WorldWideScience

Sample records for advection

  1. Analysis Of First Fall And Last Spring Advection and Radiation-Advection Frosts In Azerbaijan Provinces

    International Nuclear Information System (INIS)

    Noohi, K.; Pedram, M.; Sahraian, F.; Kamali, G. A.

    2007-01-01

    Atmospheric Science and Meteorological Research Center (ASMERC)Dates of first fall and last spring frosts on the basis of minimum shelter temperature equal or less than 0°C were determined for 12 synoptic stations for period 1986-2000 in Azerbaijan region. The advection frost was determined based on using of synoptic maps and studying of meteorological elements in different hours. In this work, we found that series of first fall and last spring advection and radiation-advection frosts are random and normally distributed. This study shows that on the average advection frosts start from 6 to 40 days later than radiation-advection frosts in fall and ends 2 to 25 days earlier in spring. Potential growing season that is interval between last spring and first fall advection frost is found to be from 5 to 65 days longer than the growing season defined by the interval from last spring to first fall occurrences of minimum temperature equal or less than 0°C. Crop protection against radiation frosts can bring about too much benefit. To assess whether practical protection of some special crops against radiation frosts is done or not, the number of radiation frosts before first advection frost in fall and after last advection frost in spring, were determined

  2. Chaotic advection in the ocean

    Energy Technology Data Exchange (ETDEWEB)

    Koshel' , Konstantin V; Prants, Sergei V [V.I. Il' ichev Pacific Oceanological Institute, Far-Eastern Division of the Russian Academy of Sciences, Vladivostok (Russian Federation)

    2006-11-30

    The problem of chaotic advection of passive scalars in the ocean and its topological, dynamical, and fractal properties are considered from the standpoint of the theory of dynamical systems. Analytic and numerical results on Lagrangian transport and mixing in kinematic and dynamic chaotic advection models are described for meandering jet currents, topographical eddies in a barotropic ocean, and a two-layer baroclinic ocean. Laboratory experiments on hydrodynamic flows in rotating tanks as an imitation of geophysical chaotic advection are described. Perspectives of a dynamical system approach in physical oceanography are discussed. (reviews of topical problems)

  3. Two-level schemes for the advection equation

    Science.gov (United States)

    Vabishchevich, Petr N.

    2018-06-01

    The advection equation is the basis for mathematical models of continuum mechanics. In the approximate solution of nonstationary problems it is necessary to inherit main properties of the conservatism and monotonicity of the solution. In this paper, the advection equation is written in the symmetric form, where the advection operator is the half-sum of advection operators in conservative (divergent) and non-conservative (characteristic) forms. The advection operator is skew-symmetric. Standard finite element approximations in space are used. The standard explicit two-level scheme for the advection equation is absolutely unstable. New conditionally stable regularized schemes are constructed, on the basis of the general theory of stability (well-posedness) of operator-difference schemes, the stability conditions of the explicit Lax-Wendroff scheme are established. Unconditionally stable and conservative schemes are implicit schemes of the second (Crank-Nicolson scheme) and fourth order. The conditionally stable implicit Lax-Wendroff scheme is constructed. The accuracy of the investigated explicit and implicit two-level schemes for an approximate solution of the advection equation is illustrated by the numerical results of a model two-dimensional problem.

  4. High-order finite volume advection

    OpenAIRE

    Shaw, James

    2018-01-01

    The cubicFit advection scheme is limited to second-order convergence because it uses a polynomial reconstruction fitted to point values at cell centres. The highOrderFit advection scheme achieves higher than second order by calculating high-order moments over the mesh geometry.

  5. Multidimensional flux-limited advection schemes

    International Nuclear Information System (INIS)

    Thuburn, J.

    1996-01-01

    A general method for building multidimensional shape preserving advection schemes using flux limiters is presented. The method works for advected passive scalars in either compressible or incompressible flow and on arbitrary grids. With a minor modification it can be applied to the equation for fluid density. Schemes using the simplest form of the flux limiter can cause distortion of the advected profile, particularly sideways spreading, depending on the orientation of the flow relative to the grid. This is partly because the simple limiter is too restrictive. However, some straightforward refinements lead to a shape-preserving scheme that gives satisfactory results, with negligible grid-flow angle-dependent distortion

  6. Orbital Advection with Magnetohydrodynamics and Vector Potential

    Energy Technology Data Exchange (ETDEWEB)

    Lyra, Wladimir [Department of Physics and Astronomy, California State University Northrige, 18111 Nordhoff Street, Northridge CA 91130 (United States); McNally, Colin P. [Astronomy Unit, School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Heinemann, Tobias [Niels Bohr International Academy, The Niels Bohr Institute, Blegdamsvej 17, DK-2100, Copenhagen Ø (Denmark); Masset, Frédéric, E-mail: wlyra@csun.edu [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, 62210 Cuernavaca, Mor. (Mexico)

    2017-10-01

    Orbital advection is a significant bottleneck in disk simulations, and a particularly tricky one when used in connection with magnetohydrodynamics. We have developed an orbital advection algorithm suitable for the induction equation with magnetic potential. The electromotive force is split into advection and shear terms, and we find that we do not need an advective gauge since solving the orbital advection implicitly precludes the shear term from canceling the advection term. We prove and demonstrate the third order in time accuracy of the scheme. The algorithm is also suited to non-magnetic problems. Benchmarked results of (hydrodynamical) planet–disk interaction and of the magnetorotational instability are reproduced. We include detailed descriptions of the construction and selection of stabilizing dissipations (or high-frequency filters) needed to generate practical results. The scheme is self-consistent, accurate, and elegant in its simplicity, making it particularly efficient for straightforward finite-difference methods. As a result of the work, the algorithm is incorporated in the public version of the Pencil Code, where it can be used by the community.

  7. Orbital Advection with Magnetohydrodynamics and Vector Potential

    International Nuclear Information System (INIS)

    Lyra, Wladimir; McNally, Colin P.; Heinemann, Tobias; Masset, Frédéric

    2017-01-01

    Orbital advection is a significant bottleneck in disk simulations, and a particularly tricky one when used in connection with magnetohydrodynamics. We have developed an orbital advection algorithm suitable for the induction equation with magnetic potential. The electromotive force is split into advection and shear terms, and we find that we do not need an advective gauge since solving the orbital advection implicitly precludes the shear term from canceling the advection term. We prove and demonstrate the third order in time accuracy of the scheme. The algorithm is also suited to non-magnetic problems. Benchmarked results of (hydrodynamical) planet–disk interaction and of the magnetorotational instability are reproduced. We include detailed descriptions of the construction and selection of stabilizing dissipations (or high-frequency filters) needed to generate practical results. The scheme is self-consistent, accurate, and elegant in its simplicity, making it particularly efficient for straightforward finite-difference methods. As a result of the work, the algorithm is incorporated in the public version of the Pencil Code, where it can be used by the community.

  8. Precipitation Sedimentation and Advection in GFS

    Science.gov (United States)

    Sun, R.; Tallapragada, V.

    2016-12-01

    Zhao and Carr microphysics scheme as implemented in the NCEP Global Forecasting System (GFS) predicts only the total cloud condensate (cloud water or ice). The precipitation generated in the column fall to the ground instantly. This mean precipitation sedimentation and advection are not considered. As resolution increases the lack of the two physical processes creates problems. The slowly falling precipitation (snow) falls to the wrong surface grid box, which may have led to the observed spotty-precipitation pattern. To solve the problem two prognositic variables, snow and rain, are added. Addition of the two precipitation variable allows their advection. The corresponding sedimentation process are also added. In this study we examine the effect of precipitation advection and sedimentation on the precipitation pattern, associated precipitation skills and clouds.

  9. Low-wave-number statistics of randomly advected passive scalars

    International Nuclear Information System (INIS)

    Kerstein, A.R.; McMurtry, P.A.

    1994-01-01

    A heuristic analysis of the decay of a passive scalar field subject to statistically steady random advection, predicts two low-wave-number spectral scaling regimes analogous to the similarity states previously identified by Chasnov [Phys. Fluids 6, 1036 (1994)]. Consequences of their predicted coexistence in a single flow are examined. The analysis is limited to the idealized case of narrow band advection. To complement the analysis, and to extend the predictions to physically more realistic advection processes, advection diffusion is simulated using a one-dimensional stochastic model. An experimental test of the predictions is proposed

  10. Statistics of an advected passive scalar

    International Nuclear Information System (INIS)

    Kimura, Y.; Kraichnan, R.H.

    1993-01-01

    An elementary argument shows that non-Gaussian fluctuations in the temperature at a point in space are induced by random advection of a passive temperature field that has a nonlinear mean gradient, whether or not there is molecular diffusion. This is corroborated by exact analysis for the nondiffusive case and by direct numerical simulation for diffusive cases. Eulerian mapping closure gives results close to the simulation data. Non-Gaussian fluctuations of temperature at a point also are induced by a more subtle mechanism that requires both advection and molecular diffusion and is effective even when the statistics are strictly homogeneous. It operates through selectively strong dissipation of regions where intense temperature gradients have been induced by advective straining. This phenomenon is demonstrated by simulations and explored by means of an idealized analytical model

  11. Research on dynamic characteristics of new chaotic-advection fins

    International Nuclear Information System (INIS)

    Kong Songtao; Dong Qiwu; Liu Minshan; Zhu Qing

    2007-01-01

    Analysis and the numerical simulation has confirmed that the flow is of the chaotic advection in the flow channel of the new fin. The chaotic advection results in stronger mixing under low Re, and thus enhances the heat transfer and anti-scaling ability. The new fin provides the beneficial exploration to the concept of chaotic advection which applies to the plate-fin heat exchanger. (authors)

  12. Chaotic advection, diffusion, and reactions in open flows

    International Nuclear Information System (INIS)

    Tel, Tamas; Karolyi, Gyoergy; Pentek, Aron; Scheuring, Istvan; Toroczkai, Zoltan; Grebogi, Celso; Kadtke, James

    2000-01-01

    We review and generalize recent results on advection of particles in open time-periodic hydrodynamical flows. First, the problem of passive advection is considered, and its fractal and chaotic nature is pointed out. Next, we study the effect of weak molecular diffusion or randomness of the flow. Finally, we investigate the influence of passive advection on chemical or biological activity superimposed on open flows. The nondiffusive approach is shown to carry some features of a weak diffusion, due to the finiteness of the reaction range or reaction velocity. (c) 2000 American Institute of Physics

  13. The role of advection in a two-species competition model

    CERN Document Server

    Averill, Isabel; Lou, Yuan

    2017-01-01

    The effects of weak and strong advection on the dynamics of reaction-diffusion models have long been studied. In contrast, the role of intermediate advection remains poorly understood. For example, concentration phenomena can occur when advection is strong, providing a mechanism for the coexistence of multiple populations, in contrast with the situation of weak advection where coexistence may not be possible. The transition of the dynamics from weak to strong advection is generally difficult to determine. In this work the authors consider a mathematical model of two competing populations in a spatially varying but temporally constant environment, where both species have the same population dynamics but different dispersal strategies: one species adopts random dispersal, while the dispersal strategy for the other species is a combination of random dispersal and advection upward along the resource gradient. For any given diffusion rates the authors consider the bifurcation diagram of positive steady states by u...

  14. Enhanced separation of diffusing particles by chaotic advection

    International Nuclear Information System (INIS)

    Aref, H.; Jones, S.W.

    1989-01-01

    Combining the reversibility of advection by a Stokes flow with the irreversibility of diffusion leads to a separation strategy for diffusing substances. This basic idea goes back to Taylor and Heller. It is shown here that the sensitivity of the method can be greatly enhanced by making the advection chaotic. The separation is particularly efficient when the thinnest structures resulting from advection are made comparable in size to a diffusion length. Simple heuristic estimates based on an understanding of chaotic motion and diffusion lead to a certain scaling that is seen in numerical experiments on this separation method

  15. RKC time-stepping for advection-diffusion-reaction problems

    International Nuclear Information System (INIS)

    Verwer, J.G.; Sommeijer, B.P.; Hundsdorfer, W.

    2004-01-01

    The original explicit Runge-Kutta-Chebyshev (RKC) method is a stabilized second-order integration method for pure diffusion problems. Recently, it has been extended in an implicit-explicit manner to also incorporate highly stiff reaction terms. This implicit-explicit RKC method thus treats diffusion terms explicitly and the highly stiff reaction terms implicitly. The current paper deals with the incorporation of advection terms for the explicit method, thus aiming at the implicit-explicit RKC integration of advection-diffusion-reaction equations in a manner that advection and diffusion terms are treated simultaneously and explicitly and the highly stiff reaction terms implicitly

  16. Linking Chaotic Advection with Subsurface Biogeochemical Processes

    Science.gov (United States)

    Mays, D. C.; Freedman, V. L.; White, S. K.; Fang, Y.; Neupauer, R.

    2017-12-01

    This work investigates the extent to which groundwater flow kinematics drive subsurface biogeochemical processes. In terms of groundwater flow kinematics, we consider chaotic advection, whose essential ingredient is stretching and folding of plumes. Chaotic advection is appealing within the context of groundwater remediation because it has been shown to optimize plume spreading in the laminar flows characteristic of aquifers. In terms of subsurface biogeochemical processes, we consider an existing model for microbially-mediated reduction of relatively mobile uranium(VI) to relatively immobile uranium(IV) following injection of acetate into a floodplain aquifer beneath a former uranium mill in Rifle, Colorado. This model has been implemented in the reactive transport code eSTOMP, the massively parallel version of STOMP (Subsurface Transport Over Multiple Phases). This presentation will report preliminary numerical simulations in which the hydraulic boundary conditions in the eSTOMP model are manipulated to simulate chaotic advection resulting from engineered injection and extraction of water through a manifold of wells surrounding the plume of injected acetate. This approach provides an avenue to simulate the impact of chaotic advection within the existing framework of the eSTOMP code.

  17. Predicting salt advection in groundwater from saline aquaculture ponds

    Science.gov (United States)

    Verrall, D. P.; Read, W. W.; Narayan, K. A.

    2009-01-01

    SummaryThis paper predicts saltwater advection in groundwater from leaky aquaculture ponds. A closed form solution for the potential function, stream function and velocity field is derived via the series solutions method. Numerically integrating along different streamlines gives the location (or advection front) of saltwater throughout the domain for any predefined upper time limit. Extending this process produces a function which predicts advection front location against time. The models considered in this paper are easily modified given knowledge of the required physical parameters.

  18. Non-linear thermal engineering, chaotic advection and mixing; Thermique non-lineaire, melange et advection chaotique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-31

    This conference day was jointly organized by the `university group of thermal engineering (GUT)` and the French association of thermal engineers. This book of proceedings contains 7 papers entitled: `energy spectra of a passive scalar undergoing advection by a chaotic flow`; `analysis of chaotic behaviours: from topological characterization to modeling`; `temperature homogeneity by Lagrangian chaos in a direct current flow heat exchanger: numerical approach`; ` thermal instabilities in a mixed convection phenomenon: nonlinear dynamics`; `experimental characterization study of the 3-D Lagrangian chaos by thermal analogy`; `influence of coherent structures on the mixing of a passive scalar`; `evaluation of the performance index of a chaotic advection effect heat exchanger for a wide range of Reynolds numbers`. (J.S.)

  19. Non-linear thermal engineering, chaotic advection and mixing; Thermique non-lineaire, melange et advection chaotique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This conference day was jointly organized by the `university group of thermal engineering (GUT)` and the French association of thermal engineers. This book of proceedings contains 7 papers entitled: `energy spectra of a passive scalar undergoing advection by a chaotic flow`; `analysis of chaotic behaviours: from topological characterization to modeling`; `temperature homogeneity by Lagrangian chaos in a direct current flow heat exchanger: numerical approach`; ` thermal instabilities in a mixed convection phenomenon: nonlinear dynamics`; `experimental characterization study of the 3-D Lagrangian chaos by thermal analogy`; `influence of coherent structures on the mixing of a passive scalar`; `evaluation of the performance index of a chaotic advection effect heat exchanger for a wide range of Reynolds numbers`. (J.S.)

  20. High Order Semi-Lagrangian Advection Scheme

    Science.gov (United States)

    Malaga, Carlos; Mandujano, Francisco; Becerra, Julian

    2014-11-01

    In most fluid phenomena, advection plays an important roll. A numerical scheme capable of making quantitative predictions and simulations must compute correctly the advection terms appearing in the equations governing fluid flow. Here we present a high order forward semi-Lagrangian numerical scheme specifically tailored to compute material derivatives. The scheme relies on the geometrical interpretation of material derivatives to compute the time evolution of fields on grids that deform with the material fluid domain, an interpolating procedure of arbitrary order that preserves the moments of the interpolated distributions, and a nonlinear mapping strategy to perform interpolations between undeformed and deformed grids. Additionally, a discontinuity criterion was implemented to deal with discontinuous fields and shocks. Tests of pure advection, shock formation and nonlinear phenomena are presented to show performance and convergence of the scheme. The high computational cost is considerably reduced when implemented on massively parallel architectures found in graphic cards. The authors acknowledge funding from Fondo Sectorial CONACYT-SENER Grant Number 42536 (DGAJ-SPI-34-170412-217).

  1. Hopf bifurcation in a delayed reaction-diffusion-advection population model

    Science.gov (United States)

    Chen, Shanshan; Lou, Yuan; Wei, Junjie

    2018-04-01

    In this paper, we investigate a reaction-diffusion-advection model with time delay effect. The stability/instability of the spatially nonhomogeneous positive steady state and the associated Hopf bifurcation are investigated when the given parameter of the model is near the principle eigenvalue of an elliptic operator. Our results imply that time delay can make the spatially nonhomogeneous positive steady state unstable for a reaction-diffusion-advection model, and the model can exhibit oscillatory pattern through Hopf bifurcation. The effect of advection on Hopf bifurcation values is also considered, and our results suggest that Hopf bifurcation is more likely to occur when the advection rate increases.

  2. The nature and role of advection in advection-diffusion equations used for modelling bed load transport

    Science.gov (United States)

    Ancey, Christophe; Bohorquez, Patricio; Heyman, Joris

    2016-04-01

    The advection-diffusion equation arises quite often in the context of sediment transport, e.g., for describing time and space variations in the particle activity (the solid volume of particles in motion per unit streambed area). Stochastic models can also be used to derive this equation, with the significant advantage that they provide information on the statistical properties of particle activity. Stochastic models are quite useful when sediment transport exhibits large fluctuations (typically at low transport rates), making the measurement of mean values difficult. We develop an approach based on birth-death Markov processes, which involves monitoring the evolution of the number of particles moving within an array of cells of finite length. While the topic has been explored in detail for diffusion-reaction systems, the treatment of advection has received little attention. We show that particle advection produces nonlocal effects, which are more or less significant depending on the cell size and particle velocity. Albeit nonlocal, these effects look like (local) diffusion and add to the intrinsic particle diffusion (dispersal due to velocity fluctuations), with the important consequence that local measurements depend on both the intrinsic properties of particle displacement and the dimensions of the measurement system.

  3. Advecting Procedural Textures for 2D Flow Animation

    Science.gov (United States)

    Kao, David; Pang, Alex; Moran, Pat (Technical Monitor)

    2001-01-01

    This paper proposes the use of specially generated 3D procedural textures for visualizing steady state 2D flow fields. We use the flow field to advect and animate the texture over time. However, using standard texture advection techniques and arbitrary textures will introduce some undesirable effects such as: (a) expanding texture from a critical source point, (b) streaking pattern from the boundary of the flowfield, (c) crowding of advected textures near an attracting spiral or sink, and (d) absent or lack of textures in some regions of the flow. This paper proposes a number of strategies to solve these problems. We demonstrate how the technique works using both synthetic data and computational fluid dynamics data.

  4. Diffusion-advection within dynamic biological gaps driven by structural motion

    Science.gov (United States)

    Asaro, Robert J.; Zhu, Qiang; Lin, Kuanpo

    2018-04-01

    To study the significance of advection in the transport of solutes, or particles, within thin biological gaps (channels), we examine theoretically the process driven by stochastic fluid flow caused by random thermal structural motion, and we compare it with transport via diffusion. The model geometry chosen resembles the synaptic cleft; this choice is motivated by the cleft's readily modeled structure, which allows for well-defined mechanical and physical features that control the advection process. Our analysis defines a Péclet-like number, AD, that quantifies the ratio of time scales of advection versus diffusion. Another parameter, AM, is also defined by the analysis that quantifies the full potential extent of advection in the absence of diffusion. These parameters provide a clear and compact description of the interplay among the well-defined structural, geometric, and physical properties vis-a ̀-vis the advection versus diffusion process. For example, it is found that AD˜1 /R2 , where R is the cleft diameter and hence diffusion distance. This curious, and perhaps unexpected, result follows from the dependence of structural motion that drives fluid flow on R . AM, on the other hand, is directly related (essentially proportional to) the energetic input into structural motion, and thereby to fluid flow, as well as to the mechanical stiffness of the cleftlike structure. Our model analysis thus provides unambiguous insight into the prospect of competition of advection versus diffusion within biological gaplike structures. The importance of the random, versus a regular, nature of structural motion and of the resulting transient nature of advection under random motion is made clear in our analysis. Further, by quantifying the effects of geometric and physical properties on the competition between advection and diffusion, our results clearly demonstrate the important role that metabolic energy (ATP) plays in this competitive process.

  5. Advection endash diffusion around a curved obstacle

    International Nuclear Information System (INIS)

    Ahluwalia, D.S.; Keller, J.B.; Knessl, C.

    1998-01-01

    Advection and diffusion of a substance around a curved obstacle is analyzed when the advection velocity is large compared to the diffusion velocity, i.e., when the Peclet number is large. Asymptotic expressions for the concentration are obtained by the use of boundary layer theory, matched asymptotic expansions, etc. The results supplement and extend previous ones for straight obstacles. They apply to electrophoresis, the flow of ground water, chromatography, sedimentation, etc. copyright 1998 American Institute of Physics

  6. Concentration polarization, surface currents, and bulk advection in a microchannel

    DEFF Research Database (Denmark)

    Nielsen, Christoffer Peder; Bruus, Henrik

    2014-01-01

    . A remarkable outcome of the investigations is the discovery of strong couplings between bulk advection and the surface current; without a surface current, bulk advection is strongly suppressed. The numerical simulations are supplemented by analytical models valid in the long channel limit as well...... as in the limit of negligible surface charge. By including the effects of diffusion and advection in the diffuse part of the electric double layers, we extend a recently published analytical model of overlimiting current due to surface conduction....

  7. The Dirichlet problem of a conformable advection-diffusion equation

    Directory of Open Access Journals (Sweden)

    Avci Derya

    2017-01-01

    Full Text Available The fractional advection-diffusion equations are obtained from a fractional power law for the matter flux. Diffusion processes in special types of porous media which has fractal geometry can be modelled accurately by using these equations. However, the existing nonlocal fractional derivatives seem complicated and also lose some basic properties satisfied by usual derivatives. For these reasons, local fractional calculus has recently been emerged to simplify the complexities of fractional models defined by nonlocal fractional operators. In this work, the conformable, a local, well-behaved and limit-based definition, is used to obtain a local generalized form of advection-diffusion equation. In addition, this study is devoted to give a local generalized description to the combination of diffusive flux governed by Fick’s law and the advection flux associated with the velocity field. As a result, the constitutive conformable advection-diffusion equation can be easily achieved. A Dirichlet problem for conformable advection-diffusion equation is derived by applying fractional Laplace transform with respect to time t and finite sin-Fourier transform with respect to spatial coordinate x. Two illustrative examples are presented to show the behaviours of this new local generalized model. The dependence of the solution on the fractional order of conformable derivative and the changing values of problem parameters are validated using graphics held by MATLcodes.

  8. Emergent structures in reaction-advection-diffusion systems on a sphere

    Science.gov (United States)

    Krause, Andrew L.; Burton, Abigail M.; Fadai, Nabil T.; Van Gorder, Robert A.

    2018-04-01

    We demonstrate unusual effects due to the addition of advection into a two-species reaction-diffusion system on the sphere. We find that advection introduces emergent behavior due to an interplay of the traditional Turing patterning mechanisms with the compact geometry of the sphere. Unidirectional advection within the Turing space of the reaction-diffusion system causes patterns to be generated at one point of the sphere, and transported to the antipodal point where they are destroyed. We illustrate these effects numerically and deduce conditions for Turing instabilities on local projections to understand the mechanisms behind these behaviors. We compare this behavior to planar advection which is shown to only transport patterns across the domain. Analogous transport results seem to hold for the sphere under azimuthal transport or away from the antipodal points in unidirectional flow regimes.

  9. Cellwise conservative unsplit advection for the volume of fluid method

    DEFF Research Database (Denmark)

    Comminal, Raphaël; Spangenberg, Jon; Hattel, Jesper Henri

    2015-01-01

    We present a cellwise conservative unsplit (CCU) advection scheme for the volume of fluid method (VOF) in 2D. Contrary to other schemes based on explicit calculations of the flux balances, the CCU advection adopts a cellwise approach where the pre-images of the control volumes are traced......-overlapping donating regions and pre-images with conforming edges to their neighbors, resulting in the conservativeness and the boundedness (liquid volume fraction inside the interval [0, 1]) of the CCU advection scheme. Finally, the update of the liquid volume fractions is computed from the intersections of the pre......-image polygons with the reconstructed interfaces. The CCU scheme is tested on several benchmark tests for the VOF advection, together with the standard piecewise linear interface calculation (PLIC). The geometrical errors of the CCU compare favorably with other unsplit VOF-PLIC schemes. Finally, potential...

  10. A generalized advection dispersion equation

    Indian Academy of Sciences (India)

    This paper examines a possible effect of uncertainties, variability or heterogeneity of any dynamic system when being included in its evolution rule; the notion is illustrated with the advection dispersion equation, which describes the groundwater pollution model. An uncertain derivative is defined; some properties of.

  11. Measuring groundwater transport through lake sediments by advection and diffusion

    International Nuclear Information System (INIS)

    Cornett, R.J.; Risto, B.A.; Lee, D.R.

    1989-08-01

    A method for estimating low rates of groundwater inflow and outflow through the bottom sediments of surface waters was developed and tested. A one-dimensional advection-diffusion model was fitted to measured pore water profiles of two nonreactive solutes, tritiated water and chloride, and the advection rate was calculated by a nonlinear least squares technique. Using 3 H profiles measured 0-0.5 m below the sediment-water interface, rates of groundwater advection into a lake through interbedded sands and gyttja were estimated to be about 1.0 m/year. In midlake locations underlain by soft organic gyttja, rates of advection were much lower (<0.1 m/year). Knowledge of the rate and direction of groundwater flow substantially altered the interpretation of pore water profiles within the sediments and the fluxes of solutes. This technique can be used to estimate flow rates less than 2 m/annum with minimal disturbance, without enclosing the sediments in a container, in a diversity of systems. (author)

  12. Verification of Advective Bar Elements Implemented in the Aria Thermal Response Code.

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Brantley [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    A verification effort was undertaken to evaluate the implementation of the new advective bar capability in the Aria thermal response code. Several approaches to the verification process were taken : a mesh refinement study to demonstrate solution convergence in the fluid and the solid, visually examining the mapping of the advective bar element nodes to the surrounding surfaces, and a comparison of solutions produced using the advective bars for simple geometries with solutions from commercial CFD software . The mesh refinement study has shown solution convergence for simple pipe flow in both temperature and velocity . Guidelines were provided to achieve appropriate meshes between the advective bar elements and the surrounding volume. Simulations of pipe flow using advective bars elements in Aria have been compared to simulations using the commercial CFD software ANSYS Fluent (r) and provided comparable solutions in temperature and velocity supporting proper implementation of the new capability. Verification of Advective Bar Elements iv Acknowledgements A special thanks goes to Dean Dobranich for his guidance and expertise through all stages of this effort . His advice and feedback was instrumental to its completion. Thanks also goes to Sam Subia and Tolu Okusanya for helping to plan many of the verification activities performed in this document. Thank you to Sam, Justin Lamb and Victor Brunini for their assistance in resolving issues encountered with running the advective bar element model. Finally, thanks goes to Dean, Sam, and Adam Hetzler for reviewing the document and providing very valuable comments.

  13. Solutes and cells - aspects of advection-diffusion-reaction phenomena in biochips

    DEFF Research Database (Denmark)

    Vedel, Søren

    2012-01-01

    the dependencies on density. This shows that the varied single-cell behavior including the overall modulations imposed by density arise as a natural consequence of pseudopod-driven motility in a social context. The final subproject concerns the combined effects of advection, diffusion and reaction of several......Cell’), and the overall title of the project is Solutes and cells — aspects of advection-diffusion-reaction phenomena in biochips. The work has consisted of several projects focusing on theory, and to some extend analysis of experimental data, with advection-diffusion-reaction phenomena of solutes as the recurring theme...... quantitatively interpret the proximal concentration of specific solutes, and integrate this to achieve biological functions. In three specific examples, the author and co-workers have investigated different aspects of the influence of advection, diffusion and reaction on solute distributions, as well...

  14. Comparing CO2 Storage and Advection Conditions at Night at Different Carboeuroflux Sites

    Science.gov (United States)

    Aubinet, M.; Berbigier, P.; Bernhofer, Ch.; et al.

    Anemometer and CO2 concentration data from temporary campaigns performed at six CARBOEUROFLUX forest sites were used to estimate the importance of non-turbulent fluxes in nighttime conditions. While storage was observed to be significant only during periods of both low turbulence and low advection, the advective fluxes strongly influence the nocturnal CO2 balance, with the exception of almost flat and highly homogeneous sites. On the basis of the main factors determining the onset of advective fluxes, the ‘advection velocity’, which takes net radiation and local topography into account, was introduced as a criterion to characterise the conditions of storage enrichment/depletion. Comparative analyses of the six sites showed several common features of the advective fluxes but also some substantial differences. In particular, all sites where advection occurs show the onset of a boundary layer characterised by a downslope flow, negative vertical velocities and negative vertical CO2 concentration gradients during nighttime. As a consequence, vertical advection was observed to be positive at all sites, which corresponds to a removal of CO2 from the ecosystem. The main differences between sites are the distance from the ridge, which influences the boundary-layer depth, and the sign of the mean horizontal CO2 concentration gradients, which is probably determined by the source/sink distribution. As a consequence, both positive and negative horizontal advective fluxes (corresponding respectively to CO2 removal from the ecosystem and to CO2 supply to the ecosystem) were observed. Conclusive results on the importance of non-turbulent components in the mass balance require, however, further experimental investigations at sites with different topographies, slopes, different land covers, which would allow a more comprehensive analysis of the processes underlying the occurrence of advective fluxes. The quantification of these processes would help to better quantify nocturnal

  15. Modeling Effectivity of Atmospheric Advection-Diffusion Processes

    International Nuclear Information System (INIS)

    Brojewski, R.

    1999-01-01

    Some methods of solving the advection-diffusion problems useful in the field of atmospheric physics are presented and analyzed in the paper. The most effective one ( from the point of view of computer applications) was chosen. This is the method of problem decomposition with respect to the directions followed by secondary decomposition of the problem with respect to the physical phenomena. Introducing some corrections to the classical numerical methods of solving the problems, a hybrid composed of the finite element method for the advection problems and the implicit method with averaging for the diffusion processes was achieved. This hybrid method and application of the corrections produces a very effective means for solving the problems of substance transportation in atmosphere. (author)

  16. Advection endash diffusion past a strip. II. Oblique incidence

    International Nuclear Information System (INIS)

    Knessl, C.; Keller, J.B.

    1997-01-01

    Advection and diffusion of particles past an impenetrable strip is considered when the strip is oblique to the advection or drift velocity. The particle concentration p(x,y) is determined asymptotically for large values of vL/D, where v is the drift velocity, D is the diffusion coefficient, and 2L is the width of the strip. The results complement those of Part I, which treated a strip normal to the drift velocity. copyright 1997 American Institute of Physics

  17. Advectional enhancement of eddy diffusivity under parametric disorder

    International Nuclear Information System (INIS)

    Goldobin, Denis S

    2010-01-01

    Frozen parametric disorder can lead to the appearance of sets of localized convective currents in an otherwise stable (quiescent) fluid layer heated from below. These currents significantly influence the transport of an admixture (or any other passive scalar) along the layer. When the molecular diffusivity of the admixture is small in comparison to the thermal one, which is quite typical in nature, disorder can enhance the effective (eddy) diffusivity by several orders of magnitude in comparison to the molecular diffusivity. In this paper, we study the effect of an imposed longitudinal advection on the delocalization of convective currents, both numerically and analytically, and report a subsequent drastic boost of the effective diffusivity for weak advection.

  18. Evolution of passive movement in advective environments: General boundary condition

    Science.gov (United States)

    Zhou, Peng; Zhao, Xiao-Qiang

    2018-03-01

    In a previous work [16], Lou et al. studied a Lotka-Volterra competition-diffusion-advection system, where two species are supposed to differ only in their advection rates and the environment is assumed to be spatially homogeneous and closed (no-flux boundary condition), and showed that weaker advective movements are more beneficial for species to win the competition. In this paper, we aim to extend this result to a more general situation, where the environmental heterogeneity is taken into account and the boundary condition at the downstream end becomes very flexible including the standard Dirichlet, Neumann and Robin type conditions as special cases. Our main approaches are to exclude the existence of co-existence (positive) steady state and to provide a clear picture on the stability of semi-trivial steady states, where we introduced new ideas and techniques to overcome the emerging difficulties. Based on these two aspects and the theory of abstract competitive systems, we achieve a complete understanding on the global dynamics.

  19. A simple model for local scale sensible and latent heat advection contributions to snowmelt

    OpenAIRE

    Harder, Phillip; Pomeroy, John W.; Helgason, Warren D.

    2018-01-01

    Local-scale advection of energy from warm snow-free surfaces to cold snow-covered surfaces is an important component of the energy balance during snowcover depletion. Unfortunately, this process is difficult to quantify in one-dimensional snowmelt models. This manuscript proposes a simple sensible and latent heat advection model for snowmelt situations that can be readily coupled to one-dimensional energy balance snowmelt models. An existing advection parameterization was coupled to a concept...

  20. Chaotic advection near a three-vortex collapse

    International Nuclear Information System (INIS)

    Leoncini, X.; Kuznetsov, L.; Zaslavsky, G. M.

    2001-01-01

    Dynamical and statistical properties of tracer advection are studied in a family of flows produced by three point-vortices of different signs. Tracer dynamics is analyzed by numerical construction of Poincare sections, and is found to be strongly chaotic: advection pattern in the region around the center of vorticity is dominated by a well developed stochastic sea, which grows as the vortex system's initial conditions are set closer to those leading to the collapse of the vortices; at the same time, the islands of regular motion around vortices, known as vortex cores, shrink. An estimation of the core's radii from the minimum distance of vortex approach to each other is obtained. Tracer transport was found to be anomalous: for all of the three numerically investigated cases, the variance of the tracer distribution grows faster than a linear function of time, corresponding to a superdiffusive regime. The transport exponent varies with time decades, implying the presence of multi-fractal transport features. Yet, its value is never too far from 3/2, indicating some kind of universality. Statistics of Poincare recurrences is non-Poissonian: distributions have long power-law tails. The anomalous properties of tracer statistics are the result of the complex structure of the advection phase space, in particular, of strong stickiness on the boundaries between the regions of chaotic and regular motion. The role of the different phase space structures involved in this phenomenon is analyzed. Based on this analysis, a kinetic description is constructed, which takes into account different time and space scalings by using a fractional equation

  1. Advection models of longitudinal dispersion in rivers

    NARCIS (Netherlands)

    Kranenburg, C.

    1996-01-01

    A derivation is presented of a general cross-section averaged model of longitudinal dispersion, which is based on the notion of the advection of tracer particles. Particle displacement length and particle travel time are conceived as stochastic variables, and a joint probability density function is

  2. Conservative and bounded volume-of-fluid advection on unstructured grids

    Science.gov (United States)

    Ivey, Christopher B.; Moin, Parviz

    2017-12-01

    This paper presents a novel Eulerian-Lagrangian piecewise-linear interface calculation (PLIC) volume-of-fluid (VOF) advection method, which is three-dimensional, unsplit, and discretely conservative and bounded. The approach is developed with reference to a collocated node-based finite-volume two-phase flow solver that utilizes the median-dual mesh constructed from non-convex polyhedra. The proposed advection algorithm satisfies conservation and boundedness of the liquid volume fraction irrespective of the underlying flux polyhedron geometry, which differs from contemporary unsplit VOF schemes that prescribe topologically complicated flux polyhedron geometries in efforts to satisfy conservation. Instead of prescribing complicated flux-polyhedron geometries, which are prone to topological failures, our VOF advection scheme, the non-intersecting flux polyhedron advection (NIFPA) method, builds the flux polyhedron iteratively such that its intersection with neighboring flux polyhedra, and any other unavailable volume, is empty and its total volume matches the calculated flux volume. During each iteration, a candidate nominal flux polyhedron is extruded using an iteration dependent scalar. The candidate is subsequently intersected with the volume guaranteed available to it at the time of the flux calculation to generate the candidate flux polyhedron. The difference in the volume of the candidate flux polyhedron and the actual flux volume is used to calculate extrusion during the next iteration. The choice in nominal flux polyhedron impacts the cost and accuracy of the scheme; however, it does not impact the methods underlying conservation and boundedness. As such, various robust nominal flux polyhedron are proposed and tested using canonical periodic kinematic test cases: Zalesak's disk and two- and three-dimensional deformation. The tests are conducted on the median duals of a quadrilateral and triangular primal mesh, in two-dimensions, and on the median duals of a

  3. Anomalous scaling of a passive vector advected by the Navier-Stokes velocity field

    International Nuclear Information System (INIS)

    Jurcisinova, E; Jurcisin, M; Remecky, R

    2009-01-01

    Using the field theoretic renormalization group and the operator-product expansion, the model of a passive vector field (a weak magnetic field in the framework of the kinematic MHD) advected by the velocity field which is governed by the stochastic Navier-Stokes equation with the Gaussian random stirring force δ-correlated in time and with the correlator proportional to k 4-d-2ε is investigated to the first order in ε (one-loop approximation). It is shown that the single-time correlation functions of the advected vector field have anomalous scaling behavior and the corresponding exponents are calculated in the isotropic case, as well as in the case with the presence of large-scale anisotropy. The hierarchy of the anisotropic critical dimensions is briefly discussed and the persistence of the anisotropy inside the inertial range is demonstrated on the behavior of the skewness and hyperskewness (dimensionless ratios of correlation functions) as functions of the Reynolds number Re. It is shown that even though the present model of a passive vector field advected by the realistic velocity field is mathematically more complicated than, on one hand, the corresponding models of a passive vector field advected by 'synthetic' Gaussian velocity fields and, on the other hand, than the corresponding model of a passive scalar quantity advected by the velocity field driven by the stochastic Navier-Stokes equation, the final one-loop approximate asymptotic scaling behavior of the single-time correlation or structure functions of the advected fields of all models are defined by the same anomalous dimensions (up to normalization)

  4. Analytical simulation of two dimensional advection dispersion ...

    African Journals Online (AJOL)

    The study was designed to investigate the analytical simulation of two dimensional advection dispersion equation of contaminant transport. The steady state flow condition of the contaminant transport where inorganic contaminants in aqueous waste solutions are disposed of at the land surface where it would migrate ...

  5. Analytical Simulation of Two Dimensional Advection Dispersion ...

    African Journals Online (AJOL)

    ADOWIE PERE

    ABSTRACT: The study was designed to investigate the analytical simulation of two dimensional advection dispersion equation of contaminant transport. The steady state flow condition of the contaminant transport where inorganic contaminants in aqueous waste solutions are disposed of at the land surface where it would ...

  6. A computational method for sharp interface advection

    DEFF Research Database (Denmark)

    Roenby, Johan; Bredmose, Henrik; Jasak, Hrvoje

    2016-01-01

    We devise a numerical method for passive advection of a surface, such as the interface between two incompressible fluids, across a computational mesh. The method is called isoAdvector, and is developed for general meshes consisting of arbitrary polyhedral cells. The algorithm is based on the volu...

  7. A novel finite volume discretization method for advection-diffusion systems on stretched meshes

    Science.gov (United States)

    Merrick, D. G.; Malan, A. G.; van Rooyen, J. A.

    2018-06-01

    This work is concerned with spatial advection and diffusion discretization technology within the field of Computational Fluid Dynamics (CFD). In this context, a novel method is proposed, which is dubbed the Enhanced Taylor Advection-Diffusion (ETAD) scheme. The model equation employed for design of the scheme is the scalar advection-diffusion equation, the industrial application being incompressible laminar and turbulent flow. Developed to be implementable into finite volume codes, ETAD places specific emphasis on improving accuracy on stretched structured and unstructured meshes while considering both advection and diffusion aspects in a holistic manner. A vertex-centered structured and unstructured finite volume scheme is used, and only data available on either side of the volume face is employed. This includes the addition of a so-called mesh stretching metric. Additionally, non-linear blending with the existing NVSF scheme was performed in the interest of robustness and stability, particularly on equispaced meshes. The developed scheme is assessed in terms of accuracy - this is done analytically and numerically, via comparison to upwind methods which include the popular QUICK and CUI techniques. Numerical tests involved the 1D scalar advection-diffusion equation, a 2D lid driven cavity and turbulent flow case. Significant improvements in accuracy were achieved, with L2 error reductions of up to 75%.

  8. First-Order Hyperbolic System Method for Time-Dependent Advection-Diffusion Problems

    Science.gov (United States)

    2014-03-01

    accuracy, with rapid convergence over each physical time step, typically less than five Newton iter - ations. 1 Contents 1 Introduction 3 2 Hyperbolic...however, we employ the Gauss - Seidel (GS) relaxation, which is also an O(N) method for the discretization arising from hyperbolic advection-diffusion system...advection-diffusion scheme. The linear dependency of the iterations on Table 1: Boundary layer problem ( Convergence criteria: Residuals < 10−8.) log10Re

  9. Advection and Taylor-Aris dispersion in rivulet flow

    Science.gov (United States)

    Al Mukahal, F. H. H.; Duffy, B. R.; Wilson, S. K.

    2017-11-01

    Motivated by the need for a better understanding of the transport of solutes in microfluidic flows with free surfaces, the advection and dispersion of a passive solute in steady unidirectional flow of a thin uniform rivulet on an inclined planar substrate driven by gravity and/or a uniform longitudinal surface shear stress are analysed. Firstly, we describe the short-time advection of both an initially semi-infinite and an initially finite slug of solute of uniform concentration. Secondly, we describe the long-time Taylor-Aris dispersion of an initially finite slug of solute. In particular, we obtain the general expression for the effective diffusivity for Taylor-Aris dispersion in such a rivulet, and discuss in detail its different interpretations in the special case of a rivulet on a vertical substrate.

  10. From the advective-acoustic instability to the asymmetric explosions of Core Collapse Supernovae

    International Nuclear Information System (INIS)

    Galletti, Pascal

    2005-01-01

    The advective-acoustic cycle is a hydrodynamical mechanism fed by the coupling between advected waves (entropy, vorticity) and an acoustic feedback. Already studied in physics (rumble instability in ramjet, whistling tea kettle), it was introduced in astrophysics in the frame of the instability of the Bondi-Hoyle-Lyttleton accretion flow. In this thesis, we propose this cycle as an explanation for the asymmetry of the explosion of Core Collapse Supernovae. The evaluation of Eigenmodes for the classical accretion above a solid surface (white dwarfs, neutron stars) and the use of a toy-model reveal the importance of the advective-acoustic cycle in such an instable accretion flow. Following these results and the comparison with numerical simulations, a modelization of the flow when the shock stalls during a Core Collapse Supernova, shows that the advective-acoustic cycle is a natural mechanism to explain the non-spherical instability of the shock. The domination of l = 1 modes may be responsible for the observed pulsar kicks. (author) [fr

  11. Dense-gas dispersion advection-diffusion model

    International Nuclear Information System (INIS)

    Ermak, D.L.

    1992-07-01

    A dense-gas version of the ADPIC particle-in-cell, advection- diffusion model was developed to simulate the atmospheric dispersion of denser-than-air releases. In developing the model, it was assumed that the dense-gas effects could be described in terms of the vertically-averaged thermodynamic properties and the local height of the cloud. The dense-gas effects were treated as a perturbation to the ambient thermodynamic properties (density and temperature), ground level heat flux, turbulence level (diffusivity), and windfield (gravity flow) within the local region of the dense-gas cloud. These perturbations were calculated from conservation of energy and conservation of momentum principles along with the ideal gas law equation of state for a mixture of gases. ADPIC, which is generally run in conjunction with a mass-conserving wind flow model to provide the advection field, contains all the dense-gas modifications within it. This feature provides the versatility of coupling the new dense-gas ADPIC with alternative wind flow models. The new dense-gas ADPIC has been used to simulate the atmospheric dispersion of ground-level, colder-than-ambient, denser-than-air releases and has compared favorably with the results of field-scale experiments

  12. Spectral and evolutionary analysis of advection-diffusion equations and the shear flow paradigm

    International Nuclear Information System (INIS)

    Thyagaraja, A.; Loureiro, N.; Knight, P.J.

    2002-01-01

    Advection-diffusion equations occur in a wide variety of fields in many contexts of active and passive transport in fluids and plasmas. The effects of sheared advective flows in the presence of irreversible processes such as diffusion and viscosity are of considerable current interest in tokamak and astrophysical contexts, where they are thought to play a key role in both transport and the dynamical structures characteristic of electromagnetic plasma turbulence. In this paper we investigate the spectral and evolutionary properties of relatively simple, linear, advection-diffusion equations. We apply analytical approaches based on standard Green's function methods to obtain insight into the nature of the spectra when the advective and diffusive effects occur separately and in combination. In particular, the physically interesting limit of small (but finite) diffusion is studied in detail. The analytical work is extended and supplemented by numerical techniques involving a direct solution of the eigenvalue problem as well as evolutionary studies of the initial value problem using a parallel code, CADENCE. The three approaches are complementary and entirely consistent with each other when appropriate comparison is made. They reveal different aspects of the properties of the advection-diffusion equation, such as the ability of sheared flows to generate a direct cascade to high wave numbers transverse to the advection and the consequent enhancement of even small amounts of diffusivity. The invariance properties of the spectra in the low diffusivity limit and the ability of highly sheared, jet-like flows to 'confine' transport to low shear regions are demonstrated. The implications of these properties in a wider context are discussed and set in perspective. (author)

  13. Distinguishing advective and powered motion in self-propelled colloids

    Science.gov (United States)

    Byun, Young-Moo; Lammert, Paul E.; Hong, Yiying; Sen, Ayusman; Crespi, Vincent H.

    2017-11-01

    Self-powered motion in catalytic colloidal particles provides a compelling example of active matter, i.e. systems that engage in single-particle and collective behavior far from equilibrium. The long-time, long-distance behavior of such systems is of particular interest, since it connects their individual micro-scale behavior to macro-scale phenomena. In such analyses, it is important to distinguish motion due to subtle advective effects—which also has long time scales and length scales—from long-timescale phenomena that derive from intrinsically powered motion. Here, we develop a methodology to analyze the statistical properties of the translational and rotational motions of powered colloids to distinguish, for example, active chemotaxis from passive advection by bulk flow.

  14. Fractional vector calculus for fractional advection dispersion

    Science.gov (United States)

    Meerschaert, Mark M.; Mortensen, Jeff; Wheatcraft, Stephen W.

    2006-07-01

    We develop the basic tools of fractional vector calculus including a fractional derivative version of the gradient, divergence, and curl, and a fractional divergence theorem and Stokes theorem. These basic tools are then applied to provide a physical explanation for the fractional advection-dispersion equation for flow in heterogeneous porous media.

  15. Fast multigrid solution of the advection problem with closed characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Yavneh, I. [Israel Inst. of Technology, Haifa (Israel); Venner, C.H. [Univ. of Twente, Enschede (Netherlands); Brandt, A. [Weizmann Inst. of Science, Rehovot (Israel)

    1996-12-31

    The numerical solution of the advection-diffusion problem in the inviscid limit with closed characteristics is studied as a prelude to an efficient high Reynolds-number flow solver. It is demonstrated by a heuristic analysis and numerical calculations that using upstream discretization with downstream relaxation-ordering and appropriate residual weighting in a simple multigrid V cycle produces an efficient solution process. We also derive upstream finite-difference approximations to the advection operator, whose truncation terms approximate {open_quotes}physical{close_quotes} (Laplacian) viscosity, thus avoiding spurious solutions to the homogeneous problem when the artificial diffusivity dominates the physical viscosity.

  16. Anomalous scaling of a scalar field advected by turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Kraichnan, R.H. [Robert H. Kraichnan, Inc., Santa Fe, NM (United States)

    1995-12-31

    Recent work leading to deduction of anomalous scaling exponents for the inertial range of an advected passive field from the equations of motion is reviewed. Implications for other turbulence problems are discussed.

  17. The effect of coherent stirring on the advection?condensation of water vapour

    OpenAIRE

    Tsang, Yue-Kin; Vanneste, Jacques

    2017-01-01

    Atmospheric water vapour is an essential ingredient of weather and climate. Key features of its distribution can be represented by kinematic models which treat it as a passive scalar advected by a prescribed flow and reacting through condensation. Condensation acts as a sink that maintains specific humidity below a prescribed, space-dependent saturation value. In order to investigate how the interplay between large-scale advection, small-scale turbulence and condensation controls the moisture...

  18. Chaotic advection and heat transfer enhancement in Stokes flows

    International Nuclear Information System (INIS)

    Lefevre, A.; Mota, J.P.B.; Rodrigo, A.J.S.; Saatdjian, E.

    2003-01-01

    The heat transfer rate from a solid boundary to a highly viscous fluid can be enhanced significantly by a phenomenon which is called chaotic advection or Lagrangian turbulence. Although the flow is laminar and dominated by viscous forces, some fluid particle trajectories are chaotic due either to a suitable boundary displacement protocol or to a change in geometry. As in turbulent flow, the heat transfer rate enhancement between the boundary and the fluid is intimately linked to the mixing of fluid in the system. Chaotic advection in real Stokes flows, i.e. flows governed by viscous forces and that can be constructed experimentally, is reviewed in this paper. An emphasis is made on recent new results on 3-D time-periodic open flows which are particularly important in industry

  19. Development of Multigrid Methods for diffusion, Advection, and the incompressible Navier-Stokes Equations

    Energy Technology Data Exchange (ETDEWEB)

    Gjesdal, Thor

    1997-12-31

    This thesis discusses the development and application of efficient numerical methods for the simulation of fluid flows, in particular the flow of incompressible fluids. The emphasis is on practical aspects of algorithm development and on application of the methods either to linear scalar model equations or to the non-linear incompressible Navier-Stokes equations. The first part deals with cell centred multigrid methods and linear correction scheme and presents papers on (1) generalization of the method to arbitrary sized grids for diffusion problems, (2) low order method for advection-diffusion problems, (3) attempt to extend the basic method to advection-diffusion problems, (4) Fourier smoothing analysis of multicolour relaxation schemes, and (5) analysis of high-order discretizations for advection terms. The second part discusses a multigrid based on pressure correction methods, non-linear full approximation scheme, and papers on (1) systematic comparison of the performance of different pressure correction smoothers and some other algorithmic variants, low to moderate Reynolds numbers, and (2) systematic study of implementation strategies for high order advection schemes, high-Re flow. An appendix contains Fortran 90 data structures for multigrid development. 160 refs., 26 figs., 22 tabs.

  20. Probability and Cumulative Density Function Methods for the Stochastic Advection-Reaction Equation

    Energy Technology Data Exchange (ETDEWEB)

    Barajas-Solano, David A.; Tartakovsky, Alexandre M.

    2018-01-01

    We present a cumulative density function (CDF) method for the probabilistic analysis of $d$-dimensional advection-dominated reactive transport in heterogeneous media. We employ a probabilistic approach in which epistemic uncertainty on the spatial heterogeneity of Darcy-scale transport coefficients is modeled in terms of random fields with given correlation structures. Our proposed CDF method employs a modified Large-Eddy-Diffusivity (LED) approach to close and localize the nonlocal equations governing the one-point PDF and CDF of the concentration field, resulting in a $(d + 1)$ dimensional PDE. Compared to the classsical LED localization, the proposed modified LED localization explicitly accounts for the mean-field advective dynamics over the phase space of the PDF and CDF. To illustrate the accuracy of the proposed closure, we apply our CDF method to one-dimensional single-species reactive transport with uncertain, heterogeneous advection velocities and reaction rates modeled as random fields.

  1. Diffusion of a passive scalar with random advection

    International Nuclear Information System (INIS)

    Molyneux, J.E.; Witten, A.J.

    1980-01-01

    To investigate the instantaneous release of a passive additive into a flow, we assume that the concentration of the additive is governed by the one-dimensional advective diffusion equation in which the advecting flow velocity is a given time-dependent stochastic process. We determine both the one- and two-space-time point probability distributions of the random concentration field. This problem, or more elaborate variations of it, is a rather idealized model for a variety of environmentally important flow situations, for example, the accidental or planned release of a contaminant into a river by a power station, and, as such, it has been investigated by a number of authors. Previous treatments, however, have concentrated on deriving information about the statistical moments of the concentration. Although such information is important, it may be inadequate for accessing the true effects of a flow additive on the environment. Our investigation demonstrates the possibility of obtaining a more complete statistical description

  2. Self-Similar Solutions for Viscous and Resistive Advection ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... In this paper, self-similar solutions of resistive advection dominated accretion flows (ADAF) in the presence of a pure azimuthal magnetic field are investigated. The mechanism of energy dissipation is assumed to be the viscosity and the magnetic diffusivity due to turbulence in the accretion flow.

  3. Theory of advection-driven long range biotic transport

    Science.gov (United States)

    We propose a simple mechanistic model to examine the effects of advective flow on the spread of fungal diseases spread by wind-blown spores. The model is defined by a set of two coupled non-linear partial differential equations for spore densities. One equation describes the long-distance advectiv...

  4. SEBAL-A: A Remote Sensing ET Algorithm that Accounts for Advection with Limited Data. Part I: Development and Validation

    Directory of Open Access Journals (Sweden)

    Mcebisi Mkhwanazi

    2015-11-01

    Full Text Available The Surface Energy Balance Algorithm for Land (SEBAL is one of the remote sensing (RS models that are increasingly being used to determine evapotranspiration (ET. SEBAL is a widely used model, mainly due to the fact that it requires minimum weather data, and also no prior knowledge of surface characteristics is needed. However, it has been observed that it underestimates ET under advective conditions due to its disregard of advection as another source of energy available for evaporation. A modified SEBAL model was therefore developed in this study. An advection component, which is absent in the original SEBAL, was introduced such that the energy available for evapotranspiration was a sum of net radiation and advected heat energy. The improved SEBAL model was termed SEBAL-Advection or SEBAL-A. An important aspect of the improved model is the estimation of advected energy using minimal weather data. While other RS models would require hourly weather data to be able to account for advection (e.g., METRIC, SEBAL-A only requires daily averages of limited weather data, making it appropriate even in areas where weather data at short time steps may not be available. In this study, firstly, the original SEBAL model was evaluated under advective and non-advective conditions near Rocky Ford in southeastern Colorado, a semi-arid area where afternoon advection is common occurrence. The SEBAL model was found to incur large errors when there was advection (which was indicated by higher wind speed and warm and dry air. SEBAL-A was then developed and validated in the same area under standard surface conditions, which were described as healthy alfalfa with height of 40–60 cm, without water-stress. ET values estimated using the original and modified SEBAL were compared to large weighing lysimeter-measured ET values. When the SEBAL ET was compared to SEBAL-A ET values, the latter showed improved performance, with the ET Mean Bias Error (MBE reduced from −17

  5. Anomalous transport regimes in a stochastic advection-diffusion model

    International Nuclear Information System (INIS)

    Dranikov, I.L.; Kondratenko, P.S.; Matveev, L.V.

    2004-01-01

    A general solution to the stochastic advection-diffusion problem is obtained for a fractal medium with long-range correlated spatial fluctuations. A particular transport regime is determined by two basic parameters: the exponent 2h of power-law decay of the two-point velocity correlation function and the mean advection velocity u. The values of these parameters corresponding to anomalous diffusion are determined, and anomalous behavior of the tracer distribution is analyzed for various combinations of u and h. The tracer concentration is shown to decrease exponentially at large distances, whereas power-law decay is predicted by fractional differential equations. Equations that describe the essential characteristics of the solution are written in terms of coupled space-time fractional differential operators. The analysis relies on a diagrammatic technique and makes use of scale-invariant properties of the medium

  6. Advection-diffusion model for normal grain growth and the stagnation of normal grain growth in thin films

    International Nuclear Information System (INIS)

    Lou, C.

    2002-01-01

    An advection-diffusion model has been set up to describe normal grain growth. In this model grains are divided into different groups according to their topological classes (number of sides of a grain). Topological transformations are modelled by advective and diffusive flows governed by advective and diffusive coefficients respectively, which are assumed to be proportional to topological classes. The ordinary differential equations governing self-similar time-independent grain size distribution can be derived analytically from continuity equations. It is proved that the time-independent distributions obtained by solving the ordinary differential equations have the same form as the time-dependent distributions obtained by solving the continuity equations. The advection-diffusion model is extended to describe the stagnation of normal grain growth in thin films. Grain boundary grooving prevents grain boundaries from moving, and the correlation between neighbouring grains accelerates the stagnation of normal grain growth. After introducing grain boundary grooving and the correlation between neighbouring grains into the model, the grain size distribution is close to a lognormal distribution, which is usually found in experiments. A vertex computer simulation of normal grain growth has also been carried out to make a cross comparison with the advection-diffusion model. The result from the simulation did not verify the assumption that the advective and diffusive coefficients are proportional to topological classes. Instead, we have observed that topological transformations usually occur on certain topological classes. This suggests that the advection-diffusion model can be improved by making a more realistic assumption on topological transformations. (author)

  7. Mixing enhancement and transport reduction in chaotic advection

    OpenAIRE

    Benzekri , Tounsia; Chandre , Cristel; Leoncini , Xavier; Lima , Ricardo; Vittot , Michel

    2005-01-01

    We present a method for reducing chaotic transport in a model of chaotic advection due to time-periodic forcing of an oscillating vortex chain. We show that by a suitable modification of this forcing, the modified model combines two effects: enhancement of mixing within the rolls and suppression of chaotic transport along the channel.

  8. Advection-dominated Inflow/Outflows from Evaporating Accretion Disks.

    Science.gov (United States)

    Turolla; Dullemond

    2000-03-01

    In this Letter we investigate the properties of advection-dominated accretion flows (ADAFs) fed by the evaporation of a Shakura-Sunyaev accretion disk (SSD). In our picture, the ADAF fills the central cavity evacuated by the SSD and extends beyond the transition radius into a coronal region. We find that, because of global angular momentum conservation, a significant fraction of the hot gas flows away from the black hole, forming a transsonic wind, unless the injection rate depends only weakly on radius (if r2sigma&d2;~r-xi, xiBernoulli number of the inflowing gas is negative if the transition radius is less, similar100 Schwarzschild radii, so matter falling into the hole is gravitationally bound. The ratio of inflowing to outflowing mass is approximately 1/2, so in these solutions the accretion rate is of the same order as in standard ADAFs and much larger than in advection-dominated inflow/outflow models. The possible relevance of evaporation-fed solutions to accretion flows in black hole X-ray binaries is briefly discussed.

  9. Effects of thinning on transpiration by riparian buffer trees in response to advection and solar radiation

    Science.gov (United States)

    Advective energy occurring in edge environments may increase tree water use. In humid agricultural landscapes, advection-enhanced transpiration in riparian buffers may provide hydrologic regulation; however, research in humid environments is lacking. The objectives of this study were to determine ho...

  10. A computational method for sharp interface advection

    Science.gov (United States)

    Bredmose, Henrik; Jasak, Hrvoje

    2016-01-01

    We devise a numerical method for passive advection of a surface, such as the interface between two incompressible fluids, across a computational mesh. The method is called isoAdvector, and is developed for general meshes consisting of arbitrary polyhedral cells. The algorithm is based on the volume of fluid (VOF) idea of calculating the volume of one of the fluids transported across the mesh faces during a time step. The novelty of the isoAdvector concept consists of two parts. First, we exploit an isosurface concept for modelling the interface inside cells in a geometric surface reconstruction step. Second, from the reconstructed surface, we model the motion of the face–interface intersection line for a general polygonal face to obtain the time evolution within a time step of the submerged face area. Integrating this submerged area over the time step leads to an accurate estimate for the total volume of fluid transported across the face. The method was tested on simple two-dimensional and three-dimensional interface advection problems on both structured and unstructured meshes. The results are very satisfactory in terms of volume conservation, boundedness, surface sharpness and efficiency. The isoAdvector method was implemented as an OpenFOAM® extension and is published as open source. PMID:28018619

  11. A computational method for sharp interface advection.

    Science.gov (United States)

    Roenby, Johan; Bredmose, Henrik; Jasak, Hrvoje

    2016-11-01

    We devise a numerical method for passive advection of a surface, such as the interface between two incompressible fluids, across a computational mesh. The method is called isoAdvector, and is developed for general meshes consisting of arbitrary polyhedral cells. The algorithm is based on the volume of fluid (VOF) idea of calculating the volume of one of the fluids transported across the mesh faces during a time step. The novelty of the isoAdvector concept consists of two parts. First, we exploit an isosurface concept for modelling the interface inside cells in a geometric surface reconstruction step. Second, from the reconstructed surface, we model the motion of the face-interface intersection line for a general polygonal face to obtain the time evolution within a time step of the submerged face area. Integrating this submerged area over the time step leads to an accurate estimate for the total volume of fluid transported across the face. The method was tested on simple two-dimensional and three-dimensional interface advection problems on both structured and unstructured meshes. The results are very satisfactory in terms of volume conservation, boundedness, surface sharpness and efficiency. The isoAdvector method was implemented as an OpenFOAM ® extension and is published as open source.

  12. Measuring Advection and Diffusion of Colloids in Shear Flow

    NARCIS (Netherlands)

    Duits, Michael H.G.; Ghosh, Somnath; Mugele, Friedrich Gunther

    2015-01-01

    An analysis of the dynamics of colloids in shear flow can be challenging because of the superposition of diffusion and advection. We present a method that separates the two motions, starting from the time-dependent particle coordinates. The restriction of the tracking to flow lanes and the

  13. A balancing domain decomposition method by constraints for advection-diffusion problems

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Xuemin; Li, Jing

    2008-12-10

    The balancing domain decomposition methods by constraints are extended to solving nonsymmetric, positive definite linear systems resulting from the finite element discretization of advection-diffusion equations. A pre-conditioned GMRES iteration is used to solve a Schur complement system of equations for the subdomain interface variables. In the preconditioning step of each iteration, a partially sub-assembled finite element problem is solved. A convergence rate estimate for the GMRES iteration is established, under the condition that the diameters of subdomains are small enough. It is independent of the number of subdomains and grows only slowly with the subdomain problem size. Numerical experiments for several two-dimensional advection-diffusion problems illustrate the fast convergence of the proposed algorithm.

  14. Some numerical studies of interface advection properties of level set ...

    Indian Academy of Sciences (India)

    explicit computational elements moving through an Eulerian grid. ... location. The interface is implicitly defined (captured) as the location of the discontinuity in the ... This level set function is advected with the background flow field and thus ...

  15. Local and nonlocal advected invariants and helicities in magnetohydrodynamics and gas dynamics I: Lie dragging approach

    International Nuclear Information System (INIS)

    Webb, G M; Dasgupta, B; McKenzie, J F; Hu, Q; Zank, G P

    2014-01-01

    In this paper advected invariants and conservation laws in ideal magnetohydrodynamics (MHD) and gas dynamics are obtained using Lie dragging techniques. There are different classes of invariants that are advected or Lie dragged with the flow. Simple examples are the advection of the entropy S (a 0-form), and the conservation of magnetic flux (an invariant 2-form advected with the flow). The magnetic flux conservation law is equivalent to Faraday's equation. The gauge condition for the magnetic helicity to be advected with the flow is determined. Different variants of the helicity in ideal fluid dynamics and MHD including: fluid helicity, cross helicity and magnetic helicity are investigated. The fluid helicity conservation law and the cross-helicity conservation law in MHD are derived for the case of a barotropic gas. If the magnetic field lies in the constant entropy surface, then the gas pressure can depend on both the entropy and the density. In these cases the conservation laws are local conservation laws. For non-barotropic gases, we obtain nonlocal conservation laws for fluid helicity and cross helicity by using Clebsch variables. These nonlocal conservation laws are the main new results of the paper. Ertel's theorem and potential vorticity, the Hollman invariant, and the Godbillon–Vey invariant for special flows for which the magnetic helicity is zero are also discussed. (paper)

  16. RADIATION PRESSURE-SUPPORTED ACCRETION DISKS: VERTICAL STRUCTURE, ENERGY ADVECTION, AND CONVECTIVE STABILITY

    International Nuclear Information System (INIS)

    Gu Weimin

    2012-01-01

    By taking into account the local energy balance per unit volume between the viscous heating and the advective cooling plus the radiative cooling, we investigate the vertical structure of radiation pressure-supported accretion disks in spherical coordinates. Our solutions show that the photosphere of the disk is close to the polar axis and therefore the disk seems to be extremely thick. However, the density profile implies that most of the accreted matter exists in a moderate range around the equatorial plane. We show that the well-known polytropic relation between the pressure and the density is unsuitable for describing the vertical structure of radiation pressure-supported disks. More importantly, we find that the energy advection is significant even for slightly sub-Eddington accretion disks. We argue that the non-negligible advection may help us understand why the standard thin disk model is likely to be inaccurate above ∼0.3 Eddington luminosity, which was found by some works on black hole spin measurement. Furthermore, the solutions satisfy the Solberg-Høiland conditions, which indicate the disk to be convectively stable. In addition, we discuss the possible link between our disk model and ultraluminous X-ray sources.

