Noise aspects at aerodynamic blade optimisation projects
International Nuclear Information System (INIS)
The Netherlands Energy Research Foundation (ECN) has often been involved in industrial projects, in which blade geometries are created automatic by means of numerical optimisation. Usually, these projects aim at the determination of the aerodynamic optimal wind turbine blade, i.e. the goal is to design a blade which is optimal with regard to energy yield. In other cases, blades have been designed which are optimal with regard to cost of generated energy. However, it is obvious that the wind turbine blade designs which result from these optimisations, are not necessarily optimal with regard to noise emission. In this paper an example is shown of an aerodynamic blade optimisation, using the ECN-program PVOPT. PVOPT calculates the optimal wind turbine blade geometry such that the maximum energy yield is obtained. Using the aerodynamic optimal blade design as a basis, the possibilities of noise reduction are investigated. 11 figs., 8 refs
Noise aspects at aerodynamic blade optimisation projects
Energy Technology Data Exchange (ETDEWEB)
Schepers, J.G. [Netherlands Energy Research Foundation, Petten (Netherlands)
1997-12-31
This paper shows an example of an aerodynamic blade optimisation, using the program PVOPT. PVOPT calculates the optimal wind turbine blade geometry such that the maximum energy yield is obtained. Using the aerodynamic optimal blade design as a basis, the possibilities of noise reduction are investigated. The aerodynamic optimised geometry from PVOPT is the `real` optimum (up to the latest decimal). The most important conclusion from this study is, that it is worthwhile to investigate the behaviour of the objective function (in the present case the energy yield) around the optimum: If the optimum is flat, there is a possibility to apply modifications to the optimum configuration with only a limited loss in energy yield. It is obvious that the modified configurations emits a different (and possibly lower) noise level. In the BLADOPT program (the successor of PVOPT) it will be possible to quantify the noise level and hence to assess the reduced noise emission more thoroughly. At present the most promising approaches for noise reduction are believed to be a reduction of the rotor speed (if at all possible), and a reduction of the tip angle by means of low lift profiles, or decreased twist at the outboard stations. These modifications were possible without a significant loss in energy yield. (LN)
Aerodynamics of Rotor Blades for Quadrotors
Bangura, Moses; Naldi, Roberto; Mahony, Robert
2016-01-01
In this report, we present the theory on aerodynamics of quadrotors using the well established momentum and blade element theories. From a robotics perspective, the theoretical development of the models for thrust and horizontal forces and torque (therefore power) are carried out in the body fixed frame of the quadrotor. Using momentum theory, we propose and model the existence of a horizontal force along with its associated power. Given the limitations associated with momentum theory and the inadequacy of the theory to account for the different powers represented in a proposed bond graph lead to the use of blade element theory. Using this theory, models are then developed for the different quadrotor rotor geometries and aerodynamic properties including the optimum hovering rotor used on the majority of quadrotors. Though this rotor is proven to be the most optimum rotor, we show that geometric variations are necessary for manufacturing of the blades. The geometric variations are also dictated by a desired th...
Study on Aerodynamic Design Optimization of Turbomachinery Blades
Institute of Scientific and Technical Information of China (English)
Naixing CHEN; Hongwu ZHANG; Weiguang HUANG; Yanji XU
2005-01-01
This paper describes the study on aerodynamics design optimization of turbomachinery blading developed by the authors at the Institute of Engineering Thermophysics, Chinese Academy of Sciences, during the recent few years. The present paper describes the aspects mainly on how to use a rapid approach of profiling a 3D blading and of grid generation for computation, a fast and accurate viscous computation method and an appropriate optimization methodology_ including a blade parameterization algorithm to optimize turbomachinery blading aerodynamically. Any blade configuration can be expressed by three curves, they are the camber lines, the thickness distributions and the radial stacking line, and then the blade geometry can be easily parameterized by a number of parameters with three polynomials. A gradient-based parameterization analytical method and a response surface method were applied herein for blade optimization. It was found that the optimization process provides reliable design for turbomachinery with reasonable computing time.
AERODYNAMIC AND BLADING DESIGN OF MULTISTAGE AXIAL FLOW COMPRESSORS
Crouse, J. E.
1994-01-01
The axial-flow compressor is used for aircraft engines because it has distinct configuration and performance advantages over other compressor types. However, good potential performance is not easily obtained. The designer must be able to model the actual flows well enough to adequately predict aerodynamic performance. This computer program has been developed for computing the aerodynamic design of a multistage axial-flow compressor and, if desired, the associated blading geometry input for internal flow analysis. The aerodynamic solution gives velocity diagrams on selected streamlines of revolution at the blade row edges. The program yields aerodynamic and blading design results that can be directly used by flow and mechanical analysis codes. Two such codes are TSONIC, a blade-to-blade channel flow analysis code (COSMIC program LEW-10977), and MERIDL, a more detailed hub-to-shroud flow analysis code (COSMIC program LEW-12966). The aerodynamic and blading design program can reduce the time and effort required to obtain acceptable multistage axial-flow compressor configurations by generating good initial solutions and by being compatible with available analysis codes. The aerodynamic solution assumes steady, axisymmetric flow so that the problem is reduced to solving the two-dimensional flow field in the meridional plane. The streamline curvature method is used for the iterative aerodynamic solution at stations outside of the blade rows. If a blade design is desired, the blade elements are defined and stacked within the aerodynamic solution iteration. The blade element inlet and outlet angles are established by empirical incidence and deviation angles to the relative flow angles of the velocity diagrams. The blade element centerline is composed of two segments tangentially joined at a transition point. The local blade angle variation of each element can be specified as a fourth-degree polynomial function of path distance. Blade element thickness can also be specified
An aerodynamic study on flexed blades for VAWT applications
Micallef, Daniel; Farrugia, Russell; Sant, Tonio; Mollicone, Pierluigi
2014-12-01
There is renewed interest in aerodynamics research of VAWT rotors. Lift type, Darrieus designs sometimes use flexed blades to have an 'egg-beater shape' with an optimum Troposkien geometry to minimize the structural stress on the blades. While straight bladed VAWTs have been investigated in depth through both measurements and numerical modelling, the aerodynamics of flexed blades has not been researched with the same level of detail. Two major effects may have a substantial impact on blade performance. First, flexing at the equator causes relatively strong trailing vorticity to be released. Secondly, the blade performance at each station along the blade is influenced by self-induced velocities due to bound vorticity. The latter is not present in a straight bladed configuration. The aim of this research is to investigate these effects in relation to an innovative 4kW wind turbine concept being developed in collaboration with industry known as a self-adjusting VAWT (or SATVAWT). The approach used in this study is based on experimental and numerical work. A lifting line free-wake vortex model was developed. Wind tunnel power and hot-wire velocity measurements were performed on a scaled down, 60cm high, three bladed model in a closed wind tunnel. Results show a substantial axial wake induction at the equator resulting in a lower power generation at this position. This induction increases with increasing degree of flexure. The self-induced velocities caused by blade bound vorticity at a particular station was found to be relatively small.
Aerodynamic investigation of winglets on wind turbine blades using CFD
DEFF Research Database (Denmark)
Johansen, Jeppe; Sørensen, Niels N.
2006-01-01
The present report describes the numerical investigation of the aerodynamics around a wind turbine blade with a winglet using Computational Fluid Dynamics, CFD. Five winglets were investigated with different twist distribution and camber. Four of them were pointing towards the pressure side...... (upstream) and one was pointing towards the suction side (downstream). Additionally, a rectangular modification of the original blade tip was designed with the same planform area as the blades with winglets. Results show that adding a winglet to the existing blade increase the force distribution on the...
An aerodynamic study on flexed blades for VAWT applications
International Nuclear Information System (INIS)
There is renewed interest in aerodynamics research of VAWT rotors. Lift type, Darrieus designs sometimes use flexed blades to have an 'egg-beater shape' with an optimum Troposkien geometry to minimize the structural stress on the blades. While straight bladed VAWTs have been investigated in depth through both measurements and numerical modelling, the aerodynamics of flexed blades has not been researched with the same level of detail. Two major effects may have a substantial impact on blade performance. First, flexing at the equator causes relatively strong trailing vorticity to be released. Secondly, the blade performance at each station along the blade is influenced by self-induced velocities due to bound vorticity. The latter is not present in a straight bladed configuration. The aim of this research is to investigate these effects in relation to an innovative 4kW wind turbine concept being developed in collaboration with industry known as a self-adjusting VAWT (or SATVAWT). The approach used in this study is based on experimental and numerical work. A lifting line free-wake vortex model was developed. Wind tunnel power and hot-wire velocity measurements were performed on a scaled down, 60cm high, three bladed model in a closed wind tunnel. Results show a substantial axial wake induction at the equator resulting in a lower power generation at this position. This induction increases with increasing degree of flexure. The self-induced velocities caused by blade bound vorticity at a particular station was found to be relatively small
Tip Cascade Aerodynamics of Turbine Rotor Blade 1220 mm
Czech Academy of Sciences Publication Activity Database
Rudas, B.; Synáč, J.; Šťastný, M.; Luxa, Martin; Šimurda, David; Šafařík, Pavel
Plzeň: Západočeská univerzita v Plzni, 2010, s. 1-6. ISBN N. [Turbostroje 2010. Plzeň (CZ), 22.09.2010-23.09.2010] Institutional research plan: CEZ:AV0Z20760514 Keywords : tip blade cascade * CFD simulation * high-speed aerodynamic Subject RIV: BK - Fluid Dynamics
Numerical simulation on the aerodynamic effects of blade icing on small scale Straight-bladed VAWT
Feng, Fang; Li, Shengmao; Li, Yan; Tian, Wenqiang
To invest the effects of blade surface icing on the aerodynamics performance of the straight-bladed vertical-axis wind turbine (SB-VAWT), wind tunnel tests were carried out on a static straight blade using a simple icing wind tunnel. Firstly, the icing situations on blade surface at some kinds of typical attack angle were observed and recorded under different cold water flow fluxes. Then the iced blade airfoils were combined into a SB-VAWT model with two blades. Numerical simulations were carried out on this model, and the static and dynamic torque coefficients of the model with and without icing were computed. Both the static and dynamic torque coefficients were decreased for the icing effects.
Aerodynamic Research on the Midsection of a Long Turbine Blade
Czech Academy of Sciences Publication Activity Database
Šimurda, David; Luxa, Martin; Šafařík, Pavel; Synáč, J.
Gdansk: Instytut Maszyn Przeplywowych PAN, 2008 - (Doerffer, P.; Szwaba, R.), s. 147-148 ISBN 978-83-88237-41-6. [Krajowa Konferencja Mechaniki Plynów /18./. Jastrzebia Góra (PL), 21.09.2008-25.09.2008] R&D Projects: GA ČR GA101/07/1508 Institutional research plan: CEZ:AV0Z20760514 Keywords : high speed aerodynamics * blade cascade * experiment Subject RIV: BK - Fluid Dynamics
Aerodynamic Research on the Midsection of a Long Turbine Blade
Czech Academy of Sciences Publication Activity Database
Šimurda, David; Luxa, Martin; Šafařík, Pavel; Synáč, J.
2008-01-01
Roč. 12, 3-4 (2008), s. 135-145. ISSN 1428-6394. [Polish National Conference of Fluid Mechanics /18./. Jastrzebia Góra, 21.09.2008-25.09.2008] R&D Projects: GA ČR GA101/07/1508 Institutional research plan: CEZ:AV0Z20760514 Keywords : high speed aerodynamics * blade cascade * experiment Subject RIV: BK - Fluid Dynamics
Tip Cascade Aerodynamics of Turbine Rotor Blade 1220mm
Czech Academy of Sciences Publication Activity Database
Synáč, J.; Rudas, B.; Šťastný, M.; Luxa, Martin; Šimurda, David; Šafařík, Pavel
Praha: TechSoft Engineering s.r.o., 2009 - (Moštěk, M.), s. 37-45 ISBN 978-80-254-4651-5. [Současné trendy při návrhu a výpočtu turbostrojů. Praha (CZ), 02.06.2009-04.06.2009] Institutional research plan: CEZ:AV0Z20760514 Keywords : aerodynamics * blade cascade * transonic flow * loss * turbine Subject RIV: BK - Fluid Dynamics
High Speed Aerodynamic Research on Root Blade Cascade
Czech Academy of Sciences Publication Activity Database
Luxa, Martin; Synáč, J.; Šafařík, Pavel; Šimurda, David
Praha: ÚT AV ČR, v. v. i., 2007 - (Příhoda, J.; Kozel, K.), s. 111-114 ISBN 978-80-87012-04-8. [Conference TOPICAL PROBLEMS OF FLUID MECHANICS 2007. Praha (CZ), 28.02.2007-02.03.2007] R&D Projects: GA ČR GA101/07/1508 Institutional research plan: CEZ:AV0Z20760514 Keywords : root blade cascade * transsonic flow * aerodynamic research Subject RIV: BK - Fluid Dynamics
Experimental Characterization of Wind Turbine Blade Aerodynamic Noise
Ingemanson, Megan Lynn
Wind turbine noise at low frequencies less than 300Hz is not only annoying to humans but has been proven to cause serious health issues. Additionally, animals are severely affected by wind turbines because a small increase in ambient noise (as is produced by wind turbines) significantly reduces their listening ability. In an attempt to better understand and characterize the aerodynamic noise of wind turbine blades, experimental testing was completed on PowerWorks 100kW and GudCraft WG700 blade specimens in the University of California, Davis Transportation Noise Control Center's anechoic chamber. Experimental testing and data analysis proved approximately 4.0dB to 6.0dB was produced due to the blades' geometric design for both blade specimens at low frequencies. This noise was maximized at the blades' leading edge along the central portion of the blades' radius. Theoretical prediction models have been used to determine that, for typical wind speeds and low frequencies, noise generated due to the tip passing frequency is clearly predominant.
Fully integrated aerodynamic/dynamic optimization of helicopter rotor blades
Walsh, Joanne L.; Lamarsh, William J., II; Adelman, Howard M.
1992-01-01
A fully integrated aerodynamic/dynamic optimization procedure is described for helicopter rotor blades. The procedure combines performance and dynamic analyses with a general purpose optimizer. The procedure minimizes a linear combination of power required (in hover, forward flight, and maneuver) and vibratory hub shear. The design variables include pretwist, taper initiation, taper ratio, root chord, blade stiffnesses, tuning masses, and tuning mass locations. Aerodynamic constraints consist of limits on power required in hover, forward flight and maneuvers; airfoil section stall; drag divergence Mach number; minimum tip chord; and trim. Dynamic constraints are on frequencies, minimum autorotational inertia, and maximum blade weight. The procedure is demonstrated for two cases. In the first case, the objective function involves power required (in hover, forward flight and maneuver) and dynamics. The second case involves only hover power and dynamics. The designs from the integrated procedure are compared with designs from a sequential optimization approach in which the blade is first optimized for performance and then for dynamics. In both cases, the integrated approach is superior.
Time domain analysis method for aerodynamic noises from wind turbine blades
Directory of Open Access Journals (Sweden)
Hua ZHAO
2015-04-01
Full Text Available The issue of the aerodynamic noises from wind turbine blades affecting the surrounding residents life begins to attract researcher's attention. Most of the existing researches are based on CFD software or experimental data fitting method to analyze the aerodynamic noises, so it is difficult to adapt the demand to dynamic analysis of the aerodynamic noises from wind speed variation. In this paper, the operation parameters, the inflow wind speed and the receiver location are considered, and a modified model to calculate aerodynamic noises from wind turbine blades which is based on traditional acoustic formulas is established. The program to calculate the aerodynamic noises from the 2 MW wind turbine blades is compiled using a time-domain analysis method based on the Simulink modular in Matlab software. And the pressure time sequence diagrams of the aerodynamic noises from wind turbine blades are drawn. It has provided a theoretical foundation to develop low noise wind turbine blades.
AERODYNAMIC RESEARCH ON THE MCA – TYPE COMPRESSOR BLADE CASCADE
Czech Academy of Sciences Publication Activity Database
Šimurda, David; Luxa, Martin; Šafařík, P.
Glasgow : ASME, 2010, s. 99-108. ISBN 978-0-7918-4402-1. [ASME Turbo Expo 2010. Glasgow (GB), 14.06.2010-18.06.2010] R&D Projects: GA AV ČR(CZ) IAA200760801; GA ČR(CZ) GA101/08/0623; GA ČR(CZ) GAP101/10/1329 Institutional research plan: CEZ:AV0Z20760514 Keywords : compressor blade cascade * transonic flow * aerodynamic research Subject RIV: BK - Fluid Dynamics http://www.asmeconferences.org/TE10/ConfSpecInfo.cfm
Tip Cascade Aerodynamics of Turbine Stage Blades 48"
Czech Academy of Sciences Publication Activity Database
Synáč, J.; Rudas, B.; Šťastný, M.; Luxa, Martin; Šimurda, David; Šafařík, Pavel
Vol. 8. Graz: Technischen Universität Graz, 2009 - (Heitmeir, F.; Martelli, F.; Manna, M.), s. 1449-1457 ISBN 978-3-85125-036-7. [Turbomachinery Fluid Dynamics and Thermodynamics /8./. Graz (AT), 23.03.2009-27.03.2009] R&D Projects: GA ČR(CZ) GA101/08/0623; GA ČR GA101/07/1508 Institutional research plan: CEZ:AV0Z20760514 Keywords : aerodynamics * tip section * blade cascade Subject RIV: BK - Fluid Dynamics
Blade Design Optimisation for Fixed-Pitch Fixed-Speed Wind Turbines
Lin Wang; Xinzi Tang; Xiongwei Liu
2012-01-01
Fixed-pitch fixed-speed (FPFS) wind turbines have some distinct advantages over other topologies for small wind turbines, particularly for low wind speed sites. The blade design of FPFS wind turbines is fundamentally different to fixed-pitch variable-speed wind turbine blade design. Theoretically, it is difficult to obtain a global mathematical solution for the blade design optimisation. Through case studies of a given baseline wind turbine and its blade airfoil, this paper aims to demonstrat...
Measurement of Unsteady Aerodynamics Load on the Blade of Field Horizontal Axis Wind Turbine
Kamada, Yasunari; Maeda, Takao; Naito, Keita; Ouchi, Yuu; Kozawa, Masayoshi
This paper describes an experimental field study of the rotor aerodynamics of wind turbines. The test wind turbine is a horizontal axis wind turbine, or: HAWT with a diameter of 10m. The pressure distributions on the rotating blade are measured with multi point pressure transducers. Sectional aerodynamic forces are analyzed from pressure distribution. Blade root moments are measured simultaneously by a pair of strain gauges. The inflow wind is measured by a three component sonic anemometer, the local inflow of the blade section are measured by a pair of 7 hole Pitot tubes. The relation between the aerodynamic moments on the blade root from pressure distribution and the mechanical moment from strain gauges is discussed. The aerodynamic moments are estimated from the sectional aerodynamic forces and show oscillation caused by local wind speed and direction change. The mechanical moment shows similar oscillation to the aerodynamic excepting the short period oscillation of the blade first mode frequency. The fluctuation of the sectional aerodynamic force triggers resonant blade oscillations. Where stall is present along the blade section, the blade's first mode frequency is dominant. Without stall, the rotating frequency is dominant in the blade root moment.
Advanced multistage turbine blade aerodynamics, performance, cooling, and heat transfer
Energy Technology Data Exchange (ETDEWEB)
Fleeter, S.; Lawless, P.B. [Purdue Univ., West Lafayette, IN (United States)
1995-10-01
The gas turbine has the potential for power production at the highest possible efficiency. The challenge is to ensure that gas turbines operate at the optimum efficiency so as to use the least fuel and produce minimum emissions. A key component to meeting this challenge is the turbine. Turbine performance, both aerodynamics and heat transfer, is one of the barrier advanced gas turbine development technologies. This is a result of the complex, highly three-dimensional and unsteady flow phenomena in the turbine. Improved turbine aerodynamic performance has been achieved with three-dimensional highly-loaded airfoil designs, accomplished utilizing Euler or Navier-Stokes Computational Fluid Dynamics (CFD) codes. These design codes consider steady flow through isolated blade rows. Thus they do not account for unsteady flow effects. However, unsteady flow effects have a significant impact on performance. Also, CFD codes predict the complete flow field. The experimental verification of these codes has traditionally been accomplished with point data - not corresponding plane field measurements. Thus, although advanced CFD predictions of the highly complex and three-dimensional turbine flow fields are available, corresponding data are not. To improve the design capability for high temperature turbines, a detailed understanding of the highly unsteady and three-dimensional flow through multi-stage turbines is necessary. Thus, unique data are required which quantify the unsteady three-dimensional flow through multi-stage turbine blade rows, including the effect of the film coolant flow. This requires experiments in appropriate research facilities in which complete flow field data, not only point measurements, are obtained and analyzed. Also, as design CFD codes do not account for unsteady flow effects, the next logical challenge and the current thrust in CFD code development is multiple-stage analyses that account for the interactions between neighboring blade rows.
First-order aerodynamic and aeroelastic behavior of a single-blade installation setup
Gaunaa, M.; Bergami, L.; Guntur, S.; Zahle, F.
2014-06-01
Limitations on the wind speed at which blade installation can be performed bears important financial consequences. The installation cost of a wind farm could be significantly reduced by increasing the wind speed at which blade mounting operations can be carried out. This work characterizes the first-order aerodynamic and aeroelastic behavior of a single blade installation system, where the blade is grabbed by a yoke, which is lifted by the crane and stabilized by two taglines. A simple engineering model is formulated to describe the aerodynamic forcing on the blade subject to turbulent wind of arbitrary direction. The model is coupled with a schematic aeroelastic representation of the taglines system, which returns the minimum line tension required to compensate for the aerodynamic forcing. The simplified models are in excellent agreement with the aeroelastic code HAWC2, and provide a solid basis for future design of an upgraded single blade installation system able to operate at higher wind speeds.
First-order aerodynamic and aeroelastic behavior of a single-blade installation setup
International Nuclear Information System (INIS)
Limitations on the wind speed at which blade installation can be performed bears important financial consequences. The installation cost of a wind farm could be significantly reduced by increasing the wind speed at which blade mounting operations can be carried out. This work characterizes the first-order aerodynamic and aeroelastic behavior of a single blade installation system, where the blade is grabbed by a yoke, which is lifted by the crane and stabilized by two taglines. A simple engineering model is formulated to describe the aerodynamic forcing on the blade subject to turbulent wind of arbitrary direction. The model is coupled with a schematic aeroelastic representation of the taglines system, which returns the minimum line tension required to compensate for the aerodynamic forcing. The simplified models are in excellent agreement with the aeroelastic code HAWC2, and provide a solid basis for future design of an upgraded single blade installation system able to operate at higher wind speeds
First-order aerodynamic and aeroelastic behavior of a single-blade installation setup
DEFF Research Database (Denmark)
Gaunaa, Mac; Bergami, Leonardo; Guntur, Srinivas;
2014-01-01
of arbitrary direction. The model is coupled with a schematic aeroelastic representation of the taglines system, which returns the minimum line tension required to compensate for the aerodynamic forcing. The simplified models are in excellent agreement with the aeroelastic code HAWC2, and provide a...... first-order aerodynamic and aeroelastic behavior of a single blade installation system, where the blade is grabbed by a yoke, which is lifted by the crane and stabilized by two taglines. A simple engineering model is formulated to describe the aerodynamic forcing on the blade subject to turbulent wind...
Computational Elements for High-fidelity Aerodynamic Analysis and Design Optimisation
Directory of Open Access Journals (Sweden)
Chongam Kim
2010-10-01
Full Text Available The study reviews the role of computational fluid dynamics (CFD in aerodynamic shape optimisation, and discusses some of the efficient design methodologies. The article in the first part, numerical schemes required for high-fidelity aerodynamic flow analysis are discussed. To accurately resolve high-speed flow physics, high-fidelity shock-stable schemes as well as intelligent limiting strategy mimicking multi-dimensional flow physics are essential. Exploiting these numerical schemes, some applications for 3-D internal/external flow analyses were carried out with various grid systems which enable the treatment of complex geometries. In the second part, depending on the number of design variables and the way to obtain sensitivities or design points, several global and local optimisation methods for aerodynamic shape optimisation are discussed. To avoid the problem that solutions of gradient-based optimisation method (GBOM, are often trapped in local optimum, remedy by combining GBOM with global optimum strategy, such as surrogate models and genetic algorithm (GA has been examined. As an efficient grid deformation tool, grid deformation technique using NURBS function is discussed. Lastly, some 3-D examples for aerodynamic shape optimisation works based on the proposed design methodology are presented.Defence Science Journal, 2010, 60(6, pp.628-638, DOI:http://dx.doi.org/10.14429/dsj.60.581
Straight—Leaned Blade Aerodynamics of A Turbine Nozzle Blade Row with Low Span—Diameter Ratio
Institute of Scientific and Technical Information of China (English)
N.X.Chen; Y.J.Xu; 等
2000-01-01
Compound-leaned blades have been applied for the design of turbomachinery for reducing secondary flow losses and then improving the aerodynamic performance.The aerodynamics features are not clear enough so far and ,therefore,have been investigated by many authors experimentally and numerically.The present study on turbomachinery aerodynamics is emphasized on the leaning effects of straight-leaned turbine nozzle blades with low span-diameter ratio(less than 0.1) .This kind of blades has relatively low efficiency,This is due to that the blades are too short and then the loss contours of both tip and hub surfaces are merged with each other.How to increase the efficiency becomes one of the important subjects,which is faced to the turbomachinery community,Effects of straight-leaned blades in a turbine nozzle blade row with low span-diameter ratio have been assessed using three-dimensional steady Reynolds-averaged Navier-Stokes computations.
Wang, Lin; Kolios, Athanasios; Nishino, Takafumi; DELAFIN, Pierre-Luc; Bird, Theodore
2016-01-01
A wind turbine blade generally has complex structures including several layers of composite materials with shear webs, making its structure design very challenging. In this paper, a structural optimisation model for wind turbine composite blades has been developed based on a parametric FEA (finite element analysis) model and a GA (genetic algorithm) model. The optimisation model minimises the mass of composite blades with multi-criteria constraints. The number of unidirectional plies, the loc...
Aerodynamic and Structural Integrated Optimization Design of Horizontal-Axis Wind Turbine Blades
Directory of Open Access Journals (Sweden)
Jie Zhu
2016-01-01
Full Text Available A procedure based on MATLAB combined with ANSYS is presented and utilized for the aerodynamic and structural integrated optimization design of Horizontal-Axis Wind Turbine (HAWT blades. Three modules are used for this purpose: an aerodynamic analysis module using the Blade Element Momentum (BEM theory, a structural analysis module employing the Finite Element Method (FEM and a multi-objective optimization module utilizing the non-dominated sorting genetic algorithm. The former two provide a sufficiently accurate solution of the aerodynamic and structural performances of the blade; the latter handles the design variables of the optimization problem, namely, the main geometrical shape and structural parameters of the blade, and promotes function optimization. The scope of the procedure is to achieve the best trade-off performances between the maximum Annual Energy Production (AEP and the minimum blade mass under various design requirements. To prove the efficiency and reliability of the procedure, a commercial 1.5 megawatt (MW HAWT blade is used as a case study. Compared with the original scheme, the optimization results show great improvements for the overall performance of the blade.
