PREFACE: Aerodynamic sound Aerodynamic sound
Akishita, Sadao
2010-02-01
The modern theory of aerodynamic sound originates from Lighthill's two papers in 1952 and 1954, as is well known. I have heard that Lighthill was motivated in writing the papers by the jet-noise emitted by the newly commercialized jet-engined airplanes at that time. The technology of aerodynamic sound is destined for environmental problems. Therefore the theory should always be applied to newly emerged public nuisances. This issue of Fluid Dynamics Research (FDR) reflects problems of environmental sound in present Japanese technology. The Japanese community studying aerodynamic sound has held an annual symposium since 29 years ago when the late Professor S Kotake and Professor S Kaji of Teikyo University organized the symposium. Most of the Japanese authors in this issue are members of the annual symposium. I should note the contribution of the two professors cited above in establishing the Japanese community of aerodynamic sound research. It is my pleasure to present the publication in this issue of ten papers discussed at the annual symposium. I would like to express many thanks to the Editorial Board of FDR for giving us the chance to contribute these papers. We have a review paper by T Suzuki on the study of jet noise, which continues to be important nowadays, and is expected to reform the theoretical model of generating mechanisms. Professor M S Howe and R S McGowan contribute an analytical paper, a valuable study in today's fluid dynamics research. They apply hydrodynamics to solve the compressible flow generated in the vocal cords of the human body. Experimental study continues to be the main methodology in aerodynamic sound, and it is expected to explore new horizons. H Fujita's study on the Aeolian tone provides a new viewpoint on major, longstanding sound problems. The paper by M Nishimura and T Goto on textile fabrics describes new technology for the effective reduction of bluff-body noise. The paper by T Sueki et al also reports new technology for the
Scorer, R S
1958-01-01
Natural Aerodynamics focuses on the mathematics of any problem in air motion.This book discusses the general form of the law of fluid motion, relationship between pressure and wind, production of vortex filaments, and conduction of vorticity by viscosity. The flow at moderate Reynolds numbers, turbulence in a stably stratified fluid, natural exploitation of atmospheric thermals, and plumes in turbulent crosswinds are also elaborated. This text likewise considers the waves produced by thermals, transformation of thin layer clouds, method of small perturbations, and dangers of extra-polation.Thi
Advanced Topics in Aerodynamics
Filippone, Antonino
1999-01-01
"Advanced Topics in Aerodynamics" is a comprehensive electronic guide to aerodynamics,computational fluid dynamics, aeronautics, aerospace propulsion systems, design and relatedtechnology. We report data, tables, graphics, sketches,examples, results, photos, technical andscientific literature, for...
Unsteady transonic aerodynamics
Various papers on unsteady transonic aerodynamics are presented. The topics addressed include: physical phenomena associated with unsteady transonic flows, basic equations for unsteady transonic flow, practical problems concerning aircraft, basic numerical methods, computational methods for unsteady transonic flows, application of transonic flow analysis to helicopter rotor problems, unsteady aerodynamics for turbomachinery aeroelastic applications, alternative methods for modeling unsteady transonic flows
Computation of dragonfly aerodynamics
Gustafson, Karl; Leben, Robert
1991-04-01
Dragonflies are seen to hover and dart, seemingly at will and in remarkably nimble fashion, with great bursts of speed and effectively discontinuous changes of direction. In their short lives, their gossamer flight provides us with glimpses of an aerodynamics of almost extraterrestrial quality. Here we present the first computer simulations of such aerodynamics.
Reinforced aerodynamic profile
2010-01-01
The present invention relates to the prevention of deformations in an aerodynamic profile caused by lack of resistance to the bending moment forces that are created when such a profile is loaded in operation. More specifically, the invention relates to a reinforcing element inside an aerodynamic ...... profile and a method for the construction thereof. The profile is intended for, but not limited to, useas a wind turbine blade, an aerofoil device or as a wing profile used in the aeronautical industry....
Aerodynamically shaped vortex generators
Hansen, Martin Otto Laver; Velte, Clara Marika; Øye, Stig;
2016-01-01
An aerodynamically shaped vortex generator has been proposed, manufactured and tested in a wind tunnel. The effect on the overall performance when applied on a thick airfoil is an increased lift to drag ratio compared with standard vortex generators. Copyright © 2015 John Wiley & Sons, Ltd....
Computational electromagnetic-aerodynamics
Shang, Joseph J S
2016-01-01
Presents numerical algorithms, procedures, and techniques required to solve engineering problems relating to the interactions between electromagnetic fields, fluid flow, and interdisciplinary technology for aerodynamics, electromagnetics, chemical-physics kinetics, and plasmadynamics This book addresses modeling and simulation science and technology for studying ionized gas phenomena in engineering applications. Computational Electromagnetic-Aerodynamics is organized into ten chapters. Chapter one to three introduce the fundamental concepts of plasmadynamics, chemical-physics of ionization, classical magnetohydrodynamics, and their extensions to plasma-based flow control actuators, high-speed flows of interplanetary re-entry, and ion thrusters in space exploration. Chapter four to six explain numerical algorithms and procedures for solving Maxwell’s equation in the time domain for computational electromagnetics, plasma wave propagation, and the time-dependent c mpressible Navier-Stokes equation for aerodyn...
Hansen, Martin Otto Laver
Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its second edition, it has been entirely updated and substantially extended to reflect advances in technology, research into rotor aerodynamics and the structural...... response of the wind turbine structure. Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element...... Momentum method is also covered, as are eigenmodes and the dynamic behavior of a turbine. The new material includes a description of the effects of the dynamics and how this can be modeled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Further, the...
aerodynamics and heat transfer
J. N. Rajadas
1998-01-01
Full Text Available A multidisciplinary optimization procedure, with the integration of aerodynamic and heat transfer criteria, has been developed for the design of gas turbine blades. Two different optimization formulations have been used. In the first formulation, the maximum temperature in the blade section is chosen as the objective function to be minimized. An upper bound constraint is imposed on the blade average temperature and a lower bound constraint is imposed on the blade tangential force coefficient. In the second formulation, the blade average and maximum temperatures are chosen as objective functions. In both formulations, bounds are imposed on the velocity gradients at several points along the surface of the airfoil to eliminate leading edge velocity spikes which deteriorate aerodynamic performance. Shape optimization is performed using the blade external and coolant path geometric parameters as design variables. Aerodynamic analysis is performed using a panel code. Heat transfer analysis is performed using the finite element method. A gradient based procedure in conjunction with an approximate analysis technique is used for optimization. The results obtained using both optimization techniques are compared with a reference geometry. Both techniques yield significant improvements with the multiobjective formulation resulting in slightly superior design.
Aerodynamic data of space vehicles
Weiland, Claus
2014-01-01
The capacity and quality of the atmospheric flight performance of space flight vehicles is characterized by their aerodynamic data bases. A complete aerodynamic data base would encompass the coefficients of the static longitudinal and lateral motions and the related dynamic coefficients. In this book the aerodynamics of 27 vehicles are considered. Only a few of them did really fly. Therefore the aerodynamic data bases are often not complete, in particular when the projects or programs were more or less abruptly stopped, often due to political decisions. Configurational design studies or the development of demonstrators usually happen with reduced or incomplete aerodynamic data sets. Therefore some data sets base just on the application of one of the following tools: semi-empirical design methods, wind tunnel tests, numerical simulations. In so far a high percentage of the data presented is incomplete and would have to be verified. Flight mechanics needs the aerodynamic coefficients as function of a lot of var...
Hansen, Martin O L
2015-01-01
Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design a classical pitch and torque regulator to control rotational speed and power, while the section on structural dynamics has been extended with a simplified mechanical system explaining the phenomena of forward and backward whirling modes. Readers will also benefit from a new chapter on Vertical Axis W
Mehta, R. D.
Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.
Introduction to transonic aerodynamics
Vos, Roelof
2015-01-01
Written to teach students the nature of transonic flow and its mathematical foundation, this book offers a much-needed introduction to transonic aerodynamics. The authors present a quantitative and qualitative assessment of subsonic, supersonic, and transonic flow around bodies in two and three dimensions. The book reviews the governing equations and explores their applications and limitations as employed in modeling and computational fluid dynamics. Some concepts, such as shock and expansion theory, are examined from a numerical perspective. Others, including shock-boundary-layer interaction, are discussed from a qualitative point of view. The book includes 60 examples and more than 200 practice problems. The authors also offer analytical methods such as Method of Characteristics (MOC) that allow readers to practice with the subject matter. The result is a wealth of insight into transonic flow phenomena and their impact on aircraft design, including compressibility effects, shock and expansion waves, sho...
Hansen, Martin Otto Laver
Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design...... Wind Turbines (VAWT). Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element Momentum...... method is also covered, as are eigenmodes and the dynamic behaviour of a turbine. The book describes the effects of the dynamics and how this can be modelled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Furthermore, it examines how to calculate the...
Wind Turbines Wake Aerodynamics
Vermeer, L.; Sørensen, Jens Nørkær; Crespo, A.
2003-01-01
The aerodynamics of horizontal axis wind turbine wakes is studied. The contents is directed towards the physics of power extraction by wind turbines and reviews both the near and the far wake region. For the near wake, the survey is restricted to uniform, steady and parallel flow conditions......, thereby excluding wind shear, wind speed and rotor setting changes and yawed conditions. The emphasis is put on measurements in controlled conditions.For the far wake, the survey focusses on both single turbines and wind farm effects, and the experimental and numerical work are reviewed; the main interest...... is to study how the far wake decays downstream, in order to estimate the effect produced in downstream turbines.The article is further restricted to horizontal axis wind turbines and excludes all other types of turbines....
Wind turbine wake aerodynamics
Vermeer, L.J. [Delft University of Technology (Netherlands). Section Wind Energy; Sorensen, J.N. [Technical University of Denmark, Lyngby (Denmark). Dept. of Mechanical Engineering; Crespo, A. [Universidad Politecnica de Madrid (Spain). Dpto. de Ingenieria Energetica y Fluidomecanica
2003-10-01
The aerodynamics of horizontal axis wind turbine wakes is studied. The contents is directed towards the physics of power extraction by wind turbines and reviews both the near and the far wake region. For the near wake, the survey is restricted to uniform, steady and parallel flow conditions, thereby excluding wind shear, wind speed and rotor setting changes and yawed conditions. The emphasis is put on measurements in controlled conditions. For the far wake, the survey focuses on both single turbines and wind farm effects, and the experimental and numerical work are reviewed; the main interest is to study how the far wake decays downstream, in order to estimate the effect produced in downstream turbines. The article is further restricted to horizontal axis wind turbines and excludes all other types of turbines. (author)
Kleissl, Kenneth
categorization of the different control technics together with an identification of two key mechanisms for reduction of the design drag force. During this project extensive experimental work examining the aerodynamics of the currently used cable surface modifications together with new innovative proposals have...... drag force due to the high intensity of streamwise vorticity, whereas the helical fillets resulted in a more gradual flow transition because of the spanwise variation. During yawed flow conditions, the asymmetrical appearance of the helical solution was found to induce a significant lift force with a...... were tested. While a proper discrete helical arrangement of Cylindrical Vortex Generators resulted in a superior drag performance, only systems applying "mini-strakes" were capable of complete rivulet suppression. When the strakes was positioned in a staggered helical arrangement, the innovative system...
Naval Aerodynamics Test Facility (NATF)
Federal Laboratory Consortium — The NATF specializes in Aerodynamics testing of scaled and fullsized Naval models, research into flow physics found on US Navy planes and ships, aerosol testing and...
Computational aerodynamics and artificial intelligence
Mehta, U. B.; Kutler, P.
1984-01-01
The general principles of artificial intelligence are reviewed and speculations are made concerning how knowledge based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use expert systems, and how expert systems may speed the design and development process. In addition, the anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements for using artificial intelligence in computational fluid dynamics and aerodynamics are examined. Three main conclusions are presented. First, there are two related aspects of computational aerodynamics: reasoning and calculating. Second, a substantial portion of reasoning can be achieved with artificial intelligence. It offers the opportunity of using computers as reasoning machines to set the stage for efficient calculating. Third, expert systems are likely to be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics.
Introduction to wind turbine aerodynamics
Schaffarczyk, Alois Peter
2014-01-01
Wind-Turbine Aerodynamics is a self-contained textbook which shows how to come from the basics of fluid mechanics to modern wind turbine blade design. It presents a fundamentals of fluid dynamics and inflow conditions, and gives a extensive introduction into theories describing the aerodynamics of wind turbines. After introducing experiments the book applies the knowledge to explore the impact on blade design.The book is an introduction for professionals and students of very varying levels.
Aerodynamics of badminton shuttlecocks
Verma, Aekaansh; Desai, Ajinkya; Mittal, Sanjay
2013-08-01
A computational study is carried out to understand the aerodynamics of shuttlecocks used in the sport of badminton. The speed of the shuttlecock considered is in the range of 25-50 m/s. The relative contribution of various parts of the shuttlecock to the overall drag is studied. It is found that the feathers, and the net in the case of a synthetic shuttlecock, contribute the maximum. The gaps, in the lower section of the skirt, play a major role in entraining the surrounding fluid and causing a difference between the pressure inside and outside the skirt. This pressure difference leads to drag. This is confirmed via computations for a shuttlecock with no gaps. The synthetic shuttle experiences more drag than the feather model. Unlike the synthetic model, the feather shuttlecock is associated with a swirling flow towards the end of the skirt. The effect of the twist angle of the feathers on the drag as well as the flow has also been studied.
Dvořák Rudolf
2016-01-01
Full Text Available Unlike airplanes birds must have either flapping or oscillating wings (the hummingbird. Only such wings can produce both lift and thrust – two sine qua non attributes of flying.The bird wings have several possibilities how to obtain the same functions as airplane wings. All are realized by the system of flight feathers. Birds have also the capabilities of adjusting the shape of the wing according to what the immediate flight situation demands, as well as of responding almost immediately to conditions the flow environment dictates, such as wind gusts, object avoidance, target tracking, etc. In bird aerodynamics also the tail plays an important role. To fly, wings impart downward momentum to the surrounding air and obtain lift by reaction. How this is achieved under various flight situations (cruise flight, hovering, landing, etc., and what the role is of the wing-generated vortices in producing lift and thrust is discussed.The issue of studying bird flight experimentally from in vivo or in vitro experiments is also briefly discussed.
Dvořák, Rudolf
2016-03-01
Unlike airplanes birds must have either flapping or oscillating wings (the hummingbird). Only such wings can produce both lift and thrust - two sine qua non attributes of flying.The bird wings have several possibilities how to obtain the same functions as airplane wings. All are realized by the system of flight feathers. Birds have also the capabilities of adjusting the shape of the wing according to what the immediate flight situation demands, as well as of responding almost immediately to conditions the flow environment dictates, such as wind gusts, object avoidance, target tracking, etc. In bird aerodynamics also the tail plays an important role. To fly, wings impart downward momentum to the surrounding air and obtain lift by reaction. How this is achieved under various flight situations (cruise flight, hovering, landing, etc.), and what the role is of the wing-generated vortices in producing lift and thrust is discussed.The issue of studying bird flight experimentally from in vivo or in vitro experiments is also briefly discussed.
Discrete vortex method simulations of aerodynamic admittance in bridge aerodynamics
Rasmussen, Johannes Tophøj; Hejlesen, Mads Mølholm; Larsen, Allan; Walther, Jens Honore
The meshless and remeshed Discrete Vortex Method (DVM) has been widely used in academia and by the industry to model two-dimensional ﬂow around bluff bodies. The implementation “DVMFLOW” [1] is used by the bridge design company COWI to determine and visualise the ﬂow ﬁeld around bridge sections......, and to determine aerodynamic forces and the corresponding ﬂutter limit. A simulation of the three-dimensional bridge responseto turbulent wind is carried out by quasi steady theory by modelling the bridge girder as a line like structure [2], applying the aerodynamic load coefﬁcients found from the...... current version of DVMFLOW in a strip wise fashion. Neglecting the aerodynamic admittance, i.e. the correlation of the instantaneous lift force to the turbulent ﬂuctuations in the vertical velocities, leads to higher response to high frequency atmospheric turbulence than would be obtained from wind tunnel...
Fundamentals of modern unsteady aerodynamics
Gülçat, Ülgen
2016-01-01
In this book, the author introduces the concept of unsteady aerodynamics and its underlying principles. He provides the readers with a comprehensive review of the fundamental physics of free and forced unsteadiness, the terminology and basic equations of aerodynamics ranging from incompressible flow to hypersonics. The book also covers modern topics related to the developments made in recent years, especially in relation to wing flapping for propulsion. The book is written for graduate and senior year undergraduate students in aerodynamics and also serves as a reference for experienced researchers. Each chapter includes ample examples, questions, problems and relevant references. The treatment of these modern topics has been completely revised end expanded for the new edition. It now includes new numerical examples, a section on the ground effect, and state-space representation.
The aerodynamics of wind turbines
Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming; Troldborg, Niels;
2013-01-01
In the paper we present state-of-the-art of research in wind turbine aerodynamics. We start be giving a brief historical review and a survey over aerodynamic research in wind energy. Next, we focus on some recent research results obtained by our wind energy group at Department of Mechanical...... Engineering at DTU. In particular, we show some new results on the classical problem of the ideal rotor and present a series of new results from an on-going research project dealing with the modelling and simulation of turbulent flow structures in the wake behind wind turbines....
Schepers, J.G.
2012-01-01
The subject of aerodynamics is of major importance for the successful deployment of wind energy. As a matter of fact there are two aerodynamic areas in the wind energy technology: Rotor aerodynamics and wind farm aerodynamics. The first subject considers the flow around the rotor and the second subj
Unsteady aerodynamics modeling for flight dynamics application
Wang, Qing; He, Kai-Feng; Qian, Wei-Qi; Zhang, Tian-Jiao; Cheng, Yan-Qing; Wu, Kai-Yuan
2012-02-01
In view of engineering application, it is practicable to decompose the aerodynamics into three components: the static aerodynamics, the aerodynamic increment due to steady rotations, and the aerodynamic increment due to unsteady separated and vortical flow. The first and the second components can be presented in conventional forms, while the third is described using a one-order differential equation and a radial-basis-function (RBF) network. For an aircraft configuration, the mathematical models of 6-component aerodynamic coefficients are set up from the wind tunnel test data of pitch, yaw, roll, and coupled yawroll large-amplitude oscillations. The flight dynamics of an aircraft is studied by the bifurcation analysis technique in the case of quasi-steady aerodynamics and unsteady aerodynamics, respectively. The results show that: (1) unsteady aerodynamics has no effect upon the existence of trim points, but affects their stability; (2) unsteady aerodynamics has great effects upon the existence, stability, and amplitudes of periodic solutions; and (3) unsteady aerodynamics changes the stable regions of trim points obviously. Furthermore, the dynamic responses of the aircraft to elevator deflections are inspected. It is shown that the unsteady aerodynamics is beneficial to dynamic stability for the present aircraft. Finally, the effects of unsteady aerodynamics on the post-stall maneuverability are analyzed by numerical simulation.
Unsteady aerodynamics modeling for flight dynamics application
Qing Wang; Kai-Feng He; Wei-Qi Qian; Tian-Jiao Zhang; Yan-Qing Cheng; Kai-Yuan Wu
2012-01-01
In view of engineering application,it is practicable to decompose the aerodynamics into three components:the static aerodynamics,the aerodynamic increment due to steady rotations,and the aerodynamic increment due to unsteady separated and vortical flow.The first and the second components can be presented in conventional forms,while the third is described using a one-order differential equation and a radial-basis-function (RBF) network. For an aircraft configuration,the mathematical models of 6-component aerodynamic coefficients are set up from the wind tunnel test data of pitch,yaw,roll,and coupled yawroll large-amplitude oscillations.The flight dynamics of an aircraft is studied by the bifurcation analysis technique in the case of quasi-steady aerodynamics and unsteady aerodynamics,respectively.The results show that:(1) unsteady aerodynamics has no effect upon the existence of trim points,but affects their stability; (2) unsteady aerodynamics has great effects upon the existence,stability,and amplitudes of periodic solutions; and (3) unsteady aerodynamics changes the stable regions of trim points obviously.Furthermore,the dynamic responses of the aircraft to elevator deflections are inspected.It is shown that the unsteady aerodynamics is beneficial to dynamic stability for the present aircraft.Finally,the effects of unsteady aerodynamics on the post-stall maneuverability are analyzed by numerical simulation.
Nostril Aerodynamics of Scenting Animals
Settles, G. S.
1997-11-01
Dogs and other scenting animals detect airborne odors with extraordinary sensitivity. Aerodynamic sampling plays a key role, but the literature on olfaction contains little on the external aerodynamics thereof. To shed some light on this, the airflows generated by a scenting dog were visualized using the schlieren technique. It was seen that the dog stops panting in order to scent, since panting produces a turbulent jet which disturbs scent-bearing air currents. Inspiratory airflow enters the nostrils from straight ahead, while expiration is directed to the sides of the nose and downward, as was found elsewhere in the case of rats and rabbits. The musculature and geometry of the dog's nose thus modulates the airflow during scenting. The aerodynamics of a nostril which must act reversibly as both inlet and outlet is briefly discussed. The eventual practical goal of this preliminary work is to achieve a level of understanding of the aerodynamics of canine olfaction sufficient for the design of a mimicking device. (Research supported by the DARPA Unexploded Ordnance Detection and Neutralization Program.)
Aerodynamic design via control theory
Jameson, Antony
1988-01-01
The question of how to modify aerodynamic design in order to improve performance is addressed. Representative examples are given to demonstrate the computational feasibility of using control theory for such a purpose. An introduction and historical survey of the subject is included.
Control of helicopter rotorblade aerodynamics
Fabunmi, James A.
1991-01-01
The results of a feasibility study of a method for controlling the aerodynamics of helicopter rotorblades using stacks of piezoelectric ceramic plates are presented. A resonant mechanism is proposed for the amplification of the displacements produced by the stack. This motion is then converted into linear displacement for the actuation of the servoflap of the blades. A design which emulates the actuation of the servoflap on the Kaman SH-2F is used to demonstrate the fact that such a system can be designed to produce the necessary forces and velocities needed to control the aerodynamics of the rotorblades of such a helicopter. Estimates of the electrical power requirements are also presented. A Small Business Innovation Research (SBIR) Phase 2 Program is suggested, whereby a bench-top prototype of the device can be built and tested. A collaborative effort between AEDAR Corporation and Kaman Aerospace Corporation is anticipated for future effort on this project.
WIND TURBINE MASS AND AERODYNAMIC IMBALANCES DETERMINATION
Nduwayezu Eric; Mehmet Bayrak
2015-01-01
This paper evaluates the use of simulations to investigate wind turbine mass and aerodynamic imbalances. Faults caused by mass and aerodynamic imbalances constitute a significant portion of all faults in wind turbine. The aerodynamic imbalances effects such as deviations between the three blades pitch angle are often underrated and misunderstood. In practice, for many wind energy converters the blade adjustment is found to be sub-optimal. The dynamics of a model wind turbine was s...
Schepers, J. G.
2012-01-01
The subject of aerodynamics is of major importance for the successful deployment of wind energy. As a matter of fact there are two aerodynamic areas in the wind energy technology: Rotor aerodynamics and wind farm aerodynamics. The first subject considers the flow around the rotor and the second subject considers the (wake) flow within a wind farm. For both areas calculational models have been developed which are implemented i rotor design and wind farm design codes respectively. Accurate roto...
Aerodynamics Laboratory Facilities, Equipment, and Capabilities
Federal Laboratory Consortium — The following facilities, equipment, and capabilities are available in the Aerodynamics Laboratory Facilities and Equipment (1) Subsonic, open-jet wind tunnel with...
Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Project
National Aeronautics and Space Administration — The Hypersonic Inflatable Aerodynamic Decelerator (HIAD) project will focus on the development and demonstration of hypersonic inflatable aeroshell technologies...
Discrete vortex method simulations of aerodynamic admittance in bridge aerodynamics
Rasmussen, Johannes Tophøj; Hejlesen, Mads Mølholm; Larsen, Allan;
The meshless and remeshed Discrete Vortex Method (DVM) has been widely used in academia and by the industry to model two-dimensional ﬂow around bluff bodies. The implementation “DVMFLOW” [1] is used by the bridge design company COWI to determine and visualise the ﬂow ﬁeld around bridge sections, ...... solution for the admittance of a turbulent ﬂow past a ﬂat plate [4] and two types of bridge girder sections. A fair agreement is observed for sufﬁciently low turbulence intensities and sufﬁcient spatial and temporal resolutions.......The meshless and remeshed Discrete Vortex Method (DVM) has been widely used in academia and by the industry to model two-dimensional ﬂow around bluff bodies. The implementation “DVMFLOW” [1] is used by the bridge design company COWI to determine and visualise the ﬂow ﬁeld around bridge sections......, and to determine aerodynamic forces and the corresponding ﬂutter limit. A simulation of the three-dimensional bridge responseto turbulent wind is carried out by quasi steady theory by modelling the bridge girder as a line like structure [2], applying the aerodynamic load coefﬁcients found from the...
The basic aerodynamics of floatation
Davies, M.J.; Wood, D.H.
1983-09-01
The original derivation of the basic theory governing the aerodynamics of both hovercraft and modern floatation ovens, requires the validity of some extremely crude assumptions. However, the basic theory is surprisingly accurate. It is shown that this accuracy occurs because the final expression of the basic theory can be derived by approximating the full Navier-Stokes equations in a manner that clearly shows the limitations of the theory. These limitations are used in discussing the relatively small discrepancies between the theory and experiment, which may not be significant for practical purposes.