  17. The role of horizontal thermal advection in regulating wintertime mean and extreme temperatures over the central United States during the past and future

    Science.gov (United States)

    Wang, F.; Vavrus, S. J.

    2017-12-01

    Horizontal temperature advection plays an especially prominent role in affecting winter climate over continental interiors, where both climatological conditions and extreme weather are strongly regulated by transport of remote air masses. Central North America is one such region, and it experienced a major cold-air outbreak (CAO) a few years ago that some have related to amplified Arctic warming. Despite the known importance of dynamics in shaping the winter climate of this sector and the potential for climate change to modify heat transport, limited attention has been paid to the regional impact of thermal advection. Here, we use a reanalysis product and output from the Community Earth System Model's Large Ensemble to quantify the roles of zonal and meridional temperature advection over the central U. S. during winter, both in the late 20th and 21st centuries. We frame our findings as a "tug of war" between opposing influences of the two advection components and between these dynamical forcings vs. thermodynamic changes under greenhouse warming. For example, Arctic amplification leads to much warmer polar air masses, causing a moderation of cold-air advection into the central U. S., yet the model also simulates a wavier mean circulation and stronger northerly flow during CAOs, favoring lower regional temperatures. We also compare the predominant warming effect of zonal advection and overall cooling effect of meridional temperature advection as an additional tug of war. During both historical and future periods, zonal temperature advection is stronger than meridional advection over the Central U. S. The model simulates a future weakening of both zonal and meridional temperature advection, such that westerly flow provides less warming and northerly flow less cooling. On the most extreme warm days in the past and future, both zonal and meridional temperature advection have positive (warming) contributions. On the most extreme cold days, meridional cold air advection

  18. Benthic solute exchange and carbon mineralization in two shallow subtidal sandy sediments: Effect of advective pore-water exchange

    DEFF Research Database (Denmark)

    Cook, Perran L. M.; Wenzhofer, Frank; Glud, Ronnie N.

    2007-01-01

    within the range measured in the chambers. The contribution of advection to solute exchange was highly variable and dependent on sediment topography. Advective processes also had a pronounced influence on the in situ distribution of O-2 within the sediment, with characteristic two-dimensional patterns...... of O-2 distribution across ripples, and also deep subsurface O-2 pools, being observed. Mineralization pathways were predominantly aerobic when benthic mineralization rates were low and advective pore-water flow high as a result of well-developed sediment topography. By contrast, mineralization...... proceeded predominantly through sulfate reduction when benthic mineralization rates were high and advective pore-water flow low as a result of poorly developed topography. Previous studies of benthic mineralization in shallow sandy sediments have generally ignored these dynamics and, hence, have overlooked...

  19. A filtering technique for solving the advection equation in two-phase flow problems

    International Nuclear Information System (INIS)

    Devals, C.; Heniche, M.; Bertrand, F.; Tanguy, P.A.; Hayes, R.E.

    2004-01-01

    The aim of this work is to develop a numerical strategy for the simulation of two-phase flow in the context of chemical engineering applications. The finite element method has been chosen because of its flexibility to deal with complex geometries. One of the key points of two-phase flow simulation is to determine precisely the position of the interface between the two phases, which is an unknown of the problem. In this case, the interface can be tracked by the advection of the so-called color function. It is well known that the solution of the advection equation by most numerical schemes, including the Streamline Upwind Petrov-Galerkin (SUPG) method, may exhibit spurious oscillations. This work proposes an approach to filter out these oscillations by means of a change of variable that is efficient for both steady state and transient cases. First, the filtering technique will be presented in detail. Then, it will be applied to two-dimensional benchmark problems, namely, the advection skew to the mesh and the Zalesak's problems. (author)

  20. Downwind evolution of transpiration by two irrigated crops under conditions of local advection

    Science.gov (United States)

    McAneney, K. J.; Brunet, Y.; Itier, B.

    1994-09-01

    Previous measurements of water loss from small-dish evaporimeters mounted at the height of irrigated crops grown under conditions of extreme local advection in the Sudan are reexamined. From these evaporimeter measurements, it is possible to calculate fractional changes in the saturation deficit. Relationships between canopy conductance and saturation deficit are briefly reviewed and introduced into the Penman-Monteith equation to calculate transpiration rates as a function of distance downwind of the boundary between the upwind desert and the irrigated crop. In contradiction to most theoretical predictions, these new calculations show rates of transpiration to undergo only modest changes with increasing fetch. This occurs because of the feedback interaction between saturation deficit and stomatal conductance. This result is in good accord with a recent study suggesting that a dry-moist boundary transition may be best modelled as a simple step change in surface fluxes and further that the advective enhancement of evaporation may have been overestimated by many advection models. Larger effects are expected on dry matter yields because of the direct influence of saturation deficit on the yield-transpiration ratio.

  1. Space-Time Fractional Diffusion-Advection Equation with Caputo Derivative

    Directory of Open Access Journals (Sweden)

    José Francisco Gómez Aguilar

    2014-01-01

    Full Text Available An alternative construction for the space-time fractional diffusion-advection equation for the sedimentation phenomena is presented. The order of the derivative is considered as 0<β, γ≤1 for the space and time domain, respectively. The fractional derivative of Caputo type is considered. In the spatial case we obtain the fractional solution for the underdamped, undamped, and overdamped case. In the temporal case we show that the concentration has amplitude which exhibits an algebraic decay at asymptotically large times and also shows numerical simulations where both derivatives are taken in simultaneous form. In order that the equation preserves the physical units of the system two auxiliary parameters σx and σt are introduced characterizing the existence of fractional space and time components, respectively. A physical relation between these parameters is reported and the solutions in space-time are given in terms of the Mittag-Leffler function depending on the parameters β and γ. The generalization of the fractional diffusion-advection equation in space-time exhibits anomalous behavior.

  2. AN EULERIAN-LAGRANGIAN LOCALIZED ADJOINT METHOD FOR THE ADVECTION-DIFFUSION EQUATION

    Science.gov (United States)

    Many numerical methods use characteristic analysis to accommodate the advective component of transport. Such characteristic methods include Eulerian-Lagrangian methods (ELM), modified method of characteristics (MMOC), and operator splitting methods. A generalization of characteri...

  3. A volume of fluid method based on multidimensional advection and spline interface reconstruction

    International Nuclear Information System (INIS)

    Lopez, J.; Hernandez, J.; Gomez, P.; Faura, F.

    2004-01-01

    A new volume of fluid method for tracking two-dimensional interfaces is presented. The method involves a multidimensional advection algorithm based on the use of edge-matched flux polygons to integrate the volume fraction evolution equation, and a spline-based reconstruction algorithm. The accuracy and efficiency of the proposed method are analyzed using different tests, and the results are compared with those obtained recently by other authors. Despite its simplicity, the proposed method represents a significant improvement, and compares favorably with other volume of fluid methods as regards the accuracy and efficiency of both the advection and reconstruction steps

  4. A model for the calculation of dispersion, advection and deposition of polluants in the atmosphere

    International Nuclear Information System (INIS)

    Doron, E.

    1981-08-01

    A numerical model for the prediction of atmospheric pollutants concentrations as a function of time and location is described. The model includes effects of dispersion, advection and deposition of the pollutant. Topographic influences are included through the introduction of a terrain following vertical coordinate. The wind field, needed for the calculation of the advection, is obtained from a time series of objective analysis of actual wind measurements. A unique feature of the model is the use of the logarithm of the concentration as the predicted variable. For a concentration distribution close to Gaussian, the distribution of this variable is close to parabolic. Thus, a polynomial of low order can be fitted to the distribution and then used for the calculation of derivatives of the advection and diffusion terms with great accuracy. The fitting method used was the cubic splines method. Initial experiments with the method included tests of the interpolation methods, which were found to be very accurate, and a few dispersion and advection experiments designed for an initial check of the influence of vertical wind shear, topography and changes of wind speed and direction with time. The results of these experiments show that the model has a marked advantage over the Gaussian model but its use requires more advanced computing facilities. (author)

  5. A SIMPLE TOY MODEL OF THE ADVECTIVE-ACOUSTIC INSTABILITY. I. PERTURBATIVE APPROACH

    International Nuclear Information System (INIS)

    Foglizzo, T.

    2009-01-01

    Some general properties of the advective-acoustic instability are described and understood using a toy model, which is simple enough to allow for analytical estimates of the eigenfrequencies. The essential ingredients of this model, in the unperturbed regime, are a stationary shock and a subsonic region of deceleration. For the sake of analytical simplicity, the two-dimensional unperturbed flow is parallel and the deceleration is produced adiabatically by an external potential. The instability mechanism is determined unambiguously as the consequence of a cycle between advected and acoustic perturbations. The purely acoustic cycle, considered alone, is proven to be stable in this flow. Its contribution to the instability can be either constructive or destructive. A frequency cutoff is associated with the advection time through the region of deceleration. This cutoff frequency explains why the instability favors eigenmodes with a low frequency and a large horizontal wavelength. The relation between the instability occurring in this highly simplified toy model and the properties of standing accretion shock instability observed in the numerical simulations of stellar core collapse is discussed. This simple setup is proposed as a benchmark test to evaluate the accuracy, in the linear regime, of numerical simulations involving this instability. We illustrate such benchmark simulations in a companion paper.

  6. A Fast Implicit Finite Difference Method for Fractional Advection-Dispersion Equations with Fractional Derivative Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Taohua Liu

    2017-01-01

    Full Text Available Fractional advection-dispersion equations, as generalizations of classical integer-order advection-dispersion equations, are used to model the transport of passive tracers carried by fluid flow in a porous medium. In this paper, we develop an implicit finite difference method for fractional advection-dispersion equations with fractional derivative boundary conditions. First-order consistency, solvability, unconditional stability, and first-order convergence of the method are proven. Then, we present a fast iterative method for the implicit finite difference scheme, which only requires storage of O(K and computational cost of O(Klog⁡K. Traditionally, the Gaussian elimination method requires storage of O(K2 and computational cost of O(K3. Finally, the accuracy and efficiency of the method are checked with a numerical example.

  7. Advective Removal of Intraparticle Uranium from Contaminated Vadose Zone Sediments, Hanford, USA

    International Nuclear Information System (INIS)

    Ilton, Eugene S.; Qafoku, Nikolla; Liu, Chongxuan; Moore, D. A.; Zachara, John M.

    2008-01-01

    A column study on U contaminated vadose zone sediments from the Hanford Site, WA, was performed in order to aid the development of a model for predicting U(VI) release rates under a dynamic flow regime and for variable geochemical conditions. The sediments of interest are adjacent to and below tank BX-102, part of the BX tank farm that contained high level liquid radioactive waste. Two sediments, with different U(VI) loadings and intraparticle large fracture vs. smaller fracture ratios, were reacted with three different solutions. The primary reservoir for U(VI) appears to be a micron-sized nanocrystalline Na-U-Si phase, possibly Na-boltwoodite, that nucleated and grew on plagioclase grains that line fractures within sand-sized granitic clasts. The solutions were all calcite saturated and in equilibrium with atmospheric CO2, where one solution was simply DI-water, the second was a synthetic ground water (SGW) with elevated Na, and the third was the same SGW but with both elevated Na and Si. The latter two solutions were employed, in part, to test the effect of saturation state on U(VI) release. For both sediments and all three electrolytes, there was an initial rapid release of U(VI) to the advecting solution followed by a plateau of low U(VI) concentration. U(VI) effluent concentration increased during subsequent stop flow (SF) events. The electrolytes with elevated Na and Si appreciably depressed U(VI) concentrations relative to DI water. The effluent data for both sediments and all three electrolytes was simulated reasonably well by a three domain model (the advecting fluid, fractures, and matrix) that coupled U(VI) dissolution rates, intraparticle U(VI) diffusion, and interparticle advective transport of U(VI); where key transport and dissolution processes had been parameterized in previous batch studies. For the calcite-saturated DI-water, U(VI) concentrations in the effluent remained far below saturation with respect to Na-boltwoodite and release of U(VI) to

  8. Renormalization group, operator product expansion and anomalous scaling in models of turbulent advection

    International Nuclear Information System (INIS)

    Antonov, N V

    2006-01-01

    Recent progress on the anomalous scaling in models of turbulent heat and mass transport is reviewed with the emphasis on the approach based on the field-theoretic renormalization group (RG) and operator product expansion (OPE). In that approach, the anomalous scaling is established as a consequence of the existence in the corresponding field-theoretic models of an infinite number of 'dangerous' composite fields (operators) with negative critical dimensions, which are identified with the anomalous exponents. This allows one to calculate the exponents in a systematic perturbation expansion, similar to the ε expansion in the theory of critical phenomena. The RG and OPE approach is presented in a self-contained way for the example of a passive scalar field (temperature, concentration of an impurity, etc) advected by a self-similar Gaussian velocity ensemble with vanishing correlation time, the so-called Kraichnan's rapid-change model, where the anomalous exponents are known up to order O(ε 3 ). Effects of anisotropy, compressibility and the correlation time of the velocity field are discussed. Passive advection by non-Gaussian velocity field governed by the stochastic Navier-Stokes equation and passively advected vector (e.g. magnetic) fields are considered

  9. Vertical Structure of Radiation-pressure-dominated Thin Disks: Link between Vertical Advection and Convective Stability

    International Nuclear Information System (INIS)

    Gong, Hong-Yu; Gu, Wei-Min

    2017-01-01

    In the classic picture of standard thin accretion disks, viscous heating is balanced by radiative cooling through the diffusion process, and the radiation-pressure-dominated inner disk suffers convective instability. However, recent simulations have shown that, owing to the magnetic buoyancy, the vertical advection process can significantly contribute to energy transport. In addition, in comparing the simulation results with the local convective stability criterion, no convective instability has been found. In this work, following on from simulations, we revisit the vertical structure of radiation-pressure-dominated thin disks and include the vertical advection process. Our study indicates a link between the additional energy transport and the convectively stable property. Thus, the vertical advection not only significantly contributes to the energy transport, but it also plays an important role in making the disk convectively stable. Our analyses may help to explain the discrepancy between classic theory and simulations on standard thin disks.

  10. Stochastic interpretation of the advection-diffusion equation and its relevance to bed load transport

    Science.gov (United States)

    Ancey, C.; Bohorquez, P.; Heyman, J.

    2015-12-01

    The advection-diffusion equation is one of the most widespread equations in physics. It arises quite often in the context of sediment transport, e.g., for describing time and space variations in the particle activity (the solid volume of particles in motion per unit streambed area). Phenomenological laws are usually sufficient to derive this equation and interpret its terms. Stochastic models can also be used to derive it, with the significant advantage that they provide information on the statistical properties of particle activity. These models are quite useful when sediment transport exhibits large fluctuations (typically at low transport rates), making the measurement of mean values difficult. Among these stochastic models, the most common approach consists of random walk models. For instance, they have been used to model the random displacement of tracers in rivers. Here we explore an alternative approach, which involves monitoring the evolution of the number of particles moving within an array of cells of finite length. Birth-death Markov processes are well suited to this objective. While the topic has been explored in detail for diffusion-reaction systems, the treatment of advection has received no attention. We therefore look into the possibility of deriving the advection-diffusion equation (with a source term) within the framework of birth-death Markov processes. We show that in the continuum limit (when the cell size becomes vanishingly small), we can derive an advection-diffusion equation for particle activity. Yet while this derivation is formally valid in the continuum limit, it runs into difficulty in practical applications involving cells or meshes of finite length. Indeed, within our stochastic framework, particle advection produces nonlocal effects, which are more or less significant depending on the cell size and particle velocity. Albeit nonlocal, these effects look like (local) diffusion and add to the intrinsic particle diffusion (dispersal due

  11. Alteration of the Tournemire argillite (France) submitted to an alkaline plume: through-diffusion and advection experiments

    International Nuclear Information System (INIS)

    Devol-Brown, I.; Tinseau, E.; Rebischung, F.; De Windt, L.; Bartier, D.; Motellier, S.; Techer, I.

    2012-01-01

    The Tournemire experimental platform of IRSN in Aveyron is based on a tunnel and several galleries. The tunnel was excavated between 1882 and 1886 through Domerian marls and Toarcian argillites. Its walls were recovered by lime that is yet in contact with the argillites. The program associated to the study of the engineered analogues provided by the Tournemire experimental platform is presented in another paper. In parallel, lab experiments (diffusion and advection) are performed in smaller time (1 year) and space scale to control some parameters and complete engineered analogues results. This paper details the scientific program developed on these diffusion and advection lab samples. The diffusion study was designed to provide better understanding of the phenomena that govern diffusion processes during the transient phase between site and alkaline conditions. The advection study was designed to evaluate the influence of an advective hydraulic regime on the interaction argillite/alkaline fluid in comparison with the diffusive one. In all experiments, pH and concentrations (cations, anions) were monitored in time. Mineralogical and petrographic analyses (XRD, SEM, TEM) of the argillite cores were performed before and after the experiments for characterizing the mineral alterations and their potential role on the alkaline plume migration

  12. Multiple Scale Reaction-Diffusion-Advection Problems with Moving Fronts

    Science.gov (United States)

    Nefedov, Nikolay

    2016-06-01

    In this work we discuss the further development of the general scheme of the asymptotic method of differential inequalities to investigate stability and motion of sharp internal layers (fronts) for nonlinear singularly perturbed parabolic equations, which are called in applications reaction-diffusion-advection equations. Our approach is illustrated for some new important cases of initial boundary value problems. We present results on stability and on the motion of the fronts.

  13. Fractional gradient and its application to the fractional advection equation

    OpenAIRE

    D'Ovidio, M.; Garra, R.

    2013-01-01

    In this paper we provide a definition of fractional gradient operators, related to directional derivatives. We develop a fractional vector calculus, providing a probabilistic interpretation and mathematical tools to treat multidimensional fractional differential equations. A first application is discussed in relation to the d-dimensional fractional advection-dispersion equation. We also study the connection with multidimensional L\\'evy processes.

  14. Advective isotope transport by mixing cell and particle tracking algorithms

    International Nuclear Information System (INIS)

    Tezcan, L.; Meric, T.

    1999-01-01

    The 'mixing cell' algorithm of the environmental isotope data evaluation is integrated with the three dimensional finite difference ground water flow model (MODFLOW) to simulate the advective isotope transport and the approach is compared with the 'particle tracking' algorithm of the MOC3D, that simulates three-dimensional solute transport with the method of characteristics technique

  15. Empirical modeling of single-wake advection and expansion using full-scale pulsed lidar-based measurements

    DEFF Research Database (Denmark)

    Machefaux, Ewan; Larsen, Gunner Chr.; Troldborg, Niels

    2015-01-01

    In the present paper, single-wake dynamics have been studied both experimentally and numerically. The use of pulsed lidar measurements allows for validation of basic dynamic wake meandering modeling assumptions. Wake center tracking is used to estimate the wake advection velocity experimentally...... fairly well in the far wake but lacks accuracy in the outer region of the near wake. An empirical relationship, relating maximum wake induction and wake advection velocity, is derived and linked to the characteristics of a spherical vortex structure. Furthermore, a new empirical model for single...

  16. Direct and inverse source problems for a space fractional advection dispersion equation

    KAUST Repository

    Aldoghaither, Abeer; Laleg-Kirati, Taous-Meriem; Liu, Da Yan

    2016-01-01

    In this paper, direct and inverse problems for a space fractional advection dispersion equation on a finite domain are studied. The inverse problem consists in determining the source term from final observations. We first derive the analytic

  17. Emergent scar lines in chaotic advection of passive directors

    Science.gov (United States)

    Hejazi, Bardia; Mehlig, Bernhard; Voth, Greg A.

    2017-12-01

    We examine the spatial field of orientations of slender fibers that are advected by a two-dimensional fluid flow. The orientation field of these passive directors are important in a wide range of industrial and geophysical flows. We introduce emergent scar lines as the dominant coherent structures in the orientation field of passive directors in chaotic flows. Previous work has identified the existence of scar lines where the orientation rotates by π over short distances, but the lines that were identified disappeared as time progressed. As a result, earlier work focused on topological singularities in the orientation field, which we find to play a negligible role at long times. We use the standard map as a simple time-periodic two-dimensional flow that produces Lagrangian chaos. This class of flows produces persistent patterns in passive scalar advection and we find that a different kind of persistent pattern develops in the passive director orientation field. We identify the mechanism by which emergent scar lines grow to dominate these patterns at long times in complex flows. Emergent scar lines form where the recent stretching of the fluid element is perpendicular to earlier stretching. Thus these scar lines can be labeled by their age, defined as the time since their stretching reached a maximum.

  18. Implicit and semi-implicit schemes in the Versatile Advection Code : numerical tests

    NARCIS (Netherlands)

    Tóth, G.; Keppens, R.; Bochev, Mikhail A.

    1998-01-01

    We describe and evaluate various implicit and semi-implicit time integration schemes applied to the numerical simulation of hydrodynamical and magnetohydrodynamical problems. The schemes were implemented recently in the software package Versatile Advection Code, which uses modern shock capturing

  19. Modelling uncertainties in the diffusion-advection equation for radon transport in soil using interval arithmetic.

    Science.gov (United States)

    Chakraverty, S; Sahoo, B K; Rao, T D; Karunakar, P; Sapra, B K

    2018-02-01

    Modelling radon transport in the earth crust is a useful tool to investigate the changes in the geo-physical processes prior to earthquake event. Radon transport is modeled generally through the deterministic advection-diffusion equation. However, in order to determine the magnitudes of parameters governing these processes from experimental measurements, it is necessary to investigate the role of uncertainties in these parameters. Present paper investigates this aspect by combining the concept of interval uncertainties in transport parameters such as soil diffusivity, advection velocity etc, occurring in the radon transport equation as applied to soil matrix. The predictions made with interval arithmetic have been compared and discussed with the results of classical deterministic model. The practical applicability of the model is demonstrated through a case study involving radon flux measurements at the soil surface with an accumulator deployed in steady-state mode. It is possible to detect the presence of very low levels of advection processes by applying uncertainty bounds on the variations in the observed concentration data in the accumulator. The results are further discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Influence of advections of particulate matter from biomass combustion on specific-cause mortality in Madrid in the period 2004-2009.

    Science.gov (United States)

    Linares, C; Carmona, R; Tobías, A; Mirón, I J; Díaz, J

    2015-05-01

    Approximately, 20 % of particulate and aerosol emissions into the urban atmosphere are of natural origin (including wildfires and Saharan dust). During these natural episodes, PM10 and PM2.5 levels usually exceed World Health Organisation (WHO) health protection thresholds. This study sought to evaluate the possible effect of advections of particulate matter from biomass fuel combustion on daily specific-cause mortality among the general population and the segment aged ≥ 75 years in Madrid. Ecological time-series study in the city of Madrid from January 01, 2004 to December 31, 2009. The dependent variable analysed was daily mortality due to natural (ICD-10:A00-R99), circulatory (ICD-10:I00-I99), and respiratory (ICD-10:J00-J99) causes in the population, both general and aged ≥ 75 years. The following independent and control variables were considered: a) daily mean PM2.5 and PM10 concentrations; b) maximum daily temperature; c) daily mean O3 and NO2 concentrations; d) advection of particulate matter from biomass combustion ( http://www.calima.ws/ ), using a dichotomous variable and e) linear trend and seasonalities. We conducted a descriptive analysis, performed a test of means and, to ascertain relative risk, fitted a model using autoregressive Poisson regression and stratifying by days with and without biomass advection, in both populations. Of the 2192 days analysed, biomass advection occurred on 56, with mean PM2.5 and PM10 values registering a significant increase during these days. PM10 had a greater impact on organic mortality with advection (RRall ages = 1.035 [1.011-1.060]; RR  ≥  75 years = 1.066 [1.031-1.103]) than did PM2.5 without advection (RRall ages = 1.017 [1.009-1.025]; RR  ≥  75 years = 1.012 [1.003-1.022]). Among specific causes, respiratory-though not circulatory-causes were associated with PM10 on days with advection in ≥ 75 year age group. PM10, rather than PM2.5, were associated with an increase in natural

  1. Waste dissolution with chemical reaction, diffusion and advection

    International Nuclear Information System (INIS)

    Chambre, P.L.; Kang, C.H.; Lee, W.W.L.; Pigford, T.H.

    1987-06-01

    This paper extends the mass-transfer analysis to include the effect of advective transport in predicting the steady-state dissolution rate, with a chemical-reaction-rate boundary condition at the surface of a waste form of arbitrary shape. This new theory provides an analytic means of predicting the ground-water velocities at which dissolution rate in a geologic environment will be governed entirely to the chemical reaction rate. As an illustration, we consider the steady-state potential flow of ground water in porous rock surrounding a spherical waste solid. 3 refs., 2 figs

  2. Rigorous upper bounds for fluid and plasma transport due to passive advection

    International Nuclear Information System (INIS)

    Krommes, J.A.; Smith, R.A.; Kim, C.B.

    1987-07-01

    The formulation of variational principles for transport due to passive advection is described. A detailed account of the work has been published elsewhere. In the present paper, the motivations, philosophy, and implications of the method are briefly discussed. 15 refs

  3. Advective loss of overwintering Calanus finmarchicus from the Faroe-Shetland Channel

    DEFF Research Database (Denmark)

    Rullyanto, Arief; Jonasdottir, Sigrun H.; Visser, Andre W.

    2015-01-01

    , a regionally important secondary producer. Using a high resolution hydrodynamic model, MIKE 3 FM, we simulate the overflow of deep water and estimate the associated loss rate of C. finmarchicus as a function of the water depth strata within which they reside. We estimate a net advective loss from the Norwegian...

  4. An advection-based model to increase the temporal resolution of PIV time series.

    Science.gov (United States)

    Scarano, Fulvio; Moore, Peter

    A numerical implementation of the advection equation is proposed to increase the temporal resolution of PIV time series. The method is based on the principle that velocity fluctuations are transported passively, similar to Taylor's hypothesis of frozen turbulence . In the present work, the advection model is extended to unsteady three-dimensional flows. The main objective of the method is that of lowering the requirement on the PIV repetition rate from the Eulerian frequency toward the Lagrangian one. The local trajectory of the fluid parcel is obtained by forward projection of the instantaneous velocity at the preceding time instant and backward projection from the subsequent time step. The trajectories are approximated by the instantaneous streamlines, which yields accurate results when the amplitude of velocity fluctuations is small with respect to the convective motion. The verification is performed with two experiments conducted at temporal resolutions significantly higher than that dictated by Nyquist criterion. The flow past the trailing edge of a NACA0012 airfoil closely approximates frozen turbulence , where the largest ratio between the Lagrangian and Eulerian temporal scales is expected. An order of magnitude reduction of the needed acquisition frequency is demonstrated by the velocity spectra of super-sampled series. The application to three-dimensional data is made with time-resolved tomographic PIV measurements of a transitional jet. Here, the 3D advection equation is implemented to estimate the fluid trajectories. The reduction in the minimum sampling rate by the use of super-sampling in this case is less, due to the fact that vortices occurring in the jet shear layer are not well approximated by sole advection at large time separation. Both cases reveal that the current requirements for time-resolved PIV experiments can be revised when information is poured from space to time . An additional favorable effect is observed by the analysis in the

  5. A condensed-mass advection based model for the simulation of liquid polar stratospheric clouds

    Directory of Open Access Journals (Sweden)

    D. Lowe

    2003-01-01

    Full Text Available We present a condensed-mass advection based model (MADVEC designed to simulate the condensation/evaporation of liquid polar stratospheric cloud (PSC particles. A (Eulerian-in-radius discretization scheme is used, making the model suitable for use in global or mesoscale chemistry and transport models (CTMs. The mass advection equations are solved using an adaption of the weighted average flux (WAF scheme. We validate the numerical scheme using an analytical solution for multicomponent aerosols. The physics of the model are tested using a test case designed by Meilinger et al. (1995. The results from this test corroborate the composition gradients across the size distribution under rapid cooling conditions that were reported in earlier studies.

  6. A second order discontinuous Galerkin method for advection on unstructured triangular meshes

    NARCIS (Netherlands)

    Geijselaers, Hubertus J.M.; Huetink, Han

    2003-01-01

    In this paper the advection of element data which are linearly distributed inside the elements is addressed. Across element boundaries the data are assumed discontinuous. The equations are discretized by the Discontinuous Galerkin method. For stability and accuracy at large step sizes (large values

  7. OBSERVATION OF MAGNETIC RECONNECTION DRIVEN BY GRANULAR SCALE ADVECTION

    International Nuclear Information System (INIS)

    Zeng Zhicheng; Cao Wenda; Ji Haisheng

    2013-01-01

    We report the first evidence of magnetic reconnection driven by advection in a rapidly developing large granule using high spatial resolution observations of a small surge event (base size ∼ 4'' × 4'') with the 1.6 m aperture New Solar Telescope at the Big Bear Solar Observatory. The observations were carried out in narrowband (0.5 Å) He I 10830 Å and broadband (10 Å) TiO 7057 Å. Since He I 10830 Å triplet has a very high excitation level and is optically thin, its filtergrams enable us to investigate the surge from the photosphere through the chromosphere into the lower corona. Simultaneous space data from the Atmospheric Imaging Assembly and Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory were used in the analysis. It is shown that the surge is spatio-temporally associated with magnetic flux emergence in the rapidly developing large granule. During the development of the granule, its advecting flow (∼2 km s –1 ) squeezed the magnetic flux into an intergranular lane area, where a magnetic flux concentration was formed and the neighboring flux with opposite magnetic polarity was canceled. During the cancellation, the surge was produced as absorption in He I 10830 Å filtergrams while simultaneous EUV brightening occurred at its base. The observations clearly indicate evidence of a finest-scale reconnection process driven by the granule's motion.

  8. Project Fog Drops 5. Task 1: A numerical model of advection fog. Task 2: Recommendations for simplified individual zero-gravity cloud physics experiments

    Science.gov (United States)

    Rogers, C. W.; Eadie, W. J.; Katz, U.; Kocmond, W. C.

    1975-01-01

    A two-dimensional numerical model was used to investigate the formation of marine advection fog. The model predicts the evolution of potential temperature, horizontal wind, water vapor content, and liquid water content in a vertical cross section of the atmosphere as determined by vertical turbulent transfer and horizontal advection, as well as radiative cooling and drop sedimentation. The model is designed to simulate the formation, development, or dissipation of advection fog in response to transfer of heat and moisture between the atmosphere and the surface as driven by advection over horizontal discontinuities in the surface temperature. Results from numerical simulations of advection fog formation are discussed with reference to observations of marine fog. A survey of candidate fog or cloud microphysics experiments which might be performed in the low gravity environment of a shuttle-type spacecraft in presented. Recommendations are given for relatively simple experiments which are relevent to fog modification problems.

  9. A Case Study of Offshore Advection of Boundary Layer Rolls over a Stably Stratified Sea Surface

    DEFF Research Database (Denmark)

    Svensson, Nina; Sahlée, Erik; Bergström, Hans

    2017-01-01

    originate from boundary layer rolls generated over the convective air above Swedish mainland, also supported by visual satellite images showing the typical signature cloud streets. The simulations indicate that the rolls are advected and maintained at least 30–80 km off the coast, in agreement...... considerably for long times and over large areas in coastal regions. Although boundary layer rolls are a well-studied feature, no previous study has presented results concerning their persistence during situations with advection to a strongly stratified boundary layer. Such conditions are commonly encountered...

  10. Saturation of drift instabilities by ExB advection of resonant electrons

    International Nuclear Information System (INIS)

    Dimits, A.M.

    1990-01-01

    Saturation of the collisionless and weakly collisional drift instabilities by nonlinear ExB advection of resonant electrons is considered. The nonlinear ExB advection of the resonant electrons around the O points and X points of the potential shuts off the linear phase shift between the electron density and the potential, and hence the linear growth, and produces residual oscillations at the ExB-trapping frequency. Two analytical solutions of a three-mode model of Lee et al. [Phys. Fluids 27, 2652 (1984)], which describes the saturation of drift waves by this mechanism, are found. The first is an exact solution in the form of a steadily propagating wave of constant amplitude, and is relevant when electron pitch-angle scattering is present. The second is an approximate time-dependent analytical solution, obtained using the method of O'Neil [Phys. Fluids 8, 2255 (1965)], and is relevant to the collisionless case. The predictions that follow from this solution for the saturation level and for the amplitude oscillation frequency are in excellent agreement with the direct numerical solutions of the three-mode system

  11. Advection diffusion model for particles deposition in Rayleigh-Benard turbulent flows

    International Nuclear Information System (INIS)

    Oresta, P.; Lippolis, A.; Verzicco, R.; Soldati, A.

    2005-01-01

    In this paper, Direct Numerical Simulation (DNS) and Lagrangian Particle Tracking are used to precisely investigate the turbulent thermally driven flow and particles dispersion in a closed, slender cylindrical domain. The numerical simulations are carried out for Rayleigh (Ra) and Prandtl numbers (Pr) equal to Ra = 2X10 8 and Pr = 0.7, considering three sets of particles with Stokes numbers, based on Kolmogorov scale, equal to St k 1.3, St k 0.65 and St k = 0.13. This data are used to calculate a priori the drift velocity and the turbulent diffusion coefficient for the Advection Diffusion model. These quantities are function of the Stokes, Froude, Rayleigh and Prandtl numbers only. One dimensional, time dependent, Advection- Diffusion Equation (ADE) is presented to predict particles deposition in Rayleigh-Benard flow in the cylindrical domain. This archetype configuration models flow and aerosol dynamics, produced in case of accident in the passive containment cooling system (PCCS) of a nuclear reactor. ADE results show a good agreement with DNS data for all the sets of particles investigated. (author)

  12. Regional Estimation of Remotely Sensed Evapotranspiration Using the Surface Energy Balance-Advection (SEB-A Method

    Directory of Open Access Journals (Sweden)

    Suhua Liu

    2016-08-01

    Full Text Available Evapotranspiration (ET is an essential part of the hydrological cycle and accurately estimating it plays a crucial role in water resource management. Surface energy balance (SEB models are widely used to estimate regional ET with remote sensing. The presence of horizontal advection, however, perturbs the surface energy balance system and contributes to the uncertainty of energy influxes. Thus, it is vital to consider horizontal advection when applying SEB models to estimate ET. This study proposes an innovative and simplified approach, the surface energy balance-advection (SEB-A method, which is based on the energy balance theory and also takes into account the horizontal advection to determine ET by remote sensing. The SEB-A method considers that the actual ET consists of two parts: the local ET that is regulated by the energy balance system and the exotic ET that arises from horizontal advection. To evaluate the SEB-A method, it was applied to the middle region of the Heihe River in China. Instantaneous ET for three days were acquired and assessed with ET measurements from eddy covariance (EC systems. The results demonstrated that the ET estimates had a high accuracy, with a correlation coefficient (R2 of 0.713, a mean average error (MAE of 39.3 W/m2 and a root mean square error (RMSE of 54.6 W/m2 between the estimates and corresponding measurements. Percent error was calculated to more rigorously assess the accuracy of these estimates, and it ranged from 0% to 35%, with over 80% of the locations within a 20% error. To better understand the SEB-A method, the relationship between the ET estimates and land use types was analyzed, and the results indicated that the ET estimates had spatial distributions that correlated with vegetation patterns and could well demonstrate the ET differences caused by different land use types. The sensitivity analysis suggested that the SEB-A method requested accurate estimation of the available energy, R n − G

  13. Comparing CO2 storage and advection conditions at night at different carboeuroflux sites

    Czech Academy of Sciences Publication Activity Database

    Aubinet, M.; Berbigier, P.; Bernhofer, Ch.; Cescatti, A.; Feigenwinter, C.; Granier, A.; Grunwald, TH; Havránková, Kateřina; Heinesch, B.; Longdoz, B.; Marcolla, B.; Montagnani, L.; Sedlák, Pavel

    2005-01-01

    Roč. 116, č. 1 (2005), s. 63-94 ISSN 0006-8314 Institutional research plan: CEZ:AV0Z60870520 Keywords : advection * CO2 storage * forest ecosystems Subject RIV: GK - Forestry Impact factor: 1.414, year: 2005

  14. The effect of coherent stirring on the advection-condensation of water vapour

    Science.gov (United States)

    Tsang, Yue-Kin; Vanneste, Jacques

    2017-06-01

    Atmospheric water vapour is an essential ingredient of weather and climate. The key features of its distribution can be represented by kinematic models which treat it as a passive scalar advected by a prescribed flow and reacting through condensation. Condensation acts as a sink that maintains specific humidity below a prescribed, space-dependent saturation value. To investigate how the interplay between large-scale advection, small-scale turbulence and condensation controls moisture distribution, we develop simple kinematic models which combine a single circulating flow with a Brownian-motion representation of turbulence. We first study the drying mechanism of a water-vapour anomaly released inside a vortex at an initial time. Next, we consider a cellular flow with a moisture source at a boundary. The statistically steady state attained shows features reminiscent of the Hadley cell such as boundary layers, a region of intense precipitation and a relative humidity minimum. Explicit results provide a detailed characterization of these features in the limit of strong flow.

  15. Advective surface velocity in the north west Pacific derived from NOAA AVHRR images

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Akiyama, M.; Okada, Y.; Sugimori, Y.

    Using sequential AVHRR images in November 1983, nearsurface advective velocities are derived in the region Kuroshio south of Japan. For deriving the velocities two methods are used. One is the Method of Cross Correlation (MCC), using image pair...

  16. Dealing with the Quaternion Antipodal Problem for Advecting Fields

    Science.gov (United States)

    2017-12-01

    gathering and maintaining the  data needed, and  completing  and reviewing the collection information.  Send comments regarding this burden estimate or...gradient tensor because nonlinear combinations of the 9 components correspond to physical quantities. For example, the determinant of the deformation...right stretch tensor . The focus of this technical brief is on advection of the rotation. Rotation of an object or a microstructure can be represented

  17. Experimental Setup for Measuring Diffusive and Advective Transport of Radon through Building Materials

    NARCIS (Netherlands)

    Pal, van der M.; Graaf, van der E.R.; Meijer, de R.J.; Wit, de M.H.; Hendriks, N.A.

    2000-01-01

    This study describes an approach for measuring and modelling diffusive and advective transport of radon through building materials. The goal of these measurements and model calculations is to improve our understanding concerning the factors influencing the transport of radon through building

  18. Estimating Advective Near-surface Currents from Ocean Color Satellite Images

    Science.gov (United States)

    2015-01-01

    on the SuomiNational Polar-Orbiting Partner- ship (S- NPP ) satellite. The GOCI is the world’s first geostationary orbit satellite sensor over the...radiance Lwn at several wave - lengths. These spectral Lwn channels are used to derive several in- water bio-optical properties (Lee, Carder, & Arnone...the same surface flow, it is the inter-product similarities, instead of the differences, that are more likely to stand for the surface advection. If

  19. OBSERVATION OF MAGNETIC RECONNECTION DRIVEN BY GRANULAR SCALE ADVECTION

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Zhicheng; Cao Wenda [Center for Solar-Terrestrial Research, New Jersey Institute of Technology, 323 Martin Luther King Blvd., Newark, NJ 07102 (United States); Ji Haisheng [Big Bear Solar Observatory, 40386 North Shore Lane, Big Bear City, CA 92314 (United States)

    2013-06-01

    We report the first evidence of magnetic reconnection driven by advection in a rapidly developing large granule using high spatial resolution observations of a small surge event (base size {approx} 4'' Multiplication-Sign 4'') with the 1.6 m aperture New Solar Telescope at the Big Bear Solar Observatory. The observations were carried out in narrowband (0.5 A) He I 10830 A and broadband (10 A) TiO 7057 A. Since He I 10830 A triplet has a very high excitation level and is optically thin, its filtergrams enable us to investigate the surge from the photosphere through the chromosphere into the lower corona. Simultaneous space data from the Atmospheric Imaging Assembly and Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory were used in the analysis. It is shown that the surge is spatio-temporally associated with magnetic flux emergence in the rapidly developing large granule. During the development of the granule, its advecting flow ({approx}2 km s{sup -1}) squeezed the magnetic flux into an intergranular lane area, where a magnetic flux concentration was formed and the neighboring flux with opposite magnetic polarity was canceled. During the cancellation, the surge was produced as absorption in He I 10830 A filtergrams while simultaneous EUV brightening occurred at its base. The observations clearly indicate evidence of a finest-scale reconnection process driven by the granule's motion.

  20. The Effects of Heat Advection on UK Weather and Climate Observations in the Vicinity of Small Urbanized Areas

    Science.gov (United States)

    Bassett, Richard; Cai, Xiaoming; Chapman, Lee; Heaviside, Clare; Thornes, John E.

    2017-10-01

    Weather and climate networks traditionally follow rigorous siting guidelines, with individual stations located away from frost hollows, trees or urban areas. However, the diverse nature of the UK landscape suggests that the feasibility of siting stations that are truly representative of regional climate and free from distorting local effects is increasingly difficult. Whilst the urban heat island is a well-studied phenomenon and usually accounted for, the effect of warm urban air advected downwind is rarely considered, particularly at rural stations adjacent to urban areas. Until recently, urban heat advection (UHA) was viewed as an urban boundary-layer process through the formation of an urban plume that rises above the surface as it is advected. However, these dynamic UHA effects are shown to also have an impact on surface observations. Results show a significant difference in temperatures anomalies (p careful interpretation of long-term temperature data taken near small urban areas.

  1. DEVELOPMENT AND DEMONSTRATION OF A BIDIRECTIONAL ADVECTIVE FLUX METER FOR SEDIMENT-WATER INTERFACE

    Science.gov (United States)

    A bidirectional advective flux meter for measuring water transport across the sediment-water interface has been successfully developed and field tested. The flow sensor employs a heat-pulse technique combined with a flow collection funnel for the flow measurement. Because the dir...

  2. Comparison of results using second-order moments with and without width correction to solve the advection equation

    International Nuclear Information System (INIS)

    Pepper, D.W.; Long, P.E.

    1978-01-01

    The method of moments is used with and without a a width-correction technique to solve the advection of a passive scalar. The method of moments is free of numerical dispersion but suffers from numerical diffusion (damping). In order to assess the effect of the width-correction procedure on reducing numerical diffusion, both versions are used to advect a passive scalar in straight-line and rotational wind fields. Although the width-correction procedure reduces numerical diffusion under some circumstances, the unmodified version of the second-moment procedure is better suited as a general method

  3. Methods to assess radioisotope migration in cementitious media using radial diffusion and advection

    International Nuclear Information System (INIS)

    Hinchliff, J.; Felipe-Sotero, M.; Evans, N.D.M.; Read, D.; Drury, D.

    2012-01-01

    One of the primary aims of this project is to understand how a range of isotopes associated with radioactive wastes, move through the cementitious media potentially present in a geological disposal facility (GDF). This paper describes the development of experimental methods that use radial flow from intact cylinders of cementitious material to evaluate the potential for diffusion and advection of relevant isotopes through Nirex reference vault backfill (NRVB). The small scale and cost effectiveness of the approach means that multiple experiments can be undertaken encompassing the full range of physical (and chemical) variations. The radial flow experimental method uses small pre-cast cylinders of the matrix under investigation. For diffusion an appropriate concentration of the isotope of interest ( 90 Sr in the present experiments) is introduced into a cavity in the centre of the cylinder, which is then sealed, and placed in a solution previously equilibrated with the matrix. The increase in concentration of the isotope in the external solution is then determined at defined time intervals. For advection 90 Sr is similarly introduced into the central core of the cylinder and then equilibrated water is forced under nitrogen pressure, from the central core to the outside of the cylinder where it is collected in a tray prior to analysis. Both experimental set ups and results have been modelled using conventional numerical solutions and the simulation package GoldSim. Concerning diffusion experiments the modelled data reproduces the observed data effectively with a right diffusivity value of 9*10 -11 m 2 /s. Concerning advection results are more mitigated and need further investigation

  4. Shell model for time-correlated random advection of passive scalars

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Muratore-Ginanneschi, P.

    1999-01-01

    We study a minimal shell model for the advection of a passive scalar by a Gaussian time-correlated velocity field. The anomalous scaling properties of the white noise limit are studied analytically. The effect of the time correlations are investigated using perturbation theory around the white...... noise limit and nonperturbatively by numerical integration. The time correlation of the velocity field is seen to enhance the intermittency of the passive scalar. [S1063-651X(99)07711-9]....

  5. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in MagLIF-like plasma

    International Nuclear Information System (INIS)

    Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.

    2014-01-01

    The MagLIF approach to inertial confinement fusion involves subsonic/isobaric compression and heating of a DT plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot plasma to the cold liner is dominated by the transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter ω e τ e effective diffusion coefficients determining the losses of heat and magnetic flux are both shown to decrease with ω e τ e as does the Bohm diffusion coefficient, which is commonly associated with low collisionality and two-dimensional transport. This family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics

  6. The streamline upwind Petrov-Galerkin stabilising method for the numerical solution of highly advective problems

    Directory of Open Access Journals (Sweden)

    Carlos Humberto Galeano Urueña

    2009-05-01

    Full Text Available This article describes the streamline upwind Petrov-Galerkin (SUPG method as being a stabilisation technique for resolving the diffusion-advection-reaction equation by finite elements. The first part of this article has a short analysis of the importance of this type of differential equation in modelling physical phenomena in multiple fields. A one-dimensional description of the SUPG me- thod is then given to extend this basis to two and three dimensions. The outcome of a strongly advective and a high numerical complexity experiment is presented. The results show how the version of the implemented SUPG technique allowed stabilised approaches in space, even for high Peclet numbers. Additional graphs of the numerical experiments presented here can be downloaded from www.gnum.unal.edu.co.

  7. Advective and diffusive contributions to reactive gas transport during pyrite oxidation in the unsaturated zone

    DEFF Research Database (Denmark)

    Binning, Philip John; Postma, Diederik Jan; Russel, T.F.

    2007-01-01

    Pyrite oxidation in unsaturated mine waste rock dumps and soils is limited by the supply of oxygen from the atmosphere. In models, oxygen transport through the subsurface is often assumed to be driven by diffusion. However, oxygen comprises 23.2% by mass of dry air, and when oxygen is consumed at...... parameters; for example, the time to approach steady state depends exponentially on the distance between the soil surface and the subsurface reactive zone. Copyright 2007 by the American Geophysical Union....... at depth in the unsaturated zone, a pressure gradient is created between the reactive zone and the ground surface, causing a substantial advective air flow into the subsurface. To determine the balance between advective and diffusive transport, a one-dimensional multicomponent unsaturated zone gas...

  8. Stock-specific advection of larval walleye (Sander vitreus) in western Lake Erie: Implications for larval growth, mixing, and stock discrimination

    Science.gov (United States)

    Fraker, Michael E.; Anderson, Eric J.; May, Cassandra J.; Chen, Kuan-Yu; Davis, Jeremiah J.; DeVanna, Kristen M.; DuFour, Mark R.; Marschall, Elizabeth A.; Mayer, Christine M.; Miner, Jeffery G.; Pangle, Kevin L.; Pritt, Jeremy J.; Roseman, Edward F.; Tyson, Jeffrey T.; Zhao, Yingming; Ludsin, Stuart A

    2015-01-01

    Physical processes can generate spatiotemporal heterogeneity in habitat quality for fish and also influence the overlap of pre-recruit individuals (e.g., larvae) with high-quality habitat through hydrodynamic advection. In turn, individuals from different stocks that are produced in different spawning locations or at different times may experience dissimilar habitat conditions, which can underlie within- and among-stock variability in larval growth and survival. While such physically-mediated variation has been shown to be important in driving intra- and inter-annual patterns in recruitment in marine ecosystems, its role in governing larval advection, growth, survival, and recruitment has received less attention in large lake ecosystems such as the Laurentian Great Lakes. Herein, we used a hydrodynamic model linked to a larval walleye (Sander vitreus) individual-based model to explore how the timing and location of larval walleye emergence from several spawning sites in western Lake Erie (Maumee, Sandusky, and Detroit rivers; Ohio reef complex) can influence advection pathways and mixing among these local spawning populations (stocks), and how spatiotemporal variation in thermal habitat can influence stock-specific larval growth. While basin-wide advection patterns were fairly similar during 2011 and 2012, smaller scale advection patterns and the degree of stock mixing varied both within and between years. Additionally, differences in larval growth were evident among stocks and among cohorts within stocks which were attributed to spatiotemporal differences in water temperature. Using these findings, we discuss the value of linked physical–biological models for understanding the recruitment process and addressing fisheries management problems in the world's Great Lakes.

  9. Couette-Poiseuille flow experiment with zero mean advection velocity: Subcritical transition to turbulence

    Science.gov (United States)

    Klotz, L.; Lemoult, G.; Frontczak, I.; Tuckerman, L. S.; Wesfreid, J. E.

    2017-04-01

    We present an experimental setup that creates a shear flow with zero mean advection velocity achieved by counterbalancing the nonzero streamwise pressure gradient by moving boundaries, which generates plane Couette-Poiseuille flow. We obtain experimental results in the transitional regime for this flow. Using flow visualization, we characterize the subcritical transition to turbulence in Couette-Poiseuille flow and show the existence of turbulent spots generated by a permanent perturbation. Due to the zero mean advection velocity of the base profile, these turbulent structures are nearly stationary. We distinguish two regions of the turbulent spot: the active turbulent core, which is characterized by waviness of the streaks similar to traveling waves, and the surrounding region, which includes in addition the weak undisturbed streaks and oblique waves at the laminar-turbulent interface. We also study the dependence of the size of these two regions on Reynolds number. Finally, we show that the traveling waves move in the downstream (Poiseuille) direction.

  10. Drainage and Landscape Evolution in the Bighorn Basin Accompanying Advection of the Yellowstone Hotspot Swell Through North America

    Science.gov (United States)

    Guerrero, E. F.; Meigs, A.

    2012-12-01

    Mantle plumes have been recognized to express themselves on the surface as long wavelength and low amplitude topographic swells. These swells are measured as positive geoid anomalies and include shorter wavelength topographic features such as volcanic edifices and pre-exisitng topography. Advection of the topographic swell is expected as the lithosphere passes over the plume uplift source. The hot spot swell occurs in the landscape as transient signal that is expressed with waxing and waning topography. Waxing topography occurs at the leading edge of the swell and is expressed as an increase in rock uplift that is preserved by rivers and landscapes. Advection of topography predicts a shift in a basin from deposition to incision, an increase in convexity of a transverse river's long profile and a lateral river migration in the direction of advection. The Yellowstone region has a strong positive geoid anomaly and the volcanic signal, which have been interpreted as the longer and shorter wavelength topographic expressions of the hot spot. These expressions of the hot spot developed in a part of North America with a compounded deformation and topographic history. Previous studies of the Yellowstone topographic swell have concentrated on the waning or trailing signal preserved in the Snake River Plain. Our project revisits the classic geomorphology study area in the Bighorn Basin of Wyoming and Montana, which is in leading edge of the swell. Present models identify the swell as having a 400 km in diameter and that it is centered on the Yellowstone caldera. If we assume advection to occur in concert with the caldera eruptive track, the Yellowstone swell has migrated to the northeast at a rate of 3 cm yr-1 and began acting on the Bighorn Basin's landscape between 3 and 2 Ma. The Bighorn Basin has an established history of a basin-wide switch from deposition to incision during the late Pliocene, yet the age control on the erosional evolution of the region is relative. This

  11. Universality in passively advected hydrodynamic fields : the case of a passive vector with pressure

    NARCIS (Netherlands)

    Benzi, R.; Biferale, L.; Toschi, F.

    2001-01-01

    Universality of statistical properties of passive quantities advected by turbulent velocity fields at changing the passive forcing mechanism is discussed. In particular, we concentrate on the statistical properties of an hydrodynamic system with pressure. We present theoretical arguments and

  12. Comparison of horizontal and vertical advective CO2 fluxes at three forest sites

    Czech Academy of Sciences Publication Activity Database

    Feigenwinter, C.; Bernhofer, C.; Eichelmann, U.; Heinesch, B.; Hertel, M.; Janouš, Dalibor; Kolle, O.; Lagergren, F.; Lindroth, A.; Minerbi, S.; Moderow, U.; Mölder, M.; Montagnani, L.; Queck, R.; Rebmann, C.; Vestin, P.; Yernaux, M.; Zeri, M.; Ziegler, W.; Aubinet, M.

    2008-01-01

    Roč. 148, č. 1 (2008), s. 12-24 ISSN 0168-1923 Grant - others:-(XE) GOCE-CT-2003-505572 Institutional research plan: CEZ:AV0Z60870520 Keywords : forest ecosystems * advection * net ecosystem exchange * carbon balance * ADVEX Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.668, year: 2008

  13. A rational function based scheme for solving advection equation

    International Nuclear Information System (INIS)

    Xiao, Feng; Yabe, Takashi.

    1995-07-01

    A numerical scheme for solving advection equations is presented. The scheme is derived from a rational interpolation function. Some properties of the scheme with respect to convex-concave preserving and monotone preserving are discussed. We find that the scheme is attractive in surpressinging overshoots and undershoots even in the vicinities of discontinuity. The scheme can also be easily swicthed as the CIP (Cubic interpolated Pseudo-Particle) method to get a third-order accuracy in smooth region. Numbers of numerical tests are carried out to show the non-oscillatory and less diffusive nature of the scheme. (author)

  14. A Case Study of Offshore Advection of Boundary Layer Rolls over a Stably Stratified Sea Surface

    Directory of Open Access Journals (Sweden)

    Nina Svensson

    2017-01-01

    Full Text Available Streaky structures of narrow (8-9 km high wind belts have been observed from SAR images above the Baltic Sea during stably stratified conditions with offshore winds from the southern parts of Sweden. Case studies using the WRF model and in situ aircraft observations indicate that the streaks originate from boundary layer rolls generated over the convective air above Swedish mainland, also supported by visual satellite images showing the typical signature cloud streets. The simulations indicate that the rolls are advected and maintained at least 30–80 km off the coast, in agreement with the streaks observed by the SAR images. During evening when the convective conditions over land diminish, the streaky structures over the sea are still seen in the horizontal wind field; however, the vertical component is close to zero. Thus advected feature from a land surface can affect the wind field considerably for long times and over large areas in coastal regions. Although boundary layer rolls are a well-studied feature, no previous study has presented results concerning their persistence during situations with advection to a strongly stratified boundary layer. Such conditions are commonly encountered during spring in coastal regions at high latitudes.

  15. Modelling the observed vertical transport of {sup 7}Be in specific soils with advection dispersion model

    Energy Technology Data Exchange (ETDEWEB)

    Torres Astorga, Romina; Velasco, Hugo; Valladares, Diego L.; Lohaiza, Flavia; Ayub, Jimena Juri; Rizzotto, Marcos [Grupo de Estudios Ambientales. Instituto de Matematica Aplicada San Luis - Universidad Nacional de San Luis - CONICET, San Luis (Argentina)

    2014-07-01

    {sup 7}Be is a short-lived environmental radionuclide, produced in the upper atmosphere by spallation of nitrogen and oxygen by cosmic rays. After of the production by the nuclear reaction, {sup 7}Be diffuses through the atmosphere until it attaches to atmospheric aerosols. Subsequently, it is deposited on the earth surface mainly as wet fallout. The main physical processes which transport {sup 7}Be in soil are diffusion and advection by water. Migration parameters and measurements confirm that sorption is the main physical process, which confines {sup 7}Be concentration to soil surface. The literature data show that in soils, {sup 7}Be is concentrated near the surface (0-2 cm) as it is adsorbed onto clay minerals after its deposition on the soil surface and does not penetrate deeper into soils due to its short half-life. The maximum mass activity density of {sup 7}Be is found at the point of input of the radionuclide, i.e. at the surface of the soil column, showing a exponential distribution profile typical of a purely diffusive transport. Many studies applying the advection dispersion models have been reported in the literature in order to modelling the transport of {sup 137}Cs in soils. On them, the models are used to achieve information of the mechanisms that govern the transport, i. e. the model is used to explain the soil profile of radionuclide. The effective dispersion coefficient and the apparent advection velocity of radionuclide in soil are also obtained by fitting the analytical solution of the model equation to measured depth distributions of the radionuclide. In this work, the advective dispersive transport model with linear sorption is used to analyze the vertical migration process of {sup 7}Be in soils of undisturbed or reference sites. The deposition history is approximated by pulse-like input functions and time dependent analytical solution of equation model is obtained. The values of dispersion coefficient and apparent advection velocity obtained

  16. On one model problem for the reaction-diffusion-advection equation

    Science.gov (United States)

    Davydova, M. A.; Zakharova, S. A.; Levashova, N. T.

    2017-09-01

    The asymptotic behavior of the solution with boundary layers in the time-independent mathematical model of reaction-diffusion-advection arising when describing the distribution of greenhouse gases in the surface atmospheric layer is studied. On the basis of the asymptotic method of differential inequalities, the existence of a boundary-layer solution and its asymptotic Lyapunov stability as a steady-state solution of the corresponding parabolic problem is proven. One of the results of this work is the determination of the local domain of the attraction of a boundary-layer solution.

  17. Visualizing Vector Fields Using Line Integral Convolution and Dye Advection

    Science.gov (United States)

    Shen, Han-Wei; Johnson, Christopher R.; Ma, Kwan-Liu

    1996-01-01

    We present local and global techniques to visualize three-dimensional vector field data. Using the Line Integral Convolution (LIC) method to image the global vector field, our new algorithm allows the user to introduce colored 'dye' into the vector field to highlight local flow features. A fast algorithm is proposed that quickly recomputes the dyed LIC images. In addition, we introduce volume rendering methods that can map the LIC texture on any contour surface and/or translucent region defined by additional scalar quantities, and can follow the advection of colored dye throughout the volume.

  18. Salt dynamics in well-mixed estuaries: importance of advection by tides

    OpenAIRE

    Wei, X.; Schramkowski, G.P.; Schuttelaars, H.M.

    2016-01-01

    Understanding salt dynamics is important to adequately model salt intrusion, baroclinic forcing, and sediment transport. In this paper, the importance of the residual salt transport due to tidal advection in well-mixed tidal estuaries is studied. The water motion is resolved in a consistent way with a width-averaged analytical model, coupled to an advection–diffusion equation describing the salt dynamics. The residual salt balance obtained from the coupled model shows that the seaward salt tr...

  19. Advection-diffusion model for the simulation of air pollution distribution from a point source emission

    Science.gov (United States)

    Ulfah, S.; Awalludin, S. A.; Wahidin

    2018-01-01

    Advection-diffusion model is one of the mathematical models, which can be used to understand the distribution of air pollutant in the atmosphere. It uses the 2D advection-diffusion model with time-dependent to simulate air pollution distribution in order to find out whether the pollutants are more concentrated at ground level or near the source of emission under particular atmospheric conditions such as stable, unstable, and neutral conditions. Wind profile, eddy diffusivity, and temperature are considered in the model as parameters. The model is solved by using explicit finite difference method, which is then visualized by a computer program developed using Lazarus programming software. The results show that the atmospheric conditions alone influencing the level of concentration of pollutants is not conclusive as the parameters in the model have their own effect on each atmospheric condition.

  20. Images and Spectra of Time Dependent Two Component Advective Flow in Presence of Outflows

    Science.gov (United States)

    Chatterjee, Arka; Chakrabarti, Sandip K.; Ghosh, Himadri; Garain, Sudip K.

    2018-05-01

    Two Component Advective Flow (TCAF) successfully explains the spectral and temporal properties of outbursting or persistent sources. Images of static TCAF with Compton cloud or CENtrifugal pressure supported Boundary Layer (CENBOL) due to gravitational bending of photons have been studied before. In this paper, we study time dependent images of advective flows around a Schwarzschild black hole which include cooling effects due to Comptonization of soft photons from a Keplerian disks well as the self-consistently produced jets and outflows. We show the overall image of the disk-jet system after convolving with a typical beamwidth. A long exposure image with time dependent system need not show the black hole horizon conspicuously, unless one is looking at a soft state with no jet or the system along the jet axis. Assuming these disk-jet configurations are relevant to radio emitting systems also, our results would be useful to look for event horizons in high accretion rate Supermassive Black Holes in Seyfert galaxies, RL Quasars.

  1. The complementary relationship in estimation of regional evapotranspiration: An enhanced Advection-Aridity model

    Science.gov (United States)

    Michael T. Hobbins; Jorge A. Ramirez; Thomas C. Brown

    2001-01-01

    Long-term monthly evapotranspiration estimates from Brutsaert and Stricker’s Advection-Aridity model were compared with independent estimates of evapotranspiration derived from long-term water balances for 139 undisturbed basins across the conterminous United States. On an average annual basis for the period 1962-1988 the original model, which uses a Penman wind...

  2. A Warming Surface but a Cooling Top of Atmosphere Associated with Warm, Moist Air Mass Advection over the Ice and Snow Covered Arctic

    Science.gov (United States)

    Sedlar, J.

    2015-12-01

    Atmospheric advection of heat and moisture from lower latitudes to the high-latitude Arctic is a critical component of Earth's energy cycle. Large-scale advective events have been shown to make up a significant portion of the moist static energy budget of the Arctic atmosphere, even though such events are typically infrequent. The transport of heat and moisture over surfaces covered by ice and snow results in dynamic changes to the boundary layer structure, stability and turbulence, as well as to diabatic processes such as cloud distribution, microphysics and subsequent radiative effects. Recent studies have identified advection into the Arctic as a key mechanism for modulating the melt and freeze of snow and sea ice, via modification to all-sky longwave radiation. This paper examines the radiative impact during summer of such Arctic advective events at the top of the atmosphere (TOA), considering also the important role they play for the surface energy budget. Using infrared sounder measurements from the AIRS satellite, the summer frequency of significantly stable and moist advective events from 2003-2014 are characterized; justification of AIRS profiles over the Arctic are made using radiosoundings during a 3-month transect (ACSE) across the Eastern Arctic basin. One such event was observed within the East Siberian Sea in August 2014 during ACSE, providing in situ verification on the robustness and capability of AIRS to monitor advective cases. Results will highlight the important surface warming aspect of stable, moist instrusions. However a paradox emerges as such events also result in a cooling at the TOA evident on monthly mean TOA radiation. Thus such events have a climatic importance over ice and snow covered surfaces across the Arctic. ERA-Interim reanalyses are examined to provide a longer term perspective on the frequency of such events as well as providing capability to estimate meridional fluxes of moist static energy.

  3. Estimation of the advection effects induced by surface heterogeneities in the surface energy budget

    NARCIS (Netherlands)

    Cuxart, J.; Wrenger, B.; Martinez-Villagrasa, D.; Reuder, J.; Jonassen, M.O.; Jimenez, M.A.; Lothon, M.; Hartogensis, O.K.; Dunnermann, J.; Conangla, L.; Garai, A.

    2016-01-01

    The effect of terrain heterogeneities in one-point
    measurements is a continuous subject of discussion. Here
    we focus on the order of magnitude of the advection term
    in the equation of the evolution of temperature as generated
    by documented terrain heterogeneities and we estimate

  4. Influence of porewater advection on denitrification in carbonate sands: Evidence from repacked sediment column experiments

    DEFF Research Database (Denmark)

    Santos, Isaac R.; Eyre, Bradley D.; Glud, Ronnie N.

    2012-01-01

    Porewater flow enhances mineralization rates in organic-poor permeable sands. Here, a series of sediment column experiments were undertaken to assess the potential effect of advective porewater transport on denitrification in permeable carbonate sands collected from Heron Island (Great Barrier Re...

  5. Direct and inverse source problems for a space fractional advection dispersion equation

    KAUST Repository

    Aldoghaither, Abeer

    2016-05-15

    In this paper, direct and inverse problems for a space fractional advection dispersion equation on a finite domain are studied. The inverse problem consists in determining the source term from final observations. We first derive the analytic solution to the direct problem which we use to prove the uniqueness and the unstability of the inverse source problem using final measurements. Finally, we illustrate the results with a numerical example.

  6. Advective pathways near the tip of the Antarctic Peninsula: Trends, variability and ecosystem implications

    Science.gov (United States)

    Renner, Angelika H. H.; Thorpe, Sally E.; Heywood, Karen J.; Murphy, Eugene J.; Watkins, Jon L.; Meredith, Michael P.

    2012-05-01

    Pathways and rates of ocean flow near the Antarctic Peninsula are strongly affected by frontal features, forcings from the atmosphere and the cryosphere. In the surface mixed layer, the currents advect material from the northwestern Weddell Sea on the eastern side of the Peninsula around the tip of the Peninsula to its western side and into the Scotia Sea, connecting populations of Antarctic krill (Euphausia superba) and supporting the ecosystem of the region. Modelling of subsurface drifters using a particle tracking algorithm forced by the velocity fields of a coupled sea ice-ocean model (ORCA025-LIM2) allows analysis of the seasonal and interannual variability of drifter pathways over 43 years. The results show robust and persistent connections from the Weddell Sea both to the west into the Bellingshausen Sea and across the Scotia Sea towards South Georgia, reproducing well the observations. The fate of the drifters is sensitive to their deployment location, in addition to other factors. From the shelf of the eastern Antarctic Peninsula, the majority enter the Bransfield Strait and subsequently the Bellingshausen Sea. When originating further offshore over the deeper Weddell Sea, drifters are more likely to cross the South Scotia Ridge and reach South Georgia. However, the wind field east and southeast of Elephant Island, close to the tip of the Peninsula, is crucial for the drifter trajectories and is highly influenced by the Southern Annular Mode (SAM). Increased advection and short travel times to South Georgia, and reduced advection to the western Antarctic Peninsula can be linked to strong westerlies, a signature of the positive phase of the SAM. The converse is true for the negative phase. Strong westerlies and shifts of ocean fronts near the tip of the Peninsula that are potentially associated with both the SAM and the El Niño-Southern Oscillation restrict the connection from the Weddell Sea to the west, and drifters then predominantly follow the open

  7. Analysis of periods with strong and coherent CO2 advection over a forested hill

    Czech Academy of Sciences Publication Activity Database

    Zeri, M.; Rebmann, C.; Feigenwinter, Ch.; Sedlák, Pavel

    2010-01-01

    Roč. 150, č. 5 (2010), s. 674-683 ISSN 0168-1923 R&D Projects: GA AV ČR IAA300420803 Institutional research plan: CEZ:AV0Z30420517 Keywords : Forest ecosystems * Advection * Net ecosystem exchange * Carbon balance * ADVEX Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.228, year: 2010

  8. Solution of the comoving-frame equation of transfer in spherically symmetric flows. III. Effect of aberration and advection terms

    International Nuclear Information System (INIS)

    Mihalas, D.; Kunasz, P.B.; Hummer, D.G.

