently aged by photo-oxidation, except for limonene SOA, which was aged by NO3 oxidation. Despite significant differences in the aerosol collection and desorption methods of the PTR-based techniques, the determined chemical composition, i.e. the same major contributing signals, was found by all instruments for the different chemical systems studied. These signals could be attributed to known products expected from the oxidation of the examined monoterpenes. The sampling and desorption method of ACM and TD provided additional information on the volatility of individual compounds and showed relatively good agreement. Averaged over all experiments, the total aerosol mass recovery compared to an SMPS varied within 80 ± 10, 51 ± 5 and 27 ± 3 % for CHARON, ACM and TD, respectively. Comparison to the oxygen-to-carbon ratios (O : C) obtained by AMS showed that all PTR-based techniques observed lower O : C ratios, indicating a loss of molecular oxygen either during aerosol sampling or detection. The differences in total

  13. Aerosol size and chemical composition measurements at the Polar Environment Atmospheric Research Lab (PEARL) in Eureka, Nunavut

    Science.gov (United States)

    Hayes, P. L.; Tremblay, S.; Chang, R. Y. W.; Leaitch, R.; Kolonjari, F.; O'Neill, N. T.; Chaubey, J. P.; AboEl Fetouh, Y.; Fogal, P.; Drummond, J. R.

    2016-12-01

    This study presents observations of aerosol chemical composition and particle number size distribution at the Polar Environment Atmospheric Research Laboratory (PEARL) in the Canadian High Arctic (80N, 86W). The current aerosol measurement program at PEARL has been ongoing for more than a year providing long-term observations of Arctic aerosol size distributions for both coarse and fine modes. Particle nucleation events were frequently observed during the summers of 2015 and 2016. The size distribution data are also compared against similar measurements taken at the Alert Global Atmospheric Watch Observatory (82N, 62W) for July and August 2015. The nucleation events are correlated at the two sites, despite a distance of approximately 500 km, suggesting regional conditions favorable for particle nucleation and growth during this period. Size resolved chemical composition measurements were also carried out using an aerosol mass spectrometer. The smallest measured particles between 40 and 60 nm are almost entirely organic aerosol (OA) indicating that the condensation of organic vapors is responsible for particle growth events and possibly particle nucleation. This conclusion is further supported by the relatively high oxygen content of the OA, which is consistent with secondary formation of OA via atmospheric oxidation.Lastly, surface measurements of the aerosol scattering coefficient are compared against the coefficient values calculated using Mie theory and the measured aerosol size distribution. Both the actual and the calculated scattering coefficients are then compared to sun photometer measurements to understand the relationship between surface and columnar aerosol optical properties. The measurements at PEARL provide a unique combination of surface and columnar data sets on aerosols in the High Arctic, a region where such measurements are scarce despite the important impact of aerosols on Arctic climate.PEARL research is supported by the Natural Sciences and

  14. Hygroscopicity and chemical composition of Antarctic sub-micrometre aerosol particles and observations of new particle formation

    Directory of Open Access Journals (Sweden)

    E. Asmi

    2010-05-01

    Full Text Available The Antarctic near-coastal sub-micrometre aerosol particle features in summer were characterised based on measured data on aerosol hygroscopicity, size distributions, volatility and chemical ion and organic carbon mass concentrations. Hysplit model was used to calculate the history of the air masses to predict the particle origin. Additional measurements of meteorological parameters were utilised. The hygroscopic properties of particles mostly resembled those of marine aerosols. The measurements took place at 130 km from the Southern Ocean, which was the most significant factor affecting the particle properties. This is explained by the lack of additional sources on the continent of Antarctica. The Southern Ocean was thus a likely source of the particles and nucleating and condensing vapours. The particles were very hygroscopic (HGF 1.75 at 90 nm and very volatile. Most of the sub-100 nm particle volume volatilised below 100 °C. Based on chemical data, particle hygroscopic and volatile properties were explained by a large fraction of non-neutralised sulphuric acid together with organic material. The hygroscopic growth factors assessed from chemical data were similar to measured. Hygroscopicity was higher in dry continental air masses compared with the moist marine air masses. This was explained by the aging of the marine organic species and lower methanesulphonic acid volume fraction together with the changes in the inorganic aerosol chemistry as the aerosol had travelled long time over the continental Antarctica. Special focus was directed in detailed examination of the observed new particle formation events. Indications of the preference of negative over positive ions in nucleation could be detected. However, in a detailed case study, the neutral particles dominated the particle formation process. Freshly nucleated particles had the smallest hygroscopic growth factors, which increased subsequent to particle aging.

  15. Surface Modification of Aerosol-Assisted CVD Produced TiO2 Thin Film for Dye Sensitised Solar Cell

    Directory of Open Access Journals (Sweden)

    SuPei Lim

    2014-01-01

    Full Text Available We report a simple and convenient method for the preparation of Ag/TiO2 thin films supported on indium tin oxide, which was achieved by sonochemical deposition of Ag+ on aerosol-assisted chemical vapour deposited TiO2 thin films. Posttreatment was performed on the film by immersion in HCl. The as-prepared composite film was characterised by X-ray diffraction, ultraviolet-visible absorption spectroscopy, Raman spectroscopy, and field emission scanning electron microscopy. The photoelectrochemical measurements and J-V characterisation showed approximately fivefold increase in photocurrent density generation and approximately sevenfold enhancement in dye sensitiser solar cell (DSSC conversion efficiency, which was achieved after modification of the TiO2 film with HCl posttreatment and Ag particle deposition. The improved photocurrent density of 933.30 μA/cm2, as well as DSSC power conversion efficiency of 3.63% with high stability, is an indication that the as-synthesised thin film is a potential candidate for solar energy conversion applications.

  16. Mass and chemically speciated size distribution of Prague aerosol using an aerosol dryer - The influence of air mass origin

    Czech Academy of Sciences Publication Activity Database

    Schwarz, Jaroslav; Štefancová, Lucia; Maenhaut, W.; Smolík, Jiří; Ždímal, Vladimír

    2012-01-01

    Roč. 437, OCT 15 (2012), s. 348-362 ISSN 0048-9697 R&D Projects: GA ČR GA205/09/2055; GA ČR GAP209/11/1342; GA MŠk ME 941 Grant - others:SRF GU(BE) 01S01306 Institutional support: RVO:67985858 Keywords : atmospheric aerosols * mass size distribution * chemical composition Subject RIV: DI - Air Pollution ; Quality Impact factor: 3.258, year: 2012

  17. Sea spray aerosol chemical composition: elemental and molecular mimics for laboratory studies of heterogeneous and multiphase reactions.

    Science.gov (United States)

    Bertram, Timothy H; Cochran, Richard E; Grassian, Vicki H; Stone, Elizabeth A

    2018-04-03

    Sea spray aerosol particles (SSA), formed through wave breaking at the ocean surface, contribute to natural aerosol particle concentrations in remote regions of Earth's atmosphere, and alter the direct and indirect effects of aerosol particles on Earth's radiation budget. In addition, sea spray aerosol serves as suspended surface area that can catalyze trace gas reactions. It has been shown repeatedly that sea spray aerosol is heavily enriched in organic material compared to the surface ocean. The selective enrichment of organic material complicates the selection of representative molecular mimics of SSA for laboratory or computational studies. In this review, we first provide a short introduction to SSA formation processes and discuss chemical transformations of SSA that occur in polluted coastal regions and remote pristine air. We then focus on existing literature of the chemical composition of nascent SSA generated in controlled laboratory experiments and field investigations. We combine the evidence on the chemical properties of nascent SSA with literature measurements of SSA water uptake to assess SSA molecular composition and liquid water content. Efforts to speciate SSA organic material into molecular classes and specific molecules have led to the identification of saccharides, alkanes, free fatty acids, anionic surfactants, dicarboxylic acids, amino acids, proteinaceous matter, and other large macromolecules. However to date, less than 25% of the organic mass of nascent SSA has been quantified at a molecular level. As discussed here, quantitative measurements of size resolved elemental ratios, combined with determinations of water uptake properties, provides unique insight on the concentration of ions within SSA as a function of particle size, pointing to a controlling role for relative humidity and the hygroscopicity of SSA organic material at small particle diameters.

  18. Microphysical and chemical characteristics of near-water aerosol over White and Kara Seas

    Science.gov (United States)

    Terpugova, S. A.; Polkin, V. V.; Panchenko, M. V.; Golobokova, L. P.; Kozlov, V. S.; Shmargunov, V. P.; Shevchenko, V. P.; Lisitzin, A. P.

    2009-04-01

    The results are presented of five-year-long (2003-2007) study of the spatial - temporal variability of the near-water aerosol in the water area of White and Kara Seas (55, 64, 71 and 80-th cruises of RV "Professor Shtockman"; 53 and 54-th cruises of RV "Akademik Mstislav Keldysh"). Measurements of aerosol microphysical characteristics were carried out by means of the automated mobile aerosol complex consisting of nephelometer, photoelectric counter and aethalometer. The aerosol disperse composition was studied with photoelectric counter in 256 size intervals from 0.4 to 10 m. About 1500 series of measurements were carried out in White Sea, and about 1400 series in Kara Sea. Chemical characteristics of aerosol were determined from samples collected on aerosol filters (92 samples were collected in White Sea and 48 in Kara Sea). The ion composition was determined under laboratory conditions. The H+, Na+, K+, Ca2+, Mg2+, NH4+, Cl-, NO3-, HCO3-, SO42- ions were under examination. Comparing aerosol characteristics of two seas, one can note that the mean values of the aerosol content parameters in Kara Sea are less than in White Sea. The ratio of the aerosol mass concentration are from 2 (Yamal Peninsula, northern part of Novaya Zemlya) to 9 times (Blagopoluchia Bay, Ob' Gulf). The differences in the concentration of black carbon vary from 3 (Yamal Peninsula) to 17 times (Blagopoluchia Bay). The differences in the aerosol number concentration NA are not so big. The values NA near Kara Gate, Yamal Peninsula and northern part of Novaya Zemlya are practically the same as in White Sea. The concentration NA at Ob' gulf is one order of magnitude less than in White sea. The obtained aerosol volume size distributions were approximated by the sums of two fractions, submicron and coarse, with lognormal size distributions. The mean volume size distribution of submicron fraction in White Sea is approximated by the distribution with the variance of the radius logarithm s=0.6 and modal

  19. Chemical composition and sources of atmospheric aerosols at Djougou (Benin)

    Science.gov (United States)

    Ouafo-Leumbe, Marie-Roumy; Galy-Lacaux, Corinne; Liousse, Catherine; Pont, Veronique; Akpo, Aristide; Doumbia, Thierno; Gardrat, Eric; Zouiten, Cyril; Sigha-Nkamdjou, Luc; Ekodeck, Georges Emmanuel

    2017-06-01

    In the framework of the INDAAF (International Network to study Deposition and Atmospheric chemistry in AFrica) program, atmospheric aerosols were collected in PM2.5 and PM10 size fractions at Djougou, Benin, in the West Africa, from November, 2005 to October, 2009. Particulate carbon, ionic species, and trace metals were analyzed. Weekly PM2.5 and PM10 total mass concentrations varied between 0.7 and 47.3 µg m-3 and 1.4-148.3 µg m-3, respectively. We grouped the aerosol chemical compounds into four classes: dust, particulate organic matter (POM), elemental carbon (EC), and ions. We studied the annual variation of each class to determine their contribution in the total aerosol mass concentration and finally to investigate their potential emission sources. On an annual basis, the species presented a well-marked seasonality, with the peak of mass concentration for both sizes registered in dry season, 67 ± 2 to 86 ± 9 versus 14 ± 9 to 34 ± 5% in wet season. These values emphasized the seasonality of the emissions and the relative weak interannual standard deviation indicates the low variability of the seasonality. At the seasonal scale, major contributions to the aerosol chemistry in the dry season are: dust (26-59%), POM (30-59%), EC (5-9%), and ions (3-5%), suggesting a predominance of Sahelian and Saharan dust emissions and biomass burning source in this season. In the wet season, POM is predominant, followed by dust, EC, and ions. These results point out the contribution of surrounded biofuel combustion used for cooking and biogenic emissions during the wet season.

  20. Comparison of three aerosol chemical characterization techniques utilizing PTR-ToF-MS: a study on freshly formed and aged biogenic SOA

    Directory of Open Access Journals (Sweden)

    G. I. Gkatzelis

    2018-03-01

    Full Text Available An intercomparison of different aerosol chemical characterization techniques has been performed as part of a chamber study of biogenic secondary organic aerosol (BSOA formation and aging at the atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction chamber. Three different aerosol sampling techniques – the aerosol collection module (ACM, the chemical analysis of aerosol online (CHARON and the collection thermal-desorption unit (TD were connected to proton transfer reaction time-of-flight mass spectrometers (PTR-ToF-MSs to provide chemical characterization of the SOA. The techniques were compared among each other and to results from an aerosol mass spectrometer (AMS and a scanning mobility particle sizer (SMPS. The experiments investigated SOA formation from the ozonolysis of β-pinene, limonene, a β-pinene–limonene mix and real plant emissions from Pinus sylvestris L. (Scots pine. The SOA was subsequently aged by photo-oxidation, except for limonene SOA, which was aged by NO3 oxidation. Despite significant differences in the aerosol collection and desorption methods of the PTR-based techniques, the determined chemical composition, i.e. the same major contributing signals, was found by all instruments for the different chemical systems studied. These signals could be attributed to known products expected from the oxidation of the examined monoterpenes. The sampling and desorption method of ACM and TD provided additional information on the volatility of individual compounds and showed relatively good agreement. Averaged over all experiments, the total aerosol mass recovery compared to an SMPS varied within 80 ± 10, 51 ± 5 and 27 ± 3 % for CHARON, ACM and TD, respectively. Comparison to the oxygen-to-carbon ratios (O : C obtained by AMS showed that all PTR-based techniques observed lower O : C ratios, indicating a loss of molecular oxygen either during aerosol sampling or

  1. Study on chemical mechanical polishing of silicon wafer with megasonic vibration assisted.

    Science.gov (United States)

    Zhai, Ke; He, Qing; Li, Liang; Ren, Yi

    2017-09-01

    Chemical mechanical polishing (CMP) is the primary method to realize the global planarization of silicon wafer. In order to improve this process, a novel method which combined megasonic vibration to assist chemical mechanical polishing (MA-CMP) is developed in this paper. A matching layer structure of polishing head was calculated and designed. Silicon wafers are polished by megasonic assisted chemical mechanical polishing and traditional chemical mechanical polishing respectively, both coarse polishing and precision polishing experiments were carried out. With the use of megasonic vibration, the surface roughness values Ra reduced from 22.260nm to 17.835nm in coarse polishing, and the material removal rate increased by approximately 15-25% for megasonic assisted chemical mechanical polishing relative to traditional chemical mechanical polishing. Average Surface roughness values Ra reduced from 0.509nm to 0.387nm in precision polishing. The results show that megasonic assisted chemical mechanical polishing is a feasible method to improve polishing efficiency and surface quality. The material removal and finishing mechanisms of megasonic vibration assisted polishing are investigated too. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Desorption atmospheric pressure photoionization high-resolution mass spectrometry: a complementary approach for the chemical analysis of atmospheric aerosols.

    Science.gov (United States)

    Parshintsev, Jevgeni; Vaikkinen, Anu; Lipponen, Katriina; Vrkoslav, Vladimir; Cvačka, Josef; Kostiainen, Risto; Kotiaho, Tapio; Hartonen, Kari; Riekkola, Marja-Liisa; Kauppila, Tiina J

    2015-07-15

    On-line chemical characterization methods of atmospheric aerosols are essential to increase our understanding of physicochemical processes in the atmosphere, and to study biosphere-atmosphere interactions. Several techniques, including aerosol mass spectrometry, are nowadays available, but they all suffer from some disadvantages. In this research, desorption atmospheric pressure photoionization high-resolution (Orbitrap) mass spectrometry (DAPPI-HRMS) is introduced as a complementary technique for the fast analysis of aerosol chemical composition without the need for sample preparation. Atmospheric aerosols from city air were collected on a filter, desorbed in a DAPPI source with a hot stream of toluene and nitrogen, and ionized using a vacuum ultraviolet lamp at atmospheric pressure. To study the applicability of the technique for ambient aerosol analysis, several samples were collected onto filters and analyzed, with the focus being on selected organic acids. To compare the DAPPI-HRMS data with results obtained by an established method, each filter sample was divided into two equal parts, and the second half of the filter was extracted and analyzed by liquid chromatography/mass spectrometry (LC/MS). The DAPPI results agreed with the measured aerosol particle number. In addition to the targeted acids, the LC/MS and DAPPI-HRMS methods were found to detect different compounds, thus providing complementary information about the aerosol samples. DAPPI-HRMS showed several important oxidation products of terpenes, and numerous compounds were tentatively identified. Thanks to the soft ionization, high mass resolution, fast analysis, simplicity and on-line applicability, the proposed methodology has high potential in the field of atmospheric research. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Modelling of primary aerosols in the chemical transport model MOCAGE: development and evaluation of aerosol physical parameterizations

    Directory of Open Access Journals (Sweden)

    B. Sič

    2015-02-01

    Full Text Available This paper deals with recent improvements to the global chemical transport model of Météo-France MOCAGE (Modèle de Chimie Atmosphérique à Grande Echelle that consists of updates to different aerosol parameterizations. MOCAGE only contains primary aerosol species: desert dust, sea salt, black carbon, organic carbon, and also volcanic ash in the case of large volcanic eruptions. We introduced important changes to the aerosol parameterization concerning emissions, wet deposition and sedimentation. For the emissions, size distribution and wind calculations are modified for desert dust aerosols, and a surface sea temperature dependant source function is introduced for sea salt aerosols. Wet deposition is modified toward a more physically realistic representation by introducing re-evaporation of falling rain and snowfall scavenging and by changing the in-cloud scavenging scheme along with calculations of precipitation cloud cover and rain properties. The sedimentation scheme update includes changes regarding the stability and viscosity calculations. Independent data from satellites (MODIS, SEVIRI, the ground (AERONET, EMEP, and a model inter-comparison project (AeroCom are compared with MOCAGE simulations and show that the introduced changes brought a significant improvement on aerosol representation, properties and global distribution. Emitted quantities of desert dust and sea salt, as well their lifetimes, moved closer towards values of AeroCom estimates and the multi-model average. When comparing the model simulations with MODIS aerosol optical depth (AOD observations over the oceans, the updated model configuration shows a decrease in the modified normalized mean bias (MNMB; from 0.42 to 0.10 and a better correlation (from 0.06 to 0.32 in terms of the geographical distribution and the temporal variability. The updates corrected a strong positive MNMB in the sea salt representation at high latitudes (from 0.65 to 0.16, and a negative MNMB in

  4. Seasonality of New Particle Formation in Vienna, Austria - Influence of Air Mass Origin and Aerosol Chemical Composition

    Czech Academy of Sciences Publication Activity Database

    Wonaschütz, A.; Demattio, A.; Wagner, R.; Burkart, J.; Zíková, Naděžda; Vodička, Petr; Ludwig, W.; Steiner, G.; Schwarz, Jaroslav; Hitzenberger, R.

    2015-01-01

    Roč. 118, OCT 2015 (2015), s. 118-126 ISSN 1352-2310 R&D Projects: GA MŠk 7AMB12AT021; GA ČR(CZ) GBP503/12/G147 Grant - others:FWF(AT) P19515-N20 Institutional support: RVO:67985858 Keywords : urban aerosol * aerosol chemical composition * new particle formation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.459, year: 2015

  5. Source identification and airborne chemical characterisation of aerosol pollution from long-range transport over Greenland during POLARCAT summer campaign 2008

    Science.gov (United States)

    Schmale, J.; Schneider, J.; Ancellet, G.; Quennehen, B.; Stohl, A.; Sodemann, H.; Burkhart, J. F.; Hamburger, T.; Arnold, S. R.; Schwarzenboeck, A.; Borrmann, S.; Law, K. S.

    2011-10-01

    We deployed an aerosol mass spectrometer during the POLARCAT (Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate, Chemistry, Aerosols, and Transport) summer campaign in Greenland in June/July 2008 on the research aircraft ATR-42. Online size resolved chemical composition data of submicron aerosol were collected up to 7.6 km altitude in the region 60 to 71° N and 40 to 60° W. Biomass burning (BB) and fossil fuel combustion (FF) plumes originating from North America, Asia, Siberia and Europe were sampled. Transport pathways of detected plumes included advection below 700 hPa, air mass uplifting in warm conveyor belts, and high altitude transport in the upper troposphere. By means of the Lagrangian particle dispersion model FLEXPART, trace gas analysis of O3 and CO, particle size distributions and aerosol chemical composition 48 pollution events were identified and classified into five chemically distinct categories. Aerosol from North American BB consisted of 22% particulate sulphate, while with increasing anthropogenic and Asian influence aerosol in Asian FF dominated plumes was composed of up to 37% sulphate category mean value. Overall, it was found that the organic matter fraction was larger (85%) in pollution plumes than for background conditions (71%). Despite different source regions and emission types the particle oxygen to carbon ratio of all plume classes was around 1 indicating low-volatility highly oxygenated aerosol. The volume size distribution of out-of-plume aerosol showed markedly smaller modes than all other distributions with two Aitken mode diameters of 24 and 43 nm and a geometric standard deviation σg of 1.12 and 1.22, respectively, while another very broad mode was found at 490 nm (σg = 2.35). Nearly pure BB particles from North America exhibited an Aitken mode at 66 nm (σg = 1.46) and an accumulation mode diameter of 392 nm (σg = 1.76). An aerosol lifetime, including all processes from emission to

  6. Secondary organic aerosols. Chemical aging, hygroscopicity, and cloud droplet activation

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, Angela

    2011-07-06

    Atmospheric aerosols have an important impact on the radiation balance, and thus, on the climate of the Earth. Aerosol particles scatter and absorb incoming solar and terrestrial radiation. Apart from this direct effect, aerosol particles act as cloud condensation nuclei (CCN), thereby greatly influencing the microphysics of clouds. Secondary organic aerosols (SOA) are an important fraction of the total aerosol mass. In many environments these organic compounds are mainly products of the oxidation of biogenic volatile organic compounds (VOC). In this study the hygroscopic growth and CCN activation of biogenic SOA were investigated which was formed by the oxidation of VOC with O{sub 3} and photochemically formed OH radicals under low NO{sub x} conditions. For this purpose, a complex mixture of VOC emitted by boreal tree species as gas-phase precursors was used in the Juelich Plant Atmosphere Chamber (JPAC). In long-term studies in the atmosphere simulation chamber SAPHIR {alpha}-pinene or a defined mixture of {alpha}-pinene, {beta}-pinene, limonene, ocimene, {delta}-3-carene served as precursors. Initial precursor concentrations between 40 and 1000 ppbC were investigated. The observed SOA particles were slightly hygroscopic with an average hygroscopicity parameter {kappa}(CCN) = 0.10 {+-} 0.02 and {kappa}(90%RH) = 0.05 {+-} 0.01. Closure between hygroscopic growth and CCN activation data could be achieved allowing either surface tension reduction, limited solubility, or non-ideality of the solution in the droplet. The SOA solutions in equilibrium with RH <95% are possible highly non-ideal. Therefore the organic-water interaction were investigated by applying the UNIFAC model. Calculations for surrogate compounds exhibited the same strong concentration (i.e. RH) dependence of {kappa} at sub-saturation. The growth curves could be fitted and CCN activation predicted by assuming a binary mixture of water and one hypothetical organic compound. The occurrence of

  7. α-Pinene secondary organic aerosol at low temperature: chemical composition and implications for particle viscosity

    Science.gov (United States)

    Huang, Wei; Saathoff, Harald; Pajunoja, Aki; Shen, Xiaoli; Naumann, Karl-Heinz; Wagner, Robert; Virtanen, Annele; Leisner, Thomas; Mohr, Claudia

    2018-02-01

    Chemical composition, size distributions, and degree of oligomerization of secondary organic aerosol (SOA) from α-pinene (C10H16) ozonolysis were investigated for low-temperature conditions (223 K). Two types of experiments were performed using two simulation chambers at the Karlsruhe Institute of Technology: the Aerosol Preparation and Characterization (APC) chamber, and the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) chamber. Experiment type 1 simulated SOA formation at upper tropospheric conditions: SOA was generated in the AIDA chamber directly at 223 K at 61 % relative humidity (RH; experiment termed cold humid, CH) and for comparison at 6 % RH (experiment termed cold dry, CD) conditions. Experiment type 2 simulated SOA uplifting: SOA was formed in the APC chamber at room temperature (296 K) and warm dry, WD) or 21 % RH (experiment termed warm humid, WH) conditions, and then partially transferred to the AIDA chamber kept at 223 K, and 61 % RH (WDtoCH) or 30 % RH (WHtoCH), respectively. Precursor concentrations varied between 0.7 and 2.2 ppm α-pinene, and between 2.3 and 1.8 ppm ozone for type 1 and type 2 experiments, respectively. Among other instrumentation, a chemical ionization mass spectrometer (CIMS) coupled to a filter inlet for gases and aerosols (FIGAERO), deploying I- as reagent ion, was used for SOA chemical composition analysis. For type 1 experiments with lower α-pinene concentrations and cold SOA formation temperature (223 K), smaller particles of 100-300 nm vacuum aerodynamic diameter (dva) and higher mass fractions (> 40 %) of adducts (molecules with more than 10 carbon atoms) of α-pinene oxidation products were observed. For type 2 experiments with higher α-pinene concentrations and warm SOA formation temperature (296 K), larger particles ( ˜ 500 nm dva) with smaller mass fractions of adducts (models.

  8. Chemical characterisation of iron in dust and biomass burning aerosols during AMMA-SOP0/DABEX: implication for iron solubility

    Directory of Open Access Journals (Sweden)

    R. Paris

    2010-05-01

    Full Text Available The chemical composition and the soluble fraction were determined in aerosol samples collected during flights of AMMA-SOP0/DABEX campaign, which were conducted in the West African Sahel during dry season (2006. Two aerosol types are encountered in this period: dust particles (DUST and biomass burning aerosol (BB. Chemical analysis and microscope observations showed that the iron (Fe found in BB samples mainly originates from dust particles mostly internally mixed in the biomass burning layer. Chemical analyses of samples showed that the Fe solubility is lower in African dust samples than in biomass burning aerosols. Our data provide a first idea of the variability of iron dust solubility in the source region (0.1% and 3.4%. We found a relationship between iron solubility/clay content/source which partly confirms that the variability of iron solubility in this source region is related to the character and origin of the aerosols themselves. In the biomass burning samples, no relationship were found between Fe solubility and either the concentrations of acidic species (SO42−, NO3 or oxalate or the content of carbon (TC, OC, BC. Therefore, we were unable to determine what processes are involved in this increase of iron solubility. In terms of supply of soluble Fe to oceanic ecosystems on a global scale, the higher solubility observed for Fe in biomass burning could imply an indirect source of Fe to marine ecosystems. But these aerosols are probably not significant because the Sahara is easily the dominant source of Fe to the Atlantic Ocean.

  9. Atmospheric aerosol system: An overview

    International Nuclear Information System (INIS)

    Prospero, J.M.; Charlson, R.J.; Mohnen, V.; Jaenicke, R.; Delany, A.C.; Moyers, J.; Zoller, W.; Rahn, K.

    1983-01-01

    Aerosols could play a critical role in many processes which impact on our lives either indirectly (e.g., climate) or directly (e.g., health). However, our ability to assess these possible impacts is constrained by our limited knowledge of the physical and chemical properties of aerosols, both anthropogenic and natural. This deficiency is attributable in part to the fact that aerosols are the end product of a vast array of chemical and physical processes. Consequently, the properties of the aerosol can exhibit a great deal of variability in both time and space. Furthermore, most aerosol studies have focused on measurements of a single aerosol characteristic such as composition or size distribution. Such information is generally not useful for the assessment of impacts because the degree of impact may depend on the integral properties of the aerosol, for example, the aerosol composition as a function of particle size. In this overview we discuss recent work on atmospheric aerosols that illustrates the complex nature of the aerosol chemical and physical system, and we suggest strategies for future research. A major conclusion is that man has had a great impact on the global budgets of certain species, especially sulfur and nitrogen, that play a dominant role in the atmospheric aerosol system. These changes could conceivably affect climate. Large-scale impacts are implied because it has recently been demonstrated that natural and pollutant aerosol episodes can be propagated over great distances. However, at present there is no evidence linking anthropogenic activities with a persistent increase in aerosol concentrations on a global scale. A major problem in assessing man's impact on the atmospheric aerosol system and on global budgets is the absence of aerosol measurements in remote marine and continental areas

  10. Origins of atmospheric aerosols. Basic concepts on aerosol main physical properties; L`aerosol atmospherique: ses origines quelques notions sur les principales proprietes physiques des aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Renoux, A. [Paris-12 Univ., 94 - Creteil (France). Laboratoire de Physique des aerosols et de transferts des contaminations

    1996-12-31

    Natural and anthropogenic sources of atmospheric aerosols are reviewed and indications of their concentrations and granulometry are given. Calculation of the lifetime of an atmospheric aerosol of a certain size is presented and the various modes of aerosol granulometry and their relations with photochemical and physico-chemical processes in the atmosphere are discussed. The main physical, electrical and optical properties of aerosols are also presented: diffusion coefficient, dynamic mobility and relaxation time, Stokes number, limit rate of fall, electrical mobility, optical diffraction

  11. Metal fractionation of atmospheric aerosols via sequential chemical extraction: a review

    Energy Technology Data Exchange (ETDEWEB)

    Smichowski, Patricia; Gomez, Dario [Unidad de Actividad Quimica, Comision Nacional de Energia Atomica, San Martin (Argentina); Polla, Griselda [Unidad de Actividad Fisica, Comision Nacional de Energia Atomica, San Martin (Argentina)

    2005-01-01

    This review surveys schemes used to sequentially chemically fractionate metals and metalloids present in airborne particulate matter. It focuses mainly on sequential chemical fractionation schemes published over the last 15 years. These schemes have been classified into five main categories: (1) based on Tessier's procedure, (2) based on Chester's procedure, (3) based on Zatka's procedure, (4) based on BCR procedure, and (5) other procedures. The operational characteristics as well as the state of the art in metal fractionation of airborne particulate matter, fly ashes and workroom aerosols, in terms of applications, optimizations and innovations, are also described. Many references to other works in this area are provided. (orig.)

  12. Daily and hourly chemical impact of springtime transboundary aerosols on Japanese air quality

    Directory of Open Access Journals (Sweden)

    T. Moreno

    2013-02-01

    Full Text Available The regular eastward drift of transboundary aerosol intrusions from the Asian mainland into the NW Pacific region has a pervasive impact on air quality in Japan, especially during springtime. Analysis of 24-h filter samples with Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES and Mass Spectrometry (ICP-MS, and hourly Streaker with Particle Induced X-ray Emission (PIXE samples collected continuously for six weeks reveal the chemistry of successive waves of natural mineral desert dust ("Kosa" and metalliferous sulphatic pollutants arriving in western Japan during spring 2011. The main aerosol sources recognised by Positive Matrix Factorization (PMF analysis of Streaker data are mineral dust and fresh sea salt (both mostly in the coarser fraction PM2.5–10, As-bearing sulphatic aerosol (PM0.1–2.5, metalliferous sodic particulate matter (PM interpreted as aged, industrially contaminated marine aerosol, and ZnCu-bearing aerosols. Whereas mineral dust arrivals are typically highly transient, peaking over a few hours, sulphatic intrusions build up and decline more slowly, and are accompanied by notable rises in ambient concentrations of metallic trace elements such as Pb, As, Zn, Sn and Cd. The magnitude of the loss in regional air quality due to the spread and persistence of pollution from mainland Asia is especially clear when cleansing oceanic air advects westward across Japan, removing the continental influence and reducing concentrations of the undesirable metalliferous pollutants by over 90%. Our new chemical database, especially the Streaker data, demonstrates the rapidly changing complexity of ambient air inhaled during these transboundary events, and implicates Chinese coal combustion as the main source of the anthropogenic aerosol component.

  13. Long-term observation of water-soluble chemical components in the bulk atmospheric aerosols collected at Okinawa, Japan

    Science.gov (United States)

    Handa, Daishi; Somada, Yuka; Ijyu, Moriaki; Azechi, Sotaro; Nakaema, Fumiya; Arakaki, Takemitsu; Tanahara, Akira

    2010-05-01

    The economic development and population growth in recent Asia spread air pollution. Emission rate of air pollutants from Asia, in particular oxides of nitrogen, surpassed those from North America and Europe and should continue to exceed them for decades. The study of the long-range transported air pollution from Asian continent has gained a special attention in Japan because of increase in photochemical oxidants in relatively remote islands. Okinawa Island is situated approximately 1500 km south of Tokyo, Japan, 2000 km southeast of Beijing, China, and 1000 km south of South Korea. Its location in Asia is well suited for studying long-range transport of air pollutants in East Asia because maritime air mass prevails during summer, while continental air mass dominates during fall, winter, and spring. The maritime air mass data can be seen as background and can be compared with continental air masses which have been affected by anthropogenic activities. Bulk aerosol samples were collected on quartz filters by using a high volume air sampler. Sampling duration was one week for each sample. We determined the concentrations of water-soluble anions, cations and dissolved organic carbon (DOC) in the bulk aerosols collected at the Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS) using ion chromatography, atomic absorption spectrometry, and total organic carbon analyzer, respectively. We will report water-soluble chemical components data of anions, cations and DOC in bulk atmospheric aerosols collected at CHAAMS during August, 2005 to April, 2010. Seasonal variation of water-soluble chemical components showed that the concentrations were relatively low in summer, higher in fall and winter, and the highest in spring. When air mass came from Asian Continent, the concentrations of water-soluble chemical components were much higher compared to the other directions. In addition, we calculated background concentration of water-soluble chemical components at Okinawa

  14. Spatial distribution and temporal variation of chemical species in the bulk atmospheric aerosols collected at the Okinawa archipelago, Japan

    Science.gov (United States)

    Handa, D.; Somada, Y.; Ijyu, M.; Azechi, S.; Nakaema, F.; Arakaki, T.; Tanahara, A.

    2009-12-01

    The economic development and population growth in recent Asia have been increasing air pollution. A computer simulation study showed that air pollutants emitted from Asian continent could spread quickly within northern hemisphere. We initiated a study to elucidate the special distribution and chemical characterization of atmospheric aerosols around Okinawa archipelago, Japan. Okinawa Island is situated approximately 1500 km south of Tokyo, Japan, 2000 km southeast of Beijing, China, and 1000 km south of South Korea. Its location in Asia is well suited for studying long-range transport of air pollutants in East Asia because maritime air mass prevails during summer, while continental air mass dominates during fall, winter, and spring. The maritime air mass data can be seen as background and can be compared with continental air masses which have been affected by anthropogenic activities. We simultaneously collected bulk aerosol samples by using the same types of high volume air samplers at Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS, Okinawa Island), Kume Island (ca. 160 km south-west of CHAAMS) and Minami-daitou Island (ca. 320 km south-east of CHAAMS). We determined the concentrations of water-soluble anions, cations and dissolved organic carbon (DOC) using ion chromatography, atomic absorption spectrometry, and total organic carbon analyzer, respectively. We report and discuss spatial distribution and temporal variation of chemical species concentrations in bulk atmospheric aerosols collected during July, 2008 to July, 2009. We determine “background” concentration of chemical components in Okinawa archipelago. We then compare each chemical component among CHAAMS, Kume Island and Minami-daito Island to elucidate the influence of the long-range transport of chemical species from Asian continent.

  15. Aerosol sampler for analysis of fine and ultrafine aerosols

    Czech Academy of Sciences Publication Activity Database

    Mikuška, Pavel; Čapka, Lukáš; Večeřa, Zbyněk

    2018-01-01

    Roč. 1020 (2018), s. 123-133 ISSN 0003-2670 R&D Projects: GA ČR(CZ) GA14-25558S Institutional support: RVO:68081715 Keywords : atmospheric aerosols * aerosol collection * chemical composition Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 4.950, year: 2016

  16. Multisensor analyzer detector (MSAD) for low cost chemical and aerosol detection and pattern fusion

    Science.gov (United States)

    Swanson, David C.; Merdes, Daniel W.; Lysak, Daniel B., Jr.; Curtis, Richard C.; Lang, Derek C.; Mazzara, Andrew F.; Nicholas, Nicholas C.

    2002-08-01

    MSAD is being developed as a low-cost point detection chemical and biological sensor system designed around an information fusion inference engine that also allows additional sensors to be included in the detection process. The MSAD concept is based on probable cause detection of hazardous chemical vapors and aerosols of either chemical or biological composition using a small portable unit containing an embedded computer system and several integrated sensors with complementary capabilities. The configuration currently envisioned includes a Surface-Enhanced Raman Spectroscopy (SERS) sensor of chemical vapors and a detector of respirable aerosols based on Fraunhofer diffraction. Additional sensors employing Ion Mobility Spectrometry (IMS), Surface Acoustic Wave (SAW) detection, Flame Photometric Detection (FPD), and other principles are candidates for integration into the device; also, available commercial detectors implementing IMS, SAW, and FPD will be made accessible to the unit through RS232 ports. Both feature and decision level information fusion is supported using a Continuous Inference Network (CINET) of fuzzy logic. Each class of agents has a unique CINET with information inputs from a number of available sensors. Missing or low confidence sensor information is gracefully blended out of the output confidence for the particular agent. This approach constitutes a plug and play arrangement between the sensors and the information pattern recognition algorithms. We are currently doing simulant testing and developing out CINETs for actual agent testing at Edgewood Chemical and Biological Center (ECBC) later this year.

  17. Accessing the Impact of Sea-Salt Emissions on Aerosol Chemical Formation and Deposition Over Pearl River Delta, China

    Science.gov (United States)

    Fan, Q.; Wang, X.; Liu, Y.; Wu, D.; Chan, P. W.; Fan, S.; Feng, Y.

    2015-12-01

    Sea-salt aerosol (SSA) emissions have a significant impact on aerosol pollution and haze formation in the coastal areas. In this study, Models-3/CMAQ modeling system was utilized to access the impact of SSA emissions on aerosol chemical formation and deposition over Pearl River Delta (PRD), China in July 2006. More SSAs were transported inland from the open-ocean under the southeast wind in summertime. Two experiments (with and without SSA emissions in the CMAQ model) were set up to compare the modeling results with each other. The results showed that the increase of sulfate concentrations were more attributable to the primary emissions of coarse SO42- particles in SSA, while the increase of nitrate concentrations were more attributable to secondary chemical formations, known as the mechanisms of chloride depletion in SSA. In the coastal areas, 17.62 % of SO42-, 26.6% of NO3- and 38.2% of PM10 were attributed to SSA emissions, while those portions were less than 1% in the inland areas. The increases of PM10 and its components due to SSA emissions resulted in higher deposition fluxes over PRD, particularly in the coastal areas, except for the wet deposition of nitrate. Nitrate was more sensitive to SSA emissions in chemical formations than sulfate and dry deposition of aerosol was also more sensitive than that for wet deposition. Process analysis of sulfate and nitrate was applied to find out the difference of physical and chemical mechanisms between Guangzhou (the inland areas) and Zhuhai (the coastal areas). The negative contributions of dry deposition process to both sulfate and nitrate concentrations increased if SSA emissions were taken into account in the model, especially for Zhuhai. The negative contributions of cloud process also increased due to cloud scavenging and wet deposition process. In the coastal area, the gas-to-particle conversions became more active with high contributions of aerosol process to nitrate concentrations.

  18. Investigating the Chemical Pathways to PAH- and PANH-Based Aerosols in Titan's Atmospheric chemistry

    Science.gov (United States)

    Sciamma-O'Brien, Ella Marion; Contreras, Cesar; Ricketts, Claire Louise; Salama, Farid

    2011-01-01

    A complex organic chemistry between Titan's two main constituents, N2 and CH4, leads to the production of more complex molecules and subsequently to solid organic aerosols. These aerosols are at the origin of the haze layers giving Titan its characteristic orange color. In situ measurements by the Ion Neutral Mass Spectrometer (INMS) and Cassini Plasma Spectrometer (CAPS) instruments onboard Cassini have revealed the presence of large amounts of neutral, positively and negatively charged heavy molecules in the ionosphere of Titan. In particular, benzene (C6H6) and toluene (C6H5CH3), which are critical precursors of polycyclic aromatic hydrocarbon (PAH) compounds, have been detected, suggesting that PAHs might play a role in the production of Titan s aerosols. Moreover, results from numerical models as well as laboratory simulations of Titan s atmospheric chemistry are also suggesting chemical pathways that link the simple precursor molecules resulting from the first steps of the N2-CH4 chemistry (C2H2, C2H4, HCN ...) to benzene, and to PAHs and nitrogen-containing PAHs (or PANHs) as precursors to the production of solid aerosols.

  19. Aerosol chemical composition at Cabauw, The Netherlands as observed in two intensive periods in May 2008 and March 2009

    Science.gov (United States)

    Mensah, A. A.; Holzinger, R.; Otjes, R.; Trimborn, A.; Mentel, Th. F.; ten Brink, H.; Henzing, B.; Kiendler-Scharr, A.

    2012-05-01

    Observations of aerosol chemical composition in Cabauw, the Netherlands, are presented for two intensive measurement periods in May 2008 and March 2009. Sub-micron aerosol chemical composition was measured by an Aerodyne Aerosol Mass Spectrometer (AMS) and is compared to observations from aerosol size distribution measurements as well as composition measurements with a Monitor for AeRosol and GAses (MARGA) based instrument and a Thermal-Desorption Proton-Transfer-Reaction Mass-Spectrometer (TD-PTR-MS). An overview of the data is presented and the data quality is discussed. In May 2008 enhanced pollution was observed with organics contributing 40% to the PM1 mass. In contrast the observed average mass loading was lower in March 2009 and a dominance of ammonium nitrate (42%) was observed. The semi-volatile nature of ammonium nitrate is evident in the diurnal cycles with maximum concentrations observed in the morning hours in May 2008 and little diurnal variation observed in March 2009. Size dependent composition data from AMS measurements are presented and show a dominance of organics in the size range below 200 nm. A higher O:C ratio of the organics is observed for May 2008 than for March 2009. Together with the time series of individual tracer ions this shows the dominance of OOA over HOA in May 2008.

  20. Dependence of columnar aerosol size distribution, optical properties, and chemical components on regional transport in Beijing

    Science.gov (United States)

    Wang, Shuo; Zhao, Weixiong; Xu, Xuezhe; Fang, Bo; Zhang, Qilei; Qian, Xiaodong; Zhang, Weijun; Chen, Weidong; Pu, Wei; Wang, Xin

    2017-11-01

    Seasonal dependence of the columnar aerosol optical and chemical properties on regional transport in Beijing over 10 years (from January 2005 to December 2014) were analyzed by using the ground-based remote sensing combined with backward trajectory analysis. Daily air mass backward trajectories terminated in Beijing were computed with HYSPLIT-4 model and were categorized into five clusters. The columnar mass concentrations of black carbon (BC), brown carbon (BrC), dust (DU), aerosol water content (AW), and ammonium sulfate like aerosol (AS) of each cluster were retrieved from the optical data obtained from the Aerosol Robotic NETwork (AERONET) with five-component model. It was found that the columnar aerosol properties in different seasons were changed, and they were related to the air mass origins. In spring, aerosol was dominated by coarse particles. Summer was characterized by higher single scattering albedo (SSA), lower real part of complex refractive index (n), and obvious hygroscopic growth due to humid air from the south. During autumn and winter, there was an observable increase in absorption aerosol optical thickness (AAOT) and the imaginary part of complex refraction (k), with high levels of retrieved BC and BrC. However, concentrations of BC showed less dependence on the clusters during the two seasons owing to the widely spread coal heating in north China.

  1. Source identification and airborne chemical characterisation of aerosol pollution from long-range transport over Greenland during POLARCAT summer campaign 2008

    Directory of Open Access Journals (Sweden)

    J. Schmale

    2011-10-01

    Full Text Available We deployed an aerosol mass spectrometer during the POLARCAT (Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate, Chemistry, Aerosols, and Transport summer campaign in Greenland in June/July 2008 on the research aircraft ATR-42. Online size resolved chemical composition data of submicron aerosol were collected up to 7.6 km altitude in the region 60 to 71° N and 40 to 60° W. Biomass burning (BB and fossil fuel combustion (FF plumes originating from North America, Asia, Siberia and Europe were sampled. Transport pathways of detected plumes included advection below 700 hPa, air mass uplifting in warm conveyor belts, and high altitude transport in the upper troposphere. By means of the Lagrangian particle dispersion model FLEXPART, trace gas analysis of O3 and CO, particle size distributions and aerosol chemical composition 48 pollution events were identified and classified into five chemically distinct categories. Aerosol from North American BB consisted of 22% particulate sulphate, while with increasing anthropogenic and Asian influence aerosol in Asian FF dominated plumes was composed of up to 37% sulphate category mean value. Overall, it was found that the organic matter fraction was larger (85% in pollution plumes than for background conditions (71%. Despite different source regions and emission types the particle oxygen to carbon ratio of all plume classes was around 1 indicating low-volatility highly oxygenated aerosol. The volume size distribution of out-of-plume aerosol showed markedly smaller modes than all other distributions with two Aitken mode diameters of 24 and 43 nm and a geometric standard deviation σg of 1.12 and 1.22, respectively, while another very broad mode was found at 490 nm (σg = 2.35. Nearly pure BB particles from North America exhibited an Aitken mode at 66 nm (σg = 1.46 and an accumulation mode diameter of 392 nm (σg = 1

  2. Chemical, optical and radiative characteristics of aerosols during haze episodes of winter in the North China Plain

    Science.gov (United States)

    Ding, Jing; Zhang, Yufen; Han, Suqin; Xiao, Zhimei; Wang, Jiao; Feng, Yinchang

    2018-05-01

    Aerosol and water vapor radiative forcings, shortwave atmospheric heating rates and longwave atmospheric cooling rates were determined based on in situ physical and chemical measurements of aerosol, associated with the Mie theory and a radiative transfer model, LOWTRAN7, during the two haze episodes in the winter of 2013 in Tianjin, China. The aerosol types considered in LOWTRAN7 included rural, urban, marine, desert and custom aerosols. The default ratio of the absorption coefficient to the extinction coefficient for urban aerosol in LOWTRAN7 was approximately double of those found in this work, implying the weaker absorption ability of aerosols in the North China Plain (NCP). Moreover, the aerosol is assumed to be evenly distributed below 1 km of planetary boundary layer (PBL) on hazy days in LOWTRAN7. If the default urban aerosol optical properties and extinction profile in LOWTRAN7 is employed directly, a larger energy imbalance between the atmosphere and surface is generated and the warming effect of the aerosol is magnified. Hence, modified urban aerosol optical properties were established to replace the corresponding parameters' database in LOWTRAN7. The aerosol extinction profiles were obtained based on a 255-m meteorological tower and observed results from the studies about Tianjin. In the NCP, the aerosol had little impact on atmospheric counter radiation. The water vapor is the crucial factor that affects atmospheric counter radiation. Both modified high shortwave heating rates and longwave cooling rates occur near the surface due to the abundance of aerosol and water vapor. The modified net atmospheric heating rate near the surface is 1.2 K d-1 on hazy days and 0.3 K d-1 on non-hazy days. Compared with the default urban aerosol optical properties and its vertical distribution in LOWTRAN7, the feedback effect of the modified urban aerosol on the boundary layer may not necessarily result in a stable lower atmosphere, but depends on the aerosol light

  3. Chemical composition and source apportionment of aerosol over the Klang valley

    International Nuclear Information System (INIS)

    Shamsiah Abdul Rahman; Mohd Suhaimi Hamzah; Abdul Khalik Wood; Nazaratul Ashifa Abdullah Salim; Mohd Suhaimi Elias; Eswiza Sanuri

    2009-01-01

    This paper reports the study of aerosol chemical composition of fine particles (PM 2.5) and possible sources of air pollution over the Klang Valley, Kuala Lumpur, based on the samples collected for a period of 6 years from July 2000 to Jun 2006. Samples collected were measured for mass, black carbon and elemental content of Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Br and Pb. The fine aerosol mass concentration ranged from 11 - 110 ?g/m3. Black carbon is the major component of the fine aerosol with the weight fraction of 20%, whilst S is the major elemental content with the weight fraction about 5% as relative to the fine particle mass. The factor analysis method, positive matrix factorization (PMF) was then used to confirm the possible sources. The result of PMF analysis produced five-factor sources that contribute to the fine particles in the Klang Valley area. The five factors represent sea spray, industry, motor vehicles, smoke and soil. Motor vehicle is the main source of particulates in the area, with an average contribution of 51% of the fine mass concentration, followed by industry, smoke, sea spray and soil, with average contribution of 28%, 14%, 3.6% and 2.1%, respectively. (Author)

  4. Molecular corridors and parameterizations of volatility in the chemical evolution of organic aerosols

    Directory of Open Access Journals (Sweden)

    Y. Li

    2016-03-01

    Full Text Available The formation and aging of organic aerosols (OA proceed through multiple steps of chemical reaction and mass transport in the gas and particle phases, which is challenging for the interpretation of field measurements and laboratory experiments as well as accurate representation of OA evolution in atmospheric aerosol models. Based on data from over 30 000 compounds, we show that organic compounds with a wide variety of functional groups fall into molecular corridors, characterized by a tight inverse correlation between molar mass and volatility. We developed parameterizations to predict the saturation mass concentration of organic compounds containing oxygen, nitrogen, and sulfur from the elemental composition that can be measured by soft-ionization high-resolution mass spectrometry. Field measurement data from new particle formation events, biomass burning, cloud/fog processing, and indoor environments were mapped into molecular corridors to characterize the chemical nature of the observed OA components. We found that less-oxidized indoor OA are constrained to a corridor of low molar mass and high volatility, whereas highly oxygenated compounds in atmospheric water extend to high molar mass and low volatility. Among the nitrogen- and sulfur-containing compounds identified in atmospheric aerosols, amines tend to exhibit low molar mass and high volatility, whereas organonitrates and organosulfates follow high O : C corridors extending to high molar mass and low volatility. We suggest that the consideration of molar mass and molecular corridors can help to constrain volatility and particle-phase state in the modeling of OA particularly for nitrogen- and sulfur-containing compounds.

  5. Instrumentation for tropospheric aerosol characterization

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Z.; Young, S.E.; Becker, C.H.; Coggiola, M.J. [SRI International, Menlo Park, CA (United States); Wollnik, H. [Giessen Univ. (Germany)

    1997-12-31

    A new instrument has been developed that determines the abundance, size distribution, and chemical composition of tropospheric and lower stratospheric aerosols with diameters down to 0.2 {mu}m. In addition to aerosol characterization, the instrument also monitors the chemical composition of the ambient gas. More than 25.000 aerosol particle mass spectra were recorded during the NASA-sponsored Subsonic Aircraft: Contrail and Cloud Effects Special Study (SUCCESS) field program using NASA`s DC-8 research aircraft. (author) 7 refs.

  6. Instrumentation for tropospheric aerosol characterization

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Z; Young, S E; Becker, C H; Coggiola, M J [SRI International, Menlo Park, CA (United States); Wollnik, H [Giessen Univ. (Germany)

    1998-12-31

    A new instrument has been developed that determines the abundance, size distribution, and chemical composition of tropospheric and lower stratospheric aerosols with diameters down to 0.2 {mu}m. In addition to aerosol characterization, the instrument also monitors the chemical composition of the ambient gas. More than 25.000 aerosol particle mass spectra were recorded during the NASA-sponsored Subsonic Aircraft: Contrail and Cloud Effects Special Study (SUCCESS) field program using NASA`s DC-8 research aircraft. (author) 7 refs.

  7. Submicron aerosol source apportionment of wintertime pollution in Paris, France by double positive matrix factorization (PMF2) using an aerosol chemical speciation monitor (ACSM) and a multi-wavelength Aethalometer

    International Nuclear Information System (INIS)

    Petit, J.E.; Favez, O.; Leoz-Garziandia, E.; Sciare, J.

    2014-01-01

    Online non-refractory submicron aerosol mass spectrometer (AMS) measurements in urban areas have successfully allowed the apportionment of specific sources and/or physical and chemical properties of the organic fraction. However, in order to be fully representative of PM pollution, a comprehensive source apportionment analysis is needed by taking into account all major components of submicron aerosols, creating strengthened bonds between the organic components and pollution sources. We present here a novel two-step methodology to perform such an analysis, by taking advantage of high time resolution of monitoring instruments: the aerosol chemical speciation monitor (ACSM) and the multi-wavelength absorption measurements (Aethalometer AE31) in Paris, France. As a first step, organic aerosols (OA) were de-convolved to hydrocarbon-like OA (HOA), biomass burning OA (BBOA) and oxygenated OA (OOA) with positive matrix factorization (PMF), and black carbon was de-convolved into its wood burning and fossil fuel combustion fractions. A second PMF analysis was then carried out with organic factors, BC fractions and inorganic species (nitrate, sulfate, ammonium, chloride), leading to a four-factor solution allowing highly time-resolved characterization of the major sources of PM1. Outputs of this PMF2 include two dominant combustion sources (wood burning and traffic) as well as semi-volatile and low-volatile secondary aerosols. While HOA is found to be emitted by both wood burning and traffic, the latter sources occurred to significantly contribute also to OOA. (authors)

  8. Optical, physical and chemical properties of aerosols transported to a coastal site in the western Mediterranean: a focus on primary marine aerosols

    Directory of Open Access Journals (Sweden)

    M. Claeys

    2017-06-01

    Full Text Available As part of the ChArMEx-ADRIMED campaign (summer 2013, ground-based in situ observations were conducted at the Ersa site (northern tip of Corsica; 533 m a.s.l. to characterise the optical, physical and chemical properties of aerosols. During the observation period, a major influence of primary marine aerosols was detected (22–26 June, with a mass concentration reaching up to 6.5 µg m−3 and representing more than 40 % of the total PM10 mass concentration. Its relatively low ratio of chloride to sodium (average of 0.57 indicates a fairly aged sea salt aerosol at Ersa. In this work, an original data set, obtained from online real-time instruments (ATOFMS, PILS-IC has been used to characterise the ageing of primary marine aerosols (PMAs. During this PMA period, the mixing of fresh and aged PMAs was found to originate from both local and regional (Gulf of Lion emissions, according to local wind measurements and FLEXPART back trajectories. Two different aerosol regimes have been identified: a dust outbreak (dust originating from Algeria/Tunisia, and a pollution period with aerosols originating from eastern Europe, which includes anthropogenic and biomass burning sources (BBP. The optical, physical and chemical properties of the observed aerosols, as well as their local shortwave (SW direct radiative effect (DRE in clear-sky conditions, are compared for these three periods in order to assess the importance of the direct radiative impact of PMAs compared to other sources above the western Mediterranean Basin. As expected, AERONET retrievals indicate a relatively low local SW DRF during the PMA period with mean values of −11 ± 4 at the surface and −8 ± 3 W m−2 at the top of the atmosphere (TOA. In comparison, our results indicate that the dust outbreak observed at our site during the campaign, although of moderate intensity (AOD of 0.3–0.4 at 440 nm and column-integrated SSA of 0.90–0.95, induced a local

  9. Towards the improvements of simulating the chemical and optical properties of Chinese aerosols using an online coupled model – CUACE/Aero

    Directory of Open Access Journals (Sweden)

    Chun-Hong Zhou

    2012-07-01

    Full Text Available CUACE/Aero, the China Meteorological Administration (CMA Unified Atmospheric Chemistry Environment for aerosols, is a comprehensive numerical aerosol module incorporating emissions, gaseous chemistry and size-segregated multi-component aerosol algorithm. On-line coupled into a meso-scale weather forecast model (MM5, its performance and improvements for aerosol chemical and optical simulations have been evaluated using the observations data of aerosols/gases from the intensive observations and from the CMA Atmosphere Watch network, plus aerosol optical depth (AOD data from CMA Aerosol Remote Sensing network (CARSNET and from Moderate Resolution Imaging Spectroradiometer (MODIS. Targeting Beijing and North China region from July 13 to 31, 2008, when a heavy hazy weather system occurred, the model captured the general variations of PM10 with most of the data within a factor of 2 from the observations and a combined correlation coefficient (r of 0.38 (significance level=0.05. The correlation coefficients are better at rural than at urban sites, and better at daytime than at nighttime. Chemically, the correlation coefficients between the daily-averaged modelled and observed concentrations range from 0.34 for black carbon (BC to 0.09 for nitrates with sulphate, ammonium and organic carbon (OC in between. Like the PM10, the values of chemical species are higher for the daytime than those for the nighttime. On average, the sulphate, ammonium, nitrate and OC are underestimated by about 60, 70, 96.0 and 10.8%, respectively. Black carbon is overestimated by about 120%. A new size distribution for the primary particle emissions was constructed for most of the anthropogenic aerosols such as BC, OC, sulphate, nitrate and ammonium from the observed size distribution of atmospheric aerosols in Beijing. This not only improves the correlation between the modelled and observed AOD, but also reduces the overestimation of AOD simulated by the original model size

  10. The ToF-ACSM: a portable aerosol chemical speciation monitor with TOFMS detection

    Directory of Open Access Journals (Sweden)

    R. Fröhlich

    2013-11-01

    Full Text Available We present a new instrument for monitoring aerosol composition, the time-of-flight aerosol chemical speciation monitor (ToF-ACSM, combining precision state-of-the-art time-of-flight mass spectrometry with stability, reliability, and easy handling, which are necessities for long-term monitoring operations on the scale of months to years. Based on Aerodyne aerosol mass spectrometer (AMS technology, the ToF-ACSM provides continuous online measurements of chemical composition and mass of non-refractory submicron aerosol particles. In contrast to the larger AMS, the compact-sized and lower-priced ToF-ACSM does not feature particle sizing, similar to the widely-used quadrupole-ACSM (Q-ACSM. Compared to the Q-ACSM, the ToF-ACSM features a better mass resolution of M/ΔM = 600 and better detection limits on the order of −3 for a time resolution of 30 min. With simple upgrades these limits can be brought down by another factor of ~ 8. This allows for operation at higher time resolutions and in low concentration environments. The associated software packages (single packages for integrated operation and calibration and analysis provide a high degree of automation and remote access, minimising the need for trained personnel on site. Intercomparisons with Q-ACSM, C-ToF-AMS, nephelometer and scanning mobility particle sizer (SMPS measurements, performed during a first long-term deployment (> 10 months on the Jungfraujoch mountain ridge (3580 m a.s.l. in the Swiss Alps, agree quantitatively. Additionally, the mass resolution of the ToF-ACSM is sufficient for basic mass defect resolved peak fitting of the recorded spectra, providing a data stream not accessible to the Q-ACSM. This allows for quantification of certain hydrocarbon and oxygenated fragments (e.g. C3H7+ and C2H3O+, both occurring at m/Q = 43 Th, as well as improving inorganic/organic separation.

  11. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities.

    Science.gov (United States)

    Van Wyngarden, A L; Pérez-Montaño, S; Bui, J V H; Li, E S W; Nelson, T E; Ha, K T; Leong, L; Iraci, L T

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt %) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H 2 SO 4 ) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and 1 H nuclear magnetic resonance (NMR) spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene that was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher-order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence of products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal

  12. Aerosol chemical composition at Cabauw, The Netherlands as observed in two intensive periods in May 2008 and March 2009

    Directory of Open Access Journals (Sweden)

    A. A. Mensah

    2012-05-01

    Full Text Available Observations of aerosol chemical composition in Cabauw, the Netherlands, are presented for two intensive measurement periods in May 2008 and March 2009. Sub-micron aerosol chemical composition was measured by an Aerodyne Aerosol Mass Spectrometer (AMS and is compared to observations from aerosol size distribution measurements as well as composition measurements with a Monitor for AeRosol and GAses (MARGA based instrument and a Thermal-Desorption Proton-Transfer-Reaction Mass-Spectrometer (TD-PTR-MS. An overview of the data is presented and the data quality is discussed. In May 2008 enhanced pollution was observed with organics contributing 40% to the PM1 mass. In contrast the observed average mass loading was lower in March 2009 and a dominance of ammonium nitrate (42% was observed. The semi-volatile nature of ammonium nitrate is evident in the diurnal cycles with maximum concentrations observed in the morning hours in May 2008 and little diurnal variation observed in March 2009. Size dependent composition data from AMS measurements are presented and show a dominance of organics in the size range below 200 nm. A higher O:C ratio of the organics is observed for May 2008 than for March 2009. Together with the time series of individual tracer ions this shows the dominance of OOA over HOA in May 2008.

  13. Chemical composition, sources and secondary processes of aerosols in Baoji city of northwest China

    Science.gov (United States)

    Wang, Y. C.; Huang, R.-J.; Ni, H. Y.; Chen, Y.; Wang, Q. Y.; Li, G. H.; Tie, X. X.; Shen, Z. X.; Huang, Y.; Liu, S. X.; Dong, W. M.; Xue, P.; Fröhlich, R.; Canonaco, F.; Elser, M.; Daellenbach, K. R.; Bozzetti, C.; El Haddad, I.; Prévôt, A. S. H.; Canagaratna, M. R.; Worsnop, D. R.; Cao, J. J.

    2017-06-01

    Particulate air pollution is a severe environmental problem in China, affecting visibility, air quality, climate and human health. However, previous studies focus mainly on large cities such as Beijing, Shanghai, and Guangzhou. In this study, an Aerodyne Aerosol Chemical Speciation Monitor was deployed in Baoji, a middle size inland city in northwest China from 26 February to 27 March 2014. The non-refractory submicron aerosol (NR-PM1) was dominated by organics (55%), followed by sulfate (16%), nitrate (15%), ammonium (11%) and chloride (3%). A source apportionment of the organic aerosol (OA) was performed with the Sofi (Source Finder) interface of ME-2 (Multilinear Engine), and six main sources/factors were identified and classified as hydrocarbon-like OA (HOA), cooking OA (COA), biomass burning OA (BBOA), coal combustion OA (CCOA), less oxidized oxygenated OA (LO-OOA) and more oxidized oxygenated OA (MO-OOA), which contributed 20%, 14%, 13%, 9%, 23% and 21% of total OA, respectively. The contribution of secondary components shows increasing trends from clean days to polluted days, indicating the importance of secondary aerosol formation processes in driving particulate air pollution. The formation of LO-OOA and MO-OOA is mainly driven by photochemical reactions, but significantly influenced by aqueous-phase chemistry during periods of low atmospheric oxidative capacity.

  14. Factors Affecting Aerosol Radiative Forcing

    Science.gov (United States)

    Wang, J.; Lin, J.; Ni, R.

    2016-12-01

    Rapid industrial and economic growth has meant large amount of aerosols in the atmosphere with strong radiative forcing (RF) upon the climate system. Over parts of the globe, the negative forcing of aerosols has overcompensated for the positive forcing of greenhouse gases. Aerosol RF is determined by emissions and various chemical-transport-radiative processes in the atmosphere, a multi-factor problem whose individual contributors have not been well quantified. In this study, we analyze the major factors affecting RF of secondary inorganic aerosols (SIOAs, including sulfate, nitrate and ammonium), primary organic aerosol (POA), and black carbon (BC). We analyze the RFof aerosols produced by 11 major regions across the globe, including but not limited to East Asia, Southeast Asia, South Asia, North America, and Western Europe. Factors analyzed include population size, per capita gross domestic production (GDP), emission intensity (i.e., emissionsper unit GDP), chemical efficiency (i.e., mass per unit emissions) and radiative efficiency (i.e., RF per unit mass). We find that among the 11 regions, East Asia produces the largest emissions and aerosol RF, due to relatively high emission intensity and a tremendous population size.South Asia produce the second largest RF of SIOA and BC and the highest RF of POA, in part due to its highest chemical efficiency among all regions. Although Southeast Asia also has large emissions,its aerosol RF is alleviated by its lowest chemical efficiency.The chemical efficiency and radiative efficiency of BC produced by the Middle East-North Africa are the highest across the regions, whereas its RF is loweredbyasmall per capita GDP.Both North America and Western Europe have low emission intensity, compensating for the effects on RF of large population sizes and per capita GDP. There has been a momentum to transfer industries to Southeast Asia and South Asia, and such transition is expected to continue in the coming years. The resulting

  15. Spaceborne Remote Sensing of Aerosol Type: Global Distribution, Model Evaluation and Translation into Chemical Speciation

    Science.gov (United States)

    Kacenelenbogen, M. S.; Tan, Q.; Johnson, M. S.; Burton, S. P.; Redemann, J.; Hasekamp, O. P.; Dawson, K. W.; Hair, J. W.; Ferrare, R. A.; Butler, C. F.; Holben, B. N.; Beyersdorf, A. J.; Ziemba, L. D.; Froyd, K. D.; Dibb, J. E.; Shingler, T.; Sorooshian, A.; Jimenez, J. L.; Campuzano Jost, P.; Jacob, D.; Kim, P. S.; Travis, K.; Lacagnina, C.

    2016-12-01

    It is essential to evaluate and refine aerosol classification methods applied to passive satellite remote sensing. We have developed an aerosol classification algorithm (called Specified Clustering and Mahalanobis Classification, SCMC) that assigns an aerosol type to multi-parameter retrievals by spaceborne, airborne or ground-based passive remote sensing instruments [1]. The aerosol types identified by our scheme are pure dust, polluted dust, urban-industrial/developed economy, urban-industrial/developing economy, dark biomass smoke, light biomass smoke and pure marine. We apply the SCMC method to inversions from the ground-based AErosol RObotic NETwork (AERONET [2]) and retrievals from the space-borne Polarization and Directionality of Earth's Reflectances instrument (POLDER, [3]). The POLDER retrievals that we use differ from the standard POLDER retrievals [4] as they make full use of multi-angle, multispectral polarimetric data [5]. We analyze agreement in the aerosol types inferred from both AERONET and POLDER and evaluate GEOS-Chem [6] simulations over the globe. Finally, we use in-situ observations from the SEAC4RS airborne field experiment to bridge the gap between remote sensing-inferred qualitative SCMC aerosol types and their corresponding quantitative chemical speciation. We apply the SCMC method to airborne in-situ observations from the NASA Langley Aerosol Research Group Experiment (LARGE, [7]) and the Differential Aerosol Sizing and Hygroscopicity Spectrometer Probe (DASH-SP, [8]) instruments; we then relate each coarsely defined SCMC type to a sum of percentage of individual aerosol species, using in-situ observations from the Particle Analysis by Laser Mass Spectrometry (PALMS, [9]), the Soluble Acidic Gases and Aerosol (SAGA, [10]), and the High - Resolution Time - of - Flight Aerosol Mass Spectrometer (HR ToF AMS, [11]). [1] Russell P. B., et al., JGR, 119.16 (2014) [2] Holben B. N., et al., RSE, 66.1 (1998) [3] Tanré D., et al., AMT, 4.7 (2011

  16. Sources of atmospheric aerosol from long-term measurements (5 years) of chemical composition in Athens, Greece.

    Science.gov (United States)

    Paraskevopoulou, D; Liakakou, E; Gerasopoulos, E; Mihalopoulos, N

    2015-09-15

    To identify the sources of aerosols in Greater Athens Area (GAA), a total of 1510 daily samples of fine (PM 2.5) and coarse (PM 10-2,5) aerosols were collected at a suburban site (Penteli), during a five year period (May 2008-April 2013) corresponding to the period before and during the financial crisis. In addition, aerosol sampling was also conducted in parallel at an urban site (Thissio), during specific, short-term campaigns during all seasons. In all these samples mass and chemical composition measurements were performed, the latest only at the fine fraction. Particulate organic matter (POM) and ionic masses (IM) are the main contributors of aerosol mass, equally contributing by accounting for about 24% of the fine aerosol mass. In the IM, nss-SO4(-2) is the prevailing specie followed by NO3(-) and NH4(+) and shows a decreasing trend during the 2008-2013 period similar to that observed for PM masses. The contribution of water in fine aerosol is equally significant (21 ± 2%), while during dust transport, the contribution of dust increases from 7 ± 2% to 31 ± 9%. Source apportionment (PCA and PMF) and mass closure exercises identified the presence of six sources of fine aerosols: secondary photochemistry, primary combustion, soil, biomass burning, sea salt and traffic. Finally, from winter 2012 to winter 2013 the contribution of POM to the urban aerosol mass is increased by almost 30%, reflecting the impact of wood combustion (dominant fuel for domestic heating) to air quality in Athens, which massively started in winter 2013. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Chemical evolution of organic aerosol in Los Angeles during the CalNex 2010 study

    Directory of Open Access Journals (Sweden)

    R. Holzinger

    2013-10-01

    Full Text Available During the CalNex study (15 May to 16 June 2010 a large suite of instruments was operated at the Los Angeles area ground supersite to characterize the sources and atmospheric processing of atmospheric pollution. The thermal-desorption proton-transfer-reaction mass-spectrometer (TD-PTR-MS was deployed to an urban area for the first time and detected 691 organic ions in aerosol samples, the mean total concentration of which was estimated as 3.3 μg m−3. Based on comparison to total organic aerosol (OA measurements, we estimate that approximately 50% of the OA mass at this site was directly measured by the TD-PTR-MS. Based on correlations with aerosol mass spectrometer (AMS OA components, the ions were grouped to represent hydrocarbon-like OA (HOA, local OA (LOA, semi-volatile oxygenated OA (SV-OOA, and low volatility oxygenated OA (LV-OOA. Mass spectra and thermograms of the ion groups are mostly consistent with the assumed sources and/or photochemical origin of the OA components. The mass spectra of ions representing the primary components HOA and LOA included the highest m/z, consistent with their higher resistance to thermal decomposition, and they were volatilized at lower temperatures (~ 150 °C. Photochemical ageing weakens C-C bond strengths (also resulting in chemical fragmentation, and produces species of lower volatility (through the addition of functional groups. Accordingly the mass spectra of ions representing the oxidized OA components (SV-OOA, and LV-OOA lack the highest masses and they are volatilized at higher temperatures (250–300 °C. Chemical parameters like mean carbon number (nC, mean carbon oxidation state (OSC, and the atomic ratios O / C and H / C of the ion groups are consistent with the expected sources and photochemical processing of the aerosol components. Our data suggest that chemical fragmentation gains importance over functionalization as photochemical age of OA increases. Surprisingly, the photochemical age of

  18. AEROSOL AND GAS MEASUREMENT

    Science.gov (United States)

    Measurements provide fundamental information for evaluating and managing the impact of aerosols on air quality. Specific measurements of aerosol concentration and their physical and chemical properties are required by different users to meet different user-community needs. Befo...

  19. A review of current knowledge concerning PM2. 5 chemical composition, aerosol optical properties and their relationships across China

    Science.gov (United States)

    Tao, Jun; Zhang, Leiming; Cao, Junji; Zhang, Renjian

    2017-08-01

    To obtain a thorough knowledge of PM2. 5 chemical composition and its impact on aerosol optical properties across China, existing field studies conducted after the year 2000 are reviewed and summarized in terms of geographical, interannual and seasonal distributions. Annual PM2. 5 was up to 6 times the National Ambient Air Quality Standards (NAAQS) in some megacities in northern China. Annual PM2. 5 was higher in northern than southern cities, and higher in inland than coastal cities. In a few cities with data longer than a decade, PM2. 5 showed a slight decrease only in the second half of the past decade, while carbonaceous aerosols decreased, sulfate (SO42-) and ammonium (NH4+) remained at high levels, and nitrate (NO3-) increased. The highest seasonal averages of PM2. 5 and its major chemical components were typically observed in the cold seasons. Annual average contributions of secondary inorganic aerosols to PM2. 5 ranged from 25 to 48 %, and those of carbonaceous aerosols ranged from 23 to 47 %, both with higher contributions in southern regions due to the frequent dust events in northern China. Source apportionment analysis identified secondary inorganic aerosols, coal combustion and traffic emission as the top three source factors contributing to PM2. 5 mass in most Chinese cities, and the sum of these three source factors explained 44 to 82 % of PM2. 5 mass on annual average across China. Biomass emission in most cities, industrial emission in industrial cities, dust emission in northern cities and ship emission in coastal cities are other major source factors, each of which contributed 7-27 % to PM2. 5 mass in applicable cities. The geographical pattern of scattering coefficient (bsp) was similar to that of PM2. 5, and that of aerosol absorption coefficient (bap) was determined by elemental carbon (EC) mass concentration and its coating. bsp in ambient condition of relative humidity (RH) = 80 % can be amplified by about 1.8 times that under dry conditions

  20. Chemical Characterization of Submicron Aerosol Particles in São Paulo, Brazil

    Science.gov (United States)

    Ferreira De Brito, J.; Rizzo, L. V.; Godoy, J.; Godoy, M. L.; de Assunção, J. V.; Alves, N. D.; Artaxo, P.