Elemental study of aerodynamic profile
In teaching fluid Mechanics, it would be convenient to provide the students with simple theoretical tools which allow them to deal with real and of technological interest situations. For instance, the apparently simple fluid motion around wing sections of arbitrary shape can not be overcome by using the mathematical methods available for students. In this article we present a simple theoretical procedure to analyze this problem. In the proposed method the role played by the analytical and numerical calculations are greatly reduced in order to emphasize the purely aerodynamic concepts. (Author) 3 refs. 001ES0100130
Leading Edge Device Aerodynamic Optimization
Marius Gabriel COJOCARU
2015-12-01
Full Text Available Leading edge devices are conventionally used as aerodynamic devices that enhance performances during landing and in some cases during takeoff. The need to increase the efficiency of the aircrafts has brought the idea of maintaining as much as possible a laminar flow over the wings. This is possible only when the leading edge of the wings is free from contamination, therefore using the leading edge devices with the additional role of shielding during takeoff. Such a device based on the Krueger flap design is aerodynamically analyzed and optimized. The optimization comprises three steps: first, the positioning of the flap such that the shielding criterion is kept, second, the analysis of the flap size and third, the optimization of the flap shape. The first step is subject of a gradient based optimization process of the position described by two parameters, the position along the line and the deflection angle. For the third step the Adjoint method is used to gain insight on the shape of the Krueger flap that will extend the most the stall limit. All these steps have been numerically performed using Ansys Fluent and the results are presented for the optimized shape in comparison with the baseline configuration.
Aerodynamic seal assemblies for turbo-machinery
Bidkar, Rahul Anil; Wolfe, Christopher; Fang, Biao
2015-09-29
The present application provides an aerodynamic seal assembly for use with a turbo-machine. The aerodynamic seal assembly may include a number of springs, a shoe connected to the springs, and a secondary seal positioned about the springs and the shoe.
Review paper on wind turbine aerodynamics
Hansen, Martin Otto Laver; Aagaard Madsen, Helge
2011-01-01
The paper describes the development and description of the aerodynamic models used to estimate the aerodynamic loads on wind turbine constructions. This includes a status of the capabilities of computation fluid dynamics and the need for reliable airfoil data for the simpler engineering models...
Aerodynamics of wind turbines emerging topics
Amano, R S
2014-01-01
Focusing on Aerodynamics of Wind Turbines with topics ranging from Fundamental to Application of horizontal axis wind turbines, this book presents advanced topics including: Basic Theory for Wind turbine Blade Aerodynamics, Computational Methods, and Special Structural Reinforcement Technique for Wind Turbine Blades.
Aerodynamic design on high-speed trains
Ding, San-San; Li, Qiang; Tian, Ai-Qin; Du, Jian; Liu, Jia-Li
2016-04-01
Compared with the traditional train, the operational speed of the high-speed train has largely improved, and the dynamic environment of the train has changed from one of mechanical domination to one of aerodynamic domination. The aerodynamic problem has become the key technological challenge of high-speed trains and significantly affects the economy, environment, safety, and comfort. In this paper, the relationships among the aerodynamic design principle, aerodynamic performance indexes, and design variables are first studied, and the research methods of train aerodynamics are proposed, including numerical simulation, a reduced-scale test, and a full-scale test. Technological schemes of train aerodynamics involve the optimization design of the streamlined head and the smooth design of the body surface. Optimization design of the streamlined head includes conception design, project design, numerical simulation, and a reduced-scale test. Smooth design of the body surface is mainly used for the key parts, such as electric-current collecting system, wheel truck compartment, and windshield. The aerodynamic design method established in this paper has been successfully applied to various high-speed trains (CRH380A, CRH380AM, CRH6, CRH2G, and the Standard electric multiple unit (EMU)) that have met expected design objectives. The research results can provide an effective guideline for the aerodynamic design of high-speed trains.
Biomimetic Approach for Accurate, Real-Time Aerodynamic Coefficients Project
National Aeronautics and Space Administration — Aerodynamic and structural reliability and efficiency depends critically on the ability to accurately assess the aerodynamic loads and moments for each lifting...
Aerodynamic seals for rotary machine
Bidkar, Rahul Anil; Cirri, Massimiliano; Thatte, Azam Mihir; Williams, John Robert
2016-02-09
An aerodynamic seal assembly for a rotary machine includes multiple sealing device segments disposed circumferentially intermediate to a stationary housing and a rotor. Each of the segments includes a shoe plate with a forward-shoe section and an aft-shoe section having multiple labyrinth teeth therebetween facing the rotor. The sealing device segment also includes multiple flexures connected to the shoe plate and to a top interface element, wherein the multiple flexures are configured to allow the high pressure fluid to occupy a forward cavity and the low pressure fluid to occupy an aft cavity. Further, the sealing device segments include a secondary seal attached to the top interface element at one first end and positioned about the flexures and the shoe plate at one second end.
The basic aerodynamics of floatation
Davies, M. J.; Wood, D. H.
1983-09-01
It is pointed out that the basic aerodynamics of modern floatation ovens, in which the continuous, freshly painted metal strip is floated, dried, and cured, is the two-dimensional analog of that of hovercraft. The basic theory for the static lift considered in connection with the study of hovercraft has had spectacular success in describing the experimental results. This appears surprising in view of the crudity of the theory. The present investigation represents an attempt to explore the reasons for this success. An outline of the basic theory is presented and an approach is shown for deriving the resulting expressions for the lift from the full Navier-Stokes equations in a manner that clearly indicates the limitations on the validity of the expressions. Attention is given to the generally good agreement between the theory and the axisymmetric (about the centerline) results reported by Jaumotte and Kiedrzynski (1965).
Active Control of Aerodynamic Noise Sources
Reynolds, Gregory A.
2001-01-01
Aerodynamic noise sources become important when propulsion noise is relatively low, as during aircraft landing. Under these conditions, aerodynamic noise from high-lift systems can be significant. The research program and accomplishments described here are directed toward reduction of this aerodynamic noise. Progress toward this objective include correction of flow quality in the Low Turbulence Water Channel flow facility, development of a test model and traversing mechanism, and improvement of the data acquisition and flow visualization capabilities in the Aero. & Fluid Dynamics Laboratory. These developments are described in this report.
Nayeri, Christian Navid; Löfdahl, Lennart; Schober, Martin
2009-01-01
During the 509th Colloquium of the Euromech society, held from March 24th & 25th at TU Berlin, fifty leading researchers from all over europe discussed various topics affecting both road vehicle as well as railway vehicle aerodynamics, especially drag reduction (with road vehicles), cross wind stability (with trains) and wake analysis (with both). With the increasing service speed of modern high-speed railway traffic, aerodynamic aspects are gaining importance. The aerodynamic research topics...
Unsteady interactional aerodynamics of helicopter configuration
In this paper we present the aerodynamic simulation of a complex rotor/fuselage configuration performed with the Cfd solver Rosita (Rotorcraft Software Italy), developed at the Aerospace Department of the Politecnico di Milano.
Aerodynamic Efficiency Enhancements for Air Vehicles Project
National Aeronautics and Space Administration — The need for aerodynamics-based efficiency enhancements for air vehicles is presented. The results of the Phase I investigation of concepts for morphing aircraft...
Prediction of Unsteady Transonic Aerodynamics Project
National Aeronautics and Space Administration — An accurate prediction of aero-elastic effects depends on an accurate prediction of the unsteady aerodynamic forces. Perhaps the most difficult speed regime is...
Aerodynamic Efficiency Enhancements for Air Vehicles Project
National Aeronautics and Space Administration — The need for aerodynamics-based efficiency enhancements for air vehicles is presented. Concepts are presented for morphing aircraft, to enable the aircraft to...
Aerodynamic drag of modern soccer balls
Asai, Takeshi; Seo, Kazuya
2013-01-01
Soccer balls such as the Adidas Roteiro that have been used in soccer tournaments thus far had 32 pentagonal and hexagonal panels. Recently, the Adidas Teamgeist II and Adidas Jabulani, respectively having 14 and 8 panels, have been used at tournaments; the aerodynamic characteristics of these balls have not yet been verified. Now, the Adidas Tango 12, having 32 panels, has been developed for use at tournaments; therefore, it is necessary to understand its aerodynamic characteristics. Through...
Computer Aided Aerodynamic Design of Missile Configuration
Panneerselvam, S; P. Theerthamalai; A.K. Sarkar
1987-01-01
Aerodynamic configurations of tactical missiles have to produce the required lateral force with minimum time lag to meet the required manoeuvability and response time. The present design which is mainly based on linearised potential flow involves (a) indentification of critical design points, (b) design of lifting components and their integration with mutual interference, (c) evaluation of aerodynamic characteristics, (d) checking its adequacy at otherpoints, (e) optimization of parameters an...
Aerodynamics of a hybrid airship
Andan, Amelda Dianne; Asrar, Waqar; Omar, Ashraf A.
2012-06-01
The objective of this paper is to present the results of a numerical study of the aerodynamic parameters of a wingless and a winged-hull airship. The total forces and moment coefficients of the airships have been computed over a range of angles. The results obtained show that addition of a wing to a conventional airship increases the lift has three times the lifting force at positive angle of attack as compared to a wingless airship whereas the drag increases in the range of 19% to 58%. The longitudinal and directional stabilities were found to be statically stable, however, both the conventional airship and the hybrid or winged airships were found to have poor rolling stability. Wingless airship has slightly higher longitudinal stability than a winged airship. The winged airship has better directional stability than the wingless airship. The wingless airship only possesses static rolling stability in the range of yaw angles of -5° to 5°. On the contrary, the winged airship initially tested does not possess rolling stability at all. Computational fluid dynamics (CFD) simulations show that modifications to the wing placement and its dihedral have strong positive effect on the rolling stability. Raising the wings to the center of gravity and introducing a dihedral angle of 5° stabilizes the rolling motion of the winged airship.
Sharp Hypervelocity Aerodynamic Research Probe
Bull, Jeffrey; Kolodziej, Paul; Rasky, Daniel J. (Technical Monitor)
1996-01-01
The objective of this flight demonstration is to deploy a slender-body hypervelocity aerodynamic research probe (SHARP) from an orbiting platform using a tether, deorbit and fly it along its aerothermal performance constraint, and recover it intact in mid-air. To accomplish this objective, two flight demonstrations are proposed. The first flight uses a blunt-body, tethered reentry experiment vehicle (TREV) to prove out tethered deployment technology for accurate entries, a complete SHARP electronics suite, and a new soft mid-air helicopter recovery technique. The second flight takes advantage of this launch and recovery capability to demonstrate revolutionary sharp body concepts for hypervelocity vehicles, enabled by new Ultra-High Temperature Ceramics (UHTCs) recently developed by Ames Research Center. Successful demonstration of sharp body hypersonic vehicle technologies could have radical impact on space flight capabilities, including: enabling global reentry cross range capability from Station, eliminating reentry communications blackout, and allowing new highly efficient launch systems incorporating air breathing propulsion and zeroth staging.
Aerodynamics of Unsteady Sailing Kinetics
Keil, Colin; Schutt, Riley; Borshoff, Jennifer; Alley, Philip; de Zegher, Maximilien; Williamson, Chk
2015-11-01
In small sailboats, the bodyweight of the sailor is proportionately large enough to induce significant unsteady motion of the boat and sail. Sailors use a variety of kinetic techniques to create sail dynamics which can provide an increment in thrust, thereby increasing the boatspeed. In this study, we experimentally investigate the unsteady aerodynamics associated with two techniques, ``upwind leech flicking'' and ``downwind S-turns''. We explore the dynamics of an Olympic class Laser sailboat equipped with a GPS, IMU, wind sensor, and camera array, sailed expertly by a member of the US Olympic team. The velocity heading of a sailing boat is oriented at an apparent wind angle to the flow. In contrast to classic flapping propulsion, the heaving of the sail section is not perpendicular to the sail's motion through the air. This leads to heave with components parallel and perpendicular to the incident flow. The characteristic motion is recreated in a towing tank where the vortex structures generated by a representative 2-D sail section are observed using Particle Image Velocimetry and the measurement of thrust and lift forces. Amongst other results, we show that the increase in driving force, generated due to heave, is larger for greater apparent wind angles.
Aerodynamic Parameter Identification of a Venus Lander
Sykes, Robert A.
An analysis was conducted to identify the parameters of an aerodynamic model for a Venus lander based on experimental free-flight data. The experimental free-flight data were collected in the NASA Langley 20-ft Vertical Spin Tunnel with a 25-percent Froude-scaled model. The experimental data were classified based on the wind tunnel run type: runs where the lander model was unperturbed over the course of the run, and runs were the model was perturbed (principally in pitch, yaw, and roll) by the wind tunnel operator. The perturbations allow for data to be obtained at higher wind angles and rotation rates than those available from the unperturbed data. The model properties and equations of motion were used to determine experimental values for the aerodynamic coefficients. An aerodynamic model was selected using a priori knowledge of axisymmetric blunt entry vehicles. The least squares method was used to estimate the aerodynamic parameters. Three sets of results were obtained from the following data sets: perturbed, unperturbed, and the combination of both. The combined data set was selected for the final set of aerodynamic parameters based on the quality of the results. The identified aerodynamic parameters are consistent with that of the static wind tunnel data. Reconstructions, of experimental data not used in the parameter identification analyses, achieved similar residuals as those with data used to identify the parameters. Simulations of the experimental data, using the identified parameters, indicate that the aerodynamic model used is incapable of replicating the limit cycle oscillations with stochastic peak amplitudes observed during the test.
In vivo recording of aerodynamic force with an aerodynamic force platform
Lentink, David; Ingersoll, Rivers
2014-01-01
Flapping wings enable flying animals and biomimetic robots to generate elevated aerodynamic forces. Measurements that demonstrate this capability are based on tethered experiments with robots and animals, and indirect force calculations based on measured kinematics or airflow during free flight. Remarkably, there exists no method to measure these forces directly during free flight. Such in vivo recordings in freely behaving animals are essential to better understand the precise aerodynamic function of their flapping wings, in particular during the downstroke versus upstroke. Here we demonstrate a new aerodynamic force platform (AFP) for nonintrusive aerodynamic force measurement in freely flying animals and robots. The platform encloses the animal or object that generates fluid force with a physical control surface, which mechanically integrates the net aerodynamic force that is transferred to the earth. Using a straightforward analytical solution of the Navier-Stokes equation, we verified that the method is ...
Aerodynamic Simulation of Ice Accretion on Airfoils
Broeren, Andy P.; Addy, Harold E., Jr.; Bragg, Michael B.; Busch, Greg T.; Montreuil, Emmanuel
2011-01-01
This report describes recent improvements in aerodynamic scaling and simulation of ice accretion on airfoils. Ice accretions were classified into four types on the basis of aerodynamic effects: roughness, horn, streamwise, and spanwise ridge. The NASA Icing Research Tunnel (IRT) was used to generate ice accretions within these four types using both subscale and full-scale models. Large-scale, pressurized windtunnel testing was performed using a 72-in.- (1.83-m-) chord, NACA 23012 airfoil model with high-fidelity, three-dimensional castings of the IRT ice accretions. Performance data were recorded over Reynolds numbers from 4.5 x 10(exp 6) to 15.9 x 10(exp 6) and Mach numbers from 0.10 to 0.28. Lower fidelity ice-accretion simulation methods were developed and tested on an 18-in.- (0.46-m-) chord NACA 23012 airfoil model in a small-scale wind tunnel at a lower Reynolds number. The aerodynamic accuracy of the lower fidelity, subscale ice simulations was validated against the full-scale results for a factor of 4 reduction in model scale and a factor of 8 reduction in Reynolds number. This research has defined the level of geometric fidelity required for artificial ice shapes to yield aerodynamic performance results to within a known level of uncertainty and has culminated in a proposed methodology for subscale iced-airfoil aerodynamic simulation.
Summary analysis of the Gemini entry aerodynamics
Whitnah, A. M.; Howes, D. B.
1972-01-01
The aerodynamic data that were derived in 1967 from the analysis of flight-generated data for the Gemini entry module are presented. These data represent the aerodynamic characteristics exhibited by the vehicle during the entry portion of Gemini 2, 3, 5, 8, 10, 11, and 12 missions. For the Gemini, 5, 8, 10, 11, and 12 missions, the flight-generated lift-to-drag ratios and corresponding angles of attack are compared with the wind tunnel data. These comparisons show that the flight generated lift-to-drag ratios are consistently lower than were anticipated from the tunnel data. Numerous data uncertainties are cited that provide an insight into the problems that are related to an analysis of flight data developed from instrumentation systems, the primary functions of which are other than the evaluation of flight aerodynamic performance.
Physics of badminton shuttlecocks. Part 1 : aerodynamics
Cohen, Caroline; Darbois Texier, Baptiste; Quéré, David; Clanet, Christophe
2011-11-01
We study experimentally shuttlecocks dynamics. In this part we show that shuttlecock trajectory is highly different from classical parabola. When one takes into account the aerodynamic drag, the flight of the shuttlecock quickly curves downwards and almost reaches a vertical asymptote. We solve the equation of motion with gravity and drag at high Reynolds number and find an analytical expression of the reach. At high velocity, this reach does not depend on velocity anymore. Even if you develop your muscles you will not manage to launch the shuttlecock very far because of the ``aerodynamic wall.'' As a consequence you can predict the length of the field. We then discuss the extend of the aerodynamic wall to other projectiles like sports balls and its importance.
Photogrammetry of a Hypersonic Inflatable Aerodynamic Decelerator
Kushner, Laura Kathryn; Littell, Justin D.; Cassell, Alan M.
2013-01-01
In 2012, two large-scale models of a Hypersonic Inflatable Aerodynamic decelerator were tested in the National Full-Scale Aerodynamic Complex at NASA Ames Research Center. One of the objectives of this test was to measure model deflections under aerodynamic loading that approximated expected flight conditions. The measurements were acquired using stereo photogrammetry. Four pairs of stereo cameras were mounted inside the NFAC test section, each imaging a particular section of the HIAD. The views were then stitched together post-test to create a surface deformation profile. The data from the photogram- metry system will largely be used for comparisons to and refinement of Fluid Structure Interaction models. This paper describes how a commercial photogrammetry system was adapted to make the measurements and presents some preliminary results.
Wind turbine aerodynamics research needs assessment
Stoddard, F. S.; Porter, B. K.
1986-01-01
A prioritized list is developed for wind turbine aerodynamic research needs and opportunities which could be used by the Department of Energy program management team in detailing the DOE Five-Year Wind Turbine Research Plan. The focus of the Assessment was the basic science of aerodynamics as applied to wind turbines, including all relevant phenomena, such as turbulence, dynamic stall, three-dimensional effects, viscosity, wake geometry, and others which influence aerodynamic understanding and design. The study was restricted to wind turbines that provide electrical energy compatible with the utility grid, and included both horizontal axis wind turbines (HAWT) and vertical axis wind turbines (VAWT). Also, no economic constraints were imposed on the design concepts or recommendations since the focus of the investigation was purely scientific.
Noise aspects at aerodynamic blade optimisation projects
The Netherlands Energy Research Foundation (ECN) has often been involved in industrial projects, in which blade geometries are created automatic by means of numerical optimisation. Usually, these projects aim at the determination of the aerodynamic optimal wind turbine blade, i.e. the goal is to design a blade which is optimal with regard to energy yield. In other cases, blades have been designed which are optimal with regard to cost of generated energy. However, it is obvious that the wind turbine blade designs which result from these optimisations, are not necessarily optimal with regard to noise emission. In this paper an example is shown of an aerodynamic blade optimisation, using the ECN-program PVOPT. PVOPT calculates the optimal wind turbine blade geometry such that the maximum energy yield is obtained. Using the aerodynamic optimal blade design as a basis, the possibilities of noise reduction are investigated. 11 figs., 8 refs
Aerodynamic optimization studies on advanced architecture computers
Chawla, Kalpana
1995-01-01
The approach to carrying out multi-discipline aerospace design studies in the future, especially in massively parallel computing environments, comprises of choosing (1) suitable solvers to compute solutions to equations characterizing a discipline, and (2) efficient optimization methods. In addition, for aerodynamic optimization problems, (3) smart methodologies must be selected to modify the surface shape. In this research effort, a 'direct' optimization method is implemented on the Cray C-90 to improve aerodynamic design. It is coupled with an existing implicit Navier-Stokes solver, OVERFLOW, to compute flow solutions. The optimization method is chosen such that it can accomodate multi-discipline optimization in future computations. In the work , however, only single discipline aerodynamic optimization will be included.
Airfoil Ice-Accretion Aerodynamics Simulation
Bragg, Michael B.; Broeren, Andy P.; Addy, Harold E.; Potapczuk, Mark G.; Guffond, Didier; Montreuil, E.
2007-01-01
NASA Glenn Research Center, ONERA, and the University of Illinois are conducting a major research program whose goal is to improve our understanding of the aerodynamic scaling of ice accretions on airfoils. The program when it is completed will result in validated scaled simulation methods that produce the essential aerodynamic features of the full-scale iced-airfoil. This research will provide some of the first, high-fidelity, full-scale, iced-airfoil aerodynamic data. An initial study classified ice accretions based on their aerodynamics into four types: roughness, streamwise ice, horn ice, and spanwise-ridge ice. Subscale testing using a NACA 23012 airfoil was performed in the NASA IRT and University of Illinois wind tunnel to better understand the aerodynamics of these ice types and to test various levels of ice simulation fidelity. These studies are briefly reviewed here and have been presented in more detail in other papers. Based on these results, full-scale testing at the ONERA F1 tunnel using cast ice shapes obtained from molds taken in the IRT will provide full-scale iced airfoil data from full-scale ice accretions. Using these data as a baseline, the final step is to validate the simulation methods in scale in the Illinois wind tunnel. Computational ice accretion methods including LEWICE and ONICE have been used to guide the experiments and are briefly described and results shown. When full-scale and simulation aerodynamic results are available, these data will be used to further develop computational tools. Thus the purpose of the paper is to present an overview of the program and key results to date.
Prediction of aerodynamic performance for MEXICO rotor
Hong, Zedong; Yang, Hua; Xu, Haoran;
2013-01-01
The aerodynamic performance of the MEXICO (Model EXperiments In Controlled cOnditions) rotor at five tunnel wind speeds is predicted by making use of BEM and CFD methods, respectively, using commercial MATLAB and CFD software. Due to the pressure differences on both sides of the blade, the tip...... the reliability of the MEXICO data. Second, the SST turbulence model can better capture the flow separation on the blade and has high aerodynamic performance prediction accuracy for a horizontal axis wind turbine in axial inflow conditions. Finally, the comparisons of the axial and tangential forces as well...
Aerodynamic Aspects of Wind Energy Conversion
Sørensen, Jens Nørkær
2011-01-01
-blade geometry. The basics of the blade-element momentum theory are presented along with guidelines for the construction of airfoil data. Various theories for aerodynamically optimum rotors are discussed, and recent results on classical models are presented. State-of-the-art advanced numerical simulation tools...
Aerodynamic analysis of an isolated vehicle wheel
Increasing fuel prices force the manufacturers to look into all aspects of car aerodynamics including wheels, tyres and rims in order to minimize their drag. By diminishing the aerodynamic drag of vehicle the fuel consumption will decrease, while driving safety and comfort will improve. In order to properly illustrate the impact of a rotating wheel aerodynamics on the car body, precise analysis of an isolated wheel should be performed beforehand. In order to represent wheel rotation in contact with the ground, presented CFD simulations included Moving Wall boundary as well as Multiple Reference Frame should be performed. Sliding mesh approach is favoured but too costly at the moment. Global and local flow quantities obtained during simulations were compared to an experiment in order to assess the validity of the numerical model. Results of investigation illustrates dependency between type of simulation and coefficients (drag and lift). MRF approach proved to be a better solution giving result closer to experiment. Investigation of the model with contact area between the wheel and the ground helps to illustrate the impact of rotating wheel aerodynamics on the car body.
Small Radial Compressors: Aerodynamic Design and Analysis
K. A. R. Ismail; Rosolen, C. V. A. G.; Benevenuto, F. J.; Lucato, D.
1998-01-01
This paper presents a computational procedure for the analysis of steady one-dimensional centrifugal compressor. The numerical model is based on the conservation principles of mass, momentum and energy, and has been utilized to predict the operational and aerodynamic characteristics of a small centrifugal compressor as well as determining the performance and geometry of compressor blades, both straight and curved.
Small Radial Compressors: Aerodynamic Design and Analysis
K. A. R. Ismail
1998-01-01
Full Text Available This paper presents a computational procedure for the analysis of steady one-dimensional centrifugal compressor. The numerical model is based on the conservation principles of mass, momentum and energy, and has been utilized to predict the operational and aerodynamic characteristics of a small centrifugal compressor as well as determining the performance and geometry of compressor blades, both straight and curved.
Computer Aided Aerodynamic Design of Missile Configuration
S. Panneerselvam
1987-10-01
Full Text Available Aerodynamic configurations of tactical missiles have to produce the required lateral force with minimum time lag to meet the required manoeuvability and response time. The present design which is mainly based on linearised potential flow involves (a indentification of critical design points, (b design of lifting components and their integration with mutual interference, (c evaluation of aerodynamic characteristics, (d checking its adequacy at otherpoints, (e optimization of parameters and selection of configuration, and (f detailed evaluation including aerodynamic pressure distribution. Iterative design process in involed because of the mutual dependance between aerodynamic charactertistics and the parameters of the configuration. though this design method is based on third level of approximation with respect to real flow, aid of computer is essential for carrying out the iterative design process and also for effective selection of configuration by analysing performance. Futuristic design requirement which demand better accuracy on design and estimation calls for sophisticated super computer based theoretical methods viz. , full Euler solution/Navier-Strokes solutions.
Efficient Global Aerodynamic Modeling from Flight Data
Morelli, Eugene A.
2012-01-01
A method for identifying global aerodynamic models from flight data in an efficient manner is explained and demonstrated. A novel experiment design technique was used to obtain dynamic flight data over a range of flight conditions with a single flight maneuver. Multivariate polynomials and polynomial splines were used with orthogonalization techniques and statistical modeling metrics to synthesize global nonlinear aerodynamic models directly and completely from flight data alone. Simulation data and flight data from a subscale twin-engine jet transport aircraft were used to demonstrate the techniques. Results showed that global multivariate nonlinear aerodynamic dependencies could be accurately identified using flight data from a single maneuver. Flight-derived global aerodynamic model structures, model parameter estimates, and associated uncertainties were provided for all six nondimensional force and moment coefficients for the test aircraft. These models were combined with a propulsion model identified from engine ground test data to produce a high-fidelity nonlinear flight simulation very efficiently. Prediction testing using a multi-axis maneuver showed that the identified global model accurately predicted aircraft responses.