    1976-01-01

    We investigate the importance of the advection and aberration terms, which are of order V/c, in the comoving-frame transfer equation in spherical geometry. Characteristic trajectories are found which reduce the spatial derivatives to a perfect differential, and a generalization of the numerical procedure developed in the earlier papers of this series that permits the integration of the transfer equation on these characteristics is presented. For cases in which V/cvery-much-less-than1, a perturbation solution is developed which reduces the problem to that solved in the first paper in this series. For velocities of the form V (r) approx.r/subn/(n=0,1,2), it is shown that the magnitude of the effects arising from the advection and aberration terms is about 5V/c relative to the solution with these terms omitted. In stellar winds V/capproximately-less-than0.01; hence we conclude that aberration and advection terms may safely be ignored, and that consideration of the Doppler-shift term alone is adequate in the computation of spectra from such expanding atmospheres

  9. Comparing CO2 Storage and Advection Conditions at Night at Different Carboeuroflux Sites

    Czech Academy of Sciences Publication Activity Database

    Aubinet, M.; Berbigier, P.; Bernhofer, C.; Cescatti, A.; Feigenwinter, C.; Granier, A.; Grünwald, T.; Havránková, Kateřina; Heinesch, B.; Longdoz, B.; Marcolla, B.; Montagnani, L.; Sedlák, Pavel

    2005-01-01

    Roč. 116, - (2005), s. 63-94 ISSN 0006-8314 R&D Projects: GA AV ČR(CZ) KJB3087301 Grant - others:Carboeuroflux(XE) EVK-2-CT-1999-00032 Institutional research plan: CEZ:AV0Z30420517; CEZ:AV0Z6087904 Keywords : Advection * CO2 storage * Forest ecosystems Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.414, year: 2005

  10. Variational integration for ideal magnetohydrodynamics with built-in advection equations

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yao; Burby, J. W.; Bhattacharjee, A. [Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Qin, Hong [Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2014-10-15

    Newcomb's Lagrangian for ideal magnetohydrodynamics (MHD) in Lagrangian labeling is discretized using discrete exterior calculus. Variational integrators for ideal MHD are derived thereafter. Besides being symplectic and momentum-preserving, the schemes inherit built-in advection equations from Newcomb's formulation, and therefore avoid solving them and the accompanying error and dissipation. We implement the method in 2D and show that numerical reconnection does not take place when singular current sheets are present. We then apply it to studying the dynamics of the ideal coalescence instability with multiple islands. The relaxed equilibrium state with embedded current sheets is obtained numerically.

  11. Variational Integration for Ideal MHD with Built-in Advection Equations

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yao [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Qin, Hong [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Burby, J. W. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Bhattacharjee, A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2014-08-05

    Newcomb's Lagrangian for ideal MHD in Lagrangian labeling is discretized using discrete exterior calculus. Variational integrators for ideal MHD are derived thereafter. Besides being symplectic and momentum preserving, the schemes inherit built-in advection equations from Newcomb's formulation, and therefore avoid solving them and the accompanying error and dissipation. We implement the method in 2D and show that numerical reconnection does not take place when singular current sheets are present. We then apply it to studying the dynamics of the ideal coalescence instability with multiple islands. The relaxed equilibrium state with embedded current sheets is obtained numerically.

  12. Assessment of the numerical diffusion effect in the advection of a passive tracer in BOLCHEM

    International Nuclear Information System (INIS)

    D'Isidoro, M.; Tiesi, A.

    2005-01-01

    The effects of the numerical scheme implemented in the advection equation of BOLCHEM have been quantified with reference to the diffusion of a passive tracer. An equivalent horizontal diffusion coefficient has been measured and is found to be dependent on wind field and resolution

  13. Optimizing zonal advection of the Advanced Research WRF (ARW) dynamics for Intel MIC

    Science.gov (United States)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.

    2014-10-01

    The Weather Research and Forecast (WRF) model is the most widely used community weather forecast and research model in the world. There are two distinct varieties of WRF. The Advanced Research WRF (ARW) is an experimental, advanced research version featuring very high resolution. The WRF Nonhydrostatic Mesoscale Model (WRF-NMM) has been designed for forecasting operations. WRF consists of dynamics code and several physics modules. The WRF-ARW core is based on an Eulerian solver for the fully compressible nonhydrostatic equations. In the paper, we will use Intel Intel Many Integrated Core (MIC) architecture to substantially increase the performance of a zonal advection subroutine for optimization. It is of the most time consuming routines in the ARW dynamics core. Advection advances the explicit perturbation horizontal momentum equations by adding in the large-timestep tendency along with the small timestep pressure gradient tendency. We will describe the challenges we met during the development of a high-speed dynamics code subroutine for MIC architecture. Furthermore, lessons learned from the code optimization process will be discussed. The results show that the optimizations improved performance of the original code on Xeon Phi 5110P by a factor of 2.4x.

  14. Low-Dissipation Advection Schemes Designed for Large Eddy Simulations of Hypersonic Propulsion Systems

    Science.gov (United States)

    White, Jeffrey A.; Baurle, Robert A.; Fisher, Travis C.; Quinlan, Jesse R.; Black, William S.

    2012-01-01

    The 2nd-order upwind inviscid flux scheme implemented in the multi-block, structured grid, cell centered, finite volume, high-speed reacting flow code VULCAN has been modified to reduce numerical dissipation. This modification was motivated by the desire to improve the codes ability to perform large eddy simulations. The reduction in dissipation was accomplished through a hybridization of non-dissipative and dissipative discontinuity-capturing advection schemes that reduces numerical dissipation while maintaining the ability to capture shocks. A methodology for constructing hybrid-advection schemes that blends nondissipative fluxes consisting of linear combinations of divergence and product rule forms discretized using 4th-order symmetric operators, with dissipative, 3rd or 4th-order reconstruction based upwind flux schemes was developed and implemented. A series of benchmark problems with increasing spatial and fluid dynamical complexity were utilized to examine the ability of the candidate schemes to resolve and propagate structures typical of turbulent flow, their discontinuity capturing capability and their robustness. A realistic geometry typical of a high-speed propulsion system flowpath was computed using the most promising of the examined schemes and was compared with available experimental data to demonstrate simulation fidelity.

  15. Quantifying the uncertainties of advection and boundary layer dynamics on the diurnal carbon dioxide budget

    NARCIS (Netherlands)

    Pino, D.; Kaikkonen, J.P.; Vilà-Guerau de Arellano, J.

    2013-01-01

    [1] We investigate the uncertainties in the carbon dioxide (CO2) mixing ratio and inferred surface flux associated with boundary layer processes and advection by using mixed-layer theory. By extending the previous analysis presented by Pino et al. (2012), new analytical expressions are derived to

  16. Digital simulation of an enrichment process for solutions by means of an advection-diffusion chamber

    International Nuclear Information System (INIS)

    Artucio, G.; Suarez, R.; Uruguay Catholic University)

    1995-01-01

    An ab-initio digital simulation of the space-time dynamics of the concentration field of a solute in an advection-diffusion chamber is done. Some questions related to the digital simulation of the concentration field using the analytical solution obtained in a previous paper are discussed

  17. Atlantic Water advection vs. glacier dynamics in northern Spitsbergen since early deglaciation

    Directory of Open Access Journals (Sweden)

    M. Bartels

    2017-11-01

    Full Text Available Atlantic Water (AW advection plays an important role in climatic, oceanographic and environmental conditions in the eastern Arctic. Situated along the only deep connection between the Atlantic and the Arctic oceans, the Svalbard Archipelago is an ideal location to reconstruct the past AW advection history and document its linkage with local glacier dynamics, as illustrated in the present study of a 275 cm long sedimentary record from Woodfjorden (northern Spitsbergen; water depth: 171 m spanning the last  ∼  15 500 years. Sedimentological, micropalaeontological and geochemical analyses were used to reconstruct changes in marine environmental conditions, sea ice cover and glacier activity. Data illustrate a partial break-up of the Svalbard–Barents Sea Ice Sheet from Heinrich Stadial 1 onwards (until  ∼  14.6 ka. During the Bølling–Allerød ( ∼  14.6–12.7 ka, AW penetrated as a bottom water mass into the fjord system and contributed significantly to the destabilization of local glaciers. During the Younger Dryas ( ∼  12.7–11.7 ka, it intruded into intermediate waters while evidence for a glacier advance is lacking. A short-term deepening of the halocline occurred at the very end of this interval. During the early Holocene ( ∼  11.7–7.8 ka, mild conditions led to glacier retreat, a reduced sea ice cover and increasing sea surface temperatures, with a brief interruption during the Preboreal Oscillation ( ∼  11.1–10.8 ka. Due to a  ∼  6000-year gap, the mid-Holocene is not recorded in this sediment core. During the late Holocene ( ∼  1.8–0.4 ka, a slightly reduced AW inflow and lower sea surface temperatures compared to the early Holocene are reconstructed. Glaciers, which previously retreated to the shallower inner parts of the Woodfjorden system, likely advanced during the late Holocene. In particular, topographic control in concert with the reduced

  18. Forecasting Advective Sea Fog with the Use of Classification and Regression Tree Analyses for Kunsan Air Base

    National Research Council Canada - National Science Library

    Lewis, Danielle

    2004-01-01

    .... To date, there are no suitable methods developed for forecasting advective sea fog at Kunsan, primarily due to a lack of understanding of sea fog formation under various synoptic situations over the Yellow Sea...

  19. Subsurface barrier design alternatives for confinement and controlled advection flow

    International Nuclear Information System (INIS)

    Phillips, S.J.; Stewart, W.E.; Alexander, R.G.; Cantrell, K.J.; McLaughlin, T.J.

    1994-02-01

    Various technologies and designs are being considered to serve as subsurface barriers to confine or control contaminant migration from underground waste storage or disposal structures containing radioactive and hazardous wastes. Alternatives including direct-coupled flood and controlled advection designs are described as preconceptual examples. Prototype geotechnical equipment for testing and demonstration of these alternative designs tested at the Hanford Geotechnical Development and Test Facility and the Hanford Small-Tube Lysimeter Facility include mobile high-pressure injectors and pumps, mobile transport and pumping units, vibratory and impact pile drivers, and mobile batching systems. Preliminary laboratory testing of barrier materials and additive sequestering agents have been completed and are described

  20. Preconditioned iterative methods for space-time fractional advection-diffusion equations

    Science.gov (United States)

    Zhao, Zhi; Jin, Xiao-Qing; Lin, Matthew M.

    2016-08-01

    In this paper, we propose practical numerical methods for solving a class of initial-boundary value problems of space-time fractional advection-diffusion equations. First, we propose an implicit method based on two-sided Grünwald formulae and discuss its stability and consistency. Then, we develop the preconditioned generalized minimal residual (preconditioned GMRES) method and preconditioned conjugate gradient normal residual (preconditioned CGNR) method with easily constructed preconditioners. Importantly, because resulting systems are Toeplitz-like, fast Fourier transform can be applied to significantly reduce the computational cost. We perform numerical experiments to demonstrate the efficiency of our preconditioners, even in cases with variable coefficients.

  1. Enriched reproducing kernel particle method for fractional advection-diffusion equation

    Science.gov (United States)

    Ying, Yuping; Lian, Yanping; Tang, Shaoqiang; Liu, Wing Kam

    2018-06-01

    The reproducing kernel particle method (RKPM) has been efficiently applied to problems with large deformations, high gradients and high modal density. In this paper, it is extended to solve a nonlocal problem modeled by a fractional advection-diffusion equation (FADE), which exhibits a boundary layer with low regularity. We formulate this method on a moving least-square approach. Via the enrichment of fractional-order power functions to the traditional integer-order basis for RKPM, leading terms of the solution to the FADE can be exactly reproduced, which guarantees a good approximation to the boundary layer. Numerical tests are performed to verify the proposed approach.

  2. Chaotic advection and heat transfer in two similar 2-D periodic flows and in their corresponding 3-D periodic flows

    Science.gov (United States)

    Vinsard, G.; Dufour, S.; Saatdjian, E.; Mota, J. P. B.

    2016-03-01

    Chaotic advection can effectively enhance the heat transfer rate between a boundary and fluids with high Prandtl number. These fluids are usually highly viscous and thus turbulent agitation is not a viable solution since the energy required to mix the fluid would be prohibitive. Here, we analyze previously obtained results on chaotic advection and heat transfer in two similar 2-D periodic flows and on their corresponding 3-D periodic flows when an axial velocity component is superposed. The two flows studied are the flow between eccentric rotating cylinders and the flow between confocal ellipses. For both of these flows the analysis is simplified because the Stokes equations can be solved analytically to obtain a closed form solution. For both 2-D periodic flows, we show that chaotic heat transfer is enhanced by the displacement of the saddle point location during one period. Furthermore, the enhancement by chaotic advection in the elliptical geometry is approximately double that obtained in the cylindrical geometry because there are two saddle points instead of one. We also explain why, for high eccentricity ratios, there is no heat transfer enhancement in the cylindrical geometry. When an axial velocity component is added to both of these flows so that they become 3-D, previous work has shown that there is an optimum modulation frequency for which chaotic advection and heat transfer enhancement is a maximum. Here we show that the optimum modulation frequency can be derived from results without an axial flow. We also explain by physical arguments other previously unanswered questions in the published data.

  3. Fast Advection of Magnetic Fields by Hot Electrons

    International Nuclear Information System (INIS)

    Willingale, L.; Thomas, A. G. R.; Krushelnick, K.; Nilson, P. M.; Kaluza, M. C.; Dangor, A. E.; Evans, R. G.; Fernandes, P.; Haines, M. G.; Kamperidis, C.; Kingham, R. J.; Ridgers, C. P.; Sherlock, M.; Wei, M. S.; Najmudin, Z.; Bandyopadhyay, S.; Notley, M.; Minardi, S.; Tatarakis, M.; Rozmus, W.

    2010-01-01

    Experiments where a laser-generated proton beam is used to probe the megagauss strength self-generated magnetic fields from a nanosecond laser interaction with an aluminum target are presented. At intensities of 10 15 W cm -2 and under conditions of significant fast electron production and strong heat fluxes, the electron mean-free-path is long compared with the temperature gradient scale length and hence nonlocal transport is important for the dynamics of the magnetic field in the plasma. The hot electron flux transports self-generated magnetic fields away from the focal region through the Nernst effect [A. Nishiguchi et al., Phys. Rev. Lett. 53, 262 (1984)] at significantly higher velocities than the fluid velocity. Two-dimensional implicit Vlasov-Fokker-Planck modeling shows that the Nernst effect allows advection and self-generation transports magnetic fields at significantly faster than the ion fluid velocity, v N /c s ≅10.

  4. Sensitivity of the engineered barrier system (EBS) release rate to alternative conceptual models of advective release from waste packages under dripping fractures

    International Nuclear Information System (INIS)

    Lee, J.H.; Atkins, J.E.; McNeish, J.A.; Vallikat, V.

    1996-01-01

    The first model assumed that dripping water directly contacts the waste form inside the ''failed'' waste package and radionuclides are released from the EBS by advection. The second model assumed that dripping water is diverted around the package (because of corrosion products plugging the perforations), thereby being prevented from directly contacting the waste form. In the second model, radionuclides were assumed to diffuse through the perforations, and, once outside the waste package, to be released from the EBS by advection. For the case with the second EBS release model, most radionuclides had lower peak EBS release rates than with the first model. Impacts of the alternative EBS release models were greater for the radionuclides with low solubility. The analysis indicated that the EBS release model representing advection through a ''failed'' waste package (the first model) may be too conservative; thus a ''failed'' waste package container with multiple perforations may still be an important barrier to radionuclide release

  5. A conservative scheme for 2D and 3D adaptive semi-Lagrangian advection

    OpenAIRE

    Behrens, Jörn; Mentrup, Lars

    2005-01-01

    This article describes a 2D and 3D adaptive and mass conservingsemi-Lagrangian advection scheme for atmospheric transport problems. Fromthe integral form of the conservation law we derive a semi-Lagrangian schemebased on conservation of mass along trajectories. The mapping of mass fromthe old (adaptively refined and possibly different) grid to the upstream controlvolume is performed by a mass packet based scheme, essentially consistingof a sub-grid discretization. We validate the new adaptive...

  6. Accuracy of spectral and finite difference schemes in 2D advection problems

    DEFF Research Database (Denmark)

    Naulin, V.; Nielsen, A.H.

    2003-01-01

    In this paper we investigate the accuracy of two numerical procedures commonly used to solve 2D advection problems: spectral and finite difference (FD) schemes. These schemes are widely used, simulating, e.g., neutral and plasma flows. FD schemes have long been considered fast, relatively easy...... that the accuracy of FD schemes can be significantly improved if one is careful in choosing an appropriate FD scheme that reflects conservation properties of the nonlinear terms and in setting up the grid in accordance with the problem....

  7. THE INTERPLAY BETWEEN GEOCHEMICAL REACTIONS AND ADVECTION-DISPERSION IN CONTAMINANT TRANSPORT AT A URANIUM MILL TAILINGS SITE

    Science.gov (United States)

    It is well known that the fate and transport of contaminants in the subsurface are controlled by complex processes including advection, dispersion-diffusion, and chemical reactions. However, the interplay between the physical transport processes and chemical reactions, and their...

  8. Using Rising Limb Analysis to Estimate Uptake of Reactive Solutes in Advective and Transient Storage Sub-compartments of Stream Ecosystems

    Science.gov (United States)

    Thomas, S. A.; Valett, H.; Webster, J. R.; Mulholland, P. J.; Dahm, C. N.

    2001-12-01

    Identifying the locations and controls governing solute uptake is a recent area of focus in studies of stream biogeochemistry. We introduce a technique, rising limb analysis (RLA), to estimate areal nitrate uptake in the advective and transient storage (TS) zones of streams. RLA is an inverse approach that combines nutrient spiraling and transient storage modeling to calculate total uptake of reactive solutes and the fraction of uptake occurring within the advective sub-compartment of streams. The contribution of the transient storage zones to solute loss is determined by difference. Twelve-hour coinjections of conservative (Cl-) and reactive (15NO3) tracers were conducted seasonally in several headwater streams among which AS/A ranged from 0.01 - 2.0. TS characteristics were determined using an advection-dispersion model modified to include hydrologic exchange with a transient storage compartment. Whole-system uptake was determined by fitting the longitudinal pattern of NO3 to first-order, exponential decay model. Uptake in the advective sub-compartment was determined by collecting a temporal sequence of samples from a single location beginning with the arrival of the solute front and concluding with the onset of plateau conditions (i.e. the rising limb). Across the rising limb, 15NO3:Cl was regressed against the percentage of water that had resided in the transient storage zone (calculated from the TS modeling). The y-intercept thus provides an estimate of the plateau 15NO3:Cl ratio in the absence of NO3 uptake within the transient storage zone. Algebraic expressions were used to calculate the percentage of NO3 uptake occurring in the advective and transient storage sub-compartments. Application of RLA successfully estimated uptake coefficients for NO3 in the subsurface when the physical dimensions of that habitat were substantial (AS/A > 0.2) and when plateau conditions at the sampling location consisted of waters in which at least 25% had resided in the

  9. Existence of solution for a general fractional advection-dispersion equation

    Science.gov (United States)

    Torres Ledesma, César E.

    2018-05-01

    In this work, we consider the existence of solution to the following fractional advection-dispersion equation -d/dt ( p {_{-∞}}It^{β }(u'(t)) + q {t}I_{∞}^{β }(u'(t))) + b(t)u = f(t, u(t)),t\\in R where β \\in (0,1) , _{-∞}It^{β } and tI_{∞}^{β } denote left and right Liouville-Weyl fractional integrals of order β respectively, 0continuous functions. Due to the general assumption on the constant p and q, the problem (0.1) does not have a variational structure. Despite that, here we study it performing variational methods, combining with an iterative technique, and give an existence criteria of solution for the problem (0.1) under suitable assumptions.

  10. Effect of advection on variations in zooplankton at a single location near Cabo Nazca, Peru

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S L; Brink, K H; Santander, H; Cowles, T J; Huyer, A

    1980-04-01

    Temporal variations in the biomass and species composition of zooplankton at a single midshelf station in an upwelling area off Peru can be explained to a large extent by onshore-offshore advection in the upper 20 m of the water column. During periods of strong or sustained near-surface onshore flow, peaks in biomass of zooplankton were observed at midshelf and typically oceanic species of copepod were collected. In periods of offshore flow at the surface, a copepod capable of migrating into oxygen-depleted layers deeper than 30 m was collected. A simple translocation model of advection applied to the cross-shelf distribution of Paracalanus parvus suggests that the fluctuations in P. pavus observed in the midshelf time-series were closely related to onshore-offshore flow in the upper 20 m. Fluctuations in abundance of the numerically dominant copepod, Acartia tonsa, were apparently affected by near surface flow also. The population age-structure suggests that A. tonsa was growing at maximal rates, due in part to its positive feeding response to the dinoflagellate/diatom assemblage of phytoplankton.

  11. A 2.5-dimensional viscous, resistive, advective magnetized accretion-outflow coupling in black hole systems: a higher order polynomial approximation

    Science.gov (United States)

    Ghosh, Shubhrangshu

    2017-09-01

    The correlated and coupled dynamics of accretion and outflow around black holes (BHs) are essentially governed by the fundamental laws of conservation as outflow extracts matter, momentum and energy from the accretion region. Here we analyze a robust form of 2.5-dimensional viscous, resistive, advective magnetized accretion-outflow coupling in BH systems. We solve the complete set of coupled MHD conservation equations self-consistently, through invoking a generalized polynomial expansion in two dimensions. We perform a critical analysis of the accretion-outflow region and provide a complete quasi-analytical family of solutions for advective flows. We obtain the physically plausible outflow solutions at high turbulent viscosity parameter α (≳ 0.3), and at a reduced scale-height, as magnetic stresses compress or squeeze the flow region. We found that the value of the large-scale poloidal magnetic field B P is enhanced with the increase of the geometrical thickness of the accretion flow. On the other hand, differential magnetic torque (-{r}2{\\bar{B}}\\varphi {\\bar{B}}z) increases with the increase in \\dot{M}. {\\bar{B}}{{P}}, -{r}2{\\bar{B}}\\varphi {\\bar{B}}z as well as the plasma beta β P get strongly augmented with the increase in the value of α, enhancing the transport of vertical flux outwards. Our solutions indicate that magnetocentrifugal acceleration plausibly plays a dominant role in effusing out plasma from the radial accretion flow in a moderately advective paradigm which is more centrifugally dominated. However in a strongly advective paradigm it is likely that the thermal pressure gradient would play a more contributory role in the vertical transport of plasma.

  12. Advection from the North Atlantic as the Forcing of Winter Greenhouse Effect Over Europe

    Science.gov (United States)

    Otterman, J.; Angell, J.; Atlas, R.; Bungato, D.; Shubert, S.; Starr, David OC.; Susskind, J.; Wu, M.-L. C.

    2002-01-01

    In winter, large interannual fluctuations in the surface temperature are observed over central Europe. Comparing warm February 1990 with cold February 1996, a satellite-retrieved surface (skin) temperature difference of 9.8 K is observed for the region 50-60 degrees N; 5-35 degrees E. Previous studies show that advection from the North Atlantic constitutes the forcing to such fluctuations. The advection is quantified by Index I(sub na), the average of the ocean-surface wind speed over the eastern North Atlantic when the direction is from the southwest (when the wind is from another direction, it counts as a zero speed to the average). Average I(sub na) for February 1990 was 10.6 m/s, but for February 1996 I(sub na) was only 2.4 m/s. A large value of I(sub na) means a strong southwesterly flow which brings warm and moist air into central Europe at low level, producing a steeper tropospheric lapse rate. Strong ascending motions at 700 mb are observed in association with the occurrence of enhanced warm, moist advection from the ocean in February 1990 producing clouds and precipitation. Total precipitable water and cloud-cover fraction have larger values in February 1990 than in 1996. The difference in the greenhouse effect between these two scenarios, this reduction in heat loss to space, can be translated into a virtual radiative heating of 2.6 W/square m above the February 1990 surface/atmosphere system, which contributes to a warming of the surface on the order of 2.6 K. Accepting this estimate as quantitatively meaningful, we evaluate the direct effect, the rise in the surface temperature in Europe as a result of maritime-air inflow, as 7.2 K (9.8 K-2.6 K). Thus, fractional reinforcement by the greenhouse effect is 2.6/7.2, or 36%, a substantial positive feedback.

  13. TOWARD A MAGNETOHYDRODYNAMIC THEORY OF THE STATIONARY ACCRETION SHOCK INSTABILITY: TOY MODEL OF THE ADVECTIVE-ACOUSTIC CYCLE IN A MAGNETIZED FLOW

    International Nuclear Information System (INIS)

    Guilet, Jerome; Foglizzo, Thierry

    2010-01-01

    The effect of a magnetic field on the linear phase of the advective-acoustic instability is investigated as a first step toward a magnetohydrodynamic (MHD) theory of the stationary accretion shock instability taking place during stellar core collapse. We study a toy model where the flow behind a planar stationary accretion shock is adiabatically decelerated by an external potential. Two magnetic field geometries are considered: parallel or perpendicular to the shock. The entropy-vorticity wave, which is simply advected in the unmagnetized limit, separates into five different waves: the entropy perturbations are advected, while the vorticity can propagate along the field lines through two Alfven waves and two slow magnetosonic waves. The two cycles existing in the unmagnetized limit, advective-acoustic and purely acoustic, are replaced by up to six distinct MHD cycles. The phase differences among the cycles play an important role in determining the total cycle efficiency and hence the growth rate. Oscillations in the growth rate as a function of the magnetic field strength are due to this varying phase shift. A vertical magnetic field hardly affects the cycle efficiency in the regime of super-Alfvenic accretion that is considered. In contrast, we find that a horizontal magnetic field strongly increases the efficiencies of the vorticity cycles that bend the field lines, resulting in a significant increase of the growth rate if the different cycles are in phase. These magnetic effects are significant for large-scale modes if the Alfven velocity is a sizable fraction of the flow velocity.

  14. Magnetized advective accretion flows: formation of magnetic barriers in magnetically arrested discs

    Science.gov (United States)

    Mondal, Tushar; Mukhopadhyay, Banibrata

    2018-05-01

    We discuss the importance of large-scale strong magnetic field in the removal of angular momentum outward, as well as the possible origin of different kinds of magnetic barrier in advective, geometrically thick, sub-Keplerian accretion flows around black holes. The origin of this large-scale strong magnetic field near the event horizon is due to the advection of the magnetic flux by the accreting gas from the environment, say, the interstellar medium or a companion star, because of flux freezing. In this simplest vertically averaged, 1.5-dimensional disc model, we choose the maximum upper limit of the magnetic field, which the disc around a black hole can sustain. In this so called magnetically arrested disc model, the accreting gas either decelerates or faces the magnetic barrier near the event horizon by the accumulated magnetic field depending on the geometry. The magnetic barrier may knock the matter to infinity. We suggest that these types of flow are the building block to produce jets and outflows in the accreting system. We also find that in some cases, when matter is trying to go back to infinity after knocking the barrier, matter is prevented being escaped by the cumulative action of strong gravity and the magnetic tension, hence by another barrier. In this way, magnetic field can lock the matter in between these two barriers and it might be a possible explanation for the formation of episodic jet.

  15. Proton probe measurement of fast advection of magnetic fields by hot electrons

    International Nuclear Information System (INIS)

    Willingale, L; Thomas, A G R; Nilson, P M; Kaluza, M C; Dangor, A E; Evans, R G; Fernandes, P; Haines, M G; Kamperidis, C; Kingham, R J; Ridgers, C P; Sherlock, M; Wei, M S; Najmudin, Z; Krushelnick, K; Bandyopadhyay, S; Notley, M; Minardi, S; Rozmus, W; Tatarakis, M

    2011-01-01

    A laser generated proton beam was used to measure the megagauss strength self-generated magnetic fields from a nanosecond laser interaction with an aluminum target. At intensities of 10 15 W cm −2 , the significant hot electron production and strong heat fluxes result in non-local transport becoming important to describe the magnetic field dynamics. Two-dimensional implicit Vlasov–Fokker–Planck modeling shows that fast advection of the magnetic field from the focal region occurs via the Nernst effect at significantly higher velocities than the sound speed, v N /c s ≈ 10.

  16. Advection of Potential Temperature in the Atmosphere of Irradiated Exoplanets: A Robust Mechanism to Explain Radius Inflation

    Science.gov (United States)

    Tremblin, P.; Chabrier, G.; Mayne, N. J.; Amundsen, D. S.; Baraffe, I.; Debras, F.; Drummond, B.; Manners, J.; Fromang, S.

    2017-01-01

    The anomalously large radii of strongly irradiated exoplanets have remained a major puzzle in astronomy. Based on a two-dimensional steady-state atmospheric circulation model, the validity of which is assessed by comparison to three-dimensional calculations, we reveal a new mechanism, namely the advection of the potential temperature due to mass and longitudinal momentum conservation, a process occurring in the Earth's atmosphere or oceans. In the deep atmosphere, the vanishing heating flux forces the atmospheric structure to converge to a hotter adiabat than the one obtained with 1D calculations, implying a larger radius for the planet. Not only do the calculations reproduce the observed radius of HD 209458b, but also reproduce the observed correlation between radius inflation and irradiation for transiting planets. Vertical advection of potential temperature induced by non-uniform atmospheric heating thus provides a robust mechanism to explain the inflated radii of irradiated hot Jupiters.

  17. Advection of Potential Temperature in the Atmosphere of Irradiated Exoplanets: A Robust Mechanism to Explain Radius Inflation

    International Nuclear Information System (INIS)

    Tremblin, P.; Chabrier, G.; Mayne, N. J.; Baraffe, I.; Debras, F.; Drummond, B.; Manners, J.; Amundsen, D. S.; Fromang, S.

    2017-01-01

    The anomalously large radii of strongly irradiated exoplanets have remained a major puzzle in astronomy. Based on a two-dimensional steady-state atmospheric circulation model, the validity of which is assessed by comparison to three-dimensional calculations, we reveal a new mechanism, namely the advection of the potential temperature due to mass and longitudinal momentum conservation, a process occurring in the Earth’s atmosphere or oceans. In the deep atmosphere, the vanishing heating flux forces the atmospheric structure to converge to a hotter adiabat than the one obtained with 1D calculations, implying a larger radius for the planet. Not only do the calculations reproduce the observed radius of HD 209458b, but also reproduce the observed correlation between radius inflation and irradiation for transiting planets. Vertical advection of potential temperature induced by non-uniform atmospheric heating thus provides a robust mechanism to explain the inflated radii of irradiated hot Jupiters.

  18. Advection of Potential Temperature in the Atmosphere of Irradiated Exoplanets: A Robust Mechanism to Explain Radius Inflation

    Energy Technology Data Exchange (ETDEWEB)

    Tremblin, P. [Maison de la Simulation, CEA-CNRS-INRIA-UPS-UVSQ, USR 3441, CEA Paris-Saclay, F-91191 Gif-Sur-Yvette (France); Chabrier, G.; Mayne, N. J.; Baraffe, I.; Debras, F.; Drummond, B.; Manners, J. [Astrophysics Group, University of Exeter, EX4 4QL Exeter (United Kingdom); Amundsen, D. S. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10025 (United States); Fromang, S., E-mail: pascal.tremblin@cea.fr [Laboratoire AIM, CEA/DSM-CNRS-Université Paris 7, Irfu/Service d’Astrophysique, CEA Paris-Saclay, F-91191 Gif-sur-Yvette (France)

    2017-05-20

    The anomalously large radii of strongly irradiated exoplanets have remained a major puzzle in astronomy. Based on a two-dimensional steady-state atmospheric circulation model, the validity of which is assessed by comparison to three-dimensional calculations, we reveal a new mechanism, namely the advection of the potential temperature due to mass and longitudinal momentum conservation, a process occurring in the Earth’s atmosphere or oceans. In the deep atmosphere, the vanishing heating flux forces the atmospheric structure to converge to a hotter adiabat than the one obtained with 1D calculations, implying a larger radius for the planet. Not only do the calculations reproduce the observed radius of HD 209458b, but also reproduce the observed correlation between radius inflation and irradiation for transiting planets. Vertical advection of potential temperature induced by non-uniform atmospheric heating thus provides a robust mechanism to explain the inflated radii of irradiated hot Jupiters.

  19. Process of advective diffusive enrichment using differential gradients and the effects of variations in relaxation times

    International Nuclear Information System (INIS)

    Suarez Antola R.; Bernasconi, G.; Bertolotti, Angel

    1995-01-01

    A multicomponent solution is considered in advective diffusion chambers between two half-permeable barriers. A mathematical model is developed to calculate the concentration fields in the chamber. A new enrichment process is proposed and assessed using a digital simulation of space-time dynamics, based on the analytical solution of the model

  20. Mode-locking in advection-reaction-diffusion systems: An invariant manifold perspective

    Science.gov (United States)

    Locke, Rory A.; Mahoney, John R.; Mitchell, Kevin A.

    2018-01-01

    Fronts propagating in two-dimensional advection-reaction-diffusion systems exhibit a rich topological structure. When the underlying fluid flow is periodic in space and time, the reaction front can lock to the driving frequency. We explain this mode-locking phenomenon using the so-called burning invariant manifolds (BIMs). In fact, the mode-locked profile is delineated by a BIM attached to a relative periodic orbit (RPO) of the front element dynamics. Changes in the type (and loss) of mode-locking can be understood in terms of local and global bifurcations of the RPOs and their BIMs. We illustrate these concepts numerically using a chain of alternating vortices in a channel geometry.

  1. A new finite element formulation for CFD:VIII. The Galerkin/least-squares method for advective-diffusive equations

    International Nuclear Information System (INIS)

    Hughes, T.J.R.; Hulbert, G.M.; Franca, L.P.

    1988-10-01

    Galerkin/least-squares finite element methods are presented for advective-diffusive equations. Galerkin/least-squares represents a conceptual simplification of SUPG, and is in fact applicable to a wide variety of other problem types. A convergence analysis and error estimates are presented. (author) [pt

  2. A mixed markers and volume-of-fluid method for the reconstruction and advection of interfaces in two-phase and free-boundary flows

    International Nuclear Information System (INIS)

    Aulisa, Eugenio; Manservisi, Sandro; Scardovelli, Ruben

    2003-01-01

    In this work we present a new mixed markers and volume-of-fluid (VOF) algorithm for the reconstruction and advection of interfaces in the two-dimensional space. The interface is described by using both the volume fraction function C, as in VOF methods, and surface markers, which locate the interface within the computational cells. The C field and the markers are advected by following the streamlines. New markers are determined by computing the intersections of the advected interface with the grid lines, then other markers are added inside each cut cell to conserve the volume fraction C. A smooth motion of the interface is obtained, typical of the marker approach, with a good volume conservation, as in standard VOF methods. In this article we consider a few typical two-dimensional tests and compare the results of the mixed algorithm with those obtained with VOF methods. Translations, rotations and vortex tests are performed showing that many problems of the VOF technique can be solved and a good accuracy in the geometrical motion and mass conservation can be achieved

  3. Sensitivity of the engineered barrier system (EBS) release rate to alternative conceptual models of advective release from waste packages under dripping fractures

    International Nuclear Information System (INIS)

    Lee, J.H.; Atkins, J.E.; McNeish, J.A.; Vallikat, V.

    1996-01-01

    Simulations were conducted to analyze the sensitivity of the engineered barrier system (EBS) release rate to alternative conceptual models of the advective release from waste packages under dripping fractures. The first conceptual model assumed that dripping water directly contacts the waste form inside the 'failed' waste package, and radionuclides are released from the EBS by advection. The second conceptual model assumed that dripping water is diverted around the 'failed' waste package (because of the presence of corrosion products plugging the perforations) and dripping water is prevented from directly contacting the waste form. In the second model, radionuclides were assumed to transport through the perforations by diffusion, and, once outside the waste package, to be released from the EBS by advection. The second model was to incorporate more realism into the EBS release calculations. For the case with the second EBS release model, most radionuclides had significantly lower peak EBS release rates (from at least one to several orders of magnitude) than with the first EBS release model. The impacts of the alternative EBS release models were greater for the radionuclides with a low solubility (or solubility-limited radionuclides) than for the radionuclides with a high solubility (or waste form dissolution-limited radionuclides). The analyses indicated that the EBS release model representing advection through a 'failed' waste package (the first EBS release model) may be too conservative in predicting the EBS performance. One major implication from this sensitivity study was that a 'failed' waste package container with multiple perforations may still be able to perform effectively as an important barrier to radionuclide release. (author)

  4. Evapotranspiration estimates and consequences due to errors in the determination of the net radiation and advective effects

    International Nuclear Information System (INIS)

    Oliveira, G.M. de; Leitao, M. de M.V.B.R.

    2000-01-01

    The objective of this study was to analyze the consequences in the evapotranspiration estimates (ET) during the growing cycle of a peanut crop due to the errors committed in the determination of the radiation balance (Rn), as well as those caused by the advective effects. This research was conducted at the Experimental Station of CODEVASF in an irrigated perimeter located in the city of Rodelas, BA, during the period of September to December of 1996. The results showed that errors of the order of 2.2 MJ m -2 d -1 in the calculation of Rn, and consequently in the estimate of ET, can occur depending on the time considered for the daily total of Rn. It was verified that the surrounding areas of the experimental field, as well as the areas of exposed soil within the field, contributed significantly to the generation of local advection of sensible heat, which resulted in the increase of the evapotranspiration [pt

  5. Optimizing meridional advection of the Advanced Research WRF (ARW) dynamics for Intel Xeon Phi coprocessor

    Science.gov (United States)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.-L.

    2015-05-01

    The most widely used community weather forecast and research model in the world is the Weather Research and Forecast (WRF) model. Two distinct varieties of WRF exist. The one we are interested is the Advanced Research WRF (ARW) is an experimental, advanced research version featuring very high resolution. The WRF Nonhydrostatic Mesoscale Model (WRF-NMM) has been designed for forecasting operations. WRF consists of dynamics code and several physics modules. The WRF-ARW core is based on an Eulerian solver for the fully compressible nonhydrostatic equations. In the paper, we optimize a meridional (north-south direction) advection subroutine for Intel Xeon Phi coprocessor. Advection is of the most time consuming routines in the ARW dynamics core. It advances the explicit perturbation horizontal momentum equations by adding in the large-timestep tendency along with the small timestep pressure gradient tendency. We will describe the challenges we met during the development of a high-speed dynamics code subroutine for MIC architecture. Furthermore, lessons learned from the code optimization process will be discussed. The results show that the optimizations improved performance of the original code on Xeon Phi 7120P by a factor of 1.2x.

  6. New advection schemes for free surface flows

    International Nuclear Information System (INIS)

    Pavan, Sara

    2016-01-01

    The purpose of this thesis is to build higher order and less diffusive schemes for pollutant transport in shallow water flows or 3D free surface flows. We want robust schemes which respect the main mathematical properties of the advection equation with relatively low numerical diffusion and apply them to environmental industrial applications. Two techniques are tested in this work: a classical finite volume method and a residual distribution technique combined with a finite element method. For both methods we propose a decoupled approach since it is the most advantageous in terms of accuracy and CPU time. Concerning the first technique, a vertex-centred finite volume method is used to solve the augmented shallow water system where the numerical flux is computed through an Harten-Lax-Van Leer-Contact Riemann solver. Starting from this solution, a decoupled approach is formulated and is preferred since it allows to compute with a larger time step the advection of a tracer. This idea was inspired by Audusse, E. and Bristeau, M.O. [13]. The Monotonic Upwind Scheme for Conservation Law, combined with the decoupled approach, is then used for the second order extension in space. The wetting and drying problem is also analysed and a possible solution is presented. In the second case, the shallow water system is entirely solved using the finite element technique and the residual distribution method is applied to the solution of the tracer equation, focusing on the case of time-dependent problems. However, for consistency reasons the resolution of the continuity equation must be considered in the numerical discretization of the tracer. In order to get second order schemes for unsteady cases a predictor-corrector scheme is used in this work. A first order but less diffusive version of the predictor-corrector scheme is also introduced. Moreover, we also present a new locally semi-implicit version of the residual distribution method which, in addition to good properties in

  7. Differentiating transpiration from evaporation in seasonal agricultural wetlands and the link to advective fluxes in the root zone

    International Nuclear Information System (INIS)

    Bachand, P.A.M.; Bachand, S.; Fleck, J.; Anderson, F.; Windham-Myers, L.

    2014-01-01

    The current state of science and engineering related to analyzing wetlands overlooks the importance of transpiration and risks data misinterpretation. In response, we developed hydrologic and mass budgets for agricultural wetlands using electrical conductivity (EC) as a natural conservative tracer. We developed simple differential equations that quantify evaporation and transpiration rates using flow rates and tracer concentrations at wetland inflows and outflows. We used two ideal reactor model solutions, a continuous flow stirred tank reactor (CFSTR) and a plug flow reactor (PFR), to bracket real non-ideal systems. From those models, estimated transpiration ranged from 55% (CFSTR) to 74% (PFR) of total evapotranspiration (ET) rates, consistent with published values using standard methods and direct measurements. The PFR model more appropriately represents these non-ideal agricultural wetlands in which check ponds are in series. Using a flux model, we also developed an equation delineating the root zone depth at which diffusive dominated fluxes transition to advective dominated fluxes. This relationship is similar to the Peclet number that identifies the dominance of advective or diffusive fluxes in surface and groundwater transport. Using diffusion coefficients for inorganic mercury (Hg) and methylmercury (MeHg) we calculated that during high ET periods typical of summer, advective fluxes dominate root zone transport except in the top millimeters below the sediment–water interface. The transition depth has diel and seasonal trends, tracking those of ET. Neglecting this pathway has profound implications: misallocating loads along different hydrologic pathways; misinterpreting seasonal and diel water quality trends; confounding Fick's First Law calculations when determining diffusion fluxes using pore water concentration data; and misinterpreting biogeochemical mechanisms affecting dissolved constituent cycling in the root zone. In addition, our understanding of

  8. Temporal signatures of advective versus diffusive radon transport at a geothermal zone in Central Nepal

    International Nuclear Information System (INIS)

    Richon, Patrick; Perrier, Frederic; Koirala, Bharat Prasad; Girault, Frederic; Bhattarai, Mukunda; Sapkota, Soma Nath

    2011-01-01

    Temporal variation of radon-222 concentration was studied at the Syabru-Bensi hot springs, located on the Main Central Thrust zone in Central Nepal. This site is characterized by several carbon dioxide discharges having maximum fluxes larger than 10 kg m -2 d -1 . Radon concentration was monitored with autonomous Barasol TM probes between January 2008 and November 2009 in two small natural cavities with high CO 2 concentration and at six locations in the soil: four points having a high flux, and two background reference points. At the reference points, dominated by radon diffusion, radon concentration was stable from January to May, with mean values of 22 ± 6.9 and 37 ± 5.5 kBq m -3 , but was affected by a large increase, of about a factor of 2 and 1.6, respectively, during the monsoon season from June to September. At the points dominated by CO 2 advection, by contrast, radon concentration showed higher mean values 39.0 ± 2.6 to 78 ± 1.4 kBq m -3 , remarkably stable throughout the year with small long-term variation, including a possible modulation of period around 6 months. A significant difference between the diffusion dominated reference points and the advection-dominated points also emerged when studying the diurnal S 1 and semi-diurnal S 2 periodic components. At the advection-dominated points, radon concentration did not exhibit S 1 or S 2 components. At the reference points, however, the S 2 component, associated with barometric tide, could be identified during the dry season, but only when the probe was installed at shallow depth. The S 1 component, associated with thermal and possibly barometric diurnal forcing, was systematically observed, especially during monsoon season. The remarkable short-term and long-term temporal stability of the radon concentration at the advection-dominated points, which suggests a strong pressure source at depth, may be an important asset to detect possible temporal variations associated with the seismic cycle. - Graphical

  9. Virus Dynamics Are Influenced by Season, Tides and Advective Transport in Intertidal, Permeable Sediments.

    Science.gov (United States)

    Vandieken, Verona; Sabelhaus, Lara; Engelhardt, Tim

    2017-01-01

    Sandy surface sediments of tidal flats exhibit high microbial activity due to the fast and deep-reaching transport of oxygen and nutrients by porewater advection. On the other hand during low tide, limited transport results in nutrient and oxygen depletion concomitant to the accumulation of microbial metabolites. This study represents the first attempt to use flow-through reactors to investigate virus production, virus transport and the impact of tides and season in permeable sediments. The reactors were filled with intertidal sands of two sites (North beach site and backbarrier sand flat of Spiekeroog island in the German Wadden Sea) to best simulate advective porewater transport through the sediments. Virus and cell release along with oxygen consumption were measured in the effluents of reactors during continuous flow of water through the sediments as well as in tidal simulation experiments where alternating cycles with and without water flow (each for 6 h) were operated. The results showed net rates of virus production (0.3-13.2 × 10 6 viruses cm -3 h -1 ) and prokaryotic cell production (0.3-10.0 × 10 5 cells cm -3 h -1 ) as well as oxygen consumption rates (56-737 μmol l -1 h -1 ) to be linearly correlated reflecting differences in activity, season and location of the sediments. Calculations show that total virus turnover was fast with 2 to 4 days, whereas virus-mediated cell turnover was calculated to range between 5-13 or 33-91 days depending on the assumed burst sizes (number of viruses released upon cell lysis) of 14 or 100 viruses, respectively. During the experiments, the homogenized sediments in the reactors became vertically structured with decreasing microbial activities and increasing impact of viruses on prokaryotic mortality with depth. Tidal simulation clearly showed a strong accumulation of viruses and cells in the top sections of the reactors when the flow was halted indicating a consistently high virus production during low tide. In

  10. The Effect of Alongcoast Advection on Pacific Northwest Shelf and Slope Water Properties in Relation to Upwelling Variability

    Science.gov (United States)

    Stone, Hally B.; Banas, Neil S.; MacCready, Parker

    2018-01-01

    The Northern California Current System experiences highly variable seasonal upwelling in addition to larger basin-scale variability, both of which can significantly affect its water chemistry. Salinity and temperature fields from a 7 year ROMS hindcast model of this region (43°N-50°N), along with extensive particle tracking, were used to study interannual variability in water properties over both the upper slope and the midshelf bottom. Variation in slope water properties was an order of magnitude smaller than on the shelf. Furthermore, the primary relationship between temperature and salinity anomalies in midshelf bottom water consisted of variation in density (cold/salty versus warm/fresh), nearly orthogonal to the anomalies along density levels (cold/fresh versus warm/salty) observed on the upper slope. These midshelf anomalies were well-explained (R2 = 0.6) by the combination of interannual variability in local and remote alongshore wind stress, and depth of the California Undercurrent (CUC) core. Lagrangian analysis of upper slope and midshelf bottom water shows that both are affected simultaneously by large-scale alongcoast advection of water through the northern and southern boundaries. The amplitude of anomalies in bottom oxygen and dissolved inorganic carbon (DIC) on the shelf associated with upwelling variability are larger than those associated with typical variation in alongcoast advection, and are comparable to observed anomalies in this region. However, a large northern intrusion event in 2004 illustrates that particular, large-scale alongcoast advection anomalies can be just as effective as upwelling variability in changing shelf water properties on the interannual scale.

  11. Application of vertical advection-diffusion model for studying CO2 and O2 profiles in central Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    AnilKumar, N.; Singbal, S.Y.S.

    The vertical advection-diffusion model proposed by Craig has been applied to the study of CO sub(2) and O sub(2) profiles in Central Arabian Sea. Distributions of total CO Sub(2) and O sub(2) are explained better by expressions involving exponential...

  12. Advection and dispersion of bed load tracers

    Science.gov (United States)

    Lajeunesse, Eric; Devauchelle, Olivier; James, François

    2018-05-01

    We use the erosion-deposition model introduced by Charru et al. (2004) to numerically simulate the evolution of a plume of bed load tracers entrained by a steady flow. In this model, the propagation of the plume results from the stochastic exchange of particles between the bed and the bed load layer. We find a transition between two asymptotic regimes. The tracers, initially at rest, are gradually set into motion by the flow. During this entrainment regime, the plume is strongly skewed in the direction of propagation and continuously accelerates while spreading nonlinearly. With time, the skewness of the plume eventually reaches a maximum value before decreasing. This marks the transition to an advection-diffusion regime in which the plume becomes increasingly symmetrical, spreads linearly, and advances at constant velocity. We analytically derive the expressions of the position, the variance, and the skewness of the plume and investigate their asymptotic regimes. Our model assumes steady state. In the field, however, bed load transport is intermittent. We show that the asymptotic regimes become insensitive to this intermittency when expressed in terms of the distance traveled by the plume. If this finding applies to the field, it might provide an estimate for the average bed load transport rate.

  13. A meshless method for solving two-dimensional variable-order time fractional advection-diffusion equation

    Science.gov (United States)

    Tayebi, A.; Shekari, Y.; Heydari, M. H.

    2017-07-01

    Several physical phenomena such as transformation of pollutants, energy, particles and many others can be described by the well-known convection-diffusion equation which is a combination of the diffusion and advection equations. In this paper, this equation is generalized with the concept of variable-order fractional derivatives. The generalized equation is called variable-order time fractional advection-diffusion equation (V-OTFA-DE). An accurate and robust meshless method based on the moving least squares (MLS) approximation and the finite difference scheme is proposed for its numerical solution on two-dimensional (2-D) arbitrary domains. In the time domain, the finite difference technique with a θ-weighted scheme and in the space domain, the MLS approximation are employed to obtain appropriate semi-discrete solutions. Since the newly developed method is a meshless approach, it does not require any background mesh structure to obtain semi-discrete solutions of the problem under consideration, and the numerical solutions are constructed entirely based on a set of scattered nodes. The proposed method is validated in solving three different examples including two benchmark problems and an applied problem of pollutant distribution in the atmosphere. In all such cases, the obtained results show that the proposed method is very accurate and robust. Moreover, a remarkable property so-called positive scheme for the proposed method is observed in solving concentration transport phenomena.

  14. Terrestrial Fe-oxide Concretions and Mars Blueberries: Comparisons of Similar Advective and Diffusive Chemical Infiltration Reaction Mechanisms

    Science.gov (United States)

    Park, A. J.; Chan, M. A.

    2006-12-01

    Abundant iron oxide concretions occurring in Navajo Sandstone of southern Utah and those discovered at Meridiani Planum, Mars share many common observable physical traits such as their spheriodal shapes, occurrence, and distribution patterns in sediments. Terrestrial concretions are products of interaction between oxygen-rich aquifer water and basin-derived reducing (iron-rich) water. Water-rock interaction simulations show that diffusion of oxygen and iron supplied by slow-moving water is a reasonable mechanism for producing observed concretion patterns. In short, southern Utah iron oxide concretions are results of Liesegang-type diffusive infiltration reactions in sediments. We propose that the formation of blueberry hematite concretions in Mars sediments followed a similar diagenetic mechanism where iron was derived from the alteration of volcanic substrate and oxygen was provided by the early Martian atmosphere. Although the terrestrial analog differs in the original host rock composition, both the terrestrial and Mars iron-oxide precipitation mechanisms utilize iron and oxygen interactions in sedimentary host rock with diffusive infiltration of solutes from two opposite sources. For the terrestrial model, slow advection of iron-rich water is an important factor that allowed pervasive and in places massive precipitation of iron-oxide concretions. In Mars, evaporative flux of water at the top of the sediment column may have produced a slow advective mass-transfer mechanism that provided a steady source and the right quantity of iron. The similarities of the terrestrial and Martian systems are demonstrated using a water-rock interaction simulator Sym.8, initially in one-dimensional systems. Boundary conditions such as oxygen content of water, partial pressure of oxygen, and supply rate of iron were varied. The results demonstrate the importance of slow advection of water and diffusive processes for producing diagenetic iron oxide concretions.

  15. Comparison of finite-difference and variational solutions to advection-diffusion problems

    International Nuclear Information System (INIS)

    Lee, C.E.; Washington, K.E.

    1984-01-01

    Two numerical solution methods are developed for 1-D time-dependent advection-diffusion problems on infinite and finite domains. Numerical solutions are compared with analytical results for constant coefficients and various boundary conditions. A finite-difference spectrum method is solved exactly in time for periodic boundary conditions by a matrix operator method and exhibits excellent accuracy compared with other methods, especially at late times, where it is also computationally more efficient. Finite-system solutions are determined from a conservational variational principle with cubic spatial trial functions and solved in time by a matrix operator method. Comparisons of problems with few nodes show excellent agreement with analytical solutions and exhibit the necessity of implementing Lagrangian conservational constraints for physically-correct solutions. (author)

  16. Coulombic interactions during advection-dominated transport of ions in porous media

    DEFF Research Database (Denmark)

    Muniruzzaman, Muhammad; Stolze, Lucien; Rolle, Massimo

    2017-01-01

    bench-scale experiments and numerical simulations. The investigation aims at quantifying the key role of small-scale electrostatic interactions in flow-through systems, especially when advection is the dominant mass-transfer process. Considering dilute solutions of strong electrolytes (e.g., MgCl2......Solute transport of charged species in porous media is significantly affected by the electrochemical migration term resulting from the charge-induced interactions among dissolved ions and with solid surfaces. Therefore, the characterization of such Coulombic interactions and their effect...... on multicomponent ionic transport is of critical importance for assessing the fate of charged solutes in porous media. In this work we present a detailed investigation of the electrochemical effects during conservative multicomponent ionic transport in homogeneous and heterogeneous domains by means of laboratory...

  17. Advective transport of CO2 in permeable media induced by atmospheric pressure fluctuations: 1. An analytical model

    Science.gov (United States)

    W. J. Massman

    2006-01-01

    Advective flows within soils and snowpacks caused by pressure fluctuations at the upper surface of either medium can significantly influence the exchange rate of many trace gases from the underlying substrate to the atmosphere. Given the importance of many of these trace gases in understanding biogeochemical cycling and global change, it is crucial to quantify (as much...

  18. Smoothed particle hydrodynamics model for Landau-Lifshitz-Navier-Stokes and advection-diffusion equations.

    Science.gov (United States)

    Kordilla, Jannes; Pan, Wenxiao; Tartakovsky, Alexandre

    2014-12-14

    We propose a novel smoothed particle hydrodynamics (SPH) discretization of the fully coupled Landau-Lifshitz-Navier-Stokes (LLNS) and stochastic advection-diffusion equations. The accuracy of the SPH solution of the LLNS equations is demonstrated by comparing the scaling of velocity variance and the self-diffusion coefficient with kinetic temperature and particle mass obtained from the SPH simulations and analytical solutions. The spatial covariance of pressure and velocity fluctuations is found to be in a good agreement with theoretical models. To validate the accuracy of the SPH method for coupled LLNS and advection-diffusion equations, we simulate the interface between two miscible fluids. We study formation of the so-called "giant fluctuations" of the front between light and heavy fluids with and without gravity, where the light fluid lies on the top of the heavy fluid. We find that the power spectra of the simulated concentration field are in good agreement with the experiments and analytical solutions. In the absence of gravity, the power spectra decay as the power -4 of the wavenumber-except for small wavenumbers that diverge from this power law behavior due to the effect of finite domain size. Gravity suppresses the fluctuations, resulting in much weaker dependence of the power spectra on the wavenumber. Finally, the model is used to study the effect of thermal fluctuation on the Rayleigh-Taylor instability, an unstable dynamics of the front between a heavy fluid overlaying a light fluid. The front dynamics is shown to agree well with the analytical solutions.

  19. Advective-diffusive transport of D2O in unsaturated media under evaporation condition

    International Nuclear Information System (INIS)

    Koarashi, Jun; Atarashi-Andoh, Mariko; Amano, Hikaru; Yamazawa, Hiromi; Iida, Takao

    2003-01-01

    Advective-diffusive transport of HTO in unsaturated media was investigated empirically using deuterated water (D 2 O) and columns filled with glass beads. The tortuosity factor was evaluated by numerical model calculations corresponding to first experiment for diffusion under no-evaporation condition. Temporal variations in depth profiles of D 2 O concentrations in the columns were observed by second experiment, which considers the transferring and spreading of D 2 O by pore-water flow caused by evaporation. Measurements and model calculations indicated that diffusion was about two times more efficient than dispersion for D 2 O spreading process under this evaporation condition. (author)

  20. The determination of an unknown source for a space fractional advection dispersion equation

    KAUST Repository

    Aldoghaither, Abeer

    2014-09-01

    In this paper, we are interested in the estimation of the source term for a space fractional advection dispersion equation using concentration and flux measurements at final time. An example of application is the identification of contamination source in groundwater transport. We propose to use the socalled modulating functions method which has been introduced for parameters estimation. This method allows to transfer the estimation problem into solving a system of algebraic equations. Numerical examples are given to illustrate the effectiveness and the robustness of the proposed method. Finally, a comparison between a Tikhonov-based optimization method and the modulating functions approach is presented.

  1. A Computational Realization of a Semi-Lagrangian Method for Solving the Advection Equation

    Directory of Open Access Journals (Sweden)

    Alexander Efremov

    2014-01-01

    Full Text Available A parallel implementation of a method of the semi-Lagrangian type for the advection equation on a hybrid architecture computation system is discussed. The difference scheme with variable stencil is constructed on the base of an integral equality between the neighboring time levels. The proposed approach allows one to avoid the Courant-Friedrichs-Lewy restriction on the relation between time step and mesh size. The theoretical results are confirmed by numerical experiments. Performance of a sequential algorithm and several parallel implementations with the OpenMP and CUDA technologies in the C language has been studied.

  2. Accommodating ground water velocity uncertainties in the advection-dispersion approach to geologic nuclear waste migration

    International Nuclear Information System (INIS)

    Thomas, G.F.

    1994-01-01

    This note shows how uncertainties in nearfield and farfield ground water velocities affect the inventory that migrates from a geologic nuclear waste repository within the classical advection-dispersion approach and manifest themselves through both the finite variances and covariances in the activities of transported nuclides and in the apparent scale dependence of the host rock's dispersivity. Included is a demonstration of these effects for an actinide chain released from used CANDU fuel buried in a hypothetical repository. (Author)

  3. Analysis of moisture advection during explosive cyclogenesis over North Atlantic Ocean

    Science.gov (United States)

    Ordóñez, Paulina; Liberato, Margarida L. R.; Pinto, Joaquim G.; Trigo, Ricardo M.

    2013-04-01

    The development of a mid-latitude cyclone may strongly be amplified by the presence of a very warm and moist air mass within its warm sector through enhanced latent heat release. In this work, a lagrangian approach is applied to examine the contribution of moisture advection to the deepening of cyclones over the North Atlantic Ocean. The warm sector is represented by a 5°x5° longitude/latitude moving box comprising the centre of the cyclone and its south-eastern area is defined for the tracks of different cyclones computed at 6-hourly intervals. Using the lagrangian particle model FLEXPART we evaluated the fresh water flux (E - P) along 2-days back-trajectories of the particles residing on the total column over the defined boxes for case studies occurring during winter months from 1980 to 2000. FLEXPART simulations were performed using one degree resolution and 60 model vertical levels available in ERA40 Reanalyses at 00, 06, 12, 18 UTC for each case. Sensitivity studies on the dimensions of the target area - chosen boxes representing the warm sector -, and on its relative position to the center, were performed. We have applied this methodology to several case studies of independent North Atlantic cyclones with notorious characteristics (e.g. deepening rate, wind speed, surface damages). Results indicate that the moisture transport is particularly relevant in what concerns the fast/explosive development stage of these extratropical cyclones. In particular, the advection of moist air from the subtropics towards the cyclone core is clearly associated with the warm conveyor belt of the cyclone. This methodology can be generalized to a much larger number of mid-latitude cyclones, providing a unique opportunity to analyze the moisture behavior associated with the explosive development. Acknowledgments: This work was partially supported by FEDER (Fundo Europeu de Desenvolvimento Regional) funds through the COMPETE (Programa Operacional Factores de Competitividade

  4. Milstein Approximation for Advection-Diffusion Equations Driven by Multiplicative Noncontinuous Martingale Noises

    International Nuclear Information System (INIS)

    Barth, Andrea; Lang, Annika

    2012-01-01

    In this paper, the strong approximation of a stochastic partial differential equation, whose differential operator is of advection-diffusion type and which is driven by a multiplicative, infinite dimensional, càdlàg, square integrable martingale, is presented. A finite dimensional projection of the infinite dimensional equation, for example a Galerkin projection, with nonequidistant time stepping is used. Error estimates for the discretized equation are derived in L 2 and almost sure senses. Besides space and time discretizations, noise approximations are also provided, where the Milstein double stochastic integral is approximated in such a way that the overall complexity is not increased compared to an Euler–Maruyama approximation. Finally, simulations complete the paper.

  5. HP-multigrid as smoother algorithm for higher order discontinuous Galerkin discretizations of advection dominated flows. Part I. Multilevel Analysis

    NARCIS (Netherlands)

    van der Vegt, Jacobus J.W.; Rhebergen, Sander

    2011-01-01

    The hp-Multigrid as Smoother algorithm (hp-MGS) for the solution of higher order accurate space-(time) discontinuous Galerkin discretizations of advection dominated flows is presented. This algorithm combines p-multigrid with h-multigrid at all p-levels, where the h-multigrid acts as smoother in the

  6. Estimating the solute transport parameters of the spatial fractional advection-dispersion equation using Bees Algorithm.

    Science.gov (United States)

    Mehdinejadiani, Behrouz

    2017-08-01

    This study represents the first attempt to estimate the solute transport parameters of the spatial fractional advection-dispersion equation using Bees Algorithm. The numerical studies as well as the experimental studies were performed to certify the integrity of Bees Algorithm. The experimental ones were conducted in a sandbox for homogeneous and heterogeneous soils. A detailed comparative study was carried out between the results obtained from Bees Algorithm and those from Genetic Algorithm and LSQNONLIN routines in FracFit toolbox. The results indicated that, in general, the Bees Algorithm much more accurately appraised the sFADE parameters in comparison with Genetic Algorithm and LSQNONLIN, especially in the heterogeneous soil and for α values near to 1 in the numerical study. Also, the results obtained from Bees Algorithm were more reliable than those from Genetic Algorithm. The Bees Algorithm showed the relative similar performances for all cases, while the Genetic Algorithm and the LSQNONLIN yielded different performances for various cases. The performance of LSQNONLIN strongly depends on the initial guess values so that, compared to the Genetic Algorithm, it can more accurately estimate the sFADE parameters by taking into consideration the suitable initial guess values. To sum up, the Bees Algorithm was found to be very simple, robust and accurate approach to estimate the transport parameters of the spatial fractional advection-dispersion equation. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Estimating the solute transport parameters of the spatial fractional advection-dispersion equation using Bees Algorithm

    Science.gov (United States)

    Mehdinejadiani, Behrouz

    2017-08-01

    This study represents the first attempt to estimate the solute transport parameters of the spatial fractional advection-dispersion equation using Bees Algorithm. The numerical studies as well as the experimental studies were performed to certify the integrity of Bees Algorithm. The experimental ones were conducted in a sandbox for homogeneous and heterogeneous soils. A detailed comparative study was carried out between the results obtained from Bees Algorithm and those from Genetic Algorithm and LSQNONLIN routines in FracFit toolbox. The results indicated that, in general, the Bees Algorithm much more accurately appraised the sFADE parameters in comparison with Genetic Algorithm and LSQNONLIN, especially in the heterogeneous soil and for α values near to 1 in the numerical study. Also, the results obtained from Bees Algorithm were more reliable than those from Genetic Algorithm. The Bees Algorithm showed the relative similar performances for all cases, while the Genetic Algorithm and the LSQNONLIN yielded different performances for various cases. The performance of LSQNONLIN strongly depends on the initial guess values so that, compared to the Genetic Algorithm, it can more accurately estimate the sFADE parameters by taking into consideration the suitable initial guess values. To sum up, the Bees Algorithm was found to be very simple, robust and accurate approach to estimate the transport parameters of the spatial fractional advection-dispersion equation.

  8. Forecasting Global Horizontal Irradiance Using the LETKF and a Combination of Advected Satellite Images and Sparse Ground Sensors

    Science.gov (United States)

    Harty, T. M.; Lorenzo, A.; Holmgren, W.; Morzfeld, M.

    2017-12-01

    The irradiance incident on a solar panel is the main factor in determining the power output of that panel. For this reason, accurate global horizontal irradiance (GHI) estimates and forecasts are critical when determining the optimal location for a solar power plant, forecasting utility scale solar power production, or forecasting distributed, behind the meter rooftop solar power production. Satellite images provide a basis for producing the GHI estimates needed to undertake these objectives. The focus of this work is to combine satellite derived GHI estimates with ground sensor measurements and an advection model. The idea is to use accurate but sparsely distributed ground sensors to improve satellite derived GHI estimates which can cover large areas (the size of a city or a region of the United States). We use a Bayesian framework to perform the data assimilation, which enables us to produce irradiance forecasts and associated uncertainties which incorporate both satellite and ground sensor data. Within this framework, we utilize satellite images taken from the GOES-15 geostationary satellite (available every 15-30 minutes) as well as ground data taken from irradiance sensors and rooftop solar arrays (available every 5 minutes). The advection model, driven by wind forecasts from a numerical weather model, simulates cloud motion between measurements. We use the Local Ensemble Transform Kalman Filter (LETKF) to perform the data assimilation. We present preliminary results towards making such a system useful in an operational context. We explain how localization and inflation in the LETKF, perturbations of wind-fields, and random perturbations of the advection model, affect the accuracy of our estimates and forecasts. We present experiments showing the accuracy of our forecasted GHI over forecast-horizons of 15 mins to 1 hr. The limitations of our approach and future improvements are also discussed.