    2013-12-01

    Megacities, large urban conglomerates with a population of 10 million or more inhabitants, are increasingly receiving attention as strong pollution hotspots with significant global impact. The emissions from such large centers in both the developed and developing parts of the world are strongly impacted by the transportation sector. The São Paulo Metropolitan Area (SPMA), located in the Southeast of Brazil, is a megacity with a population of 18 million people and 7 million vehicles, many of which fuelled by a considerably amount of anhydrous ethanol. Such fleet is considered a unique case of large scale biofuel usage worldwide. Despite the large impact on human health and atmospheric chemistry/dynamics, many uncertainties are found in terms of gas and particulate matter emissions from vehicles and their atmospheric reactivity, e.g. secondary organic aerosol formation. In order to better understand aerosol life cycle on such environment, a suite of instruments for gas and particulate matter characterization has been deployed in two sampling sites within the SPMA, including an Aerosol Chemical Speciation Monitor (ACSM). The instrumentation was deployed at the rooftop of a 45m high building in the University of São Paulo during winter/spring 2012. The site is located roughly 6km downwind of the city center with little influence from local sources. The second site is located in a downtown area, sampling at the top floor of the Public Health Faculty, approximately 10m above ground. The instrumentation was deployed at the Downtown site during summer/fall 2013. The average non-refractory submicron aerosol concentration at the University site was 6.7 μg m-3, being organics the most abundant specie (70%), followed by NO3 (12%), NH4 (8%), SO4 (8%) and Chl (2%). At the Downtown site, average aerosol concentration was 15.1 μg m-3, with Organics composing 65% of the mass, followed by NH4 (12%), NO3 (11%), SO4 (11%) and Chl (1%). The analysis of specific fragmentation

  1. Chemical, microphysical and optical properties of the aerosols during foggy and nonfoggy day over a typical location in Indo-Gangetic Plain

    Science.gov (United States)

    Kaul, D. S.; Tripathi, S. N.; Gupta, T.

    2012-04-01

    An extensive experimental measurement was carried out from January 16, 2010 to February 20, 2010 at Kanpur to study the chemical, microphysical and optical properties of the aerosols. A Micro-Pulse Lidar Network (MPLNET), a part of National Aeronautic Space Administration (NASA), was used for identification of fog duration. PM1 samples and fogwater were collected to examine the organic and inorganic species of aerosol and fogwater. Organic Carbon (OC), Elemental Carbon (EC) and water soluble organic carbon analysis were carried out by an EC-OC analyzer and a TOC analyzer, respectively. Trace gases and solar flux measurement were carried out by gas analyzers and a pyranometer (a part of NASA Aeronet), respectively, to identify the photo-chemical activity. Meteorological data were measured by atmospheric weather station. The microphysical properties such as aerosol size distribution were measured using a scanning mobility particle sizer (SMPS). Optical properties were measured by a photo-acoustic soot spectrometer (PASS). Organic and inorganic species are processed by fog droplets such as production of secondary organic aerosol through aqueous mechanism (Kaul et al., 2011) and scavenging of various water soluble species. The concentrations of almost all the ionic species and organic carbon were higher in aerosols during foggy day. Presence of numerous ionic species and organic carbon in the fogwater indicates their wet scavenging and removal from the atmosphere by the fog droplets. Most of the aerosol is composed of inorganic component, ~80% during foggy day and ~85.5 % during clear day. Biomass burning contribution to PM1 mass concentration was considerably higher during clear days and lower during foggy days; lower concentration during foggy day could be due to wet scavenging of biomass generated aerosols. The study average higher number concentration of aerosol during foggy day during late evening and overnight was due to lower boundary layer height and subsequent

  2. Variability of Aerosols and Chemical Composition of PM10, PM2.5 and PM1 on a Platform of the Prague Underground Metro

    Czech Academy of Sciences Publication Activity Database

    Cusack, Michael; Talbot, Nicholas; Ondráček, Jakub; Minguillón, M.C.; Martins, V.; Klouda, K.; Schwarz, Jaroslav; Ždímal, Vladimír

    2015-01-01

    Roč. 118, OCT 2015 (2015), s. 176-183 ISSN 1352-2310 EU Projects: European Commission(XE) 315760 Institutional support: RVO:67985858 Keywords : subway aerosol * chemical composition * aerosol dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.459, year: 2015

  3. Integrating biomass, sulphate and sea-salt aerosol responses into a microphysical chemical parcel model: implications for climate studies.

    Science.gov (United States)

    Ghosh, S; Smith, M H; Rap, A

    2007-11-15

    Aerosols are known to influence significantly the radiative budget of the Earth. Although the direct effect (whereby aerosols scatter and absorb solar and thermal infrared radiation) has a large perturbing influence on the radiation budget, the indirect effect (whereby aerosols modify the microphysical and hence the radiative properties and amounts of clouds) poses a greater challenge to climate modellers. This is because aerosols undergo chemical and physical changes while in the atmosphere, notably within clouds, and are removed largely by precipitation. The way in which aerosols are processed by clouds depends on the type, abundance and the mixing state of the aerosols concerned. A parametrization with sulphate and sea-salt aerosol has been successfully integrated within the Hadley Centre general circulation model (GCM). The results of this combined parametrization indicate a significantly reduced role, compared with previous estimates, for sulphate aerosol in cloud droplet nucleation and, consequently, in indirect radiative forcing. However, in this bicomponent system, the cloud droplet number concentration, N(d) (a crucial parameter that is used in GCMs for radiative transfer calculations), is a smoothly varying function of the sulphate aerosol loading. Apart from sea-salt and sulphate aerosol particles, biomass aerosol particles are also present widely in the troposphere. We find that biomass smoke can significantly perturb the activation and growth of both sulphate and sea-salt particles. For a fixed salt loading, N(d) increases linearly with modest increases in sulphate and smoke masses, but significant nonlinearities are observed at higher non-sea-salt mass loadings. This non-intuitive N(d) variation poses a fresh challenge to climate modellers.

  4. Effect of flavoring chemicals on free radical formation in electronic cigarette aerosols.

    Science.gov (United States)

    Bitzer, Zachary T; Goel, Reema; Reilly, Samantha M; Elias, Ryan J; Silakov, Alexey; Foulds, Jonathan; Muscat, Joshua; Richie, John P

    2018-05-20

    Flavoring chemicals, or flavorants, have been used in electronic cigarettes (e-cigarettes) since their inception; however, little is known about their toxicological effects. Free radicals present in e-cigarette aerosols have been shown to induce oxidative stress resulting in damage to proliferation, survival, and inflammation pathways in the cell. Aerosols generated from e-liquid solvents alone contain high levels of free radicals but few studies have looked at how these toxins are modulated by flavorants. We investigated the effects of different flavorants on free radical production in e-cigarette aerosols. Free radicals generated from 49 commercially available e-liquid flavors were captured and analyzed using electron paramagnetic resonance (EPR). The flavorant composition of each e-liquid was analyzed by gas chromatography mass spectroscopy (GCMS). Radical production was correlated with flavorant abundance. Ten compounds were identified and analyzed for their impact on free radical generation. Nearly half of the flavors modulated free radical generation. Flavorants with strong correlations included β-damascone, δ-tetradecalactone, γ-decalactone, citral, dipentene, ethyl maltol, ethyl vanillin, ethyl vanillin PG acetal, linalool, and piperonal. Dipentene, ethyl maltol, citral, linalool, and piperonal promoted radical formation in a concentration-dependent manner. Ethyl vanillin inhibited the radical formation in a concentration dependent manner. Free radical production was closely linked with the capacity to oxidize biologically-relevant lipids. Our results suggest that flavoring agents play an important role in either enhancing or inhibiting the production of free radicals in flavored e-cigarette aerosols. This information is important for developing regulatory strategies aimed at reducing potential harm from e-cigarettes. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. A case study of the highly time-resolved evolution of aerosol chemical and optical properties in urban Shanghai, China

    Directory of Open Access Journals (Sweden)

    Y. Huang

    2013-04-01

    Full Text Available Characteristics of the chemical and optical properties of aerosols in urban Shanghai and their relationship were studied over a three-day period in October 2011. A suite of real-time instruments, including an Aerosol Time-Of-Flight Mass Spectrometer (ATOFMS, a Monitor for AeRosols and GAses (MARGA, a Cavity Ring Down Spectrometer (CRDS, a nephelometer and a Scanning Mobility Particle Sizer (SMPS, was employed to follow the quick changes of the aerosol properties within the 72 h sampling period. The origin of the air mass arriving in Shanghai during this period shifted from the East China Sea to the northwest area of China, offering a unique opportunity to observe the evolution of aerosols influenced by regional transport from the most polluted areas in China. According to the meteorological conditions and temporal characterizations of the chemical and optical properties, the sampling period was divided into three periods. During Period 1 (00:00–23:00 LT, 13 October, the aerosols in urban Shanghai were mainly fresh and the single scattering albedo varied negatively with the emission of elemental carbon, indicating that local sources dominated. Period 2 (23:00 LT on 13 October to 10:00 LT on 15 October was impacted by regionally transported pollutants and had the highest particulate matter (PM mass loading and the lowest particle acidity, characterized by large fractions of aged particles and high secondary ion (nitrate, sulfate and ammonium mass concentrations. Comparison between ATOFMS particle acidity and quantitative particle acidity by MARGA indicated the significance of semi-quantitative calculation in ATOFMS. Two sub-periods were identified in Period 2 based on the scattering efficiency of PM1 mass. Period 3 (from 10:00 LT on 15 October to 00:00 LT on 16 October had a low PM1/PM10 ratio and a new particle formation event. The comparison of these sub-periods highlights the influence of particle mixing state on aerosol optical properties

  6. Chemical aging of single and multicomponent biomass burning aerosol surrogate particles by OH: implications for cloud condensation nucleus activity

    Directory of Open Access Journals (Sweden)

    J. H. Slade

    2015-09-01

    Full Text Available Multiphase OH and O3 oxidation reactions with atmospheric organic aerosol (OA can influence particle physicochemical properties including composition, morphology, and lifetime. Chemical aging of initially insoluble or low-soluble single-component OA by OH and O3 can increase their water solubility and hygroscopicity, making them more active as cloud condensation nuclei (CCN and susceptible to wet deposition. However, an outstanding problem is whether the effects of chemical aging on their CCN activity are preserved when mixed with other organic or inorganic compounds exhibiting greater water solubility. In this work, the CCN activity of laboratory-generated biomass burning aerosol (BBA surrogate particles exposed to OH and O3 is evaluated by determining the hygroscopicity parameter, κ, as a function of particle type, mixing state, and OH and O3 exposure applying a CCN counter (CCNc coupled to an aerosol flow reactor (AFR. Levoglucosan (LEV, 4-methyl-5-nitrocatechol (MNC, and potassium sulfate (KS serve as representative BBA compounds that exhibit different hygroscopicity, water solubility, chemical functionalities, and reactivity with OH radicals, and thus exemplify the complexity of mixed inorganic/organic aerosol in the atmosphere. The CCN activities of all of the particles were unaffected by O3 exposure. Following exposure to OH, κ of MNC was enhanced by an order of magnitude, from 0.009 to ~ 0.1, indicating that chemically aged MNC particles are better CCN and more prone to wet deposition than pure MNC particles. No significant enhancement in κ was observed for pure LEV particles following OH exposure. κ of the internally mixed particles was not affected by OH oxidation. Furthermore, the CCN activity of OH-exposed MNC-coated KS particles is similar to the OH unexposed atomized 1 : 1 by mass MNC : KS binary-component particles. Our results strongly suggest that when OA is dominated by water-soluble organic carbon (WSOC or inorganic ions

  7. Microbiology and atmospheric processes: biological, physical and chemical characterization of aerosol particles

    Directory of Open Access Journals (Sweden)

    D. G. Georgakopoulos

    2009-04-01

    Full Text Available The interest in bioaerosols has traditionally been linked to health hazards for humans, animals and plants. However, several components of bioaerosols exhibit physical properties of great significance for cloud processes, such as ice nucleation and cloud condensation. To gain a better understanding of their influence on climate, it is therefore important to determine the composition, concentration, seasonal fluctuation, regional diversity and evolution of bioaerosols. In this paper, we will review briefly the existing techniques for detection, quantification, physical and chemical analysis of biological particles, attempting to bridge physical, chemical and biological methods for analysis of biological particles and integrate them with aerosol sampling techniques. We will also explore some emerging spectroscopy techniques for bulk and single-particle analysis that have potential for in-situ physical and chemical analysis. Lastly, we will outline open questions and further desired capabilities (e.g., in-situ, sensitive, both broad and selective, on-line, time-resolved, rapid, versatile, cost-effective techniques required prior to comprehensive understanding of chemical and physical characterization of bioaerosols.

  8. Biomass burning aerosols characterization from ground based and profiling measurements

    Science.gov (United States)

    Marin, Cristina; Vasilescu, Jeni; Marmureanu, Luminita; Ene, Dragos; Preda, Liliana; Mihailescu, Mona

    2018-04-01

    The study goal is to assess the chemical and optical properties of aerosols present in the lofted layers and at the ground. The biomass burning aerosols were evaluated in low level layers from multi-wavelength lidar measurements, while chemical composition at ground was assessed using an Aerosol Chemical Speciation Monitor (ACSM) and an Aethalometer. Classification of aerosol type and specific organic markers were used to explore the potential to sense the particles from the same origin at ground base and on profiles.

  9. Stratospheric Aerosol Measurements

    Science.gov (United States)

    Pueschel, Rudolf, F.; Gore, Warren J. (Technical Monitor)

    1998-01-01

    Stratospheric aerosols affect the atmospheric energy balance by scattering and absorbing solar and terrestrial radiation. They also can alter stratospheric chemical cycles by catalyzing heterogeneous reactions which markedly perturb odd nitrogen, chlorine and ozone levels. Aerosol measurements by satellites began in NASA in 1975 with the Stratospheric Aerosol Measurement (SAM) program, to be followed by the Stratospheric Aerosol and Gas Experiment (SAGE) starting in 1979. Both programs employ the solar occultation, or Earth limb extinction, techniques. Major results of these activities include the discovery of polar stratospheric clouds (PSCs) in both hemispheres in winter, illustrations of the impacts of major (El Chichon 1982 and Pinatubo 1991) eruptions, and detection of a negative global trend in lower stratospheric/upper tropospheric aerosol extinction. This latter result can be considered a triumph of successful worldwide sulfur emission controls. The SAGE record will be continued and improved by SAGE III, currently scheduled for multiple launches beginning in 2000 as part of the Earth Observing System (EOS). The satellite program has been supplemented by in situ measurements aboard the ER-2 (20 km ceiling) since 1974, and from the DC-8 (13 km ceiling) aircraft beginning in 1989. Collection by wire impactors and subsequent electron microscopic and X-ray energy-dispersive analyses, and optical particle spectrometry have been the principle techniques. Major findings are: (1) The stratospheric background aerosol consists of dilute sulfuric acid droplets of around 0.1 micrometer modal diameter at concentration of tens to hundreds of monograms per cubic meter; (2) Soot from aircraft amounts to a fraction of one percent of the background total aerosol; (3) Volcanic eruptions perturb the sulfuric acid, but not the soot, aerosol abundance by several orders of magnitude; (4) PSCs contain nitric acid at temperatures below 195K, supporting chemical hypotheses

  10. Is there an aerosol signature of aqueous processing?

    Science.gov (United States)

    Ervens, B.; Sorooshian, A.

    2017-12-01

    The formation of aerosol mass in cloud water has been recognized as a substantial source of atmospheric aerosol mass. While sulfate formation can be relatively well constrained, the formation of secondary organic aerosol mass in the aqueous phase (aqSOA) is much more complex due to the multitude of precursors and variety in chemical processes. Aqueous phase processing adds aerosol mass to the droplet mode, which is formed due to mass addition to activated particles in clouds. In addition, it has been shown that aqSOA mass has specific characteristics in terms of oxidation state and hygroscopicity that might help to distinguish it from other SOA sources. Many models do not include detailed chemical mechanisms of sulfate and aqSOA formation and also lack details on the mass distribution of newly formed mass. Mass addition inside and outside clouds modifies different parts of an aerosol population and consequently affects predictions of properties and lifetime of particles. Using a combination of field data analysis and model studies for a variety of air masses, we will show which chemical and physical aerosol properties can be used, in order to identify an `aqueous phase signature' in processed aerosol populations. We will discuss differences in this signature in clean (e.g., background), moderately polluted (e.g., urban) and highly polluted (e.g., biomass burning) air masses and suggest air-mass-specific chemical and/or physical properties that will help to quantify the aqueous-phase derived aerosol mass.

  11. Flight-based chemical characterization of biomass burning aerosols within two prescribed burn smoke plumes

    Directory of Open Access Journals (Sweden)

    K. A. Pratt

    2011-12-01

    Full Text Available Biomass burning represents a major global source of aerosols impacting direct radiative forcing and cloud properties. Thus, the goal of a number of current studies involves developing a better understanding of how the chemical composition and mixing state of biomass burning aerosols evolve during atmospheric aging processes. During the Ice in Clouds Experiment-Layer Clouds (ICE-L in the fall of 2007, smoke plumes from two small Wyoming Bureau of Land Management prescribed burns were measured by on-line aerosol instrumentation aboard a C-130 aircraft, providing a detailed chemical characterization of the particles. After ~2–4 min of aging, submicron smoke particles, produced primarily from sagebrush combustion, consisted predominantly of organics by mass, but were comprised primarily of internal mixtures of organic carbon, elemental carbon, potassium chloride, and potassium sulfate. Significantly, the fresh biomass burning particles contained minor mass fractions of nitrate and sulfate, suggesting that hygroscopic material is incorporated very near or at the point of emission. The mass fractions of ammonium, sulfate, and nitrate increased with aging up to ~81–88 min and resulted in acidic particles. Decreasing black carbon mass concentrations occurred due to dilution of the plume. Increases in the fraction of oxygenated organic carbon and the presence of dicarboxylic acids, in particular, were observed with aging. Cloud condensation nuclei measurements suggested all particles >100 nm were active at 0.5% water supersaturation in the smoke plumes, confirming the relatively high hygroscopicity of the freshly emitted particles. For immersion/condensation freezing, ice nuclei measurements at −32 °C suggested activation of ~0.03–0.07% of the particles with diameters greater than 500 nm.

  12. Attachment behavior of fission products to solution aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Takamiya, Koichi; Tanaka, Toru; Nitta, Shinnosuke; Itosu, Satoshi; Sekimoto, Shun; Oki, Yuichi; Ohtsuki, Tsutomu [Research Reactor Institute, Kyoto University, Osaka (Japan)

    2016-12-15

    Various characteristics such as size distribution, chemical component and radioactivity have been analyzed for radioactive aerosols released from Fukushima Daiichi Nuclear Power Plant. Measured results for radioactive aerosols suggest that the potential transport medium for radioactive cesium was non-sea-salt sulfate. This result indicates that cesium isotopes would preferentially attach with sulfate compounds. In the present work the attachment behavior of fission products to aqueous solution aerosols of sodium salts has been studied using a generation system of solution aerosols and spontaneous fission source of {sup 248}Cm. Attachment ratios of fission products to the solution aerosols were compared among the aerosols generated by different solutions of sodium salt. A significant difference according as a solute of solution aerosols was found in the attachment behavior. The present results suggest the existence of chemical effects in the attachment behavior of fission products to solution aerosols.

  13. Antimony sulfide thin films prepared by laser assisted chemical bath deposition

    International Nuclear Information System (INIS)

    Shaji, S.; Garcia, L.V.; Loredo, S.L.; Krishnan, B.

    2017-01-01

    Highlights: • Antimony sulfide thin films were prepared by normal CBD and laser assisted CBD. • Characterized these films using XRD, XPS, AFM, optical and electrical measurements. • Accelerated growth was observed in the laser assisted CBD process. • These films were photoconductive. - Abstract: Antimony sulfide (Sb_2S_3) thin films were prepared by laser assisted chemical bath deposition (LACBD) technique. These thin films were deposited on glass substrates from a chemical bath containing antimony chloride, acetone and sodium thiosulfate under various conditions of normal chemical bath deposition (CBD) as well as in-situ irradiation of the chemical bath using a continuous laser of 532 nm wavelength. Structure, composition, morphology, optical and electrical properties of the Sb_2S_3 thin films produced by normal CBD and LACBD were analyzed by X-Ray diffraction (XRD), Raman Spectroscopy, Atomic force microscopy (AFM), X-Ray photoelectron spectroscopy (XPS), UV–vis spectroscopy and Photoconductivity. The results showed that LACBD is an effective synthesis technique to obtain Sb_2S_3 thin films for optoelectronic applications.

  14. Antimony sulfide thin films prepared by laser assisted chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Shaji, S., E-mail: sshajis@yahoo.com [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, 66455 (Mexico); CIIDIT—Universidad Autónoma de Nuevo León, Apodaca, Nuevo León (Mexico); Garcia, L.V. [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, 66455 (Mexico); Loredo, S.L. [Centro de Investigación en Materiales Avanzados (CIMAV), Unidad Monterrey, PIIT, Apodaca, Nuevo León (Mexico); Krishnan, B. [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, 66455 (Mexico); CIIDIT—Universidad Autónoma de Nuevo León, Apodaca, Nuevo León (Mexico); and others

    2017-01-30

    Highlights: • Antimony sulfide thin films were prepared by normal CBD and laser assisted CBD. • Characterized these films using XRD, XPS, AFM, optical and electrical measurements. • Accelerated growth was observed in the laser assisted CBD process. • These films were photoconductive. - Abstract: Antimony sulfide (Sb{sub 2}S{sub 3}) thin films were prepared by laser assisted chemical bath deposition (LACBD) technique. These thin films were deposited on glass substrates from a chemical bath containing antimony chloride, acetone and sodium thiosulfate under various conditions of normal chemical bath deposition (CBD) as well as in-situ irradiation of the chemical bath using a continuous laser of 532 nm wavelength. Structure, composition, morphology, optical and electrical properties of the Sb{sub 2}S{sub 3} thin films produced by normal CBD and LACBD were analyzed by X-Ray diffraction (XRD), Raman Spectroscopy, Atomic force microscopy (AFM), X-Ray photoelectron spectroscopy (XPS), UV–vis spectroscopy and Photoconductivity. The results showed that LACBD is an effective synthesis technique to obtain Sb{sub 2}S{sub 3} thin films for optoelectronic applications.

  15. Size-segregated aerosol in a hot-spot pollution urban area: Chemical composition and three-way source apportionment.

    Science.gov (United States)

    Bernardoni, V; Elser, M; Valli, G; Valentini, S; Bigi, A; Fermo, P; Piazzalunga, A; Vecchi, R

    2017-12-01

    In this work, a comprehensive characterisation and source apportionment of size-segregated aerosol collected using a multistage cascade impactor was performed. The samples were collected during wintertime in Milan (Italy), which is located in the Po Valley, one of the main pollution hot-spot areas in Europe. For every sampling, size-segregated mass concentration, elemental and ionic composition, and levoglucosan concentration were determined. Size-segregated data were inverted using the program MICRON to identify and quantify modal contributions of all the measured components. The detailed chemical characterisation allowed the application of a three-way (3-D) receptor model (implemented using Multilinear Engine) for size-segregated source apportionment and chemical profiles identification. It is noteworthy that - as far as we know - this is the first time that three-way source apportionment is attempted using data of aerosol collected by traditional cascade impactors. Seven factors were identified: wood burning, industry, resuspended dust, regional aerosol, construction works, traffic 1, and traffic 2. Further insights into size-segregated factor profiles suggested that the traffic 1 factor can be associated to diesel vehicles and traffic 2 to gasoline vehicles. The regional aerosol factor resulted to be the main contributor (nearly 50%) to the droplet mode (accumulation sub-mode with modal diameter in the range 0.5-1 μm), whereas the overall contribution from the two factors related to traffic was the most important one in the other size modes (34-41%). The results showed that applying a 3-D receptor model to size-segregated samples allows identifying factors of local and regional origin while receptor modelling on integrated PM fractions usually singles out factors characterised by primary (e.g. industry, traffic, soil dust) and secondary (e.g. ammonium sulphate and nitrate) origin. Furthermore, the results suggested that the information on size

  16. Microwave assisted chemical vapor infiltration

    International Nuclear Information System (INIS)

    Devlin, D.J.; Currier, R.P.; Barbero, R.S.; Espinoza, B.F.; Elliott, N.

    1991-01-01

    A microwave assisted process for production of continuous fiber reinforced ceramic matrix composites is described. A simple apparatus combining a chemical vapor infiltration reactor with a conventional 700 W multimode oven is described. Microwave induced inverted thermal gradients are exploited with the ultimate goal of reducing processing times on complex shapes. Thermal gradients in stacks of SiC (Nicalon) cloths have been measured using optical thermometry. Initial results on the ''inside out'' deposition of SiC via decomposition of methyltrichlorosilane in hydrogen are presented. Several key processing issues are identified and discussed. 5 refs

  17. Chemical composition of aerosol particles and light extinction apportionment before and during the heating season in Beijing, China

    Science.gov (United States)

    Wang, Qingqing; Sun, Yele; Jiang, Qi; Du, Wei; Sun, Chengzhu; Fu, Pingqing; Wang, Zifa

    2015-12-01

    Despite extensive efforts into characterization of the sources and formation mechanisms of severe haze pollution in the megacity of Beijing, the response of aerosol composition and optical properties to coal combustion emissions in the heating season remain poorly understood. Here we conducted a 3 month real-time measurement of submicron aerosol (PM1) composition by an Aerosol Chemical Speciation Monitor and particle light extinction by a Cavity Attenuated Phase Shift extinction monitor in Beijing, China, from 1 October to 31 December 2012. The average (±σ) PM1 concentration was 82.4 (±73.1) µg/m3 during the heating period (HP, 15 November to 31 December), which was nearly 50% higher than that before HP (1 October to 14 November). While nitrate and secondary organic aerosol (SOA) showed relatively small changes, organics, sulfate, and chloride were observed to have significant increases during HP, indicating the dominant impacts of coal combustion sources on these three species. The relative humidity-dependent composition further illustrated an important role of aqueous-phase processing for the sulfate enhancement during HP. We also observed great increases of hydrocarbon-like OA (HOA) and coal combustion OA (CCOA) during HP, which was attributed to higher emissions at lower temperatures and coal combustion emissions, respectively. The relationship between light extinction and chemical composition was investigated using a multiple linear regression model. Our results showed that the largest contributors to particle extinction were ammonium nitrate (32%) and ammonium sulfate (28%) before and during HP, respectively. In addition, the contributions of SOA and primary OA to particle light extinction were quantified. The results showed that the OA extinction was mainly caused by SOA before HP and by SOA and CCOA during HP, yet with small contributions from HOA and cooking aerosol for the entire study period. Our results elucidate substantial changes of aerosol

  18. The Effect of Aerosol Hygroscopicity and Volatility on Aerosol Optical Properties During Southern Oxidant and Aerosol Study

    Science.gov (United States)

    Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.

    2014-12-01

    Secondary organic aerosol (SOA) from biogenic sources can influence optical properties of ambient aerosol by altering its hygroscopicity and contributing to light absorption directly via formation of brown carbon and indirectly by enhancing light absorption by black carbon ("lensing effect"). The magnitude of these effects remains highly uncertain. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of relative humidity and temperature on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). The sample-conditioning system provided measurements at ambient RH, 10%RH ("dry"), 85%RH ("wet"), and 200 C ("TD"). In parallel to these measurements, a long residence time temperature-stepping thermodenuder (TD) and a variable residence time constant temperature TD in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. We will present results of the on-going analysis of the collected data set. We will show that both temperature and relative humidity have a strong effect on aerosol optical properties. SOA appears to increase aerosol light absorption by about 10%. TD measurements suggest that aerosol equilibrated fairly quickly, within 2 s. Evaporation varied substantially with ambient aerosol loading and composition and meteorology.

  19. Evaluation of chemical transport model predictions of primary organic aerosol for air masses classified by particle-component-based factor analysis

    OpenAIRE

    C. A. Stroud; M. D. Moran; P. A. Makar; S. Gong; W. Gong; J. Zhang; J. G. Slowik; J. P. D. Abbatt; G. Lu; J. R. Brook; C. Mihele; Q. Li; D. Sills; K. B. Strawbridge; M. L. McGuire

    2012-01-01

    Observations from the 2007 Border Air Quality and Meteorology Study (BAQS-Met 2007) in Southern Ontario, Canada, were used to evaluate predictions of primary organic aerosol (POA) and two other carbonaceous species, black carbon (BC) and carbon monoxide (CO), made for this summertime period by Environment Canada's AURAMS regional chemical transport model. Particle component-based factor analysis was applied to aerosol mass spectrometer measurements made at one urban site (Windsor, ON) and two...

  20. Glyoxal contribution to aerosols over Los Angeles

    Science.gov (United States)

    Balcerak, Ernie

    2012-01-01

    Laboratory and field studies have indicated that glyoxal (chemical formula OCHCHO), an atmospheric oxidation product of isoprene and aromatic compounds, may contribute to secondary organic aerosols in the atmosphere, which can block sunlight and affect atmospheric chemistry. Some aerosols are primary aerosols, emitted directly into the atmosphere, while others are secondary, formed through chemical reactions in the atmosphere. Washenfelder et al. describe in situ glyoxal measurements from Pasadena, Calif., near Los Angeles, made during summer 2010. They used three different methods to calculate the contribution of glyoxal to secondary atmospheric aerosol and found that it is responsible for 0-0.2 microgram per cubic meter, or 0-4%, of the secondary organic aerosol mass. The researchers also compared their results to those of a previous study that calculated the glyoxal contribution to aerosol for Mexico City. Mexico City had higher levels of organic aerosol mass from glyoxal. They suggest that the lower contribution of glyoxal to aerosol concentrations for Los Angeles may be due to differences in the composition or water content of the aerosols above the two cities. (Journal of Geophysical Research-Atmospheres, doi:10.1029/2011JD016314, 2011)

  1. Review of analytical techniques to determine the chemical forms of vapours and aerosols released from overheated fuel

    International Nuclear Information System (INIS)

    Bowsher, B.R.; Nichols, A.L.

    1989-12-01

    A comprehensive review has been undertaken of appropriate analytical techniques to monitor and measure the chemical effects that occur in large-scale tests designed to study severe reactor accidents. Various methods have been developed to determine the chemical forms of the vapours, aerosols and deposits generated during and after such integral experiments. Other specific techniques have the long-term potential to provide some of the desired data in greater detail, although considerable efforts are still required to apply these techniques to the study of radioactive debris. Such in-situ and post-test methods of analysis have been also assessed in terms of their applicability to the analysis of samples from the Phebus-FP tests. The recommended in-situ methods of analysis are gamma-ray spectroscopy, potentiometry, mass spectrometry, and Raman/UV-visible absorption spectroscopy. Vapour/aerosol and deposition samples should also be obtained at well-defined time intervals during each experiment for subsequent post-test analysis. No single technique can provide all the necessary chemical data from these samples, and the most appropriate method of analysis involves a complementary combination of autoradiography, AES, IR, MRS, SEMS/EDS, SIMS/LMIS, XPS and XRD

  2. Seasonal variation of water-soluble chemical components in the bulk atmospheric aerosols collected at Okinawa Island, Japan

    Science.gov (United States)

    Handa, D.; Nakajima, H.; Nakaema, F.; Arakaki, T.; Tanahara, A.

    2008-12-01

    The economic development and population growth in recent Asia spread air pollution. Emission rate of air pollutants from Asia, in particular oxides of nitrogen, surpassed those from North America and Europe and should continue to exceed them for decades. The study of the air pollution transported from Asian continent has gained a special attention in Japan. Okinawa Island is situated approximately 1500 km south of Tokyo, Japan, 2000 km southeast of Beijing, China, and 1000 km south of South Korea. Its location is ideal in observing East Asian atmospheric aerosols because maritime air mass prevails during summer, while continental air mass dominates during fall, winter, and spring. The maritime air mass data can be seen as background and can be compared with continental air masses which have been affected by anthropogenic activities. In 2005, Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS) was established by the National Institute for Environmental Studies (NIES) at the northern tip of Okinawa Island, Japan to monitor the air quality of Asia. Bulk aerosol samples were collected on quartz filters by using a high volume air sampler. Sampling duration was one week for each sample. We determined the concentrations of water-soluble anions, cations and dissolved organic carbon in the bulk aerosols collected at the CHAAMS, using ion chromatography, atomic absorption spectrometry, and total organic carbon analyzer, respectively. Seasonal variation of water-soluble chemical components showed that the concentrations were relatively low in summer, higher in fall and winter, and the highest in spring. When air mass came from Asian Continent, the concentrations of water-soluble chemical components were much higher compared to the other directions.

  3. Chemical composition of free tropospheric aerosol for PM1 and coarse mode at the high alpine site Jungfraujoch

    Directory of Open Access Journals (Sweden)

    J. Cozic

    2008-01-01

    Full Text Available The chemical composition of submicron (fine mode and supermicron (coarse mode aerosol particles has been investigated at the Jungfraujoch high alpine research station (3580 m a.s.l., Switzerland as part of the GAW aerosol monitoring program since 1999. A clear seasonality was observed for all major components throughout the period with low concentrations in winter (predominantly free tropospheric aerosol and higher concentrations in summer (enhanced vertical transport of boundary layer pollutants. In addition, mass closure was attempted during intensive campaigns in March 2004, February–March 2005 and August 2005. Ionic, carbonaceous and non-refractory components of the aerosol were quantified as well as the PM1 and coarse mode total aerosol mass concentrations. A relatively low conversion factor of 1.8 for organic carbon (OC to particulate organic matter (OM was found in winter (February–March 2005. Organics, sulfate, ammonium, and nitrate were the major components of the fine aerosol fraction that were identified, while calcium and nitrate were the only two measured components contributing to the coarse mode. The aerosol mass concentrations for fine and coarse mode aerosol measured during the intensive campaigns were not typical of the long-term seasonality due largely to dynamical differences. Average fine and coarse mode concentrations during the intensive field campaigns were 1.7 μg m−3 and 2.4 μg m−3 in winter and 2.5 μg m−3 and 2.0 μg m−3 in summer, respectively. The mass balance of aerosols showed higher contributions of calcium and nitrate in the coarse mode during Saharan dust events (SDE than without SDE.

  4. Single and multi-layered core-shell structures based on ZnO nanorods obtained by aerosol assisted chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Sáenz-Trevizo, A.; Amézaga-Madrid, P.; Pizá-Ruiz, P.; Antúnez-Flores, W.; Ornelas-Gutiérrez, C.; Miki-Yoshida, M., E-mail: mario.miki@cimav.edu.mx

    2015-07-15

    Core–shell nanorod structures were prepared by a sequential synthesis using an aerosol assisted chemical vapor deposition technique. Several samples consisting of ZnO nanorods were initially grown over TiO{sub 2} film-coated borosilicate glass substrates, following the synthesis conditions reported elsewhere. Later on, a uniform layer consisting of individual Al, Ni, Ti or Fe oxides was grown onto ZnO nanorod samples forming the so-called single MO{sub x}/ZnO nanorod core–shell structures, where MO{sub x} was the metal oxide shell. Additionally, a three-layer core–shell sample was developed by growing Fe, Ti and Fe oxides alternately, onto the ZnO nanorods. The microstructure of the core–shell materials was characterized by grazing incidence X-ray diffraction, scanning and transmission electron microscopy. Energy dispersive X-ray spectroscopy was employed to corroborate the formation of different metal oxides. X-ray diffraction outcomes for single core–shell structures showed solely the presence of ZnO as wurtzite and TiO{sub 2} as anatase. For the multi-layered shell sample, the existence of Fe{sub 2}O{sub 3} as hematite was also detected. Morphological observations suggested the existence of an outer material grown onto the nanorods and further microstructural analysis by HR-STEM confirmed the development of core–shell structures in all cases. These studies also showed that the individual Al, Fe, Ni and Ti oxide layers are amorphous; an observation that matched with X-ray diffraction analysis where no apparent extra oxides were detected. For the multi-layered sample, the development of a shell consisting of three different oxide layers onto the nanorods was found. Overall results showed that no alteration in the primary ZnO core was produced during the growth of the shells, indicating that the deposition technique used herein was and it is suitable for the synthesis of homogeneous and complex nanomaterials high in quality and purity. In addition

  5. Aerosol processing: a wind of innovation in the field of advanced heterogeneous catalysts.

    Science.gov (United States)

    Debecker, Damien P; Le Bras, Solène; Boissière, Cédric; Chaumonnot, Alexandra; Sanchez, Clément

    2018-04-16

    Aerosol processing is long known and implemented industrially to obtain various types of divided materials and nanomaterials. The atomisation of a liquid solution or suspension produces a mist of aerosol droplets which can then be transformed via a diversity of processes including spray-drying, spray pyrolysis, flame spray pyrolysis, thermal decomposition, micronisation, gas atomisation, etc. The attractive technical features of these aerosol processes make them highly interesting for the continuous, large scale, and tailored production of heterogeneous catalysts. Indeed, during aerosol processing, each liquid droplet undergoes well-controlled physical and chemical transformations, allowing for example to dry and aggregate pre-existing solid particles or to synthesise new micro- or nanoparticles from mixtures of molecular or colloidal precursors. In the last two decades, more advanced reactive aerosol processes have emerged as innovative means to synthesise tailored-made nanomaterials with tunable surface properties, textures, compositions, etc. In particular, the "aerosol-assisted sol-gel" process (AASG) has demonstrated tremendous potential for the preparation of high-performance heterogeneous catalysts. The method is mainly based on the low-cost, scalable, and environmentally benign sol-gel chemistry process, often coupled with the evaporation-induced self-assembly (EISA) concept. It allows producing micronic or submicronic, inorganic or hybrid organic-inorganic particles bearing tuneable and calibrated porous structures at different scales. In addition, pre-formed nanoparticles can be easily incorporated or formed in a "one-pot" bottom-up approach within the porous inorganic or hybrid spheres produced by such spray drying method. Thus, multifunctional catalysts with tailored catalytic activities can be prepared in a relatively simple way. This account is an overview of aerosol processed heterogeneous catalysts which demonstrated interesting performance in

  6. Chemical characterization of long-range transport biomass burning emissions to the Himalayas: insights from high-resolution aerosol mass spectrometry

    Science.gov (United States)

    Zhang, Xinghua; Xu, Jianzhong; Kang, Shichang; Liu, Yanmei; Zhang, Qi

    2018-04-01

    An intensive field measurement was conducted at a remote, background, high-altitude site (Qomolangma Station, QOMS, 4276 m a.s.l.) in the northern Himalayas, using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) along with other collocated instruments. The field measurement was performed from 12 April to 12 May 2016 to chemically characterize the high time-resolved submicron particulate matter (PM1) and obtain the dynamic processes (emissions, transport, and chemical evolution) of biomass burning (BB), frequently transported from South Asia to the Himalayas during pre-monsoon season. Overall, the average (±1σ) PM1 mass concentration was 4.44 (±4.54) µg m-3 for the entire study, which is comparable with those observed at other remote sites worldwide. Organic aerosol (OA) was the dominant PM1 species (accounting for 54.3 % of total PM1 on average) followed by black carbon (BC) (25.0 %), sulfate (9.3 %), ammonium (5.8 %), nitrate (5.1 %), and chloride (0.4 %). The average size distributions of PM1 species all peaked at an overlapping accumulation mode (˜ 500 nm), suggesting that aerosol particles were internally well-mixed and aged during long-range transport. Positive matrix factorization (PMF) analysis on the high-resolution organic mass spectra identified three distinct OA factors, including a BB-related OA (BBOA, 43.7 %), a nitrogen-containing OA (NOA, 13.9 %) and a more-oxidized oxygenated OA (MO-OOA, 42.4 %). Two polluted episodes with enhanced PM1 mass loadings and elevated BBOA contributions from the west and southwest of QOMS during the study were observed. A typical BB plume was investigated in detail to illustrate the chemical evolution of aerosol characteristics under distinct air mass origins, meteorological conditions, and atmospheric oxidation processes.

  7. Secondary sulfate is internally mixed with sea spray aerosol and organic aerosol in the winter Arctic

    Science.gov (United States)

    Kirpes, Rachel M.; Bondy, Amy L.; Bonanno, Daniel; Moffet, Ryan C.; Wang, Bingbing; Laskin, Alexander; Ault, Andrew P.; Pratt, Kerri A.

    2018-03-01

    Few measurements of aerosol chemical composition have been made during the winter-spring transition (following polar sunrise) to constrain Arctic aerosol-cloud-climate feedbacks. Herein, we report the first measurements of individual particle chemical composition near Utqiaġvik (Barrow), Alaska, in winter (seven sample days in January and February 2014). Individual particles were analyzed by computer-controlled scanning electron microscopy with energy dispersive X-ray spectroscopy (CCSEM-EDX, 24 847 particles), Raman microspectroscopy (300 particles), and scanning transmission X-ray microscopy with near-edge X-ray absorption fine structure spectroscopy (STXM-NEXAFS, 290 particles). Sea spray aerosol (SSA) was observed in all samples, with fresh and aged SSA comprising 99 %, by number, of 2.5-7.5 µm diameter particles, 65-95 % from 0.5-2.5 µm, and 50-60 % from 0.1-0.5 µm, indicating SSA is the dominant contributor to accumulation and coarse-mode aerosol during the winter. The aged SSA particles were characterized by reduced chlorine content with 94 %, by number, internally mixed with secondary sulfate (39 %, by number, internally mixed with both nitrate and sulfate), indicative of multiphase aging reactions during transport. There was a large number fraction (40 % of 1.0-4.0 µm diameter particles) of aged SSA during periods when particles were transported from near Prudhoe Bay, consistent with pollutant emissions from the oil fields participating in atmospheric processing of aerosol particles. Organic carbon and sulfate particles were observed in all samples and comprised 40-50 %, by number, of 0.1-0.4 µm diameter particles, indicative of Arctic haze influence. Soot was internally mixed with organic and sulfate components. All sulfate was mixed with organic carbon or SSA particles. Therefore, aerosol sources in the Alaskan Arctic and resulting aerosol chemical mixing states need to be considered when predicting aerosol climate effects, particularly cloud

  8. Global and Regional Impacts of HONO on the Chemical Composition of Clouds and Aerosols

    Science.gov (United States)

    Elshorbany, Y. F.; Crutzen, P. J.; Steil, B.; Pozzer, A.; Tost, H.; Lelieveld, J.

    2014-01-01

    Recently, realistic simulation of nitrous acid (HONO) based on the HONO / NOx ratio of 0.02 was found to have a significant impact on the global budgets of HOx (OH + HO2) and gas phase oxidation products in polluted regions, especially in winter when other photolytic sources are of minor importance. It has been reported that chemistry-transport models underestimate sulphate concentrations, mostly during winter. Here we show that simulating realistic HONO levels can significantly enhance aerosol sulphate (S(VI)) due to the increased formation of H2SO4. Even though in-cloud aqueous phase oxidation of dissolved SO2 (S(IV)) is the main source of S(VI), it appears that HONO related enhancement of H2O2 does not significantly affect sulphate because of the predominantly S(IV) limited conditions, except over eastern Asia. Nitrate is also increased via enhanced gaseous HNO3 formation and N2O5 hydrolysis on aerosol particles. Ammonium nitrate is enhanced in ammonia-rich regions but not under ammonia-limited conditions. Furthermore, particle number concentrations are also higher, accompanied by the transfer from hydrophobic to hydrophilic aerosol modes. This implies a significant impact on the particle lifetime and cloud nucleating properties. The HONO induced enhancements of all species studied are relatively strong in winter though negligible in summer. Simulating realistic HONO levels is found to improve the model measurement agreement of sulphate aerosols, most apparent over the US. Our results underscore the importance of HONO for the atmospheric oxidizing capacity and corroborate the central role of cloud chemical processing in S(IV) formation

  9. Improving aerosol interaction with clouds and precipitation in a regional chemical weather modeling system

    Science.gov (United States)

    Zhou, C.; Zhang, X.; Gong, S.; Wang, Y.; Xue, M.

    2016-01-01

    A comprehensive aerosol-cloud-precipitation interaction (ACI) scheme has been developed under a China Meteorological Administration (CMA) chemical weather modeling system, GRAPES/CUACE (Global/Regional Assimilation and PrEdiction System, CMA Unified Atmospheric Chemistry Environment). Calculated by a sectional aerosol activation scheme based on the information of size and mass from CUACE and the thermal-dynamic and humid states from the weather model GRAPES at each time step, the cloud condensation nuclei (CCN) are interactively fed online into a two-moment cloud scheme (WRF Double-Moment 6-class scheme - WDM6) and a convective parameterization to drive cloud physics and precipitation formation processes. The modeling system has been applied to study the ACI for January 2013 when several persistent haze-fog events and eight precipitation events occurred.The results show that aerosols that interact with the WDM6 in GRAPES/CUACE obviously increase the total cloud water, liquid water content, and cloud droplet number concentrations, while decreasing the mean diameters of cloud droplets with varying magnitudes of the changes in each case and region. These interactive microphysical properties of clouds improve the calculation of their collection growth rates in some regions and hence the precipitation rate and distributions in the model, showing 24 to 48 % enhancements of threat score for 6 h precipitation in almost all regions. The aerosols that interact with the WDM6 also reduce the regional mean bias of temperature by 3 °C during certain precipitation events, but the monthly means bias is only reduced by about 0.3 °C.

  10. Chemical characteristics of ambient aerosols contributed by cooking process at Noorpur village near New Delhi

    Science.gov (United States)

    Singh, Sudha

    Generally, industrial and transport sectors are considered as major contributors of air pollution but recently, biomass burning is also reported as a major source of atmospheric aerosols (1, 2) especially in the developing world where solid fuels such as dung cake, wood and crop residues are used in traditional cooking which are responsible for poor air quality, respiratory problems and radiative forcing etc .In India, most of the research has been focused on emission estimates from biomass burning and cooking. No effort has been made to understand the chemistry and sources of fine aerosols in rural areas during cooking hours. This study fills this knowledge gap and strengthens our understanding about abundance of various chemical constituents of atmospheric aerosols emitted during cooking hours.Aerosol samples were collected from village called Noorpur (28.470 N, 77.030 E) which lies near Delhi city. Sampling was carried out during August 2011-May 2012 by using handy sampler (Envirotech model APM 821) installed at the terrace of a building (~6m). The aerosol samples were collected on 8 hourly basis at a flow rate of 1 LPM. Water extracts of these filters were analyzed for major anions (F-, Cl-, NO3-, SO42-) and major cations (Na+, NH4+, K+, Ca2+ Mg2+) by ion chromatography (Metrohm 883 Basic IC Plus). During cooking period, the concentration of the major ions followed the order of Ca2+> SO42-> NO3-> Cl-> K+> NH4+> Mg2+> Na2+> F-. Among anion SO42 (5 µg/m3) showed highest value and in case of cations Ca2+ (7.32µg/m3) has highest value.

  11. Significant atmospheric aerosol pollution caused by world food cultivation

    Science.gov (United States)

    Bauer, Susanne E.; Tsigaridis, Kostas; Miller, Ron

    2017-04-01

    Particulate matter is a major concern for public health, causing cancer and cardiopulmonary mortality. Therefore, governments in most industrialized countries monitor and set limits for particulate matter. To assist policy makers, it is important to connect the chemical composition and severity of particulate pollution to it s sources. Here we show how agricultural practices, livestock production, and the use of nitrogen fertilizers impact near-surface air quality. In many densely populated areas, aerosols formed from gases that are released by fertilizer application and animal husbandry dominate over the combined contributions from all other anthropogenic pollution. Here we test reduction scenarios of combustion-based and agricultural emissions that could lower air pollution. For a future scenario, we find opposite trends, decreasing nitrate aerosol formation near the surface while total tropospheric loads increase. This suggests that food production could be increased to match the growing global population without sacrificing air quality if combustion emission is decreased.

  12. Significant Atmospheric Aerosol Pollution Caused by World Food Cultivation

    Science.gov (United States)

    Bauer, Susanne E.; Tsigaridis, Kostas; Miller, Ron

    2016-01-01

    Particulate matter is a major concern for public health, causing cancer and cardiopulmonary mortality. Therefore, governments in most industrialized countries monitor and set limits for particulate matter. To assist policy makers, it is important to connect the chemical composition and severity of particulate pollution to its sources. Here we show how agricultural practices, livestock production, and the use of nitrogen fertilizers impact near-surface air quality. In many densely populated areas, aerosols formed from gases that are released by fertilizer application and animal husbandry dominate over the combined contributions from all other anthropogenic pollution. Here we test reduction scenarios of combustion-based and agricultural emissions that could lower air pollution. For a future scenario, we find opposite trends, decreasing nitrate aerosol formation near the surface while total tropospheric loads increase. This suggests that food production could be increased to match the growing global population without sacrificing air quality if combustion emission is decreased.

  13. Arctic Aerosols and Sources

    DEFF Research Database (Denmark)

    Nielsen, Ingeborg Elbæk

    2017-01-01

    Since the Industrial Revolution, the anthropogenic emission of greenhouse gases has been increasing, leading to a rise in the global temperature. Particularly in the Arctic, climate change is having serious impact where the average temperature has increased almost twice as much as the global during......, ammonium, black carbon, and trace metals. This PhD dissertation studies Arctic aerosols and their sources, with special focus on black carbon, attempting to increase the knowledge about aerosols’ effect on the climate in an Arctic content. The first part of the dissertation examines the diversity...... of aerosol emissions from an important anthropogenic aerosol source: residential wood combustion. The second part, characterizes the chemical and physical composition of aerosols while investigating sources of aerosols in the Arctic. The main instrument used in this research has been the state...

  14. Evaluation of simulated aerosol properties with the aerosol-climate model ECHAM5-HAM using observations from the IMPACT field campaign

    NARCIS (Netherlands)

    Roelofs, G.-J.; Brink, H. ten; Kiendler-Scharr, A.; Leeuw, G. de; Mensah, A.; Minikin, A.; Otjes, R.

    2010-01-01

    In May 2008, the measurement campaign IMPACT for observation of atmospheric aerosol and cloud properties was conducted in Cabauw, The Netherlands. With a nudged version of the coupled aerosol-climate model ECHAM5-HAM we simulate the size distribution and chemical composition of the aerosol and the

  15. Aerosol Indices Derived from MODIS Data for Indicating Aerosol-Induced Air Pollution

    Directory of Open Access Journals (Sweden)

    Junliang He

    2014-02-01

    Full Text Available Aerosol optical depth (AOD is a critical variable in estimating aerosol concentration in the atmosphere, evaluating severity of atmospheric pollution, and studying their impact on climate. With the assistance of the 6S radiative transfer model, we simulated apparent reflectancein relation to AOD in each Moderate Resolution Imaging Spectroradiometer (MODIS waveband in this study. The closeness of the relationship was used to identify the most and least sensitive MODIS wavebands. These two bands were then used to construct three aerosol indices (difference, ratio, and normalized difference for estimating AOD quickly and effectively. The three indices were correlated, respectively, with in situ measured AOD at the Aerosol Robotic NETwork (AERONET Lake Taihu, Beijing, and Xianghe stations. It is found that apparent reflectance of the blue waveband (band 3 is the most sensitive to AOD while the mid-infrared wavelength (band 7 is the least sensitive. The difference aerosol index is the most accurate in indicating aerosol-induced atmospheric pollution with a correlation coefficient of 0.585, 0.860, 0.685, and 0.333 at the Lake Taihu station, 0.721, 0.839, 0.795, and 0.629 at the Beijing station, and 0.778, 0.782, 0.837, and 0.643 at the Xianghe station in spring, summer, autumn and winter, respectively. It is concluded that the newly proposed difference aerosol index can be used effectively to study the level of aerosol-induced air pollution from MODIS satellite imagery with relative ease.

  16. Aerosol direct radiative effects over the northwest Atlantic, northwest Pacific, and North Indian Oceans: estimates based on in-situ chemical and optical measurements and chemical transport modeling

    Directory of Open Access Journals (Sweden)

    T. S. Bates

    2006-01-01

    Full Text Available The largest uncertainty in the radiative forcing of climate change over the industrial era is that due to aerosols, a substantial fraction of which is the uncertainty associated with scattering and absorption of shortwave (solar radiation by anthropogenic aerosols in cloud-free conditions (IPCC, 2001. Quantifying and reducing the uncertainty in aerosol influences on climate is critical to understanding climate change over the industrial period and to improving predictions of future climate change for assumed emission scenarios. Measurements of aerosol properties during major field campaigns in several regions of the globe during the past decade are contributing to an enhanced understanding of atmospheric aerosols and their effects on light scattering and climate. The present study, which focuses on three regions downwind of major urban/population centers (North Indian Ocean (NIO during INDOEX, the Northwest Pacific Ocean (NWP during ACE-Asia, and the Northwest Atlantic Ocean (NWA during ICARTT, incorporates understanding gained from field observations of aerosol distributions and properties into calculations of perturbations in radiative fluxes due to these aerosols. This study evaluates the current state of observations and of two chemical transport models (STEM and MOZART. Measurements of burdens, extinction optical depth (AOD, and direct radiative effect of aerosols (DRE – change in radiative flux due to total aerosols are used as measurement-model check points to assess uncertainties. In-situ measured and remotely sensed aerosol properties for each region (mixing state, mass scattering efficiency, single scattering albedo, and angular scattering properties and their dependences on relative humidity are used as input parameters to two radiative transfer models (GFDL and University of Michigan to constrain estimates of aerosol radiative effects, with uncertainties in each step propagated through the analysis. Constraining the radiative

  17. Comparison of physical chemical properties of powders and respirable aerosols of industrial mixed uranium and plutonium oxide fuels

    International Nuclear Information System (INIS)

    Eidson, A.F.

    1982-01-01

    Studies were performed to characterize physical and chemical properties which may be important in determining the metabolism of accidentally released, inhaled aerosols of industrial mixed uranium and plutonium oxide fuels and to compare the properties of bulk powders and the respirable fraction they include. X-ray diffraction measurements showed that analysis of mixed-oxide powders from four process steps served to characterize their respirable fractions. IR spectroscopy was useful as a method to detect organic binders that were not observed by X-ray diffraction methods. Both X-ray diffraction and IR spectroscopy methods can be used in combination to identify the sources of a complex aerosol that might be released from more than one fabrication step. Isotopic distributions in powders and aerosols showed that information important for radiation dose to tissue calculations or Pu lung burden estimates can be obtained by analysis of powders. (U.K.)

  18. Aerosol Production from Charbroiled and Wet-Fried Meats

    Science.gov (United States)

    Niedziela, R. F.; Blanc, L. E.

    2012-12-01

    Previous work in our laboratory focused on the chemical and optical characterization of aerosols produced during the dry-frying of different meat samples. This method yielded a complex ensemble of particles composed of water and long-chain fatty acids with the latter dominated by oleic, stearic, and palmitic acids. The present study examines how wet-frying and charbroiling cooking methods affect the physical and chemical properties of their derived aerosols. Samples of ground beef, salmon, chicken, and pork were subject to both cooking methods in the laboratory, with their respective aerosols swept into a laminar flow cell where they were optically analyzed in the mid-infrared and collected through a gas chromatography probe for chemical characterization. This presentation will compare and contrast the nature of the aerosols generated in each cooking method, particularly those produced during charbroiling which exposes the samples, and their drippings, to significantly higher temperatures. Characterization of such cooking-related aerosols is important because of the potential impact of these particles on air quality, particularly in urban areas.

  19. Review on advanced of solar assisted chemical heat pump dryer for agriculture produce

    International Nuclear Information System (INIS)

    Fadhel, M.I.; Sopian, K.; Daud, W.R.W.; Alghoul, M.A.

    2011-01-01

    Over the past three decades there has been nearly exponential growth in drying R and D on a global scale. Improving of the drying operation to save energy, improve product quality as well as reduce environmental effect remained as the main objectives of any development of drying system. A solar assisted chemical heat pump dryer is a new solar drying system, which have contributed to better cost-effectiveness and better quality dried products as well as saving energy. A solar collector is adapted to provide thermal energy in a reactor so a chemical reaction can take place. This reduces the dependency of the drying technology on fossil energy for heating. In this paper a review on advanced of solar assisted chemical heat pump dryer is presented (the system model and the results from experimental studies on the system performance are discussed). The review of heat pump dryers and solar assisted heat pump dryer is presented. Description of chemical heat pump types and the overview of chemical heat pump dryer are discussed. The combination of chemical heat pump and solar technology gives extra efficiency in utilizing energy. (author)

  20. Aerosol processing in stratiform clouds in ECHAM6-HAM

    Science.gov (United States)

    Neubauer, David; Lohmann, Ulrike; Hoose, Corinna

    2013-04-01

    Aerosol processing in stratiform clouds by uptake into cloud particles, collision-coalescence, chemical processing inside the cloud particles and release back into the atmosphere has important effects on aerosol concentration, size distribution, chemical composition and mixing state. Aerosol particles can act as cloud condensation nuclei. Cloud droplets can take up further aerosol particles by collisions. Atmospheric gases may also be transferred into the cloud droplets and undergo chemical reactions, e.g. the production of atmospheric sulphate. Aerosol particles are also processed in ice crystals. They may be taken up by homogeneous freezing of cloud droplets below -38° C or by heterogeneous freezing above -38° C. This includes immersion freezing of already immersed aerosol particles in the droplets and contact freezing of particles colliding with a droplet. Many clouds do not form precipitation and also much of the precipitation evaporates before it reaches the ground. The water soluble part of the aerosol particles concentrates in the hydrometeors and together with the insoluble part forms a single, mixed, larger particle, which is released. We have implemented aerosol processing into the current version of the general circulation model ECHAM6 (Stevens et al., 2013) coupled to the aerosol module HAM (Stier et al., 2005). ECHAM6-HAM solves prognostic equations for the cloud droplet number and ice crystal number concentrations. In the standard version of HAM, seven modes are used to describe the total aerosol. The modes are divided into soluble/mixed and insoluble modes and the number concentrations and masses of different chemical components (sulphate, black carbon, organic carbon, sea salt and mineral dust) are prognostic variables. We extended this by an explicit representation of aerosol particles in cloud droplets and ice crystals in stratiform clouds similar to Hoose et al. (2008a,b). Aerosol particles in cloud droplets are represented by 5 tracers for the

  1. Aerosol Observability and Predictability: From Research to Operations for Chemical Weather Forecasting. Lagrangian Displacement Ensembles for Aerosol Data Assimilation

    Science.gov (United States)

    da Silva, Arlindo

    2010-01-01

    A challenge common to many constituent data assimilation applications is the fact that one observes a much smaller fraction of the phase space that one wishes to estimate. For example, remotely sensed estimates of the column average concentrations are available, while one is faced with the problem of estimating 3D concentrations for initializing a prognostic model. This problem is exacerbated in the case of aerosols because the observable Aerosol Optical Depth (AOD) is not only a column integrated quantity, but it also sums over a large number of species (dust, sea-salt, carbonaceous and sulfate aerosols. An aerosol transport model when driven by high-resolution, state-of-the-art analysis of meteorological fields and realistic emissions can produce skillful forecasts even when no aerosol data is assimilated. The main task of aerosol data assimilation is to address the bias arising from inaccurate emissions, and Lagrangian misplacement of plumes induced by errors in the driving meteorological fields. As long as one decouples the meteorological and aerosol assimilation as we do here, the classic baroclinic growth of error is no longer the main order of business. We will describe an aerosol data assimilation scheme in which the analysis update step is conducted in observation space, using an adaptive maximum-likelihood scheme for estimating background errors in AOD space. This scheme includes e explicit sequential bias estimation as in Dee and da Silva. Unlikely existing aerosol data assimilation schemes we do not obtain analysis increments of the 3D concentrations by scaling the background profiles. Instead we explore the Lagrangian characteristics of the problem for generating local displacement ensembles. These high-resolution state-dependent ensembles are then used to parameterize the background errors and generate 3D aerosol increments. The algorithm has computational complexity running at a resolution of 1/4 degree, globally. We will present the result of

  2. Correlations between Optical, Chemical and Physical Properties ofBiomass Burn Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Rebecca J.; Lewis, K.; Desyaterik, Yury; Wang, Z.; Tivanski, Alexei V.; Arnott, W.P.; Laskin, Alexander; Gilles, M.K.

    2008-01-29

    Aerosols generated from burning different plant fuels were characterized to determine relationships between chemical, optical and physical properties. Single scattering albedo ({omega}) and Angstrom absorption coefficients ({alpha}{sub ap}) were measured using a photoacoustic technique combined with a reciprocal nephelometer. Carbon-to-oxygen atomic ratios, sp{sup 2} hybridization, elemental composition and morphology of individual particles were measured using scanning transmission X-ray microscopy coupled with near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS) and scanning electron microscopy with energy dispersion of X-rays (SEM/EDX). Particles were grouped into three categories based on sp2 hybridization and chemical composition. Measured {omega} (0.4-1.0 at 405 nm) and {alpha}{sub ap} (1.0-3.5) values displayed a fuel dependence. The category with sp{sup 2} hybridization >80% had values of {omega} (<0.5) and {alpha}{sub ap} ({approx}1.25) characteristic of light absorbing soot. Other categories with lower sp2 hybridization (20 to 60%) exhibited higher {omega} (>0.8) and {alpha}{sub ap} (1.0 to 3.5) values, indicating increased absorption spectral selectivity.

  3. Spatial and temporal variations of chemicals in the TSP aerosols simultaneously collected at three islands in Okinawa, Japan

    Science.gov (United States)

    Arakaki, Takemitsu; Azechi, Sotaro; Somada, Yuka; Ijyu, Moriaki; Nakaema, Fumiya; Hitomi, Yuya; Handa, Daishi; Oshiro, Yoshito; Miyagi, Youichi; Tsuhako, Ai; Murayama, Hitomi; Higaonna, Yumi; Tanahara, Akira; Itoh, Akihide; Fukushima, Soko; Higashi, Kazuaki; Henza, Yui; Nishikawa, Rin; Shinjo, Hibiki; Wang, Hongyan

    2014-11-01

    East Asia's rapid economic growth has led to concerns about the emission of air pollutants. We collected total suspended particle (TSP) aerosol samples simultaneously at three islands in Okinawa, Japan, which are downwind of East Asia, during the Asian dust season, to examine the spatial and temporal variations and chemical transformations of major chemicals in the aerosols. Weekly samples were collected from July 2008 to June 2010, and the concentrations of water-soluble cations, anions, and organic carbon (WSOC) were determined (n = 303). Spatial distribution analysis showed that monthly mean concentrations of non-sea-salt (nss)-SO42- in the spring (Asian dust season) decreased with increasing distance from Asia, while the trend for NO3- was less evident, suggesting that chemical transformation affected the long-range transport of certain chemicals. Temporal variation analysis showed that concentrations of nss-SO42-, NO3-, and WSOC during the spring were about 2.0, 2.4, and 1.8 times those in the summer (cleaner air mass from the Pacific Ocean), respectively. This study demonstrated that air pollutants were transported from the Asian continent to the Okinawa islands and affected the air quality in the region. There may also be impacts on ecosystems, because increased concentrations of particulate NO3- could increase nutrient levels around the Okinawa islands.

  4. Decoration of vertical graphene with aerosol nanoparticles for gas sensing

    International Nuclear Information System (INIS)

    Cui, Shumao; Guo, Xiaoru; Ren, Ren; Zhou, Guihua; Chen, Junhong

    2015-01-01

    A facile method was demonstrated to decorate aerosol Ag nanoparticles onto vertical graphene surfaces using a mini-arc plasma reactor. The vertical graphene was directly grown on a sensor electrode using a plasma-enhanced chemical vapor deposition (PECVD) method. The aerosol Ag nanoparticles were synthesized by a simple vapor condensation process using a mini-arc plasma source. Then, the nanoparticles were assembled on the surface of vertical graphene through the assistance of an electric field. Based on our observation, nonagglomerated Ag nanoparticles formed in the gas phase and were assembled onto vertical graphene sheets. Nanohybrids of Ag nanoparticle-decorated vertical graphene were characterized for ammonia gas detection at room temperature. The vertical graphene served as the conductance channel, and the conductance change upon exposure to ammonia was used as the sensing signal. The sensing results show that Ag nanoparticles significantly improve the sensitivity, response time, and recovery time of the sensor. (paper)

  5. Ambient Aerosol in Southeast Asia: High Resolution Aerosol Mass Spectrometer Measurements Over Oil Palm (Elaeis guineensis)

    Science.gov (United States)

    Phillips, G.; Dimarco, C.; Misztal, P.; Nemitz, E.; Farmer, D.; Kimmel, J.; Jimenez, J.

    2008-12-01

    The emission of organic compounds in the troposphere is important factor in the formation of secondary organic aerosol (SOA). A very large proportion of organic material emitted globally is estimated to arise from biogenic sources, with almost half coming from tropical and sub-tropical forests. Preliminary analyses of leave cuvette emission studies suggest that oil palm (Elaeis guineensis) is a significantly larger source of isoprene than tropical forest. Much larger sources of isoprene over oil palm allied with a larger anthropogenic component of local emissions contrast greatly with the remote tropical forest environment and therefore the character of SOA formed may differ significantly. These issues, allied with the high price of palm oil on international markets leading to increased use of land for oil palm production, could give rise to rapidly changing chemical and aerosol regimes in the tropics. It is therefore important to understand the current emissions and composition of organic aerosol over all important land-uses in the tropical environment. This in turn will lead to a greater understanding of the present, and to an improvement in predictive capacity for the future system. To help address these issues, a high resolution time of flight aerosol mass spectrometer (HR-ToF-AMS) was deployed in the Sabahmas (PPB OIL) oil palm plantation near Lahad Datu, in Eastern Sabah, as part of the field component of the Aerosol Coupling in the Earth System (ACES) project, part of the UK NERC APPRAISE program. This project was allied closely with measurements made of similar chemical species and aerosol components at a forest site in the Danum Valley as part of the UK Oxidant and Particle Photochemical Processes above a Southeast Asian tropical rainforest (OP3) project. Measurements of submicron non- refractory aerosol composition are presented along with some preliminary analysis of chemically resolved aerosol fluxes made with a new eddy covariance system, based on the

  6. The boiling point of stratospheric aerosols.

    Science.gov (United States)

    Rosen, J. M.

    1971-01-01

    A photoelectric particle counter was used for the measurement of aerosol boiling points. The operational principle involves raising the temperature of the aerosol by vigorously heating a portion of the intake tube. At or above the boiling point, the particles disintegrate rather quickly, and a noticeable effect on the size distribution and concentration is observed. Stratospheric aerosols appear to have the same volatility as a solution of 75% sulfuric acid. Chemical analysis of the aerosols indicates that there are other substances present, but that the sulfate radical is apparently the major constituent.

  7. Chemical characterization of long-range transport biomass burning emissions to the Himalayas: insights from high-resolution aerosol mass spectrometry

    Directory of Open Access Journals (Sweden)

    X. Zhang

    2018-04-01

    Full Text Available An intensive field measurement was conducted at a remote, background, high-altitude site (Qomolangma Station, QOMS, 4276 m a.s.l. in the northern Himalayas, using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS along with other collocated instruments. The field measurement was performed from 12 April to 12 May 2016 to chemically characterize the high time-resolved submicron particulate matter (PM1 and obtain the dynamic processes (emissions, transport, and chemical evolution of biomass burning (BB, frequently transported from South Asia to the Himalayas during pre-monsoon season. Overall, the average (±1σ PM1 mass concentration was 4.44 (±4.54 µg m−3 for the entire study, which is comparable with those observed at other remote sites worldwide. Organic aerosol (OA was the dominant PM1 species (accounting for 54.3 % of total PM1 on average followed by black carbon (BC (25.0 %, sulfate (9.3 %, ammonium (5.8 %, nitrate (5.1 %, and chloride (0.4 %. The average size distributions of PM1 species all peaked at an overlapping accumulation mode (∼ 500 nm, suggesting that aerosol particles were internally well-mixed and aged during long-range transport. Positive matrix factorization (PMF analysis on the high-resolution organic mass spectra identified three distinct OA factors, including a BB-related OA (BBOA, 43.7 %, a nitrogen-containing OA (NOA, 13.9 % and a more-oxidized oxygenated OA (MO-OOA, 42.4 %. Two polluted episodes with enhanced PM1 mass loadings and elevated BBOA contributions from the west and southwest of QOMS during the study were observed. A typical BB plume was investigated in detail to illustrate the chemical evolution of aerosol characteristics under distinct air mass origins, meteorological conditions, and atmospheric oxidation processes.

  8. Urban aerosol in Oporto, Portugal: Chemical characterization of PM10 and PM2.5

    Science.gov (United States)

    Custódio, Danilo; Ferreira, Catarina; Alves, Célia; Duarte, Mácio; Nunes, Teresa; Cerqueira, Mário; Pio, Casimiro; Frosini, Daniele; Colombi, Cristina; Gianelle, Vorne; Karanasiou, Angeliki; Querol, Xavier

    2014-05-01

    Several urban and industrial areas in Southern Europe are not capable of meeting the implemented EU standards for particulate matter. Efficient air quality management is required in order to ensure that the legal limits are not exceeded and that the consequences of poor air quality are controlled and minimized. Many aspects of the direct and indirect effects of suspended particulate matter on climate and public health are not well understood. The temporal variation of the chemical composition is still demanded, since it enables to adopt off-set strategies and to better estimate the magnitude of anthropogenic forcing on climate. This study aims to provide detailed information on concentrations and chemical composition of aerosol from Oporto city, an urban center in Southern Europe. This city is located near the coast line in the North of Portugal, being the country's second largest urban area. Moreover, Oporto city economic prospects depend heavily on a diversified industrial park, which contribute to air quality degradation. Another strong source of air pollution is traffic. The main objectives of this study are: 1) to characterize the chemical composition of PM10 and PM2.5 by setting up an orchestra of aerosol sampling devices in a strategic place in Oporto; 2) to identify the sources of particles exploring parameters such as organic and inorganic markers (e.g. sugars as tracers for biomass burning; metals and elemental carbon for industrial and vehicular emissions); 3) to evaluate long range transport of pollutants using back trajectory analysis. Here we present data obtained between January 2013 and January 2014 in a heavy traffic roadside sampling site located in the city center. Different PM10 and PM2.5 samplers were operated simultaneously in order to collect enough mass on different filter matrixes and to fulfill the requirements of analytical methodologies. More than 100 aerosol samples were collected and then analysed for their mass concentration and

  9. Chemical Composition of Aerosol from an E-Cigarette: A Quantitative Comparison with Cigarette Smoke.

    Science.gov (United States)

    Margham, Jennifer; McAdam, Kevin; Forster, Mark; Liu, Chuan; Wright, Christopher; Mariner, Derek; Proctor, Christopher

    2016-10-17

    There is interest in the relative toxicities of emissions from electronic cigarettes and tobacco cigarettes. Lists of cigarette smoke priority toxicants have been developed to focus regulatory initiatives. However, a comprehensive assessment of e-cigarette chemical emissions including all tobacco smoke Harmful and Potentially Harmful Constituents, and additional toxic species reportedly present in e-cigarette emissions, is lacking. We examined 150 chemical emissions from an e-cigarette (Vype ePen), a reference tobacco cigarette (Ky3R4F), and laboratory air/method blanks. All measurements were conducted by a contract research laboratory using ISO 17025 accredited methods. The data show that it is essential to conduct laboratory air/method measurements when measuring e-cigarette emissions, owing to the combination of low emissions and the associated impact of laboratory background that can lead to false-positive results and overestimates. Of the 150 measurands examined in the e-cigarette aerosol, 104 were not detected and 21 were present due to laboratory background. Of the 25 detected aerosol constituents, 9 were present at levels too low to be quantified and 16 were generated in whole or in part by the e-cigarette. These comprised major e-liquid constituents (nicotine, propylene glycol, and glycerol), recognized impurities in Pharmacopoeia-quality nicotine, and eight thermal decomposition products of propylene glycol or glycerol. By contrast, approximately 100 measurands were detected in mainstream cigarette smoke. Depending on the regulatory list considered and the puffing regime used, the emissions of toxicants identified for regulation were from 82 to >99% lower on a per-puff basis from the e-cigarette compared with those from Ky3R4F. Thus, the aerosol from the e-cigarette is compositionally less complex than cigarette smoke and contains significantly lower levels of toxicants. These data demonstrate that e-cigarettes can be developed that offer the potential

  10. Modelling and numerical simulation of the General Dynamic Equation of aerosols; Modelisation et simulation des aerosols atmospheriques

    Energy Technology Data Exchange (ETDEWEB)

    Debry, E.

    2005-01-15

    Chemical-transport models are now able to describe in a realistic way gaseous pollutants behavior in the atmosphere. Nevertheless atmospheric pollution also exists as fine suspended particles, called aerosols, which interact with gaseous phase, solar radiation, and have their own dynamic behavior. The goal of this thesis is the modelling and numerical simulation of the General Dynamic Equation of aerosols (GDE). Part I deals with some theoretical aspects of aerosol modelling. Part II is dedicated to the building of one size resolved aerosol model (SIREAM). In part III we perform the reduction of this model in order to use it in dispersion models as POLAIR3D. Several modelling issues are still opened: organic aerosol matter, externally mixed aerosols, coupling with turbulent mixing, and nano-particles. (author)

  11. Chemically-resolved volatility measurements of organic aerosol fom different sources.

    Science.gov (United States)

    Huffman, J A; Docherty, K S; Mohr, C; Cubison, M J; Ulbrich, I M; Ziemann, P J; Onasch, T B; Jimenez, J L

    2009-07-15

    A newly modified fast temperature-stepping thermodenuder (TD) was coupled to a High Resolution Time-of-Flight Aerosol Mass Spectrometer for rapid determination of chemically resolved volatility of organic aerosols (OA) emitted from individual sources. The TD-AMS system was used to characterize primary OA (POA) from biomass burning, trash burning surrogates (paper and plastic), and meat cooking as well as chamber-generated secondary OA (SOA) from alpha-pinene and gasoline vapor. Almost all atmospheric models represent POA as nonvolatile, with no allowance for evaporation upon heating or dilution, or condensation upon cooling. Our results indicate that all OAs observed show semivolatile behavior and that most POAs characterized here were at least as volatile as SOA measured in urban environments. Biomass-burning OA (BBOA) exhibited a wide range of volatilities, but more often showed volatility similar to urban OA. Paper-burning resembles some types of BBOA because of its relatively high volatility and intermediate atomic oxygen-to-carbon (O/C) ratio, while meat-cooking OAs (MCOA) have consistently lower volatility than ambient OA. Chamber-generated SOA under the relatively high concentrations used intraditional experiments was significantly more volatile than urban SOA, challenging extrapolation of traditional laboratory volatility measurements to the atmosphere. Most OAs sampled show increasing O/C ratio and decreasing H/C (hydrogen-to-carbon) ratio with temperature, further indicating that more oxygenated OA components are typically less volatile. Future experiments should systematically explore a wider range of mass concentrations to more fully characterize the volatility distributions of these OAs.