In vivo recording of aerodynamic force with an aerodynamic force platform: from drones to birds.
Lentink, David; Haselsteiner, Andreas F; Ingersoll, Rivers
2015-03-01
Flapping wings enable flying animals and biomimetic robots to generate elevated aerodynamic forces. Measurements that demonstrate this capability are based on experiments with tethered robots and animals, and indirect force calculations based on measured kinematics or airflow during free flight. Remarkably, there exists no method to measure these forces directly during free flight. Such in vivo recordings in freely behaving animals are essential to better understand the precise aerodynamic function of their flapping wings, in particular during the downstroke versus upstroke. Here, we demonstrate a new aerodynamic force platform (AFP) for non-intrusive aerodynamic force measurement in freely flying animals and robots. The platform encloses the animal or object that generates fluid force with a physical control surface, which mechanically integrates the net aerodynamic force that is transferred to the earth. Using a straightforward analytical solution of the Navier-Stokes equation, we verified that the method is accurate. We subsequently validated the method with a quadcopter that is suspended in the AFP and generates unsteady thrust profiles. These independent measurements confirm that the AFP is indeed accurate. We demonstrate the effectiveness of the AFP by studying aerodynamic weight support of a freely flying bird in vivo. These measurements confirm earlier findings based on kinematics and flow measurements, which suggest that the avian downstroke, not the upstroke, is primarily responsible for body weight support during take-off and landing. PMID:25589565
Aerodynamic shape optimization using control theory
Reuther, James
1996-01-01
Aerodynamic shape design has long persisted as a difficult scientific challenge due its highly nonlinear flow physics and daunting geometric complexity. However, with the emergence of Computational Fluid Dynamics (CFD) it has become possible to make accurate predictions of flows which are not dominated by viscous effects. It is thus worthwhile to explore the extension of CFD methods for flow analysis to the treatment of aerodynamic shape design. Two new aerodynamic shape design methods are developed which combine existing CFD technology, optimal control theory, and numerical optimization techniques. Flow analysis methods for the potential flow equation and the Euler equations form the basis of the two respective design methods. In each case, optimal control theory is used to derive the adjoint differential equations, the solution of which provides the necessary gradient information to a numerical optimization method much more efficiently then by conventional finite differencing. Each technique uses a quasi-Newton numerical optimization algorithm to drive an aerodynamic objective function toward a minimum. An analytic grid perturbation method is developed to modify body fitted meshes to accommodate shape changes during the design process. Both Hicks-Henne perturbation functions and B-spline control points are explored as suitable design variables. The new methods prove to be computationally efficient and robust, and can be used for practical airfoil design including geometric and aerodynamic constraints. Objective functions are chosen to allow both inverse design to a target pressure distribution and wave drag minimization. Several design cases are presented for each method illustrating its practicality and efficiency. These include non-lifting and lifting airfoils operating at both subsonic and transonic conditions.
Wind turbines. Unsteady aerodynamics and inflow noise
Riget Broe, B.
2009-12-15
Aerodynamical noise from wind turbines due to atmospheric turbulence has the highest emphasis in semi-empirical models. However it is an open question whether inflow noise has a high emphasis. This illustrates the need to investigate and improve the semi-empirical model for noise due to atmospheric turbulence. Three different aerodynamical models are investigated in order to estimate the lift fluctuations due to unsteady aerodynamics. Two of these models are investigated to find the unsteady lift distribution or pressure difference as function of chordwise position on the aerofoil. An acoustic model is investigated using a model for the lift distribution as input. The two models for lift distribution are used in the acoustic model. One of the models for lift distribution is for completely anisotropic turbulence and the other for perfectly isotropic turbulence, and so is also the corresponding models for the lift fluctuations derived from the models for lift distribution. The models for lift distribution and lift are compared with pressure data which are obtained by microphones placed flush with the surface of an aerofoil. The pressure data are from two experiments in a wind tunnel, one experiment with a NACA0015 profile and a second with a NACA63415 profile. The turbulence is measured by a triple wired hotwire instrument in the experiment with a NACA0015 profile. Comparison of the aerodynamical models with data shows that the models capture the general characteristics of the measurements, but the data are hampered by background noise from the fan propellers in the wind tunnel. The measurements are in between the completely anisotropic turbulent model and the perfectly isotropic turbulent model. This indicates that the models capture the aerodynamics well. Thus the measurements suggest that the noise due to atmospheric turbulence can be described and modeled by the two models for lift distribution. It was not possible to test the acoustical model by the measurements
Research on aerodynamic means of isotope enrichment
The results of a research program directed toward the understanding of the fundamental gas dynamics involved in aerodynamic isotope enrichment are summarized. The specific aerodynamic isotope enrichment method which was examined in this research is based on a velocity slip phenomenon which occurs in the rarefied hypersonic expansion of a heavy molecular weight gas and a light carrier gas in a nozzle or free jet. This particular aerodynamic method was chosen for study because it contains the fundamental molecular physics of other more complex techniques within the context of a one-dimensional flow without boundary effects. From both an experimental and theoretical modeling perspective this provides an excellent basis for testing the experimental and numerical tools with which to investigate more complex aerodynamic isotope enrichment processes. This report consists of three separate parts. Part I contains a theoretical analysis of the velocity slip effect in free jet expansions of binary and ternary gas mixtures. The analysis, based on a source flow model and using moment equations is derived from the Boltzmann equation using the hypersonic approximation. Part II contains the experimental measurements of velocity slip. The numerical simulation of the slip process was carried out by using a Monte-Carlo numerical technique. In addition, comparisons between the theoretical analysis of Part I and the experiments are presented. Part III describes impact pressure measurements of free jet expansions from slot shaped two dimensional nozzles. At least two methods of aerodynamic isotope enrichment (opposed jet and velocity slip) would depend on the use of this type of two dimensional expansion. Flow surveys of single free jet and the interferene of crossed free jets are presented
Freight Wing Trailer Aerodynamics Final Technical Report
Sean Graham
2007-10-31
Freight Wing Incorporated utilized the opportunity presented by a DOE category two Inventions and Innovations grant to commercialize and improve upon aerodynamic technology for semi-tuck trailers, capable of decreasing heavy vehicle fuel consumption, related environmental damage, and U.S. consumption of foreign oil. Major project goals included the demonstration of aerodynamic trailer technology in trucking fleet operations, and the development and testing of second generation products. A great deal of past scientific research has demonstrated that streamlining box shaped semi-trailers can significantly reduce a truck’s fuel consumption. However, significant design challenges have prevented past concepts from meeting industry needs. Freight Wing utilized a 2003 category one Inventions and Innovations grant to develop practical solutions to trailer aerodynamics. Fairings developed for the front, rear, and bottom of standard semi-trailers together demonstrated a 7% improvement to fuel economy in scientific tests conducted by the Transportation Research Center (TRC). Operational tests with major trucking fleets proved the functionality of the products, which were subsequently brought to market. This category two grant enabled Freight Wing to further develop, test and commercialize its products, resulting in greatly increased understanding and acceptance of aerodynamic trailer technology. Commercialization was stimulated by offering trucking fleets 50% cost sharing on trial implementations of Freight Wing products for testing and evaluation purposes. Over 230 fairings were implemented through the program with 35 trucking fleets including industry leaders such as Wal-Mart, Frito Lay and Whole Foods. The feedback from these testing partnerships was quite positive with product performance exceeding fleet expectations in many cases. Fleet feedback also was also valuable from a product development standpoint and assisted the design of several second generation products
Aerodynamic Simulation of Runback Ice Accretion
Broeren, Andy P.; Whalen, Edward A.; Busch, Greg T.; Bragg, Michael B.
2010-01-01
This report presents the results of recent investigations into the aerodynamics of simulated runback ice accretion on airfoils. Aerodynamic tests were performed on a full-scale model using a high-fidelity, ice-casting simulation at near-flight Reynolds (Re) number. The ice-casting simulation was attached to the leading edge of a 72-in. (1828.8-mm ) chord NACA 23012 airfoil model. Aerodynamic performance tests were conducted at the ONERA F1 pressurized wind tunnel over a Reynolds number range of 4.7?10(exp 6) to 16.0?10(exp 6) and a Mach (M) number ran ge of 0.10 to 0.28. For Re = 16.0?10(exp 6) and M = 0.20, the simulated runback ice accretion on the airfoil decreased the maximum lift coe fficient from 1.82 to 1.51 and decreased the stalling angle of attack from 18.1deg to 15.0deg. The pitching-moment slope was also increased and the drag coefficient was increased by more than a factor of two. In general, the performance effects were insensitive to Reynolds numb er and Mach number changes over the range tested. Follow-on, subscale aerodynamic tests were conducted on a quarter-scale NACA 23012 model (18-in. (457.2-mm) chord) at Re = 1.8?10(exp 6) and M = 0.18, using low-fidelity, geometrically scaled simulations of the full-scale castin g. It was found that simple, two-dimensional simulations of the upper- and lower-surface runback ridges provided the best representation of the full-scale, high Reynolds number iced-airfoil aerodynamics, whereas higher-fidelity simulations resulted in larger performance degrada tions. The experimental results were used to define a new subclassification of spanwise ridge ice that distinguishes between short and tall ridges. This subclassification is based upon the flow field and resulting aerodynamic characteristics, regardless of the physical size of the ridge and the ice-accretion mechanism.
Computational Aerodynamics and Aeroacoustics for Wind Turbines
Shen, Wen Zhong
obtain more detailed information of the flow structures and to determine more accurately loads and power yield of wind turbines or cluster of wind turbines, it is required to resort to more sophisticated techniques, such as Computational Fluid Dynamics (CFD). As computer resources keep on improving year...... Computational Aero-Acoustics (CAA). With the spread of wind turbines near urban areas, there is an increasing need for accurate predictions of aerodynamically generated noise. Indeed, noise has become one of the most important issues for further development of wind power, and the ability of controlling and......To analyse the aerodynamic performance of wind turbine rotors, the main tool in use today is the 1D-Blade Element Momentum (BEM) technique combined with 2D airfoil data. Because of its simplicity, the BEM technique is employed by industry when designing new wind turbine blades. However, in order to...
Aerodynamic Design of a Tailless Aeroplan
J. Friedl
2001-01-01
Full Text Available The paper presents an aerodynamic analysis of a one-seat ultralight (UL tailless aeroplane named L2k, with a very complicated layout. In the first part, an autostable airfoil with a low moment coefficient was chosen as a base for this problem. This airfoil was refined and modified to satisfy the design requirements. The computed aerodynamic characteristics of the airfoils for different Reynolds numbers (Re were compared with available experimental data. XFOIL code was used to perform the computations. In the second part, a computation of wing characteristics was carried out. All calculated cases were chosen as points on the manoeuvring and gust envelope. The vortex lattice method was used with consideration of fuselage and winglets for very complicated wing geometry. The PMW computer program developed at IAE was used to perform the computations. The computed results were subsequently used for structural and strength analysis and design.
Aerodynamics of Rotor Blades for Quadrotors
Bangura, Moses; Naldi, Roberto; Mahony, Robert
2016-01-01
In this report, we present the theory on aerodynamics of quadrotors using the well established momentum and blade element theories. From a robotics perspective, the theoretical development of the models for thrust and horizontal forces and torque (therefore power) are carried out in the body fixed frame of the quadrotor. Using momentum theory, we propose and model the existence of a horizontal force along with its associated power. Given the limitations associated with momentum theory and the inadequacy of the theory to account for the different powers represented in a proposed bond graph lead to the use of blade element theory. Using this theory, models are then developed for the different quadrotor rotor geometries and aerodynamic properties including the optimum hovering rotor used on the majority of quadrotors. Though this rotor is proven to be the most optimum rotor, we show that geometric variations are necessary for manufacturing of the blades. The geometric variations are also dictated by a desired th...
Visualization of numerically simulated aerodynamic flow fields
The focus of this paper is to describe the development and the application of an interactive integrated software to visualize numerically simulated aerodynamic flow fields so as to enable the practitioner of computational fluid dynamics to diagnose the numerical simulation and to elucidate essential flow physics from the simulation. The input to the software is the numerical database crunched by a supercomputer and typically consists of flow variables and computational grid geometry. This flow visualization system (FVS), written in C language is targetted at the Personal IRIS Workstations. In order to demonstrate the various visualization modules, the paper also describes the application of this software to visualize two- and three-dimensional flow fields past aerodynamic configurations which have been numerically simulated on the NEC-SXIA Supercomputer. 6 refs
Particle Methods in Bluff Body Aerodynamics
Rasmussen, Johannes Tophøj
flow. The method is validated by simulating the turbulent flow past a flat plate and past the Great Belt East bridge, the Øresund bridge and the Busan-Geoje bridge. The dissertation introduces a novel multiresolution vortex-in-cell algorithm using patches of varying resolution. The Poisson equation...... important. This dissertation focuses on the use of vortex particle methods and computational efficiency. The work is divided into three parts. A novel method for the simulation of the aerodynamic admittance in bluff body aerodynamics is presented. The method involves a model for describing oncoming...... turbulence in two-dimensional discrete vortex method simulations by seeding the upstream flow with vortex particles. The turbulence is generated prior to the simulations and is based on analytic spectral densities of the atmospheric turbulence and a coherence function defining the spatial correlation of the...
Aerodynamic control with passively pitching wings
Gravish, Nick; Wood, Robert
Flapping wings may pitch passively under aerodynamic and inertial loads. Such passive pitching is observed in flapping wing insect and robot flight. The effect of passive wing pitch on the control dynamics of flapping wing flight are unexplored. Here we demonstrate in simulation and experiment the critical role wing pitching plays in yaw control of a flapping wing robot. We study yaw torque generation by a flapping wing allowed to passively rotate in the pitch axis through a rotational spring. Yaw torque is generated through alternating fast and slow upstroke and and downstroke. Yaw torque sensitively depends on both the rotational spring force law and spring stiffness, and at a critical spring stiffness a bifurcation in the yaw torque control relationship occurs. Simulation and experiment reveal the dynamics of this bifurcation and demonstrate that anomalous yaw torque from passively pitching wings is the result of aerodynamic and inertial coupling between the pitching and stroke-plane dynamics.
Wind turbine trailing edge aerodynamic brakes
Migliore, P G [National Renewable Energy Lab., Golden, CO (United States); Miller, L S [Wichita State Univ., KS (United States). Dept. of Aerospace Engineering; Quandt, G A
1995-04-01
Five trailing-edge devices were investigated to determine their potential as wind-turbine aerodynamic brakes, and for power modulation and load alleviation. Several promising configurations were identified. A new device, called the spoiler-flap, appears to be the best alternative. It is a simple device that is effective at all angles of attack. It is not structurally intrusive, and it has the potential for small actuating loads. It is shown that simultaneous achievement of a low lift/drag ratio and high drag is the determinant of device effectiveness, and that these attributes must persist up to an angle of attack of 45{degree}. It is also argued that aerodynamic brakes must be designed for a wind speed of at least 45 m/s (100 mph).
ANALYTICAL METHODS FOR CALCULATING FAN AERODYNAMICS
Jan Dostal
2015-12-01
Full Text Available This paper presents results obtained between 2010 and 2014 in the field of fan aerodynamics at the Department of Composite Technology at the VZLÚ aerospace research and experimental institute in Prague – Letnany. The need for rapid and accurate methods for the preliminary design of blade machinery led to the creation of a mathematical model based on the basic laws of turbomachine aerodynamics. The mathematical model, the derivation of which is briefly described below, has been encoded in a computer programme, which enables the theoretical characteristics of a fan of the designed geometry to be determined rapidly. The validity of the mathematical model is assessed continuously by measuring model fans in the measuring unit, which was developed and manufactured specifically for this purpose. The paper also presents a comparison between measured characteristics and characteristics determined by the mathematical model as the basis for a discussion on possible causes of measured deviations and calculation deviations.
Aerodynamic control inside an internal combustion engine
The aim of this study is to quantify the impact of intake port geometry on in-cylinder flow. The in-cylinder aerodynamics of an optical engine has been characterized using particle image velocimetry (PIV). Many geometries have been tested and their impact has been evaluated by an estimation of the tumble ratio, an analysis of the cycle-to-cycle variations and a flow structure analysis based on proper orthogonal decomposition (POD). Such a tool allows the reduction of the PIV database in order to consider in-cylinder aerodynamic control by a device placed in the intake port. This simplification is based on a reduction of the number of modes and a polynomial fitting of the POD coefficients. Thus, some new geometries have been numerically created, and their impact on the tumble ratio has been evaluated
Flight Test Maneuvers for Efficient Aerodynamic Modeling
Morelli, Eugene A.
2011-01-01
Novel flight test maneuvers for efficient aerodynamic modeling were developed and demonstrated in flight. Orthogonal optimized multi-sine inputs were applied to aircraft control surfaces to excite aircraft dynamic response in all six degrees of freedom simultaneously while keeping the aircraft close to chosen reference flight conditions. Each maneuver was designed for a specific modeling task that cannot be adequately or efficiently accomplished using conventional flight test maneuvers. All of the new maneuvers were first described and explained, then demonstrated on a subscale jet transport aircraft in flight. Real-time and post-flight modeling results obtained using equation-error parameter estimation in the frequency domain were used to show the effectiveness and efficiency of the new maneuvers, as well as the quality of the aerodynamic models that can be identified from the resultant flight data.
Nash equilibrium and multi criterion aerodynamic optimization
Tang, Zhili; Zhang, Lianhe
2016-06-01
Game theory and its particular Nash Equilibrium (NE) are gaining importance in solving Multi Criterion Optimization (MCO) in engineering problems over the past decade. The solution of a MCO problem can be viewed as a NE under the concept of competitive games. This paper surveyed/proposed four efficient algorithms for calculating a NE of a MCO problem. Existence and equivalence of the solution are analyzed and proved in the paper based on fixed point theorem. Specific virtual symmetric Nash game is also presented to set up an optimization strategy for single objective optimization problems. Two numerical examples are presented to verify proposed algorithms. One is mathematical functions' optimization to illustrate detailed numerical procedures of algorithms, the other is aerodynamic drag reduction of civil transport wing fuselage configuration by using virtual game. The successful application validates efficiency of algorithms in solving complex aerodynamic optimization problem.
Specialized computer architectures for computational aerodynamics
Stevenson, D. K.
1978-01-01
In recent years, computational fluid dynamics has made significant progress in modelling aerodynamic phenomena. Currently, one of the major barriers to future development lies in the compute-intensive nature of the numerical formulations and the relative high cost of performing these computations on commercially available general purpose computers, a cost high with respect to dollar expenditure and/or elapsed time. Today's computing technology will support a program designed to create specialized computing facilities to be dedicated to the important problems of computational aerodynamics. One of the still unresolved questions is the organization of the computing components in such a facility. The characteristics of fluid dynamic problems which will have significant impact on the choice of computer architecture for a specialized facility are reviewed.
Integrated structural-aerodynamic design optimization
Haftka, R. T.; Kao, P. J.; Grossman, B.; Polen, D.; Sobieszczanski-Sobieski, J.
1988-01-01
This paper focuses on the processes of simultaneous aerodynamic and structural wing design as a prototype for design integration, with emphasis on the major difficulty associated with multidisciplinary design optimization processes, their enormous computational costs. Methods are presented for reducing this computational burden through the development of efficient methods for cross-sensitivity calculations and the implementation of approximate optimization procedures. Utilizing a modular sensitivity analysis approach, it is shown that the sensitivities can be computed without the expensive calculation of the derivatives of the aerodynamic influence coefficient matrix, and the derivatives of the structural flexibility matrix. The same process is used to efficiently evaluate the sensitivities of the wing divergence constraint, which should be particularly useful, not only in problems of complete integrated aircraft design, but also in aeroelastic tailoring applications.
Wind Turbines: Unsteady Aerodynamics and Inflow Noise
Broe, Brian Riget
the highest emphasis in semi-empirical models. However it is an open question whether inflow noise has a high emphasis. This illustrates the need to investigate and improve the semi-empirical model for noise due to atmospheric turbulence. Three different aerodynamical models are investigated...... (Sears, W. R.: 1941; and Graham, J. M. R.: 1970). An acoustic model is investigated using a model for the lift distribution as input (Amiet, R. K.: 1975, Acoustic radiation from an airfoil in a turbulent stream). The two models for lift distribution are used in the acoustic model. One of the models...... profile. Comparison of the aerodynamical models with data shows that the models capture the general characteristics of the measurements, but the data are hampered by background noise from the fan propellers in the wind tunnel. The measurements are in between the completely anisotropic turbulent model...
Mimicking the humpback whale: An aerodynamic perspective
Aftab, S. M. A.; Razak, N. A.; Mohd Rafie, A. S.; Ahmad, K. A.
2016-07-01
This comprehensive review aims to provide a critical overview of the work on tubercles in the past decade. The humpback whale is of interest to aerodynamic/hydrodynamic researchers, as it performs manoeuvres that baffle the imagination. Researchers have attributed these capabilities to the presence of lumps, known as tubercles, on the leading edge of the flipper. Tubercles generate a unique flow control mechanism, offering the humpback exceptional manoeuverability. Experimental and numerical studies have shown that the flow pattern over the tubercle wing is quite different from conventional wings. Research on the Tubercle Leading Edge (TLE) concept has helped to clarify aerodynamic issues such as flow separation, tonal noise and dynamic stall. TLE shows increased lift by delaying and restricting spanwise separation. A summary of studies on different airfoils and reported improvement in performance is outlined. The major contributions and limitations of previous work are also reported.
Motion of rotor supported on aerodynamic bearings
Půst, Ladislav; Šimek, J.; Kozánek, Jan
Praha : Institute of Thermomechanics AS CR, v. v. i., 2007 - (Zolotarev, I.), s. 235-236 ISBN 978-80-87012-06-2. [Engineering Mechanics 2007: national conference with international participation. Svratka (CZ), 14.05.2007-17.05.2007] R&D Projects: GA ČR GA101/06/1787 Institutional research plan: CEZ:AV0Z20760514 Keywords : rotor dynamics * aerodynamic bearing * tilting pad s Subject RIV: BI - Acoustics
Mutual interaction of two aerodynamic bearings
Půst, Ladislav; Kozánek, Jan
Lodz : Department of Automatics and Biomechanics Technical University of Lodz, 2007, s. 387-394. ISBN 978-83-924382-9-8. [Conference on Dynamical Systems - Theory and Applications /9./. Lodz (PL), 17.12.2007-20.12.2007] R&D Projects: GA ČR GA101/06/1787 Institutional research plan: CEZ:AV0Z20760514 Keywords : aerodynamic bearing * evolutive systems * numerical solution Subject RIV: BI - Acoustics
Unsteady aerodynamics of high work turbines
Richardson, David
2009-01-01
One method aircraft engine manufactures use to minimize engine cost and weight is to reduce the number of parts. A significant reduction includes reducing the turbine blade count or combining two moderately loaded turbines into one high-work turbine. The risk of High Cycle Fatigue in these configurations is increased by the additional aerodynamic forcing generated by the high blade loading and the nozzle trailing edge shocks. A lot of research has been done into the efficiency implications of...
Aerodynamic investigations of ventilated brake discs.
Parish, D.; MacManus, David G.
2005-01-01
The heat dissipation and performance of a ventilated brake disc strongly depends on the aerodynamic characteristics of the flow through the rotor passages. The aim of this investigation was to provide an improved understanding of ventilated brake rotor flow phenomena, with a view to improving heat dissipation, as well as providing a measurement data set for validation of computational fluid dynamics methods. The flow fields at the exit of four different brake rotor geometrie...
The aerodynamics of the beautiful game
Bush, John W. M.
2013-01-01
We consider the aerodynamics of football, specifically, the interaction between a ball in flight and the ambient air. Doing so allows one to account for the characteristic range and trajectories of balls in flight, as well as their anomalous deflections as may be induced by striking the ball either with or without spin. The dynamics of viscous boundary layers is briefly reviewed, its critical importance on the ball trajectories highlighted. The Magnus effect responsible for the anomalous curv...
Influence of Icing on Bridge Cable Aerodynamics
Koss, Holger; Frej Henningsen, Jesper; Olsen, Idar
2013-01-01
determination of these force coefficients require a proper simulation of the ice layer occurring under the specific climatic conditions, favouring real ice accretion over simplified artificial reproduction. The work presented in this paper was performed to study the influence of ice accretion on the aerodynamic...... forces of different bridge cables types. The experiments were conducted in a wind tunnel facility capable amongst others to simulate incloud icing conditions....
Integrated aerodynamic-structural-control wing design
Rais-Rohani, M.; Haftka, R. T.; Grossman, B.; Unger, E. R.
1992-01-01
The aerodynamic-structural-control design of a forward-swept composite wing for a high subsonic transport aircraft is considered. The structural analysis is based on a finite-element method. The aerodynamic calculations are based on a vortex-lattice method, and the control calculations are based on an output feedback control. The wing is designed for minimum weight subject to structural, performance/aerodynamic and control constraints. Efficient methods are used to calculate the control-deflection and control-effectiveness sensitivities which appear as second-order derivatives in the control constraint equations. To suppress the aeroelastic divergence of the forward-swept wing, and to reduce the gross weight of the design aircraft, two separate cases are studied: (1) combined application of aeroelastic tailoring and active controls; and (2) aeroelastic tailoring alone. The results of this study indicated that, for this particular example, aeroelastic tailoring is sufficient for suppressing the aeroelastic divergence, and the use of active controls was not necessary.
Aerodynamic sampling for landmine trace detection
Settles, Gary S.; Kester, Douglas A.
2001-10-01
Electronic noses and similar sensors show promise for detecting buried landmines through the explosive trace signals they emit. A key step in this detection is the sampler or sniffer, which acquires the airborne trace signal and presents it to the detector. Practicality demands no physical contact with the ground. Further, both airborne particulates and molecular traces must be sampled. Given a complicated minefield terrain and microclimate, this becomes a daunting chore. Our prior research on canine olfactory aerodynamics revealed several ways that evolution has dealt with such problems: 1) proximity of the sniffer to the scent source is important, 2) avoid exhaling back into the scent source, 3) use an aerodynamic collar on the sniffer inlet, 4) use auxiliary airjets to stir up surface particles, and 5) manage the 'impedance mismatch' between sniffer and sensor airflows carefully. Unfortunately, even basic data on aerodynamic sniffer performance as a function of inlet-tube and scent-source diameters, standoff distance, etc., have not been previously obtained. A laboratory-prototype sniffer was thus developed to provide guidance for landmine trace detectors. Initial experiments with this device are the subject of this paper. For example, a spike in the trace signal is observed upon starting the sniffer airflow, apparently due to rapid depletion of the available signal-laden air. Further, shielding the sniffer from disruptive ambient airflows arises as a key issue in sampling efficiency.