  9. Differentiating transpiration from evaporation in seasonal agricultural wetlands and the link to advective fluxes in the root zone

    Science.gov (United States)

    Bachand, P.A.M.; S. Bachand,; Fleck, Jacob A.; Anderson, Frank E.; Windham-Myers, Lisamarie

    2014-01-01

    The current state of science and engineering related to analyzing wetlands overlooks the importance of transpiration and risks data misinterpretation. In response, we developed hydrologic and mass budgets for agricultural wetlands using electrical conductivity (EC) as a natural conservative tracer. We developed simple differential equations that quantify evaporation and transpiration rates using flowrates and tracer concentrations atwetland inflows and outflows. We used two ideal reactormodel solutions, a continuous flowstirred tank reactor (CFSTR) and a plug flow reactor (PFR), to bracket real non-ideal systems. From those models, estimated transpiration ranged from 55% (CFSTR) to 74% (PFR) of total evapotranspiration (ET) rates, consistent with published values using standard methods and direct measurements. The PFR model more appropriately represents these nonideal agricultural wetlands in which check ponds are in series. Using a fluxmodel, we also developed an equation delineating the root zone depth at which diffusive dominated fluxes transition to advective dominated fluxes. This relationship is similar to the Peclet number that identifies the dominance of advective or diffusive fluxes in surface and groundwater transport. Using diffusion coefficients for inorganic mercury (Hg) and methylmercury (MeHg) we calculated that during high ET periods typical of summer, advective fluxes dominate root zone transport except in the top millimeters below the sediment–water interface. The transition depth has diel and seasonal trends, tracking those of ET. Neglecting this pathway has profound implications: misallocating loads along different hydrologic pathways; misinterpreting seasonal and diel water quality trends; confounding Fick's First Law calculations when determining diffusion fluxes using pore water concentration data; and misinterpreting biogeochemicalmechanisms affecting dissolved constituent cycling in the root zone. In addition,our understanding of internal

  10. The straightforward numerical treatment of the time dependent advection in air pollution problems and its verification

    Energy Technology Data Exchange (ETDEWEB)

    Hinrichsen, K

    1982-01-01

    A very simple Lagrangian finite difference scheme has been developed to calculate the time dependent advection of air pollutants. It is mass conserving and avoids numerical pseudo-diffusion. No condition of numerical stability is required. The Eulerian grid used for the diffusion part of the pollutant transport equation remains unchanged. There are no restrictions on temporally and spatially variable emission rates, production and destruction processes, wind velocity, diffusion coefficients, roughness parameters or inversion heights. The only exception is that the wind field should not be too far from being homogeneous in the horizontal direction (test of D. W. Pepper and P. E. Long, 1978, J. appl. Met. 17, 228-233). Steady state solutions are nearly identical with corresponding analytical solutions. The propagation of a pollutant cloud is simulated more realistically as compared with the advection treatment of E. Runca and F. Sardei (1975, Atmospheric Environment 9, 69-80) and M. Dunst (1980, Z. Met. 30, 47-59). The course of a diffusion experiment is modelled to demonstrate the efficiency of the proposed method. Because of its simplicity, the method is especially suited for use in license processes, for control, and for calculating health risks in relation to industrial and power plant accidents with the goal of organizing efficient protection or evacuation.

  11. Modeling effects of moisture content and advection on odor causing VOCs volatilization from stored swine manure.

    Science.gov (United States)

    Liao, C M; Liang, H M

    2000-05-01

    Two models for evaluating the contents and advection of manure moisture on odor causing volatile organic compounds (VOC-odor) volatilization from stored swine manure were studied for their ability to predict the volatilization rate (indoor air concentration) and cumulative exposure dose: a MJ-I model and a MJ-II model. Both models simulating depletion of source contaminant via volatilization and degradation based on an analytical model adapted from the behavior assessment model of Jury et al. In the MJ-I model, manure moisture movement was negligible, whereas in the MJ-II model, time-dependent indoor air concentrations was a function of constant manure moisture contents and steady-state moisture advection. Predicted indoor air concentrations and inhaled doses for the study VOC-odors of p-cresol, toluene, and p-xylene varied by up to two to three orders of magnitude depending on the manure moisture conditions. The sensitivity analysis of both models suggests that when manure moisture movement exists, simply MJ-I model is inherently not sufficient to represent a more generally volatilization process, which can even become stringent as moisture content increases. The conclusion illustrates how one needs to include a wide variety of manure moisture values in order to fully assess the complex volatilization mechanisms that are present in a real situation.

  12. Advective transport of CO2 in permeable media induced by atmospheric pressure fluctuations: 2. Observational evidence under snowpacks

    Science.gov (United States)

    W. J. Massman; J. M. Frank

    2006-01-01

    Meadow and forest CO2 amounts sampled beneath an approximately meter deep (steady state) snowpack at a subalpine site in southern Rocky Mountains of Wyoming are observed to vary by nearly 200 ppm over periods ranging from 4 to 15 days. This work employs the model of periodic, pressure-induced, advective transport in permeable media developed in...

  13. Significance of Thermal Fluvial Incision and Bedrock Transfer due to Ice Advection on Greenland Ice Sheet Topography

    Science.gov (United States)

    Crozier, J. A.; Karlstrom, L.; Yang, K.

    2017-12-01

    Ice sheet surface topography reflects a complicated combination of processes that act directly upon the surface and that are products of ice advection. Using recently-available high resolution ice velocity, imagery, ice surface elevation, and bedrock elevation data sets, we seek to determine the domain of significance of two important processes - thermal fluvial incision and transfer of bedrock topography through the ice sheet - on controlling surface topography in the ablation zone. Evaluating such controls is important for understanding how melting of the GIS surface during the melt season may be directly imprinted in topography through supraglacial drainage networks, and indirectly imprinted through its contribution to basal sliding that affects bedrock transfer. We use methods developed by (Karlstrom and Yang, 2016) to identify supraglacial stream networks on the GIS, and use high resolution surface digital elevation models as well as gridded ice velocity and melt rate models to quantify surface processes. We implement a numerically efficient Fourier domain bedrock transfer function (Gudmundsson, 2003) to predict surface topography due to ice advection over bedrock topography obtained from radar. Despite a number of simplifying assumptions, the bedrock transfer function predicts the observed ice sheet surface in most regions of the GIS with ˜90% accuracy, regardless of the presence or absence of supraglacial drainage networks. This supports the hypothesis that bedrock is the most significant driver of ice surface topography on wavelengths similar to ice thickness. Ice surface topographic asymmetry on the GIS is common, with slopes in the direction of ice flow steeper than those faced opposite to ice flow, consistent with bedrock transfer theory. At smaller wavelengths, topography consistent with fluvial erosion by surface hydrologic features is evident. We quantify the effect of ice advection versus fluvial thermal erosion on supraglacial longitudinal stream

  14. Memory effects in chaotic advection of inertial particles

    International Nuclear Information System (INIS)

    Daitche, Anton; Tél, Tamás

    2014-01-01

    A systematic investigation of the effect of the history force on particle advection is carried out for both heavy and light particles. General relations are given to identify parameter regions where the history force is expected to be comparable with the Stokes drag. As an illustrative example, a paradigmatic two-dimensional flow, the von Kármán flow is taken. For small (but not extremely small) particles all investigated dynamical properties turn out to heavily depend on the presence of memory when compared to the memoryless case: the history force generates a rather non-trivial dynamics that appears to weaken (but not to suppress) inertial effects, it enhances the overall contribution of viscosity. We explore the parameter space spanned by the particle size and the density ratio, and find a weaker tendency for accumulation in attractors and for caustics formation. The Lyapunov exponent of transients becomes larger with memory. Periodic attractors are found to have a very slow, t −1/2 type convergence towards the asymptotic form. We find that the concept of snapshot attractors is useful to understand this slow convergence: an ensemble of particles converges exponentially fast towards a snapshot attractor, which undergoes a slow shift for long times. (paper)

  15. Measurements on, and modelling of diffusive and advective radon transport in soil

    DEFF Research Database (Denmark)

    Graff, E.R. van der; Witteman, G.A.A.; Spoel, W.H. van der

    1994-01-01

    Results are presented of measurements on radon transport in soil under controlled conditions with a laboratory facility consisting of a stainless steel vessel (height and diameter 2 m) filled with a uniform column of sand. At several depths under the sand surface, probes are radially inserted...... into the vessel to measure the radon concentration in the soil gas. To study advective radon transport a perforated circular box is placed in the sand close to the bottom of the vessel. By pressurising this box, an air flow through the sand column is induced. Radon concentration profiles were measured without...... an air flow as a function of time, and for several values of the air flow, equilibrium radon concentration profiles were measured....

  16. Vulnerability assessment of the Toluca Valley aquifer combining a parametric approach and advective transport

    International Nuclear Information System (INIS)

    Gárfias, J.; Llanos, H.; Franco, R.; Martel, R.

    2017-01-01

    Groundwater vulnerability assessment is an important task in water resources and land management. Depending on the availability of data and the complexity of the hydrogeological conditions, different approaches can be adopted. As an alternative, this study involves the use of a combined approach based on vulnerability methods and advective particle tracking to better understand the susceptibility to contamination in the Toluca valley aquifer. An intrinsic vulnerability map (DRASTIC) was used to identify areas that are more susceptible to ground water contamination. To estimate advective particle tracking, we developed a 3D flow model using VisualModflow and MODPATH to describe the regional flow of groundwater. The vulnerability map demonstrates the problematic application and interpretation of qualitative the vulnerability method of the parametric system group, which indicates a difference of approximately 23% when compared with the modified vulnerability map. Potential contamination sources based on landfill sites were comparatively high; approximately 76% are located in areas that could be susceptible to contamination through vertical infiltration, especially those that are located along the Lerma system of wells. Industrial parks located in the centre of the valley (83%), where continuous extraction of groundwater and land subsidence occurs, have been classified as high vulnerability zones, increasing the risk of contaminants from surface sources reaching the groundwater. In order to understand the susceptibility to contamination in the aquifer, various delineation approaches should be adopted and all the results that validate each other should be considered, thus making a good strategy for implementing different degrees of protection measures. [es

  17. Verification of a dust transport model against theoretical solutions in multidimensional advection diffusion problems

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z., E-mail: zhanjie.xu@kit.ed [Forschungszentrum Karlsruhe, P.O. Box 3640, 76021 Karlsruhe (Germany); Travis, J.R. [Ingenieurbuero DuBois-Pitzer-Travis, 63071 Offenbach (Germany); Breitung, W.; Jordan, T. [Forschungszentrum Karlsruhe, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2010-12-15

    Potentially explosive dust aerosol mobilization in the vacuum vessel is an important safety issue of the ITER facility, especially in scenarios of loss of vacuum accidents. Therefore dust mobilization modeling is ongoing in Research Center Karlsuhe. At first the aerosol particle model in the GASFLOW computer code is introduced briefly. To verify the particle model, a series of particle diffusion problems are simulated in one-, two- and three-dimensions. In each problem a particle source is initially exposed to an advective gas flow. Then a dust cloud is formed in the down stream. To obtain the theoretical solution about the particle concentration in the dust cloud, the governing diffusion partial differential equations with an additional advection term are solved by using Green's function method. Different spatial and temporal characters about the particle sources are also considered, e.g., instantaneous or continuous sources, line, or volume sources and so forth. The GASFLOW simulation results about the particle concentrations and the corresponding Green's function solutions are compared case by case. Very good agreements are found between the theoretical solutions and the GASGLOW simulations, when the drag force between the micron-sized particles and the conveying gas flow meets the Stokes' law about resistance. This situation is corresponding to a very small Reynolds number based on the particle diameter, with a negligible inertia effect of the particles. This verification work shows that the particle model of the GASFLOW code can reproduce numerically particle transport and diffusion in a good way.

  18. Penyelesaian Numerik Persamaan Advection Dengan Radial Point Interpolation Method dan Integrasi Waktu Dengan Discontinuous Galerkin Method

    Directory of Open Access Journals (Sweden)

    Kresno Wikan Sadono

    2016-12-01

    Full Text Available Persamaan differensial banyak digunakan untuk menggambarkan berbagai fenomena dalam bidang sains dan rekayasa. Berbagai masalah komplek dalam kehidupan sehari-hari dapat dimodelkan dengan persamaan differensial dan diselesaikan dengan metode numerik. Salah satu metode numerik, yaitu metode meshfree atau meshless berkembang akhir-akhir ini, tanpa proses pembuatan elemen pada domain. Penelitian ini menggabungkan metode meshless yaitu radial basis point interpolation method (RPIM dengan integrasi waktu discontinuous Galerkin method (DGM, metode ini disebut RPIM-DGM. Metode RPIM-DGM diaplikasikan pada advection equation pada satu dimensi. RPIM menggunakan basis function multiquadratic function (MQ dan integrasi waktu diturunkan untuk linear-DGM maupun quadratic-DGM. Hasil simulasi menunjukkan, metode ini mendekati hasil analitis dengan baik. Hasil simulasi numerik dengan RPIM DGM menunjukkan semakin banyak node dan semakin kecil time increment menunjukkan hasil numerik semakin akurat. Hasil lain menunjukkan, integrasi numerik dengan quadratic-DGM untuk suatu time increment dan jumlah node tertentu semakin meningkatkan akurasi dibandingkan dengan linear-DGM.  [Title: Numerical solution of advection equation with radial basis interpolation method and discontinuous Galerkin method for time integration] Differential equation is widely used to describe a variety of phenomena in science and engineering. A variety of complex issues in everyday life can be modeled with differential equations and solved by numerical method. One of the numerical methods, the method meshfree or meshless developing lately, without making use of the elements in the domain. The research combines methods meshless, i.e. radial basis point interpolation method with discontinuous Galerkin method as time integration method. This method is called RPIM-DGM. The RPIM-DGM applied to one dimension advection equation. The RPIM using basis function multiquadratic function and time

  19. Enhanced transpiration by riparian buffer trees in response to advection in a humid temperate agricultural landscape

    Science.gov (United States)

    Hernandez-Santana, V.; Asbjornsen, H.; Sauer, T.; Isenhart, T.; Schilling, K.; Schultz, Ronald

    2011-01-01

    Riparian buffers are designed as management practices to increase infiltration and reduce surface runoff and transport of sediment and nonpoint source pollutants from crop fields to adjacent streams. Achieving these ecosystem service goals depends, in part, on their ability to remove water from the soil via transpiration. In these systems, edges between crop fields and trees of the buffer systems can create advection processes, which could influence water use by trees. We conducted a field study in a riparian buffer system established in 1994 under a humid temperate climate, located in the Corn Belt region of the Midwestern U.S. (Iowa). The goals were to estimate stand level transpiration by the riparian buffer, quantify the controls on water use by the buffer system, and determine to what extent advective energy and tree position within the buffer system influence individual tree transpiration rates. We primarily focused on the water use response (determined with the Heat Ratio Method) of one of the dominant species (Acer saccharinum) and a subdominant (Juglans nigra). A few individuals of three additional species (Quercus bicolor, Betula nigra, Platanus occidentalis) were monitored over a shorter time period to assess the generality of responses. Meteorological stations were installed along a transect across the riparian buffer to determine the microclimate conditions. The differences found among individuals were attributed to differences in species sap velocities and sapwood depths, location relative to the forest edge and prevailing winds and canopy exposure and dominance. Sapflow rates for A. saccharinum trees growing at the SE edge (prevailing winds) were 39% greater than SE interior trees and 30% and 69% greater than NW interior and edge trees, respectively. No transpiration enhancement due to edge effect was detected in the subdominant J. nigra. The results were interpreted as indicative of advection effects from the surrounding crops. Further, significant

  20. Computation of diffusion coefficients for waters of Gauthami Godavari estuary using one-dimensional advection-diffusion model

    Digital Repository Service at National Institute of Oceanography (India)

    Jyothi, D.; Murty, T.V.R.; Sarma, V.V.; Rao, D.P.

    conditions. As the pollutant load on the estuary increases, the. water quality may deteriorate rapidly and therefore the scientific interests are centered on the analysis of water quality. The pollutants will be subjected to a number of physical, chemical... study we have applied one-dimensional advection-diffusion model for the waters of Gauthami Godavari estuary to determine the axial diffusion coefficients and thereby to predict the impact assessment. The study area (Fig. 1) is the lower most 32 km...

  1. Temporal evolution of photon energy emitted from two-component advective flows: origin of time lag

    Science.gov (United States)

    Chatterjee, Arka; Chakrabarti, Sandip K.; Ghosh, Himadri

    2017-12-01

    X-ray time lag of black hole candidates contains important information regarding the emission geometry. Recently, study of time lags from observational data revealed very intriguing properties. To investigate the real cause of this lag behavior with energy and spectral states, we study photon paths inside a two-component advective flow (TCAF) which appears to be a satisfactory model to explain the spectral and timing properties. We employ the Monte Carlo simulation technique to carry out the Comptonization process. We use a relativistic thick disk in Schwarzschild geometry as the CENtrifugal pressure supported BOundary Layer (CENBOL) which is the Compton cloud. In TCAF, this is the post-shock region of the advective component. Keplerian disk on the equatorial plane which is truncated at the inner edge i.e. at the outer boundary of the CENBOL, acts as the soft photon source. Ray-tracing code is employed to track the photons to a distantly located observer. We compute the cumulative time taken by a photon during Comptonization, reflection and following the curved geometry on the way to the observer. Time lags between various hard and soft bands have been calculated. We study the variation of time lags with accretion rates, CENBOL size and inclination angle. Time lags for different energy channels are plotted for different inclination angles. The general trend of variation of time lag with QPO frequency and energy as observed in satellite data is reproduced.

  2. Doppler Frequency Shift in Ocean Wave Measurements: Frequency Downshift of a Fixed Spectral Wave Number Component by Advection of Wave Orbital Velocity

    National Research Council Canada - National Science Library

    Hwang, Paul

    2006-01-01

    ... at he expected intrinsic frequency in the frequency spectrum measured by a stationary probe. The advection of the wave number component by the orbital current of background waves produces a net downshift in the encounter frequency...

  3. Analytical solutions for benchmarking cold regions subsurface water flow and energy transport models: one-dimensional soil thaw with conduction and advection

    Science.gov (United States)

    Kurylyk, Barret L.; McKenzie, Jeffrey M; MacQuarrie, Kerry T. B.; Voss, Clifford I.

    2014-01-01

    Numerous cold regions water flow and energy transport models have emerged in recent years. Dissimilarities often exist in their mathematical formulations and/or numerical solution techniques, but few analytical solutions exist for benchmarking flow and energy transport models that include pore water phase change. This paper presents a detailed derivation of the Lunardini solution, an approximate analytical solution for predicting soil thawing subject to conduction, advection, and phase change. Fifteen thawing scenarios are examined by considering differences in porosity, surface temperature, Darcy velocity, and initial temperature. The accuracy of the Lunardini solution is shown to be proportional to the Stefan number. The analytical solution results obtained for soil thawing scenarios with water flow and advection are compared to those obtained from the finite element model SUTRA. Three problems, two involving the Lunardini solution and one involving the classic Neumann solution, are recommended as standard benchmarks for future model development and testing.

  4. Existence and Stability of the Periodic Solution with an Interior Transitional Layer in the Problem with a Weak Linear Advection

    Directory of Open Access Journals (Sweden)

    Nikolay N. Nefedov

    2018-01-01

    Full Text Available In the paper, we study a singularly perturbed periodic in time problem for the parabolic reaction-advection-diffusion equation with a weak linear advection. The case of the reactive term in the form of a cubic nonlinearity is considered. On the basis of already known results, a more general formulation of the problem is investigated, with weaker sufficient conditions for the existence of a solution with an internal transition layer to be provided than in previous studies. For convenience, the known results are given, which ensure the fulfillment of the existence theorem of the contrast structure. The justification for the existence of a solution with an internal transition layer is based on the use of an asymptotic method of differential inequalities based on the modification of the terms of the constructed asymptotic expansion. Further, sufficient conditions are established to fulfill these requirements, and they have simple and concise formulations in the form of the algebraic equation w(x0,t = 0 and the condition wx(x0,t < 0, which is essentially a condition of simplicity of the root x0(t and ensuring the stability of the solution found. The function w is a function of the known functions appearing in the reactive and advective terms of the original problem. The equation w(x0,t = 0 is a problem for finding the zero approximation x0(t to determine the localization region of the inner transition layer. In addition, the asymptotic Lyapunov stability of the found periodic solution is investigated, based on the application of the so-called compressible barrier method. The main result of the paper is formulated as a theorem. 

  5. Asymptotic analysis of reaction-diffusion-advection problems: Fronts with periodic motion and blow-up

    Science.gov (United States)

    Nefedov, Nikolay

    2017-02-01

    This is an extended variant of the paper presented at MURPHYS-HSFS 2016 conference in Barcelona. We discuss further development of the asymptotic method of differential inequalities to investigate existence and stability of sharp internal layers (fronts) for nonlinear singularly perturbed periodic parabolic problems and initial boundary value problems with blow-up of fronts for reaction-diffusion-advection equations. In particular, we consider periodic solutions with internal layer in the case of balanced reaction. For the initial boundary value problems we prove the existence of fronts and give their asymptotic approximation including the new case of blowing-up fronts. This case we illustrate by the generalised Burgers equation.

  6. Analytical solutions of a fractional diffusion-advection equation for solar cosmic-ray transport

    International Nuclear Information System (INIS)

    Litvinenko, Yuri E.; Effenberger, Frederic

    2014-01-01

    Motivated by recent applications of superdiffusive transport models to shock-accelerated particle distributions in the heliosphere, we analytically solve a one-dimensional fractional diffusion-advection equation for the particle density. We derive an exact Fourier transform solution, simplify it in a weak diffusion approximation, and compare the new solution with previously available analytical results and with a semi-numerical solution based on a Fourier series expansion. We apply the results to the problem of describing the transport of energetic particles, accelerated at a traveling heliospheric shock. Our analysis shows that significant errors may result from assuming an infinite initial distance between the shock and the observer. We argue that the shock travel time should be a parameter of a realistic superdiffusive transport model.

  7. Advection of pollutants by internal solitary waves in oceanic and atmospheric stable stratifications

    Directory of Open Access Journals (Sweden)

    G. W. Haarlemmer

    1998-01-01

    Full Text Available When a pollutant is released into the ocean or atmosphere under turbulent conditions, even a steady release is captured by large eddies resulting in localized patches of high concentration of the pollutant. If such a cloud of pollutant subsequently enters a stable stratification-either a pycnocline or thermocline-then internal waves are excited. Since large solitary internal waves have a recirculating core, pollutants may be trapped in the sclitary wave, and advected large distances through the waveguide provided by the stratification. This paper addresses the mechanisms, through computer and physical simulation, by which a localized release of a dense pollutant results in solitary waves that trap the pollutant or disperse the pollutant faster than in the absence of the waves.

  8. An accurate anisotropic adaptation method for solving the level set advection equation

    International Nuclear Information System (INIS)

    Bui, C.; Dapogny, C.; Frey, P.

    2012-01-01

    In the present paper, a mesh adaptation process for solving the advection equation on a fully unstructured computational mesh is introduced, with a particular interest in the case it implicitly describes an evolving surface. This process mainly relies on a numerical scheme based on the method of characteristics. However, low order, this scheme lends itself to a thorough analysis on the theoretical side. It gives rise to an anisotropic error estimate which enjoys a very natural interpretation in terms of the Hausdorff distance between the exact and approximated surfaces. The computational mesh is then adapted according to the metric supplied by this estimate. The whole process enjoys a good accuracy as far as the interface resolution is concerned. Some numerical features are discussed and several classical examples are presented and commented in two or three dimensions. (authors)

  9. Advection and diffusion in random media implications for sea surface temperature anomalies

    CERN Document Server

    Piterbarg, Leonid I

    1997-01-01

    The book presents the foundations of the theory of turbulent transport within the context of stochastic partial differential equations. It serves to establish a firm connection between rigorous and non-rigorous results concerning turbulent diffusion. Mathematically all of the issues addressed in this book are concentrated around a single linear equation: stochastic advection-diffusion (transport) equation. There is no attempt made to derive universal statistics for turbulent flow. Instead emphasis is placed on a statistical description of a passive scalar (tracer) under given velocity statistics. An application concerning transport of sea surface temperature anomalies reconciles the developed theory and a highly practical issue of modern physical oceanography by using the newly designed inversion techniques which take advantage of powerful maximum likelihood and autoregressive estimators. Audience: Graduate students and researchers in mathematics, fluid dynamics, and physical oceanography.

  10. Direct advection measurements do not help to solve the night-time CO2 closure problem: Evidence from three different forests

    Czech Academy of Sciences Publication Activity Database

    Aubinet, M.; Feigenwinter, C.; Heinesch, B.; Bernhofer, C.; Canepa, E.; Lindroth, A.; Montagnani, L.; Rebmann, C.; Sedlák, Pavel; Van Gorsel, E.

    2010-01-01

    Roč. 150, č. 5 (2010), s. 655-664 ISSN 0168-1923 R&D Projects: GA AV ČR IAA300420803 Grant - others:European Commission(XE) GOCECT2003-505572 Institutional research plan: CEZ:AV0Z30420517 Keywords : Advection * Forests * CO2 fluxes * Eddy covariance Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.228, year: 2010

  11. Implementation of two-component advective flow solution in XSPEC

    Science.gov (United States)

    Debnath, Dipak; Chakrabarti, Sandip K.; Mondal, Santanu

    2014-05-01

    Spectral and temporal properties of black hole candidates can be explained reasonably well using Chakrabarti-Titarchuk solution of two-component advective flow (TCAF). This model requires two accretion rates, namely the Keplerian disc accretion rate and the halo accretion rate, the latter being composed of a sub-Keplerian, low-angular-momentum flow which may or may not develop a shock. In this solution, the relevant parameter is the relative importance of the halo (which creates the Compton cloud region) rate with respect to the Keplerian disc rate (soft photon source). Though this model has been used earlier to manually fit data of several black hole candidates quite satisfactorily, for the first time, we made it user friendly by implementing it into XSPEC software of Goddard Space Flight Center (GSFC)/NASA. This enables any user to extract physical parameters of the accretion flows, such as two accretion rates, the shock location, the shock strength, etc., for any black hole candidate. We provide some examples of fitting a few cases using this model. Most importantly, unlike any other model, we show that TCAF is capable of predicting timing properties from the spectral fits, since in TCAF, a shock is responsible for deciding spectral slopes as well as quasi-periodic oscillation frequencies. L86

  12. Picophytoplankton variability: Influence of winter convective mixing and advection in the northeastern Arabian Sea

    Science.gov (United States)

    Bemal, Suchandan; Anil, Arga Chandrashekar; Shankar, D.; Remya, R.; Roy, Rajdeep

    2018-04-01

    The deepening of mixed layer and ensuing changes in optical and physicochemical properties of euphotic zone can influence phytoplankton community dynamics in the northeastern Arabian Sea during winter monsoon. The response of picophytoplankton community to such changes during winter convective mixing is not well understood. Herein, we have compared variations in the picophytoplankton community structure during early (November-December 2012), peak (end-January 2014) and late (mid-February 2015) winter monsoon from three separate cruises in the southern northeastern Arabian Sea. The higher Synechococcus abundance owing to entrainment of nutrients in mixed layer was observed during peak winter monsoon, while the concomitant changes in nitrate concentration, light and oxygen environment restricted Prochlorococcus growth resulting in lower abundance during the same period. This highlights the diverse responses of picophytoplankton groups to physicochemical changes of water column during winter convective mixing. The divinyl chlorophyll b/a ratio (marker for Prochlorococcus ecotypes) indicated prevalence of one low-light adapted ecotype (sensitive to light shock) in sub-surface water, one high-light adapted ecotype in surface water during early winter monsoon and both disappeared during intense mixing period in peak winter monsoon. Subsequently, a distinct low-light adapted ecotype, capable to tolerate light shock, was noticed during late winter monsoon and we argue that this ecotype is introduced to southern northeastern Arabian Sea through advection from north by sub-surface circulation. The total picophytoplankton biomass available to microbial loop is restored during late winter monsoon, when stratification begins, with a higher abundance of Synechococcus and the re-occurrence of Prochlorococcus population in the region. These inferences indicate that variability in picophytoplankton community structure and their contribution to the microbial loop are driven by

  13. Passive advection-dispersion in networks of pipes: Effect of connectivity and relationship to permeability

    Science.gov (United States)

    Bernabé, Y.; Wang, Y.; Qi, T.; Li, M.

    2016-02-01

    The main purpose of this work is to investigate the relationship between passive advection-dispersion and permeability in porous materials presumed to be statistically homogeneous at scales larger than the pore scale but smaller than the reservoir scale. We simulated fluid flow through pipe network realizations with different pipe radius distributions and different levels of connectivity. The flow simulations used periodic boundary conditions, allowing monitoring of the advective motion of solute particles in a large periodic array of identical network realizations. In order to simulate dispersion, we assumed that the solute particles obeyed Taylor dispersion in individual pipes. When a particle entered a pipe, a residence time consistent with local Taylor dispersion was randomly assigned to it. When exiting the pipe, the particle randomly proceeded into one of the pipes connected to the original one according to probabilities proportional to the outgoing volumetric flow in each pipe. For each simulation we tracked the motion of at least 6000 solute particles. The mean fluid velocity was 10-3 ms-1, and the distance traveled was on the order of 10 m. Macroscopic dispersion was quantified using the method of moments. Despite differences arising from using different types of lattices (simple cubic, body-centered cubic, and face-centered cubic), a number of general observations were made. Longitudinal dispersion was at least 1 order of magnitude greater than transverse dispersion, and both strongly increased with decreasing pore connectivity and/or pore size variability. In conditions of variable hydraulic radius and fixed pore connectivity and pore size variability, the simulated dispersivities increased as power laws of the hydraulic radius and, consequently, of permeability, in agreement with previously published experimental results. Based on these observations, we were able to resolve some of the complexity of the relationship between dispersivity and permeability.

  14. Advection from the North Atlantic as the Forcing of Winter Greenhouse Effect Over Europe

    Science.gov (United States)

    Otterman, Jay; Angell, J.; Atlas, Robert; Bungato, D.; Schubert, S.; Starr, D.; Susskind, J.; Wu, M.-L. C.

    2001-01-01

    In winter, large interannual fluctuations in the surface skin temperature are observed over central Europe: we observe a difference of 9.8 K comparing warm February 1990 with cold February 1996 for the region 50-60 degrees N; 5-35 degrees E. Previous studies show that advection from the North Atlantic constitutes the forcing to such fluctuations. The advection is quantified by Index I(sub na), the average of the ocean-surface wind speed over the eastern North Atlantic when the direction is from the southwest (when the wind is from another direction, it counts as a zero speed to the average). Average Ina for February 1990 was 10.6 in s(exp -1), but for February 1996 I(sub na) was only 2.4 m s(exp -1). A large value of I(sub na) means a strong southwesterly flow which brings warm and moist air into Europe at low level, producing a steeper tropospheric lapse rate. Strong ascending motions result, which we observe in February 1990 at 700 mb. The near-surface moisture rises to higher (and cooler) levels, producing clouds and precipitation. Total preciptable water and cloud-cover fraction have larger values in February 1990 than in 1996. The difference in the greenhouse effect between these two scenarios can be translated into a virtual irradiating source of 2.6 W m(exp -2) above the February 1990 atmosphere, which, as an order of magnitude estimate, contributes to the warming of the surface by 2.6 K. If we accept this estimate as numerically pertinent, the direct effect stands as 7.2 K (9.8 K - 2.6 K), and therefore its greenhouse-effect reinforcement is by 36%. This constitutes a substantial positive feedback to the direct effect, which is the inflow of warm air to the low troposphere over Europe.

  15. On the importance of aqueous diffusion and electrostatic interactions in advection-dominated transport in saturated porous media

    DEFF Research Database (Denmark)

    Rolle, Massimo

    2015-01-01

    to multicomponent ionic dispersion: the dispersive fluxes of the different ions are cross-coupled due to the effects of Coulombic interactions. Such effects are illustrated in flow-through experiments in saturated porous media. Simple strong electrolytes were selected as tracers and their transport was studied...... under different advection-dominated conditions and in homogeneous and heterogeneous porous media. The interpretation of the experimental results requires a multicomponent modeling approach with an accurate description of local hydrodynamic dispersion and explicitly accounting for the cross-coupling...

  16. Numerical Identification of Multiparameters in the Space Fractional Advection Dispersion Equation by Final Observations

    Directory of Open Access Journals (Sweden)

    Dali Zhang

    2012-01-01

    Full Text Available This paper deals with an inverse problem for identifying multiparameters in 1D space fractional advection dispersion equation (FADE on a finite domain with final observations. The parameters to be identified are the fractional order, the diffusion coefficient, and the average velocity in the FADE. The forward problem is solved by a finite difference scheme, and then an optimal perturbation regularization algorithm is introduced to determine the three parameters simultaneously. Numerical inversions are performed both with the accurate data and noisy data, and several factors having influences on realization of the algorithm are discussed. The inversion solutions are in good approximations to the exact solutions demonstrating the efficiency of the proposed algorithm.

  17. SEBAL-A: A Remote Sensing ET Algorithm that Accounts for Advection with Limited Data. Part II: Test for Transferability

    Directory of Open Access Journals (Sweden)

    Mcebisi Mkhwanazi

    2015-11-01

    Full Text Available Because the Surface Energy Balance Algorithm for Land (SEBAL tends to underestimate ET when there is advection, the model was modified by incorporating an advection component as part of the energy usable for crop evapotranspiration (ET. The modification involved the estimation of advected energy, which required the development of a wind function. In Part I, the modified SEBAL model (SEBAL-A was developed and validated on well-watered alfalfa of a standard height of 40–60 cm. In this Part II, SEBAL-A was tested on different crops and irrigation treatments in order to determine its performance under varying conditions. The crops used for the transferability test were beans (Phaseolus vulgaris L., wheat (Triticum aestivum L. and corn (Zea mays L.. The estimated ET using SEBAL-A was compared to actual ET measured using a Bowen Ratio Energy Balance (BREB system. Results indicated that SEBAL-A estimated ET fairly well for beans and wheat, only showing some slight underestimation of a Mean Bias Error (MBE of −0.7 mm·d−1 (−11.3%, a Root Mean Square Error (RMSE of 0.82 mm·d−1 (13.9% and a Nash Sutcliffe Coefficient of Efficiency (NSCE of 0.64. On corn, SEBAL-A resulted in an ET estimation error MBE of −0.7 mm·d−1 (−9.9%, a RMSE of 1.59 mm·d−1 (23.1% and NSCE = 0.24. This result shows an improvement on the original SEBAL model, which for the same data resulted in an ET MBE of −1.4 mm·d−1 (−20.4%, a RMSE of 1.97 mm·d−1 (28.8% and a NSCE of −0.18. When SEBAL-A was tested on only fully irrigated corn, it performed well, resulting in no bias, i.e., MBE of 0.0 mm·d−1; RMSE of 0.78 mm·d−1 (10.7% and NSCE of 0.82. The SEBAL-A model showed less or no improvement on corn that was either water-stressed or at early stages of growth. The errors incurred under these conditions were not due to advection not accounted for but rather were due to the nature of SEBAL and SEBAL-A being single-source energy balance models and

  18. Aircraft vertical profiling of variation of CO2 over a Canadian Boreal Forest Site: a role of advection in the changes in the atmospheric boundary layer CO2 content

    International Nuclear Information System (INIS)

    Shashkov, Alexander; Higuchi, Kaz; Chan, Douglas

    2007-01-01

    During the period of July 8-13, 2002, we collected vertical profiles by aircraft of meteorological variables and atmospheric CO 2 over the OBS (old black spruce) site located in Boreal Ecosystem Research and Monitoring Sites in Northern Saskatchewan, Canada. We have used the data from the morning and afternoon flights to calculate the regional daily afternoon CO 2 flux for the days July 8-11. These daily fluxes were then compared to those obtained by the boundary layer budget method and by the eddy covariance measurements on the tower at the OBS site. We identified the importance of changes in the CO 2 concentration by advection to the flux estimates. In addition, we provide arguments to suggest that subseasonal temporal averaging might not, at least in some cases, eliminate advective bias contribution to the flux estimates. Because the advective influence is large and highly directional, even on seasonal and interannual timescales, it is advisable that flux estimates based on CO 2 concentration change at a site contain dynamic description of an air parcel transport history

  19. Interannual Variation in Offshore Advection of Amazon-Orinoco Plume Waters: Observations, Forcing Mechanisms, and Impacts

    Science.gov (United States)

    Fournier, S.; Vandemark, D. C.; Gaultier, L.; Lee, T.; Jonsson, B. F.; Gierach, M. M.

    2017-12-01

    Sea surface salinity (SSS) and sea surface temperature (SST) variations in the tropical Atlantic east of the Lesser Antilles, a region impacted by freshwater advection from the Amazon and Orinoco Rivers have potential implications to late-summer tropical cyclones (TCs). This study examines these variations during late summer and their forcing mechanisms using observations. During the period 2010-2014, the largest difference in plume-affected area, defined as the extent covered by SSS lower than 35.5 pss, is found between 2011 and 2014. Plume waters covered 92% (60%) of the study region in 2011 (2014) with the averaged SSS in the study region being 2-pss lower in 2011. Lagrangian particle tracking based on satellite-derived ocean currents is used to diagnose the impacts of the river plumes on SSS and SST during 2010-2014. Northward freshwater flux in the summer of 2014 is significantly weaker than those in 2010-2013. This is not due to interannual discharge variability, but significant changes in eddy-driven transport and cross-shore winds. In particular, the stronger cross-shore wind in May 2014 restricted offshore freshwater flow, leading to a smaller extent of the plume-affected area. Persistent SST gradients are often found near the plume edge, which may have implication to ocean-atmosphere coupling associated with TC-related convection. SST in the study region is 1°C higher in 2010 than in other years, and is related to basin-scale ocean-atmosphere processes. Interannual variation in Amazon advective pathways and the associated SSS changes are also influenced by changes in the ITCZ position between 2011 and 2014.

  20. Single Wake Meandering, Advection and Expansion - An analysis using an adapted Pulsed Lidar and CFD LES-ACL simulations

    DEFF Research Database (Denmark)

    In this paper, single wake characteristics have been studied both experimentally and numerically. Firstly, the wake is studied experimentally using full-scale measurements from an adapted focused pulsed lidar system, which potentially gives more insight into the wake dynamics as compared to class...... using the EllipSys3D flow solver using Large Eddy Simulation (LES) and Actuator Line Technique (ACL) to model the rotor. Discrepancies due to the uncertainties on the wake advection velocity are observed and discussed....

  1. Single Wake Meandering, Advection and Expansion - An analysis using an adapted Pulsed Lidar and CFD LES-ACL simulations

    DEFF Research Database (Denmark)

    Machefaux, Ewan; Larsen, Gunner Chr.; Troldborg, Niels

    2013-01-01

    In this paper, single wake characteristics have been studied both experimentally and numerically. Firstly, the wake is studied experimentally using full-scale measurements from an adapted focused pulsed lidar system, which potentially gives more insight into the wake dynamics as compared to class...... using the EllipSys3D flow solver using Large Eddy Simulation (LES) and Actuator Line Technique (ACL) to model the rotor. Discrepancies due to the uncertainties on the wake advection velocity are observed and discussed....

  2. Influence of fast advective flows on pattern formation of Dictyostelium discoideum

    Science.gov (United States)

    Bae, Albert; Zykov, Vladimir; Bodenschatz, Eberhard

    2018-01-01

    We report experimental and numerical results on pattern formation of self-organizing Dictyostelium discoideum cells in a microfluidic setup under a constant buffer flow. The external flow advects the signaling molecule cyclic adenosine monophosphate (cAMP) downstream, while the chemotactic cells attached to the solid substrate are not transported with the flow. At high flow velocities, elongated cAMP waves are formed that cover the whole length of the channel and propagate both parallel and perpendicular to the flow direction. While the wave period and transverse propagation velocity are constant, parallel wave velocity and the wave width increase linearly with the imposed flow. We also observe that the acquired wave shape is highly dependent on the wave generation site and the strength of the imposed flow. We compared the wave shape and velocity with numerical simulations performed using a reaction-diffusion model and found excellent agreement. These results are expected to play an important role in understanding the process of pattern formation and aggregation of D. discoideum that may experience fluid flows in its natural habitat. PMID:29590179

  3. STANDING SHOCK INSTABILITY IN ADVECTION-DOMINATED ACCRETION FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Le, Truong [Department of Physics, Astronomy and Geology, Berry College, Mount Berry, GA 30149 (United States); Wood, Kent S.; Wolff, Michael T. [High Energy Space Environment Branch, Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Becker, Peter A. [Department of Physics and Astronomy, George Mason University, Fairfax, VA 22030 (United States); Putney, Joy, E-mail: tle@berry.edu [Department of Physics and Engineering, Washington and Lee University, Lexington, VA 24450 (United States)

    2016-03-10

    Depending on the values of the energy and angular momentum per unit mass in the gas supplied at large radii, inviscid advection-dominated accretion flows can display velocity profiles with either preshock deceleration or preshock acceleration. Nakayama has shown that these two types of flow configurations are expected to have different stability properties. By employing the Chevalier and Imamura linearization method and the Nakayama instability boundary conditions, we discover that there are regions of parameter space where disks/shocks with outflows can be stable or unstable. In regions of instability, we find that preshock deceleration is always unstable to the zeroth mode with zero frequency of oscillation, but is always stable to the fundamental mode and overtones. Furthermore, we also find that preshock acceleration is always unstable to the zeroth mode and that the fundamental mode and overtones become increasingly less stable as the shock location moves away from the horizon when the disk half-height expands above ∼12 gravitational radii at the shock radius. In regions of stability, we demonstrate the zeroth mode to be stable for the velocity profiles that exhibit preshock acceleration and deceleration. Moreover, for models that are linearly unstable, our model suggests the possible existence of quasi-periodic oscillations (QPOs) with ratios 2:3 and 3:5. These ratios are believed to occur in stellar and supermassive black hole candidates, for example, in GRS 1915+105 and Sgr A*, respectively. We expect that similar QPO ratios also exist in regions of stable shocks.

  4. Asymptotic stability of a coupled advection-diffusion-reaction system arising in bioreactor processes

    Directory of Open Access Journals (Sweden)

    Maria Crespo

    2017-08-01

    Full Text Available In this work, we present an asymptotic analysis of a coupled system of two advection-diffusion-reaction equations with Danckwerts boundary conditions, which models the interaction between a microbial population (e.g., bacteria, called biomass, and a diluted organic contaminant (e.g., nitrates, called substrate, in a continuous flow bioreactor. This system exhibits, under suitable conditions, two stable equilibrium states: one steady state in which the biomass becomes extinct and no reaction is produced, called washout, and another steady state, which corresponds to the partial elimination of the substrate. We use the linearization method to give sufficient conditions for the linear asymptotic stability of the two stable equilibrium configurations. Finally, we compare our asymptotic analysis with the usual asymptotic analysis associated to the continuous bioreactor when it is modeled with ordinary differential equations.

  5. MT3DMS: A Modular Three-Dimensional Multispecies Transport Model for Simulation of Advection, Dispersion, and Chemical Reactions of Contaminants in Groundwater Systems; Documentation and User's Guide

    National Research Council Canada - National Science Library

    Zheng, Chunmiao

    1999-01-01

    ... of (a) a third-order total-variation-diminishing (TVD) scheme for solving the advection term that is mass conservative but does not introduce excessive numerical dispersion and artificial oscillation, (b...

  6. Advection within side-by-side liquid micro-cylinders in a cross-flow

    Science.gov (United States)

    Dong, Qingming; Sau, Amalendu

    2017-11-01

    The gaseous SO2 entrainment from outer air stream and dispersion in binary and ternary liquid micro-cylinders appearing side-by-side are examined hereby. The separation/attachment regulated non-uniform interfacial momentum exchange creates main stream driven "primary" and shear reversed "secondary" vortices in the liquid cylinders. At separation points, the sense of rotation of the generated "primary-secondary" vortex pair remains inward directed. We define such a vortex pair as the "inflow" type. However, at stagnation or attachment points, the sense of rotation of a "primary-primary" or "secondary-secondary" vortex pair remains outward directed, and such a vortex pair is defined as the "outflow" type. For the coupled water cylinders facing an oncoming stream contaminated by gaseous SO2, its absorption and internal transport are effectively controlled by dominant "inflow" and "outflow" natured dynamics of the said vortex pairs, besides by diffusion. The evolving "inflow" natured "primary-secondary" vortex pairs at separation points actively entrain the outer SO2, whereas the "outflow" natured vortex-pairs oppose SO2 entry through the stagnation regions. Moreover, the blockage induced steady-symmetric, steady-deflected, and flip-flopping air-jets through gaps, for varied gap-ratio (1 ≤ G/R ≤ 4) and Reynolds number (30 ≤ Re ≤ 160), create distinctive impact both on quantitative SO2 absorption (mso2 ') and convective nature of the SO2 transport in upper, lower, and middle cylinders, by virtue of modified strength and size of the inflow and outflow paired vortices. The present study shows that the tiny "secondary vortices" play important roles in SO2 entrainment and in effectively controlling the local absorption rate Rs o2. The sudden acceleration and upward/downward deflection of gap-flows enhanced near-neck advective SO2 entrainment by suitably strengthening the "inflow" natured local vortex dynamics. Conversely, for the reduced size of secondary vortices

  7. Numerical Solution of the 1D Advection-Diffusion Equation Using Standard and Nonstandard Finite Difference Schemes

    Directory of Open Access Journals (Sweden)

    A. R. Appadu

    2013-01-01

    for which the Reynolds number is 2 or 4. Some errors are computed, namely, the error rate with respect to the L1 norm, dispersion, and dissipation errors. We have both dissipative and dispersive errors, and this indicates that the methods generate artificial dispersion, though the partial differential considered is not dispersive. It is seen that the Lax-Wendroff and NSFD are quite good methods to approximate the 1D advection-diffusion equation at some values of k and h. Two optimisation techniques are then implemented to find the optimal values of k when h=0.02 for the Lax-Wendroff and NSFD schemes, and this is validated by numerical experiments.

  8. Weak unique continuation property and a related inverse source problem for time-fractional diffusion-advection equations

    Science.gov (United States)

    Jiang, Daijun; Li, Zhiyuan; Liu, Yikan; Yamamoto, Masahiro

    2017-05-01

    In this paper, we first establish a weak unique continuation property for time-fractional diffusion-advection equations. The proof is mainly based on the Laplace transform and the unique continuation properties for elliptic and parabolic equations. The result is weaker than its parabolic counterpart in the sense that we additionally impose the homogeneous boundary condition. As a direct application, we prove the uniqueness for an inverse problem on determining the spatial component in the source term by interior measurements. Numerically, we reformulate our inverse source problem as an optimization problem, and propose an iterative thresholding algorithm. Finally, several numerical experiments are presented to show the accuracy and efficiency of the algorithm.

  9. Preliminary evaluation of the importance of existing hydraulic-head observation locations to advective-transport predictions, Death Valley regional flow system, California and Nevada

    International Nuclear Information System (INIS)

    Hill, M.C.; Ely, D.M.; Tiedeman, C.R.; O'Brien, G.M.; D'Agnese, F.A.; Faunt, C.C.

    2001-01-01

    When a model is calibrated by nonlinear regression, calculated diagnostic statistics and measures of uncertainty provide a wealth of information about many aspects of the system. This report presents a method of ranking the likely importance of existing observation locations using measures of prediction uncertainty. It is suggested that continued monitoring is warranted at more important locations, and unwarranted or less warranted at less important locations. The report develops the methodology and then demonstrates it using the hydraulic-head observation locations of a three-layer model of the Death Valley regional flow system (DVRFS). The predictions of interest are subsurface transport from beneath Yucca Mountain and 14 underground Test Area (UGTA) sites. The advective component of transport is considered because it is the component most affected by the system dynamics represented by the regional-scale model being used. The problem is addressed using the capabilities of the U.S. Geological Survey computer program MODFLOW-2000, with its ADVective-Travel Observation (ADV) Package, and an additional computer program developed for this work

  10. A general advection-diffusion model for radioactive substance dispersion released from nuclear power plants

    International Nuclear Information System (INIS)

    Buske, D.

    2011-01-01

    The present contribution focuses on the question of radioactive material dispersion after discharge from a nuclear power plant in the context of micro-meteorology, i.e. an atmospheric dispersion model. The advection-diffusion equation with Fickian closure for the turbulence is solved for the atmospheric boundary layer where the eddy diffusivity coefficients and the wind profile are assumed to be space dependent. The model is solved in closed form using integral transform and spectral theory. Convergence of the solution is discussed in terms of a convergence criterion using a new interpretation of the Cardinal Theorem of Interpolation theory and Parseval's theorem. The solution is compared to other methods and model adequacy is analyzed. Model validation is performed against experimental data from a controlled release of radioactive material at the Itaorna Beach (Angra dos Reis, Rio de Janeiro state, Brazil, 1985). (author)

  11. Far-from-equilibrium sheared colloidal liquids: Disentangling relaxation, advection, and shear-induced diffusion

    KAUST Repository

    Lin, Neil Y. C.

    2013-12-01

    Using high-speed confocal microscopy, we measure the particle positions in a colloidal suspension under large-amplitude oscillatory shear. Using the particle positions, we quantify the in situ anisotropy of the pair-correlation function, a measure of the Brownian stress. From these data we find two distinct types of responses as the system crosses over from equilibrium to far-from-equilibrium states. The first is a nonlinear amplitude saturation that arises from shear-induced advection, while the second is a linear frequency saturation due to competition between suspension relaxation and shear rate. In spite of their different underlying mechanisms, we show that all the data can be scaled onto a master curve that spans the equilibrium and far-from-equilibrium regimes, linking small-amplitude oscillatory to continuous shear. This observation illustrates a colloidal analog of the Cox-Merz rule and its microscopic underpinning. Brownian dynamics simulations show that interparticle interactions are sufficient for generating both experimentally observed saturations. © 2013 American Physical Society.

  12. Far-from-equilibrium sheared colloidal liquids: Disentangling relaxation, advection, and shear-induced diffusion

    KAUST Repository

    Lin, Neil Y. C.; Goyal, Sushmit; Cheng, Xiang; Zia, Roseanna N.; Escobedo, Fernando A.; Cohen, Itai

    2013-01-01

    Using high-speed confocal microscopy, we measure the particle positions in a colloidal suspension under large-amplitude oscillatory shear. Using the particle positions, we quantify the in situ anisotropy of the pair-correlation function, a measure of the Brownian stress. From these data we find two distinct types of responses as the system crosses over from equilibrium to far-from-equilibrium states. The first is a nonlinear amplitude saturation that arises from shear-induced advection, while the second is a linear frequency saturation due to competition between suspension relaxation and shear rate. In spite of their different underlying mechanisms, we show that all the data can be scaled onto a master curve that spans the equilibrium and far-from-equilibrium regimes, linking small-amplitude oscillatory to continuous shear. This observation illustrates a colloidal analog of the Cox-Merz rule and its microscopic underpinning. Brownian dynamics simulations show that interparticle interactions are sufficient for generating both experimentally observed saturations. © 2013 American Physical Society.

  13. Lie group analysis, numerical and non-traveling wave solutions for the (2+1)-dimensional diffusion—advection equation with variable coefficients

    International Nuclear Information System (INIS)

    Kumar, Vikas; Gupta, R. K.; Jiwari, Ram

    2014-01-01

    In this paper, the variable-coefficient diffusion—advection (DA) equation, which arises in modeling various physical phenomena, is studied by the Lie symmetry approach. The similarity reductions are derived by determining the complete sets of point symmetries of this equation, and then exact and numerical solutions are reported for the reduced second-order nonlinear ordinary differential equations. Further, an extended (G'/G)-expansion method is applied to the DA equation to construct some new non-traveling wave solutions

  14. Horizontal Advection and Mixing of Pollutants in the Urban Atmospheric Environment

    Science.gov (United States)

    Magnusson, S. P.; Entekhabi, D.; Britter, R.; Norford, L.; Fernando, H. J.

    2013-12-01

    Although urban air quality and its impacts on the public health have long been studied, the increasing urbanization is raising concerns on how to better control and mitigate these health impacts. A necessary element in predicting exposure levels is fundamental understanding of flow and dispersion in urban canyons. The complex topology of building structures and roads requires the resolution of turbulence phenomena within urban canyons. The use of dense and low porosity construction material can lead to rapid heating in response to direct solar exposure due to large thermal mass. Hence thermal and buoyancy effects may be as important as mechanically-forced or shear-induced flows. In this study, the transport of pollutants within the urban environment, as well as the thermal and advection effects, are investigated. The focus is on the horizontal transport or the advection effects within the urban environment. With increased urbanization and larger and more spread cities, concern about how the upstream air quality situation can affect downstream areas. The study also examines the release and the dispersion of hazardous material. Due to the variety and complexity of urban areas around the world, the urban environment is simplified into adjacent two-dimensional urban street canyons. Pollutants are released inside each canyon. Computational Fluid Dynamics (CFD) simulations are applied to evaluate and quantify the flow rate out of each canyon and also the exchange of pollutants between the canyons. Imagine a row of ten adjacent urban street canyons of aspect ratio 1 with horizontal flow perpendicular to it as shown in the attached figure. C is the concentration of pollutants. The first digit indicates in what canyon the pollutant is released and the second digit indicates the location of that pollutant. For example, C3,4 is the concentration of pollutant released inside canyon 3 measured in canyon 4. The same amount of pollution is released inside the ten street canyons

  15. Influence of anisotropy on anomalous scaling of a passive scalar advected by the Navier-Stokes velocity field.

    Science.gov (United States)

    Jurcisinová, E; Jurcisin, M; Remecký, R

    2009-10-01

    The influence of weak uniaxial small-scale anisotropy on the stability of the scaling regime and on the anomalous scaling of the single-time structure functions of a passive scalar advected by the velocity field governed by the stochastic Navier-Stokes equation is investigated by the field theoretic renormalization group and operator-product expansion within one-loop approximation of a perturbation theory. The explicit analytical expressions for coordinates of the corresponding fixed point of the renormalization-group equations as functions of anisotropy parameters are found, the stability of the three-dimensional Kolmogorov-like scaling regime is demonstrated, and the dependence of the borderline dimension d(c) is an element of (2,3] between stable and unstable scaling regimes is found as a function of the anisotropy parameters. The dependence of the turbulent Prandtl number on the anisotropy parameters is also briefly discussed. The influence of weak small-scale anisotropy on the anomalous scaling of the structure functions of a passive scalar field is studied by the operator-product expansion and their explicit dependence on the anisotropy parameters is present. It is shown that the anomalous dimensions of the structure functions, which are the same (universal) for the Kraichnan model, for the model with finite time correlations of the velocity field, and for the model with the advection by the velocity field driven by the stochastic Navier-Stokes equation in the isotropic case, can be distinguished by the assumption of the presence of the small-scale anisotropy in the systems even within one-loop approximation. The corresponding comparison of the anisotropic anomalous dimensions for the present model with that obtained within the Kraichnan rapid-change model is done.

  16. A stochastic solution of the advective transport equation with uncertainty

    International Nuclear Information System (INIS)

    Williams, M.M.R.

    1991-01-01

    A model has been developed for calculating the transport of water-borne radionuclides through layers of porous materials, such as rock or clay. The model is based upon a purely advective transport equation, in which the fluid velocity is a random variable, thereby simulating dispersion in a more realistic manner than the ad hoc introduction of a dispersivity. In addition to a random velocity field, which is an observable physical phenomenon, allowance is made for uncertainty in our knowledge of the parameters which enter the equation, e.g. the retardation coefficient. This too, is assumed to be a random variable and contributes to the stochasticity of the resulting partial differential equation of transport. The stochastic differential equation can be solved analytically and then ensemble averages taken over the associated probability distribution of velocity and retardation coefficient. A method based upon a novel form of the central limit theorem of statistics is employed to obtain tractable solutions of a system consisting of many serial legs of varying properties. One interesting conclusion is that the total flux out of a medium is significantly underestimated by using the deterministic solution with an average transit time compared with that from the stochastically averaged solution. The theory is illustrated numerically for a number of physically relevant cases. (author) 8 figs., 4 tabs., 7 refs

  17. Advective mixing in a nondivergent barotropic hurricane model

    Directory of Open Access Journals (Sweden)

    B. Rutherford

    2010-01-01

    Full Text Available This paper studies Lagrangian mixing in a two-dimensional barotropic model for hurricane-like vortices. Since such flows show high shearing in the radial direction, particle separation across shear-lines is diagnosed through a Lagrangian field, referred to as R-field, that measures trajectory separation orthogonal to the Lagrangian velocity. The shear-lines are identified with the level-contours of another Lagrangian field, referred to as S-field, that measures the average shear-strength along a trajectory. Other fields used for model diagnostics are the Lagrangian field of finite-time Lyapunov exponents (FTLE-field, the Eulerian Q-field, and the angular velocity field. Because of the high shearing, the FTLE-field is not a suitable indicator for advective mixing, and in particular does not exhibit ridges marking the location of finite-time stable and unstable manifolds. The FTLE-field is similar in structure to the radial derivative of the angular velocity. In contrast, persisting ridges and valleys can be clearly recognized in the R-field, and their propagation speed indicates that transport across shear-lines is caused by Rossby waves. A radial mixing rate derived from the R-field gives a time-dependent measure of flux across the shear-lines. On the other hand, a measured mixing rate across the shear-lines, which counts trajectory crossings, confirms the results from the R-field mixing rate, and shows high mixing in the eyewall region after the formation of a polygonal eyewall, which continues until the vortex breaks down. The location of the R-field ridges elucidates the role of radial mixing for the interaction and breakdown of the mesovortices shown by the model.

  18. A nonlocal and periodic reaction-diffusion-advection model of a single phytoplankton species.

    Science.gov (United States)

    Peng, Rui; Zhao, Xiao-Qiang

    2016-02-01

    In this article, we are concerned with a nonlocal reaction-diffusion-advection model which describes the evolution of a single phytoplankton species in a eutrophic vertical water column where the species relies solely on light for its metabolism. The new feature of our modeling equation lies in that the incident light intensity and the death rate are assumed to be time periodic with a common period. We first establish a threshold type result on the global dynamics of this model in terms of the basic reproduction number R0. Then we derive various characterizations of R0 with respect to the vertical turbulent diffusion rate, the sinking or buoyant rate and the water column depth, respectively, which in turn give rather precise conditions to determine whether the phytoplankton persist or become extinct. Our theoretical results not only extend the existing ones for the time-independent case, but also reveal new interesting effects of the modeling parameters and the time-periodic heterogeneous environment on persistence and extinction of the phytoplankton species, and thereby suggest important implications for phytoplankton growth control.

  19. Correlation Networks from Flows. The Case of Forced and Time-Dependent Advection-Diffusion Dynamics.

    Directory of Open Access Journals (Sweden)

    Liubov Tupikina

    Full Text Available Complex network theory provides an elegant and powerful framework to statistically investigate different types of systems such as society, brain or the structure of local and long-range dynamical interrelationships in the climate system. Network links in climate networks typically imply information, mass or energy exchange. However, the specific connection between oceanic or atmospheric flows and the climate network's structure is still unclear. We propose a theoretical approach for verifying relations between the correlation matrix and the climate network measures, generalizing previous studies and overcoming the restriction to stationary flows. Our methods are developed for correlations of a scalar quantity (temperature, for example which satisfies an advection-diffusion dynamics in the presence of forcing and dissipation. Our approach reveals that correlation networks are not sensitive to steady sources and sinks and the profound impact of the signal decay rate on the network topology. We illustrate our results with calculations of degree and clustering for a meandering flow resembling a geophysical ocean jet.

  20. Existence of solutions to boundary value problems arising from the fractional advection dispersion equation

    Directory of Open Access Journals (Sweden)

    Lingju Kong

    2013-04-01

    Full Text Available We study the existence of multiple solutions to the boundary value problem $$displaylines{ frac{d}{dt}Big(frac12{}_0D_t^{-eta}(u'(t+frac12{}_tD_T^{-eta}(u'(t Big+lambda abla F(t,u(t=0,quad tin [0,T],cr u(0=u(T=0, }$$ where $T>0$, $lambda>0$ is a parameter, $0leqeta<1$, ${}_0D_t^{-eta}$ and ${}_tD_T^{-eta}$ are, respectively, the left and right Riemann-Liouville fractional integrals of order $eta$, $F: [0,T]imesmathbb{R}^Nomathbb{R}$ is a given function. Our interest in the above system arises from studying the steady fractional advection dispersion equation. By applying variational methods, we obtain sufficient conditions under which the above equation has at least three solutions. Our results are new even for the special case when $eta=0$. Examples are provided to illustrate the applicability of our results.

  1. Simulation of flame surface density and burning rate of a premixed turbulent flame using contour advection

    Energy Technology Data Exchange (ETDEWEB)

    Tang, B.H.Y.; Chan, C.K. [Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)

    2006-10-15

    In this paper, a 2-dimensional rod-stabilized V-shaped flame is simulated using contour advection with surgery as well as the random vortex method. Effects of turbulence on various quantities, such as flame brush thickness and flame surface density, are investigated. The flame surface density S is estimated using the Bray-Moss-Libby formulation, which involves the use of a mean orientation factor {sigma}{sub c}. As a comparison, values of S are also obtained using Shepherd's model, which employs the values of mean flame surface area and mean flame length. Local flame structure is characterized in terms of turbulent flame brush, orientation factor, and flame surface density. Profiles of S obtained using the two different models are compared and show that discrepancy is more evident with increasing turbulence intensity. (author)

  2. Application of GPU to Multi-interfaces Advection and Reconstruction Solver (MARS)

    International Nuclear Information System (INIS)

    Nagatake, Taku; Takase, Kazuyuki; Kunugi, Tomoaki

    2010-01-01

    In the nuclear engineering fields, a high performance computer system is necessary to perform the large scale computations. Recently, a Graphics Processing Unit (GPU) has been developed as a rendering computational system in order to reduce a Central Processing Unit (CPU) load. In the graphics processing, the high performance computing is needed to render the high-quality 3D objects in some video games. Thus the GPU consists of many processing units and a wide memory bandwidth. In this study, the Multi-interfaces Advection and Reconstruction Solver (MARS) which is one of the interface volume tracking methods for multi-phase flows has been performed. The multi-phase flow computation is very important for the nuclear reactors and other engineering fields. The MARS consists of two computing parts: the interface tracking part and the fluid motion computing part. As for the interface tracking part, the performance of GPU (GTX280) was 6 times faster than that of the CPU (Dual-Xeon 5040), and in the fluid motion computing part the Poisson Solver by the GPU (GTX285) was 22 times faster than that by the CPU(Core i7). As for the Dam Breaking Problem, the result of GPU-MARS showed slightly different from the experimental result. Because the GPU-MARS was developed using the single-precision GPU, it can be considered that the round-off error might be accumulated. (author)

  3. Advective, Diffusive and Eruptive Leakage of CO2 and Brine within Fault Zone

    Science.gov (United States)

    Jung, N. H.; Han, W. S.

    2014-12-01

    This study investigated a natural analogue for CO2 leakage near the Green River, Utah, aiming to understand the influence of various factors on CO2 leakage and to reliably predict underground CO2 behavior after injection for geologic CO2 sequestration. Advective, diffusive, and eruptive characteristics of CO2 leakage were assessed via a soil CO2 flux survey and numerical modeling. The field results show anomalous CO2 fluxes (> 10 g m-2 d-1) along the faults, particularly adjacent to CO2-driven cold springs and geysers (e.g., 36,259 g m-2 d-1 at Crystal Geyser), ancient travertines (e.g., 5,917 g m-2 d-1), joint zones in sandstone (e.g., 120 g m-2 d-1), and brine discharge zones (e.g., 5,515 g m-2 d-1). Combined to similar isotopic ratios of gas and progressive evolution of brine chemistry at springs and geysers, a gradual decrease of soil CO2 flux from the Little Grand Wash (LGW; ~36,259 g m-2 d-1) to Salt Wash (SW; ~1,428 g m-2 d-1) fault zones reveals the same CO2 origin and potential southward transport of CO2 over 10-20 km. The numerical simulations overtly exhibit lateral transport of free CO2 and CO2-rich brine from the LGW to SW fault zones through the regional aquifers (e.g., Entrada, Navajo, Kayenta, Wingate, White Rim). CO2 travels predominantly as an aqueous phase (Xco2=~0.045) as previously suggested, giving rise to the convective instability that further accelerates CO2 dissolution. While the buoyant free CO2 always tends to ascend, a fraction of dense CO2-rich brine flows laterally into the aquifer and mixes with the formation fluids during upward migration along the fault. The fault always enhances advective CO2 transport regardless of its permeability (k). However, only the low-k fault scenario engenders development of CO2 anticlinal trap within the shallow aquifers (Entrada and Navajo), concentrating high CO­­­2 fluxes (~1,273 g m-2 d-1) within the northern footwall of the LGW fault similar to the field. Moreover, eruptive CO2 leakage at a well

  4. Numerical investigation of renormalization group equations in a model of vector field advected by anisotropic stochastic environment

    International Nuclear Information System (INIS)

    Busa, J.; Ajryan, Eh.A.; Jurcisinova, E.; Jurcisin, M.; Remecky, R.