  12. Chemical characterization of organic aerosol above a mid-latitude forest reveals a complex mixture of highly-functionalized chemical species and diverse structural features with temporal variability

    Science.gov (United States)

    Gentner, D. R.; Ditto, J.; Barnes, E.; Khare, P.

    2017-12-01

    Highly-functionalized organic compounds are known to be a major component of the complex mixture of the particle-phase compounds that comprise organic aerosol, yet little is known about the identity of many of these compounds, and their formation pathways and roles in atmospheric processes are poorly understood. We present results from the comprehensive chemical speciation of PM10 organic aerosols collected in July 2016 at the remote mid-latitude forest field site during PROPHET. Samples were analyzed via liquid and gas chromatography coupled with a quadrupole time-of-flight tandem mass spectrometry (MS×MS) following electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI). 8 hr samples were collected during day- and night-time sampling periods rather than more typical 24-hour samples. This analysis of the organic aerosol yielded over 12,000 unique compounds for which we have high accuracy molecular masses, formulas, and additional information on structural features using MS×MS. O:C ratios were 0.3 on average, yet the top 10% of compounds ranged 0.7-2.3. 70% and 69% of day- and night-time samples were nitrogen-containing, whereas 26% and 24% contained sulfur, respectively. Within these broader molecular categories, we observed a wide variety of molecular features that reveal a diversity of functional groups and moieties. In this presentation, we present the results of our speciation, temporal variability, connections to air parcel back trajectories and other bulk properties, and potential formation pathways.

  13. General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI – integrating aerosol research from nano to global scales

    Directory of Open Access Journals (Sweden)

    D. Simpson

    2011-12-01

    Full Text Available In this paper we describe and summarize the main achievements of the European Aerosol Cloud Climate and Air Quality Interactions project (EUCAARI. EUCAARI started on 1 January 2007 and ended on 31 December 2010 leaving a rich legacy including: (a a comprehensive database with a year of observations of the physical, chemical and optical properties of aerosol particles over Europe, (b comprehensive aerosol measurements in four developing countries, (c a database of airborne measurements of aerosols and clouds over Europe during May 2008, (d comprehensive modeling tools to study aerosol processes fron nano to global scale and their effects on climate and air quality. In addition a new Pan-European aerosol emissions inventory was developed and evaluated, a new cluster spectrometer was built and tested in the field and several new aerosol parameterizations and computations modules for chemical transport and global climate models were developed and evaluated. These achievements and related studies have substantially improved our understanding and reduced the uncertainties of aerosol radiative forcing and air quality-climate interactions. The EUCAARI results can be utilized in European and global environmental policy to assess the aerosol impacts and the corresponding abatement strategies.

  14. Aircraft-Based measurement of the physico-chemical evolution of atmospheric aerosols in the air pollution plume over a megacity and a remote area

    Science.gov (United States)

    Park, J. S.; Lee, T.; Park, T.; Lee, J. B.; Lim, Y. J.; Ahn, J.; Kim, J.; Park, S.; Collett, J. L., Jr.

    2017-12-01

    Aerosols influence climate change directly (scattering and absorption) and indirectly (cloud condensation nuclei), also adverse health effects. The Korean peninsula is a great place to study different sources of the aerosols: urban, rural and marine. In addition, Seoul is one of the large metropolitan areas in the world and has a variety of sources because half of the Korean population lives in Seoul, which comprises only 12% of the country's area. To understand the physico-chemical evolution of atmospheric aerosols in the air pollution plume over a megacity and a remote area, an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed on an airborne platform (NASA DC-8 and Beechcraft King Air) in June, 2015 and May-June, 2016 during MAPS-Seoul and KORUS-AQ campaigns, respectively, in Korea. The HR-ToF-AMS is capable of measuring non-refractory size resolved chemical composition of submicron particle (NR-PM1). NR-PM1 includes mass concentration of organics, nitrate, sulfate, and ammonium with 10 seconds time resolution. Organics was dominated species in aerosol during all of flights. Organics and nitrate were dominant around energy industrial complex near by Taean, South Korea. The presentation will provide an overview of the composition of NR-PM1 measured in air pollution plumes, and deliver detail information about width, depth and spatial distribution of the pollutant in the air pollution plumes. The results of this study will provide high temporal and spatial resolved details on the air pollution plumes, which are valuable input parameters of aerosol properties for the current air quality models.

  15. Application of PIXE technique to studies on global warming/cooling effect of atmospheric aerosols

    International Nuclear Information System (INIS)

    Kasahara, M.; Hoeller, R.; Tohno, S.; Onishi, Y.; Ma, C.-J.

    2002-01-01

    During the last decade, the importance of global warming has been recognized worldwide. Atmospheric aerosols play an important role in the global warming/cooling effects. The physicochemical properties of aerosol particles are fundamental to understanding such effects. In this study, the PIXE technique was applied to measure the average chemical properties of aerosols. Micro-PIXE was also applied to investigate the mixing state of the individual aerosol particle. The chemical composition data were used to estimate the optical properties of aerosols. The average values of aerosol radiative forcing were -1.53 w/m 2 in Kyoto and +3.3 w/m 2 in Nagoya, indicating cooling and warming effects respectively. The difference of radiative forcing in the two cities may be caused by the large difference in chemical composition of aerosols

  16. Sulfate Aerosols from Non-Explosive Volcanoes: Chemical-Radiative Effects in the Troposphere and Lower Stratosphere

    Directory of Open Access Journals (Sweden)

    Giovanni Pitari

    2016-06-01

    Full Text Available SO2 and H2S are the two most important gas-phase sulfur species emitted by volcanoes, with a global amount from non-explosive emissions of the order 10 Tg-S/yr. These gases are readily oxidized forming SO42− aerosols, which effectively scatter the incoming solar radiation and cool the surface. They also perturb atmospheric chemistry by enhancing the NOx to HNO3 heterogeneous conversion via hydrolysis on the aerosol surface of N2O5 and Br-Cl nitrates. This reduces formation of tropospheric O3 and the OH to HO2 ratio, thus limiting the oxidation of CH4 and increasing its lifetime. In addition to this tropospheric chemistry perturbation, there is also an impact on the NOx heterogeneous chemistry in the lower stratosphere, due to vertical transport of volcanic SO2 up to the tropical tropopause layer. Furthermore, the stratospheric O3 formation and loss, as well as the NOx budget, may be slightly affected by the additional amount of upward diffused solar radiation and consequent increase of photolysis rates. Two multi-decadal time-slice runs of a climate-chemistry-aerosol model have been designed for studying these chemical-radiative effects. A tropopause mean global net radiative flux change (RF of −0.23 W·m−2 is calculated (including direct and indirect aerosol effects with a 14% increase of the global mean sulfate aerosol optical depth. A 5–15 ppt NOx decrease is found in the mid-troposphere subtropics and mid-latitudes and also from pole to pole in the lower stratosphere. The tropospheric NOx perturbation triggers a column O3 decrease of 0.5–1.5 DU and a 1.1% increase of the CH4 lifetime. The surface cooling induced by solar radiation scattering by the volcanic aerosols induces a tropospheric stabilization with reduced updraft velocities that produce ice supersaturation conditions in the upper troposphere. A global mean 0.9% decrease of the cirrus ice optical depth is calculated with an indirect RF of −0.08 W·m−2.

  17. Aerosol activation and cloud processing in the global aerosol-climate model ECHAM5-HAM

    Directory of Open Access Journals (Sweden)

    G. J. Roelofs

    2006-01-01

    Full Text Available A parameterization for cloud processing is presented that calculates activation of aerosol particles to cloud drops, cloud drop size, and pH-dependent aqueous phase sulfur chemistry. The parameterization is implemented in the global aerosol-climate model ECHAM5-HAM. The cloud processing parameterization uses updraft speed, temperature, and aerosol size and chemical parameters simulated by ECHAM5-HAM to estimate the maximum supersaturation at the cloud base, and subsequently the cloud drop number concentration (CDNC due to activation. In-cloud sulfate production occurs through oxidation of dissolved SO2 by ozone and hydrogen peroxide. The model simulates realistic distributions for annually averaged CDNC although it is underestimated especially in remote marine regions. On average, CDNC is dominated by cloud droplets growing on particles from the accumulation mode, with smaller contributions from the Aitken and coarse modes. The simulations indicate that in-cloud sulfate production is a potentially important source of accumulation mode sized cloud condensation nuclei, due to chemical growth of activated Aitken particles and to enhanced coalescence of processed particles. The strength of this source depends on the distribution of produced sulfate over the activated modes. This distribution is affected by uncertainties in many parameters that play a direct role in particle activation, such as the updraft velocity, the aerosol chemical composition and the organic solubility, and the simulated CDNC is found to be relatively sensitive to these uncertainties.

  18. Importance of relative humidity in the oxidative ageing of organic aerosols: case study of the ozonolysis of maleic acid aerosol

    Directory of Open Access Journals (Sweden)

    P. J. Gallimore

    2011-12-01

    Full Text Available Many important atmospheric aerosol processes depend on the chemical composition of the aerosol, e.g. water uptake and particle cloud interactions. Atmospheric ageing processes, such as oxidation reactions, significantly and continuously change the chemical composition of aerosol particles throughout their lifetime. These ageing processes are often poorly understood. In this study we utilize an aerosol flow tube set up and an ultra-high resolution mass spectrometer to explore the effect of relative humidity (RH in the range of <5–90% on the ozonolysis of maleic acid aerosol which is employed as model organic aerosol system. Due to the slow reaction kinetics relatively high ozone concentrations of 160–200 ppm were used to achieve an appreciable degree of oxidation of maleic acid. The effect of oxidative ageing on the hygroscopicity of maleic acid particles is also investigated using an electrodynamic balance and thermodynamic modelling. RH has a profound effect on the oxidation of maleic acid particles. Very little oxidation is observed at RH < 50% and the only observed reaction products are glyoxylic acid and formic acid. In comparison, when RH > 50% there are about 15 oxidation products identified. This increased oxidation was observed even when the particles were exposed to high humidities long after a low RH ozonolysis reaction. This result might have negative implications for the use of water as an extraction solvent for the analysis of oxidized organic aerosols. These humidity-dependent differences in the composition of the ozonolyzed aerosol demonstrate that water is both a key reactant in the oxidation scheme and a determinant of particle phase and hence diffusivity. The measured chemical composition of the processed aerosol is used to model the hygroscopic growth, which compares favourably with water uptake results from the electrodynamic balance measurements. A reaction mechanism is presented which takes into account the RH dependent

  19. Pollution metallique relargable par les aerosols d'origine autoroutiere

    OpenAIRE

    Lebreton , Laurent; Thevenot , Daniel ,

    1992-01-01

    International audience; Because they are highly contaminated by heavy metals, road aerosols may pollute runoff waters. To estimate the mobility of some toxic metals such as Zn, Pb or Cd, these aerosols have been submited to a range of sequential chemical extraction (chemical speciation) and to laboratory release experiments. Both chemical speciation and reactor experiments show similar metal behaviour. Zn and Cd are extremely mobile (60 % released) while Pb, highly bound to particles, needs a...

  20. Two year-long continuous monitoring of PM1 aerosol chemical composition at the Cyprus Atmospheric Observatory. Source apportionment of the Organic content and geographic origins.

    Science.gov (United States)

    Stavroulas, Iasonas; Pikridas, Michael; Oikonomou, Kostantina; Vasiliadou, Emily; Savvides, Chrysanthos; Vrekoussis, Mihalis; Mihalopoulos, Nikolaos; Gros, Valerie; Sciare, Jean

    2017-04-01

    Particulate matter with diameter smaller than 1{μ}m (PM1) induces direct and indirect effects on local and regional pollution, global climate and health. As of the beginning of 2015, the chemical composition of submicron aerosols, is continuously being monitored at the newly established Cyprus Atmospheric Observatory (CAO, http://www.cyi.ac.cy/index.php/cao.html), a national facility of the ACTRIS Research Infrastructure operated by The Cyprus Institute. Cyprus, an island located in the Eastern Mediterranean Middle East region and influenced by diverse air masses throughout the year, is ideal for monitoring photochemically aged aerosols and gaseous pollutants of both natural and anthropogenic origin. Furthermore this is a unique dataset for this area in such proximity to the Middle East, a poorly documented area in terms of atmospheric aerosol observations. An Aerodyne Quadrupole Aerosol Chemical Speciation Monitor (Q-ACSM) is currently deployed at the CAO premises (35.04N - 33.06E) situated at the rural area of Agia Marina Xyliatou on the foothill of mount Troodos at an elevation of 532m above sea level (asl). The ACSM delivers chemical composition of the major non-refractory aerosol (PM1) chemical constituents (organics, sulfate, nitrate, ammonium, chloride) with an effective (close to 100{%}) collection efficiency for particles in the diameter range of 65-700 nm at a 30 minute temporal resolution. Black Carbon (BC) was also monitored using both Magee Scientific AE-31 and AE-33 aethalometers. Quality control of the PM chemical dataset was conducted by comparison with chemical analysis performed on collocated 24-h filter samples (PM1) and comparison with 1-h PM2.5 derived from a Thermo Scientific TEOM (1400a) Monitor. Positive Matrix Factorization (PMF) was conducted and different organic aerosol factors were distinguished using the Igor based SoFi toolkit utilizing the ME-2 multilinear engine. Air mass origin was investigated for each measurement day using the

  1. Assimilation of Polder aerosol optical thickness into LMD2-Inca model in order to study aerosol-climate interactions; Etude des interactions entre aerosols et climat: assimilation des observations spatiales de Polder dans LMDz-Inca

    Energy Technology Data Exchange (ETDEWEB)

    Generoso, S.

    2004-12-15

    Aerosols influence the Earth radiative budget both through their direct (scattering and absorption of solar radiation) and indirect (impacts on cloud microphysics) effects. The anthropogenic perturbation due to aerosol emissions is of the same order of magnitude than the one due to greenhouse gases, but less well known. To improve our knowledge, we need to better know aerosol spatial and temporal distributions. Indeed, aerosol modeling still suffers from large uncertainties in sources and transport, while satellite observations are incomplete (no detection in the presence of clouds, no information on the vertical distribution or on the chemical nature). Moreover, field campaigns are localized in space and time. This study aims to reduce uncertainties in aerosol distributions, developing assimilation of satellite data into a chemical transport model. The basic idea is to combine information obtained from spatial observation (optical thickness) and modeling studies (aerosol types, vertical distribution). In this study, we assimilate data from the POLDER space-borne instrument into the LMDz-INCA model. The results show the advantage of merging information from different sources. In many regions, the method reduces uncertainties on aerosol distribution (reduction of RMS error). An application of the method to the study of aerosol impact on cloud microphysics is shown. (author)

  2. Filter-based Aerosol Measurement Experiments using Spherical Aerosol Particles under High Temperature and High Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Chan; Jung, Woo Young; Lee, Hyun Chul; Lee, Doo Young [FNC TECH., Yongin (Korea, Republic of)

    2016-05-15

    Optical Particle Counter (OPC) is used to provide real-time measurement of aerosol concentration and size distribution. Glass fiber membrane filter also be used to measure average mass concentration. Three tests (MTA-1, 2 and 3) have been conducted to study thermal-hydraulic effect, a filtering tendency at given SiO{sub 2} particles. Based on the experimental results, the experiment will be carried out further with a main carrier gas of steam and different aerosol size. The test results will provide representative behavior of the aerosols under various conditions. The aim of the tests, MTA 1, 2 and 3, are to be able to 1) establish the test manuals for aerosol generation, mixing, sampling and measurement system, which defines aerosol preparation, calibration, operating and evaluation method under high pressure and high temperature 2) develop commercial aerosol test modules applicable to the thermal power plant, environmental industry, automobile exhaust gas, chemical plant, HVAC system including nuclear power plant. Based on the test results, sampled aerosol particles in the filter indicate that important parameters affecting aerosol behavior aerosols are 1) system temperature to keep above a evaporation temperature of ethanol and 2) aerosol losses due to the settling by ethanol liquid droplet.

  3. An advanced technique for speciation of organic nitrogen in atmospheric aerosols

    Science.gov (United States)

    Samy, S.; Robinson, J.; Hays, M. D.

    2011-12-01

    The chemical composition of organic nitrogen (ON) in the environment is a research topic of broad significance. The topic intersects the branches of atmospheric, aquatic, and ecological science; thus, a variety of instrumentation, analytical methods, and data interpretation tools have evolved for determination of ON. Recent studies that focus on atmospheric particulate nitrogen (N) suggest a significant fraction (20-80%) of total N is bound in organic compounds. The sources, bioavailability and transport mechanisms of these N-containing compounds can differ, producing a variety of environmental consequences. Amino acids (AA) are a key class of atmospheric ON compounds that can contribute to secondary organic aerosol (SOA) formation and potentially influence water cycles, air pollutant scavenging, and the radiation balance. AA are water-soluble organic compounds (WSOC) that can significantly alter the acid-base chemistry of aerosols, and may explain the buffering capacity that impacts heterogeneous atmospheric chemistry. The chemical transformations that N-containing organic compounds (including AA) undergo can increase the light-absorbing capacity of atmospheric carbon via formation of 'brown carbon'. Suggested sources of atmospheric AA include: marine surface layer transport from bursting sea bubbles, the suspension of bacteria, fungi, algae, pollen, spores, or biomass burning. Methodology for detection of native (underivatized) amino acids (AA) in atmospheric aerosols has been developed and validated (Samy et al., 2011). This presentation describes the use of LC-MS (Q-TOF) and microwave-assisted gas phase hydrolysis for detection of free and combined amino acids in aerosols collected in a Southeastern U.S. forest environment. Accurate mass detection and the addition of isotopically labeled surrogates prior to sample preparation allows for sensitive quantitation of target AA in a complex aerosol matrix. A total of 16 native AA were detected above the reporting

  4. Latitudinal and longitudinal variation in aerosol characteristics from ...

    Indian Academy of Sciences (India)

    The physical and chemical properties of aerosols are strong ... Keywords. Aerosol optical characteristics; latitudinal and longitudinal variations; Bay of Bengal; Arabian Sea; pre- ...... of global sources of atmospheric soil dust identified with the ...

  5. The Two-Column Aerosol Project: Phase I - Overview and Impact of Elevated Aerosol Layers on Aerosol Optical Depth

    Science.gov (United States)

    Berg, Larry K.; Fast, Jerome D.; Barnard, James C.; Burton, Sharon P.; Cairns, Brian; Chand, Duli; Comstock, Jennifer M.; Dunagan, Stephen; Ferrare, Richard A.; Flynn, Connor J.; hide

    2015-01-01

    The Two-Column Aerosol Project (TCAP), conducted from June 2012 through June 2013, was a unique study designed to provide a comprehensive data set that can be used to investigate a number of important climate science questions, including those related to aerosol mixing state and aerosol radiative forcing. The study was designed to sample the atmosphere be tween and within two atmospheric columns; one fixed near the coast of North America (over Cape Cod, MA) and a second moveable column over the Atlantic Ocean several hundred kilometers from the coast. The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) was deployed at the base of the Cape Cod column, and the ARM Aerial Facility was utilized for the summer and winter intensive observation periods. One important finding from TCAP is that four of six nearly cloud-free flight days had aerosol layers aloft in both the Cape Cod and maritime columns that were detected using the nadir pointing second-generation NASA high-spectral resolution lidar (HSRL-2).These layer s contributed up to 60 of the total observed aerosol optical depth (AOD). Many of these layers were also intercepted by the aircraft configured for in situ sampling, and the aerosol in the layers was found to have increased amounts of biomass burning material and nitrate compared to aerosol found near the surface. In addition, while there was a great deal of spatial and day-to-day variability in the aerosol chemical composition and optical properties, no systematic differences between the two columns were observed.

  6. The Two-Column Aerosol Project: Phase I—Overview and impact of elevated aerosol layers on aerosol optical depth

    Science.gov (United States)

    Berg, Larry K.; Fast, Jerome D.; Barnard, James C.; Burton, Sharon P.; Cairns, Brian; Chand, Duli; Comstock, Jennifer M.; Dunagan, Stephen; Ferrare, Richard A.; Flynn, Connor J.; Hair, Johnathan W.; Hostetler, Chris A.; Hubbe, John; Jefferson, Anne; Johnson, Roy; Kassianov, Evgueni I.; Kluzek, Celine D.; Kollias, Pavlos; Lamer, Katia; Lantz, Kathleen; Mei, Fan; Miller, Mark A.; Michalsky, Joseph; Ortega, Ivan; Pekour, Mikhail; Rogers, Ray R.; Russell, Philip B.; Redemann, Jens; Sedlacek, Arthur J.; Segal-Rosenheimer, Michal; Schmid, Beat; Shilling, John E.; Shinozuka, Yohei; Springston, Stephen R.; Tomlinson, Jason M.; Tyrrell, Megan; Wilson, Jacqueline M.; Volkamer, Rainer; Zelenyuk, Alla; Berkowitz, Carl M.

    2016-01-01

    The Two-Column Aerosol Project (TCAP), conducted from June 2012 through June 2013, was a unique study designed to provide a comprehensive data set that can be used to investigate a number of important climate science questions, including those related to aerosol mixing state and aerosol radiative forcing. The study was designed to sample the atmosphere between and within two atmospheric columns; one fixed near the coast of North America (over Cape Cod, MA) and a second moveable column over the Atlantic Ocean several hundred kilometers from the coast. The U.S. Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) was deployed at the base of the Cape Cod column, and the ARM Aerial Facility was utilized for the summer and winter intensive observation periods. One important finding from TCAP is that four of six nearly cloud-free flight days had aerosol layers aloft in both the Cape Cod and maritime columns that were detected using the nadir pointing second-generation NASA high-spectral resolution lidar (HSRL-2). These layers contributed up to 60% of the total observed aerosol optical depth (AOD). Many of these layers were also intercepted by the aircraft configured for in situ sampling, and the aerosol in the layers was found to have increased amounts of biomass burning material and nitrate compared to aerosol found near the surface. In addition, while there was a great deal of spatial and day-to-day variability in the aerosol chemical composition and optical properties, no systematic differences between the two columns were observed.

  7. Seasonal variation of spherical aerosols distribution in East Asia based on ground and space Lidar observation and a Chemical transport model

    Science.gov (United States)

    Hara, Y.; Yumimoto, K.; Uno, I.; Shimizu, A.; Sugimoto, N.; Ohara, T.

    2009-12-01

    The anthropogenic aerosols largely impact on not only human health but also global climate system, therefore air pollution in East Asia due to a rapid economic growth has been recognized as a significant environmental problem. Several international field campaigns had been conducted to elucidate pollutant gases, aerosols characteristics and radiative forcing in East Asia. (e.g., ACE-Asia, TRACE-P, ADEC, EAREX 2005). However, these experiments were mainly conducted in springtime, therefore seasonal variation of aerosols distribution has not been clarified well yet. National Institute for Environmental Studies (NIES) has been constructing a lidar networks by automated dual wavelength / polarization Mie-lidar systems to observe the atmospheric environment in Asian region since 2001. Furthermore, from June 2006, space-borne backscatter lidar, Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), onboard NASA/CALIPSO satellite, measures continuous global aerosol and cloud vertical distribution with very high spatial resolution. In this paper, we will show the seasonal variation of aerosols distribution in East Asia based on the NIES lidar network observation, Community Multi-scale Air Quality Modeling System (CMAQ) chemical transport model simulation and CALIOP observation over the period from July 2006 to December 2008. We found that CMAQ result explains the typical seasonal aerosol characteristics by lidar observations. For example, CMAQ and ground lidar showed a summertime peak of aerosol optical thickness (AOT) at Beijing, an autumn AOT peak at Guangzhou and summertime AOT trough at Hedo, Okinawa. These characteristics are mainly controlled by seasonal variations of Asian summer/winter monsoon system. We also examined the CMAQ seasonal average aerosol extinction profiles with ground lidar and CALIOP extinction data. These comparisons clarified that the CMAQ reproduced the observed aerosol layer depth well in the downwind region. Ground lidar and CALIOP seasonal

  8. Chemical composition, sources and evolution processes of aerosol at an urban site in Yangtze River Delta, China during wintertime

    Science.gov (United States)

    Zhang, Yunjiang; Tang, Lili; Yu, Hongxia; Wang, Zhuang; Sun, Yele; Qin, Wei; Chen, Wentai; Chen, Changhong; Ding, Aijun; Wu, Jing; Ge, Shun; Chen, Cheng; Zhou, Hong-cang

    2015-12-01

    To investigate the composition, sources and evolution processes of submicron aerosol during wintertime, a field experiment was conducted during December 1-31, 2013 in urban Nanjing, a megacity in Yangtze River Delta of China. Non-refractory submicron aerosol (NR-PM1) species were measured with an Aerodyne Aerosol Chemical Speciation Monitor. NR-PM1 is dominated by secondary inorganic aerosol (55%) and organic aerosol (OA, 42%) during haze periods. Six OA components were identified by positive matrix factorization of the OA mass spectra. The hydrocarbon-like OA and cooking-related OA represent the local traffic and cooking sources, respectively. A highly oxidized factor related to biomass burning OA accounted for 15% of the total OA mass during haze periods. Three types of oxygenated OA (OOA), i.e., a less-oxidized OOA (LO-OOA), a more-oxidized OOA (MO-OOA), and a low-volatility OOA (LV-OOA), were identified. LO-OOA is likely associated with fresh urban secondary OA. MO-OOA likely represents photochemical products showing a similar diurnal cycle to nitrate with a pronounced noon peak. LV-OOA appears to be a more oxidized factor with a pronounced noon peak. The OA composition is dominated by secondary species, especially during haze events. LO-OOA, MO-OOA and LV-OOA on average account for 11%, (18%), 24% (21%) and 23% (18%) of the total OA mass for the haze (clean) periods respectively. Analysis of meteorological influence suggested that regional transport from the northern and southeastern areas of the city is responsible for large secondary and low-volatility aerosol formation.

  9. Aerosol volatility in a boreal forest environment

    Science.gov (United States)

    Häkkinen, S. A. K.; ńijälä, M.; Lehtipalo, K.; Junninen, H.; Virkkula, A.; Worsnop, D. R.; Kulmala, M.; Petäjä, T.; Riipinen, I.

    2012-04-01

    Climate and health effects of atmospheric aerosols are determined by their properties such as their chemical composition. Aerosol chemical composition can be studied indirectly by measuring volatility of aerosol particles. The volatility of submicron aerosol particles (20-500 nm) was studied in a boreal forest site at SMEAR II (Station for Measuring Ecosystem-Atmosphere Relations II) station (Vesala et al., 1998) in Hyytiälä, Finland, during 01/2008-05/2010. The instrument used for the measurements was VDMPS (Volatility Differential Mobility Particle Sizer), which consists of two separate instruments: DMPS (Differential Mobility Particle Sizer, Aalto et al., 2001) and TD (Thermodenuder, Wehner et al., 2002). Aerosol evaporation was examined by heating the aerosol and comparing the total aerosol mass before and after heating. In the VDMPS system ambient aerosol sample was heated up to temperatures ranging from 80 °C to 280 °C. The higher the heating temperature was the more aerosol material was evaporated. There was a non-volatile residual present in aerosol particles when heated up to 280 °C. This residual explained (20±8)% of the total aerosol mass. Aerosol non-volatile mass fraction was highest during winter and smallest during summer months. The role of black carbon in the observed non-volatile residual was determined. Black carbon explained 40 to 90% of the non-volatile mass. Especially during colder seasons noticeable amount of non-volatile material, something else than black carbon, was observed. According to Kalberer et al. (2004) some atmospheric organic species can form polymers that have high evaporation temperatures. Also low-volatile organic salts may contribute to the non-volatile aerosol (Smith et al., 2010). Aerosol mass composition measured directly with AMS (Aerosol Mass Spectrometer, Jayne et al., 2000) was analyzed in order to examine the properties of the non-volatile material (other than black carbon). The AMS measurements were performed

  10. Trace elements in California aerosols. Part I. Instrumental neutron activation analysis techniques

    International Nuclear Information System (INIS)

    Ragaini, R.C.; Ralston, H.R.; Garvis, D.; Kaifer, R.

    1975-01-01

    Instrumental Neutron Activation Analysis (INAA) done at LLL played a key role in the 1972--1974 California Aerosol Characterization Experiment (ACHEX), a major experiment in the chemistry of aerosols in urban and non-urban sites of California sponsored by the State of California Air Resources Board. The main purpose of INAA was to measure the particle size distributions and diurnal patterns of key chemical constituents in aerosols collected in California. These data were used to satisfy some of the key objectives of ACHEX, including aerosol characterization and evaluation of the origins and evolutions of aerosols. Secondary uses of INAA were the validations of the Lundgren rotating drum cascade impactors used in the ACHEX, and validations of other analytical techniques used in the chemical analyses. As a result of these studies, it was concluded that techniques using INAA were useful operational methods for chemical analysis of aerosols collected over two-hour periods in urban air with an active monitoring program. (U.S.)

  11. Catalyst and processing effects on metal-assisted chemical etching for the production of highly porous GaN

    International Nuclear Information System (INIS)

    Geng, Xuewen; Grismer, Dane A; Bohn, Paul W; Duan, Barrett K; Zhao, Liancheng

    2013-01-01

    Metal-assisted chemical etching is a facile method to produce micro-/nanostructures in the near-surface region of gallium nitride (GaN) and other semiconductors. Detailed studies of the production of porous GaN (PGaN) using different metal catalysts and GaN doping conditions have been performed in order to understand the mechanism by which metal-assisted chemical etching is accomplished in GaN. Patterned catalysts show increasing metal-assisted chemical etching activity to n-GaN in the order Ag < Au < Ir < Pt. In addition, the catalytic behavior of continuous films is compared to discontinuous island films. Continuous metal films strongly shield the surface, hindering metal-assisted chemical etching, an effect which can be overcome by using discontinuous films or increasing the irradiance of the light source. With increasing etch time or irradiance, PGaN morphologies change from uniform porous structures to ridge and valley structures. The doping type plays an important role, with metal-assisted chemical etching activity increasing in the order p-GaN < intrinsic GaN < n-GaN. Both the catalyst identity and the doping type effects are explained by the work functions and the related band offsets that affect the metal-assisted chemical etching process through a combination of different barriers to hole injection and the formation of hole accumulation/depletion layers at the metal–semiconductor interface. (paper)

  12. Fission product vapour - aerosol interactions in the containment: simulant fuel studies

    International Nuclear Information System (INIS)

    Beard, A.M.; Benson, C.G.; Bowsher, B.R.

    1988-12-01

    Experiments have been conducted in the Falcon facility to study the interaction of fission product vapours released from simulant fuel samples with control rod aerosols. The aerosols generated from both the control rod and fuel sample were chemically distinct and had different deposition characteristics. Extensive interaction was observed between the fission product vapours and the control rod aerosol. The two dominant mechanisms were condensation of the vapours onto the aerosol, and chemical reactions between the two components; sorption phenomena were believed to be only of secondary importance. The interaction of fission product vapours and reactor materials aerosols could have a major impact on the transport characteristics of the radioactive emission from a degrading core. (author)

  13. Tropospheric Aerosols

    Science.gov (United States)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    uncertainties by "the I-beams". Only an uncertainty range rather than a best estimate is presented for direct aerosol forcing by mineral dust and for indirect aerosol forcing. An assessment of the present level of scientific understanding is indicated at the bottom of the figure (reproduced by permission of Intergovernmental Panel on Climate Change). The importance of atmospheric aerosols to issues of societal concern has motivated much research intended to describe their loading, distribution, and properties and to develop understanding of the controlling processes to address such issues as air pollution, acid deposition, and climate influences of aerosols. However, description based wholly on measurements will inevitably be limited in its spatial and temporal coverage and in the limited characterization of aerosol properties. These limitations are even more serious for predictions of future emissions and provide motivation for concurrent theoretical studies and development of model-based description of atmospheric aerosols.An important long-range goal, which has already been partly realized, is to develop quantitative understanding of the processes that control aerosol loading, composition, and microphysical properties as well as the resultant optical and cloud-nucleating properties. An objective is to incorporate these results into chemical transport models that can be used for predictions. Such models are required, for example, to design approaches to achieve air quality standards and to assess and predict aerosol influences on climate change. Much current research is directed toward enhancing this understanding and to evaluating it by comparison of model results and observations. However, compared to gases, models involving particles are far more complex because of the need to specify additional parameters such as particle sizes and size distributions, compositions as a function of size, particle shapes, and temporal and spatial variations, including reactions that occur

  14. Chemical and optical properties of atmospheric aerosols in Phimai, Thailand by intensive surface measurements and satellite data analysis

    Science.gov (United States)

    Tsuruta, H.; Thana, B.; Takamura, T.; Hashimoto, M.; Yabuki, M.; Oikawa, E.; Nakajima, T.

    2013-12-01

    Atmospheric aerosols were measured at the Observatory of Atmospheric Research, in Phimai, Thailand, a key station of SKYNET, during 2006-2008. In the surface measurement, mass concentrations and major chemical components in fine and coarse aerosols were analyzed, and the optical properties such as AOT and SSA were measured by skyradiometer. Analysis of MODIS and CALIPSO satellite data was made for wild fire activities and aerosol distribution, respectively. In this paper, the following topics are summarized. The surface wind pattern in dry season was divided into the three periods as follows; D1 (Oct.-Nov.) with northeasterly monsoon, D3 (middle March-April) with southerly wind, and D2 (Dec.-early March) with a transit stage between D1 and D3. Wet season in southwesterly monsoon was from May to September. The concentration ratio of BC/nss-SO4 showed that the dominant PM2.5 aerosols in D1 were due to long-range transport of air pollutants emitted from urban/industrial area of east Asia. In contrast, most of aerosols in D3 were derived from biomass burning in Indochina, because the activity of biomass burning was highest in the latter D2 and early D3 period, by the analysis of the fire database in MODIS and of BC/nss-SO4. The mass concentration in PM2.5 showed a clear seasonal variation with the maximum in D2. On the contrary, AOT showed the maximum in D3, and which could be attributed to an increase in the vertical thickness of high aerosol concentration in the boundary layer by the CALIOP data analysis. Dust particles in D1 were directly transported from east Asia, and re-suspension of soil dusts was dominant in D2 because the surface soil became dry. In D3, soil dusts were re-suspended with the thermal plume caused by biomass burning. In contrast, high dust particles measured in the wet season was due to long range transport of dust aerosols from western desert area by the CALIOP data analysis.

  15. Chemical composition of size-segregated aerosols in Lhasa city, Tibetan Plateau

    Science.gov (United States)

    Wan, Xin; Kang, Shichang; Xin, Jinyuan; Liu, Bin; Wen, Tianxue; Wang, Pengling; Wang, Yuesi; Cong, Zhiyuan

    2016-06-01

    To reveal the chemical characteristics of size-segregated aerosols in the high-altitude city of Tibetan Plateau, eight-size aerosol samples were collected in Lhasa from March 2013 to February 2014. The annual mean of online PM2.5 was 25.0 ± 16.0 μg m- 3, which was much lower than Asian cities but similar with some European cities. The annual mean concentrations of organic carbon (OC, 7.92 μg m- 3 in PM2.1 and 12.66 μg m- 3 in PM9.0) and elemental carbon (EC, 1.00 μg m- 3 in PM2.1 and 1.21 μg m- 3 in PM9.0) in Lhasa aerosols were considerably lower than those heavily polluted cities such as Beijing and Xi'an, China and Kathmandu, Nepal. Sulfate, NO3-, NH4+ and Ca2 + were 0.75 ± 0.31, 0.82 ± 0.35, 0.38 ± 0.34 and 0.57 ± 0.29 μg m- 3 in fine particles while in coarse particles they were 0.57 ± 0.37, 0.73 ± 0.23, 0.07 ± 0.03 and 2.52 ± 1.37 μg m- 3, respectively. Secondary water-soluble ions composed 35.8% of the total ionic components in fine particles according to the established electroneutrality, while in coarse particles they took up only 9.3%. Ca2 + (40.6%) was the major component of the coarse particles. For seasonality, the concentrations of OC, EC, SO42 -, NH4+, K+, Ca2 +, Mg2 +, Cl- and Na+ presented higher values during late autumn and winter but were relatively lower in spring and summer. Nevertheless, NO3- was considerably higher in summer and autumn, presumably due to increased tourist-vehicle emissions. During winter and spring, [Ca2 +]/[NO3-+ SO42 -] ratios in coarse particles showed higher values of 7.31 and 6.17, respectively, emphasizing the dust influence. [NO3-]/[SO42 -] ratios in fine particles during spring, summer and autumn exceeding 1 indicated that the currently predominant vehicle exhaust makes a greater contribution to the aerosols. While more stationary sources such as coal and biomass burning existed in winter since the [NO3-]/[SO42 -] ratio was less than 1. Different sources and formation processes lead to a bimodal size

  16. Ganges Valley Aerosol Experiment: Science and Operations Plan

    Energy Technology Data Exchange (ETDEWEB)

    Kotamarthi, VR

    2010-06-21

    The Ganges Valley region is one of the largest and most rapidly developing sections of the Indian subcontinent. The Ganges River, which provides the region with water needed for sustaining life, is fed primarily by snow and rainfall associated with Indian summer monsoons. Impacts of changes in precipitation patterns, temperature, and the flow of the snow-fed rivers can be immense. Recent satellite-based measurements have indicated that the upper Ganges Valley has some of the highest persistently observed aerosol optical depth values. The aerosol layer covers a vast region, extending across the Indo-Gangetic Plain to the Bay of Bengal during the winter and early spring of each year. The persistent winter fog in the region is already a cause of much concern, and several studies have been proposed to understand the economic, scientific, and societal dimensions of this problem. During the INDian Ocean EXperiment (INDOEX) field studies, aerosols from this region were shown to affect cloud formation and monsoon activity over the Indian Ocean. This is one of the few regions showing a trend toward increasing surface dimming and enhanced mid-tropospheric warming. Increasing air pollution over this region could modify the radiative balance through direct, indirect, and semi-indirect effects associated with aerosols. The consequences of aerosols and associated pollution for surface insolation over the Ganges Valley and monsoons, in particular, are not well understood. The proposed field study is designed for use of (1) the ARM Mobile Facility (AMF) to measure relevant radiative, cloud, convection, and aerosol optical characteristics over mainland India during an extended period of 9–12 months and (2) the G-1 aircraft and surface sites to measure relevant aerosol chemical, physical, and optical characteristics in the Ganges Valley during a period of 6–12 weeks. The aerosols in this region have complex sources, including burning of coal, biomass, and biofuels; automobile

  17. Enhancing non-refractory aerosol apportionment from an urban industrial site through receptor modeling of complete high time-resolution aerosol mass spectra

    Science.gov (United States)

    McGuire, M. L.; Chang, R. Y.-W.; Slowik, J. G.; Jeong, C.-H.; Healy, R. M.; Lu, G.; Mihele, C.; Abbatt, J. P. D.; Brook, J. R.; Evans, G. J.

    2014-08-01

    Receptor modeling was performed on quadrupole unit mass resolution aerosol mass spectrometer (Q-AMS) sub-micron particulate matter (PM) chemical speciation measurements from Windsor, Ontario, an industrial city situated across the Detroit River from Detroit, Michigan. Aerosol and trace gas measurements were collected on board Environment Canada's Canadian Regional and Urban Investigation System for Environmental Research (CRUISER) mobile laboratory. Positive matrix factorization (PMF) was performed on the AMS full particle-phase mass spectrum (PMFFull MS) encompassing both organic and inorganic components. This approach compared to the more common method of analyzing only the organic mass spectra (PMFOrg MS). PMF of the full mass spectrum revealed that variability in the non-refractory sub-micron aerosol concentration and composition was best explained by six factors: an amine-containing factor (Amine); an ammonium sulfate- and oxygenated organic aerosol-containing factor (Sulfate-OA); an ammonium nitrate- and oxygenated organic aerosol-containing factor (Nitrate-OA); an ammonium chloride-containing factor (Chloride); a hydrocarbon-like organic aerosol (HOA) factor; and a moderately oxygenated organic aerosol factor (OOA). PMF of the organic mass spectrum revealed three factors of similar composition to some of those revealed through PMFFull MS: Amine, HOA and OOA. Including both the inorganic and organic mass proved to be a beneficial approach to analyzing the unit mass resolution AMS data for several reasons. First, it provided a method for potentially calculating more accurate sub-micron PM mass concentrations, particularly when unusual factors are present, in this case the Amine factor. As this method does not rely on a priori knowledge of chemical species, it circumvents the need for any adjustments to the traditional AMS species fragmentation patterns to account for atypical species, and can thus lead to more complete factor profiles. It is expected that this

  18. Enhancing non-refractory aerosol apportionment from an urban industrial site through receptor modelling of complete high time-resolution aerosol mass spectra

    Science.gov (United States)

    McGuire, M. L.; Chang, R. Y.-W.; Slowik, J. G.; Jeong, C.-H.; Healy, R. M.; Lu, G.; Mihele, C.; Abbatt, J. P. D.; Brook, J. R.; Evans, G. J.

    2014-02-01

    Receptor modelling was performed on quadrupole unit mass resolution aerosol mass spectrometer (Q-AMS) sub-micron particulate matter (PM) chemical speciation measurements from Windsor, Ontario, an industrial city situated across the Detroit River from Detroit, Michigan. Aerosol and trace gas measurements were collected on board Environment Canada's CRUISER mobile laboratory. Positive matrix factorization (PMF) was performed on the AMS full particle-phase mass spectrum (PMFFull MS) encompassing both organic and inorganic components. This approach was compared to the more common method of analysing only the organic mass spectra (PMFOrg MS). PMF of the full mass spectrum revealed that variability in the non-refractory sub-micron aerosol concentration and composition was best explained by six factors: an amine-containing factor (Amine); an ammonium sulphate and oxygenated organic aerosol containing factor (Sulphate-OA); an ammonium nitrate and oxygenated organic aerosol containing factor (Nitrate-OA); an ammonium chloride containing factor (Chloride); a hydrocarbon-like organic aerosol (HOA) factor; and a moderately oxygenated organic aerosol factor (OOA). PMF of the organic mass spectrum revealed three factors of similar composition to some of those revealed through PMFFull MS: Amine, HOA and OOA. Including both the inorganic and organic mass proved to be a beneficial approach to analysing the unit mass resolution AMS data for several reasons. First, it provided a method for potentially calculating more accurate sub-micron PM mass concentrations, particularly when unusual factors are present, in this case, an Amine factor. As this method does not rely on a priori knowledge of chemical species, it circumvents the need for any adjustments to the traditional AMS species fragmentation patterns to account for atypical species, and can thus lead to more complete factor profiles. It is expected that this method would be even more useful for HR-ToF-AMS data, due to the ability

  19. Characterization of biogenic secondary organic aerosols using statistical methods; Charakterisierung Biogener Sekundaerer Organischer Aerosole mit Statistischen Methoden

    Energy Technology Data Exchange (ETDEWEB)

    Spindler, Christian

    2010-07-01

    Atmospheric aerosols have important influence on the radiation balance of the Earth, on visibility and human health. Secondary organic aerosol is formed from gas-to-particle conversion of oxidized volatile organic compounds. A dominant fraction of the gases originates from plant emissions, making biogenic secondary organic aerosol (BSOA) an especially important constituent of the atmosphere. Knowing the chemical composition of BSOA particles is crucial for a thorough understanding of aerosol processes in the environment. In this work, the chemical composition of BSOA particles was measured with aerosol mass spectrometry and analyzed with statistical methods. The experimental part of the work comprises process studies of the formation and aging of biogenic aerosols in simulation chambers. Using a plant chamber, real tree emissions were used to produce particles in a way close to conditions in forest environments. In the outdoor chamber SAPHIR, OH-radicals were produced from the photooxidation of ozone under illumination with natural sunlight. Here, BSOA was produced from defined mixtures of mono- and sesquiterpenes that represent boreal forest emissions. A third kind of experiments was performed in the indoor chamber AIDA. Here, particles were produced from ozonolysis of single monoterpenes and aged by condensing OH-oxidation products. Two aerosol mass spectrometers (AMS) were used to measure the chemical composition of the particles. One of the instruments is equipped with a quadrupole mass spectrometer providing unit mass resolution. The second instrument contains a time-of-flight mass spectrometer and provides mass resolution sufficient to distinguish different fragments with the same nominal mass. Aerosol mass spectra obtained with these instruments are strongly fragmented due to electron impact ionization of the evaporated molecules. In addition, typical BSOA mass spectra are very similar to each other. In order to get a more detailed knowledge about the mass

  20. Azo dye decolorization assisted by chemical and biogenic sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Prato-Garcia, Dorian [Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230 (Mexico); Cervantes, Francisco J. [División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa de San José 2055, San Luis Potosí 78216 (Mexico); Buitrón, Germán, E-mail: gbuitronm@ii.unam.mx [Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230 (Mexico)

    2013-04-15

    Highlights: ► Azo dyes were reduced efficiently by chemical and biogenic sulfide. ► Biogenic sulfide was more efficient than chemical sulfide. ► There was no competition between dyes and sulfate for reducing equivalents. ► Aromatic amines barely affected the sulfate-reducing process. -- Abstract: The effectiveness of chemical and biogenic sulfide in decolorizing three sulfonated azo dyes and the robustness of a sulfate-reducing process for simultaneous decolorization and sulfate removal were evaluated. The results demonstrated that decolorization of azo dyes assisted by chemical sulfide and anthraquinone-2,6-disulfonate (AQDS) was effective. In the absence of AQDS, biogenic sulfide was more efficient than chemical sulfide for decolorizing the azo dyes. The performance of sulfate-reducing bacteria in attached-growth sequencing batch reactors suggested the absence of competition between the studied azo dyes and the sulfate-reducing process for the reducing equivalents. Additionally, the presence of chemical reduction by-products had an almost negligible effect on the sulfate removal rate, which was nearly constant (94%) after azo dye injection.

  1. Seasonal characterization of submicron aerosol chemical composition and organic aerosol sources in the southeastern United States: Atlanta, Georgia,and Look Rock, Tennessee

    Directory of Open Access Journals (Sweden)

    S. H. Budisulistiorini

    2016-04-01

    Full Text Available A year-long near-real-time characterization of non-refractory submicron aerosol (NR-PM1 was conducted at an urban (Atlanta, Georgia, in 2012 and rural (Look Rock, Tennessee, in 2013 site in the southeastern US using the Aerodyne Aerosol Chemical Speciation Monitor (ACSM collocated with established air-monitoring network measurements. Seasonal variations in organic aerosol (OA and inorganic aerosol species are attributed to meteorological conditions as well as anthropogenic and biogenic emissions in this region. The highest concentrations of NR-PM1 were observed during winter and fall seasons at the urban site and during spring and summer at the rural site. Across all seasons and at both sites, NR-PM1 was composed largely of OA (up to 76 % and sulfate (up to 31 %. Six distinct OA sources were resolved by positive matrix factorization applied to the ACSM organic mass spectral data collected from the two sites over the 1 year of near-continuous measurements at each site: hydrocarbon-like OA (HOA, biomass burning OA (BBOA, semi-volatile oxygenated OA (SV-OOA, low-volatility oxygenated OA (LV-OOA, isoprene-derived epoxydiols (IEPOX OA (IEPOX-OA and 91Fac (a factor dominated by a distinct ion at m∕z 91 fragment ion previously observed in biogenic influenced areas. LV-OOA was observed throughout the year at both sites and contributed up to 66 % of total OA mass. HOA was observed during the entire year only at the urban site (on average 21 % of OA mass. BBOA (15–33 % of OA mass was observed during winter and fall, likely dominated by local residential wood burning emission. Although SV-OOA contributes quite significantly ( ∼  27 %, it was observed only at the urban site during colder seasons. IEPOX-OA was a major component (27–41 % of OA at both sites, particularly in spring and summer. An ion fragment at m∕z 75 is well correlated with the m∕z 82 ion associated with the aerosol mass spectrum of IEPOX

  2. Improving aerosol interaction with clouds and precipitation in a regional chemical weather modeling system

    Directory of Open Access Journals (Sweden)

    C. Zhou

    2016-01-01

    Full Text Available A comprehensive aerosol–cloud–precipitation interaction (ACI scheme has been developed under a China Meteorological Administration (CMA chemical weather modeling system, GRAPES/CUACE (Global/Regional Assimilation and PrEdiction System, CMA Unified Atmospheric Chemistry Environment. Calculated by a sectional aerosol activation scheme based on the information of size and mass from CUACE and the thermal-dynamic and humid states from the weather model GRAPES at each time step, the cloud condensation nuclei (CCN are interactively fed online into a two-moment cloud scheme (WRF Double-Moment 6-class scheme – WDM6 and a convective parameterization to drive cloud physics and precipitation formation processes. The modeling system has been applied to study the ACI for January 2013 when several persistent haze-fog events and eight precipitation events occurred.The results show that aerosols that interact with the WDM6 in GRAPES/CUACE obviously increase the total cloud water, liquid water content, and cloud droplet number concentrations, while decreasing the mean diameters of cloud droplets with varying magnitudes of the changes in each case and region. These interactive microphysical properties of clouds improve the calculation of their collection growth rates in some regions and hence the precipitation rate and distributions in the model, showing 24 to 48 % enhancements of threat score for 6 h precipitation in almost all regions. The aerosols that interact with the WDM6 also reduce the regional mean bias of temperature by 3 °C during certain precipitation events, but the monthly means bias is only reduced by about 0.3 °C.

  3. Changes in chemical components of aerosol particles in different haze regions in China from 2006 to 2013 and contribution of meteorological factors

    Science.gov (United States)

    Zhang, X. Y.; Wang, J. Z.; Wang, Y. Q.; Liu, H. L.; Sun, J. Y.; Zhang, Y. M.

    2015-11-01

    Since there have been individual reports of persistent haze-fog events in January 2013 in central-eastern China, questions on factors causing the drastic differences in changes in 2013 from changes in adjacent years have been raised. Changes in major chemical components of aerosol particles over the years also remain unclear. The extent of meteorological factors contributing to such changes is yet to be determined. The study intends to present the changes in daily based major water-soluble constituents, carbonaceous species, and mineral aerosol in PM10 at 13 stations within different haze regions in China from 2006 to 2013, which are associated with specific meteorological conditions that are highly related to aerosol pollution (parameterized as an index called Parameter Linking Aerosol Pollution and Meteorological Elements - PLAM). No obvious changes were found in annual mean concentrations of these various chemical components and PM10 in 2013, relative to 2012. By contrast, wintertime mass of these components was quite different. In Hua Bei Plain (HBP), sulfate, organic carbon (OC), nitrate, ammonium, element carbon (EC), and mineral dust concentrations in winter were approximately 43, 55, 28, 23, 21, and 130 μg m-3, respectively; these masses were approximately 2 to 4 times higher than those in background mass, which also exhibited a decline during 2006 to 2010 and then a rise till 2013. The mass of these concentrations and PM10, except minerals, respectively, increased by approximately 28 to 117 % and 25 % in January 2013 compared with that in January 2012. Thus, persistent haze-fog events occurred in January 2013, and approximately 60 % of this increase in component concentrations from 2012 to 2013 can be attributed to severe meteorological conditions in the winter of 2013. In the Yangtze River Delta (YRD) area, winter masses of these components, unlike HBP, have not significantly increase since 2010; PLAM were also maintained at a similar level without

  4. Development and Characterization of a Thermodenuder for Aerosol Volatility Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Timothy Onasch

    2009-09-09

    This SBIR Phase I project addressed the critical need for improved characterization of carbonaceous aerosol species in the atmosphere. The proposed work focused on the development of a thermodenuder (TD) system capable of systematically measuring volatility profiles of primary and secondary organic aerosol species and providing insight into the effects of absorbing and nonabsorbing organic coatings on particle absorption properties. This work provided the fundamental framework for the generation of essential information needed for improved predictions of ambient aerosol loadings and radiative properties by atmospheric chemistry models. As part of this work, Aerodyne Research, Inc. (ARI) continued to develop and test, with the final objective of commercialization, an improved thermodenuder system that can be used in series with any aerosol instrument or suite of instruments (e.g., aerosol mass spectrometers-AMS, scanning mobility particle sizers-SMPS, photoacoustic absorption spectrometers-PAS, etc.) to obtain aerosol chemical, physical, and optical properties as a function of particle volatility. In particular, we provided the proof of concept for the direct coupling of our improved TD design with a full microphysical model to obtain volatility profiles for different organic aerosol components and to allow for meaningful comparisons between different TD-derived aerosol measurements. In a TD, particles are passed through a heated zone and a denuding (activated charcoal) zone to remove semi-volatile material. Changes in particle size, number concentration, optical absorption, and chemical composition are subsequently detected with aerosol instrumentation. The aerosol volatility profiles provided by the TD will strengthen organic aerosol emission inventories, provide further insight into secondary aerosol formation mechanisms, and provide an important measure of particle absorption (including brown carbon contributions and identification, and absorption enhancements

  5. A Comparison of the OSHA Modified NIOSH Physical and Chemical Analytical Method (P and CAM) 304 and the Dust Trak Photometric Aerosol Sampler for 0-Chlorobenzylidine Malonitrile

    Science.gov (United States)

    2013-04-02

    Paper is ripped up and placed inside the coffee can, followed by the opening of CS capsules where granules of the CS are dispersed into the paper... coffee can was placed on top of the hot plate. Paper is ripped up and placed inside the coffee can to assist in the burning of the capsules , capsules ...be re-aerosolized as dried aerosol- particulates. Additionally, the outer casings of the CS capsules and paper were often added to the coffee can to

  6. Chemical composition and characteristics of ambient aerosols and rainwater residues during Indian summer monsoon: Insight from aerosol mass spectrometry

    Science.gov (United States)

    Chakraborty, Abhishek; Gupta, Tarun; Tripathi, Sachchida N.

    2016-07-01

    Real time composition of non-refractory submicron aerosol (NR-PM1) is measured via Aerosol mass spectrometer (AMS) for the first time during Indian summer monsoon at Kanpur, a polluted urban location located at the heart of Indo Gangetic Plain (IGP). Submicron aerosols are found to be dominated by organics followed by nitrate. Source apportionment of organic aerosols (OA) via positive matrix factorization (PMF) revealed several types of secondary/oxidized and primary organic aerosols. On average, OA are completely dominated by oxidized OA with a very little contribution from biomass burning OA. During rain events, PM1 concentration is decreased almost by 60%, but its composition remains nearly the same. Oxidized OA showed slightly more decrease than primary OAs, probably due to their higher hygroscopicity. The presence of organo nitrates (ON) is also detected in ambient aerosols. Apart from real-time sampling, collected fog and rainwater samples were also analyzed via AMS in offline mode and in the ICP-OES (Inductively coupled plasma - Optical emission spectrometry) for elements. The presence of sea salt, organo nitrates and sulfates has been observed. Rainwater residues are also dominated by organics but their O/C ratios are 15-20% lower than the observed values for ambient OA. Alkali metals such as Ca, Na, K are found to be most abundant in the rainwater followed by Zn. Rainwater residues are also found to be much less oxidized than the aerosols present inside the fog water, indicating presence of less oxidized organics. These findings indicate that rain can act as an effective scavenger of different types of pollutants even for submicron particle range. Rainwater residues also contain organo sulfates which indicate that some portion of the dissolved aerosols has undergone aqueous processing, possibly inside the cloud. Highly oxidized and possibly hygroscopic OA during monsoon period compared to other seasons (winter, post monsoon), indicates that they can act

  7. A European Aerosol Phenomenology - 3: Physical and Chemical 2 Characteristics of Particulate Matter from 60 Rural, Urban, and Kerbside Sites Across Europe

    Czech Academy of Sciences Publication Activity Database

    Putaud, J.-P.; Van Dingenen, R.; Alastuey, A.; Bauer, H.; Birmili, W.; Cyrys, J.; Flentje, H.; Fuzzi, S.; Gehrig, R.; Harrison, R. M.; Hansson, H.C.; Herrmann, H.; Hitzenberger, R.; Hüglin, C.; Jones, A.M.; Kasper-Giebl, A.; Kiss, G.; Kousa, A.; Kuhlbusch, T.A.J.; Löschau, G.; Maenhaut, W.; Molnar, A.; Moreno, T.; Pekkanen, J.; Perrino, C.; Pitz, M.; Puxbaum, H.; Querol, X.; Rodriguez, S.; Salma, I.; Schwarz, Jaroslav; Smolík, Jiří; Schneider, J.; Spindler, G.; ten Brink, H.; Tursic, J.; Viana, M.; Wiedensohler, A.; Raes, F.

    2010-01-01

    Roč. 44, č. 10 (2010), s. 1308-1320 ISSN 1352-2310 Institutional research plan: CEZ:AV0Z40720504 Keywords : aerosol * chemical composition * number concentration Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.226, year: 2010

  8. Modelling aerosol behavior in reactor cooling systems

    International Nuclear Information System (INIS)

    McDonald, B.H.

    1990-01-01

    This paper presents an overview of some of the areas of concern in using computer codes to model fission-product aerosol behavior in the reactor cooling system (RCS) of a water-cooled nuclear reactor during a loss-of-coolant accident. The basic physical processes that require modelling include: fission product release and aerosol formation in the reactor core, aerosol transport and deposition in the reactor core and throughout the rest of the RCS, and the interaction between aerosol transport processes and the thermalhydraulics. In addition to these basic physical processes, chemical reactions can have a large influence on the nature of the aerosol and its behavior in the RCS. The focus is on the physics and the implications of numerical methods used in the computer codes to model aerosol behavior in the RCS

  9. Chemical analysis of plasma-assisted antimicrobial treatment on cotton

    International Nuclear Information System (INIS)

    Kan, C W; Lam, Y L; Yuen, C W M; Luximon, A; Lau, K W; Chen, K S

    2013-01-01

    This paper explores the use of plasma treatment as a pretreatment process to assist the application of antimicrobial process on cotton fabric with good functional effect. In this paper, antimicrobial finishing agent, Microfresh Liquid Formulation 9200-200 (MF), and a binder (polyurethane dispersion, Microban Liquid Formulation R10800-0, MB) will be used for treating the cotton fabric for improving the antimicrobial property and pre-treatment of cotton fabric by plasma under atmospheric pressure will be employed to improve loading of chemical agents. The chemical analysis of the treated cotton fabric will be conducted by Fourier transform Infrared Spectroscopy.

  10. Wintertime aerosol chemical composition and source apportionment of the organic fraction across Ireland

    Science.gov (United States)

    Ovadnevaite, J.; Lin, C.; Ceburnis, D.; Huang, R. J. J.; O'Dowd, C. D. D.

    2017-12-01

    A national wide characterization of PM1 was studied for the first time using a high-time resolution Aerosol Chemical Speciation Monitor (ACSM) and Aethalometer in Ireland during the heating season. Dublin, the capital of Ireland, is the most polluted area with an average PM1 of 7.6 μg/m3, with frequent occurrence of peak concentration over 200 μg/m3 primarily due to solid fuels burning, while Mace Head, in the west coast, is least polluted with an average PM1 of 0.8 μg/m3 due to the distance from the emission sources. The organic aerosol is the most dominant species across Ireland, contributing 65%, 58%, 32%, 33% to total PM1 mass in Dublin, Birr, Carnsore Point, and Mace Head, respectively. Birr, a small town in the midland of Ireland, has comparable PM1 levels (4.8 μg/m3) and similar chemical compositions with that in Dublin. Carnsore Point, on the southeast coast, has similar composition with that at Mace Head, but nearly 3 times the levels of PM1 mass due to its relative closeness to other European countries. Positive matrix factorization (PMF) with the multi-linear engine (ME-2) was performed on the organic matrix to quantify the contribution of factor candidates. Peat burning was found to be the dominant factor across Ireland, contributing more than 40% of the total organic mass in Dublin and Birr while OOA is dominant at rural Carnsore Point and Mace Head. Possible geographic origins of PM1 species and organic factors using polar plots were explored. The findings of solid fuels burning (primarily peat burning) driving the pollution episodes suggest an elimination or controlled emission of solid fuels burning would reduce PM1 by at least 50%.

  11. Aerosol particle transport modeling for preclosure safety studies of nuclear waste repositories

    International Nuclear Information System (INIS)

    Gelbard, F.

    1989-01-01

    An important concern for preclosure safety analysis of a nuclear waste repository is the potential release to the environment of respirable aerosol particles. Such particles, less than 10 μm in aerodynamic diameter, may have significant adverse health effects if inhaled. To assess the potential health effects of these particles, it is not sufficient to determine the mass fraction of respirable aerosol. The chemical composition of the particles is also of importance since different radionuclides may pose vastly different health hazards. Thus, models are needed to determine under normal and accident conditions the particle size and the chemical composition distributions of aerosol particles as a function of time and of position in the repository. In this work a multicomponent sectional aerosol model is used to determine the aerosol particle size and composition distributions in the repository. A range of aerosol mass releases with varying mean particle sizes and chemical compositions is used to demonstrate the sensitivities and uncertainties of the model. Decontamination factors for some locations in the repository are presented. 8 refs., 1 tab

  12. Carbonaceous Aerosol Characterization during 2016 KOR-US 2016

    Science.gov (United States)

    Rodriguez, B.; Santos, G. M.; Sanchez, D.; Jeong, D.; Czimczik, C. I.; Kim, S.

    2017-12-01

    Atmospheric carbonaceous aerosols are a major component of fine particulate matter and assume important roles in Earth's climate and human health. Because atmospheric carbonaceous aerosols exist as a continuum ranging from small, light-scattering organic carbon (OC), to highly-condensed, light-absorbing elemental carbon (EC) they have contrasting effects on interaction with incoming and outgoing radiation, cloud formation, and snow/ice albedo. By strengthening our understanding of the relative contribution and sources of OC and EC we will be able to further describe aerosol formation and mixing at the regional level. To understand the relative anthropogenic and biogenic contributions to carbonaceous aerosol, 12 PM10 aerosols samples were collected on quartz fiber filters at the Mt. Taewha Research Forest in South Korea during the KORUS-AQ 2016 campaign over periods of 24-48 hours with a high-volume air sampler. Analysis of bulk C and N concentrations and absorption properties of filter extracts interspersed with HYSPLIT model results indicated that continental outflow across the Yellow Sea in enriched in bulk nitrogen loading and enhanced bulk absorptive properties of the aerosols. Bulk radiocarbon analysis also indicated enriched values in all samples indicating contamination from a nuclear power plant or the combustion of biomedical waste nearby. Here, we aim to investigate further the chemical characterization of VOCs adsorbed unto the aerosol through TD-GC-TOFMS. With this dataset we aim to determine the relative contribution of anthropogenic and biogenic aerosols by utilizing specific chemical tracers for source apportionment.

  13. General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) – integrating aerosol research from nano to global scales

    DEFF Research Database (Denmark)

    Kulmala, M.; Asmi, A.; Lappalainen, H. K.

    2011-01-01

    In this paper we describe and summarize the main achievements of the European Aerosol Cloud Climate and Air Quality Interactions project (EUCAARI). EUCAARI started on 1 January 2007 and ended on 31 December 2010 leaving a rich legacy including: (a) a comprehensive database with a year...... of observations of the physical, chemical and optical properties of aerosol particles over Europe, (b) comprehensive aerosol measurements in four developing countries, (c) a database of airborne measurements of aerosols and clouds over Europe during May 2008, (d) comprehensive modeling tools to study aerosol...

  14. How important is organic aerosol hygroscopicity to aerosol indirect forcing?

    International Nuclear Information System (INIS)

    Liu Xiaohong; Wang Jian

    2010-01-01

    Organics are among the most abundant aerosol components in the atmosphere. However, there are still large uncertainties with emissions of primary organic aerosol (POA) and volatile organic compounds (VOCs) (precursor gases of secondary organic aerosol, SOA), formation of SOA, and chemical and physical properties (e.g., hygroscopicity) of POA and SOA. All these may have significant impacts on aerosol direct and indirect forcing estimated from global models. In this study a modal aerosol module (MAM) in the NCAR community atmospheric model (CAM) is used to examine sensitivities of aerosol indirect forcing to hygroscopicity (represented by a single parameter 'κ' ) of POA and SOA. Our model simulation indicates that in the present-day (PD) condition changing the 'κ' value of POA from 0 to 0.1 increases the number concentration of cloud condensational nuclei (CCN) at supersaturation S = 0.1% by 40-80% over the POA source regions, while changing the 'κ' value of SOA by ± 50% (from 0.14 to 0.07 and 0.21) changes the CCN concentration within 40%. There are disproportionally larger changes in CCN concentration in the pre-industrial (PI) condition. Due to the stronger impact of organics hygroscopicity on CCN and cloud droplet number concentration at PI condition, global annual mean anthropogenic aerosol indirect forcing (AIF) between PD and PI conditions reduces with the increase of the hygroscopicity of organics. Global annual mean AIF varies by 0.4 W m -2 in the sensitivity runs with the control run of - 1.3 W m -2 , highlighting the need for improved understanding of organics hygroscopicity and its representation in global models.

  15. ACTRIS Aerosol, Clouds and Trace Gases Research Infrastructure

    OpenAIRE

    Pappalardo Gelsomina

    2018-01-01

    The Aerosols, Clouds and Trace gases Research Infrastructure (ACTRIS) is a distributed infrastructure dedicated to high-quality observation of aerosols, clouds, trace gases and exploration of their interactions. It will deliver precision data, services and procedures regarding the 4D variability of clouds, short-lived atmospheric species and the physical, optical and chemical properties of aerosols to improve the current capacity to analyse, understand and predict past, current and future evo...

  16. Aerosol data assimilation in the chemical transport model MOCAGE during the TRAQA/ChArMEx campaign: aerosol optical depth

    Science.gov (United States)

    Sič, Bojan; El Amraoui, Laaziz; Piacentini, Andrea; Marécal, Virginie; Emili, Emanuele; Cariolle, Daniel; Prather, Michael; Attié, Jean-Luc

    2016-11-01

    In this study, we describe the development of the aerosol optical depth (AOD) assimilation module in the chemistry transport model (CTM) MOCAGE (Modèle de Chimie Atmosphérique à Grande Echelle). Our goal is to assimilate the spatially averaged 2-D column AOD data from the National Aeronautics and Space Administration (NASA) Moderate-resolution Imaging Spectroradiometer (MODIS) instrument, and to estimate improvements in a 3-D CTM assimilation run compared to a direct model run. Our assimilation system uses 3-D-FGAT (first guess at appropriate time) as an assimilation method and the total 3-D aerosol concentration as a control variable. In order to have an extensive validation dataset, we carried out our experiment in the northern summer of 2012 when the pre-ChArMEx (CHemistry and AeRosol MEditerranean EXperiment) field campaign TRAQA (TRAnsport à longue distance et Qualité de l'Air dans le bassin méditerranéen) took place in the western Mediterranean basin. The assimilated model run is evaluated independently against a range of aerosol properties (2-D and 3-D) measured by in situ instruments (the TRAQA size-resolved balloon and aircraft measurements), the satellite Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instrument and ground-based instruments from the Aerosol Robotic Network (AERONET) network. The evaluation demonstrates that the AOD assimilation greatly improves aerosol representation in the model. For example, the comparison of the direct and the assimilated model run with AERONET data shows that the assimilation increased the correlation (from 0.74 to 0.88), and reduced the bias (from 0.050 to 0.006) and the root mean square error in the AOD (from 0.12 to 0.07). When compared to the 3-D concentration data obtained by the in situ aircraft and balloon measurements, the assimilation consistently improves the model output. The best results as expected occur when the shape of the vertical profile is correctly simulated by the direct model. We

  17. Aerosol measurements over Southern Africa using LIDAR, satellite and sun-photometer

    CSIR Research Space (South Africa)

    Sivakumar, V

    2009-08-01

    Full Text Available .csir.co.za Dust Sea Salt Giant nuclei Natural Particles Chemical chemical condensables : SOA, H2SO4, HNO3 … nucleation condensation Aerosol Formation and processes Health Aerosols Solar Radiation Clouds Slide 3 © CSIR 2008 www....csir.co.za Emissions from Industries, vechicle and urban Volatile Components SO2, NOx, NH3, VOC Transformation Humidity and deposition of particules Primary Aerosols, BC, OC, Marine Salts, Natural resources 0 - 16 k m U p t o 50 k m 26 – 29...

  18. Co-milled API-lactose systems for inhalation therapy: impact of magnesium stearate on physico-chemical stability and aerosolization performance.

    Science.gov (United States)

    Lau, Michael; Young, Paul M; Traini, Daniela

    2017-06-01

    Particle micronization for inhalation can impart surface disorder (amorphism) of crystalline structures. This can lead to stability issues upon storage at elevated humidity from recrystallization of the amorphous state, which can subsequently affect the aerosol performance of the dry powder formulation. The aim of this study was to investigate the impact of an additive, magnesium stearate (MGST), on the stability and aerosol performance of co-milled active pharmaceutical ingredient (API) with lactose. Blends of API-lactose with/without MGST were prepared and co-milled by the jet-mill apparatus. Samples were stored at 50% relative humidity (RH) and 75% RH for 1, 5, and 15 d. Analysis of changes in particle size, agglomerate structure/strength, moisture sorption, and aerosol performance were analyzed by laser diffraction, scanning electron microscopy (SEM), dynamic vapor sorption (DVS), and in-vitro aerodynamic size assessment by impaction. Co-milled formulation with MGST (5% w/w) led to a reduction in agglomerate size and strength after storage at elevated humidity compared with co-milled formulation without MGST, as observed from SEM and laser diffraction. Hysteresis in the sorption/desorption isotherm was observed in the co-milled sample without MGST, which was likely due to the recrystallization of the amorphous regions of micronized lactose. Deterioration in aerosol performance after storage at elevated humidity was greater for the co-milled samples without MGST, compared with co-milled with MGST. MGST has been shown to have a significant impact on co-milled dry powder stability after storage at elevated humidity in terms of physico-chemical properties and aerosol performance.