Aerodynamic analysis of different wind-turbine-blade profiles using finite-volume method
International Nuclear Information System (INIS)
Highlights: ► The aerodynamic analysis of the S-series blade profiles is performed by CFD. ► The S825, S826, S830 and S831 profiles are the most efficient S-series profiles. ► These profiles are suitable for wind turbines working at low and high wind speeds. ► The optimum operating angle of attack should lie between −4° and 3°. - Abstract: In order to economically gain the maximum energy from the wind turbine, the performance of the blade profile must be obtained. In this paper, the results of aerodynamic simulations of the steady low-speed flow past two-dimensional S-series wind-turbine-blade profiles, developed by the National Renewable Energy Laboratory (NREL), are presented. The aerodynamic simulations were performed using a Computational Fluid Dynamics (CFD) method based on the finite-volume approach. The governing equations used in the simulations are the Reynolds-Averaged-Navier–Stokes (RANS) equations. The wind conditions during the simulations were developed from the wind speeds over different sites in Egypt. The lift and drag forces are the most important parameters in studying the wind-turbine performance. Therefore, an attempt to study the lift and drag forces on the wind turbine blades at various sections is presented. The maximum sliding ratio (lift/drag ratio) is desired in order to gain the maximum power from the wind turbine. The performance of different blade profiles at different wind speeds was investigated and the optimum blade profile for each wind speed is determined based on the maximum sliding ratio. Moreover, the optimum Angle Of Attack (AOA) for each blade profile is determined at the different wind speeds. The numerical results are benchmarked against wind tunnel measurements. The comparisons show that the CFD code used in this study can accurately predict the wind-turbine blades aerodynamic loads.
Kyung Chun Kim; Ho Seong Ji; Yoon Kee Kim; Qian Lu; Joon Ho Baek; Rinus Mieremet
2014-01-01
A new type of horizontal axis wind turbine adopting the Archimedes spiral blade is introduced for urban-use. Based on the angular momentum conservation law, the design formula for the blade was derived using a variety of shape factors. The aerodynamic characteristics and performance of the designed Archimedes wind turbine were examined using computational fluid dynamics (CFD) simulations. The CFD simulations showed that the new type of wind turbine produced a power coefficient (C p ) of appro...
Shape optimization of turbine blades with the integration of aerodynamics and heat transfer
Directory of Open Access Journals (Sweden)
Rajadas J. N.
1998-01-01
Full Text Available A multidisciplinary optimization procedure, with the integration of aerodynamic and heat transfer criteria, has been developed for the design of gas turbine blades. Two different optimization formulations have been used. In the first formulation, the maximum temperature in the blade section is chosen as the objective function to be minimized. An upper bound constraint is imposed on the blade average temperature and a lower bound constraint is imposed on the blade tangential force coefficient. In the second formulation, the blade average and maximum temperatures are chosen as objective functions. In both formulations, bounds are imposed on the velocity gradients at several points along the surface of the airfoil to eliminate leading edge velocity spikes which deteriorate aerodynamic performance. Shape optimization is performed using the blade external and coolant path geometric parameters as design variables. Aerodynamic analysis is performed using a panel code. Heat transfer analysis is performed using the finite element method. A gradient based procedure in conjunction with an approximate analysis technique is used for optimization. The results obtained using both optimization techniques are compared with a reference geometry. Both techniques yield significant improvements with the multiobjective formulation resulting in slightly superior design.
Relevance of aerodynamic modelling for load reduction control strategies of two-bladed wind turbines
International Nuclear Information System (INIS)
A new load reduction concept is being developed for the two-bladed prototype of the Skywind 3.5MW wind turbine. Due to transport and installation advantages both offshore and in complex terrain two-bladed turbine designs are potentially more cost-effective than comparable three-bladed configurations. A disadvantage of two-bladed wind turbines is the increased fatigue loading, which is a result of asymmetrically distributed rotor forces. The innovative load reduction concept of the Skywind prototype consists of a combination of cyclic pitch control and tumbling rotor kinematics to mitigate periodic structural loading. Aerodynamic design tools must be able to model correctly the advanced dynamics of the rotor. In this paper the impact of the aerodynamic modelling approach is investigated for critical operational modes of a two-bladed wind turbine. Using a lifting line free wake vortex code (FVM) the physical limitations of the classical blade element momentum theory (BEM) can be evaluated. During regular operation vertical shear and yawed inflow are the main contributors to periodic blade load asymmetry. It is shown that the near wake interaction of the blades under such conditions is not fully captured by the correction models of BEM approach. The differing prediction of local induction causes a high fatigue load uncertainty especially for two-bladed turbines. The implementation of both cyclic pitch control and a tumbling rotor can mitigate the fatigue loading by increasing the aerodynamic and structural damping. The influence of the time and space variant vorticity distribution in the near wake is evaluated in detail for different cyclic pitch control functions and tumble dynamics respectively. It is demonstrated that dynamic inflow as well as wake blade interaction have a significant impact on the calculated blade forces and need to be accounted for by the aerodynamic modelling approach. Aeroelastic simulations are carried out using the high fidelity multi body
The Analysis of the Aerodynamic Character and Structural Response of Large-Scale Wind Turbine Blades
Jie Zhu; Rongrong Gu; Pan Pan; Xin Cai
2013-01-01
A process of detailed CFD and structural numerical simulations of the 1.5 MW horizontal axis wind turbine (HAWT) blade is present. The main goal is to help advance the use of computer-aided simulation methods in the field of design and development of HAWT-blades. After an in-depth study of the aerodynamic configuration and materials of the blade, 3-D mapping software is utilized to reconstruct the high fidelity geometry, and then the geometry is imported into CFD and structure finite element ...
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
A global optimization approach to turbine blade design based on hierarchical fair competition genetic algorithms with dynamic niche (HFCDN-GAs) coupled with Reynolds-averaged Navier-Stokes (RANS) equation is presented. In order to meet the search theory of GAs and the aerodynamic performances of turbine, Bezier curve is adopted to parameterize the turbine blade profile, and a fitness function pertaining to optimization is designed. The design variables are the control points' ordinates of characteristic polygon of Bezier curve representing the turbine blade profile. The object function is the maximum lift-drag ratio of the turbine blade. The constraint conditions take into account the leading and trailing edge metal angle, and the strength and aerodynamic performances of turbine blade. And the treatment method of the constraint conditions is the flexible penalty function. The convergence history of test function indicates that HFCDN-GAs can locate the global optimum within a few search steps and have high robustness. The lift-drag ratio of the optimized blade is 8.3% higher than that of the original one. The results show that the proposed global optimization approach is effective for turbine blade.
Aerodynamic unsteady loads and vibrations of steam turbine L.P. blades
International Nuclear Information System (INIS)
In steam turbines, the aerodynamic sources of the blades vibrations for low pressure stages can induce a high stress level for some operating points. Therefore theoretical and experimental investigations are performed at E.D.F. They specially focus on the turbine rotor-stator interaction and the aerolastic rotor stability. A numerical method has been developed for predicting the aerodynamic damping of one cascade of profiles. The insteady flow calculation is based on the boundary element method, and is performed for the blade-to-blade surfaces. The results obtained on the first flexural mode for the L.P. blades of a 900 MW steam turbine, for several displacements and for several interblade phase angles, exhibits no instability of the rotor except low phase angles, but it is difficult to investigate these cases. The numerical results also support the relevance of the quasi-steady assumption. The same method has been used to calculate the rotor-stator interaction in the case of a potential flow. The main parameters are the gap between the two rows and the stator blade number/rotor blade number ratio (NR/NS). The results show that the dynamic loads strongly decrease with respect to the gap increase. Otherwise NR/NS = 2 (periodical pattern), which is a good approximation of the industrial value, provides slight unsteady loads on the rotor blades comparatively to other values
Optimization of rotor blades for combined structural, dynamic, and aerodynamic properties
He, Cheng-Jian; Peters, David A.
1990-01-01
Optimal helicopter blade design with computer-based mathematical programming has received more and more attention in recent years. Most of the research has focused on optimum dynamic characteristics of rotor blades to reduce vehicle vibration. There is also work on optimization of aerodynamic performance and on composite structural design. This research has greatly increased our understanding of helicopter optimum design in each of these aspects. Helicopter design is an inherently multidisciplinary process involving strong interactions among various disciplines which can appropriately include aerodynamics; dynamics, both flight dynamics and structural dynamics; aeroelasticity: vibrations and stability; and even acoustics. Therefore, the helicopter design process must satisfy manifold requirements related to the aforementioned diverse disciplines. In our present work, we attempt to combine several of these important effects in a unified manner. First, we design a blade with optimum aerodynamic performance by proper layout of blade planform and spanwise twist. Second, the blade is designed to have natural frequencies that are placed away from integer multiples of the rotor speed for a good dynamic characteristics. Third, the structure is made as light as possible with sufficient rotational inertia to allow for autorotational landing, with safe stress margins and flight fatigue life at each cross-section, and with aeroelastical stability and low vibrations. Finally, a unified optimization refines the solution.
Stochastic model for aerodynamic force dynamics on wind turbine blades in unsteady wind inflow
Luhur, Muhammad Ramzan; Kühn, Martin; Wächter, Matthias
2015-01-01
The paper presents a stochastic approach to estimate the aerodynamic forces with local dynamics on wind turbine blades in unsteady wind inflow. This is done by integrating a stochastic model of lift and drag dynamics for an airfoil into the aerodynamic simulation software AeroDyn. The model is added as an alternative to the static table lookup approach in blade element momentum (BEM) wake model used by AeroDyn. The stochastic forces are obtained for a rotor blade element using full field turbulence simulated wind data input and compared with the classical BEM and dynamic stall models for identical conditions. The comparison shows that the stochastic model generates additional extended dynamic response in terms of local force fluctuations. Further, the comparison of statistics between the classical BEM, dynamic stall and stochastic models' results in terms of their increment probability density functions gives consistent results.
Walsh, Joanne L.; Young, Katherine C.; Pritchard, Jocelyn I.; Adelman, Howard M.; Mantay, Wayne R.
1995-01-01
This paper describes an integrated aerodynamic/dynamic/structural (IADS) optimization procedure for helicopter rotor blades. The procedure combines performance, dynamics, and structural analyses with a general-purpose optimizer using multilevel decomposition techniques. At the upper level, the structure is defined in terms of global quantities (stiffness, mass, and average strains). At the lower level, the structure is defined in terms of local quantities (detailed dimensions of the blade structure and stresses). The IADS procedure provides an optimization technique that is compatible with industrial design practices in which the aerodynamic and dynamic designs are performed at a global level and the structural design is carried out at a detailed level with considerable dialog and compromise among the aerodynamic, dynamic, and structural groups. The IADS procedure is demonstrated for several examples.
Walsh, Joanne L.; Young, Katherine C.; Pritchard, Jocelyn I.; Adelman, Howard M.; Mantay, Wayne R.
1994-01-01
This paper describes an integrated aerodynamic, dynamic, and structural (IADS) optimization procedure for helicopter rotor blades. The procedure combines performance, dynamics, and structural analyses with a general purpose optimizer using multilevel decomposition techniques. At the upper level, the structure is defined in terms of local quantities (stiffnesses, mass, and average strains). At the lower level, the structure is defined in terms of local quantities (detailed dimensions of the blade structure and stresses). The IADS procedure provides an optimization technique that is compatible with industrial design practices in which the aerodynamic and dynamic design is performed at a global level and the structural design is carried out at a detailed level with considerable dialogue and compromise among the aerodynamic, dynamic, and structural groups. The IADS procedure is demonstrated for several cases.
Aerodynamic pressure and flow-visualization measurement from a rotating wind turbine blade
Energy Technology Data Exchange (ETDEWEB)
Butterfield, C P
1988-11-01
Aerodynamic, load, flow-visualization, and inflow measurements have been made on a 10-m, three-bladed, downwind, horizontal-axis wind turbine (HAWT). A video camera mounted on the rotor was used to record nighttime and daytime video images of tufts attached to the low-pressure side of a constant-chord, zero-twist blade. Load measurements were made using strain gages mounted at every 10% of the blade's span. Pressure measurements were made at 80% of the blade's span. Pressure taps were located at 32 chordwise positions, revealing pressure distributions comparable with wind tunnel data. Inflow was measured using a vertical-plane array of eight propvane and five triaxial (U-V-W) prop-type anemometers located 10 m upwind in the predominant wind direction. One objective of this comprehensive research program was to study the effects of blade rotation on aerodynamic behavior below, near, and beyond stall. To this end, flow patterns are presented here that reveal the dynamic and steady behavior of flow conditions on the blade. Pressure distributions are compared to flow patterns and two-dimensional wind tunnel data. Separation boundary locations are shown that change as a function of spanwise location, pitch angle, and wind speed. 6 refs., 23 figs., 1 tab.
Analysis of aerodynamic load on straight-bladed vertical axis wind turbine
Li, Qing'an; Maeda, Takao; Kamada, Yasunari; Murata, Junsuke; Kawabata, Toshiaki; Furukawa, Kazuma
2014-08-01
This paper presents a wind tunnel experiment for the evaluation of energy performance and aerodynamic forces acting on a small straight-bladed vertical axis wind turbine (VAWT) depending on several values of tip speed ratio. In the present study, the wind turbine is a four-bladed VAWT. The test airfoil of blade is symmetry airfoil (NACA0021) with 32 pressure ports used for the pressure measurements on blade surface. Based on the pressure distributions which are acted on the surface of rotor blade measured during rotation by multiport pressure-scanner mounted on a hub, the power, tangential force, lift and drag coefficients which are obtained by pressure distribution are discussed as a function of azimuthally position. And then, the loads which are applied to the entire wind turbine are compared with the experiment data of pressure distribution. As a result, it is clarified that aerodynamic forces take maximum value when the blade is moving to upstream side, and become small and smooth at downstream side. The power and torque coefficients which are based on the pressure distribution are larger than that by torque meter.
The Analysis of the Aerodynamic Character and Structural Response of Large-Scale Wind Turbine Blades
Directory of Open Access Journals (Sweden)
Jie Zhu
2013-06-01
Full Text Available A process of detailed CFD and structural numerical simulations of the 1.5 MW horizontal axis wind turbine (HAWT blade is present. The main goal is to help advance the use of computer-aided simulation methods in the field of design and development of HAWT-blades. After an in-depth study of the aerodynamic configuration and materials of the blade, 3-D mapping software is utilized to reconstruct the high fidelity geometry, and then the geometry is imported into CFD and structure finite element analysis (FEA software for completely simulation calculation. This research process shows that the CFD results compare well with the professional wind turbine design and certification software, GH-Bladed. Also, the modal analysis with finite element method (FEM predicts well compared with experiment tests on a stationary blade. For extreme wind loads case that by considering a 50-year extreme gust simulated in CFD are unidirectional coupled to the FE-model, the results indicate that the maximum deflection of the blade tip is less than the distance between the blade tip (the point of maximum deflection and the tower, the material of the blade provides enough resistance to the peak stresses the occur at the conjunction of shear webs and center spar cap. Buckling analysis is also included in the study.
Aerodynamic investigation of the tip section for titanium blade 54"
Czech Academy of Sciences Publication Activity Database
Luxa, Martin; Šimurda, David; Fořt, J.; Fürst, J.; Šafařík, P.; Synáč, J.; Rudas, B.
Madrid: European Conference on Turbomachinery (ETC), 2015, s. 1-13. ISSN 2410-4833. [European Conference on Turbomachinery Fluid Dynamics and Thermodynamics /11./. Madrid (ES), 23.03.2015-27.03.2015] R&D Projects: GA TA ČR(CZ) TA03020277 Institutional support: RVO:61388998 Keywords : supersonic flow * tip section * long turbine blade * steam turbine Subject RIV: BK - Fluid Dynamics
Maldonado, Victor Hugo
Wind turbines operate within the atmospheric boundary layer (ABL) which gives rise to turbulence among other flow phenomena. There are several factors that contribute to turbulent flow: The operation of wind turbines in two layers of the atmosphere, the surface layer and the mixed layer. These layers often have unstable wind conditions due to the daily heating and cooling of the atmosphere which creates turbulent thermals. In addition, wind turbines often operate in the wake of upstream turbines such as in wind farms; where turbulence generated by the rotor can be compounded if the turbines are not sited properly. Although turbulent flow conditions are known to affect performance, i.e. power output and lifespan of the turbine, the flow mechanisms by which atmospheric turbulence and other external conditions (such as blade debris contamination) adversely impact wind turbines are not known in enough detail to address these issues. The main objectives of the current investigation are thus two-fold: (i) to understand the interaction of the turbulent integral length scales and surface roughness on the blade and its effect on aerodynamic performance, and (ii) to develop and apply flow control (both passive and active) techniques to alleviate some of the adverse fluid dynamics phenomena caused by the atmosphere (i.e. blade contamination) and restore some of the aerodynamic performance loss. In order to satisfy the objectives of the investigation, a 2-D blade model based on the S809 airfoil for horizontal axis wind turbine (HAWT) applications was manufactured and tested at the Johns Hopkins University Corrsin Stanley Wind Tunnel facility. Additional levels of free stream turbulence with an intensity of 6.14% and integral length scale of about 0.321 m was introduced into the flow via an active grid. The free stream velocity was 10 m/s resulting in a Reynolds number based on blade chord of Rec ≃ 2.08x105. Debris contamination on the blade was modeled as surface roughness
Panel/full-span free-wake coupled method for unsteady aerodynamics of helicopter rotor blade
Institute of Scientific and Technical Information of China (English)
Tan Jianfeng; Wang Haowen
2013-01-01
A full-span free-wake method is coupled with an unsteady panel method to accurately predict the unsteady aerodynamics of helicopter rotor blades in hover and forward flight.The unsteady potential-based panel method is used to consider aerodynamics of finite thickness multi-bladed rotors,and the full-span free-wake method is applied to simulating dynamics of rotor wake.These methods are tightly coupled through trailing-edge Kutta condition and by converting doublet-wake panels to full-span vortex filaments.A velocity-field integration technique is also adopted to overcome singularity problem during the interaction between the rotor wake and blades.Helicopter rotors including Caradonna-Tung,UH-60A,and AH-1G rotors,are simulated in hover and forward flight to validate the accuracy of this approach.The predicted aerodynamic loads of rotor blades agree well with available measured data and computational fluid dynamics (CFD) results,and the unsteady dynamics of rotor wake is also well simulated.Compared to CFD,the present method obtains accurate results more efficiently and is suitable to rotorcraft aeroelastic analysis.
Institute of Scientific and Technical Information of China (English)
Ngoc Anh Vu; Jae Woo Lee; Jung Il Shu
2013-01-01
This study proposes a process to obtain an optimal helicopter rotor blade shape for aerodynamic performance in hover flight.A new geometry representation algorithm which uses the class function/shape function transformation (CST) is employed to generate airfoil coordinates.With this approach,airfoil shape is considered in terms of design variables.The optimization process is constructed by integrating several programs developed by author.The design variables include twist,taper ratio,point of taper initiation,blade root chord,and coefficients of the airfoil distribution function.Aerodynamic constraints consist of limits on power available in hover and forward flight.The trim condition must be attainable.This paper considers rotor blade configuration for the hover flight condition only,so that the required power in hover is chosen as the objective function of the optimization problem.Sensitivity analysis of each design variable shows that airfoil shape has an important role in rotor performance.The optimum rotor blade reduces the required hover power by 7.4％ and increases the figure of merit by 6.5％,which is a good improvement for rotor blade design.
Polanský, Jiří; Kalmár, László; Gášpár, Roman
2013-12-01
The main aim of this paper is determine the centrifugal fan with forward curved blades aerodynamic characteristics based on numerical modeling. Three variants of geometry were investigated. The first, basic "A" variant contains 12 blades. The geometry of second "B" variant contains 12 blades and 12 semi-blades with optimal length [1]. The third, control variant "C" contains 24 blades without semi-blades. Numerical calculations were performed by CFD Ansys. Another aim of this paper is to compare results of the numerical simulation with results of approximate numerical procedure. Applied approximate numerical procedure [2] is designated to determine characteristics of the turbulent flow in the bladed space of a centrifugal-flow fan impeller. This numerical method is an extension of the hydro-dynamical cascade theory for incompressible and inviscid fluid flow. Paper also partially compares results from the numerical simulation and results from the experimental investigation. Acoustic phenomena observed during experiment, during numerical simulation manifested as deterioration of the calculation stability, residuals oscillation and thus also as a flow field oscillation. Pressure pulsations are evaluated by using frequency analysis for each variant and working condition.
The Torsional Vibration of Turbo Axis Induced by Unsteady Aerodynamic Force on Rotor blade
Institute of Scientific and Technical Information of China (English)
ChenZuoyi; WuXiaofeng
1998-01-01
An algorithm for computing the 3-D oscillating flow field of the balde passage under the torsional vibration of the rotor is applied to analyze the stability in turbomachines.The induced flow field responding to blade vibration is computed by Oscillating Fluid Mechanics Method and parametric Polynomial Method.After getting the solution of the unsteady flow field,the work done by the unsteay aerodynamic force acting on the blade can be obtained.The negative or positive work is the criterion of the aeroelastic stability.Numerical results indicate that there are instabilities of the torsional vibration in some frequency bands.
Analysis and Improvement of Aerodynamic Performance of Straight Bladed Vertical Axis Wind Turbines
Ahmadi-Baloutaki, Mojtaba
Vertical axis wind turbines (VAWTs) with straight blades are attractive for their relatively simple structure and aerodynamic performance. Their commercialization, however, still encounters many challenges. A series of studies were conducted in the current research to improve the VAWTs design and enhance their aerodynamic performance. First, an efficient design methodology built on an existing analytical approach is presented to formulate the design parameters influencing a straight bladed-VAWT (SB-VAWT) aerodynamic performance and determine the optimal range of these parameters for prototype construction. This work was followed by a series of studies to collectively investigate the role of external turbulence on the SB-VAWTs operation. The external free-stream turbulence is known as one of the most important factors influencing VAWTs since this type of turbines is mainly considered for urban applications where the wind turbulence is of great significance. Initially, two sets of wind tunnel testing were conducted to study the variation of aerodynamic performance of a SB-VAWT's blade under turbulent flows, in two major stationary configurations, namely two- and three-dimensional flows. Turbulent flows generated in the wind tunnel were quasi-isotropic having uniform mean flow profiles, free of any wind shear effects. Aerodynamic force measurements demonstrated that the free-stream turbulence improves the blade aerodynamic performance in stall and post-stall regions by delaying the stall and increasing the lift-to-drag ratio. After these studies, a SB-VAWT model was tested in the wind tunnel under the same type of turbulent flows. The turbine power output was substantially increased in the presence of the grid turbulence at the same wind speeds, while the increase in turbine power coefficient due to the effect of grid turbulence was small at the same tip speed ratios. The final section presents an experimental study on the aerodynamic interaction of VAWTs in arrays
Effect of Geometric Uncertainties on the Aerodynamic Characteristic of Offshore Wind Turbine Blades
International Nuclear Information System (INIS)
Offshore wind turbines operate in a complex unsteady flow environment which causes unsteady aerodynamic loads. The unsteady flow environment is characterized by a high degree of uncertainty. In addition, geometry variations and material imperfections also cause uncertainties in the design process. Probabilistic design methods consider these uncertainties in order to reach acceptable reliability and safety levels for offshore wind turbines. Variations of the rotor blade geometry influence the aerodynamic loads which also affect the reliability of other wind turbine components. Therefore, the present paper is dealing with geometric uncertainties of the rotor blades. These can arise from manufacturing tolerances and operational wear of the blades. First, the effect of geometry variations of wind turbine airfoils on the lift and drag coefficients are investigated using a Latin hypercube sampling. Then, the resulting effects on the performance and the blade loads of an offshore wind turbine are analyzed. The variations of the airfoil geometry lead to a significant scatter of the lift and drag coefficients which also affects the damage-equivalent flapwise bending moments. In contrast to that, the effects on the power and the annual energy production are almost negligible with regard to the assumptions made
Aerodynamics tests of a transonic turbine blade cascade model consisting of low number of blades
Czech Academy of Sciences Publication Activity Database
Šimurda, David; Luxa, Martin; Šafařík, Pavel; Synáč, J.
Plzeň: Západočeská univerzita Plzeň, 2012, s. 1-10. [Turbostroje 2012. Plzeň (CZ), 26.09.2012-27.09.2012] R&D Projects: GA ČR(CZ) GAP101/10/1329 Institutional support: RVO:61388998 Keywords : transonic flow * flow field periodicity * turbine blade cascade Subject RIV: BK - Fluid Dynamics
Directory of Open Access Journals (Sweden)
Kyung Chun Kim
2014-11-01
Full Text Available A new type of horizontal axis wind turbine adopting the Archimedes spiral blade is introduced for urban-use. Based on the angular momentum conservation law, the design formula for the blade was derived using a variety of shape factors. The aerodynamic characteristics and performance of the designed Archimedes wind turbine were examined using computational fluid dynamics (CFD simulations. The CFD simulations showed that the new type of wind turbine produced a power coefficient (Cp of approximately 0.25, which is relatively high compared to other types of urban-usage wind turbines. To validate the CFD results, experimental studies were carried out using a scaled-down model. The instantaneous velocity fields were measured using the two-dimensional particle image velocimetry (PIV method in the near field of the blade. The PIV measurements revealed the presence of dominant vortical structures downstream the hub and near the blade tip. The interaction between the wake flow at the rotor downstream and the induced velocity due to the tip vortices were strongly affected by the wind speed and resulting rotational speed of the blade. The mean velocity profiles were compared with those predicted by the steady state and unsteady state CFD simulations. The unsteady CFD simulation agreed better with those of the PIV experiments than the steady state CFD simulations.
Reduction of aerodynamic load fluctuation on wind turbine blades through active flow control
Velarde, John-Michael; Coleman, Thomas; Magstadt, Andrew; Aggarwal, Somil; Glauser, Mark
2015-11-01
The current set of experiments deals with implementing active flow control on a Bergey Excel 1, 1kW turbine. The previous work in our group demonstrated successfully that implementation of a simple closed-loop controller could reduce unsteady aerodynamic load fluctuation by 18% on a vertically mounted wing. Here we describe a similar flow control method adapted to work in the rotating frame of a 2.5m diameter wind turbine. Strain gages at the base of each blade measure the unsteady fluctuation in the blades and pressure taps distributed along the span of the blades feed information to the closed-loop control scheme. A realistic, unsteady flow field has been generated by placing a cylinder upstream of the turbine to induce shedding vortices at frequencies in the bandwidth of the first structural bending mode of the turbine blades. The goal of these experiments is to demonstrate closed-loop flow control as a means to reduce the unsteady fluctuation in the blades and increase the overall lifespan of the wind turbine.
Aerodynamic Data for Two Variants of Root Turbine Blade Sections for A 54" Turbine Rotor Blade
Czech Academy of Sciences Publication Activity Database
Šimurda, David; Luxa, Martin; Šafařík, P.; Synáč, J.; Rudas, B.
Düsseldorf: ASME, 2014, V02CT38A007-V02CT38A019. (2C). ISBN 978-0-7918-4562-2. [ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. Düsseldorf (DE), 16.06.2014-20.06.2014] R&D Projects: GA TA ČR(CZ) TA03020277; GA ČR(CZ) GAP101/10/1329 Institutional support: RVO:61388998 Keywords : steam turbine * rotor * blade cascade * root section Subject RIV: BK - Fluid Dynamics
Aerodynamic Performance Enhancement of a Finite Span Wind Turbine Blade using Synthetic Jets
Taylor, Keith; Leong, Chia Min; Amitay, Michael
2011-11-01
Modern wind turbines undergo significant changes in pitch angle and structural loading through a revolution. Recent developments in flow control techniques, coupled with increased interest in green energy technologies, have led to interest in applying these techniques to wind turbines, in an effort to increase power output and reduce structural stress associated with widely varying loading. This reduction in structural stress could lead to reduced operational costs associated with the maintenance cycle. The effect of active flow control on the aerodynamic and structural aspects of finite span blade was investigated experimentally. When synthetic jets were employed the effect on aerodynamic performance and structural vibrations, during static and dynamic pitch conditions, was significant. In order to investigate if the jets can be actuated for less time (reduce their power consumption), they were actuated during only a portion of the pitch cycle or using pulse modulation. The results showed that these techniques result in significant reduction in the hysteresis loop and the structural vibrations.
Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines
Energy Technology Data Exchange (ETDEWEB)
Islam, Mazharul; Ting, David S.-K.; Fartaj, Amir [Department of Mechanical, Automotive and Materials Engineering, University of Windsor, Windsor, Ont. (Canada)
2008-05-15
Since ancient past humans have attempted to harness the wind energy through diversified means and vertical axis wind turbines (VAWTs) were one of the major equipment to achieve that. In this modern time, there is resurgence of interests regarding VAWTs as numerous universities and research institutions have carried out extensive research activities and developed numerous designs based on several aerodynamic computational models. These models are crucial for deducing optimum design parameters and also for predicting the performance before fabricating the VAWT. In this review, the authors have attempted to compile the main aerodynamic models that have been used for performance prediction and design of straight-bladed Darrieus-type VAWT. It has been found out that at present the most widely used models are the double-multiple streamtube model, Vortex model and the Cascade model. Each of these three models has its strengths and weaknesses which are discussed in this paper. (author)
Influence of Reynolds Number on Multi-Objective Aerodynamic Design of a Wind Turbine Blade
Ge, Mingwei; Fang, Le; Tian, De
2015-01-01
At present, the radius of wind turbine rotors ranges from several meters to one hundred meters, or even more, which extends Reynolds number of the airfoil profile from the order of 105 to 107. Taking the blade for 3MW wind turbines as an example, the influence of Reynolds number on the aerodynamic design of a wind turbine blade is studied. To make the study more general, two kinds of multi-objective optimization are involved: one is based on the maximum power coefficient (CPopt) and the ultimate load, and the other is based on the ultimate load and the annual energy production (AEP). It is found that under the same configuration, the optimal design has a larger CPopt or AEP (CPopt//AEP) for the same ultimate load, or a smaller load for the same CPopt//AEP at higher Reynolds number. At a certain tip-speed ratio or ultimate load, the blade operating at higher Reynolds number should have a larger chord length and twist angle for the maximum Cpopt//AEP. If a wind turbine blade is designed by using an airfoil database with a mismatched Reynolds number from the actual one, both the load and Cpopt//AEP will be incorrectly estimated to some extent. In some cases, the assessment error attributed to Reynolds number is quite significant, which may bring unexpected risks to the earnings and safety of a wind power project. PMID:26528815
Influence of Reynolds Number on Multi-Objective Aerodynamic Design of a Wind Turbine Blade.
Ge, Mingwei; Fang, Le; Tian, De
2015-01-01
At present, the radius of wind turbine rotors ranges from several meters to one hundred meters, or even more, which extends Reynolds number of the airfoil profile from the order of 105 to 107. Taking the blade for 3MW wind turbines as an example, the influence of Reynolds number on the aerodynamic design of a wind turbine blade is studied. To make the study more general, two kinds of multi-objective optimization are involved: one is based on the maximum power coefficient (CPopt) and the ultimate load, and the other is based on the ultimate load and the annual energy production (AEP). It is found that under the same configuration, the optimal design has a larger CPopt or AEP (CPopt//AEP) for the same ultimate load, or a smaller load for the same CPopt//AEP at higher Reynolds number. At a certain tip-speed ratio or ultimate load, the blade operating at higher Reynolds number should have a larger chord length and twist angle for the maximum Cpopt//AEP. If a wind turbine blade is designed by using an airfoil database with a mismatched Reynolds number from the actual one, both the load and Cpopt//AEP will be incorrectly estimated to some extent. In some cases, the assessment error attributed to Reynolds number is quite significant, which may bring unexpected risks to the earnings and safety of a wind power project. PMID:26528815
Calibrated Blade-Element/Momentum Theory Aerodynamic Model of the MARIN Stock Wind Turbine: Preprint
Energy Technology Data Exchange (ETDEWEB)
Goupee, A.; Kimball, R.; de Ridder, E. J.; Helder, J.; Robertson, A.; Jonkman, J.
2015-04-02
In this paper, a calibrated blade-element/momentum theory aerodynamic model of the MARIN stock wind turbine is developed and documented. The model is created using open-source software and calibrated to closely emulate experimental data obtained by the DeepCwind Consortium using a genetic algorithm optimization routine. The provided model will be useful for those interested in validating interested in validating floating wind turbine numerical simulators that rely on experiments utilizing the MARIN stock wind turbine—for example, the International Energy Agency Wind Task 30’s Offshore Code Comparison Collaboration Continued, with Correlation project.
Berrino, Marco; Bigoni, Fabio; Simoni, Daniele; Giovannini, Matteo; Marconcini, Michele; Pacciani, Roberto; Bertini, Francesco
2016-02-01
The aerodynamic performance of a high-load low-pressure turbine blade cascade has been analyzed for three different distributed surface roughness levels (Ra) for steady and unsteady inflows. Results from CFD simulations and experiments are presented for two different Reynolds numbers (300000 and 70000 representative of take-off and cruise conditions, respectively) in order to evaluate the roughness effects for two typical operating conditions. Computational fluid dynamics has been used to support and interpret experimental results, analyzing in detail the flow field on the blade surface and evaluating the non-dimensional local roughness parameters, further contributing to understand how and where roughness have some influence on the aerodynamic performance of the blade. The total pressure distributions in the wake region have been measured by means of a five-hole miniaturized pressure probe for the different flow conditions, allowing the evaluation of profile losses and of their dependence on the surface finish, as well as a direct comparison with the simulations. Results reported in the paper clearly highlight that only at the highest Reynolds number tested (Re=300000) surface roughness have some influence on the blade performance, both for steady and unsteady incoming flows. In this flow condition profile losses grow as the surface roughness increases, while no appreciable variations have been found at the lowest Reynolds number. The boundary layer evolution and the wake structure have shown that this trend is due to a thickening of the suction side boundary layer associated to an anticipation of transition process. On the other side, no effects have been observed on the pressure side boundary layer.
Non-intrusive aerodynamic loads analysis of an aircraft propeller blade
Energy Technology Data Exchange (ETDEWEB)
Ragni, D.; Oudheusden, B.W. van; Scarano, F. [Delft University of Technology, Faculty of Aerospace Engineering, Delft (Netherlands)
2011-08-15
The flow field in a cross-sectional plane of a scaled Beaver DHC aircraft propeller has been measured by means of a stereoscopic PIV setup. Phase-locked measurements are obtained in a rotational frequency range from 18,900 to 21,000 rpm, at a relative Mach number of 0.6 at 3/4 propeller radius. The use of an adapted formulation of the momentum equation in differential form for rotating frame of references, integrated with isentropic relations as boundary conditions, allowed to compute the pressure field around the blade and the surface pressure distribution directly from the velocity data in the compressible regime. The procedure, extended to the computation of the aerodynamic lift and drag coefficients by a momentum contour integral approach, proved to be able to couple the aerodynamical loads to the flow field on the moving propeller blade, comparing favorably with a numerical simulation of the entire scaled model. Results are presented for two propeller rotation speeds and three different yawing angles. (orig.)
Singer, Richard Tompkins, Jr.
1988-01-01
This thesis documents an experimental investigation into the effect of trailing edge Injection on the aerodynamic performance of turbine blades conducted at Virginia Polytechnic Institute and State University (VPl&SU). A brief description of the arrangement, instrumentation and data acquisition system of the VPl&SU Transonic Cascade Wind Tunnel is given. Testing was conducted under a number of test conditions. Baseline data was obtained for the blades with no trailing edge inje...
Convective heat transfer and experimental icing aerodynamics of wind turbine blades
Wang, Xin
The total worldwide base of installed wind energy peak capacity reached 94 GW by the end of 2007, including 1846 MW in Canada. Wind turbine systems are being installed throughout Canada and often in mountains and cold weather regions, due to their high wind energy potential. Harsh cold weather climates, involving turbulence, gusts, icing and lightning strikes in these regions, affect wind turbine performance. Ice accretion and irregular shedding during turbine operation lead to load imbalances, often causing the turbine to shut off. They create excessive turbine vibration and may change the natural frequency of blades as well as promote higher fatigue loads and increase the bending moment of blades. Icing also affects the tower structure by increasing stresses, due to increased loads from ice accretion. This can lead to structural failures, especially when coupled to strong wind loads. Icing also affects the reliability of anemometers, thereby leading to inaccurate wind speed measurements and resulting in resource estimation errors. Icing issues can directly impact personnel safety, due to falling and projected ice. It is therefore important to expand research on wind turbines operating in cold climate areas. This study presents an experimental investigation including three important fundamental aspects: (1) heat transfer characteristics of the airfoil with and without liquid water content (LWC) at varying angles of attack; (2) energy losses of wind energy while a wind turbine is operating under icing conditions; and (3) aerodynamic characteristics of an airfoil during a simulated icing event. A turbine scale model with curved 3-D blades and a DC generator is tested in a large refrigerated wind tunnel, where ice formation is simulated by spraying water droplets. A NACA 63421 airfoil is used to study the characteristics of aerodynamics and convective heat transfer. The current, voltage, rotation of the DC generator and temperature distribution along the airfoil
Unsteady aerodynamics of reverse flow dynamic stall on an oscillating blade section
Lind, Andrew H.; Jones, Anya R.
2016-07-01
Wind tunnel experiments were performed on a sinusoidally oscillating NACA 0012 blade section in reverse flow. Time-resolved particle image velocimetry and unsteady surface pressure measurements were used to characterize the evolution of reverse flow dynamic stall and its sensitivity to pitch and flow parameters. The effects of a sharp aerodynamic leading edge on the fundamental flow physics of reverse flow dynamic stall are explored in depth. Reynolds number was varied up to Re = 5 × 105, reduced frequency was varied up to k = 0.511, mean pitch angle was varied up to 15∘, and two pitch amplitudes of 5∘ and 10∘ were studied. It was found that reverse flow dynamic stall of the NACA 0012 airfoil is weakly sensitive to the Reynolds numbers tested due to flow separation at the sharp aerodynamic leading edge. Reduced frequency strongly affects the onset and persistence of dynamic stall vortices. The type of dynamic stall observed (i.e., number of vortex structures) increases with a decrease in reduced frequency and increase in maximum pitch angle. The characterization and parameter sensitivity of reverse flow dynamic stall given in the present work will enable the development of a physics-based analytical model of this unsteady aerodynamic phenomenon.
Directory of Open Access Journals (Sweden)
Moutaz Elgammi
2016-06-01
Full Text Available Prediction of the unsteady aerodynamic flow phenomenon on wind turbines is challenging and still subject to considerable uncertainty. Under yawed rotor conditions, the wind turbine blades are subjected to unsteady flow conditions as a result of the blade advancing and retreating effect and the development of a skewed vortical wake created downstream of the rotor plane. Blade surface pressure measurements conducted on the NREL Phase VI rotor in yawed conditions have shown that dynamic stall causes the wind turbine blades to experience significant cycle-to-cycle variations in aerodynamic loading. These effects were observed even though the rotor was subjected to a fixed speed and a uniform and steady wind flow. This phenomenon is not normally predicted by existing dynamic stall models integrated in wind turbine design codes. This paper couples blade pressure measurements from the NREL Phase VI rotor to a free-wake vortex model to derive the angle of attack time series at the different blade sections over multiple rotor rotations and three different yaw angles. Through the adopted approach it was possible to investigate how the rotor self-induced aerodynamic load fluctuations influence the unsteady variations in the blade angles of attack and induced velocities. The hysteresis loops for the normal and tangential load coefficients plotted against the angle of attack were plotted over multiple rotor revolutions. Although cycle-to-cycle variations in the angles of attack at the different blade radial locations and azimuth positions are found to be relatively small, the corresponding variations in the normal and tangential load coefficients may be significant. Following a statistical analysis, it was concluded that the load coefficients follow a normal distribution at the majority of blade azimuth angles and radial locations. The results of this study provide further insight on how existing engineering models for dynamic stall may be improved through
Flegel, Ashlie B.; Welch, Gerard E.; Giel, Paul W.; Ames, Forrest E.; Long, Jonathon A.
2015-01-01
Two independent experimental studies were conducted in linear cascades on a scaled, two-dimensional mid-span section of a representative Variable Speed Power Turbine (VSPT) blade. The purpose of these studies was to assess the aerodynamic performance of the VSPT blade over large Reynolds number and incidence angle ranges. The influence of inlet turbulence intensity was also investigated. The tests were carried out in the NASA Glenn Research Center Transonic Turbine Blade Cascade Facility and at the University of North Dakota (UND) High Speed Compressible Flow Wind Tunnel Facility. A large database was developed by acquiring total pressure and exit angle surveys and blade loading data for ten incidence angles ranging from +15.8deg to -51.0deg. Data were acquired over six flow conditions with exit isentropic Reynolds number ranging from 0.05×106 to 2.12×106 and at exit Mach numbers of 0.72 (design) and 0.35. Flow conditions were examined within the respective facility constraints. The survey data were integrated to determine average exit total-pressure and flow angle. UND also acquired blade surface heat transfer data at two flow conditions across the entire incidence angle range aimed at quantifying transitional flow behavior on the blade. Comparisons of the aerodynamic datasets were made for three "match point" conditions. The blade loading data at the match point conditions show good agreement between the facilities. This report shows comparisons of other data and highlights the unique contributions of the two facilities. The datasets are being used to advance understanding of the aerodynamic challenges associated with maintaining efficient power turbine operation over a wide shaft-speed range.
Directory of Open Access Journals (Sweden)
M Ramezanizadeh
2013-01-01
Full Text Available In this paper the effects of ice accretion on the pressure distribution and the aerodynamic coefficients in a cascade of stator blades were experimentally investigated. Experiments were conducted on stage 67A type stator Controlled-Diffusion blades, which represent the mid-span of the first stage of the stator for a high-bypass turbofan engine. The measurements were carried out over a range of cascade angle of attack from 20° to 45° at Reynolds number of 500000. Experimental blade surface pressure coefficient distribution, lift and drag force coefficients, and momentum coefficients for clean blades were compared with those of the iced blades and the effects of ice accretion on these parameters were discussed. It is observed that the ice accretion on the blades causes the formation of flow bubble on the pressure side, downstream of the leading edge. By increasing the angle of attack from 20° to 35° , the bubble length decreases and the pressure coefficient increases inside the bubble region, constantly. In addition, for the iced blades the diffusion points at the suction side come closer to the trailing edge. In addition, it is found that by increasing the angle of attack up to 35° , the ice accretion has no significant effect on the lift coefficient but the drag coefficient increases comparing with the clean blades. More over at 40° and 45° , by increasing the flow interference effects between the blades, the iced blades experience higher lift and lower drag in comparison with the clean ones.
Czech Academy of Sciences Publication Activity Database
Luxa, Martin; Synáč, J.; Šafařík, P.; Šimurda, D.
Plzeň: klub ASI-TURBOSTROJE Plzeň, 2007, s. 1-8. [Parní turbíny a jiné turbostroje 2007. Plzeň (CZ), 06.09.2007-07.09.2007] R&D Projects: GA ČR(CZ) GA101/05/2536 Institutional research plan: CEZ:AV0Z20760514 Keywords : steam turbine * aerodynamics * rotor blade Subject RIV: BK - Fluid Dynamics
Nagasaka, Imao; Ishida, Yukio; Koyama, Takayuki; Fujimatsu, Naoki
Currently, some kinds of helicopters use pendulum absorbers in order to reduce vibrations. Present pendulum absorbers are designed based on the antiresonance concept used in the linear theory. However, since the vibration amplitudes of the pendulum are not small, it is considered that the nonlinearity has influence on the vibration characteristics. Therefore, the best suppression cannot be attained by using the linear theory. In a helicopter, periodic forces act on the blades due to the influences of the air thrust. These periodic forces act on the blades with the frequency which is the integer multiple of the rotational speed of the rotor. Our previous study proposed a 2-degree-of-freedom (2DOF) model composed of a rotor blade and a pendulum absorber. The blade was considered as a rigid body and it was excited by giving a sinusoidal deflection at its end. The present paper proposes a 3DOF model that is more similar to the real helicopter, since the freedom of the fuselage is added and the periodic forces are applied to the blade by aerodynamic force. The vibration is analyzed considering the nonlinear characteristics. The resonance curves of rotor blades with pendulum absorbers are obtained analytically and experimentally. It is clarified that the most efficient condition is obtained when the natural frequency of the pendulum is a little bit different from the frequency of the external force. Various unique nonlinear characteristics, such as bifurcations, are also shown.
International Nuclear Information System (INIS)
Highlights: • A pitch controlled 200 kW HAWT blade is designed with BEM for off-design conditions. • Parametric study conducted on power coefficient, axial and angular induction factors. • The optimal pitch angles were determined at off-design operating conditions. - Abstract: In this paper, a 200 kW horizontal axis wind turbine (HAWT) blade is designed using an efficient iterative algorithm based on the blade element momentum theory (BEM) on aerodynamic of wind turbines. The effects of off-design variations of wind speed are investigated on the blade performance parameters according to constant rotational speed of the rotor. The performance parameters considered are power coefficient, axial and angular induction factors, lift and drag coefficients on the blade, angle of attack and angle of relative wind. At higher or lower wind speeds than the designed rated speed, the power coefficient is reduced due to considerable changes in the angle of attacks. Therefore, proper pitch control angles were calculated to extract maximum possible power at various off-design speeds. The results showed a considerable improvement in power coefficient for the pitch controlled blade as compared with the baseline design in whole operating range. The present approach can be equally employed for determining pitch angles to design pitch control system of medium and large-scale wind turbines
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
On super-sonic or trans-sonic planar cascade wind tunnel of free jet intermittent type, wind blowing experiments were performed on the typical sections of stator and rotor blades in the last stage of ultra-ultra-critical steam turbine with extra-long blade of 1200mm. The influences of attack angle and Mach number on the aerodynamic performances of these sections of the blade profiles were verified, and their operating ranges were also specified.
The optimisation and analysis of a centrifugal slurry pump impeller with 2 blades
Mehmet Salih Cellek; Tahsin Engin
2013-01-01
With FLUENT, which is Computational Fluid Dynamics (CFD) software, it becomes possible to define the performance of complicated flow in turbo machines like pumps and blowers. It is not only reduced costs but also saves time. This study is aimed to optimize a commercial slurry pump impeller. Therefore, four different types of impellers were designed with using various blade angles, blade length and splitter blade on the impeller, which is the most crucial component of the pump. As a result of ...
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
In this article, the low pressure axial flow fan with circumferential skewed rotor blade, including the radial blade, the forward-skewed blade and the backward-skewed blade, was studied with experimental methods. The aerodynamic performance of the rotors was measured. At the design condition at outlet of the rotors, detailed flow measurements were performed with a five-hole probe and a Hot-Wire Anemometer (HWA). The results show that compared to the radial rotor, the forward-skewed rotor demonstrates a wider Stable Operating Range (SOR), is able to reduce the total pressure loss in the hub region and make main loading of blade accumulating in the mid-span region. There is a wider wake in the upper mid-span region of the forward-skewed rotor. Compared to the radial rotor, in the backward-skewed rotor there is higher total pressure loss near the hub and shroud regions and lower loss in the mid-span region. In addition, the velocity deficit in the wake is lower at mid-span of the backward-skewed rotor than the forward-skewed rotor.
SIROCCO. Silent rotors by acoustic optimisation
Energy Technology Data Exchange (ETDEWEB)
Schepers, J.G.; Curvers, A. [ECN Wind Energy, Petten (Netherlands); Oerlemans, S. [National Aerospace Laboratory NLR, Amsterdam (Netherlands); Braun, K.; Lutz, T.; Herrig, A.; Wuerz, W. [University of Stuttgart, Stuttgart (Germany); Matesanz, A.; Garcillan, L. [Gamesa Eolica, Madrid (Spain); Fisher, M.; Koegler, K.; Maeder, T. [GE Wind Energy/GE Global Research (United States)
2007-07-15
In this paper the results from the European 5th Framework project 'SIROCCO' are described. The project started in January 2003 and will end in August 2007. The main aim of the SIROCCO project is to reduce wind-turbine aerodynamic noise significantly while maintaining the aerodynamic performance. This is achieved by designing new acoustically and aerodynamically optimised airfoils for the outer part of the blade. The project focussed primarily on reducing trailing edge noise, which was broadly believed to be the dominant noise mechanism of modern wind turbines.
The optimisation and analysis of a centrifugal slurry pump impeller with 2 blades
Directory of Open Access Journals (Sweden)
Mehmet Salih Cellek
2013-08-01
Full Text Available With FLUENT, which is Computational Fluid Dynamics (CFD software, it becomes possible to define the performance of complicated flow in turbo machines like pumps and blowers. It is not only reduced costs but also saves time. This study is aimed to optimize a commercial slurry pump impeller. Therefore, four different types of impellers were designed with using various blade angles, blade length and splitter blade on the impeller, which is the most crucial component of the pump. As a result of analysis it was seen that every impeller affected on the pump performance at different flow rate.
Evaluation of Rotor Structural and Aerodynamic Loads using Measured Blade Properties
Jung, Sung N.; You, Young-Hyun; Lau, Benton H.; Johnson, Wayne; Lim, Joon W.
2012-01-01
The structural properties of Higher harmonic Aeroacoustic Rotor Test (HART I) blades have been measured using the original set of blades tested in the wind tunnel in 1994. A comprehensive rotor dynamics analysis is performed to address the effect of the measured blade properties on airloads, blade motions, and structural loads of the rotor. The measurements include bending and torsion stiffness, geometric offsets, and mass and inertia properties of the blade. The measured properties are correlated against the estimated values obtained initially by the manufacturer of the blades. The previously estimated blade properties showed consistently higher stiffnesses, up to 30% for the flap bending in the blade inboard root section. The measured offset between the center of gravity and the elastic axis is larger by about 5% chord length, as compared with the estimated value. The comprehensive rotor dynamics analysis was carried out using the measured blade property set for HART I rotor with and without HHC (Higher Harmonic Control) pitch inputs. A significant improvement on blade motions and structural loads is obtained with the measured blade properties.
Directory of Open Access Journals (Sweden)
Shashishekara S. Talya
1999-01-01
Full Text Available Design optimization of a gas turbine blade geometry for effective film cooling toreduce the blade temperature has been done using a multiobjective optimization formulation. Three optimization formulations have been used. In the first, the average blade temperature is chosen as the objective function to be minimized. An upper bound constraint has been imposed on the maximum blade temperature. In the second, the maximum blade temperature is chosen as the objective function to be minimized with an upper bound constraint on the average blade temperature. In the third formulation, the blade average and maximum temperatures are chosen as objective functions. Shape optimization is performed using geometric parameters associated with film cooling and blade external shape. A quasi-three-dimensional Navier–Stokes solver for turbomachinery flows is used to solve for the flow field external to the blade with appropriate modifications to incorporate the effect of film cooling. The heat transfer analysis for temperature distribution within the blade is performed by solving the heat diffusion equation using the finite element method. The multiobjective Kreisselmeier–Steinhauser function approach has been used in conjunction with an approximate analysis technique for optimization. The results obtained using both formulations are compared with reference geometry. All three formulations yield significant reductions in blade temperature with the multiobjective formulation yielding largest reduction in blade temperature.
Optimization methods applied to the aerodynamic design of helicopter rotor blades
Walsh, Joanne L.; Bingham, Gene J.; Riley, Michael F.
1987-01-01
Described is a formal optimization procedure for helicopter rotor blade design which minimizes hover horsepower while assuring satisfactory forward flight performance. The approach is to couple hover and forward flight analysis programs with a general-purpose optimization procedure. The resulting optimization system provides a systematic evaluation of the rotor blade design variables and their interaction, thus reducing the time and cost of designing advanced rotor blades. The paper discusses the basis for and details of the overall procedure, describes the generation of advanced blade designs for representative Army helicopters, and compares design and design effort with those from the conventional approach which is based on parametric studies and extensive cross-plots.
Kodama, Yoshio; Futigami, Shinichirou; Hayashi, Hidechito; Mimura, Yujirou
1999-01-01
The effects of the belt case, the inclination of blade, the size of casing and the preventive plate of a tubular centrifugal fan on both fan noise and the aerodynamic characteristics are experimentally investigated by using three impellers. The results are summarized as follows : A considerable amount of a rise of pressure and fan efficiency can be expected by using the inclined blade and taking off belt case. Therefore, the specific noise level of the tubular centrifugal fan decrease conside...
Muhammad Ramzan Luhur; Joachim Peinke; Matthias Waechter
2014-01-01
This contribution provides the development of a stochastic lift and drag model for an airfoil FX 79-W-151A under unsteady wind inflow based on wind tunnel measurements. Here we present the integration of the stochastic model into a well-known standard BEM (Blade Element Momentum) model to obtain the corresponding aerodynamic forces on a rotating blade element. The stochastic model is integrated as an alternative to static tabulated data used by classical BEM. The results show that in comparis...
Ultimate Strength of Wind Turbine Blades under Multiaxial Loading
DEFF Research Database (Denmark)
Haselbach, Philipp Ulrich
Modern wind turbine rotor blades are sophisticated lightweight structures, optimised towards achieving the best compromise between aerodynamic and structural design as well as a cost efficient manufacturing processes. They are usually designed for a lifetime of minimum 20 years, where they must...
Flegel, Ashlie B.
2014-01-01
The purpose of this thesis is to document the impact of incidence angle and Reynolds number variations on the three-dimensional flow field and midspan loss and turning of a two-dimensional section of a variable-speed power-turbine (VSPT) rotor blade. Aerodynamic measurements were obtained in a transonic linear cascade at NASA Glenn Research Center in Cleveland, Ohio. Steady-state data were obtained for 10 incidence angles ranging from +15.8deg to -51.0deg. At each angle, data were acquired at five flow conditions with the exit Reynolds number (based on axial chord) varying over an order-of-magnitude from 2.12×105 to 2.12×106. Data were obtained at the design exit Mach number of 0.72 and at a reduced exit Mach number of 0.35 as required to achieve the lowest Reynolds number. Midspan tota lpressure and exit flow angle data were acquired using a five-hole pitch/yaw probe surveyed on a plane located 7.0 percent axial-chord downstream of the blade trailing edge plane. The survey spanned three blade passages. Additionally, three-dimensional half-span flow fields were examined with additional probe survey data acquired at 26 span locations for two key incidence angles of +5.8deg and -36.7deg. Survey data near the endwall were acquired with a three-hole boundary-layer probe. The data were integrated to determine average exit total-pressure and flow angle as functions of incidence and flow conditions. The data set also includes blade static pressures measured on four spanwise planes and endwall static pressures.
Measurements of the Aerodynamic Normal Forces on a 12-kW Straight-Bladed Vertical Axis Wind Turbine
Directory of Open Access Journals (Sweden)
Eduard Dyachuk
2015-08-01
Full Text Available The knowledge of unsteady forces is necessary when designing vertical axis wind turbines (VAWTs. Measurement data for turbines operating at an open site are still very limited. The data obtained from wind tunnels or towing tanks can be used, but have limited applicability when designing large-scale VAWTs. This study presents experimental data on the normal forces of a 12-kW straight-bladed VAWT operated at an open site north of Uppsala, Sweden. The normal forces are measured with four single-axis load cells. The data are obtained for a wide range of tip speed ratios: from 1.7 to 4.6. The behavior of the normal forces is analyzed. The presented data can be used in validations of aerodynamic models and the mechanical design for VAWTs.