    2009-01-01

    Using the field-theoretic renormalization group, the influence of strong uniaxial small-scale anisotropy on the stability of inertial-range scaling regimes in a model of passive transverse vector field advected by an incompressible turbulent flow is investigated. The velocity field is taken to have a Gaussian statistics with zero mean and defined noise with finite time correlations. It is shown that the inertial-range scaling regimes are given by the existence of infrared stable fixed points of the corresponding renormalization group equations with some angle integrals. The analysis of integrals is given. The problem is solved numerically and the borderline spatial dimension d e (1,3] below which the stability of the scaling regime is not present is found as a function of anisotropy parameters

  5. Effect of organic compounds for the advection of actinide elements in the environments

    Energy Technology Data Exchange (ETDEWEB)

    Muraoka, Susumu; Nagao, Seiya; Tanaka, Tadao [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Hiraki, Keizo; Nakaguchi, Yuzuru; Suzuki, Yasuhiro

    1998-01-01

    The aim of this studies is understood the effects of humic substances for the advection of actinide elements in the environments. These substances are a major role of dissolved organic matter in natural waters. In order to obtain the informations on the structure of metal-humic substances complexes, these substances were studied by fluorescence spectroscopy. Observation the spectrum forms, peak positions of maximum intensity are related to these informations on the chemical structures and functional groups in organic compounds. Using three-dimensional excitation emission matrix (3-D EEM) spectroscopy, the characteristics of metal-humic substances complexes were studied. Observation the wavelengths and fluorescence intensity of the peaks were varied between humic substances before the complex to the metal and these substances after ones. Understanding the fluorescence properties of metal-humic substances complexes, working program of the 3-D EEM spectroscopy was studied to obtaining detailed data collection. New program was applied to copper-humic acid complex, the peak positions which different with before the complex and after ones were recorded. This program is supported by the interpreation of fluorescence properties in the metal-humic substances by the 3-D EEM spectroscopy. (author)

  6. Sensitivity analysis of numerical results of one- and two-dimensional advection-diffusion problems

    International Nuclear Information System (INIS)

    Motoyama, Yasunori; Tanaka, Nobuatsu

    2005-01-01

    Numerical simulation has been playing an increasingly important role in the fields of science and engineering. However, every numerical result contains errors such as modeling, truncation, and computing errors, and the magnitude of the errors that are quantitatively contained in the results is unknown. This situation causes a large design margin in designing by analyses and prevents further cost reduction by optimizing design. To overcome this situation, we developed a new method to numerically analyze the quantitative error of a numerical solution by using the sensitivity analysis method and modified equation approach. If a reference case of typical parameters is calculated once by this method, then no additional calculation is required to estimate the results of other numerical parameters such as those of parameters with higher resolutions. Furthermore, we can predict the exact solution from the sensitivity analysis results and can quantitatively evaluate the error of numerical solutions. Since the method incorporates the features of the conventional sensitivity analysis method, it can evaluate the effect of the modeling error as well as the truncation error. In this study, we confirm the effectiveness of the method through some numerical benchmark problems of one- and two-dimensional advection-diffusion problems. (author)

  7. Characteristics and Impact Factors of Parameter Alpha in the Nonlinear Advection-Aridity Method for Estimating Evapotranspiration at Interannual Scale in the Loess Plateau

    Science.gov (United States)

    Zhou, H.; Liu, W.; Ning, T.

    2017-12-01

    Land surface actual evapotranspiration plays a key role in the global water and energy cycles. Accurate estimation of evapotranspiration is crucial for understanding the interactions between the land surface and the atmosphere, as well as for managing water resources. The nonlinear advection-aridity approach was formulated by Brutsaert to estimate actual evapotranspiration in 2015. Subsequently, this approach has been verified, applied and developed by many scholars. The estimation, impact factors and correlation analysis of the parameter alpha (αe) of this approach has become important aspects of the research. According to the principle of this approach, the potential evapotranspiration (ETpo) (taking αe as 1) and the apparent potential evapotranspiration (ETpm) were calculated using the meteorological data of 123 sites of the Loess Plateau and its surrounding areas. Then the mean spatial values of precipitation (P), ETpm and ETpo for 13 catchments were obtained by a CoKriging interpolation algorithm. Based on the runoff data of the 13 catchments, actual evapotranspiration was calculated using the catchment water balance equation at the hydrological year scale (May to April of the following year) by ignoring the change of catchment water storage. Thus, the parameter was estimated, and its relationships with P, ETpm and aridity index (ETpm/P) were further analyzed. The results showed that the general range of annual parameter value was 0.385-1.085, with an average value of 0.751 and a standard deviation of 0.113. The mean annual parameter αe value showed different spatial characteristics, with lower values in northern and higher values in southern. The annual scale parameter linearly related with annual P (R2=0.89) and ETpm (R2=0.49), while it exhibited a power function relationship with the aridity index (R2=0.83). Considering the ETpm is a variable in the nonlinear advection-aridity approach in which its effect has been incorporated, the relationship of

  8. Strain histories from the eastern Central Range of Taiwan: A record of advection through a collisional orogen

    Science.gov (United States)

    Mondro, Claire A.; Fisher, Donald; Yeh, En-Chao

    2017-05-01

    In the eastern Central Range of Taiwan there is a regional variation in the orientation of maximum finite stretch across the slate belt, with down-dip maximum stretch found in the western Central Range and along-strike maximum stretch in the eastern Central Range. Incremental strain histories from syntectonic fibers in pyrite pressure shadows indicate a progressive change in extension direction from down dip to along strike during deformation, there is a corresponding temporal variation in stretching direction shown in samples from the eastern edge of the Central Range, a pattern that mimics the regional west-to-east spatial variation. These observed temporal and spatial strain distributions are used to evaluate the kinematics associated with slaty cleavage development during advection through the Taiwan orogenic system. The subduction zone beneath the island of Taiwan is influenced by two types of obliquity that have the potential to generate the observed along-strike stretching. First, the plate motion vector of the Philippine Sea plate relative to the Eurasian plate is slightly oblique to the regional strike of the mountain range, which could result in partitioning of strike slip shearing into the interior of the collision. Second, the north-south Luzon volcanic arc on the Philippine Sea Plate is obliquely oriented relative to the northeast-southwest edge of the Eurasian continental margin, which could result in lateral extrusion of the ductile core of the range. Incremental strain histories in cleavage-parallel samples represent a time-for-space equivalence where the stretching direction is fixed relative to the position within the mountain belt architecture (e.g., the topographic divide), and temporal variations in the eastern central Range reflect lateral advection through the strain field in response to accretionary and erosional fluxes. Incremental strain histories in cleavage perpendicular samples show both clockwise and counter-clockwise rotation of

  9. On the potential importance of transient air flow in advective radon entry into buildings

    International Nuclear Information System (INIS)

    Narasimhan, T.N.; Tsang, Y.W.; Holman, H.Y.

    1990-01-01

    The authors have investigated, using a mathematical model, the temporal variations of air flux within the soil mass surrounding a basement in the presence of time dependent periodic variations of barometric pressure and a persistent under-pressure at the basement. The results of transient air flow show that for a homogeneous soil medium, the effects of barometric fluctuations are most significant in the cases where soil permeability to air is low and the fluctuation frequency is high. In these cases, the barometric fluctuation can greatly enhance the magnitude of fluxes as well as introduce flow direction reversals from surrounding soil into the basement. These large fluxes with direction reversals have strong implications in regard to advective transport of radon. The results suggest that the transient oscillations have to be accounted for in quantifying radon entry into buildings. In the actual field set up, the transient behavior will be further influenced by soil permeability heterogeneity, by soil moisture variations, and by the effects of multiple periodic components in the barometric pressure fluctuations

  10. Numerical simulation of advective-dispersive multisolute transport with sorption, ion exchange and equilibrium chemistry

    Science.gov (United States)

    Lewis, F.M.; Voss, C.I.; Rubin, Jacob

    1986-01-01

    A model was developed that can simulate the effect of certain chemical and sorption reactions simultaneously among solutes involved in advective-dispersive transport through porous media. The model is based on a methodology that utilizes physical-chemical relationships in the development of the basic solute mass-balance equations; however, the form of these equations allows their solution to be obtained by methods that do not depend on the chemical processes. The chemical environment is governed by the condition of local chemical equilibrium, and may be defined either by the linear sorption of a single species and two soluble complexation reactions which also involve that species, or binary ion exchange and one complexation reaction involving a common ion. Partial differential equations that describe solute mass balance entirely in the liquid phase are developed for each tenad (a chemical entity whose total mass is independent of the reaction process) in terms of their total dissolved concentration. These equations are solved numerically in two dimensions through the modification of an existing groundwater flow/transport computer code. (Author 's abstract)

  11. Two-relaxation-time lattice Boltzmann method and its application to advective-diffusive-reactive transport

    Science.gov (United States)

    Yan, Zhifeng; Yang, Xiaofan; Li, Siliang; Hilpert, Markus

    2017-11-01

    The lattice Boltzmann method (LBM) based on single-relaxation-time (SRT) or multiple-relaxation-time (MRT) collision operators is widely used in simulating flow and transport phenomena. The LBM based on two-relaxation-time (TRT) collision operators possesses strengths from the SRT and MRT LBMs, such as its simple implementation and good numerical stability, although tedious mathematical derivations and presentations of the TRT LBM hinder its application to a broad range of flow and transport phenomena. This paper describes the TRT LBM clearly and provides a pseudocode for easy implementation. Various transport phenomena were simulated using the TRT LBM to illustrate its applications in subsurface environments. These phenomena include advection-diffusion in uniform flow, Taylor dispersion in a pipe, solute transport in a packed column, reactive transport in uniform flow, and bacterial chemotaxis in porous media. The TRT LBM demonstrated good numerical performance in terms of accuracy and stability in predicting these transport phenomena. Therefore, the TRT LBM is a powerful tool to simulate various geophysical and biogeochemical processes in subsurface environments.

  12. Relativistic Outflows from Advection-dominated Accretion Disks around Black Holes

    Science.gov (United States)

    Becker, Peter A.; Subramanian, Prasad; Kazanas, Demosthenes

    2001-05-01

    Advection-dominated accretion flows (ADAFs) have a positive Bernoulli parameter and are therefore gravitationally unbound. The Newtonian ADAF model has been generalized recently to obtain the ADIOS model that includes outflows of energy and angular momentum, thereby allowing accretion to proceed self-consistently. However, the utilization of a Newtonian gravitational potential limits the ability of this model to describe the inner region of the disk, where any relativistic outflows are likely to originate. In this paper we modify the ADIOS scenario to incorporate a pseudo-Newtonian potential, which approximates the effects of general relativity. The analysis yields a unique, self-similar solution for the structure of the coupled disk/wind system. Interesting features of the new solution include the relativistic character of the outflow in the vicinity of the radius of marginal stability, which represents the inner edge of the quasi-Keplerian disk in our model. Hence, our self-similar solution may help to explain the origin of relativistic jets in active galaxies. At large distances the radial dependence of the accretion rate approaches the unique form M~r1/2, with an associated density variation given by ρ~r-1. This density variation agrees with that implied by the dependence of the hard X-ray time lags on the Fourier frequency for a number of accreting galactic black hole candidates. While intriguing, the predictions made using our self-similar solution need to be confirmed in the future using a detailed model that includes a physical description of the energization mechanism that drives the outflow, which is likely to be powered by the shear of the underlying accretion disk.

  13. Boundary value problemfor multidimensional fractional advection-dispersion equation

    Directory of Open Access Journals (Sweden)

    Khasambiev Mokhammad Vakhaevich

    2015-05-01

    authors first considered the boundary value problem for stationary equation for mass transfer in super-diffusion conditions and abnormal advection. Then the solution of the problem is explicitly given. The solution is obtained by the Fourier’s method.The obtained results will be useful in liquid filtration theory in fractal medium and for modeling the temperature variations in the heated bar.

  14. Linking bacterial community structure to advection and environmental impact along a coast-fjord gradient of the Sognefjord, western Norway

    Science.gov (United States)

    Storesund, Julia E.; Sandaa, Ruth-Anne; Thingstad, T. Frede; Asplin, Lars; Albretsen, Jon; Erga, Svein Rune

    2017-12-01

    Here we present novel data on bacterial assemblages along a coast-fjord gradient in the Sognefjord, the deepest (1308 m) and longest (205 km) ice-free fjord in the world. Data were collected on two cruises, one in November 2012, and one in May 2013. Special focus was on the impact of advective processes and how these are reflected in the autochthonous and allochthonous fractions of the bacterial communities. Both in November and May bacterial community composition, determined by Automated Ribosomal Intergenic Spacer Analyses (ARISA), in the surface and intermediate water appeared to be highly related to bacterial communities originating from freshwater runoff and coastal water, whereas the sources in the basin water were mostly unknown. Additionally, the inner part of the Sognefjord was more influenced by side-fjords than the outer part, and changes in bacterial community structure along the coast-fjord gradient generally showed higher correlation with environmental variables than with geographic distances. High resolution model simulations indicated a surprisingly high degree of temporal and spatial variation in both current speed and direction. This led to a more episodic/discontinuous horizontal current pattern, with several vortices (10-20 km wide) being formed from time to time along the fjord. We conclude that during periods of strong wind forcing, advection led to allochthonous species being introduced to the surface and intermediate layers of the fjord, and also appeared to homogenize community composition in the basin water. We also expect vortices to be active mixing zones where inflowing bacterial populations on the southern side of the fjord are mixed with the outflowing populations on the northern side. On average, retention time of the fjord water was sufficient for bacterial communities to be established.

  15. A deformable particle-in-cell method for advective transport in geodynamic modeling

    Science.gov (United States)

    Samuel, Henri

    2018-06-01

    This paper presents an improvement of the particle-in-cell method commonly used in geodynamic modeling for solving pure advection of sharply varying fields. Standard particle-in-cell approaches use particle kernels to transfer the information carried by the Lagrangian particles to/from the Eulerian grid. These kernels are generally one-dimensional and non-evolutive, which leads to the development of under- and over-sampling of the spatial domain by the particles. This reduces the accuracy of the solution, and may require the use of a prohibitive amount of particles in order to maintain the solution accuracy to an acceptable level. The new proposed approach relies on the use of deformable kernels that account for the strain history in the vicinity of particles. It results in a significant improvement of the spatial sampling by the particles, leading to a much higher accuracy of the numerical solution, for a reasonable computational extra cost. Various 2D tests were conducted to compare the performances of the deformable particle-in-cell method with the particle-in-cell approach. These consistently show that at comparable accuracy, the deformable particle-in-cell method was found to be four to six times more efficient than standard particle-in-cell approaches. The method could be adapted to 3D space and generalized to cases including motionless transport.

  16. Identification of advective entry of soil-gas radon into a crawl space covered with sheets of polyethylene foil

    International Nuclear Information System (INIS)

    Andersen, C.; Koopmanns, M.; Meijer, R.J. de

    1996-04-01

    To assess the effectiveness of mitigative measures against radon ( 222 Rn) entry into houses, experiments were conducted in a crawl-space house where the dirt floor of the crawl space was covered with sheets of 0.23 mm polyethylene foil fixed to the walls. The radon concentration was measured below the foil and in the crawl space together with environmental variables such as indoor-outdoor pressure differences. The experimental data was analyzed using various types of models including a simplistic mass-balance model, a regression model, and a two-dimensional numerical model based on Darcy flow or soil gas and combined diffusive and advective transport of radon. The main outcome of the work was that: (i) The soil-gas entry rate per pascal depressurization was at the order of 1 m 3 h -1 , (ii) the stack-related part of the depressurization of the crawl space (approx. 0.1 Pa deg. C -1 ) was controlled by the temperature difference between the living room of the house and the outdoors (not by the difference between the crawl space and the outdoors), (iii) that part of the wind-related depressurization that was measured by the pressure transducers seemed to force radon into the crawl space in the same proportion as the stack-related part of the depressurization, (iv) the ratio of advective and diffusive entry was approx. 0.7, when the crawl space was depressurized 1.5 Pa, (v) the effective diffusivity of the foil was found to be three orders of magnitude larger than that measured in the laboratory (the enhanced diffusivity was most likely caused by leaks in the foil and by mixing fans located in the crawl space), and (vi) there was no measurable mitigative impact of having the sheets of foil on the crawl-space floor even if the crawl space was artificially pressurized or depressurized. (au) 28 tabs., 36 ills., 61 refs

  17. Identification of advective entry of soil-gas radon into a crawl space covered with sheets of polyethylene foil

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, C. [Risoe National Lab., Dept. of Nucl. Safety Res. and Nucl. Facilities, Roskilde (Denmark); Koopmanns, M.; Meijer, R.J. de [Kernfysische Versneller Inst., Environmental Radioactivity Res., Groningen (Netherlands)

    1996-04-01

    To assess the effectiveness of mitigative measures against radon ({sup 222}Rn) entry into houses, experiments were conducted in a crawl-space house where the dirt floor of the crawl space was covered with sheets of 0.23 mm polyethylene foil fixed to the walls. The radon concentration was measured below the foil and in the crawl space together with environmental variables such as indoor-outdoor pressure differences. The experimental data was analyzed using various types of models including a simplistic mass-balance model, a regression model, and a two-dimensional numerical model based on Darcy flow or soil gas and combined diffusive and advective transport of radon. The main outcome of the work was that: (i) The soil-gas entry rate per pascal depressurization was at the order of 1 m{sup 3} h{sup -1}, (ii) the stack-related part of the depressurization of the crawl space (approx. 0.1 Pa deg. C{sup -1}) was controlled by the temperature difference between the living room of the house and the outdoors (not by the difference between the crawl space and the outdoors), (iii) that part of the wind-related depressurization that was measured by the pressure transducers seemed to force radon into the crawl space in the same proportion as the stack-related part of the depressurization, (iv) the ratio of advective and diffusive entry was approx. 0.7, when the crawl space was depressurized 1.5 Pa, (v) the effective diffusivity of the foil was found to be three orders of magnitude larger than that measured in the laboratory (the enhanced diffusivity was most likely caused by leaks in the foil and by mixing fans located in the crawl space), and (vi) there was no measurable mitigative impact of having the sheets of foil on the crawl-space floor even if the crawl space was artificially pressurized or depressurized. (au) 28 tabs., 36 ills., 61 refs.

  18. Advective transport observations with MODPATH-OBS--documentation of the MODPATH observation process

    Science.gov (United States)

    Hanson, R.T.; Kauffman, L.K.; Hill, M.C.; Dickinson, J.E.; Mehl, S.W.

    2013-01-01

    The MODPATH-OBS computer program described in this report is designed to calculate simulated equivalents for observations related to advective groundwater transport that can be represented in a quantitative way by using simulated particle-tracking data. The simulated equivalents supported by MODPATH-OBS are (1) distance from a source location at a defined time, or proximity to an observed location; (2) time of travel from an initial location to defined locations, areas, or volumes of the simulated system; (3) concentrations used to simulate groundwater age; and (4) percentages of water derived from contributing source areas. Although particle tracking only simulates the advective component of conservative transport, effects of non-conservative processes such as retardation can be approximated through manipulation of the effective-porosity value used to calculate velocity based on the properties of selected conservative tracers. This program can also account for simple decay or production, but it cannot account for diffusion. Dispersion can be represented through direct simulation of subsurface heterogeneity and the use of many particles. MODPATH-OBS acts as a postprocessor to MODPATH, so that the sequence of model runs generally required is MODFLOW, MODPATH, and MODPATH-OBS. The version of MODFLOW and MODPATH that support the version of MODPATH-OBS presented in this report are MODFLOW-2005 or MODFLOW-LGR, and MODPATH-LGR. MODFLOW-LGR is derived from MODFLOW-2005, MODPATH 5, and MODPATH 6 and supports local grid refinement. MODPATH-LGR is derived from MODPATH 5. It supports the forward and backward tracking of particles through locally refined grids and provides the output needed for MODPATH_OBS. For a single grid and no observations, MODPATH-LGR results are equivalent to MODPATH 5. MODPATH-LGR and MODPATH-OBS simulations can use nearly all of the capabilities of MODFLOW-2005 and MODFLOW-LGR; for example, simulations may be steady-state, transient, or a combination

  19. Spectra of turbulently advected scalars that have small Schmidt number

    Science.gov (United States)

    Hill, Reginald J.

    2017-09-01

    Exact statistical equations are derived for turbulent advection of a passive scalar having diffusivity much larger than the kinematic viscosity, i.e., small Schmidt number. The equations contain all terms needed for precise direct numerical simulation (DNS) quantification. In the appropriate limit, the equations reduce to the classical theory for which the scalar spectrum is proportional to the energy spectrum multiplied by k-4, which, in turn, results in the inertial-diffusive range power law, k-17 /3. The classical theory was derived for the case of isotropic velocity and scalar fields. The exact equations are simplified for less restrictive cases: (1) locally isotropic scalar fluctuations at dissipation scales with no restriction on symmetry of the velocity field, (2) isotropic velocity field with averaging over all wave-vector directions with no restriction on the symmetry of the scalar, motivated by that average being used for DNS, and (3) isotropic velocity field with axisymmetric scalar fluctuations, motivated by the mean-scalar-gradient-source case. The equations are applied to recently published DNSs of passive scalars for the cases of a freely decaying scalar and a mean-scalar-gradient source. New terms in the exact equations are estimated for those cases and are found to be significant; those terms cause the deviations from the classical theory found by the DNS studies. A new formula for the mean-scalar-gradient case explains the variation of the scalar spectra for the DNS of the smallest Schmidt-number cases. Expansion in Legendre polynomials reveals the effect of axisymmetry. Inertial-diffusive-range formulas for both the zero- and second-order Legendre contributions are given. Exact statistical equations reveal what must be quantified using DNS to determine what causes deviations from asymptotic relationships.

  20. Quantification of Stokes Drift as a Mechanism for Surface Oil Advection in the DWH Oil Spill

    Science.gov (United States)

    Clark, M.

    2013-12-01

    Stokes drift has previously been qualitatively shown to be a factor in ocean surface particle transport, but has never been comprehensively quantified. In addition, most operational ocean particle advection models used during the Deepwater Horizon oil spill do not explicitly account for Stokes drift, instead using a simple parameterization based on wind drift (or ignoring it completely). This research works to quantify Stokes drift via direct calculation, with a focus on shallow water, where Stokes drift is more likely to have a relatively large impact compared to other transport processes such as ocean currents. For this study, WaveWatch III modeled waves in the Gulf of Mexico are used, from which Stokes drift is calculated using the peak wave period and significant wave height outputs. Trajectories are also calculated to examine the role Stokes drift plays in bringing surface particles (and specifically surface oil slicks) onshore. The impact of Stokes drift is compared to transport by currents and traditional estimates of wind drift.

  1. Chaotic advection at large Péclet number: Electromagnetically driven experiments, numerical simulations, and theoretical predictions

    International Nuclear Information System (INIS)

    Figueroa, Aldo; Meunier, Patrice; Villermaux, Emmanuel; Cuevas, Sergio; Ramos, Eduardo

    2014-01-01

    We present a combination of experiment, theory, and modelling on laminar mixing at large Péclet number. The flow is produced by oscillating electromagnetic forces in a thin electrolytic fluid layer, leading to oscillating dipoles, quadrupoles, octopoles, and disordered flows. The numerical simulations are based on the Diffusive Strip Method (DSM) which was recently introduced (P. Meunier and E. Villermaux, “The diffusive strip method for scalar mixing in two-dimensions,” J. Fluid Mech. 662, 134–172 (2010)) to solve the advection-diffusion problem by combining Lagrangian techniques and theoretical modelling of the diffusion. Numerical simulations obtained with the DSM are in reasonable agreement with quantitative dye visualization experiments of the scalar fields. A theoretical model based on log-normal Probability Density Functions (PDFs) of stretching factors, characteristic of homogeneous turbulence in the Batchelor regime, allows to predict the PDFs of scalar in agreement with numerical and experimental results. This model also indicates that the PDFs of scalar are asymptotically close to log-normal at late stages, except for the large concentration levels which correspond to low stretching factors

  2. Aerosol composition and properties variation at the ground and over the column under different air masses advection in South Italy.

    Science.gov (United States)

    Pavese, G; Lettino, A; Calvello, M; Esposito, F; Fiore, S

    2016-04-01

    Aerosol composition and properties variation under the advection of different air masses were investigated, as case studies, by contemporary measurements over the atmospheric column and at the ground in a semi-rural site in South Italy. The absence of local strong sources in this area allowed to characterize background aerosol and to compare particle mixing effects under various atmospheric circulation conditions. Aerosol optical depth (AOD) and Ǻngström parameters from radiometric measurements allowed the detection and identification of polluted, dust, and volcanic atmospheric conditions. AODs were the input for a suitable model to evaluate the columnar aerosol composition, according to six main atmospheric components (water-soluble, soot, sea salt accumulation, sea salt coarse, mineral dus,t and biological). Scanning electron microscope (SEM) analysis of particulate sampled with a 13-stage impactor at the ground showed not only fingerprints typical of the different air masses but also the effects of transport and aging on atmospheric particles, suggesting processes that changed their chemical and optical properties. Background columnar aerosol was characterized by 72% of water-soluble and soot, in agreement with ground-based findings that highlighted 60% of contribution from anthropogenic carbonate particles and soot. In general, a good agreement between ground-based and columnar results was observed. Under the advection of trans-boundary air masses, water-soluble and soot were always present in columnar aerosol, whereas, in variable percentages, sea salt and mineral particles characterized both dust and volcanic conditions. At the ground, sulfates characterized the amorphous matrix produced in finer stages by the evaporation of solutions of organic and inorganic aerosols. Sulfates were also one of the key players involved in heterogeneous chemical reactions, producing complex secondary aerosol, as such clay-sulfate internally mixed particle externally mixed

  3. Hybrid advection scheme for 3-dimensional atmospheric models. Testing and application for a study of NO{sub x} transport

    Energy Technology Data Exchange (ETDEWEB)

    Zubov, V.A.; Rozanov, E.V. [Main Geophysical Observatory, St.Petersburg (Russian Federation); Schlesinger, M.E.; Andronova, N.G. [Illinois Univ., Urbana-Champaign, IL (United States). Dept. of Atmospheric Sciences

    1997-12-31

    The problems of ozone depletion, climate change and atmospheric pollution strongly depend on the processes of production, destruction and transport of chemical species. A hybrid transport scheme was developed, consisting of the semi-Lagrangian scheme for horizontal advection and the Prather scheme for vertical transport, which have been used for the Atmospheric Chemical Transport model to calculate the distributions of different chemical species. The performance of the new hybrid scheme has been evaluated in comparison with other transport schemes on the basis of specially designed tests. The seasonal cycle of the distribution of N{sub 2}O simulated by the model, as well as the dispersion of NO{sub x} exhausted from subsonic aircraft, are in a good agreement with published data. (author) 8 refs.

  4. Hybrid advection scheme for 3-dimensional atmospheric models. Testing and application for a study of NO{sub x} transport

    Energy Technology Data Exchange (ETDEWEB)

    Zubov, V A; Rozanov, E V [Main Geophysical Observatory, St.Petersburg (Russian Federation); Schlesinger, M E; Andronova, N G [Illinois Univ., Urbana-Champaign, IL (United States). Dept. of Atmospheric Sciences

    1998-12-31

    The problems of ozone depletion, climate change and atmospheric pollution strongly depend on the processes of production, destruction and transport of chemical species. A hybrid transport scheme was developed, consisting of the semi-Lagrangian scheme for horizontal advection and the Prather scheme for vertical transport, which have been used for the Atmospheric Chemical Transport model to calculate the distributions of different chemical species. The performance of the new hybrid scheme has been evaluated in comparison with other transport schemes on the basis of specially designed tests. The seasonal cycle of the distribution of N{sub 2}O simulated by the model, as well as the dispersion of NO{sub x} exhausted from subsonic aircraft, are in a good agreement with published data. (author) 8 refs.

  5. Coupled transport and chemistry in clay stone studied by advective displacement: experiments and model

    International Nuclear Information System (INIS)

    Landesman, C.; Grambow, B.; Bailly, C.; Ribet, S.; Perrigaud, K.; Baty, V.; Giffaut, E.

    2010-01-01

    Document available in extended abstract form only. Full text of publication entered in this record. For assessing the mass transfer resistance of the Callovo-Oxfordian clay rock formation in case of implementing a nuclear waste repository, various strongly coupled processes need to be understood and quantified both in near and far field: multi-species diffusion/advection, mineral/pore water interaction, interaction with the waste matrix and engineered barrier material, radionuclide retention, colloid transport, pore water chemistry evolution etc. To study many of these processes in their interrelationship simultaneously, a series of high pressure stainless steel advection cell was designed and clay cores from different locations of different calcite and clay contents were machined to fit the inner diameter of the cells with a precision of 50 μm. After assembling, simulated oxygen free clay pore water with bromine tracer was pushed by a High Pressure pump through the reactor by a pressure of up 100 bars at temperatures between 20 and 90 deg. C and the out-flowing water was collected, protected from air and analyzed by ICP-MS, COT meter and ion chromatography in regular time intervals. The water flow rate was between 0.02 and 1.2 mL/ d, corresponding to a clay rock permeabilities between 10 -12 and 10 -14 m/s at 25 deg. C. Permeabilities increase with temperature as expected due to reduction of viscosity of water. The experiments last up to 2 years. The first drops of out flowing allow estimating the initial pore water composition. This is particular useful to assess mobile natural organic matter contents, Se concentrations and temperature effect on clay water composition. Results show that only very small organic molecules are mobile. Temperature had only little effect on water composition. After few months both tritiated (HTO) water and 36 Cl were added and from the evolution of the activities in the out flowing water dispersion coefficients and accessible

  6. Bound-Preserving Discontinuous Galerkin Methods for Conservative Phase Space Advection in Curvilinear Coordinates

    Energy Technology Data Exchange (ETDEWEB)

    Mezzacappa, Anthony [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Endeve, Eirik [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hauck, Cory D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Xing, Yulong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-02-01

    We extend the positivity-preserving method of Zhang & Shu [49] to simulate the advection of neutral particles in phase space using curvilinear coordinates. The ability to utilize these coordinates is important for non-equilibrium transport problems in general relativity and also in science and engineering applications with specific geometries. The method achieves high-order accuracy using Discontinuous Galerkin (DG) discretization of phase space and strong stabilitypreserving, Runge-Kutta (SSP-RK) time integration. Special care in taken to ensure that the method preserves strict bounds for the phase space distribution function f; i.e., f ϵ [0, 1]. The combination of suitable CFL conditions and the use of the high-order limiter proposed in [49] is su cient to ensure positivity of the distribution function. However, to ensure that the distribution function satisfies the upper bound, the discretization must, in addition, preserve the divergencefree property of the phase space ow. Proofs that highlight the necessary conditions are presented for general curvilinear coordinates, and the details of these conditions are worked out for some commonly used coordinate systems (i.e., spherical polar spatial coordinates in spherical symmetry and cylindrical spatial coordinates in axial symmetry, both with spherical momentum coordinates). Results from numerical experiments - including one example in spherical symmetry adopting the Schwarzschild metric - demonstrate that the method achieves high-order accuracy and that the distribution function satisfies the maximum principle.

  7. Advective and atmospheric forced changes in heat and fresh water content in the Norwegian Sea, 1951-2010

    Science.gov (United States)

    Mork, Kjell Arne; Skagseth, Øystein; Ivshin, Victor; Ozhigin, Vladimir; Hughes, Sarah L.; Valdimarsson, Hédinn

    2014-09-01

    Climate variability in the Norwegian Sea was investigated in terms of ocean heat and fresh water contents of Atlantic water above a reference surface, using hydrographic data during spring 1951-2010. The main processes acting on this variability were examined and then quantified. The area-averaged water mass cooled and freshened, but a deepening of the reference surface resulted in a positive trend in the heat content of 0.3 W m-2. Air-sea heat fluxes explained about half of the interannual variability in heat content. The effect of the advection of Atlantic and Arctic waters on the variability varied with time, apparently due to large-scale changes in the ocean circulation. The data are consistent with the explanation that changing wind patterns caused buffering and then release of Arctic water in the Iceland Sea during the late 1960s to early 1970s, and this caused large hydrographic changes in the Norwegian Sea.

  8. Numerical treatment for solving two-dimensional space-fractional advection-dispersion equation using meshless method

    Science.gov (United States)

    Cheng, Rongjun; Sun, Fengxin; Wei, Qi; Wang, Jufeng

    2018-02-01

    Space-fractional advection-dispersion equation (SFADE) can describe particle transport in a variety of fields more accurately than the classical models of integer-order derivative. Because of nonlocal property of integro-differential operator of space-fractional derivative, it is very challenging to deal with fractional model, and few have been reported in the literature. In this paper, a numerical analysis of the two-dimensional SFADE is carried out by the element-free Galerkin (EFG) method. The trial functions for the SFADE are constructed by the moving least-square (MLS) approximation. By the Galerkin weak form, the energy functional is formulated. Employing the energy functional minimization procedure, the final algebraic equations system is obtained. The Riemann-Liouville operator is discretized by the Grünwald formula. With center difference method, EFG method and Grünwald formula, the fully discrete approximation schemes for SFADE are established. Comparing with exact results and available results by other well-known methods, the computed approximate solutions are presented in the format of tables and graphs. The presented results demonstrate the validity, efficiency and accuracy of the proposed techniques. Furthermore, the error is computed and the proposed method has reasonable convergence rates in spatial and temporal discretizations.

  9. Monte Carlo investigation of anomalous transport in presence of a discontinuity and of an advection field

    Science.gov (United States)

    Marseguerra, M.; Zoia, A.

    2007-04-01

    Anomalous diffusion has recently turned out to be almost ubiquitous in transport problems. When the physical properties of the medium where the transport process takes place are stationary and constant at each spatial location, anomalous transport has been successfully analysed within the Continuous Time Random Walk (CTRW) model. In this paper, within a Monte Carlo approach to CTRW, we focus on the particle transport through two regions characterized by different physical properties, in presence of an external driving action constituted by an additional advective field, modelled within both the Galilei invariant and Galilei variant schemes. Particular attention is paid to the interplay between the distributions of space and time across the discontinuity. The resident concentration and the flux of the particles are finally evaluated and it is shown that at the interface between the two regions the flux is continuous as required by mass conservation, while the concentration may reveal a neat discontinuity. This result could open the route to the Monte Carlo investigation of the effectiveness of a physical discontinuity acting as a filter on particle concentration.

  10. Analysis of passive scalar advection in parallel shear flows: Sorting of modes at intermediate time scales

    Science.gov (United States)

    Camassa, Roberto; McLaughlin, Richard M.; Viotti, Claudio

    2010-11-01

    The time evolution of a passive scalar advected by parallel shear flows is studied for a class of rapidly varying initial data. Such situations are of practical importance in a wide range of applications from microfluidics to geophysics. In these contexts, it is well-known that the long-time evolution of the tracer concentration is governed by Taylor's asymptotic theory of dispersion. In contrast, we focus here on the evolution of the tracer at intermediate time scales. We show how intermediate regimes can be identified before Taylor's, and in particular, how the Taylor regime can be delayed indefinitely by properly manufactured initial data. A complete characterization of the sorting of these time scales and their associated spatial structures is presented. These analytical predictions are compared with highly resolved numerical simulations. Specifically, this comparison is carried out for the case of periodic variations in the streamwise direction on the short scale with envelope modulations on the long scales, and show how this structure can lead to "anomalously" diffusive transients in the evolution of the scalar onto the ultimate regime governed by Taylor dispersion. Mathematically, the occurrence of these transients can be viewed as a competition in the asymptotic dominance between large Péclet (Pe) numbers and the long/short scale aspect ratios (LVel/LTracer≡k), two independent nondimensional parameters of the problem. We provide analytical predictions of the associated time scales by a modal analysis of the eigenvalue problem arising in the separation of variables of the governing advection-diffusion equation. The anomalous time scale in the asymptotic limit of large k Pe is derived for the short scale periodic structure of the scalar's initial data, for both exactly solvable cases and in general with WKBJ analysis. In particular, the exactly solvable sawtooth flow is especially important in that it provides a short cut to the exact solution to the

  11. Modulating Functions Based Algorithm for the Estimation of the Coefficients and Differentiation Order for a Space-Fractional Advection-Dispersion Equation

    KAUST Repository

    Aldoghaither, Abeer

    2015-12-01

    In this paper, a new method, based on the so-called modulating functions, is proposed to estimate average velocity, dispersion coefficient, and differentiation order in a space-fractional advection-dispersion equation, where the average velocity and the dispersion coefficient are space-varying. First, the average velocity and the dispersion coefficient are estimated by applying the modulating functions method, where the problem is transformed into a linear system of algebraic equations. Then, the modulating functions method combined with a Newton\\'s iteration algorithm is applied to estimate the coefficients and the differentiation order simultaneously. The local convergence of the proposed method is proved. Numerical results are presented with noisy measurements to show the effectiveness and robustness of the proposed method. It is worth mentioning that this method can be extended to general fractional partial differential equations.

  12. Modulating Functions Based Algorithm for the Estimation of the Coefficients and Differentiation Order for a Space-Fractional Advection-Dispersion Equation

    KAUST Repository

    Aldoghaither, Abeer; Liu, Da-Yan; Laleg-Kirati, Taous-Meriem

    2015-01-01

    In this paper, a new method, based on the so-called modulating functions, is proposed to estimate average velocity, dispersion coefficient, and differentiation order in a space-fractional advection-dispersion equation, where the average velocity and the dispersion coefficient are space-varying. First, the average velocity and the dispersion coefficient are estimated by applying the modulating functions method, where the problem is transformed into a linear system of algebraic equations. Then, the modulating functions method combined with a Newton's iteration algorithm is applied to estimate the coefficients and the differentiation order simultaneously. The local convergence of the proposed method is proved. Numerical results are presented with noisy measurements to show the effectiveness and robustness of the proposed method. It is worth mentioning that this method can be extended to general fractional partial differential equations.

  13. Numerical and analytical approaches to an advection-diffusion problem at small Reynolds number and large Péclet number

    Science.gov (United States)

    Fuller, Nathaniel J.; Licata, Nicholas A.

    2018-05-01

    Obtaining a detailed understanding of the physical interactions between a cell and its environment often requires information about the flow of fluid surrounding the cell. Cells must be able to effectively absorb and discard material in order to survive. Strategies for nutrient acquisition and toxin disposal, which have been evolutionarily selected for their efficacy, should reflect knowledge of the physics underlying this mass transport problem. Motivated by these considerations, in this paper we discuss the results from an undergraduate research project on the advection-diffusion equation at small Reynolds number and large Péclet number. In particular, we consider the problem of mass transport for a Stokesian spherical swimmer. We approach the problem numerically and analytically through a rescaling of the concentration boundary layer. A biophysically motivated first-passage problem for the absorption of material by the swimming cell demonstrates quantitative agreement between the numerical and analytical approaches. We conclude by discussing the connections between our results and the design of smart toxin disposal systems.

  14. Clay with Desiccation Cracks is an Advection Dominated Environment

    Science.gov (United States)

    Baram, S.; Kurtzman, D.; Sher, Y.; Ronen, Z.; Dahan, O.

    2012-04-01

    , indicating deep soil evaporation. Daily fluctuation of the air temperature in the desiccation cracks supported thermally induced air convection within the cracks void and could explain the deep soil salinization process. Combination of all the abovementioned observations demonstrated that the formation of desiccation cracks network in dispersive clay sediments generates a bulk advection dominated environment for both air and water flow, and that the reference to clay sediments as "hydrologically safe" should to be reconsidered.

  15. Correcting transport errors during advection of aerosol and cloud moment sequences in eulerian models

    Energy Technology Data Exchange (ETDEWEB)

    McGraw R.

    2012-03-01

    Moment methods are finding increasing usage for simulations of particle population balance in box models and in more complex flows including two-phase flows. These highly efficient methods have nevertheless had little impact to date for multi-moment representation of aerosols and clouds in atmospheric models. There are evidently two reasons for this: First, atmospheric models, especially if the goal is to simulate climate, tend to be extremely complex and take many man-years to develop. Thus there is considerable inertia to the implementation of novel approaches. Second, and more fundamental, the nonlinear transport algorithms designed to reduce numerical diffusion during advection of various species (tracers) from cell to cell, in the typically coarse grid arrays of these models, can and occasionally do fail to preserve correlations between the moments. Other correlated tracers such as isotopic abundances, composition of aerosol mixtures, hydrometeor phase, etc., are subject to this same fate. In the case of moments, this loss of correlation can and occasionally does give rise to unphysical moment sets. When this happens the simulation can come to a halt. Following a brief description and review of moment methods, the goal of this paper is to present two new approaches that both test moment sequences for validity and correct them when they fail. The new approaches work on individual grid cells without requiring stored information from previous time-steps or neighboring cells.

  16. ZnO nanowire co-growth on SiO2 and C by carbothermal reduction and vapour advection

    International Nuclear Information System (INIS)

    Vega, N C; Caram, J; Grinblat, G; Comedi, D; Wallar, R; LaPierre, R R; Tirado, M

    2012-01-01

    Vertically aligned ZnO nanowires (NWs) were grown on Au-nanocluster-seeded amorphous SiO 2 films by the advective transport and deposition of Zn vapours obtained from the carbothermal reaction of graphite and ZnO powders. Both the NW volume and visible-to-UV photoluminescence ratio were found to be strong functions of, and hence could be tailored by, the (ZnO+C) source–SiO 2 substrate distance. We observe C flakes on the ZnO NWs/SiO 2 substrates which exhibit short NWs that developed on both sides. The SiO 2 and C substrates/NW interfaces were studied in detail to determine growth mechanisms. NWs on Au-seeded SiO 2 were promoted by a rough ZnO seed layer whose formation was catalysed by the Au clusters. In contrast, NWs grew without any seed on C. A correlation comprising three orders of magnitude between the visible-to-UV photoluminescence intensity ratio and the NW volume is found, which results from a characteristic Zn partial pressure profile that fixes both O deficiency defect concentration and growth rate. (paper)

  17. Improved rigorous upper bounds for transport due to passive advection described by simple models of bounded systems

    International Nuclear Information System (INIS)

    Kim, Chang-Bae; Krommes, J.A.

    1988-08-01

    The work of Krommes and Smith on rigorous upper bounds for the turbulent transport of a passively advected scalar [/ital Ann. Phys./ 177:246 (1987)] is extended in two directions: (1) For their ''reference model,'' improved upper bounds are obtained by utilizing more sophisticated two-time constraints which include the effects of cross-correlations up to fourth order. Numerical solutions of the model stochastic differential equation are also obtained; they show that the new bounds compare quite favorably with the exact results, even at large Reynolds and Kubo numbers. (2) The theory is extended to take account of a finite spatial autocorrelation length L/sub c/. As a reasonably generic example, the problem of particle transport due to statistically specified stochastic magnetic fields in a collisionless turbulent plasma is revisited. A bound is obtained which reduces for small L/sub c/ to the quasilinear limit and for large L/sub c/ to the strong turbulence limit, and which provides a reasonable and rigorous interpolation for intermediate values of L/sub c/. 18 refs., 6 figs

  18. Floc size distributions of suspended kaolinite in an advection transport dominated tank: measurements and modeling

    Science.gov (United States)

    Shen, Xiaoteng; Maa, Jerome P.-Y.

    2017-11-01

    In estuaries and coastal waters, floc size and its statistical distributions of cohesive sediments are of primary importance, due to their effects on the settling velocity and thus deposition rates of cohesive aggregates. The development of a robust flocculation model that includes the predictions of floc size distributions (FSDs), however, is still in a research stage. In this study, a one-dimensional longitudinal (1-DL) flocculation model along a streamtube is developed. This model is based on solving the population balance equation to find the FSDs by using the quadrature method of moments. To validate this model, a laboratory experiment is carried out to produce an advection transport-dominant environment in a cylindrical tank. The flow field is generated by a marine pump mounted at the bottom center, with its outlet facing upward. This setup generates an axially symmetric flow which is measured by an acoustic Doppler velocimeter (ADV). The measurement results provide the hydrodynamic input data required for this 1-DL model. The other measurement results, the FSDs, are acquired by using an automatic underwater camera system and the resulting images are analyzed to validate the predicted FSDs. This study shows that the FSDs as well as their representative sizes can be efficiently and reasonably simulated by this 1-DL model.

  19. The 8th-10 th January 2009 snowfalls: a case of Mediterranean warm advection event

    Science.gov (United States)

    Aguado, F.; Ayensa, E.; Barriga, M.; Del Hoyo, J.; Fernández, A.; Garrido, N.; Martín, A.; Martín, F.; Roa, I. Martínez, A.; Pascual, R.

    2009-09-01

    From 8 th to 10 th of January 2009, significant snowfalls were reported in many areas of the Iberian Peninsula and the Balearic Islands. This relevant event was very important from the meteorological and social impact point of views. The snow affected many zones, especially the regions of Madrid, Castilla & León and Castilla-La Mancha (Spanish central plateau) with the persistence and thickness of solid precipitation. Up to twenty-five centimetres of snow were reported in some places. On 9th of January the snowfalls caused great social and media impact due to the fact that they took place in the early hours in the Madrid metropolitan areas, affecting both air traffic and land transport. The "Madrid-Barajas" airport was closed and the city was collapsed during several hours. A study of this situation appears in the poster. The snowstorm was characterized by the previous irruption of an European continental polar air mass, that subsequently interacted with a wet and warm air mass of Mediterranean origin, all preceded by low level easterly flows. This type of snowfall is called "warm advection". These winter situations are very efficient from precipitation point of view, generating significant snowfalls and affecting a lot of areas.

  20. Rigorous upper bounds for transport due to passive advection by inhomogeneous turbulence

    International Nuclear Information System (INIS)

    Krommes, J.A.; Smith, R.A.

    1987-05-01

    A variational procedure, due originally to Howard and explored by Busse and others for self-consistent turbulence problems, is employed to determine rigorous upper bounds for the advection of a passive scalar through an inhomogeneous turbulent slab with arbitrary generalized Reynolds number R and Kubo number K. In the basic version of the method, the steady-state energy balance is used as a constraint; the resulting bound, though rigorous, is independent of K. A pedagogical reference model (one dimension, K = ∞) is described in detail; the bound compares favorably with the exact solution. The direct-interaction approximation is also worked out for this model; it is somewhat more accurate than the bound, but requires considerably more labor to solve. For the basic bound, a general formalism is presented for several dimensions, finite correlation length, and reasonably general boundary conditions. Part of the general method, in which a Green's function technique is employed, applies to self-consistent as well as to passive problems, and thereby generalizes previous results in the fluid literature. The formalism is extended for the first time to include time-dependent constraints, and a bound is deduced which explicitly depends on K and has the correct physical scalings in all regimes of R and K. Two applications from the theory of turbulent plasmas ae described: flux in velocity space, and test particle transport in stochastic magnetic fields. For the velocity space problem the simplest bound reproduces Dupree's original scaling for the strong turbulence diffusion coefficient. For the case of stochastic magnetic fields, the scaling of the bounds is described for the magnetic diffusion coefficient as well as for the particle diffusion coefficient in the so-called collisionless, fluid, and double-streaming regimes

  1. Numerical simulations of an advection fog event over Shanghai Pudong International Airport with the WRF model

    Science.gov (United States)

    Lin, Caiyan; Zhang, Zhongfeng; Pu, Zhaoxia; Wang, Fengyun

    2017-10-01

    A series of numerical simulations is conducted to understand the formation, evolution, and dissipation of an advection fog event over Shanghai Pudong International Airport (ZSPD) with the Weather Research and Forecasting (WRF) model. Using the current operational settings at the Meteorological Center of East China Air Traffic Management Bureau, the WRF model successfully predicts the fog event at ZSPD. Additional numerical experiments are performed to examine the physical processes associated with the fog event. The results indicate that prediction of this particular fog event is sensitive to microphysical schemes for the time of fog dissipation but not for the time of fog onset. The simulated timing of the arrival and dissipation of the fog, as well as the cloud distribution, is substantially sensitive to the planetary boundary layer and radiation (both longwave and shortwave) processes. Moreover, varying forecast lead times also produces different simulation results for the fog event regarding its onset and duration, suggesting a trade-off between more accurate initial conditions and a proper forecast lead time that allows model physical processes to spin up adequately during the fog simulation. The overall outcomes from this study imply that the complexity of physical processes and their interactions within the WRF model during fog evolution and dissipation is a key area of future research.

  2. Dynamics of particle suspensions subjected to biaxial and triaxial magnetic fields: vortex mixing and isothermal magnetic advection

    Science.gov (United States)

    Martin, James

    2010-03-01

    We have developed several new magnetic methods for stimulating functional fluid flows. These methods depend on adding magnetic particles to the fluids and subjecting them to spatially uniform, time-dependent magnetic fields. The key aspect is the nature of the particles and the way in which the direction and magnitude of the magnetic field changes with time. The first of these new methods, which we call vortex field mixing, gives rise to vigorous fluid mixing that occurs uniformly throughout the sample volume, eliminating the stagnation regions that plague standard methods. This method is ideally suited for microfluidic devices, but can used for mixing at any scale. The second method involves the stimulation of organized fluid flow fields that can efficiently transfer heat and mass along any desired direction. This isothermal magnetic advection has the functionality of natural convection, but because the effect does not depend on gravity or the existence of a thermal gradient, it can be used to stimulate flow where natural convection fails. It is possible to cool under or beside a hot object, in the microgravity environments of space, and without any concern over the magnitude of the thermal gradient.

  3. Dynamically Adapted Mesh Construction for the Efficient Numerical Solution of a Singular Perturbed Reaction-diffusion-advection Equation

    Directory of Open Access Journals (Sweden)

    Dmitry V. Lukyanenko

    2017-01-01

    Full Text Available This  work develops  a theory  of the  asymptotic-numerical investigation of the  moving fronts  in reaction-diffusion-advection models.  By considering  the  numerical  solution  of the  singularly perturbed Burgers’s  equation  we discuss a method  of dynamically  adapted mesh  construction that is able to significantly  improve  the  numerical  solution  of this  type of equations.  For  the  construction we use a priori information that is based  on the  asymptotic analysis  of the  problem.  In  particular, we take  into account the information about  the speed of the transition layer, its width  and structure. Our algorithms  are able to reduce significantly complexity and enhance stability of the numerical  calculations in comparison  with classical approaches for solving this class of problems.  The numerical  experiment is presented to demonstrate the effectiveness of the proposed  method.The article  is published  in the authors’  wording. 

  4. Regional-scale advective, diffusive, and eruptive dynamics of CO2 and brine leakage through faults and wellbores

    Science.gov (United States)

    Jung, Na-Hyun; Han, Weon Shik; Han, Kyungdoe; Park, Eungyu

    2015-05-01

    Regional-scale advective, diffusive, and eruptive transport dynamics of CO2 and brine within a natural analogue in the northern Paradox Basin, Utah, were explored by integrating numerical simulations with soil CO2 flux measurements. Deeply sourced CO2 migrates through steeply dipping fault zones to the shallow aquifers predominantly as an aqueous phase. Dense CO2-rich brine mixes with regional groundwater, enhancing CO2 dissolution. Linear stability analysis reveals that CO2 could be dissolved completely within only 500 years. Assigning lower permeability to the fault zones induces fault-parallel movement, feeds up-gradient aquifers with more CO2, and impedes down-gradient fluid flow, developing anticlinal CO2 traps at shallow depths (<300 m). The regional fault permeability that best reproduces field spatial CO2 flux variation is estimated 1 × 10-17 ≤ kh < 1 × 10-16 m2 and 5 × 10-16 ≤ kv < 1 × 10-15 m2. The anticlinal trap serves as an essential fluid source for eruption at Crystal Geyser. Geyser-like discharge sensitively responds to varying well permeability, radius, and CO2 recharge rate. The cyclic behavior of wellbore CO2 leakage decreases with time.

  5. Gamma irradiation test report of simulated grout specimens for gas generation/liquid advection

    International Nuclear Information System (INIS)

    Hinman, C.A.

    1994-01-01

    This report presents the results from an irradiation test performed on four specimens of grout that were fabricated from synthetic Double Shell Slurry Feed (DSSF) liquid waste. The objective was to investigate the radiolytic generation of gases and the potential for advective rejection of waste liquids from the grout matrix and to provide experimental information for the validation of the C-Cubed calculated model. It has been demonstrated that a number of gases can be formed within the grout due to radiolytic decomposition of various chemical components that make up the grout. This observation leads to the conjecture that the potential exists for the rejection of a portion of the 60 vol% free liquid from the grout matrix driven by pressurization by these gases. It was found that, for the specimen geometries used in this test series, and for peak radiation dose accumulation rates on the order of 4 to 60 times of the initial rate expected in the grout vaults (300 Rads/hr), no liquid rejection was observed from 2% to 35% of the target exposure expected in the grout vaults (1E+08 Rads). When the irradiation rate exceeded the projected grout vault dose rate by a factor of 200 a small amount of liquid rejection was observed from one of two specimens that had received 20% more than the goal exposure. Because of the differences in the magnitudes of the relative radiation field strengths between this study and an actual grout vault, it is concluded that the potential for liquid rejection by internal gas pressurization from presently configured grout waste forms is very low for the expected conditions

  6. Characteristics of the surface layer above a row crop in the presence of local advection

    Energy Technology Data Exchange (ETDEWEB)

    Figuerola, P.I. [Universidad de Buenos Aires, Buenos Aires (Argentina)]. E-mail: figuerol@at.fcen.uba.ar; Berliner, P.R. [Blaustein Institute for Desert Research, Ben-Gurion University of the Negev (Israel)

    2006-04-15

    In some arid land, the irrigated fields are not contiguous and are surrounded by large patches of bare land. During the summer time and rainless season, the solar radiation flux is high and the surface temperature during daylight in the dry bare areas, is much higher than that of the air. The sensible heat generated over these areas may be advected to the irrigated fields. The crops are usually planted in rows and the irrigation systems used (trickle) do not wet the whole surface, the dry bare soil between the rows may develop high soil surface temperatures and lead to convective activity inside the canopy above the bare soil. Advection from the surrounding fields and convective activity inside the canopy affect the layer above the crop. We studied the surface layer above an irrigated tomato field planted in Israel's Negev desert. The crop was planted in rows, trickle irrigated and the distance between the outer edges of two adjacent rows was 0.36 m at the time of measurement. The gradients in temperature and water vapor pressure were obtained at various heights above the canopy using a Bowen ratio machine. The residual in the energy balance equation was used as a criterion to determine the equilibrium layer. During the morning, unstable conditions prevail, and the equilibrium layer was between Z/h {approx} 1.9 and 2.4. In some particular circumstances, in the late morning, the bare soil between the rows reached extremely high temperatures and during conditions with low wind speeds free convection was identified. During these hours the residuals of the energy budget to the heights Z/h = 1.5 and 2.4 were significantly different from zero and an extremely large variability was evident for the Z/h = 3.2 layer. Local advection took place during the afternoon resulting in an increase in the stability of the uppermost measured layer and propagated slowly downwards. The equilibrium layer was between Z/h {approx} 1.5 to 2.4. The residuals were significantly different

  7. Prediction of the moments in advection-diffusion lattice Boltzmann method. I. Truncation dispersion, skewness, and kurtosis

    Science.gov (United States)

    Ginzburg, Irina

    2017-01-01

    The effect of the heterogeneity in the soil structure or the nonuniformity of the velocity field on the modeled resident time distribution (RTD) and breakthrough curves is quantified by their moments. While the first moment provides the effective velocity, the second moment is related to the longitudinal dispersion coefficient (kT) in the developed Taylor regime; the third and fourth moments are characterized by their normalized values skewness (Sk) and kurtosis (Ku), respectively. The purpose of this investigation is to examine the role of the truncation corrections of the numerical scheme in kT, Sk, and Ku because of their interference with the second moment, in the form of the numerical dispersion, and in the higher-order moments, by their definition. Our symbolic procedure is based on the recently proposed extended method of moments (EMM). Originally, the EMM restores any-order physical moments of the RTD or averaged distributions assuming that the solute concentration obeys the advection-diffusion equation in multidimensional steady-state velocity field, in streamwise-periodic heterogeneous structure. In our work, the EMM is generalized to the fourth-order-accurate apparent mass-conservation equation in two- and three-dimensional duct flows. The method looks for the solution of the transport equation as the product of a long harmonic wave and a spatially periodic oscillating component; the moments of the given numerical scheme are derived from a chain of the steady-state fourth-order equations at a single cell. This mathematical technique is exemplified for the truncation terms of the two-relaxation-time lattice Boltzmann scheme, using plug and parabolic flow in straight channel and cylindrical capillary with the d2Q9 and d3Q15 discrete velocity sets as simple but illustrative examples. The derived symbolic dependencies can be readily extended for advection by another, Newtonian or non-Newtonian, flow profile in any-shape open-tabular conduits. It is

  8. Short commentary on marine productivity at Arctic shelf breaks: upwelling, advection and vertical mixing

    Directory of Open Access Journals (Sweden)

    A. Randelhoff

    2018-04-01

    Full Text Available The future of Arctic marine ecosystems has received increasing attention in recent years as the extent of the sea ice cover is dwindling. Although the Pacific and Atlantic inflows both import huge quantities of nutrients and plankton, they feed into the Arctic Ocean in quite diverse regions. The strongly stratified Pacific sector has a historically heavy ice cover, a shallow shelf and dominant upwelling-favourable winds, while the Atlantic sector is weakly stratified, with a dynamic ice edge and a complex bathymetry. We argue that shelf break upwelling is likely not a universal but rather a regional, albeit recurring, feature of the new Arctic. It is the regional oceanography that decides its importance through a range of diverse factors such as stratification, bathymetry and wind forcing. Teasing apart their individual contributions in different regions can only be achieved by spatially resolved time series and dedicated modelling efforts. The Northern Barents Sea shelf is an example of a region where shelf break upwelling likely does not play a dominant role, in contrast to the shallower shelves north of Alaska where ample evidence for its importance has already accumulated. Still, other factors can contribute to marked future increases in biological productivity along the Arctic shelf break. A warming inflow of nutrient-rich Atlantic Water feeds plankton at the same time as it melts the sea ice, permitting increased photosynthesis. Concurrent changes in sea ice cover and zooplankton communities advected with the boundary currents make for a complex mosaic of regulating factors that do not allow for Arctic-wide generalizations.

  9. Short commentary on marine productivity at Arctic shelf breaks: upwelling, advection and vertical mixing

    Science.gov (United States)

    Randelhoff, Achim; Sundfjord, Arild

    2018-04-01

    The future of Arctic marine ecosystems has received increasing attention in recent years as the extent of the sea ice cover is dwindling. Although the Pacific and Atlantic inflows both import huge quantities of nutrients and plankton, they feed into the Arctic Ocean in quite diverse regions. The strongly stratified Pacific sector has a historically heavy ice cover, a shallow shelf and dominant upwelling-favourable winds, while the Atlantic sector is weakly stratified, with a dynamic ice edge and a complex bathymetry. We argue that shelf break upwelling is likely not a universal but rather a regional, albeit recurring, feature of the new Arctic. It is the regional oceanography that decides its importance through a range of diverse factors such as stratification, bathymetry and wind forcing. Teasing apart their individual contributions in different regions can only be achieved by spatially resolved time series and dedicated modelling efforts. The Northern Barents Sea shelf is an example of a region where shelf break upwelling likely does not play a dominant role, in contrast to the shallower shelves north of Alaska where ample evidence for its importance has already accumulated. Still, other factors can contribute to marked future increases in biological productivity along the Arctic shelf break. A warming inflow of nutrient-rich Atlantic Water feeds plankton at the same time as it melts the sea ice, permitting increased photosynthesis. Concurrent changes in sea ice cover and zooplankton communities advected with the boundary currents make for a complex mosaic of regulating factors that do not allow for Arctic-wide generalizations.

  10. Milestone Completion Report WBS 1.3.5.05 ECP/VTK-m FY17Q4 [MS-17/03-06] Key Reduce / Spatial Division / Basic Advect / Normals STDA05-4.

    Energy Technology Data Exchange (ETDEWEB)

    Moreland, Kenneth D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-30

    The FY17Q4 milestone of the ECP/VTK-m project includes the completion of a key-reduce scheduling mechanism, a spatial division algorithm, an algorithm for basic particle advection, and the computation of smoothed surface normals. With the completion of this milestone, we are able to, respectively, more easily group like elements (a common visualization algorithm operation), provide the fundamentals for geometric search structures, provide the fundamentals for many flow visualization algorithms, and provide more realistic rendering of surfaces approximated with facets.

  11. Scaling Regimes in the Model of Passive Scalar Advected by the Turbulent Velocity Field with Finite Correlation Time. Influence of Helicity in Two-Loop Approximation

    CERN Document Server

    Chkhetiani, O G; Jurcisinova, E; Jurcisin, M; Mazzino, A; Repasan, M

    2005-01-01

    The advection of a passive scalar quantity by incompressible helical turbulent flow has been investigated in the framework of an extended Kraichnan model. Statistical fluctuations of the velocity field are assumed to have the Gaussian distribution with zero mean and defined noise with finite-time correlation. Actual calculations have been done up to two-loop approximation in the framework of the field-theoretic renormalization group approach. It turned out that the space parity violation (helicity) of a stochastic environment does not affect anomalous scaling which is the peculiar attribute of a corresponding model without helicity. However, stability of asymptotic regimes, where anomalous scaling takes place, and the effective diffusivity strongly depend on the amount of helicity.

  12. Solution of the advection-diffusion equation for a nonhomogeneous and nonstationary Planetary Boundary Layer by GILTT (Generalized Integral Laplace Transform Technique)

    International Nuclear Information System (INIS)

    Mello, Kelen Berra de

    2005-02-01

    In this work is shown the solution of the advection-diffusion equation to simulate a pollutant dispersion in the Planetary Boundary Layer. The solution is obtained through of the GILTT (Generalized Integral Laplace Transform Technique) analytic method and of the numerical inversion Gauss Quadrature. The validity of the solution is proved using concentration obtained from the model with concentration obtained for Copenhagen experiment. In this comparison was utilized potential and logarithmic wind profile and eddy diffusivity derived by Degrazia et al (1997) [17] and (2002) [19]. The best results was using the potential wind profile and the eddy diffusivity derived by Degrazia et al (1997). The vertical velocity influence is shown in the plume behavior of the pollutant concentration. Moreover, the vertical and longitudinal velocity provided by Large Eddy Simulation (LES) was stood in the model to simulate the turbulent boundary layer more realistic, the result was satisfactory when compared with contained in the literature. (author)

  13. Exploring the possibilities of the advection of temperature to diagnose the influence of changes in the atmospheric circulation on global temperature

    Energy Technology Data Exchange (ETDEWEB)

    Vidal, O.; Gimeno, L.; Ribera, P. [Vigo Univ., Orense (Spain). Dept. of Applied Physics; Garcia, R.; Hernandez, E.; Gallego, D. [Complutense Univ., Madrid (Spain). Dept. of Atmospheric Physics

    2001-07-01

    The advection of temperature (AT) at three different pressure levels was calculated for the period of 1958 to 1998 to test the hypothesis that the origin global temperature increase during the past decade was caused by changes in global circulation. The relationship between El Nino-Southern Oscillation (ENSO) and global temperature has been widely studied. They have a common oscillation in the bands of 2 and 4 years. The Northern Atlantic Oscillation (NAO) may also account for regional surface warming over Europe and Asia and for cooling over the northwestern Atlantic. Important correlations were found between most of the Northern Hemisphere and Global AT series with the Arctic Oscillation and between most of the Southern Hemisphere and Global AT series with the Antarctic Oscillation. Poor correlations were found with El Nino-Southern Oscillation even for belts between 0 and 30 degrees and for the lower troposphere. 8 refs., 1 tab., 1 fig.

  14. Ionic solubility and solutal advection governed augmented evaporation kinetics of salt solution pendant droplets

    Science.gov (United States)

    Jaiswal, Vivek; Harikrishnan, A. R.; Khurana, Gargi; Dhar, Purbarun

    2018-01-01

    The presence of dispersed inclusions is known to modify the interfacial characteristics in liquids by adsorption-desorption of the ions at interfaces. The present article reports the influencing role of dissolved ions in a polar fluid on its evaporation dynamics. The evaporation dynamics of pendant droplets of aqueous solutions of variant simple salts and concentrations have been experimentally studied. The presence of salts is observed to enhance the evaporation rate (obeying the classical D2 law), and the enhancement has been found to hold a direct proportionality to the concentration of the dissolved salt. Furthermore, it is observed that the degree of enhancement in the evaporation rate is also directly proportional to the solubility of the salt in question. The phenomenon is explained based on the chemical kinetics and thermodynamics of hydration of the ionic species in the polar fluid. The classical evaporation rate constant formulation is found to be inadequate in modeling the enhanced species transport. Additional probing via particle image velocimetry reveals augmented internal circulation within the evaporating salt based drops compared to pure water. Mapping the dynamic surface tension reveals that a salt concentration gradient is generated between the bulk and periphery of the droplet and it could be responsible for the internal advection cells visualized. A thermo-solutal Marangoni and Rayleigh convection based mathematical formulation has been put forward, and it is shown that the enhanced solute-thermal convection could play a major role in enhanced evaporation. The internal circulation mapped from experiments is found to be in good quantitative agreement with the model predictions. Scaling analysis further reveals that the stability of the solutal Marangoni convection surpasses the thermal counterpart with higher salt concentration and solubility. The present article sheds insight into the possible domineering role of conjugate thermohydraulic and

  15. The role of boundary layer momentum advection in the mean location of the ITCZ

    Science.gov (United States)

    Dixit, Vishal; Srinivasan, J.

    2017-08-01

    The inter-tropical convergence zones (ITCZ) form closer to the equator during equinoxes while they form well away from the equator during the boreal summer. A simple three-way balance between the pressure gradients, Coriolis force and effective Rayleigh friction has been classically used to diagnose the location of maximum boundary layer convergence in the near equatorial ITCZ. If such a balance can capture the dynamics of off-equatorial convergence was not known. We used idealized aqua planet simulations with fixed, zonally symmetric sea surface temperature boundary conditions to simulate the near equatorial and off-equatorial ITCZ. As opposed to the convergence of inter-hemispheric flows in the near equatorial convergence, the off-equatorial convergence forms due to the deceleration of cross-equatorial meridional flow. The detailed momentum budget of the off-equatorial convergence zone reveals that the simple balance is not sufficient to capture the relevant dynamics. The deceleration of the meridional flow is strongly modulated by the inertial effects due to the meridional advection of zonal momentum in addition to the terms in the simple balance. The simple balance predicts a spurious near equatorial convergence and a consistent off-equatorial convergence of the meridional flow. The spurious convergence disappears when inertial effects are included in the balance. As cross equatorial meridional flow decelerates to form convergence, the inertial effects cancel the pressure gradient effects near the equator while they add away from the equator. The contribution to the off-equatorial convergence induced by the pressure gradients is significantly larger than the contribution due to the inertial effects and hence pressure gradients appear to be the primary factor in anchoring the strength and location of the off-equatorial convergence.