  19. The Pasadena Aerosol Characterization Observatory (PACO: chemical and physical analysis of the Western Los Angeles basin aerosol

    Directory of Open Access Journals (Sweden)

    S. P. Hersey

    2011-08-01

    Full Text Available The Pasadena Aerosol Characterization Observatory (PACO represents the first major aerosol characterization experiment centered in the Western/Central Los Angeles Basin. The sampling site, located on the campus of the California Institute of Technology in Pasadena, was positioned to sample a continuous afternoon influx of transported urban aerosol with a photochemical age of 1–2 h and generally free from major local contributions. Sampling spanned 5 months during the summer of 2009, which were broken into 3 regimes on the basis of distinct meteorological conditions. Regime I was characterized by a series of low pressure systems, resulting in high humidity and rainy periods with clean conditions. Regime II typified early summer meteorology, with significant morning marine layers and warm, sunny afternoons. Regime III was characterized by hot, dry conditions with little marine layer influence. Regardless of regime, organic aerosol (OA is the most significant constituent of nonrefractory submicron Los Angeles aerosol (42, 43, and 55 % of total submicron mass in regimes I, II, and III, respectively. The overall oxidation state remains relatively constant on timescales of days to weeks (O:C = 0.44 ± 0.08, 0.55 ± 0.05, and 0.48 ± 0.08 during regimes I, II, and III, respectively, with no difference in O:C between morning and afternoon periods. Periods characterized by significant morning marine layer influence followed by photochemically favorable afternoons displayed significantly higher aerosol mass and O:C ratio, suggesting that aqueous processes may be important in the generation of secondary aerosol and oxidized organic aerosol (OOA in Los Angeles. Online analysis of water soluble organic carbon (WSOC indicates that water soluble organic mass (WSOM reaches maxima near 14:00–15:00 local time (LT, but the percentage of AMS organic mass contributed by WSOM remains relatively constant throughout the day. Sulfate and nitrate reside predominantly

  20. Chemical and physical characteristics of aerosol particles at a remote coastal location, Mace Head, Ireland, during NAMBLEX

    Directory of Open Access Journals (Sweden)

    H. Coe

    2006-01-01

    Full Text Available A suite of aerosol physical and chemical measurements were made at the Mace Head Atmospheric Research Station, Co. Galway, Ireland, a coastal site on the eastern seaboard of the north Atlantic Ocean during NAMBLEX. The data have been used in this paper to show that over a wide range of aerosol sizes there is no impact of the inter-tidal zone or the surf zone on measurements made at 7 m above ground level or higher. During the measurement period a range of air mass types were observed. During anticyclonic periods and conditions of continental outflow Aitken and accumulation mode were enhanced by a factor of 5 compared to the marine sector, whilst coarse mode particles were enhanced during westerly conditions. Baseline marine conditions were rarely met at Mace Head during NAMBLEX and high wind speeds were observed for brief periods only. The NAMBLEX experiment focussed on a detailed assessment of photochemistry in the marine environment, investigating the linkage between the HOx and the halogen radical cycles. Heterogeneous losses are important in both these cycles. In this paper loss rates of gaseous species to aerosol surfaces were calculated for a range of uptake coefficients. Even when the accommodation coefficient is unity, lifetimes due to heterogeneous loss of less than 10 s were never observed and rarely were they less than 500 s. Diffusional limitation to mass transfer is important in most conditions as the coarse mode is always significant. We calculate a minimum overestimate of 50% in the loss rate if this is neglected and so it should always be considered when calculating loss rates of gaseous species to particle surfaces. HO2 and HOI have accommodation coefficients of around 0.03 and hence we calculate lifetimes due to loss to particle surfaces of 2000 s or greater under the conditions experienced during NAMBLEX. Aerosol composition data collected during this experiment provide representative information on the input aerosol

  1. Aerosol chemistry in Titan's ionosphere: simultaneous growth and etching processes

    Science.gov (United States)

    Carrasco, Nathalie; Cernogora, Guy; Jomard, François; Etcheberry, Arnaud; Vigneron, Jackie

    2016-10-01

    Since the Cassini-CAPS measurements, organic aerosols are known to be present and formed at high altitudes in the diluted and partially ionized medium that is Titan's ionosphere [1]. This unexpected chemistry can be further investigated in the laboratory with plasma experiments simulating the complex ion-neutral chemistry starting from N2-CH4 [2]. Two sorts of solid organic samples can be produced in laboratory experiments simulating Titan's atmospheric reactivity: grains in the volume and thin films on the reactor walls. We expect that grains are more representative of Titan's atmospheric aerosols, but films are used to provide optical indices for radiative models of Titan's atmosphere.The aim of the present study is to address if these two sorts of analogues are chemically equivalent or not, when produced in the same N2-CH4 plasma discharge. The chemical compositions of both these materials are measured by using elemental analysis, XPS analysis and Secondary Ion Mass Spectrometry. We find that films are homogeneous but significantly less rich in nitrogen and hydrogen than grains produced in the same experimental conditions. This surprising difference in their chemical compositions is explained by the efficient etching occurring on the films, which stay in the discharge during the whole plasma duration, whereas the grains are ejected after a few minutes [3]. The impact for our understanding of Titan's aerosols chemical composition is important. Our study shows that chemical growth and etching process are simultaneously at stake in Titan's ionosphere. The more the aerosols stay in the ionosphere, the more graphitized they get through etching process. In order to infer Titan's aerosols composition, our work highlights a need for constraints on the residence time of aerosols in Titan's ionosphere. [1] Waite et al. (2009) Science , 316, p. 870[2] Szopa et al. (2006) PSS, 54, p. 394[3] Carrasco et al. (2016) PSS, 128, p. 52

  2. Characterization of Organic Nitrate Formation in Limonene Secondary Organic Aerosol using High-Resolution Chemical Ionization Mass Spectrometry

    Science.gov (United States)

    Faxon, Cameron; Hammes, Julia; Peng, Jianfei; Hallquist, Mattias; Pathak, Ravi

    2016-04-01

    Previous work has shown that organic nitrates (RONO2) are prevalent in the boundary layer, and can contribute significantly to secondary organic aerosol formation. Monoterpenes, including limonene, have been shown to be precursors for the formation of these organic nitrates. Limonene has two double bonds, either of which may be oxidized by NO3 or O3. This leads to the generation of products that can subsequently condense or partition into the particle phase, producing secondary organic aerosol. In order to further elucidate the particle and gas phase product distribution of organic nitrates forming from the reactions of limonene and the nitrate radical (NO3), a series of experiments were performed in the Gothenburg Flow Reactor for Oxidation Studies at Low Temperatures (G-FROST), described by previous work. N2O5 was used as the source for NO3 and NO2, and a characterized diffusion source was used to introduce limonene into the flow reactor. All experiments were conducted in the absence of light, and the concentration of limonene was increased step-wise throughout each experiment to modify the ratio of N2O5to limonene. The experiments were conducted such that both limonene- and N2O5-limited regimes were present. Gas and particle phase products were measured using an iodide High-Resolution Time-of-Flight Mass Spectrometer (HR-ToF-CIMS) coupled to a Filter Inlet for Gases and AEROsols (FIGAERO, and particle size and SOA mass concentrations were derived using a Scanning Mobility Particle Sizer (SMPS). CIMS measurement techniques have previously been employed for the measurement of organic nitrate products of such compounds using multiple reagent ions. The use of this instrumentation allowed for the identification of chemical formulas for gas and particle phase species. The findings from the experiments will be presented in terms of the relative gas-particle partitioning of major products and the effects of N2O5/limonene ratios on product distributions. Additionally, a

  3. Chemical and physical transformations of organic aerosol from the photo-oxidation of open biomass burning emissions in an environmental chamber

    Science.gov (United States)

    C. J. Hennigan; M. A. Miracolo; G. J. Engelhart; A. A. May; A. A. Presto; T. Lee; A. P. Sullivan; G. R. McMeeking; H. Coe; C. E. Wold; W.-M. Hao; J. B. Gilman; W. C. Kuster; J. de Gouw; B. A. Schichtel; J. L. Collett; S. M. Kreidenweis; A. L. Robinson

    2011-01-01

    Smog chamber experiments were conducted to investigate the chemical and physical transformations of organic aerosol (OA) during photo-oxidation of open biomass burning emissions. The experiments were carried out at the US Forest Service Fire Science Laboratory as part of the third Fire Lab at Missoula Experiment (FLAME III). We investigated emissions from 12 different...

  4. Optical, physical and chemical characteristics of Australian continental aerosols: results from a field experiment

    Directory of Open Access Journals (Sweden)

    M. Radhi

    2010-07-01

    Full Text Available Mineral dust is one of the major components of the world's aerosol mix, having a number of impacts within the Earth system. However, the climate forcing impact of mineral dust is currently poorly constrained, with even its sign uncertain. As Australian deserts are more reddish than those in the Northern Hemisphere, it is important to better understand the physical, chemical and optical properties of this important aerosol. We have investigated the properties of Australian desert dust at a site in SW Queensland, which is strongly influenced by both dust and biomass burning aerosol.

    Three years of ground-based monitoring of spectral optical thickness has provided a statistical picture of gross aerosol properties. The aerosol optical depth data showed a clear though moderate seasonal cycle with an annual mean of 0.06 ± 0.03. The Angstrom coefficient showed a stronger cycle, indicating the influence of the winter-spring burning season in Australia's north. AERONET size distributions showed a generally bimodal character, with the coarse mode assumed to be mineral dust, and the fine mode a mixture of fine dust, biomass burning and marine biogenic material.

    In November 2006 we undertook a field campaign which collected 4 sets of size-resolved aerosol samples for laboratory analysis – ion beam analysis and ion chromatography. Ion beam analysis was used to determine the elemental composition of all filter samples, although elemental ratios were considered the most reliable output. Scatter plots showed that Fe, Al and Ti were well correlated with Si, and Co reasonably well correlated with Si, with the Fe/Al ratio somewhat higher than values reported from Northern Hemisphere sites (as expected. Scatter plots for Ca, Mn and K against Si showed clear evidence of a second population, which in some cases could be identified with a particular sample day or size fraction. These data may be used to attempt to build a signature of soil in this

  5. A numerical study on the characteristics of gaseous pollutant absorbed by a moving liquid aerosol

    International Nuclear Information System (INIS)

    Deng, J.J.; Du, Y.G.; Yu, Y.; Ding, J.

    2008-01-01

    Atmospheric pollution involving aerosols is becoming increasingly problematic. Since aerosols are small in size and have large specific surface areas, they can enhance some chemical reactions. Liquid aerosols in the air can absorb gaseous pollutants to adversely affect air quality and human health. This paper studied the characteristics of liquid aerosols and the absorption process of gaseous pollutants. Specifically, the paper presented a model to depict the characteristic of the absorption process of gaseous pollutant by a liquid aerosol with internal circulation and chemical reaction. The model assumed that liquid aerosols retain a spherical shape while moving freely in air. The finite volume method was used to develop an algorithm used to numerically simulate the experimental work of Walcek. The paper also discussed the numerical evaluation of the transient momentum and mass transfer characteristics of sulphur dioxide into a droplet. It was concluded that the chemical reaction increased the rate of mass transfer and the quasi-saturation time of aerosols, which provided a theoretical basis for the heterogeneous reaction of liquid aerosols. 3 refs., 6 figs

  6. Size distribution measurements and chemical analysis of aerosol components

    Energy Technology Data Exchange (ETDEWEB)

    Pakkanen, T.A.

    1995-12-31

    The principal aims of this work were to improve the existing methods for size distribution measurements and to draw conclusions about atmospheric and in-stack aerosol chemistry and physics by utilizing size distributions of various aerosol components measured. A sample dissolution with dilute nitric acid in an ultrasonic bath and subsequent graphite furnace atomic absorption spectrometric analysis was found to result in low blank values and good recoveries for several elements in atmospheric fine particle size fractions below 2 {mu}m of equivalent aerodynamic particle diameter (EAD). Furthermore, it turned out that a substantial amount of analyses associated with insoluble material could be recovered since suspensions were formed. The size distribution measurements of in-stack combustion aerosols indicated two modal size distributions for most components measured. The existence of the fine particle mode suggests that a substantial fraction of such elements with two modal size distributions may vaporize and nucleate during the combustion process. In southern Norway, size distributions of atmospheric aerosol components usually exhibited one or two fine particle modes and one or two coarse particle modes. Atmospheric relative humidity values higher than 80% resulted in significant increase of the mass median diameters of the droplet mode. Important local and/or regional sources of As, Br, I, K, Mn, Pb, Sb, Si and Zn were found to exist in southern Norway. The existence of these sources was reflected in the corresponding size distributions determined, and was utilized in the development of a source identification method based on size distribution data. On the Finnish south coast, atmospheric coarse particle nitrate was found to be formed mostly through an atmospheric reaction of nitric acid with existing coarse particle sea salt but reactions and/or adsorption of nitric acid with soil derived particles also occurred. Chloride was depleted when acidic species reacted

  7. ACTRIS Aerosol, Clouds and Trace Gases Research Infrastructure

    Science.gov (United States)

    Pappalardo, Gelsomina

    2018-04-01

    The Aerosols, Clouds and Trace gases Research Infrastructure (ACTRIS) is a distributed infrastructure dedicated to high-quality observation of aerosols, clouds, trace gases and exploration of their interactions. It will deliver precision data, services and procedures regarding the 4D variability of clouds, short-lived atmospheric species and the physical, optical and chemical properties of aerosols to improve the current capacity to analyse, understand and predict past, current and future evolution of the atmospheric environment.

  8. Fission product and aerosol behaviour within the containment

    International Nuclear Information System (INIS)

    Beard, A.M.; Benson, C.G.; Bowsher, B.R.; Dickinson, S.; Nichols, A.L.

    1990-04-01

    Experimental studies have been undertaken to characterise the behaviour of fission products in the containment of a pressurised water reactor during a severe accident. The following aspects of fission product transport have been studied: (a) aerosol nucleation, (b) vapour transport processes, (c) chemical forms of high-temperature vapours, (d) interaction of fission product vapours with aerosols generated from within the reactor core, (e) resuspension processes, (f) chemistry in the containment. Chemical effects have been shown to be important in defining and quantifying fission product source terms in a wide range of accident sequences. Both the chemical forms of the fission product vapours and their interactions with reactor materials aerosols could have a major effect on the magnitude and physicochemical forms of the radioactive emission from a severe reactor accident. Only the main conclusions are presented in this summary document; detailed technical aspects of the work are described in separate reports listed in the annex

  9. Investigations on the chemical composition of the organic fraction of tropospheric aerosols. Final report; Untersuchungen zur chemischen Zusammensetzung der organischen Komponente des troposphaerischen Aerosols. AFS-Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, T.; Warscheid, B.

    2000-07-01

    Although the knowledge about the significance of airborne particulate matter for the radiation balance of the atmosphere has increased during the last few years, several important aerosol formation mechanisms are still poorly understood. This is especially true for aerosols which are formed from volatile organic precursors from natural or anthropogenic sources (secondary organic aerosols). Therefore, the research project aimed on the development of a mass spectrometric real-time technique for the qualitative and quantitative investigations of the chemical composition of secondary organic aerosols, especially from the ozonolysis of monoterpenes (e.g. {alpha}-pinene, {beta}-pinene, sabinene, {delta}{sup 3}-carene, limonene). Using a modified atmospheric pressure chemical ionisation source (APCI), the formation of gas and particle phase products could be observed with a time resolution of about 1 second. The detection limit of the developed technique is about 100 ppt(v/v) in the positive ion mode. Based on the development of standard addition techniques, selected products were quantified in the gas and particle phase. Using isotopically labelled water also certain underlying reaction mechanisms were investigated. Another part of the project focused on the identification of low volatile reaction products by MS/MS-studies. These studies showed that the particle phase is mainly composed of several multifunctional carboxylic acids (dicarboxylic acids, oxo-carboxylic acids, hydroxy-carboxylic acids etc.). Finally, the APCI-studies gave robust evidences on the presence of strong intermolecular interactions between the different products. Since the experiments also showed a correlation between the intensity of product interactions (adduct formation) by hydrogen-bonding and new particle formation potential, the results of the project can be considered to provide an important contribution for an better understanding of nucleation events above forested areas. (orig.) [German

  10. Relationship between chemical composition and oxidative potential of secondary organic aerosol from polycyclic aromatic hydrocarbons

    Science.gov (United States)

    Wang, Shunyao; Ye, Jianhuai; Soong, Ronald; Wu, Bing; Yu, Legeng; Simpson, André J.; Chan, Arthur W. H.

    2018-03-01

    Owing to the complex nature and dynamic behaviors of secondary organic aerosol (SOA), its ability to cause oxidative stress (known as oxidative potential, or OP) and adverse health outcomes remains poorly understood. In this work, we probed the linkages between the chemical composition of SOA and its OP, and investigated impacts from various SOA evolution pathways, including atmospheric oligomerization, heterogeneous oxidation, and mixing with metal. SOA formed from photooxidation of the two most common polycyclic aromatic hydrocarbons (naphthalene and phenanthrene) were studied as model systems. OP was evaluated using the dithiothreitol (DTT) assay. The oligomer-rich fraction separated by liquid chromatography dominates DTT activity in both SOA systems (52 ± 10 % for naphthalene SOA (NSOA), and 56 ± 5 % for phenanthrene SOA (PSOA)). Heterogeneous ozonolysis of NSOA was found to enhance its OP, which is consistent with the trend observed in selected individual oxidation products. DTT activities from redox-active organic compounds and metals were found to be not additive. When mixing with highly redox-active metal (Cu), OP of the mixture decreased significantly for 1,2-naphthoquinone (42 ± 7 %), 2,3-dihydroxynaphthalene (35 ± 1 %), NSOA (50 ± 6 %), and PSOA (43 ± 4 %). Evidence from proton nuclear magnetic resonance (1H NMR) spectroscopy illustrates that such OP reduction upon mixing can be ascribed to metal-organic binding interactions. Our results highlight the role of aerosol chemical composition under atmospheric aging processes in determining the OP of SOA, which is needed for more accurate and explicit prediction of the toxicological impacts from particulate matter.

  11. Exploring sources of biogenic secondary organic aerosol compounds using chemical analysis and the FLEXPART model

    Directory of Open Access Journals (Sweden)

    J. Martinsson

    2017-09-01

    Full Text Available Molecular tracers in secondary organic aerosols (SOAs can provide information on origin of SOA, as well as regional scale processes involved in their formation. In this study 9 carboxylic acids, 11 organosulfates (OSs and 2 nitrooxy organosulfates (NOSs were determined in daily aerosol particle filter samples from Vavihill measurement station in southern Sweden during June and July 2012. Several of the observed compounds are photo-oxidation products from biogenic volatile organic compounds (BVOCs. Highest average mass concentrations were observed for carboxylic acids derived from fatty acids and monoterpenes (12. 3 ± 15. 6 and 13. 8 ± 11. 6 ng m−3, respectively. The FLEXPART model was used to link nine specific surface types to single measured compounds. It was found that the surface category sea and ocean was dominating the air mass exposure (56 % but contributed to low mass concentration of observed chemical compounds. A principal component (PC analysis identified four components, where the one with highest explanatory power (49 % displayed clear impact of coniferous forest on measured mass concentration of a majority of the compounds. The three remaining PCs were more difficult to interpret, although azelaic, suberic, and pimelic acid were closely related to each other but not to any clear surface category. Hence, future studies should aim to deduce the biogenic sources and surface category of these compounds. This study bridges micro-level chemical speciation to air mass surface exposure at the macro level.

  12. Cloud-Driven Changes in Aerosol Optical Properties - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

    2007-09-30

    The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

  13. Single-particle characterization of the high-Arctic summertime aerosol

    Science.gov (United States)

    Sierau, B.; Chang, R. Y.-W.; Leck, C.; Paatero, J.; Lohmann, U.

    2014-07-01

    Single-particle mass-spectrometric measurements were carried out in the high Arctic north of 80° during summer 2008. The campaign took place onboard the icebreaker Oden and was part of the Arctic Summer Cloud Ocean Study (ASCOS). The instrument deployed was an aerosol time-of-flight mass spectrometer (ATOFMS) that provides information on the chemical composition of individual particles and their mixing state in real time. Aerosols were sampled in the marine boundary layer at stations in the open ocean, in the marginal ice zone, and in the pack ice region. The largest fraction of particles detected for subsequent analysis in the size range of the ATOFMS between approximately 200 and 3000 nm in diameter showed mass-spectrometric patterns, indicating an internal mixing state and a biomass burning and/or biofuel source. The majority of these particles were connected to an air mass layer of elevated particle concentration mixed into the surface mixed layer from the upper part of the marine boundary layer. The second largest fraction was represented by sea salt particles. The chemical analysis of the over-ice sea salt aerosol revealed tracer compounds that reflect chemical aging of the particles during their long-range advection from the marginal ice zone, or open waters south thereof prior to detection at the ship. From our findings we conclude that long-range transport of particles is one source of aerosols in the high Arctic. To assess the importance of long-range particle sources for aerosol-cloud interactions over the inner Arctic in comparison to local and regional biogenic primary aerosol sources, the chemical composition of the detected particles was analyzed for indicators of marine biological origin. Only a minor fraction showed chemical signatures of potentially ocean-derived primary particles of that kind. However, a chemical bias in the ATOFMS's detection capabilities observed during ASCOS might suggest the presence of a particle type of unknown composition

  14. Single-particle characterization of the High Arctic summertime aerosol

    Science.gov (United States)

    Sierau, B.; Chang, R. Y.-W.; Leck, C.; Paatero, J.; Lohmann, U.

    2014-01-01

    Single-particle mass spectrometric measurements were carried out in the High Arctic north of 80° during summer 2008. The campaign took place onboard the icebreaker Oden and was part of the Arctic Summer Cloud Ocean Study (ASCOS). The instrument deployed was an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) that provides information on the chemical composition of individual particles and their mixing state in real-time. Aerosols were sampled in the marine boundary layer at stations in the open ocean, in the marginal ice zone, and in the pack ice region. The largest fraction of particles detected for subsequent analysis in the size range of the ATOFMS between approximately 200 nm to 3000 nm in diameter showed mass spectrometric patterns indicating an internal mixing state and a biomass burning and/or biofuel source. The majority of these particles were connected to an air mass layer of elevated particle concentration mixed into the surface mixed layer from the upper part of the marine boundary layer. The second largest fraction was represented by sea salt particles. The chemical analysis of the over-ice sea salt aerosol revealed tracer compounds that reflect chemical aging of the particles during their long-range advection from the marginal ice zone, or open waters south thereof prior to detection at the ship. From our findings we conclude that long-range transport of particles is one source of aerosols in the High Arctic. To assess the importance of long-range particle sources for aerosol-cloud interactions over the inner Arctic in comparison to local and regional biogenic primary aerosol sources, the chemical composition of the detected particles was analyzed for indicators of marine biological origin. Only a~minor fraction showed chemical signatures of potentially ocean-derived primary particles of that kind. However, a chemical bias in the ATOFMS's detection capabilities observed during ASCOS might suggest a presence of a particle type of unknown composition

  15. Climate forcing by anthropogenic aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Charlson, R J; Schwartz, S E; Hales, J M; Cess, R D; Coakley, Jr, J A; Hansen, J E; Hofmann, D J [University of Washington, Seattle, WA (USA). Inst. for Environmental Studies, Dept. of Atmospheric Sciences

    1992-01-24

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol in particular has imposed a major perturbation to this forcing. Both the direct scattering of short wavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square metre, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes. 73 refs., 4 figs., 2 tabs.

  16. Climate forcing by anthropogenic aerosols.

    Science.gov (United States)

    Charlson, R J; Schwartz, S E; Hales, J M; Cess, R D; Coakley, J A; Hansen, J E; Hofmann, D J

    1992-01-24

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol in particular has imposed a major perturbation to this forcing. Both the direct scattering of shortwavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square meter, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes.

  17. Mobile Atmospheric Aerosol and Radiation Characterization Observatory (MAARCO)

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: MAARCO is designed as a stand-alone facility for basic atmospheric research and the collection of data to assist in validating aerosol and weather models....

  18. Recent advances in aerosol research a bibliographical review

    CERN Document Server

    Davies, C N

    1964-01-01

    Recent Advances in Aerosol Research: A Bibliographical Review presents a bibliographic review of advances in aerosol research covering the period from the beginning of 1957 to the end of 1962. Topics covered include chemical reactions, combustion, coagulation and diffusion, and adhesion of particles. References on filtration, evaporation and condensation, nucleation and growth, and laminar flow and impingement are also included. This volume is comprised of 19 chapters and begins by citing research on acoustic, ultrasonic, and shock wave effects, along with adhesion of particles, chemical react

  19. Modelization and numerical simulation of atmospheric aerosols dynamics

    International Nuclear Information System (INIS)

    Debry, Edouard

    2004-01-01

    Chemical-transport models are now able to describe in a realistic way gaseous pollutants behavior in the atmosphere. Nevertheless atmospheric pollution also exists as a fine suspended particles, called aerosols which interact with gaseous phase, solar radiation, and have their own dynamic behavior. The goal of this thesis is the modelization and numerical simulation of the General Dynamic Equation of aerosols (GDE). Part I deals with some theoretical aspects of aerosol modelization. Part II is dedicated to the building of one size resolved aerosol model (SIREAM). In part III we perform the reduction of this model in order to use it in dispersion models as POLAIR3D. Several modelization issues are still opened: organic aerosol matter, externally mixed aerosols, coupling with turbulent mixing, and nano-particles. (author) [fr

  20. Can Condensing Organic Aerosols Lead to Less Cloud Particles?

    Science.gov (United States)

    Gao, C. Y.; Tsigaridis, K.; Bauer, S.

    2017-12-01

    We examined the impact of condensing organic aerosols on activated cloud number concentration in a new aerosol microphysics box model, MATRIX-VBS. The model includes the volatility-basis set (VBS) framework in an aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state) that resolves aerosol mass and number concentrations and aerosol mixing state. Preliminary results show that by including the condensation of organic aerosols, the new model (MATRIX-VBS) has less activated particles compared to the original model (MATRIX), which treats organic aerosols as non-volatile. Parameters such as aerosol chemical composition, mass and number concentrations, and particle sizes which affect activated cloud number concentration are thoroughly evaluated via a suite of Monte-Carlo simulations. The Monte-Carlo simulations also provide information on which climate-relevant parameters play a critical role in the aerosol evolution in the atmosphere. This study also helps simplifying the newly developed box model which will soon be implemented in the global model GISS ModelE as a module.

  1. Dissemination of aerosol and splatter during ultrasonic scaling: A pilot study

    Directory of Open Access Journals (Sweden)

    H.R. Veena

    2015-05-01

    Full Text Available Summary: Context: Routine dental procedures produce aerosol and splatter, which pose a potential risk to the clinician and dental personnel, as well as the immunocompromised patient. Reports indicate that the ultrasonic scaler is the greatest producer of aerosol and splatter. Aims: The study aimed to evaluate the contamination distance, contamination amount and contamination duration of aerosol produced during ultrasonic scaling. Methods and materials: The study was performed on a mannequin fitted with phantom jaws on a dental chair. Mock scaling was done for 15 min using an auto-tuned magnetostrictive ultrasonic scaler with the simultaneous use of a low volume saliva ejector. An ultrafiltrate-containing fluorescent dye was used in the reservoir supplying the scaler unit. Filter paper discs were placed in different positions and distances in the operatory. Immediately following scaling, the filter paper discs were replaced with new ones. This was done every 30 min for a total duration of 90 min. Results: Maximum contamination was found on the right arm of the operator and left arm of the assistant. Contamination was also found on the head, chest and inner surface of the face mask of the operator and of the assistant. The aerosol was found to remain in the air up to 30 min after scaling. Conclusions: The occupational health hazards of dental aerosols can be minimized by following simple, inexpensive precautions. Keywords: Aerosol, Splatter, Infection control, Aerosol contamination in dentistry, Dental unit water lines, Ultrasonic scaling

  2. ACTRIS Aerosol, Clouds and Trace Gases Research Infrastructure

    Directory of Open Access Journals (Sweden)

    Pappalardo Gelsomina

    2018-01-01

    Full Text Available The Aerosols, Clouds and Trace gases Research Infrastructure (ACTRIS is a distributed infrastructure dedicated to high-quality observation of aerosols, clouds, trace gases and exploration of their interactions. It will deliver precision data, services and procedures regarding the 4D variability of clouds, short-lived atmospheric species and the physical, optical and chemical properties of aerosols to improve the current capacity to analyse, understand and predict past, current and future evolution of the atmospheric environment.

  3. The influence of the physico-chemical form of the aerosol on the radiological consequences of notional accidental releases of radioactivity from a fast breeder reactor

    International Nuclear Information System (INIS)

    Kelly, G.N.; Jones, J.A.; Simmonds, J.R.

    1979-01-01

    The radiological consequences of a wide range of notional accidental releases from a 1300 MW(e) LMFBR (Liquid Metal-cooled Fast Breeder Reactor) were assessed in a study published by the National Radiological Protection Board (NRPB) in 1977. In that study representative values were in general adopted for each of the important parameters while recognising that in reality they could vary considerably. The present study is concerned with the sensitivity of the predicted consequences to the physico-chemical form of the released aerosol. Of particular interest is the importance of a mixed sodium-transuranium element aerosol which may be formed in accidental releases of activity from sodium cooled FBRs. Two significant findings emerge from the study. First the predicted consequences in general are relatively insensitive to the range of physico-chemical forms analysed. For generic assessments therefore it is sufficient to assume the properties of the aerosol adopted in the initial study (1 μm AMAD and each element in the oxide form); the exception concerns the estimation of the incidence of early morbidity, and to a lesser extent early mortality, but only for a limited range of release composition. The second finding is that the radiological consequences are not, contrary to what might have been expected, significantly increased for the release of a mixed sodium-element aerosol

  4. Importance of aerosol non-sphericity in estimating aerosol radiative forcing in Indo-Gangetic Basin.

    Science.gov (United States)

    Srivastava, Parul; Dey, Sagnik; Srivastava, Atul Kumar; Singh, Sachchidanand; Mishra, S K; Tiwari, Suresh

    2017-12-01

    Aerosols are usually presumed spherical in shape while estimating the direct radiative forcing (DRF) using observations or in the models. In the Indo-Gangetic Basin (IGB), a regional aerosol hotspot where dust is a major aerosol species and has been observed to be non-spherical in shape, it is important to test the validity of this assumption. We address this issue using measured chemical composition at megacity Delhi, a representative site of the western IGB. Based on the observation, we choose three non-spherical shapes - spheroid, cylinder and chebyshev, and compute their optical properties. Non-spherical dust enhances aerosol extinction coefficient (β ext ) and single scattering albedo (SSA) at visible wavelengths by >0.05km -1 and >0.04 respectively, while it decreases asymmetry parameter (g) by ~0.1. Accounting non-sphericity leads top-of-the-atmosphere (TOA) dust DRF to more cooling due to enhanced backscattering and increases surface dimming due to enhanced β ext . Outgoing shortwave flux at TOA increases by up to 3.3% for composite aerosols with non-spherical dust externally mixed with other spherical species. Our results show that while non-sphericity needs to be accounted for, choice of shape may not be important in estimating aerosol DRF in the IGB. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Influence of mineral dust transport on the chemical composition and physical properties of the Eastern Mediterranean aerosol

    Science.gov (United States)

    Koçak, M.; Theodosi, C.; Zarmpas, P.; Séguret, M. J. M.; Herut, B.; Kallos, G.; Mihalopoulos, N.; Kubilay, N.; Nimmo, M.

    2012-09-01

    Bulk aerosol samples were collected from three different coastal rural sites located around the Eastern Mediterranean, (i) Erdemli (ER), Turkey, (ii) Heraklion (HR), Crete, Greece, and (iii) Tel Shikmona (TS), Israel, during two distinct mineral dust periods (October, 2007 and April, 2008) in order to explore the temporal and geographical variability in the aerosol chemical composition. Samples were analyzed for trace elements (Al, Fe, Mn, Ca, Cr, Zn, Cu, V, Ni, Cd, Pb) and water-soluble ions (Cl-, NO3-, SO42-, C2O42-, Na+, NH4+, K+, Mg2+ and Ca2+). The dust events were categorized on the basis of Al concentrations >1000 ng m-3, SKIRON dust forecast model and 3-day back trajectories into three groups namely, Middle East, Mixed and Saharan desert. ER and TS were substantially affected by dust events originating from the Middle East, particularly in October, whilst HR was not influenced by dust transport from the Middle East. Higher AOT values were particularly associated with higher Al concentrations. Contrary to the highest Al concentration: 6300 ng m-3, TS showed relatively lower AI and AOT. Al concentrations at ER were similar for October and April, whilst OMI-AI and AOT values were ˜2 times higher in April. This might be attributed to the weak sensitivity of the TOMS instrument to absorbing aerosols near the ground and optical difference between Middle East and Saharan desert dusts. The lowest enhancement of anthropogenic aerosol species was observed at HR during dust events (nssSO42-/nssCa2+ ˜ 0.13). These species were particularly enhanced when mineral dust arrived at sites after passing through populated and industrialized urban areas.

  6. Chemical characteristics of ambient aerosols contributed by cooking process at Noorpur village near Delhi (India)

    Science.gov (United States)

    Singh, Sudha; Kumar, Bablu; Gupta, Gyan Prakash; Kulshrestha, U. C.

    2013-05-01

    Combustion of fuels such as wood, crop residue and dung cakes etc. is one of the major sources of air pollution in developing countries. These fuels are still used commonly for cooking purpose in rural India. This study investigates the chemical composition of the ambient aerosols during cooking hours at a village called Noorpur (28.470 N, 77.030 E) which lies near Delhi city. Aerosol sampling was carried out during August 2011-May 2012 by using handy sampler (Envirotech model APM 821) installed at the terrace of a building (˜6m). The samples were collected on 8 hourly basis using Teflon filters. The water extract of these filters was analyzed for major anions (F-, Cl-, NO3-, SO42-) and major cations (Na+, NH4+, K+, Ca2+ Mg2+) by ion chromatography (Metrohm 883 Basic IC Plus). Results highlighted that cooking process contributed significant amount of SO42- and K+ṡ. Biomass burning is considered as a potential source of K+ in air. The high concentration of SO42- might be due to oxidation of SO2 contributed by the combustion of dung cakes. Further, the detailed results will be discussed during the conference.

  7. A reference aerosol for a radon reference chamber

    Science.gov (United States)

    Paul, Annette; Keyser, Uwe

    1996-02-01

    The measurement of radon and radon progenies and the calibration of their detection systems require the production and measurement of aerosols well-defined in size and concentration. In the German radon reference chamber, because of its unique chemical and physical properties, carnauba wax is used to produce standard aerosols. The aerosol size spectra are measured on-line by an aerosol measurement system in the range of 10 nm to 1 μm aerodynamic diameter. The experimental set-ups for the study of adsorption of radioactive ions on aerosols as function of their size and concentration will be described, the results presented and further adaptations for an aerosol jet introduced (for example, for the measurement of short-lived neutron-rich isotopes). Data on the dependence of aerosol radius, ion concentration and element selectivity is collected by using a 252Cf-sf source. The fission products of this source range widely in elements, isotopes and charges. Adsorption and the transport of radioactive ions on aerosols have therefore been studied for various ions for the first time, simultaneously with the aerosol size on-line spectrometry.

  8. A reference aerosol for a radon reference chamber

    Energy Technology Data Exchange (ETDEWEB)

    Paul, A. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Keyser, U. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany)

    1996-01-11

    The measurement of radon and radon progenies and the calibration of their detection systems require the production and measurement of aerosols well-defined in size and concentration. In the German radon reference chamber, because of its unique chemical and physical properties, carnauba wax is used to produce standard aerosols. The aerosol size spectra are measured on-line by an aerosol measurement system in the range of 10 nm to 1 {mu}m aerodynamic diameter. The experimental set-ups for the study of adsorption of radioactive ions on aerosols as function of their size and concentration are described, the results presented and further adaptations for an aerosol jet introduced (for example, for the measurement of short-lived neutron-rich isotopes). Data on the dependence of aerosol radius, ion concentration and element selectivity is collected by using a {sup 252}Cf-sf source. The fission products of this source range widely in elements, isotopes and charges. Adsorption and the transport of radioactive ions on aerosols have therefore been studied for various ions for the first time, simultaneously with the aerosol size on-line spectrometry. (orig.).

  9. Field characterization of the PM2.5 Aerosol Chemical Speciation Monitor: insights into the composition, sources, and processes of fine particles in eastern China

    Science.gov (United States)

    Zhang, Yunjiang; Tang, Lili; Croteau, Philip L.; Favez, Olivier; Sun, Yele; Canagaratna, Manjula R.; Wang, Zhuang; Couvidat, Florian; Albinet, Alexandre; Zhang, Hongliang; Sciare, Jean; Prévôt, André S. H.; Jayne, John T.; Worsnop, Douglas R.

    2017-12-01

    A PM2.5-capable aerosol chemical speciation monitor (Q-ACSM) was deployed in urban Nanjing, China, for the first time to measure in situ non-refractory fine particle (NR-PM2.5) composition from 20 October to 19 November 2015, along with parallel measurements of submicron aerosol (PM1) species by a standard Q-ACSM. Our results show that the NR-PM2.5 species (organics, sulfate, nitrate, and ammonium) measured by the PM2.5-Q-ACSM are highly correlated (r2 > 0.9) with those measured by a Sunset Lab OC  /  EC analyzer and a Monitor for AeRosols and GAses (MARGA). The comparisons between the two Q-ACSMs illustrated similar temporal variations in all NR species between PM1 and PM2.5, yet substantial mass fractions of aerosol species were observed in the size range of 1-2.5 µm. On average, NR-PM1-2.5 contributed 53 % of the total NR-PM2.5, with sulfate and secondary organic aerosols (SOAs) being the two largest contributors (26 and 27 %, respectively). Positive matrix factorization of organic aerosol showed similar temporal variations in both primary and secondary OAs between PM1 and PM2.5, although the mass spectra were slightly different due to more thermal decomposition on the capture vaporizer of the PM2.5-Q-ACSM. We observed an enhancement of SOA under high relative humidity conditions, which is associated with simultaneous increases in aerosol pH, gas-phase species (NO2, SO2, and NH3) concentrations and aerosol water content driven by secondary inorganic aerosols. These results likely indicate an enhanced reactive uptake of SOA precursors upon aqueous particles. Therefore, reducing anthropogenic NOx, SO2, and NH3 emissions might not only reduce secondary inorganic aerosols but also the SOA burden during haze episodes in China.

  10. a Study of the Origin of Atmospheric Organic Aerosols

    Science.gov (United States)

    Hildemann, Lynn Mary

    1990-01-01

    The sources of ambient organic particulate matter in urban areas are investigated through a program of emission source measurements, atmospheric measurements, and mathematical modeling of source/receptor relationships. A dilution sampler intended to collect fine organic aerosol from combustion sources is designed to simulate atmospheric cooling and dilution processes, so that organic vapors which condense under ambient conditions will be collected as particulate matter. This system is used to measure the emissions from a boiler burning distillate oil, a home fireplace, catalyst and noncatalyst automobiles, heavy-duty diesel trucks, natural gas home appliances, and meat cooking operations. Alternate techniques are used to sample the particulate matter emitted from cigarette smoking, a roofing tar pot, paved road dust, brake lining wear, tire wear, and vegetative detritus. The bulk chemical characteristics of the fine aerosol fraction are presented for each source. Over half of the fine aerosol mass emitted from automobiles, wood burning, meat cooking, home appliances, cigarettes, and tar pots is shown to consist of organic compounds. The organic material collected from these sources is analyzed using high-resolution gas chromatography. Using a simple analytical protocol, a quantitative, 50-parameter characterization of the elutable fine organic aerosol emitted from each source type is obtained, which proves to be a unique fingerprint that can be used to distinguish most sources from each other. A mathematical model is used to predict the characteristics of fine ambient organic aerosol in the Los Angeles area that would prevail if the primary organic emissions are transported without chemical reaction. The model is found to track the seasonal variations observed in the ambient aerosol at the three sites studied. Emissions from vehicles and fireplaces are identified as significant sources of solvent-extractable organic aerosol. Differences between the model

  11. Formation of the natural sulfate aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Kerminen, V M; Hillamo, R; Maekinen, M; Virkkula, A; Maekelae, T; Pakkanen, T [Helsinki Univ. (Finland). Dept. of Physics

    1997-12-31

    Anthropogenic sulfate aerosol, together with particles from biomass burning, may significantly reduce the climatic warming due to man-made greenhouse gases. The radiative forcing of aerosol particles is based on their ability to scatter and absorb solar radiation (direct effect), and on their influences on cloud albedos and lifetimes (indirect effect). The direct aerosol effect depends strongly on the size, number and chemical composition of particles, being greatest for particles of 0.1-1 {mu}m in diameter. The indirect aerosol effect is dictated by the number of particles being able to act as cloud condensation nuclei (CCN). For sulfate particles, the minimum CCN size in tropospheric clouds is of the order of 0.05-0.2 {mu}m. To improve aerosol parameterizations in future climate models, it is required that (1) both primary and secondary sources of various particle types will be characterized at a greater accuracy, and (2) the influences of various atmospheric processes on the spatial and temporal distribution of these particles and their physico-chemical properties are known much better than at the present. In estimating the climatic forcing due to the sulfate particles, one of the major problems is to distinguish between sulfur from anthropogenic sources and that of natural origin. Global emissions of biogenic and anthropogenic sulfate pre-cursors are comparable in magnitude, but over regional scales either of these two source types may dominate. The current presentation is devoted to discussing the natural sulfate aerosol, including the formation of sulfur-derived particles in the marine environment, and the use of particulate methanesulfonic acid (MSA) as a tracer for the natural sulfate

  12. Formation of the natural sulfate aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Kerminen, V.M.; Hillamo, R.; Maekinen, M.; Virkkula, A.; Maekelae, T.; Pakkanen, T. [Helsinki Univ. (Finland). Dept. of Physics

    1996-12-31

    Anthropogenic sulfate aerosol, together with particles from biomass burning, may significantly reduce the climatic warming due to man-made greenhouse gases. The radiative forcing of aerosol particles is based on their ability to scatter and absorb solar radiation (direct effect), and on their influences on cloud albedos and lifetimes (indirect effect). The direct aerosol effect depends strongly on the size, number and chemical composition of particles, being greatest for particles of 0.1-1 {mu}m in diameter. The indirect aerosol effect is dictated by the number of particles being able to act as cloud condensation nuclei (CCN). For sulfate particles, the minimum CCN size in tropospheric clouds is of the order of 0.05-0.2 {mu}m. To improve aerosol parameterizations in future climate models, it is required that (1) both primary and secondary sources of various particle types will be characterized at a greater accuracy, and (2) the influences of various atmospheric processes on the spatial and temporal distribution of these particles and their physico-chemical properties are known much better than at the present. In estimating the climatic forcing due to the sulfate particles, one of the major problems is to distinguish between sulfur from anthropogenic sources and that of natural origin. Global emissions of biogenic and anthropogenic sulfate pre-cursors are comparable in magnitude, but over regional scales either of these two source types may dominate. The current presentation is devoted to discussing the natural sulfate aerosol, including the formation of sulfur-derived particles in the marine environment, and the use of particulate methanesulfonic acid (MSA) as a tracer for the natural sulfate

  13. Continuous measurements at the urban roadside in an Asian megacity by Aerosol Chemical Speciation Monitor (ACSM): particulate matter characteristics during fall and winter seasons in Hong Kong

    Science.gov (United States)

    Sun, C.; Lee, B. P.; Huang, D.; Jie Li, Y.; Schurman, M. I.; Louie, P. K. K.; Luk, C.; Chan, C. K.

    2016-02-01

    Non-refractory submicron aerosol is characterized using an Aerosol Chemical Speciation Monitor (ACSM) in the fall and winter seasons of 2013 on the roadside in an Asian megacity environment in Hong Kong. Organic aerosol (OA), characterized by application of Positive Matrix Factorization (PMF), and sulfate are found to be dominant. Traffic-related organic aerosol shows good correlation with other vehicle-related species, and cooking aerosol displays clear mealtime concentration maxima and association with surface winds from restaurant areas. Contributions of individual species and OA factors to high NR-PM1 are analyzed for hourly data and daily data; while cooking emissions in OA contribute to high hourly concentrations, particularly during mealtimes, secondary organic aerosol components are responsible for episodic events and high day-to-day PM concentrations. Clean periods are either associated with precipitation, which reduces secondary OA with a lesser impact on primary organics, or clean oceanic air masses with reduced long-range transport and better dilution of local pollution. Haze events are connected with increases in contribution of secondary organic aerosol, from 30 to 50 % among total non-refractory organics, and the influence of continental air masses.

  14. Continuous measurements at the urban roadside in an Asian megacity by Aerosol Chemical Speciation Monitor (ACSM: particulate matter characteristics during fall and winter seasons in Hong Kong

    Directory of Open Access Journals (Sweden)

    C. Sun

    2016-02-01

    Full Text Available Non-refractory submicron aerosol is characterized using an Aerosol Chemical Speciation Monitor (ACSM in the fall and winter seasons of 2013 on the roadside in an Asian megacity environment in Hong Kong. Organic aerosol (OA, characterized by application of Positive Matrix Factorization (PMF, and sulfate are found to be dominant. Traffic-related organic aerosol shows good correlation with other vehicle-related species, and cooking aerosol displays clear mealtime concentration maxima and association with surface winds from restaurant areas. Contributions of individual species and OA factors to high NR-PM1 are analyzed for hourly data and daily data; while cooking emissions in OA contribute to high hourly concentrations, particularly during mealtimes, secondary organic aerosol components are responsible for episodic events and high day-to-day PM concentrations. Clean periods are either associated with precipitation, which reduces secondary OA with a lesser impact on primary organics, or clean oceanic air masses with reduced long-range transport and better dilution of local pollution. Haze events are connected with increases in contribution of secondary organic aerosol, from 30 to 50 % among total non-refractory organics, and the influence of continental air masses.

  15. Synthesis, microstructural characterization and optical properties of CuO nanorods and nanowires obtained by aerosol assisted CVD

    International Nuclear Information System (INIS)

    Lugo-Ruelas, M.; Amézaga-Madrid, P.; Esquivel-Pereyra, O.; Antúnez-Flores, W.; Pizá-Ruiz, P.; Ornelas-Gutiérrez, C.; Miki-Yoshida, M.

    2015-01-01

    Highlights: • Nanorods and nanowires of CuO were successfully synthesized by AACVD technique. • The carrier gas velocity was a determinant factor for the growth of nanorods or nanowires. • The increase of deposition time generates the reduction in the evenness and distribution density. • The crystalline phase of nanorods and nanowires was monoclinic tenorite. - Abstract: Copper oxide is a particularly interesting material because it presents photovoltaic, electrochemical and catalytic properties. Its unique properties are very important in the area of nanotechnology and may be an advantage because these nanomaterials can be applied in the design and manufacture of nanosensors, photocatalysis area, nanolasers switches and transistors. Nowadays one-dimensional nanostructures as nanorods, nanowires, etc., have generated a great importance and have received considerable attention and study due to their unique physical and chemical properties. In this work we report the synthesis, microstructural characterization and optical properties of CuO nanorods and nanowires grown by aerosol assisted chemical vapor deposition onto a CuO, ZnO and TiO 2 thin film covered and bare borosilicate glass substrate. Concentration of the precursor solution and carrier gas flux were previously optimized and fixed at 0.1 mol dm −3 and 5 L min −1 , respectively. Other deposition parameters such as substrate temperature, as well the carrier gas velocity and deposition time were varied from 623 to 973 K, 0.88 to 1.77 m s −1 and 11 to 16 min, respectively. Their influence on the morphology, microstructure and optical properties of the nanorods and nanowires were analyzed. The crystalline structure of the materials was characterized by grazing incidence X-ray diffraction; results indicate the presence of the tenorite phase. Surface morphology and microstructure were studied by field emission scanning electron microscopy, and high resolution transmission electron microscopy. Optical

  16. Chemical composition and sources of organic aerosols over London from the ClearfLo 2012 campaigns

    Science.gov (United States)

    Finessi, Emanuela; Holmes, Rachel; Hopkins, James; Lee, James; Harrison, Roy; Hamilton, Jacqueline

    2014-05-01

    Air quality in urban areas represents a major public health issue with around one third of the European population concentrated in cities and numbers expected to increase at global scale, particularly in developing countries. Particulate matter (PM) represents a primary threat for human health as numerous studies have confirmed the association between increased levels of cardiovascular and respiratory diseases with the exposure to PM. Despite considerable efforts made in improving air quality and progressively stricter emissions regulations, the PM concentrations have not changed much over the past decades for reasons that remain unclear, and highlight that studies on PM source apportionment are required for the formulation of effective policy. We investigated the chemical composition of organic aerosol (OA) collected during two intensive field campaigns held in winter and summer 2012 in the frame of the project Clean air for London (http://www.clearflo.ac.uk/). PM samples were collected both at a city background site (North Kensington) and at a rural site 50 km southeast of London (Detling) with 8 to 24 hours sampling schedule and analysed using off-line methods. Thermal-optical analysis was used to quantify OC-EC components while a suite of soft ionization mass spectrometric techniques was deployed for detailed chemical characterization. Liquid chromatography mass Spectrometry (LC-MSn) was mostly used for the simultaneous detection and quantification of various tracers for both primary and secondary OA sources. Well-established markers for wood burning primary OA like levoglucosan and azelaic acid were quantified together with various classes of nitroaromatics including methyl-nitrocatechols that are potential tracers for wood burning secondary OA. In addition, oxidation products of biogenic VOCs such as isoprene and monoterpenes were also quantified for both seasons and sites. A non-negligible contribution from biogenic SOA to urban OA was found in summertime

  17. Elucidating determinants of aerosol composition through particle-type-based receptor modeling

    Science.gov (United States)

    McGuire, M. L.; Jeong, C.-H.; Slowik, J. G.; Chang, R. Y.-W.; Corbin, J. C.; Lu, G.; Mihele, C.; Rehbein, P. J. G.; Sills, D. M. L.; Abbatt, J. P. D.; Brook, J. R.; Evans, G. J.

    2011-08-01

    An aerosol time-of-flight mass spectrometer (ATOFMS) was deployed at a semi-rural site in southern Ontario to characterize the size and chemical composition of individual particles. Particle-type-based receptor modelling of these data was used to investigate the determinants of aerosol chemical composition in this region. Individual particles were classified into particle-types and positive matrix factorization (PMF) was applied to their temporal trends to separate and cross-apportion particle-types to factors. The extent of chemical processing for each factor was assessed by evaluating the internal and external mixing state of the characteristic particle-types. The nine factors identified helped to elucidate the coupled interactions of these determinants. Nitrate-laden dust was found to be the dominant type of locally emitted particles measured by ATOFMS. Several factors associated with aerosol transported to the site from intermediate local-to-regional distances were identified: the Organic factor was associated with a combustion source to the north-west; the ECOC Day factor was characterized by nearby local-to-regional carbonaceous emissions transported from the south-west during the daytime; and the Fireworks factor consisted of pyrotechnic particles from the Detroit region following holiday fireworks displays. Regional aerosol from farther emissions sources was reflected through three factors: two Biomass Burning factors and a highly chemically processed Long Range Transport factor. The Biomass Burning factors were separated by PMF due to differences in chemical processing which were in part elucidated by the passage of two thunderstorm gust fronts with different air mass histories. The remaining two factors, ECOC Night and Nitrate Background, represented the night-time partitioning of nitrate to pre-existing particles of different origins. The distinct meteorological conditions observed during this month-long study in the summer of 2007 provided a unique

  18. Chemical composition, sources, and aging process of submicron aerosols in Beijing: Contrast between summer and winter

    Science.gov (United States)

    Hu, Weiwei; Hu, Min; Hu, Wei; Jimenez, Jose L.; Yuan, Bin; Chen, Wentai; Wang, Ming; Wu, Yusheng; Chen, Chen; Wang, Zhibin; Peng, Jianfei; Zeng, Limin; Shao, Min

    2016-02-01

    To investigate the seasonal characteristics of submicron aerosol (PM1) in Beijing urban areas, a high-resolution time-of-flight aerosol-mass-spectrometer (HR-ToF-AMS) was utilized at an urban site in summer (August to September 2011) and winter (November to December 2010), coupled with multiple state of the art online instruments. The average mass concentrations of PM1 (60-84 µg m-3) and its chemical compositions in different campaigns of Beijing were relatively consistent in recent years. In summer, the daily variations of PM1 mass concentrations were stable and repeatable. Eighty-two percent of the PM1 mass concentration on average was composed of secondary species, where 62% is secondary inorganic aerosol and 20% secondary organic aerosol (SOA). In winter, PM1 mass concentrations changed dramatically because of the different meteorological conditions. The high average fraction (58%) of primary species in PM1 including primary organic aerosol (POA), black carbon, and chloride indicates primary emissions usually played a more important role in the winter. However, aqueous chemistry resulting in efficient secondary formation during occasional periods with high relative humidity may also contribute substantially to haze in winter. Results of past OA source apportionment studies in Beijing show 45-67% of OA in summer and 22-50% of OA in winter can be composed of SOA. Based on the source apportionment results, we found 45% POA in winter and 61% POA in summer are from nonfossil sources, contributed by cooking OA in both seasons and biomass burning OA (BBOA) in winter. Cooking OA, accounting for 13-24% of OA, is an important nonfossil carbon source in all years of Beijing and should not be neglected. The fossil sources of POA include hydrocarbon-like OA from vehicle emissions in both seasons and coal combustion OA (CCOA) in winter. The CCOA and BBOA were the two main contributors (57% of OA) for the highest OA concentrations (>100 µg m-3) in winter. The POA

  19. Relative humidity impact on aerosol parameters in a Paris suburban area

    Directory of Open Access Journals (Sweden)

    H. Randriamiarisoa

    2006-01-01

    Full Text Available Measurements of relative humidity (RH and aerosol parameters (scattering cross section, size distributions and chemical composition, performed in ambient atmospheric conditions, have been used to study the influence of relative humidity on aerosol properties. The data were acquired in a suburban area south of Paris, between 18 and 24 July 2000, in the framework of the 'Etude et Simulation de la Qualité de l'air en Ile-de-France' (ESQUIF program. According to the origin of the air masses arriving over the Paris area, the aerosol hygroscopicity is more or less pronounced. The aerosol chemical composition data were used as input of a thermodynamic model to simulate the variation of the aerosol water mass content with ambient RH and to determine the main inorganic salt compounds. The coupling of observations and modelling reveals the presence of deliquescence processes with hysteresis phenomenon in the hygroscopic growth cycle. Based on the Hänel model, parameterisations of the scattering cross section, the modal radius of the accumulation mode of the size distribution and the aerosol water mass content, as a function of increasing RH, have been assessed. For the first time, a crosscheck of these parameterisations has been performed and shows that the hygroscopic behaviour of the accumulation mode can be coherently characterized by combined optical, size distribution and chemical measurements.

  20. CdS thin films prepared by laser assisted chemical bath deposition

    International Nuclear Information System (INIS)

    Garcia, L.V.; Mendivil, M.I.; Garcia Guillen, G.; Aguilar Martinez, J.A.; Krishnan, B.; Avellaneda, D.; Castillo, G.A.; Das Roy, T.K.; Shaji, S.

    2015-01-01

    Highlights: • CdS thin films by conventional CBD and laser assisted CBD. • Characterized these films using XRD, XPS, AFM, optical and electrical measurements. • Accelerated growth was observed in the laser assisted CBD process. • Improved dark conductivity and good photocurrent response for the LACBD CdS. - Abstract: In this work, we report the preparation and characterization of CdS thin films by laser assisted chemical bath deposition (LACBD). CdS thin films were prepared from a chemical bath containing cadmium chloride, triethanolamine, ammonium hydroxide and thiourea under various deposition conditions. The thin films were deposited by in situ irradiation of the bath using a continuous laser of wavelength 532 nm, varying the power density. The thin films obtained during deposition of 10, 20 and 30 min were analyzed. The changes in morphology, structure, composition, optical and electrical properties of the CdS thin films due to in situ irradiation of the bath were analyzed by atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV–vis spectroscopy. The thin films obtained by LACBD were nanocrystalline, photoconductive and presented interesting morphologies. The results showed that LACBD is an effective synthesis technique to obtain nanocrystalline CdS thin films having good optoelectronic properties

  1. CdS thin films prepared by laser assisted chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, L.V.; Mendivil, M.I.; Garcia Guillen, G.; Aguilar Martinez, J.A. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); Krishnan, B. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); CIIDIT – Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico); Avellaneda, D.; Castillo, G.A.; Das Roy, T.K. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); Shaji, S., E-mail: sshajis@yahoo.com [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); CIIDIT – Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico)

    2015-05-01

    Highlights: • CdS thin films by conventional CBD and laser assisted CBD. • Characterized these films using XRD, XPS, AFM, optical and electrical measurements. • Accelerated growth was observed in the laser assisted CBD process. • Improved dark conductivity and good photocurrent response for the LACBD CdS. - Abstract: In this work, we report the preparation and characterization of CdS thin films by laser assisted chemical bath deposition (LACBD). CdS thin films were prepared from a chemical bath containing cadmium chloride, triethanolamine, ammonium hydroxide and thiourea under various deposition conditions. The thin films were deposited by in situ irradiation of the bath using a continuous laser of wavelength 532 nm, varying the power density. The thin films obtained during deposition of 10, 20 and 30 min were analyzed. The changes in morphology, structure, composition, optical and electrical properties of the CdS thin films due to in situ irradiation of the bath were analyzed by atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV–vis spectroscopy. The thin films obtained by LACBD were nanocrystalline, photoconductive and presented interesting morphologies. The results showed that LACBD is an effective synthesis technique to obtain nanocrystalline CdS thin films having good optoelectronic properties.

  2. Chemical and physical drivers of the evolution of organic aerosols over forests

    NARCIS (Netherlands)

    Janssen, R.H.H.

    2013-01-01

    Diurnal evolution of organic aerosol over boreal and tropical forests

    The first research question of this thesis is: how do local surface forcings and large-scale meteorological forcings shape the evolution of organic aerosol over the boreal and tropical forest? This

  3. Study on microwave assisted process in chemical extraction

    International Nuclear Information System (INIS)

    Amer Ali; Rosli Mohd Yunus; Ramlan Abd Aziz

    2001-01-01

    The microwave assisted process is a revolutionary method of extraction that reduces the extraction time to as little as a few seconds, with up to a ten-fold decrease in the use of solvents. The target material is immersed in solvent that is transparent to microwaves, so only the target material is heated, and because of the microwaves tend to heat the inside of the material quickly, the target chemical are expelled in a few seconds. benefits from this process include significant reductions in the amount of energy required and substantial reductions in the cost and dispose of hazardous solvents. A thorough review has been displayed on: using the microwave in extraction, applications of microwave in industry, process flow diagram, mechanism of the process and comparison between microwave process and other extraction techniques (soxhlet, steam distillation and supercritical fluid). This review attempts to summarize the studies about microwave assisted process as a very promising technique. (Author)

  4. Chemical-assisted phytoremediation of CD-PAHs contaminated soils using Solanum nigrum L.

    Science.gov (United States)

    Yang, Chuanjie; Zhou, Qixing; Wei, Shuhe; Hu, Yahu; Bao, Yanyu

    2011-09-01

    A well-characterized cadmium (Cd) hyperaccumulating plant Solanum nigrum was grown in Cd and polycyclic aromatic hydrocarbons (PAHs) co-contaminated soil that was repeatedly amended with chemicals, including EDTA, cysteine (CY), salicylic acid (Sa), and Tween 80 (TW80), to test individual and combined treatment effects on phytoremediation of Cd-PAHs contaminated soils. Plant growth was negatively affected by exogenous chemicals except for EDTA. S. nigrum could accumulate Cd in tissues without assistant chemicals, while there was no visible effect on the degradation of PAHs. Cysteine had significant effects on phytoextraction of Cd and the highest metal extraction ratio (1.27%) was observed in 0.9 mmol/kg CY treatment. Both salicylic acid and Tween 80 had stimulative effects on the degradation of PAHs and there was the maximal degradation rate (52.6%) of total PAHs while 0.9 mmol/kg Sa was applied. Furthermore, the combined treatment T(0.1EDTA+0.9CY+0.5TW80) and T(0.5EDTA+0.9CY+03Sa) could not only increase the accumulation of Cd in plant tissues, but also promote the degradation of PAHs. These results indicated that S. nigrum might be effective in phytoextracting Cd and enhancing the biodegradation of PAHs in the co-contaminated soils with assistant chemicals.

  5. Enhancement of the aerosol direct radiative effect by semi-volatile aerosol components: airborne measurements in North-Western Europe

    Directory of Open Access Journals (Sweden)

    W. T. Morgan

    2010-09-01

    Full Text Available A case study of atmospheric aerosol measurements exploring the impact of the vertical distribution of aerosol chemical composition upon the radiative budget in North-Western Europe is presented. Sub-micron aerosol chemical composition was measured by an Aerodyne Aerosol Mass Spectrometer (AMS on both an airborne platform and a ground-based site at Cabauw in the Netherlands. The examined period in May 2008 was characterised by enhanced pollution loadings in North-Western Europe and was dominated by ammonium nitrate and Organic Matter (OM. Both ammonium nitrate and OM were observed to increase with altitude in the atmospheric boundary layer. This is primarily attributed to partitioning of semi-volatile gas phase species to the particle phase at reduced temperature and enhanced relative humidity. Increased ammonium nitrate concentrations in particular were found to strongly increase the ambient scattering potential of the aerosol burden, which was a consequence of the large amount of associated water as well as the enhanced mass. During particularly polluted conditions, increases in aerosol optical depth of 50–100% were estimated to occur due to the observed increase in secondary aerosol mass and associated water uptake. Furthermore, the single scattering albedo was also shown to increase with height in the boundary layer. These enhancements combined to increase the negative direct aerosol radiative forcing by close to a factor of two at the median percentile level. Such increases have major ramifications for regional climate predictions as semi-volatile components are often not included in aerosol models.

    The results presented here provide an ideal opportunity to test regional and global representations of both the aerosol vertical distribution and subsequent impacts in North-Western Europe. North-Western Europe can be viewed as an analogue for the possible future air quality over other polluted regions of the Northern Hemisphere, where

  6. Development of Aerosol Scrubbing Test Loop for Containment Filtered Venting System

    International Nuclear Information System (INIS)

    Lee, Doo Yong; Jung, Woo Young; Lee, Hyun Chul; Lee, Jong Chan; Kim, Gyu Tae

    2016-01-01

    The scrubber tank is filled with scrubbing water with the chemical additives. The droplet separator based on a cyclone is installed above the scrubbing water pool to remove the large droplets that may clog a metal fiber filter installed at the upper section of the scrubber tank. The outlet piping is connected from the scrubber tank to the molecular sieve to chemically remove the gaseous iodine. The aerosol as a particle is physically captured in the scrubbing water pool passing through the scrubbing nozzle as well as the metal fiber filter. The gaseous iodine such as molecular iodine as well as organic iodide is chemically removed in the scrubbing water pool and molecular sieve. The thermal-hydraulic as well as scrubbing performance for the CFVS should be verified with the experiments. The experiment can be divided into the filtration component based experiment and whole system based one. In this paper, the aerosol scrubbing test loop developed to test the thermal-hydraulic and aerosol scrubbing performance of the scrubbing nozzle with the scrubbing water pool is introduced. The aerosol scrubbing test loop has been developed as a part of the Korean CFVS project. In this loop, the filtration components such as the scrubbing nozzle submerged in the scrubbing water pool as well as the cyclone as droplet separator can be tested under the CFVS operating conditions. The aerosol scrubbing performance of the filtration components including pool scrubbing behavior can be tested with the aerosol generation and feeding system and aerosol measurement system.

  7. Development of Aerosol Scrubbing Test Loop for Containment Filtered Venting System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Doo Yong; Jung, Woo Young; Lee, Hyun Chul; Lee, Jong Chan; Kim, Gyu Tae [FNC Technology, Yongin (Korea, Republic of)

    2016-05-15

    The scrubber tank is filled with scrubbing water with the chemical additives. The droplet separator based on a cyclone is installed above the scrubbing water pool to remove the large droplets that may clog a metal fiber filter installed at the upper section of the scrubber tank. The outlet piping is connected from the scrubber tank to the molecular sieve to chemically remove the gaseous iodine. The aerosol as a particle is physically captured in the scrubbing water pool passing through the scrubbing nozzle as well as the metal fiber filter. The gaseous iodine such as molecular iodine as well as organic iodide is chemically removed in the scrubbing water pool and molecular sieve. The thermal-hydraulic as well as scrubbing performance for the CFVS should be verified with the experiments. The experiment can be divided into the filtration component based experiment and whole system based one. In this paper, the aerosol scrubbing test loop developed to test the thermal-hydraulic and aerosol scrubbing performance of the scrubbing nozzle with the scrubbing water pool is introduced. The aerosol scrubbing test loop has been developed as a part of the Korean CFVS project. In this loop, the filtration components such as the scrubbing nozzle submerged in the scrubbing water pool as well as the cyclone as droplet separator can be tested under the CFVS operating conditions. The aerosol scrubbing performance of the filtration components including pool scrubbing behavior can be tested with the aerosol generation and feeding system and aerosol measurement system.

  8. Aged organic aerosol in the Eastern Mediterranean: the Finokalia Aerosol Measurement Experiment – 2008

    Directory of Open Access Journals (Sweden)

    L. Hildebrandt

    2010-05-01

    Full Text Available Aged organic aerosol (OA was measured at a remote coastal site on the island of Crete, Greece during the Finokalia Aerosol Measurement Experiment-2008 (FAME-2008, which was part of the EUCAARI intensive campaign of May 2008. The site at Finokalia is influenced by air masses from different source regions, including long-range transport of pollution from continental Europe. A quadrupole aerosol mass spectrometer (Q-AMS was employed to measure the size-resolved chemical composition of non-refractory submicron aerosol (NR-PM1, and to estimate the extent of oxidation of the organic aerosol. Factor analysis was used to gain insights into the processes and sources affecting the OA composition. The particles were internally mixed and liquid. The largest fraction of the dry NR-PM1 sampled was ammonium sulfate and ammonium bisulfate, followed by organics and a small amount of nitrate. The variability in OA composition could be explained with two factors of oxygenated organic aerosol (OOA with differing extents of oxidation but similar volatility. Hydrocarbon-like organic aerosol (HOA was not detected. There was no statistically significant diurnal variation in the bulk composition of NR-PM1 such as total sulfate or total organic aerosol concentrations. However, the OA composition exhibited statistically significant diurnal variation with more oxidized OA in the afternoon. The organic aerosol was highly oxidized, regardless of the source region. Total OA concentrations also varied little with source region, suggesting that local sources had only a small effect on OA concentrations measured at Finokalia. The aerosol was transported for about one day before arriving at the site, corresponding to an OH exposure of approximately 4×1011 molecules cm−3 s. The constant extent of oxidation suggests that atmospheric aging results in a highly oxidized OA at these OH exposures, regardless of the aerosol source.

  9. Organics, Meteoritic Material, and other Elements in High Altitude Aerosols

    Science.gov (United States)

    Mahoney, M.; Murphy, D. M.; Thomson, D. S.

    1998-01-01

    Recent in situ measurements of the chemical composition of single aerosol particles at altitudes up to 19 km have revealed a number of surprising features about ambient particles. Upper tropospheric aerosols in the study region often contained more organic material than sulfate.

  10. Atmo-metabolomics: a new measurement approach for investigating aerosol composition and ecosystem functioning.

    Science.gov (United States)

    Rivas-Ubach, A.; Liu, Y.; Sardans, J.; Tfaily, M. M.; Kim, Y. M.; Bourrianne, E.; Paša-Tolić, L.; Penuelas, J.; Guenther, A. B.

    2016-12-01

    Aerosols play crucial roles in the processes controlling the composition of the atmosphere and the functioning of ecosystems. Gaining a deeper understanding of the chemical composition of aerosols is one of the major challenges for atmospheric and climate scientists and is beginning to be recognized as important for ecological research. Better comprehension of aerosol chemistry can potentially provide valuable information on atmospheric processes such as oxidation of organics and the production of cloud condensation nuclei as well as provide an approximation of the general status of an ecosystem through the measurement of certain stress biomarkers. In this study, we describe an efficient aerosol sampling method, the metabolite extraction and the analytical procedures for the chemical characterization of aerosols, namely, the atmo-metabolome. We used mass spectrometry (MS) coupled to liquid chromatography (LC-MS), gas chromatography (GC-MS) and Fourier transform ion cyclotron resonance (FT-ICR-MS) to characterize the atmo-metabolome of two marked seasons; spring and summer. Our sampling and extraction methods demonstrated to be suitable for aerosol chemical characterization with any of the analytical platforms used in this study. The atmo-metabolome between spring and summer showed overall statistically differences. We identified several metabolites that can be attributed to pollen and other plant-related aerosols. Spring aerosols exhibit higher concentrations of metabolites linked to higher plant activity while summer samples had higher concentrations of metabolites that may reflect certain oxidative stresses in primary producers. Moreover, the elemental composition of aerosols showed clear different between seasons. Summer aerosols were generally higher in molecular weight and with higher O/C ratios, indicating higher oxidation levels and condensation of compounds relative to spring. Our method represents an advanced approach for characterizing the composition of

  11. Loading capacity of various filters for lithium fire generated aerosols

    International Nuclear Information System (INIS)

    Jeppson, D.W.; Barreca, J.R.

    1980-01-01

    The lithium aerosol loading capacity of a prefilter, HEPA filters and a sand and gravel bed filter was determined. The test aerosol was characterized and was generated by burning lithium in an unlimited air atmosphere. Correlation to sodium aerosol loading capacities were made to relate existing data to lithium aerosol loadings under varying conditions. This work is being conducted in support of the fusion reactor safety program. The lithium aerosol was generated by burning lithium pools, up to 45 kgs, in a 340 m 3 low humidity air atmosphere to supply aerosol to recirculating filter test loops. The aerosol was sampled to determine particle size, mass concentrations and chemical species. The dew point and gas concentrations were monitored throughout the tests. Loop inlet aerosol mass concentrations ranged up to 5 gr/m 3 . Chemical compounds analyzed to be present in the aerosol include Li 2 O, LiOH, and Li 2 CO 3 . HEPA filters with and without separators and a prefilter and HEPA filter in series were loaded with 7.8 to 11.1 kg/m 2 of aerosol at a flow rate of 1.31 m/sec and 5 kPa pressure drop. The HEPA filter loading capacity was determined to be greater at a lower flow rate. The loading capacity increased from 0.4 to 2.8 kg by decreasing the flow rate from 1.31 to 0.26 m/sec for a pressure drop of 0.11 kPa due to aerosol buildup. The prefilter tested in series with a HEPA did not increase the total loading capacity significantly for the same total pressure drop. Separators in the HEPA had only minor effect on loading capacity. The sand and gravel bed filter loaded to 0.50 kg/m 2 at an aerosol flow rate of 0.069 m/sec and final pressure drop of 6.2 kPa. These loading capacities and their dependence on test variables are similar to those reported for sodium aerosols except for the lithium aerosol HEPA loading capacity dependence upon flow rate

  12. Atmospheric and aerosol chemistry

    International Nuclear Information System (INIS)

    McNeill, V. Faye; Ariya, Parisa A.; McGill Univ. Montreal, QC

    2014-01-01

    This series presents critical reviews of the present position and future trends in modern chemical research. Short and concise reports on chemistry, each written by the world renowned experts. Still valid and useful after 5 or 10 years. More information as well as the electronic version of the whole content available at: springerlink.com. Christian George, Barbara D'Anna, Hartmut Herrmann, Christian Weller, Veronica Vaida, D. J. Donaldson, Thorsten Bartels-Rausch, Markus Ammann Emerging Areas in Atmospheric Photochemistry. Lisa Whalley, Daniel Stone, Dwayne Heard New Insights into the Tropospheric Oxidation of Isoprene: Combining Field Measurements, Laboratory Studies, Chemical Modelling and Quantum Theory. Neil M. Donahue, Allen L. Robinson, Erica R. Trump, Ilona Riipinen, Jesse H. Kroll Volatility and Aging of Atmospheric Organic Aerosol. P. A. Ariya, G. Kos, R. Mortazavi, E. D. Hudson, V. Kanthasamy, N. Eltouny, J. Sun, C. Wilde Bio-Organic Materials in the Atmosphere and Snow: Measurement and Characterization V. Faye McNeill, Neha Sareen, Allison N. Schwier Surface-Active Organics in Atmospheric Aerosols.

  13. Single-particle characterization of the high-Arctic summertime aerosol

    Directory of Open Access Journals (Sweden)

    B. Sierau

    2014-07-01

    Full Text Available Single-particle mass-spectrometric measurements were carried out in the high Arctic north of 80° during summer 2008. The campaign took place onboard the icebreaker Oden and was part of the Arctic Summer Cloud Ocean Study (ASCOS. The instrument deployed was an aerosol time-of-flight mass spectrometer (ATOFMS that provides information on the chemical composition of individual particles and their mixing state in real time. Aerosols were sampled in the marine boundary layer at stations in the open ocean, in the marginal ice zone, and in the pack ice region. The largest fraction of particles detected for subsequent analysis in the size range of the ATOFMS between approximately 200 and 3000 nm in diameter showed mass-spectrometric patterns, indicating an internal mixing state and a biomass burning and/or biofuel source. The majority of these particles were connected to an air mass layer of elevated particle concentration mixed into the surface mixed layer from the upper part of the marine boundary layer. The second largest fraction was represented by sea salt particles. The chemical analysis of the over-ice sea salt aerosol revealed tracer compounds that reflect chemical aging of the particles during their long-range advection from the marginal ice zone, or open waters south thereof prior to detection at the ship. From our findings we conclude that long-range transport of particles is one source of aerosols in the high Arctic. To assess the importance of long-range particle sources for aerosol–cloud interactions over the inner Arctic in comparison to local and regional biogenic primary aerosol sources, the chemical composition of the detected particles was analyzed for indicators of marine biological origin. Only a minor fraction showed chemical signatures of potentially ocean-derived primary particles of that kind. However, a chemical bias in the ATOFMS's detection capabilities observed during ASCOS might suggest the presence of a particle type of

  14. Combustion aerosols from potassium-containing fuels

    Energy Technology Data Exchange (ETDEWEB)

    Balzer Nielsen, Lars

    1999-12-31

    The scope of the work presented in this thesis is the formation and evolution of aerosol particles in the submicron range during combustion processes, in particular where biomass is used alone or co-fired with coal. An introduction to the formation processes of fly ash in general and submicron aerosol in particular during combustion is presented, along with some known problems related to combustion of biomass for power generation. The work falls in two parts. The first is the design of a laboratory setup for investigation of homogeneous nucleation and particle dynamics at high temperature. The central unit of the setup is a laminar flow aerosol condenser (LFAC), which essentially is a 173 cm long tubular furnace with an externally cooled wall. A mathematical model is presented which describes the formation and evolution of the aerosol in the LFAC, where the rate of formation of new nuclei is calculated using the so-called classical theory. The model includes mass and energy conservation equations and an expression for the description of particle growth by diffusion. The resulting set of nonlinear second-order partial differential equations are solved numerically using the method of orthogonal collocation. The model is implemented in the FORTRAN code MONAERO. The second part of this thesis describes a comprehensive investigation of submicron aerosol formation during co-firing of coal and straw carried out at a 380 MW{sub Th} pulverized coal unit at Studstrup Power Plant, Aarhus. Three types of coal are used, and total boiler load and straw input is varied systematically. Straw contains large amounts of potassium, which is released during combustion. Submicron aerosol is sampled between the two banks of the economizer at a flue gas temperature of 350 deg. C using a novel ejector probe. The aerosol is characterized using the SMPS system and a Berner-type low pressure impactor. The chemical composition of the particles collected in the impactor is determined using

  15. Combustion aerosols from potassium-containing fuels

    International Nuclear Information System (INIS)

    Balzer Nielsen, Lars

    1998-01-01

    The scope of the work presented in this thesis is the formation and evolution of aerosol particles in the submicron range during combustion processes, in particular where biomass is used alone or co-fired with coal. An introduction to the formation processes of fly ash in general and submicron aerosol in particular during combustion is presented, along with some known problems related to combustion of biomass for power generation. The work falls in two parts. The first is the design of a laboratory setup for investigation of homogeneous nucleation and particle dynamics at high temperature. The central unit of the setup is a laminar flow aerosol condenser (LFAC), which essentially is a 173 cm long tubular furnace with an externally cooled wall. A mathematical model is presented which describes the formation and evolution of the aerosol in the LFAC, where the rate of formation of new nuclei is calculated using the so-called classical theory. The model includes mass and energy conservation equations and an expression for the description of particle growth by diffusion. The resulting set of nonlinear second-order partial differential equations are solved numerically using the method of orthogonal collocation. The model is implemented in the FORTRAN code MONAERO. The second part of this thesis describes a comprehensive investigation of submicron aerosol formation during co-firing of coal and straw carried out at a 380 MW Th pulverized coal unit at Studstrup Power Plant, Aarhus. Three types of coal are used, and total boiler load and straw input is varied systematically. Straw contains large amounts of potassium, which is released during combustion. Submicron aerosol is sampled between the two banks of the economizer at a flue gas temperature of 350 deg. C using a novel ejector probe. The aerosol is characterized using the SMPS system and a Berner-type low pressure impactor. The chemical composition of the particles collected in the impactor is determined using chemical

  16. Combustion aerosols from potassium-containing fuels

    Energy Technology Data Exchange (ETDEWEB)

    Balzer Nielsen, Lars

    1998-12-31

    The scope of the work presented in this thesis is the formation and evolution of aerosol particles in the submicron range during combustion processes, in particular where biomass is used alone or co-fired with coal. An introduction to the formation processes of fly ash in general and submicron aerosol in particular during combustion is presented, along with some known problems related to combustion of biomass for power generation. The work falls in two parts. The first is the design of a laboratory setup for investigation of homogeneous nucleation and particle dynamics at high temperature. The central unit of the setup is a laminar flow aerosol condenser (LFAC), which essentially is a 173 cm long tubular furnace with an externally cooled wall. A mathematical model is presented which describes the formation and evolution of the aerosol in the LFAC, where the rate of formation of new nuclei is calculated using the so-called classical theory. The model includes mass and energy conservation equations and an expression for the description of particle growth by diffusion. The resulting set of nonlinear second-order partial differential equations are solved numerically using the method of orthogonal collocation. The model is implemented in the FORTRAN code MONAERO. The second part of this thesis describes a comprehensive investigation of submicron aerosol formation during co-firing of coal and straw carried out at a 380 MW{sub Th} pulverized coal unit at Studstrup Power Plant, Aarhus. Three types of coal are used, and total boiler load and straw input is varied systematically. Straw contains large amounts of potassium, which is released during combustion. Submicron aerosol is sampled between the two banks of the economizer at a flue gas temperature of 350 deg. C using a novel ejector probe. The aerosol is characterized using the SMPS system and a Berner-type low pressure impactor. The chemical composition of the particles collected in the impactor is determined using

  17. MATRIX-VBS (v1.0): Implementing an Evolving Organic Aerosol Volatility in an Aerosol Microphysics Model

    Science.gov (United States)

    Gao, Chloe Y.; Tsigaridis, Kostas; Bauer, Susanne E.