Future Challenges and Opportunities in Aerodynamics
Kumar, Ajay; Hefner, Jerry N.
2000-01-01
Investments in aeronautics research and technology have declined substantially over the last decade, in part due to the perception that technologies required in aircraft design are fairly mature and readily available. This perception is being driven by the fact that aircraft configurations, particularly the transport aircraft, have evolved only incrementally, over last several decades. If however, one considers that the growth in air travel is expected to triple in the next 20 years, it becomes quickly obvious that the evolutionary development of technologies is not going to meet the increased demands for safety, environmental compatibility, capacity, and economic viability. Instead, breakthrough technologies will he required both in traditional disciplines of aerodynamics, propulsion, structures, materials, controls, and avionics as well as in the multidisciplinary integration of these technologies into the design of future aerospace vehicles concepts. The paper discusses challenges and opportunities in the field of aerodynamics over the next decade. Future technology advancements in aerodynamics will hinge on our ability, to understand, model, and control complex, three-dimensional, unsteady viscous flow across the speed range. This understanding is critical for developing innovative flow and noise control technologies and advanced design tools that will revolutionize future aerospace vehicle systems and concepts. Specifically, the paper focuses on advanced vehicle concepts, flow and noise control technologies, and advanced design and analysis tools.
Noise aspects at aerodynamic blade optimisation projects
Schepers, J.G. [Netherlands Energy Research Foundation, Petten (Netherlands)
1997-12-31
This paper shows an example of an aerodynamic blade optimisation, using the program PVOPT. PVOPT calculates the optimal wind turbine blade geometry such that the maximum energy yield is obtained. Using the aerodynamic optimal blade design as a basis, the possibilities of noise reduction are investigated. The aerodynamic optimised geometry from PVOPT is the `real` optimum (up to the latest decimal). The most important conclusion from this study is, that it is worthwhile to investigate the behaviour of the objective function (in the present case the energy yield) around the optimum: If the optimum is flat, there is a possibility to apply modifications to the optimum configuration with only a limited loss in energy yield. It is obvious that the modified configurations emits a different (and possibly lower) noise level. In the BLADOPT program (the successor of PVOPT) it will be possible to quantify the noise level and hence to assess the reduced noise emission more thoroughly. At present the most promising approaches for noise reduction are believed to be a reduction of the rotor speed (if at all possible), and a reduction of the tip angle by means of low lift profiles, or decreased twist at the outboard stations. These modifications were possible without a significant loss in energy yield. (LN)
Aerodynamics of a rigid curved kite wing
Maneia, Gianmauro; Tordella, Daniela; Iovieno, Michele
2013-01-01
A preliminary numerical study on the aerodynamics of a kite wing for high altitude wind power generators is proposed. Tethered kites are a key element of an innovative wind energy technology, which aims to capture energy from the wind at higher altitudes than conventional wind towers. We present the results obtained from three-dimensional finite volume numerical simulations of the steady air flow past a three-dimensional curved rectangular kite wing (aspect ratio equal to 3.2, Reynolds number equal to 3x10^6). Two angles of incidence -- a standard incidence for the flight of a tethered airfoil (6{\\deg}) and an incidence close to the stall (18{\\deg}) -- were considered. The simulations were performed by solving the Reynolds Averaged Navier-Stokes flow model using the industrial STAR-CCM+ code. The overall aerodynamic characteristics of the kite wing were determined and compared to the aerodynamic characteristics of the flat rectangular non twisted wing with an identical aspect ratio and section (Clark Y profil...
Flapping wing aerodynamics: from insects to vertebrates.
Chin, Diana D; Lentink, David
2016-04-01
More than a million insects and approximately 11,000 vertebrates utilize flapping wings to fly. However, flapping flight has only been studied in a few of these species, so many challenges remain in understanding this form of locomotion. Five key aerodynamic mechanisms have been identified for insect flight. Among these is the leading edge vortex, which is a convergent solution to avoid stall for insects, bats and birds. The roles of the other mechanisms - added mass, clap and fling, rotational circulation and wing-wake interactions - have not yet been thoroughly studied in the context of vertebrate flight. Further challenges to understanding bat and bird flight are posed by the complex, dynamic wing morphologies of these species and the more turbulent airflow generated by their wings compared with that observed during insect flight. Nevertheless, three dimensionless numbers that combine key flow, morphological and kinematic parameters - the Reynolds number, Rossby number and advance ratio - govern flapping wing aerodynamics for both insects and vertebrates. These numbers can thus be used to organize an integrative framework for studying and comparing animal flapping flight. Here, we provide a roadmap for developing such a framework, highlighting the aerodynamic mechanisms that remain to be quantified and compared across species. Ultimately, incorporating complex flight maneuvers, environmental effects and developmental stages into this framework will also be essential to advancing our understanding of the biomechanics, movement ecology and evolution of animal flight. PMID:27030773
A large-scale computer facility for computational aerodynamics
The combination of computer system technology and numerical modeling have advanced to the point that computational aerodynamics has emerged as an essential element in aerospace vehicle design methodology. To provide for further advances in modeling of aerodynamic flow fields, NASA has initiated at the Ames Research Center the Numerical Aerodynamic Simulation (NAS) Program. The objective of the Program is to develop a leading-edge, large-scale computer facility, and make it available to NASA, DoD, other Government agencies, industry and universities as a necessary element in ensuring continuing leadership in computational aerodynamics and related disciplines. The Program will establish an initial operational capability in 1986 and systematically enhance that capability by incorporating evolving improvements in state-of-the-art computer system technologies as required to maintain a leadership role. This paper briefly reviews the present and future requirements for computational aerodynamics and discusses the Numerical Aerodynamic Simulation Program objectives, computational goals, and implementation plans
Discrete vortex method simulations of the aerodynamic admittance in bridge aerodynamics
Rasmussen, Johannes Tophøj; Hejlesen, Mads Mølholm; Larsen, Allan; Walther, Jens Honore
2010-01-01
generated prior to the simulations and is based on analytic spectral densities of the atmospheric turbulence and a coherence function deﬁning the spatial correlation of the ﬂow. The method is validated by simulating the turbulent ﬂow past a ﬂat plate and past the Great Belt East bridge. The results are......We present a novel method for the simulation of the aerodynamic admittance in bluff body aerodynamics. The method introduces a model for describing oncoming turbulence in two-dimensional discrete vortex method simulations by seeding the upstream ﬂow with vortex particles. The turbulence is...
A climatology of formation conditions for aerodynamic contrails
Gierens, K.; F. Dilger
2013-01-01
Aerodynamic contrails are defined in this paper as line shaped ice clouds caused by aerodynamically triggered cooling over the wings of an aircraft in cruise which become visible immediately at the trailing edge of the wing or close to it. Effects at low altitudes like condensation to liquid droplets and their potential heterogeneous freezing are excluded from our definition. We study atmospheric conditions that allow formation of aerodynamic contrails. These conditions are stated and ...
THE AERODYNAMIC ANALYSIS OF THE PROFILES FOR FLYING WINGS
Vasile PRISACARIU
2013-01-01
Full Text Available The possibility of using an un-piloted aerial vector is determined by the aerodynamic characteristics and performances. The design for a tailless unmanned aerial vehicles starts from defining the aerial vector mission and implies o series of geometrical and aerodynamic aspects for stability. This article proposes to remark the aerodynamic characteristics of three profiles used at flying wing airship through 2D software analysis.
The aerodynamic and structural study of flapping wing vehicles
Zhou, Liangchen
2013-01-01
This thesis reports on the aerodynamic and structural study carried out on flapping wings and flapping vehicles. Theoretical and experimental investigation of aerodynamic forces acting on flapping wings in simple harmonic oscillations is undertaken in order to help conduct and optimize the aerodynamic and structural design of flapping wing vehicles. The research is focused on the large scale ornithopter design of similar size and configuration to a hang glider. By means of Theodorsen’s th...
A climatology of formation conditions for aerodynamic contrails
K. Gierens
2013-06-01
Full Text Available Aerodynamic contrails are defined in this paper as line shaped ice clouds caused by aerodynamically triggered cooling over the wings of an aircraft in cruise which become visible immediately at the trailing edge of the wing or close to it. Effects at low altitudes like condensation to liquid droplets and their potential heterogeneous freezing are excluded from our definition. We study atmospheric conditions that allow formation of aerodynamic contrails. These conditions are stated and then applied to atmospheric data, first to a special case where an aerodynamic contrail was actually observed and then to a full year of global reanalysis data. We show where, when (seasonal variation, and how frequently (probability aerodynamic contrails can form, and how this relates to actual patterns of air traffic. We study the formation of persistent aerodynamic contrails as well. Finally we check whether aerodynamic and exhaust contrails can coexist in the atmosphere. We show that visible aerodynamic contrails are possible only in an altitude range between roughly 540 and 250 hPa, and that the ambient temperature is the most important parameter, not the relative humidity. Finally we give an argument for our believe that currently aerodynamic contrails have a much smaller climate effect than exhaust contrails, which may however change in future with more air traffic in the tropics.
Aerodynamic Modeling with Heterogeneous Data Assimilation and Uncertainty Quantification Project
National Aeronautics and Space Administration — Clear Science Corp. proposes to develop an aerodynamic modeling tool that assimilates data from different sources and facilitates uncertainty quantification. The...
Reference values and improvement of aerodynamic drag in professional cyclists.
García-López, Juan; Rodríguez-Marroyo, José Antonio; Juneau, Carl-Etienne; Peleteiro, José; Martínez, Alfredo Córdova; Villa, José Gerardo
2008-02-01
The aims of this study were to measure the aerodynamic drag in professional cyclists, to obtain aerodynamic drag reference values in static and effort positions, to improve the cyclists' aerodynamic drag by modifying their position and cycle equipment, and to evaluate the advantages and disadvantages of these modifications. The study was performed in a wind tunnel with five professional cyclists. Four positions were assessed with a time-trial bike and one position with a standard racing bike. In all positions, aerodynamic drag and kinematic variables were recorded. The drag area for the time-trial bike was 31% higher in the effort than static position, and lower than for the standard racing bike. Changes in the cyclists' position decreased the aerodynamic drag by 14%. The aero-helmet was not favourable for all cyclists. The reliability of aerodynamic drag measures in the wind tunnel was high (r > 0.96, coefficient of variation < 2%). In conclusion, we measured and improved the aerodynamic drag in professional cyclists. Our results were better than those of other researchers who did not assess aerodynamic drag during effort at race pace and who employed different wheels. The efficiency of the aero-helmet, and the validity, reliability, and sensitivity of the wind tunnel and aerodynamic field testing were addressed. PMID:17943597
Aerodynamic drag of modern soccer balls.
Asai, Takeshi; Seo, Kazuya
2013-12-01
Soccer balls such as the Adidas Roteiro that have been used in soccer tournaments thus far had 32 pentagonal and hexagonal panels. Recently, the Adidas Teamgeist II and Adidas Jabulani, respectively having 14 and 8 panels, have been used at tournaments; the aerodynamic characteristics of these balls have not yet been verified. Now, the Adidas Tango 12, having 32 panels, has been developed for use at tournaments; therefore, it is necessary to understand its aerodynamic characteristics. Through a wind tunnel test and ball trajectory simulations, this study shows that the aerodynamic resistance of the new 32-panel soccer ball is larger in the high-speed region and lower in the middle-speed region than that of the previous 14- and 8-panel balls. The critical Reynolds number of the Roteiro, Teamgeist II, Jabulani, and Tango 12 was ~2.2 × 10(5) (drag coefficient, C d ≈ 0.12), ~2.8 × 10(5) (C d ≈ 0.13), ~3.3 × 10(5) (C d ≈ 0.13), and ~2.4 × 10(5) (C d ≈ 0.15), respectively. The flight trajectory simulation suggested that the Tango 12, one of the newest soccer balls, has less air resistance in the medium-speed region than the Jabulani and can thus easily acquire large initial velocity in this region. It is considered that the critical Reynolds number of a soccer ball, as considered within the scope of this experiment, depends on the extended total distance of the panel bonds rather than the small designs on the panel surfaces. PMID:23705104
Aerodynamic Modelling and Optimization of Axial Fans
Sørensen, Dan Nørtoft
integrated propertiesshow that the computed results agree well with the measurements.Integrating a rotor-only version of the aerodynamic modelwith an algorithm for numerical designoptimization, enables the finding of an optimum fan rotor.The angular velocity of the rotor, the hub radius and the spanwise...... velocity, pressure andradial position are derived from the conservationlaws for mass, tangential momentum and energy.The resulting system of equations is non-linear and, dueto mass conservation and pressure equilibrium far downstream of the rotor,strongly coupled.The equations are solved using the Newton...
Fitting aerodynamics and propulsion into the puzzle
Johnston, Patrick J.; Whitehead, Allen H., Jr.; Chapman, Gary T.
1987-01-01
The development of an airbreathing single-stage-to-orbit vehicle, in particular the problems of aerodynamics and propulsion integration, is examined. The boundary layer transition on constant pressure surfaces at hypersonic velocities, and the effects of noise on the transition are investigated. The importance of viscosity, real-gas effects, and drag at hypersonic speeds is discussed. A propulsion system with sufficient propulsive lift to enhance the performance of the vehicle is being developed. The difficulties of engine-airframe integration are analyzed.
Basic rotor aerodynamics applied to wind turbines
Hansen, M.O.L.
1998-01-01
It is the hope of the author that the notes will impart a basic understanding of the mechanisms behind the production of forces on a wind turbine. Even though aero-elastic codes, including a standard Blade Element Momentum method, can be bought, it is considered important that the theory behind this method and its limitations is understood. The aerodynamics of a wind turbine is important, but building a wind turbine is a multi disciplinary task since it requires knowledge of meteorology, atmospheric turbulence, fluid mechanics, structural dynamics, generators, electrical grid connections, gear boxes, hydraulics, foundations, economics and so on. (au) 14 refs.
Aerodynamics/ACEE: Aircraft energy efficiency
1981-01-01
An overview is presented of a 10 year program managed by NASA which seeks to make possible the most efficient use of energy for aircraft propulsion and lift as well as provide a technology that can be used by U.S. manufacturers of air transports and engines. Supercritical wings, winglets, vortex drag reduction, high lift, active control, laminar flow control, and aerodynamics by computer are among the topics discussed. Wind tunnel models in flight verification of advanced technology, and the design, construction and testing of various aircraft structures are also described.
Aerodynamics profile not in stationary flow
А.А. Загорулько
2006-02-01
Full Text Available Consider the question about influence of unsteady flight on the size of drag and lift coefficients of theaerodynamic profile. Distinctive features of this investigation are obtaining data about aerodynamic drag chancing in process unsteady on high angle at attack and oscillation profile in subsonic and transonic flight. Given analysis of oscillation profile show, that dynamic loops accompany change of lift and dray force. The researches show that it is necessary to clarity the mathematic model of the airplane flight dynamics by introducing numbers, with take into account unsteady effects.
Insect Flight: Aerodynamics, Efficiency, and Evolution
Wang, Z. Jane
2007-11-01
Insects, like birds and fish, locomote via interactions between fluids and flapping wings. Their motion is governed by the Navier-Stokes equation coupled to moving boundaries. In this talk, I will first describe how dragonflies fly: their wing motions and the flows and forces they generate. I will then consider insects in several species and discuss three questions: 1) Is insect flight optimal? 2) How does the efficiency of flapping flight compare to classical fixed-wing flight? 3) How might aerodynamic effects have influenced the evolution of insect flight?
Sensor Systems Collect Critical Aerodynamics Data
2010-01-01
With the support of Small Business Innovation Research (SBIR) contracts with Dryden Flight Research Center, Tao of Systems Integration Inc. developed sensors and other components that will ultimately form a first-of-its-kind, closed-loop system for detecting, measuring, and controlling aerodynamic forces and moments in flight. The Hampton, Virginia-based company commercialized three of the four planned components, which provide sensing solutions for customers such as Boeing, General Electric, and BMW and are used for applications such as improving wind turbine operation and optimizing air flow from air conditioning systems. The completed system may one day enable flexible-wing aircraft with flight capabilities like those of birds.
A climatology of formation conditions for aerodynamic contrails
K. Gierens
2013-11-01
Full Text Available Aircraft at cruise levels can cause two kinds of contrails, the well known exhaust contrails and the less well-known aerodynamic contrails. While the possible climate impact of exhaust contrails has been studied for many years, research on aerodynamic contrails began only a few years ago and nothing is known about a possible contribution of these ice clouds to climate impact. In order to make progress in this respect, we first need a climatology of their formation conditions and this is given in the present paper. Aerodynamic contrails are defined here as line shaped ice clouds caused by aerodynamically triggered cooling over the wings of an aircraft in cruise which become visible immediately at the trailing edge of the wing or close to it. Effects at low altitudes like condensation to liquid droplets and their potential heterogeneous freezing are excluded from our definition. We study atmospheric conditions that allow formation of aerodynamic contrails. These conditions are stated and then applied to atmospheric data: first to a special case where an aerodynamic contrail was actually observed and then to a full year of global reanalysis data. We show where, when (seasonal variation, and how frequently (probability aerodynamic contrails can form, and how this relates to actual patterns of air traffic. We study the formation of persistent aerodynamic contrails as well. Furthermore, we check whether aerodynamic and exhaust contrails can coexist in the atmosphere. We show that visible aerodynamic contrails are possible only in an altitude range between roughly 540 and 250 hPa, and that the ambient temperature is the most important parameter, not the relative humidity. Finally, we argue that currently aerodynamic contrails have a much smaller climate effect than exhaust contrails, which may however change in future with more air traffic in the tropics.
A climatology of formation conditions for aerodynamic contrails
Gierens, K.; Dilger, F.
2013-11-01
Aircraft at cruise levels can cause two kinds of contrails, the well known exhaust contrails and the less well-known aerodynamic contrails. While the possible climate impact of exhaust contrails has been studied for many years, research on aerodynamic contrails began only a few years ago and nothing is known about a possible contribution of these ice clouds to climate impact. In order to make progress in this respect, we first need a climatology of their formation conditions and this is given in the present paper. Aerodynamic contrails are defined here as line shaped ice clouds caused by aerodynamically triggered cooling over the wings of an aircraft in cruise which become visible immediately at the trailing edge of the wing or close to it. Effects at low altitudes like condensation to liquid droplets and their potential heterogeneous freezing are excluded from our definition. We study atmospheric conditions that allow formation of aerodynamic contrails. These conditions are stated and then applied to atmospheric data: first to a special case where an aerodynamic contrail was actually observed and then to a full year of global reanalysis data. We show where, when (seasonal variation), and how frequently (probability) aerodynamic contrails can form, and how this relates to actual patterns of air traffic. We study the formation of persistent aerodynamic contrails as well. Furthermore, we check whether aerodynamic and exhaust contrails can coexist in the atmosphere. We show that visible aerodynamic contrails are possible only in an altitude range between roughly 540 and 250 hPa, and that the ambient temperature is the most important parameter, not the relative humidity. Finally, we argue that currently aerodynamic contrails have a much smaller climate effect than exhaust contrails, which may however change in future with more air traffic in the tropics.
Aeroassist flight experiment aerodynamics and aerothermodynamics
Brewer, Edwin B.
1989-01-01
The problem is to determine the transitional flow aerodynamics and aerothermodynamics, including the base flow characteristics, of the Aeroassist Flight Experiment (AFE). The justification for the computational fluid dynamic (CFD) Application stems from MSFC's system integration responsibility for the AFE. To insure that the AFE objectives are met, MSFC must understand the limitations and uncertainties of the design data. Perhaps the only method capable of handling the complex physics of the rarefied high energy AFE trajectory is Bird's Direct Simulation Monte Carlo (DSMC) technique. The 3-D code used in this analysis is applicable only to the AFE geometry. It uses the Variable Hard Sphere (VHS) collision model and five specie chemistry model available from Langley Research Center. The code is benchmarked against the AFE flight data and used as an Aeroassisted Space Transfer Vehicle (ASTV) design tool. The code is being used to understand the AFE flow field and verify or modify existing design data. Continued application to lower altitudes is testing the capability of the Numerical Aerodynamic Simulation Facility (NASF) to handle 3-D DSMC and its practicality as an ASTV/AFE design tool.
Aerodynamic characteristics of popcorn ash particles
Cherkaduvasala, V.; Murphy, D.W.; Ban, H.; Harrison, K.E.; Monroe, L.S. [University of Alabama, Birmingham, AL (United States). Dept. of Mechanical Engineering
2007-07-01
Popcorn ash particles are fragments of sintered coal fly ash masses that resemble popcorn in low apparent density. They can travel with the flow in the furnace and settle on key places such as catalyst surfaces. Computational fluid dynamics (CFD) models are often used in the design process to prevent the carryover and settling of these particles on catalysts. Particle size, density, and drag coefficient are the most important aerodynamic parameters needed in CFD modeling of particle flow. The objective of this study was to experimentally determine particle size, shape, apparent density, and drag characteristics for popcorn ash particles from a coal-fired power plant. Particle size and shape were characterized by digital photography in three orthogonal directions and by computer image analysis. Particle apparent density was determined by volume and mass measurements. Particle terminal velocities in three directions were measured in water and each particle was also weighed in air and in water. The experimental data were analyzed and models were developed for equivalent sphere and equivalent ellipsoid with apparent density and drag coefficient distributions. The method developed in this study can be used to characterize the aerodynamic properties of popcorn-like particles.
Influence of ribs on train aerodynamic performances
MIAO Xiu-juan; GAO Guang-jun
2015-01-01
The influence of ribs on the train aerodynamic performance was computed using detached eddy simulation (DES), and the transient iteration was solved by the dual-time step lower-upper symmetric Gauss-Seidel (LU-SGS) method. The results show that the ribs installed on the roof have a great effect on the train aerodynamic performance. Compared with trains without ribs, the lift force coefficient of the train with convex ribs changes from negative to positive, while the side force coefficient increases by 110% and 88%, respectively. Due to the combined effect of the lift force and side force, the overturning moment of the train with convex ribs and cutting ribs increases by 140% and 106%, respectively. There is larger negative pressure on the roof of the train without ribs than that with ribs. The ribs on the train would disturb the flow structure and contribute to the air separation, so the separation starts from the roof, while there is no air separation on the roof of the train without ribs. The ribs can also slow down the flow speed above the roof and make the air easily sucked back to the train surface. The vortices at the leeward side of the train without ribs are small and messy compared with those of the train with convex or cutting ribs.
THERMAL STRESS IN METEOROIDS BY AERODYNAMIC HEATING
Chi-Yu King
2003-01-01
Thermal stress in meteoroids by aerodynamic heating is calculated for the ideal case of an isotropic,homogeneous,elastic sphere being heated at the surface with a constant heattransfer coefficient. Given enough time, the tensile stress in the interior of the meteoroid can be as high as 10 kb. This stress value is greater than estimated tensile strengths of meteoroids and the aerodynamic compression they encounter. Significant thermal stress(1 kb) can develop quickly within a few tens of seconds) in a small(radius＜10 cm) stony meteoroid and a somewhat large radius＜l m)metallic meteoroid,and thus may cause tensile fracture to initiate in the meteotoid's interior. Fracture by thermal stress may have contributed to such observations as the existence of dust particles in upper atmosphere,the breakup of meteoroids at relatively low altitudes, the angular shape of meteorites and their wide scattering in a strewn field,and the explosive features of impact craters. In large meteoroids that require longer heating for thermal stress to fully develop,its effect is probably insignificant. The calculated stress values may be upper limits for real meteoroids which suffer melting and ablation at the surface.
THERMAL STRESS IN METEOROIDS BY AERODYNAMIC HEATING
Chi-YuKing
2003-01-01
Thermal stress in meteoroids by aerodynamic heating is calculated for the ideal case of an isotropic,homogeneous,elastic sphere being heated at the surface with a constant heattransfer coefficient. Given enough time,the tensile stress in the interior of the meteoroid can be as high as 10 kb. This stress value is greater than estimated tensile strengths of meteoroids and the aerodynamic compression they encounter. Significant thermal stress(1 kb) can develop quickly (within a few tens of seconds) in a small(radius＜10 cm) stony meteoroid and a somewhat large(radius＜l m)metallic meteoroid,and thus may cause tensile fracture to initiate in the meteotoid's interior. Fracture by thermal stress may have contributed to such observations as the existence of dust particles in upper atmosphere,the breakup of meteoroids at relatively low altitudes, the angular shape of meteorites and their wide scattering in a strewn field,and the explosive features of impact craters. In large meteoroids that require longer heating for thermal stress to fully develop, its effect is probably insignificant. The calculated stress values may be upper limits for real meteoroids which suffer melting and ablation at the surface.