  16. Methods and Algorithms for Solving Inverse Problems for Fractional Advection-Dispersion Equations

    KAUST Repository

    Aldoghaither, Abeer

    2015-11-12

    Fractional calculus has been introduced as an e cient tool for modeling physical phenomena, thanks to its memory and hereditary properties. For example, fractional models have been successfully used to describe anomalous di↵usion processes such as contaminant transport in soil, oil flow in porous media, and groundwater flow. These models capture important features of particle transport such as particles with velocity variations and long-rest periods. Mathematical modeling of physical phenomena requires the identification of pa- rameters and variables from available measurements. This is referred to as an inverse problem. In this work, we are interested in studying theoretically and numerically inverse problems for space Fractional Advection-Dispersion Equation (FADE), which is used to model solute transport in porous media. Identifying parameters for such an equa- tion is important to understand how chemical or biological contaminants are trans- ported throughout surface aquifer systems. For instance, an estimate of the di↵eren- tiation order in groundwater contaminant transport model can provide information about soil properties, such as the heterogeneity of the medium. Our main contribution is to propose a novel e cient algorithm based on modulat-ing functions to estimate the coe cients and the di↵erentiation order for space FADE, which can be extended to general fractional Partial Di↵erential Equation (PDE). We also show how the method can be applied to the source inverse problem. This work is divided into two parts: In part I, the proposed method is described and studied through an extensive numerical analysis. The local convergence of the proposed two-stage algorithm is proven for 1D space FADE. The properties of this method are studied along with its limitations. Then, the algorithm is generalized to the 2D FADE. In part II, we analyze direct and inverse source problems for a space FADE. The problem consists of recovering the source term using final

  17. Fault-controlled advective, diffusive, and eruptive CO 2 leakage from natural reservoirs in the Colorado Plateau, East-Central Utah

    Science.gov (United States)

    Jung, Na-Hyun

    This study investigated a natural analogue for CO2 leakage near Green River, Utah, aiming to understand the influence of various factors on CO2 leakage and to reliably predict underground CO2 behavior after injection for geologic CO2 sequestration. Advective, diffusive, and eruptive characteristics of CO2 leakage were assessed via a soil CO2 flux survey and numerical modeling. The field results show anomalous CO2 fluxes (> 10 g m-2 d-1 ) along the faults, particularly adjacent to CO2-driven cold springs and geysers (e.g., 36,259 g m-2 d-1 at Crystal Geyser), ancient travertines (e.g., 5,917 g m-2 d-1), joint zones in sandstone (e.g., 120 g m-2 d-1), and brine discharge zones (e.g., 5,515 g m-2 d-1). Combined with similar isotopic ratios of gas and progressive evolution of brine chemistry at springs and geysers, a gradual decrease of soil CO2 flux from the Little Grand Wash (LGW; ~36,259 g m -2 d-1) to Salt Wash (SW; ~1,428 g m-2 d-1) fault zones reveals the same CO2 origin and potential southward transport of CO2 over 10-20 km. The numerical simulations exhibit lateral transport of free CO2 and CO2-rich brine from the LGW to SW fault zones through the regional aquifers (e.g., Entrada, Navajo, Kayenta, Wingate, White Rim). CO2 travels predominantly as an aqueous phase (XCO2=~0.045) as previously suggested, giving rise to the convective instability that further accelerates CO2 dissolution. While the buoyant free CO2 always tends to ascend, a fraction of dense CO2-rich brine flows laterally into the aquifer and mixes with the formation fluids during upward migration along the fault. The fault always enhances advective CO2 transport regardless of its permeability (k). However, only low-k fault prevents unconditional upright migration of CO2 and induces fault-parallel movement, feeding the northern aquifers with more CO2. Low-k fault also impedes lateral southward fluid flow from the northern aquifers, developing anticlinal CO2 traps at shallow depths (<300 m). The

  18. Analytical model for advective-dispersive transport involving flexible boundary inputs, initial distributions and zero-order productions

    Science.gov (United States)

    Chen, Jui-Sheng; Li, Loretta Y.; Lai, Keng-Hsin; Liang, Ching-Ping

    2017-11-01

    A novel solution method is presented which leads to an analytical model for the advective-dispersive transport in a semi-infinite domain involving a wide spectrum of boundary inputs, initial distributions, and zero-order productions. The novel solution method applies the Laplace transform in combination with the generalized integral transform technique (GITT) to obtain the generalized analytical solution. Based on this generalized analytical expression, we derive a comprehensive set of special-case solutions for some time-dependent boundary distributions and zero-order productions, described by the Dirac delta, constant, Heaviside, exponentially-decaying, or periodically sinusoidal functions as well as some position-dependent initial conditions and zero-order productions specified by the Dirac delta, constant, Heaviside, or exponentially-decaying functions. The developed solutions are tested against an analytical solution from the literature. The excellent agreement between the analytical solutions confirms that the new model can serve as an effective tool for investigating transport behaviors under different scenarios. Several examples of applications, are given to explore transport behaviors which are rarely noted in the literature. The results show that the concentration waves resulting from the periodically sinusoidal input are sensitive to dispersion coefficient. The implication of this new finding is that a tracer test with a periodic input may provide additional information when for identifying the dispersion coefficients. Moreover, the solution strategy presented in this study can be extended to derive analytical models for handling more complicated problems of solute transport in multi-dimensional media subjected to sequential decay chain reactions, for which analytical solutions are not currently available.

  19. Assessing lateral flows and solute transport during floods in a conduit-flow-dominated karst system using the inverse problem for the advection-diffusion equation

    Science.gov (United States)

    Cholet, Cybèle; Charlier, Jean-Baptiste; Moussa, Roger; Steinmann, Marc; Denimal, Sophie

    2017-07-01

    The aim of this study is to present a framework that provides new ways to characterize the spatio-temporal variability of lateral exchanges for water flow and solute transport in a karst conduit network during flood events, treating both the diffusive wave equation and the advection-diffusion equation with the same mathematical approach, assuming uniform lateral flow and solute transport. A solution to the inverse problem for the advection-diffusion equations is then applied to data from two successive gauging stations to simulate flows and solute exchange dynamics after recharge. The study site is the karst conduit network of the Fourbanne aquifer in the French Jura Mountains, which includes two reaches characterizing the network from sinkhole to cave stream to the spring. The model is applied, after separation of the base from the flood components, on discharge and total dissolved solids (TDSs) in order to assess lateral flows and solute concentrations and compare them to help identify water origin. The results showed various lateral contributions in space - between the two reaches located in the unsaturated zone (R1), and in the zone that is both unsaturated and saturated (R2) - as well as in time, according to hydrological conditions. Globally, the two reaches show a distinct response to flood routing, with important lateral inflows on R1 and large outflows on R2. By combining these results with solute exchanges and the analysis of flood routing parameters distribution, we showed that lateral inflows on R1 are the addition of diffuse infiltration (observed whatever the hydrological conditions) and localized infiltration in the secondary conduit network (tributaries) in the unsaturated zone, except in extreme dry periods. On R2, despite inflows on the base component, lateral outflows are observed during floods. This pattern was attributed to the concept of reversal flows of conduit-matrix exchanges, inducing a complex water mixing effect in the saturated zone

  20. A BABCOCK–LEIGHTON SOLAR DYNAMO MODEL WITH MULTI-CELLULAR MERIDIONAL CIRCULATION IN ADVECTION- AND DIFFUSION-DOMINATED REGIMES

    Energy Technology Data Exchange (ETDEWEB)

    Belucz, Bernadett; Forgács-Dajka, Emese [Eötvös University, Department of Astronomy, 1518 Budapest, Pf. 32 (Hungary); Dikpati, Mausumi, E-mail: bbelucz@astro.elte.hu, E-mail: dikpati@ucar.edu [High Altitude Observatory, National Center for Atmospheric Research, 3080 Center Green, Boulder, CO 80307-3000 (United States)

    2015-06-20

    Babcock–Leighton type-solar dynamo models with single-celled meridional circulation are successful in reproducing many solar cycle features. Recent observations and theoretical models of meridional circulation do not indicate a single-celled flow pattern. We examine the role of complex multi-cellular circulation patterns in a Babcock–Leighton solar dynamo in advection- and diffusion-dominated regimes. We show from simulations that the presence of a weak, second, high-latitude reverse cell speeds up the cycle and slightly enhances the poleward branch in the butterfly diagram, whereas the presence of a second cell in depth reverses the tilt of the butterfly wing to an antisolar type. A butterfly diagram constructed from the middle of convection zone yields a solar-like pattern, but this may be difficult to realize in the Sun because of magnetic buoyancy effects. Each of the above cases behaves similarly in higher and lower magnetic diffusivity regimes. However, our dynamo with a meridional circulation containing four cells in latitude behaves distinctly differently in the two regimes, producing solar-like butterfly diagrams with fast cycles in the higher diffusivity regime, and complex branches in butterfly diagrams in the lower diffusivity regime. We also find that dynamo solutions for a four-celled pattern, two in radius and two in latitude, prefer to quickly relax to quadrupolar parity if the bottom flow speed is strong enough, of similar order of magnitude as the surface flow speed.

  1. A BABCOCK–LEIGHTON SOLAR DYNAMO MODEL WITH MULTI-CELLULAR MERIDIONAL CIRCULATION IN ADVECTION- AND DIFFUSION-DOMINATED REGIMES

    International Nuclear Information System (INIS)

    Belucz, Bernadett; Forgács-Dajka, Emese; Dikpati, Mausumi

    2015-01-01

    Babcock–Leighton type-solar dynamo models with single-celled meridional circulation are successful in reproducing many solar cycle features. Recent observations and theoretical models of meridional circulation do not indicate a single-celled flow pattern. We examine the role of complex multi-cellular circulation patterns in a Babcock–Leighton solar dynamo in advection- and diffusion-dominated regimes. We show from simulations that the presence of a weak, second, high-latitude reverse cell speeds up the cycle and slightly enhances the poleward branch in the butterfly diagram, whereas the presence of a second cell in depth reverses the tilt of the butterfly wing to an antisolar type. A butterfly diagram constructed from the middle of convection zone yields a solar-like pattern, but this may be difficult to realize in the Sun because of magnetic buoyancy effects. Each of the above cases behaves similarly in higher and lower magnetic diffusivity regimes. However, our dynamo with a meridional circulation containing four cells in latitude behaves distinctly differently in the two regimes, producing solar-like butterfly diagrams with fast cycles in the higher diffusivity regime, and complex branches in butterfly diagrams in the lower diffusivity regime. We also find that dynamo solutions for a four-celled pattern, two in radius and two in latitude, prefer to quickly relax to quadrupolar parity if the bottom flow speed is strong enough, of similar order of magnitude as the surface flow speed

  2. Broadband Radio Polarimetry of Fornax A. I. Depolarized Patches Generated by Advected Thermal Material from NGC 1316

    Science.gov (United States)

    Anderson, C. S.; Gaensler, B. M.; Heald, G. H.; O’Sullivan, S. P.; Kaczmarek, J. F.; Feain, I. J.

    2018-03-01

    We present observations and analysis of the polarized radio emission from the nearby radio galaxy Fornax A over 1.28–3.1 GHz, using data from the Australia Telescope Compact Array. In this, the first of two associated papers, we use modern broadband polarimetric techniques to examine the nature and origin of conspicuous low-polarization (low-p) patches in the lobes. We resolve the (low-p) patches and find that their low fractional polarization is associated with complicated frequency-dependent interference in the polarized signal generated by Faraday effects along the line of sight (LOS). The low-p patches are spatially correlated with interfaces in the magnetic structure of the lobe, across which the LOS-projected magnetic field changes direction. Spatial correlations with the sky-projected magnetic field orientation and structure in total intensity are also identified and discussed. We argue that the (low-p) patches, along with associated reversals in the LOS magnetic field and other related phenomena, are best explained by the presence of { \\mathcal O }({10}9) {M}ȯ of magnetized thermal plasma in the lobes, structured in shells or filaments, and likely advected from the interstellar medium of NCG 1316 or its surrounding intracluster medium. Our study underscores the power and utility of spatially resolved, broadband, full-polarization radio observations to reveal new facets of flow behaviors and magneto-ionic structure in radio lobes and their interplay with the surrounding environment.

  3. A locally conservative non-negative finite element formulation for anisotropic advective-diffusive-reactive systems

    Science.gov (United States)

    Mudunuru, M. K.; Shabouei, M.; Nakshatrala, K.

    2015-12-01

    Advection-diffusion-reaction (ADR) equations appear in various areas of life sciences, hydrogeological systems, and contaminant transport. Obtaining stable and accurate numerical solutions can be challenging as the underlying equations are coupled, nonlinear, and non-self-adjoint. Currently, there is neither a robust computational framework available nor a reliable commercial package known that can handle various complex situations. Herein, the objective of this poster presentation is to present a novel locally conservative non-negative finite element formulation that preserves the underlying physical and mathematical properties of a general linear transient anisotropic ADR equation. In continuous setting, governing equations for ADR systems possess various important properties. In general, all these properties are not inherited during finite difference, finite volume, and finite element discretizations. The objective of this poster presentation is two fold: First, we analyze whether the existing numerical formulations (such as SUPG and GLS) and commercial packages provide physically meaningful values for the concentration of the chemical species for various realistic benchmark problems. Furthermore, we also quantify the errors incurred in satisfying the local and global species balance for two popular chemical kinetics schemes: CDIMA (chlorine dioxide-iodine-malonic acid) and BZ (Belousov--Zhabotinsky). Based on these numerical simulations, we show that SUPG and GLS produce unphysical values for concentration of chemical species due to the violation of the non-negative constraint, contain spurious node-to-node oscillations, and have large errors in local and global species balance. Second, we proposed a novel finite element formulation to overcome the above difficulties. The proposed locally conservative non-negative computational framework based on low-order least-squares finite elements is able to preserve these underlying physical and mathematical properties

  4. Prediction of the moments in advection-diffusion lattice Boltzmann method. II. Attenuation of the boundary layers via double-Λ bounce-back flux scheme

    Science.gov (United States)

    Ginzburg, Irina

    2017-01-01

    Impact of the unphysical tangential advective-diffusion constraint of the bounce-back (BB) reflection on the impermeable solid surface is examined for the first four moments of concentration. Despite the number of recent improvements for the Neumann condition in the lattice Boltzmann method-advection-diffusion equation, the BB rule remains the only known local mass-conserving no-flux condition suitable for staircase porous geometry. We examine the closure relation of the BB rule in straight channel and cylindrical capillary analytically, and show that it excites the Knudsen-type boundary layers in the nonequilibrium solution for full-weight equilibrium stencil. Although the d2Q5 and d3Q7 coordinate schemes are sufficient for the modeling of isotropic diffusion, the full-weight stencils are appealing for their advanced stability, isotropy, anisotropy and anti-numerical-diffusion ability. The boundary layers are not covered by the Chapman-Enskog expansion around the expected equilibrium, but they accommodate the Chapman-Enskog expansion in the bulk with the closure relation of the bounce-back rule. We show that the induced boundary layers introduce first-order errors in two primary transport properties, namely, mean velocity (first moment) and molecular diffusion coefficient (second moment). As a side effect, the Taylor-dispersion coefficient (second moment), skewness (third moment), and kurtosis (fourth moment) deviate from their physical values and predictions of the fourth-order Chapman-Enskog analysis, even though the kurtosis error in pure diffusion does not depend on grid resolution. In two- and three-dimensional grid-aligned channels and open-tubular conduits, the errors of velocity and diffusion are proportional to the diagonal weight values of the corresponding equilibrium terms. The d2Q5 and d3Q7 schemes do not suffer from this deficiency in grid-aligned geometries but they cannot avoid it if the boundaries are not parallel to the coordinate lines. In order

  5. Bistable front dynamics in a contractile medium: Travelling wave fronts and cortical advection define stable zones of RhoA signaling at epithelial adherens junctions

    Science.gov (United States)

    Budnar, Srikanth; Yap, Alpha S.

    2017-01-01

    Mechanical coherence of cell layers is essential for epithelia to function as tissue barriers and to control active tissue dynamics during morphogenesis. RhoA signaling at adherens junctions plays a key role in this process by coupling cadherin-based cell-cell adhesion together with actomyosin contractility. Here we propose and analyze a mathematical model representing core interactions involved in the spatial localization of junctional RhoA signaling. We demonstrate how the interplay between biochemical signaling through positive feedback, combined with diffusion on the cell membrane and mechanical forces generated in the cortex, can determine the spatial distribution of RhoA signaling at cell-cell junctions. This dynamical mechanism relies on the balance between a propagating bistable signal that is opposed by an advective flow generated by an actomyosin stress gradient. Experimental observations on the behavior of the system when contractility is inhibited are in qualitative agreement with the predictions of the model. PMID:28273072

  6. Bistable front dynamics in a contractile medium: Travelling wave fronts and cortical advection define stable zones of RhoA signaling at epithelial adherens junctions.

    Directory of Open Access Journals (Sweden)

    Rashmi Priya

    2017-03-01

    Full Text Available Mechanical coherence of cell layers is essential for epithelia to function as tissue barriers and to control active tissue dynamics during morphogenesis. RhoA signaling at adherens junctions plays a key role in this process by coupling cadherin-based cell-cell adhesion together with actomyosin contractility. Here we propose and analyze a mathematical model representing core interactions involved in the spatial localization of junctional RhoA signaling. We demonstrate how the interplay between biochemical signaling through positive feedback, combined with diffusion on the cell membrane and mechanical forces generated in the cortex, can determine the spatial distribution of RhoA signaling at cell-cell junctions. This dynamical mechanism relies on the balance between a propagating bistable signal that is opposed by an advective flow generated by an actomyosin stress gradient. Experimental observations on the behavior of the system when contractility is inhibited are in qualitative agreement with the predictions of the model.

  7. Solute transport in aquifers: The comeback of the advection dispersion equation and the First Order Approximation

    Science.gov (United States)

    Fiori, A.; Zarlenga, A.; Jankovic, I.; Dagan, G.

    2017-12-01

    Natural gradient steady flow of mean velocity U takes place in heterogeneous aquifers of random logconductivity Y = lnK , characterized by the normal univariate PDF f(Y) and autocorrelation ρY, of variance σY2 and horizontal integral scale I. Solute transport is quantified by the Breakthrough Curve (BTC) M at planes at distance x from the injection plane. The study builds on the extensive 3D numerical simulations of flow and transport of Jankovic et al. (2017) for different conductivity structures. The present study further explores the predictive capabilities of the Advection Dispersion Equation (ADE), with macrodispersivity αL given by the First Order Approximation (FOA), by checking in a quantitative manner its applicability. After a discussion on the suitable boundary conditions for ADE, we find that the ADE-FOA solution is a sufficiently accurate predictor for applications, the many other sources of uncertainty prevailing in practice notwithstanding. We checked by least squares and by comparison of travel time of quantiles of M that indeed the analytical Inverse Gaussian M with αL =σY2 I , is able to fit well the bulk of the simulated BTCs. It tends to underestimate the late arrival time of the thin and persistent tail. The tail is better reproduced by the semi-analytical MIMSCA model, which also allows for a physical explanation of the success of the Inverse Gaussian solution. Examination of the pertinent longitudinal mass distribution shows that it is different from the commonly used Gaussian one in the analysis of field experiments, and it captures the main features of the plume measurements of the MADE experiment. The results strengthen the confidence in the applicability of the ADE and the FOA to predicting longitudinal spreading in solute transport through heterogeneous aquifers of stationary random structure.

  8. Summertime influences of tidal energy advection on the surface energy balance in a mangrove forest

    Directory of Open Access Journals (Sweden)

    J. G. Barr

    2013-01-01

    Full Text Available Mangrove forests are ecosystems susceptible to changing water levels and temperatures due to climate change as well as perturbations resulting from tropical storms. Numerical models can be used to project mangrove forest responses to regional and global environmental changes, and the reliability of these models depends on surface energy balance closure. However, for tidal ecosystems, the surface energy balance is complex because the energy transport associated with tidal activity remains poorly understood. This study aimed to quantify impacts of tidal flows on energy dynamics within a mangrove ecosystem. To address the research objective, an intensive 10-day study was conducted in a mangrove forest located along the Shark River in the Everglades National Park, FL, USA. Forest–atmosphere turbulent exchanges of energy were quantified with an eddy covariance system installed on a 30-m-tall flux tower. Energy transport associated with tidal activity was calculated based on a coupled mass and energy balance approach. The mass balance included tidal flows and accumulation of water on the forest floor. The energy balance included temporal changes in enthalpy, resulting from tidal flows and temperature changes in the water column. By serving as a net sink or a source of available energy, flood waters reduced the impact of high radiational loads on the mangrove forest. Also, the regression slope of available energy versus sink terms increased from 0.730 to 0.754 and from 0.798 to 0.857, including total enthalpy change in the water column in the surface energy balance for 30-min periods and daily daytime sums, respectively. Results indicated that tidal inundation provides an important mechanism for heat removal and that tidal exchange should be considered in surface energy budgets of coastal ecosystems. Results also demonstrated the importance of including tidal energy advection in mangrove biophysical models that are used for predicting ecosystem

  9. Anomalous scaling of passive scalar fields advected by the Navier-Stokes velocity ensemble: effects of strong compressibility and large-scale anisotropy.

    Science.gov (United States)

    Antonov, N V; Kostenko, M M

    2014-12-01

    The field theoretic renormalization group and the operator product expansion are applied to two models of passive scalar quantities (the density and the tracer fields) advected by a random turbulent velocity field. The latter is governed by the Navier-Stokes equation for compressible fluid, subject to external random force with the covariance ∝δ(t-t')k(4-d-y), where d is the dimension of space and y is an arbitrary exponent. The original stochastic problems are reformulated as multiplicatively renormalizable field theoretic models; the corresponding renormalization group equations possess infrared attractive fixed points. It is shown that various correlation functions of the scalar field, its powers and gradients, demonstrate anomalous scaling behavior in the inertial-convective range already for small values of y. The corresponding anomalous exponents, identified with scaling (critical) dimensions of certain composite fields ("operators" in the quantum-field terminology), can be systematically calculated as series in y. The practical calculation is performed in the leading one-loop approximation, including exponents in anisotropic contributions. It should be emphasized that, in contrast to Gaussian ensembles with finite correlation time, the model and the perturbation theory presented here are manifestly Galilean covariant. The validity of the one-loop approximation and comparison with Gaussian models are briefly discussed.

  10. Experimental investigations of ablation stream interaction dynamics in tungsten wire arrays: Interpenetration, magnetic field advection, and ion deflection

    Energy Technology Data Exchange (ETDEWEB)

    Swadling, G. F.; Lebedev, S. V.; Hall, G. N.; Suzuki-Vidal, F.; Burdiak, G. C.; Pickworth, L.; De Grouchy, P.; Skidmore, J.; Khoory, E.; Suttle, L.; Bennett, M.; Hare, J. D.; Clayson, T.; Bland, S. N.; Smith, R. A.; Stuart, N. H.; Patankar, S.; Robinson, T. S. [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); Harvey-Thompson, A. J. [Sandia National Laboratories, PO Box 5800, Albuquerque, New Mexico 87185-1193 (United States); Rozmus, W. [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada); and others

    2016-05-15

    Experiments have been carried out to investigate the collisional dynamics of ablation streams produced by cylindrical wire array z-pinches. A combination of laser interferometric imaging, Thomson scattering, and Faraday rotation imaging has been used to make a range of measurements of the temporal evolution of various plasma and flow parameters. This paper presents a summary of previously published data, drawing together a range of different measurements in order to give an overview of the key results. The paper focuses mainly on the results of experiments with tungsten wire arrays. Early interferometric imaging measurements are reviewed, then more recent Thomson scattering measurements are discussed; these measurements provided the first direct evidence of ablation stream interpenetration in a wire array experiment. Combining the data from these experiments gives a view of the temporal evolution of the tungsten stream collisional dynamics. In the final part of the paper, we present new experimental measurements made using an imaging Faraday rotation diagnostic. These experiments investigated the structure of magnetic fields near the array axis directly; the presence of a magnetic field has previously been inferred based on Thomson scattering measurements of ion deflection near the array axis. Although the Thomson and Faraday measurements are not in full quantitative agreement, the Faraday data do qualitatively supports the conjecture that the observed deflections are induced by a static toroidal magnetic field, which has been advected to the array axis by the ablation streams. It is likely that detailed modeling will be needed in order to fully understand the dynamics observed in the experiment.

  11. Revisiting the advection-dispersion model - Testing an alternative

    International Nuclear Information System (INIS)

    Neretnieks, I.

    2001-01-01

    Some of the basic assumptions of the Advection-Dispersion model, AD-model, are revisited. That model assumes a continuous mixing along the flowpath similar to Fickian diffusion. This implies that there is a constant dispersion length irrespective of observation distance. This is contrary to most field observations. The properties of an alternative model based on the assumption that individual water packages can retain their identity over long distances are investigated. The latter model is called the Multi-Channel model, MChM. Inherent in the latter model is that if the waters in the different pathways are collected and mixed, the 'dispersion length' is proportional to observation distance. Using diffusion theory it is investigated over which distances or contact times, adjacent water packages will keep their identity. It is found that for a contact time of 10 hours, two streams, each wider than 6 mm, that flow side by side, will not have lost their identity. For 1000 hours contact time the minimum width is 6 cm. The MChM and AD-models were found to have very similar Residence Time Distributions, RTD, for Peclet numbers larger than 3. A generalised relation between flowrate and residence time is developed, including the so-called cubic law and constant aperture assumptions. Using the generalised relation, surprisingly it is found that for a system that has the same average flow volume and average flowrate the form of the RTD curves are the same irrespective of the form of the relation. Both models are also compared for a system where there is strong interaction of the solute with the rock matrix. In this case it is assumed that the solute can diffuse into and out of the fracture walls and also to sorb on the micro-fractures of the matrix. The so-called Flow Wetted Surface, FWS, between the flowing water in the fracture and the rock is a key entity in such systems. It is found that the AD-model predicts much later arrivals and lower concentrations than does the MCh

  12. Analysis of a finite-difference and a Galerkin technique applied to the simulation of advection and diffusion of air pollutants from a line source

    International Nuclear Information System (INIS)

    Runca, E.; Melli, P.; Sardei, F.

    1985-01-01

    A finite-difference scheme and a Galerkin scheme are compared with respect to a very accurate solution describing time-dependent advection and diffusion of air pollutants from a line source in an atmosphere vertically stratified and limited by an inversion layer. The accurate solution was achieved by applying the finite-difference scheme on a very refined grid with a very small time step. The grid size and time step were defined according to stability and accuracy criteria discussed in the text. It is found that for the problem considered the two methods can be considered equally accurate. However, the Galerkin method gives a better approximation in the vicinity of the source. This was assumed to be partly due to the different way the source term is taken into account in the two methods. Improvement of the accuracy of the finite-difference scheme was achieved by approximating, at every step, the contribution of the source term by a Gaussian puff moving and diffusing with the velocity and diffusivity of the source location, instead of utilizing a stepwise function for the numerical approximation of the delta function representing the source term

  13. The Advective Flux and Temporal Evolution of Aerosols from the Western Pacific Rim as Observed during TRACE-P

    Science.gov (United States)

    Anderson, B. E.; Jordan, C. E.; Grant, W. B.; Browell, E. V.; Hudgins, C. H.; Winstead, E. L.; Thornhill, K. L.

    2002-12-01

    The 2001, NASA Transport and Chemical Evolution over the Pacific (TRACE-P) experiment was conducted during late winter and early spring, the time of year when eastward transport of dust and pollution from southern and central Asia reaches a maximum. From bases of operation in Hong Kong, Japan, and Hawaii, extensive measurements of trace species concentrations and characteristics were made from aboard a P-3B and DC-8 aircraft as they flew coordinated sampling missions within air masses at varying distances from the Asian coast and at altitudes ranging from near surface to over 12 km. Data recorded aboard the DC-8 included total condensation nuclei (CN) number densities and fractional volatility; aerosol size distributions, composition and optical properties; and multi-wavelength profiles of polarized, aerosol backscatter. Examining these data in light of simultaneous meteorological and chemical species measurements, we have calculated the advective flux and mean values of aerosol mass and physical properties at various locations within the Western Pacific Basin. At distances >100 km offshore, we find that the highest fluxes of sub-micron particles occurred below 2 km in the region downwind of Shanghai. These air masses exhibited CN concentrations approaching 50,000 cm-3 and visible scattering coefficients in excess of 200 Mm-1. For near-shore sampling between 26° and 36°N within this height range, these parameters averaged ~8,000 cm-3 and 130 Mm-, respectively, . As a result of dilution, surface deposition, and precipitation scavenging, these values rapidly diminished during eastward transport so that parcels sampled at low altitudes >1500 km from land typically contained ~1000 cm-3 CN and exhibited scattering coefficients <30 Mm-1. Because of the decreased strength of loss processes and greater atmospheric stability, parcels sampled in the 2- to 7-km height range were more apt to maintain their initial aerosol signatures during long-range transport.

  14. Numerical Experiments on Advective Transport in Large Three-Dimensional Discrete Fracture Networks

    Science.gov (United States)

    Makedonska, N.; Painter, S. L.; Karra, S.; Gable, C. W.

    2013-12-01

    Modeling of flow and solute transport in discrete fracture networks is an important approach for understanding the migration of contaminants in impermeable hard rocks such as granite, where fractures provide dominant flow and transport pathways. The discrete fracture network (DFN) model attempts to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. An integrated DFN meshing [1], flow, and particle tracking [2] simulation capability that enables accurate flow and particle tracking simulation on large DFNs has recently been developed. The new capability has been used in numerical experiments on advective transport in large DFNs with tens of thousands of fractures and millions of computational cells. The modeling procedure starts from the fracture network generation using a stochastic model derived from site data. A high-quality computational mesh is then generated [1]. Flow is then solved using the highly parallel PFLOTRAN [3] code. PFLOTRAN uses the finite volume approach, which is locally mass conserving and thus eliminates mass balance problems during particle tracking. The flow solver provides the scalar fluxes on each control volume face. From the obtained fluxes the Darcy velocity is reconstructed for each node in the network [4]. Velocities can then be continuously interpolated to any point in the domain of interest, thus enabling random walk particle tracking. In order to describe the flow field on fractures intersections, the control volume cells on intersections are split into four planar polygons, where each polygon corresponds to a piece of a fracture near the intersection line. Thus

  15. Disentangling the major source areas for an intense aerosol advection in the Central Mediterranean on the basis of Potential Source Contribution Function modeling of chemical and size distribution measurements

    Science.gov (United States)

    Petroselli, Chiara; Crocchianti, Stefano; Moroni, Beatrice; Castellini, Silvia; Selvaggi, Roberta; Nava, Silvia; Calzolai, Giulia; Lucarelli, Franco; Cappelletti, David

    2018-05-01

    In this paper, we combined a Potential Source Contribution Function (PSCF) analysis of daily chemical aerosol composition data with hourly aerosol size distributions with the aim to disentangle the major source areas during a complex and fast modulating advection event impacting on Central Italy in 2013. Chemical data include an ample set of metals obtained by Proton Induced X-ray Emission (PIXE), main soluble ions from ionic chromatography and elemental and organic carbon (EC, OC) obtained by thermo-optical measurements. Size distributions have been recorded with an optical particle counter for eight calibrated size classes in the 0.27-10 μm range. We demonstrated the usefulness of the approach by the positive identification of two very different source areas impacting during the transport event. In particular, biomass burning from Eastern Europe and desert dust from Sahara sources have been discriminated based on both chemistry and size distribution time evolution. Hourly BT provided the best results in comparison to 6 h or 24 h based calculations.

  16. Corrigendum to 'A novel model evaluation approach focusing on local and advected contributions to urban PM2.5 levels - application to Paris, France' published in Geosci. Model Dev., 7, 1483-1505, 2014

    International Nuclear Information System (INIS)

    Petetin, H.; Beekmann, M.; Sciare, J.; Bressi, M.; Rosso, A.; Sanchez, O.; Ghersi, V.

    2014-01-01

    Complete text of publication follows: Due to an oversight in the production process, an essential word (overestimation) was left out of the abstract. The correct version of the abstract can be seen below. Aerosol simulations in chemistry transport models (CTMs) still suffer from numerous uncertainties, and diagnostic evaluations are required to point out major error sources. This paper presents an original approach to evaluate CTMs based on local and imported contributions in a large mega-city rather than urban background concentrations. The study is applied to the CHIMERE model in the Paris region (France) and considers the fine particulate matter (PM2.5) and its main chemical constituents (elemental and organic carbon, nitrate, sulfate and ammonium), for which daily measurements are available during a whole year at various stations (PARTICULES project). Back-trajectory data are used to locate the upwind station, from which the concentration is identified as the import, the local production being deduced from the urban concentration by subtraction. Uncertainties on these contributions are quantified. Small biases in urban background PM2.5 simulations (bias of +16 %) hide significant error compensations between local and advected contributions, as well as in PM2.5 chemical compounds. In particular, winter time organic matter (OM) imports appear strongly underestimated while local OM and elemental carbon (EC) production is overestimated all along the year. Erroneous continental wood burning emissions and missing secondary organic aerosol (SOA) pathways may explain errors on advected OM, while the carbonaceous compounds overestimation is likely to be related to errors in emissions and dynamics. A statistically significant local formation of nitrate is also highlighted from observations, but missed by the model. Together with the overestimation of nitrate imports, it leads to a bias of +51% on the local PM2.5 contribution. Such an evaluation finally gives more

  17. The impact of fluid advection on gas hydrate stability: Investigations at sites of methane seepage offshore Costa Rica

    Science.gov (United States)

    Crutchley, G. J.; Klaeschen, D.; Planert, L.; Bialas, J.; Berndt, C.; Papenberg, C.; Hensen, C.; Hornbach, M. J.; Krastel, S.; Brueckmann, W.

    2014-09-01

    Fluid flow through marine sediments drives a wide range of processes, from gas hydrate formation and dissociation, to seafloor methane seepage including the development of chemosynthetic ecosystems, and ocean acidification. Here, we present new seismic data that reveal the 3D nature of focused fluid flow beneath two mound structures on the seafloor offshore Costa Rica. These mounds have formed as a result of ongoing seepage of methane-rich fluids. We show the spatial impact of advective heat flow on gas hydrate stability due to the channelled ascent of warm fluids towards the seafloor. The base of gas hydrate stability (BGHS) imaged in the seismic data constrains peak heat flow values to ∼60 mW m and ∼70 mW m beneath two separate seep sites known as Mound 11 and Mound 12, respectively. The initiation of pronounced fluid flow towards these structures was likely controlled by fault networks that acted as efficient pathways for warm fluids ascending from depth. Through the gas hydrate stability zone, fluid flow has been focused through vertical conduits that we suggest developed as migrating fluids generated their own secondary permeability by fracturing strata as they forced their way upwards towards the seafloor. We show that Mound 11 and Mound 12 (about 1 km apart on the seafloor) are sustained by independent fluid flow systems through the hydrate system, and that fluid flow rates across the BGHS are probably similar beneath both mounds. 2D seismic data suggest that these two flow systems might merge at approximately 1 km depth, i.e. much deeper than the BGHS. This study provides a new level of detail and understanding of how channelled, anomalously-high fluid flow towards the seafloor influences gas hydrate stability. Thus, gas hydrate systems have good potential for quantifying the upward flow of subduction system fluids to seafloor seep sites, since the fluids have to interact with and leave their mark on the hydrate system before reaching the seafloor.

  18. Multi-scale analysis of collective behavior in 2D self-propelled particle models of swarms: An Advection-Diffusion with Memory Approach

    Science.gov (United States)

    Raghib, Michael; Levin, Simon; Kevrekidis, Ioannis

    2010-05-01

    2. The long-time behavior of the msd of the centroid walk scales linearly with time for naïve groups (diffusion), but shows a sharp transition to quadratic scaling (advection) for informed ones. These observations suggest that the mesoscopic variables of interest are the magnitude of the drift, the diffusion coefficient and the time-scales at which the anomalous and the asymptotic behavior respectively dominate transport, the latter being linked to the time scale at which the group reaches a decision. In order to estimate these summary statistics from the msd, we assumed that the configuration centroid follows an uncoupled Continuous Time Random Walk (CTRW) with smooth jump and waiting time pdf's. The mesoscopic transport equation for this type of random walk corresponds to an Advection-Diffusion Equation with Memory (ADEM). The introduction of the memory, and thus non-Markovian effects, is necessary in order to correctly account for the two time scales present. Although we were not able to calculate the memory directly from the individual-level rules, we show that it can estimated from a single, relatively short, simulation run using a Mittag-Leffler function as template. With this function it is possible to predict accurately the behavior of the msd, as well as the full pdf for the position of the centroid. The resulting ADEM is self-consistent in the sense that transport parameters estimated from the memory via a Kubo relationship coincide with those estimated from the moments of the jump size pdf of the associated CTRW for a large number of group sizes, proportions of informed individuals, and degrees of bias along the preferred direction. We also discuss the phase diagrams for the transport coefficients estimated from this method, where we notice velocity-precision trade-offs, where precision is a measure of the deviation of realized group orientations with respect to the informed direction. We also note that the time scale to collective decision is invariant

  19. Aspects of numerical and representational methods related to the finite-difference simulation of advective and dispersive transport of freshwater in a thin brackish aquifer

    Science.gov (United States)

    Merritt, M.L.

    1993-01-01

    The simulation of the transport of injected freshwater in a thin brackish aquifer, overlain and underlain by confining layers containing more saline water, is shown to be influenced by the choice of the finite-difference approximation method, the algorithm for representing vertical advective and dispersive fluxes, and the values assigned to parametric coefficients that specify the degree of vertical dispersion and molecular diffusion that occurs. Computed potable water recovery efficiencies will differ depending upon the choice of algorithm and approximation method, as will dispersion coefficients estimated based on the calibration of simulations to match measured data. A comparison of centered and backward finite-difference approximation methods shows that substantially different transition zones between injected and native waters are depicted by the different methods, and computed recovery efficiencies vary greatly. Standard and experimental algorithms and a variety of values for molecular diffusivity, transverse dispersivity, and vertical scaling factor were compared in simulations of freshwater storage in a thin brackish aquifer. Computed recovery efficiencies vary considerably, and appreciable differences are observed in the distribution of injected freshwater in the various cases tested. The results demonstrate both a qualitatively different description of transport using the experimental algorithms and the interrelated influences of molecular diffusion and transverse dispersion on simulated recovery efficiency. When simulating natural aquifer flow in cross-section, flushing of the aquifer occurred for all tested coefficient choices using both standard and experimental algorithms. ?? 1993.

  20. Using a dynamical advection to reconstruct a part of the SSH evolution in the context of SWOT, application to the Mediterranean Sea

    Science.gov (United States)

    Rogé, Marine; Morrow, Rosemary; Ubelmann, Clément; Dibarboure, Gérald

    2017-08-01

    The main oceanographic objective of the future SWOT mission is to better characterize the ocean mesoscale and sub-mesoscale circulation, by observing a finer range of ocean topography dynamics down to 20 km wavelength. Despite the very high spatial resolution of the future satellite, it will not capture the time evolution of the shorter mesoscale signals, such as the formation and evolution of small eddies. SWOT will have an exact repeat cycle of 21 days, with near repeats around 5-10 days, depending on the latitude. Here, we investigate a technique to reconstruct the missing 2D SSH signal in the time between two satellite revisits. We use the dynamical interpolation (DI) technique developed by Ubelmann et al. (2015). Based on potential vorticity (hereafter PV) conservation using a one and a half layer quasi-geostrophic model, it features an active advection of the SSH field. This model has been tested in energetic open ocean regions such as the Gulf Stream and the Californian Current, and has given promising results. Here, we test this model in the Western Mediterranean Sea, a lower energy region with complex small scale physics, and compare the SSH reconstruction with the high-resolution Symphonie model. We investigate an extension of the simple dynamical model including a separated mean circulation. We find that the DI gives a 16-18% improvement in the reconstruction of the surface height and eddy kinetic energy fields, compared with a simple linear interpolation, and a 37% improvement in the Northern Current subregion. Reconstruction errors are higher during winter and autumn but statistically, the improvement from the DI is also better for these seasons.

  1. Trajectory errors of different numerical integration schemes diagnosed with the MPTRAC advection module driven by ECMWF operational analyses

    Science.gov (United States)

    Rößler, Thomas; Stein, Olaf; Heng, Yi; Baumeister, Paul; Hoffmann, Lars

    2018-02-01

    The accuracy of trajectory calculations performed by Lagrangian particle dispersion models (LPDMs) depends on various factors. The optimization of numerical integration schemes used to solve the trajectory equation helps to maximize the computational efficiency of large-scale LPDM simulations. We analyzed global truncation errors of six explicit integration schemes of the Runge-Kutta family, which we implemented in the Massive-Parallel Trajectory Calculations (MPTRAC) advection module. The simulations were driven by wind fields from operational analysis and forecasts of the European Centre for Medium-Range Weather Forecasts (ECMWF) at T1279L137 spatial resolution and 3 h temporal sampling. We defined separate test cases for 15 distinct regions of the atmosphere, covering the polar regions, the midlatitudes, and the tropics in the free troposphere, in the upper troposphere and lower stratosphere (UT/LS) region, and in the middle stratosphere. In total, more than 5000 different transport simulations were performed, covering the months of January, April, July, and October for the years 2014 and 2015. We quantified the accuracy of the trajectories by calculating transport deviations with respect to reference simulations using a fourth-order Runge-Kutta integration scheme with a sufficiently fine time step. Transport deviations were assessed with respect to error limits based on turbulent diffusion. Independent of the numerical scheme, the global truncation errors vary significantly between the different regions. Horizontal transport deviations in the stratosphere are typically an order of magnitude smaller compared with the free troposphere. We found that the truncation errors of the six numerical schemes fall into three distinct groups, which mostly depend on the numerical order of the scheme. Schemes of the same order differ little in accuracy, but some methods need less computational time, which gives them an advantage in efficiency. The selection of the integration

  2. A discontinuous Galerkin method with a bound preserving limiter for the advection of non-diffusive fields in solid Earth geodynamics

    Science.gov (United States)

    He, Ying; Puckett, Elbridge Gerry; Billen, Magali I.

    2017-02-01

    Mineral composition has a strong effect on the properties of rocks and is an essentially non-diffusive property in the context of large-scale mantle convection. Due to the non-diffusive nature and the origin of compositionally distinct regions in the Earth the boundaries between distinct regions can be nearly discontinuous. While there are different methods for tracking rock composition in numerical simulations of mantle convection, one must consider trade-offs between computational cost, accuracy or ease of implementation when choosing an appropriate method. Existing methods can be computationally expensive, cause over-/undershoots, smear sharp boundaries, or are not easily adapted to tracking multiple compositional fields. Here we present a Discontinuous Galerkin method with a bound preserving limiter (abbreviated as DG-BP) using a second order Runge-Kutta, strong stability-preserving time discretization method for the advection of non-diffusive fields. First, we show that the method is bound-preserving for a point-wise divergence free flow (e.g., a prescribed circular flow in a box). However, using standard adaptive mesh refinement (AMR) there is an over-shoot error (2%) because the cell average is not preserved during mesh coarsening. The effectiveness of the algorithm for convection-dominated flows is demonstrated using the falling box problem. We find that the DG-BP method maintains sharper compositional boundaries (3-5 elements) as compared to an artificial entropy-viscosity method (6-15 elements), although the over-/undershoot errors are similar. When used with AMR the DG-BP method results in fewer degrees of freedom due to smaller regions of mesh refinement in the neighborhood of the discontinuity. However, using Taylor-Hood elements and a uniform mesh there is an over-/undershoot error on the order of 0.0001%, but this error increases to 0.01-0.10% when using AMR. Therefore, for research problems in which a continuous field method is desired the DG

  3. Modelling environmental effects on the early life history of the South ...

    African Journals Online (AJOL)

    In the absence of advective losses, more anchovy reached swimming age than did sardine. However, anchovy spawned in regions that are more susceptible to advective losses. Adult biomass levels were low in the years when anchovy and sardine spawning was restricted to the South Coast. Also, advective losses of both ...

  4. Multiscaling Dynamics of Impurity Transport in Drift-Wave Turbulence

    International Nuclear Information System (INIS)

    Futatani, S.; Benkadda, S.; Nakamura, Y.; Kondo, K.

    2008-01-01

    Intermittency effects and the associated multiscaling spectrum of exponents are investigated for impurities advection in tokamak edge plasmas. The two-dimensional Hasagawa-Wakatani model of resistive drift-wave turbulence is used as a paradigm to describe edge tokamak turbulence. Impurities are considered as a passive scalar advected by the plasma turbulent flow. The use of the extended self-similarity technique shows that the structure function relative scaling exponent of impurity density and vorticity follows the She-Leveque model. This confirms the intermittent character of the impurities advection in the turbulent plasma flow and suggests that impurities are advected by vorticity filaments

  5. Development and Implementation of a Transport Method for the Transport and Reaction Simulation Engine (TaRSE) based on the Godunov-Mixed Finite Element Method

    Science.gov (United States)

    James, Andrew I.; Jawitz, James W.; Munoz-Carpena, Rafael

    2009-01-01

    A model to simulate transport of materials in surface water and ground water has been developed to numerically approximate solutions to the advection-dispersion equation. This model, known as the Transport and Reaction Simulation Engine (TaRSE), uses an algorithm that incorporates a time-splitting technique where the advective part of the equation is solved separately from the dispersive part. An explicit finite-volume Godunov method is used to approximate the advective part, while a mixed-finite element technique is used to approximate the dispersive part. The dispersive part uses an implicit discretization, which allows it to run stably with a larger time step than the explicit advective step. The potential exists to develop algorithms that run several advective steps, and then one dispersive step that encompasses the time interval of the advective steps. Because the dispersive step is computationally most expensive, schemes can be implemented that are more computationally efficient than non-time-split algorithms. This technique enables scientists to solve problems with high grid Peclet numbers, such as transport problems with sharp solute fronts, without spurious oscillations in the numerical approximation to the solution and with virtually no artificial diffusion.

  6. Technology and human purpose: the problem of solids transport on the Earth's surface

    Science.gov (United States)

    Haff, P. K.

    2012-11-01

    Displacement of mass of limited deformability ("solids") on the Earth's surface is opposed by friction and (the analog of) form resistance - impediments relaxed by rotational motion, self-powering of mass units, and transport infrastructure. These features of solids transport first evolved in the biosphere prior to the emergence of technology, allowing slope-independent, diffusion-like motion of discrete objects as massive as several tons, as illustrated by animal foraging and movement along game trails. However, high-energy-consumption technology powered by fossil fuels required a mechanism that could support fast advective transport of solids, i.e., long-distance, high-volume, high-speed, unidirectional, slope-independent transport across the land surface of materials like coal, containerized fluids, minerals, and economic goods. Pre-technology nature was able to sustain regional- and global-scale advection only in the limited form of piggybacking on geophysical flows of water (river sediment) and air (dust). The appearance of a mechanism for sustained advection of solids independent of fluid flows and gravity appeared only upon the emergence of human purpose. Purpose enables solids advection by, in effect, simulating a continuous potential gradient, otherwise lacking, between discrete and widely separated fossil-fuel energy sources and sinks. Invoking purpose as a mechanism in solids advection is an example of the need to import anthropic principles and concepts into the language and methodology of modern Earth system dynamics. As part of the emergence of a generalized solids advection mechanism, several additional transport requirements necessary to the function of modern large-scale technological systems were also satisfied. These include spatially accurate delivery of advected payload, targetability to essentially arbitrarily located destinations (such as cities), and independence of structure of advected payload from transport mechanism. The latter property

  7. iCFD: Interpreted Computational Fluid Dynamics - Degeneration of CFD to one-dimensional advection-dispersion models using statistical experimental design - The secondary clarifier.

    Science.gov (United States)

    Guyonvarch, Estelle; Ramin, Elham; Kulahci, Murat; Plósz, Benedek Gy

    2015-10-15

    The present study aims at using statistically designed computational fluid dynamics (CFD) simulations as numerical experiments for the identification of one-dimensional (1-D) advection-dispersion models - computationally light tools, used e.g., as sub-models in systems analysis. The objective is to develop a new 1-D framework, referred to as interpreted CFD (iCFD) models, in which statistical meta-models are used to calculate the pseudo-dispersion coefficient (D) as a function of design and flow boundary conditions. The method - presented in a straightforward and transparent way - is illustrated using the example of a circular secondary settling tank (SST). First, the significant design and flow factors are screened out by applying the statistical method of two-level fractional factorial design of experiments. Second, based on the number of significant factors identified through the factor screening study and system understanding, 50 different sets of design and flow conditions are selected using Latin Hypercube Sampling (LHS). The boundary condition sets are imposed on a 2-D axi-symmetrical CFD simulation model of the SST. In the framework, to degenerate the 2-D model structure, CFD model outputs are approximated by the 1-D model through the calibration of three different model structures for D. Correlation equations for the D parameter then are identified as a function of the selected design and flow boundary conditions (meta-models), and their accuracy is evaluated against D values estimated in each numerical experiment. The evaluation and validation of the iCFD model structure is carried out using scenario simulation results obtained with parameters sampled from the corners of the LHS experimental region. For the studied SST, additional iCFD model development was carried out in terms of (i) assessing different density current sub-models; (ii) implementation of a combined flocculation, hindered, transient and compression settling velocity function; and (iii

  8. Comparison of transport and attachment behaviors of Cryptosporidium parvum oocysts and oocyst-sized microspheres being advected through three minerologically different granular porous media.

    Science.gov (United States)

    Mohanram, Arvind; Ray, Chittaranjan; Harvey, Ronald W; Metge, David W; Ryan, Joseph N; Chorover, Jon; Eberl, D D

    2010-10-01

    In order to gain more information about the fate of Cryptosporidium parvum oocysts in tropical volcanic soils, the transport and attachment behaviors of oocysts and oocyst-sized polystyrene microspheres were studied in the presence of two soils. These soils were chosen because of their differing chemical and physical properties, i.e., an organic-rich (43-46% by mass) volcanic ash-derived soil from the island of Hawaii, and a red, iron (22-29% by mass), aluminum (29-45% by mass), and clay-rich (68-76% by mass) volcanic soil from the island of Oahu. A third agricultural soil, an organic- (13% by mass) and quartz-rich (40% by mass) soil from Illinois, was included for reference. In 10-cm long flow-through columns, oocysts and microspheres advecting through the red volcanic soil were almost completely (98% and 99%) immobilized. The modest breakthrough resulted from preferential flow-path structure inadvertently created by soil-particle aggregation during the re-wetting process. Although a high (99%) removal of oocysts and microsphere within the volcanic ash soil occurred initially, further examination revealed that transport was merely retarded because of highly reversible interactions with grain surfaces. Judging from the slope of the substantive and protracted tail of the breakthrough curve for the 1.8-μm microspheres, almost all (>99%) predictably would be recovered within ∼4000 pore volumes. This suggests that once contaminated, the volcanic ash soil could serve as a reservoir for subsequent contamination of groundwater, at least for pathogens of similar size or smaller. Because of the highly reversible nature of organic colloid immobilization in this soil type, C. parvum could contaminate surface water should overland flow during heavy precipitation events pick up near-surface grains to which they are attached. Surprisingly, oocyst and microsphere attachment to the reference soil from Illinois appeared to be at least as sensitive to changes in pH as was

  9. Diffusive Barrier and Getter Under Waste Packages VA Reference Design Feature Evaluations

    International Nuclear Information System (INIS)

    MacNeil, K.

    1999-01-01

    This technical document evaluates those aspects of the diffusive barrier and getter features which have the potential for enhancing the performance of the Viability Assessment Reference Design and are also directly related to the key attributes for the repository safety strategy of that design. The effects of advection, hydrodynamic dispersion, and diffusion on the radionuclide migration rates through the diffusive barrier were determined through the application of the one-dimensional, advection/dispersion/diffusion equation. The results showed that because advective flow described by the advection-dispersion equation dominates, the diffusive barrier feature alone would not be effective in retarding migration of radiocuclides. However, if the diffusive barrier were combined with one or more features that reduced the potential for advection, then transport of radionuclides would be dominated by diffusion and their migration from the EBS would be impeded. Apatite was chosen as the getter material used for this report. Two getter configurations were developed, Case 1 and Case 2. As in the evaluation of the diffusive barrier, the effects of advection, hydrodynamic dispersion, and diffusion on the migration of radionuclides through the getter are evaluated. However, in addition to these mechanisms, the one-dimensional advection/dispersion/diffusion model is modified to include the effect of sorption on radionuclide migration rates through the sorptive medium (getter). As a result of sorption, the longitudinal dispersion coefficient, and the average linear velocity are effectively reduced by the retardation factor. The retardation factor is a function of the getter material's dry bulk density, sorption coefficient and moisture content. The results of the evaluation showed that a significant delay in breakthrough through the getter can be achieved if the thickness of the getter barrier is increased

  10. Spatial structures in the heat budget of the Antarctic atmospheric boundary layer

    Directory of Open Access Journals (Sweden)

    W. J. van de Berg

    2008-01-01

    Full Text Available Output from the regional climate model RACMO2/ANT is used to calculate the heat budget of the Antarctic atmospheric boundary layer (ABL. The main feature of the wintertime Antarctic ABL is a persistent temperature deficit compared to the free atmosphere. The magnitude of this deficit is controlled by the heat budget. During winter, transport of heat towards the surface by turbulence and net longwave emission are the primary ABL cooling terms. These processes show horizontal spatial variability only on continental scales. Vertical and horizontal, i.e. along-slope, advection of heat are the main warming terms. Over regions with convex ice sheet topography, i.e. domes and ridges, warming by downward vertical advection is enhanced due to divergence of the ABL wind field. Horizontal advection balances excess warming caused by vertical advection, hence the temperature deficit in the ABL weakens over domes and ridges along the prevailing katabatic wind. Conversely, vertical advection is reduced in regions with concave topography, i.e. valleys, where the ABL temperature deficit enlarges along the katabatic wind. Along the coast, horizontal and vertical advection is governed by the inability of the large-scale circulation to adapt to small scale topographic features. Meso-scale topographic structures have thus a strong impact on the ABL winter temperature, besides latitude and surface elevation. During summer, this mechanism is much weaker, and the horizontal variability of ABL temperatures is smaller.

  11. Mixed deterministic statistical modelling of regional ozone air pollution

    KAUST Repository

    Kalenderski, Stoitchko; Steyn, Douw G.

    2011-01-01

    formalism, and explicitly accounts for advection of pollutants, using the advection equation. We apply the model to a specific case of regional ozone pollution-the Lower Fraser valley of British Columbia, Canada. As a predictive tool, we demonstrate

  12. Numerical Treatment of Two-phase Flow in Porous Media Including Specific Interfacial Area

    KAUST Repository

    El-Amin, Mohamed; Meftah, R.; Salama, Amgad; Sun, Shuyu

    2015-01-01

    -matrices method which can reduce the time-consuming operations. A new iterative implicit algorithm has been developed to solve the problem under consideration. All advection and advection-like terms that appear in saturation equation and interfacial area equation

  13. Evaluation of distribution coefficients for the prediction of strontium and cesium migration in a uniform sand

    International Nuclear Information System (INIS)

    Reynolds, W.D.; Gillham, R.W.; Cherry, J.A.

    1982-01-01

    The validity of using a distribution coefficient (Ksub(d)) in the mathematical prediction of strontium and cesium transport through uniform saturated sand was investigated by comparing measured breakthrough curves with curves of simulations using the advection-dispersion and the advection equations. Values for Ksub(d) were determined by batch equilibration tests and, indirectly, by fitting the mathematical model to breakthrough data from column experiments. Although the advection-dispersion equation accurately represented the breakthrough curves for two nonreactive solutes (chloride and tritium), neither it nor the advection equation provided close representations of the strontium and cesium curves. The simulated breakthrough curves for strontium and cesium were nearly symmetrical, whereas the data curves were very asymmetrical, with long tails. Column experiments with different pore-water velocities indicated that the shape of the normalized breakthrough curves was not sensitive to velocity. This suggests that the asymmetry of the measured curves was the result of nonlinear partitioning of the cations between the solid and liquid phases, rather than nonequilibrium effects. The results indicate that the distribution coefficient, when used in advection-dispersion models for prediction of the migration of strontium and cesium in field situations, can result in significant error

  14. A local level set method based on a finite element method for unstructured meshes

    International Nuclear Information System (INIS)

    Ngo, Long Cu; Choi, Hyoung Gwon

    2016-01-01

    A local level set method for unstructured meshes has been implemented by using a finite element method. A least-square weighted residual method was employed for implicit discretization to solve the level set advection equation. By contrast, a direct re-initialization method, which is directly applicable to the local level set method for unstructured meshes, was adopted to re-correct the level set function to become a signed distance function after advection. The proposed algorithm was constructed such that the advection and direct reinitialization steps were conducted only for nodes inside the narrow band around the interface. Therefore, in the advection step, the Gauss–Seidel method was used to update the level set function using a node-by-node solution method. Some benchmark problems were solved by using the present local level set method. Numerical results have shown that the proposed algorithm is accurate and efficient in terms of computational time

  15. Characterization of intermittency of impurity turbulent transport in tokamak edge plasmas

    International Nuclear Information System (INIS)

    Futatani, S.; Benkadda, S.; Nakamura, Y.; Kondo, K.

    2008-01-01

    The statistical properties of impurity transport of a tokamak edge plasma embedded in a dissipative drift-wave turbulence are investigated using structure function analysis. The impurities are considered as a passive scalar advected by the plasma flow. Two cases of impurity advection are studied and compared: A decaying impurities case (given by a diffusion-advection equation) and a driven case (forced by a mean scalar gradient). The use of extended self-similarity enables us to show that the relative scaling exponent of structure functions of impurity density and vorticity exhibit similar multifractal scaling in the decaying case and follows the She-Leveque model. However, this property is invalidated for the impurity driven advection case. For both cases, potential fluctuations are self-similar and exhibit a monofractal scaling in agreement with Kolmogorov-Kraichnan theory for two-dimensional turbulence. These results obtained with a passive scalar model agree also with test-particle simulations.

  16. A local level set method based on a finite element method for unstructured meshes

    Energy Technology Data Exchange (ETDEWEB)

    Ngo, Long Cu; Choi, Hyoung Gwon [School of Mechanical Engineering, Seoul National University of Science and Technology, Seoul (Korea, Republic of)

    2016-12-15

    A local level set method for unstructured meshes has been implemented by using a finite element method. A least-square weighted residual method was employed for implicit discretization to solve the level set advection equation. By contrast, a direct re-initialization method, which is directly applicable to the local level set method for unstructured meshes, was adopted to re-correct the level set function to become a signed distance function after advection. The proposed algorithm was constructed such that the advection and direct reinitialization steps were conducted only for nodes inside the narrow band around the interface. Therefore, in the advection step, the Gauss–Seidel method was used to update the level set function using a node-by-node solution method. Some benchmark problems were solved by using the present local level set method. Numerical results have shown that the proposed algorithm is accurate and efficient in terms of computational time.

  17. Flux Meter Assesses the Effects of Groundwater, Surface Water, and Contaminated Sediment Interactions on Ecosystems

    Science.gov (United States)

    The slow flow of water between groundwater (GW) and surface water (SW) is often referred to as seepage, or in scientific terms, advective flux. This slow flow at the GW/SW interface presents measurement difficulties. This project was conducted to develop a durable advective flux ...

  18. Evaluation of a stratiform cloud parameterization for general circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Ghan, S.J.; Leung, L.R. [Pacific Northwest National Lab., Richland, WA (United States); McCaa, J. [Univ. of Washington, Seattle, WA (United States)

    1996-04-01

    To evaluate the relative importance of horizontal advection of cloud versus cloud formation within the grid cell of a single column model (SCM), we have performed a series of simulations with our SCM driven by a fixed vertical velocity and various rates of horizontal advection.

  19. Conceptual model for transport processes in the Culebra Dolomite Member, Rustler Formation

    International Nuclear Information System (INIS)

    Holt, R.M.

    1997-08-01

    The Culebra Dolomite Member of the Rustler Formation represents a possible pathway for contaminants from the Waste Isolation Pilot Plant underground repository to the accessible environment. The geologic character of the Culebra is consistent with a double-porosity, multiple-rate model for transport in which the medium is conceptualized as consisting of advective porosity, where solutes are carried by the groundwater flow, and fracture-bounded zones of diffusive porosity, where solutes move through slow advection or diffusion. As the advective travel length or travel time increases, the nature of transport within a double-porosity medium changes. This behavior is important for chemical sorption, because the specific surface area per unit mass of the diffusive porosity is much greater than in the advective porosity. Culebra transport experiments conducted at two different length scales show behavior consistent with a multiple-rate, double-porosity conceptual model for Culebra transport. Tracer tests conducted on intact core samples from the Culebra show no evidence of significant diffusion, suggesting that at the core scale the Culebra can be modeled as a single-porosity medium where only the advective porosity participates in transport. Field tracer tests conducted in the Culebra show strong double-porosity behavior that is best explained using a multiple-rate model

  20. Shaken, Not Stirred: How Tidal Advection and Dispersion Mechanisms Rather Than Turbulent Mixing Impact the Movement and Fate of Aquatic Constituents and Fish in the California Central Valley

    Science.gov (United States)

    Sridharan, V. K.; Fong, D.; Monismith, S. G.; Jackson, D.; Russel, P.; Pope, A.; Danner, E.; Lindley, S. T.

    2016-12-01

    River deltas worldwide - home to nearly a billion people, thousands of species of flora and fauna, and economies worth trillions of dollars - have experienced massive ecosystem decline caused by urbanization, pollution, and water withdrawals. Habitat restoration in these systems is imperative not only for preserving endangered biomes, but also in sustaining human demand for freshwater and long term commercial viability. The sustainable management of heavily engineered, multi-use, branched tidal estuaries such as the Sacramento-San Joaquin Delta (henceforth, the Delta) requires utilizing physical transport and mixing process models. These inform us about the movement and fate of water quality constituents and aquatic organisms. This study identifies and quantifies the effects of various hydrodynamic mechanisms in the Delta across multiple spatio-temporal scales. A particle tracking model with accurate channel junction physics and an agent based model with realistic biological hypotheses of fish behavior were developed to study the movement and fate of tracers (surrogates for water quality constituents) and fish in the Delta. Simulations performed with these models were used to (1) determine the transport pathways through the Delta, (2) quantify the magnitude of transport and mixing processes along those pathways, and (3) describe the effects of physical stressors on fates of juvenile salmon. The Delta is largely dominated by large spatial scale advection by river flows, tidal pumping, and significantly increased dispersion through chaos due to the interaction of tidal flows with channel junctions. The movement and fate of simulated tracers and juvenile salmon are governed largely by the water diversion and pumping operations, transport pathways and chaotic tidal mixing mechanisms along those pathways. There is also a significant effect of predation on fish. These transport pathway and mechanistic dependencies indicate that restoration efforts which are harmonious

  1. SUBJECT INDEX

    Indian Academy of Sciences (India)

    ages: Lower Narmada basin, western India. 413. Advective heat transfer. Advective heat transfer and fabric development in a shallow crustal intrusive granite – the case of Pro- terozoic Vellaturu granite, south India. 433. Andaman Islands. Improved bathymetric datasets for the shallow water regions in the Indian Ocean. 261.

  2. Soil gas radon response to environmental and soil physics variables

    International Nuclear Information System (INIS)

    Thomas, D.M.; Chen, C.; Holford, D.

    1991-01-01

    During the last three years a field study of soil gas radon activities conducted at Poamoho, Oahu, has shown that the primary environmental variables that control radon transport in shallow tropical soils are synoptic and diurnal barometric pressure changes and soil moisture levels. Barometric pressure changes drive advective transport and mixing of soil gas with atmospheric air; soil moisture appears to control soil porosity and permeability to enhance or inhibit advective and diffusive radon transport. An advective barrier test/control experiment has shown that advective exchange of soil gas and air may account for a substantial proportion of the radon loss from shallow soils but does not significantly affect radon activities at depths greater than 2.3 m. An irrigation test/control experiment also suggests that, at soil moisture levels approaching field capacity, saturation of soil macroporosity can halt all advective transport of radon and limit diffusive mobility to that occurring in the liquid phase. The results of the authors field study have been used to further refine and extend a numerical model, RN3D, that has been developed by Pacific Northwest Laboratories to simulate subsurface transport of radon. The field data have allowed them to accurately simulate the steady state soil gas radon profile at their field site and to track transient radon activities under the influence of barometric pressure changes and in response to changes in soil permeability that result from variations in soil moisture levels. Further work is continuing on the model to enable it to properly account for the relative effects of advective transport of soil gas through cracks and diffusive mobility in the bulk soils

  3. On High-Order Upwind Methods for Advection

    Science.gov (United States)

    Huynh, Hung T.

    2017-01-01

    Scheme III (piecewise linear) and V (piecewise parabolic) of Van Leer are shown to yield identical solutions provided the initial conditions are chosen in an appropriate manner. This result is counter intuitive since it is generally believed that piecewise linear and piecewise parabolic methods cannot produce the same solutions due to their different degrees of approximation. The result also shows a key connection between the approaches of discontinuous and continuous representations.