    2017-01-01

    The gas-particle partitioning and chemical aging of semi-volatile organic aerosol are presented in a newly developed box model scheme, where its effect on the growth, composition, and mixing state of particles is examined. The volatility-basis set (VBS) framework is implemented into the aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state), which resolves mass and number aerosol concentrations and in multiple mixing-state classes. The new scheme, MATRIX-VBS, has the potential to significantly advance the representation of organic aerosols in Earth system models by improving upon the conventional representation as non-volatile particulate organic matter, often also with an assumed fixed size distribution. We present results from idealized cases representing Beijing, Mexico City, a Finnish forest, and a southeastern US forest, and investigate the evolution of mass concentrations and volatility distributions for organic species across the gas and particle phases, as well as assessing their mixing state among aerosol populations. Emitted semi-volatile primary organic aerosols evaporate almost completely in the intermediate-volatility range, while they remain in the particle phase in the low-volatility range. Their volatility distribution at any point in time depends on the applied emission factors, oxidation by OH radicals, and temperature. We also compare against parallel simulations with the original scheme, which represented only the particulate and non-volatile component of the organic aerosol, examining how differently the condensed-phase organic matter is distributed across the mixing states in the model. The results demonstrate the importance of representing organic aerosol as a semi-volatile aerosol, and explicitly calculating the partitioning of organic species between the gas and particulate phases.

  18. Photochemistry of limonene secondary organic aerosol studied with chemical ionization mass spectrometry

    Science.gov (United States)

    Pan, Xiang

    Limonene is one of the most abundant monoterpenes in the atmosphere. Limonene easily reacts with gas-phase oxidants in air such as NO3, ozone and OH. Secondary organic aerosol (SOA) is formed when low vapor pressure products condense into particles. Chemicals in SOA particles can undergo further reactions with oxidants and with solar radiation that significantly change SOA composition over the course of several days. The goal of this work was to characterize radiation induced reaction in SOA. To perform experiments, we have designed and constructed an Atmospheric Pressure Chemical Ionization Mass Spectrometer (APCIMS) coupled to a photochemical cell containing SOA samples. In APCIMS, (H2O)nH 3O+ clusters are generated in a 63Ni source and react with gaseous organic analytes. Most organic chemicals are not fragmented by the ionization process. We have focused our attention on limonene SOA prepared in two different ways. The first type of SOA is produced by oxidation of limonene by ozone; and the second type of SOA is formed by the NO3-induced oxidation of limonene. They model the SOA formed under daytime and nighttime conditions, respectively. Ozone initiated oxidation is the most important chemical sink for limonene both indoors, where it is used for cleaning purposes, and outdoors. Terpenes are primarily oxidized by reactions with NO3 at night time. We generated limonene SOA under different ozone and limonene concentrations. The resulting SOA samples were exposed to wavelength-tunable radiation in the UV-Visible range between 270 nm and 630 nm. The results show that the photodegradation rates strongly depend on radiation wavelengths. Gas phase photodegradation products such as acetone, formaldehyde, acetaldehyde, and acetic acid were shown to have different production rates for SOA formed in different concentration conditions. Even for SOA prepared under the lowest concentrations, the SOA photodegradation was efficient. The conclusion is that exposure of SOA to

  19. Carbonaceous aerosols from prescribed burning of a boreal forest ecosystem

    International Nuclear Information System (INIS)

    Mazurek, M.A.; Cofer, W.R. III; Levine, J.S.

    1991-01-01

    Smoke aerosol and background aerosol particles were collected from the controlled burning of boreal forest where vegetation species and relative mass distributions are known. Chemical mass balances were constructed for the total mass of carbonaceous aerosol particles emitted during the prescribed burn. In addition, a carbonaceous species inventory was developed for aerosol particles presnt under background, smoldering, and full-fire conditions; the production of organic carbon and elemental carbon particles is noted for these two fire regimes. Distributions of the solvent-soluble organic components of the sampled aerosols were generated to identify molecular properties that can be traced to unburned and pyrolyzed materials present in the boreal forest fuels

  20. Chemistry studies in support of Phebus-FP: multicomponent aerosol behaviour. V. 1

    International Nuclear Information System (INIS)

    1992-01-01

    A major programme of integral tests has been completed in the Falcon facility at Winfrith. This two-year programme was designed to study the transport of fission product vapours and aerosols under severe accident conditions. Simulant or trace-irradiated fuel samples were heated up to 2000 deg K together with bulk-reactor materials, and the transport of the released fission products was followed through a pathway that simulated to some degree the upper plenum, hot-leg structures and the containment. Various analytical techniques were used to provide information on the chemical species and physical forms of the release. Mass spectrometry was developed to sample the high-temperature vapours at ambient pressure and determine their chemical forms, on-line gamma-ray spectroscopy was used to distinguish between gas-borne and deposited radionuclides, and speciation samplers (Maypacks) were used to follow the chemical behaviour of iodine within the containment vessel as a function of time. The experiments were designed and analysed with the assistance of modelling specialists to maximize the benefit of this work for the assessment and development of primary circuit and containment codes

  1. Investigating the role of chemical and physical processes on organic aerosol modelling with CAMx in the Po Valley during a winter episode

    Science.gov (United States)

    Meroni, A.; Pirovano, G.; Gilardoni, S.; Lonati, G.; Colombi, C.; Gianelle, V.; Paglione, M.; Poluzzi, V.; Riva, G. M.; Toppetti, A.

    2017-12-01

    Traditional aerosol mechanisms underestimate the observed organic aerosol concentration, especially due to the lack of information on secondary organic aerosol (SOA) formation and processing. In this study we evaluate the chemical and transport model CAMx during a one-month in winter (February 2013) over a 5 km resolution domain, covering the whole Po valley (Northern Italy). This works aims at investigating the effects of chemical and physical atmospheric processing on modelling results and, in particular, to evaluate the CAMx sensitivity to organic aerosol (OA) modelling schemes: we will compare the recent 1.5D-VBS algorithm (CAMx-VBS) with the traditional Odum 2-product model (CAMx-SOAP). Additionally, the thorough diagnostic analysis of the reproduction of meteorology, precursors and aerosol components was intended to point put strength and weaknesses of the modelling system and address its improvement. Firstly, we evaluate model performance for criteria PM concentration. PM10 concentration was underestimated both by CAMx-SOAP and even more by CAMx-VBS, with the latter showing a bias ranging between -4.7 and -7.1 μg m-3. PM2.5 model performance was to some extent better than PM10, showing a mean bias ranging between -0.5 μg m-3 at rural sites and -5.5 μg m-3 at urban and suburban sites. CAMx performance for OA was clearly worse than for the other PM compounds (negative bias ranging between -40% and -75%). The comparisons of model results with OA sources (identified by PMF analysis) shows that the VBS scheme underestimates freshly emitted organic aerosol while SOAP overestimates. The VBS scheme correctly reproduces biomass burning (BBOA) contributions to primary OA concentrations (POA). In contrast VBS slightly underestimates the contribution from fossil-fuel combustion (HOA), indicating that POA emissions related to road transport are either underestimated or associated to higher volatility classes. The VBS scheme under-predictes the SOA too, but to a lesser

  2. Real time monitoring of accelerated chemical reactions by ultrasonication-assisted spray ionization mass spectrometry.

    Science.gov (United States)

    Lin, Shu-Hsuan; Lo, Ta-Ju; Kuo, Fang-Yin; Chen, Yu-Chie

    2014-01-01

    Ultrasonication has been used to accelerate chemical reactions. It would be ideal if ultrasonication-assisted chemical reactions could be monitored by suitable detection tools such as mass spectrometry in real time. It would be helpful to clarify reaction intermediates/products and to have a better understanding of reaction mechanism. In this work, we developed a system for ultrasonication-assisted spray ionization mass spectrometry (UASI-MS) with an ~1.7 MHz ultrasonic transducer to monitor chemical reactions in real time. We demonstrated that simply depositing a sample solution on the MHz-based ultrasonic transducer, which was placed in front of the orifice of a mass spectrometer, the analyte signals can be readily detected by the mass spectrometer. Singly and multiply charged ions from small and large molecules, respectively, can be observed in the UASI mass spectra. Furthermore, the ultrasonic transducer used in the UASI setup accelerates the chemical reactions while being monitored via UASI-MS. The feasibility of using this approach for real-time acceleration/monitoring of chemical reactions was demonstrated. The reactions of Girard T reagent and hydroxylamine with steroids were used as the model reactions. Upon the deposition of reactant solutions on the ultrasonic transducer, the intermediate/product ions are readily generated and instantaneously monitored using MS within 1 s. Additionally, we also showed the possibility of using this reactive UASI-MS approach to assist the confirmation of trace steroids from complex urine samples by monitoring the generation of the product ions. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Chemical and physical properties of biomass burning aerosols and their CCN activity: A case study in Beijing, China.

    Science.gov (United States)

    Wu, Zhijun; Zheng, Jing; Wang, Yu; Shang, Dongjie; Du, Zhoufei; Zhang, Yuanhang; Hu, Min

    2017-02-01

    Biomass burning emits large amounts of both trace gases and particles into the atmosphere. It plays a profound role in regional air quality and climate change. In the present study, an intensive campaign was carried out at an urban site in Beijing, China, in June 2014, which covered the winter wheat harvest season over the North China Plain (NCP). Meanwhile, two evident biomass-burning events were observed. A clear burst in ultrafine particles (below 100nm in diameter, PM 1 ) and subsequent particle growth took place during the events. With the growth of the ultrafine particles, the organic fraction of PM 1 increased significantly. The ratio of oxygen to carbon (O:C), which had an average value of 0.23±0.04, did not show an obvious enhancement, indicating that a significant chemical aging process of the biomass-burning aerosols was not observed during the course of events. This finding might have been due to the fact that the biomass-burning events occurred in the late afternoon and grew during the nighttime, which is associated with a low atmospheric oxidation capacity. On average, organics and black carbon (BC) were dominant in the biomass-burning aerosols, accounting for 60±10% and 18±3% of PM 1 . The high organic and BC fractions led to a significant suppression of particle hygroscopicity. Comparisons among hygroscopicity tandem differential mobility analyzer (HTDMA)-derived, cloud condensation nuclei counter (CCNc)-derived, and aerosol mass spectrometer-based hygroscopicity parameter (κ) values were consistent. The mean κ values of biomass-burning aerosols derived from both HTDMA and CCNc measurements were approximately 0.1, regardless of the particle size, indicating that the biomass-burning aerosols were less active. The burst in particle count during the biomass-burning events resulted in an increased number of cloud condensation nuclei (CCN) at supersaturation (SS)=0.2-0.8%. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Chemical evaluation of electronic cigarettes.

    Science.gov (United States)

    Cheng, Tianrong

    2014-05-01

    To review the available evidence evaluating the chemicals in refill solutions, cartridges, aerosols and environmental emissions of electronic cigarettes (e-cigarettes). Systematic literature searches were conducted to identify research related to e-cigarettes and chemistry using 5 reference databases and 11 search terms. The search date range was January 2007 to September 2013. The search yielded 36 articles, of which 29 were deemed relevant for analysis. The levels of nicotine, tobacco-specific nitrosamines (TSNAs), aldehydes, metals, volatile organic compounds (VOCs), flavours, solvent carriers and tobacco alkaloids in e-cigarette refill solutions, cartridges, aerosols and environmental emissions vary considerably. The delivery of nicotine and the release of TSNAs, aldehydes and metals are not consistent across products. Furthermore, the nicotine level listed on the labels of e-cigarette cartridges and refill solutions is often significantly different from measured values. Phenolic compounds, polycyclic aromatic hydrocarbons and drugs have also been reported in e-cigarette refill solutions, cartridges and aerosols. Varying results in particle size distributions of particular matter emissions from e-cigarettes across studies have been observed. Methods applied for the generation and chemical analyses of aerosols differ across studies. Performance characteristics of e-cigarette devices also vary across and within brands. Additional studies based on knowledge of e-cigarette user behaviours and scientifically validated aerosol generation and chemical analysis methods would be helpful in generating reliable measures of chemical quantities. This would allow comparisons of e-cigarette aerosol and traditional smoke constituent levels and would inform an evaluation of the toxicity potential of e-cigarettes.

  5. Chemical evaluation of electronic cigarettes

    Science.gov (United States)

    Cheng, Tianrong

    2014-01-01

    Objective To review the available evidence evaluating the chemicals in refill solutions, cartridges, aerosols and environmental emissions of electronic cigarettes (e-cigarettes). Methods Systematic literature searches were conducted to identify research related to e-cigarettes and chemistry using 5 reference databases and 11 search terms. The search date range was January 2007 to September 2013. The search yielded 36 articles, of which 29 were deemed relevant for analysis. Results The levels of nicotine, tobacco-specific nitrosamines (TSNAs), aldehydes, metals, volatile organic compounds (VOCs), flavours, solvent carriers and tobacco alkaloids in e-cigarette refill solutions, cartridges, aerosols and environmental emissions vary considerably. The delivery of nicotine and the release of TSNAs, aldehydes and metals are not consistent across products. Furthermore, the nicotine level listed on the labels of e-cigarette cartridges and refill solutions is often significantly different from measured values. Phenolic compounds, polycyclic aromatic hydrocarbons and drugs have also been reported in e-cigarette refill solutions, cartridges and aerosols. Varying results in particle size distributions of particular matter emissions from e-cigarettes across studies have been observed. Methods applied for the generation and chemical analyses of aerosols differ across studies. Performance characteristics of e-cigarette devices also vary across and within brands. Conclusions Additional studies based on knowledge of e-cigarette user behaviours and scientifically validated aerosol generation and chemical analysis methods would be helpful in generating reliable measures of chemical quantities. This would allow comparisons of e-cigarette aerosol and traditional smoke constituent levels and would inform an evaluation of the toxicity potential of e-cigarettes. PMID:24732157

  6. Estimation of aerosol water and chemical composition from AERONET Sun-sky radiometer measurements at Cabauw, the Netherlands

    NARCIS (Netherlands)

    Van Beelen, A. J.; Roelofs, G. J H; Hasekamp, O. P.; Henzing, J. S.; Röckmann, T.

    2014-01-01

    Remote sensing of aerosols provides important information on atmospheric aerosol abundance. However, due to the hygroscopic nature of aerosol particles observed aerosol optical properties are influenced by atmospheric humidity, and the measurements do not unambiguously characterize the aerosol dry

  7. Sampling and chemical analysis by TXRF of size-fractionated ambient aerosols and emissions

    International Nuclear Information System (INIS)

    John, A.C.; Kuhlbusch, T.A.J.; Fissan, H.; Schmidt, K.-G-; Schmidt, F.; Pfeffer, H.-U.; Gladtke, D.

    2000-01-01

    Results of recent epidemiological studies led to new European air quality standards which require the monitoring of particles with aerodynamic diameters ≤ 10 μm (PM 10) and ≤ 2.5 μm (PM 2.5) instead of TSP (total suspended particulate matter). As these ambient air limit values will be exceeded most likely at several locations in Europe, so-called 'action plans' have to be set up to reduce particle concentrations, which requires information about sources and processes of PMx aerosols. For chemical characterization of the aerosols, different samplers were used and total reflection x-ray fluorescence analysis (TXRF) was applied beside other methods (elemental and organic carbon analysis, ion chromatography, atomic absorption spectrometry). For TXRF analysis, a specially designed sampling unit was built where the particle size classes 10-2.5 μm and 2.5-1.0 μm were directly impacted on TXRF sample carriers. An electrostatic precipitator (ESP) was used as a back-up filter to collect particles <1 μm directly on a TXRF sample carrier. The sampling unit was calibrated in the laboratory and then used for field measurements to determine the elemental composition of the mentioned particle size fractions. One of the field campaigns was carried out at a measurement site in Duesseldorf, Germany, in November 1999. As the composition of the ambient aerosols may have been influenced by a large construction site directly in the vicinity of the station during the field campaign, not only the aerosol particles, but also construction material was sampled and analyzed by TXRF. As air quality is affected by natural and anthropogenic sources, the emissions of particles ≤ 10 μm and ≤ 2.5 μm, respectively, have to be determined to estimate their contributions to the so called coarse and fine particle modes of ambient air. Therefore, an in-stack particle sampling system was developed according to the new ambient air quality standards. This PM 10/PM 2.5 cascade impactor was

  8. Investigation of discharged aerosol nanoparticles during chemical precipitation and spray pyrolysis for developing safety measures in the nano research laboratory.

    Science.gov (United States)

    Kolesnikov, Еvgeny; Karunakaran, Gopalu; Godymchuk, Anna; Vera, Levina; Yudin, Andrey Grigorjevich; Gusev, Alexander; Kuznetsov, Denis

    2017-05-01

    Nowadays, the demands for the nanoparticles are increasing due to their tremendous applications in various fields. As a consequence, the discharge of nanoparticles into the atmosphere and environment is also increasing, posing a health threat and environmental damage in terms of pollution. Thus, an extensive research is essential to evaluate the discharge of these nanoparticles into the environment. Keeping this in mind, the present investigation aimed to analyze the discharge of aerosol nanoparticles that are synthesized in the laboratory via chemical precipitation and spray pyrolysis methods. The results indicated that the chemical precipitation method discharges a higher concentration of nanoparticles in the work site when compared to the spray pyrolysis method. The aerosol concentration also varied with the different steps involved during the synthesis of nanoparticles. The average particle's concentration in air for chemical precipitation and spray pyrolysis methods was around 1,037,476 and 883,421particles/cm 3 . In addition, the average total discharge of nanoparticles in the entire laboratory was also examined. A significant variation in the concentration of nanoparticles was noticed, during the processing of materials and the concentration of particles (14-723nm) exceeding the daily allowed concentration to about 70-170 times was observed over a period of 6 months. Thus, the results of the present study will be very useful in developing safety measures and would help in organizing the rules for people working in nanotechnology laboratories to minimize the hazardous effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Sodium oxide aerosol behavior in a closed vessel. Comparison of computer modeling with aerosol experiments

    International Nuclear Information System (INIS)

    Fermandjian, Jean.

    1979-08-01

    Fast breeder reactor safety needs models validated to predict the behavior of sodium aerosols in the different reactor compartments during hypothetical sodium accident. Besides their chemical toxicity, the sodium aerosols are a transfer vector of radioactivity during a contaminated sodium fire. The purpose of this work is to validate models (HAARM 2 and PARDISEKO 3) with tests of sodium pool fires in a 400 m 3 concrete vessel in a confined atmosphere (CASSANDRE tests). The comparison between calculations and experimental results reveals that difficulties still exist, especially as to the selection of the values to be given to some input parameters (physical data of experimental origin, in particular the aerosols source function, the characteristics of the distribution of the emitted particles and the form factor of the agglomerated particles) [fr

  10. Role of organic aerosols in CCN activation and closure over a rural background site in Western Ghats, India

    Science.gov (United States)

    Singla, V.; Mukherjee, S.; Safai, P. D.; Meena, G. S.; Dani, K. K.; Pandithurai, G.

    2017-06-01

    The cloud condensation nuclei (CCN) closure study was performed to exemplify the effect of aerosol chemical composition on the CCN activity of aerosols at Mahabaleshwar, a high altitude background site in the Western Ghats, India. For this, collocated aerosol, CCN, Elemental Carbon (EC), Organic Carbon (OC), sub-micron aerosol chemical speciation for the period from 3rd June to 19th June 2015 was used. The chemical composition of non-refractory particulate matter (theory on the basis of measured aerosol particle number size distribution, size independent NR-PM1 chemical composition and calculated hygroscopicity. The CCN closure study was evaluated for 3 scenarios, B-I (all soluble inorganics), B-IO (all soluble organics and inorganics) and B-IOOA (all soluble inorganic and soluble oxygenated organic aerosol, OOA). OOA component was derived from the positive matrix factorization (PMF) analysis of organic aerosol mass spectra. Considering the bulk composition as internal mixture, CCN closure study was underestimated by 16-39% for B-I and overestimated by 47-62% for B-IO. The CCN closure result was appreciably improved for B-IOOA where the knowledge of OOA fraction was introduced and uncertainty reduced to within 8-10%.

  11. Functional group analysis by H NMR/chemical derivatization for the characterization of organic aerosol from the SMOCC field campaign

    Directory of Open Access Journals (Sweden)

    E. Tagliavini

    2006-01-01

    Full Text Available Water soluble organic compounds (WSOC in aerosol samples collected in the Amazon Basin in a period encompassing the middle/late dry season and the beginning of the wet season, were investigated by H NMR spectroscopy. HiVol filter samples (PM2.5 and PM>2.5 and size-segregated samples from multistage impactor were subjected to H NMR characterization. The H NMR methodology, recently developed for the analysis of organic aerosol samples, has been improved by exploiting chemical methylation of carboxylic groups with diazomethane, which allows the direct determination of the carboxylic acid content of WSOC. The content of carboxylic carbons for the different periods and sizes ranged from 12% to 20% of total measured carbon depending on the season and aerosol size, with higher contents for the fine particles in the transition and wet periods with respect to the dry period. A comprehensive picture is presented of WSOC functional groups in aerosol samples representative of the biomass burning period, as well as of transition and semi-clean atmospheric conditions. A difference in composition between fine (PM2.5 and coarse (PM>2.5 size fractions emerged from the NMR data, the former showing higher alkylic content, the latter being largely dominated by R-O-H (or R-O-R' functional groups. Very small particles (<0.14 μm, however, present higher alkyl-chain content and less oxygenated carbons than larger fine particles (0.42–1.2 μm. More limited variations were found between the average compositions in the different periods of the campaign.

  12. Characterization of distinct Arctic aerosol accumulation modes and their sources

    DEFF Research Database (Denmark)

    Lange, R.; Dall'Osto, M.; Skov, H.

    2018-01-01

    -August). By association to chemical composition, cloud condensation nuclei properties, and meteorological variables, three typical accumulation mode aerosol clusters were identified: Haze (32% of the time), Bimodal (14%) and Aged (6%). In brief: (1) Haze accumulation mode aerosol shows a single mode at 150 nm, peaking...

  13. Aqueous organic chemistry in the atmosphere: sources and chemical processing of organic aerosols.

    Science.gov (United States)

    McNeill, V Faye

    2015-02-03

    Over the past decade, it has become clear that aqueous chemical processes occurring in cloud droplets and wet atmospheric particles are an important source of organic atmospheric particulate matter. Reactions of water-soluble volatile (or semivolatile) organic gases (VOCs or SVOCs) in these aqueous media lead to the formation of highly oxidized organic particulate matter (secondary organic aerosol; SOA) and key tracer species, such as organosulfates. These processes are often driven by a combination of anthropogenic and biogenic emissions, and therefore their accurate representation in models is important for effective air quality management. Despite considerable progress, mechanistic understanding of some key aqueous processes is still lacking, and these pathways are incompletely represented in 3D atmospheric chemistry and air quality models. In this article, the concepts, historical context, and current state of the science of aqueous pathways of SOA formation are discussed.

  14. Modeling of pollution aerosols in Ile-de-France; Modelisation des aerosols de pollution en Ile-de-France

    Energy Technology Data Exchange (ETDEWEB)

    Hodzic, A

    2005-10-15

    The modeling of aerosols is a major stake in the understanding of the emission processes and evolution of particulates in the atmosphere. However, the parameterizations used in today's aerosol models still comprise many uncertainties. This work has been motivated by the need of better identifying the weaknesses of aerosols modeling tools and by the necessity of having new validation methods for a 3D evaluation of models. The studies have been carried out using the CHIMERE chemistry-transport model, which allows to simulate the concentrations and physico-chemical characteristics of pollution aerosols at the European scale and in Ile-de-France region. The validation approach used is based on the complementarity of the measurements performed on the ground by monitoring networks with those acquired during the ESQUIF campaign (study and simulation of air quality in Ile-de-France), with lidar and photometric measurements and with satellite observations. The comparison between the observations and the simulations has permitted to identify and reduce the modeling errors, and to characterize the aerosol properties in the vicinity of an urban area. (J.S.)

  15. Modeling of pollution aerosols in Ile-de-France; Modelisation des aerosols de pollution en Ile-de-France

    Energy Technology Data Exchange (ETDEWEB)

    Hodzic, A

    2005-10-15

    The modeling of aerosols is a major stake in the understanding of the emission processes and evolution of particulates in the atmosphere. However, the parameterizations used in today's aerosol models still comprise many uncertainties. This work has been motivated by the need of better identifying the weaknesses of aerosols modeling tools and by the necessity of having new validation methods for a 3D evaluation of models. The studies have been carried out using the CHIMERE chemistry-transport model, which allows to simulate the concentrations and physico-chemical characteristics of pollution aerosols at the European scale and in Ile-de-France region. The validation approach used is based on the complementarity of the measurements performed on the ground by monitoring networks with those acquired during the ESQUIF campaign (study and simulation of air quality in Ile-de-France), with lidar and photometric measurements and with satellite observations. The comparison between the observations and the simulations has permitted to identify and reduce the modeling errors, and to characterize the aerosol properties in the vicinity of an urban area. (J.S.)

  16. Fractionation of Stable Isotopes in Atmospheric Aerosol Reactions

    DEFF Research Database (Denmark)

    Meusinger, Carl

    -independent) fractionation processes of stable isotopes of C, N, O and S in order to investigate three different systems related to aerosols: 1. Post-depositional processes of nitrate in snow that obscure nitrate ice core records 2. Formation and aging of secondary organic aerosol generated by ozonolysis of X...... reactions and undergo complex chemical and physical changes during their lifetimes. In order to assess processes that form and alter aerosols, information provided by stable isotopes can be used to help constrain estimates on the strength of aerosol sources and sinks. This thesis studies (mass...... as required. The kndings provide important results for the studies' respective felds, including a description of the isotopic fractionation and quantum yield of nitrate photolysis in snow, equilibrium fractionation in secondary organic aerosol and fractionation constants of different oxidation pathways of SO2....

  17. Ubiquitous influence of wildfire emissions and secondary organic aerosol on summertime atmospheric aerosol in the forested Great Lakes region

    Science.gov (United States)

    Gunsch, Matthew J.; May, Nathaniel W.; Wen, Miao; Bottenus, Courtney L. H.; Gardner, Daniel J.; VanReken, Timothy M.; Bertman, Steven B.; Hopke, Philip K.; Ault, Andrew P.; Pratt, Kerri A.

    2018-03-01

    Long-range aerosol transport affects locations hundreds of kilometers from the point of emission, leading to distant particle sources influencing rural environments that have few major local sources. Source apportionment was conducted using real-time aerosol chemistry measurements made in July 2014 at the forested University of Michigan Biological Station near Pellston, Michigan, a site representative of the remote forested Great Lakes region. Size-resolved chemical composition of individual 0.5-2.0 µm particles was measured using an aerosol time-of-flight mass spectrometer (ATOFMS), and non-refractory aerosol mass less than 1 µm (PM1) was measured with a high-resolution aerosol mass spectrometer (HR-AMS). The field site was influenced by air masses transporting Canadian wildfire emissions and urban pollution from Milwaukee and Chicago. During wildfire-influenced periods, 0.5-2.0 µm particles were primarily aged biomass burning particles (88 % by number). These particles were heavily coated with secondary organic aerosol (SOA) formed during transport, with organics (average O/C ratio of 0.8) contributing 89 % of the PM1 mass. During urban-influenced periods, organic carbon, elemental carbon-organic carbon, and aged biomass burning particles were identified, with inorganic secondary species (ammonium, sulfate, and nitrate) contributing 41 % of the PM1 mass, indicative of atmospheric processing. With current models underpredicting organic carbon in this region and biomass burning being the largest combustion contributor to SOA by mass, these results highlight the importance for regional chemical transport models to accurately predict the impact of long-range transported particles on air quality in the upper Midwest, United States, particularly considering increasing intensity and frequency of Canadian wildfires.

  18. Aerosolization and Atmospheric Transformation of Engineered Nanoparticles

    Science.gov (United States)

    Tiwari, Andrea J.

    While research on the environmental impacts of engineered nanoparticles (ENPs) is growing, the potential for them to be chemically transformed in the atmosphere has been largely ignored. The overall objective of this work was to assess the atmospheric transformation of carbonaceous nanoparticles (CNPs). The research focuses on C60 fullerene because it is an important member of the carbonaceous nanoparticle (CNP) family and is used in a wide variety of applications. The first specific objective was to review the potential of atmospheric transformations to alter the environmental impacts of CNPs. We described atmospheric processes that were likely to physically or chemically alter aerosolized CNPs and demonstrated their relevance to CNP behavior and toxicity in the aqueous and terrestrial environment. In order to investigate the transformations of CNP aerosols under controlled conditions, we developed an aerosolization technique that produces nano-scale aerosols without using solvents, which can alter the surface chemistry of the aerosols. We demonstrated the technique with carbonaceous (C60) and metal oxide (TiO2, CeO2) nanoparticle powders. All resulting aerosols exhibited unimodal size distributions and mode particle diameters below 100 nm. We used the new aerosolization technique to investigate the reaction between aerosolized C60 and atmospherically realistic levels of ozone (O3) in terms of reaction products, reaction rate, and oxidative stress potential. We identified C60O, C60O2, and C60O3 as products of the C60-O3 reaction. We demonstrated that the oxidative stress potential of C 60 may be enhanced by exposure to O3. We found the pseudo-first order reaction rate to be 9 x 10-6 to 2 x 10 -5 s-1, which is several orders of magnitude lower than the rate for several PAH species under comparable conditions. This research has demonstrated that a thorough understanding of atmospheric chemistry of ENPs is critical for accurate prediction of their environmental

  19. Variations of aerosol size distribution, chemical composition and optical properties from roadside to ambient environment: A case study in Hong Kong, China

    Science.gov (United States)

    Zhang, Qian; Ning, Zhi; Shen, Zhenxing; Li, Guoliang; Zhang, Junke; Lei, Yali; Xu, Hongmei; Sun, Jian; Zhang, Leiming; Westerdahl, Dane; Gali, Nirmal Kumar; Gong, Xuesong

    2017-10-01

    This study investigated the ;roadside-to-ambient; evolution of particle physicochemical and optical properties in typical urban atmospheres of Hong Kong through collection of chemically-resolved PM2.5 data and PM2.5 size distribution at a roadside and an ambient site. Roadside particle size distribution showed typical peaks in the nuclei mode (30-40 nm) while ambient measurements peaked in the Aitken mode (50-70 nm), revealing possible condensation and coagulation growth of freshly emitted particles during aging processes. Much higher levels of anthropogenic chemical components, i.e. nitrate, sulfate, ammonium, organic carbon (OC) and elemental carbon (EC), but lower levels of OC/EC and secondary inorganic aerosols (SIA)/EC ratios appeared in roadside than ambient particles. The high OC/EC and SIA/EC ratios in ambient particles implied high contributions from secondary aerosols. Black carbon (BC), a strong light absorbing material, showed large variations in optical properties when mixed with other inorganic and organic components. Particle-bound polycyclic aromatic hydrocarbons (p-PAHs), an indicator of brown carbon (BrC), showed significant UV-absorbing ability. The average BC and p-PAHs concentrations were 3.8 and 87.6 ng m-3, respectively, at the roadside, but were only 1.5 and 18.1 ng m-3 at the ambient site, suggesting BC and p-PAHs concentrations heavily driven by traffic emissions. In contrast, PM2.5 UV light absorption coefficients (babs-BrC,370nm) at the ambient site (4.2 Mm-1) and at the roadside site (4.1 Mm-1) were similar, emphasizing that particle aging processes enhanced UV light-absorbing properties, a conclusion that was also supported by the finding that the Absorption Ångström coefficient (AAC) value at UV wavelengths (AAC_UV band) at the ambient site were ∼1.7 times higher than that at the roadside. Both aqueous reaction and photochemically produced secondary organic aerosol (SOA) for ambient aerosols contributed to the peak values of babs

  20. Physico-chemical study of the anthropic aerosol and of its evolutions in Beijing

    International Nuclear Information System (INIS)

    Guinot, B.

    2006-05-01

    Beijing aerosols are characterised for the 2003-2004 period using an inclusive experimental set up for aerosol mass, chemistry and number, deployed at three sites. Aerosol size segregation in two fractions (fine and coarse) appears appropriated for source identification and investigations about gas-to-particle interactions. Several various sources contribute to air pollution: traffic, coal burning and industrial activities. The present study also shows how summer aerosol is influenced by the photochemical formation of secondary particles, and the significant amount of coarse and fine mineral dust all year long. Coal burning in winter has a lower influence than assessed in the past. The origin and altitude of the air masses entering Beijing are of key interest to understand the ageing of pollutants and their regional redistribution. By its expected effects onto these regional parameters, climate change may strongly affect Beijing air pollution in the coming decades. (author)

  1. Fourteen months of on-line measurements of the non-refractory submicron aerosol at the Jungfraujoch (3580 m a.s.l.) - chemical composition, origins and organic aerosol sources

    Science.gov (United States)

    Fröhlich, R.; Cubison, M. J.; Slowik, J. G.; Bukowiecki, N.; Canonaco, F.; Croteau, P. L.; Gysel, M.; Henne, S.; Herrmann, E.; Jayne, J. T.; Steinbacher, M.; Worsnop, D. R.; Baltensperger, U.; Prévôt, A. S. H.

    2015-10-01

    Chemically resolved (organic, nitrate, sulfate, ammonium) data of non-refractory submicron (NR-PM1) aerosol from the first long-term deployment (27 July 2012 to 02 October 2013) of a time-of-flight aerosol chemical speciation monitor (ToF-ACSM) at the Swiss high-altitude site Jungfraujoch (JFJ; 3580 m a.s.l.) are presented. Besides total mass loadings, diurnal variations and relative species contributions during the different meteorological seasons, geographical origin and sources of organic aerosol (OA) are discussed. Backward transport simulations show that the highest (especially sulfate) concentrations of NR-PM1 were measured in air masses advected to the station from regions south of the JFJ, while lowest concentrations were seen from western regions. OA source apportionment for each season was performed using the Source Finder (SoFi) interface for the multilinear engine (ME-2). OA was dominated in all seasons by oxygenated OA (OOA, 71-88 %), with lesser contributions from local tourism-related activities (7-12 %) and hydrocarbon-like OA related to regional vertical transport (3-9 %). In summer the OOA can be separated into a background low-volatility OA (LV-OOA I, possibly associated with long-range transport) and a slightly less oxidised low-volatility OA (LV-OOA II) associated with regional vertical transport. Wood burning-related OA associated with regional transport was detected during the whole winter 2012/2013 and during rare events in summer 2013, in the latter case attributed to small-scale transport for the surrounding valleys. Additionally, the data were divided into periods with free tropospheric (FT) conditions and periods with planetary boundary layer (PBL) influence, enabling the assessment of the composition for each. Most nitrate and part of the OA are injected from the regional PBL, while sulfate is mainly produced in the FT. The south/north gradient of sulfate is also pronounced in FT air masses (sulfate mass fraction from the south: 45

  2. TEM Study of SAFARI-2000 Aerosols

    Science.gov (United States)

    Buseck, Peter R.

    2004-01-01

    The aim of our research was to obtain data on the chemical and physical properties of individual aerosol particles from biomass smoke plume s in southern Africa and from air masses in the region that are affec ted by the smoke. We used analytical transmission electron microscopy (ATEM), including energy-dispersive X-ray spectrometry (EDS) and ele ctron energy-loss spectroscopy (EELS), and field-emission electron microscopy (FESEM) to study aerosol particles from several smoke and haz e samples and from a set of cloud samples.

  3. Characterisation of a uranium fire aerosol

    International Nuclear Information System (INIS)

    Leuscher, A.H.

    1976-01-01

    Uranium swarf, which can burn spontaneously in air, creates an aerosol which is chemically toxic and radiotoxic. The uptake of uranium oxide in the respiratory system is determined to a large extent by the characteristics of the aerosol. A study has been made of the methods by which aerosols can be characterised. The different measured and defined characteristics of particles are given. The normal and lognormal particle size distributions are discussed. Shape factors interrelating characteristics are explained. Experimental techniques for the characterisation of an aerosol are discussed, as well as the instruments that have been used in this study; namely the Andersen impactor, point-to-plane electrostatic precipitator and the Pollak counter. Uranium swarf was made to burn with a heated filament, and the resulting aerosol was measured. Optical and electron microscopy have been used for the determination of the projected area diameters, and the aerodynamic diameters have been determined with the impactor. The uranium fire aerosol can be represented by a bimodal, or monomodal, lognormal particle size distribution depending on the way in which the swarf burns. The determined activity median aerodynamic diameter of the two peaks were 0,49μm and 6,0μm respectively [af

  4. Small scale studies of production of fissium aerosols

    International Nuclear Information System (INIS)

    Lindqvist, O.; Rydberg, J.

    1983-02-01

    A small scale study concerning the production and analysis of fission product aerosols formed at various temperatures as a function of the chemical composition of the fissium/corium mixture at the source is presented. CsOH, CsJ and Te are the main aerosol components to be expected. The thermodynamic characterization of occuring Te-iodides and other phases is of great importance for reactor core meltdown chemistry and for the evaluation of the aerosol transport tests. Elemental iodine seems not to be released in significant amounts in reducing atmosphere. Analysis data concerning elements, phases, themral analysis and gases are presented. (G.B.)

  5. Field Test of Advanced Duct-Sealing Technologies Within the Weatherization Assistance Program

    Energy Technology Data Exchange (ETDEWEB)

    Ternes, MP

    2001-12-05

    A field test of an aerosol-spray duct-sealing technology and a conventional, best-practice approach was performed in 80 homes to determine the efficacy and programmatic needs of the duct-sealing technologies as applied in the U.S. Department of Energy Weatherization Assistance Program. The field test was performed in five states: Iowa, Virginia, Washington, West Virginia, and Wyoming. The study found that, compared with the best-practice approach, the aerosol-spray technology is 50% more effective at sealing duct leaks and can potentially reduce labor time and costs for duct sealing by 70%, or almost 4 crew-hours. Further study to encourage and promote use of the aerosol-spray technology within the Weatherization Assistance Program is recommended. A pilot test of full production weatherization programs using the aerosol-spray technology is recommended to develop approaches for integrating this technology with other energy conservation measures and minimizing impacts on weatherization agency logistics. In order to allow or improve adoption of the aerosol spray technology within the Weatherization Assistance Program, issues must be addressed concerning equipment costs, use of the technology under franchise arrangements with Aeroseal, Inc. (the holders of an exclusive license to use this technology), software used to control the equipment, safety, and training. Application testing of the aerosol-spray technology in mobile homes is also recommended.

  6. KNOWLEDGE DATABASE ON CHEMICAL AND AEROSOL HAZARDS CHEMPYŁ AVAILABLE IN CIOP-PIB PORTAL

    Directory of Open Access Journals (Sweden)

    Elżbieta Dobrzyńska

    2016-12-01

    Full Text Available CHEMPYŁ database, which is available on the website of the Central Institute for Labour Protection – National Research Institute, is a source of information for employers, employees and specialists of health and safety in the field of chemical and aerosol hazards at the workplace. The most useful materials in this field, collected in one place in the database are aimed to help in the efficient management of occupational risks associated with the presence of hazardous chemical substances and its mixtures in the working environment. The online CHEMPYŁ database contains sets of definitions, legal acts, database of hazardous chemicals and dusts, as well as the measurement results in form of sixteen separate sections and subsections. The database of measurement results is a collection of practical information on exposure to harmful chemical substances, the results of their qualitative and quantitative measurements in air at the exemplary workplaces or exemplary technological processes from various economy sectors and occupational risk assessment connected with it. The database on hazardous chemicals covers over five hundred and sixty substances, mainly with fixed values of maximum admissible concentrations in Poland, but also more than a thousand substances classified as carcinogenic and mutagenic according to the CLP Regulation, and this material is continuously expanded. Extensive materials are collected in the sections on assessment of occupational exposure to chemicals and dust, as well as risk assessment associated with their use and/or presence at the workplace. Apart from the materials on risk assessment in inhalation and dermal exposure or risk of explosion and fire, data were complemented with non-measurement methods for assessing exposure and occupational risk for carcinogenic and mutagenic substances, and methods to assess the risks associated with chemical substances of nanometric dimensions. Forum, which was created in 2015, allows

  7. Satellite assisted aerosol correlation in a sequestered CO2 leakage controlled site

    Science.gov (United States)

    Landulfo, Eduardo; da Silva Lopes, Fábio J.; Nakaema, Walter M.; de Medeiros, José A. G.; Moreira, Andrea

    2014-10-01

    Currently one of the main challenges in CO2 storage research is to grant the development, testing and validation of accurate and efficient Measuring, Monitoring and Verification (MMV) techniques to be deployed at the final storage site, targeting maximum storage efficiency at the minimal leakage risk levels. For such task a mimetic sequestration site has been deployed in Florianopolis, Brazil, in order to verify the performance of monitoring plataforms to detect and quantify leakages of ground injected CO2, namely a Cavity Ring Down System (CRDS) - Los Gatos Research - an Eddy Covariance System (Campbell Scientific and Irgason) and meteorological tower for wind, humidity, precipitation and temperature monitoring onsite. The measurement strategy for detecting CO2 leakages can be very challenging since environmental and phytogenic influence can be very severe and play a role on determining if the values measured are unambiguous or not. One external factor to be considered is the amount of incoming solar radiation which will be the driving force for the whole experimental setup and following this reasoning the amount of aerosols in the atmospheric column can be a determinant factor influencing the experimental results. Thus the investigation of measured fluxes CO2 and its concentration with the aforementioned experimental instruments and their correlation with the aerosol data should be taken into account by means of satellite borne systems dedicated to measure aerosol vertical distribution and its optical properties, in this study we have selected CALIPSO and MODIS instrumentation to help on deriving the aerosol properties and CO2 measurements.

  8. Field characterization of the PM2.5 Aerosol Chemical Speciation Monitor: insights into the composition, sources, and processes of fine particles in eastern China

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2017-12-01

    Full Text Available A PM2.5-capable aerosol chemical speciation monitor (Q-ACSM was deployed in urban Nanjing, China, for the first time to measure in situ non-refractory fine particle (NR-PM2.5 composition from 20 October to 19 November 2015, along with parallel measurements of submicron aerosol (PM1 species by a standard Q-ACSM. Our results show that the NR-PM2.5 species (organics, sulfate, nitrate, and ammonium measured by the PM2.5-Q-ACSM are highly correlated (r2 > 0.9 with those measured by a Sunset Lab OC  /  EC analyzer and a Monitor for AeRosols and GAses (MARGA. The comparisons between the two Q-ACSMs illustrated similar temporal variations in all NR species between PM1 and PM2.5, yet substantial mass fractions of aerosol species were observed in the size range of 1–2.5 µm. On average, NR-PM1−2.5 contributed 53 % of the total NR-PM2.5, with sulfate and secondary organic aerosols (SOAs being the two largest contributors (26 and 27 %, respectively. Positive matrix factorization of organic aerosol showed similar temporal variations in both primary and secondary OAs between PM1 and PM2.5, although the mass spectra were slightly different due to more thermal decomposition on the capture vaporizer of the PM2.5-Q-ACSM. We observed an enhancement of SOA under high relative humidity conditions, which is associated with simultaneous increases in aerosol pH, gas-phase species (NO2, SO2, and NH3 concentrations and aerosol water content driven by secondary inorganic aerosols. These results likely indicate an enhanced reactive uptake of SOA precursors upon aqueous particles. Therefore, reducing anthropogenic NOx, SO2, and NH3 emissions might not only reduce secondary inorganic aerosols but also the SOA burden during haze episodes in China.

  9. Chemical and isotopic composition of secondary organic aerosol generated by alpha-pinene ozonolysis

    NARCIS (Netherlands)

    Meusinger, Carl; Dusek, Ulrike; King, Stephanie M.; Holzinger, Rupert; Rosenorn, Thomas; Sperlich, Peter; Julien, Maxime; Remaud, Gerald S.; Bilde, Merete; Rockmann, Thomas; Johnson, Matthew S.

    2017-01-01

    Secondary organic aerosol (SOA) plays a central role in air pollution and climate. However, the description of the sources and mechanisms leading to SOA is elusive despite decades of research. While stable isotope analysis is increasingly used to constrain sources of ambient aerosol, in many cases

  10. Methods of analysis for complex organic aerosol mixtures from urban emission sources of particulate carbon

    International Nuclear Information System (INIS)

    Mazurek, M.A.; Hildemann, L.M.; Simoneit, B.R.T.

    1990-10-01

    Organic aerosols comprise approximately 30% by mass of the total fine particulate matter present in urban atmospheres. The chemical composition of such aerosols is complex and reflects input from multiple sources of primary emissions to the atmosphere, as well as from secondary production of carbonaceous aerosol species via photochemical reactions. To identify discrete sources of fine carbonaceous particles in urban atmospheres, analytical methods must reconcile both bulk chemical and molecular properties of the total carbonaceous aerosol fraction. This paper presents an overview of the analytical protocol developed and used in a study of the major sources of fine carbon particles emitted to an urban atmosphere. 23 refs., 1 fig., 2 tabs

  11. Satellite remote sensing of aerosols using geostationary observations from MSG-SEVIRI

    NARCIS (Netherlands)

    Bennouna, Y.S.

    2009-01-01

    Aerosols play a fundamental role in physical and chemical processes affecting regional and global climate, and have adverse effects on human health. Although much progress has been made over the past decade in understanding aerosol-climate interactions, their impact still remains one of the largest

  12. Preliminary characterization of submicron secondary aerosol in the amazon forest - ATTO station

    Science.gov (United States)

    Carbone, S.; Ferreira De Brito, J.; Andreae, M. O.; Pöhlker, C.; Chi, X.; Saturno, J.; Barbosa, H. M.; Artaxo, P.

    2014-12-01

    Biogenic secondary organic aerosol particles are investigated in the Amazon in the context of the GoAmazon Project. The forest naturally emits a large number of gaseous compounds; they are called the volatile organic compounds (VOCs). They are emitted through processes that are not totally understood. Part of those gaseous compounds are converted into aerosol particles, which affect the biogeochemical cycles, the radiation balance, the mechanisms involving cloud formation and evolution, among few other important effects. In this study the aerosol life-cycle is investigated at the ATTO station, which is located about 150 km northeast of Manaus, with emphasis on the natural organic component and its impacts in the ecosystem. To achieve these objectives physical and chemical aerosol properties have been investigated, such as the chemical composition with aerosol chemical speciation monitor (ACSM), nanoparticle size distribution (using the SMPS - Scanning Mobility Particle Sizer), optical properties with measurements of scattering and absorption (using nephelometers and aethalometers). Those instruments have been operating continuously since February 2014 together with trace gases (O3, CO2, CO, SO2 and NOx) analyzers and additional meteorological instruments. On average PM1 (the sum of black carbon, organic and inorganic ions) totalized 1.0±0.3 μg m-3, where the organic fraction was dominant (75%). During the beginning of the dry season (July/August) the organic aerosol presented a moderate oxygenated character with the oxygen to carbon ratio (O:C) of 0.7. In the wet season some episodes containing significant amount of chloride and backward wind trajectories suggest aerosol contribution from the Atlantic Ocean. A more comprehensive analysis will include an investigation of the different oxidized fractions of the organic aerosol and optical properties.

  13. Characterization of a large biogenic secondary organic aerosol event from eastern Canadian forests

    Science.gov (United States)

    Slowik, J. G.; Stroud, C.; Bottenheim, J. W.; Brickell, P. C.; Chang, R. Y.-W.; Liggio, J.; Makar, P. A.; Martin, R. V.; Moran, M. D.; Shantz, N. C.; Sjostedt, S. J.; van Donkelaar, A.; Vlasenko, A.; Wiebe, H. A.; Xia, A. G.; Zhang, J.; Leaitch, W. R.; Abbatt, J. P. D.

    2010-03-01

    Measurements of aerosol composition, volatile organic compounds, and CO are used to determine biogenic secondary organic aerosol (SOA) concentrations at a rural site 70 km north of Toronto. These biogenic SOA levels are many times higher than past observations and occur during a period of increasing temperatures and outflow from Northern Ontario and Quebec forests in early summer. A regional chemical transport model approximately predicts the event timing and accurately predicts the aerosol loading, identifying the precursors as monoterpene emissions from the coniferous forest. The agreement between the measured and modeled biogenic aerosol concentrations contrasts with model underpredictions for polluted regions. Correlations of the oxygenated organic aerosol mass with tracers such as CO support a secondary aerosol source and distinguish biogenic, pollution, and biomass burning periods during the field campaign. Using the Master Chemical Mechanism, it is shown that the levels of CO observed during the biogenic event are consistent with a photochemical source arising from monoterpene oxidation. The biogenic aerosol mass correlates with satellite measurements of regional aerosol optical depth, indicating that the event extends across the eastern Canadian forest. This regional event correlates with increased temperatures, indicating that temperature-dependent forest emissions can significantly affect climate through enhanced direct optical scattering and higher cloud condensation nuclei numbers.

  14. Halogenation processes of secondary organic aerosol and implications on halogen release mechanisms

    Directory of Open Access Journals (Sweden)

    J. Ofner

    2012-07-01

    Full Text Available Reactive halogen species (RHS, such as X·, X2 and HOX containing X = chlorine and/or bromine, are released by various sources like photo-activated sea-salt aerosol or from salt pans, and salt lakes. Despite many studies of RHS reactions, the potential of RHS reacting with secondary organic aerosol (SOA and organic aerosol derived from biomass-burning (BBOA has been neglected. Such reactions can constitute sources of gaseous organohalogen compounds or halogenated organic matter in the tropospheric boundary layer and can influence physicochemical properties of atmospheric aerosols.

    Model SOA from α-pinene, catechol, and guaiacol was used to study heterogeneous interactions with RHS. Particles were exposed to molecular chlorine and bromine in an aerosol smog-chamber in the presence of UV/VIS irradiation and to RHS, released from simulated natural halogen sources like salt pans. Subsequently, the aerosol was characterized in detail using a variety of physicochemical and spectroscopic methods. Fundamental features were correlated with heterogeneous halogenation, which results in new functional groups (FTIR spectroscopy, changes UV/VIS absorption, chemical composition (ultrahigh resolution mass spectroscopy (ICR-FT/MS, or aerosol size distribution. However, the halogen release mechanisms were also found to be affected by the presence of organic aerosol. Those interaction processes, changing chemical and physical properties of the aerosol are likely to influence e.g. the ability of the aerosol to act as cloud condensation nuclei, its potential to adsorb other gases with low-volatility, or its contribution to radiative forcing and ultimately the Earth's radiation balance.

  15. Cloud Scavenging Effects on Aerosol Radiative and Cloud-nucleating Properties - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

    2009-03-05

    The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

  16. Evolution of Asian aerosols during transpacific transport in INTEX-B

    Energy Technology Data Exchange (ETDEWEB)

    Dunlea, E. J.; DeCarlo, Peter; Aiken, Allison; Kimmel, Joel; Peltier, R. E.; Weber, R. J.; Tomlinson, Jason M.; Collins, Donald R.; Shinozuka, Yohei; McNaughton, C. S.; Howell, S. G.; Clarke, A. D.; Emmons, L.; Apel, Eric; Pfister, G. G.; van Donkelaar, A.; Martin, R. V.; Millet, D. B.; Heald, C. L.; Jimenez, J. L.

    2009-10-01

    Measurements of aerosol composition were made with an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) on board the NSF/NCAR C-130 aircraft as part of the Intercontinental Chemical Transport Experiment Phase B 5 (INTEX-B) field campaign over the Eastern Pacific Ocean. The HR-ToF-AMS measurements of non-refractory submicron aerosol mass are shown to compare well with other aerosol instrumentation in the INTEX-B field study. Two case studies are described for pollution layers transported across the Pacific from the Asian continent, intercepted 3–4 days and 7–10 days downwind of Asia, respectively. Aerosol chemistry is shown to 10 be a robust tracer for air masses originating in Asia, specifically the presence of sulfate dominated aerosol is a distinguishing feature of Asian pollution layers that have been transported to the Eastern Pacific. We examine the time scales of processing for sulfate and organic aerosol in the atmosphere and show that our observations confirm a conceptual model for transpacific transport from Asia proposed by Brock et al. (2004). 15 Our observations of both sulfate and organic aerosol in aged Asian pollution layers are consistent with fast formation near the Asian continent, followed by washout during lofting and subsequent transformation during transport across the Pacific. Our observations are the first atmospheric measurements to indicate that although secondary organic aerosol (SOA) formation from pollution happens on the timescale of one day, 20 the oxidation of organic aerosol continues at longer timescales in the atmosphere. Comparisons with chemical transport models of data from the entire campaign reveal an under-prediction of SOA mass in the MOZART model, but much smaller discrepancies with the GEOS-Chem model than found in previous studies over the Western Pacific. No evidence is found to support a previous hypothesis for significant secondary 25 organic aerosol formation in the free troposphere.

  17. Global volcanic aerosol properties derived from emissions, 1990-2014, using CESM1(WACCM): VOLCANIC AEROSOLS DERIVED FROM EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Michael J. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Schmidt, Anja [School of Earth and Environment, University of Leeds, Leeds UK; Easter, Richard [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Solomon, Susan [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge Massachusetts USA; Kinnison, Douglas E. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Ghan, Steven J. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Neely, Ryan R. [School of Earth and Environment, University of Leeds, Leeds UK; National Centre for Atmospheric Science, University of Leeds, Leeds UK; Marsh, Daniel R. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Conley, Andrew [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Bardeen, Charles G. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Gettelman, Andrew [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA

    2016-03-06

    Accurate representation of global stratospheric aerosol properties from volcanic and non-volcanic sulfur emissions is key to understanding the cooling effects and ozone-loss enhancements of recent volcanic activity. Attribution of climate and ozone variability to volcanic activity is of particular interest in relation to the post-2000 slowing in the apparent rate of global average temperature increases, and variable recovery of the Antarctic ozone hole. We have developed a climatology of global aerosol properties from 1990 to 2014 calculated based on volcanic and non-volcanic emissions of sulfur sources. We have complied a database of volcanic SO2 emissions and plume altitudes for eruptions between 1990 and 2014, and a new prognostic capability for simulating stratospheric sulfate aerosols in version 5 of the Whole Atmosphere Community Climate Model, a component of the Community Earth System Model. Our climatology shows remarkable agreement with ground-based lidar observations of stratospheric aerosol optical depth (SAOD), and with in situ measurements of aerosol surface area density (SAD). These properties are key parameters in calculating the radiative and chemical effects of stratospheric aerosols. Our SAOD climatology represents a significant improvement over satellite-based analyses, which ignore aerosol extinction below 15 km, a region that can contain the vast majority of stratospheric aerosol extinction at mid- and high-latitudes. Our SAD climatology significantly improves on that provided for the Chemistry-Climate Model Initiative, which misses 60% of the SAD measured in situ. Our climatology of aerosol properties is publicly available on the Earth System Grid.

  18. Atmospheric and aerosol chemistry

    Energy Technology Data Exchange (ETDEWEB)

    McNeill, V. Faye [Columbia Univ., New York, NY (United States). Dept. of Chemical Engineering; Ariya, Parisa A. (ed.) [McGill Univ. Montreal, QC (Canada). Dept. of Chemistry; McGill Univ. Montreal, QC (Canada). Dept. of Atmospheric and Oceanic Sciences

    2014-09-01

    This series presents critical reviews of the present position and future trends in modern chemical research. Short and concise reports on chemistry, each written by the world renowned experts. Still valid and useful after 5 or 10 years. More information as well as the electronic version of the whole content available at: springerlink.com. Christian George, Barbara D'Anna, Hartmut Herrmann, Christian Weller, Veronica Vaida, D. J. Donaldson, Thorsten Bartels-Rausch, Markus Ammann Emerging Areas in Atmospheric Photochemistry. Lisa Whalley, Daniel Stone, Dwayne Heard New Insights into the Tropospheric Oxidation of Isoprene: Combining Field Measurements, Laboratory Studies, Chemical Modelling and Quantum Theory. Neil M. Donahue, Allen L. Robinson, Erica R. Trump, Ilona Riipinen, Jesse H. Kroll Volatility and Aging of Atmospheric Organic Aerosol. P. A. Ariya, G. Kos, R. Mortazavi, E. D. Hudson, V. Kanthasamy, N. Eltouny, J. Sun, C. Wilde Bio-Organic Materials in the Atmosphere and Snow: Measurement and Characterization V. Faye McNeill, Neha Sareen, Allison N. Schwier Surface-Active Organics in Atmospheric Aerosols.

  19. Aerosol optical properties and radiative effects over Manora Peak in the Himalayan foothills: seasonal variability and role of transported aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, A.K. [Indian Institute of Tropical Meteorology (Branch), Prof Ramnath Vij Marg, New Delhi (India); Ram, K. [Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi (India); Singh, Sachchidanand, E-mail: ssingh@nplindia.org [Radio and Atmospheric Sciences Division, CSIR-National Physical Laboratory, New Delhi (India); Kumar, Sanjeev [Radio and Atmospheric Sciences Division, CSIR-National Physical Laboratory, New Delhi (India); Tiwari, S. [Indian Institute of Tropical Meteorology (Branch), Prof Ramnath Vij Marg, New Delhi (India)

    2015-01-01

    The higher altitude regions of Himalayas and Tibetan Plateau are influenced by the dust and black carbon (BC) aerosols from the emissions and long-range transport from the adjoining areas. In this study, we present impacts of advection of polluted air masses of natural and anthropogenic emissions, on aerosol optical and radiative properties at Manora Peak (∼ 2000 m amsl) in central Himalaya over a period of more than two years (February 2006–May 2008). We used the most updated and comprehensive data of chemical and optical properties available in one of the most climatically sensitive region, the Himalaya, to estimate atmospheric radiative forcing and heating rate. Aerosol optical depth (AOD) was found to vary from 0.04 to 0.45 with significantly higher values in summer mainly due to an increase in mineral dust and biomass burning aerosols due to transport. In contrast, single scattering albedo (SSA) varied from 0.74 to 0.88 with relatively lower values during summer, suggesting an increase in absorbing BC and mineral dust aerosols. As a result, a large positive atmospheric radiative forcing (about 28 ± 5 Wm{sup −2}) and high values of corresponding heating rate (0.80 ± 0.14 Kday{sup −1}) has been found during summer. During the entire observation period, radiative forcing at the top of the atmosphere varied from − 2 to + 14 Wm{sup −2} and from − 3 to − 50 Wm{sup −2} at the surface whereas atmospheric forcing was in the range of 3 to 65 Wm{sup −2} resulting in a heating rate of 0.1–1.8 Kday{sup −1}. - Highlights: • Aerosol chemical and optical properties at Manora Peak, in central Himalaya, were significantly affected by dust and black carbon (BC) aerosols from the emissions and long-range transport from the adjoining areas. • Elevated AOD and lower SSA values were observed at Manora Peak during summer. • Enhancement in absorbing aerosols was observed during summer. • Large aerosol radiative forcing and heating rate was observed

  20. Aerosol optical properties and radiative effects over Manora Peak in the Himalayan foothills: seasonal variability and role of transported aerosols

    International Nuclear Information System (INIS)

    Srivastava, A.K.; Ram, K.; Singh, Sachchidanand; Kumar, Sanjeev; Tiwari, S.

    2015-01-01

    The higher altitude regions of Himalayas and Tibetan Plateau are influenced by the dust and black carbon (BC) aerosols from the emissions and long-range transport from the adjoining areas. In this study, we present impacts of advection of polluted air masses of natural and anthropogenic emissions, on aerosol optical and radiative properties at Manora Peak (∼ 2000 m amsl) in central Himalaya over a period of more than two years (February 2006–May 2008). We used the most updated and comprehensive data of chemical and optical properties available in one of the most climatically sensitive region, the Himalaya, to estimate atmospheric radiative forcing and heating rate. Aerosol optical depth (AOD) was found to vary from 0.04 to 0.45 with significantly higher values in summer mainly due to an increase in mineral dust and biomass burning aerosols due to transport. In contrast, single scattering albedo (SSA) varied from 0.74 to 0.88 with relatively lower values during summer, suggesting an increase in absorbing BC and mineral dust aerosols. As a result, a large positive atmospheric radiative forcing (about 28 ± 5 Wm −2 ) and high values of corresponding heating rate (0.80 ± 0.14 Kday −1 ) has been found during summer. During the entire observation period, radiative forcing at the top of the atmosphere varied from − 2 to + 14 Wm −2 and from − 3 to − 50 Wm −2 at the surface whereas atmospheric forcing was in the range of 3 to 65 Wm −2 resulting in a heating rate of 0.1–1.8 Kday −1 . - Highlights: • Aerosol chemical and optical properties at Manora Peak, in central Himalaya, were significantly affected by dust and black carbon (BC) aerosols from the emissions and long-range transport from the adjoining areas. • Elevated AOD and lower SSA values were observed at Manora Peak during summer. • Enhancement in absorbing aerosols was observed during summer. • Large aerosol radiative forcing and heating rate was observed over the station in the

  1. Metal-assisted chemical etch porous silicon formation method

    Science.gov (United States)

    Li, Xiuling; Bohn, Paul W.; Sweedler, Jonathan V.

    2004-09-14

    A thin discontinuous layer of metal such as Au, Pt, or Au/Pd is deposited on a silicon surface. The surface is then etched in a solution including HF and an oxidant for a brief period, as little as a couple seconds to one hour. A preferred oxidant is H.sub.2 O.sub.2. Morphology and light emitting properties of porous silicon can be selectively controlled as a function of the type of metal deposited, Si doping type, silicon doping level, and/or etch time. Electrical assistance is unnecessary during the chemical etching of the invention, which may be conducted in the presence or absence of illumination.

  2. Two-Column Aerosol Project (TCAP) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Larry K [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-05-01

    This study included the deployment of the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Mobile Facility (AMF), ARM Mobile Aerosol Observing System (MAOS) and the ARM Aerial Facility (AAF). The study was a collaborative effort involving scientists from DOE national laboratories, NOAA, NASA, and universities. The AAF and MAOS were deployed for two approximately month-long Intensive Operational Periods (IOPs) conducted in June 2012 and February 2013. Seasonal differences in the aerosol chemical and optical properties observed using the AMF, AAF, and MAOS are presented in this report. The total mass loading of aerosol is found to be much greater in the summer than in the winter, with the difference associated with greater amounts of organic aerosol. The mass fraction of organic aerosol is much reduced in the winter, when sulfate is the dominant aerosol type. Surprisingly, very little sea-salt aerosol was observed in the summer. In contrast, much more sea salt aerosol was observed in the winter. The mass loading of black carbon is nearly the same in both seasons. These differences lead to a relative increase in the aerosol light absorption in the winter and an associated decrease in observed single-scattering albedo. Measurements of aerosol mixing state were made using a single-particle mass spectrometer, which showed that the majority of the summertime aerosol consisted of organic compounds mixed with various amounts of sulfate. A number of other findings are also summarized in the report, including: impact of aerosol layers aloft on the column aerosol optical depth; documentation of the aerosol properties at the AMF; differences in the aerosol properties associated with both columns, which are not systematic but reflect the complicated meteorological and chemical processes that impact aerosol as it is advected away from North America; and new instruments and data-processing techniques for measuring both aerosol and

  3. Smoke aerosol chemistry and aging of Siberian biomass burning emissions in a large aerosol chamber

    Science.gov (United States)

    Kalogridis, A.-C.; Popovicheva, O. B.; Engling, G.; Diapouli, E.; Kawamura, K.; Tachibana, E.; Ono, K.; Kozlov, V. S.; Eleftheriadis, K.

    2018-07-01

    conditions and compared to the loss rate of EC. The latter is used as an inert tracer for estimating aerosol mechanical deposition and wall losses of the otherwise chemically conserved aerosol species. The OC/EC ratio increased with smoke aging for the flaming phase, suggesting a production/partitioning of organic compounds after emission. On the other hand, for smoldering burns OC/EC ratios decreased further with aging due to additional sinks of OC, other than those related to deposition and wall losses alone, such as evaporation of semi-volatile compounds. The chemical fingerprints of the major PM components of fresh and aged smoke found in this study are proposed to be used for the assessment of contributions from Siberian biomass burning to atmospheric pollution in source apportionment studies like those using molecular marker approaches.

  4. Recent activities in the Aerosol Generation and Transport Program

    International Nuclear Information System (INIS)

    Adams, R.E.

    1984-01-01

    General statements may be made on the behavior of single-component and multi-component aerosols in the Nuclear Safety Pilot Plant vessel. The removal processes for U 3 O 8 , Fe 2 O 3 , and U 3 O 8 + Fe 2 O 3 aerosols are enhanced in a steam-air atmosphere. Steam-air seems to have little effect on removal of concrete aerosol from the vessel atmosphere. A steam-air environment causes a change in aerosol shape from chain-agglomerate to basically spherical for U 3 O 8 , Fe 2 O 3 , and U 3 O 8 + Fe 2 O 3 aerosol; for concrete the change in aerosol shape is from chain-agglomerate to partially spherical. The mass ratio of the individual components of a multi-component aerosol seems to have an observable influence on the resultant behavior of these aerosols in steam. The enhanced rate of removal of the U 3 O 8 , the Fe 2 O 3 , and the mixed U 3 O 8 + Fe 2 O 3 aerosols from the atmosphere of the NSPP vessel by steam-air is probably caused by the change in aerosol shape and the condensation of steam on the aerosol surfaces combining to increase the effect of gravitational settling. The apparent lack of an effect by steam-air on the removal rate of concrete aerosol could result from a differing physical/chemical response of the surfaces of this aerosol to condensing steam

  5. Steam condensation modelling in aerosol codes

    International Nuclear Information System (INIS)

    Dunbar, I.H.

    1986-01-01

    The principal subject of this study is the modelling of the condensation of steam into and evaporation of water from aerosol particles. These processes introduce a new type of term into the equation for the development of the aerosol particle size distribution. This new term faces the code developer with three major problems: the physical modelling of the condensation/evaporation process, the discretisation of the new term and the separate accounting for the masses of the water and of the other components. This study has considered four codes which model the condensation of steam into and its evaporation from aerosol particles: AEROSYM-M (UK), AEROSOLS/B1 (France), NAUA (Federal Republic of Germany) and CONTAIN (USA). The modelling in the codes has been addressed under three headings. These are the physical modelling of condensation, the mathematics of the discretisation of the equations, and the methods for modelling the separate behaviour of different chemical components of the aerosol. The codes are least advanced in area of solute effect modelling. At present only AEROSOLS/B1 includes the effect. The effect is greater for more concentrated solutions. Codes without the effect will be more in error (underestimating the total airborne mass) the less condensation they predict. Data are needed on the water vapour pressure above concentrated solutions of the substances of interest (especially CsOH and CsI) if the extent to which aerosols retain water under superheated conditions is to be modelled. 15 refs

  6. Wintertime aerosol chemical composition, volatility, and spatial variability in the greater London area

    Directory of Open Access Journals (Sweden)

    L. Xu

    2016-02-01

    Full Text Available The composition of PM1 (particulate matter with diameter less than 1 µm in the greater London area was characterized during the Clean Air for London (ClearfLo project in winter 2012. Two high-resolution time-of-flight aerosol mass spectrometers (HR-ToF-AMS were deployed at a rural site (Detling, Kent and an urban site (North Kensington, London. The simultaneous and high-temporal resolution measurements at the two sites provide a unique opportunity to investigate the spatial distribution of PM1. We find that the organic aerosol (OA concentration is comparable between the rural and urban sites, but the contribution from different sources is distinctly different between the two sites. The concentration of solid fuel OA at the urban site is about twice as high as at the rural site, due to elevated domestic heating in the urban area. While the concentrations of oxygenated OA (OOA are well-correlated between the two sites, the OOA concentration at the rural site is almost twice that of the urban site. At the rural site, more than 70 % of the carbon in OOA is estimated to be non-fossil, which suggests that OOA is likely related to aged biomass burning considering the small amount of biogenic SOA in winter. Thus, it is possible that the biomass burning OA contributes a larger fraction of ambient OA in wintertime than what previous field studies have suggested. A suite of instruments was deployed downstream of a thermal denuder (TD to investigate the volatility of PM1 species at the rural Detling site. After heating at 250 °C in the TD, 40 % of the residual mass is OA, indicating the presence of non-volatile organics in the aerosol. Although the OA associated with refractory black carbon (rBC; measured by a soot-particle aerosol mass spectrometer only accounts for < 10 % of the total OA (measured by a HR-ToF-AMS at 250 °C, the two measurements are well-correlated, suggesting that the non-volatile organics have similar sources or have

  7. Aerosol composition and sources during the Chinese Spring Festival: fireworks, secondary aerosol, and holiday effects

    Science.gov (United States)

    Jiang, Q.; Sun, Y. L.; Wang, Z.; Yin, Y.

    2015-06-01

    Aerosol particles were characterized by an Aerodyne aerosol chemical speciation monitor along with various collocated instruments in Beijing, China, to investigate the role of fireworks (FW) and secondary aerosol in particulate pollution during the Chinese Spring Festival of 2013. Three FW events, exerting significant and short-term impacts on fine particles (PM2.5), were observed on the days of Lunar New Year, Lunar Fifth Day, and Lantern Festival. The FW were shown to have a large impact on non-refractory potassium, chloride, sulfate, and organics in submicron aerosol (PM1), of which FW organics appeared to be emitted mainly in secondary, with its mass spectrum resembling that of secondary organic aerosol (SOA). Pollution events (PEs) and clean periods (CPs) alternated routinely throughout the study. Secondary particulate matter (SPM = SOA + sulfate + nitrate + ammonium) dominated the total PM1 mass on average, accounting for 63-82% during nine PEs in this study. The elevated contributions of secondary species during PEs resulted in a higher mass extinction efficiency of PM1 (6.4 m2 g-1) than during CPs (4.4 m2 g-1). The Chinese Spring Festival also provides a unique opportunity to study the impact of reduced anthropogenic emissions on aerosol chemistry in the city. Primary species showed ubiquitous reductions during the holiday period with the largest reduction being in cooking organic aerosol (OA; 69%), in nitrogen monoxide (54%), and in coal combustion OA (28%). Secondary sulfate, however, remained only slightly changed, and the SOA and the total PM2.5 even slightly increased. Our results have significant implications for controlling local primary source emissions during PEs, e.g., cooking and traffic activities. Controlling these factors might have a limited effect on improving air quality in the megacity of Beijing, due to the dominance of SPM from regional transport in aerosol particle composition.

  8. Retrieving global aerosol sources from satellites using inverse modeling

    Directory of Open Access Journals (Sweden)

    O. Dubovik

    2008-01-01

    Full Text Available Understanding aerosol effects on global climate requires knowing the global distribution of tropospheric aerosols. By accounting for aerosol sources, transports, and removal processes, chemical transport models simulate the global aerosol distribution using archived meteorological fields. We develop an algorithm for retrieving global aerosol sources from satellite observations of aerosol distribution by inverting the GOCART aerosol transport model.

    The inversion is based on a generalized, multi-term least-squares-type fitting, allowing flexible selection and refinement of a priori algorithm constraints. For example, limitations can be placed on retrieved quantity partial derivatives, to constrain global aerosol emission space and time variability in the results. Similarities and differences between commonly used inverse modeling and remote sensing techniques are analyzed. To retain the high space and time resolution of long-period, global observational records, the algorithm is expressed using adjoint operators.