[Aerodynamic focusing of particles and heavy molecules
By accelerating a gas containing suspended particles or large molecules through a converging nozzle, the suspended species may be focused and therefore used to write fine lines on a surface. Our objective was to study the limits on how narrow this focal region could be as a function of particle size. We find that, for monodisperse particles with masses mp some 3.6 x 105 times larger than the molecular mass m of the carrier gas (diameters above some 100 angstrom), there is no fundamental obstacle to directly write submicron features. However, this conclusion has been verified experimentally only with particles larger than 0.1 μm. Experimental, theoretical and numerical studies on the defocusing role of Brownian motion for very small particles or heavy molecules have shown that high resolution (purely aerodynamic) focusing is impossible with volatile molecules whose masses are typically smaller than 1000 Dalton. For these, the minimal focal diameter after optimization appears to be 5√(m/mp) times the nozzle diameter dn. But combinations of focused lasers and aerodynamic focusing appear as promising for direct writing with molecular precursors. Theoretical and numerical schemes capable of predicting the evolution of the focusing beam, including Brownian motion effects, have been developed, although further numerical work would be desirable. 11 refs
Aerodynamic Simulation of the MEXICO Rotor
CFD (Computational Fluid Dynamics) simulations are a very promising method for predicting the aerodynamic behavior of wind turbines in an inexpensive and accurate way. One of the major drawbacks of this method is the lack of validated models. As a consequence, the reliability of numerical results is often difficult to assess. The MEXICO project aimed at solving this problem by providing the project partners with high quality measurements of a 4.5 meters rotor diameter wind turbine operating under controlled conditions. The large measurement data-set allows the validation of all kind of aerodynamic models. This work summarizes our efforts for validating a CFD model based on the open source software OpenFoam. Both steady- state and time-accurate simulations have been performed with the Spalart-Allmaras turbulence model for several operating conditions. In this paper we will concentrate on axisymmetric inflow for 3 different wind speeds. The numerical results are compared with pressure distributions from several blade sections and PIV-flow data from the near wake region. In general, a reasonable agreement between measurements the and our simulations exists. Some discrepancies, which require further research, are also discussed
Reliability and Applicability of Aerodynamic Measures in Dysphonia Assessment
Yiu, Edwin M.-L.; Yuen, Yuet-Ming; Whitehill, Tara; Winkworth, Alison
2004-01-01
Aerodynamic measures are frequently used to analyse and document pathological voices. Some normative data are available for speakers from the English-speaking population. However, no data are available yet for Chinese speakers despite the fact that they are one of the largest populations in the world. The high variability of aerodynamic measures…
Influence of anisotropic piezoelectric actuators on wing aerodynamic forces
GUAN De; LI Min; LI Wei; WANG MingChun
2008-01-01
Changing the shape of an airfoil to enhance overall aircraft performance has always been s goal of aircraft designers.Using smart material to reshape the wing can improve aerodynamic performance.The influence of anisotropic effects of piezo-electric actuators on the aerodynamic characteristics of a simplified HALE wing model was investigated.Test verification was conducted.
Influence of anisotropic piezoelectric actuators on wing aerodynamic forces
2008-01-01
Changing the shape of an airfoil to enhance overall aircraft performance has always been a goal of aircraft designers. Using smart material to reshape the wing can improve aerodynamic performance. The influence of anisotropic effects of piezoelectric actuators on the aerodynamic characteristics of a simplified HALE wing model was investigated. Test verification was conducted.
State of the art in wind turbine aerodynamics and aeroelasticity
Hansen, Martin Otto Laver; Sørensen, Jens Nørkær; Voutsinas, S; Sørensen, Niels N.; Aagaard Madsen, Helge
2006-01-01
A comprehensive review of wind turbine aeroelasticity is given. The aerodynamic part starts with the simple aerodynamic Blade Element Momentum Method and ends with giving a review of the work done applying CFD on wind turbine rotors. In between is explained some methods of intermediate complexity...
Survey of Unsteady Computational Aerodynamics for Horizontal Axis Wind Turbines
Frunzulicǎ, F.; Dumitrescu, H.; Cardoş, V.
2010-09-01
We present a short review of aerodynamic computational models for horizontal axis wind turbines (HAWT). Models presented have a various level of complexity to calculate aerodynamic loads on rotor of HAWT, starting with the simplest blade element momentum (BEM) and ending with the complex model of Navier-Stokes equations. Also, we present some computational aspects of these models.
Exploring the Aerodynamic Drag of a Moving Cyclist
Theilmann, Florian; Reinhard, Christopher
2016-01-01
Although the physics of cycling itself is a complex mixture of aerodynamics, physiology, mechanics, and heuristics, using cycling as a context for teaching physics has a tradition of certainly more than 30 years. Here, a possible feature is the discussion of the noticeable resistant forces such as aerodynamic drag and the associated power…
Some Features of Aerodynamics of Cyclonic Chamber with Free Exit
A. N. Orekhov
2014-06-01
Full Text Available The paper cites results of an experimental research in aerodynamics of a cyclonic chamber with a free exit that has a large relative length. Distributions of aerodynamic stream characteristics depending on geometry of working volume of the cyclonic chamber are given in the paper. Calculative dependences are proposed in the paper.
Evaluation of aerodynamic derivatives from a magnetic balance system
Raghunath, B. S.; Parker, H. M.
1972-01-01
The dynamic testing of a model in the University of Virginia cold magnetic balance wind-tunnel facility is expected to consist of measurements of the balance forces and moments, and the observation of the essentially six degree of freedom motion of the model. The aerodynamic derivatives of the model are to be evaluated from these observations. The basic feasibility of extracting aerodynamic information from the observation of a model which is executing transient, complex, multi-degree of freedom motion is demonstrated. It is considered significant that, though the problem treated here involves only linear aerodynamics, the methods used are capable of handling a very large class of aerodynamic nonlinearities. The basic considerations include the effect of noise in the data on the accuracy of the extracted information. Relationships between noise level and the accuracy of the evaluated aerodynamic derivatives are presented.
STUDY ON AERODYNAMIC CHARACTERISTICS OF VAN-BODY TRUCKS
无
2002-01-01
The aerodynamic characteristics of the van-body truck were studied by means of theoretical analysis, numerical simulation and wind tunnel experiments. The concept of critical length was presented for the van-body truck in wind tunnel experiments, the proper critical Reynolds number was found and the effects of ground parameters in ground effect simulation on the aerodynamic measurements were examined. It shows that two structure parameters, van height and the gap between the cab and the van, can obviously influence the aerodynamic characteristics, and the additional aerodynamic devices, the wind deflector and the vortex regulator in the rear, can considerably reduce the aerodynamic drag of the van-body truck. Numerical simulations provided rich information of the flow fields around the van-body trucks.
A generalized solution of elasto-aerodynamic lubrication for aerodynamic compliant foil bearings
YU Lie; QI Shemiao; GENG Haipeng
2005-01-01
Although aerodynamic compliant foil bearings are successfully applied in a number of turbo-machineries, theoretical researches on the modeling, performance prediction of compliant foil bearings and the dynamic analysis of the related rotor system seem still far behind the experimental investigation because of structural complexity of the foil bearings. A generalized solution of the elasto-aerodynamic lubrication is presented in this paper by introducing both static and dynamic deformations of foils and solving gas-lubricated Reynolds equations with deformation equations simultaneously. The solution can be used for the calculation of dynamic stiffness and damping, as well as the prediction of static performances of foil bearings. Systematical theories and methods are also presented for the purpose of the prediction of dynamic behavior of a rotor system equipped with foil bearings.
Transonic Blunt Body Aerodynamic Coefficients Computation
Sancho, Jorge; Vargas, M.; Gonzalez, Ezequiel; Rodriguez, Manuel
2011-05-01
In the framework of EXPERT (European Experimental Re-entry Test-bed) accurate transonic aerodynamic coefficients are of paramount importance for the correct trajectory assessment and parachute deployment. A combined CFD (Computational Fluid Dynamics) modelling and experimental campaign strategy was selected to obtain accurate coefficients. A preliminary set of coefficients were obtained by CFD Euler inviscid computation. Then experimental campaign was performed at DNW facilities at NLR. A profound review of the CFD modelling was done lighten up by WTT results, aimed to obtain reliable values of the coefficients in the future (specially the pitching moment). Study includes different turbulence modelling and mesh sensitivity analysis. Comparison with the WTT results is explored, and lessons learnt are collected.
Active aerodynamic stabilisation of long suspension bridges
Nissen, Henrik Ditlev; Sørensen, Paul Haase; Jannerup, Ole Erik
2004-01-01
use of control analysis and design techniques, a linear model of the structural and aerodynamic motion around equilibriun is developed. The model is validated through comparison with finite element calculations and wind tunnel experimental data on the Great Belt East Bridge in Denmark. The developed......The paper describes the addition of actively controlled appendages (flaps) attached along the length of the bridge deck to dampen wind-induced oscillations in long suppension bridges. A novel approach using control systems methods for the analysis of dynamic stability is presented. In order to make...... active control scheme is local in that the flap control signal at a given longitudinal position along the bridge only depends on local motion measurements. The analysis makes use of the Nyquist stability criteria and an anlysis of the sensitivity function for stability analysis. The analysis shows that...
Aerodynamic Shape Optimization using an Evolutionary Algorithm
Holst, Terry L.; Pulliam, Thomas H.; Kwak, Dochan (Technical Monitor)
2003-01-01
A method for aerodynamic shape optimization based on an evolutionary algorithm approach is presented and demonstrated. Results are presented for a number of model problems to access the effect of algorithm parameters on convergence efficiency and reliability. A transonic viscous airfoil optimization problem, both single and two-objective variations, is used as the basis for a preliminary comparison with an adjoint-gradient optimizer. The evolutionary algorithm is coupled with a transonic full potential flow solver and is used to optimize the inviscid flow about transonic wings including multi-objective and multi-discipline solutions that lead to the generation of pareto fronts. The results indicate that the evolutionary algorithm approach is easy to implement, flexible in application and extremely reliable.
Multiprocessing on supercomputers for computational aerodynamics
Yarrow, Maurice; Mehta, Unmeel B.
1991-01-01
Little use is made of multiple processors available on current supercomputers (computers with a theoretical peak performance capability equal to 100 MFLOPS or more) to improve turnaround time in computational aerodynamics. The productivity of a computer user is directly related to this turnaround time. In a time-sharing environment, such improvement in this speed is achieved when multiple processors are used efficiently to execute an algorithm. The concept of multiple instructions and multiple data (MIMD) is applied through multitasking via a strategy that requires relatively minor modifications to an existing code for a single processor. This approach maps the available memory to multiple processors, exploiting the C-Fortran-Unix interface. The existing code is mapped without the need for developing a new algorithm. The procedure for building a code utilizing this approach is automated with the Unix stream editor.
Dynamic stability of an aerodynamically efficient motorcycle
Sharma, Amrit; Limebeer, David J. N.
2012-08-01
Motorcycles exhibit two potentially dangerous oscillatory modes known as 'wobble' and 'weave'. The former is reminiscent of supermarket castor shimmy, while the latter is a low frequency 'fish-tailing' motion that involves a combination of rolling, yawing, steering and side-slipping motions. These unwanted dynamic features, which can occur when two-wheeled vehicles are operated at speed, have been studied extensively. The aim of this paper is to use mathematical analysis to identify important stability trends in the on-going design of a novel aerodynamically efficient motorcycle known as the ECOSSE Spirit ES1. A mathematical model of the ES1 is developed using a multi-body dynamics software package called VehicleSim [Anon, VehicleSim Lisp Reference Manual Version 1.0, Mechanical Simulation Corporation, 2008. Available at http://www.carsim.com]. This high-fidelity motorcycle model includes realistic tyre-road contact geometry, a comprehensive tyre model, tyre relaxation and a flexible frame. A parameter set representative of a modern high-performance machine and rider is used. Local stability is investigated via the eigenvalues of the linearised models that are associated with equilibrium points of interest. A comprehensive study of the effects of frame flexibilities, acceleration, aerodynamics and tyre variations is presented, and an optimal passive steering compensator is derived. It is shown that the traditional steering damper cannot be used to stabilise the ES1 over its entire operating speed range. A simple passive compensator, involving an inerter is proposed. Flexibility can be introduced deliberately into various chassis components to change the stability characteristics of the vehicle; the implications of this idea are studied.
Aerodynamics of a golf ball with grooves
Kim, Jooha; Son, Kwangmin; Choi, Haecheon
2009-11-01
It is well known that the drag on a dimpled ball is much lower than that on smooth ball. Choi et al. (Phys. Fluids, 2006) showed that turbulence is generated through the instability of shear layer separating from the edge of dimples and delays flow separation. Based on this mechanism, we devise a new golf ball with grooves on the surface but without any dimples. To investigate the aerodynamic performance of this new golf ball, an experiment is conducted in a wind tunnel at the Reynolds numbers of 0.5 x10^5 - 2.7 x10^5 and the spin ratios (ratio of surface velocity to the free-stream velocity) of α=0 - 0.5, which are within the ranges of real golf-ball velocity and spin rate. We measure the drag and lift forces on the grooved ball and compare them with those of smooth ball. At zero spin, the drag coefficient on the grooved ball shows a rapid fall-off at a critical Reynolds number and maintains a minimum value which is lower by 50% than that on smooth ball. At non-zero α, the drag coefficient on the grooved ball increases with increasing α, but is still lower by 40% than that on smooth ball. The lift coefficient on the grooved ball increases with increasing α, and is 100% larger than that on smooth ball. The aerodynamic characteristics of grooved ball is in general quite similar to that of dimpled ball. Some more details will be discussed in the presentation.
Aerodynamic Optimization of Micro Aerial Vehicle
Siew Ping Yeong
2016-01-01
Full Text Available Computational fluid dynamics (CFD study was done on the propeller design of a micro aerial vehicle (quadrotor-typed to optimize its aerodynamic performance via Shear Stress Transport K-Omega (SST k-ω turbulence model. The quadrotor model used was WL-V303 Seeker. The design process started with airfoils selection and followed by the evaluation of drone model in hovering and cruising conditions. To sustain a 400g payload, by Momentum Theory an ideal thrust of 5.4 N should be generated by each rotor of the quadrotor and this resulted in an induced velocity of 7.4 m/s on the propeller during hovering phase, equivalent to Reynolds number of 10403 at 75% of the propeller blade radius. There were 6 propellers investigated at this Reynolds number. Sokolov airfoil which produced the largest lift-to-drag ratio was selected for full drone installation to be compared with the original model (benchmark. The CFD results showed that the Sokolov propeller generated 0.76 N of thrust more than the benchmark propeller at 7750 rpm. Despite generating higher thrust, higher drag was also experienced by the drone installed with Sokolov propellers. This resulted in lower lift-to-drag ratio than the benchmark propellers. It was also discovered that the aerodynamic performance of the drone could be further improved by changing the rotating direction of each rotor. Without making changes on the structural design, the drone performance increased by 39.58% in terms of lift-to-drag ratio by using this method.
Aerodynamic Interaction Effects of a Helicopter Rotor and Fuselage
Boyd, David D., Jr.
1999-01-01
A three year Cooperative Research Agreements made in each of the three years between the Subsonic Aerodynamics Branch of the NASA Langley Research Center and the Virginia Polytechnic Institute and State University (Va. Tech) has been completed. This document presents results from this three year endeavor. The goal of creating an efficient method to compute unsteady interactional effects between a helicopter rotor and fuselage has been accomplished. This paper also includes appendices to support these findings. The topics are: 1) Rotor-Fuselage Interactions Aerodynamics: An Unsteady Rotor Model; and 2) Rotor/Fuselage Unsteady Interactional Aerodynamics: A New Computational Model.
Fourier analysis of the aerodynamic behavior of cup anemometers
The calibration results (the transfer function) of an anemometer equipped with several cup rotors were analyzed and correlated with the aerodynamic forces measured on the isolated cups in a wind tunnel. The correlation was based on a Fourier analysis of the normal-to-the-cup aerodynamic force. Three different cup shapes were studied: typical conical cups, elliptical cups and porous cups (conical-truncated shape). Results indicated a good correlation between the anemometer factor, K, and the ratio between the first two coefficients in the Fourier series decomposition of the normal-to-the-cup aerodynamic force. (paper)
Mead Crater, Venus - Aerodynamic roughness of wind streaks
Williams, K. K.; Greeley, R.
1997-03-01
Radar backscatter images of Venus returned by the Magellan spacecraft revealed many aeolian features on the planet's surface. While much work has focused on terrestrial wind streaks, the harsh environment of Venus limits direct measurement of surface properties, such as aerodynamic roughness, that affect aeolian features on that planet. However, a correlation between radar backscatter and aerodynamic roughness (Z0) for the S-band radar system on Magellan can be used to study the aerodynamic roughnesses of areas in which Venusian wind streaks occur. The aerodynamic roughness of areas with both radar-bright and radar-dark wind streaks near Mead crater are calculated and compared to z0 values measured on Earth in order to compare the surface of Venus with known terrestrial surface textures.
Space Launch System Ascent Static Aerodynamic Database Development
Pinier, Jeremy T.; Bennett, David W.; Blevins, John A.; Erickson, Gary E.; Favaregh, Noah M.; Houlden, Heather P.; Tomek, William G.
2014-01-01
This paper describes the wind tunnel testing work and data analysis required to characterize the static aerodynamic environment of NASA's Space Launch System (SLS) ascent portion of flight. Scaled models of the SLS have been tested in transonic and supersonic wind tunnels to gather the high fidelity data that is used to build aerodynamic databases. A detailed description of the wind tunnel test that was conducted to produce the latest version of the database is presented, and a representative set of aerodynamic data is shown. The wind tunnel data quality remains very high, however some concerns with wall interference effects through transonic Mach numbers are also discussed. Post-processing and analysis of the wind tunnel dataset are crucial for the development of a formal ascent aerodynamics database.
Aerodynamic instability of a cylinder with thin ice accretion
Gjelstrup, Henrik; Georgakis, Christos
2009-01-01
selected. This was then used in the generation of a generalized ice profile. The generalized ice profile was selected so as to depict with a fair degree of representation the most commonly observed ice accretion on the Great Belt East Bridge. Subsequently, the generalized ice profile was manufactured by...... use of rapid prototyping. Next, a series of static wind tunnel tests were undertaken to determine the aerodynamic force coefficients of the rapidly prototyped hanger sectional model. Finally the aerodynamic force coefficients (drag, lift and moment), found from the static wind tunnel tests, were used...... to determine the potential for aerodynamic instability of the hanger through application of the quasi-steady theory developed by Gjelstrup et al. [9-10]. The application of the theoretical model yield regions of expected aerodynamic instability in which the observed vibrations of the Great Belt East...
Theoretical and applied aerodynamics and related numerical methods
Chattot, J J
2015-01-01
This book covers classical and modern aerodynamics, theories and related numerical methods, for senior and first-year graduate engineering students, including: -The classical potential (incompressible) flow theories for low speed aerodynamics of thin airfoils and high and low aspect ratio wings. - The linearized theories for compressible subsonic and supersonic aerodynamics. - The nonlinear transonic small disturbance potential flow theory, including supercritical wing sections, the extended transonic area rule with lift effect, transonic lifting line and swept or oblique wings to minimize wave drag. Unsteady flow is also briefly discussed. Numerical simulations based on relaxation mixed-finite difference methods are presented and explained. - Boundary layer theory for all Mach number regimes and viscous/inviscid interaction procedures used in practical aerodynamics calculations. There are also four chapters covering special topics, including wind turbines and propellers, airplane design, flow analogies and h...
High-Fidelity Aerodynamic Design with Transition Prediction Project
National Aeronautics and Space Administration — To enhance aerodynamic design capabilities, Desktop Aeronautics proposes to significantly improve upon the integration (performed in Phase 1) of a new sweep/taper...
High-Fidelity Aerodynamic Design with Transition Prediction Project
National Aeronautics and Space Administration — To enhance aerodynamic design capabilities, Desktop Aeronautics proposes to combine a new sweep/taper integrated-boundary-layer (IBL) code that includes transition...
The Aerodynamics of Heavy Vehicles III : Trucks, Buses and Trains
Orellano, Alexander
2016-01-01
This volume contains papers presented at the International conference “The Aerodynamics of Heavy Vehicles III: Trucks, Buses and Trains” held in Potsdam, Germany, September 12-17, 2010 by Engineering Conferences International (ECI). Leading scientists and engineers from industry, universities and research laboratories, including truck and high-speed train manufacturers and operators were brought together to discuss computer simulation and experimental techniques to be applied for the design of more efficient trucks, buses and high-speed trains in the future. This conference was the third in the series after Monterey-Pacific Groove in 2002 and Lake Tahoe in 2007. The presentations address different aspects of train aerodynamics (cross wind effects, underbody flow, tunnel aerodynamics and aeroacoustics, experimental techniques), truck aerodynamics (drag reduction, flow control, experimental and computational techniques) as well as computational fluid dynamics and bluff body, wake and jet flows.
DOE Project on Heavy Vehicle Aerodynamic Drag
McCallen, R; Salari, K; Ortega, J; Castellucci, P; Pointer, D; Browand, F; Ross, J; Storms, B
2007-01-04
Class 8 tractor-trailers consume 11-12% of the total US petroleum use. At highway speeds, 65% of the energy expenditure for a Class 8 truck is in overcoming aerodynamic drag. The project objective is to improve fuel economy of Class 8 tractor-trailers by providing guidance on methods of reducing drag by at least 25%. A 25% reduction in drag would present a 12% improvement in fuel economy at highway speeds, equivalent to about 130 midsize tanker ships per year. Specific goals include: (1) Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles; (2) Develop innovative drag reducing concepts that are operationally and economically sound; and (3) Establish a database of experimental, computational, and conceptual design information, and demonstrate the potential of new drag-reduction devices. The studies described herein provide a demonstration of the applicability of the experience developed in the analysis of the standard configuration of the Generic Conventional Model. The modeling practices and procedures developed in prior efforts have been applied directly to the assessment of new configurations including a variety of geometric modifications and add-on devices. Application to the low-drag 'GTS' configuration of the GCM has confirmed that the error in predicted drag coefficients increases as the relative contribution of the base drag resulting from the vehicle wake to the total drag increases and it is recommended that more advanced turbulence modeling strategies be applied under those circumstances. Application to a commercially-developed boat tail device has confirmed that this restriction does not apply to geometries where the relative contribution of the base drag to the total drag is reduced by modifying the geometry in that region. Application to a modified GCM geometry with an open grille and radiator has confirmed that the underbody flow, while important for underhood cooling, has little impact on the drag
Aerodynamic Reconstruction Applied to Parachute Test Vehicle Flight Data Analysis
Cassady, Leonard D.; Ray, Eric S.; Truong, Tuan H.
2013-01-01
The aerodynamics, both static and dynamic, of a test vehicle are critical to determining the performance of the parachute cluster in a drop test and for conducting a successful test. The Capsule Parachute Assembly System (CPAS) project is conducting tests of NASA's Orion Multi-Purpose Crew Vehicle (MPCV) parachutes at the Army Yuma Proving Ground utilizing the Parachute Test Vehicle (PTV). The PTV shape is based on the MPCV, but the height has been reduced in order to fit within the C-17 aircraft for extraction. Therefore, the aerodynamics of the PTV are similar, but not the same as, the MPCV. A small series of wind tunnel tests and computational fluid dynamics cases were run to modify the MPCV aerodynamic database for the PTV, but aerodynamic reconstruction of the flights has proven an effective source for further improvements to the database. The acceleration and rotational rates measured during free flight, before parachute inflation but during deployment, were used to con rm vehicle static aerodynamics. A multibody simulation is utilized to reconstruct the parachute portions of the flight. Aerodynamic or parachute parameters are adjusted in the simulation until the prediction reasonably matches the flight trajectory. Knowledge of the static aerodynamics is critical in the CPAS project because the parachute riser load measurements are scaled based on forebody drag. PTV dynamic damping is critical because the vehicle has no reaction control system to maintain attitude - the vehicle dynamics must be understood and modeled correctly before flight. It will be shown here that aerodynamic reconstruction has successfully contributed to the CPAS project.
Aerodynamic Analysis Models for Vertical-Axis Wind Turbines
Brahimi, M. T.; A. Allet; I. Paraschivoiu
1995-01-01
This work details the progress made in the development of aerodynamic models for studying Vertical-Axis Wind Turbines (VAWT's) with particular emphasis on the prediction of aerodynamic loads and rotor performance as well as dynamic stall simulations. The paper describes current effort and some important findings using streamtube models, 3-D viscous model, stochastic wind model and numerical simulation of the flow around the turbine blades. Comparison of the analytical results with available e...
Aerodynamic Performances of Corrugated Dragonfly Wings at Low Reynolds Numbers
Tamai, Masatoshi; He, Guowei; Hu, Hui
2006-11-01
The cross-sections of dragonfly wings have well-defined corrugated configurations, which seem to be not very suitable for flight according to traditional airfoil design principles. However, previous studies have led to surprising conclusions of that corrugated dragonfly wings would have better aerodynamic performances compared with traditional technical airfoils in the low Reynolds number regime where dragonflies usually fly. Unlike most of the previous studies of either measuring total aerodynamics forces (lift and drag) or conducting qualitative flow visualization, a series of wind tunnel experiments will be conducted in the present study to investigate the aerodynamic performances of corrugated dragonfly wings at low Reynolds numbers quantitatively. In addition to aerodynamics force measurements, detailed Particle Image Velocimetry (PIV) measurements will be conducted to quantify of the flow field around a two-dimensional corrugated dragonfly wing model to elucidate the fundamental physics associated with the flight features and aerodynamic performances of corrugated dragonfly wings. The aerodynamic performances of the dragonfly wing model will be compared with those of a simple flat plate and a NASA low-speed airfoil at low Reynolds numbers.
IEA joint action. Aerodynamics of wind turbines
Maribo Pedersen, B. [ed.