  4. Interaction of a monopole vortex with an isolated topographic feature in a three-layer geophysical flow

    Directory of Open Access Journals (Sweden)

    E. A. Ryzhov

    2013-02-01

    Full Text Available In the frame of a three-layer, quasi-geostrophic analytical model of an f-plane geophysical flow, the Lagrangian advection induced by the interaction of a monopole vortex with an isolated topographic feature is addressed. Two different cases when the monopole is located either within the upper or the middle layer are of our interest. In the bottom layer, there is a delta-function topographic feature, which generates a closed recirculation region in its vicinity due to the background flow. This recirculation region extends to the middle and upper layers, and it plays the role of a topographic vortex. The interaction between the monopole and the topographic vortex causes a complex, including chaotic, advection of fluid particles. We show that the model's parameters, namely the monopole and topographic vortices' strengths and initial positions, and the layers' depths and densities, are responsible for the diverse advection patterns. While the patterns are rather complicated, one can single out two major processes, which mostly govern the fluid particle advection. The first one is the variation in time of the system's phase space structure, so that within the closed region of the topographic vortex, there appear periodically unclosed particle pathways by which the particles leave the topographic vortex. The second one is chaotic advection that arises from the nonstationarity of the monopole–topography interaction.

  5. Approximation of scalar and vector transport problems on polyhedral meshes

    International Nuclear Information System (INIS)

    Cantin, Pierre

    2016-01-01

    This thesis analyzes, at the continuous and at the discrete level on polyhedral meshes, the scalar and the vector transport problems in three-dimensional domains. These problems are composed of a diffusive term, an advective term, and a reactive term. In the context of Friedrichs systems, the continuous problems are analyzed in Lebesgue graph spaces. The classical positivity assumption on the Friedrichs tensor is generalized so as to consider the case of practical interest where this tensor takes null or slightly negative values. A new scheme converging at the order 3/2 is devised for the scalar advection-reaction problem using scalar degrees of freedom attached to mesh vertices. Two new schemes considering as well scalar degrees of freedom attached to mesh vertices are devised for the scalar transport problem and are robust with respect to the dominant regime. The first scheme converges at the order 1/2 when advection effects are dominant and at the order 1 when diffusion effects are dominant. The second scheme improves the accuracy by converging at the order 3/2 when advection effects are dominant. Finally, a new scheme converging at the order 1/2 is devised for the vector advection-reaction problem considering only one scalar degree of freedom per mesh edge. The accuracy and the efficiency of all these schemes are assessed on various test cases using three-dimensional polyhedral meshes. (author)

  6. Horns Rev 2 offshore wind farm photo case with wakes observed in 2016

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Nygaard, Nicolai Gayle; Volker, Patrick

    results from atmospheric WRF meso-scale modelling, Park wake model and large eddy simulation wake model are prepared and analysed. At the time of the photos a humid and warm air mass was advected from the southwest over cold sea. The dew-point temperature was such that cold-water advection fog formed...

  7. Analysis research on mixing characteristics of lower plenum of Qinshan phase Ⅱ NPP by CFD method

    International Nuclear Information System (INIS)

    Mao Huihui; He Peifeng; Lu Chuan; Zhang Hongliang

    2015-01-01

    The flowing and mixing characteristics of the lower plenum of Qinshan Phase n NPP were analyzed by CFD method. The calculation results were compared with the results of the reactor hydraulic simulation test. On core inlet mass flow distributions, both upwind and high resolution advection schemes show good agreements with test results. While on lower plenum mixing characteristics, the calculation results from either upwind or high resolution advection schemes show relatively large differences to the test data. Relatively, upwind advection schemes predict better anticipations on maximum and minimum mixing factors. Furthermore, whether or not considering helix flow by main pump is the most possible key factor that leads to difference between CFD calculation and test results. (authors)

  8. Wind Farm Wake: The 2016 Horns Rev Photo Case

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Nygaard, Nicolai Gayle; Volker, Patrick

    2017-01-01

    are that a humid and warm air mass was advected from the southwest over cold sea and the dew-point temperature was such that cold-water advection fog formed in a shallow layer. The flow was stably stratified and the freestream wind speed was 13 m/s at hub height, which means that most turbines produced at or near...

  9. Contaminant transport in soils and its significance in the design of waste management facilities

    International Nuclear Information System (INIS)

    Barbour, S.L.; Krahn, J.

    1984-01-01

    Transport of contaminants in soils is governed by advection, dispersion, geochemical mass transfer and decay in the case of radioactive materials. Advection is the process whereby the contaminant is being carried along by moving water. Dispersion arises from mechanical mixing due to velocity distributions between soil particles and molecular diffusion. Geochemical mass transfer retards the migration because of adsorption and/or precipitation. Decay results in a decrease of contaminant concentrations for radioactive materials. Studies on the effectiveness of a cutoff wall in granular soils beneath a tailings dyke show that the most important parameter is the groundwater flow velocity. It not only controls the advective transport but also directly affects the dispersive component and the attenuation that may be obtained through adsorption and decay

  10. Measurements of sediment temperatures, conductivity and heat flow in the North Atlantic and their relevance to radioactive waste disposal

    International Nuclear Information System (INIS)

    Noel, M.J.

    1984-01-01

    This report describes the methods which were used to measure sediment temperatures, conductivity and heat flow at ten stations in the northeast Atlantic. These have yielded data from a total of 53 individual penetrations. Surface heat fluxes are compared to the values predicted by crustal cooling models while sediment temperature profiles are examined for evidence of vertical pore water advection. No thermal evidence was found for advection through sediments in the Great Meteor East study area. However, non-linear temperature profiles may be evidence for rapid pore water advection at several locations within the King's Trough Flank study region. These results are critically assessed in terms of other factors which may give rise to the observed non-linear temperature profiles. (author)

  11. Application of a robust and efficient Lagrangian particle scheme to soot transport in turbulent flames

    KAUST Repository

    Attili, Antonio

    2013-09-01

    A Lagrangian particle scheme is applied to the solution of soot dynamics in turbulent nonpremixed flames. Soot particulate is described using a method of moments and the resulting set of continuum advection-reaction equations is solved using the Lagrangian particle scheme. The key property of the approach is the independence between advection, described by the movement of Lagrangian notional particles along pathlines, and internal aerosol processes, evolving on each notional particle via source terms. Consequently, the method overcomes the issues in Eulerian grid-based schemes for the advection of moments: errors in the advective fluxes pollute the moments compromising their realizability and the stiffness of source terms weakens the stability of the method. The proposed scheme exhibits superior properties with respect to conventional Eulerian schemes in terms of stability, accuracy, and grid convergence. Taking into account the quality of the solution, the Lagrangian approach can be computationally more economical than commonly used Eulerian schemes as it allows the resolution requirements dictated by the different physical phenomena to be independently optimized. Finally, the scheme posseses excellent scalability on massively parallel computers. © 2013 Elsevier Ltd.

  12. Adaptive hierarchical grid model of water-borne pollutant dispersion

    Science.gov (United States)

    Borthwick, A. G. L.; Marchant, R. D.; Copeland, G. J. M.

    Water pollution by industrial and agricultural waste is an increasingly major public health issue. It is therefore important for water engineers and managers to be able to predict accurately the local behaviour of water-borne pollutants. This paper describes the novel and efficient coupling of dynamically adaptive hierarchical grids with standard solvers of the advection-diffusion equation. Adaptive quadtree grids are able to focus on regions of interest such as pollutant fronts, while retaining economy in the total number of grid elements through selective grid refinement. Advection is treated using Lagrangian particle tracking. Diffusion is solved separately using two grid-based methods; one is by explicit finite differences, the other a diffusion-velocity approach. Results are given in two dimensions for pure diffusion of an initially Gaussian plume, advection-diffusion of the Gaussian plume in the rotating flow field of a forced vortex, and the transport of species in a rectangular channel with side wall boundary layers. Close agreement is achieved with analytical solutions of the advection-diffusion equation and simulations from a Lagrangian random walk model. An application to Sepetiba Bay, Brazil is included to demonstrate the method with complex flows and topography.

  13. Chloride Transport in Undersea Concrete Tunnel

    Directory of Open Access Journals (Sweden)

    Yuanzhu Zhang

    2016-01-01

    Full Text Available Based on water penetration in unsaturated concrete of underwater tunnel, a diffusion-advection theoretical model of chloride in undersea concrete tunnel was proposed. The basic parameters including porosity, saturated hydraulic conductivity, chloride diffusion coefficient, initial water saturation, and moisture retention function of concrete specimens with two water-binder ratios were determined through lab-scale experiments. The variation of chloride concentration with pressuring time, location, solution concentration, initial saturation, hydraulic pressure, and water-binder ratio was investigated through chloride transport tests under external water pressure. In addition, the change and distribution of chloride concentration of isothermal horizontal flow were numerically analyzed using TOUGH2 software. The results show that chloride transport in unsaturated concrete under external water pressure is a combined effect of diffusion and advection instead of diffusion. Chloride concentration increased with increasing solution concentration for diffusion and increased with an increase in water pressure and a decrease in initial saturation for advection. The dominant driving force converted with time and saturation. When predicting the service life of undersea concrete tunnel, it is suggested that advection is taken into consideration; otherwise the durability tends to be unsafe.

  14. A lattice Boltzmann model for solute transport in open channel flow

    Science.gov (United States)

    Wang, Hongda; Cater, John; Liu, Haifei; Ding, Xiangyi; Huang, Wei

    2018-01-01

    A lattice Boltzmann model of advection-dispersion problems in one-dimensional (1D) open channel flows is developed for simulation of solute transport and pollutant concentration. The hydrodynamics are calculated based on a previous lattice Boltzmann approach to solving the 1D Saint-Venant equations (LABSVE). The advection-dispersion model is coupled with the LABSVE using the lattice Boltzmann method. Our research recovers the advection-dispersion equations through the Chapman-Enskog expansion of the lattice Boltzmann equation. The model differs from the existing schemes in two points: (1) the lattice Boltzmann numerical method is adopted to solve the advection-dispersion problem by meso-scopic particle distribution; (2) and the model describes the relation between discharge, cross section area and solute concentration, which increases the applicability of the water quality model in practical engineering. The model is verified using three benchmark tests: (1) instantaneous solute transport within a short distance; (2) 1D point source pollution with constant velocity; (3) 1D point source pollution in a dam break flow. The model is then applied to a 50-year flood point source pollution accident on the Yongding River, which showed good agreement with a MIKE 11 solution and gauging data.

  15. Finite Difference Formulation for Prediction of Water Pollution

    Science.gov (United States)

    Johari, Hanani; Rusli, Nursalasawati; Yahya, Zainab

    2018-03-01

    Water is an important component of the earth. Human being and living organisms are demand for the quality of water. Human activity is one of the causes of the water pollution. The pollution happened give bad effect to the physical and characteristic of water contents. It is not practical to monitor all aspects of water flow and transport distribution. So, in order to help people to access to the polluted area, a prediction of water pollution concentration must be modelled. This study proposed a one-dimensional advection diffusion equation for predicting the water pollution concentration transport. The numerical modelling will be produced in order to predict the transportation of water pollution concentration. In order to approximate the advection diffusion equation, the implicit Crank Nicolson is used. For the purpose of the simulation, the boundary condition and initial condition, the spatial steps and time steps as well as the approximations of the advection diffusion equation have been encoded. The results of one dimensional advection diffusion equation have successfully been used to predict the transportation of water pollution concentration by manipulating the velocity and diffusion parameters.

  16. An unconditionally stable fully conservative semi-Lagrangian method

    KAUST Repository

    Lentine, Michael

    2011-04-01

    Semi-Lagrangian methods have been around for some time, dating back at least to [3]. Researchers have worked to increase their accuracy, and these schemes have gained newfound interest with the recent widespread use of adaptive grids where the CFL-based time step restriction of the smallest cell can be overwhelming. Since these schemes are based on characteristic tracing and interpolation, they do not readily lend themselves to a fully conservative implementation. However, we propose a novel technique that applies a conservative limiter to the typical semi-Lagrangian interpolation step in order to guarantee that the amount of the conservative quantity does not increase during this advection. In addition, we propose a new second step that forward advects any of the conserved quantity that was not accounted for in the typical semi-Lagrangian advection. We show that this new scheme can be used to conserve both mass and momentum for incompressible flows. For incompressible flows, we further explore properly conserving kinetic energy during the advection step, but note that the divergence free projection results in a velocity field which is inconsistent with conservation of kinetic energy (even for inviscid flows where it should be conserved). For compressible flows, we rely on a recently proposed splitting technique that eliminates the acoustic CFL time step restriction via an incompressible-style pressure solve. Then our new method can be applied to conservatively advect mass, momentum and total energy in order to exactly conserve these quantities, and remove the remaining time step restriction based on fluid velocity that the original scheme still had. © 2011 Elsevier Inc.

  17. Diurnal and vertical variability of the sensible heat and carbon dioxide budgets in the atmospheric surface layer

    International Nuclear Information System (INIS)

    Casso-Torralba, P.; Rosa Soler, M.; Vila-Guerau de Arellano, J.; Bosveld, F.; Vermeulen, A.; Werner, C.; Moors, E.

    2008-08-01

    The diurnal and vertical variability of heat and carbon dioxide (CO2) in the atmospheric surface layer are studied by analyzing measurements from a 213 m tower in Cabauw (Netherlands). Observations of thermodynamic variables and CO2 mixing ratio as well as vertical profiles of the turbulent fluxes are used to retrieve the contribution of the budget terms in the scalar conservation equation. On the basis of the daytime evolution of turbulent fluxes, we calculate the budget terms by assuming that turbulent fluxes follow a linear profile with height. This assumption is carefully tested and the deviation from linearity is quantified. The budget calculation allows us to assess the importance of advection of heat and CO2 during day hours for three selected days. It is found that, under nonadvective conditions, the diurnal variability of temperature and CO2 is well reproduced from the flux divergence measurements. Consequently, the vertical transport due to the turbulent flux plays a major role in the daytime evolution of both scalars and the advection is a relatively small contribution. During the analyzed days with a strong contribution of advection of either heat or carbon dioxide, the flux divergence is still an important contribution to the budget. For heat, the quantification of the advection contribution is in close agreement with results from a numerical model. For carbon dioxide, we qualitatively corroborate the results with a Lagrangian transport model. Our estimation of advection is compared with traditional estimations based on the Net Ecosystem-atmosphere Exchange (NEE)

  18. Quantifying and Predicting Three-Dimensional Heterogeneity in Transient Storage Using Roving Profiling

    Science.gov (United States)

    Kaplan, D. A.; Reaver, N.; Hensley, R. T.; Cohen, M. J.

    2017-12-01

    Hydraulic transport is an important component of nutrient spiraling in streams. Quantifying conservative solute transport is a prerequisite for understanding the cycling and fate of reactive solutes, such as nutrients. Numerous studies have modeled solute transport within streams using the one-dimensional advection, dispersion and storage (ADS) equation calibrated to experimental data from tracer experiments. However, there are limitations to the information about in-stream transient storage that can be derived from calibrated ADS model parameters. Transient storage (TS) in the ADS model is most often modeled as a single process, and calibrated model parameters are "lumped" values that are the best-fit representation of multiple real-world TS processes. In this study, we developed a roving profiling method to assess and predict spatial heterogeneity of in-stream TS. We performed five tracer experiments on three spring-fed rivers in Florida (USA) using Rhodamine WT. During each tracer release, stationary fluorometers were deployed to measure breakthrough curves for multiple reaches within the river. Teams of roving samplers moved along the rivers measuring tracer concentrations at various locations and depths within the reaches. A Bayesian statistical method was used to calibrate the ADS model to the stationary breakthrough curves, resulting in probability distributions for both the advective and TS zone as a function of river distance and time. Rover samples were then assigned a probability of being from either the advective or TS zone by comparing measured concentrations to the probability distributions of concentrations in the ADS advective and TS zones. A regression model was used to predict the probability of any in-stream position being located within the advective versus TS zone based on spatiotemporal predictors (time, river position, depth, and distance from bank) and eco-geomorphological feature (eddies, woody debris, benthic depressions, and aquatic

  19. Chemical and biological activity in open flows: A dynamical system approach

    International Nuclear Information System (INIS)

    Tel, Tamas; Moura, Alessandro de; Grebogi, Celso; Karolyi, Gyoergy

    2005-01-01

    Chemical and biological processes often take place in fluid flows. Many of them, like environmental or microfluidical ones, generate filamentary patterns which have a fractal structure, due to the presence of chaos in the underlying advection dynamics. In such cases, hydrodynamical stirring strongly couples to the reactivity of the advected species: the outcome of the reaction is then typically different from that of the same reaction taking place in a well-mixed environment. Here we review recent progress in this field, which became possible due to the application of methods taken from dynamical system theory. We place special emphasis on the derivation of effective rate equations which contain singular terms expressing the fact that the reaction takes place on a moving fractal catalyst, on the unstable foliation of the reaction free advection dynamics

  20. Modeling the dispersion of atmospheric pollution using cubic splines and chapeau functions

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, D W; Kern, C D; Long, P E

    1979-01-01

    Two methods that can be used to solve complex, three-dimensional, advection-diffusion transport equations are investigated. A quasi-Lagrangian cubic spline method and a chapeau function method are compared in advecting a passive scalar. The methods are simple to use, computationally fast, and reasonably accurate. Little numerical dissipation is manifested by the schemes. In simple advection tests with equal mesh spacing, the chapeau function method maintains slightly more accurate peak values than the cubic spline method. In tests with unequal mesh spacing, the cubic spline method has less noise, but slightly more damping than the standard chapeau method has. Both cubic splines and chapeau functions can be used to solve the three-dimensional problem of gaseous emissions dispersion without excessive programing complexity or storage requirements. (10 diagrams, 39 references, 2 tables)

  1. Transport and reaction processes affecting the attenuation of landfill gas in cover soils

    DEFF Research Database (Denmark)

    Molins, S.; Mayer, K.U.; Scheutz, Charlotte

    2008-01-01

    of methane, chlorofluorocarbons, and hydrochlorofluorocarbons to the atmosphere. This study was conducted to investigate the effect of oxidation reactions on the overall gas transport regime and to evaluate, the contributions of various gas transport processes on methane attenuation in landfill cover soils....... For this purpose, a reactive transport model that includes advection and the Dusty Gas Model for simulation of multicomponent gas diffusion was used. The simulations are constrained by data from a series of counter-gradient laboratory experiments. Diffusion typically accounts for over 99% of methane emission...... to the atmosphere. Oxygen supply into the soil column is driven exclusively by diffusion, whereas advection outward offsets part of the diffusive contribution. In the reaction zone, methane consumption reduces the pressure gradient, further decreasing the significance of advection near the top of the column...

  2. On usage of CABARET scheme for tracer transport in INM ocean model

    International Nuclear Information System (INIS)

    Diansky, Nikolay; Kostrykin, Sergey; Gusev, Anatoly; Salnikov, Nikolay

    2010-01-01

    The contemporary state of ocean numerical modelling sets some requirements for the numerical advection schemes used in ocean general circulation models (OGCMs). The most important requirements are conservation, monotonicity and numerical efficiency including good parallelization properties. Investigation of some advection schemes shows that one of the best schemes satisfying the criteria is CABARET scheme. 3D-modification of the CABARET scheme was used to develop a new transport module (for temperature and salinity) for the Institute of Numerical Mathematics ocean model (INMOM). Testing of this module on some common benchmarks shows a high accuracy in comparison with the second-order advection scheme used in the INMOM. This new module was incorporated in the INMOM and experiments with the modified model showed a better simulation of oceanic circulation than its previous version.

  3. Numerical study of rotating interstellar clouds: equilibrium and collapse

    International Nuclear Information System (INIS)

    Norman, M.L.

    1980-06-01

    Equilibrium and collapse of rotating, axisymmetric, idealized interstellar gas clouds is calculated with a 2D hydrodynamics code. The hydrodynamics features an improved angular momentum advection algorithm. Angular momentum is advected consistently with mass by deriving angular momentum fluxes from mass fluxes and the local distribution of specific angular momentum. Local conservation is checked by a graph of mass versus specific angular momentum for the cloud as a whole

  4. Magnetic method for stimulating transport in fluids

    Science.gov (United States)

    Martin, James E.; Solis, Kyle J.

    2016-10-18

    A method for producing mass and heat transport in fluids, wherein the method does not rely on conventional convection, that is, it does not require gravity, a thermal gradient, or a magnetic field gradient. This method gives rise to a unique class of vigorous, field-controllable flow patterns termed advection lattices. The advection lattices can be used to transport heat and/or mass in any desired direction using only magnetic fields.

  5. Analytical solutions of advection-dispersion equation for varying ...

    African Journals Online (AJOL)

    Analytical solutions are obtained for a one-dimensional advection–dispersion equation with variable coefficients in a longitudinal domain. Two cases are considered. In the first one the solute dispersion is time dependent along a uniform flow in a semi-infinite domain while in the second case the dispersion and the velocity ...

  6. Simulating cyclic voltammetry under advection for electrochemical cantilevers

    DEFF Research Database (Denmark)

    Adesokan, Bolaji James; Evgrafov, Anton; Sørensen, Mads Peter

    2015-01-01

    We present a mathematical model describing an electrochemical system involving electrode–electrolyte interaction. The model is governed by a system of advection–diffusion equations with a nonlinear reaction term at the boundary. Our calculations based on such model demonstrate the dynamics of ionic...

  7. Black Hole Event Horizons and Advection-Dominated Accretion

    Science.gov (United States)

    McClintock, Jeffrey; Mushotzky, Richard F. (Technical Monitor)

    2002-01-01

    The work supported in part by this grant is part of a larger program on the detection of black hole event horizons, which is also partially supported by NASA grant GO0-1105A. This work has been carried out primarily in collaboration with Dr. M. Garcia and Prof. R. Narayan at the Harvard-Smithsonian Center for Astrophysics and with D. Barret and J. Hameury at Centre d'Etude Spoliate des Rayonnements, France. Our purpose is to confirm the existence of black-hole event horizons by comparing accreting black holes to secreting neutron stars in quiescent X-ray novae. Such a comparison is feasible because black holes and neutron stars are both present in similar environments in X-ray novae. Our second purpose is to assess the nature of accretion flows onto black holes at very low mass transfer rates. Observations of some XMM targets are still pending, whereas most of the Chandra observations have been completed. We anticipate further publications on this work in the future.

  8. Advective Mixing in a Nondivergent Barotropic Hurricane Model

    Science.gov (United States)

    2010-01-20

    voted to the mixing of fluid from different regions of a hurri- cane, which is considered as a fundamental mechanism that is intimately related to...range is governed by the Cauchy-Riemann deformation tensor , 1(x0,t0)= ( dx0φ t0+T t0 (x0) )∗( dx0φ t0+T t0 (x0) ) , and becomes maximal when ξ0 is

  9. Planktonic interactions and chaotic advection in Langmuir circulation

    DEFF Research Database (Denmark)

    Bees, Martin Alan; Mezic, I.; McGlade, J.

    1998-01-01

    The role of unsteady laminar flows for planktonic communities is investigated. Langmuir circulation is used, as a typical medium-scale structure, to illustrate mechanisms for the generation of plankton patches. Two behaviours are evident: chaotic regions that help to spread plankton and locally...

  10. Moisture dynamics of the northward and eastward propagating boreal summer intraseasonal oscillations: possible role of tropical Indo-west Pacific SST and circulation

    Science.gov (United States)

    Pillai, Prasanth A.; Sahai, A. K.

    2016-08-01

    Boreal summer intraseasonal oscillation (BSISO) has complex spatial structure due to the co-existence of equatorial eastward and off-equatorial northward propagation in the equatorial Indian Ocean. As a result, equatorial Indian Ocean convection has simultaneous northward and eastward (NE), northward only (N-only) and eastward only (E-only) propagations. It is well established that the convection propagates in the direction of increasing moist static energy (MSE). The moisture and MSE budget analysis reveals that the horizontal advection of anomalous MSE contributes to positive MSE tendency, which is in agreement with the horizontal advection of column integrated moisture anomaly. Northward movement of warm SST and the anomalous moisture advected by zonal wind are the major initiative for the northward propagation of convection from the equatorial Indian Ocean in both NE and N-only category. At the same time warm SST anomaly in the equatorial west Pacific along with moisture advection caused by anomalous meridional wind is important for the equatorial eastward branch of NE propagation. As these anomalies in the west Pacific moves northward, equatorial Indian Ocean convection establishes over the equatorial west Pacific. The absence of these processes confines the BSISO in northward direction for N-only category. In the case of E-only movement, warm SST anomaly and moisture advection by zonal component of wind causes the eastward propagation of convection. Boundary layer moisture convergence always remains east of convection center in E-only propagation, while it coincides with convection centre in other two categories. Thus the present study concludes that the difference in underlying SST and atmospheric circulation in tropical Indo-west Pacific oceanic regions encourage the differential propagation of BSISO convection through moisture dynamics.

  11. Effects of Random Environment on a Self-Organized Critical System: Renormalization Group Analysis of a Continuous Model

    Directory of Open Access Journals (Sweden)

    Antonov N.V.

    2016-01-01

    Full Text Available We study effects of the random fluid motion on a system in a self-organized critical state. The latter is described by the continuous stochastic model proposed by Hwa and Kardar [Phys. Rev. Lett. 62: 1813 (1989]. The advecting velocity field is Gaussian, not correlated in time, with the pair correlation function of the form ∝ δ(t − t′/k⊥d-1+ξ , where k⊥ = |k⊥| and k⊥ is the component of the wave vector, perpendicular to a certain preferred direction – the d-dimensional generalization of the ensemble introduced by Avellaneda and Majda [Commun. Math. Phys. 131: 381 (1990]. Using the field theoretic renormalization group we show that, depending on the relation between the exponent ξ and the spatial dimension d, the system reveals different types of large-scale, long-time scaling behaviour, associated with the three possible fixed points of the renormalization group equations. They correspond to ordinary diffusion, to passively advected scalar field (the nonlinearity of the Hwa–Kardar model is irrelevant and to the “pure” Hwa–Kardar model (the advection is irrelevant. For the special case ξ = 2(4 − d/3 both the nonlinearity and the advection are important. The corresponding critical exponents are found exactly for all these cases.

  12. Computer prediction of subsurface radionuclide transport: an adaptive numerical method

    International Nuclear Information System (INIS)

    Neuman, S.P.

    1983-01-01

    Radionuclide transport in the subsurface is often modeled with the aid of the advection-dispersion equation. A review of existing computer methods for the solution of this equation shows that there is need for improvement. To answer this need, a new adaptive numerical method is proposed based on an Eulerian-Lagrangian formulation. The method is based on a decomposition of the concentration field into two parts, one advective and one dispersive, in a rigorous manner that does not leave room for ambiguity. The advective component of steep concentration fronts is tracked forward with the aid of moving particles clustered around each front. Away from such fronts the advection problem is handled by an efficient modified method of characteristics called single-step reverse particle tracking. When a front dissipates with time, its forward tracking stops automatically and the corresponding cloud of particles is eliminated. The dispersion problem is solved by an unconventional Lagrangian finite element formulation on a fixed grid which involves only symmetric and diagonal matrices. Preliminary tests against analytical solutions of ne- and two-dimensional dispersion in a uniform steady state velocity field suggest that the proposed adaptive method can handle the entire range of Peclet numbers from 0 to infinity, with Courant numbers well in excess of 1

  13. Mixed layer heat budget of the El Nino in NCEP climate forecast system

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Boyin; Xue, Yan; Wang, Hui; Wang, Wanqiu; Kumar, Arun [NOAA, National Climate Data Center, Climate Prediction Center, Asheville, NC (United States)

    2012-07-15

    The mechanisms controlling the El Nino have been studied by analyzing mixed layer heat budget of daily outputs from a free coupled simulation with the Climate Forecast System (CFS). The CFS is operational at National Centers for Environmental Prediction, and is used by Climate Prediction Center for seasonal-to-interannual prediction, particularly for the prediction of the El Nino and Southern Oscillation (ENSO) in the tropical Pacific. Our analysis shows that the development and decay of El Nino can be attributed to ocean advection in which all three components contribute. Temperature advection associated with anomalous zonal current and mean vertical upwelling contributes to the El Nino during its entire evolutionary cycle in accordance with many observational, theoretical, and modeling studies. The impact of anomalous vertical current is found to be comparable to that of mean upwelling. Temperature advection associated with mean (anomalous) meridional current in the CFS also contributes to the El Nino cycle due to strong meridional gradient of anomalous (mean) temperature. The surface heat flux, non-linearity of temperature advection, and eddies associated with tropical instabilities waves (TIW) have the tendency to damp the El Nino. Possible degradation in the analysis and closure of the heat budget based on the monthly mean (instead of daily) data is also quantified. (orig.)

  14. Puff models for simulation of fugitive radioactive emissions in atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Camila P. da, E-mail: camila.costa@ufpel.edu.b [Universidade Federal de Pelotas (UFPel), RS (Brazil). Inst. de Fisica e Matematica. Dept. de Matematica e Estatistica; Pereira, Ledina L., E-mail: ledinalentz@yahoo.com.b [Universidade do Extremo Sul Catarinense (UNESC), Criciuma, SC (Brazil); Vilhena, Marco T., E-mail: vilhena@pq.cnpq.b [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Tirabassi, Tiziano, E-mail: t.tirabassi@isac.cnr.i [Institute of Atmospheric Sciences and Climate (CNR/ISAC), Bologna (Italy)

    2009-07-01

    A puff model for the dispersion of material from fugitive radioactive emissions is presented. For vertical diffusion the model is based on general techniques for solving time dependent advection-diffusion equation: the ADMM (Advection Diffusion Multilayer Method) and GILTT (Generalized Integral Laplace Transform Technique) techniques. The first one is an analytical solution based on a discretization of the Atmospheric Boundary Layer (ABL) in sub-layers where the advection-diffusion equation is solved by the Laplace transform technique. The solution is given in integral form. The second one is a well-known hybrid method that had solved a wide class of direct and inverse problems mainly in the area of Heat Transfer and Fluid Mechanics and the solution is given in series form. Comparisons between values predicted by the models against experimental ground-level concentrations are shown. (author)

  15. Puff models for simulation of fugitive radioactive emissions in atmosphere

    International Nuclear Information System (INIS)

    Costa, Camila P. da; Vilhena, Marco T.

    2009-01-01

    A puff model for the dispersion of material from fugitive radioactive emissions is presented. For vertical diffusion the model is based on general techniques for solving time dependent advection-diffusion equation: the ADMM (Advection Diffusion Multilayer Method) and GILTT (Generalized Integral Laplace Transform Technique) techniques. The first one is an analytical solution based on a discretization of the Atmospheric Boundary Layer (ABL) in sub-layers where the advection-diffusion equation is solved by the Laplace transform technique. The solution is given in integral form. The second one is a well-known hybrid method that had solved a wide class of direct and inverse problems mainly in the area of Heat Transfer and Fluid Mechanics and the solution is given in series form. Comparisons between values predicted by the models against experimental ground-level concentrations are shown. (author)

  16. Spatial and Temporal Extrapolation of Disdrometer Size Distributions Based on a Lagrangian Trajectory Model of Falling Rain

    Science.gov (United States)

    Lane, John E.; Kasparis, Takis; Jones, W. Linwood; Metzger, Philip T.

    2009-01-01

    Methodologies to improve disdrometer processing, loosely based on mathematical techniques common to the field of particle flow and fluid mechanics, are examined and tested. The inclusion of advection and vertical wind field estimates appear to produce significantly improved results in a Lagrangian hydrometeor trajectory model, in spite of very strict assumptions of noninteracting hydrometeors, constant vertical air velocity, and time independent advection during the scan time interval. Wind field data can be extracted from each radar elevation scan by plotting and analyzing reflectivity contours over the disdrometer site and by collecting the radar radial velocity data to obtain estimates of advection. Specific regions of disdrometer spectra (drop size versus time) often exhibit strong gravitational sorting signatures, from which estimates of vertical velocity can be extracted. These independent wind field estimates become inputs and initial conditions to the Lagrangian trajectory simulation of falling hydrometeors.

  17. A novel physical eco-hydrological model concept for preferential flow based on experimental applications.

    Science.gov (United States)

    Jackisch, Conrad; van Schaik, Loes; Graeff, Thomas; Zehe, Erwin

    2014-05-01

    Preferential flow through macropores often determines hydrological characteristics - especially regarding runoff generation and fast transport of solutes. Macropore settings may yet be very different in nature and dynamics, depending on their origin. While biogenic structures follow activity cycles (e.g. earth worms) and population conditions (e.g. roots), pedogenic and geogenic structures may depend on water stress (e.g. cracks) or large events (e.g. flushed voids between skeleton and soil pipes) or simply persist (e.g. bedrock interface). On the one hand, such dynamic site characteristics can be observed in seasonal changes in its reaction to precipitation. On the other hand, sprinkling experiments accompanied by tracers or time-lapse 3D Ground-Penetrating-Radar are suitable tools to determine infiltration patterns and macropore configuration. However, model representation of the macropore-matrix system is still problematic, because models either rely on effective parameters (assuming well-mixed state) or on explicit advection strongly simplifying or neglecting interaction with the diffusive flow domain. Motivated by the dynamic nature of macropores, we present a novel model approach for interacting diffusive and advective water, solutes and energy transport in structured soils. It solely relies on scale- and process-aware observables. A representative set of macropores (data from sprinkling experiments) determines the process model scale through 1D advective domains. These are connected to a 2D matrix domain which is defined by pedo-physical retention properties. Water is represented as particles. Diffusive flow is governed by a 2D random walk of these particles while advection may take place in the macropore domain. Macropore-matrix interaction is computed as dissipation of the advective momentum of a particle by its experienced drag from the matrix domain. Through a representation of matrix and macropores as connected diffusive and advective domains for water

  18. Spectral Analysis and Computation of Effective Diffusivities for Steady Random Flows

    Science.gov (United States)

    2016-04-28

    even in the motion of sea ice floes influenced by winds and ocean currents. The long time, large scale behavior of such systems is equivalent to an...flow plays a key role in many important processes in the global climate system [55] and Earth’s ecosys- tems [14]. Advection of geophysical fluids...HOMOGENIZATION OF THE ADVECTION-DIFFUSION EQUATION The dispersion of a cloud of passive scalars with density φ diffusing with molecular dif- fusivity ε and

  19. A theoretical evaluation of the oxygen concentration in a corrosion-fatigue crack

    International Nuclear Information System (INIS)

    Turnbull, A.

    1981-01-01

    The oxygen concentration in a corrosion-fatigue crack has been evaluated theoretically by assuming that oxygen was consumed by cathodic reduction on the walls of the crack and mass transport occurred by diffusion and advection (forced convection), with the latter resulting from the sinusoidal variation of the displacement of the crack walls. By using parameters relevant to a compact tension specimen, the time-dependent distribution of the oxygen concentration in the crack was calculated as a function of ΔK (the range of the stress intensity factor), R-value (minimum load/maximum load), frequency, crack length, and electrode potential. The influence of advection was to significantly enhance the mass transport of oxygen in the crack compared with ''diffusion-only'' even at low frequencies and low ΔK. Regions in the crack were identified in which advection dominance or diffusion dominance of the mass transport of oxygen occurred

  20. Kinetic modeling of Nernst effect in magnetized hohlraums.

    Science.gov (United States)

    Joglekar, A S; Ridgers, C P; Kingham, R J; Thomas, A G R

    2016-04-01

    We present nanosecond time-scale Vlasov-Fokker-Planck-Maxwell modeling of magnetized plasma transport and dynamics in a hohlraum with an applied external magnetic field, under conditions similar to recent experiments. Self-consistent modeling of the kinetic electron momentum equation allows for a complete treatment of the heat flow equation and Ohm's law, including Nernst advection of magnetic fields. In addition to showing the prevalence of nonlocal behavior, we demonstrate that effects such as anomalous heat flow are induced by inverse bremsstrahlung heating. We show magnetic field amplification up to a factor of 3 from Nernst compression into the hohlraum wall. The magnetic field is also expelled towards the hohlraum axis due to Nernst advection faster than frozen-in flux would suggest. Nonlocality contributes to the heat flow towards the hohlraum axis and results in an augmented Nernst advection mechanism that is included self-consistently through kinetic modeling.

  1. Asynchronous discrete event schemes for PDEs

    Science.gov (United States)

    Stone, D.; Geiger, S.; Lord, G. J.

    2017-08-01

    A new class of asynchronous discrete-event simulation schemes for advection-diffusion-reaction equations is introduced, based on the principle of allowing quanta of mass to pass through faces of a (regular, structured) Cartesian finite volume grid. The timescales of these events are linked to the flux on the face. The resulting schemes are self-adaptive, and local in both time and space. Experiments are performed on realistic physical systems related to porous media flow applications, including a large 3D advection diffusion equation and advection diffusion reaction systems. The results are compared to highly accurate reference solutions where the temporal evolution is computed with exponential integrator schemes using the same finite volume discretisation. This allows a reliable estimation of the solution error. Our results indicate a first order convergence of the error as a control parameter is decreased, and we outline a framework for analysis.

  2. Movement ecology: size-specific behavioral response of an invasive snail to food availability.

    Science.gov (United States)

    Snider, Sunny B; Gilliam, James F

    2008-07-01

    Immigration, emigration, migration, and redistribution describe processes that involve movement of individuals. These movements are an essential part of contemporary ecological models, and understanding how movement is affected by biotic and abiotic factors is important for effectively modeling ecological processes that depend on movement. We asked how phenotypic heterogeneity (body size) and environmental heterogeneity (food resource level) affect the movement behavior of an aquatic snail (Tarebia granifera), and whether including these phenotypic and environmental effects improves advection-diffusion models of movement. We postulated various elaborations of the basic advection diffusion model as a priori working hypotheses. To test our hypotheses we measured individual snail movements in experimental streams at high- and low-food resource treatments. Using these experimental movement data, we examined the dependency of model selection on resource level and body size using Akaike's Information Criterion (AIC). At low resources, large individuals moved faster than small individuals, producing a platykurtic movement distribution; including size dependency in the model improved model performance. In stark contrast, at high resources, individuals moved upstream together as a wave, and body size differences largely disappeared. The model selection exercise indicated that population heterogeneity is best described by the advection component of movement for this species, because the top-ranked model included size dependency in advection, but not diffusion. Also, all probable models included resource dependency. Thus population and environmental heterogeneities both influence individual movement behaviors and the population-level distribution kernels, and their interaction may drive variation in movement behaviors in terms of both advection rates and diffusion rates. A behaviorally informed modeling framework will integrate the sentient response of individuals in terms of

  3. A mimetic, semi-implicit, forward-in-time, finite volume shallow water model: comparison of hexagonal–icosahedral and cubed-sphere grids

    Directory of Open Access Journals (Sweden)

    J. Thuburn

    2014-05-01

    Full Text Available A new algorithm is presented for the solution of the shallow water equations on quasi-uniform spherical grids. It combines a mimetic finite volume spatial discretization with a Crank–Nicolson time discretization of fast waves and an accurate and conservative forward-in-time advection scheme for mass and potential vorticity (PV. The algorithm is implemented and tested on two families of grids: hexagonal–icosahedral Voronoi grids, and modified equiangular cubed-sphere grids. Results of a variety of tests are presented, including convergence of the discrete scalar Laplacian and Coriolis operators, advection, solid body rotation, flow over an isolated mountain, and a barotropically unstable jet. The results confirm a number of desirable properties for which the scheme was designed: exact mass conservation, very good available energy and potential enstrophy conservation, consistent mass, PV and tracer transport, and good preservation of balance including vanishing ∇ × ∇, steady geostrophic modes, and accurate PV advection. The scheme is stable for large wave Courant numbers and advective Courant numbers up to about 1. In the most idealized tests the overall accuracy of the scheme appears to be limited by the accuracy of the Coriolis and other mimetic spatial operators, particularly on the cubed-sphere grid. On the hexagonal grid there is no evidence for damaging effects of computational Rossby modes, despite attempts to force them explicitly.

  4. Changes in Cold Surge Occurrence over East Asia in the Future: Role of Thermal Structure

    Directory of Open Access Journals (Sweden)

    Jin-Woo Heo

    2018-06-01

    Full Text Available The occurrence of wintertime cold surges (CSs over East Asia is largely controlled by the surface air temperature (SAT distribution at high latitudes and thermal advection in the lower troposphere. The thermodynamic background state over northeastern Asia is associated with the strength of the East Asian winter monsoon and the variation of Arctic Oscillation. This study assesses the importance of the SAT structure with thermal advection in determining the frequency of CS occurrences over East Asia through the analysis of nine atmosphere–ocean coupled global climate models participating in the Coupled Model Intercomparison Project Phase 5. The historical simulations can reproduce the observed typical characteristics of CS development. On the basis of this model performance, ensemble-averaged future simulations under the representative concentration pathway 8.5 project a reduction in CS frequency by 1.1 yr−1 in the late 21st century (2065–2095 compared to the present-day period (1975–2005. The major reason for less frequent CSs in the future is the weakened cold advection, caused by notable SAT warming over the northern part of East Asia. These results suggest that changes in the meridional SAT structure and the associated changes in thermal advection would play a more substantial role than local warming in determining future changes in the frequency of CS occurrences over East Asia.

  5. Modelling solute dispersion in periodic heterogeneous porous media: Model benchmarking against intermediate scale experiments

    Science.gov (United States)

    Majdalani, Samer; Guinot, Vincent; Delenne, Carole; Gebran, Hicham

    2018-06-01

    This paper is devoted to theoretical and experimental investigations of solute dispersion in heterogeneous porous media. Dispersion in heterogenous porous media has been reported to be scale-dependent, a likely indication that the proposed dispersion models are incompletely formulated. A high quality experimental data set of breakthrough curves in periodic model heterogeneous porous media is presented. In contrast with most previously published experiments, the present experiments involve numerous replicates. This allows the statistical variability of experimental data to be accounted for. Several models are benchmarked against the data set: the Fickian-based advection-dispersion, mobile-immobile, multirate, multiple region advection dispersion models, and a newly proposed transport model based on pure advection. A salient property of the latter model is that its solutions exhibit a ballistic behaviour for small times, while tending to the Fickian behaviour for large time scales. Model performance is assessed using a novel objective function accounting for the statistical variability of the experimental data set, while putting equal emphasis on both small and large time scale behaviours. Besides being as accurate as the other models, the new purely advective model has the advantages that (i) it does not exhibit the undesirable effects associated with the usual Fickian operator (namely the infinite solute front propagation speed), and (ii) it allows dispersive transport to be simulated on every heterogeneity scale using scale-independent parameters.

  6. Dynamic processes during accretion into a black hole

    Directory of Open Access Journals (Sweden)

    G. S. Bisonvatyi-kogan

    2001-01-01

    Full Text Available Accretion disc theory was first developed as a theory with the local heat balance, where the whole energy produced by a viscous heating was emitted to the sides of the disc. One of the most important new invention of this theory was a phenomenological treatment of the turbulent viscosity, known as “alpha” prescription, when the (rϕ component of the stress tensor was approximated by (αP with a unknown constant α This prescription played the role in the accretion disc theory as well important as the mixing-length theory of convection for stellar evolution. Sources of turbulence in the accretion disc are discussed, including nonlinear hydrodynamic turbulence, convection and magnetic filed role. In parallel to the optically thick geometrically thin accretion disc models, a new branch of the optically thin accretion disc models was discovered, with a larger thickness for the same total luminosity. The choice between these solutions should be done of the base of stability analysis. The ideas underlying the necessity to include advection into the accretion disc theory are presented and first models with advection are reviewed. The present status of the solution for a low-luminous optically thin accretion disc model with advection is discussed and the limits for an advection dominated accretion flows (ADAF imposed by the presence of magnetic field are analyzed.

  7. Remote sensing of contrails and aircraft altered cirrus clouds

    Energy Technology Data Exchange (ETDEWEB)

    Palikonda, R.; Nguyen, L.; Garber, D.P.; Smith, W.L. Jr [Analytical Services and Materials, Inc., Hampton, VA (United States); Minnis, P.; Young, D.F. [National Aeronautics and Space Administration, Hampton, VA (United States). Langley Research Center

    1997-12-31

    Analyses of satellite imagery are used to show that contrails can develop into fully extended cirrus cloud systems. Contrails can be advective on great distances, but would appear to observers as natural cirrus clouds. The conversion of simple contrails into cirrus may help explain the apparent increase of cloudiness over populated areas since the beginning of commercial jet air travel. Statistics describing the typical growth, advection, and lifetime of contrail cirrus is needed to evaluate their effects on climate. (author) 4 refs.

  8. Remote sensing of contrails and aircraft altered cirrus clouds

    Energy Technology Data Exchange (ETDEWEB)

    Palikonda, R; Nguyen, L; Garber, D P; Smith, Jr, W L [Analytical Services and Materials, Inc., Hampton, VA (United States); Minnis, P; Young, D F [National Aeronautics and Space Administration, Hampton, VA (United States). Langley Research Center

    1998-12-31

    Analyses of satellite imagery are used to show that contrails can develop into fully extended cirrus cloud systems. Contrails can be advective on great distances, but would appear to observers as natural cirrus clouds. The conversion of simple contrails into cirrus may help explain the apparent increase of cloudiness over populated areas since the beginning of commercial jet air travel. Statistics describing the typical growth, advection, and lifetime of contrail cirrus is needed to evaluate their effects on climate. (author) 4 refs.

  9. Inward propagating chemical waves in Taylor vortices.

    Science.gov (United States)

    Thompson, Barnaby W; Novak, Jan; Wilson, Mark C T; Britton, Melanie M; Taylor, Annette F

    2010-04-01

    Advection-reaction-diffusion (ARD) waves in the Belousov-Zhabotinsky reaction in steady Taylor-Couette vortices have been visualized using magnetic-resonance imaging and simulated using an adapted Oregonator model. We show how propagating wave behavior depends on the ratio of advective, chemical and diffusive time scales. In simulations, inward propagating spiral flamelets are observed at high Damköhler number (Da). At low Da, the reaction distributes itself over several vortices and then propagates inwards as contracting ring pulses--also observed experimentally.

  10. Homogenization of a Directed Dispersal Model for Animal Movement in a Heterogeneous Environment.

    Science.gov (United States)

    Yurk, Brian P

    2016-10-01

    The dispersal patterns of animals moving through heterogeneous environments have important ecological and epidemiological consequences. In this work, we apply the method of homogenization to analyze an advection-diffusion (AD) model of directed movement in a one-dimensional environment in which the scale of the heterogeneity is small relative to the spatial scale of interest. We show that the large (slow) scale behavior is described by a constant-coefficient diffusion equation under certain assumptions about the fast-scale advection velocity, and we determine a formula for the slow-scale diffusion coefficient in terms of the fast-scale parameters. We extend the homogenization result to predict invasion speeds for an advection-diffusion-reaction (ADR) model with directed dispersal. For periodic environments, the homogenization approximation of the solution of the AD model compares favorably with numerical simulations. Invasion speed approximations for the ADR model also compare favorably with numerical simulations when the spatial period is sufficiently small.

  11. Multiphase radon generation and transport in porous materials

    International Nuclear Information System (INIS)

    Rogers, V.C.; Nielson, K.K.

    1991-01-01

    Radon generation and transport in porous materials involve solid, liquid, and gas phases in the processes of emanation, diffusion, advection, absorption, and adsorption. Oversimplifications, such as representing moist soil systems by air-phase emanation and transport models, cause theoretical inconsistencies and biases in resulting calculations. Detailed Rn rate balance equations for solid, liquid, and gas phases were analyzed and combined using phase equilibrium constants to derive a single diffusive-advective rate balance equation in the traditional form. The emanation, diffusion, and permeability coefficients in the new equation have expanded definitions and interpretations to include Rn phase transfer. Radon adsorption was characterized by an exponential moisture dependence, and diffusion and permeability constants utilized previous moisture relationships. Correct boundary and interface conditions were defined, and the unified theoretical approach was applied to field data from a diffusion-dominated system and to laboratory data from an advection-dominated system. Measured 222 Rn fluxes and concentrations validated the modeled values within the measurement variability in both applications

  12. An entropy-variables-based formulation of residual distribution schemes for non-equilibrium flows

    Science.gov (United States)

    Garicano-Mena, Jesús; Lani, Andrea; Degrez, Gérard

    2018-06-01

    In this paper we present an extension of Residual Distribution techniques for the simulation of compressible flows in non-equilibrium conditions. The latter are modeled by means of a state-of-the-art multi-species and two-temperature model. An entropy-based variable transformation that symmetrizes the projected advective Jacobian for such a thermophysical model is introduced. Moreover, the transformed advection Jacobian matrix presents a block diagonal structure, with mass-species and electronic-vibrational energy being completely decoupled from the momentum and total energy sub-system. The advantageous structure of the transformed advective Jacobian can be exploited by contour-integration-based Residual Distribution techniques: established schemes that operate on dense matrices can be substituted by the same scheme operating on the momentum-energy subsystem matrix and repeated application of scalar scheme to the mass-species and electronic-vibrational energy terms. Finally, the performance gain of the symmetrizing-variables formulation is quantified on a selection of representative testcases, ranging from subsonic to hypersonic, in inviscid or viscous conditions.

  13. Combining numerical simulations with time-domain random walk for pathogen risk assessment in groundwater

    Science.gov (United States)

    Cvetkovic, V.; Molin, S.

    2012-02-01

    We present a methodology that combines numerical simulations of groundwater flow and advective transport in heterogeneous porous media with analytical retention models for computing the infection risk probability from pathogens in aquifers. The methodology is based on the analytical results presented in [1,2] for utilising the colloid filtration theory in a time-domain random walk framework. It is shown that in uniform flow, the results from the numerical simulations of advection yield comparable results as the analytical TDRW model for generating advection segments. It is shown that spatial variability of the attachment rate may be significant, however, it appears to affect risk in a different manner depending on if the flow is uniform or radially converging. In spite of the fact that numerous issues remain open regarding pathogen transport in aquifers on the field scale, the methodology presented here may be useful for screening purposes, and may also serve as a basis for future studies that would include greater complexity.

  14. The summertime ABL structure over an antarctic oasis with a vertical Doppler sodar

    Energy Technology Data Exchange (ETDEWEB)

    Kouznetsov, Rostislav D. [Obukhov Inst. of Atmospheric Physics, Moscow (Russian Federation)

    2009-04-15

    The one-component version of the multiple-frequency LATAN-3M sodar was operated during the summer 2006-2007 at the Russian Antarctic station Novolazarevskaya at Schirmacher oasis. We show the typical echograms for the prevailing conditions of forced turbulence, convective turbulence, strong katabatic flows and moist air advection with wave structures. The profiles of the vertical wind component and its variance reveal the vertical structure of local diurnal katabatic winds. We observed the core of a drainage flow at a height of 10-30 m. During the sea air mass advection, the wavy structures are clearly seen in the echograms at heights of 100-200 m a.g.l. The vertical wind component time series show that these waves are propagating rather than advected. The spectrum of the waves has a pronounced peak corresponding to the Brunt-Vaeisaelaefrequency in the layer 400-1000 m a.g.l. but not to that in the layer where the waves appear. (orig.)

  15. An Eulerian description of the streaming process in the lattice Boltzmann equation

    CERN Document Server

    Lee Tae Hun

    2003-01-01

    This paper presents a novel strategy for solving discrete Boltzmann equation (DBE) for simulation of fluid flows. This strategy splits the solution procedure into streaming and collision steps as in the lattice Boltzmann equation (LBE) method. The streaming step can then be carried out by solving pure linear advection equations in an Eulerian framework. This offers two significant advantages over previous methods. First, the relationship between the relaxation parameter and the discretization of the collision term developed from the LBE method is directly applicable to the DBE method. The resulting DBE collision step remains local and poses no constraint on time step. Second, decoupling of the advection step from the collision step facilitates implicit discretization of the advection equation on arbitrary meshes. An implicit unstructured DBE method is constructed based on this strategy and is evaluated using several test cases of flow over a backward-facing step, lid-driven cavity flow, and flow past a circul...

  16. Lagrangian transport in poleward breaking Rossby waves in the North Atlantic - Europe tropopause region

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, J; Peters, D [Rostock Univ. (Germany). Inst. fuer Atmosphaerenphysik

    1998-12-31

    The poleward advection of upper-tropospheric air is investigated for poleward Rossby wave breaking events. During boreal winter months the isentropic deformations of the tropopause are examined using maps of Ertel`s potential vorticity (EPV) and contour advection (CA) calculations. The role of ambient baro-tropic flow is further examined by idealized numerical models. In the vicinity of the tropopause the characteristic Lagrangian transport of air masses for ECMWF-analysis data are compared with high resolution (T106) ECHAM4 experiments. (author) 3 refs.

  17. Numerical vs. turbulent diffusion in geophysical flow modelling

    International Nuclear Information System (INIS)

    D'Isidoro, M.; Maurizi, A.; Tampieri, F.

    2008-01-01

    Numerical advection schemes induce the spreading of passive tracers from localized sources. The effects of changing resolution and Courant number are investigated using the WAF advection scheme, which leads to a sub-diffusive process. The spreading rate from an instantaneous source is compared with the physical diffusion necessary to simulate unresolved turbulent motions. The time at which the physical diffusion process overpowers the numerical spreading is estimated, and is shown to reduce as the resolution increases, and to increase as the wind velocity increases.

  18. Lagrangian transport in poleward breaking Rossby waves in the North Atlantic - Europe tropopause region

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, J.; Peters, D. [Rostock Univ. (Germany). Inst. fuer Atmosphaerenphysik

    1997-12-31

    The poleward advection of upper-tropospheric air is investigated for poleward Rossby wave breaking events. During boreal winter months the isentropic deformations of the tropopause are examined using maps of Ertel`s potential vorticity (EPV) and contour advection (CA) calculations. The role of ambient baro-tropic flow is further examined by idealized numerical models. In the vicinity of the tropopause the characteristic Lagrangian transport of air masses for ECMWF-analysis data are compared with high resolution (T106) ECHAM4 experiments. (author) 3 refs.

  19. Piecewise-parabolic methods for astrophysical fluid dynamics

    International Nuclear Information System (INIS)

    Woodward, P.R.

    1983-01-01

    A general description of some modern numerical techniques for the simulation of astrophysical fluid flow is presented. The methods are introduced with a thorough discussion of the especially simple case of advection. Attention is focused on the piecewise-parabolic method (PPM). A description of the SLIC method for treating multifluid problems is also given. The discussion is illustrated by a number of advection and hydrodynamics test problems. Finally, a study of Kelvin-Helmholtz instability of supersonic jets using PPM with SLIC fluid interfaces is presented

  20. Vulnerability assessment of the Toluca Valley aquifer combining a parametric approach and advective transport; Estimación de la vulnerabilidad del acuífero del valle de Toluca mediante la combinación de un método paramétrico y el transporte advectivo

    Energy Technology Data Exchange (ETDEWEB)

    Gárfias, J.; Llanos, H.; Franco, R.; Martel, R.

    2017-09-01

    Groundwater vulnerability assessment is an important task in water resources and land management. Depending on the availability of data and the complexity of the hydrogeological conditions, different approaches can be adopted. As an alternative, this study involves the use of a combined approach based on vulnerability methods and advective particle tracking to better understand the susceptibility to contamination in the Toluca valley aquifer. An intrinsic vulnerability map (DRASTIC) was used to identify areas that are more susceptible to ground water contamination. To estimate advective particle tracking, we developed a 3D flow model using VisualModflow and MODPATH to describe the regional flow of groundwater. The vulnerability map demonstrates the problematic application and interpretation of qualitative the vulnerability method of the parametric system group, which indicates a difference of approximately 23% when compared with the modified vulnerability map. Potential contamination sources based on landfill sites were comparatively high; approximately 76% are located in areas that could be susceptible to contamination through vertical infiltration, especially those that are located along the Lerma system of wells. Industrial parks located in the centre of the valley (83%), where continuous extraction of groundwater and land subsidence occurs, have been classified as high vulnerability zones, increasing the risk of contaminants from surface sources reaching the groundwater. In order to understand the susceptibility to contamination in the aquifer, various delineation approaches should be adopted and all the results that validate each other should be considered, thus making a good strategy for implementing different degrees of protection measures. [Spanish] La estimación de la vulnerabilidad del agua subterránea es una tarea importante en la administración de los recursos hídricos, que depende de la disponibilidad de datos y complejidad de las condiciones

  1. Spatial and temporal variability of the Choco jet stream and its effect on the hydroclimatology of the Colombian pacific

    International Nuclear Information System (INIS)

    Rueda, Oscar A; Poveda, German

    2006-01-01

    The Chorro del occidente Colombiano Choco is a low level jet that determines the hydroclimatology of the Colombian pacific region. In this paper, the spatial and temporal variability of the Choco were analyzed. To study this variability, the southern oscillation index (SOI) and multivariate ENSO index (MEI) from the national center for environmental prediction/national center for atmospheric research (NCEP/NCAR) were used. Sea surface temperatures (SST), specific humidity (Shum), and wind speed (WS) data were also utilized. The annual advection cycle of humidity in the core of the Choco was investigated at three different longitudes. A correlation was established between this advection cycle and the temperature gradient involving two zones of the western tropical pacific. These zones are El Nino 1+2 and the Colombian Pacific Ocean. The interannual variability of the Choco associated with both El Nino and La Nina phases of ENSO were derived from a correlation coefficient between the jet's core and both the SOI and the MEI. A wavelet analysis was made between the advection cycle and both the precipitation and river flow in the Colombian pacific region was also studied. The most important outcome of this research is a linkage relating the SST, SOI and MEI with the advection of the Choco, indicating a significant coupling of these variables and both the annual and interannual variability of the jet. These results reveal that the hydroclimatology of the Colombian pacific region is related to the amount of moisture carried by the Choco

  2. Chemical mass transport between fluid fine tailings and the overlying water cover of an oil sands end pit lake

    Science.gov (United States)

    Dompierre, Kathryn A.; Barbour, S. Lee; North, Rebecca L.; Carey, Sean K.; Lindsay, Matthew B. J.

    2017-06-01

    Fluid fine tailings (FFT) are a principal by-product of the bitumen extraction process at oil sands mines. Base Mine Lake (BML)—the first full-scale demonstration oil sands end pit lake (EPL)—contains approximately 1.9 × 108 m3 of FFT stored under a water cover within a decommissioned mine pit. Chemical mass transfer from the FFT to the water cover can occur via two key processes: (1) advection-dispersion driven by tailings settlement; and (2) FFT disturbance due to fluid movement in the water cover. Dissolved chloride (Cl) was used to evaluate the water cover mass balance and to track mass transport within the underlying FFT based on field sampling and numerical modeling. Results indicated that FFT was the dominant Cl source to the water cover and that the FFT is exhibiting a transient advection-dispersion mass transport regime with intermittent disturbance near the FFT-water interface. The advective pore water flux was estimated by the mass balance to be 0.002 m3 m-2 d-1, which represents 0.73 m of FFT settlement per year. However, the FFT pore water Cl concentrations and corresponding mass transport simulations indicated that advection rates and disturbance depths vary between sample locations. The disturbance depth was estimated to vary with location between 0.75 and 0.95 m. This investigation provides valuable insight for assessing the geochemical evolution of the water cover and performance of EPLs as an oil sands reclamation strategy.

  3. Comparison of several numerical schemes applied to advection equations

    Czech Academy of Sciences Publication Activity Database

    Sokol, Zbyněk

    1999-01-01

    Roč. 125, - (1999), s. 213-224 ISSN 0035-9009 R&D Projects: GA ČR GA205/97/0843; GA AV ČR KSK1042603 Institutional research plan: CEZ:AV0Z3042911 Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.185, year: 1999

  4. Regional Advection Perturbations in an Irrigated Desert (RAPID) Experiment

    NARCIS (Netherlands)

    Debruin, H.A.R.; Hartogensis, O.K.; Allen, R.G.; Kramer, J.W.J.L.

    2005-01-01

    The RAPID field experiment took place in August - September 1999 at a site 25km south of Twin Falls, Idaho, USA. The experiment concerned micrometeorological observations over extensive, well-irrigated fields covered with the fast-growing crop alfalfa. During daytime, on a number of days the

  5. Mean surface fields of heat budget components over the warm pool in the Bay of Bengal during post-monsoon season

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.; Rao, D.P.; Rao, B.P.

    Andaman Islands and in the MT area there is an association between SST and Q n . But, off Sri Lanka warmer waters were noticed eventhough Q n was negative. This gives a clue that the role of advection plays a dominant role in the maintenance of SST.... Maintenance of warmwaters could be due to the transport of heat from North to South during post-monsoon season. Individual contributions from advection and air-sea fluxes towards SST would throw better light on the formation of warm pool in Bay of Bengal...

  6. A simple computational for the analysis of 2-D solute migration experiments

    International Nuclear Information System (INIS)

    Villar, Heldio Pereira

    1996-01-01

    A preliminary model for the simulation of 2-D migration patterns is presented. This computer model adopts a novel approach to the solution of the advection-dispersion equation in two dimensions through finite differences. The soil column is divided into a number of thin columns. The 1-D advection-dispersion equation is applied in the direction of flow and, using the same time increment, the 1-D diffusion equation is applied perpendicularly to the flow. The results thus obtained were compared to those of two migration experiments with two different soils. (author)

  7. Teaching Thermal Hydraulics & Numerical Methods: An Introductory Control Volume Primer

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, D.S.

    2004-10-03

    This paper covers the basics of the implementation of the control volume method in the context of the Homogeneous Equilibrium Model (HEM)(T/H) code using the conservation equations of mass, momentum, and energy. This primer uses the advection equation as a template. The discussion will cover the basic equations of the control volume portion of the course in the primer, which includes the advection equation, numerical methods, along with the implementation of the various equations via FORTRAN into computer programs and the final result for a three equation HEM code and its validation.

  8. Marine boundary layer over the subtropical southeast Pacific during VOCALS-REx – Part 2: Synoptic variability

    Directory of Open Access Journals (Sweden)

    D. A. Rahn

    2010-05-01

    Full Text Available In the second part of this work we study the day-to-day variability of the marine atmospheric boundary layer (MBL over the subtropical southeast Pacific using primarily results from a numerical simulation that covered the whole VOCALS-REx period (October–November 2008. In situ and satellite-derived observations of the MBL height in the offshore region indicate rapid, significant variations (from 500 m to 1700 m a.s.l. over a few days during October. These MBL changes are connected with the passage of midlatitude troughs that altered the large-scale environment over the VOCALS-REx region. In contrast, the synoptic forcing and MBL changes were less prominent during November. Modelled and observed MBL depth at Point Omega (20° S, 85° W compare quite well during October (but the simulation is on average 200 m lower while in November the simulation does not perform as well.

    In the prognostic local MBL height equation the height change, the horizontal MBL height advection, and the large scale vertical velocity at MBL top are calculated explicitly from the simulation. The entrainment velocity is calculated as the residual of the other terms in the equation. While the vertical velocity and residual terms are opposing and generally have the largest magnitude on average, it is the variability in the advection that explains most of the large changes in the MBL depth. Examination of several cases during VOCALS-REx suggests that the advective term is in turn largely controlled by changes in wind direction, driven by midlatitude activity, acting on a MBL that generally slopes down toward the coast. In one phase, the subtropical anticyclone is reinforced and extends toward the Chilean coast, leading to easterly wind that advects low MBL heights from the coast as far as Point Omega. The opposite phase occurs after the passage of an extratropical cyclone over southern Chile, leading to southwesterly wind that advects a deeper MBL towards subtropical

  9. Relative Role of Horizontal and Vertical Processes in Arctic Amplification

    Science.gov (United States)

    Kim, K. Y.

    2017-12-01

    The physical mechanism of Arctic amplification is still controversial. Specifically, relative role of vertical processes resulting from the reduction of sea ice in the Barents-Kara Seas is not clearly understood in comparison with the horizontal advection of heat and moisture. Using daily data, heat and moisture budgets are analyzed during winter (Dec. 1-Feb. 28) over the region of sea ice reduction in order to delineate the relative roles of horizontal and vertical processes. Detailed heat and moisture budgets in the atmospheric column indicate that the vertical processes, release of turbulent heat fluxes and evaporation, are a major contributor to the increased temperature and specific humidity over the Barents-Kara Seas. In addition, greenhouse effect caused by the increased specific humidity, also plays an important role in Arctic amplification. Horizontal processes such as advection of heat and moisture are the primary source of variability (fluctuations) in temperature and specific humidity in the atmospheric column. Advection of heat and moisture, on the other hand, is little responsible for the net increase in temperature and specific humidity over the Barents-Kara Seas.

  10. Verification of some numerical models for operationally predicting mesoscale winds aloft

    International Nuclear Information System (INIS)

    Cornett, J.S.; Randerson, D.

    1977-01-01

    Four numerical models are described for predicting mesoscale winds aloft for a 6 h period. These models are all tested statistically against persistence as the control forecast and against predictions made by operational forecasters. Mesoscale winds aloft data were used to initialize the models and to verify the predictions on an hourly basis. The model yielding the smallest root-mean-square vector errors (RMSVE's) was the one based on the most physics which included advection, ageostrophic acceleration, vertical mixing and friction. Horizontal advection was found to be the most important term in reducing the RMSVE's followed by ageostrophic acceleration, vertical advection, surface friction and vertical mixing. From a comparison of the mean absolute errors based on up to 72 independent wind-profile predictions made by operational forecasters, by the most complete model, and by persistence, we conclude that the model is the best wind predictor in the free air. In the boundary layer, the results tend to favor the forecaster for direction predictions. The speed predictions showed no overall superiority in any of these three models

  11. A MECHANISM FOR HYSTERESIS IN BLACK HOLE BINARY STATE TRANSITIONS

    International Nuclear Information System (INIS)

    Begelman, Mitchell C.; Armitage, Philip J.