Aerodynamic Data for Tip Section of Rotor with 52 Titanium Blades 1375 mm Long
Czech Academy of Sciences Publication Activity Database
Luxa, Martin; Synáč, J.; Šimurda, David; Šafařík, Pavel
Plzeň: ZČU Plzeň, 2014. ISBN 978-80-260-6447-3. [Turbostroje 2014. Plzeň (CZ), 24.09.2014-25.09.2014] R&D Projects: GA TA ČR(CZ) TA03020277 Institutional support: RVO:61388998 Keywords : supersonic flow * long turbine rotor blade * tip section Subject RIV: BK - Fluid Dynamics
Allaire, P. E.; Branagan, L. A.; Kocur, J. A.
1982-01-01
An unbounded eccentric centrifugal impeller with an infinite number of log spiral blades undergoing synchronous whirling in an incompressible fluid is considered. The forces acting on it due to coriolis forces, centripetal forces, changes in linear momentum, changes in pressure due to rotating and changes in pressure due to changes in linear momentum are evaluated.
Aerodynamic analysis of potential use of flow control devices on helicopter rotor blades
Tejero, F.; Doerffer, P.; Szulc, O.
2014-08-01
The interest in the application of flow control devices has been rising in the last years. Recently, several passive streamwise vortex generators have been analysed in a configuration of a curved wall nozzle within the framework of the UFAST project (Unsteady Effects of Shock Wave Induced Separation, 2005 - 2009). Experimental and numerical results proved that the technology is effective in delaying flow separation. The numerical investigation has been extended to helicopter rotor blades in hover and forward flight applying the FLOWer solver (RANS approach) implementing the chimera overlapping grids technique and high performance computing. CFD results for hover conditions confirm that the proposed passive control method reduces the flow separation increasing the thrust over power consumption. The paper presents the numerical validation for both states of flight and the possible implementation of RVGs on helicopter rotor blades.
Aerodynamic analysis of potential use of flow control devices on helicopter rotor blades
International Nuclear Information System (INIS)
The interest in the application of flow control devices has been rising in the last years. Recently, several passive streamwise vortex generators have been analysed in a configuration of a curved wall nozzle within the framework of the UFAST project (Unsteady Effects of Shock Wave Induced Separation, 2005 – 2009). Experimental and numerical results proved that the technology is effective in delaying flow separation. The numerical investigation has been extended to helicopter rotor blades in hover and forward flight applying the FLOWer solver (RANS approach) implementing the chimera overlapping grids technique and high performance computing. CFD results for hover conditions confirm that the proposed passive control method reduces the flow separation increasing the thrust over power consumption. The paper presents the numerical validation for both states of flight and the possible implementation of RVGs on helicopter rotor blades.
Aerodynamic Research on the Tip Sections of a Long Turbine Blade
Czech Academy of Sciences Publication Activity Database
Šimurda, David; Luxa, Martin; Synáč, J.; Šafařík, Pavel
Berlín: ASME, 2008, s. 1-8. ISBN 0-7918-3824-2. [ASME Turbo Expo 2008. Berlin (DE), 09.06.2008-13.06.2008] R&D Projects: GA ČR GA101/07/1508; GA MŠk(CZ) ME08025 Institutional research plan: CEZ:AV0Z20760514 Keywords : transsonic flow * tip blade section * turbomachinery Subject RIV: BK - Fluid Dynamics http://www.asmeconferences.org/TE08/
Study of controlled diffusion stator blading. 1. Aerodynamic and mechanical design report
Canal, E.; Chisholm, B. C.; Lee, D.; Spear, D. A.
1981-01-01
Pratt & Whitney Aircraft is conducting a test program for NASA in order to demonstrate that a controlled-diffusion stator provides low losses at high loadings and Mach numbers. The technology has shown great promise in wind tunnel tests. Details of the design of the controlled diffusion stator vanes and the multiple-circular-arc rotor blades are presented. The stage, including stator and rotor, was designed to be suitable for the first-stage of an advanced multistage, high-pressure compressor.
A practical study of the aerodynamic impact of wind turbine blade leading edge erosion
International Nuclear Information System (INIS)
During operation wind turbine blades are exposed to a wide variety of atmospheric and environmental conditions; inspection reports for blades that have been operating for several years show varying degrees of leading edge erosion. It is important to be able to estimate the impact of different stages of erosion on wind turbine performance, but this is very difficult even with advanced CFD models. In this study, wind tunnel testing was used to evaluate a range of complex erosion stages. Erosion patterns were transferred to thin films that were applied to 18% thick commercial wind turbine aerofoils and full lift and drag polars were measured in a wind tunnel. Tests were conducted up to a Reynolds number of 2.20 × 106 scaling based on the local roughness Reynolds number was used in combination with different film thicknesses to simulate a variety of erosion depths. The results will be very useful for conducting cost/benefit analyses of different methods of blade protection and repair, as well as for defining the appropriate timescales for these processes
Study of blade aspect ratio on a compressor front stage aerodynamic and mechanical design report
Burger, G. D.; Lee, D.; Snow, D. W.
1979-01-01
A single stage compressor was designed with the intent of demonstrating that, for a tip speed and hub-tip ratio typical of an advanced core compressor front stage, the use of low aspect ratio can permit high levels of blade loading to be achieved at an acceptable level of efficiency. The design pressure ratio is 1.8 at an adiabatic efficiency of 88.5 percent. Both rotor and stator have multiple-circular-arc airfoil sections. Variable IGV and stator vanes permit low speed matching adjustments. The design incorporates an inlet duct representative of an engine transition duct between fan and high pressure compressor.
International Nuclear Information System (INIS)
This contribution provides the development of a stochastic lift and drag model for an airfoil FX 79-W-151A under unsteady wind inflow based on wind tunnel measurements. Here we present the integration of the stochastic model into a well-known standard BEM (Blade Element Momentum) model to obtain the corresponding aerodynamic forces on a rotating blade element. The stochastic model is integrated as an alternative to static tabulated data used by classical BEM. The results show that in comparison to classical BEM, the BEM with stochastic approach additionally reflects the local force dynamics and therefore provides more information on aerodynamic forces that can be used by wind turbine simulation codes. (author)
Directory of Open Access Journals (Sweden)
Muhammad Ramzan Luhur
2014-01-01
Full Text Available This contribution provides the development of a stochastic lift and drag model for an airfoil FX 79-W-151A under unsteady wind inflow based on wind tunnel measurements. Here we present the integration of the stochastic model into a well-known standard BEM (Blade Element Momentum model to obtain the corresponding aerodynamic forces on a rotating blade element. The stochastic model is integrated as an alternative to static tabulated data used by classical BEM. The results show that in comparison to classical BEM, the BEM with stochastic approach additionally reflects the local force dynamics and therefore provides more information on aerodynamic forces that can be used by wind turbine simulation codes
Aerodynamic and Structural Design of MultiMW Wind Turbine Blades beyond 5MW
Hillmer, B.; Borstelmann, T.; Schaffarczyk, P. A.; Dannenberg, L.
2007-07-01
A unified approach was taken to the design of wind-turbine blades for multiMW machines up to 10 MW. Using input from standard existing machines, three baseline versions were designed. Then - after up-scaling - using the aero-elastic code FLEX5 a typical extreme load case was selected. As a result, weights seem to increase more than might be expected by an empirical law deduced from statistical data. However, some further investigations are needed, e. g. buckling and fatigue analyses. The authors regard the method developed here as a useful approach for pre-design investigation. One important aspect seems to be the need for high-quality GRPs, with admissible strength of more than 120 MPa.
Aerodynamic and Structural Design of MultiMW Wind Turbine Blades beyond 5MW
International Nuclear Information System (INIS)
A unified approach was taken to the design of wind-turbine blades for multiMW machines up to 10 MW. Using input from standard existing machines, three baseline versions were designed. Then - after up-scaling - using the aero-elastic code FLEX5 a typical extreme load case was selected. As a result, weights seem to increase more than might be expected by an empirical law deduced from statistical data. However, some further investigations are needed, e. g. buckling and fatigue analyses. The authors regard the method developed here as a useful approach for pre-design investigation. One important aspect seems to be the need for high-quality GRPs, with admissible strength of more than 120 MPa
CFD aerodynamic analysis of non-conventional airfoil sections for very large rotor blades
International Nuclear Information System (INIS)
The aerodynamic performance of flat-back and elliptically shaped airfoils is analyzed on the basis of CFD simulations. Incompressible and low-Mach preconditioned compressible unsteady simulations have been carried out using the k-w SST and the Spalart Allmaras turbulence models. Time averaged lift and drag coefficients are compared to wind tunnel data for the FB 3500-1750 flat back airfoil while amplitudes and frequencies are also recorded. Prior to separation averaged lift is well predicted while drag is overestimated keeping however the trend in the tests. The CFD models considered, predict separation with a 5° delay which is reflected on the load results. Similar results are provided for a modified NACA0035 with a rounded (elliptically shaped) trailing edge. Finally as regards the dynamic characteristics in the load signals, there is fair agreement in terms of Str number but significant differences in terms of lift and drag amplitudes
Method for estimating the aerodynamic coefficients of wind turbine blades at high angles of attack
Beans, E. W.; Jakubowski, G. S.
1983-12-01
The method is based on the hypothesis that at high angles of attack the force on an airfoil is produced by the deflection of the fluid across the lower surface. It is also hypothesized that all airfoils behave the same regardless of shape and that the effects of circulation and skin friction are small. It is pointed out that the expression for the force N normal to the airfoil due to momentum exchange can be written in terms of the component parallel to the flow (drag) and the component perpendicular to the flow (lift). A comparison of estimated values with measured values and generally accepted data indicates that the method given here estimates coefficients which are low. It is thought that the difference may derive from the persistence of circulation at high angles of attack. Low estimates are not seen as a serious limitation to the designer of wind turbines. Owing to the fifth power diameter relation, the effect of a low estimate of performance on the inner portion of the blade is minimized.
Energy Technology Data Exchange (ETDEWEB)
Jang, C-M. [Korea Institute of Construction Technology, Daehwa-dong, Goyang-Si (Korea). Fire and Engineering Services Research Department; Kim, K-Y. [Inha University, Incheon (Korea). Department of Mechanical Engineering
2005-12-15
This article describes the shape optimization of a stator blade in a single-stage transonic axial compressor. The blade optimization has been performed using response surface method and three-dimensional Navier-Stokes analysis. Thin-layer approximation is introduced to the Navier-Stokes equations, and an explicit Runge-Kutta scheme is used to solve the governing equations. Two geometric design variables of the stator blade, which are used to define a stacking line, are introduced to increase an adiabatic efficiency. D-optimal design is employed to reduce the number of evaluation points for response surface. With the optimization of the stator blade, the adiabatic efficiency is successfully improved when compared with that of the reference shape of the stator with straight stacking line. Positive stacking line, which bends on blade pressure side, effectively suppresses the flow separation on the blade suction surface of the stator. (author)
International Nuclear Information System (INIS)
This paper deals with different structuring methods for high temperature resistant nickel alloys. The ideal structured surface for a possible application on the blades of aeroengines combines high oxidation resistance with low drag in a hot gas flow. The effect of drag reduction due to riblet structured surfaces was originally inspired by shark scales, which have a drag reducing riblet structure. The necessary riblet sizes for effective drag reduction depend on the temperature, pressure and velocity of the flowing medium (gas or liquid). These riblet sizes were calculated for the different sections in an aeroengine. The riblets were successfully produced on a NiCoCrAlY coating by picosecond laser treatment. This method is suitable for larger structures within the range of some tens of micrometers. Furthermore, experiments were performed by depositing different materials through polymer and metal masks via electrodeposition and physical vapor deposition. All fabricated structures were oxidized at 900–1000 °C for up to 100 h to simulate the temperature conditions in an aeroengine. The resulting shape of the riblets was characterized using scanning electron microscopy. The most accurate structures were obtained by using photolithography with a subsequent electrodeposition of nickel. This method is suited for single digit micrometer structures. The reduction of the wall shear stress was measured in an oil channel. The riblet structures prior to oxidation showed a reduction of the wall shear stress of up to 4.9% compared to a normal smooth surface. This proves that the fabricated riblet design can be used as a drag reducing surface
Directory of Open Access Journals (Sweden)
Richard J. Crossley
2012-09-01
Full Text Available A detailed review of the current state-of-art for wind turbine blade design is presented, including theoretical maximum efficiency, propulsion, practical efficiency, HAWT blade design, and blade loads. The review provides a complete picture of wind turbine blade design and shows the dominance of modern turbines almost exclusive use of horizontal axis rotors. The aerodynamic design principles for a modern wind turbine blade are detailed, including blade plan shape/quantity, aerofoil selection and optimal attack angles. A detailed review of design loads on wind turbine blades is offered, describing aerodynamic, gravitational, centrifugal, gyroscopic and operational conditions.
Richard J. Crossley; Peter J. Schubel
2012-01-01
A detailed review of the current state-of-art for wind turbine blade design is presented, including theoretical maximum efficiency, propulsion, practical efficiency, HAWT blade design, and blade loads. The review provides a complete picture of wind turbine blade design and shows the dominance of modern turbines almost exclusive use of horizontal axis rotors. The aerodynamic design principles for a modern wind turbine blade are detailed, including blade plan shape/quantity, aerofoil selection ...
Flegel-McVetta, Ashlie B.; Giel, Paul W.; Welch, Gerard E.
2013-01-01
Aerodynamic measurements obtained in a transonic linear cascade were used to assess the impact of large incidence angle and Reynolds number variations on the 3-D flow field and midspan loss and turning of a 2-D section of a variable-speed power-turbine (VSPT) rotor blade. Steady-state data were obtained for ten incidence angles ranging from +15.8 deg to -51.0 deg. At each angle, data were acquired at five flow conditions with the exit Reynolds number (based on axial chord) varying over an order-of-magnitude from 2.12×10(exp 5) to 2.12×10(exp 6). Data were obtained at the design exit Mach number of 0.72 and at a reduced exit Mach number of 0.35 as required to achieve the lowest Reynolds number. Midspan total-pressure and exit flow angle data were acquired using a five-hole pitch/yaw probe surveyed on a plane located 7.0 percent axial chord downstream of the blade trailing edge plane. The survey spanned three blade passages. Additionally, three-dimensional half-span flow fields were examined with additional probe survey data acquired at 26 span locations for two key incidence angles of +5.8 deg and -36.7 deg. Survey data near the endwall were acquired with a three-hole boundary-layer probe. The data were integrated to determine average exit total-pressure and flow angle as functions of incidence and flow conditions. The data set also includes blade static pressures measured on four spanwise planes and endwall static pressures. Tests were conducted in the NASA Glenn Transonic Turbine Blade Cascade Facility. The measurements reflect strong secondary flows associated with the high aerodynamic loading levels at large positive incidence angles and an increase in loss levels with decreasing Reynolds number. The secondary flows decrease with negative incidence as the blade becomes unloaded. Transitional flow is admitted in this low inlet turbulence dataset, making it a challenging CFD test case. The dataset will be used to advance understanding of the aerodynamic
Ultimate Strength of Wind Turbine Blades under Multiaxial Loading
Haselbach, Philipp Ulrich; Branner, Kim; Berggreen, Christian; Bitsche, Robert
2015-01-01
Modern wind turbine rotor blades are sophisticated lightweight structures, optimised towards achieving the best compromise between aerodynamic and structural design as well as a cost efficient manufacturing processes. They are usually designed for a lifetime of minimum 20 years, where they must endure a variety of weather conditions including uncontrollable, extreme winds without developing damage and fracture.The trend in the development of wind turbines is towards larger, more efficient win...
Energy Technology Data Exchange (ETDEWEB)
Black, D.M.; Menthe, R.W.; Wainauski, H.S.
1978-09-01
The increased emphasis on fuel conservation in the world has stimulated a series of studies of both conventional and unconventional propulsion systems for commercial aircraft. Preliminary results from these studies indicate that a fuel saving of from 15 to 28 percent may be realized by the use of an advanced high speed turboprop. The turboprop must be capable of high efficiency at Mach 0.8 above 10.68 km (35,000 ft) altitude if it is to compete with turbofan powered commercial aircraft. An advanced turboprop concept was wind tunnel tested. The model included such concepts as an aerodynamically integrated propeller/nacelle, blade sweep and power (disk) loadings approximately three times higher than conventional propeller designs. The aerodynamic design for the model is discussed. Test results are presented which indicate propeller net efficiencies near 80 percent were obtained at high disk loadings at Mach 0.8.
Black, D. M.; Menthe, R. W.; Wainauski, H. S.
1978-01-01
The increased emphasis on fuel conservation in the world has stimulated a series of studies of both conventional and unconventional propulsion systems for commercial aircraft. Preliminary results from these studies indicate that a fuel saving of from 15 to 28 percent may be realized by the use of an advanced high speed turboprop. The turboprop must be capable of high efficiency at Mach 0.8 above 10.68 km (35,000 ft) altitude if it is to compete with turbofan powered commercial aircraft. An advanced turboprop concept was wind tunnel tested. The model included such concepts as an aerodynamically integrated propeller/nacelle, blade sweep and power (disk) loadings approximately three times higher than conventional propeller designs. The aerodynamic design for the model is discussed. Test results are presented which indicate propeller net efficiencies near 80 percent were obtained at high disk loadings at Mach 0.8.
Energy Technology Data Exchange (ETDEWEB)
Montgomerie, Bjoern
2004-06-01
For wind turbine and propeller performance calculations aerodynamic data, valid for several radial stations along the blade, are used. For wind turbines the data must be valid for the 360 degree angle of attack range. The reason is that all kinds of abnormal conditions must be analysed especially during the design of the turbine. Frequently aerodynamic data are available from wind tunnel tests where the angle of attack range is from say -5 to +20 degrees. This report describes a method to extend such data to be valid for {+-} 180 degrees. Previously the extension of data has been very approximate following the whim of the moment with the analyst. Furthermore, the Himmelskamp effect at the root and tip effects are treated in the complete method.
开式转子叶片气动设计研究%Research on Aerodynamic Design of Open Rotor Blade
Institute of Scientific and Technical Information of China (English)
刘政良; 严明; 洪青松
2013-01-01
参考现代民航飞机设计方案要求，完成了开式转子发动机叶片的气动设计工作。在设计过程中引入可压缩流动叶片数据改进了螺旋桨片条理论，使之适用于高亚声速来流的叶片设计。采用后掠叶片，NACA16系列叶型，前缘积叠方式。数值模拟结果与设计结果相近，基本满足气动设计要求。%Aerodynamic design of open rotor blade which refers to performance of engines which used on modern civil airplane is completed. Compressible blade data is introduced to optimize strip theory in order to satisfy blade design under high subsonic free stream. Sept blade, NACA-16 series data and leading edge accumulation is used. Numerical simulation is similar to the design which basicaly satisifed the design requirements.
Sanz Luengo, Antonio
2014-01-01
The general trend of efficiency increase, weight and noise reduction has derived in the design of more slender, loaded, and 3D shaped blades. This has a significant impact on the stability of fan, and low pressure turbine blades, which are more prone to aeroelastic phenomena such as flutter. The flutter phenomenon is a self-excited, self-sustained unstable vibration produced by the interaction of flow and structure. These working conditions will induce either blade overload, or High Cycle Fat...
International Nuclear Information System (INIS)
During their operational life span of around 20 years, the individual components of a wind turbine, especially the rotor blades, are exposed to extreme environmental influences. This is the result of the continuous exposure of wind turbines to the elements and of particularly high rotor blade tip speeds, which exceed a velocity of 90 m/s. These effects result in leading edge erosion. Rotor blades are therefore protected by special coating systems, e.g. varnishes and foils. The durability of those surface coatings varies depending on the location of the wind turbine and often proves to be insufficient. Additionally, there is no standardised test procedure for the evaluation of the durability and protective effect of the coating materials under the highly erosive conditions at the location of the wind turbines. In the course of this project, we will develop a testing procedure to evaluate the erosion of coating materials on actual leading edges of rotor blades, which will be applied in a test facility. The test rig will be capable of simulating a realistic application of rain and sand to gauge the effects of erosion. During the application, two test objects can be tested simultaneously. The geometry of the test objects will be adapted to represent that of real rotor blade tips. In order to generate comparable and transferable results, several challenges have to be met during the implementation, especially the realistic reproduction of environmental influences and the corrosion damage mechanism. In this regard, the duration of the test procedure is very important because a time lapse factor of 100-260 is intended. An operation of 20 years can thereby be simulated within 4 to 10 weeks
Energy Technology Data Exchange (ETDEWEB)
Naughton, Jonathan W. [University of Wyoming
2014-08-05
The growth of wind turbines has led to highly variable loading on the blades. Coupled with the relative reduced stiffness of longer blades, the need to control loading on the blades has become important. One method of controlling loads and maximizing energy extraction is local control of the flow on the wind turbine blades. The goal of the present work was to better understand the sources of the unsteady loading and then to control them. This is accomplished through an experimental effort to characterize the unsteadiness and the effect of a Gurney flap on the flow, as well as an analytical effort to develop control approaches. It was planned to combine these two efforts to demonstrate control of a wind tunnel test model, but that final piece still remains to be accomplished.
Amiraux, Mathieu
Rotorcraft Blade-Vortex Interaction (BVI) remains one of the most challenging flow phenomenon to simulate numerically. Over the past decade, the HART-II rotor test and its extensive experimental dataset has been a major database for validation of CFD codes. Its strong BVI signature, with high levels of intrusive noise and vibrations, makes it a difficult test for computational methods. The main challenge is to accurately capture and preserve the vortices which interact with the rotor, while predicting correct blade deformations and loading. This doctoral dissertation presents the application of a coupled CFD/CSD methodology to the problem of helicopter BVI and compares three levels of fidelity for aerodynamic modeling: a hybrid lifting-line/free-wake (wake coupling) method, with modified compressible unsteady model; a hybrid URANS/free-wake method; and a URANS-based wake capturing method, using multiple overset meshes to capture the entire flow field. To further increase numerical correlation, three helicopter fuselage models are implemented in the framework. The first is a high resolution 3D GPU panel code; the second is an immersed boundary based method, with 3D elliptic grid adaption; the last one uses a body-fitted, curvilinear fuselage mesh. The main contribution of this work is the implementation and systematic comparison of multiple numerical methods to perform BVI modeling. The trade-offs between solution accuracy and computational cost are highlighted for the different approaches. Various improvements have been made to each code to enhance physical fidelity, while advanced technologies, such as GPU computing, have been employed to increase efficiency. The resulting numerical setup covers all aspects of the simulation creating a truly multi-fidelity and multi-physics framework. Overall, the wake capturing approach showed the best BVI phasing correlation and good blade deflection predictions, with slightly under-predicted aerodynamic loading magnitudes
Czech Academy of Sciences Publication Activity Database
Šimurda, David; Luxa, Martin; Šafařík, P.; Synáč, J.; Šťastný, M.
Copenhagen: ASME, 2012, s. 955-964. [ASME Turbo Expo 2012. Copenhagen (DK), 11.06.2012-15.06.2012] R&D Projects: GA AV ČR(CZ) IAA200760801; GA ČR(CZ) GAP101/10/1329 Institutional support: RVO:61388998 Keywords : transonic flow * root section * turbine blade cascade Subject RIV: BK - Fluid Dynamics
具有较强气动性能的风力发电机叶片研究%Research on wind turbine blades with better aerodynamic performance
Institute of Scientific and Technical Information of China (English)
徐浩; 朱益红; 韩建景; 李永泉
2012-01-01
Using fluid analysis software Fluent, the flow field simulation of two common airfoil shape N ACA4415 and SD7043 was processed. The differences between the aerodynamic performances from the shape characteristics were analyzed. Using of the airfoil shape analysis software Profili, a new airfoil shape with good characteristics, which combine NACA4415 and SD7043, was designed,then new and original wing airfoil lift-to-drag characteristics in the difference were analyzed. The results show that the new airfoil has achieved better aerodynamic performance. Finally, a set of small wind turbine blades were designed by using the new shape.%利用流体分析软件Fluent对NACA4415与SD7043两种常见翼型进行流场模拟,从外形特征分析两者的气动性能差异,进一步利用翼型分析软件profili的翼型设计功能,结合两种翼型的长处,设计出新的翼型,并对新翼型与原有翼型在升阻特性上的差异进行分析,对比发现新翼型气动性能更优.最后利用新翼型基于Solidworks设计出一款小型风力发电机叶片.
Crook, Andrew J.; Delaney, Robert A.
1992-01-01
The purpose of this study is the development of a three-dimensional Euler/Navier-Stokes flow analysis for fan section/engine geometries containing multiple blade rows and multiple spanwise flow splitters. An existing procedure developed by Dr. J. J. Adamczyk and associates and the NASA Lewis Research Center was modified to accept multiple spanwise splitter geometries and simulate engine core conditions. The procedure was also modified to allow coarse parallelization of the solution algorithm. This document is a final report outlining the development and techniques used in the procedure. The numerical solution is based upon a finite volume technique with a four stage Runge-Kutta time marching procedure. Numerical dissipation is used to gain solution stability but is reduced in viscous dominated flow regions. Local time stepping and implicit residual smoothing are used to increase the rate of convergence. Multiple blade row solutions are based upon the average-passage system of equations. The numerical solutions are performed on an H-type grid system, with meshes being generated by the system (TIGG3D) developed earlier under this contract. The grid generation scheme meets the average-passage requirement of maintaining a common axisymmetric mesh for each blade row grid. The analysis was run on several geometry configurations ranging from one to five blade rows and from one to four radial flow splitters. Pure internal flow solutions were obtained as well as solutions with flow about the cowl/nacelle and various engine core flow conditions. The efficiency of the solution procedure was shown to be the same as the original analysis.
Effects of a trailing edge flap on the aerodynamics and acoustics of rotor blade-vortex interactions
Charles, B. D.; Tadghighi, H.; Hassan, A. A.
1992-01-01
The use of a trailing edge flap on a helicopter rotor has been numerically simulated to determine if such a device can mitigate the acoustics of blade vortex interactions (BVI). The numerical procedure employs CAMRAD/JA, a lifting-line helicopter rotor trim code, in conjunction with RFS2, an unsteady transonic full-potential flow solver, and WOPWOP, an acoustic model based on Farassat's formulation 1A. The codes were modified to simulate trailing edge flap effects. The CAMRAD/JA code was used to compute the far wake inflow effects and the vortex wake trajectories and strengths which are utilized by RFS2 to predict the blade surface pressure variations. These pressures were then analyzed using WOPWOP to determine the high frequency acoustic response at several fixed observer locations below the rotor disk. Comparisons were made with different flap deflection amplitudes and rates to assess flap effects on BVI. Numerical experiments were carried out using a one-seventh scale AH-1G rotor system for flight conditions simulating BVI encountered during low speed descending flight with and without flaps. Predicted blade surface pressures and acoustic sound pressure levels obtained have shown good agreement with the baseline no-flap test data obtained in the DNW wind tunnel. Numerical results indicate that the use of flaps is beneficial in reducing BVI noise.
Measurements of the Aerodynamic Normal Forces on a 12-kW Straight-Bladed Vertical Axis Wind Turbine
Eduard Dyachuk; Morgan Rossander; Anders Goude; Hans Bernhoff
2015-01-01
The knowledge of unsteady forces is necessary when designing vertical axis wind turbines (VAWTs). Measurement data for turbines operating at an open site are still very limited. The data obtained from wind tunnels or towing tanks can be used, but have limited applicability when designing large-scale VAWTs. This study presents experimental data on the normal forces of a 12-kW straight-bladed VAWT operated at an open site north of Uppsala, Sweden. The normal forces are measured with four single...