1997-08-01
The advances to be made in aerodynamic prediction requires a deeper understanding of the physical processes occurring at the blades, and in the wake, of a wind turbine. This can only come from a continuing process of experimental observation and theoretical analysis. The present symposium presents the opportunity to do this by exchange of data from experiments and simulations, and by discussion of new or modified wake theories. The symposium will consists of a number of presentations by invited speakers and conclude with a summary of the talks and a round-the-table technical discussion. The talks offer the change to present behaviour from full-scale and laboratory experiments that are not explained by existing prediction codes. In addition, presentations are welcome on new modelling techniques or formulations that could make existing codes more accurate, less computationally intensive and easier to use. This symposium is intended to provide a starting point for the formulation of advanced rotor performance methods, which will improve the accuracy of load and performance prediction codes useful to the wind turbine industry. (au)
Unsteady aerodynamic modelling of wind turbines
Coton, F.N.; Galbraith, R.A. [Univ. og Glasgow, Dept. of Aerospace Engineering, Glasgow (United Kingdom)
1997-08-01
The following current and future work is discussed: Collaborative wind tunnel based PIV project to study wind turbine wake structures in head-on and yawed flow. Prescribed wake model has been embedded in a source panel representation of the wind tunnel walls to allow comparison with experiment; Modelling of tower shadow using high resolution but efficient vortex model in tower shadow domain; Extension of model to yawing flow; Upgrading and tuning of unsteady aerodynamic model for low speed, thick airfoil flows. Glasgow has a considerable collection of low speed dynamic stall data. Currently, the Leishman - Beddoes model is not ideally suited to such flows. For example: Range of stall onset criteria used for dynamic stall prediction including Beddoes. Wide variation of stall onset prediction. Beddoes representation was developed primarily with reference to compressible flows. Analyses of low speed data from Glasgow indicate deficiencies in the current model; Predicted versus measured response during ramp down motion. Modification of the Beddoes representation is required to obtain a fit with the measured data. (EG)
Aerodynamical noise from wind turbine generators
Two extensive measurement series of noise from wind turbines have been made during different modifications of their rotors. One series focused on the influence from the tip shape on the noise, while the other series dealt with the influence from the trailing edge. The experimental layout for the two investigations was identical. The total A-weighted noise from the wind turbine was measured in 1/3 octave bands from 50 Hz to 10 kHz in 1-minute periods simultaneously with wind speed measurements. The microphone was mounted on a hard board on the ground about 40 m directly downwind of the wind turbine, and the wind speed meter was placed at the same distance upwind of the wind turbine 10 m above ground. Regression analysis was made between noise and wind speed in each 1/3 octave band to determine the spectrum at 8 m/s. During the measurements care was taken to avoid influence from background noise, and the influence from machinery noise was minimized and corrected for. Thus the results display the aerodynamic rotor noise from the wind turbines. By use of this measurement technique, the uncertainty has been reduced to 1.5 - 2 dB per 1/3 octave band in the relevant frequency range and to about 1 dB on the total A-weighted levels. (au) (10 refs.)
Modeling Aerodynamically Generated Sound of Helicopter Rotors
Brentner, Kenneth S.; Farassat, F.
2002-01-01
A great deal of progress has been made in the modeling of aerodynamically generated sound of rotors over the past decade. Although the modeling effort has focused on helicopter main rotors, the theory is generally valid for a wide range of rotor configurations. The Ffowcs Williams Hawkings (FW-H) equation has been the foundation for much of the development. The monopole and dipole source terms of the FW-H equation account for the thickness and loading noise, respectively. Bladevortex-interaction noise and broadband noise are important types of loading noise, hence much research has been directed toward the accurate modeling of these noise mechanisms. Both subsonic and supersonic quadrupole noise formulations have been developed for the prediction of high-speed impulsive noise. In an effort to eliminate the need to compute the quadrupole contribution, the FW-H equation has also been utilized on permeable surfaces surrounding all physical noise sources. Comparisons of the Kirchhoff formulation for moving surfaces with the FW-H equation have shown that the Kirchhoff formulation for moving surfaces can give erroneous results for aeroacoustic problems. Finally, significant progress has been made incorporating the rotor noise models into full vehicle noise prediction tools.
Rudolf Hermann, wind tunnels and aerodynamics
Lundquist, Charles A.; Coleman, Anne M.
2008-04-01
Rudolf Hermann was born on December 15, 1904 in Leipzig, Germany. He studied at the University of Leipzig and at the Aachen Institute of Technology. His involvement with wind tunnels began in 1934 when Professor Carl Wieselsberger engaged him to work at Aachen on the development of a supersonic wind tunnel. On January 6, 1936, Dr. Wernher von Braun visited Dr. Hermann to arrange for use of the Aachen supersonic wind tunnel for Army problems. On April 1, 1937, Dr. Hermann became Director of the Supersonic Wind Tunnel at the Army installation at Peenemunde. Results from the Aachen and Peenemunde wind tunnels were crucial in achieving aerodynamic stability for the A-4 rocket, later designated as the V-2. Plans to build a Mach 10 'hypersonic' wind tunnel facility at Kochel were accelerated after the Allied air raid on Peenemunde on August 17, 1943. Dr. Hermann was director of the new facility. Ignoring destruction orders from Hitler as WWII approached an end in Europe, Dr. Hermann and his associates hid documents and preserved wind tunnel components that were acquired by the advancing American forces. Dr. Hermann became a consultant to the Air Force at its Wright Field in November 1945. In 1951, he was named professor of Aeronautical Engineering at the University of Minnesota. In 1962, Dr. Hermann became the first Director of the Research Institute at the University of Alabama in Huntsville (UAH), a position he held until he retired in 1970.
Turbine stage aerodynamics and heat transfer prediction
Griffin, Lisa W.; Mcconnaughey, H. V.
1989-01-01
A numerical study of the aerodynamic and thermal environment associated with axial turbine stages is presented. Computations were performed using a modification of the unsteady NASA Ames viscous code, ROTOR1, and an improved version of the NASA Lewis steady inviscid cascade system MERIDL-TSONIC coupled with boundary layer codes BLAYER and STAN5. Two different turbine stages were analyzed: the first stage of the United Technologies Research Center Large Scale Rotating Rig (LSRR) and the first stage of the Space Shuttle Main Engine (SSME) high pressure fuel turbopump turbine. The time-averaged airfoil midspan pressure and heat transfer profiles were predicted for numerous thermal boundary conditions including adiabatic wall, prescribed surface temperature, and prescribed heat flux. Computed solutions are compared with each other and with experimental data in the case of the LSRR calculations. Modified ROTOR1 predictions of unsteady pressure envelopes and instantaneous contour plots are also presented for the SSME geometry. Relative merits of the two computational approaches are discussed.
Hypersonic Inflatable Aerodynamic Decelerator Ground Test Development
Del Corso, Jospeh A.; Hughes, Stephen; Cheatwood, Neil; Johnson, Keith; Calomino, Anthony
2015-01-01
Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology readiness levels have been incrementally matured by NASA over the last thirteen years, with most recent support from NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). Recently STMD GCDP has authorized funding and support through fiscal year 2015 (FY15) for continued HIAD ground developments which support a Mars Entry, Descent, and Landing (EDL) study. The Mars study will assess the viability of various EDL architectures to enable a Mars human architecture pathfinder mission planned for mid-2020. At its conclusion in November 2014, NASA's first HIAD ground development effort had demonstrated success with fabricating a 50 W/cm2 modular thermal protection system, a 400 C capable inflatable structure, a 10-meter scale aeroshell manufacturing capability, together with calibrated thermal and structural models. Despite the unquestionable success of the first HIAD ground development effort, it was recognized that additional investment was needed in order to realize the full potential of the HIAD technology capability to enable future flight opportunities. The second HIAD ground development effort will focus on extending performance capability in key technology areas that include thermal protection system, lifting-body structures, inflation systems, flight control, stage transitions, and 15-meter aeroshell scalability. This paper presents an overview of the accomplishments under the baseline HIAD development effort and current plans for a follow-on development effort focused on extending those critical technologies needed to enable a Mars Pathfinder mission.
Kinematics and Aerodynamics of Backward Flying Dragonflies
Bode-Oke, Ayodeji; Zeyghami, Samane; Dong, Haibo
2015-11-01
Highly maneuverable insects such as dragonflies have a wide range of flight capabilities; precise hovering, fast body reorientations, sideways flight and backward takeoff are only a few to mention. In this research, we closely examined the kinematics as well as aerodynamics of backward takeoff in dragonflies and compared them to those of forward takeoff. High speed videography and accurate 3D surface reconstruction techniques were employed to extract details of the wing and body motions as well as deformations during both flight modes. While the velocities of both forward and backward flights were similar, the body orientation as well as the wing kinematics showed large differences. Our results indicate that by tilting the stroke plane angle of the wings as well as changing the orientation of the body relative to the flight path, dragonflies control the direction of the flight like a helicopter. In addition, our detailed analysis of the flow in these flights shows important differences in the wake capture phenomena among these flight modes. This work is supported by NSF CBET-1313217.
Computational aerodynamics and aeroacoustics for wind turbines
Shen, W.Z.
2009-10-15
The present thesis consists of 19 selected papers dealing with the development and use of CFD methods for studying the aerodynamics and aero-acoustics of wind turbines. The papers are written in the period from 1997 to 2008 and numbered according to the list in page v. The work consists of two parts: an aerodynamic part based on Computational Fluid Dynamics and an aero-acoustic part based on Computational Aero Acoustics for wind turbines. The main objective of the research was to develop new computational tools and techniques for analysing flows about wind turbines. A few papers deal with applications of Blade Element Momentum (BEM) theory to wind turbines. In most cases the incompressible Navier-Stokes equations in primitive variables (velocity-pressure formulation) are employed as the basic governing equations. However, since fluid mechanical problems essentially are governed by vortex dynamics, it is sometimes advantageous to use the concept of vorticity (defined as the curl of velocity). In vorticity form the Navier-Stokes equations may be formulated in different ways, using a vorticity-stream function formulation, a vorticity-velocity formulation or a vorticity-potential-stream function formulation. In [1] - [3] two different vorticity formulations were developed for 2D and 3D wind turbine flows. In [4] and [5] numerical techniques for avoiding pressure oscillations were developed when solving the velocity-pressure coupling system in the in-house EllipSys2D/3D code. In [6] - [8] different actuator disc techniques combined with CFD are presented. This includes actuator disc, actuator line and actuator surface techniques, which were developed to simulate flows past one or more wind turbines. In [9] and [10] a tip loss correction method that improves the conventional models was developed for use in combination with BEM or actuator/Navier-Stokes computations. A simple and efficient technique for determining the angle of attack for flow past a wind turbine rotor
Unsteady aerodynamics of fluttering and tumbling plates
Andersen, A.; Pesavento, U.; Wang, Z. Jane
2005-10-01
We investigate the aerodynamics of freely falling plates in a quasi-two-dimensional flow at Reynolds number of 10(3) , which is typical for a leaf or business card falling in air. We quantify the trajectories experimentally using high-speed digital video at sufficient resolution to determine the instantaneous plate accelerations and thus to deduce the instantaneous fluid forces. We compare the measurements with direct numerical solutions of the two-dimensional Navier Stokes equation. Using inviscid theory as a guide, we decompose the fluid forces into contributions due to acceleration, translation, and rotation of the plate. For both fluttering and tumbling we find that the fluid circulation is dominated by a rotational term proportional to the angular velocity of the plate, as opposed to the translational velocity for a glider with fixed angle of attack. We find that the torque on a freely falling plate is small, i.e. the torque is one to two orders of magnitude smaller than the torque on a glider with fixed angle of attack. Based on these results we revise the existing ODE models of freely falling plates. We get access to different kinds of dynamics by exploring the phase diagram spanned by the Reynolds number, the dimensionless moment of inertia, and the thickness-to-width ratio. In agreement with previous experiments, we find fluttering, tumbling, and apparently chaotic motion. We further investigate the dependence on initial conditions and find brief transients followed by periodic fluttering described by simple harmonics and tumbling with a pronounced period-two structure. Near the cusp-like turning points, the plates elevate, a feature which would be absent if the lift depended on the translational velocity alone.
Application Program Interface for the Orion Aerodynamics Database
Robinson, Philip E.; Thompson, James
2013-01-01
The Application Programming Interface (API) for the Crew Exploration Vehicle (CEV) Aerodynamic Database has been developed to provide the developers of software an easily implemented, fully self-contained method of accessing the CEV Aerodynamic Database for use in their analysis and simulation tools. The API is programmed in C and provides a series of functions to interact with the database, such as initialization, selecting various options, and calculating the aerodynamic data. No special functions (file read/write, table lookup) are required on the host system other than those included with a standard ANSI C installation. It reads one or more files of aero data tables. Previous releases of aerodynamic databases for space vehicles have only included data tables and a document of the algorithm and equations to combine them for the total aerodynamic forces and moments. This process required each software tool to have a unique implementation of the database code. Errors or omissions in the documentation, or errors in the implementation, led to a lengthy and burdensome process of having to debug each instance of the code. Additionally, input file formats differ for each space vehicle simulation tool, requiring the aero database tables to be reformatted to meet the tool s input file structure requirements. Finally, the capabilities for built-in table lookup routines vary for each simulation tool. Implementation of a new database may require an update to and verification of the table lookup routines. This may be required if the number of dimensions of a data table exceeds the capability of the simulation tools built-in lookup routines. A single software solution was created to provide an aerodynamics software model that could be integrated into other simulation and analysis tools. The highly complex Orion aerodynamics model can then be quickly included in a wide variety of tools. The API code is written in ANSI C for ease of portability to a wide variety of systems. The
Aerodynamic and Aeroacoustic Wind Tunnel Testing of the Orion Spacecraft
Ross, James C.
2011-01-01
The Orion aerodynamic testing team has completed more than 40 tests as part of developing the aerodynamic and loads databases for the vehicle. These databases are key to achieving good mechanical design for the vehicle and to ensure controllable flight during all potential atmospheric phases of a mission, including launch aborts. A wide variety of wind tunnels have been used by the team to document not only the aerodynamics but the aeroacoustic environment that the Orion might experience both during nominal ascents and launch aborts. During potential abort scenarios the effects of the various rocket motor plumes on the vehicle must be accurately understood. The Abort Motor (AM) is a high-thrust, short duration motor that rapidly separates Orion from its launch vehicle. The Attitude Control Motor (ACM), located in the nose of the Orion Launch Abort Vehicle, is used for control during a potential abort. The 8 plumes from the ACM interact in a nonlinear manner with the four AM plumes which required a carefully controlled test to define the interactions and their effect on the control authority provided by the ACM. Techniques for measuring dynamic stability and for simulating rocket plume aerodynamics and acoustics were improved or developed in the course of building the aerodynamic and loads databases for Orion.
Aerodynamic and aerothermodynamic analysis of space mission vehicles
Viviani, Antonio
2015-01-01
Presenting an up-to-date view on the most important space vehicle configurations, this book contains detailed analyses for several different type of space mission profiles while considering important factors such as aerodynamic loads, aerodynamic heating, vehicle stability and landing characteristics. With that in mind, the authors provide a detailed overview on different state-of-the-art themes of hypersonic aerodynamics and aerothermodynamics, and consider different space vehicle shapes useful for different space mission objectives. These include: · Crew Return Vehicle (CRV) · Crew Exploration Vehicle (CEV) · Sample Return Vehicle (SRV) · Flying Test Bed (FTB). Throughout Aerodynamic and Aerothermodynamic Analysis of Space Mission Vehicles many examples are given, with detailed computations and results for the aerodynamics and aerothermodynamics of all such configurations. Moreover, a final chapter on future launchers is provided and an Appendix on...
Two cases of aerodynamic adjustment of sastrugi
C. Amory
2015-11-01
Full Text Available In polar regions, sastrugi are a direct manifestation of wind driven snow and form the main surface roughness elements. In turn, sastrugi influence the local wind field and associated aeolian snow mass fluxes. Little attention has been paid to these feedback processes, mainly because of experimental difficulties, and, as a result most polar atmospheric models currently ignore sastrugi. More accurate quantification of the influence of sastrugi remains a major challenge. In the present study, wind profiles and aeolian snow mass fluxes were analyzed jointly on a sastrugi covered snowfield in Antarctica. Neutral stability 10 m air-snow drag coefficients CDN10 were computed from six level wind speed profiles collected in Adélie Land during austral winter 2013. The aeolian snow mass flux in the first meter above the surface of the snow was also measured using a windborne snow acoustic sensor. This paper focuses on two cases during which sastrugi responses to shifts in wind direction were evidenced by variations in snow mass flux and drag coefficients. Using this dataset, it was shown that (i the timescale of sastrugi aerodynamic adjustment can be as short as 3 h for friction velocities of 1 m s−1 or above and during strong windborne snow conditions, (ii CDN10 values were in the range of 1.3–1.5 × 103 when the wind was well aligned with the sastrugi and increased to 3 × 103 or higher when the wind only shifted 20–30°, (iii CDN10 can increase (to 120 % and the aeolian snow mass flux can decrease (to 80 % in response to a shift in wind direction, and (iv knowing CDN10 is not sufficient to estimate the erosion flux that results from drag partitioning at the surface because CDN10 includes the contribution of the sastrugi form drag. These results not only support the existence of feedback mechanisms linking sastrugi, aeolian particle transport and surface drag properties over snow surface but also provide orders of magnitude, although further
Aerodynamics of intermittent bounds in flying birds
Tobalske, Bret W.; Hearn, Jason W. D.; Warrick, Douglas R.
Flap-bounding is a common flight style in small birds in which flapping phases alternate with flexed-wing bounds. Body lift is predicted to be essential to making this flight style an aerodynamically attractive flight strategy. To elucidate the contributions of the body and tail to lift and drag during the flexed-wing bound phase, we used particle image velocimetry (PIV) and measured properties of the wake of zebra finch (Taeniopygia guttata, N = 5), flying at 6-10 m s- 1 in a variable speed wind tunnel as well as flow around taxidermically prepared specimens (N = 4) mounted on a sting instrumented with force transducers. For the specimens, we varied air velocity from 2 to 12 m s- 1 and body angle from -15∘ to 50∘. The wake of bounding birds and mounted specimens consisted of a pair of counterrotating vortices shed into the wake from the tail, with induced downwash in the sagittal plane and upwash in parasagittal planes lateral to the bird. This wake structure was present even when the tail was entirely removed. We observed good agreement between force measures derived from PIV and force transducers over the range of body angles typically used by zebra finch during forward flight. Body lift:drag (L:D) ratios averaged 1.4 in live birds and varied between 1 and 1.5 in specimens at body angles from 10∘ to 30∘. Peak (L:D) ratio was the same in live birds and specimens (1.5) and was exhibited in specimens at body angles of 15∘ or 20∘, consistent with the lower end of body angles utilized during bounds. Increasing flight velocity in live birds caused a decrease in CL and CD from maximum values of 1.19 and 0.95 during flight at 6 m s- 1 to minimum values of 0.70 and 0.54 during flight at 10 m s- 1. Consistent with delta-wing theory as applied to birds with a graduated-tail shape, trimming the tail to 0 and 50% of normal length reduced L:D ratios and extending tail length to 150% of normal increased L:D ratio. As downward induced velocity is present in the
Aerodynamic window for high precision laser drilling
Sommer, Steffen; Dausinger, Friedrich; Berger, Peter; Hügel, Helmuth
2007-05-01
High precision laser drilling is getting more and more interesting for industry. Main applications for such holes are vaporising and injection nozzles. To enhance quality, the energy deposition has to be accurately defined by reducing the pulse duration and thereby reducing the amount of disturbing melting layer. In addition, an appropriate processing technology, for example the helical drilling, yields holes in steel at 1 mm thickness and diameters about 100 μm with correct roundness and thin recast layers. However, the processing times are still not short enough for industrial use. Experiments have shown that the reduction of the atmospheric pressure down to 100 hPa enhances the achievable quality and efficiency, but the use of vacuum chambers in industrial processes is normally quite slow and thus expensive. The possibility of a very fast evacuation is given by the use of an aerodynamic window, which produces the pressure reduction by virtue of its fluid dynamic features. This element, based on a potential vortex, was developed and patented as out-coupling window for high power CO II lasers by IFSW 1, 2, 3. It has excellent tightness and transmission properties, and a beam deflection is not detectable. The working medium is compressed air, only. For the use as vacuum element for laser drilling, several geometrical modifications had to be realized. The prototype is small enough to be integrated in a micromachining station and has a low gas flow. During the laser pulse, which is focussed through the potential flow, a very high fluence is reached, but the measurements have not shown any beam deflection or focal shifting. The evacuation time is below 300 ms so that material treatment with changing ambient pressure is possible, too. Experimental results have proven the positive effect of the reduced ambient pressure on the drilling process for the regime of nano- and picosecond laser pulses. Plasma effects are reduced and, because of the less absorption, the
Exploring the aerodynamic drag of a moving cyclist
Theilmann, Florian; Reinhard, Christopher
2016-01-01
Although the physics of cycling itself is a complex mixture of aerodynamics, physiology, mechanics, and heuristics, using cycling as a context for teaching physics has a tradition of certainly more than 30 years. Here, a possible feature is the discussion of the noticeable resistant forces such as aerodynamic drag and the associated power consumption of cycling. We use an energy-based approach to model the power input for driving a bike at a constant speed. This approach uses a numerical simulation of the slowing down of a bike moving without pedaling which is implementable with standard spreadsheet software. The simulation can be compared directly to simple measurements with real bikes as well as to an analytic solution of the underlying differential equation. It is possible to derive realistic values for the aerodynamic drag coefficient {{c}\\text{D}} and the total power consumption within a secondary physics course. We also report experiences from teaching such a course to class 8 students.
Aerodynamic Jump: A Short Range View for Long Rod Projectiles
Mark Bundy
2001-01-01
Full Text Available It is shown that aerodynamic jump for a nonspinning kinetic energy penetrator is not – as conventional definitions may infer – a discontinuous change in the direction of motion at the origin of free flight, nor is it the converse, a cumulative redirection over a domain of infinite extent. Rather, with the aid of an alternative kinematical definition, it is shown that aerodynamic jump for such a projectile is a localized redirection of the center-of-gravity motion, caused by the force of lift due to yaw over the relatively short region from entry into free flight until the yaw reaches its first maximum. A rigorous proof of this statement is provided, but the primary objective of this paper is to provide answers to the questions: what is aerodynamic jump, what does it mean, and what aspects of the flight trajectory does it refer to, or account for.
Investigation of Aerodynamic Capabilities of Flying Fish in Gliding Flight
Park, H.; Choi, H.
In the present study, we experimentally investigate the aerodynamic capabilities of flying fish. We consider four different flying fish models, which are darkedged-wing flying fishes stuffed in actual gliding posture. Some morphological parameters of flying fish such as lateral dihedral angle of pectoral fins, incidence angles of pectoral and pelvic fins are considered to examine their effect on the aerodynamic performance. We directly measure the aerodynamic properties (lift, drag, and pitching moment) for different morphological parameters of flying fish models. For the present flying fish models, the maximum lift coefficient and lift-to-drag ratio are similar to those of medium-sized birds such as the vulture, nighthawk and petrel. The pectoral fins are found to enhance the lift-to-drag ratio and the longitudinal static stability of gliding flight. On the other hand, the lift coefficient and lift-to-drag ratio decrease with increasing lateral dihedral angle of pectoral fins.
AERODYNAMIC AND BLADING DESIGN OF MULTISTAGE AXIAL FLOW COMPRESSORS
Crouse, J. E.
1994-01-01
The axial-flow compressor is used for aircraft engines because it has distinct configuration and performance advantages over other compressor types. However, good potential performance is not easily obtained. The designer must be able to model the actual flows well enough to adequately predict aerodynamic performance. This computer program has been developed for computing the aerodynamic design of a multistage axial-flow compressor and, if desired, the associated blading geometry input for internal flow analysis. The aerodynamic solution gives velocity diagrams on selected streamlines of revolution at the blade row edges. The program yields aerodynamic and blading design results that can be directly used by flow and mechanical analysis codes. Two such codes are TSONIC, a blade-to-blade channel flow analysis code (COSMIC program LEW-10977), and MERIDL, a more detailed hub-to-shroud flow analysis code (COSMIC program LEW-12966). The aerodynamic and blading design program can reduce the time and effort required to obtain acceptable multistage axial-flow compressor configurations by generating good initial solutions and by being compatible with available analysis codes. The aerodynamic solution assumes steady, axisymmetric flow so that the problem is reduced to solving the two-dimensional flow field in the meridional plane. The streamline curvature method is used for the iterative aerodynamic solution at stations outside of the blade rows. If a blade design is desired, the blade elements are defined and stacked within the aerodynamic solution iteration. The blade element inlet and outlet angles are established by empirical incidence and deviation angles to the relative flow angles of the velocity diagrams. The blade element centerline is composed of two segments tangentially joined at a transition point. The local blade angle variation of each element can be specified as a fourth-degree polynomial function of path distance. Blade element thickness can also be specified
Design Oriented Aerodynamic Modelling of Wind Turbine Performance
The development of a wind turbine aerodynamics model using a Boundary Integral Equation model (BIEM) is presented. The methodology is valid to study inviscid unsteady flows around three dimensional bodies of arbitrary shape and arbitrarily moving with respect to the incoming flow. The extension of this methodology to study viscosity effects in turbine blade flow at high angle of attack is addressed and an approach to determine aerodynamic loads over a wide range of turbine operating conditions is proposed. Numerical applications considering a selected test cases from the NREL experimental dataset are presented. Finally, the application of the proposed turbine aerodynamics model into a multi-disciplinary study including aeroelasticity of pylon-turbine assembly and aeroacoustics modelling of induced noise is briefly described
APPLICATION OF VARIABLE-FIDELITY MODELS TO AERODYNAMIC OPTIMIZATION
XIA Lu; GAO Zheng-hong
2006-01-01
For aerodynamic shape optimization, the approximation management framework (AMF) method is used to organize and manage the variable-fidelity models. The method can take full advantage of the low-fidelity, cheaper models to concentrate the main workload on the low-fidelity models in optimization iterative procedure. Furthermore, it can take high-fidelity, more expensive models to monitor the procedure to make the method globally convergent to a solution of high-fidelity problem. Finally, zero order variable-fidelity aerodynamic optimization management framework and search algorithm are demonstrated on an airfoil optimization of UAV with a flying wing. Compared to the original shape, the aerodynamic performance of the optimal shape is improved. The results show the method has good feasibility and applicability.
THERMAL AND AERODYNAMIC PERFORMANCES OF THE SUPERSONIC MOTION
Dejan P Ninković
2010-01-01
Full Text Available Generally speaking, Mach number of 4 can be taken as a boundary value for transition from conditions for supersonic, into the area of hypersonic flow, distinguishing two areas: area of supersonic in which the effects of the aerodynamic heating can be neglected and the area of hypersonic, in which the thermal effects become dominant. This paper presents the effects in static and dynamic areas, as well as presentation of G.R.O.M. software for determination of the values of aerodynamic derivatives, which was developed on the basis of linearized theory of supersonic flow. Validation of developed software was carried out through different types of testing, proving its usefulness for engineering practice in the area of supersonic wing aerodynamic loading calculations, even at high Mach numbers, with dominant thermal effects.