    Successful global aerosol emission retrievals at 2°×2.5 resolution were obtained by inverting GOCART aerosol transport model output, assuming constant emissions over the diurnal cycle, and neglecting aerosol compositional differences. In addition, fine and coarse mode aerosol emission sources were inverted separately from MODIS fine and coarse mode aerosol optical thickness data, respectively. These assumptions are justified, based on observational coverage and accuracy limitations, producing valuable aerosol source locations and emission strengths. From two weeks of daily MODIS observations during August 2000, the global placement of fine mode aerosol sources agreed with available independent knowledge, even though the inverse method did not use any a priori information about aerosol sources, and was initialized with a "zero aerosol emission" assumption. Retrieving coarse mode aerosol emissions was less successful

  9. Enviro-HIRLAM/ HARMONIE Studies in ECMWF HPC EnviroAerosols Project

    Science.gov (United States)

    Hansen Sass, Bent; Mahura, Alexander; Nuterman, Roman; Baklanov, Alexander; Palamarchuk, Julia; Ivanov, Serguei; Pagh Nielsen, Kristian; Penenko, Alexey; Edvardsson, Nellie; Stysiak, Aleksander Andrzej; Bostanbekov, Kairat; Amstrup, Bjarne; Yang, Xiaohua; Ruban, Igor; Bergen Jensen, Marina; Penenko, Vladimir; Nurseitov, Daniyar; Zakarin, Edige

    2017-04-01

    The EnviroAerosols on ECMWF HPC project (2015-2017) "Enviro-HIRLAM/ HARMONIE model research and development for online integrated meteorology-chemistry-aerosols feedbacks and interactions in weather and atmospheric composition forecasting" is aimed at analysis of importance of the meteorology-chemistry/aerosols interactions and to provide a way for development of efficient techniques for on-line coupling of numerical weather prediction and atmospheric chemical transport via process-oriented parameterizations and feedback algorithms, which will improve both the numerical weather prediction and atmospheric composition forecasts. Two main application areas of the on-line integrated modelling are considered: (i) improved numerical weather prediction with short-term feedbacks of aerosols and chemistry on formation and development of meteorological variables, and (ii) improved atmospheric composition forecasting with on-line integrated meteorological forecast and two-way feedbacks between aerosols/chemistry and meteorology. During 2015-2016 several research projects were realized. At first, the study on "On-line Meteorology-Chemistry/Aerosols Modelling and Integration for Risk Assessment: Case Studies" focused on assessment of scenarios with accidental and continuous emissions of sulphur dioxide for case studies for Atyrau (Kazakhstan) near the northern part of the Caspian Sea and metallurgical enterprises on the Kola Peninsula (Russia), with GIS integration of modelling results into the RANDOM (Risk Assessment of Nature Detriment due to Oil spill Migration) system. At second, the studies on "The sensitivity of precipitation simulations to the soot aerosol presence" & "The precipitation forecast sensitivity to data assimilation on a very high resolution domain" focused on sensitivity and changes in precipitation life-cycle under black carbon polluted conditions over Scandinavia. At third, studies on "Aerosol effects over China investigated with a high resolution

  10. Characterization of organic aerosols in Beirut, Lebanon

    International Nuclear Information System (INIS)

    Waked, Antoine

    2012-01-01

    The chemical composition of PM2.5 includes both organic and inorganic compounds. Organic compounds, which constitute a significant fraction of the PM2.5 mass, can be emitted directly as primary aerosol from sources such as fossil-fuel combustion, biomass burning, and natural biogenic emissions, or formed in the atmosphere via chemical reactions leading to secondary organic aerosol (SOA) formation. SOA, which account for 20 - 80 % of total organic aerosol, are currently a major source of uncertainty in air quality modeling. The identification and quantification of the chemical composition of the organic fraction of PM2.5 and its source apportionment are of great interest, especially in the Middle East region where data on organic aerosols are currently lacking. Lebanon, a small developing country in the Middle East region located on the eastern shore of the Mediterranean basin represents a good example for characterizing organic aerosols in this region. To address this issue, the air quality in Beirut (the capital city of Lebanon) was investigated with a focus on organic aerosols. First, an air pollutant emission inventory was developed for Lebanon with a spatial resolution of 5 km x 5 km and for Beirut with a spatial resolution of 1 km x 1 km. The results obtained show that the road transport sector is the major contributor to carbon monoxide (CO), nitrogen oxides (NO x ) and non-methane volatile organic compounds (VOC) emissions, whereas fossil fuel-fired power plants and large industrial plants are the major contributors to sulfur dioxide (SO 2 ) and primary particulate matter (PM) emissions. Then, two intensive 15-day measurement campaigns were conducted at a semi-urban site located in a Beirut suburb to characterize air pollutant concentrations. The first measurement campaign took place in July 2011 and the second in February 2012. Measurements included PM2.5, organic carbon (OC) and elemental carbon (EC) mass concentrations as well as a molecular

  11. Seasonal variations in high time-resolved chemical compositions, sources, and evolution of atmospheric submicron aerosols in the megacity Beijing

    Science.gov (United States)

    Hu, Wei; Hu, Min; Hu, Wei-Wei; Zheng, Jing; Chen, Chen; Wu, Yusheng; Guo, Song

    2017-08-01

    A severe regional haze problem in the megacity Beijing and surrounding areas, caused by fast formation and growth of fine particles, has attracted much attention in recent years. In order to investigate the secondary formation and aging process of urban aerosols, four intensive campaigns were conducted in four seasons between March 2012 and March 2013 at an urban site in Beijing (116.31° E, 37.99° N). An Aerodyne high-resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS) was deployed to measure non-refractory chemical components of submicron particulate matter (NR-PM1). The average mass concentrations of PM1 (NR-PM1+black carbon) were 45.1 ± 45.8, 37.5 ± 31.0, 41.3 ± 42.7, and 81.7 ± 72.4 µg m-3 in spring, summer, autumn, and winter, respectively. Organic aerosol (OA) was the most abundant component in PM1, accounting for 31, 33, 44, and 36 % seasonally, and secondary inorganic aerosol (SNA, sum of sulfate, nitrate, and ammonium) accounted for 59, 57, 43, and 55 % of PM1 correspondingly. Based on the application of positive matrix factorization (PMF), the sources of OA were obtained, including the primary ones of hydrocarbon-like (HOA), cooking (COA), biomass burning OA (BBOA) and coal combustion OA (CCOA), and secondary component oxygenated OA (OOA). OOA, which can be split into more-oxidized (MO-OOA) and less-oxidized OOA (LO-OOA), accounted for 49, 69, 47, and 50 % in four seasons, respectively. Totally, the fraction of secondary components (OOA+SNA) contributed about 60-80 % to PM1, suggesting that secondary formation played an important role in the PM pollution in Beijing, and primary sources were also non-negligible. The evolution process of OA in different seasons was investigated with multiple metrics and tools. The average carbon oxidation states and other metrics show that the oxidation state of OA was the highest in summer, probably due to both strong photochemical and aqueous-phase oxidations. It was indicated by the good correlations

  12. Chemical and geochemical composition of spring-summer Arctic aerosol collected at Ny Alesund, Svalbard Islands.

    Science.gov (United States)

    Udisti, Roberto; Becagli, Silvia; Caiazzo, Laura; Cappelletti, David; Giardi, Fabio; Grotti, Marco; Lucarelli, Franco; Moroni, Beatrice; Nava, Silvia; Severi, Mirko; Traversi, Rita

    2017-04-01

    Since March 2010, spring-summer (usually March - September) campaigns were continuously carried out at the Italian Gruvebadet Observatory, Ny Alesund, Svalbard Island. Aerosol was sampled by PM10 (daily) and 4-stage (4-day resolution) collector devices and size distribution was evaluated at 10 min resolution in the range 10 nm - 20 um (106 size classes by a TSI SMPS-APS integrated system). Six-year (2010-2015) PM10 and size-segregated (>10, 10-2.5, 2.5-1, metal content (major and trace metals, including Rare Earth Elements - REEs, by PIXE and ICP-MS), Pb isotopic composition (by ICP-MS) and Elemental and Organic Carbon (EC-OC) concentrations. The data set was elaborated by multi-parametric statistical analysis (Positive Matrix Factorization - PMF), in order to identifying and quantifying the contribution of the main anthropic and natural aerosol sources. Particular attention was spent in evaluating the anthropic contribution of nss-sulphate, nitrate, EC and heavy metals during the Arctic Haze in spring. The isotopic composition of Pb was used in identifying the source areas (North America, Greenland, North Europe, Siberia, Iceland) of anthropic emissions as a function of seasonality (different atmospheric circulation pathway). Crustal metals and, especially, REEs anomalies (with respect to the Chondrite-normalized profile) allowed characterizing the dust emissions from their Potential Source Areas (PSA). Biogenic markers (especially methane sulfonic acid - MSA - and bio-nss-sulphate) was used to obtain relevant information about the relationship between marine biogenic activity (primary productivity) and sea ice coverage and atmospheric conditions (irradiance, temperature, circulation pathways). The seasonal pattern of the nitrate deposition was also investigated. Chemical and geochemical measurements were compared with high-resolution size distribution and back-trajectory cluster analysis in order to understand the seasonal pattern of the contributions of long

  13. Perceptions of Secondhand E-Cigarette Aerosol Among Twitter Users.

    Science.gov (United States)

    Unger, Jennifer B; Escobedo, Patricia; Allem, Jon-Patrick; Soto, Daniel W; Chu, Kar-Hai; Cruz, Tess

    2016-04-01

    There is considerable debate among the public health community about the health risks of secondhand exposure to the aerosol from electronic cigarettes (e-cigarettes). Despite mounting scientific evidence on the chemical content of e-cigarette aerosol, public perceptions of the relative safety of secondhand e-cigarette aerosol have not been well characterized. This study collected tweets, or messages sent using Twitter, about exposure to secondhand e-cigarette aerosol over a 6-week period in 2015. Tweets were coded on sentiment about e-cigarettes (pro-, anti-, or neutral/unknown) and topic (health, social, advertisement, or unknown). The 1519 tweets included 531 pro-e-cigarette tweets, 392 anti-e-cigarette tweets, and 596 neutral tweets. Social tweets far outnumbered health tweets (747 vs. 182, respectively). Social-focused tweets were predominantly pro-e-cigarette, whereas health-focused tweets were predominantly anti-e-cigarette. Twitter discussions about secondhand vaping are dominated by pro-e-cigarette social tweets, although there is a presence of anti-e-cigarette social tweets and tweets about negative and positive health effects. Public health and regulatory agencies could use social media and traditional media to disseminate the message that e-cigarette aerosol contains potentially harmful chemicals and could be perceived as offensive. This study identifies the prevalent topics and opinions that could be incorporated into health education messages.

  14. Aerosol typing - key information from aerosol studies

    Science.gov (United States)

    Mona, Lucia; Kahn, Ralph; Papagiannopoulos, Nikolaos; Holzer-Popp, Thomas; Pappalardo, Gelsomina

    2016-04-01

    Aerosol typing is a key source of aerosol information from ground-based and satellite-borne instruments. Depending on the specific measurement technique, aerosol typing can be used as input for retrievals or represents an output for other applications. Typically aerosol retrievals require some a priori or external aerosol type information. The accuracy of the derived aerosol products strongly depends on the reliability of these assumptions. Different sensors can make use of different aerosol type inputs. A critical review and harmonization of these procedures could significantly reduce related uncertainties. On the other hand, satellite measurements in recent years are providing valuable information about the global distribution of aerosol types, showing for example the main source regions and typical transport paths. Climatological studies of aerosol load at global and regional scales often rely on inferred aerosol type. There is still a high degree of inhomogeneity among satellite aerosol typing schemes, which makes the use different sensor datasets in a consistent way difficult. Knowledge of the 4d aerosol type distribution at these scales is essential for understanding the impact of different aerosol sources on climate, precipitation and air quality. All this information is needed for planning upcoming aerosol emissions policies. The exchange of expertise and the communication among satellite and ground-based measurement communities is fundamental for improving long-term dataset consistency, and for reducing aerosol type distribution uncertainties. Aerosol typing has been recognized as one of its high-priority activities of the AEROSAT (International Satellite Aerosol Science Network, http://aero-sat.org/) initiative. In the AEROSAT framework, a first critical review of aerosol typing procedures has been carried out. The review underlines the high heterogeneity in many aspects: approach, nomenclature, assumed number of components and parameters used for the

  15. Chemistry and Microphysics of Lower Stratospheric Aerosols Determined by Satellite Remote Sensing

    Science.gov (United States)

    Zasetsky, A. Y.; Khalizov, A.; Sloan, J.

    2003-12-01

    Observations of broadband Infrared satellites such as ILAS-II (Ministry of the Environment, Japan, launched 14 December 2002) and SciSat-1 (Canadian Space Agency, launched 12 August 2003) can provide details of the chemical composition and particle size of atmospheric aerosols by direct inversion without recourse to models. During the past decade, we have developed mathematical methods to achieve this inversion by working with FTIR observations of model atmospheric aerosols in cryogenic flowtubes. More recently, we have converted these to operational algorithms for use in the above missions. In this presentation, we will briefly outline these procedures and illustrate their capabilities using laboratory data. These laboratory results show that the chemical compositions, phases and sizes of ensembles of particles can be obtained simultaneously using these procedures. We will also report chemical and microphysical properties of lower stratospheric clouds and aerosols derived by applying these procedures to observations from space.

  16. Aerosol chemical compositions in the North China Plain and the impact on the visibility in Beijing and Tianjin

    Science.gov (United States)

    Zou, Jianan; Liu, Zirui; Hu, Bo; Huang, Xiaojuan; Wen, Tianxue; Ji, Dongsheng; Liu, Jingyun; Yang, Yang; Yao, Qing; Wang, Yuesi

    2018-03-01

    To better understand the characteristics of the chemical compositions of aerosols comprised of water soluble ions (WSIs) and carbonaceous aerosol (CA) and their impacts on the visibility throughout the North China Plain (NCP), four experimental sampling campaigns were carried out between June 2013 and May 2014. The sampling sites were located in Beijing, Xiangshan, Tianjin, Shijiazhuang, and Qinhuangdao. The air pollution episodes mainly occurred during the autumn and winter in the NCP. With regard to different particle size distributions, the ratio of anions to cations in the fine size (0.64) was greater than that in the coarse size (0.54) in the NCP. Coefficients of divergence indicate that aerosol pollution had similar characteristics in the five cities of the NCP and that the pollutants were characterized by mutual influences and regional transfer processes. There were different non-linear correlations between the visibility and mass concentrations of PM2.5 at different relative humidity (RH) conditions. When the RH was > 70%, the visibility was light extinction coefficients (LEC) from the measured concentrations of chemical species. Organic matter (OM), ammonium nitrate (AN), and ammonium sulfate (AS) were the three dominant species that contributed to the LEC in Beijing and had the highest proportions of total contributions to the LEC in the summer, accounting for 32.2%, 25.9%, and 24.4%, respectively. The LEC of sea salts did not change much throughout the year and accounted for 4.1-5.3% in Beijing and 4.8-7.4% in Tianjin. According to the Ambient Air Quality Standard, the days were divided into pollutional days (PD) and attained days (AD). The increasing concentrations of AN, AS and OM resulted in an increase in the LEC in the NCP, which led to the occurrences of low visibility events during the autumn and winter. NH4+, NO3-, and SO42 - mainly existed as fine size particles (diameter < 2.1 μm) in Beijing (73.5%, 80.7%, and 78.0% on PD and 63.3%, 79.4%, and

  17. Single particle characterization, source apportionment, and aging effects of ambient aerosols in Southern California

    Science.gov (United States)

    Shields, Laura Grace

    Composed of a mixture of chemical species and phases and existing in a variety of shapes and sizes, atmospheric aerosols are complex and can have serious influence on human health, the environment, and climate. In order to better understand the impact of aerosols on local to global scales, detailed measurements on the physical and chemical properties of ambient particles are essential. In addition, knowing the origin or the source of the aerosols is important for policymakers to implement targeted regulations and effective control strategies to reduce air pollution in their region. One of the most ground breaking techniques in aerosol instrumentation is single particle mass spectrometry (SPMS), which can provide online chemical composition and size information on the individual particle level. The primary focus of this work is to further improve the ability of one specific SPMS technique, aerosol time-of-flight mass spectrometry (ATOFMS), for the use of identifying the specific origin of ambient aerosols, which is known as source apportionment. The ATOFMS source apportionment method utilizes a library of distinct source mass spectral signatures to match the chemical information of the single ambient particles. The unique signatures are obtained in controlled source characterization studies, such as with the exhaust emissions of heavy duty diesel vehicles (HDDV) operating on a dynamometer. The apportionment of ambient aerosols is complicated by the chemical and physical processes an individual particle can undergo as it spends time in the atmosphere, which is referred to as "aging" of the aerosol. Therefore, the performance of the source signature library technique was investigated on the ambient dataset of the highly aged environment of Riverside, California. Additionally, two specific subsets of the Riverside dataset (ultrafine particles and particles containing trace metals), which are known to cause adverse health effects, were probed in greater detail. Finally

  18. Creating Aerosol Types from CHemistry (CATCH): A New Algorithm to Extend the Link Between Remote Sensing and Models

    Science.gov (United States)

    Dawson, K. W.; Meskhidze, N.; Burton, S. P.; Johnson, M. S.; Kacenelenbogen, M. S.; Hostetler, C. A.; Hu, Y.

    2017-11-01

    Current remote sensing methods can identify aerosol types within an atmospheric column, presenting an opportunity to incrementally bridge the gap between remote sensing and models. Here a new algorithm was designed for Creating Aerosol Types from CHemistry (CATCH). CATCH-derived aerosol types—dusty mix, maritime, urban, smoke, and fresh smoke—are based on first-generation airborne High Spectral Resolution Lidar (HSRL-1) retrievals during the Ship-Aircraft Bio-Optical Research (SABOR) campaign, July/August 2014. CATCH is designed to derive aerosol types from model output of chemical composition. CATCH-derived aerosol types are determined by multivariate clustering of model-calculated variables that have been trained using retrievals of aerosol types from HSRL-1. CATCH-derived aerosol types (with the exception of smoke) compare well with HSRL-1 retrievals during SABOR with an average difference in aerosol optical depth (AOD) methods. In the future, spaceborne HSRL-1 and CATCH can be used to gain insight into chemical composition of aerosol types, reducing uncertainties in estimates of aerosol radiative forcing.

  19. Sea Spray Aerosols

    DEFF Research Database (Denmark)

    Butcher, Andrew Charles

    emissions produced directly from bubble bursting as the result of air entrainment from breaking waves and particles generated from secondary emissions of volatile organic compounds. In the first paper, we study the chemical properties of particles produced from several sea water proxies with the use...... of a cloud condensation nuclei ounter. Proxy solutions with high inorganic salt concentrations and some organics produce sea spray aerosol particles with little change in cloud condensation activity relative to pure salts. Comparison is made between a frit based method for bubble production and a plunging...... a relationship between plunging jet particle ux, oceanic particle ux, and energy dissipation rate in both systems. Previous sea spray aerosol studies dissipate an order of magnitude more energy for the same particle ux production as the open ocean. A scaling factor related to the energy expended in air...

  20. Annual cycle of size-resolved organic aerosol characterization in an urbanized desert environment

    Science.gov (United States)

    Cahill, Thomas M.

    2013-06-01

    Studies of size-resolved organic speciation of aerosols are still relatively rare and are generally only conducted over short durations. However, size-resolved organic data can both suggest possible sources of the aerosols and identify the human exposure to the chemicals since different aerosol sizes have different lung capture efficiencies. The objective of this study was to conduct size-resolved organic aerosol speciation for a calendar year in Phoenix, Arizona to determine the seasonal variations in both chemical concentrations and size profiles. The results showed large seasonal differences in combustion pollutants where the highest concentrations were observed in winter. Summertime aerosols have a greater proportion of biological compounds (e.g. sugars and fatty acids) and the biological compounds represent the largest fraction of the organic compounds detected. These results suggest that standard organic carbon (OC) measurements might be heavily influenced by primary biological compounds particularly if the samples are PM10 and TSP samples. Several large dust storms did not significantly alter the organic aerosol profile since Phoenix resides in a dusty desert environment, so the soil and plant tracer of trehalose was almost always present. The aerosol size profiles showed that PAHs were generally most abundant in the smallest aerosol size fractions, which are most likely to be captured by the lung, while the biological compounds were almost exclusively found in the coarse size fraction.

  1. Sources and atmospheric processing of organic aerosol in the Mediterranean: insights from aerosol mass spectrometer factor analysis

    Directory of Open Access Journals (Sweden)

    L. Hildebrandt

    2011-12-01

    Full Text Available Atmospheric particles were measured in the late winter (25 February–26 March 2009 at a remote coastal site on the island of Crete, Greece during the Finokalia Aerosol Measurement Experiment-2009. A quadrupole aerosol mass spectrometer (Q-AMS was employed to quantify the size-resolved chemical composition of non-refractory submicron aerosol, and a thermodenuder was used to analyze the organic aerosol (OA volatility. Complementary measurements included particle size distributions from a scanning mobility particle sizer, inorganic and organic particle composition from filter analysis, air ion concentrations, O3, NOx and NOy concentrations, and meteorological measurements. Factor analysis was performed on the OA mass spectra, and the variability in OA composition could best be explained with three OA components. The oxygenated organic aerosol (OOA was similar in composition and volatility to the summertime OA previously measured at this site and may represent an effective endpoint in particle-phase oxidation of organics. The two other OA components, one associated with amines (Amine-OA and the other probably associated with the burning of olive branches (OB-OA, had very low volatility but were less oxygenated. Hydrocarbon-like organic aerosol (HOA was not detected. The absence of OB-OA and Amine-OA in the summer data may be due to lower emissions and/or photochemical conversion of these components to OOA.

  2. Atmospheric Aerosol Emissions Related to the Mediterranean Seawater Biogeochemistry

    Science.gov (United States)

    Sellegri, K.; Schwier, A.; Rose, C.; Gazeau, F. P. H.; Guieu, C.; D'anna, B.; Ebling, A. M.; Pey, J.; Marchand, N.; Charriere, B.; Sempéré, R.; Mas, S.

    2016-02-01

    Marine aerosols contribute significantly to the global aerosol load and consequently has an important impact on the Earth's climate. Different factors influence the way they are produced at the air/seawater interface. The sea state (whitecap coverage, temperature, etc. ) influence the size and concentration of primarily produced particles but also biogeochemical characteristics of the seawater influence both the physical and chemical primary fluxes to the atmosphere. An additional aerosol source of marine aerosol to the atmosphere is the formation of new particles by gaz-to-particle conversion, i.e. nucleation. How the seawater and surface microlayer biogeochemical compositions influences the aerosol emissions is still a large debate. In order to study marine emissions, one approach is to use semi-controlled environments such as mesocosms. Within the MedSea and SAM projects, we characterize the primary Sea Spray Aerosol (SSA) during mesocosms experiments performed during different seasons in the Mediteranean Sea. Mesocosms were either left unchanged as control or enriched by addition of nutriments in order to create different levels of phytoplanctonic activities. The mesocosms waters were daily analyzed for their chemical and biological composition (DOC, CDOM, TEP, Chl-a, virus, bacteria, phytoplankton and zooplankton concentrations). SSA production by bubble bursting was daily simulated in a dedicated set-up. The size segregated SSA number fluxes, cloud condensation nuclei (CCN) properties, and chemical composition were determined as a function of the seawater characteristics. We show that the SSA organic content was clearly correlated to the seawater Chl-a level, provided that the mesocosm was not enriched to create an artificial phytoplanctonic bloom. In our experiments, the enrichment of the seawater with natural surface microlayer did not impact the SSA organic content nor its CCN properties. At last, nucleation of secondary particles were observed to occur in

  3. Inhalation toxicology of industrial plutonium and uranium oxide aerosols I. Physical chemical characterization

    International Nuclear Information System (INIS)

    Eidson, A.F.; Mewhinney, J.A.

    1978-01-01

    In the fabrication of mixed plutonium and uranium oxide fuel, large quantities of dry powders are processed, causing dusty conditions in glove box enclosures. Inadvertent loss of glove box integrity or failure of air filter systems can lead to human inhalation exposure. Powdered samples and aerosol samples of these materials obtained during two fuel fabrication process steps have been obtained. A regimen of physical chemical tests of properties of these materials has been employed to identify physical chemical properties which may influence their biological behavior and dosimetry. Materials to be discussed are 750 deg. C heat-treated, mixed uranium and plutonium oxides obtained from the ball milling operation and 1750 deg. C heat-treated, mixed uranium and plutonium oxides obtained from the centerless grinding of fuel pellets. Results of x-ray diffraction studies have shown that the powder generated by the centerless grinding of fuel pellets is best described as a solid solution of UO x and PuO x consistent with its temperature history. In vitro dissolution studies of both mixed oxide materials indicate a generally similar dissolution rate for both materials. In one solvent, the material with the higher temperature history dissolves more rapidly. The x-ray diffraction and in vitro dissolution results as well as preliminary results of x-ray photoelectron spectroscopic analyses will be compared and the implications for the associated biological studies will be discussed. (author)

  4. Modification of combustion aerosols in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Weingartner, E [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-07-01

    Combustion aerosols particles are released on large scale into the atmosphere in the industrialized regions as well as in the tropics (by wood fires). The particles are subjected to various aging processes which depend on the size, morphology, and chemical composition of the particles. The interaction of combustion particles with sunlight and humidity as well as adsorption and desorption of volatile material to or from the particles considerably changes their physical and chemical properties and thus their residence time in the atmosphere. This is of importance because combustion particles are known to have a variety of health effects on people. Moreover, atmospheric aerosol particles have an influence on climate, directly through the reflection and absorption of solar radiation and indirectly through modifying the optical properties and lifetime of clouds. In a first step, a field experiment was carried out to study the sources and characteristics of combustion aerosols that are emitted from vehicles in a road tunnel. It was found that most of the fine particles were tail pipe emissions of diesel powered vehicles. The calculation shows that on an average these vehicles emit about 300 mg fine particulate matter per driven kilometer. This emission factor is at least 100 times higher than the mean emission factor estimated for gasoline powered vehicles. Furthermore, it is found that during their residence time in the tunnel, the particles undergo significant changes: The particles change towards a more compact structure. The conclusion is reached that this is mainly due to adsorption of volatile material from the gas phase to the particle surface. In the atmosphere, the life cycle as well as the radiative and chemical properties of an aerosol particle is strongly dependent on its response to humidity. Therefore the hygroscopic behavior of combustion particles emitted from single sources (i.e. from a gasoline and a diesel engine) were studied in laboratory experiments.

  5. Secondary organic aerosol formation from in-use motor vehicle emissions using a potential aerosol mass reactor.

    Science.gov (United States)

    Tkacik, Daniel S; Lambe, Andrew T; Jathar, Shantanu; Li, Xiang; Presto, Albert A; Zhao, Yunliang; Blake, Donald; Meinardi, Simone; Jayne, John T; Croteau, Philip L; Robinson, Allen L

    2014-10-07

    Secondary organic aerosol (SOA) formation from in-use vehicle emissions was investigated using a potential aerosol mass (PAM) flow reactor deployed in a highway tunnel in Pittsburgh, Pennsylvania. Experiments consisted of passing exhaust-dominated tunnel air through a PAM reactor over integrated hydroxyl radical (OH) exposures ranging from ∼ 0.3 to 9.3 days of equivalent atmospheric oxidation. Experiments were performed during heavy traffic periods when the fleet was at least 80% light-duty gasoline vehicles on a fuel-consumption basis. The peak SOA production occurred after 2-3 days of equivalent atmospheric oxidation. Additional OH exposure decreased the SOA production presumably due to a shift from functionalization to fragmentation dominated reaction mechanisms. Photo-oxidation also produced substantial ammonium nitrate, often exceeding the mass of SOA. Analysis with an SOA model highlight that unspeciated organics (i.e., unresolved complex mixture) are a very important class of precursors and that multigenerational processing of both gases and particles is important at longer time scales. The chemical evolution of the organic aerosol inside the PAM reactor appears to be similar to that observed in the atmosphere. The mass spectrum of the unoxidized primary organic aerosol closely resembles ambient hydrocarbon-like organic aerosol (HOA). After aging the exhaust equivalent to a few hours of atmospheric oxidation, the organic aerosol most closely resembles semivolatile oxygenated organic aerosol (SV-OOA) and then low-volatility organic aerosol (LV-OOA) at higher OH exposures. Scaling the data suggests that mobile sources contribute ∼ 2.9 ± 1.6 Tg SOA yr(-1) in the United States, which is a factor of 6 greater than all mobile source particulate matter emissions reported by the National Emissions Inventory. This highlights the important contribution of SOA formation from vehicle exhaust to ambient particulate matter concentrations in urban areas.

  6. Simulating gas-aerosol-cirrus interactions: Process-oriented microphysical model and applications

    Directory of Open Access Journals (Sweden)

    B. Kärcher

    2003-01-01

    Full Text Available This work describes a process-oriented, microphysical-chemical model to simulate the formation and evolution of aerosols and ice crystals under the conditions prevailing in the upper troposphere and lower stratosphere. The model can be run as a box model or along atmospheric trajectories, and considers mixing, gas phase chemistry of aerosol precursors, binary homogeneous aerosol nucleation, homogeneous and heterogeneous ice nucleation, coagulation, condensation and dissolution, gas retention during particle freezing, gas trapping in growing ice crystals, and reverse processes. Chemical equations are solved iteratively using a second order implicit integration method. Gas-particle interactions and coagulation are treated over various size structures, with fully mass conserving and non-iterative numerical solution schemes. Particle types include quinternary aqueous solutions composed of H2SO4, HNO3, HCl, and HBr with and without insoluble components, insoluble aerosol particles, and spherical or columnar ice crystals deriving from each aerosol type separately. Three case studies are discussed in detail to demonstrate the potential of the model to simulate real atmospheric processes and to highlight current research topics concerning aerosol and cirrus formation near the tropopause. Emphasis is placed on how the formation of cirrus clouds and the scavenging of nitric acid in cirrus depends on small-scale temperature fluctuations and the presence of efficient ice nuclei in the tropopause region, corroborating and partly extending the findings of previous studies.

  7. Liquid chromatography-dopant-assisted atmospheric pressure photoionization-mass spectrometry: Application to the analysis of aldehydes in atmospheric aerosol particles.

    Science.gov (United States)

    Ruiz-Jiménez, José; Hautala, Sanna; Parshintsev, Jevgeni; Laitinen, Totti; Hartonen, Kari; Petäjä, Tuukka; Kulmala, Markku; Riekkola, Marja-Liisa

    2013-01-01

    A complete methodology based on LC-anisole-toluene dopant-assisted atmospheric pressure photoionization-IT-MS was developed for the determination of aldehydes in atmospheric aerosol particles. For the derivatization, ultrasound was used to accelerate the reaction between the target analytes and 2,4-dinitrophenylhydrazine. The developed methodology was validated for three different samples, gas phase, ultrafine (Dp = 30 ± 4 nm; where Dp stands for particle diameter) and all-sized particles, collected on Teflon filters. The method quantitation limits ranged from 5 to 227 pg. The accuracy and the potential matrix effects were evaluated using standard addition methodology. Recoveries ranged between 91.7 and 109.9%, and the repeatability and the reproducibility of the method developed between 0.5 and 8.0% and between 2.9 and 11.1%, respectively. The results obtained by the developed methodology compared to those provided by the previously validated method revealed no statistical differences. The method developed was applied to the determination of aldehydes in 16 atmospheric aerosol samples (30 nm and all-sized samples) collected at the Station for Measuring Forest Ecosystem-Atmosphere Relations II during spring 2011. The mean concentrations of aldehydes, and oxidation products of terpenes were between 0.05 and 82.70 ng/m(3). © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Impacts of controlling biomass burning emissions on wintertime carbonaceous aerosol in Europe

    NARCIS (Netherlands)

    Fountoukis, C.; Butler, T.; Lawrence, M.G.; Denier van der Gon, H.A.C.; Visschedijk, A.J.H.; Charalampidis, P.; Pilinis, C.; Pandis, S.N.

    2014-01-01

    We use a 3-D regional chemical transport model, with the latest advancements in the organic aerosol (OA) treatment, and an updated emission inventory for wood combustion to study the organic aerosol change in response to the replacement of current residential wood combustion technologies with pellet

  9. A GCM study of organic matter in marine aerosol and its potential contribution to cloud drop activation

    Directory of Open Access Journals (Sweden)

    G. J. Roelofs

    2008-02-01

    Full Text Available With the global aerosol-climate model ECHAM5-HAM we investigate the potential influence of organic aerosol originating from the ocean on aerosol mass and chemical composition and the droplet concentration and size of marine clouds. We present sensitivity simulations in which the uptake of organic matter in the marine aerosol is prescribed for each aerosol mode with varying organic mass and mixing state, and with a geographical distribution and seasonality similar to the oceanic emission of dimethyl sulfide. Measurements of aerosol mass, aerosol chemical composition and cloud drop effective radius are used to assess the representativity of the model initializations. Good agreement with the measurements is obtained when organic matter is added to the Aitken, accumulation and coarse modes simultaneously. Representing marine organics in the model leads to higher cloud drop number concentrations and thus smaller cloud drop effective radii, and this improves the agreement with measurements. The mixing state of the organics and the other aerosol matter, i.e. internal or external depending on the formation process of aerosol organics, is an important factor for this. We estimate that globally about 75 Tg C yr−1 of organic matter from marine origin enters the aerosol phase, with comparable contributions from primary emissions and secondary organic aerosol formation.

  10. Simulation of Cloud-aerosol Lidar with Orthogonal Polarization (CALIOP Attenuated Backscatter Profiles Using the Global Model of Aerosol Processes (GLOMAP

    Directory of Open Access Journals (Sweden)

    Young Stuart

    2016-01-01

    Full Text Available To permit the calculation of the radiative effects of atmospheric aerosols, we have linked our aerosol-chemical transport model (CTMGLOMAP to a new radiation module (UKCARADAER. In order to help assess and improve the accuracy of the radiation code, in particular the height dependence of the predicted scattering, we have developed a module that simulates attenuated backscatter (ABS profiles that would be measured by the satellite-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP if it were to sample an atmosphere with the same aerosol loading as predicted by the CTM. Initial results of our comparisons of the predicted ABS profiles with actual CALIOP data are encouraging but some differences are noted, particularly in marine boundary layers where the scattering is currently under-predicted and in dust layers where it is often over-predicted. The sources of these differences are being investigated.

  11. Photochemical aging of aerosol particles in different air masses arriving at Baengnyeong Island, Korea

    Science.gov (United States)

    Kang, Eunha; Lee, Meehye; Brune, William H.; Lee, Taehyoung; Park, Taehyun; Ahn, Joonyoung; Shang, Xiaona

    2018-05-01

    Atmospheric aerosol particles are a serious health risk, especially in regions like East Asia. We investigated the photochemical aging of ambient aerosols using a potential aerosol mass (PAM) reactor at Baengnyeong Island in the Yellow Sea during 4-12 August 2011. The size distributions and chemical compositions of aerosol particles were measured alternately every 6 min from the ambient air or through the highly oxidizing environment of a potential aerosol mass (PAM) reactor. Particle size and chemical composition were measured by using the combination of a scanning mobility particle sizer (SMPS) and a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). Inside the PAM reactor, O3 and OH levels were equivalent to 4.6 days of integrated OH exposure at typical atmospheric conditions. Two types of air masses were distinguished on the basis of the chemical composition and the degree of aging: air transported from China, which was more aged with a higher sulfate concentration and O : C ratio, and the air transported across the Korean Peninsula, which was less aged with more organics than sulfate and a lower O : C ratio. For both episodes, the particulate sulfate mass concentration increased in the 200-400 nm size range when sampled through the PAM reactor. A decrease in organics was responsible for the loss of mass concentration in 100-200 nm particles when sampled through the PAM reactor for the organics-dominated episode. This loss was especially evident for the m/z 43 component, which represents less oxidized organics. The m/z 44 component, which represents further oxidized organics, increased with a shift toward larger sizes for both episodes. It is not possible to quantify the maximum possible organic mass concentration for either episode because only one OH exposure of 4.6 days was used, but it is clear that SO2 was a primary precursor of secondary aerosol in northeast Asia, especially during long-range transport from China. In addition

  12. Systematic Relationships Between Lidar Observables and Sizes And Mineral Composition Of Dust Aerosols

    Science.gov (United States)

    Van Diedenhoven, Bastiaan; Stangl, Alexander; Perlwitz, Jan; Fridlind, Ann M.; Chowdhary, Jacek; Cairns, Brian

    2015-01-01

    The physical and chemical properties of soil dust aerosol particles fundamentally affect their interaction with climate, including shortwave absorption and radiative forcing, nucleation of cloud droplets and ice crystals, heterogeneous formation of sulfates and nitrates on the surface of dust particles, and atmospheric processing of iron into bioavailable forms that increase the productivity of marine phytoplankton. Lidar measurements, such as extinction-to-backscatter, color and depolarization ratios, are frequently used to distinguish between aerosol types with different physical and chemical properties. The chemical composition of aerosol particles determines their complex refractive index, hence affecting their backscattering properties. Here we present a study on how dust aerosol backscattering and depolarization properties at wavelengths of 355, 532 and 1064 nm are related to size and complex refractive index, which varies with the mineral composition of the dust. Dust aerosols are represented by collections of spheroids with a range of prolate and oblate aspect ratios and their optical properties are obtained using T-matrix calculations. We find simple, systematic relationships between lidar observables and the dust size and complex refractive index that may aid the use of space-based or airborne lidars for direct retrieval of dust properties or for the evaluation of chemical transport models using forward simulated lidar variables. In addition, we present first results on the spatial variation of forward-simulated lidar variables based on a dust model that accounts for the atmospheric cycle of eight different mineral types plus internal mixtures of seven mineral types with iron oxides, which was recently implemented in the NASA GISS Earth System ModelE2.

  13. Speciation of Fe in ambient aerosol and cloudwater

    Energy Technology Data Exchange (ETDEWEB)

    Siefert, Ronald Lyn [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    1996-08-15

    Atmospheric iron (Fe) is thought to play an important role in cloudwater chemistry (e.g., S(IV) oxidation, oxidant production, etc.), and is also an important source of Fe to certain regions of the worlds oceans where Fe is believed to be a rate-limiting nutrient for primary productivity. This thesis focuses on understanding the chemistry, speciation and abundance of Fe in cloudwater and aerosol in the troposphere, through observations of Fe speciation in the cloudwater and aerosol samples collected over the continental United States and the Arabian Sea. Different chemical species of atmospheric Fe were measured in aerosol and cloudwater samples to help assess the role of Fe in cloudwater chemistry.

  14. Temperature effect on physical and chemical properties of secondary organic aerosol from m-xylene photooxidation

    Directory of Open Access Journals (Sweden)

    D. R. Cocker III

    2010-04-01

    Full Text Available The chemical and physical differences of secondary organic aerosol (SOA formed at select isothermal temperatures (278 K, 300 K, and 313 K are explored with respect to density, particle volatility, particle hygroscopicity, and elemental chemical composition. A transition point in SOA density, volatility, hygroscopicity and elemental composition is observed near 290–292 K as SOA within an environmental chamber is heated from 278 K to 313 K, indicating the presence of a thermally labile compound. No such transition points are observed for SOA produced at 313 K or 300 K and subsequently cooled to 278 K. The SOA formed at the lowest temperatures (278 K is more than double the SOA formed at 313 K. SOA formed at 278 K is less hydrophilic and oxygenated while more volatile and dense than SOA formed at 300 K or 313 K. The properties of SOA formed at 300 K and 313 K when reduced to 278 K did not match the properties of SOA initially formed at 278 K. This study demonstrates that it is insufficient to utilize the enthalpy of vaporization when predicting SOA temperature dependence.

  15. Evaluation of simulated aerosol properties with the aerosol-climate model ECHAM5-HAM using observations from the IMPACT field campaign

    Directory of Open Access Journals (Sweden)

    G.-J. Roelofs

    2010-08-01

    Full Text Available In May 2008, the measurement campaign IMPACT for observation of atmospheric aerosol and cloud properties was conducted in Cabauw, The Netherlands. With a nudged version of the coupled aerosol-climate model ECHAM5-HAM we simulate the size distribution and chemical composition of the aerosol and the associated aerosol optical thickness (AOT for the campaign period. Synoptic scale meteorology is represented realistically through nudging of the vorticity, the divergence, the temperature and the surface pressure. Simulated concentrations of aerosol sulfate and organics at the surface are generally within a factor of two from observed values. The monthly averaged AOT from the model is 0.33, about 20% larger than observed. For selected periods of the month with relatively dry and moist conditions discrepancies are approximately −30% and +15%, respectively. Discrepancies during the dry period are partly caused by inaccurate representation of boundary layer (BL dynamics by the model affecting the simulated AOT. The model simulates too strong exchange between the BL and the free troposphere, resulting in weaker concentration gradients at the BL top than observed for aerosol and humidity, while upward mixing from the surface layers into the BL appears to be underestimated. The results indicate that beside aerosol sulfate and organics also aerosol ammonium and nitrate significantly contribute to aerosol water uptake. The simulated day-to-day variability of AOT follows synoptic scale advection of humidity rather than particle concentration. Even for relatively dry conditions AOT appears to be strongly influenced by the diurnal cycle of RH in the lower boundary layer, further enhanced by uptake and release of nitric acid and ammonia by aerosol water.

  16. The role of iron and black carbon in aerosol light absorption

    Directory of Open Access Journals (Sweden)

    Y. Derimian

    2008-07-01

    Full Text Available Iron is a major component of atmospheric aerosols, influencing the light absorption ability of mineral dust, and an important micronutrient that affects oceanic biogeochemistry. The regional distribution of the iron concentration in dust is important for climate studies; however, this is difficult to obtain since it requires in-situ aerosol sampling or simulation of complex natural processes. Simultaneous studies of aerosol chemical composition and radiometric measurements of aerosol optical properties, which were performed in the Negev desert of Israel continuously for about eight years, suggest a potential for deriving a relationship between chemical composition and light absorption properties, in particular the spectral single-scattering albedo.

    The two main data sets of the present study were obtained by a sun/sky radiometer and a stacked filter unit sampler that collects particles in coarse and fine size fractions. Analysis of chemical and optical data showed the presence of mixed dust and pollution aerosol in the study area, although their sources appear to be different. Spectral SSA showed an evident response to increased concentrations of iron, black carbon equivalent matter, and their mixing state. A relationship that relates the spectral SSA, the percentage of iron in total particulate mass, and the pollution components was derived. Results calculated, using this relationship, were compared with measurements from dust episodes in several locations around the globe. The comparison showed reasonable agreement between the calculated and the observed iron concentrations, and supported the validity of the suggested approach for the estimation of iron concentrations in mineral dust.

  17. Simultaneous aerosol mass spectrometry and chemical ionisation mass spectrometry measurements during a biomass burning event in the UK: insights into nitrate chemistry

    Directory of Open Access Journals (Sweden)

    E. Reyes-Villegas

    2018-03-01

    Full Text Available Over the past decade, there has been an increasing interest in short-term events that negatively affect air quality such as bonfires and fireworks. High aerosol and gas concentrations generated from public bonfires or fireworks were measured in order to understand the night-time chemical processes and their atmospheric implications. Nitrogen chemistry was observed during Bonfire Night with nitrogen containing compounds in both gas and aerosol phases and further N2O5 and ClNO2 concentrations, which depleted early next morning due to photolysis of NO3 radicals and ceasing production. Particulate organic oxides of nitrogen (PONs concentrations of 2.8 µg m−3 were estimated using the m ∕ z 46 : 30 ratios from aerosol mass spectrometer (AMS measurements, according to previously published methods. Multilinear engine 2 (ME-2 source apportionment was performed to determine organic aerosol (OA concentrations from different sources after modifying the fragmentation table and it was possible to identify two PON factors representing primary (pPON_ME2 and secondary (sPON_ME2 contributions. A slight improvement in the agreement between the source apportionment of the AMS and a collocated AE-31 Aethalometer was observed after modifying the prescribed fragmentation in the AMS organic spectrum (the fragmentation table to determine PON sources, which resulted in an r2 =  0.894 between biomass burning organic aerosol (BBOA and babs_470wb compared to an r2 =  0.861 obtained without the modification. Correlations between OA sources and measurements made using time-of-flight chemical ionisation mass spectrometry with an iodide adduct ion were performed in order to determine possible gas tracers to be used in future ME-2 analyses to constrain solutions. During Bonfire Night, strong correlations (r2 were observed between BBOA and methacrylic acid (0.92, acrylic acid (0.90, nitrous acid (0.86, propionic acid, (0.85 and hydrogen cyanide (0

  18. Simultaneous aerosol mass spectrometry and chemical ionisation mass spectrometry measurements during a biomass burning event in the UK: insights into nitrate chemistry

    Science.gov (United States)

    Reyes-Villegas, Ernesto; Priestley, Michael; Ting, Yu-Chieh; Haslett, Sophie; Bannan, Thomas; Le Breton, Michael; Williams, Paul I.; Bacak, Asan; Flynn, Michael J.; Coe, Hugh; Percival, Carl; Allan, James D.

    2018-03-01

    Over the past decade, there has been an increasing interest in short-term events that negatively affect air quality such as bonfires and fireworks. High aerosol and gas concentrations generated from public bonfires or fireworks were measured in order to understand the night-time chemical processes and their atmospheric implications. Nitrogen chemistry was observed during Bonfire Night with nitrogen containing compounds in both gas and aerosol phases and further N2O5 and ClNO2 concentrations, which depleted early next morning due to photolysis of NO3 radicals and ceasing production. Particulate organic oxides of nitrogen (PONs) concentrations of 2.8 µg m-3 were estimated using the m / z 46 : 30 ratios from aerosol mass spectrometer (AMS) measurements, according to previously published methods. Multilinear engine 2 (ME-2) source apportionment was performed to determine organic aerosol (OA) concentrations from different sources after modifying the fragmentation table and it was possible to identify two PON factors representing primary (pPON_ME2) and secondary (sPON_ME2) contributions. A slight improvement in the agreement between the source apportionment of the AMS and a collocated AE-31 Aethalometer was observed after modifying the prescribed fragmentation in the AMS organic spectrum (the fragmentation table) to determine PON sources, which resulted in an r2 = 0.894 between biomass burning organic aerosol (BBOA) and babs_470wb compared to an r2 = 0.861 obtained without the modification. Correlations between OA sources and measurements made using time-of-flight chemical ionisation mass spectrometry with an iodide adduct ion were performed in order to determine possible gas tracers to be used in future ME-2 analyses to constrain solutions. During Bonfire Night, strong correlations (r2) were observed between BBOA and methacrylic acid (0.92), acrylic acid (0.90), nitrous acid (0.86), propionic acid, (0.85) and hydrogen cyanide (0.76). A series of oxygenated species

  19. Properties of aerosols and formation mechanisms over southern China during the monsoon season

    Directory of Open Access Journals (Sweden)

    W. Chen

    2016-10-01

    Full Text Available Measurements of size-resolved aerosols from 0.25 to 18 µm were conducted at three sites (urban, suburban and background sites and used in tandem with an atmospheric transport model to study the size distribution and formation of atmospheric aerosols in southern China during the monsoon season (May–June in 2010. The mass distribution showed the majority of chemical components were found in the smaller size bins (< 2.5 µm. Sulfate was found to be strongly correlated with aerosol water and anticorrelated with atmospheric SO2, hinting at aqueous-phase reactions being the main formation pathway. Nitrate was the only major species that showed a bimodal distribution at the urban site and was dominated by the coarse mode in the other two sites, suggesting that an important component of nitrate formation is chloride depletion of sea salt transported from the South China Sea. In addition to these aqueous-phase reactions and interactions with sea salt aerosols, new particle formation, chemical aging, and long-range transport from upwind urban or biomass burning regions was also found to be important in at least some of the sites on some of the days. This work therefore summarizes the different mechanisms that significantly impact the aerosol chemical composition during the monsoon over southern China.

  20. SAFARI 2000 Physical and Chemical Properties of Aerosols, Dry Season 2000

    Data.gov (United States)

    National Aeronautics and Space Administration — SAFARI 2000 provided an opportunity to study aerosol particles produced by savanna burning. We used analytical transmission electron microscopy (TEM), including...

  1. Do atmospheric aerosols form glasses?

    Directory of Open Access Journals (Sweden)

    D. A. Pedernera

    2008-09-01

    Full Text Available A new process is presented by which water soluble organics might influence ice nucleation, ice growth, chemical reactions and water uptake of aerosols in the upper troposphere: the formation of glassy aerosol particles. Glasses are disordered amorphous (non-crystalline solids that form when a liquid is cooled without crystallization until the viscosity increases exponentially and molecular diffusion practically ceases. The glass transition temperatures, Tg, homogeneous ice nucleation temperatures, Thom, and ice melting temperatures, Tm, of various aqueous inorganic, organic and multi-component solutions are investigated with a differential scanning calorimeter. The investigated solutes are: various polyols, glucose, raffinose, levoglucosan, an aromatic compound, sulfuric acid, ammonium bisulfate and mixtures of dicarboxylic acids (M5, of dicarboxylic acids and ammonium sulfate (M5AS, of two polyols, of glucose and ammonium nitrate, and of raffinose and M5AS. The results indicate that aqueous solutions of the investigated inorganic solutes show Tg values that are too low to be of atmospheric importance. In contrast, aqueous organic and multi-component solutions readily form glasses at low but atmospherically relevant temperatures (≤230 K. To apply the laboratory data to the atmospheric situation, the measured phase transition temperatures were transformed from a concentration to a water activity scale by extrapolating water activities determined between 252 K and 313 K to lower temperatures. The obtained state diagrams reveal that the higher the molar mass of the aqueous organic or multi-component solutes, the higher Tg of their respective solutions at a given water activity. To a lesser extent, Tg also depends on the hydrophilicity of the organic solutes. Therefore, aerosol particles containing larger (≳150 g mol−1 and

  2. Properties of aerosols and formation mechanisms over southern China during the monsoon season

    Science.gov (United States)

    Chen, Weihua; Wang, Xuemei; Blake Cohen, Jason; Zhou, Shengzhen; Zhang, Zhisheng; Chang, Ming; Chan, Chuen-Yu

    2016-10-01

    Measurements of size-resolved aerosols from 0.25 to 18 µm were conducted at three sites (urban, suburban and background sites) and used in tandem with an atmospheric transport model to study the size distribution and formation of atmospheric aerosols in southern China during the monsoon season (May-June) in 2010. The mass distribution showed the majority of chemical components were found in the smaller size bins (water and anticorrelated with atmospheric SO2, hinting at aqueous-phase reactions being the main formation pathway. Nitrate was the only major species that showed a bimodal distribution at the urban site and was dominated by the coarse mode in the other two sites, suggesting that an important component of nitrate formation is chloride depletion of sea salt transported from the South China Sea. In addition to these aqueous-phase reactions and interactions with sea salt aerosols, new particle formation, chemical aging, and long-range transport from upwind urban or biomass burning regions was also found to be important in at least some of the sites on some of the days. This work therefore summarizes the different mechanisms that significantly impact the aerosol chemical composition during the monsoon over southern China.

  3. Modeling of pollution aerosols in Ile-de-France

    International Nuclear Information System (INIS)

    Hodzic, A.

    2005-10-01

    The modeling of aerosols is a major stake in the understanding of the emission processes and evolution of particulates in the atmosphere. However, the parameterizations used in today's aerosol models still comprise many uncertainties. This work has been motivated by the need of better identifying the weaknesses of aerosols modeling tools and by the necessity of having new validation methods for a 3D evaluation of models. The studies have been carried out using the CHIMERE chemistry-transport model, which allows to simulate the concentrations and physico-chemical characteristics of pollution aerosols at the European scale and in Ile-de-France region. The validation approach used is based on the complementarity of the measurements performed on the ground by monitoring networks with those acquired during the ESQUIF campaign (study and simulation of air quality in Ile-de-France), with lidar and photometric measurements and with satellite observations. The comparison between the observations and the simulations has permitted to identify and reduce the modeling errors, and to characterize the aerosol properties in the vicinity of an urban area. (J.S.)

  4. Spray Chemical Vapor Deposition of Single-Source Precursors for Chalcopyrite I-III-VI2 Thin-Film Materials

    Science.gov (United States)

    Hepp, Aloysius F.; Banger, Kulbinder K.; Jin, Michael H.-C.; Harris, Jerry D.; McNatt, Jeremiah S.; Dickman, John E.

    2008-01-01

    Thin-film solar cells on flexible, lightweight, space-qualified substrates provide an attractive approach to fabricating solar arrays with high mass-specific power. A polycrystalline chalcopyrite absorber layer is among the new generation of photovoltaic device technologies for thin film solar cells. At NASA Glenn Research Center we have focused on the development of new single-source precursors (SSPs) for deposition of semiconducting chalcopyrite materials onto lightweight, flexible substrates. We describe the syntheses and thermal modulation of SSPs via molecular engineering. Copper indium disulfide and related thin-film materials were deposited via aerosol-assisted chemical vapor deposition using SSPs. Processing and post-processing parameters were varied in order to modify morphology, stoichiometry, crystallography, electrical properties, and optical properties to optimize device quality. Growth at atmospheric pressure in a horizontal hotwall reactor at 395 C yielded the best device films. Placing the susceptor closer to the evaporation zone and flowing a more precursor-rich carrier gas through the reactor yielded shinier-, smoother-, and denser-looking films. Growth of (112)-oriented films yielded more Cu-rich films with fewer secondary phases than growth of (204)/(220)-oriented films. Post-deposition sulfur-vapor annealing enhanced stoichiometry and crystallinity of the films. Photoluminescence studies revealed four major emission bands and a broad band associated with deep defects. The highest device efficiency for an aerosol-assisted chemical vapor deposited cell was one percent.

  5. A case study of highly time-resolved evolution of aerosol chemical composition and optical properties during severe haze pollution in Shanghai, China

    Science.gov (United States)

    Zhu, W.; Cheng, Z.; Lou, S.

    2017-12-01

    Despite of extensive efforts into characterization of the sources in severe haze pollution periods in the megacity of Shanghai, the study of aerosol composition, mass-size distribution and optical properties to PM1 in the pollution periods remain poorly understood. Here we conducted a 47days real-time measurement of submicron aerosol (PM1) composition and size distribution by a High-Resolution Time-of-Flight Aerosol Mass spectrometer (HR-TOF-AMS), particle light scattering by a Cavity Attenuated Phase Shift ALBedo monitor (CAPS-ALB) and Photoacoustic Extinctionmeter (PAX) in Shanghai, China, from November 28, 2016 to January 12, 2017. The average PM1 concentration was 85.9(±14.7) μg/m3 during the pollution period, which was nearly 4 times higher than that of clean period. Increased scattering coefficient during EP was associated with higher secondary inorganic aerosols and organics. We also observed organics mass size distribution for different pollution extents showing different distribution characteristics. There were no obvious differences for ammonium nitrate and ammonium sulfate among the pollution periods, which represented single peak distributions, and peaks ranged at 650-700nm and 700nm, respectively. A strong relationship can be expected between PM1 compounds mass concentration size distribution and scattering coefficient, suggesting that chemical composition, size distribution of the particles and their variations could also contribute to the extinction coefficients. Organics and secondary inorganic species to particle light scattering were quantified. The results showed that organics and ammonium nitrate were the largest contribution to scattering coefficients of PM1. The contribution of (NH4)2SO4 to the light scattering exceeded that of NH4NO3 during clean period due to the enhanced sulfate concentrations. Our results elucidate substantial changes of aerosol composition, formation mechanisms, size distribution and optical properties due to local

  6. Nuclear magnetic resonance spectroscopy for determining the functional content of organic aerosols: A review

    International Nuclear Information System (INIS)

    Chalbot, Marie-Cecile G.; Kavouras, Ilias G.

    2014-01-01

    The knowledge deficit of organic aerosol (OA) composition has been identified as the most important factor limiting our understanding of the atmospheric fate and implications of aerosol. The efforts to chemically characterize OA include the increasing utilization of nuclear magnetic resonance spectroscopy (NMR). Since 1998, the functional composition of different types, sizes and fractions of OA has been studied with one-dimensional, two-dimensional and solid state proton and carbon-13 NMR. This led to the use of functional group ratios to reconcile the most important sources of OA, including secondary organic aerosol and initial source apportionment using positive matrix factorization. Future research efforts may be directed towards the optimization of experimental parameters, detailed NMR experiments and analysis by pattern recognition methods to identify the chemical components, determination of the NMR fingerprints of OA sources and solid state NMR to study the content of OA as a whole. - Highlights: • Organic aerosol composition by 1 H- and 13 C-NMR spectroscopy. • NMR fingerprints of specific sources, types and sizes of organic aerosol. • Source reconciliation and apportionment using NMR spectroscopy. • Research priorities towards understanding organic aerosol composition and origin. - This review presents the recent advances on the characterization of organic aerosol composition using nuclear magnetic resonance spectroscopy

  7. Seasonal variations in high time-resolved chemical compositions, sources, and evolution of atmospheric submicron aerosols in the megacity Beijing

    Directory of Open Access Journals (Sweden)

    W. Hu

    2017-08-01

    Full Text Available A severe regional haze problem in the megacity Beijing and surrounding areas, caused by fast formation and growth of fine particles, has attracted much attention in recent years. In order to investigate the secondary formation and aging process of urban aerosols, four intensive campaigns were conducted in four seasons between March 2012 and March 2013 at an urban site in Beijing (116.31° E, 37.99° N. An Aerodyne high-resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS was deployed to measure non-refractory chemical components of submicron particulate matter (NR-PM1. The average mass concentrations of PM1 (NR-PM1+black carbon were 45.1 ± 45.8, 37.5 ± 31.0, 41.3 ± 42.7, and 81.7 ± 72.4 µg m−3 in spring, summer, autumn, and winter, respectively. Organic aerosol (OA was the most abundant component in PM1, accounting for 31, 33, 44, and 36 % seasonally, and secondary inorganic aerosol (SNA, sum of sulfate, nitrate, and ammonium accounted for 59, 57, 43, and 55 % of PM1 correspondingly. Based on the application of positive matrix factorization (PMF, the sources of OA were obtained, including the primary ones of hydrocarbon-like (HOA, cooking (COA, biomass burning OA (BBOA and coal combustion OA (CCOA, and secondary component oxygenated OA (OOA. OOA, which can be split into more-oxidized (MO-OOA and less-oxidized OOA (LO-OOA, accounted for 49, 69, 47, and 50 % in four seasons, respectively. Totally, the fraction of secondary components (OOA+SNA contributed about 60–80 % to PM1, suggesting that secondary formation played an important role in the PM pollution in Beijing, and primary sources were also non-negligible. The evolution process of OA in different seasons was investigated with multiple metrics and tools. The average carbon oxidation states and other metrics show that the oxidation state of OA was the highest in summer, probably due to both strong photochemical and aqueous-phase oxidations

  8. Nitrogen Incorporation in CH4-N2 Photochemical Aerosol Produced by Far UV Irradiation

    Science.gov (United States)

    Trainer, Melissa G.; Jimenez, Jose L.; Yung, Yuk L.; Toon, Owen B.; Tolbert, Margaret A.

    2012-01-01

    Nitrile incorporation into Titan aerosol accompanying hydrocarbon chemistry is thought to be driven by extreme UV wavelengths (lambda irradiated gas. The aerosol mass greatly decreases when N2 is removed, indicating that N2 plays a major role in aerosol production. Because direct dissociation of N2 is highly improbable given the immeasurably low cross-section at the wavelengths studied, the chemical activation of N2 must occur via another pathway. Any chemical activation of N2 at wavelengths > 120 nm is presently unaccounted for in atmospheric photochemical models. We suggest that reaction with CH radicals produced from CH4 photolysis may provide a mechanism for incorporating N into the molecular structure of the aerosol. Further work is needed to understand the chemistry involved, as these processes may have significant implications for prebiotic chemistry on the early Earth and similar planets.

  9. Primary and Secondary Organic Marine Aerosol and Oceanic Biological Activity: Recent Results and New Perspectives for Future Studies

    Directory of Open Access Journals (Sweden)

    Matteo Rinaldi

    2010-01-01

    Full Text Available One of the most important natural aerosol systems at the global level is marine aerosol that comprises both organic and inorganic components of primary and secondary origin. The present paper reviews some new results on primary and secondary organic marine aerosol, achieved during the EU project MAP (Marine Aerosol Production, comparing them with those reported in the recent literature. Marine aerosol samples collected at the coastal site of Mace Head, Ireland, show a chemical composition trend that is influenced by the oceanic biological activity cycle, in agreement with other observations. Laboratory experiments show that sea-spray aerosol from biologically active sea water can be highly enriched in organics, and the authors highlight the need for further studies on the atmospheric fate of such primary organics. With regard to the secondary fraction of organic aerosol, the average chemical composition and molecular tracer (methanesulfonic-acid, amines distribution could be successfully characterized by adopting a multitechnique analytical approach.

  10. Near Real-Time, Microchip Assay of Aerosol Chemical Composition, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A compact, autonomous and rugged instrument to measure the concentration of inorganic ions, and possibly organic acids, in atmospheric aerosols is proposed. This...

  11. Aerosol-type retrieval and uncertainty quantification from OMI data

    Science.gov (United States)

    Kauppi, Anu; Kolmonen, Pekka; Laine, Marko; Tamminen, Johanna

    2017-11-01

    We discuss uncertainty quantification for aerosol-type selection in satellite-based atmospheric aerosol retrieval. The retrieval procedure uses precalculated aerosol microphysical models stored in look-up tables (LUTs) and top-of-atmosphere (TOA) spectral reflectance measurements to solve the aerosol characteristics. The forward model approximations cause systematic differences between the modelled and observed reflectance. Acknowledging this model discrepancy as a source of uncertainty allows us to produce more realistic uncertainty estimates and assists the selection of the most appropriate LUTs for each individual retrieval.This paper focuses on the aerosol microphysical model selection and characterisation of uncertainty in the retrieved aerosol type and aerosol optical depth (AOD). The concept of model evidence is used as a tool for model comparison. The method is based on Bayesian inference approach, in which all uncertainties are described as a posterior probability distribution. When there is no single best-matching aerosol microphysical model, we use a statistical technique based on Bayesian model averaging to combine AOD posterior probability densities of the best-fitting models to obtain an averaged AOD estimate. We also determine the shared evidence of the best-matching models of a certain main aerosol type in order to quantify how plausible it is that it represents the underlying atmospheric aerosol conditions.The developed method is applied to Ozone Monitoring Instrument (OMI) measurements using a multiwavelength approach for retrieving the aerosol type and AOD estimate with uncertainty quantification for cloud-free over-land pixels. Several larger pixel set areas were studied in order to investigate the robustness of the developed method. We evaluated the retrieved AOD by comparison with ground-based measurements at example sites. We found that the uncertainty of AOD expressed by posterior probability distribution reflects the difficulty in model

  12. Aerosol-type retrieval and uncertainty quantification from OMI data

    Directory of Open Access Journals (Sweden)

    A. Kauppi

    2017-11-01

    Full Text Available We discuss uncertainty quantification for aerosol-type selection in satellite-based atmospheric aerosol retrieval. The retrieval procedure uses precalculated aerosol microphysical models stored in look-up tables (LUTs and top-of-atmosphere (TOA spectral reflectance measurements to solve the aerosol characteristics. The forward model approximations cause systematic differences between the modelled and observed reflectance. Acknowledging this model discrepancy as a source of uncertainty allows us to produce more realistic uncertainty estimates and assists the selection of the most appropriate LUTs for each individual retrieval.This paper focuses on the aerosol microphysical model selection and characterisation of uncertainty in the retrieved aerosol type and aerosol optical depth (AOD. The concept of model evidence is used as a tool for model comparison. The method is based on Bayesian inference approach, in which all uncertainties are described as a posterior probability distribution. When there is no single best-matching aerosol microphysical model, we use a statistical technique based on Bayesian model averaging to combine AOD posterior probability densities of the best-fitting models to obtain an averaged AOD estimate. We also determine the shared evidence of the best-matching models of a certain main aerosol type in order to quantify how plausible it is that it represents the underlying atmospheric aerosol conditions.The developed method is applied to Ozone Monitoring Instrument (OMI measurements using a multiwavelength approach for retrieving the aerosol type and AOD estimate with uncertainty quantification for cloud-free over-land pixels. Several larger pixel set areas were studied in order to investigate the robustness of the developed method. We evaluated the retrieved AOD by comparison with ground-based measurements at example sites. We found that the uncertainty of AOD expressed by posterior probability distribution reflects the

  13. Chemical characteristics of size-resolved atmospheric aerosols in Iasi, north-eastern Romania: nitrogen-containing inorganic compounds control aerosol chemistry in the area

    Science.gov (United States)

    Giorgiana Galon-Negru, Alina; Iulian Olariu, Romeo; Arsene, Cecilia

    2018-04-01

    This study assesses the effects of particle size and season on the content of the major inorganic and organic aerosol ionic components in the Iasi urban area, north-eastern Romania. Continuous measurements were carried out over 2016 using a cascade Dekati low-pressure impactor (DLPI) performing aerosol size classification in 13 specific fractions over the 0.0276-9.94 µm size range. Fine-particulate Cl-, NO3-, NH4+, and K+ exhibited clear minima during the warm season and clear maxima over the cold season, mainly due to trends in emission sources, changes in the mixing layer depth and specific meteorological conditions. Fine-particulate SO42- did not show much variation with respect to seasons. Particulate NH4+ and NO3- ions were identified as critical parameters controlling aerosol chemistry in the area, and their measured concentrations in fine-mode (PM2.5) aerosols were found to be in reasonable good agreement with modelled values for winter but not for summer. The likely reason is that NH4NO3 aerosols are lost due to volatility over the warm season. We found that NH4+ in PM2.5 is primarily associated with SO42- and NO3- but not with Cl-. Actually, indirect ISORROPIA-II estimations showed that the atmosphere in the Iasi area might be ammonia rich during both the cold and warm seasons, enabling enough NH3 to be present to neutralize H2SO4, HNO3, and HCl acidic components and to generate fine-particulate ammonium salts, in the form of (NH4)2SO4, NH4NO3, and NH4Cl. ISORROPIA-II runs allowed us to estimate that over the warm season ˜ 35 % of the total analysed samples had very strongly acidic pH (0-3), a fraction that rose to ˜ 43 % over the cold season. Moreover, while in the cold season the acidity is mainly accounted for by inorganic acids, in the warm ones there is an important contribution by other compounds, possibly organic. Indeed, changes in aerosol acidity would most likely impact the gas-particle partitioning of semi-volatile organic acids. Overall, we

  14. Quantitative impact of aerosols on numerical weather prediction. Part II: Impacts to IR radiance assimilation

    Science.gov (United States)

    Marquis, J. W.; Campbell, J. R.; Oyola, M. I.; Ruston, B. C.; Zhang, J.

    2017-12-01

    This is part II of a two-part series examining the impacts of aerosol particles on weather forecasts. In this study, the aerosol indirect effects on weather forecasts are explored by examining the temperature and moisture analysis associated with assimilating dust contaminated hyperspectral infrared radiances. The dust induced temperature and moisture biases are quantified for different aerosol vertical distribution and loading scenarios. The overall impacts of dust contamination on temperature and moisture forecasts are quantified over the west coast of Africa, with the assistance of aerosol retrievals from AERONET, MPL, and CALIOP. At last, methods for improving hyperspectral infrared data assimilation in dust contaminated regions are proposed.

  15. Chemical characterization and source apportionment of submicron aerosols measured in Senegal during the 2015 SHADOW campaign

    Science.gov (United States)

    Rivellini, Laura-Hélèna; Chiapello, Isabelle; Tison, Emmanuel; Fourmentin, Marc; Féron, Anaïs; Diallo, Aboubacry; N'Diaye, Thierno; Goloub, Philippe; Canonaco, Francesco; Prévôt, André Stephan Henry; Riffault, Véronique

    2017-09-01

    The present study offers the first chemical characterization of the submicron (PM1) fraction in western Africa at a high time resolution, thanks to collocated measurements of nonrefractory (NR) species with an Aerosol Chemical Speciation Monitor (ACSM), black carbon and iron concentrations derived from absorption coefficient measurements with a 7-wavelength Aethalometer, and total PM1 determined by a TEOM-FDMS (tapered element oscillating microbalance-filtered dynamic measurement system) for mass closure. The field campaign was carried out over 3 months (March to June 2015) as part of the SHADOW (SaHAran Dust Over West Africa) project at a coastal site located in the outskirts of the city of Mbour, Senegal. With an averaged mass concentration of 5.4 µg m-3, levels of NR PM1 in Mbour were 3 to 10 times lower than those generally measured in urban and suburban polluted environments. Nonetheless the first half of the observation period was marked by intense but short pollution events (NR PM1 concentrations higher than 15 µg m-3), sea breeze phenomena and Saharan desert dust outbreaks (PM10 up to 900 µg m-3). During the second half of the campaign, the sampling site was mainly under the influence of marine air masses. The air masses on days under continental and sea breeze influences were dominated by organics (36-40 %), whereas sulfate particles were predominant (40 %) for days under oceanic influence. Overall, measurements showed that about three-quarters of the total PM1 were explained by NR PM1, BC (black carbon) and Fe (a proxy for dust) concentrations, leaving approximately one-quarter for other refractory species. A mean value of 4.6 % for the Fe / PM1 ratio was obtained. Source apportionment of the organic fraction, using positive matrix factorization (PMF), highlighted the impact of local combustion sources, such as traffic and residential activities, which contribute on average to 52 % of the total organic fraction. A new organic aerosol (OA) source

  16. Chemical composition of individual aerosol particles from working areas in a nickel refinery.

    Science.gov (United States)

    Höflich, B L; Wentzel, M; Ortner, H M; Weinbruch, S; Skogstad, A; Hetland, S; Thomassen, Y; Chaschin, V P; Nieboer, E

    2000-06-01

    Individual aerosol particles (n = 1170) collected at work stations in a nickel refinery were analyzed by wavelength-dispersive electron-probe microanalysis. By placing arbitrary restrictions on the contents of sulfur and silicon, the particles could be divided into four main groups. Scanning electron images indicated that most of the particles examined were relatively small (refinery intermediates. The implications of the findings for aerosol speciation measurements, toxicological studies and interpretation of adverse health effects are explored.

  17. Stratospheric aerosols and precursor gases

    Science.gov (United States)

    1982-01-01

    Measurements were made of the aerosol size, height and geographical distribution, their composition and optical properties, and their temporal variation with season and following large volcanic eruptions. Sulfur-bearing gases were measured in situ in the stratosphere, and studied of the chemical and physical processes which control gas-to-particle conversion were carried out in the laboratory.

  18. THE INFLUENCE OF BENZENE AS A TRACE REACTANT IN TITAN AEROSOL ANALOGS

    Energy Technology Data Exchange (ETDEWEB)

    Trainer, Melissa G. [Planetary Environments Laboratory, Code 699, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Sebree, Joshua A. [NASA Postdoctoral Program Fellow, Code 699, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Heidi Yoon, Y.; Tolbert, Margaret A., E-mail: melissa.trainer@nasa.gov [Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Box 216 UCB, Boulder, CO 80309 (United States)

    2013-03-20

    Benzene has been detected in Titan's atmosphere by Cassini instruments, with concentrations ranging from sub-ppb in the stratosphere to ppm in the ionosphere. Sustained levels of benzene in the haze formation region could signify that it is an important reactant in the formation of Titan's organic aerosol. To date, there have not been laboratory investigations to assess the influence of benzene on aerosol properties. We report a laboratory study on the chemical composition of organic aerosol formed from C{sub 6}H{sub 6}/CH{sub 4}/N{sub 2} via far ultraviolet irradiation (120-200 nm). The compositional results are compared to those from aerosol generated by a more ''traditional Titan'' mixture of CH{sub 4}/N{sub 2}. Our results show that even a trace amount of C{sub 6}H{sub 6} (10 ppm) has significant impact on the chemical composition and production rates of organic aerosol. There are several pathways by which photolyzed benzene may react to form larger molecules, both with and without the presence of CH{sub 4}, but many of these reaction mechanisms are only beginning to be explored for the conditions at Titan. Continued work investigating the influence of benzene in aerosol growth will advance understanding of this previously unstudied reaction system.

  19. PIXE analysis of work environment aerosols

    International Nuclear Information System (INIS)

    Akabayashi, Hideo; Fujimoto, Fuminori; Komaki, Kenichiro; Ootuka, Akio; Kobayashi, Koichi; Yamashita, Hiroshi

    1988-01-01

    In labor environment, the quantity of chemical substances in the air is more, and their kinds are more diversified than in general home environment. It has been well known that some substances contained in the aerosol in labor environment (floating dust in the atmosphere) such as asbestos and hexavalent chromium have the possibility of causing serious injuries such as cancer of respiratory organ. In order to identify the harmful substances to which laborers are exposed and to take the measures for removing them, it is necessary to investigate in detail into many factors related to the effect of aerosol on human bodies, such as the composition of elements, chemical condition, concentration, the particle size of dust and temporal and spatial distributions. For the purpose, sampling and analysis must be carried out so that information can be extracted as much as possible from a minute amount of sample. The particle induced x-ray emission (PIXE) analysis is very effective for this application. In this paper, the development of a PIXE analysis system and the knowledge obtained by the sampling and measurement of aerosol in indoor labor environment are reported. The labor environment selected is that of the workshop of Department of Liberal Arts, University of Tokyo. Sampling, the experimental apparatus, the method of data analysis and the results of analysis are described. (Kako, I.)

  20. A GCM study of organic matter in marine aerosol and its potential contribution to cloud drop activation

    NARCIS (Netherlands)

    Roelofs, G.J.H.