Energy Technology Data Exchange (ETDEWEB)
Schobeiri, Meinhard; Han, Je-Chin
2014-09-30
This report deals with the specific aerodynamics and heat transfer problematic inherent to high pressure (HP) turbine sections of IGCC-gas turbines. Issues of primary relevance to a turbine stage operating in an IGCC-environment are: (1) decreasing the strength of the secondary flow vortices at the hub and tip regions to reduce (a), the secondary flow losses and (b), the potential for end wall deposition, erosion and corrosion due to secondary flow driven migration of gas flow particles to the hub and tip regions, (2) providing a robust film cooling technology at the hub and that sustains high cooling effectiveness less sensitive to deposition, (3) investigating the impact of blade tip geometry on film cooling effectiveness. The document includes numerical and experimental investigations of above issues. The experimental investigations were performed in the three-stage multi-purpose turbine research facility at the Turbomachinery Performance and Flow Research Laboratory (TPFL), Texas A&M University. For the numerical investigations a commercial Navier-Stokes solver was utilized.
EFFECT OF UPSTREAM ROTOR ON AERODYNAMIC FORCE OF DOWNSTREAM STATOR BLADES%上游转子对下游静子叶片气动力的影响
Institute of Scientific and Technical Information of China (English)
王志强; 胡骏; 王英锋; 赵勇
2006-01-01
为研究轴流压气机下游静子叶片非定常气动力的大小和频率的变化规律,采用在静子叶片表面埋设微型动态压力传感器的方法,在低速单级轴流压气机实验器上进行了静子叶片表面压力的测量.测量了不同轴向间距、不同转速下从近堵塞到近失速的宽广流量范围,并对所测得的静子叶片非定常气动力进行了离散傅立叶变换,以分析其频谱特性.实验结果表明:在转子尾迹的影响下,静子叶片表面的波动频率是转子的尾迹频率及其倍频.转子尾迹频率的高频分量对静子叶片吸力面前缘的影响比对其他位置的影响大.叶片表面的非定常压力和气动力随压气机流量、转速和轴向间距的变化而变化.%To study the amplitude and the frequency of the aerodynamic force on stator blades, micro-sensors are embedded on the surface of stator blades of a low-speed single-stage axial compressor rig. The unsteady pressure distribution on stator blades is measured under the conditions of different axial spacing between the rotor and the stator, different rotating speeds and an extensive range of the mass flow. Amplitudes and frequencies of aerodynamic forces are analyzed by the Fourier transform. Experimental results show that under the effect of the rotor wake, the dominant frequencies of pressure fluctuations on stator blades are the rotor blade passing frequency (BPF) and its harmonics. The higher harmonics of the rotor BPF in the fore part of the suction side are more prominent than that in the other parts of the stator blade. Otherwise, fluctuations of the pressure and the aerodynamic force on stator blades vary with the mass flow, the rotating speed and the axial spacing between the rotor and the stator.
Numerical simulation on the aerofoil aerodynamic performance of wind turbine blade%风力机叶片翼型气动性能数值模拟
Institute of Scientific and Technical Information of China (English)
胡丹梅; 李佳; 张志超
2011-01-01
采用数值模拟方法对NACA23012,NACA4412,S809,S810等4种常用风力机叶片翼型进行了研究,分析了翼型静止与振荡时的气动性能.随着攻角的增加,静止翼型的升力系数先增大后减小,其阻力系数一直增大,显示出NACA4412翼型具有较好的低风速启动性能；振荡翼型的升力系数随着攻角的变化呈现一个闭合迟滞环曲线,显示出振荡翼型S809的动态失速迟滞效应最为明显.文章参照模拟结果和对比试验数据,验证了数值模拟的可靠性.%Four kinds of aerofoil of wind turbine blade which are NACA23012, NACA4412, S809 and S810 were studied by numerical simulation method, and the aerodynamic performance of the static and oscillate aerofoil was analyzed. With the angle of attack becoming larger, the lift coefficient of the static aerofoil first increased and then decreased, however, the drag coefficient continuously increased.lt showed NACA4412 aerofoil had a better low-speed start-up performance. The lift coefficient curve of the oscillate aerofoil was presented a closed hysteresis loop cycle with the angle of attack increased. The hysteresis effect of the S809 aerofoil was most obvious. Based on the simulated data and the experiment data, the reliability of numerical simulation was verified.
Introduction to wind turbine aerodynamics
Schaffarczyk, Alois Peter
2014-01-01
Wind-Turbine Aerodynamics is a self-contained textbook which shows how to come from the basics of fluid mechanics to modern wind turbine blade design. It presents a fundamentals of fluid dynamics and inflow conditions, and gives a extensive introduction into theories describing the aerodynamics of wind turbines. After introducing experiments the book applies the knowledge to explore the impact on blade design.The book is an introduction for professionals and students of very varying levels.
Aerodynamics of wind turbines emerging topics
Amano, R S
2014-01-01
Focusing on Aerodynamics of Wind Turbines with topics ranging from Fundamental to Application of horizontal axis wind turbines, this book presents advanced topics including: Basic Theory for Wind turbine Blade Aerodynamics, Computational Methods, and Special Structural Reinforcement Technique for Wind Turbine Blades.
Reinforced aerodynamic profile
DEFF Research Database (Denmark)
2010-01-01
The present invention relates to the prevention of deformations in an aerodynamic profile caused by lack of resistance to the bending moment forces that are created when such a profile is loaded in operation. More specifically, the invention relates to a reinforcing element inside an aerodynamic ...... profile and a method for the construction thereof. The profile is intended for, but not limited to, useas a wind turbine blade, an aerofoil device or as a wing profile used in the aeronautical industry....
aerodynamics and heat transfer
Directory of Open Access Journals (Sweden)
J. N. Rajadas
1998-01-01
Full Text Available A multidisciplinary optimization procedure, with the integration of aerodynamic and heat transfer criteria, has been developed for the design of gas turbine blades. Two different optimization formulations have been used. In the first formulation, the maximum temperature in the blade section is chosen as the objective function to be minimized. An upper bound constraint is imposed on the blade average temperature and a lower bound constraint is imposed on the blade tangential force coefficient. In the second formulation, the blade average and maximum temperatures are chosen as objective functions. In both formulations, bounds are imposed on the velocity gradients at several points along the surface of the airfoil to eliminate leading edge velocity spikes which deteriorate aerodynamic performance. Shape optimization is performed using the blade external and coolant path geometric parameters as design variables. Aerodynamic analysis is performed using a panel code. Heat transfer analysis is performed using the finite element method. A gradient based procedure in conjunction with an approximate analysis technique is used for optimization. The results obtained using both optimization techniques are compared with a reference geometry. Both techniques yield significant improvements with the multiobjective formulation resulting in slightly superior design.
Helicopter rotor blade design for minimum vibration
Taylor, R. B.
1984-01-01
The importance of blade design parameters in rotor vibratory response and the design of a minimum vibration blade based upon this understanding are examined. Various design approaches are examined for a 4 bladed articulated rotor operating at a high speed flight condition. Blade modal shaping, frequency placement, structural and aerodynamic coupling, and intermodal cancellation are investigated to systematically identify and evaluate blade design parameters that influence blade airloads, blade modal response, hub loads, and fuselage vibration. The relative contributions of the various components of blade force excitation and response to the vibratory hub loads transmitted to the fuselage are determined in order to isolate primary candidates for vibration alleviation. A blade design is achieved which reduces the predicted fuselage vibration from the baseline blade by approximately one half. Blade designs are developed that offer significant reductions in vibration (and fatigue stresses) without resorting to special vibration alleviation devices, radical blade geometries, or weight penalties.
WIND TURBINE MASS AND AERODYNAMIC IMBALANCES DETERMINATION
Nduwayezu Eric; Mehmet Bayrak
2015-01-01
This paper evaluates the use of simulations to investigate wind turbine mass and aerodynamic imbalances. Faults caused by mass and aerodynamic imbalances constitute a significant portion of all faults in wind turbine. The aerodynamic imbalances effects such as deviations between the three blades pitch angle are often underrated and misunderstood. In practice, for many wind energy converters the blade adjustment is found to be sub-optimal. The dynamics of a model wind turbine was s...
Blade dynamic stress analysis of rotating bladed disks
Directory of Open Access Journals (Sweden)
Kellner J.
2007-10-01
Full Text Available The paper deals with mathematical modelling of steady forced bladed disk vibrations and with dynamic stress calculation of the blades. The blades are considered as 1D kontinuum elastic coupled with three-dimensional elastic disk centrally clamped into rotor rotating with constant angular speed. The steady forced vibrations are generated by the aerodynamic forces acting along the blade length. By using modal synthesis method the mathematical model of the rotating bladed disk is condensed to calculate steady vibrations. Dynamic stress analysis of the blades is based on calculation of the time dependent reduced stress in blade cross-sections by using Hubert-Misses-Hencky stress hypothesis. The presented method is applied to real turbomachinery rotor with blades connected on the top with shroud.
DEFF Research Database (Denmark)
Skrzypinski, Witold Robert; Gaunaa, Mac
2015-01-01
The present study investigated physical phenomena related to stall-induced vibrations potentially existing on wind turbine blades at standstill conditions. The study considered two-dimensional airfoil sections while it omitted three-dimensional effects. In the study, a new engineering...
Crook, Andrew J.; Delaney, Robert A.
1992-01-01
The computer program user's manual for the ADPACAPES (Advanced Ducted Propfan Analysis Code-Average Passage Engine Simulation) program is included. The objective of the computer program is development of a three-dimensional Euler/Navier-Stokes flow analysis for fan section/engine geometries containing multiple blade rows and multiple spanwise flow splitters. An existing procedure developed by Dr. J. J. Adamczyk and associates at the NASA Lewis Research Center was modified to accept multiple spanwise splitter geometries and simulate engine core conditions. The numerical solution is based upon a finite volume technique with a four stage Runge-Kutta time marching procedure. Multiple blade row solutions are based upon the average-passage system of equations. The numerical solutions are performed on an H-type grid system, with meshes meeting the requirement of maintaining a common axisymmetric mesh for each blade row grid. The analysis was run on several geometry configurations ranging from one to five blade rows and from one to four radial flow splitters. The efficiency of the solution procedure was shown to be the same as the original analysis.
Flutter control of incompressible flow turbomachine blade rows by splitter blades
International Nuclear Information System (INIS)
Splitter blades as a passive flutter control technique are investigated by developing a mathematical model to predict the stability of an aerodynamically loaded splittered-rotor operating in an incompressible flow field. The splitter blades, positioned circumferentially in the flow passage between two principal blades, introduce aerodynamic and/or combined aerodynamic-structural detuning into the rotor. The two-dimensional oscillating cascade unsteady aerodynamics, including steady loading effects, are determined by developing a complete first-order unsteady aerodynamic analysis together with an unsteady aerodynamic influence coefficient technique. The torsion mode flutter of both uniformly spaced tuned rotors and detuned rotors are predicted by incorporating the unsteady aerodynamic influence coefficients into a single-degree-of-freedom aeroelastic model. This model is then utilized to demonstrate that incorporating splitters into unstable rotor configurations results in stable splittered-rotor configurations. (orig.)
Optimization Design and Experimental Study of Low-Pressure Axial Fan with Forward-Skewed Blades
Li Yang; Ouyang Hua; Du Zhao-Hui
2007-01-01
This paper presents an experimental study of the optimization of blade skew in low pressure axial fan. Using back propagation (BP) neural network and genetic algorithm (GA), the optimization was performed for a radial blade. An optimized blade is obtained through blade forward skew. Measurement of the two blades was carried out in aerodynamic and aeroacoustic performance. Compared to the radial blade, the optimized blade demonstrated improvements in efficiency, total pres...
Transonic blade flutter: A survey of new developments
Platzer, M.F.
1982-01-01
This paper presents a review of current work in transonic blade flutter research. Aerodynamic analyses for the prediction of attached flow flutter, choke flutter, and stall flutter are described. Also reviewed are unsteady aerodynamic measurement and flutter test programs that have recently been completed or are in progress to investigate transonic blade flutter phenomena.
Institute of Scientific and Technical Information of China (English)
位晓清; 王东兴; 蔡国忠
2012-01-01
Savonius rotor is a typical style of vertical-axis wind turbine （VAWT）. The study on the aerodynamic performance of small Savonius wind turbine influenced by blade angle was presented in the paper. Fluid-solid coupling analysis on the Savonius rotor was carried out based on ANSYS CFX. And the standard k-ε turbulence model was used in the simulation analysis of savonius rotor. The power characteristics were calculated after getting the data about torque and velocity distribution by numerical simulation. And then the relation between torque coefficient and blade angle was obtained by using the analysis results. According to analysis results, got the point and the range that generating the maximum torque and the negative torque. And it can offer a useful reference for the further study on Savonius wind turbine in the future by the analysis of blade angle＇s influence on the turbine characters.%Savonius风机是一种典型的垂直轴风力发电机，通过对其进行流固耦合分析，研究叶片转角对风机气动性能的影响。利用ANSYS的CFX流体模块，流体湍流模型选择基于RANS的标准k-ε湍流模型，对风轮进行流固耦合分析，从而获得叶片产生的力矩情况，并计算了风机的功率特性。利用求解结果，得到了力矩系数与叶片转角之间的关系。分析了风机叶片在旋转一周中所产生的最大扭矩以及负扭矩所处的位置和范围。通过分析转角对风机性能的影响，可为今后的Savonius风机叶片形状优化和效率提升提供参考。
Aerodynamic Aspects of Wind Energy Conversion
DEFF Research Database (Denmark)
Sørensen, Jens Nørkær
2011-01-01
-blade geometry. The basics of the blade-element momentum theory are presented along with guidelines for the construction of airfoil data. Various theories for aerodynamically optimum rotors are discussed, and recent results on classical models are presented. State-of-the-art advanced numerical simulation tools...
Institute of Scientific and Technical Information of China (English)
刘小民; 赵嘉; 李典
2015-01-01
采用基于Smagorinsky 模型的大涡模拟（LES）方法及FW-H方程，对不同流量工况下多翼离心风机的压力、效率、噪声等性能参数进行了数值模拟，并通过实验测量，对数值方法和计算模型的有效性及结果的准确性进行了验证。研究结果表明：在多翼离心风机内，流动涡核区域主要集中在叶轮叶片靠近蜗壳出口区域；在叶片前缘由于气流的冲击存在着较大压力区，在叶片尾缘吸力面由于流动涡脱落存在着负压分离区；随着流量增大，风机的总压和静压逐渐降低，动压逐渐增大，效率也出现先升高再下降的波动。在大流量工况下，计算获得的风机噪声为68.3dB，实验测量噪声值为69.4dB。%The large eddy simulation (LES) coupled with the Smagorinsky model and the Ffowcs Williams and Hawkings (FW-H) equation were used to numerically predict the pressure, efficiency and aerodynamic noise of a multi-blade centrifugal fan under different mass flow conditions respectively. Based on experimental measurement,the effectiv-eness of numerical simulation method and calculation model and the accuracy of results are verified.The numerical results show that the vortex core region of the multi-blade centrifugal fan appears mainly in the impeller close to the outlet of the volute. There is a region with higher pressure at the leading edge of the blade while there is a negative pressure region at the trailing edge of the blade. With the flow rate increasing, both the total pressure and the static pressure decrease at the outlet of the multi-blade centrifugal fan, the dynamic pressure increased and the efficiency increase first and then decrease. Even in the maximum flow rate condition, the noise obtained by the numerical calculation is good agreement with the experimental measurement. They are 68.3dB and 69.4dB respectively.
1976-01-01
The aerodynamic and mechanical design of a fixed-pitch 1.36 pressure ratio fan for the over-the-wing (OTW) engine is presented. The fan has 28 blades. Aerodynamically, the fan blades were designed for a composite blade, but titanium blades were used in the experimental fan as a cost savings measure.
Brooks, Thomas F.
1994-01-01
Blades of helicopter rotors, tilt rotors, and like reshaped to reduce noise, according to proposal. Planform features combination of rearward and forward sweep. Forward sweep over large outer portion of blade constitutes primary noise-reduction feature. Relieves some of compressive effect in tip region, with consequent reduction of noise from compressive sources. Performance at high advance ratio improved. Cabin vibration and loading noise reduced by load-averaging effect of double-sweep planform. Aft-swept section provides balancing of aerodynamic and other dynamic forces on blade along 1/4-chord line of straight inboard section and along projection of line to outermost blade radius. Possible for hub-hinge forces and moments to remain within practical bounds. Provides stabilizing blade forces and moments to counteract any instability caused by forward sweep.
Shape Optimization of Wind Turbine Blades
DEFF Research Database (Denmark)
Wang, Xudong; Shen, Wen Zhong; Zhu, Wei Jun; Sørensen, Jens Nørkær; Chen, Jin
2009-01-01
This paper presents a design tool for optimizing wind turbine blades. The design model is based on an aerodynamic/aero-elastic code that includes the structural dynamics of the blades and the Blade Element Momentum (BEM) theory. To model the main aero-elastic behaviour of a real wind turbine, the...... rotor. The design variables used in the current study are the blade shape parameters, including chord, twist and relative thickness. To validate the implementation of the aerodynamic/aero-elastic model, the computed aerodynamic results are compared to experimental data for the experimental rotor used in...... the European Commision-sponsored project Model Experiments in Controlled Conditions, (MEXICO) and the computed aero-elastic results are examined against the FLEX code for flow post the Tjereborg 2 MW rotor. To illustrate the optimization technique, three wind turbine rotors of different sizes (the...
Simulation of Flexible Mechanisms in a Rotating Blade for Smart-Blade Applications
Paternoster, A.R.A.; Loendersloot, R.; Boer; Akkerman, R.
2012-01-01
The active Gurney flap technology is investigated to improve the performance of rotorblades by allowing helicopter blades to further control the lift unbalance that rises at high speed and by damping vibration loads on the rotor hub. This technology needs validation by wind tunnel testing of a scaled model blade under rotational loading. An optimised geometry of a flexible actuation system has been designed to provide motion for the deployment of the Gurney flap for a Mach-scale model blade [...
Rotorcraft On-Blade Pressure and Strain Measurements Using Wireless Optical Sensor System Project
National Aeronautics and Space Administration — Experimental measurements of rotor blades are important for understanding the aerodynamics and dynamics of a rotorcraft. This understanding can help in solving...
Smart actuation mechanisms for helicopter blades: design case for a mach-scaled model blade
Paternoster, A.R.A.
2013-01-01
This work is part of the European project “Clean Sky”, which aims at improving the efficiency and the global transport quality of aircraft. The research, in this project, is currently focussing on active flap systems for helicopters to adapt the blade aerodynamic properties to local aerodynamic cond
A CFD-informed quasi-steady model of flapping wing aerodynamics
Nakata, Toshiyuki; Liu, Hao; Bomphrey, Richard J.
2016-01-01
Aerodynamic performance and agility during flapping flight are determined by the combination of wing shape and kinematics. The degree of morphological and kinematic optimisation is unknown and depends upon a large parameter space. Aimed at providing an accurate and computationally inexpensive modelling tool for flapping-wing aerodynamics, we propose a novel CFD (computational fluid dynamics)-informed quasi-steady model (CIQSM), which assumes that the aerodynamic forces on a flapping wing can be decomposed into the quasi-steady forces and parameterised based on CFD results. Using least-squares fitting, we determine a set of proportional coefficients for the quasi-steady model relating wing kinematics to instantaneous aerodynamic force and torque; we calculate power with the product of quasi-steady torques and angular velocity. With the quasi-steady model fully and independently parameterised on the basis of high-fidelity CFD modelling, it is capable of predicting flapping-wing aerodynamic forces and power more accurately than the conventional blade element model (BEM) does. The improvement can be attributed to, for instance, taking into account the effects of the induced downwash and the wing tip vortex on the force generation and power consumption. Our model is validated by comparing the aerodynamics of a CFD model and the present quasi-steady model using the example case of a hovering hawkmoth. It demonstrates that the CIQSM outperforms the conventional BEM while remaining computationally cheap, and hence can be an effective tool for revealing the mechanisms of optimization and control of kinematics and morphology in flapping-wing flight for both bio-flyers and unmanned air systems.
DEFF Research Database (Denmark)
Hansen, Martin Otto Laver
Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its second edition, it has been entirely updated and substantially extended to reflect advances in technology, research into rotor aerodynamics and the structural...... response of the wind turbine structure. Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element...... Momentum method is also covered, as are eigenmodes and the dynamic behavior of a turbine. The new material includes a description of the effects of the dynamics and how this can be modeled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Further, the...
Impeller blade design method for centrifugal compressors
Jansen, W.; Kirschner, A. M.
1974-01-01
The design of a centrifugal impeller with blades that are aerodynamically efficient, easy to manufacture, and mechanically sound is discussed. The blade design method described here satisfies the first two criteria and with a judicious choice of certain variables will also satisfy stress considerations. The blade shape is generated by specifying surface velocity distributions and consists of straight-line elements that connect points at hub and shroud. The method may be used to design radially elemented and backward-swept blades. The background, a brief account of the theory, and a sample design are described.
Advances in wind turbine blade design and materials
DEFF Research Database (Denmark)
well as the requirements and challenges for composite materials used in both current and future designs of wind turbine blades. Part one outlines the challenges and developments in wind turbine blade design, including aerodynamic and aeroelastic design features, fatigue loads on wind turbine blades...... fatigue resistance of wind turbine blades. The final part of the book describes advances in wind turbine blade materials, development and testing, including biobased composites, surface protection and coatings, structural performance testing and the design, manufacture and testing of small wind turbine...... materials scientists and engineers, wind turbine blade manufacturers and maintenance technicians, scientists, researchers and academics....
Dynamic response of active twist rotor blades
Cesnik, Carlos E. S.; Shin, Sang Joon; Wilbur, Matthew L.
2001-02-01
Dynamic characteristics of active twist rotor (ATR) blades are investigated analytically and experimentally in this paper. The ATR system is intended for vibration and potentially for noise reductions in helicopters through individual blade control. An aeroelastic model is developed to identify frequency response characteristics of the ATR blade with integral, generally anisotropic, strain actuators embedded in its composite construction. An ATR prototype blade was designed and manufactured to experimentally study the vibration reduction capabilities of such systems. Several bench and hover tests were conducted and those results are presented and discussed here. Selected results on sensitivity of the ATR system to collective setting (i.e. blade loading), blade rpm (i.e. centrifugal force and blade station velocity), and media density (i.e. altitude) are presented. They indicated that the twist actuation authority of the ATR blade is independent of the collective setting up to approximately 10P, and dependent on rotational speed and altitude near the torsional resonance frequency due to its dependency on the aerodynamic damping. The proposed model captures very well the physics and sensitivities to selected test parameters of the ATR system. The numerical result of the blade torsional loads show an average error of 20% in magnitude and virtually no difference in phase for the blade frequency response. Overall, the active blade model is in very good agreement with the experiments and can be used to analyze and design future active helicopter blade systems.
Prediction of aerodynamic performance for MEXICO rotor
DEFF Research Database (Denmark)
Hong, Zedong; Yang, Hua; Xu, Haoran;
2013-01-01
The aerodynamic performance of the MEXICO (Model EXperiments In Controlled cOnditions) rotor at five tunnel wind speeds is predicted by making use of BEM and CFD methods, respectively, using commercial MATLAB and CFD software. Due to the pressure differences on both sides of the blade, the tip...... the reliability of the MEXICO data. Second, the SST turbulence model can better capture the flow separation on the blade and has high aerodynamic performance prediction accuracy for a horizontal axis wind turbine in axial inflow conditions. Finally, the comparisons of the axial and tangential forces as well...
Unsteady aerodynamics of high work turbines
Richardson, David
2009-01-01
One method aircraft engine manufactures use to minimize engine cost and weight is to reduce the number of parts. A significant reduction includes reducing the turbine blade count or combining two moderately loaded turbines into one high-work turbine. The risk of High Cycle Fatigue in these configurations is increased by the additional aerodynamic forcing generated by the high blade loading and the nozzle trailing edge shocks. A lot of research has been done into the efficiency implications of...
Design of low noise wind turbine blades using Betz and Joukowski concepts
DEFF Research Database (Denmark)
Shen, Wen Zhong; Hrgovan, Iva; Okulov, Valery;
2014-01-01
This paper presents the aerodynamic design of low noise wind turbine blades using Betz and Joukowski concepts. The aerodynamic model is based on Blade Element Momentum theory whereas the aeroacoustic prediction model is based on the BPM model. The investigation is started with a 3MW baseline...
New airfoil sections for straight bladed turbine
International Nuclear Information System (INIS)
A theoretical investigation of aerodynamic performance for vertical axis Darrieus wind turbine with new airfoils sections is carried out. The blade section aerodynamics characteristics are determined from turbomachines cascade model. The model is also adapted to the vertical Darrieus turbine for the performance prediction of the machine. In order to choose appropriate value of zero-lift-drag coefficient in calculation, an analytical expression is introduced as function of chord-radius ratio and Reynolds numbers. New airfoils sections are proposed and analyzed for straight-bladed turbine
State of the art in wind turbine aerodynamics and aeroelasticity
DEFF Research Database (Denmark)
Hansen, Martin Otto Laver; Sørensen, Jens Nørkær; Voutsinas, S; Sørensen, Niels N.; Aagaard Madsen, Helge
2006-01-01
A comprehensive review of wind turbine aeroelasticity is given. The aerodynamic part starts with the simple aerodynamic Blade Element Momentum Method and ends with giving a review of the work done applying CFD on wind turbine rotors. In between is explained some methods of intermediate complexity...
Survey of Unsteady Computational Aerodynamics for Horizontal Axis Wind Turbines
Frunzulicǎ, F.; Dumitrescu, H.; Cardoş, V.
2010-09-01
We present a short review of aerodynamic computational models for horizontal axis wind turbines (HAWT). Models presented have a various level of complexity to calculate aerodynamic loads on rotor of HAWT, starting with the simplest blade element momentum (BEM) and ending with the complex model of Navier-Stokes equations. Also, we present some computational aspects of these models.
Energy Technology Data Exchange (ETDEWEB)
Keller, M. [ContiTech Conveyor Belt Group (Germany)
2004-01-01
The paper illustrates how conveyor belts with optimised energy consumption can cut costs. It describes the project undertaken by ContiTech Conveyor Belt Group to increase the rated capacity of the conveying system at PT Kaltim Prima Coal's Eastern Kalimantan mine from 2400 tph to 3300 tph. The steel-cored conveyor belt, 27 km long, was supplied in 27 individual units and spliced onsite. The number of splices was minimised by using oval reels which reduced installation time. 2 figs.