Fuel Savings and Aerodynamic Drag Reduction from Rail Car Covers
Storms, Bruce; Salari, Kambiz; Babb, Alex
2008-01-01
The potential for energy savings by reducing the aerodynamic drag of rail cars is significant. A previous study of aerodynamic drag of coal cars suggests that a 25% reduction in drag of empty cars would correspond to a 5% fuel savings for a round trip [1]. Rail statistics for the United States [2] report that approximately 5.7 billion liters of diesel fuel were consumed for coal transportation in 2002, so a 5% fuel savings would total 284 million liters. This corresponds to 2% of Class I railroad fuel consumption nationwide. As part of a DOE-sponsored study, the aerodynamic drag of scale rail cars was measured in a wind tunnel. The goal of the study was to measure the drag reduction of various rail-car cover designs. The cover designs tested yielded an average drag reduction of 43% relative to empty cars corresponding to an estimated round-trip fuel savings of 9%.
Aerodynamic performance of vertical and horizontal axis wind turbines
Maydew, R. C.; Klimas, P. C.
1981-06-01
The aerodynamic performance of vertical and horizontal axis wind turbines is investigated, and comparison of data of the 17-m Darrieus VAWT with the 60.7-m Mod-1 HAWT and 37.8-m Mod-0A HAWT is discussed. It is concluded that the maximum average measured power coefficients of the VAWT are about 0%-15% higher than those of the HAWTs. It is suggested that vertical wind shear may have lowered the Mod-1 HAWT aerodynamic performance, but, the magnitude of this effect could not be evaluated. It is included that generalizations which refer to the Darrieus VAWT as aerodynamically less efficient than the HAWT should be used carefully.
Atmospheric testing of wind turbine trailing edge aerodynamic brakes
Miller, L.S. [Wichita State Univ., KS (United States); Migliore, P.G. [National Renewable Energy Lab., Golden, CO (United States); Quandt, G.A.
1997-12-31
An experimental investigation was conducted using an instrumented horizontal-axis wind turbine that incorporated variable span trailing-edge aerodynamic brakes. A primary goal was to directly compare study results with (infinite-span) wind tunnel data and to provide information on how to account for device span effects during turbine design or analysis. Comprehensive measurements were utilized to define effective changes in the aerodynamic coefficients, as a function of angle of attack and control deflection, for three device spans and configurations. Differences in the lift and drag behavior are most pronounced near stall and for device spans of less than 15%. Drag performance is affected only minimally (<70%) for 15% or larger span devices. Interestingly, aerodynamic controls with characteristic vents or openings appear most affected by span reductions and three-dimensional flow.
Fluidic Control of Aerodynamic Forces on an Axisymmetric Body
Abramson, Philip; Vukasinovic, Bojan; Glezer, Ari
2007-11-01
The aerodynamic forces and moments on a wind tunnel model of an axisymmetric bluff body are modified by induced local vectoring of the separated base flow. Control is effected by an array of four integrated aft-facing synthetic jets that emanate from narrow, azimuthally-segmented slots, equally distributed around the perimeter of the circular tail end within a small backward facing step that extends into a Coanda surface. The model is suspended in the wind tunnel by eight thin wires for minimal support interference with the wake. Fluidic actuation results in a localized, segmented vectoring of the separated base flow along the rear Coanda surface and induces asymmetric aerodynamic forces and moments to effect maneuvering during flight. The aerodynamic effects associated with quasi-steady and transitory differential, asymmetric activation of the Coanda effect are characterized using direct force and PIV measurements.
Aerodynamic levitator for large-sized glassy material production.
Yoda, Shinichi; Cho, Won-Seung; Imai, Ryoji
2015-09-01
Containerless aerodynamic levitation processing is a unique technology for the fabrication of bulk non-crystalline materials. Using conventional aerodynamic levitation, a high reflective index (RI) material (BaTi2O5 and LaO3/2-TiO2-ZrO2 system) was developed with a RI greater than approximately 2.2, which is similar to that of diamond. However, the glass size was small, approximately 3 mm in diameter. Therefore, it is essential to produce large sized materials for future optical materials applications, such as camera lenses. In this study, a new aerodynamic levitator was designed to produce non-crystalline materials with diameters larger than 6 mm. The concept of this new levitator was to set up a reduced pressure at the top of the molten samples without generating turbulent flow. A numerical simulation was also performed to verify the concept. PMID:26429456
Hybrid Vortex Method for the Aerodynamic Analysis of Wind Turbine
Hao Hu
2015-01-01
Full Text Available The hybrid vortex method, in which vortex panel method is combined with the viscous-vortex particle method (HPVP, was established to model the wind turbine aerodynamic and relevant numerical procedure program was developed to solve flow equations. The panel method was used to calculate the blade surface vortex sheets and the vortex particle method was employed to simulate the blade wake vortices. As a result of numerical calculations on the flow over a wind turbine, the HPVP method shows significant advantages in accuracy and less computation resource consuming. The validation of the aerodynamic parameters against Phase VI wind turbine experimental data is performed, which shows reasonable agreement.
Analysis of Flow Structures in Wake Flows for Train Aerodynamics
Muld, Tomas W.
2010-01-01
Train transportation is a vital part of the transportation system of today anddue to its safe and environmental friendly concept it will be even more impor-tant in the future. The speeds of trains have increased continuously and withhigher speeds the aerodynamic effects become even more important. One aero-dynamic effect that is of vital importance for passengers’ and track workers’safety is slipstream, i.e. the flow that is dragged by the train. Earlier ex-perimental studies have found that ...
Aerodynamic preliminary analysis system 2. Part 1: Theory
Bonner, E.; Clever, W.; Dunn, K.
1991-01-01
An aerodynamic analysis system based on potential theory at subsonic and/or supersonic speeds and impact type finite element solutions at hypersonic conditions is described. Three dimensional configurations having multiple nonplanar surfaces of arbitrary planform and bodies of noncircular contour may be analyzed. Static, rotary, and control longitudinal and lateral directional characteristics may be generated. The analysis was implemented on a time sharing system in conjunction with an input tablet digitizer and an interactive graphics input/output display and editing terminal to maximize its responsiveness to the preliminary analysis problem. The program provides an efficient analysis for systematically performing various aerodynamic configuration tradeoff and evaluation studies.
Feasibility study for a numerical aerodynamic simulation facility. Volume 1
Lincoln, N. R.; Bergman, R. O.; Bonstrom, D. B.; Brinkman, T. W.; Chiu, S. H. J.; Green, S. S.; Hansen, S. D.; Klein, D. L.; Krohn, H. E.; Prow, R. P.
1979-01-01
A Numerical Aerodynamic Simulation Facility (NASF) was designed for the simulation of fluid flow around three-dimensional bodies, both in wind tunnel environments and in free space. The application of numerical simulation to this field of endeavor promised to yield economies in aerodynamic and aircraft body designs. A model for a NASF/FMP (Flow Model Processor) ensemble using a possible approach to meeting NASF goals is presented. The computer hardware and software are presented, along with the entire design and performance analysis and evaluation.
Cruise aerodynamics of USB nacelle/wing geometric variations
Braden, J. A.; Hancock, J. P.; Burdges, K. P.
1976-01-01
Experimental results are presented on aerodynamic effects of geometric variations in upper surface blown nacelle configurations at high speed cruise conditions. Test data include both force and pressure measurements on two and three dimensional models powered by upper surface blowing nacelles of varying geometries. Experimental results are provided on variations in nozzle aspect ratio, nozzle boattail angle, and multiple nacelle installations. The nacelles are ranked according to aerodynamic drag penalties as well as overall installed drag penalties. Sample effects and correlations are shown for data obtained with the pressure model.
Aerodynamic Support of a Big Industrial Turboblower Rotor
Šimek, Jiří; Kozánek, Jan; Šafr, Milan
2007-01-01
Aerodynamic bearing support for the rotor of a 100 kW input industrial turboblower with operational speed of 18 000 rpm was designed and manufactured. Rotor with mass of about 50 kg is supported in two tilting-pad journal bearings 120 mm in diameter, axial forces are taken up by aerodynamic spiral groove thrust bearing 250 mm in diameter. Some specific features of the bearing design are described in the paper and the results of rotor support tests are presented. The paper is an extended versi...
Computational methods for aerodynamic design using numerical optimization
Peeters, M. F.
1983-01-01
Five methods to increase the computational efficiency of aerodynamic design using numerical optimization, by reducing the computer time required to perform gradient calculations, are examined. The most promising method consists of drastically reducing the size of the computational domain on which aerodynamic calculations are made during gradient calculations. Since a gradient calculation requires the solution of the flow about an airfoil whose geometry was slightly perturbed from a base airfoil, the flow about the base airfoil is used to determine boundary conditions on the reduced computational domain. This method worked well in subcritical flow.
Aerodynamics of Dragonfly in Hover: Force measurements and PIV results
Deng, Xinyan; Hu, Zheng
2009-11-01
We useda pair of dynamically scaled robotic dragonfly model wings to investigate the aerodynamic effects of wing-wing interaction in dragonflies. We follow the wing kinematics of real dragonflies in hover, while systematically varied the phase difference between the forewing and hindwing. Instantaneous aerodynamic forces and torques were measured on both wings, while flow visualization and PIV results were obtained. The results show that, in hovering flight, wing-wing interaction causes force reduction for both wings at most of the phase angle differences except around 0 degree (when the wings are beating in-phase).
Analysis of broadband aerodynamic noise from VS45
Dundabin, P. [Renewable Energy Systems Ltd., Glasgow, Scotland (United Kingdom)
1997-12-31
This paper describes the analysis of acoustic data taken from the VS45 at Kaiser-Wilhelm-Koog. The aim was to investigate the dependence of aerodynamic noise on tip speed and angle of attack. In particular, the dependence of noise in individual third octave bands on these variable is examined. The analysis is divided into 3 sections: data selection, data checks and analysis of broadband nacelle noise; analysis of broadband aerodynamic noise and its sensitivity to tip speed and angle of attack. (LN)
Improvements on computations of high speed propeller unsteady aerodynamics
Bousquet, J.M.; Gardarein, P. [Office National d' Etudes et de Recherches Aerospatiales (ONERA), 92 - Chatillon (France)
2003-09-01
This paper presents the application of the CANARI flow solver to the computation of unsteady effects in the aerodynamic interaction of a high speed propeller with the aircraft. The method is first validated on the APIAN isolated propeller test case by comparison with experiment at M = 0.7. The method is then applied to the time accurate 3D Euler computation of a generic transport aircraft at M = 0.68. Analysis of the results shows significant unsteady effects both on the propeller forces and on the wing aerodynamic flows, by comparison with steady computations. (authors)
Improved Aerodynamic Influence Coefficients for Dynamic Aeroelastic Analyses
Gratton, Patrice
2011-12-01
Currently at Bombardier Aerospace, aeroelastic analyses are performed using the Doublet Lattice Method (DLM) incorporated in the NASTRAN solver. This method proves to be very reliable and fast in preliminary design stages where wind tunnel experimental results are often not available. Unfortunately, the geometric simplifications and limitations of the DLM, based on the lifting surfaces theory, reduce the ability of this method to give reliable results for all flow conditions, particularly in transonic flow. Therefore, a new method has been developed involving aerodynamic data from high-fidelity CFD codes which solve the Euler or Navier-Stokes equations. These new aerodynamic loads are transmitted to the NASTRAN aeroelastic module through improved aerodynamic influence coefficients (AIC). A cantilevered wing model is created from the Global Express structural model and a set of natural modes is calculated for a baseline configuration of the structure. The baseline mode shapes are then combined with an interpolation scheme to deform the 3-D CFD mesh necessary for Euler and Navier-Stokes analyses. An uncoupled approach is preferred to allow aerodynamic information from different CFD codes. Following the steady state CFD analyses, pressure differences ( DeltaCp), calculated between the deformed models and the original geometry, lead to aerodynamic loads which are transferred to the DLM model. A modal-based AIC method is applied to the aerodynamic matrices of NASTRAN based on a least-square approximation to evaluate aerodynamic loads of a different wing configuration which displays similar types of mode shapes. The methodology developed in this research creates weighting factors based on steady CFD analyses which have an equivalent reduced frequency of zero. These factors are applied to both the real and imaginary part of the aerodynamic matrices as well as all reduced frequencies used in the PK-Method which solves flutter problems. The modal-based AIC method
Supersonic Plasma Flows and their Influence on Aerodynamics of Flight
Different types of gas discharges were considered from the point of view of plasma technique applications for aerodynamic problem solutions. They are: the longitudinal one (when electric current j is parallel to airflow's velocity v) and the transverse one (when electric current j is perpendicular to v) stationary discharges, high frequency discharges, microwave and optical discharges. Generation of gas discharges directly before an airplane or on its surface could be the possible means of plasma affect the supersonic airflow. It could lead to the substantial improvement of its aerodynamic characteristics, and particularly to a considerable decrease of the head drag coefficient. (author)
Efficient optimization of integrated aerodynamic-structural design
Haftka, R. T.; Grossman, B.; Eppard, W. M.; Kao, P. J.; Polen, D. M.
1989-01-01
Techniques for reducing the computational complexity of multidisciplinary design optimization (DO) of aerodynamic structures are described and demonstrated. The basic principles of aerodynamic and structural DO are reviewed; the formulation of the combined DO problem is outlined; and particular attention is given to (1) the application of perturbation methods to cross-sensitivity computations and (2) numerical approximation procedures. Trial DOs of a simple sailplane design are presented in tables and graphs and discussed in detail. The IBM 3090 CPU time for the entire integrated DO was reduced from an estimated 10 h to about 6 min.
Smolyak-Grid-Based Flutter Analysis with the Stochastic Aerodynamic Uncertainty
Yuting Dai; Chao Yang
2014-01-01
How to estimate the stochastic aerodynamic parametric uncertainty on aeroelastic stability is studied in this current work. The aerodynamic uncertainty is more complicated than the structural one, and it takes more significant effect on the flutter boundary. First, the nominal unsteady aerodynamic influence coefficients were calculated with the doublet lattice method. Based on this nominal model, the stochastic uncertainty model for unsteady aerodynamic pressure coefficients was constructed w...
Aerodynamic support of a big industrial turboblower rotor
Šimek, J.; Kozánek, Jan; Šafr, M.
2007-01-01
Roč. 14, 1/2 (2007), s. 105-116. ISSN 1802-1484 R&D Projects: GA AV ČR IBS2076301 Institutional research plan: CEZ:AV0Z20760514 Keywords : industrial turboblower * aerodynamic bearing * rotor-dynamic calculation Subject RIV: BI - Acoustics
Using optical methods in high-speed aerodynamic research
Šafařík, Pavel; Luxa, Martin
Firenze: XX, 2000, s. 1-7. [Measurement techniques in turbomachinery. Firenze (IT), 21.09.2000-22.09.2000] Grant ostatní: ÚT AV ČR(XC) PP30/5U Keywords : high-speed * aerodynamic Subject RIV: BK - Fluid Dynamics
Experimental Investigation on Airfoil Shock Control by Plasma Aerodynamic Actuation
An experimental investigation on airfoil (NACA64—215) shock control is performed by plasma aerodynamic actuation in a supersonic tunnel (Ma = 2). The results of schlieren and pressure measurement show that when plasma aerodynamic actuation is applied, the position moves forward and the intensity of shock at the head of the airfoil weakens. With the increase in actuating voltage, the total pressure measured at the head of the airfoil increases, which means that the shock intensity decreases and the control effect increases. The best actuation effect is caused by upwind-direction actuation with a magnetic field, and then downwind-direction actuation with a magnetic field, while the control effect of aerodynamic actuation without a magnetic field is the most inconspicuous. The mean intensity of the normal shock at the head of the airfoil is relatively decreased by 16.33%, and the normal shock intensity is relatively reduced by 27.5% when 1000 V actuating voltage and upwind-direction actuation are applied with a magnetic field. This paper theoretically analyzes the Joule heating effect generated by DC discharge and the Lorentz force effect caused by the magnetic field. The discharge characteristics are compared for all kinds of actuation conditions to reveal the mechanism of shock control by plasma aerodynamic actuation
Computational aerodynamic analysis on perimeter reinforced (PR)-compliant wing
NI Ismail; AH Zulkifli; MZ Abdullah; M Hisyam Basri; Norazharuddin Shah Abdullah
2013-01-01
Implementing the morphing technique on a micro air vehicle (MAV) wing is a very chal-lenging task, due to the MAV’s wing size limitation and the complex morphing mechanism. As a result, understanding aerodynamic characteristics and flow configurations, subject to wing structure deformation of a morphing wing MAV has remained obstructed. Thus, this paper presents the investigation of structural deformation, aerodynamics performance and flow formation on a pro-posed twist morphing MAV wing design named perimeter reinforced (PR)-compliant wing. The numerical simulation of two-way fluid structure interaction (FSI) investigation consist of a quasi-static aeroelastic structural analysis coupled with 3D incompressible Reynolds-averaged Navier-Stokes and shear-stress-transport (RANS-SST) solver utilized throughout this study. Verification of numerical method on a rigid rectangular wing achieves a good correlation with available exper-imental results. A comparative aeroelastic study between PR-compliant to PR and rigid wing per-formance is organized to elucidate the morphing wing performances. Structural deformation results show that PR-compliant wing is able to alter the wing’s geometric twist characteristic, which has directly influenced both the overall aerodynamic performance and flow structure behavior. Despite the superior lift performance result, PR-compliant wing also suffers from massive drag penalty, which has consequently affected the wing efficiency in general. Based on vortices investigation, the results reveal the connection between these aerodynamic performances with vortices formation on PR-compliant wing.
Research on the Aerodynamic Resistance of Trickle Biofilter
Alvydas Zagorskis
2011-12-01
Full Text Available A four – section trickle biofilter was constructed for experimental research. The filter was filled with the packing material of artificial origin. The material consists of plastic balls having a large surface area. The dependence of biofilter aerodynamic resistance on supply air flow rate and the number of filter sections was determined. The aerodynamic resistance of the biofilter was measured in two cases. In the first case, the packing material of the filter was dry, whereas in the second case it was wet. The experimental research determined that an increase in the air flow rate from 0.043 m/s to 0.076 m/s causes an increase in biofilter aerodynamic resistance from 30.5 to 62.5 Pa after measuring four layers of dry packing material. In case of wet packing material, biofilter aerodynamic resistance after measuring four layers of plastic balls increases from 42.1 to 90.4 Pa.Article in Lithuanian
Aerodynamic Profiles of Women with Muscle Tension Dysphonia/Aphonia
Gillespie, Amanda I.; Gartner-Schmidt, Jackie; Rubinstein, Elaine N.; Abbott, Katherine Verdolini
2013-01-01
Purpose: In this study, the authors aimed to (a) determine whether phonatory airflows and estimated subglottal pressures (est-P[subscript sub]) for women with primary muscle tension dysphonia/aphonia (MTD/A) differ from those for healthy speakers; (b) identify different aerodynamic profile patterns within the MTD/A subject group; and (c) determine…
Improving the efficiency of aerodynamic shape optimization on unstructured meshes
Carpentieri, G.; Tooren, M.J.L. van; Koren, B.
2006-01-01
In this paper the exact discrete adjoint of a finite volume formulation on unstructured meshes for the Euler equations in two dimensions is derived and implemented to support aerodynamic shape optimization. The accuracy of the discrete exact adjoint is demonstrated and compared with that of the appr
Tip Cascade Aerodynamics of Turbine Rotor Blade 1220 mm
Rudas, B.; Synáč, J.; Šťastný, M.; Luxa, Martin; Šimurda, David; Šafařík, Pavel
Plzeň: Západočeská univerzita v Plzni, 2010, s. 1-6. ISBN N. [Turbostroje 2010. Plzeň (CZ), 22.09.2010-23.09.2010] Institutional research plan: CEZ:AV0Z20760514 Keywords : tip blade cascade * CFD simulation * high-speed aerodynamic Subject RIV: BK - Fluid Dynamics
Experimental Investigation of Aerodynamic Instability of Iced Bridge Cable Sections
Koss, Holger; Lund, Mia Schou Møller
2013-01-01
The accretion of ice on structural bridge cables changes the aerodynamic conditions of the surface and influences hence the acting wind load process. Full-scale monitoring indicates that light precipitation at moderate low temperatures between zero and -5°C may lead to large amplitude vibrations of...... load coefficients and experimental simulation on a 1DOF elastically suspended cable section....
Laryngeal Aerodynamics Associated with Oral Contraceptive Use: Preliminary Findings
Gorham-Rowan, Mary; Fowler, Linda
2009-01-01
The purpose of this study was to examine possible differences in laryngeal aerodynamic measures during connected speech associated with oral contraceptive (OC) use. Eight women taking an OC, and eight others not taking an OC, participated in the study. Three trials of syllable /p[subscript alpha] /repetitions were obtained using a…
Unsteady Aerodynamic Flow Control of a Suspended Axisymmetric Moving Platform
Lambert, Thomas; Vukasinovic, Bojan; Glezer, Ari
2011-11-01
The aerodynamic forces on an axisymmetric wind tunnel model are altered by fluidic interaction of an azimuthal array of integrated synthetic jet actuators with the cross flow. Four-quadrant actuators are integrated into a Coanda surface on the aft section of the body, and the jets emanate from narrow, azimuthally segmented slots equally distributed around the model's perimeter. The model is suspended in the tunnel using eight wires each comprising miniature in-line force sensors and shape-memory-alloy (SMA) strands that are used to control the instantaneous forces and moments on the model and its orientation. The interaction of the actuation jets with the flow over the moving model is investigated using PIV and time-resolved force measurements to assess the transitory aerodynamic loading effected by coupling between the induced motion of the aerodynamic surface and the fluid dynamics that is driven by the actuation. It is shown that these interactions can lead to effective control of the aerodynamic forces and moments, and thereby of the model's motion. Supported by ARO.
CHSSI Software for Geometrically Complex Unsteady Aerodynamic Applications
Chan, William M.; Meakin, Robert L.; Potsdam, Mark A.
2001-01-01
A comprehensive package of scalable overset grid CFD software is reviewed. The software facilitates accurate simulation of complete aircraft aerodynamics, including viscous effects, unsteadiness, and relative motion between component parts. The software significantly lowers the manpower and computer costs normally associated with such efforts. The software is discussed in terms of current capabilities and planned future enhancements.
Computations of Aerodynamic Performance Databases Using Output-Based Refinement
Nemec, Marian; Aftosmis, Michael J.
2009-01-01
Objectives: Handle complex geometry problems; Control discretization errors via solution-adaptive mesh refinement; Focus on aerodynamic databases of parametric and optimization studies: 1. Accuracy: satisfy prescribed error bounds 2. Robustness and speed: may require over 105 mesh generations 3. Automation: avoid user supervision Obtain "expert meshes" independent of user skill; and Run every case adaptively in production settings.
Plasma Aerodynamic Control Effectors for Improved Wind Turbine Performance
Mehul P. Patel; Srikanth Vasudevan; Robert C. Nelson; Thomas C. Corke
2008-08-01
Orbital Research Inc is developing an innovative Plasma Aerodynamic Control Effectors (PACE) technology for improved performance of wind turbines. The PACE system is aimed towards the design of "smart" rotor blades to enhance energy capture and reduce aerodynamic loading and noise using flow-control. The PACE system will provide ability to change aerodynamic loads and pitch distribution across the wind turbine blade without any moving surfaces. Additional benefits of the PACE system include reduced blade structure weight and complexity that should translate into a substantially reduced initial cost. During the Phase I program, the ORI-UND Team demonstrated (proof-of-concept) performance improvements on select rotor blade designs using PACE concepts. Control of both 2-D and 3-D flows were demonstrated. An analytical study was conducted to estimate control requirements for the PACE system to maintain control during wind gusts. Finally, independent laboratory experiments were conducted to identify promising dielectric materials for the plasma actuator, and to examine environmental effects (water and dust) on the plasma actuator operation. The proposed PACE system will be capable of capturing additional energy, and reducing aerodynamic loading and noise on wind turbines. Supplementary benefits from the PACE system include reduced blade structure weight and complexity that translates into reduced initial capital costs.
Innovation in Aerodynamic Design Features of Soviet Missiles
Spearman, M. Leroy
2006-01-01
Wind tunnel investigations of some tactical and strategic missile systems developed by the former Soviet Union have been included in the basic missile research programs of the NACA/NASA. Studies of the Soviet missiles sometimes revealed innovative design features that resulted in unusual or unexpected aerodynamic characteristics. In some cases these characteristics have been such that the measured performance of the missile exceeds what might have been predicted. In other cases some unusual design features have been found that would alleviate what might otherwise have been a serious aerodynamic problem. In some designs, what has appeared to be a lack of refinement has proven to be a matter of expediency. It is a purpose of this paper to describe some examples of unusual design features of some Soviet missiles and to illustrate the effectiveness of the design features on the aerodynamic behavior of the missile. The paper draws on the experience of the author who for over 60 years was involved in the aerodynamic wind tunnel testing of aircraft and missiles with the NACA/NASA.
Mechanism of unconventional aerodynamic characteristics of an elliptic airfoil
Sun Wei
2015-06-01
Full Text Available The aerodynamic characteristics of elliptic airfoil are quite different from the case of conventional airfoil for Reynolds number varying from about 104 to 106. In order to reveal the fundamental mechanism, the unsteady flow around a stationary two-dimensional elliptic airfoil with 16% relative thickness has been simulated using unsteady Reynolds-averaged Navier–Stokes equations and the γ-Reθt‾ transition turbulence model at different angles of attack for flow Reynolds number of 5 × 105. The aerodynamic coefficients and the pressure distribution obtained by computation are in good agreement with experimental data, which indicates that the numerical method works well. Through this study, the mechanism of the unconventional aerodynamic characteristics of airfoil is analyzed and discussed based on the computational predictions coupled with the wind tunnel results. It is considered that the boundary layer transition at the leading edge and the unsteady flow separation vortices at the trailing edge are the causes of the case. Furthermore, a valuable insight into the physics of how the flow behavior affects the elliptic airfoil’s aerodynamics is provided.