    2007-01-01

    With the global aerosol-climate model ECHAM5-HAM we investigate the potential influence of organic aerosol originating from the ocean on aerosol mass and chemical composition and the droplet concentration and size of marine clouds. We present sensitivity simulations in which the uptake of organic

  1. The Finokalia Aerosol Measurement Experiment – 2008 (FAME-08: an overview

    Directory of Open Access Journals (Sweden)

    M. Pikridas

    2010-07-01

    Full Text Available A month (4 May to 8 June 2008 of ambient aerosol, air ion and gas phase sampling (Finokalia Aerosol Measurement Experiment 2008, FAME-08 was conducted at Finokalia, on the island of Crete, Greece. The purpose of the study was to characterize the physical and chemical properties of aged aerosol and to investigate new particle formation. Measurements included aerosol and air ion size distributions, size-resolved chemical composition, organic aerosol thermal volatility, water uptake and particle optical properties (light scattering and absorption. Statistical analysis of the aerosol mass concentration variations revealed the absence of diurnal patterns suggesting the lack of strong local sources. Sulfates accounted for approximately half of the particulate matter less than 1 micrometer in diameter (PM1 and organics for 28%. The PM1 organic aerosol fraction was highly oxidized with 80% water soluble. The supermicrometer particles were dominated by crustal components (50%, sea salt (24% and nitrates (16%. The organic carbon to elemental carbon (OC/EC ratio correlated with ozone measurements but with a one-day lag. The average OC/EC ratio for the study period was equal to 5.4. For three days air masses from North Africa resulted in a 6-fold increase of particulate matter less than 10 micrometers in diameter (PM10 and a decrease of the OC/EC ratio by a factor of 2. Back trajectory analysis, based on FLEXPART footprint plots, identified five source regions (Athens, Greece, Africa, other continental and marine, each of which influenced the PM1 aerosol composition and properties. Marine air masses had the lowest PM1 concentrations and air masses from the Balkans, Turkey and Eastern Europe the highest.

  2. Photothermal spectroscopy of aerosols

    International Nuclear Information System (INIS)

    Campillo, A.J.; Lin, H.B.

    1981-04-01

    In situ aerosol absorption spectroscopy was performed using two novel photothermal detection schemes. The first, based on a photorefractive effect and coherent detection, called phase fluctuation optical heterodyne (PFLOH) spectroscopy, could, depending on the geometry employed, yield particle specific or particle and gas absorption data. Single particles of graphite as small as 1 μm were detected in the particle specific mode. In another geometrical configuration, the total absorption (both gas and particle) of submicron sized aerosols of ammonium sulfate particles in equilibrium with gaseous ammonia and water vapor were measured at varying CO 2 laser frequencies. The specific absorption coefficient for the sulfate ion was measured to be 0.5 m 2 /g at 1087 cm -1 . The absorption coefficient sensitivity of this scheme was less than or equal to 10 -8 cm -1 . The second scheme is a hybrid visible Mie scattering scheme incorporating photothermal modulation. Particle specific data on ammonium sulfate droplets were obtained. For chemically identical species, the relative absorption spectrum versus laser frequency can be obtained for polydisperse aerosol distributions directly from the data without the need for complex inverse scattering calculations

  3. Chemical compositions, sources and evolution processes of the submicron aerosols in Nanjing, China during wintertime

    Science.gov (United States)

    Wu, Y.; He, Y.; Ge, X.; Wang, J.; Yu, H.; Chen, M.

    2016-12-01

    Elevated atmospheric particulate matter pollution is one of the most significant environmental issues in the Yangtze River Delta (YRD), China. Thus it is important to unravel the characteristics, sources and evolution processes of the ambient aerosols in order to improve the air quality. In this study, we report the real-time monitoring results on submicron aerosol particles (PM1) in suburban Nanjing during wintertime of 2015, using an Aerodyne soot particle aerosol mass spectrometer (SP-AMS). This instrument allows the fast measurement of refractory black carbon simultaneously with other aerosol components. Results show that organics was on average the most abundant species of PM1 (25.9%), but other inorganic species, such as nitrate (23.7%) and sulfate (23.3%) also comprised large mass fractions. As the sampling site is heavily influenced by various sources including industrial, traffic and other anthropogenic emissions, etc., six organic aerosol (OA) factors were identified from Positive matrix factorization (PMF) analysis of the SP-AMS OA mass spectra. These factors include three primary OA factors - a hydrocarbon-like OA, an industry-related OA (IOA) and a cooking OA (COA), and three secondary OA factors, i.e., a local OOA (LSOA), a semi-volatile OOA (SV-OOA) and a low-volatility OOA (LV-OOA). Overall, the primary organic aerosol (POA) (HOA, IOA and COA) dominated the total OA mass. Behaviors and evolution processes of these OA factors will be discussed in combining with the other supporting data.

  4. Sensitivity of tropospheric heating rates to aerosols: A modeling study

    International Nuclear Information System (INIS)

    Hanna, A.F.; Shankar, U.; Mathur, R.

    1994-01-01

    The effect of aerosols on the radiation balance is critical to the energetics of the atmosphere. Because of the relatively long residence of specific types of aerosols in the atmosphere and their complex thermal and chemical interactions, understanding their behavior is crucial for understanding global climate change. The authors used the Regional Particulate Model (RPM) to simulate aerosols in the eastern United States in order to identify the aerosol characteristics of specific rural and urban areas these characteristics include size, concentration, and vertical profile. A radiative transfer model based on an improved δ-Eddington approximation with 26 spectral intervals spanning the solar spectrum was then used to analyze the tropospheric heating rates associated with these different aerosol distributions. The authors compared heating rates forced by differences in surface albedo associated with different land-use characteristics, and found that tropospheric heating and surface cooling are sensitive to surface properties such as albedo

  5. Chemical and physical transformations of organic aerosol from the photo-oxidation of open biomass burning emissions in an environmental chamber

    Directory of Open Access Journals (Sweden)

    C. J. Hennigan

    2011-08-01

    Full Text Available Smog chamber experiments were conducted to investigate the chemical and physical transformations of organic aerosol (OA during photo-oxidation of open biomass burning emissions. The experiments were carried out at the US Forest Service Fire Science Laboratory as part of the third Fire Lab at Missoula Experiment (FLAME III. We investigated emissions from 12 different fuels commonly burned in North American wildfires. The experiments feature atmospheric and plume aerosol and oxidant concentrations; aging times ranged from 3 to 4.5 h. OA production, expressed as a mass enhancement ratio (ratio of OA to primary OA (POA mass, was highly variable. OA mass enhancement ratios ranged from 2.9 in experiments where secondary OA (SOA production nearly tripled the POA concentration to 0.7 in experiments where photo-oxidation resulted in a 30 % loss of the OA mass. The campaign-average OA mass enhancement ratio was 1.7 ± 0.7 (mean ± 1σ; therefore, on average, there was substantial SOA production. In every experiment, the OA was chemically transformed. Even in experiments with net loss of OA mass, the OA became increasingly oxygenated and less volatile with aging, indicating that photo-oxidation transformed the POA emissions. Levoglucosan concentrations were also substantially reduced with photo-oxidation. The transformations of POA were extensive; using levoglucosan as a tracer for POA, unreacted POA only contributed 17 % of the campaign-average OA mass after 3.5 h of exposure to typical atmospheric hydroxyl radical (OH levels. Heterogeneous reactions with OH could account for less than half of this transformation, implying that the coupled gas-particle partitioning and reaction of semi-volatile vapors is an important and potentially dominant mechanism for POA processing. Overall, the results illustrate that biomass burning emissions are subject to extensive chemical processing in the atmosphere, and the timescale for these transformations is rapid.

  6. Volatility measurement of atmospheric submicron aerosols in an urban atmosphere in southern China

    Science.gov (United States)

    Cao, Li-Ming; Huang, Xiao-Feng; Li, Yuan-Yuan; Hu, Min; He, Ling-Yan

    2018-02-01

    Aerosol pollution has been a very serious environmental problem in China for many years. The volatility of aerosols can affect the distribution of compounds in the gas and aerosol phases, the atmospheric fates of the corresponding components, and the measurement of the concentration of aerosols. Compared to the characterization of chemical composition, few studies have focused on the volatility of aerosols in China. In this study, a thermodenuder aerosol mass spectrometer (TD-AMS) system was deployed to study the volatility of non-refractory submicron particulate matter (PM1) species during winter in Shenzhen. To our knowledge, this paper is the first report of the volatilities of aerosol chemical components based on a TD-AMS system in China. The average PM1 mass concentration during the experiment was 42.7±20.1 µg m-3, with organic aerosol (OA) being the most abundant component (43.2 % of the total mass). The volatility of chemical species measured by the AMS varied, with nitrate showing the highest volatility, with a mass fraction remaining (MFR) of 0.57 at 50 °C. Organics showed semi-volatile characteristics (the MFR was 0.88 at 50 °C), and the volatility had a relatively linear correlation with the TD temperature (from the ambient temperature to 200 °C), with an evaporation rate of 0.45 % °C-1. Five subtypes of OA were resolved from total OA using positive matrix factorization (PMF) for data obtained under both ambient temperature and high temperatures through the TD, including a hydrocarbon-like OA (HOA, accounting for 13.5 %), a cooking OA (COA, 20.6 %), a biomass-burning OA (BBOA, 8.9 %), and two oxygenated OAs (OOAs): a less-oxidized OOA (LO-OOA, 39.1 %) and a more-oxidized OOA (MO-OOA, 17.9 %). Different OA factors presented different volatilities, and the volatility sequence of the OA factors at 50 °C was HOA (MFR of 0.56) > LO-OOA (0.70) > COA (0.85) ≈ BBOA (0.87) > MO-OOA (0.99), which was not completely consistent with the sequence of their O

  7. Field and Laboratory Studies of Atmospheric Organic Aerosol

    Science.gov (United States)

    Coggon, Matthew Mitchell

    of oxidized organic compounds contributed nearly an order of magnitude more cloud condensation nuclei (CCN) than less oxidized particles formed under cloudy conditions. The processing time necessary for particles to become CCN active was short ( 4 hr). Laboratory chamber experiments were also conducted to evaluate particle-phase processes influencing aerosol phase and composition. In one study, ammonium sulfate seed was coated with a layer of secondary organic aerosol (SOA) from toluene oxidation followed by a layer of SOA from α-pinene oxidation. The system exhibited different evaporative properties than ammonium sulfate seed initially coated with α-pinene SOA followed by a layer of toluene SOA. This behavior is consistent with a shell-and-core model and suggests limited mixing among different SOA types. Another study investigated the reactive uptake of isoprene epoxy diols (IEPOX) onto non-acidified aerosol. It was demonstrated that particle acidity has limited influence on organic aerosol formation onto ammonium sulfate seed, and that the chemical system is limited by the availability of nucleophiles such as sulfate. Flow tube experiments were conducted to examine the role of iron in the reactive uptake and chemical oxidation of glycolaldehyde. Aerosol particles doped with iron and hydrogen peroxide were mixed with gas-phase glycolaldehyde and photochemically aged in a custom-built flow reactor. Compared to particles free of iron, iron-doped aerosols significantly enhanced the oxygen to carbon (O/C) ratio of accumulated organic mass. The primary oxidation mechanism is suggested to be a combination of Fenton and photo-Fenton reactions which enhance particle-phase OH radical concentrations.

  8. Complementary online aerosol mass spectrometry and offline FT-IR spectroscopy measurements: Prospects and challenges for the analysis of anthropogenic aerosol particle emissions

    Science.gov (United States)

    Faber, Peter; Drewnick, Frank; Bierl, Reinhard; Borrmann, Stephan

    2017-10-01

    The aerosol mass spectrometer (AMS) is well established in investigating highly time-resolved dynamics of submicron aerosol chemical composition including organic aerosol (OA). However, interpretation of mass spectra on molecular level is limited due to strong fragmentation of organic substances and potential reactions inside the AMS ion chamber. Results from complementary filter-based FT-IR absorption measurements were used to explain features in high-resolution AMS mass spectra of different types of OA (e.g. cooking OA, cigarette smoking OA, wood burning OA). Using this approach some AMS fragment ions were validated in this study as appropriate and rather specific markers for a certain class of organic compounds for all particle types under investigation. These markers can therefore be used to get deeper insights in the chemical composition of OA based on AMS mass spectra in upcoming studies. However, the specificity of other fragment ions such as C2H4O2+ (m/z 60.02114) remains ambiguous. In such cases, complementary FT-IR measurements allow the interpretation of highly time-resolved AMS mass spectra at the level of molecular functional groups. Furthermore, this study discusses the challenges in reducing inorganic interferences (e.g. from water and ammonium salts) in FT-IR spectra of atmospheric aerosols to decrease spectral uncertainties for better comparisons and, thus, to get more robust results.

  9. Physicochemical Characterization of Capstone Depleted Uranium Aerosols III: Morphologic and Chemical Oxide Analyses

    International Nuclear Information System (INIS)

    Krupka, Kenneth M.; Parkhurst, MaryAnn; Gold, Kenneth; Arey, Bruce W.; Jenson, Evan D.; Guilmette, Raymond A.

    2009-01-01

    The impact of depleted uranium (DU) penetrators against an armored target causes erosion and fragmentation of the penetrators, the extent of which is dependent on the thickness and material composition of the target. Vigorous oxidation of the DU particles and fragments creates an aerosol of DU oxide particles and DU particle agglomerations combined with target materials. Aerosols from the Capstone DU aerosol study, in which vehicles were perforated by DU penetrators, were evaluated for their oxidation states using X-ray diffraction (XRD) and particle morphologies using scanning electron microscopy/energy dispersive spectrometry (SEM/EDS). The oxidation state of a DU aerosol is important as it offers a clue to its solubility in lung fluids. The XRD analysis showed that the aerosols evaluated were a combination primarily of U3O8 (insoluble) and UO3 (relatively more soluble) phases, though intermediate phases resembling U4O9 and other oxides were prominent in some samples. Analysis of particle residues in the micrometer-size range by SEM/EDS provided microstructural information such as phase composition and distribution, fracture morphology, size distribution, and material homogeneity. Observations from SEM analysis show a wide variability in the shapes of the DU particles. Some of the larger particles appear to have been fractured (perhaps as a result of abrasion and comminution); others were spherical, occasionally with dendritic or lobed surface structures. Amorphous conglomerates containing metals other than uranium were also common, especially with the smallest particle sizes. A few samples seemed to contain small chunks of nearly pure uranium metal, which were verified by EDS to have a higher uranium content exceeding that expected for uranium oxides. Results of the XRD and SEM/EDS analyses were used in other studies described in this issue of The Journal of Health Physics to interpret the results of lung solubility studies and in selecting input parameters for

  10. Effect of relative humidity on soot - secondary organic aerosol mixing: A case study from the Soot Aerosol Aging Study (PNNL-SAAS)

    Science.gov (United States)

    Sharma, N.; China, S.; Zaveri, R. A.; Shilling, J. E.; Pekour, M. S.; Liu, S.; Aiken, A. C.; Dubey, M. K.; Wilson, J. M.; Zelenyuk, A.; OBrien, R. E.; Moffet, R.; Gilles, M. K.; Gourihar, K.; Chand, D.; Sedlacek, A. J., III; Subramanian, R.; Onasch, T. B.; Laskin, A.; Mazzoleni, C.

    2014-12-01

    Atmospheric processing of fresh soot particles emitted by anthropogenic as well as natural sources alters their physical and chemical properties. For example, fresh and aged soot particles interact differently with incident solar radiation, resulting in different overall radiation budgets. Varying atmospheric chemical and meteorological conditions can result in complex soot mixing states. The Soot Aerosol Aging Study (SAAS) was conducted at the Pacific Northwest National Laboratory in November 2013 and January 2014 as a step towards understanding the evolution of mixing state of soot and its impact on climate-relevant properties. Aging experiments on diesel soot were carried out in a controlled laboratory chamber, and the effects of condensation and coagulation processes were systematically explored in separate sets of experiments. In addition to online measurement of aerosol properties, aerosol samples were collected for offline single particle analysis to investigate the evolution of the morphology, elemental composition and fine structure of sample particles from different experiments. Condensation experiments focused on the formation of α-pinene secondary organic aerosol on diesel soot aerosol seeds. Experiments were conducted to study the aging of soot under dry (RH < 2%) and humid conditions (RH ~ 80%). We present an analysis of the morphology of soot, its evolution, and its correlation with optical properties, as the condensation of α-pinene SOA is carried out for the two different RH conditions. The analysis was performed by using scanning electron microscopy, transmission electron microscopy, scanning transmission x-ray microscopy and atomic force microscopy for single particle characterization. In addition, particle size, mass, composition, shape, and density were characterized in-situ, as a function of organics condensed on soot seeds, using single particle mass spectrometer.

  11. Characterizing and Understanding Aerosol Optical Properties: CARES - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Cappa, Christopher D [Univ. of California, Davis, CA (United States); Atkinson, Dean B [Portland State Univ., Portland, OR (United States)

    2017-12-17

    The scientific focus of this study was to use ambient measurements to develop new insights into the understanding of the direct radiative forcing by atmospheric aerosol particles. The study used data collected by the PI’s and others as part of both the 2010 U.S. Department of Energy (DOE) sponsored Carbonaceous Aerosols and Radiative Effects Study (CARES), which took place in and around Sacramento, CA, and the 2012 Clean Air for London (ClearfLo) study. We focus on measurements that were made of aerosol particle optical properties, namely the wavelength-dependent light absorption, scattering and extinction. Interpretation of these optical property measurements is facilitated through consideration of complementary measurements of the aerosol particle chemical composition and size distributions. With these measurements, we addressed the following general scientific questions: 1. How does light scattering and extinction by atmospheric aerosol particles depend on particle composition, water uptake, and size? 2. To what extent is light absorption by aerosol particles enhanced through the mixing of black carbon with other particulate components? 3. What relationships exist between intensive aerosol particle optical properties, and how do these depend on particle source and photochemical aging? 4. How well do spectral deconvolution methods, which are commonly used in remote sensing, retrieve information about particle size distributions?

  12. Airborne High Spectral Resolution Lidar Aerosol Measurements during MILAGRO and TEXAQS/GOMACCS

    Science.gov (United States)

    Ferrare, Richard; Hostetler, Chris; Hair, John; Cook Anthony; Harper, David; Burton, Sharon; Clayton, Marian; Clarke, Antony; Russell, Phil; Redemann, Jens

    2007-01-01

    Two1 field experiments conducted during 2006 provided opportunities to investigate the variability of aerosol properties near cities and the impacts of these aerosols on air quality and radiative transfer. The Megacity Initiative: Local and Global Research Observations (MILAGRO) /Megacity Aerosol Experiment in Mexico City (MAX-MEX)/Intercontinental Chemical Transport Experiment-B (INTEX-B) joint experiment conducted during March 2006 investigated the evolution and transport of pollution from Mexico City. The Texas Air Quality Study (TEXAQS)/Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) (http://www.al.noaa.gov/2006/) conducted during August and September 2006 investigated climate and air quality in the Houston/Gulf of Mexico region. During both missions, the new NASA Langley airborne High Spectral Resolution Lidar (HSRL) was deployed on the NASA Langley B200 King Air aircraft and measured profiles of aerosol extinction, backscattering, and depolarization to: 1) characterize the spatial and vertical distributions of aerosols, 2) quantify aerosol extinction and optical thickness contributed by various aerosol types, 3) investigate aerosol variability near clouds, 4) evaluate model simulations of aerosol transport, and 5) assess aerosol optical properties derived from a combination of surface, airborne, and satellite measurements.

  13. Trajectory calculation of a trapped particle in electro-dynamic balance for study of chemical reaction of aerosol particles

    International Nuclear Information System (INIS)

    Okuma, Miho; Itou, Takahiro; Harano, Azuchi; Takarada, Takayuki; James, Davis E

    2013-01-01

    Electrodynamic balance (EDB) is a powerful tool for investigating the chemical reactions between a fine particle and gaseous species. But the EDB device alone is inadequate to match the rapid weight change of a fine particle caused by chemical reactions, because it takes a few seconds to set a fine particle at null point. The particle trajectory calculation for the trapped particle added to the EDB is thus a very useful tool for the measurement of the transient response of a particle weight change with no need to adjust the applied DC voltage to set the null point. The purpose of this study is to develop the trajectory calculation method to track the particle oscillation pattern in the EDB and examine the possibility for kinetic studies on the reaction of a single aerosol particle with gaseous species. The results demonstrated the feasibility of applying particle trajectory calculation to realize the research purpose.

  14. Scanning vertical distributions of typical aerosols along the Yangtze River using elastic lidar.

    Science.gov (United States)

    Fan, Shidong; Liu, Cheng; Xie, Zhouqing; Dong, Yunsheng; Hu, Qihou; Fan, Guangqiang; Chen, Zhengyi; Zhang, Tianshu; Duan, Jingbo; Zhang, Pengfei; Liu, Jianguo

    2018-07-01

    In recent years, China has experienced heavy air pollution, especially haze caused by particulate matter (PM). The compositions, horizontal distributions, transport, and chemical formation mechanisms of PM and its precursors have been widely investigated in China based on near-ground measurements. However, the understanding of the distributions and physical and chemical processes of PM in the vertical direction remains limited. In this study, an elastic lidar was employed to investigate the vertical profiles of aerosols along the Yangtze River during the Yangtze River Campaign of winter 2015. Some typical aerosols were identified and some events were analyzed in three cases. Dust aerosols can be transported from the Gobi Desert to the Yangtze River basin across a long distance at both low and high altitudes in early December. The transport route was perpendicular to the ship track, suggesting that the dust aerosols may have affected a large area. Moreover, during transport, some dust was also affected by the areas below its transport route since some anthropogenic pollutants were mixed with the dust and changed some of its optical properties. Biomass-burning aerosols covering a distant range along the Yangtze River were identified. This result directly shows the impact areas of biomass-burning aerosols in some agricultural fields. Some directly emitted aerosol plumes were observed, and direct effects of such plumes were limited both temporally and spatially. In addition, an aerosol plume with very low linear depolarization ratios, probably formed through secondary processes, was also observed. These results can help us better understand aerosols in large spatial scales in China and can be useful to regional haze studies. Copyright © 2018. Published by Elsevier B.V.

  15. Water-soluble Organic Components in Aerosols Associated with Savanna Fires in Southern Africa: Identification, Evolution and Distribution

    Science.gov (United States)

    Gao, Song; Hegg, Dean A.; Hobbs, Peter V.; Kirchstetter, Thomas W.; Magi, Brian I.; Sadilek, Martin

    2003-01-01

    During the SAFARI 2000 field campaign, both smoke aerosols from savanna fires and haze aerosols in the boundary layer and in the free troposphere were collected from an aircraft in southern Africa. These aerosol samples were analyzed for their water-soluble chemical components, particularly the organic species. A novel technique, electrospray ionization-ion trap mass spectrometry, was used concurrently with an ion chromatography system to analyze for carbohydrate species. Seven carbohydrates, seven organic acids, five metallic elements, and three inorganic anions were identified and quantified. On the average, these 22 species comprised 36% and 27% of the total aerosol mass in haze and smoke aerosols, respectively. For the smoke aerosols, levoglucosan was the most abundant carbohydrate species, while gluconic acid was tentatively identified as the most abundant organic acid. The mass abundance and possible source of each class of identified species are discussed, along with their possible formation pathways. The combustion phase of a fire had an impact on the chemical composition of the emitted aerosols. Secondary formation of sulfate, nitrate, levoglucosan, and several organic acids occurred during the initial aging of smoke aerosols. It is likely that under certain conditions, some carbohydrate species in smoke aerosols, such as levoglucosan, were converted to organic acids during upward transport.

  16. Preparatory studies for modelling steam condensation on soluble aerosols

    International Nuclear Information System (INIS)

    Dunbar, I.H.

    1988-01-01

    Of the fission products which would be released from the core of an LWR in the event of a severe accident, only the noble gases and possibly some of the iodine (depending on chemical form) are likely not to be in the form of aerosols when they reach the containment building atmosphere. Therefore in order to predict the extent of fission product retention on containment building internal structures, one needs to have a good understanding of aerosol deposition processes and of the factors which affect them. Following a severe accident in an LWR, a major component of the containment atmosphere will be steam. If the thermodynamic conditions allow condensation of this steam, this condensation is most likely to occur on the aerosol particles. A major component of the aerosol formed during the in-vessel release following a severe reactor accident will be fission product caesium. It is believed that much of this will enter the containment in the form of the hydroxide which has a great affinity for water, so particle growth due to steam condensation is likely to be a very important mechanism for retaining radioactive caesium within the containment builing. The author provides a systematic review of the basic chemical and physical issues which must be addressed if the phenomena are to be modelled accurately, and gives recommendations on how computer models of condensation onto soluble aerosols should be constructed. He proposes also to perform a systematic review of the existing literature and to perform small-scale thermodynamic experiments wherever important gaps in the data base are discovered

  17. Modelled radiative forcing of the direct aerosol effect with multi-observation evaluation

    Directory of Open Access Journals (Sweden)

    G. Myhre

    2009-02-01

    Full Text Available A high-resolution global aerosol model (Oslo CTM2 driven by meteorological data and allowing a comparison with a variety of aerosol observations is used to simulate radiative forcing (RF of the direct aerosol effect. The model simulates all main aerosol components, including several secondary components such as nitrate and secondary organic carbon. The model reproduces the main chemical composition and size features observed during large aerosol campaigns. Although the chemical composition compares best with ground-based measurement over land for modelled sulphate, no systematic differences are found for other compounds. The modelled aerosol optical depth (AOD is compared to remote sensed data from AERONET ground and MODIS and MISR satellite retrievals. To gain confidence in the aerosol modelling, we have tested its ability to reproduce daily variability in the aerosol content, and this is performing well in many regions; however, we also identified some locations where model improvements are needed. The annual mean regional pattern of AOD from the aerosol model is broadly similar to the AERONET and the satellite retrievals (mostly within 10–20%. We notice a significant improvement from MODIS Collection 4 to Collection 5 compared to AERONET data. Satellite derived estimates of aerosol radiative effect over ocean for clear sky conditions differs significantly on regional scales (almost up to a factor two, but also in the global mean. The Oslo CTM2 has an aerosol radiative effect close to the mean of the satellite derived estimates. We derive a radiative forcing (RF of the direct aerosol effect of −0.35 Wm−2 in our base case. Implementation of a simple approach to consider internal black carbon (BC mixture results in a total RF of −0.28 Wm−2. Our results highlight the importance of carbonaceous particles, producing stronger individual RF than considered in the recent IPCC estimate; however, net RF is less different

  18. Quantifying the risks of solid aerosol geoengineering: the role of fundamental material properties

    Science.gov (United States)

    Dykema, J. A.; Keutsch, F. N.; Keith, D.

    2017-12-01

    Solid aerosols have been considered as an alternative to sulfate aerosols for solar geoengineering due to their optical and chemical properties, which lead to different and possibly more attractive risk profiles. Solid aerosols can achieve higher solar scattering efficiency due to their higher refractive index, and in some cases may also be less effective absorbers of thermal infrared radiation. The optical properties of solid aerosols are however sensitive functions of the detailed physical properties of solid materials in question. The relevant details include the exact crystalline structure of the aerosols, the physical size of the particles, and interactions with background stratospheric molecular and particulate constituents. In this work, we examine the impact of these detailed physical properties on the radiative properties of calcite (CaCO3) solid aerosols. We examine how crystal morphology, size, chemical reactions, and interaction with background stratospheric aerosol may alter the scattering and absorption properties of calcite aerosols for solar and thermal infrared radiation. For example, in small particles, crystal lattice vibrations associated with the particle surface may lead to substantially different infrared absorption properties than bulk materials. We examine the wavelength dependence of absorption by the particles, which may lead to altered patterns of stratospheric radiative heating and equilibrium temperatures. Such temperature changes can lead to dynamical changes, with consequences for both stratospheric composition and tropospheric climate. We identify important uncertainties in the current state of understanding, investigate risks associated with these uncertainties, and survey potential approaches to quantitatively improving our knowledge of the relevant material properties.

  19. Program of technical assistance to the Organization for the Prohibition of Chemical Weapons - lessons learned from the U.S. program of technical assistance to IAEA safeguards. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The Defense Nuclear Agency is sponsoring a technical study of the requirements of a vehicle to meet the OPCW`s future needs for enhanced chemical weapons verification capabilities. This report provides information about the proven mechanisms by which the U.S. provided both short- and long-term assistance to the IAEA to enhance its verification capabilities. Much of the technical assistance has generic application to international organizations verifying compliance with disarmament treaties or conventions. In addition, some of the equipment developed by the U.S. under the existing arrangements can be applied in the verification of other disarmament treaties or conventions. U.S. technical assistance to IAEA safeguards outside of the IAEA`s regular budget proved to be necessary. The U.S. technical assistance was successful in improving the effectiveness of IAEA safeguards for its most urgent responsibilities and in providing the technical elements for increased IAEA {open_quotes}readiness{close_quotes} for the postponed responsibilities deemed important for U.S. policy objectives. Much of the technical assistance was directed to generic subjects and helped to achieve a system of international verification. It is expected that the capabilities of the Organization for the Prohibition of Chemical Weapons (OPCW) to verify a state`s compliance with the {open_quotes}Chemical Weapons Convention{close_quotes} will require improvements. This report presents 18 important lessons learned from the experience of the IAEA and the U.S. Program of Technical Assistance to IAEA Safeguards (POTAS), organized into three tiers. Each lesson is presented in the report in the context of the difficulty, need and history in which the lesson was learned. Only the most important points are recapitulated in this executive summary.

  20. Receptor models for source apportionment of remote aerosols in Brazil

    International Nuclear Information System (INIS)

    Artaxo Netto, P.E.

    1985-11-01

    The PIXE (particle induced X-ray emission), and PESA (proton elastic scattering analysis) method were used in conjunction with receptor models for source apportionment of remote aerosols in Brazil. The PIXE used in the determination of concentration for elements with Z >- 11, has a detection limit of about 1 ng/m 3 . The concentrations of carbon, nitrogen and oxygen in the fine fraction of Amazon Basin aerosols was measured by PESA. We sampled in Jureia (SP), Fernando de Noronha, Arembepe (BA), Firminopolis (GO), Itaberai (GO) and Amazon Basin. For collecting the airbone particles we used cascade impactors, stacked filter units, and streaker samplers. Three receptor models were used: chemical mass balance, stepwise multiple regression analysis and principal factor analysis. The elemental and gravimetric concentrations were explained by the models within the experimental errors. Three sources of aerosol were quantitatively distinguished: marine aerosol, soil dust and aerosols related to forests. The emission of aerosols by vegetation is very clear for all the sampling sites. In Amazon Basin and Jureia it is the major source, responsible for 60 to 80% of airborne concentrations. (Author) [pt

  1. Phase Equilibrium of TiO2 Nanocrystals in Flame-Assisted Chemical Vapor Deposition.

    Science.gov (United States)

    Liu, Changran; Camacho, Joaquin; Wang, Hai

    2018-01-19

    Nano-scale titanium oxide (TiO 2 ) is a material useful for a wide range of applications. In a previous study, we showed that TiO 2 nanoparticles of both rutile and anatase crystal phases could be synthesized over the size range of 5 to 20 nm in flame-assisted chemical vapor deposition. Rutile was unexpectedly dominant in oxygen-lean synthesis conditions, whereas anatase is the preferred phase in oxygen-rich gases. The observation is in contrast to the 14 nm rutile-anatase crossover size derived from the existing crystal-phase equilibrium model. In the present work, we made additional measurements over a wider range of synthesis conditions; the results confirm the earlier observations. We propose an improved model for the surface energy that considers the role of oxygen desorption at high temperatures. The model successfully explains the observations made in the current and previous work. The current results provide a useful path to designing flame-assisted chemical vapor deposition of TiO 2 nanocrystals with controllable crystal phases. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Real-Time Characterization of Aerosol Particle Composition above the Urban Canopy in Beijing: Insights into the Interactions between the Atmospheric Boundary Layer and Aerosol Chemistry.

    Science.gov (United States)

    Sun, Yele; Du, Wei; Wang, Qingqing; Zhang, Qi; Chen, Chen; Chen, Yong; Chen, Zhenyi; Fu, Pingqing; Wang, Zifa; Gao, Zhiqiu; Worsnop, Douglas R

    2015-10-06

    Despite extensive efforts into the characterization of air pollution during the past decade, real-time characterization of aerosol particle composition above the urban canopy in the megacity Beijing has never been performed to date. Here we conducted the first simultaneous real-time measurements of aerosol composition at two different heights at the same location in urban Beijing from December 19, 2013 to January 2, 2014. The nonrefractory submicron aerosol (NR-PM1) species were measured in situ by a high-resolution aerosol mass spectrometer at near-ground level and an aerosol chemical speciation monitor at 260 m on a 325 m meteorological tower in Beijing. Secondary aerosol showed similar temporal variations between ground level and 260 m, whereas much weaker correlations were found for the primary aerosol. The diurnal evolution of the ratios and correlations of aerosol species between 260 m and the ground level further illustrated a complex interaction between vertical mixing processes and local source emissions on aerosol chemistry in the atmospheric boundary layer. As a result, the aerosol compositions at the two heights were substantially different. Organic aerosol (OA), mainly composed of primary OA (62%), at the ground level showed a higher contribution to NR-PM1 (65%) than at 260 m (54%), whereas a higher concentration and contribution (15%) of nitrate was observed at 260 m, probably due to the favorable gas-particle partitioning under lower temperature conditions. In addition, two different boundary layer structures were observed, each interacting differently with the evolution processes of aerosol chemistry.

  3. Observations of Chemical Composition in Frost Flower Growth Process and Their Implication in Aerosol Production and Bromine Activation Chemistry

    Science.gov (United States)

    Alvarez-Aviles, L.; Simpson, W. R.; Douglas, T. A.; Sturm, M.; Perovich, D. K.

    2006-12-01

    Frost flowers are believed to be responsible for most of the salt aerosol and possibly the bromine in the gas phase during springtime in Polar Regions. Frost flowers are vapor deposited ice crystals that form on new forming sea ice and wick brine from the sea-ice surface resulting in high salinities. We propose a conceptual model of frost flower growth and chemical fractionation using chemical analysis to support this model. We also consider how the chemical composition of frost flowers can tell us about the role of frost flowers in bromine activation and aerosol production. Our conceptual model is centered in two important events that occur when sea ice grows and the ice surface temperature gets colder. Brine on the sea-ice surface is drawn up the frost flower by capillary forces, therefore the high salinity values found. Secondarily salt hydrates begin to precipitate at certain temperatures. These precipitation reactions modify the chemical composition of the frost flowers and residual brine, and are the main topic of this research. We found variability and generally depletion of sulfate as compared to sea-water composition in most of the mature frost flowers. This result is in agreement with the literature, which proposes the depletion in sulfate occurs because mirabilite (Na2SO4 · 10H2O) precipitates before the brine is wicked. The observation of some slightly sulfate-enhanced samples in addition to depleted samples indicates that the brine/frost flower environment is the location where mirabilite precipitation and separation from residual brine occurs. Frost flowers bromide enhancement factors are all, within analytical limits, identical to sea water, although nearby snow is depleted in bromide. Because of the high salt concentrations in frost flowers, significant bromine activation could occur from frost flowers without being detected by this measurement. However, if all bromide activation occurred on frost flowers, and frost flowers are not depleted in

  4. Uncertainty in Predicting CCN Activity of Aged and Primary Aerosols

    Science.gov (United States)

    Zhang, Fang; Wang, Yuying; Peng, Jianfei; Ren, Jingye; Collins, Don; Zhang, Renyi; Sun, Yele; Yang, Xin; Li, Zhanqing

    2017-11-01

    Understanding particle CCN activity in diverse atmospheres is crucial when evaluating aerosol indirect effects. Here aerosols measured at three sites in China were categorized as different types for attributing uncertainties in CCN prediction in terms of a comprehensive data set including size-resolved CCN activity, size-resolved hygroscopic growth factor, and chemical composition. We show that CCN activity for aged aerosols is unexpectedly underestimated 22% at a supersaturation (S) of 0.2% when using κ-Kohler theory with an assumption of an internal mixture with measured bulk composition that has typically resulted in an overestimate of the CCN activity in previous studies. We conclude that the underestimation stems from neglect of the effect of aging/coating on particle hygroscopicity, which is not considered properly in most current models. This effect enhanced the hygroscopicity parameter (κ) by between 11% (polluted conditions) and 30% (clean days), as indicated in diurnal cycles of κ based on measurements by different instruments. In the urban Beijing atmosphere heavily influenced by fresh emissions, the CCN activity was overestimated by 45% at S = 0.2%, likely because of inaccurate assumptions of particle mixing state and because of variability of chemical composition over the particle size range. For both fresh and aged aerosols, CCN prediction exhibits very limited sensitivity to κSOA, implying a critical role of other factors like mixing of aerosol components within and between particles in regulating CCN activity. Our findings could help improving CCN parameterization in climate models.

  5. Strong impacts on aerosol indirect effects from historical oxidant changes

    Science.gov (United States)

    Hafsahl Karset, Inger Helene; Koren Berntsen, Terje; Storelvmo, Trude; Alterskjær, Kari; Grini, Alf; Olivié, Dirk; Kirkevåg, Alf; Seland, Øyvind; Iversen, Trond; Schulz, Michael

    2018-06-01

    Uncertainties in effective radiative forcings through aerosol-cloud interactions (ERFaci, also called aerosol indirect effects) contribute strongly to the uncertainty in the total preindustrial-to-present-day anthropogenic forcing. Some forcing estimates of the total aerosol indirect effect are so negative that they even offset the greenhouse gas forcing. This study highlights the role of oxidants in modeling of preindustrial-to-present-day aerosol indirect effects. We argue that the aerosol precursor gases should be exposed to oxidants of its era to get a more correct representation of secondary aerosol formation. Our model simulations show that the total aerosol indirect effect changes from -1.32 to -1.07 W m-2 when the precursor gases in the preindustrial simulation are exposed to preindustrial instead of present-day oxidants. This happens because of a brightening of the clouds in the preindustrial simulation, mainly due to large changes in the nitrate radical (NO3). The weaker oxidative power of the preindustrial atmosphere extends the lifetime of the precursor gases, enabling them to be transported higher up in the atmosphere and towards more remote areas where the susceptibility of the cloud albedo to aerosol changes is high. The oxidation changes also shift the importance of different chemical reactions and produce more condensate, thus increasing the size of the aerosols and making it easier for them to activate as cloud condensation nuclei.

  6. he Impact of Primary Marine Aerosol on Atmospheric Chemistry, Radiation and Climate: A CCSM Model Development Study

    Energy Technology Data Exchange (ETDEWEB)

    Keene, William C. [University of Virginia; Long, Michael S. [University of Virginia

    2013-05-20

    This project examined the potential large-scale influence of marine aerosol cycling on atmospheric chemistry, physics and radiative transfer. Measurements indicate that the size-dependent generation of marine aerosols by wind waves at the ocean surface and the subsequent production and cycling of halogen-radicals are important but poorly constrained processes that influence climate regionally and globally. A reliable capacity to examine the role of marine aerosol in the global-scale atmospheric system requires that the important size-resolved chemical processes be treated explicitly. But the treatment of multiphase chemistry across the breadth of chemical scenarios encountered throughout the atmosphere is sensitive to the initial conditions and the precision of the solution method. This study examined this sensitivity, constrained it using high-resolution laboratory and field measurements, and deployed it in a coupled chemical-microphysical 3-D atmosphere model. First, laboratory measurements of fresh, unreacted marine aerosol were used to formulate a sea-state based marine aerosol source parameterization that captured the initial organic, inorganic, and physical conditions of the aerosol population. Second, a multiphase chemical mechanism, solved using the Max Planck Institute for Chemistry's MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere) system, was benchmarked across a broad set of observed chemical and physical conditions in the marine atmosphere. Using these results, the mechanism was systematically reduced to maximize computational speed. Finally, the mechanism was coupled to the 3-mode modal aerosol version of the NCAR Community Atmosphere Model (CAM v3.6.33). Decadal-scale simulations with CAM v.3.6.33, were run both with and without reactive-halogen chemistry and with and without explicit treatment of particulate organic carbon in the marine aerosol source function. Simulated results were interpreted (1) to evaluate influences

  7. Chemical composition and optical properties of aerosols in the lower mixed layer and the free troposphere. Final report of the AFS project; Chemische Zusammensetzung und optische Eigenschaften des Aerosols in der freien Troposphaere. Abschlussbericht zum AFS-Projekt

    Energy Technology Data Exchange (ETDEWEB)

    Asseng, H. [Freie Univ. Berlin (Germany). Inst. fuer Weltraumwissenschaften]|[Max-Planck-Institut fuer Chemie, Mainz (Germany). Abt. Biogeochemie; Fischer, J. [Freie Univ. Berlin (Germany). Inst. fuer Weltraumwissenschaften; Helas, G. [Max-Planck-Institut fuer Chemie, Mainz (Germany). Abt. Biogeochemie; Weller, M. [Deutscher Wetterdienst, Potsdam (Germany). Meteorologisches Observatorium

    2001-08-02

    Aerosol radiative forcing is the largest unknown in current climate models and, as a result, in predicting future climate. Accurate vertically-resolved measurements of aerosol optical properties are an important element of improved climate prediction (IPCC). The present project has contributed to this objective. Jets of directly and remotely determined radiation data have been provided suitable to cut down the uncertainty of column- or layer related optical aerosol parameters. In the present case mean values and profiles of spectral scattering - and absorption coefficients have been retrieved from ground based and airborne sky-radiance/solar irradiance measurements. Available analyses of size and chemical composition of sampled particles (adjoined projects) have been also taken into consideration. The retrieved parameters have served as an input for modelling the radiative transfer exactly for the real time of measurements. Closure procedures yielded finally realistic spectral scattering - and absorption coefficients typically for the lower troposphere in a mostly rural Central European region. (orig.) [German] Die ungenuegende Kenntnis strahlungswirksamer, optischer Aerosolparameter ist laut IPCC die groesste Unbekannte bei der Modellierung des Klimas und seiner Veraenderung. Wissenschaft und Technik bemuehen sich in sog. Schliessungsexperimenten aus der Ueberbestimmung direkt und indirekt gemessener Aerosolparameter genaue(re) Kenntnis (Mittelwert/Variation) ueber deren Klimawirksamkeit zu erlangen. Im vorliegenden Projekt wurden aus verschiedenen passiven, spektralen Messungen von Streulicht und Transmission der Atmosphaere in verschiedenen Hoehen sowie aus der Beruecksichtigung von Partikelanalysen Dritter, Streu- und Absorptionskoeffizienten des Aerosols der gesamten Luftsaeule und in vertikaler Aufloesung abgeleitet. Strahlungstransportmodellierungen mit den gewonnenen Aerosolparametern als input engten ueber den Vergleich mit den Messungen deren Grad an

  8. Adsorption and revaporisation studies on iodine oxide aerosols deposited on containment surface materials in LWR

    International Nuclear Information System (INIS)

    Tietze, S.; Foreman, M.R.StJ.; Ekberg, C.; Kaerkelae, T.; Auvinen, A.; Tapper, U.; Lamminmaeki, S.; Jokiniemi, J.

    2012-12-01

    During a hypothetical severe nuclear accident, the radiation field will be very high in the nuclear reactor containment building. As a result gaseous radiolysis products will be formed. Elemental iodine can react in the gaseous phase with ozone to form solid iodine oxide aerosol particles (iodine oxide). Within the AIAS (Adsorption of Iodine oxide Aerosols on Surfaces) project the interactions of iodine oxide (IOx) aerosols with common containment surface materials were investigated. Common surface materials in Swedish and Finnish LWRs are Teknopox Aqua V A paint films and metal surfaces such as Cu, Zn, Al and SS, as well as Pt and Pd surfaces from hydrogen recombiners. Non-radioactive and 131 I labelled iodine oxide aerosols were produced with the EXSI CONT facility from elemental iodine and ozone at VTT Technical Research Centre of Finland. The iodine oxide deposits were analysed with microscopic and spectroscopic measurement techniques to identify the kind of iodine oxide formed and if a chemical conversion on the different surface materials occurs. The revaporisation behaviour of the deposited iodine oxide aerosol particles from the different surface materials was studied under the influence of heat, humidity and gamma irradiation at Chalmers University of Technology, Sweden. Studies on the effects of humidity were performed using the FOMICAG facility, while heat and irradiation experiments were performed in a thermostated heating block and with a gammacell 22 having a dose rate of 14 kGy/h. The revaporisation losses were measured using a HPGe detector. The revaporisated 131 I species from the surfaces were chemically tested for elemental iodine formation. The parameter dominating the degradation of the produced iodine oxide aerosols was humidity. Cu and Zn surfaces were found to react with iodine from the iodine oxide aerosols to form iodides, while no metal iodides were detected for Al and SS samples. Most of the iodine oxide aerosols are assumed to be

  9. The Invigoration of Deep Convective Clouds Over the Atlantic: Aerosol Effect, Meteorology or Retrieval Artifact?

    Science.gov (United States)

    Koren, Ilan; Feingold, Graham; Remer, Lorraine A.

    2010-01-01

    Associations between cloud properties and aerosol loading are frequently observed in products derived from satellite measurements. These observed trends between clouds and aerosol optical depth suggest aerosol modification of cloud dynamics, yet there are uncertainties involved in satellite retrievals that have the potential to lead to incorrect conclusions. Two of the most challenging problems are addressed here: the potential for retrieved aerosol optical depth to be cloud-contaminated, and as a result, artificially correlated with cloud parameters; and the potential for correlations between aerosol and cloud parameters to be erroneously considered to be causal. Here these issues are tackled directly by studying the effects of the aerosol on convective clouds in the tropical Atlantic Ocean using satellite remote sensing, a chemical transport model, and a reanalysis of meteorological fields. Results show that there is a robust positive correlation between cloud fraction or cloud top height and the aerosol optical depth, regardless of whether a stringent filtering of aerosol measurements in the vicinity of clouds is applied, or not. These same positive correlations emerge when replacing the observed aerosol field with that derived from a chemical transport model. Model-reanalysis data is used to address the causality question by providing meteorological context for the satellite observations. A correlation exercise between the full suite of meteorological fields derived from model reanalysis and satellite-derived cloud fields shows that observed cloud top height and cloud fraction correlate best with model pressure updraft velocity and relative humidity. Observed aerosol optical depth does correlate with meteorological parameters but usually different parameters from those that correlate with observed cloud fields. The result is a near-orthogonal influence of aerosol and meteorological fields on cloud top height and cloud fraction. The results strengthen the case

  10. Organic aerosols

    International Nuclear Information System (INIS)

    Penner, J.E.

    1994-01-01

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN

  11. Aerosol modelling and validation during ESCOMPTE 2001

    Science.gov (United States)

    Cousin, F.; Liousse, C.; Cachier, H.; Bessagnet, B.; Guillaume, B.; Rosset, R.

    The ESCOMPTE 2001 programme (Atmospheric Research. 69(3-4) (2004) 241) has resulted in an exhaustive set of dynamical, radiative, gas and aerosol observations (surface and aircraft measurements). A previous paper (Atmospheric Research. (2004) in press) has dealt with dynamics and gas-phase chemistry. The present paper is an extension to aerosol formation, transport and evolution. To account for important loadings of primary and secondary aerosols and their transformation processes in the ESCOMPTE domain, the ORISAM aerosol module (Atmospheric Environment. 35 (2001) 4751) was implemented on-line in the air-quality Meso-NH-C model. Additional developments have been introduced in ORganic and Inorganic Spectral Aerosol Module (ORISAM) to improve the comparison between simulations and experimental surface and aircraft field data. This paper discusses this comparison for a simulation performed during one selected day, 24 June 2001, during the Intensive Observation Period IOP2b. Our work relies on BC and OCp emission inventories specifically developed for ESCOMPTE. This study confirms the need for a fine resolution aerosol inventory with spectral chemical speciation. BC levels are satisfactorily reproduced, thus validating our emission inventory and its processing through Meso-NH-C. However, comparisons for reactive species generally denote an underestimation of concentrations. Organic aerosol levels are rather well simulated though with a trend to underestimation in the afternoon. Inorganic aerosol species are underestimated for several reasons, some of them have been identified. For sulphates, primary emissions were introduced. Improvement was obtained too for modelled nitrate and ammonium levels after introducing heterogeneous chemistry. However, no modelling of terrigeneous particles is probably a major cause for nitrates and ammonium underestimations. Particle numbers and size distributions are well reproduced, but only in the submicrometer range. Our work points out

  12. Laboratory and field measurements of organic aerosols with the photoionization aerosol mass spectrometer

    Science.gov (United States)

    Dreyfus, Matthew A.

    Analytical methods developed to sample and characterize ambient organic aerosols often face the trade-off between long sampling times and the loss of detailed information regarding specific chemical species present. The soft, universal ionization scheme of the Photoionization Aerosol Mass Spectrometer (PIAMS) allows for identification of various chemical compounds by a signature ion, often the molecular ion. The goal of this thesis work is to apply PIAMS to both laboratory and field experiments to answer questions regarding the formation, composition, and behavior of organic aerosols. To achieve this goal, a variety of hardware and software upgrades were administered to PIAMS to optimize the instrument. Data collection and processing software were either refined or built from the ground up to simplify difficult or monotonous tasks. Additional components were added to PIAMS with the intent to automate the instrument, enhance the results, and make the instrument more rugged and user-friendly. These changes, combined with the application of an external particle concentration system (mini-Versatile Aerosol Concentration Enrichment System, m-VACES), allowed PIAMS to be suitable for field measurements of organic aerosols. Two such field campaigns were completed, both at the State of Delaware Air Quality Monitoring Site in Wilmington, Delaware: a one week period in June, 2006, and an 18 day period in October and November of 2007. A sampling method developed was capable of collecting sufficient ambient organic aerosol and analyzing it with a time resolution of 3.5 minutes. Because of this method, short term concentration changes of individual species can be tracked. Combined with meteorological data, the behavior of these species can be analyzed as a function of time or wind direction. Many compounds are found at enhanced levels during the evening/night-time hours; potentially due to the combined effects of temperature inversion, and fresh emissions in a cooler environment

  13. Chemical composition, microstructure, and hygroscopic properties of aerosol particles at the Zotino Tall Tower Observatory (ZOTTO), Siberia, during a summer campaign

    Science.gov (United States)

    Mikhailov, E. F.; Mironov, G. N.; Pöhlker, C.; Chi, X.; Krüger, M. L.; Shiraiwa, M.; Förster, J.-D.; Pöschl, U.; Vlasenko, S. S.; Ryshkevich, T. I.; Weigand, M.; Kilcoyne, A. L. D.; Andreae, M. O.

    2015-08-01

    In this study we describe the hygroscopic properties of accumulation- and coarse-mode aerosol particles sampled at the Zotino Tall Tower Observatory (ZOTTO) in central Siberia (61° N, 89° E) from 16 to 21 June 2013. The hygroscopic growth measurements were supplemented with chemical analyses of the samples, including inorganic ions and organic/elemental carbon. In addition, the microstructure and chemical compositions of aerosol particles were analyzed by x-ray micro-spectroscopy (STXM-NEXAFS) and transmission electron microscopy (TEM). A mass closure analysis indicates that organic carbon accounted for 61 and 38 % of particulate matter (PM) in the accumulation mode and coarse mode, respectively. The water-soluble fraction of organic matter was estimated to be 52 and 8 % of PM in these modes. Sulfate, predominantly in the form of ammoniated sulfate, was the dominant inorganic component in both size modes: ~ 34 % in the accumulation mode vs. ~ 47 % in the coarse mode. The hygroscopic growth measurements were conducted with a filter-based differential hygroscopicity analyzer (FDHA) over the range of 5-99.4 % RH in the hydration and dehydration operation modes. The FDHA study indicates that both accumulation and coarse modes exhibit pronounced water uptake approximately at the same relative humidity (RH), starting at ~ 70 %, while efflorescence occurred at different humidities, i.e., at ~ 35 % RH for submicron particles vs. ~ 50 % RH for supermicron particles. This ~ 15 % RH difference was attributed to higher content of organic material in the submicron particles, which suppresses water release in the dehydration experiments. The kappa mass interaction model (KIM) was applied to characterize and parameterize non-ideal solution behavior and concentration-dependent water uptake by atmospheric aerosol samples in the 5-99.4 % RH range. Based on KIM, the volume-based hygroscopicity parameter, κv, was calculated. The κv,ws value related to the water-soluble (ws

  14. Research on aerosol formation, aerosol behaviour, aerosol filtration, aerosol measurement techniques and sodium fires at the Laboratory for Aerosol Physics and Filter Technology at the Nuclear Research Center Karlsruhe

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, S; Schikarski, W; Schoeck, W [Gesellschaft fuer Kernforschung mbH, Karlsruhe (Germany)

    1977-01-01

    The behaviour of aerosols in LMFBR plant systems is of great importance for a number of problems, both normal operational and accident kind. This paper covers the following: aerosol modelling for LMFBR containment systems; aerosol size spectrometry by laser light scattering; experimental facilities and experimental results concerned with aerosol release under accident conditions; filtration of sodium oxide aerosols by multilayer sand bed filters.

  15. Research on aerosol formation, aerosol behaviour, aerosol filtration, aerosol measurement techniques and sodium fires at the Laboratory for Aerosol Physics and Filter Technology at the Nuclear Research Center Karlsruhe

    International Nuclear Information System (INIS)

    Jordan, S.; Schikarski, W.; Schoeck, W.

    1977-01-01

    The behaviour of aerosols in LMFBR plant systems is of great importance for a number of problems, both normal operational and accident kind. This paper covers the following: aerosol modelling for LMFBR containment systems; aerosol size spectrometry by laser light scattering; experimental facilities and experimental results concerned with aerosol release under accident conditions; filtration of sodium oxide aerosols by multilayer sand bed filters

  16. Levels, chemical composition and sources of fine aerosol particles (PM1) in an area of the Mediterranean basin

    International Nuclear Information System (INIS)

    Caggiano, Rosa; Macchiato, Maria; Trippetta, Serena

    2010-01-01

    Daily samples of fine aerosol particles (i.e., PM1, aerosol particles with an aerodynamic diameter less than 1.0 μm) were collected in Tito Scalo - Southern Italy - from April 2006 to March 2007. Measurements were performed by means of a low-volume gravimetric sampler, and each PM1 sample was analyzed by means of Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Atomic Absorption Spectrometry (GFAAS and FAAS) techniques in order to determine its content in fourteen trace elements (Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Ti and Zn). During the period examined, PM1 daily concentrations ranged between 0.3 μg m -3 and 55 μg m -3 with a mean value of 8 μg m -3 , a standard deviation of 7 μg m -3 and a median value of 6 μg m -3 . As far as PM1 chemical composition is concerned, the mean values of the trace element concentrations decreased in the following order: Ca > Fe > Al > Na > K > Cr > Mg > Pb > Ni ∼ Ti ∼ Zn > Cd ∼ Cu > Mn. Principal Component Analysis (PCA) allowed the identification of three probable PM1 sources: industrial emissions, traffic and re-suspension of soil dust. Moreover, the results of a procedure applied to study the potential long-range transport contribution to PM1 chemical composition, showed that trace element concentrations do not seem to be affected by air mass origin and path. This was probably due to the strong impact of the local emission sources and the lack of the concentration measurements of some important elements and compounds that could better reveal the long-range transport influence on PM1 measurements at ground level.

  17. Levels, chemical composition and sources of fine aerosol particles (PM1) in an area of the Mediterranean basin.

    Science.gov (United States)

    Caggiano, Rosa; Macchiato, Maria; Trippetta, Serena

    2010-01-15

    Daily samples of fine aerosol particles (i.e., PM1, aerosol particles with an aerodynamic diameter less than 1.0mum) were collected in Tito Scalo - Southern Italy - from April 2006 to March 2007. Measurements were performed by means of a low-volume gravimetric sampler, and each PM1 sample was analyzed by means of Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Atomic Absorption Spectrometry (GFAAS and FAAS) techniques in order to determine its content in fourteen trace elements (Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Ti and Zn). During the period examined, PM1 daily concentrations ranged between 0.3microgm(-3) and 55microgm(-3) with a mean value of 8 microg m(-3), a standard deviation of 7microgm(-3) and a median value of 6microgm(-3). As far as PM1 chemical composition is concerned, the mean values of the trace element concentrations decreased in the following order: Ca>Fe>Al>Na>K>Cr>Mg>Pb>Ni approximately Ti approximately Zn>Cd approximately Cu>Mn. Principal Component Analysis (PCA) allowed the identification of three probable PM1 sources: industrial emissions, traffic and re-suspension of soil dust. Moreover, the results of a procedure applied to study the potential long-range transport contribution to PM1 chemical composition, showed that trace element concentrations do not seem to be affected by air mass origin and path. This was probably due to the strong impact of the local emission sources and the lack of the concentration measurements of some important elements and compounds that could better reveal the long-range transport influence on PM1 measurements at ground level. Copyright 2009 Elsevier B.V. All rights reserved.

  18. Enhancement of PM2.5 Concentrations by Aerosol-Meteorology Interactions Over China

    Science.gov (United States)

    Zhang, Xin; Zhang, Qiang; Hong, Chaopeng; Zheng, Yixuan; Geng, Guannan; Tong, Dan; Zhang, Yuxuan; Zhang, Xiaoye

    2018-01-01

    Aerosol-meteorology interactions can change surface aerosol concentrations via different mechanisms such as altering radiation budget or cloud microphysics. However, few studies investigated the impacts of different mechanisms on temporal and spatial distribution of PM2.5 concentrations over China. Here we used the fully coupled Weather Research and Forecasting model with online chemistry (WRF-Chem) to quantify the enhancement of PM2.5 concentrations by aerosol-meteorology feedback in China in 2014 for different seasons and separate the relative impacts of aerosol radiation interactions (ARIs) and aerosol-cloud interactions (ACIs). We found that ARIs and ACIs could increase population-weighted annual mean PM2.5 concentration over China by 4.0 μg/m3 and 1.6 μg/m3, respectively. We found that ARIs play a dominant role in aerosol-meteorology interactions in winter, while the enhancement of PM2.5 concentration by ARIs and ACIs is comparable in other three seasons. ARIs reduced the wintertime monthly mean wind speed and planetary boundary layer (PBL) height by up to 0.1 m/s and 160 m, respectively, but increased the relative humidity by up to 4%, leading to accumulation of pollutants within PBL. Also, ARIs reduced dry deposition velocity of aerosols by up to 20%, resulting in an increase in PM2.5 lifetime and concentrations. ARIs can increase wintertime monthly mean surface PM2.5 concentration by a maximum of 30 μg/m3 in Sichuan Basin. ACIs can also increase PM2.5 concentration with more significant impacts in wet seasons via reduced wet scavenging and enhanced in-cloud chemistry. Dominant processes in PM2.5 enhancement are also clarified in different seasons. Results show that physical process is more important than chemical processes in winter in ARIs, while chemical process of secondary inorganic aerosols production may be crucial in wet seasons via ACIs.

  19. Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Massachusetts Institute of Technology; Kroll, Jesse H.; Donahue, Neil M.; Jimenez, Jose L.; Kessler, Sean H.; Canagaratna, Manjula R.; Wilson, Kevin R.; Altieri, Katye E.; Mazzoleni, Lynn R.; Wozniak, Andrew S.; Bluhm, Hendrik; Mysak, Erin R.; Smith, Jared D.; Kolb, Charles E.; Worsnop, Douglas R.

    2010-11-05

    A detailed understanding of the sources, transformations, and fates of organic species in the environment is crucial because of the central roles that organics play in human health, biogeochemical cycles, and Earth's climate. However, such an understanding is hindered by the immense chemical complexity of environmental mixtures of organics; for example, atmospheric organic aerosol consists of at least thousands of individual compounds, all of which likely evolve chemically over their atmospheric lifetimes. Here we demonstrate the utility of describing organic aerosol (and other complex organic mixtures) in terms of average carbon oxidation state (OSC), a quantity that always increases with oxidation, and is readily measured using state-of-the-art analytical techniques. Field and laboratory measurements of OSC , using several such techniques, constrain the chemical properties of the organics and demonstrate that the formation and evolution of organic aerosol involves simultaneous changes to both carbon oxidation state and carbon number (nC).

  20. Glyoxal processing by aerosol multiphase chemistry: towards a kinetic modeling framework of secondary organic aerosol formation in aqueous particles

    Directory of Open Access Journals (Sweden)

    B. Ervens

    2010-09-01

    Full Text Available This study presents a modeling framework based on laboratory data to describe the kinetics of glyoxal reactions that form secondary organic aerosol (SOA in aqueous aerosol particles. Recent laboratory results on glyoxal reactions are reviewed and a consistent set of empirical reaction rate constants is derived that captures the kinetics of glyoxal hydration and subsequent reversible and irreversible reactions in aqueous inorganic and water-soluble organic aerosol seeds. Products of these processes include (a oligomers, (b nitrogen-containing products, (c photochemical oxidation products with high molecular weight. These additional aqueous phase processes enhance the SOA formation rate in particles and yield two to three orders of magnitude more SOA than predicted based on reaction schemes for dilute aqueous phase (cloud chemistry for the same conditions (liquid water content, particle size.

    The application of the new module including detailed chemical processes in a box model demonstrates that both the time scale to reach aqueous phase equilibria and the choice of rate constants of irreversible reactions have a pronounced effect on the predicted atmospheric relevance of SOA formation from glyoxal. During day time, a photochemical (most likely radical-initiated process is the major SOA formation pathway forming ∼5 μg m−3 SOA over 12 h (assuming a constant glyoxal mixing ratio of 300 ppt. During night time, reactions of nitrogen-containing compounds (ammonium, amines, amino acids contribute most to the predicted SOA mass; however, the absolute predicted SOA masses are reduced by an order of magnitude as compared to day time production. The contribution of the ammonium reaction significantly increases in moderately acidic or neutral particles (5 < pH < 7.

    Glyoxal uptake into ammonium sulfate seed under dark conditions can be represented with a single reaction parameter keffupt that does not depend

  1. 21 CFR 173.315 - Chemicals used in washing or to assist in the peeling of fruits and vegetables.

    Science.gov (United States)

    2010-04-01

    ... peeling of fruits and vegetables. 173.315 Section 173.315 Food and Drugs FOOD AND DRUG ADMINISTRATION... used in washing or to assist in the peeling of fruits and vegetables. Chemicals may be safely used to wash or to assist in the peeling of fruits and vegetables in accordance with the following conditions...

  2. Long-term real-time chemical characterization of submicron aerosols at Montsec (southern Pyrenees, 1570 m a.s.l.)

    Science.gov (United States)

    Ripoll, A.; Minguillón, M. C.; Pey, J.; Jimenez, J. L.; Day, D. A.; Sosedova, Y.; Canonaco, F.; Prévôt, A. S. H.; Querol, X.; Alastuey, A.

    2015-03-01

    Real-time measurements of inorganic (sulfate, nitrate, ammonium, chloride and black carbon (BC)) and organic submicron aerosols (particles with an aerodynamic diameter of less than 1 μm) from a continental background site (Montsec, MSC, 1570 m a.s.l.) in the western Mediterranean Basin (WMB) were conducted for 10 months (July 2011-April 2012). An aerosol chemical speciation monitor (ACSM) was co-located with other online and offline PM1 measurements. Analyses of the hourly, diurnal, and seasonal variations are presented here, for the first time, for this region. Seasonal trends in PM1 components are attributed to variations in evolution of the planetary boundary layer (PBL) height, air mass origin, and meteorological conditions. In summer, the higher temperature and solar radiation increases convection, enhancing the growth of the PBL and the transport of anthropogenic pollutants towards high altitude sites. Furthermore, the regional recirculation of air masses over the WMB creates a continuous increase in the background concentrations of PM1 components and causes the formation of reservoir layers at relatively high altitudes. The combination of all these atmospheric processes results in a high variability of PM1 components, with poorly defined daily patterns, except for the organic aerosols (OA). OA was mostly composed (up to 90%) of oxygenated organic aerosol (OOA), split in two types: semivolatile (SV-OOA) and low-volatility (LV-OOA), the rest being hydrocarbon-like OA (HOA). The marked diurnal cycles of OA components regardless of the air mass origin indicates that they are not only associated with anthropogenic and long-range-transported secondary OA (SOA) but also with recently produced biogenic SOA. Very different conditions drive the aerosol phenomenology in winter at MSC. The thermal inversions and the lower vertical development of the PBL leave MSC in the free troposphere most of the day, being affected by PBL air masses only after midday, when the

  3. Black Carbon Aerosol over the Los Angeles Basin during CalNex

    Science.gov (United States)

    2012-04-20

    Dentener et al., 2006] and simulated in regional air quality models [Binkowski and Roselle , 2003]. While the majority of atmospheric particulate chemical...S. J. Roselle (2003), Models-3 Community Multi- scale Air Quality (CMAQ) model aerosol component: 1. Model descrip- tion, J. Geophys. Res., 108(D6

  4. Physicochemical characterization of Capstone depleted uranium aerosols III: morphologic and chemical oxide analyses.

    Science.gov (United States)

    Krupka, Kenneth M; Parkhurst, Mary Ann; Gold, Kenneth; Arey, Bruce W; Jenson, Evan D; Guilmette, Raymond A

    2009-03-01

    The impact of depleted uranium (DU) penetrators against an armored target causes erosion and fragmentation of the penetrators, the extent of which is dependent on the thickness and material composition of the target. Vigorous oxidation of the DU particles and fragments creates an aerosol of DU oxide particles and DU particle agglomerations combined with target materials. Aerosols from the Capstone DU aerosol study, in which vehicles were perforated by DU penetrators, were evaluated for their oxidation states using x-ray diffraction (XRD), and particle morphologies were examined using scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS). The oxidation state of a DU aerosol is important as it offers a clue to its solubility in lung fluids. The XRD analysis showed that the aerosols evaluated were a combination primarily of U3O8 (insoluble) and UO3 (relatively more soluble) phases, though intermediate phases resembling U4O9 and other oxides were prominent in some samples. Analysis of particle residues in the micrometer-size range by SEM/EDS provided microstructural information such as phase composition and distribution, fracture morphology, size distribution, and material homogeneity. Observations from SEM analysis show a wide variability in the shapes of the DU particles. Some of the larger particles were spherical, occasionally with dendritic or lobed surface structures. Others appear to have fractures that perhaps resulted from abrasion and comminution, or shear bands that developed from plastic deformation of the DU material. Amorphous conglomerates containing metals other than uranium were also common, especially with the smallest particle sizes. A few samples seemed to contain small bits of nearly pure uranium metal, which were verified by EDS to have a higher uranium content exceeding that expected for uranium oxides. Results of the XRD and SEM/EDS analyses were used in other studies described in this issue of Health Physics to interpret the

  5. Calibration of aerosol radiometers. Special aerosol sources

    International Nuclear Information System (INIS)

    Belkina, S.K.; Zalmanzon, Yu.E.; Kuznetsov, Yu.V.; Fertman, D.E.

    1988-01-01

    Problems of calibration of artificial aerosol radiometry and information-measurement systems of radiometer radiation control, in particular, are considered. Special aerosol source is suggested, which permits to perform certification and testing of aerosol channels of the systems in situ without the dismantling

  6. Secondary aerosols from power plant effluents: delivery and in vivo detection systems

    International Nuclear Information System (INIS)

    Parks, N.J.; Raabe, O.G.; Bradley, E.; Raub, J.

    1976-01-01

    An experimental system is described for the generation of radiolabeled monodisperse aerosols, which are physico-chemically analogous to aerosols produced as secondary products of gaseous fossil fuel power plant emissions of SO 2 and NO 2 . The experimental system for inhalation exposure of non-human primates to these particles and the in vivo determination of systemic distribution and target organs is discussed

  7. Integrated aerosol and thermalhydraulics modelling for CANDU safety analysis

    International Nuclear Information System (INIS)

    McDonald, B.H.; Hanna, B.N.

    1990-08-01

    Analysis of postulated accidents in CANDU reactors that could result in severe fuel damage requires the ability to model the formation of aerosols containing fission product materials and the transport of these aerosols from the fuel, through containment, to any leak to the atmosphere. Best-estimate calculations require intimate coupling and simultaneous solution of all the equations describing the entire range of physical and chemical phenomena involved. The prototype CATHENA/PACE-3D has been developed for integrated calculation of thermalhydraulic and aerosol events in a CANDU reactor during postulated accidents. Examples demonstrate the ability of CATHENA/PACE-3D to produce realistic flow and circulation patterns and reasonable accuracy in solution of two simple fluid-flow test cases for which analytical solutions exist

  8. Changes in the physico-chemical properties of Amazonian aerosols from background conditions due to urban impacts in Central Amazonia.

    Science.gov (United States)

    Artaxo, P.; Barbosa, H. M.; Brito, J.; Carbone, S.; Fiorese, C.; Andre, B.; Rizzo, L. V.; Ditas, F.; Pöhlker, C.; Pöhlker, M. L.; Saturno, J.; Holanda, B. A.; Wang, J.; Souza, R. A. F. D.; Machado, L.; Andreae, M. O.; Martin, S. T.

    2016-12-01

    The GoAmazon 2014/15 experiment (Observations and Modeling of the Green Ocean Amazon) was a great opportunity to study how urbanization can change aerosol properties under pristine conditions in a tropical rain forest. The experiment took place from January 2014 to December 2015 in the vicinity of Manaus, Brazil, where several sampling stations were operated. Natural biogenic aerosol properties were studied in 3 sampling stations upwind of Manaus (ATTO (T0a), ZF2 (T0z) and EMBRAPA (T0e)). Urban impacted aerosols were analysed in two downwind sampling stations at Tiwa (T2) and Manacapuru (T3). Properties analysed were size distribution, scattering and absorption, composition, vertical profiles and others. Remote sensing measurements were done using AERONET and MODIS, while extensive ground based measurements were done in all sampling stations. Remote sensing measurements shows important changes in aerosol optical depth (AOD), especially in the aerosol absorption component. It was also observed a reduction in cloud droplet size downwind of Manaus for liquid phase clouds. Changes in particle number and size were also very significant, that reflected in changes in the aerosol radiative forcing (RF) before and after Manaus plume. In the dry season, an average RF of -24 w/m² was observed upwind, while -17 w/m² was observed downwind, due to large scale biomass burning aerosols. Single scattering albedo (SSA) at 550 nm changed from a high value of 0.96 upwind to 0.84 downwind due to the increase in absorbing aerosols in the wet season. In the dry season, SSA at 550nm changed from 0.95 to 0.87. Aerosol composition showed a large dominance of organic aerosols for all sites, accounting for 65-75% of PM1 non refractory aerosol. Most of these were secondary organic aerosol (SOA), with very low sulfate and nitrate concentrations. The influence of the Manaus plume on aerosol properties was more intense during the wet season, because in the dry season a significant amount of

  9. Photoacoustic measurements of photokinetics in single optically trapped aerosol droplets

    Science.gov (United States)

    Covert, Paul; Cremer, Johannes; Signorell, Ruth; Thaler, Klemens; Haisch, Christoph

    2017-04-01

    It is well established that interaction of light with atmospheric aerosols has a large impact on the Earth's climate. However, uncertainties in the magnitude of this impact remain large, due in part to broad distributions of aerosol size, composition, and chemical reactivity. In this context, photoacoustic spectroscopy is commonly used to measure light absorption by aerosols. Here, we present photoacoustic measurements of single, optically-trapped nanodroplets to reveal droplet size-depencies of photochemical and physical processes. Theoretical considerations have pointed to a size-dependence in the magnitude and phase of the photoacoustic response from aerosol droplets. This dependence is thought to originate from heat transfer processes that are slow compared to the acoustic excitation frequency. In the case of a model aerosol, our measurements of single particle absorption cross-section versus droplet size confirm these theoretical predictions. In a related study, using the same model aerosol, we also demonstrate a droplet size-dependence of photochemical reaction rates [1]. Within sub-micron sized particles, photolysis rates were observed to be an order of magnitude greater than those observed in larger droplets. [1] J. W. Cremer, K. M. Thaler, C. Haisch, and R. Signorell. Photoacoustics of single laser-trapped nanodroplets for the direct observation of nanofocusing in aerosol photokinetics. Nat. Commun., 7:10941, 2016.

  10. Disentangling the major source areas for an intense aerosol advection in the Central Mediterranean on the basis of Potential Source Contribution Function modeling of chemical and size distribution measurements

    Science.gov (United States)

    Petroselli, Chiara; Crocchianti, Stefano; Moroni, Beatrice; Castellini, Silvia; Selvaggi, Roberta; Nava, Silvia; Calzolai, Giulia; Lucarelli, Franco; Cappelletti, David

    2018-05-01

    In this paper, we combined a Potential Source Contribution Function (PSCF) analysis of daily chemical aerosol composition data with hourly aerosol size distributions with the aim to disentangle the major source areas during a complex and fast modulating advection event impacting on Central Italy in 2013. Chemical data include an ample set of metals obtained by Proton Induced X-ray Emission (PIXE), main soluble ions from ionic chromatography and elemental and organic carbon (EC, OC) obtained by thermo-optical measurements. Size distributions have been recorded with an optical particle counter for eight calibrated size classes in the 0.27-10 μm range. We demonstrated the usefulness of the approach by the positive identification of two very different source areas impacting during the transport event. In particular, biomass burning from Eastern Europe and desert dust from Sahara sources have been discriminated based on both chemistry and size distribution time evolution. Hourly BT provided the best results in comparison to 6 h or 24 h based calculations.

  11. Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis

    Science.gov (United States)

    Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.