A novel folding blade of wind turbine rotor for effective power control
International Nuclear Information System (INIS)
Highlights: • A novel folding blade for wind turbine power control is proposed. • Wind tunnel experiments were conducted to analyze folding blade validity. • Folding blade is valid to control wind turbine power output. • Compared to pitch control, thrust was reduced by fold control in power regulation. • Optimum fold angles were found for wind turbine start up and aerodynamic brake. - Abstract: A concept of novel folding blade of horizontal axis wind turbine is proposed in current study. The folding blade comprises a stall regulated root blade section and a folding tip blade section with the fold axis inclined relative to blade span. By folding blade, lift force generated on the tip blade section changes and the moment arm also shortens, which leads to variations of power output. The blade folding actuation mechanism with servo motor and worm-gear reducer was designed. Wind turbine rotor control scheme and servo system with double feedback loops for blade fold angle control were proposed. In this study, a small folding blade model was tested in a wind tunnel to analyze its performance. The blade model performance was estimated in terms of rotation torque coefficient and thrust coefficient. Wind tunnel experiments were also conducted for pitch control using the same blade model in order to make a direct comparison. The power control, start up and aerodynamic brake performance of the folding blade were analyzed. According to the wind tunnel experiment results, fold angle magnitude significantly affected blade aerodynamic performance and the thrust characteristic together with the rotation torque characteristic of folding blade were revealed. The experiment results demonstrated that the folding blade was valid to control power output and had advantages in reducing thrust with maximum reduction of 51.1% compared to pitch control. Optimum fold angles of 55° and 90° were also found for start up and aerodynamic brake, respectively
Wavy-Planform Helicopter Blades Make Less Noise
Brooks, Thomas F.
2004-01-01
Wavy-planform rotor blades for helicopters have been investigated for the first time in an effort to reduce noise. Two of the main sources of helicopter noise are blade/vortex interaction (BVI) and volume displacement. (The noise contributed by volume displacement is termed thickness noise.) The reduction in noise generated by a wavyplanform blade, relative to that generated by an otherwise equivalent straight-planform blade, affects both main sources: (1) the BVI noise is reduced through smoothing and defocusing of the aerodynamic loading on the blade and (2) the thickness noise is reduced by reducing gradients of thickness with respect to listeners on the ground.
New Design of Blade Untwisting Device of Cyclone Unit
Directory of Open Access Journals (Sweden)
D. I. Misiulia
2010-01-01
Full Text Available The paper presents a new design of a blade untwisting device where blades are considered as a main element of the device. A profile of the blades corresponds to a circular arch. An inlet angle of the blades is determined by stream aerodynamics in an exhaust pipe, and an exit angle is determined by rectilinear gas motion. Optimum geometrical parameters of the untwisting device have been determined and its application allows to reduce a pressure drop in the ЦН-15 cyclones by 28–30 % while screw-blade untwisting device recovers only 19–20 % of energy.
Experimental Investigation of the Wind Turbine Blade Root Flow
Akay, B.; Ferreira, C.S.; Van Bussel, G.J.W.
2010-01-01
Several methods from experimental to analytical are used to investigate the aerodynamics of a horizontal axis wind turbine. To understand 3D and rotational effects at the root region of a wind turbine blade, correct modeling of the flow field is essential. Aerodynamic models need to be validated by
Optimization Design and Experimental Study of Low-Pressure Axial Fan with Forward-Skewed Blades
Directory of Open Access Journals (Sweden)
Li Yang
2007-01-01
Full Text Available This paper presents an experimental study of the optimization of blade skew in low pressure axial fan. Using back propagation (BP neural network and genetic algorithm (GA, the optimization was performed for a radial blade. An optimized blade is obtained through blade forward skew. Measurement of the two blades was carried out in aerodynamic and aeroacoustic performance. Compared to the radial blade, the optimized blade demonstrated improvements in efficiency, total pressure ratio, stable operating range, and aerodynamic noise. Detailed flow measurement was performed in outlet flow field for investigating the responsible flow mechanisms. The optimized blade can cause a spanwise redistribution of flow toward the blade midspan and reduce tip loading. This results in reduced significantly total pressure loss near hub and shroud endwall region, despite the slight increase of total pressure loss at midspan. In addition, the measured spectrums show that the broadband noise of the impeller is dominant.
Effect of Trailing Edge Damage on Full-Scale Wind Turbine Blade Failure
Haselbach, Philipp Ulrich; Branner, Kim
2015-01-01
Modern wind turbine rotor blades are normally assembled from large parts bonded together by adhesive joints. The structural parts of wind turbine blades are usually made of composite materials, where sandwich core materials as well as fibre composites are used. For most of the modern wind turbine blades the aerodynamically formed outer shell structure is manufactured as an upper and a lower part in separate moulds in order to simplify the production process. The aerodynamic shell structures a...
Flow Characteristics Study of Wind Turbine Blade with Vortex Generators
Hao Hu; Xin-kai Li; Bo Gu
2016-01-01
The blade root flow control is of particular importance to the aerodynamic characteristic of large wind turbines. The paper studies the feasibility of improving blade pneumatic power by applying vortex generators (VGs) to large variable propeller shaft horizontal axis wind turbines, with 2 MW variable propeller shaft horizontal axis wind turbine blades as research object. In the paper, three cases of VGs installation are designed; they are scattered in different chordwise position at the blad...
Small Radial Compressors: Aerodynamic Design and Analysis
K. A. R. Ismail; Rosolen, C. V. A. G.; Benevenuto, F. J.; Lucato, D.
1998-01-01
This paper presents a computational procedure for the analysis of steady one-dimensional centrifugal compressor. The numerical model is based on the conservation principles of mass, momentum and energy, and has been utilized to predict the operational and aerodynamic characteristics of a small centrifugal compressor as well as determining the performance and geometry of compressor blades, both straight and curved.
Small Radial Compressors: Aerodynamic Design and Analysis
Directory of Open Access Journals (Sweden)
K. A. R. Ismail
1998-01-01
Full Text Available This paper presents a computational procedure for the analysis of steady one-dimensional centrifugal compressor. The numerical model is based on the conservation principles of mass, momentum and energy, and has been utilized to predict the operational and aerodynamic characteristics of a small centrifugal compressor as well as determining the performance and geometry of compressor blades, both straight and curved.
Leading edge erosion of coated wind turbine blades: Review of coating life models
Slot, H.M.; Gelinck, E.R.M.; Rentrop, C.; Heider, E. van der
2015-01-01
Erosion of the leading edge of wind turbine blades by droplet impingement wear, reduces blade aerodynamic efficiency and power output. Eventually, it compromises the integrity of blade surfaces. Elastomeric coatings are currently used for erosion resistance, yet the life of such coatings cannot be p
Model Predictive Control of Trailing Edge Flaps on a wind turbine blade
DEFF Research Database (Denmark)
Castaignet, Damien; Poulsen, Niels Kjølstad; Buhl, Thomas; Wedel-Heinen, Jens Jakob
blade root. The design model is based on a modal model of the blade structure and a steady state aerodynamic model of the blade airfoils. Depending on the output filter, loads within different frequency range are decreased. A fine tuning of the Kalman filter and of the cost function allows to decrease...
Preliminary blade design using integrated computer codes
Ryan, Arve
1988-12-01
Loads on the root of a horizontal axis wind turbine (HAWT) rotor blade were analyzed. A design solution for the root area is presented. The loads on the blades are given by different load cases that are specified. To get a clear picture of the influence of different parameters, the whole blade is designed from scratch. This is only a preliminary design study and the blade should not be looked upon as a construction reference. The use of computer programs for the design and optimization is extensive. After the external geometry is set and the aerodynamic loads calculated, parameters like design stresses and laminate thicknesses are run through the available programs, and a blade design optimized on basis of facts and estimates used is shown.
Composite Fan Blade Design for Advanced Engine Concepts
Abumeri, Galib H.; Kuguoglu, Latife H.; Chamis, Christos C.
2004-01-01
The aerodynamic and structural viability of composite fan blades of the revolutionary Exo-Skeletal engine are assessed for an advanced subsonic mission using the NASA EST/BEST computational simulation system. The Exo-Skeletal Engine (ESE) calls for the elimination of the shafts and disks completely from the engine center and the attachment of the rotor blades in spanwise compression to a rotating casing. The fan rotor overall adiabatic efficiency obtained from aerodynamic analysis is estimated at 91.6 percent. The flow is supersonic near the blade leading edge but quickly transitions into a subsonic flow without any turbulent boundary layer separation on the blade. The structural evaluation of the composite fan blade indicates that the blade would buckle at a rotor speed that is 3.5 times the design speed of 2000 rpm. The progressive damage analysis of the composite fan blade shows that ply damage is initiated at a speed of 4870 rpm while blade fracture takes place at 7640 rpm. This paper describes and discusses the results for the composite blade that are obtained from aerodynamic, displacement, stress, buckling, modal, and progressive damage analyses. It will be demonstrated that a computational simulation capability is readily available to evaluate new and revolutionary technology such as the ESE.
DEFF Research Database (Denmark)
Hansen, Martin Otto Laver
Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design...... Wind Turbines (VAWT). Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element Momentum...... method is also covered, as are eigenmodes and the dynamic behaviour of a turbine. The book describes the effects of the dynamics and how this can be modelled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Furthermore, it examines how to calculate the...
Analytical Aerodynamic Simulation Tools for Vertical Axis Wind Turbines
International Nuclear Information System (INIS)
Wind power is a renewable energy source that is today the fastest growing solution to reduce CO2 emissions in the electric energy mix. Upwind horizontal axis wind turbine with three blades has been the preferred technical choice for more than two decades. This horizontal axis concept is today widely leading the market. The current PhD thesis will cover an alternative type of wind turbine with straight blades and rotating along the vertical axis. A brief overview of the main differences between the horizontal and vertical axis concept has been made. However the main focus of this thesis is the aerodynamics of the wind turbine blades. Making aerodynamically efficient turbines starts with efficient blades. Making efficient blades requires a good understanding of the physical phenomena and effective simulations tools to model them. The specific aerodynamics for straight bladed vertical axis turbine flow are reviewed together with the standard aerodynamic simulations tools that have been used in the past by blade and rotor designer. A reasonably fast (regarding computer power) and accurate (regarding comparison with experimental results) simulation method was still lacking in the field prior to the current work. This thesis aims at designing such a method. Analytical methods can be used to model complex flow if the geometry is simple. Therefore, a conformal mapping method is derived to transform any set of section into a set of standard circles. Then analytical procedures are generalized to simulate moving multibody sections in the complex vertical flows and forces experienced by the blades. Finally the fast semi analytical aerodynamic algorithm boosted by fast multipole methods to handle high number of vortices is coupled with a simple structural model of the rotor to investigate potential aeroelastic instabilities. Together with these advanced simulation tools, a standard double multiple streamtube model has been developed and used to design several straight bladed
Piezoelectric Vibration Damping Study for Rotating Composite Fan Blades
Min, James B.; Duffy, Kirsten P.; Choi, Benjamin B.; Provenza, Andrew J.; Kray, Nicholas
2012-01-01
Resonant vibrations of aircraft engine blades cause blade fatigue problems in engines, which can lead to thicker and aerodynamically lower performing blade designs, increasing engine weight, fuel burn, and maintenance costs. In order to mitigate undesirable blade vibration levels, active piezoelectric vibration control has been investigated, potentially enabling thinner blade designs for higher performing blades and minimizing blade fatigue problems. While the piezoelectric damping idea has been investigated by other researchers over the years, very little study has been done including rotational effects. The present study attempts to fill this void. The particular objectives of this study were: (a) to develop and analyze a multiphysics piezoelectric finite element composite blade model for harmonic forced vibration response analysis coupled with a tuned RLC circuit for rotating engine blade conditions, (b) to validate a numerical model with experimental test data, and (c) to achieve a cost-effective numerical modeling capability which enables simulation of rotating blades within the NASA Glenn Research Center (GRC) Dynamic Spin Rig Facility. A numerical and experimental study for rotating piezoelectric composite subscale fan blades was performed. It was also proved that the proposed numerical method is feasible and effective when applied to the rotating blade base excitation model. The experimental test and multiphysics finite element modeling technique described in this paper show that piezoelectric vibration damping can significantly reduce vibrations of aircraft engine composite fan blades.
Blade-tip heat transfer in a transonic turbine
Energy Technology Data Exchange (ETDEWEB)
Thorpe, S.; Yoshino, S.; Thomas, G.; Ainsworth, R. [Oxford Univ. (United Kingdom). Dept. of Engineering Science; Harvey, N. [Rolls-Royce plc., Derby (United Kingdom)
2005-09-15
The blade-tips of high-pressure turbine blades in a gas turbine engine are subjected to strong convective heat transfer and continued to present a significant design challenge to manufacturers. This paper is concerned with developing an understanding of the unsteady flow physics that influences the blade-tip heat transfer. Experimental investigations of bladetip heat transfer and aerodynamics have been conducted in a transonic turbine stage test facility. The data reveal the effect of vane-rotor interactions on the unsteady heat transfer along the blade-tip mean camber line. In particular, the vane shock and potential field interaction establish characteristic unsteady heat transfer signatures at different axial positions along the blade-tip. The fluctuations in heat transfer are discussed in terms of vane-periodic changes in both relative total temperature and aerodynamic conditions. (author)
Massachusetts Large Blade Test Facility Final Report
Energy Technology Data Exchange (ETDEWEB)
Rahul Yarala; Rob Priore
2011-09-02
Project Objective: The Massachusetts Clean Energy Center (CEC) will design, construct, and ultimately have responsibility for the operation of the Large Wind Turbine Blade Test Facility, which is an advanced blade testing facility capable of testing wind turbine blades up to at least 90 meters in length on three test stands. Background: Wind turbine blade testing is required to meet international design standards, and is a critical factor in maintaining high levels of reliability and mitigating the technical and financial risk of deploying massproduced wind turbine models. Testing is also needed to identify specific blade design issues that may contribute to reduced wind turbine reliability and performance. Testing is also required to optimize aerodynamics, structural performance, encourage new technologies and materials development making wind even more competitive. The objective of this project is to accelerate the design and construction of a large wind blade testing facility capable of testing blades with minimum queue times at a reasonable cost. This testing facility will encourage and provide the opportunity for the U.S wind industry to conduct more rigorous testing of blades to improve wind turbine reliability.
Myrent, Noah; Adams, Douglas E; Griffith, D Todd
2015-02-28
A wind turbine blade's structural dynamic response is simulated and analysed with the goal of characterizing the presence and severity of a shear web disbond. Computer models of a 5 MW offshore utility-scale wind turbine were created to develop effective algorithms for detecting such damage. Through data analysis and with the use of blade measurements, a shear web disbond was quantified according to its length. An aerodynamic sensitivity study was conducted to ensure robustness of the detection algorithms. In all analyses, the blade's flap-wise acceleration and root-pitching moment were the clearest indicators of the presence and severity of a shear web disbond. A combination of blade and non-blade measurements was formulated into a final algorithm for the detection and quantification of the disbond. The probability of detection was 100% for the optimized wind speed ranges in laminar, 30% horizontal shear and 60% horizontal shear conditions. PMID:25583871
Control of helicopter rotorblade aerodynamics
Fabunmi, James A.
1991-01-01
The results of a feasibility study of a method for controlling the aerodynamics of helicopter rotorblades using stacks of piezoelectric ceramic plates are presented. A resonant mechanism is proposed for the amplification of the displacements produced by the stack. This motion is then converted into linear displacement for the actuation of the servoflap of the blades. A design which emulates the actuation of the servoflap on the Kaman SH-2F is used to demonstrate the fact that such a system can be designed to produce the necessary forces and velocities needed to control the aerodynamics of the rotorblades of such a helicopter. Estimates of the electrical power requirements are also presented. A Small Business Innovation Research (SBIR) Phase 2 Program is suggested, whereby a bench-top prototype of the device can be built and tested. A collaborative effort between AEDAR Corporation and Kaman Aerospace Corporation is anticipated for future effort on this project.
Wind wheel with a single bladed or two blade rotor arranged on a tower
Energy Technology Data Exchange (ETDEWEB)
Laussermair, F.; Kaiba, K.
1980-02-14
The invention concerns a wind wheel (impeller) with a single bladed or two blade rotor arranged on a tower. The wind speed, with which the air flows over wind wheels, is normally different over the rotor circle area. This leads to the creation of cyclic torques, which will try to turn the rotor head cyclically around the tower axis and cause torsional oscillations. It is therefore the purpose of the invention to create a wind wheel, in which the tendency of the rotor head to turn around the tower axis is reduced, without incurring losses of output. The problem of the invention is solved, by having one or more auxiliary blades in addition to the main blade or blades, which lie in the rotor plane and are cyclically adjustable around their longitudinal axis, so that their aerodynamic up thrust produces a torque around the tower axis, which practically compensates for the torque resulting from the different flow over the main blade or blades. One example of the invention achieves the adjustment of the auxiliary blades around their longitudinal axis by means of one or more levers, each of which is connected at its end to one auxiliary blade, and has a roller on its other end, which can roll around a fixed curved disc, where the roller is pressed by a spring against the curved disc.
Helicopter Rotor Blade With Free Tip
Stroub, Robert H.; Young, Larry; Cawthorne, Matthew; Keys, Charles
1992-01-01
Free-tip rotor blades improve fuel efficiency and performance characteristics of helicopters. Outermost portion of blade pivots independently with respect to inboard portion about pitch axis parallel to blade axis, located forward of aerodynamic center. Centrifugal force acts on tension/torsion strap and biases tip nose-up. Airstream turns tip nose-down, other torques cause tip to "weathervane" to intermediate angular position resulting in net lift. Reduces fluctuations in lift, with two effects: flapwise vibratory loads on blade and vibratory loads on pitch-control mechanism reduced; negative lift produced by advancing fixed tip eliminated, reducing power required to achieve same overall lift. Applies to tilt rotors and tail rotors as well.
Prediction of H.A.W.T. blade stall and performance
Energy Technology Data Exchange (ETDEWEB)
Giannakidis, G.; Graham, J.M.R. [Imperial College, Dept. of Aeronautics, London (United Kingdom)
1996-09-01
A model is being developed for the prediction of Horizontal Axis Wind Turbine blade stall and performance coupled with a simple aeroelastic analysis model. For the aerodynamic calculation a two dimensional unsteady Navier-Stokes solver on a sectional basis on the blade is coupled with a three dimensional vortex lattice wake. Pressure coefficient distributions are calculated from the two dimensional viscous flow in each blade section. The aerodynamic computations are coupled with a vibrating beam model in order to incorporate flapwise deformations of the blade. (au) 17 refs.
The 12-m Wind Turbine Blade Manufactured by Vølund A/S and O.L. Boats, Denmark
DEFF Research Database (Denmark)
Petersen, H.
1980-01-01
root face and 1 m from the root face and have been verified experimentally. Aerodynamic calculations have also been performed of the power coefficient as a function of tip speed ratio for various tip chord angles for blades used in a 3-bladed and a 2-bladed rotor configuration with a diameter of 26 m....
Structural integrity design for an active helicopter rotor blade with piezoelectric flap actuators
Lee, Jaehwan; Shin, SangJoon
2011-04-01
Helicopter uses a rotor system to generate lift, thrust and forces, and its aerodynamic environment is generally complex. Unsteady aerodynamic environment arises such as blade vortex interaction. This unsteady aerodynamic environment induces vibratory aerodynamic loads and high aeroacoustic noise. The aerodynamic load and aeroacoustic noise is at N times the rotor blade revolutions (N/rev). But conventional rotor control system composed of pitch links and swash plate is not capable of adjusting such vibratory loads because its control is restricted to 1/rev. Many active control methodologies have been examined to alleviate the problem. The blade using active control device manipulates the blade pitch angle with N/rev. In this paper, Active Trailing-edge Flap blade, which is one of the active control methods, is designed to reduce the unsteady aerodynamic loads. Active Trailing-edge Flap blade uses a trailing edge flap manipulated by an actuator to change camber line of the airfoil. Piezoelectric actuators are installed inside the blade to manipulate the trailing edge flap.
Innovative design approaches for large wind turbine blades : final report.
Energy Technology Data Exchange (ETDEWEB)
2004-05-01
The goal of the Blade System Design Study (BSDS) was investigation and evaluation of design and manufacturing issues for wind turbine blades in the one to ten megawatt size range. A series of analysis tasks were completed in support of the design effort. We began with a parametric scaling study to assess blade structure using current technology. This was followed by an economic study of the cost to manufacture, transport and install large blades. Subsequently we identified several innovative design approaches that showed potential for overcoming fundamental physical and manufacturing constraints. The final stage of the project was used to develop several preliminary 50m blade designs. The key design impacts identified in this study are: (1) blade cross-sections, (2) alternative materials, (3) IEC design class, and (4) root attachment. The results show that thick blade cross-sections can provide a large reduction in blade weight, while maintaining high aerodynamic performance. Increasing blade thickness for inboard sections is a key method for improving structural efficiency and reducing blade weight. Carbon/glass hybrid blades were found to provide good improvements in blade weight, stiffness, and deflection when used in the main structural elements of the blade. The addition of carbon resulted in modest cost increases and provided significant benefits, particularly with respect to deflection. The change in design loads between IEC classes is quite significant. Optimized blades should be designed for each IEC design class. A significant portion of blade weight is related to the root buildup and metal hardware for typical root attachment designs. The results show that increasing the number of blade fasteners has a positive effect on total weight, because it reduces the required root laminate thickness.
PREFACE: Aerodynamic sound Aerodynamic sound
Akishita, Sadao
2010-02-01
The modern theory of aerodynamic sound originates from Lighthill's two papers in 1952 and 1954, as is well known. I have heard that Lighthill was motivated in writing the papers by the jet-noise emitted by the newly commercialized jet-engined airplanes at that time. The technology of aerodynamic sound is destined for environmental problems. Therefore the theory should always be applied to newly emerged public nuisances. This issue of Fluid Dynamics Research (FDR) reflects problems of environmental sound in present Japanese technology. The Japanese community studying aerodynamic sound has held an annual symposium since 29 years ago when the late Professor S Kotake and Professor S Kaji of Teikyo University organized the symposium. Most of the Japanese authors in this issue are members of the annual symposium. I should note the contribution of the two professors cited above in establishing the Japanese community of aerodynamic sound research. It is my pleasure to present the publication in this issue of ten papers discussed at the annual symposium. I would like to express many thanks to the Editorial Board of FDR for giving us the chance to contribute these papers. We have a review paper by T Suzuki on the study of jet noise, which continues to be important nowadays, and is expected to reform the theoretical model of generating mechanisms. Professor M S Howe and R S McGowan contribute an analytical paper, a valuable study in today's fluid dynamics research. They apply hydrodynamics to solve the compressible flow generated in the vocal cords of the human body. Experimental study continues to be the main methodology in aerodynamic sound, and it is expected to explore new horizons. H Fujita's study on the Aeolian tone provides a new viewpoint on major, longstanding sound problems. The paper by M Nishimura and T Goto on textile fabrics describes new technology for the effective reduction of bluff-body noise. The paper by T Sueki et al also reports new technology for the
Institute of Scientific and Technical Information of China (English)
LI Yang; LIU Jie; OUYANG Hua; DU Zhao-Hui
2008-01-01
This article presents the flow mechanism analysis and experimental study of a forward-skewed impeller and a radial impeller in low pressure axial fan. The forward-skewed blade was obtained by the optimization design of the radial blade and CFD technique. Measurement of the two blades was carried out in aerodynamic and aeroacoustic performance. Compared to the radial blade, the forward-skewed blade has demonstrated the improvements in efficiency, total pressure ratio, Stable Operating Range (SOR) and less aerodynamic noise. Detailed flow measurement and computation were performed for outlet flow field for investigating the responsible flow mechanisms. The results show the forward-skewed blade can cause a spanwise redistribution of flow toward the blade mid-span and reduce tip loading. This results in reduced significantly total pressure loss near hub and shroud endwall region, despite the slight increase of total pressure loss at mid-span.
Scorer, R S
1958-01-01
Natural Aerodynamics focuses on the mathematics of any problem in air motion.This book discusses the general form of the law of fluid motion, relationship between pressure and wind, production of vortex filaments, and conduction of vorticity by viscosity. The flow at moderate Reynolds numbers, turbulence in a stably stratified fluid, natural exploitation of atmospheric thermals, and plumes in turbulent crosswinds are also elaborated. This text likewise considers the waves produced by thermals, transformation of thin layer clouds, method of small perturbations, and dangers of extra-polation.Thi
Energy Technology Data Exchange (ETDEWEB)
Zayas, Jose R.; Johnson, Wesley D.
2008-03-01
In support of a Work-For-Other (WFO) agreement between the Wind Energy Technology Department at Sandia National Laboratories and 3TEX, one of the three Micon 65/13M wind turbines at the USDA Agriculture Research Service (ARS) center in Bushland, Texas, has been used to test a set of 9 meter wind turbine blades, manufactured by TPI composites using the 3TEX carbon material for the spar cap. Data collected from the test has been analyzed to evaluate both the aerodynamic performance and the structural response from the blades. The blades aerodynamic and structural performance, the meteorological inflow and the wind turbine structural response has been monitored with an array of 57 instruments: 15 to characterize the blades, 13 to characterize inflow, and 15 to characterize the time-varying state of the turbine. For the test, data was sampled at a rate of 40 Hz using the ATLAS II (Accurate GPS Time-Linked Data Acquisition System) data acquisition system. The system features a time-synchronized continuous data stream and telemetered data from the turbine rotor. This paper documents the instruments and infrastructure that have been developed to monitor these blades, turbines and inflow, as well as both modeling and field testing results.
Lift capability prediction for helicopter rotor blade-numerical evaluation
Rotaru, Constantin; Cîrciu, Ionicǎ; Luculescu, Doru
2016-06-01
The main objective of this paper is to describe the key physical features for modelling the unsteady aerodynamic effects found on helicopter rotor blade operating under nominally attached flow conditions away from stall. The unsteady effects were considered as phase differences between the forcing function and the aerodynamic response, being functions of the reduced frequency, the Mach number and the mode forcing. For a helicopter rotor, the reduced frequency at any blade element can't be exactly calculated but a first order approximation for the reduced frequency gives useful information about the degree of unsteadiness. The sources of unsteady effects were decomposed into perturbations to the local angle of attack and velocity field. The numerical calculus and graphics were made in FLUENT and MAPLE soft environments. This mathematical model is applicable for aerodynamic design of wind turbine rotor blades, hybrid energy systems optimization and aeroelastic analysis.
Flow Characteristics Study of Wind Turbine Blade with Vortex Generators
Directory of Open Access Journals (Sweden)
Hao Hu
2016-01-01
Full Text Available The blade root flow control is of particular importance to the aerodynamic characteristic of large wind turbines. The paper studies the feasibility of improving blade pneumatic power by applying vortex generators (VGs to large variable propeller shaft horizontal axis wind turbines, with 2 MW variable propeller shaft horizontal axis wind turbine blades as research object. In the paper, three cases of VGs installation are designed; they are scattered in different chordwise position at the blade root, and then they are calculated, respectively, with CFD method. The results show that VGs installed in the separation line upstream, with the separation line of the blade root as a benchmark, show a better effect. Pneumatic power of blades increases by 0.6% by installing VGs. Although the effect on large wind turbines is not obvious, there is a space for optimization.
Computational Aerodynamics and Aeroacoustics for Wind Turbines
DEFF Research Database (Denmark)
Shen, Wen Zhong
obtain more detailed information of the flow structures and to determine more accurately loads and power yield of wind turbines or cluster of wind turbines, it is required to resort to more sophisticated techniques, such as Computational Fluid Dynamics (CFD). As computer resources keep on improving year...... Computational Aero-Acoustics (CAA). With the spread of wind turbines near urban areas, there is an increasing need for accurate predictions of aerodynamically generated noise. Indeed, noise has become one of the most important issues for further development of wind power, and the ability of controlling and......To analyse the aerodynamic performance of wind turbine rotors, the main tool in use today is the 1D-Blade Element Momentum (BEM) technique combined with 2D airfoil data. Because of its simplicity, the BEM technique is employed by industry when designing new wind turbine blades. However, in order to...
Energy Technology Data Exchange (ETDEWEB)
Grossmann, J.