Aerodynamic Characteristic of the Active Compliant Trailing Edge Concept
Nie, Rui; Qiu, Jinhao; Ji, Hongli; Li, Dawei
2016-06-01
This paper introduces a novel Morphing Wing structure known as the Active Compliant Trailing Edge (ACTE). ACTE structures are designed using the concept of “distributed compliance” and wing skins of ACTE are fabricated from high-strength fiberglass composites laminates. Through the relative sliding between upper and lower wing skins which are connected by a linear guide pairs, the wing is able to achieve a large continuous deformation. In order to present an investigation about aerodynamics and noise characteristics of ACTE, a series of 2D airfoil analyses are established. The aerodynamic characteristics between ACTE and conventional deflection airfoil are analyzed and compared, and the impacts of different ACTE structure design parameters on aerodynamic characteristics are discussed. The airfoils mentioned above include two types (NACA0012 and NACA64A005.92). The computing results demonstrate that: compared with the conventional plane flap airfoil, the morphing wing using ACTE structures has the capability to improve aerodynamic characteristic and flow separation characteristic. In order to study the noise level of ACTE, flow field analysis using LES model is done to provide noise source data, and then the FW-H method is used to get the far field noise levels. The simulation results show that: compared with the conventional flap/aileron airfoil, the ACTE configuration is better to suppress the flow separation and lower the overall sound pressure level.
Numerical investigation of wind turbine and wind farm aerodynamics
Selvaraj, Suganthi
A numerical method based on the solution of Reynolds Averaged Navier Stokes equations and actuator disk representation of turbine rotor is developed and implemented in the OpenFOAM software suite for aerodynamic analysis of horizontal axis wind turbines (HAWT). The method and the implementation are validated against the 1-D momentum theory, the blade element momentum theory and against experimental data. The model is used for analyzing aerodynamics of a novel dual rotor wind turbine concept and wind farms. Horizontal axis wind turbines suffer from aerodynamic inefficiencies in the blade root region (near the hub) due to several non-aerodynamic constraints (e.g., manufacturing, transportation, cost, etc.). A new dual-rotor wind turbine (DRWT) concept is proposed that aims at mitigating these losses. A DRWT is designed using an existing turbine rotor for the main rotor (Risoe turbine and NREL 5 MW turbine), while the secondary rotor is designed using a high lift to drag ratio airfoil (the DU 96 airfoil from TU Delft). The numerical aerodynamic analysis method developed as a part of this thesis is used to optimize the design. The new DRWT design gives an improvement of about 7% in aerodynamic efficiency over the single rotor turbine. Wind turbines are typically deployed in clusters called wind farms. HAWTs also suffer from aerodynamic losses in a wind farm due to interactions with wind turbine wakes. An interesting mesoscale meteorological phenomenon called "surface flow convergence" believed to be caused by wind turbine arrays is investigated using the numerical method developed here. This phenomenon is believed to be caused by the pressure gradient set up by wind turbines operating in close proximity in a farm. A conceptual/hypothetical wind farm simulation validates the hypothesis that a pressure gradient is setup in wind farms due to turbines and that it can cause flow veering of the order of 10 degrees. Simulations of a real wind farm (Story County) are also
Analytical Aerodynamic Simulation Tools for Vertical Axis Wind Turbines
Wind power is a renewable energy source that is today the fastest growing solution to reduce CO2 emissions in the electric energy mix. Upwind horizontal axis wind turbine with three blades has been the preferred technical choice for more than two decades. This horizontal axis concept is today widely leading the market. The current PhD thesis will cover an alternative type of wind turbine with straight blades and rotating along the vertical axis. A brief overview of the main differences between the horizontal and vertical axis concept has been made. However the main focus of this thesis is the aerodynamics of the wind turbine blades. Making aerodynamically efficient turbines starts with efficient blades. Making efficient blades requires a good understanding of the physical phenomena and effective simulations tools to model them. The specific aerodynamics for straight bladed vertical axis turbine flow are reviewed together with the standard aerodynamic simulations tools that have been used in the past by blade and rotor designer. A reasonably fast (regarding computer power) and accurate (regarding comparison with experimental results) simulation method was still lacking in the field prior to the current work. This thesis aims at designing such a method. Analytical methods can be used to model complex flow if the geometry is simple. Therefore, a conformal mapping method is derived to transform any set of section into a set of standard circles. Then analytical procedures are generalized to simulate moving multibody sections in the complex vertical flows and forces experienced by the blades. Finally the fast semi analytical aerodynamic algorithm boosted by fast multipole methods to handle high number of vortices is coupled with a simple structural model of the rotor to investigate potential aeroelastic instabilities. Together with these advanced simulation tools, a standard double multiple streamtube model has been developed and used to design several straight bladed
Swept-Wing Ice Accretion Characterization and Aerodynamics
Broeren, Andy P.; Potapczuk, Mark G.; Riley, James T.; Villedieu, Philippe; Moens, Frederic; Bragg, Michael B.
2013-01-01
NASA, FAA, ONERA, the University of Illinois and Boeing have embarked on a significant, collaborative research effort to address the technical challenges associated with icing on large-scale, three-dimensional swept wings. The overall goal is to improve the fidelity of experimental and computational simulation methods for swept-wing ice accretion formation and resulting aerodynamic effect. A seven-phase research effort has been designed that incorporates ice-accretion and aerodynamic experiments and computational simulations. As the baseline, full-scale, swept-wing-reference geometry, this research will utilize the 65 percent scale Common Research Model configuration. Ice-accretion testing will be conducted in the NASA Icing Research Tunnel for three hybrid swept-wing models representing the 20, 64 and 83 percent semispan stations of the baseline-reference wing. Threedimensional measurement techniques are being developed and validated to document the experimental ice-accretion geometries. Artificial ice shapes of varying geometric fidelity will be developed for aerodynamic testing over a large Reynolds number range in the ONERA F1 pressurized wind tunnel and in a smaller-scale atmospheric wind tunnel. Concurrent research will be conducted to explore and further develop the use of computational simulation tools for ice accretion and aerodynamics on swept wings. The combined results of this research effort will result in an improved understanding of the ice formation and aerodynamic effects on swept wings. The purpose of this paper is to describe this research effort in more detail and report on the current results and status to date.
Investigation of the transient aerodynamic phenomena associated with passing manoeuvres
Noger, C.; Regardin, C.; Széchényi, E.
2005-11-01
Passing manoeuvres and crosswind can have significant effects on the stability of road vehicles. The transient aerodynamics, which interacts with suspension, steering geometry and driver reaction is not well understood. When two vehicles overtake or cross, they mutually influence the flow field around each other, and under certain conditions, can generate severe gust loads that act as additional forces on both vehicles. The transient forces acting on them are a function of the longitudinal and transverse spacings and of the relative velocity between the two vehicles. Wind tunnel experiments have been conducted in one of the automotive wind tunnels of the Institut Aérotechnique of Saint-Cyr l’École to simulate the transient overtaking process between two models of a simple generic automobile shape. The tests were designed to study the effects of various parameters such as the longitudinal and transverse spacing, the relative velocity and the crosswind on the aerodynamic forces and moments generated on the overtaken and overtaking vehicles. Test results characterize the transient aerodynamic side force as well as the yawing moment coefficients in terms of these parameters. Measurements of the drag force coefficient as well as the static pressure distribution around the overtaken vehicle complete the understanding. The main results indicate the aerodynamic coefficients of the overtaken vehicle to be velocity independent within the limit of the test parameters, while unsteady aerodynamic effects appear in the case of an overtaking vehicle. The mutual interference effects between the vehicles vary as a linear function of the transverse spacing and the crosswind does not really generate any new unsteady behaviour.
Morelli, Eugene A.; Cunningham, Kevin; Hill, Melissa A.
2013-01-01
Flight test and modeling techniques were developed for efficiently identifying global aerodynamic models that can be used to accurately simulate stall, upset, and recovery on large transport airplanes. The techniques were developed and validated in a high-fidelity fixed-base flight simulator using a wind-tunnel aerodynamic database, realistic sensor characteristics, and a realistic flight deck representative of a large transport aircraft. Results demonstrated that aerodynamic models for stall, upset, and recovery can be identified rapidly and accurately using relatively simple piloted flight test maneuvers. Stall maneuver predictions and comparisons of identified aerodynamic models with data from the underlying simulation aerodynamic database were used to validate the techniques.
OPTIMIZATION OF AERODYNAMIC CONDITIONS OF THE CHAMBER DRIER OPERATION
V. A. Sychevsky
2016-05-01
Full Text Available Wood utilization is a critical direction of the industrial production advancement, where desiccation of wood holds a prominent place. Convective drying in chamber driers is the presentday dominant technique for wood desiccation. Nevertheless, available scientific literature on the subject does not place high emphasis on the issue of gas flow structure inside the drier installations and, in particular, in the clearance between horizontal rows of stacked saw timber. Whereas, the air flowing between horizontal rows facilitates wood heating and moisture removing from the boundary layer. The present article studies aerodynamics of the experimental timber drying test stand at the A. V. Luikov Heat and Mass Transfer Institute of NAS of Belarus. The timber drying test stand geometry structure is complicated, which is why aerodynamics valuation of the drier agent in the chamber involves the software system ANSYS Fluent 14.5. For that end, the researchers developed the convective drier installation geometrical model. A physico-mathematical simulation was developed for sawn timber convective drying aerodynamics in the timber drying test stand of the Heat and Mass Transfer Institute. Based on the computations made, the drier agent flow configuration was analyzed, stagnant pockets identified. It was found that the timber drying test stand was not operating within its optimal aerodynamic conditions. The drying chamber optimal aerodynamic conditions determination includes accounting for an additional canal between the chamber rear wall and the timber stack, absence of the screen above the stack, and presence of the screen between the floor and the stack. As well as variation of the drying agent speed, pressure differrential at the blower, the inter-row gobb amount variation. The paper offers recommendations on optimizing the drying installation aerodynamics based on the numerical simulation results. To this effect, speed of the drier agent in the chamber
Effects of ice accretion on the aerodynamics of bridge cables
Demartino, C.; Koss, Holger; Georgakis, Christos T.;
2015-01-01
temperature, wind speed and yaw angle of accretion, were reproduced in a climatic wind tunnel, giving rise to different types of accretion. These were chosen such to generate the most common natural ice formations expected to produce bridge cable vibrations. A description of the geometric characteristics of......Undesirable wind induced vibrations of bridge cables can occur when atmospheric conditions are such to generate ice accretion. This paper contains the results of an extensive investigation of the effects of ice accretion due to in-cloud icing, on the aerodynamic characteristics of bridge hangers...... and stay cables. The aim of this paper is twofold; first, it was investigated the ice accretion process and the final shape of the ice accreted; then the aerodynamics of the ice accreted bridge cables was characterized, and related to the ice shape. Different climatic conditions, i.e. combinations of...
Sparse Sensing of Aerodynamic Loads on Insect Wings
Manohar, Krithika; Brunton, Steven; Kutz, J. Nathan
2015-11-01
We investigate how insects use sparse sensors on their wings to detect aerodynamic loading and wing deformation using a coupled fluid-structure model given periodically flapping input motion. Recent observations suggest that insects collect sensor information about their wing deformation to inform control actions for maneuvering and rejecting gust disturbances. Given a small number of point measurements of the chordwise aerodynamic loads from the sparse sensors, we reconstruct the entire chordwise loading using sparsesensing - a signal processing technique that reconstructs a signal from a small number of measurements using l1 norm minimization of sparse modal coefficients in some basis. We compare reconstructions from sensors randomly sampled from probability distributions biased toward different regions along the wing chord. In this manner, we determine the preferred regions along the chord for sensor placement and for estimating chordwise loads to inform control decisions in flight.
Aerodynamic Analysis of Trailing Edge Enlarged Wind Turbine Airfoils
Xu, Haoran; Shen, Wen Zhong; Zhu, Wei Jun; Yang, Hua; Liu, Chao
2014-01-01
The aerodynamic performance of blunt trailing edge airfoils generated from the DU- 91-W2-250, DU-97-W-300 and DU-96-W-350 airfoils by enlarging the thickness of trailing edge symmetrically from the location of maximum thickness to chord to the trailing edge were analyzed by using CFD and RFOIL...... methods at a chord Reynolds number of 3 × 106. The goal of this study is to analyze the aerodynamic performance of blunt trailing edge airfoils with different thicknesses of trailing edge and maximum thicknesses to chord. The steady results calculated by the fully turbulent k-ω SST, transitional k-ω SST...... model and RFOIL all show that with the increase of thickness of trailing edge, the linear region of lift is extended and the maximum lift also increases, the increase rate and amount of lift become limited gradually at low angles of attack, while the drag increases dramatically. For thicker airfoils...
Aerodynamic performance of an annular classical airfoil cascade
Bergsten, D. E.; Stauter, R. C.; Fleeter, S.
1983-01-01
Results are presented for a series of experiments that were performed in a large-scale subsonic annular cascade facility that was specifically designed to provide three-dimensional aerodynamic data for the verification of numerical-calculation codes. In particular, the detailed three-dimensional aerodynamic performance of a classical flat-plate airfoil cascade is determined for angles of incidence of 0, 5, and 10 deg. The resulting data are analyzed and are correlated with predictions obtained from NASA's MERIDL and TSONIC numerical programs. It is found that: (1) at 0 and 5 deg, the airfoil surface data show a good correlation with the predictions; (2) at 10 deg, the data are in fair agreement with the numerical predictions; and (3) the two-dimensional Gaussian similarity relationship is appropriate for the wake velocity profiles in the mid-span region of the airfoil.
Aerodynamic Limits on Large Civil Tiltrotor Sizing and Efficiency
Acree, C W., Jr.
2014-01-01
The NASA Large Civil Tiltrotor (2nd generation, or LCTR2) has been the reference design for avariety of NASA studies of design optimization, engine and gearbox technology, handling qualities, andother areas, with contributions from NASA Ames, Glenn and Langley Centers, plus academic and industrystudies. Ongoing work includes airfoil design, 3D blade optimization, engine technology studies, andwingrotor aerodynamic interference. The proposed paper will bring the design up to date with the latestresults of such studies, then explore the limits of what aerodynamic improvements might hope toaccomplish. The purpose is two-fold: 1) determine where future technology studies might have the greatestpayoff, and 2) establish a stronger basis of comparison for studies of other vehicle configurations andmissions.
BTT autopilot design for agile missiles with aerodynamic uncer tainty
Yueyue Ma; Jie Guo; Shengjing Tang
2015-01-01
The approach to the synthesis of autopilot with aerody-namic uncertainty is investigated in order to achieve large maneu-verability of agile missiles. The dynamics of the agile missile with reaction-jet control system (RCS) are presented. Subsequently, the cascade control scheme based on the bank-to-turn (BTT) steering technique is described. To address the aerodynamic un-certainties encountered by the control system, the active distur-bance rejection control (ADRC) method is introduced in the autopi-lot design. Furthermore, a compound control er, using extended state observer (ESO) to online estimate system uncertainties and calculate derivative of command signals, is designed based on dynamic surface control (DSC). Nonlinear simulation results show the feasibility of the proposed approach and validate the robust-ness of the control er with severe unmodeled dynamics.
Wind turbine aerodynamic response under atmospheric icing conditions
Etemaddar, M.; Hansen, Martin Otto Laver; Moan, T.
2014-01-01
This article deals with the atmospheric ice accumulation on wind turbine blades and its effect on the aerodynamic performance and structural response. The role of eight atmospheric and system parameters on the ice accretion profiles was estimated using the 2D ice accumulation software lewice Twenty...... Wind Power using a NACA64618 airfoil. The effects of changes in geometry and surface roughness are considered in the simulation. A blade element momentum code WT-Perf is then used to quantify the degradation in performance curves. The dynamic responses of the wind turbine under normal and iced......-four hours of icing, with time varying wind speed and atmospheric icing conditions, was simulated on a rotor. Computational fluid dynamics code, FLUENT, was used to estimate the aerodynamic coefficients of the blade after icing. The results were also validated against wind tunnel measurements performed at LM...
Aerodynamic Database Development for Mars Smart Lander Vehicle Configurations
Bobskill, Glenn J.; Parikh, Paresh C.; Prabhu, Ramadas K.; Tyler, Erik D.
2002-01-01
An aerodynamic database has been generated for the Mars Smart Lander Shelf-All configuration using computational fluid dynamics (CFD) simulations. Three different CFD codes, USM3D and FELISA, based on unstructured grid technology and LAURA, an established and validated structured CFD code, were used. As part of this database development, the results for the Mars continuum were validated with experimental data and comparisons made where applicable. The validation of USM3D and LAURA with the Unitary experimental data, the use of intermediate LAURA check analyses, as well as the validation of FELISA with the Mach 6 CF(sub 4) experimental data provided a higher confidence in the ability for CFD to provide aerodynamic data in order to determine the static trim characteristics for longitudinal stability. The analyses of the noncontinuum regime showed the existence of multiple trim angles of attack that can be unstable or stable trim points. This information is needed to design guidance controller throughout the trajectory.
Experimental investigation of nanosecond discharge plasma aerodynamic actuation
Wu Yun; Li Ying-Hong; Jia Min; Liang Hua; Song Hui-Min
2012-01-01
In this paper we report on an experimental study of the characteristics of nanosecond pulsed discharge plasma aerodynamic actuation. The N2 (C3Ⅱu) rotational and vibrational temperatures are around 430 K and 0.24 eV,respectively. The emission intensity ratio between the first negative system and the second positive system of N2,as a rough indicator of the temporally and spatially averaged electron energy,has a minor dependence on applied voltage amplitude.The induced flow direction is not parallel,but vertical to the dielectric layer surface,as shown by measurements of body force,velocity,and vorticity.Nanosecond discharge plasma aerodynamic actuation is effective in airfoil flow separation control at freestream speeds up to 100 m/s.
Implementation of an aerodynamic lens for TRIGA-SPEC
Grund, J.; Düllmann, Ch. E.; Eberhardt, K.; Nagy, Sz.; van de Laar, J. J. W.; Renisch, D.; Schneider, F.
2016-06-01
We report on the optimization of the gas-jet system employed to couple the TRIGA-SPEC experiment to the research reactor TRIGA Mainz. CdI2 aerosol particles suspended in N2 as carrier gas are used for an effective transport of fission products from neutron induced 235 U fission from the target chamber to a surface ion source. Operating conditions of the gas-jet were modified to enable the implementation of an aerodynamic lens, fitting into the limited space available in front of the ion source. The lens boosts the gas-jet efficiency by a factor of 4-10. The characterization of the gas-jet system as well as the design of the aerodynamic lens and efficiency studies are presented and discussed.
Aerodynamic characteristics research on wide-speed range waverider configuration
无
2009-01-01
Waverider generated from a given flow field has a high lift-to-drag ratio because of attached bow shock on leading edge. However, leading edge blunt and off-design condition can make bow shock off leading edge and have unfavorable influence on aerodynamic characteristics. So these two problems have always been concerned as important engineering science issues by aeronautical engineering scientists. In this paper, through respectively using low speed and high speed waverider design principles, a wide-speed rang vehicle is designed, which can level takeoff and accelerate to hypersonic speed for cruise. In addition, sharp leading edge is blunted to alleviated aeroheating. Theoretical study and wind tunnel test show that this vehicle has good aerodynamic performance in wide-speed range of subsonic, transonic, supersonic and hypersonic speeds.
Aerodynamic Heating in Hypersonic Boundary Layers:\\ Role of Dilatational Waves
Zhu, Yiding; Wu, Jiezhi; Chen, Shiyi; Lee, Cunbiao; Gad-el-Hak, Mohamed
2016-01-01
The evolution of multi-mode instabilities in a hypersonic boundary layer and their effects on aerodynamic heating are investigated. Experiments are conducted in a Mach 6 wind tunnel using Rayleigh-scattering flow visualization, fast-response pressure sensors, fluorescent temperature-sensitive paint (TSP), and particle image velocimetry (PIV). Calculations are also performed based on both parabolized stability equations (PSE) and direct numerical simulations (DNS). It is found that second-mode dilatational waves, accompanied by high-frequency alternating fluid compression and expansion, produce intense aerodynamic heating in a small region that rapidly heats the fluid passing through it. As a result, the surface temperature rapidly increases and results in an overshoot over the nominal transitional value. When the dilatation waves decay downstream, the surface temperature decreases gradually until transition is completed. A theoretical analysis is provided to interpret the temperature distribution affected by ...
Influence of a humidor on the aerodynamics of baseballs
Meyer, Edmund R.; Bohn, John L.
2008-11-01
We investigate whether storing baseballs in a controlled humidity environment significantly affects their aerodynamic properties. We measure the change in diameter and weight of baseballs as a function of relative humidity in which the balls are stored. The trajectories of pitched and batted baseballs are modeled to assess the difference between those stored at 30% relative humidity versus 50% relative humidity. We find that a drier baseball will curve slightly more than a humidified one for a given pitch velocity and rotation rate. We also find that aerodynamics alone would add 2ft to the distance a wetter baseball ball is hit. This increased distance is compensated by a 6ft reduction in the batted distance due to the change in the coefficient of restitution of the ball. We discuss consequences of these results for baseball played at Coors Field in Denver, where baseballs have been stored in a humidor at 50% relative humidity since 2002.
Aerodynamic optimization by simultaneously updating flow variables and design parameters
Rizk, M. H.
1990-01-01
The application of conventional optimization schemes to aerodynamic design problems leads to inner-outer iterative procedures that are very costly. An alternative approach is presented based on the idea of updating the flow variable iterative solutions and the design parameter iterative solutions simultaneously. Two schemes based on this idea are applied to problems of correcting wind tunnel wall interference and optimizing advanced propeller designs. The first of these schemes is applicable to a limited class of two-design-parameter problems with an equality constraint. It requires the computation of a single flow solution. The second scheme is suitable for application to general aerodynamic problems. It requires the computation of several flow solutions in parallel. In both schemes, the design parameters are updated as the iterative flow solutions evolve. Computations are performed to test the schemes' efficiency, accuracy, and sensitivity to variations in the computational parameters.
Aerodynamic characteristics of missile configurations based on Soviet design concepts
Spearman, M. L.
1979-01-01
The aerodynamic characteristics of several missile concepts are examined. The configurations, which are based on some typical Soviet design concepts, include fixed-wing missiles with either forward- or aft-tail controls, and wing-control missiles with fixed aft stabilizing surfaces. The conceptual missions include air-to-air, surface-to-air, air-to-surface, and surface-to-surface. Analytical and experimental results indicate that through the proper shaping and location of components, and through the exploitation of local flow fields, the concepts provide generally good stability characteristics, high control effectiveness, and low control hinge moments. In addition, in the case of some cruise-type missions, there are indications of the application of area ruling as a means of improving the aerodynamic efficiency. In general, a point-design philosophy is indicated whereby a particular configuration is developed for performing a particular mission.
Study on Aerodynamic Design Optimization of Turbomachinery Blades
Naixing CHEN; Hongwu ZHANG; Weiguang HUANG; Yanji XU
2005-01-01
This paper describes the study on aerodynamics design optimization of turbomachinery blading developed by the authors at the Institute of Engineering Thermophysics, Chinese Academy of Sciences, during the recent few years. The present paper describes the aspects mainly on how to use a rapid approach of profiling a 3D blading and of grid generation for computation, a fast and accurate viscous computation method and an appropriate optimization methodology_ including a blade parameterization algorithm to optimize turbomachinery blading aerodynamically. Any blade configuration can be expressed by three curves, they are the camber lines, the thickness distributions and the radial stacking line, and then the blade geometry can be easily parameterized by a number of parameters with three polynomials. A gradient-based parameterization analytical method and a response surface method were applied herein for blade optimization. It was found that the optimization process provides reliable design for turbomachinery with reasonable computing time.
Test results of aerodynamic support of an industrial turbolower rotor
Šimek, J.; Kozánek, Jan; Šafr, M.
Praha : Ústav termomechaniky AV ČR, 2006 - (Pešek, L.), s. 139-144 ISBN 80-85918-97-8. [Dynamics of machines 2006 : colloquium. Praha (CZ), 07.02.2006-08.02.2006] R&D Projects: GA AV ČR(CZ) IBS2076301 Institutional research plan: CEZ:AV0Z20760514 Keywords : aerodynamic bearings * tilting- pad journal bearing * gimbal suspension Subject RIV: BI - Acoustics
Effect of aerodynamic bearings nonlinearity on the rotor motion
Půst, Ladislav; Kozánek, Jan
Vienna : Vienna University, 2006 - (Springer, H.; Ecker, H.), s. 1-10 ISBN 3-200-00689-7. [IFToMM International Conference on Rotor Dynamics /7./. Vídeň (AT), 25.09.2006-28.09.2006] R&D Projects: GA ČR(CZ) GA101/06/1787 Institutional research plan: CEZ:AV0Z20760514 Keywords : aerodynamic bearing * rotor vibrations * nonlinear stiffness Subject RIV: BI - Acoustics
Quasi-3d aerodynamic code for analyzing dynamic flap response
Ramos García, Néstor; Sørensen, Jens Nørkær; Shen, Wen Zhong
2011-01-01
A computational model for predicting the aerodynamic behavior of wind turbine airfoil profiles subjected to steady and unsteady motions has been developed. The model is based on a viscous-inviscid interaction technique using strong coupling between the viscous and inviscid parts. The inviscid part is modeled using a panel method whereas the viscous part is modeled by using the integral form of the the laminar and turbulent boundary layer equations and with extensions for 3-D rotational effect...
Advanced Modelling of Helicopter Nonlinear Dynamics and Aerodynamics
Castillo-Rivera, Salvador
2014-01-01
The work presented here provides a comprehensive dynamic and aerodynamic helicopter model. The possible applications of this work are wide including, control systems applications, reference and trajectory tracking methods implementation amongst others. The model configuration corresponds to a Sikorsky helicopter; a main rotor in perpendicular combination with a tail rotor. Also, a particular model of unmanned aerial vehicle has been modelled as part of collaboration with the La Laguna Univers...
Review of computational fluid dynamics for wind turbine wake aerodynamics
Sanderse, Benjamin; Pijl, van der, W.; Koren, Barry
2011-01-01
This article reviews the state-of-the-art numerical calculation of wind turbine wake aerodynamics. Different computational fluid dynamics techniques for modeling the rotor and the wake are discussed. Regarding rotor modeling, recent advances in the generalized actuator approach and the direct model are discussed, as far as it attributes to the wake description. For the wake, the focus is on the different turbulence models that are employed to study wake effects on downstream turbines.