    2015-05-01

    A radiative transfer interface has been developed to simulate the UV aerosol index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and aerosol absorption optical depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the AErosol RObotic NETwork (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model-produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the southern African and South American biomass burning regions indicates that revising the spectrally dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons

  12. Aerosol Emissions from Great Lakes Harmful Algal Blooms

    Energy Technology Data Exchange (ETDEWEB)

    May, Nathaniel W. [Department; Olson, Nicole E. [Department; Panas, Mark [Department; Axson, Jessica L. [Department; Tirella, Peter S. [Department; Kirpes, Rachel M. [Department; Craig, Rebecca L. [Department; Gunsch, Matthew J. [Department; China, Swarup [William; Laskin, Alexander [William; Ault, Andrew P. [Department; Department; Pratt, Kerri A. [Department; Department

    2017-12-20

    In freshwater lakes, harmful algal blooms (HABs) of Cyanobacteria (blue-green algae) produce toxins that impact human health. However, little is known about the chemical species present in lake spray aerosol (LSA) produced from wave-breaking in freshwater HABs. In this study, a laboratory LSA generator produced aerosols from freshwater samples collected from Lake Michigan and Lake Erie during HAB and non-bloom conditions. Particles were analyzed for size and chemical composition by single particle mass spectrometry, electron microscopy, and fluorescence microscopy, with three distinct types of LSA identified with varying levels of organic carbon and biological material associated with calcium salts. LSA autofluorescence increases with blue-green algae concentration, showing that organic molecules of biological origin are incorporated in LSA from HABs. The number fraction of LSA with biological mass spectral markers also increases with particle diameter (greater than 0.5 μm), showing that HABs have size-dependent impacts on aerosol composition. The highest number fraction of LSA enriched in organic carbon were observed in particles less than 0.5 μm in diameter. Understanding the transfer of organic and biogenic material from freshwater to the atmosphere via LSA particles is crucial for determining health and climate effects due to HABs.

  13. The Atmospheric Aerosols And Their Effects On Cloud Albedo And Radiative Forcing

    International Nuclear Information System (INIS)

    Stefan, S.; Iorga, G.; Zoran, M.

    2007-01-01

    The aim of this study is to provide results of the theoretical experiments in order to improve the estimates of indirect effect of aerosol on the cloud albedo and consequently on the radiative forcing. The cloud properties could be changed primarily because of changing of both the aerosol type and concentration in the atmosphere. Only a part of aerosol interacts effectively with water and will, in turn, determine the number concentration of cloud droplets (CDNC). We calculated the CDNC, droplet effective radius (reff), cloud optical thickness (or), cloud albedo and radiative forcing, for various types of aerosol. Our results show into what extent the change of aerosol characteristics (number concentration and chemical composition) on a regional scale can modify the cloud reflectivity. Higher values for cloud albedo in the case of the continental (urban) clouds were obtained

  14. Time resolved aerosol monitoring in the urban centre of Soweto

    Science.gov (United States)

    Formenti, P.; Annegarn, H. J.; Piketh, S. J.

    1998-03-01

    A programme of aerosol sampling was conducted from 1982 to 1984 in the urban area of Soweto, Johannesburg, South Africa. The particulate matter (aerodynamic diameter source apportionment of crustal elements between coal smoke and traffic induced road dust, based on chemical elemental measurements. A novel technique is demonstrated for processing PIXE-derived time sequence elemental concentration vectors. Slowly varying background components have been extracted from sulphur and crustal aerosol components, using alternatively two digital filters: a moving minimum, and a moving average. The residuals of the crustal elements, assigned to locally generated aerosol components, were modelled using surrogate tracers: sulphur as a surrogate for coal smoke; and Pb as a surrogate for traffic activity. Results from this source apportionment revealed coal emissions contributed between 40% and 50% of the aerosol mineral matter, while 18-22% originated from road dust. Background aerosol, characteristic of the regional winter aerosol burden over the South African Highveld, was between 12% and 21%. Minor contributors identified included a manganese smelter, located 30 km from the sampling site, and informal trash burning, as the source of intermittent heavy metals (Cu, Zn). Elemental source profiles derived for these various sources are presented.

  15. Laboratory studies of the chemical composition and cloud condensation nuclei (CCN activity of secondary organic aerosol (SOA and oxidized primary organic aerosol (OPOA

    Directory of Open Access Journals (Sweden)

    A. T. Lambe

    2011-09-01

    Full Text Available Secondary organic aerosol (SOA and oxidized primary organic aerosol (OPOA were produced in laboratory experiments from the oxidation of fourteen precursors representing atmospherically relevant biogenic and anthropogenic sources. The SOA and OPOA particles were generated via controlled exposure of precursors to OH radicals and/or O3 in a Potential Aerosol Mass (PAM flow reactor over timescales equivalent to 1–20 days of atmospheric aging. Aerosol mass spectra of SOA and OPOA were measured with an Aerodyne aerosol mass spectrometer (AMS. The fraction of AMS signal at m/z = 43 and m/z = 44 (f43, f44, the hydrogen-to-carbon (H/C ratio, and the oxygen-to-carbon (O/C ratio of the SOA and OPOA were obtained, which are commonly used to characterize the level of oxidation of oxygenated organic aerosol (OOA. The results show that PAM-generated SOA and OPOA can reproduce and extend the observed f44f43 composition beyond that of ambient OOA as measured by an AMS. Van Krevelen diagrams showing H/C ratio as a function of O/C ratio suggest an oxidation mechanism involving formation of carboxylic acids concurrent with fragmentation of carbon-carbon bonds. Cloud condensation nuclei (CCN activity of PAM-generated SOA and OPOA was measured as a function of OH exposure and characterized as a function of O/C ratio. CCN activity of the SOA and OPOA, which was characterized in the form of the hygroscopicity parameter κorg, ranged from 8.4×10−4 to 0.28 over measured O/C ratios ranging from 0.05 to 1.42. This range of κorg and O/C ratio is significantly wider than has been previously obtained. To first order, the κorg-to-O/C relationship is well represented by a linear function of the form κorg = (0.18±0.04 ×O/C + 0.03, suggesting that a simple, semi-empirical parameterization of OOA hygroscopicity and

  16. Development of a new corona discharge based ion source for high resolution time-of-flight chemical ionization mass spectrometer to measure gaseous H2SO4 and aerosol sulfate

    Science.gov (United States)

    Zheng, Jun; Yang, Dongsen; Ma, Yan; Chen, Mindong; Cheng, Jin; Li, Shizheng; Wang, Ming

    2015-10-01

    A new corona discharge (CD) based ion source was developed for a commercial high-resolution time-of-flight chemical ionization mass spectrometer (HRToF-CIMS) (Aerodyne Research Inc.) to measure both gaseous sulfuric acid (H2SO4) and aerosol sulfate after thermal desorption. Nitrate core ions (NO3-) were used as reagent ions and were generated by a negative discharge in zero air followed by addition of excess nitrogen dioxide (NO2) to convert primary ions and hydroxyl radicals (OH) into NO3- ions and nitric acid (HNO3). The CD-HRToF-CIMS showed no detectable interference from hundreds parts per billion by volume (ppbv) of sulfur dioxide (SO2). Unlike the atmospheric pressure ionization (API) ToF-CIMS, the CD ion source was integrated onto the ion-molecule reaction (IMR) chamber and which made it possible to measure aerosol sulfate by coupling to a filter inlet for gases and aerosols (FIGAERO). Moreover, compared with a quadrupole-based mass spectrometer, the desired HSO4- signal was detected by its exact mass of m/z 96.960, which was well resolved from the potential interferences of HCO3-ṡ(H2O)2 (m/z 97.014) and O-ṡH2OṡHNO3 (m/z 97.002). In this work, using laboratory-generated standards the CD-HRToF-CIMS was demonstrated to be able to detect as low as 3.1 × 105 molecules cm-3 gaseous H2SO4 and 0.5 μg m-3 ammonium sulfate based on 10-s integration time and two times of the baseline noise. The CD ion source had the advantages of low cost and a simple but robust structure. Since the system was non-radioactive and did not require corrosive HNO3 gas, it can be readily field deployed. The CD-HRToF-CIMS can be a powerful tool for both field and laboratory studies of aerosol formation mechanism and the chemical processes that were critical to understand the evolution of aerosols in the atmosphere.

  17. Real-Time Measurement of Electronic Cigarette Aerosol Size Distribution and Metals Content Analysis.

    Science.gov (United States)

    Mikheev, Vladimir B; Brinkman, Marielle C; Granville, Courtney A; Gordon, Sydney M; Clark, Pamela I

    2016-09-01

    Electronic cigarette (e-cigarette) use is increasing worldwide and is highest among both daily and nondaily smokers. E-cigarettes are perceived as a healthier alternative to combustible tobacco products, but their health risk factors have not yet been established, and one of them is lack of data on aerosol size generated by e-cigarettes. We applied a real-time, high-resolution aerosol differential mobility spectrometer to monitor the evolution of aerosol size and concentration during puff development. Particles generated by e-cigarettes were immediately delivered for analysis with minimal dilution and therefore with minimal sample distortion, which is critically important given the highly dynamic aerosol/vapor mixture inherent to e-cigarette emissions. E-cigarette aerosols normally exhibit a bimodal particle size distribution: nanoparticles (11-25nm count median diameter) and submicron particles (96-175nm count median diameter). Each mode has comparable number concentrations (10(7)-10(8) particles/cm(3)). "Dry puff" tests conducted with no e-cigarette liquid (e-liquid) present in the e-cigarette tank demonstrated that under these conditions only nanoparticles were generated. Analysis of the bulk aerosol collected on the filter showed that e-cigarette emissions contained a variety of metals. E-cigarette aerosol size distribution is different from that of combustible tobacco smoke. E-cigarettes generate high concentrations of nanoparticles and their chemical content requires further investigation. Despite the small mass of nanoparticles, their toxicological impact could be significant. Toxic chemicals that are attached to the small nanoparticles may have greater adverse health effects than when attached to larger submicron particles. The e-cigarette aerosol size distribution is different from that of combustible tobacco smoke and typically exhibits a bimodal behavior with comparable number concentrations of nanoparticles and submicron particles. While vaping the e

  18. Beyond the Alphabet Soup: Molecular Properties of Aerosol Components Influence Optics. (Invited)

    Science.gov (United States)

    Thompson, J. E.

    2013-12-01

    Components within atmospheric aerosols exhibit almost every imaginable model of chemical bonding and physical diversity. The materials run the spectrum from crystalline to amorphous, covalent to ionic, and have varying viscosities, phase, and hygroscopicity. This seminar will focus on the molecular properties of materials that influence the optical behavior of aerosols. Special focus will be placed on the polarizability of materials, hygroscopic growth, and particle phase.

  19. The Asian Tropopause Aerosol Layer: Balloon-Borne Measurements, Satellite Observations and Modeling Approaches

    Science.gov (United States)

    Fairlie, T. D.; Vernier, J.-P.; Natarajan, M.; Deshler, Terry; Liu, H.; Wegner, T.; Baker, N.; Gadhavi, H.; Jayaraman, A.; Pandit, A.; hide

    2016-01-01

    Satellite observations and numerical modeling studies have demonstrated that the Asian Summer Monsoon (ASM) can provide a conduit for gas-phase pollutants in south Asia to reach the lower stratosphere. Now, observations from the CALIPSO satellite have revealed the Asian Tropopause Aerosol Layer (ATAL), a summertime accumulation of aerosols associated with ASM anticyclone, in the upper troposphere and lower stratosphere (UTLS). The ATAL has potential implications for regional cloud properties, climate, and chemical processes in the UTLS. Here, we show in situ measurements from balloon-borne instrumentation, aircraft and satellite observations, combined with trajectory and chemical transport model (CTM) simulations to explore the origin, composition, physical and optical properties of aerosols in the ATAL. In particular, we show balloon-based observations from our BATAL-2015 field campaign to India and Saudi Arabia in summer 2015, including in situ backscatter measurements from COBALD instruments, and some of the first observations of size and volatility of aerosols in the ATAL layer using optical particle counters (OPCs). Back trajectory calculations initialized from CALIPSO observations point to deep convection over North India as a principal source of ATAL aerosols. Available aircraft observations suggest significant sulfur and carbonaceous contributions to the ATAL, which is supported by simulations using the GEOS-Chem CTM. Source elimination studies conducted with the GEOS-Chem indicate that 80-90% of ATAL aerosols originate from south Asian sources, in contrast with some earlier studies.

  20. Adsorption and revaporisation studies on iodine oxide aerosols deposited on containment surface materials in LWR

    Energy Technology Data Exchange (ETDEWEB)

    Tietze, S.; Foreman, M.R.StJ.; Ekberg, C. [Chalmers Univ. of Technology, Goeteborg (Sweden); Kaerkelae, T.; Auvinen, A.; Tapper, U.; Lamminmaeki, S.; Jokiniemi, J. [VTT Technical Research Centre of Finland, Espoo (Finland)

    2012-12-15

    During a hypothetical severe nuclear accident, the radiation field will be very high in the nuclear reactor containment building. As a result gaseous radiolysis products will be formed. Elemental iodine can react in the gaseous phase with ozone to form solid iodine oxide aerosol particles (iodine oxide). Within the AIAS (Adsorption of Iodine oxide Aerosols on Surfaces) project the interactions of iodine oxide (IOx) aerosols with common containment surface materials were investigated. Common surface materials in Swedish and Finnish LWRs are Teknopox Aqua V A paint films and metal surfaces such as Cu, Zn, Al and SS, as well as Pt and Pd surfaces from hydrogen recombiners. Non-radioactive and {sup 131}I labelled iodine oxide aerosols were produced with the EXSI CONT facility from elemental iodine and ozone at VTT Technical Research Centre of Finland. The iodine oxide deposits were analysed with microscopic and spectroscopic measurement techniques to identify the kind of iodine oxide formed and if a chemical conversion on the different surface materials occurs. The revaporisation behaviour of the deposited iodine oxide aerosol particles from the different surface materials was studied under the influence of heat, humidity and gamma irradiation at Chalmers University of Technology, Sweden. Studies on the effects of humidity were performed using the FOMICAG facility, while heat and irradiation experiments were performed in a thermostated heating block and with a gammacell 22 having a dose rate of 14 kGy/h. The revaporisation losses were measured using a HPGe detector. The revaporisated {sup 131}I species from the surfaces were chemically tested for elemental iodine formation. The parameter dominating the degradation of the produced iodine oxide aerosols was humidity. Cu and Zn surfaces were found to react with iodine from the iodine oxide aerosols to form iodides, while no metal iodides were detected for Al and SS samples. Most of the iodine oxide aerosols are assumed to

  1. Installation of aerosol behavior model into multi-dimensional thermal hydraulic analysis code AQUA

    International Nuclear Information System (INIS)

    Kisohara, Naoyuki; Yamaguchi, Akira

    1997-12-01

    The safety analysis of FBR plant system for sodium leak phenomena needs to evaluate the deposition of the aerosol particle to the components in the plant, the chemical reaction of aerosol to humidity in the air and the effect of the combustion heat through aerosol to the structural component. For this purpose, ABC-INTG (Aerosol Behavior in Containment-INTeGrated Version) code has been developed and used until now. This code calculates aerosol behavior in the gas area of uniform temperature and pressure by 1 cell-model. Later, however, more detailed calculation of aerosol behavior requires the installation of aerosol model into multi-cell thermal hydraulic analysis code AQUA. AQUA can calculate the carrier gas flow, temperature and the distribution of the aerosol spatial concentration. On the other hand, ABC-INTG can calculate the generation, deposition to the wall and flower, agglomeration of aerosol particle and figure out the distribution of the aerosol particle size. Thus, the combination of these two codes enables to deal with aerosol model coupling the distribution of the aerosol spatial concentration and that of the aerosol particle size. This report describes aerosol behavior model, how to install the aerosol model to AQUA and new subroutine equipped to the code. Furthermore, the test calculations of the simple structural model were executed by this code, appropriate results were obtained. Thus, this code has prospect to predict aerosol behavior by the introduction of coupling analysis with multi-dimensional gas thermo-dynamics for sodium combustion evaluation. (J.P.N.)

  2. Characterizing Organic Aerosol Processes and Climatically Relevant Properties via Advanced and Integrated Analyses of Aerosol Mass Spectrometry Datasets from DOE Campaigns and ACRF Measurements. Final report for DE-SC0007178

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qi [Univ. of California, Davis, CA (United States)

    2017-05-21

    Organic aerosols (OA) are an important but poorly characterized component of the earth’s climate system. Enormous complexities commonly associated with OA composition and life cycle processes have significantly complicated the simulation and quantification of aerosol effects. To unravel these complexities and improve understanding of the properties, sources, formation, evolution processes, and radiative properties of atmospheric OA, we propose to perform advanced and integrated analyses of multiple DOE aerosol mass spectrometry datasets, including two high-resolution time-of-flight aerosol mass spectrometer (HR-AMS) datasets from intensive field campaigns on the aerosol life cycle and the Aerosol Chemical Speciation Monitor (ACSM) datasets from long-term routine measurement programs at ACRF sites. In this project, we will focus on 1) characterizing the chemical (i.e., composition, organic elemental ratios), physical (i.e., size distribution and volatility), and radiative (i.e., sub- and super-saturated growth) properties of organic aerosols, 2) examining the correlations of these properties with different source and process regimes (e.g., primary, secondary, urban, biogenic, biomass burning, marine, or mixtures), 3) quantifying the evolutions of these properties as a function of photochemical processing, 4) identifying and characterizing special cases for important processes such as SOA formation and new particle formation and growth, and 5) correlating size-resolved aerosol chemistry with measurements of radiative properties of aerosols to determine the climatically relevant properties of OA and characterize the relationship between these properties and processes of atmospheric aerosol organics. Our primary goal is to improve a process-level understanding of the life cycle of organic aerosols in the Earth’s atmosphere. We will also aim at bridging between observations and models via synthesizing and translating the results and insights generated from this

  3. NASA's Aerosol Sampling Experiment Summary

    Science.gov (United States)

    Meyer, Marit E.

    2016-01-01

    In a spacecraft cabin environment, the size range of indoor aerosols is much larger and they persist longer than on Earth because they are not removed by gravitational settling. A previous aerosol experiment in 1991 documented that over 90 of the mass concentration of particles in the NASA Space Shuttle air were between 10 m and 100 m based on measurements with a multi-stage virtual impactor and a nephelometer (Liu et al. 1991). While the now-retired Space Shuttle had short duration missions (less than two weeks), the International Space Station (ISS) has been continually inhabited by astronauts for over a decade. High concentrations of inhalable particles on ISS are potentially responsible for crew complaints of respiratory and eye irritation and comments about 'dusty' air. Air filtration is the current control strategy for airborne particles on the ISS, and filtration modeling, performed for engineering and design validation of the air revitalization system in ISS, predicted that PM requirements would be met. However, aerosol monitoring has never been performed on the ISS to verify PM levels. A flight experiment is in preparation which will provide data on particulate matter in ISS ambient air. Particles will be collected with a thermophoretic sampler as well as with passive samplers which will extend the particle size range of sampling. Samples will be returned to Earth for chemical and microscopic analyses, providing the first aerosol data for ISS ambient air.

  4. Air quality modeling: evaluation of chemical and meteorological parameterizations

    International Nuclear Information System (INIS)

    Kim, Youngseob

    2011-01-01

    The influence of chemical mechanisms and meteorological parameterizations on pollutant concentrations calculated with an air quality model is studied. The influence of the differences between two gas-phase chemical mechanisms on the formation of ozone and aerosols in Europe is low on average. For ozone, the large local differences are mainly due to the uncertainty associated with the kinetics of nitrogen monoxide (NO) oxidation reactions on the one hand and the representation of different pathways for the oxidation of aromatic compounds on the other hand. The aerosol concentrations are mainly influenced by the selection of all major precursors of secondary aerosols and the explicit treatment of chemical regimes corresponding to the nitrogen oxides (NO x ) levels. The influence of the meteorological parameterizations on the concentrations of aerosols and their vertical distribution is evaluated over the Paris region in France by comparison to lidar data. The influence of the parameterization of the dynamics in the atmospheric boundary layer is important; however, it is the use of an urban canopy model that improves significantly the modeling of the pollutant vertical distribution (author) [fr

  5. Microwave-assisted Chemical Transformations

    Science.gov (United States)

    In recent years, there has been a considerable interest in developing sustainable chemistries utilizing green chemistry principles. Since the first published report in 1986 by Gedye and Giguere on microwave assisted synthesis in household microwave ovens, the use of microwaves as...

  6. Spectral Aerosol Extinction (SpEx): A New Instrument for In situ Ambient Aerosol Extinction Measurements Across the UV/Visible Wavelength Range

    Science.gov (United States)

    Jordan, C. E.; Anderson, B. E.; Beyersdorf, A. J.; Corr, C. A.; Dibb, J. E.; Greenslade, M. E.; Martin, R. F.; Moore, R. H.; Scheuer, E.; Shook, M. A.; hide

    2015-01-01

    We introduce a new instrument for the measurement of in situ ambient aerosol extinction over the 300-700 nm wavelength range, the Spectral Aerosol Extinction (SpEx) instrument. This measurement capability is envisioned to complement existing in situ instrumentation, allowing for simultaneous measurement of the evolution of aerosol optical, chemical, and physical characteristics in the ambient environment. In this work, a detailed description of the instrument is provided along with characterization tests performed in the laboratory. Measured spectra of NO2 and polystyrene latex spheres agreed well with theoretical calculations. Good agreement was also found with simultaneous aerosol extinction measurements at 450, 530, and 630 nm using CAPS PMex instruments in a series of 22 tests including non-absorbing compounds, dusts, soot, and black and brown carbon analogs. SpEx can more accurately distinguish the presence of brown carbon from other absorbing aerosol due to its 300 nm lower wavelength limit compared to measurements limited to visible wavelengths. In addition, the spectra obtained by SpEx carry more information than can be conveyed by a simple power law fit that is typically defined by the use of Angstrom Exponents. Future improvements aim at lowering detection limits and ruggedizing the instrument for mobile operation.

  7. HOT AEROSOL FIRE EXTINGUISHING AGENTS AND THE ASSOCIATED TECHNOLOGIES: A REVIEW

    Directory of Open Access Journals (Sweden)

    Xiaotian Zhang

    2015-09-01

    Full Text Available AbstractSince the phase out of Halon extinguishers in the 1980s, hot aerosol fire suppression technology has gained much attention. Unlike traditional inert gas, foam, water mist and Halon fire suppression agents, hot aerosol fire extinguishing agents do not need to be driven out by pressurized gases and can extinguish class A, B, C, D and K fires at 30 to 200 g/m3. Generally, hot aerosol fire extinguishing technology has developed from a generation I oil tank suppression system to a generation III strontium salt based S-type system. S-type hot aerosol fire extinguishing technology greatly solves the corrosion problem of electrical devices and electronics compared to potassium salt based generation I & II hot aerosol fire extinguishing technology. As substitutes for Halon agents, the ODP and GWP values of hot fire extinguishing aerosols are nearly zero, but those fine aerosol particles can cause adverse health effects once inhaled by human. As for configurations of hot aerosol fire extinguishing devices, fixed or portable cylindrical canisters are the most common among generation II & III hot aerosol fire extinguishers across the world, while generation I hot aerosol fire suppression systems are integrated with the oil tank as a whole. Some countries like the U.S., Australia, Russia and China, etc. have already developed standards for manufacturing and quality control of hot aerosol fire extinguishing agents and norms for hot aerosol fire extinguishing system design under different fire protection scenarios. Coolants in hot aerosol fire suppression systems, which are responsible for reducing hot aerosol temperature to avoid secondary fire risk are reviewed for the first time. Cooling effects are generally achieved through vaporization and endothermic chemical decomposition of coolants. Finally, this review discussed areas applying generation I, II or III hot aerosol fire suppression technologies. The generation III hot aerosol fire extinguishing

  8. Chemical speciation, transport and contribution of biomass burning smoke to ambient aerosol in Guangzhou, a mega city of China

    Science.gov (United States)

    Zhang, Zhisheng; Engling, Guenter; Lin, Chuan-Yao; Chou, Charles C.-K.; Lung, Shih-Chun C.; Chang, Shih-Yu; Fan, Shaojia; Chan, Chuen-Yu; Zhang, Yuan-Hang

    2010-08-01

    Intensive measurements of aerosol (PM 10) and associated water-soluble ionic and carbonaceous species were conducted in Guangzhou, a mega city of China, during summer 2006. Elevated levels of most chemical species were observed especially at nighttime during two episodes, characterized by dramatic build-up of the biomass burning tracers levoglucosan and non-sea-salt potassium, when the prevailing wind direction had changed due to two approaching tropical cyclones. High-resolution air mass back trajectories based on the MM5 model revealed that air masses with high concentrations of levoglucosan (43-473 ng m -3) and non-sea-salt potassium (0.83-3.2 μg m -3) had passed over rural regions of the Pearl River Delta and Guangdong Province, where agricultural activities and field burning of crop residues are common practices. The relative contributions of biomass burning smoke to organic carbon in PM 10 were estimated from levoglucosan data to be on average 7.0 and 14% at daytime and nighttime, respectively, with maxima of 9.7 and 32% during the episodic transport events, indicating that biomass and biofuel burning activities in the rural parts of the Pearl River Delta and neighboring regions could have a significant impact on ambient urban aerosol levels.

  9. Laboratory Experiments and Instrument Intercomparison Studies of Carbonaceous Aerosol Particles

    Energy Technology Data Exchange (ETDEWEB)

    Davidovits, Paul [Boston College, Chestnut Hill, MA (United States)

    2015-10-20

    ) two well-characterized source of soot particles and (b) a flow reactor for controlled OH and/or O3 oxidation of relevant gas phase species to produce well-characterized SOA particles. After formation, the aerosol particles are subjected to physical and chemical processes that simulate aerosol growth and aging. A suite of instruments in our laboratory is used to characterize the physical and chemical properties of aerosol particles before and after processing. The Time of Flight Aerosol Mass Spectrometer (ToF-AMS) together with a Scanning Mobility Particle Sizer (SMPS) measures particle mass, volume, density, composition (including black carbon content), dynamic shape factor, and fractal dimension. The–ToF-AMS was developed at ARI with Boston College participation. About 120 AMS instruments are now in service (including 5 built for DOE laboratories) performing field and laboratory studies world-wide. Other major instruments include a thermal denuder, two Differential Mobility Analyzers (DMA), a Cloud Condensation Nuclei Counter (CCN), a Thermal desorption Aerosol GC/MS (TAG) and the new Soot Particle Aerosol Mass Spectrometer (SP-AMS). Optical instrumentation required for the studies have been brought to our laboratory as part of ongoing and planned collaborative projects with colleagues from DOE, NOAA and university laboratories. Optical instruments that will be utilized include a Photoacoustic Spectrometer (PAS), a Cavity Ring Down Aerosol Extinction Spectrometer (CRD-AES), a Photo Thermal Interferometer (PTI), a new 7-wavelength Aethalometer and a Cavity Attenuated Phase Shift Extinction Monitor (CAPS). These instruments are providing aerosol absorption, extinction and scattering coefficients at a range of atmospherically relevant wavelengths. During the past two years our work has continued along the lines of our original proposal. We report on 12 completed and/or continuing projects conducted during the period 08/14 to 0814/2015. These projects are described in

  10. Physical metrology of aerosols; Metrologie physique des aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Boulaud, D.; Vendel, J. [CEA Saclay, 91 - Gif-sur-Yvette (France). Inst. de Protection et de Surete Nucleaire

    1996-12-31

    The various detection and measuring methods for aerosols are presented, and their selection is related to aerosol characteristics (size range, concentration or mass range), thermo-hydraulic conditions (carrier fluid temperature, pressure and flow rate) and to the measuring system conditions (measuring frequency, data collection speed, cost...). Methods based on aerosol dynamic properties (inertial, diffusional and electrical methods) and aerosol optical properties (localized and integral methods) are described and their performances and applications are compared

  11. Sensitivity of aerosol loading and properties to cloudiness

    Science.gov (United States)

    Iversen, T.; Seland, O.; Kirkevag, A.; Kristjansson, J. E.

    2005-12-01

    Clouds influence aerosols in various ways. Sulfate is swiftly produced in liquid phase provided there is both sulfur dioxide and oxidants available. Nucleation and Aitken mode aerosol particles efficiently grow in size by collision and coagulation with cloud droplets. When precipitation is formed, aerosol and precursor gases may be quickly removed bay rainout. The dynamics associated with clouds in some cases may swiftly mix aerosols deeply into the troposphere. In some cases Aitken-mode particles may be formed in cloud droplets by splitting agglomerates of particulate matter such as black carbon In this presentation we will discuss how global cloudiness may influence the burden, residence time, and spatial distribution of sulfate, black carbon and particulate organic matter. A similar physico-chemical scheme for there compounds has been implemented in three generations of the NCAR community climate model (CCM3, CAM2 and CAM3). The scheme is documented in the literature and is a part of the Aerocom-intercomparison. There are many differences between these models. With respect to aerosols, a major difference is that CAM3 has a considerably higher global cloud volume and more then twice the amount of cloud water than CAM2 and CCM3. Atmospheric simulations have been made with prescribed ocean temperatures. It is slightly surprising to discover that certain aspects of the aerosols are not particularly sensitive to these differences in cloud availability. This sensitivity will be compared to sensitivities with respect to processing in deep convective clouds.

  12. Vacuum FTIR study on the hygroscopicity of magnesium acetate aerosols

    Science.gov (United States)

    Wang, Na; Cai, Chen; He, Xiang; Pang, Shu-Feng; Zhang, Yun-Hong

    2018-03-01

    Hygroscopicity and volatility of secondary organic aerosol (SOA) are two important properties, which determine the composition, concentration, size, phase state of SOA and thus chemical and optical properties for SOA. In this work, magnesium acetate (Mg(Ac)2) aerosol was used as a simple SOA model in order to reveal relationship between hygroscopicity and volatility. A novel approach was set up based on a combination of a vacuum FTIR spectrometer and a home-made relative humidity (RH) controlling system. The striking advantage of this approach was that the RH and the compositions of aerosols could be obtained from a same IR spectrum, which guaranteed the synchronism between RH and spectral features on a sub-second scale. At the constant RH of 90% and 80% for 3000 s, the water content within Mg(Ac)2 aerosol particles decreased about 19.0% and 9.4% while there were 13.4% and 6.0% of acetate loss. This was attributed to a cooperation between volatile of acetic acid and Mg2 + hydrolysis in Mg(Ac)2 aerosols, which greatly suppressed the hygroscopicity of Mg(Ac)2 aerosols. When the RH changed with pulsed mode between 70% and 90%, hygroscopicity relaxation was observed for Mg(Ac)2 aerosols. Diffuse coefficient of water in the relaxation process was estimated to be 5 × 10- 12 m2·s- 1 for the Mg(Ac)2 aerosols. Combining the IR spectra analysis, the decrease in the diffuse coefficient of water was due to the formation of magnesium hydroxide accompanying acetic acid evaporation in the aerosols.

  13. Strong impacts on aerosol indirect effects from historical oxidant changes

    Directory of Open Access Journals (Sweden)

    I. H. H. Karset

    2018-06-01

    Full Text Available Uncertainties in effective radiative forcings through aerosol–cloud interactions (ERFaci, also called aerosol indirect effects contribute strongly to the uncertainty in the total preindustrial-to-present-day anthropogenic forcing. Some forcing estimates of the total aerosol indirect effect are so negative that they even offset the greenhouse gas forcing. This study highlights the role of oxidants in modeling of preindustrial-to-present-day aerosol indirect effects. We argue that the aerosol precursor gases should be exposed to oxidants of its era to get a more correct representation of secondary aerosol formation. Our model simulations show that the total aerosol indirect effect changes from −1.32 to −1.07 W m−2 when the precursor gases in the preindustrial simulation are exposed to preindustrial instead of present-day oxidants. This happens because of a brightening of the clouds in the preindustrial simulation, mainly due to large changes in the nitrate radical (NO3. The weaker oxidative power of the preindustrial atmosphere extends the lifetime of the precursor gases, enabling them to be transported higher up in the atmosphere and towards more remote areas where the susceptibility of the cloud albedo to aerosol changes is high. The oxidation changes also shift the importance of different chemical reactions and produce more condensate, thus increasing the size of the aerosols and making it easier for them to activate as cloud condensation nuclei.

  14. Aerosol study and transformations over the Marseille/Fos-Berre region: ESCOMPTE experiment; Etude de l'aerosol et de ses transformations dans la region de Marseille Fos-Berre: experience escompte

    Energy Technology Data Exchange (ETDEWEB)

    Aulagnier, F.

    2003-12-01

    The importance of particulate pollution in urban and suburban zones is getting more and more obvious worldwide. Any policy abatement in relation with the aerosol impact relies on an accurate knowledge of their physico-chemical properties: size, chemical composition and number concentrations. As part of the ESCOMPTE experiment (http://medias.obs-mip.fr:8000/escompte/) which aims to estimate the photochemical pollution in the Marseille Fos/Berre region, this work presents an extensive study of the atmospheric particulate phase and documents its transformations. Interestingly in this region, three intense aerosol sources (urban, industrial and biogenic) produce important particle concentration levels in the whole domain of the study. The aerosol exhaustive characterization has shown an anthropogenic and differentiated signature with important amounts of particulate carbon, sulfate and nitrate. On the other hand, the influence of the marine source is not significant. The most original result is the evidence of secondary aerosol formation on a regional scale which is much more important than those usually observed at these latitudes since two thirds of the particulate mass collected off source zones was generated during transport. It appears thus of high importance to consider the formation pathways of these secondary particles in order to set up an appropriate strategy for the abatement of atmospheric particle concentrations. Finally, this study brings innovative hypotheses for the first modelling tests of aerosol concentrations and their radiative impact. (author)

  15. Raman microscopy of size-segregated aerosol particles, collected at the Sonnblick Observatory in Austria

    Science.gov (United States)

    Ofner, Johannes; Kasper-Giebl, Anneliese; Kistler, Magdalena; Matzl, Julia; Schauer, Gerhard; Hitzenberger, Regina; Lohninger, Johann; Lendl, Bernhard

    2014-05-01

    Size classified aerosol samples were collected using low pressure impactors in July 2013 at the high alpine background site Sonnnblick. The Sonnblick Observatory is located in the Austrian Alps, at the summit of Sonnblick 3100 m asl. Sampling was performed in parallel on the platform of the Observatory and after the aerosol inlet. The inlet is constructed as a whole air inlet and is operated at an overall sampling flow of 137 lpm and heated to 30 °C. Size cuts of the eight stage low pressure impactors were from 0.1 to 12.8 µm a.d.. Alumina foils were used as sample substrates for the impactor stages. In addition to the size classified aerosol sampling overall aerosol mass (Sharp Monitor 5030, Thermo Scientific) and number concentrations (TSI, CPC 3022a; TCC-3, Klotz) were determined. A Horiba LabRam 800HR Raman microscope was used for vibrational mapping of an area of about 100 µm x 100 µm of the alumina foils at a resolution of about 0.5 µm. The Raman microscope is equipped with a laser with an excitation wavelength of 532 nm and a grating with 300 gr/mm. Both optical images and the related chemical images were combined and a chemometric investigation of the combined images was done using the software package Imagelab (Epina Software Labs). Based on the well-known environment, a basic assignment of Raman signals of single particles is possible at a sufficient certainty. Main aerosol constituents e.g. like sulfates, black carbon and mineral particles could be identified. First results of the chemical imaging of size-segregated aerosol, collected at the Sonnblick Observatory, will be discussed with respect to standardized long-term measurements at the sampling station. Further, advantages and disadvantages of chemical imaging with subsequent chemometric investigation of the single images will be discussed and compared to the established methods of aerosol analysis. The chemometric analysis of the dataset is focused on mixing and variation of single compounds at

  16. Characterization of distinct Arctic aerosol accumulation modes and their sources

    Science.gov (United States)

    Lange, R.; Dall'Osto, M.; Skov, H.; Nøjgaard, J. K.; Nielsen, I. E.; Beddows, D. C. S.; Simo, R.; Harrison, R. M.; Massling, A.

    2018-06-01

    In this work we use cluster analysis of long term particle size distribution data to expand an array of different shorter term atmospheric measurements, thereby gaining insights into longer term patterns and properties of Arctic aerosol. Measurements of aerosol number size distributions (9-915 nm) were conducted at Villum Research Station (VRS), Station Nord in North Greenland during a 5 year record (2012-2016). Alongside this, measurements of aerosol composition, meteorological parameters, gaseous compounds and cloud condensation nuclei (CCN) activity were performed during different shorter occasions. K-means clustering analysis of particle number size distributions on daily basis identified several clusters. Clusters of accumulation mode aerosols (main size modes > 100 nm) accounted for 56% of the total aerosol during the sampling period (89-91% during February-April, 1-3% during June-August). By association to chemical composition, cloud condensation nuclei properties, and meteorological variables, three typical accumulation mode aerosol clusters were identified: Haze (32% of the time), Bimodal (14%) and Aged (6%). In brief: (1) Haze accumulation mode aerosol shows a single mode at 150 nm, peaking in February-April, with highest loadings of sulfate and black carbon concentrations. (2) Accumulation mode Bimodal aerosol shows two modes, at 38 nm and 150 nm, peaking in June-August, with the highest ratio of organics to sulfate concentrations. (3) Aged accumulation mode aerosol shows a single mode at 213 nm, peaking in September-October and is associated with cloudy and humid weather conditions during autumn. The three aerosol clusters were considered alongside CCN concentrations. We suggest that organic compounds, that are likely marine biogenic in nature, greatly influence the Bimodal cluster and contribute significantly to its CCN activity. This stresses the importance of better characterizing the marine ecosystem and the aerosol-mediated climate effects in the

  17. Metal-assisted etch combined with regularizing etch

    Energy Technology Data Exchange (ETDEWEB)

    Yim, Joanne; Miller, Jeff; Jura, Michael; Black, Marcie R.; Forziati, Joanne; Murphy, Brian; Magliozzi, Lauren

    2018-03-06

    In an aspect of the disclosure, a process for forming nanostructuring on a silicon-containing substrate is provided. The process comprises (a) performing metal-assisted chemical etching on the substrate, (b) performing a clean, including partial or total removal of the metal used to assist the chemical etch, and (c) performing an isotropic or substantially isotropic chemical etch subsequently to the metal-assisted chemical etch of step (a). In an alternative aspect of the disclosure, the process comprises (a) performing metal-assisted chemical etching on the substrate, (b) cleaning the substrate, including removal of some or all of the assisting metal, and (c) performing a chemical etch which results in regularized openings in the silicon substrate.

  18. Aircraft measurements over Europe of an air pollution plume from Southeast Asia – aerosol and chemical characterization

    Directory of Open Access Journals (Sweden)

    A. Stohl

    2007-01-01

    Full Text Available An air pollution plume from Southern and Eastern Asia, including regions in India and China, was predicted by the FLEXPART particle dispersion model to arrive in the upper troposphere over Europe on 24–25 March 2006. According to the model, the plume was exported from Southeast Asia six days earlier, transported into the upper troposphere by a warm conveyor belt, and travelled to Europe in a fast zonal flow. This is confirmed by the retrievals of carbon monoxide (CO from AIRS satellite measurements, which are in excellent agreement with the model results over the entire transport history. The research aircraft DLR Falcon was sent into this plume west of Spain on 24 March and over Southern Europe on 25 March. On both days, the pollution plume was found close to the predicted locations and, thus, the measurements taken allowed the first detailed characterization of the aerosol content and chemical composition of an anthropogenic pollution plume after a nearly hemispheric transport event. The mixing ratios of CO, reactive nitrogen (NOy and ozone (O3 measured in the Asian plume were all clearly elevated over a background that was itself likely elevated by Asian emissions: CO by 17–34 ppbv on average (maximum 60 ppbv and O3 by 2–9 ppbv (maximum 22 ppbv. Positive correlations existed between these species, and a ΔO3/ΔCO slope of 0.25 shows that ozone was formed in this plume, albeit with moderate efficiency. Nucleation mode and Aitken particles were suppressed in the Asian plume, whereas accumulation mode aerosols were strongly elevated and correlated with CO. The suppression of the nucleation mode was likely due to the large pre-existing aerosol surface of the transported larger particles. Super-micron particles, likely desert dust, were found in part of the Asian pollution plume and also in surrounding cleaner air. The aerosol light absorption coefficient was enhanced in the plume (average values for individual plume encounters 0.25–0

  19. Volatility measurement of atmospheric submicron aerosols in an urban atmosphere in southern China

    Directory of Open Access Journals (Sweden)

    L.-M. Cao

    2018-02-01

    Full Text Available Aerosol pollution has been a very serious environmental problem in China for many years. The volatility of aerosols can affect the distribution of compounds in the gas and aerosol phases, the atmospheric fates of the corresponding components, and the measurement of the concentration of aerosols. Compared to the characterization of chemical composition, few studies have focused on the volatility of aerosols in China. In this study, a thermodenuder aerosol mass spectrometer (TD-AMS system was deployed to study the volatility of non-refractory submicron particulate matter (PM1 species during winter in Shenzhen. To our knowledge, this paper is the first report of the volatilities of aerosol chemical components based on a TD-AMS system in China. The average PM1 mass concentration during the experiment was 42.7±20.1 µg m−3, with organic aerosol (OA being the most abundant component (43.2 % of the total mass. The volatility of chemical species measured by the AMS varied, with nitrate showing the highest volatility, with a mass fraction remaining (MFR of 0.57 at 50 °C. Organics showed semi-volatile characteristics (the MFR was 0.88 at 50 °C, and the volatility had a relatively linear correlation with the TD temperature (from the ambient temperature to 200 °C, with an evaporation rate of 0.45 % °C−1. Five subtypes of OA were resolved from total OA using positive matrix factorization (PMF for data obtained under both ambient temperature and high temperatures through the TD, including a hydrocarbon-like OA (HOA, accounting for 13.5 %, a cooking OA (COA, 20.6 %, a biomass-burning OA (BBOA, 8.9 %, and two oxygenated OAs (OOAs: a less-oxidized OOA (LO-OOA, 39.1 % and a more-oxidized OOA (MO-OOA, 17.9 %. Different OA factors presented different volatilities, and the volatility sequence of the OA factors at 50 °C was HOA (MFR of 0.56  >  LO-OOA (0.70  >  COA (0.85  ≈  BBOA (0.87

  20. Chemically assisted laser ablation ICP mass spectrometry.

    Science.gov (United States)

    Hirata, Takafumi

    2003-01-15

    A new laser ablation technique combined with a chemical evaporation reaction has been developed for elemental ratio analysis of solid samples using an inductively coupled plasma mass spectrometer (ICPMS). Using a chemically assisted laser ablation (CIA) technique developed in this study, analytical repeatability of the elemental ratio measurement was successively improved. To evaluate the reliability of the CLA-ICPMS technique, Pb/U isotopic ratios were determined for zircon samples that have previously been analyzed by other techniques. Conventional laser ablation for Pb/U shows a serious elemental fractionation during ablation mainly due to the large difference in elemental volatility between Pb and U. In the case of Pb/U ratio measurement, a Freon R-134a gas (1,1,1,2-tetrafluoroethane) was introduced into the laser cell as a fluorination reactant. The Freon gas introduced into the laser cell reacts with the ablated sample U, and refractory U compounds are converted to a volatile U fluoride compound (UF6) under the high-temperature condition at the ablation site. This avoids the redeposition of U around the ablation pits. Although not all the U is reacted with Freon, formation of volatile UF compounds improves the transmission efficiency of U. Typical precision of the 206Pb/238U ratio measurement is 3-5% (2sigma) for NIST SRM 610 and Nancy 91500 zircon standard, and the U-Pb age data obtained here show good agreement within analytical uncertainties with the previously reported values. Since the observed Pb/U ratio for solid samples is relatively insensitive to laser power and ablation time, optimization of ablation conditions or acquisition parameters no longer needs to be performed on a sample-to-sample basis.

  1. Rural continental aerosol properties and processes observed during the Hohenpeissenberg Aerosol Characterization Experiment (HAZE2002

    Directory of Open Access Journals (Sweden)

    N. Hock

    2008-02-01

    Full Text Available Detailed investigations of the chemical and microphysical properties of rural continental aerosols were performed during the HAZE2002 experiment, which was conducted in May 2002 at the Meteorological Observatory Hohenpeissenberg (DWD in Southern Germany.

    Online measurements included: Size-resolved chemical composition of submicron particles; total particle number concentrations and size distributions over the diameter range of 3 nm to 9 μm; gas-phase concentration of monoterpenes, CO, O3, OH, and H2SO4. Filter sampling and offline analytical techniques were used to determine: Fine particle mass (PM2.5, organic, elemental and total carbon in PM2.5 (OC2.5, EC2.5, TC2.5, and selected organic compounds (dicarboxylic acids, polycyclic aromatic hydrocarbons, proteins.

    Overall, the non-refractory components of submicron particles detected by aerosol mass spectrometry (PM1, 6.6±5.4 μg m−3, arithmetic mean and standard deviation accounted for ~62% of PM2.5 determined by filter gravimetry (10.6±4.7 μg m−3. The relative proportions of non-refractory submicron particle components were: (23±39% ammonium nitrate, (27±23% ammonium sulfate, and (50±40% organics (OM1. OM1 was closely correlated with PM1 (r2=0.9 indicating a near-constant ratio of non-refractory organics and inorganics.

    The average ratio of OM1 to OC2.5 was 2.1±1.4, indicating a high proportion of heteroelements in the organic fraction of the sampled rural aerosol. This is consistent with the high ratio of oxygenated organic aerosol (OOA over hydrocarbon-like organic aerosol (HOA inferred from the AMS results (4:1, and also with the high abundance of proteins (~3% indicating a high proportion of primary biological material (~30% in PM2.5. This finding was confirmed by low abundance of PAHs (<1 ng m−3 and EC (<1 μg m−3 in PM2.5 and detection of several

  2. Modeling the evolution of the aerosol cloud of toxicants in the atmosphere

    Directory of Open Access Journals (Sweden)

    Bondarchuk Ivan

    2017-01-01

    Full Text Available Using the methods of mathematical modeling, the formation and evolution of aerosol clouds of toxicants in the atmosphere from the chemical industry enterprises, thermal power engineering and rocket carriers of space vehicles is analyzed. The processes of dynamic interaction of drops between themselves and a two-phase flow, processes of agglomeration, crushing and evaporation of aerosol particles are taken into account. The results of numerical calculations are presented.

  3. Stratospheric aerosols

    International Nuclear Information System (INIS)

    Rosen, J.; Ivanov, V.A.

    1993-01-01

    Stratospheric aerosol measurements can provide both spatial and temporal data of sufficient resolution to be of use in climate models. Relatively recent results from a wide range of instrument techniques for measuring stratospheric aerosol parameters are described. Such techniques include impactor sampling, lidar system sensing, filter sampling, photoelectric particle counting, satellite extinction-sensing using the sun as a source, and optical depth probing, at sites mainly removed from tropospheric aerosol sources. Some of these techniques have also had correlative and intercomparison studies. The main methods for determining the vertical profiles of stratospheric aerosols are outlined: lidar extinction measurements from satellites; impactor measurements from balloons and aircraft; and photoelectric particle counter measurements from balloons, aircraft, and rockets. The conversion of the lidar backscatter to stratospheric aerosol mass loading is referred to. Absolute measurements of total solar extinction from satellite orbits can be used to extract the aerosol extinction, and several examples of vertical profiles of extinction obtained with the SAGE satellite are given. Stratospheric mass loading can be inferred from extinction using approximate linear relationships but under restrictive conditions. Impactor sampling is essentially the only method in which the physical nature of the stratospheric aerosol is observed visually. Vertical profiles of stratospheric aerosol number concentration using impactor data are presented. Typical profiles using a dual-size-range photoelectric dustsonde particle counter are given for volcanically disturbed and inactive periods. Some measurements of the global distribution of stratospheric aerosols are also presented. Volatility measurements are described, indicating that stratospheric aerosols are composed primarily of about 75% sulfuric acid and 25% water

  4. An off-line two-dimensional analytical procedure for determination of polcyclic aromatic hydrocarbons in smoke aerosol

    NARCIS (Netherlands)

    Claessens, H.A.; Lammerts van Bueren, L.G.D.

    1987-01-01

    Smoke aerosol from stoves consists of a wide variety of chemical substances of which a number have toxic properties. To study the impact of aerosol emissions on health and environment reliable analytical procedures must be available for these samples. An off-line two-dimensional HPLC method is

  5. Experimental Characterization and Hygroscopicity Determination of Secondary Aerosol from D5 Cyclic Siloxane Oxidation

    Science.gov (United States)

    Stanier, C. O.; Janechek, N. J.; Bryngelson, N.; Marek, R. F.; Lersch, T.; Bunker, K.; Casuccio, G.; Brune, W. H.; Hornbuckle, K. C.

    2017-12-01

    Cyclic volatile methyl siloxanes are anthropogenic chemicals present in personal care products such as antiperspirants and lotions. These are volatile chemicals that are readily released into the atmosphere by product use. Due to their emission and relatively slow kinetics of their major transformation pathway, reaction with hydroxyl radicals (OH), these compounds are present in high concentrations in indoor environments and widespread in outdoor environments. Cyclic siloxane reaction with OH can lead to secondary organic aerosols, and due to the widespread prevalence of the parent compounds, may be an important source of ambient aerosols. Atmospheric aerosols have important influences to the climate by affecting the radiative balance and by serving as cloud condensation nuclei (CCN) which influence clouds. While the parent compounds have been well-studied, the oxidation products have received much less attention, with almost no ambient measurements or experimental physical property data. We report physical properties of aerosols generated by reacting the cyclic siloxane D5 with OH using a Potential Aerosol Mass (PAM) photochemical chamber. The particles were characterized by SMPS, imaging and elemental analysis using both Transmission Electron Microscopy and Scanning Transmission Electron Microscopy equipped with Energy Dispersive X-ray Spectroscopy systems (TEM-EDS and STEM-EDS), volatility measurements using Volatility Tandem Differential Mobility Analyzer (V-TDMA), and hygroscopicity measurements to determine CCN potential using a Droplet Measurement Technologies Cloud Condensation Nuclei Counter (DMT-CCN). Aerosol yield sensitivity to D5 and OH concentrations, residence time, and seed aerosols were analyzed. TEM-EDS and STEM-EDS analysis show spherical particle morphology with elemental composition consistent with aerosols derived from cyclic siloxane sources. Measured aerosol yields were 20-50% with typical aerosol concentrations 300,000 particles cm-3, up to

  6. Characteristics and Source Apportionment of Marine Aerosols over East China Sea Using a Source-oriented Chemical Transport Model

    Science.gov (United States)

    Kang, M.; Zhang, H.; Fu, P.

    2017-12-01

    Marine aerosols exert a strong influence on global climate change and biogeochemical cycling, as oceans cover beyond 70% of the Earth's surface. However, investigations on marine aerosols are relatively limited at present due to the difficulty and inconvenience in sampling marine aerosols as well as their diverse sources. East China Sea (ECS), lying over the broad shelf of the western North Pacific, is adjacent to the Asian mainland, where continental-scale air pollution could impose a heavy load on the marine atmosphere through long-range atmospheric transport. Thus, contributions of major sources to marine aerosols need to be identified for policy makers to develop cost effective control strategies. In this work, a source-oriented version of the Community Multiscale Air Quality (CMAQ) model, which can directly track the contributions from multiple emission sources to marine aerosols, is used to investigate the contributions from power, industry, transportation, residential, biogenic and biomass burning to marine aerosols over the ECS in May and June 2014. The model simulations indicate significant spatial and temporal variations of concentrations as well as the source contributions. This study demonstrates that the Asian continent can greatly affect the marine atmosphere through long-range transport.

  7. Secondary organic material formed by methylglyoxal in aqueous aerosol mimics

    Directory of Open Access Journals (Sweden)

    N. Sareen

    2010-02-01

    Full Text Available We show that methylglyoxal forms light-absorbing secondary organic material in aqueous ammonium sulfate and ammonium nitrate solutions mimicking tropospheric aerosol particles. The kinetics were characterized using UV-Vis spectrophotometry. The results suggest that the bimolecular reaction of methylglyoxal with an ammonium or hydronium ion is the rate-limiting step for the formation of light-absorbing species, with kNH4+II=5×10−6 M−1 min−1 and kH3O+II≤10−3 M−1 min−1. Evidence of aldol condensation products and oligomeric species up to 759 amu was found using chemical ionization mass spectrometry with a volatilization flow tube inlet (Aerosol-CIMS. Tentative identifications of carbon-nitrogen species and a sulfur-containing compound were also made using Aerosol-CIMS. Aqueous solutions of methylglyoxal, with and without inorganic salts, exhibit significant surface tension depression. These observations add to the growing body of evidence that dicarbonyl compounds may form secondary organic material in the aerosol aqueous phase, and that secondary organic aerosol formation via heterogeneous processes may affect seed aerosol properties.

  8. Use of the NASA GEOS-5 SEAC4RS Meteorological and Aerosol Reanalysis for assessing simulated aerosol optical properties as a function of smoke age

    Science.gov (United States)

    Randles, C. A.; da Silva, A. M., Jr.; Colarco, P. R.; Darmenov, A.; Buchard, V.; Govindaraju, R.; Chen, G.; Hair, J. W.; Russell, P. B.; Shinozuka, Y.; Wagner, N.; Lack, D.

    2014-12-01

    The NASA Goddard Earth Observing System version 5 (GEOS-5) Earth system model, which includes an online aerosol module, provided chemical and weather forecasts during the SEAC4RS field campaign. For post-mission analysis, we have produced a high resolution (25 km) meteorological and aerosol reanalysis for the entire campaign period. In addition to the full meteorological observing system used for routine NWP, we assimilate 550 nm aerosol optical depth (AOD) derived from MODIS (both Aqua and Terra satellites), ground-based AERONET sun photometers, and the MISR instrument (over bright surfaces only). Daily biomass burning emissions of CO, CO2, SO2, and aerosols are derived from MODIS fire radiative power retrievals. We have also introduced novel smoke "age" tracers, which provide, for a given time, a snapshot histogram of the age of simulated smoke aerosol. Because GEOS-5 assimilates remotely sensed AOD data, it generally reproduces observed (column) AOD compared to, for example, the airborne 4-STAR instrument. Constraining AOD, however, does not imply a good representation of either the vertical profile or the aerosol microphysical properties (e.g., composition, absorption). We do find a reasonable vertical structure for aerosols is attained in the model, provided actual smoke injection heights are not much above the planetary boundary layer, as verified with observations from DIAL/HRSL aboard the DC8. The translation of the simulated aerosol microphysical properties to total column AOD, needed in the aerosol assimilation step, is based on prescribed mass extinction efficiencies that depend on wavelength, composition, and relative humidity. Here we also evaluate the performance of the simulated aerosol speciation by examining in situ retrievals of aerosol absorption/single scattering albedo and scattering growth factor (f(RH)) from the LARGE and AOP suite of instruments. Putting these comparisons in the context of smoke age as diagnosed by the model helps us to

  9. Overview of TANGENT (Tandem Aerosol Nucleation and Growth ENvironment Tube) 2017 IOP Study

    Science.gov (United States)

    Tiszenkel, L.

    2017-12-01

    New particle formation consists of two steps: nucleation and growth of nucleated particles. However, most laboratory studies have been conducted under conditions where these two processes are convoluted together, thereby hampering the detailed understanding of the effect of chemical species and atmospheric conditions on two processes. The objective of the Tandem Aerosol Nucleation and Growth ENvironment Tube (TANGENT) laboratory study is to investigate aerosol nucleation and growth properties independently by separating these two processes in two different flow tubes. This research is a collaboration between the University of Alabama in Huntsville and the University of Delaware. In this poster we will present the experimental setup of TANGENT and summarize the key results from the first IOP (intense observation period) experiments undertaken during Summer 2017. Nucleation takes place in a temperature- and RH-controlled fast flow reactor (FT-1) where sulfuric acid forms from OH radicals and sulfur dioxide. Sulfuric acid and impurity base compounds are detected with chemical ionization mass spectrometers (CIMS). Particle sizes and number concentrations of newly nucleated particles are measured with a scanning mobility particle sizer (SMPS) and particle size magnifier (PSM), providing concentrations of particles between 1-100 nm. The nucleation particles are transferred directly to the growth tube (FT-2) where oxidants and biogenic organic precursors are added to grow nucleated nanoparticles. Sizes of particles after growth are analyzed with an additional SMPS and elemental chemical composition of 50 nm and above particles detected with a nano-aerosol mass spectrometer (NAMS). TANGENT provides the unique ability to conduct experiments that can monitor and control reactant concentrations, aerosol size and aerosol chemical composition during nucleation and growth. Experiments during this first IOP study have elucidated the effects of sulfur dioxide, particle size

  10. Physico-chemical study of the anthropic aerosol and of its evolutions in Beijing; Etude physico-chimique de l'aerosol anthropique et de ses evolutions a Pekin

    Energy Technology Data Exchange (ETDEWEB)

    Guinot, B

    2006-05-15

    Beijing aerosols are characterised for the 2003-2004 period using an inclusive experimental set up for aerosol mass, chemistry and number, deployed at three sites. Aerosol size segregation in two fractions (fine and coarse) appears appropriated for source identification and investigations about gas-to-particle interactions. Several various sources contribute to air pollution: traffic, coal burning and industrial activities. The present study also shows how summer aerosol is influenced by the photochemical formation of secondary particles, and the significant amount of coarse and fine mineral dust all year long. Coal burning in winter has a lower influence than assessed in the past. The origin and altitude of the air masses entering Beijing are of key interest to understand the ageing of pollutants and their regional redistribution. By its expected effects onto these regional parameters, climate change may strongly affect Beijing air pollution in the coming decades. (author)

  11. Automated methods for thorium determination in liquids, solids and aerosols

    International Nuclear Information System (INIS)

    Robertson, R.; Stuart, J.E.

    1984-01-01

    Methodology for determining trace thorium levels in a variety of sample types for compliance purposes was developed. Thorium in filtered water samples is concentrated by ferric hydroxide co-precipitation. Aerosols on glass-fibre, cellulose ester or teflon filters are acid digested and thorium is concentrated by lanthanum fluoride co-precipitation. Chemical separation and measurement are then done on a Technicon AAII-C auto-analyzer via TTA-solvent extraction and colorimetry using the thorium-arsenazo III colour complex. Solid samples are acid digested and thorium is concentrated and separated using lanthanum fluoride co-precipitation followed by anion-exchange chromatography. Measurement is then carried out on the autoanalyzer by direct development of the thorium-arsenazo III colour complex. Chemical yields are determined through the addition of thorium-234 tracer with assay by gamma-ray spectrometry. The sensitivities of the methods for liquids, aerosols and solids are approximately 1μg/L,0.5μg and 0.5 μg/g respectively. At thorium levels about ten times the detection limits, accuracy and reproducibility are typically +-10 percent for liquids and aerosols and +- 15 percent for solid samples

  12. Use of computer-assisted prediction of toxic effects of chemical substances

    International Nuclear Information System (INIS)

    Simon-Hettich, Brigitte; Rothfuss, Andreas; Steger-Hartmann, Thomas

    2006-01-01

    The current revision of the European policy for the evaluation of chemicals (REACH) has lead to a controversy with regard to the need of additional animal safety testing. To avoid increases in animal testing but also to save time and resources, alternative in silico or in vitro tests for the assessment of toxic effects of chemicals are advocated. The draft of the original document issued in 29th October 2003 by the European Commission foresees the use of alternative methods but does not give further specification on which methods should be used. Computer-assisted prediction models, so-called predictive tools, besides in vitro models, will likely play an essential role in the proposed repertoire of 'alternative methods'. The current discussion has urged the Advisory Committee of the German Toxicology Society to present its position on the use of predictive tools in toxicology. Acceptable prediction models already exist for those toxicological endpoints which are based on well-understood mechanism, such as mutagenicity and skin sensitization, whereas mechanistically more complex endpoints such as acute, chronic or organ toxicities currently cannot be satisfactorily predicted. A potential strategy to assess such complex toxicities will lie in their dissection into models for the different steps or pathways leading to the final endpoint. Integration of these models should result in a higher predictivity. Despite these limitations, computer-assisted prediction tools already today play a complementary role for the assessment of chemicals for which no data is available or for which toxicological testing is impractical due to the lack of availability of sufficient compounds for testing. Furthermore, predictive tools offer support in the screening and the subsequent prioritization of compound for further toxicological testing, as expected within the scope of the European REACH program. This program will also lead to the collection of high-quality data which will broaden the

  13. Exchanges in boundary layer and low troposphere and consequences on pollution of Fos-Berre-Marseille area (ESCOMPTE experiment); Les aerosols: emissions, formation d'aerosols organiques secondaires, transport longue distance. Zoom sur les aerosols carbones en Europe

    Energy Technology Data Exchange (ETDEWEB)

    Guillaume, B

    2006-01-15

    There are two types of 'carbonaceous aerosols': 'black carbon' (BC) and 'organic carbon'(OC). BC is directly emitted in the atmosphere while OC is either directly emitted (primary OC, OCp) or secondarily formed through oxidation processes in the atmosphere (secondary organic aerosols, SOA). Complexity of carbonaceous aerosols is still poorly represented in existing aerosol models and uncertainties appear mainly both in their emission inventories and in their complex atmospheric evolution (transport, gas-particle interactions, dry/wet deposition), making difficult the estimation of their radiative impact. In this framework, I developed during my PhD at Laboratoire d'Aerologie, a new approach to deal with this complexity, with implementation of both a new carbonaceous aerosol emission inventory and a new aerosol modelling tool at global scale. My work is divided in 5 different tasks: - better characterisation of BC and OCp emissions, achieved through the development of a new emission inventory from fossil fuel and biofuel combustion sources (industrial, domestic and mobile sources). This inventory provides BC and OCp emissions for Europe at 25 km * 25 km resolution for the years 1990, 1995, 2000, 2005 and 2010, with two additional regional zooms: on France, at 10 km * 10 km resolution for the years 2000 and 2010 with improved road traffic, and in Marseille region (Escompte campaign, 1999,-2001) at 1 km * 1 km resolution for the year 1999; - better modelling of carbonaceous aerosol complex atmospheric evolution, through coupling of a global scale gas transport/chemistry model (TM4) with an aerosol module (ORISAM) featuring size-distributed aerosols (on 8 diameter sections from 40 nm to 10 {mu}m) organic/inorganic chemical composition and explicit treatment of SOA formation; - simulations with this new aerosol model ORISAM-TM4 and model/measurements comparisons to study BC and OC long-range transport; - sensitivity tests on SOA

  14. Hygroscopic behavior and chemical composition evolution of internally mixed aerosols composed of oxalic acid and ammonium sulfate

    Science.gov (United States)

    Wang, Xiaowei; Jing, Bo; Tan, Fang; Ma, Jiabi; Zhang, Yunhong; Ge, Maofa

    2017-10-01

    Although water uptake of aerosol particles plays an important role in the atmospheric environment, the effects of interactions between components on chemical composition and hygroscopicity of particles are still not well constrained. The hygroscopic properties and phase transformation of oxalic acid (OA) and mixed particles composed of ammonium sulfate (AS) and OA with different organic to inorganic molar ratios (OIRs) have been investigated by using confocal Raman spectroscopy. It is found that OA droplets first crystallize to form OA dihydrate at 71 % relative humidity (RH), and further lose crystalline water to convert into anhydrous OA around 5 % RH during the dehydration process. The deliquescence and efflorescence point for AS is determined to be 80.1 ± 1.5 % RH and 44.3 ± 2.5 % RH, respectively. The observed efflorescence relative humidity (ERH) for mixed OA / AS droplets with OIRs of 1 : 3, 1 : 1 and 3 : 1 is 34.4 ± 2.0, 44.3 ± 2.5 and 64.4 ± 3.0 % RH, respectively, indicating the elevated OA content appears to favor the crystallization of mixed systems at higher RH. However, the deliquescence relative humidity (DRH) of AS in mixed OA / AS particles with OIRs of 1 : 3 and 1 : 1 is observed to occur at 81.1 ± 1.5 and 77 ± 1.0 % RH, respectively. The Raman spectra of mixed OA / AS droplets indicate the formation of ammonium hydrogen oxalate (NH4HC2O4) and ammonium hydrogen sulfate (NH4HSO4) from interactions between OA and AS in aerosols during the dehydration process on the time scale of hours, which considerably influence the subsequent deliquescence behavior of internally mixed particles with different OIRs. The mixed OA / AS particles with an OIR of 3 : 1 exhibit no deliquescence transition over the RH range studied due to the considerable transformation of (NH4)2SO4 into NH4HC2O4 with a high DRH. Although the hygroscopic growth of mixed OA / AS droplets is comparable to that of AS or OA at high RH during the dehydration process, Raman growth

  15. The evolution of Titan's high-altitude aerosols under ultraviolet irradiation

    Science.gov (United States)

    Carrasco, Nathalie; Tigrine, Sarah; Gavilan, Lisseth; Nahon, Laurent; Gudipati, Murthy S.

    2018-04-01

    The Cassini-Huygens space mission revealed that Titan's thick brownish haze is initiated high in the atmosphere at an altitude of about 1,000 km, before a slow transportation down to the surface. Close to the surface, at altitudes below 130 km, the Huygens probe provided information on the chemical composition of the haze. So far, we have not had insights into the possible photochemical evolution of the aerosols making up the haze during their descent. Here, we address this atmospheric aerosol aging process, simulating in the laboratory how solar vacuum ultraviolet irradiation affects the aerosol optical properties as probed by infrared spectroscopy. An important evolution was found that could explain the apparent contradiction between the nitrogen-poor infrared spectroscopic signature observed by Cassini below 600 km of altitude in Titan's atmosphere and a high nitrogen content as measured by the aerosol collector and pyrolyser of the Huygens probe at the surface of Titan.

  16. Formation and dynamic change of aerosol particles

    International Nuclear Information System (INIS)

    Kasahara, Mikio

    1986-01-01

    Processes of aerosol particle nucleation are roughly grouped into two types. In one, aerosol is produced as a result of dispersion of solid or liquid by mechanical force while in the other it is formed through phase transition from gas to solid or liquid due to cohesion caused by cooling, expansion or chemical reaction. This article reviews various aspects of aerosol particle nucleation through the latter type of processes and behaviors of the particles formed. Gas-to-particle conversion processes are divided into those of homogeneous and heterogeneous nucleation, and the former include homogeneous homomolecular and homogeneous heteromolecular nucleation processes. Here, homoneneous homomolecular nucleation is described centering on the theories proposed by Backer and Doring-Zeldovich-Volmer-Frenkel while homogeneous heteromolecular systems are outlined citing the theory developed by Kiang and Stauffer. Heterogeneous nucleation (or heterogeneous condensation) is discussed on the basis of the relationship between the mean free path of air molecules and the particle size. Various theories for particle formation and growth are listed and briefly outlined. Some of them are compared with experimental results. Models are cited to explain behaviors of aerosol particles after being formed. Also described is simulation of particle nucleation and growth in relation to atmospheric pollution and possible accidents of liquid-metal fast breeder reactors. (Nogami, K.)

  17. Investigation of the seasonal variations of aerosol physicochemical properties and their impact on cloud condensation nuclei number concentration

    Science.gov (United States)

    Logan, Timothy S.

    Aerosols are among the most complex yet widely studied components of the atmosphere not only due to the seasonal variability of their physical and chemical properties but also their effects on climate change. The three main aerosol types that are known to affect the physics and chemistry of the atmosphere are: mineral dust, anthropogenic pollution, and biomass burning aerosols. In order to understand how these aerosols affect the atmosphere, this dissertation addresses the following three scientific questions through a combination of surface and satellite observations: SQ1: What are the seasonal and regional variations of aerosol physico-chemical properties at four selected Asian sites? SQ2: How do these aerosol properties change during transpacific and intra-continental long range transport? SQ3: What are the impacts of aerosol properties on marine boundary layer cloud condensation nuclei number concentration? This dissertation uses an innovative approach to classify aerosol properties by region and season to address SQ1. This is useful because this method provides an additional dimension when investigating the physico-chemical properties of aerosols by linking a regional and seasonal dependence to both the aerosol direct and indirect effects. This method involves isolating the aerosol physico-chemical properties into four separate regions using AERONET retrieved Angstrom exponent (AEAOD) and single scattering co-albedo (o oabs) to denote aerosol size and absorptive properties. The aerosols events are then clustered by season. The method is first applied to four AERONET sites representing single mode aerosol dominant regions: weakly absorbing pollution (NASA Goddard), strongly absorbing pollution (Mexico City), mineral dust (Solar Village), and biomass burning smoke (Alta Floresta). The method is then applied to four Asian sites that represent complicated aerosol components. There are strong regional and seasonal influences of the four aerosol types over the

  18. Elements including metals in the atomizer and aerosol of disposable electronic cigarettes and electronic hookahs.

    Directory of Open Access Journals (Sweden)

    Monique Williams

    Full Text Available Our purpose was to quantify 36 inorganic chemical elements in aerosols from disposable electronic cigarettes (ECs and electronic hookahs (EHs, examine the effect of puffing topography on elements in aerosols, and identify the source of the elements.Thirty-six inorganic chemical elements and their concentrations in EC/EH aerosols were determined using inductively coupled plasma optical emission spectroscopy, and their source was identified by analyzing disassembled atomizers using scanning electron microscopy and energy dispersive X-ray spectroscopy.Of 36 elements screened, 35 were detected in EC/EH aerosols, while only 15 were detected in conventional tobacco smoke. Some elements/metals were present in significantly higher concentrations in EC/EH aerosol than in cigarette smoke. Concentrations of particular elements/metals within EC/EH brands were sometimes variable. Aerosols generated at low and high air-flow rates produced the same pattern of elements, although the total element concentration decreased at the higher air flow rate. The relative amount of elements in the first and last 60 puffs was generally different. Silicon was the dominant element in aerosols from all EC/EH brands and in cigarette smoke. The elements appeared to come from the filament (nickel, chromium, thick wire (copper coated with silver, brass clamp (copper, zinc, solder joints (tin, lead, and wick and sheath (silicon, oxygen, calcium, magnesium, aluminum. Lead was identified in the solder and aerosol of two brands of EHs (up to 0.165 μg/10 puffs.These data show that EC/EH aerosols contain a mixture of elements, including heavy metals, with concentrations often significantly higher than in conventional cigarette smoke. While the health effects of inhaling mixtures of heated metals is currently not known, these data will be valuable in future risk assessments involving EC/EH elements/metals.

  19. Contribution of anthropogenic aerosols in direct radiative forcing and atmospheric heating rate over Delhi in the Indo-Gangetic Basin.

    Science.gov (United States)

    Srivastava, Atul K; Singh, Sachchidanand; Tiwari, S; Bisht, D S

    2012-05-01

    The present work is aimed to understand direct radiation effects due to aerosols over Delhi in the Indo-Gangetic Basin (IGB) region, using detailed chemical analysis of surface measured aerosols during the year 2007. An optically equivalent aerosol model was formulated on the basis of measured aerosol chemical compositions along with the ambient meteorological parameters to derive radiatively important aerosol optical parameters. The derived aerosol parameters were then used to estimate the aerosol direct radiative forcing at the top of the atmosphere, surface, and in the atmosphere. The anthropogenic components measured at Delhi were found to be contributing ∼ 72% to the composite aerosol optical depth (AOD(0.5) ∼ 0.84). The estimated mean surface and atmospheric forcing for composite aerosols over Delhi were found to be about -69, -85, and -78 W m(-2) and about +78, +98, and +79 W m(-2) during the winter, summer, and post-monsoon periods, respectively. The anthropogenic aerosols contribute ∼ 90%, 53%, and 84% to the total aerosol surface forcing and ∼ 93%, 54%, and 88% to the total aerosol atmospheric forcing during the above respective periods. The mean (± SD) surface and atmospheric forcing for composite aerosols was about -79 (± 15) and +87 (± 26) W m(-2) over Delhi with respective anthropogenic contributions of ∼ 71% and 75% during the overall period of observation. Aerosol induced large surface cooling, which was relatively higher during summer as compared to the winter suggesting an increase in dust loading over the station. The total atmospheric heating rate at Delhi averaged during the observation was found to be 2.42  ±  0.72 K day(-1), of which the anthropogenic fraction contributed as much as ∼ 73%.

  20. Study of the efficiency of chemically assisted enucleation method for handmade cloning in goat (Capra hircus).

    Science.gov (United States)

    Akshey, Y S; Malakar, D; De, A K; Jena, M K; Sahu, S; Dutta, R

    2011-08-01

    The present investigation was carried out to find an efficient chemically assisted procedure for enucleation of goat oocytes related to handmade cloning (HMC) technique. After 22-h in vitro maturation, oocytes were incubated with 0.5 μg/ml demecolcine for 2 h. Cumulus cells were removed by pipetting and vortexing in 0.5 mg/ml hyaluronidase, and zona pellucida were digested with pronase. Oocytes with extrusion cones were subjected to oriented bisection. One-third of the cytoplasm with the extrusion cone was removed with a micro blade. The remaining cytoplasts were used as recipients in HMC. Goat foetal fibroblasts were used as nuclear donors. The overall efficiency measured as the number of cytoplasts obtained per total number of oocytes used was significantly (p < 0.05) higher in chemically assisted handmade enucleation (CAHE) than oriented handmade enucleation without demecolcine (OHE) (80.02 ± 1.292% vs. 72.9 ± 1.00%, respectively, mean ± SEM). The reconstructed and activated embryos were cultured in embryo development medium (EDM) for 7 days. Fusion, cleavage and blastocyst development rate were 71.63 ± 1.95%, 92.94 ± 0.91% and 23.78 ± 3.33% (mean ± SEM), respectively which did not differ significantly from those achieved with random handmade enucleation and OHE. In conclusion, chemically assisted enucleation is a highly efficient and reliable enucleation method for goat HMC which eliminates the need of expensive equipment (inverted fluorescence microscope) and potentially harmful chromatin staining and ultraviolet (UV) irradiation for cytoplast selection. © 2010 Blackwell Verlag GmbH.