2002-07-01
Apart from the experimental identification and assessment of process characteristics during industrial-scale application of the so-called liquid metal cooling (LPC) process, the project focused on the characterisation of monocrystalline, directionally solidified materials and components. This involved the construction and commissioning of appropriate production and test aggregates, i.e. the LMC casting system and a Laue orientation testing unit, as well as the modification of a vacuum heat treatment furnace to meet the specific requirement of glow annealing of monocrystalline, directionally solidified turbine blades. [German] Das Ziel des Forschungsvorhabens (Laufzeit: 01. Juli 1997 bis 31. Dezember 2001) 'Optimierung des Energiepotentials fuer CO{sub 2}-arme Gasturbinen durch grosse Einkristall-Turbinenschaufeln' lag neben der experimentellen Bestimmung und Bewertung von Verfahrens- und Prozesskennwerten bei der industriellen Umsetzung des sogenannten Liquid-Metal-Cooling-Verfahrens (LMC) in der Eigenschaftscharakterisierung von einkristallin-gerichtet erstarrten Proben und Bauteilen, die mittels dieser neuartigen Giesstechnologie dargestellt wurden. Grundvoraussetzung fuer die umfassende Bearbeitung der o.g. Arbeitsinhalte war die Konstruktion und Inbetriebnahme der notwendigen Fertigungs- und Pruefaggregate, d.h. der LMC-Giessanlage und einer Laue-Orientierungspruefeinrichtung bzw. der Abstimmung eines Vakuum-Waermebehandlungsofens auf die spezifischen Anforderungen der Loesungsgluehung einkristallin-gerichtet erstarrter Turbinenlaufschaufeln. (orig.)
Hybrid Vortex Method for the Aerodynamic Analysis of Wind Turbine
Directory of Open Access Journals (Sweden)
Hao Hu
2015-01-01
Full Text Available The hybrid vortex method, in which vortex panel method is combined with the viscous-vortex particle method (HPVP, was established to model the wind turbine aerodynamic and relevant numerical procedure program was developed to solve flow equations. The panel method was used to calculate the blade surface vortex sheets and the vortex particle method was employed to simulate the blade wake vortices. As a result of numerical calculations on the flow over a wind turbine, the HPVP method shows significant advantages in accuracy and less computation resource consuming. The validation of the aerodynamic parameters against Phase VI wind turbine experimental data is performed, which shows reasonable agreement.
Plasma Aerodynamic Control Effectors for Improved Wind Turbine Performance
Energy Technology Data Exchange (ETDEWEB)
Mehul P. Patel; Srikanth Vasudevan; Robert C. Nelson; Thomas C. Corke
2008-08-01
Orbital Research Inc is developing an innovative Plasma Aerodynamic Control Effectors (PACE) technology for improved performance of wind turbines. The PACE system is aimed towards the design of "smart" rotor blades to enhance energy capture and reduce aerodynamic loading and noise using flow-control. The PACE system will provide ability to change aerodynamic loads and pitch distribution across the wind turbine blade without any moving surfaces. Additional benefits of the PACE system include reduced blade structure weight and complexity that should translate into a substantially reduced initial cost. During the Phase I program, the ORI-UND Team demonstrated (proof-of-concept) performance improvements on select rotor blade designs using PACE concepts. Control of both 2-D and 3-D flows were demonstrated. An analytical study was conducted to estimate control requirements for the PACE system to maintain control during wind gusts. Finally, independent laboratory experiments were conducted to identify promising dielectric materials for the plasma actuator, and to examine environmental effects (water and dust) on the plasma actuator operation. The proposed PACE system will be capable of capturing additional energy, and reducing aerodynamic loading and noise on wind turbines. Supplementary benefits from the PACE system include reduced blade structure weight and complexity that translates into reduced initial capital costs.
Aerodynamic Analysis Models for Vertical-Axis Wind Turbines
Brahimi, M. T.; A. Allet; I. Paraschivoiu
1995-01-01
This work details the progress made in the development of aerodynamic models for studying Vertical-Axis Wind Turbines (VAWT's) with particular emphasis on the prediction of aerodynamic loads and rotor performance as well as dynamic stall simulations. The paper describes current effort and some important findings using streamtube models, 3-D viscous model, stochastic wind model and numerical simulation of the flow around the turbine blades. Comparison of the analytical results with available e...
Institute of Scientific and Technical Information of China (English)
LI Shengmao; LI Yan; FENG Fang; WANG Lijun; CHI Yuan
2010-01-01
To invest the condition of ice accretion on the blade used for straight-bladed vertical axis wind turbine(SB-VAWT),wind tunnel tests were carded out on a blade with NACA0015 airfoil by using a small simple icing wind tunnel.Tests were carried out at some typical attack angles under different wind speeds and flow discharges of a water spray with wind.The icing shape and area on blade surface were recorded and measured.Then the numerical computation was carried out to calculate the lift and drag coefficients of the blade before and after ice accretion according to the experiment result,the effect of icing on the aerodynamic characteristics of blade were discussed.
Chi-Jeng Bai; Wei-Cheng Wang; Po-Wei Chen; Wen-Tong Chong
2014-01-01
In designing a horizontal-axis wind turbine (HAWT) blade, system integration between the blade design and the performance test of the generator is important. This study shows the aerodynamic design of a HAWT blade operating with an axial-flux permanent magnet (AFPM) generator. An experimental platform was built to measure the performance curves of the AFPM generator for the purpose of designing the turbine blade. An in-house simulation code was developed based on the blade element momentum (B...
An investigation of the dynamics of the horizontal wind turbine blades
Urieta Nieto, Itziar
2015-01-01
The aim of this project is to design, investigate and model the aerodynamic behavior and dynamics of a wind turbine blades taking into account the elasticity of the rotor blades and the steadiness of the flow. The main idea of the project is by performing the steady-state FSI (Fluid-Structure Interaction) analysis based on the obtained numerical results from two solvers: aerodynamic model for fluid and structural solver to evaluate the influence of the profile of wind turbin...
Flowfield Analysis of Savonius-type Wind Turbine blade
International Nuclear Information System (INIS)
In this paper, we researched flow of 8000 ∼ 24000 Reynolds number around a blade model of Savonius-type wind turbine with experimental and numerical method. For the blade shape of arc, we analyzed flowfield with streak-image flow visualization, measured wake, computed drag coefficients, and compared them for given angle of attacks. The result of research can be used to design aerodynamic performance of Savonius-type turbine rotor directly
Flowfield Analysis of Savonius-type Wind Turbine blade
Energy Technology Data Exchange (ETDEWEB)
Noh, Tae Hyun; Chang, Se Myong [Kunsan National Univ., Kunsan (Korea, Republic of); Seo, Hyun Soo [Korea Institute of Energy Research, Daejeon (Korea, Republic of)
2007-07-01
In this paper, we researched flow of 8000 {approx} 24000 Reynolds number around a blade model of Savonius-type wind turbine with experimental and numerical method. For the blade shape of arc, we analyzed flowfield with streak-image flow visualization, measured wake, computed drag coefficients, and compared them for given angle of attacks. The result of research can be used to design aerodynamic performance of Savonius-type turbine rotor directly.
Bertsch, Remi
1990-01-01
This thesis summarizes the results of an experimental study on transonic turbine blades in the presence of ejection of coolant in the direction of the flow from slots near the trailing edge. I t presents the effect of the trailing edge coolant ejection on the turbine blade aerodynamic efficiency.l The objective of this work is to contribute to the design of new turbine blades by giving loss data for cooled blades. Data were taken in the Virginia Polytechnic Institute & State University ...
Numerical simulation of turbulent flows past the RoBin helicopter with a four-bladed rotor
International Nuclear Information System (INIS)
The current paper presents a turbulent flow simulation study past a generic helicopter RoBin with a four-bladed rotor using the Chimera moving grid approach. The aerodynamic performance of the rotor blades and their interactions with the RoBin fuselage are investigated using the k - ω SST turbulence model contained in the WIND code. The rotor is configured as a Chimera moving grid in a quasisteady flow field. The rotor blades are rectangular, untapered, linearly twisted and are made from NACA 0012 airfoil profile. The blade motion (rotation and cyclic pitching) schedule is specified in the NASA wind tunnel testing of a generic helicopter RoBin. The aerodynamic radial load distributions in the rotor plane are generated by integrating the pressure on each blade surfaces along the blade chordwise direction. The rotor flow interacts strongly with the flow coming off from the fuselage and thus has a significant impact on helicopter aerodynamic performance. (author)
Resor, B.; Wilson, D.; Berg, D.; Berg, J.; Barlas, T.; Van Wingerden, J.W.; Van Kuik, G.A.M.
2010-01-01
Active aerodynamic load control of wind turbine blades is being investigated by the wind energy research community and shows great promise, especially for reduction of turbine fatigue damage in blades and nearby components. For much of this work, full system aeroelastic codes have been used to simul
Varga, Andras
2002-01-01
The basic feature of the optimisation-based clearance approach is to reformulate the clearance problems as equivalent minimum distance problems for which ”anti”-optimisation is performed to determine the worst-case parameter combination/ flight condition leading to worst performance. The basic requirements for the applicability of the optimisation-based approach are the availability of suitable parametric models describing the overall nonlinear dynamics of the augmented aircraft and of accomp...
Heteroscedastic Treed Bayesian Optimisation
Assael, John-Alexander M.; Wang, Ziyu; Shahriari, Bobak; De Freitas, Nando
2014-01-01
Optimising black-box functions is important in many disciplines, such as tuning machine learning models, robotics, finance and mining exploration. Bayesian optimisation is a state-of-the-art technique for the global optimisation of black-box functions which are expensive to evaluate. At the core of this approach is a Gaussian process prior that captures our belief about the distribution over functions. However, in many cases a single Gaussian process is not flexible enough to capture non-stat...
Design of broad-blade axial fans. Zur Auslegung von Breitschaufel-Axialventilatoren
Energy Technology Data Exchange (ETDEWEB)
Stangl, M.; Weinhold, K. (VEB Kombinat ILKA Luft- und Kaeltetechnik, Dresden (German Democratic Republic))
1989-01-01
An easy-to-handle calculation method is described for the aerodynamic design of broad-blade axial fans as they are often used in connection with heat exchangers. This method is tailored to impeller blades which are advantageously engineered as circular profile blades with a constant profile depth over the blade height and a constant profile angle. The results of a test design confirm both the usefulness of the calculation method and the suitability of the type of blading in various case designs. Referring to measuring results, the acoustic quality of the test fan is also confirmed. (orig.).
KNOW-BLADE task-3.2 report: Tip shape study
DEFF Research Database (Denmark)
Sørensen, Niels N.; Johansen, Jeppe; Conway, S.; Voutsinas, S.; Hansen, M.O.L.; Stuermer, A.
2005-01-01
For modern rotor blades with their very large aspect ratio, the blade tip is a very limited part of the overall rotor, and as such of limited importance for the overall aerodynamics of the rotor. Even though they may not be very important for the overallpower production, the tip noise can be very...
International Nuclear Information System (INIS)
Due to the increasing size and flexibility of large wind turbine blades, accurate and reliable aeroelastic modelling is playing an important role for the design of large wind turbines. Most existing aeroelastic models are linear models based on assumption of small blade deflections. This assumption is not valid anymore for very flexible blade design because such blades often experience large deflections. In this paper, a novel nonlinear aeroelastic model for large wind turbine blades has been developed by combining BEM (blade element momentum) theory and mixed-form formulation of GEBT (geometrically exact beam theory). The nonlinear aeroelastic model takes account of large blade deflections and thus greatly improves the accuracy of aeroelastic analysis of wind turbine blades. The nonlinear aeroelastic model is implemented in COMSOL Multiphysics and validated with a series of benchmark calculation tests. The results show that good agreement is achieved when compared with experimental data, and its capability of handling large deflections is demonstrated. Finally the nonlinear aeroelastic model is applied to aeroelastic modelling of the parked WindPACT 1.5 MW baseline wind turbine, and reduced flapwise deflection from the nonlinear aeroelastic model is observed compared to the linear aeroelastic code FAST (Fatigue, Aerodynamics, Structures, and Turbulence). - Highlights: • A novel nonlinear aeroelastic model for wind turbine blades is developed. • The model takes account of large blade deflections and geometric nonlinearities. • The model is reliable and efficient for aeroelastic modelling of wind turbine blades. • The accuracy of the model is verified by a series of benchmark calculation tests. • The model provides more realistic aeroelastic modelling than FAST (Fatigue, Aerodynamics, Structures, and Turbulence)
Turbine blade cooling: the blade temperature distribution
Energy Technology Data Exchange (ETDEWEB)
Horlock, J. [Cambridge University (United Kingdom). Whittle Laboratory; Torbidoni, L. [Ansaldo Energia, Genoa (Italy)
2006-07-01
Air cooling of high-temperature gas turbines is a standard practice; the air first cools the blading by internal convection and then by external film cooling, after ejection through holes and slots in the blade surface. In some 'conventional' analyses of turbine blade cooling, a 'standard blade' is invoked, which has a uniform blade temperature equal to the average temperature of the real blade, and estimates are made of the cooling flow required to hold the standard blade temperature to a limit set by material considerations. However, early analytical work by Ainley (for convective cooling of thin-walled blades) showed that both the coolant and blade temperatures should increase along the blade span. The current paper develops Ainley's original analysis to allow for finite blade wall thickness and thermal barrier coatings, film cooling, and variation in the mainstream gas temperature along the span. This new analysis should enable more accurate estimates to be made of cooling air flow requirements. (author)
Aerodynamic noise analysis of the NW35 wind turbine number 10 in Slootdorp, Netherlands (NL)
International Nuclear Information System (INIS)
Experimental research has been done to reduce the aerodynamic noise production of the NW35 wind turbines of NedWind. The research focussed on the influence of the trailing edge of the rotor blades. Three different trailing edge shapes have been compared to each other,The test turbine was turbine 10 of the wind farm in Slootdorp, the Netherlands. This turbine has a two bladed rotor and a nominal power of 500 kW. Three measurement campaigns have been performed: (1) with two original blades, (2) with one original blade and one blade with a wedge shaped trailing edge, and (3) with one original blade and one blade with a sharp trailing edge. During the campaigns the flow was visualized using tufts on one blade and a rotating video camera. The acoustic noise of the two blades of the rotor has been measured simultaneously but separately using an acoustic parabola. The result of the first measurement campaign was that one of the two original blades produced much more noise than the other one. After inspection it was found that the blade tip did not close properly. The results of the other two measurement campaigns were that the noise production of blades with a wedge shaped or with a sharp trailing edge showed no significant differences with the original blade. As a consequence the manufacturer of the blades has no reason to apply specially shaped (and thus vulnerable) trailing edges. 18 figs., 2 refs
Investigation of the Hydrodynamics of Sweep Blade in Hi-Speed Axial Fuel Pump Impeller
Ran Tao; Ruofu Xiao; Wei Yang; Fujun Wang; Yulin Wu
2013-01-01
Fuel pump is a crucial component in aircraft engine ignition system. For the hi-speed axial fuel pumps, rotating stall triggers vortex and affects the operation stability and security. Sweep blade is widely used to solve the stability problems in aerodynamics field. Investigation on the hydrodynamics was conducted in this study. Based on the typical straight blade pump, positive and negative sweep blade pumps were modeled. With the large eddy simulation method, CFD simulations were conducted ...
Numerical investigation of blade flutter at or near stall in axial turbomachines
Höhn, Wolfgang
2000-01-01
During the design of the compressor and turbine stages oftoday's aeroengines aerodynamically induced vibrations becomeincreasingly important since higher blade load and betterefficiency are desired. Aerodynamically induced vibrations inturbomachines can be classified into two general categories,i.e. selfexcited vibrations, usually denoted as flutter, andforced response. In the first case the aerodynamic forcesacting on the structure are dependent on the motion of thestructure. In the latter c...
DEFF Research Database (Denmark)
Laustsen, Steffen; Lund, Erik; Kühlmeier, L.;
2014-01-01
This paper outlines high-fidelity experimental substructure testing of sandwich panels which constitute the aerodynamic outer shell of modern wind turbine blades. A full-scale structural experimental and numerical characterisation of a composite wind turbine blade has been conducted. The developm......This paper outlines high-fidelity experimental substructure testing of sandwich panels which constitute the aerodynamic outer shell of modern wind turbine blades. A full-scale structural experimental and numerical characterisation of a composite wind turbine blade has been conducted. The...
Computer Based Optimisation Rutines
DEFF Research Database (Denmark)
Dragsted, Birgitte; Olsen, Flemmming Ove
1996-01-01
In this paper the need for optimisation methods for the laser cutting process has been identified as three different situations. Demands on the optimisation methods for these situations are presented, and one method for each situation is suggested. The adaptation and implementation of the methods...
Actuator Control of Edgewise Vibrations in Wind Turbine Blades
DEFF Research Database (Denmark)
Staino, A.; Basu, B.; Nielsen, Søren R.K.
2012-01-01
prescribed control law. A mathematical model of the wind turbine equipped with active controllers has been formulated using an Euler–Lagrangian approach. The model describes the dynamics of edgewise vibrations considering the aerodynamic properties of the blade, variable mass and stiffness per unit length...
Wind turbine aerodynamic response under atmospheric icing conditions
DEFF Research Database (Denmark)
Etemaddar, M.; Hansen, Martin Otto Laver; Moan, T.
2014-01-01
This article deals with the atmospheric ice accumulation on wind turbine blades and its effect on the aerodynamic performance and structural response. The role of eight atmospheric and system parameters on the ice accretion profiles was estimated using the 2D ice accumulation software lewice Twenty...... Wind Power using a NACA64618 airfoil. The effects of changes in geometry and surface roughness are considered in the simulation. A blade element momentum code WT-Perf is then used to quantify the degradation in performance curves. The dynamic responses of the wind turbine under normal and iced......-four hours of icing, with time varying wind speed and atmospheric icing conditions, was simulated on a rotor. Computational fluid dynamics code, FLUENT, was used to estimate the aerodynamic coefficients of the blade after icing. The results were also validated against wind tunnel measurements performed at LM...
Fluid-structure coupling for wind turbine blade analysis using OpenFOAM
Dose, Bastian; Herraez, Ivan; Peinke, Joachim
2015-11-01
Modern wind turbine rotor blades are designed increasingly large and flexible. This structural flexibility represents a problem for the field of Computational Fluid Dynamics (CFD), which is used for accurate load calculations and detailed investigations of rotor aerodynamics. As the blade geometries within CFD simulations are considered stiff, the effect of blade deformation caused by aerodynamic loads cannot be captured by the common CFD approach. Coupling the flow solver with a structural solver can overcome this restriction and enables the investigation of flexible wind turbine blades. For this purpose, a new Finite Element (FE) solver was implemented into the open source CFD code OpenFOAM. Using a beam element formulation based on the Geometrically Exact Beam Theory (GEBT), the structural model can capture geometric non-linearities such as large deformations. Coupled with CFD solvers of the OpenFOAM package, the new framework represents a powerful tool for aerodynamic investigations. In this work, we investigated the aerodynamic performance of a state of the art wind turbine. For different wind speeds, aerodynamic key parameters are evaluated and compared for both, rigid and flexible blade geometries. The present work is funded within the framework of the joint project Smart Blades (0325601D) by the German Federal Ministry for Economic Affairs and Energy (BMWi) under decision of the German Federal Parliament.
Miller, Sandi G.; Handschuh, Katherine; Sinnott, Matthew J.; Kohlman, Lee W.; Roberts, Gary D.; Martin, Richard E.; Ruggeri, Charles R.; Pereira, J. Michael
2015-01-01
Application of polymer matrix composite materials for jet engine fan blades is becoming attractive as an alternative to metallic blades; particularly for large engines where significant weight savings are recognized on moving to a composite structure. However, the weight benefit of the composite is offset by a reduction of aerodynamic efficiency resulting from a necessary increase in blade thickness; relative to the titanium blades. Blade dimensions are largely driven by resistance to damage on bird strike. Further development of the composite material is necessary to allow composite blade designs to approximate the dimensions of a metallic fan blade. The reduction in thickness over the state of the art composite blades is expected to translate into structural weight reduction, improved aerodynamic efficiency, and therefore reduced fuel consumption. This paper presents test article design, subcomponent blade leading edge fabrication, test method development, and initial results from ballistic impact of a gelatin projectile on the leading edge of composite fan blades. The simplified test article geometry was developed to realistically simulate a blade leading edge while decreasing fabrication complexity. Impact data is presented on baseline composite blades and toughened blades; where a considerable improvement to impact resistance was recorded.
Aeroelastic behavior of twist-coupled HAWT blades
Energy Technology Data Exchange (ETDEWEB)
Lobitz, D.W.; Veers, P.S.
1998-12-31
As the technology for horizontal axis wind turbines (HAWT) development matures, more novel techniques are required for the capture of additional amounts of energy, alleviation of loads and control of the rotor. One such technique employs the use of an adaptive blade that could sense the wind velocity or rotational speed in some fashion and accordingly modify its aerodynamic configuration to meet a desired objective. This could be achieved in either an active or passive manner, although the passive approach is much more attractive due to its simplicity and economy. As an example, a blade design might employ coupling between bending and/or extension, and twisting so that, as it bends and extends due to the action of the aerodynamic and inertial loads, it also twists modifying the aerodynamic performance in some way. These performance modifications also have associated aeroelastic effects, including effects on aeroelastic instability. To address the scope and magnitude of these effects a tool has been developed for investigating classical flutter and divergence of HAWT blades. As a starting point, an adaptive version of the uniform Combined Experiment Blade will be investigated. Flutter and divergence airspeeds will be reported as a function of the strength of the coupling and also be compared to those of generic blade counterparts.
Advanced Topics in Aerodynamics
DEFF Research Database (Denmark)
Filippone, Antonino
1999-01-01
"Advanced Topics in Aerodynamics" is a comprehensive electronic guide to aerodynamics,computational fluid dynamics, aeronautics, aerospace propulsion systems, design and relatedtechnology. We report data, tables, graphics, sketches,examples, results, photos, technical andscientific literature, for...
BLADED IMPELLER FOR TURBOBLOWERS
Baumann, K.
1949-10-01
A means is given of holding open-sided impeller blades in a turbo-rotor. Two half blades, with dovetail roots of sufficient weight to contain the center of gravity, are fitted into slots cut in the rotor so as to form the desired angle between the blade faces. The adjoining edges of the half blades are welded to form one solid blade that is securely locked an the rotor. This design permits the manufacture of a V shaped impeller blade without the need of machining the entire V shaped contour from a single blank, and furthermore provides excellent locking characteristics for attachment to the rotor.
Institute of Scientific and Technical Information of China (English)
周水清; 王军; 王兴双
2013-01-01
In order to study the impact of axial flow blade leading edge section under convexity-preserving, an optimization design of axial flow fan in meridional plane was carried out. Large eddy simulation solution method was used in 3D unsteady flows field based on Lighthill's acoustic analogy for and the prototype impeller the improved impeller. The results of internal flow analysis show that the vor-ticity distribution of the improved impeller is less than the prototype impeller under the same flow-rate and the improved impeller has the better flow field performance. At last, the experimental measuring results indicate that the improved impeller has better properties and efficiency through the flow rate-speed graph and the sound level-speed graph. Numerical simulation results agree with the measured data quite well. The noise of the improved impeller is reduced by 1. 1 dB.%为了研究轴流叶片前缘段保凸性对风扇性能的影响,采用Bezier曲线对某空调开式轴流风扇叶片子午面进行参数设计,结合大涡模拟中声类比积分求解方法,对轴流风扇原型叶轮及改进新型叶轮进行三维非定常流场计算.两种叶轮结构的内流分析表明:在相同流量下,新型叶轮涡度分布小于原型叶轮,流场性能较好.最后通过实验测试,得到了不同转速下的流量及总声级曲线图,发现改进后叶轮具有较好的外部特性,并能有效降噪1.1 dB.
Further dual purpose evolutionary optimization of small wind turbine blades
International Nuclear Information System (INIS)
Much work has been done to maximise the power extraction of wind turbine blades. However, small wind turbines are also required to be self starting and whilst blades designed for maximum power extraction can be optimised analytically, these blades often have poor starting performance. The numeric method of Differential Evolution is used here to maximise for both power and starting performance. Standard blade element theory is used to calculate the power coefficient, and a modified blade element method for starting time. The chord and twist of each blade element make up the genes for evolution. Starting times can be improved by a factor of 20 with only a small reduction in power coefficient. With the introduction of the tip speed ratio as an additional gene, up to 10% improvement in power coefficient was achieved. A second study was done in another case where analytical optimisation is not possible; the inclusion of tip losses. The inclusion resulted in only a small increase in the optimum chord in the tip region which becomes less noticeable at lower tip speed ratios
Aeroelastic stability predictions for a MW-sized blade
Energy Technology Data Exchange (ETDEWEB)
Lobitz, Don W. [Sandia National Labs., Albuquerque, NM (United States)
2004-07-01
Classical aeroelastic flutter instability historically has not been a driving issue in wind turbine design. In fact, rarely has this issue even been addressed in the past. Commensurately, among the wind turbines that have been built, rarely has classical flutter ever been observed. However, with the advent of larger turbines fitted with relatively softer blades, classical flutter may become a more important design consideration. In addition, innovative blade designs involving the use of aeroelastic tailoring, wherein the blade twists as it bends under the action of aerodynamic loads to shed load resulting from wind turbulence, may increase the blade's proclivity for flutter. With these considerations in mind it is prudent to revisit aeroelastic stability issues for a MW-sized blade with and without aeroelastic tailoring. Focusing on aeroelastic stability associated with the shed wake from an individual blade turning in still air, the frequency domain technique developed by Theodorsen for predicting classical flutter in fixed wing aircraft has been adapted for use with a rotor blade. Results indicate that the predicted flutter speed of a MW-sized blade is slightly greater than twice the operational speed of the rotor. When a moderate amount of aeroelastic tailoring is added to the blade, a modest decrease (12%) in the flutter speed is predicted. By comparison, for a smaller rotor with relatively stiff blades the predicted flutter speed is approximately six times the operating speed. When frequently used approximations to Theodorsen's method are implemented, drastic underpredictions result, which, while conservative, may adversely impact blade design. These underpredictions are also evident when this MW-sized blade is analysed using time domain methods. (Author)
Bistable devices for morphing rotor blades
Johnson, Terrence
This dissertation presents two bistable concepts for morphing rotor blades. These concepts are simple and are composed of bistable devices that act as coupling structures between an actuator and the rotor blade. Bistable or "snap-through" mechanisms have two stable equilibrium states and are a novel way to achieve large actuation output stroke at relatively modest effort for gross rotor morphing applications. This is because in addition to the large actuation stroke associated with the snap-through (relative to conventional actuator/ amplification systems) coming at relatively low actuation effort, no locking is required in either equilibrium state (since they are both stable). The first concept that is presented in this dissertation is a that is composed of a bistable twisting device that twists the tip of helicopter rotor blades. This work examines the performance of the presented bistable twisting device for rotor morphing, specifically, blade tip twist under an aerodynamic lift load. The device is analyzed using finite element analysis to predict its load carrying capability and bistable behavior. The second concept that is presented is a concept that is composed of a bistable arch for rotor blade chord extension. The bistable arch is coupled to a thin flat plate that is supported by rollers. Increasing the chord of the rotor blade is expected to generate more lift-load and improve helicopter performance. In this work, a methodology is presented to design the bistable arches for chord morphing using the finite element analysis and pseudo-rigid body model method. This work also examines the effect of different arches, arch hinge size and shape, inertial loads and rigidity on arch performance. Finally, this work shows results from an experiment that was conducted to validate the developed numerical model and demonstrates how the arch can be actuated using a Nitinol Shape Memory Alloy (SMA) wire to extend the chord of a helicopter rotor blade.
Vortex-induced vibration effect on fatigue life estimate of turbine blades
Lau, Y. L.; Leung, R. C. K.; So, R. M. C.
2007-11-01
An analysis of a turbine blade fatigue life that includes the physics of fluid-structure interaction on the high cycle fatigue (HCF) life estimate of turbine blades is carried out. The rotor wake excitation is modeled by rows of Karman vortices superimposed on an inviscid uniform flow. The vortex-induced vibration problem is modeled by a linear cascade composed of five turbine blades and the coupled Euler and structural dynamics equations are numerically solved using a time-marching boundary element technique. The analysis can be applied to any blade geometries; it is not limited to the blade geometry considered here. Two major design parameters have been identified; the ratio of blade spacing to blade chord length s/ c of the stator, and the normalized frequency parameter c/ d which is related to the wake passing frequency of the rotor. For a rigid cascade, it is found that aerodynamic resonance prevails at the resonant c/ d values corresponding to an isolated blade while s/ c is responsible for the level of the aerodynamic response. If the central blades were elastic, the parameter s/ c plays a different role in the fluid-structure interaction problem. With a c/ d that could lead to structural resonance for an isolated blade, changing s/ c would stabilize the aerodynamic and structural response of the elastic blade in a cascade. On the contrary, an improper choice of s/ c might turn the elastic blade response into structural resonance even though the oncoming c/ d is non-resonant. The results of the nonlinear effects of c/ d and s/ c could be used together with the Campbell diagram to obtain an improved HCF design of rotor-stator pair.
Turbomachine blade reinforcement
Energy Technology Data Exchange (ETDEWEB)
Garcia Crespo, Andres Jose
2016-09-06
Embodiments of the present disclosure include a system having a turbomachine blade segment including a blade and a mounting segment coupled to the blade, wherein the mounting segment has a plurality of reinforcement pins laterally extending at least partially through a neck of the mounting segment.
DEFF Research Database (Denmark)
2010-01-01
The invention relates to a blade for a wind turbine, particularly to a blade that may be produced by an advanced manufacturing process for producing a blade with high quality structural components. Particularly, the structural components, which are preferably manufactured from fibre reinforced...
Wireless Inductive Power Device Suppresses Blade Vibrations
Morrison, Carlos R.; Provenza, Andrew J.; Choi, Benjamin B.; Bakhle, Milind A.; Min, James B.; Stefko, George L.; Duffy, Kirsten P.; Fougers, Alan J.
2011-01-01
Vibration in turbomachinery can cause blade failures and leads to the use of heavier, thicker blades that result in lower aerodynamic efficiency and increased noise. Metal and/or composite fatigue in the blades of jet engines has resulted in blade destruction and loss of lives. Techniques for suppressing low-frequency blade vibration, such as gtuned circuit resistive dissipation of vibratory energy, h or simply "passive damping," can require electronics incorporating coils of unwieldy dimensions and adding unwanted weight to the rotor. Other approaches, using vibration-dampening devices or damping material, could add undesirable weight to the blades or hub, making them less efficient. A wireless inductive power device (WIPD) was designed, fabricated, and developed for use in the NASA Glenn's "Dynamic Spin Rig" (DSR) facility. The DSR is used to simulate the functionality of turbomachinery. The relatively small and lightweight device [10 lb (approx.=4.5 kg)] replaces the existing venerable and bulky slip-ring. The goal is the eventual integration of this technology into actual turbomachinery such as jet engines or electric power generators, wherein the device will facilitate the suppression of potentially destructive vibrations in fan blades. This technology obviates slip rings, which require cooling and can prove unreliable or be problematic over time. The WIPD consists of two parts: a remote element, which is positioned on the rotor and provides up to 100 W of electrical power to thin, lightweight piezoelectric patches strategically placed on/in fan blades; and a stationary base unit that wirelessly communicates with the remote unit. The base unit supplies inductive power, and also acts as an input and output corridor for wireless measurement, and active control command to the remote unit. Efficient engine operation necessitates minimal disturbance to the gas flow across the turbine blades in any effort to moderate blade vibration. This innovation makes it
Directory of Open Access Journals (Sweden)
José F. Herbert-Acero
2014-01-01
Full Text Available This work presents a novel framework for the aerodynamic design and optimization of blades for small horizontal axis wind turbines (WT. The framework is based on a state-of-the-art blade element momentum model, which is complemented with the XFOIL 6.96 software in order to provide an estimate of the sectional blade aerodynamics. The framework considers an innovative nested-hybrid solution procedure based on two metaheuristics, the virtual gene genetic algorithm and the simulated annealing algorithm, to provide a near-optimal solution to the problem. The objective of the study is to maximize the aerodynamic efficiency of small WT (SWT rotors for a wide range of operational conditions. The design variables are (1 the airfoil shape at the different blade span positions and the radial variation of the geometrical variables of (2 chord length, (3 twist angle, and (4 thickness along the blade span. A wind tunnel validation study of optimized rotors based on the NACA 4-digit airfoil series is presented. Based on the experimental data, improvements in terms of the aerodynamic efficiency, the cut-in wind speed, and the amount of material used during the manufacturing process were achieved. Recommendations for the aerodynamic design of SWT rotors are provided based on field experience.
Directory of Open Access Journals (Sweden)
Ranjeet Agarwala
2015-01-01
Full Text Available This paper focuses on the deployment and evaluation of a separated pitch control at blade tip (SePCaT control strategy for large megawatt (MW wind turbine blade and explorations of innovative blade designs as a result of such deployment. SePCaT configurations varied from five to thirty percent of the blade length in 5 percentage increments (SePCaT5, SePCaT10, SePCaT15, SePCaT20, SePCaT25, and SePCaT30 are evaluated by comparing them to aerodynamical responses of the traditional blade. For low, moderate, high, and extreme wind speed variations treated as 10, 20, 30, and 40 percent of reference wind speeds, rotor power abatement in region 3 of the wind speed power curve is realized by feathering full length blade by 6, 9, 12, and 14 degrees, respectively. Feathering SePCaT30, SePCaT25, SePCaT20, and SePCaT15 by 14, 16, 26, and 30 degrees, respectively, achieves the same power abatement results when compared to traditional blade at low wind speeds. Feathering SePCaT30, SePCaT25, and SePCaT20 by 18, 26, and 30 degrees on the other hand has the same effect at high wind speeds. SePCaT30 feathered to 26 and 30 degrees has the same abatement effects when compared to traditional blade at high and extreme wind speeds.
ANALYTICAL METHODS FOR CALCULATING FAN AERODYNAMICS
Directory of Open Access Journals (Sweden)
Jan Dostal
2015-12-01
Full Text Available This paper presents results obtained between 2010 and 2014 in the field of fan aerodynamics at the Department of Composite Technology at the VZLÚ aerospace research and experimental institute in Prague – Letnany. The need for rapid and accurate methods for the preliminary design of blade machinery led to the creation of a mathematical model based on the basic laws of turbomachine aerodynamics. The mathematical model, the derivation of which is briefly described below, has been encoded in a computer programme, which enables the theoretical characteristics of a fan of the designed geometry to be determined rapidly. The validity of the mathematical model is assessed continuously by measuring model fans in the measuring unit, which was developed and manufactured specifically for this purpose. The paper also presents a comparison between measured characteristics and characteristics determined by the mathematical model as the basis for a discussion on possible causes of measured deviations and calculation deviations.
Optical Measurements of Axial and Tangential Steady-State Blade Deflections Obtained Simultaneously
Kurkov, Anatole P.; Dhadwal, Harbans S.
2000-01-01
Case-mounted fiber-optic sensors have been used by aircraft engine manufacturers mainly to monitor blade vibration in fans and compressors. The simplest probe arrangement is a spot probe where, typically, a center fiber transmits laser light, and the outer fibers collect the reflected light from the blade tips and transmit it to a photodetector. Because the spot of incident light is fixed in space, whereas the blade deflects dynamically, the reflected light will originate from slightly different portions of the blade tip under different operating conditions. Unless corrections are developed to compensate for this effect, some error in vibratory tangential amplitude will occur. For monitoring vibrations, this error is usually not critical. However, when steady-state blade deflections are being measured, it is very important to fix the spot on the blade tip at a particular location because the operating speed blade deflections are evaluated against a low-speed reference run. The change in speed usually implies a significant change in the blade orientation and possibly its shape brought about by the aerodynamic and centrifugal loading. It is most convenient to select the blade s leading and trailing edges as the fixed points for which deflections will be evaluated. To capture the blade edges at various speeds, the light probe must be movable. This was achieved by mounting the probe in an eccentric hole in a bushing that fit the fan case in the region that overlapped the path of the blade edge. The probe was actuated to search for a blade edge while all the blades were viewed on an oscilloscope. The blade edge was considered to be captured when a pulse associated with a particular blade was significantly reduced in magnitude but was clearly distinguishable from the background noise level. By tracing the axial position of either blade edge, one could extend the deflection measurement to two dimensions: axial and tangential. These blade deflection measurements were
Basic rotor aerodynamics applied to wind turbines
Energy Technology Data Exchange (ETDEWEB)
Hansen, M.O.L.
1998-01-01
It is the hope of the author that the notes will impart a basic understanding of the mechanisms behind the production of forces on a wind turbine. Even though aero-elastic codes, including a standard Blade Element Momentum method, can be bought, it is considered important that the theory behind this method and its limitations is understood. The aerodynamics of a wind turbine is important, but building a wind turbine is a multi disciplinary task since it requires knowledge of meteorology, atmospheric turbulence, fluid mechanics, structural dynamics, generators, electrical grid connections, gear boxes, hydraulics, foundations, economics and so on. (au) 14 refs.
CX-100 and TX-100 blade field tests.
Energy Technology Data Exchange (ETDEWEB)
Holman, Adam (USDA-Agriculture Research Service, Bushland, TX); Jones, Perry L.; Zayas, Jose R.
2005-12-01
In support of the DOE Low Wind Speed Turbine (LWST) program two of the three Micon 65/13M wind turbines at the USDA Agricultural Research Service (ARS) center in Bushland, Texas will be used to test two sets of experimental blades, the CX-100 and TX-100. The blade aerodynamic and structural characterization, meteorological inflow and wind turbine structural response will be monitored with an array of 75 instruments: 33 to characterize the blades, 15 to characterize the inflow, and 27 to characterize the time-varying state of the turbine. For both tests, data will be sampled at a rate of 30 Hz using the ATLAS II (Accurate GPS Time-Linked Data Acquisition System) data acquisition system. The system features a time-synchronized continuous data stream and telemetered data from the turbine rotor. This paper documents the instruments and infrastructure that have been developed to monitor these blades, turbines and inflow.
Optimization design of blade shapes for wind turbines
DEFF Research Database (Denmark)
Chen, Jin; Wang, Xudong; Shen, Wen Zhong;
2010-01-01
For the optimization design of wind turbines, the new normal and tangential induced factors of wind turbines are given considering the tip loss of the normal and tangential forces based on the blade element momentum theory and traditional aerodynamic model. The cost model of the wind turbines and...... the optimization design model are developed. In the optimization model, the objective is the minimum cost of energy and the design variables are the chord length, twist angle and the relative thickness. Finally, the optimization is carried out for a 2 MW blade by using this optimization design model....... The performance of blades is validated through the comparison and analysis of the results. The reduced cost shows that the optimization model is good enough for the design of wind turbines. The results give a proof for the design and research on the blades of large scale wind turbines and also...
Optimization model for rotor blades of horizontal axis wind turbines
Institute of Scientific and Technical Information of China (English)
LIU Xiong; CHEN Yan; YE Zhiquan
2007-01-01
This paper presents an optimization model for rotor blades of horizontal axis wind turbines. The model refers to the wind speed distribution function on the specific wind site, with an objective to satisfy the maximum annual energy output. To speed up the search process and guarantee a global optimal result, the extended compact genetic algorithm (ECGA) is used to carry out the search process.Compared with the simple genetic algorithm, ECGA runs much faster and can get more accurate results with a much smaller population size and fewer function evaluations. Using the developed optimization program, blades of a 1.3 MW stall-regulated wind turbine are designed. Compared with the existing blades, the designed blades have obviously better aerodynamic performance.
Prediction of rotor blade-vortex interaction using Volterra integrals
International Nuclear Information System (INIS)
The theory of Volterra integral equations for nonlinear system is applied to the prediction of the nonlinear aerodynamic response of an NACA 0012 airfoil experiencing blade-vortex interaction. The phenomenon is first modeled in two-dimensions using an Euler/Navier-Stoke code, and the resulting unsteady aerodynamic flow field sequences are appropriately combined to form a training dataset. The Volterra kernels are identified in the time-domain characteristics of the selected data, which is in turn used to predict the nonlinear aerodynamic response of the airfoil. The Volterra kernel based data is then compared against a standard airfoil response. The predicted lift time histories of the airfoil are shown to be in good agreement with the aerodynamic data. (author)
The SNL100-03 Blade: Design Studies with Flatback Airfoils for the Sandia 100-meter Blade.
Energy Technology Data Exchange (ETDEWEB)
Griffith, Daniel; Richards, Phillip William
2014-09-01
A series of design studies were performed to inv estigate the effects of flatback airfoils on blade performance and weight for large blades using the Sandi a 100-meter blade designs as a starting point. As part of the study, the effects of varying the blade slenderness on blade structural performance was investigated. The advantages and disadvantages of blad e slenderness with respect to tip deflection, flap- wise & edge-wise fatigue resistance, panel buckling capacity, flutter speed, manufacturing labor content, blade total weight, and aerodynamic design load magn itude are quantified. Following these design studies, a final blade design (SNL100-03) was prod uced, which was based on a highly slender design using flatback airfoils. The SNL100-03 design with flatback airfoils has weight of 49 tons, which is about 16% decrease from its SNL100-02 predecessor that used conventional sharp trailing edge airfoils. Although not systematically optimized, the SNL100 -03 design study provides an assessment of and insight into the benefits of flatback airfoils for la rge blades as well as insights into the limits or negative consequences of high blade slenderness resulting from a highly slender SNL100-03 planform as was chosen in the final design definition. This docum ent also provides a description of the final SNL100-03 design definition and is intended to be a companion document to the distribution of the NuMAD blade model files for SNL100-03, which are made publicly available. A summary of the major findings of the Sandia 100-meter blade development program, from the initial SNL100-00 baseline blade through the fourth SNL100-03 blade study, is provided. This summary includes the major findings and outcomes of blade d esign studies, pathways to mitigate the identified large blade design drivers, and tool development that were produced over the course of this five-year research program. A summary of large blade tec hnology needs and research opportunities is also presented.
Vibration reduction in helicopter rotors using an active control surface located on the blade
Millott, T. A.; Friedmann, P. P.
1992-01-01
A feasibility study of vibration reduction in a four-bladed helicopter rotor using individual blade control (IBC), which is implemented by an individually controlled aerodynamic surface located on each blade, is presented. For this exploratory study, a simple offset-hinged spring restrained model of the blade is used with fully coupled flap-lag-torsional dynamics for each blade. Deterministic controllers based on local and global system models are implemented to reduce 4/rev hub loads using both an actively controlled aerodynamic surface on each blade as well as conventional IBC, where the complete blade undergoes cyclic pitch change. The effectiveness of the two approaches for simultaneous reduction of the 4/rev hub shears and hub moments is compared. Conventional IBC requires considerably more power to achieve approximately the same level of vibration reduction as that obtained by implementing IBC using an active control surface located on the outboard segment of the blade. The effect of blade torsional flexibility on the vibration reduction effectiveness of the actively controlled surface was also considered and it was found that this parameter has a very substantial influence.
Blade by Blade Tip Clearance Measurement
A. G. Sheard
2011-01-01
This paper describes a capacitance-based tip clearance measurement system which engineers have used in the most demanding turbine test applications. The capacitance probe has survived extended use in a major European gas turbine manufacturer's high-temperature demonstrator unit, where it functioned reliably at a turbine entry temperature in excess of 1800 degrees Kelvin. This paper explores blade by blade tip clearance measurement techniques and examines probe performance under laboratory con...
Resonances and Aerodynamic Damping of a Vertical Axis Wind Turbine
Ottermo, Fredric; Bernhoff, Hans
2012-01-01
The dynamics of a straight-bladed vertical axis wind turbine is investigated with respect to oscillations due to the elasticity of struts and shaft connecting to the hub. In particular, for the three-bladed turbine, a concept is proposed for dimensioning the turbine to maximize the size of the resonance free rpm range for operation. The effect of aerodynamic damping on the struts is also considered. The damping of these types of oscillations for a typical turbine is found to be good.
ANALYTICAL APPROACH TO AERODYNAMIC CHARACTERISTICS OF THE HELICOPTER ROTOR WITH ANHEDRAL TIP SHAPE
Institute of Scientific and Technical Information of China (English)
1998-01-01
A new analytical approach, based on a lifting surface model and a full-span free wake analysis using the curved vortex element on the circular arc, is established for evaluating the aerodynamic characteristics of the helicopter rotor with an anhedral blade-tip and is emphasized to be applicable to various blade-tip configurations, such as the tapered, swept, anhedral and combined shapes. Sample calculations on the rotor aerodynamic characteristics for different anhedral tips in both hover and forward flight are performed. The results on the induced velocity, blade section lift distribution, tip vortex path and rotor performance are presented so that the effect of the anhedral tip on the rotor aerodynamic characteristics is fully analyzed.
Li, Chao; Yan, Peigang; Wang, Xiangfeng; Han, Wanjin; Wang, Qingchao
2016-08-01
This paper presents a new idea to reduce the solidity of low-pressure turbine (LPT) blade cascades, while remain the structural integrity of LPT blade. Aerodynamic performance of a low solidity LPT cascade was improved by increasing blade trailing edge thickness (TET). The solidity of the LPT cascade blade can be reduced by about 12.5% through increasing the TET of the blade without a significant drop in energy efficiency. For the low solidity LPT cascade, increasing the TET can decrease energy loss by 23.30% and increase the flow turning angle by 1.86% for Reynolds number (Re) of 25,000 and freestream turbulence intensities (FSTI) of 2.35%. The flow control mechanism governing behavior around the trailing edge of an LPT cascade is also presented. The results show that appropriate TET is important for the optimal design of high-lift load LPT blade cascades.
Optimization design of spar cap layup for wind turbine blade
Institute of Scientific and Technical Information of China (English)
2012-01-01
Based on the aerodynamic shape and structural form of the blade are fixed,a mathematical model of optimization design for wind turbine blade is established.The model is pursued with respect to minimum the blade mass to reduce the cost of wind turbine production.The material layup numbers of the spar cap are chosen as the design variables;while the demands of strength,stiffness and stability of the blade are employed as the constraint conditions.The optimization design for a 1.5 MW wind turbine blade is carried out by combing above objective and constraint conditions at the action of ultimate flapwise loads with the finite element software ANSYS.Compared with the original design,the optimization design result achieves a reduction of 7.2% of the blade mass,the stress and strain distribution of the blade is more reasonable,and there is no occurrence of resonance,therefore its effectiveness is verified.
A morphing trailing edge flap system for wind turbine blades
DEFF Research Database (Denmark)
Aagaard Madsen, Helge; Barlas, Athanasios; Løgstrup Andersen, Tom
2015-01-01
no mechanical or metal parts are used. The prototypes tested in the laboratory and on a blade section in a wind tunnel in the period from 2007-2010 demonstrated the functionality and the aerodynamic performance of the flap concept. In a recent research and development project INDUFLAP from 2011......-2014 the flap system has been further developed in corporation with the industrial partners Hydratech Industries (DK) and Rehau (DE). A new trailing edge flap design with spanwise voids (channels) and with a chord of 15cm suitable for a 1m chord blade section was developed. It was then manufactured by...
Integrated airfoil and blade design method for large wind turbines
DEFF Research Database (Denmark)
Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær
2014-01-01
of 3 million. A novel shape perturbation function is introduced to optimize the geometry based on the existing airfoils which simplifies the design procedure. The viscous/inviscid interactive code XFOIL is used as the aerodynamic tool for airfoil optimization at a Reynolds number of 16 million and a...... free-stream Mach number of 0.25 near the tip. Results show that the new airfoils achieve a high power coefficient in a wide range of angles of attack (AOA) and are extremely insensitive to surface roughness. Finally, a full blade analysis using computational fluid dynamics (CFD) and blade element...
Grujicic, M.; Arakere, G.; Pandurangan, B.; Sellappan, V.; Vallejo, A.; Ozen, M.
2010-11-01
A multi-disciplinary design-optimization procedure has been introduced and used for the development of cost-effective glass-fiber reinforced epoxy-matrix composite 5 MW horizontal-axis wind-turbine (HAWT) blades. The turbine-blade cost-effectiveness has been defined using the cost of energy (CoE), i.e., a ratio of the three-blade HAWT rotor development/fabrication cost and the associated annual energy production. To assess the annual energy production as a function of the blade design and operating conditions, an aerodynamics-based computational analysis had to be employed. As far as the turbine blade cost is concerned, it is assessed for a given aerodynamic design by separately computing the blade mass and the associated blade-mass/size-dependent production cost. For each aerodynamic design analyzed, a structural finite element-based and a post-processing life-cycle assessment analyses were employed in order to determine a minimal blade mass which ensures that the functional requirements pertaining to the quasi-static strength of the blade, fatigue-controlled blade durability and blade stiffness are satisfied. To determine the turbine-blade production cost (for the currently prevailing fabrication process, the wet lay-up) available data regarding the industry manufacturing experience were combined with the attendant blade mass, surface area, and the duration of the assumed production run. The work clearly revealed the challenges associated with simultaneously satisfying the strength, durability and stiffness requirements while maintaining a high level of wind-energy capture efficiency and a lower production cost.
Pritchard, Jocelyn I.; Adelman, Howard M.; Mantay, Wayne R.
1989-01-01
The rotor dynamic design considerations are essentially limitations on the vibratory response of the blades which in turn limit the dynamic excitation of the fuselage by forces and moments transmitted to the hub. Quantities which are associated with the blade response and which are subject to design constraints are discussed. These include blade frequencies, vertical and inplane hub shear, rolling and pitching moments, and aeroelastic stability margin.
Investigation of the Aerodynamic Character in Turbine Cascades with Aft-loaded Profile
Institute of Scientific and Technical Information of China (English)
周逊; 韩万金
2004-01-01
For evaluate the aerodynamic character of the turbine cascades which have the aft-loaded profile, the experimental investigation was carried out on the low speed annular wind tunnel. And the detailed measurements of the aerodynamic parameters were made from upstream to downstream of the two type turbine cascades, the one is the conventional straight blades cascade, the other is the curved blades cascades. The static pressure distributions on the endwall and the blade surface were also carried out. The influence of the aft-loaded profile and the curved blade on the development of loss and the pressure distribution was discussed, and analyses the different flow phenomena and mechanism in two type turbine cascades.
Aerodynamic Optimization of Vertical Axis Wind Turbine with Trailing Edge Flaps
DEFF Research Database (Denmark)
Ertem, Sercan; Ferreira, Carlos; Gaunaa, Mac;
2016-01-01
Vertical Axis Wind Turbines (VAWT) are competitive concepts for very large scale (1020 MW) floating offshore applications. Rotor circulation control (loading control) opens a wide design space to enhance the aerodynamic and operational features of VAWT. The modified linear derivation of the...... Actuator Cylinder Model (Mod-Lin ACM) is used as the aerodynamic model to assess VAWT performance throughout the work. As the first step, optimum aerodynamic loadings of a VAWT with infinite number of blades are studied. Next, for the case of finite number of blades, direct and inverse optimization...... approaches are used. The direct method is coupled with a hybrid numerical optimizer to serve as a global method for designing flap sequences. The effectiveness of trailing edge flap on VAWT is investigated for three aerodynamic objectives which lead to improved power efficiency, rated power control and peak...
Aerodynamic Optimization of Vertical Axis Wind Turbine with Trailing Edge Flap
DEFF Research Database (Denmark)
Ertem, Sercan; Ferreira, Carlos Simao; Gaunaa, Mac;
2016-01-01
Vertical Axis Wind Turbines (VAWT) are competitive concepts for very large scale (10-20 MW)floating ofshore applications. Rotor circulation control (loading control) opens a wide design space to enhance the aerodynamic and operational features of VAWT. The modied linear derivation of the Actuator....... The direct method is coupled with a hybrid numerical optimizer to serve as a global method for designingap sequences. The efectiveness of trailing edgeap on VAWT is investigated for three aerodynamic objectives which lead to improved power effciency, rated power control and peak load control. The...... Cylinder Model (Mod-Lin ACM) is used as the aerodynamic model to assess VAWT performance throughout the work. As the rst step, optimum aerodynamic loadings of a VAWT with innite number of blades are studied. Next, for the case of nite number of blades, direct and inverse optimization approaches are used...
Reduction of helicopter blade-vortex interaction noise by active rotor control technology
Yu, Yung H.; Gmelin, Bernd; Splettstoesser, Wolf; Philippe, Jean J.; Prieur, Jean; Brooks, Thomas F.
Helicopter blade-vortex interaction noise is one of the most severe noise sources and is very important both in community annoyance and military detection. Research over the decades has substantially improved basic physical understanding of the mechanisms generating rotor blade-vortex interaction noise and also of controlling techniques, particularly using active rotor control technology. This paper reviews active rotor control techniques currently available for rotor blade-vortex interaction noise reduction, including higher harmonic pitch control, individual blade control, and on-blade control technologies. Basic physical mechanisms of each active control technique are reviewed in terms of noise reduction mechanism and controlling aerodynamic or structural parameters of a blade. Active rotor control techniques using smart structures/materials are discussed, including distributed smart actuators to induce local torsional or flapping deformations.
Reduction of Helicopter Blade-Vortex Interaction Noise by Active Rotor Control Technology
Yu, Yung H.; Gmelin, Bernd; Splettstoesser, Wolf; Brooks, Thomas F.; Philippe, Jean J.; Prieur, Jean
1997-01-01
Helicopter blade-vortex interaction noise is one of the most severe noise sources and is very important both in community annoyance and military detection. Research over the decades has substantially improved basic physical understanding of the mechanisms generating rotor blade-vortex interaction noise and also of controlling techniques, particularly using active rotor control technology. This paper reviews active rotor control techniques currently available for rotor blade vortex interaction noise reduction, including higher harmonic pitch control, individual blade control, and on-blade control technologies. Basic physical mechanisms of each active control technique are reviewed in terms of noise reduction mechanism and controlling aerodynamic or structural parameters of a blade. Active rotor control techniques using smart structures/materials are discussed, including distributed smart actuators to induce local torsional or flapping deformations, Published by Elsevier Science Ltd.
The Effect of Composite Flexures on Aeroelastic Stability of a Hingeless Rotor Blade
Institute of Scientific and Technical Information of China (English)
Shi; Qinghua
2007-01-01
The effects of ply orientation angle of composite flexures on stability of hingeless rotor blade system are studied.The composite hingeless rotor blade system is simplified as a hub,a flap flexure and a lag flexure.pitch bearing and main blade.The kinematics formulations are inferred by employing the moderate deflection beam theory.The shear deformation and warping related to torsion are considered.The quasi-steady strip theory with dynamic inflow effects is applied to obtain the aerodynamic loads acting on the blade.Based on these.the set of finite element formulations of a hingeless rotor blade system is worked out.The numerical results show that the ply angle of the composite flexures has great effects on the aeroelastic stability of rotor blade.