    2014-01-01

    We suggest that the hysteretic cycle of black hole state transitions arises from two established properties of accretion disks: the increase in turbulent stress in disks threaded by a net magnetic field and the ability of thick (but not thin) disks to advect such a field radially. During quiescence, magnetic field loops are generated by the magnetorotational instability at the interface between the inner hot flow and outer thin disk. Vertical flux is advected into and accumulates stochastically within the inner flow, where it stimulates the turbulence so that α ∼ 1. The transition to a geometrically thin inner disk occurs when L ∼ α 2 L Edd ∼ L Edd , and the first ''thin'' disk to form is itself moderately thick, strongly magnetized, and able to advect field inward. These properties favor episodic jet production. As the accretion rate declines magnetic flux escapes, α decreases to α ∼ 0.01-0.1, and a hot inner flow is not re-established until L << L Edd . We discuss possible observational consequences of our scenario

  12. A new methodology for pixel-quantitative precipitation nowcasting using a pyramid Lucas Kanade optical flow approach

    Science.gov (United States)

    Liu, Yu; Xi, Du-Gang; Li, Zhao-Liang; Hong, Yang

    2015-10-01

    Short-term high-resolution Quantitative Precipitation Nowcasting (QPN) has important implications for navigation, flood forecasting, and other hydrological and meteorological concerns. This study proposes a new algorithm called Pixel-based QPN using the Pyramid Lucas-Kanade Optical Flow method (PPLK), which comprises three steps: employing a Pyramid Lucas-Kanade Optical Flow method (PLKOF) to estimate precipitation advection, projecting rainy clouds by considering the advection and evolution pixel by pixel, and interpolating QPN imagery based on the space-time continuum of cloud patches. The PPLK methodology was evaluated with 2338 images from the geostationary meteorological satellite Fengyun-2F (FY-2F) of China and compared with two other advection-based methods, i.e., the maximum correlation method and the Horn-Schunck Optical Flow scheme. The data sample covered all intensive observations since the launch of FY-2F, despite covering a total of only approximately 10 days. The results show that the PPLK performed better than the algorithms used for comparison, demonstrating less time expenditure, more effective cloud tracking, and improved QPN accuracy.

  13. Attenuation of contaminant plumes in homogeneous aquifers: Sensitivity to source function at moderate to large peclet numbers

    International Nuclear Information System (INIS)

    Selander, W.N.; Lane, F.E.; Rowat, J.H.

    1995-05-01

    A groundwater mass transfer calculation is an essential part of the performance assessment for radioactive waste disposal facilities. AECL's IRUS (Intrusion Resistant Underground Structure) facility, which is designed for the near-surface disposal of low-level radioactive waste (LLRW), is to be situated in the sandy overburden at AECL's Chalk River Laboratories. Flow in the sandy aquifers at the proposed IRUS site is relatively homogeneous and advection-dominated (large Peclet numbers). Mass transfer along the mean direction of flow from the IRUS site may be described using the one-dimensional advection-dispersion equation, for which a Green's function representation of downstream radionuclide flux is convenient. This report shows that in advection-dominated aquifers, dispersive attenuation of initial contaminant releases depends principally on two time scales: the source duration and the pulse breakthrough time. Numerical investigation shows further that the maximum downstream flux or concentration depends on these time scales in a simple characteristic way that is minimally sensitive to the shape of the initial source pulse. (author). 11 refs., 2 tabs., 3 figs

  14. Temperature Data Evaluation

    International Nuclear Information System (INIS)

    Gillespie, David

    2003-01-01

    Groundwater temperature is sensitive to the competing processes of heat flow from below the advective transport of heat by groundwater flow. Because groundwater temperature is sensitive to conductive and advective processes, groundwater temperature may be utilized as a tracer to further constrain the uncertainty of predictions of advective radionuclide transport models constructed for the Nevada Test Site (NTS). Since heat transport, geochemical, and hydrologic models for a given area must all be consistent, uncertainty can be reduced by devaluing the weight of those models that do not match estimated heat flow. The objective of this study was to identify the quantity and quality of available heat flow data at the NTS. One-hundred-forty-five temperature logs from 63 boreholes were examined. Thirteen were found to have temperature profiles suitable for the determination of heat flow values from one or more intervals within the boreholes. If sufficient spatially distributed heat flow values are obtained, a heat transport model coupled to a hydrologic model may be used to reduce the uncertainty of a nonisothermal hydrologic model of the NTS

  15. Diagnosis of dynamic process over rainband of landfall typhoon

    International Nuclear Information System (INIS)

    Ling-Kun, Ran; Wen-Xia, Yang; Yan-Li, Chu

    2010-01-01

    This paper introduces a new physical parameter — thermodynamic shear advection parameter combining the perturbation vertical component of convective vorticity vector with the coupling of horizontal divergence perturbation and vertical gradient of general potential temperature perturbation. For a heavy-rainfall event resulting from the landfall typhoon 'Wipha', the parameter is calculated by using National Centres for Enviromental Prediction/National Centre for Atmospheric Research global final analysis data. The results showed that the parameter corresponds to the observed 6 h accumulative rainband since it is capable of catching hold of the dynamic and thermodynamic disturbance in the lower troposphere over the observed rainband. Before the typhoon landed, the advection of the parameter by basic-state flow and the coupling of general potential temperature perturbation with curl of Coriolis force perturbation are the primary dynamic processes which are responsible for the local change of the parameter. After the typhoon landed, the disturbance is mainly driven by the combination of five primary dynamic processes. The advection of the parameter by basic-state flow was weakened after the typhoon landed. (geophysics, astronomy and astrophysics)

  16. Diagnosis of dynamic process over rainband of landfall typhoon

    Science.gov (United States)

    Ran, Ling-Kun; Yang, Wen-Xia; Chu, Yan-Li

    2010-07-01

    This paper introduces a new physical parameter — thermodynamic shear advection parameter combining the perturbation vertical component of convective vorticity vector with the coupling of horizontal divergence perturbation and vertical gradient of general potential temperature perturbation. For a heavy-rainfall event resulting from the landfall typhoon 'Wipha', the parameter is calculated by using National Centres for Enviromental Prediction/National Centre for Atmospheric Research global final analysis data. The results showed that the parameter corresponds to the observed 6 h accumulative rainband since it is capable of catching hold of the dynamic and thermodynamic disturbance in the lower troposphere over the observed rainband. Before the typhoon landed, the advection of the parameter by basic-state flow and the coupling of general potential temperature perturbation with curl of Coriolis force perturbation are the primary dynamic processes which are responsible for the local change of the parameter. After the typhoon landed, the disturbance is mainly driven by the combination of five primary dynamic processes. The advection of the parameter by basic-state flow was weakened after the typhoon landed.

  17. Numerical simulation of interface movement in gas-liquid two-phase flows with Level Set method

    International Nuclear Information System (INIS)

    Li Huixiong; Chinese Academy of Sciences, Beijing; Deng Sheng; Chen Tingkuan; Zhao Jianfu; Wang Fei

    2005-01-01

    Numerical simulation of gas-liquid two-phase flow and heat transfer has been an attractive work for a quite long time, but still remains as a knotty difficulty due to the inherent complexities of the gas-liquid two-phase flow resulted from the existence of moving interfaces with topology changes. This paper reports the effort and the latest advances that have been made by the authors, with special emphasis on the methods for computing solutions to the advection equation of the Level set function, which is utilized to capture the moving interfaces in gas-liquid two-phase flows. Three different schemes, i.e. the simple finite difference scheme, the Superbee-TVD scheme and the 5-order WENO scheme in combination with the Runge-Kutta method are respectively applied to solve the advection equation of the Level Set. A numerical procedure based on the well-verified SIMPLER method is employed to numerically calculate the momentum equations of the two-phase flow. The above-mentioned three schemes are employed to simulate the movement of four typical interfaces under 5 typical flowing conditions. Analysis of the numerical results shows that the 5-order WENO scheme and the Superbee-TVD scheme are much better than the simple finite difference scheme, and the 5-order WENO scheme is the best to compute solutions to the advection equation of the Level Set. The 5-order WENO scheme will be employed as the main scheme to get solutions to the advection equations of the Level Set when gas-liquid two-phase flows are numerically studied in the future. (authors)

  18. From analytical solutions of solute transport equations to multidimensional time-domain random walk (TDRW) algorithms

    Science.gov (United States)

    Bodin, Jacques

    2015-03-01

    In this study, new multi-dimensional time-domain random walk (TDRW) algorithms are derived from approximate one-dimensional (1-D), two-dimensional (2-D), and three-dimensional (3-D) analytical solutions of the advection-dispersion equation and from exact 1-D, 2-D, and 3-D analytical solutions of the pure-diffusion equation. These algorithms enable the calculation of both the time required for a particle to travel a specified distance in a homogeneous medium and the mass recovery at the observation point, which may be incomplete due to 2-D or 3-D transverse dispersion or diffusion. The method is extended to heterogeneous media, represented as a piecewise collection of homogeneous media. The particle motion is then decomposed along a series of intermediate checkpoints located on the medium interface boundaries. The accuracy of the multi-dimensional TDRW method is verified against (i) exact analytical solutions of solute transport in homogeneous media and (ii) finite-difference simulations in a synthetic 2-D heterogeneous medium of simple geometry. The results demonstrate that the method is ideally suited to purely diffusive transport and to advection-dispersion transport problems dominated by advection. Conversely, the method is not recommended for highly dispersive transport problems because the accuracy of the advection-dispersion TDRW algorithms degrades rapidly for a low Péclet number, consistent with the accuracy limit of the approximate analytical solutions. The proposed approach provides a unified methodology for deriving multi-dimensional time-domain particle equations and may be applicable to other mathematical transport models, provided that appropriate analytical solutions are available.

  19. Coastal tomographic mapping of nonlinear tidal currents and residual currents

    Science.gov (United States)

    Zhu, Ze-Nan; Zhu, Xiao-Hua; Guo, Xinyu

    2017-07-01

    Depth-averaged current data, which were obtained by coastal acoustic tomography (CAT) July 12-13, 2009 in Zhitouyang Bay on the western side of the East China Sea, are used to estimate the semidiurnal tidal current (M2) as well as its first two overtide currents (M4 and M6). Spatial mean amplitude ratios M2:M4:M6 in the bay are 1.00:0.15:0.11. The shallow-water equations are used to analyze the generation mechanisms of M4 and M6. In the deep area, where water depths are larger than 60 m, M4 velocity amplitudes measured by CAT agree well with those predicted by the advection terms in the shallow water equations, indicating that M4 in the deep area is predominantly generated by the advection terms. M6 measured by CAT and M6 predicted by the nonlinear quadratic bottom friction terms agree well in the area where water depths are less than 20 m, indicating that friction mechanisms are predominant for generating M6 in the shallow area. In addition, dynamic analysis of the residual currents using the tidally averaged momentum equation shows that spatial mean values of the horizontal pressure gradient due to residual sea level and of the advection of residual currents together contribute about 75% of the spatial mean values of the advection by the tidal currents, indicating that residual currents in this bay are induced mainly by the nonlinear effects of tidal currents. This is the first ever nonlinear tidal current study by CAT.

  20. Groundwater and porewater as major sources of alkalinity to a fringing coral reef lagoon (Muri Lagoon, Cook Islands

    Directory of Open Access Journals (Sweden)

    T. Cyronak

    2013-04-01

    Full Text Available To better predict how ocean acidification will affect coral reefs, it is important to understand how biogeochemical cycles on reefs alter carbonate chemistry over various temporal and spatial scales. This study quantifies the contribution of shallow porewater exchange (as quantified from advective chamber incubations and fresh groundwater discharge (as traced by 222Rn to total alkalinity (TA dynamics on a fringing coral reef lagoon along the southern Pacific island of Rarotonga over a tidal and diel cycle. Benthic alkalinity fluxes were affected by the advective circulation of water through permeable sediments, with net daily flux rates of carbonate alkalinity ranging from −1.55 to 7.76 mmol m−2 d−1, depending on the advection rate. Submarine groundwater discharge (SGD was a source of TA to the lagoon, with the highest flux rates measured at low tide, and an average daily TA flux of 1080 mmol m−2 d−1 at the sampling site. Both sources of TA were important on a reef-wide basis, although SGD acted solely as a delivery mechanism of TA to the lagoon, while porewater advection was either a sink or source of TA dependent on the time of day. This study describes overlooked sources of TA to coral reef ecosystems that can potentially alter water column carbonate chemistry. We suggest that porewater and groundwater fluxes of TA should be taken into account in ocean acidification models in order to properly address changing carbonate chemistry within coral reef ecosystems.

  1. Mechanisms of Mixed-Layer Salinity Seasonal Variability in the Indian Ocean

    Science.gov (United States)

    Köhler, Julia; Serra, Nuno; Bryan, Frank O.; Johnson, Benjamin K.; Stammer, Detlef

    2018-01-01

    Based on a joint analysis of an ensemble mean of satellite sea surface salinity retrievals and the output of a high-resolution numerical ocean circulation simulation, physical processes are identified that control seasonal variations of mixed-layer salinity (MLS) in the Indian Ocean, a basin where salinity changes dominate changes in density. In the northern and near-equatorial Indian Ocean, annual salinity changes are mainly driven by respective changes of the horizontal advection. South of the equatorial region, between 45°E and 90°E, where evaporation minus precipitation has a strong seasonal cycle, surface freshwater fluxes control the seasonal MLS changes. The influence of entrainment on the salinity variance is enhanced in mid-ocean upwelling regions but remains small. The model and observational results reveal that vertical diffusion plays a major role in precipitation and river runoff dominated regions balancing the surface freshwater flux. Vertical diffusion is important as well in regions where the advection of low salinity leads to strong gradients across the mixed-layer base. There, vertical diffusion explains a large percentage of annual MLS variance. The simulation further reveals that (1) high-frequency small-scale eddy processes primarily determine the salinity tendency in coastal regions (in particular in the Bay of Bengal) and (2) shear horizontal advection, brought about by changes in the vertical structure of the mixed layer, acts against mean horizontal advection in the equatorial salinity frontal regions. Observing those latter features with the existing observational components remains a future challenge.

  2. Flow dynamics around downwelling submarine canyons

    Directory of Open Access Journals (Sweden)

    J. M. Spurgin

    2014-10-01

    Full Text Available Flow dynamics around a downwelling submarine canyon were analysed with the Massachusetts Institute of Technology general circulation model. Blanes Canyon (northwestern Mediterranean was used for topographic and initial forcing conditions. Fourteen scenarios were modelled with varying forcing conditions. Rossby and Burger numbers were used to determine the significance of Coriolis acceleration and stratification (respectively and their impacts on flow dynamics. A new non-dimensional parameter (χ was introduced to determine the significance of vertical variations in stratification. Some simulations do see brief periods of upwards displacement of water during the 10-day model period; however, the presence of the submarine canyon is found to enhance downwards advection of density in all model scenarios. High Burger numbers lead to negative vorticity and a trapped anticyclonic eddy within the canyon, as well as an increased density anomaly. Low Burger numbers lead to positive vorticity, cyclonic circulation, and weaker density anomalies. Vertical variations in stratification affect zonal jet placement. Under the same forcing conditions, the zonal jet is pushed offshore in more uniformly stratified domains. The offshore jet location generates upwards density advection away from the canyon, while onshore jets generate downwards density advection everywhere within the model domain. Increasing Rossby values across the canyon axis, as well as decreasing Burger values, increase negative vertical flux at shelf break depth (150 m. Increasing Rossby numbers lead to stronger downwards advection of a passive tracer (nitrate, as well as stronger vorticity within the canyon. Results from previous studies are explained within this new dynamic framework.

  3. The motion of a redox front in a system of bentonite and rock, incorporating fracture transport effects

    International Nuclear Information System (INIS)

    Shaw, W.; Robinson, P.

    1992-02-01

    This report presents new calculations of the motion of a redox front in a system of bentonite and fractured rock, incorporation advection and diffusion of oxidants in fracture water. The results reported here have been incorporated into preliminary base case calculations using the source term model CALIBRE. The model presented here differs mainly in its treatment of the effects of the fracture. Previously, a 'zero-concentration' boundary condition was applied, and this resulted in retardation of the front near the fracture. When a more detailed advection-diffusion model is applied, the front is advanced in a neighbourhood of the fracture. (25 refs.) (au)

  4. Time-series of turbulent flow in a pipe measured with PIV

    DEFF Research Database (Denmark)

    Meyer, Knud Erik; Westerweel, Jerry

    1999-01-01

    Measurements with particle image velocimetry of the fully developed flow of water in a pipe with a Reynolds number of 5370 are presented. The measurements are taken with a frame rate high enough to capture the same flow structure on 2 or 3 frames. This makes it possible to estimate advection...... velocities of the flow structures and distances between the structures. Ejection andsweep structures are identified and it is found that average advection velocity for the structures corresponds the local mean velocity at a distance of 0.15 diameter from the wall. It is also noted that ejections tend...

  5. A Fully Discrete Galerkin Method for a Nonlinear Space-Fractional Diffusion Equation

    Directory of Open Access Journals (Sweden)

    Yunying Zheng

    2011-01-01

    Full Text Available The spatial transport process in fractal media is generally anomalous. The space-fractional advection-diffusion equation can be used to characterize such a process. In this paper, a fully discrete scheme is given for a type of nonlinear space-fractional anomalous advection-diffusion equation. In the spatial direction, we use the finite element method, and in the temporal direction, we use the modified Crank-Nicolson approximation. Here the fractional derivative indicates the Caputo derivative. The error estimate for the fully discrete scheme is derived. And the numerical examples are also included which are in line with the theoretical analysis.

  6. Investigation of multi-dimensional computational models for calculating pollutant transport

    International Nuclear Information System (INIS)

    Pepper, D.W.; Cooper, R.E.; Baker, A.J.

    1980-01-01

    A performance study of five numerical solution algorithms for multi-dimensional advection-diffusion prediction on mesoscale grids was made. Test problems include transport of point and distributed sources, and a simulation of a continuous source. In all cases, analytical solutions are available to assess relative accuracy. The particle-in-cell and second-moment algorithms, both of which employ sub-grid resolution coupled with Lagrangian advection, exhibit superior accuracy in modeling a point source release. For modeling of a distributed source, algorithms based upon the pseudospectral and finite element interpolation concepts, exhibit improved accuracy on practical discretizations

  7. Controlling factors of the oxygen balance in the Arabian Sea's OMZ

    Directory of Open Access Journals (Sweden)

    L. Resplandy

    2012-12-01

    Full Text Available The expansion of OMZs (oxygen minimum zones due to climate change and their possible evolution and impacts on the ecosystems and the atmosphere are still debated, mostly because of the unability of global climate models to adequatly reproduce the processes governing OMZs. In this study, we examine the factors controlling the oxygen budget, i.e. the equilibrium between oxygen sources and sinks in the northern Arabian Sea OMZ using an eddy-resolving biophysical model.

    Our model confirms that the biological consumption of oxygen is most intense below the region of highest productivity in the western Arabian Sea. The oxygen drawdown in this region is counterbalanced by the large supply of oxygenated waters originated from the south and advected horizontally by the western boundary current. Although the biological sink and the dynamical sources of oxygen compensate on annual average, we find that the seasonality of the dynamical transport of oxygen is 3 to 5 times larger than the seasonality of the biological sink. In agreement with previous findings, the resulting seasonality of oxygen concentration in the OMZ is relatively weak, with a variability of the order of 15% of the annual mean oxygen concentration in the oxycline and 5% elsewhere. This seasonality primarily arises from the vertical displacement of the OMZ forced by the monsoonal reversal of Ekman pumping across the basin. In coastal areas, the oxygen concentration is also modulated seasonally by lateral advection. Along the western coast of the Arabian Sea, the Somali Current transports oxygen-rich waters originated from the south during summer and oxygen-poor waters from the northeast during winter. Along the eastern coast of the Arabian Sea, we find that the main contributor to lateral advection in the OMZ is the Indian coastal undercurrent that advects southern oxygenated waters during summer and northern low-oxygen waters during winter. In this region, our model indicates that

  8. Green's function method and its application to verification of diffusion models of GASFLOW code

    International Nuclear Information System (INIS)

    Xu, Z.; Travis, J.R.; Breitung, W.

    2007-07-01

    To validate the diffusion model and the aerosol particle model of the GASFLOW computer code, theoretical solutions of advection diffusion problems are developed by using the Green's function method. The work consists of a theory part and an application part. In the first part, the Green's functions of one-dimensional advection diffusion problems are solved in infinite, semi-infinite and finite domains with the Dirichlet, the Neumann and/or the Robin boundary conditions. Novel and effective image systems especially for the advection diffusion problems are made to find the Green's functions in a semi-infinite domain. Eigenfunction method is utilized to find the Green's functions in a bounded domain. In the case, key steps of a coordinate transform based on a concept of reversed time scale, a Laplace transform and an exponential transform are proposed to solve the Green's functions. Then the product rule of the multi-dimensional Green's functions is discussed in a Cartesian coordinate system. Based on the building blocks of one-dimensional Green's functions, the multi-dimensional Green's function solution can be constructed by applying the product rule. Green's function tables are summarized to facilitate the application of the Green's function. In the second part, the obtained Green's function solutions benchmark a series of validations to the diffusion model of gas species in continuous phase and the diffusion model of discrete aerosol particles in the GASFLOW code. Perfect agreements are obtained between the GASFLOW simulations and the Green's function solutions in case of the gas diffusion. Very good consistencies are found between the theoretical solutions of the advection diffusion equations and the numerical particle distributions in advective flows, when the drag force between the micron-sized particles and the conveying gas flow meets the Stokes' law about resistance. This situation is corresponding to a very small Reynolds number based on the particle

  9. Dehydration in the tropical tropopause layer estimated from the water vapor match

    Directory of Open Access Journals (Sweden)

    Y. Inai

    2013-09-01

    Full Text Available We apply the match technique, whereby the same air mass is observed more than once and such cases are termed a "match", to study the dehydration process associated with horizontal advection in the tropical tropopause layer (TTL over the western Pacific. The matches are obtained from profile data taken by the Soundings of Ozone and Water in the Equatorial Region (SOWER campaign network observations using isentropic trajectories calculated from European Centre for Medium-Range Weather Forecasts (ECMWF operational analyses. For the matches identified, extensive screening procedures are performed to verify the representativeness of the air parcel and the validity of the isentropic treatment, and to check for possible water injection by deep convection, consistency between the sonde data and analysis field referring to the ozone conservation. Among the matches that passed the screening tests, we identified some cases corresponding to the first quantitative value of dehydration associated with horizontal advection in the TTL. The statistical features of dehydration for the air parcels advected in the lower TTL are derived from the matches. The threshold of nucleation is estimated to be 146 ± 1% (1σ in relative humidity with respect to ice (RHice, while dehydration seems to continue until RHice reaches about 75 ± 23% (1σ in the altitude region from 350 to 360 K. The efficiency of dehydration expressed by the relaxation time required for the supersaturated air parcel to approach saturation is empirically determined from the matches. A relaxation time of approximately one hour reproduces the second water vapor observation reasonably well, given the first observed water vapor amount and the history of the saturation mixing ratio during advection in the lower TTL.

  10. An Arbitrary Lagrangian-Eulerian Discretization of MHD on 3D Unstructured Grids

    Energy Technology Data Exchange (ETDEWEB)

    Rieben, R N; White, D A; Wallin, B K; Solberg, J M

    2006-06-12

    We present an arbitrary Lagrangian-Eulerian (ALE) discretization of the equations of resistive magnetohydrodynamics (MHD) on unstructured hexahedral grids. The method is formulated using an operator-split approach with three distinct phases: electromagnetic diffusion, Lagrangian motion, and Eulerian advection. The resistive magnetic dynamo equation is discretized using a compatible mixed finite element method with a 2nd order accurate implicit time differencing scheme which preserves the divergence-free nature of the magnetic field. At each discrete time step, electromagnetic force and heat terms are calculated and coupled to the hydrodynamic equations to compute the Lagrangian motion of the conducting materials. By virtue of the compatible discretization method used, the invariants of Lagrangian MHD motion are preserved in a discrete sense. When the Lagrangian motion of the mesh causes significant distortion, that distortion is corrected with a relaxation of the mesh, followed by a 2nd order monotonic remap of the electromagnetic state variables. The remap is equivalent to Eulerian advection of the magnetic flux density with a fictitious mesh relaxation velocity. The magnetic advection is performed using a novel variant of constrained transport (CT) that is valid for unstructured hexahedral grids with arbitrary mesh velocities. The advection method maintains the divergence free nature of the magnetic field and is second order accurate in regions where the solution is sufficiently smooth. For regions in which the magnetic field is discontinuous (e.g. MHD shocks) the method is limited using a novel variant of algebraic flux correction (AFC) which is local extremum diminishing (LED) and divergence preserving. Finally, we verify each stage of the discretization via a set of numerical experiments.

  11. Warm-Core Intensification of a Hurricane Through Horizontal Eddy Heat Transports Inside the Eye

    Science.gov (United States)

    Braun, Scott A.; Montgomery, Michael T.; Fulton, John; Nolan, David S.

    2001-01-01

    A simulation of Hurricane Bob (1991) using the PSU/NCAR MM5 mesoscale model with a finest mesh spacing of 1.3 km is used to diagnose the heat budget of the hurricane. Heat budget terms, including latent and radiative heating, boundary layer forcing, and advection terms were output directly from the model for a 6-h period with 2-min frequency. Previous studies of warm core formation have emphasized the warming associated with gentle subsidence within the eye. The simulation of Hurricane Bob also identifies subsidence warming as a major factor for eye warming, but also shows a significant contribution from horizontal advective terms. When averaged over the area of the eye, excluding the eyewall (at least in an azimuthal mean sense), subsidence is found to strongly warm the mid-troposphere (2-9 km) while horizontal advection warms the mid to upper troposphere (5-13 km) with about equal magnitude. Partitioning of the horizontal advective terms into azimuthal mean and eddy components shows that the mean radial circulation cannot, as expected, generally contribute to this warming, but that it is produced almost entirely by the horizontal eddy transport of heat into the eye. A further breakdown of the eddy components into azimuthal wave numbers 1, 2, and higher indicates that the warming is dominated by wave number 1 asymmetries, with smaller contributions coming from higher wave numbers. Warming by horizontal eddy transport is consistent with idealized modeling of vortex Rossby waves and work is in progress to identify and clarify the role of vortex Rossby waves in warm-core intensification in both the full-physics model and idealized models.

  12. Second-order accurate volume-of-fluid algorithms for tracking material interfaces

    International Nuclear Information System (INIS)

    Pilliod, James Edward; Puckett, Elbridge Gerry

    2004-01-01

    We introduce two new volume-of-fluid interface reconstruction algorithms and compare the accuracy of these algorithms to four other widely used volume-of-fluid interface reconstruction algorithms. We find that when the interface is smooth (e.g., continuous with two continuous derivatives) the new methods are second-order accurate and the other algorithms are first-order accurate. We propose a design criteria for a volume-of-fluid interface reconstruction algorithm to be second-order accurate. Namely, that it reproduce lines in two space dimensions or planes in three space dimensions exactly. We also introduce a second-order, unsplit, volume-of-fluid advection algorithm that is based on a second-order, finite difference method for scalar conservation laws due to Bell, Dawson and Shubin. We test this advection algorithm by modeling several different interface shapes propagating in two simple incompressible flows and compare the results with the standard second-order, operator-split advection algorithm. Although both methods are second-order accurate when the interface is smooth, we find that the unsplit algorithm exhibits noticeably better resolution in regions where the interface has discontinuous derivatives, such as at corners

  13. Stokes flow heat transfer in an annular, rotating heat exchanger

    International Nuclear Information System (INIS)

    Saatdjian, E.; Rodrigo, A.J.S.; Mota, J.P.B.

    2011-01-01

    The heat transfer rate into highly viscous, low thermal-conductivity fluids can be enhanced significantly by chaotic advection in three-dimensional flows dominated by viscous forces. The physical effect of chaotic advection is to render the cross-sectional temperature field uniform, thus increasing both the wall temperature gradient and the heat flux into the fluid. A method of analysis for one such flow-the flow in the eccentric, annular, rotating heat exchanger-and a procedure to determine the best heat transfer conditions, namely the optimal values of the eccentricity ratio and time-periodic rotating protocol, are discussed. It is shown that in continuous flows, such as the one under consideration, there exists an optimum frequency of the rotation protocol for which the heat transfer rate is a maximum. - Highlights: → The eccentric, annular, rotating heat exchanger is studied for periodic Stokes flow. → Counter-rotating the inner tube with a periodic velocity enhances the heat transfer. → The heat-transfer enhancement under such conditions is due to chaotic advection. → For a given axial flow rate there is a frequency that maximizes the heat transfer. → There is also an optimum value of the eccentricity ratio.

  14. Small-scale kinematic dynamo and non-dynamo in inertial-range turbulence

    International Nuclear Information System (INIS)

    Eyink, Gregory L; Neto, Antonio F

    2010-01-01

    We investigate the Lagrangian mechanism of the kinematic 'fluctuation' magnetic dynamo in a turbulent plasma flow at small magnetic Prandtl numbers. The combined effect of turbulent advection and plasma resistivity is to carry infinitely many field lines to each space point, with the resultant magnetic field at that point given by the average over all the individual line vectors. As a consequence of the roughness of the advecting velocity, this remains true even in the limit of zero resistivity. We show that the presence of the dynamo effect requires sufficient angular correlation of the passive line vectors that arrive simultaneously at the same space point. We illustrate this in detail for the Kazantsev-Kraichnan model of the kinematic dynamo with a Gaussian advecting velocity that is spatially rough and white noise in time. In the regime where dynamo action fails, we also obtain the precise rate of decay of the magnetic energy. These exact results for the model are obtained by a generalization of the 'slow-mode expansion' of Bernard, Gawedzki and Kupiainen to non-Hermitian evolution. Much of our analysis applies also to magnetohydrodynamic turbulence.

  15. Pattern deformation and annihilation in two-dimensional excitable media in oscillatory domains

    International Nuclear Information System (INIS)

    Ramos, J.I.

    2008-01-01

    The effects of oscillatory domains on the dynamics of the FitzHugh-Nagumo equation in two dimensions is investigated as a function of the amplitude and frequency of the boundary motion. It is shown that the moving-boundary problem introduces anisotropy through the diffusion terms and an advection-like term in the direction of the boundary motion. If the advection-like term is neglected, it is shown that spiral wave solutions of the FitzHugh-Nagumo equation are robust and do not lose their integrity under the anisotropic effects induced by the moving domain, albeit undergo stretching and compression in the direction of the boundary motion. However, when the advection-like terms are accounted for, the anisotropy and stretching/compression of the initial spiral wave result in a homogeneous state at high frequencies, and the time required to achieve such a uniformity is mainly a function of the amplitude of the boundary motion. For frequencies comparable to that of the spiral wave in a fixed domain, it is shown that the spiral wave preserves its integrity for low amplitudes of the boundary motion and is annihilated at high amplitudes

  16. Explicit finite-difference solution of two-dimensional solute transport with periodic flow in homogenous porous media

    Directory of Open Access Journals (Sweden)

    Djordjevich Alexandar

    2017-12-01

    Full Text Available The two-dimensional advection-diffusion equation with variable coefficients is solved by the explicit finitedifference method for the transport of solutes through a homogenous two-dimensional domain that is finite and porous. Retardation by adsorption, periodic seepage velocity, and a dispersion coefficient proportional to this velocity are permitted. The transport is from a pulse-type point source (that ceases after a period of activity. Included are the firstorder decay and zero-order production parameters proportional to the seepage velocity, and periodic boundary conditions at the origin and at the end of the domain. Results agree well with analytical solutions that were reported in the literature for special cases. It is shown that the solute concentration profile is influenced strongly by periodic velocity fluctuations. Solutions for a variety of combinations of unsteadiness of the coefficients in the advection-diffusion equation are obtainable as particular cases of the one demonstrated here. This further attests to the effectiveness of the explicit finite difference method for solving two-dimensional advection-diffusion equation with variable coefficients in finite media, which is especially important when arbitrary initial and boundary conditions are required.

  17. An investigation of the Sutcliffe development theory

    Science.gov (United States)

    Dushan, J. D.

    1973-01-01

    Two case studies were used to test the Sutcliffe-Peterssen development theory for both cyclonic and anticyclonic development over the eastern United States. Each term was examined to determine when and where it made a significant contribution to the development process. Results indicate the advection of vorticity at the level of non-divergence exerts the dominant influence for initial cyclone development, and that the thermal terms (advection of thickness, stability, and diabatic influence) become important after development has begun. Anticyclonic development, however, depends primarily on the stability term throughout the life cycle of the anticyclone. Simple procedures for forecasting the development and movement of cyclones and anticyclones are listed. These rules indicate that routine National Meteorological Center analyses may be used to locate areas where the positive advection of 500-mb vorticity, indicative of cyclonic development, coincides with regions of severe weather activity. The development of anticyclones also is predicted easily. Regions of increasing stability, indicating anticyclonic development, may be located by use of National Meteorological Center radar summaries and analyses for 1000-500-mb thickness. A test of these techniques found them to be satisfactory for the case examined.

  18. How East Asian westerly jet's meridional position affects the summer rainfall in Yangtze-Huaihe River Valley?

    Science.gov (United States)

    Wang, Shixin; Zuo, Hongchao; Zhao, Shuman; Zhang, Jiankai; Lu, Sha

    2017-03-01

    Existing studies show that the change in the meridional position of East Asian westerly jet (EAWJ) is associated with rainfall anomalies in Yangtze-Huaihe River Valley (YHRV) in summer. However, the dynamic mechanism has not been resolved yet. The present study reveals underlying mechanisms for this impact for early summer and midsummer, separately. Mechanism1: associated with EAWJ's anomalously southward displacement, the 500-hPa westerly wind over YHRV is strengthened through midtropospheric horizontal circulation anomalies; the westerly anomalies are related to the formation of warm advection anomalies over YHRV, which cause increased rainfall through adiabatic ascent motion and convective activities; the major difference in these processes between early summer and midsummer is the midtropospheric circulation anomaly pattern. Mechanism 2: associated with EAWJ's anomalously southward displacement, the large day-to-day variability of midtropospheric temperature advection in midlatitudes is displaced southward by the jet's trapping transient eddies; this change enhances the day-to-day variability of temperature advection over YHRV, which in turn causes the increased rainfall in most part of YHRV through "lower-bound effect" (rainfall amount can not become negative); there is not much difference in these processes between early summer and midsummer.

  19. Diagnosis of boundary-layer circulations.

    Science.gov (United States)

    Beare, Robert J; Cullen, Michael J P

    2013-05-28

    Diagnoses of circulations in the vertical plane provide valuable insights into aspects of the dynamics of the climate system. Dynamical theories based on geostrophic balance have proved useful in deriving diagnostic equations for these circulations. For example, semi-geostrophic theory gives rise to the Sawyer-Eliassen equation (SEE) that predicts, among other things, circulations around mid-latitude fronts. A limitation of the SEE is the absence of a realistic boundary layer. However, the coupling provided by the boundary layer between the atmosphere and the surface is fundamental to the climate system. Here, we use a theory based on Ekman momentum balance to derive an SEE that includes a boundary layer (SEEBL). We consider a case study of a baroclinic low-level jet. The SEEBL solution shows significant benefits over Ekman pumping, including accommodating a boundary-layer depth that varies in space and structure, which accounts for buoyancy and momentum advection. The diagnosed low-level jet is stronger than that determined by Ekman balance. This is due to the inclusion of momentum advection. Momentum advection provides an additional mechanism for enhancement of the low-level jet that is distinct from inertial oscillations.

  20. Patterns in connectivity and retention of simulated Tanner crab (Chionoecetes bairdi) larvae in the eastern Bering Sea

    Science.gov (United States)

    Richar, Jonathan I.; Kruse, Gordon H.; Curchitser, Enrique; Hermann, Albert J.

    2015-11-01

    The eastern Bering Sea (EBS) population of Tanner crab (Chionoecetes bairdi) has exhibited high variability in recruitment to the commercially exploited stock since the late 1970s. Concurrently, apparent shifts in crab distribution have also been observed. Larval advection patterns and associated local retention offer a potential mechanism for these observations. The Regional Ocean Modeling System (ROMS) was used to simulate larval Tanner crab advection patterns over 1978-2004 based on larval hatching sites inferred from the distributions of reproductive females sampled during annual National Marine Fisheries Service trawl surveys. Connectivity among EBS subregions was examined by comparing start and end float locations after 60 days of simulated drift. High levels of retention (>50% of floats) were observed in the majority of source subregions, and contributed significantly to the total number of endpoints in each region. Patterns in advection and resultant interregional connectivity were variable, with strongest sustained connectivity occurring along shelf, within individual domains. Increased settlement potential in the outer domain and southern middle domain after 1990 is consistent with an observed geographic shift in fishery productivity. Apparent reliance of Bristol Bay on local larval retention validates recent spatial fishery management to conserve this area as a subpopulation.

  1. Analytical solutions to matrix diffusion problems

    Energy Technology Data Exchange (ETDEWEB)

    Kekäläinen, Pekka, E-mail: pekka.kekalainen@helsinki.fi [Laboratory of Radiochemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki (Finland)

    2014-10-06

    We report an analytical method to solve in a few cases of practical interest the equations which have traditionally been proposed for the matrix diffusion problem. In matrix diffusion, elements dissolved in ground water can penetrate the porous rock surronuding the advective flow paths. In the context of radioactive waste repositories this phenomenon provides a mechanism by which the area of rock surface in contact with advecting elements is greatly enhanced, and can thus be an important delay mechanism. The cases solved are relevant for laboratory as well for in situ experiments. Solutions are given as integral representations well suited for easy numerical solution.

  2. Stability of BDF-ADI Discretizations

    KAUST Repository

    Felí cio dos Reis, Joã o Miguel

    2017-01-01

    We present new results on absolute stability for BDF-ADI (Backward differentiation formula Alternating Direction Implicit) methods applied to a linear advection and diffusion equations. Unconditional absolute stability of the BDF2-ADI method is proven for advection and diffusion separately, as well as to the BDF3-ADI method for the purely-diffusive case. Conditional absolute stability of the BDF4-ADI is also proven for the purely-diffusive case, and stability regions for BDF3-ADI and BDF4- ADI are given in terms of the PDE coefficients and numerical parameters. Lastly, numerical experiments are presented to support the theoretical results and conjectures. These experiments also suggest future work.

  3. Numerical solution of non-linear diffusion problems

    International Nuclear Information System (INIS)

    Carmen, A. del; Ferreri, J.C.

    1998-01-01

    This paper presents a method for the numerical solution of non-linear diffusion problems using finite-differences in moving grids. Due to the presence of steep fronts in the solution domain and to the presence of advective terms originating in the grid movement, an implicit TVD scheme, first order in time and second order in space has been developed. Some algebraic details of the derivation are given. Results are shown for the pure advection of a scalar as a test case and an example dealing with the slow spreading of viscous fluids over plane surfaces. The agreement between numerical and analytical solutions is excellent. (author). 8 refs., 3 figs

  4. Stability of BDF-ADI Discretizations

    KAUST Repository

    Felício dos Reis, João Miguel

    2017-08-17

    We present new results on absolute stability for BDF-ADI (Backward differentiation formula Alternating Direction Implicit) methods applied to a linear advection and diffusion equations. Unconditional absolute stability of the BDF2-ADI method is proven for advection and diffusion separately, as well as to the BDF3-ADI method for the purely-diffusive case. Conditional absolute stability of the BDF4-ADI is also proven for the purely-diffusive case, and stability regions for BDF3-ADI and BDF4- ADI are given in terms of the PDE coefficients and numerical parameters. Lastly, numerical experiments are presented to support the theoretical results and conjectures. These experiments also suggest future work.

  5. Comparison of precipitation nowcasting by extrapolation and statistical-advection methods

    Czech Academy of Sciences Publication Activity Database

    Sokol, Zbyněk; Kitzmiller, D.; Pešice, Petr; Mejsnar, Jan

    2013-01-01

    Roč. 123, 1 April (2013), s. 17-30 ISSN 0169-8095 R&D Projects: GA MŠk ME09033 Institutional support: RVO:68378289 Keywords : Precipitation forecast * Statistical models * Regression * Quantitative precipitation forecast * Extrapolation forecast Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.421, year: 2013 http://www.sciencedirect.com/science/article/pii/S0169809512003390

  6. The role of boundary layer momentum advection in the mean ...

    Indian Academy of Sciences (India)

    Vishal Dixit

    2017-08-24

    Aug 24, 2017 ... Indian Ocean and west Pacific Ocean. The ITCZ moves as far north as 15. ◦. –20. ◦. N in boreal sum- mer, while it moves to the south of the equator during winter in these oceans (Gadgil 2003). A relatively moderate seasonal cycle is observed in the location of ITCZ in east Pacific and Atlantic oceans.

  7. Spectral decomposition in advection-diffusion analysis by finite element methods

    International Nuclear Information System (INIS)

    Nickell, R.E.; Gartling, D.K.; Strang, G.

    1978-01-01

    In a recent study of the convergence properties of finite element methods in nonlinear fluid mechanics, an indirect approach was taken. A two-dimensional example with a known exact solution was chosen as the vehicle for the study, and various mesh refinements were tested in an attempt to extract information on the effect of the local Reynolds number. However, more direct approaches are usually preferred. In this study one such direct approach is followed, based upon the spectral decomposition of the solution operator. Spectral decomposition is widely employed as a solution technique for linear structural dynamics problems and can be applied readily to linear, transient heat transfer analysis; in this case, the extension to nonlinear problems is of interest. It was shown previously that spectral techniques were applicable to stiff systems of rate equations, while recent studies of geometrically and materially nonlinear structural dynamics have demonstrated the increased information content of the numerical results. The use of spectral decomposition in nonlinear problems of heat and mass transfer would be expected to yield equally increased flow of information to the analyst, and this information could include a quantitative comparison of various solution strategies, meshes, and element hierarchies

  8. Advection within shallow pore waters of a coastal lagoon, Florida

    Science.gov (United States)

    Cable, J.E.; Martin, Jonathan B.; Swarzenski, Peter W.; Lindenberg, Mary K.; Steward, Joel

    2004-01-01

    Ground water sources can be a significant portion of a local water budget in estuarine environments, particularly in areas with high recharge rates, transmissive aquifers, and permeable marine sediments. However, field measurements of ground water discharge are often incongruent with ground water flow modeling results, leaving many scientists unsure which estimates are accurate. In this study, we find that both measurements and model results are reasonable. The difference between estimates apparently results from the sources of water being measured and not the techniques themselves. In two locations in the Indian River Lagoon estuarine system, we found seepage meter rates similar to rates calculated from the geochemical tracers 222Rn and 226Ra. Ground water discharge rates ranged from 4 to 9 cm/d using seepage meters and 3 to 20 cm/d using 222Rn and 226Ra. In contrast, in comparisons to other studies where finite element ground water flow modeling was used, much lower ground water discharge rates of ∼0.05 to 0.15 cm/d were estimated. These low rates probably represent discharge of meteoric ground water from land-recharged aquifers, while the much higher rates measured with seepage meters, 222Rn, and 226Ra likely include an additional source of surface waters that regularly flush shallow (recharged water and recirculated surface waters contributes to the total biogeochemical loading in this shallow estuarine environment.

  9. The nearshore advection of a toxigenic Pseudo-nitzschia bloom and ...

    African Journals Online (AJOL)

    with moored sensors showed the presence of relatively fresh Columbia River plume water on the inner shelf for several weeks, beginning on 8 September and persisting for approximately eight days after the second storm. During that time, DA in intertidal razor clams accumulated to levels that exceeded the regulatory ...

  10. EBS Radionuclide Transport Abstraction

    International Nuclear Information System (INIS)

    J.D. Schreiber

    2005-01-01

    advective transport and diffusive transport from a breached waste package. Advective transport occurs when radionuclides that are dissolved or sorbed onto colloids (or both) are carried from the waste package by the portion of the seepage flux that passes through waste package breaches. Diffusive transport occurs as a result of a gradient in radionuclide concentration and may take place while advective transport is also occurring, as well as when no advective transport is occurring. Diffusive transport is addressed in detail because it is the sole means of transport when there is no flow through a waste package, which may dominate during the regulatory compliance period in the nominal and seismic scenarios. The advective transport rate, when it occurs, is generally greater than the diffusive transport rate. Colloid-facilitated advective and diffusive transport is also modeled and is presented in detail in Appendix B of this report

  11. EBS Radionuclide Transport Abstraction

    Energy Technology Data Exchange (ETDEWEB)

    J.D. Schreiber

    2005-08-25

    model considers advective transport and diffusive transport from a breached waste package. Advective transport occurs when radionuclides that are dissolved or sorbed onto colloids (or both) are carried from the waste package by the portion of the seepage flux that passes through waste package breaches. Diffusive transport occurs as a result of a gradient in radionuclide concentration and may take place while advective transport is also occurring, as well as when no advective transport is occurring. Diffusive transport is addressed in detail because it is the sole means of transport when there is no flow through a waste package, which may dominate during the regulatory compliance period in the nominal and seismic scenarios. The advective transport rate, when it occurs, is generally greater than the diffusive transport rate. Colloid-facilitated advective and diffusive transport is also modeled and is presented in detail in Appendix B of this report.

  12. EBS Radionuclide Transport Abstraction

    Energy Technology Data Exchange (ETDEWEB)

    J. Prouty

    2006-07-14

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment (TSPA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers advective transport and diffusive transport

  13. EBS Radionuclide Transport Abstraction

    International Nuclear Information System (INIS)

    J. Prouty

    2006-01-01

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment (TSPA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers advective transport and diffusive transport

  14. A Multi-Process Test Case to Perform Comparative Analysis of Coastal Oceanic Models

    Science.gov (United States)

    Lemarié, F.; Burchard, H.; Knut, K.; Debreu, L.

    2016-12-01

    Due to the wide variety of choices that need to be made during the development of dynamical kernels of oceanic models, there is a strong need for an effective and objective assessment of the various methods and approaches that predominate in the community. We present here an idealized multi-scale scenario for coastal ocean models combining estuarine, coastal and shelf sea scales at midlatitude. The bathymetry, initial conditions and external forcings are defined analytically so that any model developer or user could reproduce the test case with its own numerical code. Thermally stratified conditions are prescribed and a tidal forcing is imposed as a propagating coastal Kelvin wave. The following physical processes can be assessed from the model results: estuarine process driven by tides and buoyancy gradients, the river plume dynamics, tidal fronts, and the interaction between tides and inertial oscillations. We show results obtained using the GETM (General Estuarine Transport Model) and the CROCO (Coastal and Regional Ocean Community model) models. Those two models are representative of the diversity of numerical methods in use in coastal models: GETM is based on a quasi-lagrangian vertical coordinate, a coupled space-time approach for advective terms, a TVD (Total Variation Diminishing) tracer advection scheme while CROCO is discretized with a quasi-eulerian vertical coordinate, a method of lines is used for advective terms, and tracer advection satisfies the TVB (Total Variation Bounded) property. The multiple scales are properly resolved thanks to nesting strategies, 1-way nesting for GETM and 2-way nesting for CROCO. Such test case can be an interesting experiment to continue research in numerical approaches as well as an efficient tool to allow intercomparison between structured-grid and unstructured-grid approaches. Reference : Burchard, H., Debreu, L., Klingbeil, K., Lemarié, F. : The numerics of hydrostatic structured-grid coastal ocean models: state of

  15. Surface distribution of brachyuran megalopae and ichthyoplankton in the Columbia River plume during transition from downwelling to upwelling conditions

    Science.gov (United States)

    Roegner, G. Curtis; Daly, Elizabeth A.; Brodeur, Richard D.

    2013-06-01

    In the California Current coastal boundary zone, the spring transition between downwelling and upwelling conditions, along with the fluctuating structure of the Columbia River plume, creates highly dynamic interactions. In this study, we investigated whether the surface distribution of brachyuran larvae and ichthyoplankton would track the dynamics of the Columbia River plume. By happenstance, the cruise period coincided with the spring transition from downwelling to sustained upwelling conditions in 2010, a year when the transition was delayed and Columbia River flow was substantially higher than average. We used time series of wind and freshwater input to evaluate the influence of physical forcing on oceanographic patterns, and sampled hydrography and surface plankton concentrations within a 182 km2 grid off Willapa Bay, WA. Additionally, two longer transects, one cross-shelf and the other along-shore, were made to discern the extent of plume influence on larval crab and fish abundance. We found that plume waters that were trapped in a northward-flowing coastal-boundary current during downwelling conditions were advected offshore after several days of upwelling-favorable winds. Neustonic collections of brachyuran larvae and ichthyoplankton varied in response to this large seaward advective event. Megalopae of cancrid crabs exhibited patterns of both offshore transport (Cancer oregonensis/productus) and nearshore retention (C. magister). Additionally, abundant numbers of large juvenile widow (Sebastes entomelas) and yellowtail (S. flavidus) rockfish of a size appropriate for settlement were sampled during a period when ocean conditions favored high recruitment success. These results demonstrated that the response of planktonic crab larvae and ichthyoplankton to large-scale advection varied by species, with larger and more vagile fish exhibiting less evidence of passive transport than smaller crab larvae. Importantly, portions of the planktonic fish and crab

  16. Assessing the ability to derive rates of polar middle-atmospheric descent using trace gas measurements from remote sensors

    Science.gov (United States)

    Ryan, Niall J.; Kinnison, Douglas E.; Garcia, Rolando R.; Hoffmann, Christoph G.; Palm, Mathias; Raffalski, Uwe; Notholt, Justus

    2018-02-01

    We investigate the reliability of using trace gas measurements from remote sensing instruments to infer polar atmospheric descent rates during winter within 46-86 km altitude. Using output from the Specified Dynamics Whole Atmosphere Community Climate Model (SD-WACCM) between 2008 and 2014, tendencies of carbon monoxide (CO) volume mixing ratios (VMRs) are used to assess a common assumption of dominant vertical advection of tracers during polar winter. The results show that dynamical processes other than vertical advection are not negligible, meaning that the transport rates derived from trace gas measurements do not represent the mean descent of the atmosphere. The relative importance of vertical advection is lessened, and exceeded by other processes, during periods directly before and after a sudden stratospheric warming, mainly due to an increase in eddy transport. It was also found that CO chemistry cannot be ignored in the mesosphere due to the night-time layer of OH at approximately 80 km altitude. CO VMR profiles from the Kiruna Microwave Radiometer and the Microwave Limb Sounder were compared to SD-WACCM output, and show good agreement on daily and seasonal timescales. SD-WACCM CO profiles are combined with the CO tendencies to estimate errors involved in calculating the mean descent of the atmosphere from remote sensing measurements. The results indicate errors on the same scale as the calculated descent rates, and that the method is prone to a misinterpretation of the direction of air motion. The true rate of atmospheric descent is seen to be masked by processes, other than vertical advection, that affect CO. We suggest an alternative definition of the rate calculated using remote sensing measurements: not as the mean descent of the atmosphere, but as an effective rate of vertical transport for the trace gas under observation.

  17. Resuspension and estuarine nutrient cycling: insights from the Neuse River Estuary

    Directory of Open Access Journals (Sweden)

    D. R. Corbett

    2010-10-01

    Full Text Available For at least the past several decades, North Carolina's Neuse River Estuary (NRE has been subject to water quality problems relating to increased eutrophication. Research initiated in the past several years have addressed the nutrient processes of the water column and the passive diffusion processes of the benthic sedimentary environment. Resuspension of bottom sediments, by bioturbation, tides, or winds, may also have a significant effect on the flux of nutrients in an estuarine system These processes can result in the advective transport of sediment porewater, rich with nitrogen, phosphorus and carbon, into the water column. Thus, estimates of nutrient and carbon inputs from the sediments may be too low.

    This study focused on the potential change in bottom water nutrient concentrations associated with measured resuspension events. Previous research used short-lived radionuclides and meteorological data to characterize the sediment dynamics of the benthic system of the estuary. These techniques in conjunction with the presented porewater inventories allowed evaluation of the depth to which sediments have been disturbed and the advective flux of nutrients to the water column. The largest removal episode occurred in the lower NRE as the result of a wind event and was estimated that the top 2.2 cm of sediment and corresponding porewater were removed. NH4+ advective flux (resuspended was 2 to 6 times greater than simply diffusion. Phosphate fluxes were estimated to be 15 times greater than the benthic diffusive flux. Bottom water conditions with elevated NH4+ and PO43− indicate that nutrients stored in the sediments continue to play an important role in overall water quality and this study suggests that the advective flux of nutrients to the water column is critical to understand estuarine nutrient cycling.

  18. Field studies of estuarine turbidity under different freshwater flow conditions, Kaipara River, New Zealand

    Science.gov (United States)

    Mitchell, Steven B.; Green, Malcolm O.; MacDonald, Iain T.; Pritchard, Mark

    2017-11-01

    We present a first interpretation of three days of measurements made in 2013 from the tidal reaches of the Kaipara River (New Zealand) under both low and high freshwater inputs and a neap tidal cycle. During the first day, we occupied two stations that were approximately 6 km apart in a tidal reach that runs for 25 km from the river mouth to the upstream limit of tidal influence. During the second day, longitudinal surveys were conducted over a distance of 6 km centred on the upstream station. The data reveal a turbidity maximum in the form of a high-concentration 'plug' of suspended mud that was advected downstream on the ebbing tide past the upper (HB) measurement station and which exchanged sediment with the seabed by settling at low slack water and by resuspension in the early flooding tide. The data suggest that fine sediment is transported landwards and trapped in the upper part of the tidal reach under these low-flow conditions. On the third day of measurements we repeated the experiments of the first day but later in the year, for a much higher freshwater flow. This interpretation of our data set highlights the potential contribution of a range of processes to the generation of the observed suspended-sediment signals, including resuspension of local bed sediment, advection by the tidal current, settling of suspended sediment over a long timescale compared to the advection timescale, advection of longitudinal gradients in suspended sediment, and suppression of vertical mixing by density stratification of the water column. The level of temporal and spatial detail afforded by these measurements allows a much clearer understanding of the timing and importance of vertical stratification on the transport of suspended particulate matter than is generally possible using fixed-point sensors.

  19. Annual sediment flux estimates in a tidal strait using surrogate measurements

    Science.gov (United States)

    Ganju, N.K.; Schoellhamer, D.H.

    2006-01-01

    Annual suspended-sediment flux estimates through Carquinez Strait (the seaward boundary of Suisun Bay, California) are provided based on surrogate measurements for advective, dispersive, and Stokes drift flux. The surrogates are landward watershed discharge, suspended-sediment concentration at one location in the Strait, and the longitudinal salinity gradient. The first two surrogates substitute for tidally averaged discharge and velocity-weighted suspended-sediment concentration in the Strait, thereby providing advective flux estimates, while Stokes drift is estimated with suspended-sediment concentration alone. Dispersive flux is estimated using the product of longitudinal salinity gradient and the root-mean-square value of velocity-weighted suspended-sediment concentration as an added surrogate variable. Cross-sectional measurements validated the use of surrogates during the monitoring period. During high freshwater flow advective and dispersive flux were in the seaward direction, while landward dispersive flux dominated and advective flux approached zero during low freshwater flow. Stokes drift flux was consistently in the landward direction. Wetter than average years led to net export from Suisun Bay, while dry years led to net sediment import. Relatively low watershed sediment fluxes to Suisun Bay contribute to net export during the wet season, while gravitational circulation in Carquinez Strait and higher suspended-sediment concentrations in San Pablo Bay (seaward end of Carquinez Strait) are responsible for the net import of sediment during the dry season. Annual predictions of suspended-sediment fluxes, using these methods, will allow for a sediment budget for Suisun Bay, which has implications for marsh restoration and nutrient/contaminant transport. These methods also provide a general framework for estimating sediment fluxes in estuarine environments, where temporal and spatial variability of transport are large. ?? 2006 Elsevier Ltd. All rights

  20. Influence of intense scavenging on Pa-Th fractionation in the wake of Kerguelen Island (Southern Ocean)

    International Nuclear Information System (INIS)

    Venchiarutti, C.; Roy-Barman, M.; Freydier, R.; Van Beek, P.; Souhaut, M.; Jeandel, C.

    2011-01-01

    Dissolved and particulate excess 230 Th and 231 Pa concentrations (noted 230 Th xs and 231 Pa xs respectively) and 231 Pa xs / 230 Th xs activity ratios were investigated on and out of the Kerguelen plateau (Southern Ocean) in the framework of the Kerguelen Ocean and Plateau compared Study project in order to better understand the influence of particle flux and particle chemistry and advection on the scavenging of 231 Pa. In the wake of Kerguelen, particulate 231 Pa xs is relatively abundant compared to its content in the dissolved phase. This, together with the low fractionation observed between 230 Th and 231 Pa (F Th/Pa ranging from 0.06 ± 0.01 to 1.6 ± 0.2) reflects the domination of the biogenic silica in the particle pool. Along the eastern escarpment of the Kerguelen plateau, the strong 231 Pa xs horizontal gradient in the deep waters highlights the intense removal of 231 Pa at depth, as already observed for 230 Th xs . This local boundary scavenging was attributed to re-suspension of opal-rich particles by nepheloid layers, resulting in fractionation factors F Th/Pa ≤ 1 along the Kerguelen plateau slope. Therefore, both the composition (biogenic opal) and the flux (intense along the margin) of particles control the scavenging of the two radionuclides in the Kerguelen wake. The modelling of 231 Pa distribution with an advection-scavenging model demonstrates that lateral advection of open ocean water on the Kerguelen plateau could supply most of the 231 Pa, which is then efficiently scavenged on the highly productive plateau, as previously proposed for 230 Th xs . It stresses that lateral advection can play a significant role in the overall budget of particle reactive trace elements in a coastal-open ocean system. (authors)

  1. Air and wet bulb temperature lapse rates and their impact on snowmaking in a Pyrenean ski resort

    Science.gov (United States)

    López-Moreno, Juan Ignacio; Navarro-Serrano, F.; Azorín-Molina, C.; Sánchez-Navarrete, P.; Alonso-González, E.; Rico, I.; Morán-Tejeda, E.; Buisan, S.; Revuelto, J.; Pons, M.; Vicente-Serrano, S. M.

    2018-03-01

    A set of 17 air temperature and relative humidity sensors were used to analyze the temporal variability of surface air temperature (Tair), wet bulb temperature (Twb), and daily snowmaking hours (SM, number of hours per day with Twb identical temporal fluctuations. The Twb exhibited average lapse rates that were slightly steeper (- 5.2 °C/km) than those observed for Tair (- 4.9 °C/km). The less steep lapse rates and most thermal inversions were observed in December. Days having less (more) steep Tair and Twb lapse rates were observed under low (high) wind speeds and high (low) relative humidity and air pressure. The temporal dynamics of the SM lapse rates was more complex, as this involved consideration of the average Tair in the ski resort, in addition to the driving factors of the spatio-temporal variability of Twb. Thus, on a number of cold (warm) days, snowmaking was feasible at all elevations at the ski resort, independently of the slopes of the lapse rates. The SM exhibited an average daily lapse rate of 8.2 h/km, with a progressive trend of increase from December to March. Weather types over the Iberian Peninsula tightly control the driving factors of the Tair, Twb, and SM lapse rates (wind speed, relative humidity, and Tair), so the slopes of the lapse rates and the frequency of inversions in relation to elevation for the three variables are very dependent on the occurrence of specific weather types. The less steep lapse rates occurred associated with advections from the southeast, although low lapse rates also occurred during advections from the east and south, and under anticyclonic conditions. The steepest Tair and Twb lapse rates were observed during north and northwest advections, while the steepest rates for SM were observed during days of cyclonic circulation and advections from the northeast.

  2. Air-sea exchange of CO2 in the Gulf of Kutch, northern Arabian Sea based on bomb-carbon in corals and tree rings

    International Nuclear Information System (INIS)

    Chakraborty, S.; Ramesh, R.; Krishnaswami, S.

    1994-01-01

    Radiocarbon analyses were carried out in the annual bands of a 40 year old coral collected from the Gulf of Kutch (22.6degN, 70degE) in the northern Arabian Sea and in the annual rings of a teak tree from Thane (19deg14'N, 73deg24'E) near Bombay. These measurements were made in order to obtain the rates of air-sea exchange of CO 2 and the advective mixing of water in the Gulf of Kutch. The Δ 14 C peak in the Thane tree occurs in the year 1964, with a value of ∼630 part per thousand, significantly lower than that of the mean atmospheric Δ 14 C of the northern hemisphere (∼1000 part per thousand). The radiocarbon time series of the coral was modelled considering the supply of carbon and radiocarbon to the gulf through air-sea exchange and advective water transport from the open Arabian Sea. A reasonable fit for the coral data was obtained with an air-sea CO 2 exchange rate of 11-12 mol m -2 yr -1 , and an advective velocity of 28 m yr -1 between the Arabian Sea and the Gulf of Kutch; this was based on a model generated time series for radiocarbon in the Arabian Sea. The deduced velocity (∼ 28 m yr -1 ) of the advective transport of water between the Gulf and the Arabian Sea is much lower than the surface tidal current velocity in this region, but can be understood in terms of net fluxes of carbon and radiocarbon to the gulf to match the observed coral Δ 14 C time series. (author). 30 refs., 7 figs., 2 tabs

  3. The impact of non-isothermal soil moisture transport on evaporation fluxes in a maize cropland

    Science.gov (United States)

    Shao, Wei; Coenders-Gerrits, Miriam; Judge, Jasmeet; Zeng, Yijian; Su, Ye

    2018-06-01

    The process of evaporation interacts with the soil, which has various comprehensive mechanisms. Multiphase flow models solve air, vapour, water, and heat transport equations to simulate non-isothermal soil moisture transport of both liquid water and vapor flow, but are only applied in non-vegetated soils. For (sparsely) vegetated soils often energy balance models are used, however these lack the detailed information on non-isothermal soil moisture transport. In this study we coupled a multiphase flow model with a two-layer energy balance model to study the impact of non-isothermal soil moisture transport on evaporation fluxes (i.e., interception, transpiration, and soil evaporation) for vegetated soils. The proposed model was implemented at an experimental agricultural site in Florida, US, covering an entire maize-growing season (67 days). As the crops grew, transpiration and interception became gradually dominated, while the fraction of soil evaporation dropped from 100% to less than 20%. The mechanisms of soil evaporation vary depending on the soil moisture content. After precipitation the soil moisture content increased, exfiltration of the liquid water flow could transport sufficient water to sustain evaporation from soil, and the soil vapor transport was not significant. However, after a sufficient dry-down period, the soil moisture content significantly reduced, and the soil vapour flow significantly contributed to the upward moisture transport in topmost soil. A sensitivity analysis found that the simulations of moisture content and temperature at the soil surface varied substantially when including the advective (i.e., advection and mechanical dispersion) vapour transport in simulation, including the mechanism of advective vapour transport decreased soil evaporation rate under wet condition, while vice versa under dry condition. The results showed that the formulation of advective soil vapor transport in a soil-vegetation-atmosphere transfer continuum can

  4. Column studies of strontium and cesium migration in a granular geologic material

    International Nuclear Information System (INIS)

    Reynolds, W.D.; Gilham, R.W.; Cherry, J.A.

    1981-06-01

    Infinite-pulse, miscible-displacement experiments were conducted to investigate the applicability of batch Ksub(d) values in the prediction of reactive solute transport during dynamic flow through porous media. Non-reactive tracers (chloride, tritium and oxygen-18), and the reactive tracers (strontium-85 and cesium-137) were passed through a column 5.0 cm long and 6.5 cm in diameter packed with a medium to fine sand. The effluent concentrations of the nonreactive solutes were accurately predicted using the advection-dispersion equation; however, there were large discrepancies between the measured and predicted effluent concentrations for both reactive species. Good agreement was obtained between the measured and computed results by incorporating an empirical isotherm into the advection-dispersion model

  5. An increase of early rains in southern Israel following land-use change?

    Science.gov (United States)

    Otterman, J.; Starr, D. O'C.; Manes, A.; Rubin, S.; Alpert, P.

    1990-01-01

    Rains at the onset of the October-April rainy season in southern Israel have steeply increased in the last 25 years relative to the previous 20 years, and are accompanied by an appreciable general increase of rainy-season rainfall. This increase in precipitation is specifically attributable to an intensification of the convection and advection processes due to afforestation and increased cultivation-induced enhancement of the daytime sensible heat flux from the generally dry surface; the enhancement proceeds from both the reduced surface albedo and the reduced soil heat flux in October, when insolation is strong. Greater daytime convection can lead to penetration of inversions capping the planetary boundary layer, while strengthened advection can furnish moist air from the Mediterranean.

  6. Decadal changes of weather types in the alpine region

    Energy Technology Data Exchange (ETDEWEB)

    Stefanicki, G.; Talkner, P.; Weber, R.O. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The annual occurrence of different weather types of Schuepp`s synoptic classification in the Alpine region has changed since the beginning of its recording 1945. The annual frequency (number of days) of convective types has increased and that of advective types has decreased. In parallel the number of long-lasting convective episodes rose and the number of long-lasting advective episodes lessened. Most of the change took place in winter. The frequencies of different weather types and the annual mean of certain meteorological parameters are significantly correlated. Moreover, there is a strong interdependence between the subclass of high pressure types and the North Atlantic Oscillation (NAO) index. (author) 3 figs., 3 refs.

  7. Lagrangian numerical methods for ocean biogeochemical simulations

    Science.gov (United States)

    Paparella, Francesco; Popolizio, Marina

    2018-05-01

    We propose two closely-related Lagrangian numerical methods for the simulation of physical processes involving advection, reaction and diffusion. The methods are intended to be used in settings where the flow is nearly incompressible and the Péclet numbers are so high that resolving all the scales of motion is unfeasible. This is commonplace in ocean flows. Our methods consist in augmenting the method of characteristics, which is suitable for advection-reaction problems, with couplings among nearby particles, producing fluxes that mimic diffusion, or unresolved small-scale transport. The methods conserve mass, obey the maximum principle, and allow to tune the strength of the diffusive terms down to zero, while avoiding unwanted numerical dissipation effects.

  8. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Keywords. Numerical simulations—magnetohydrodynamics—computer unified device architecture—graphical processing units—NVIDIA—Sheffield advanced code—the Sheffield magnetohydrodynamics algorithm using GPUs—versatile advection code.

  9. Structure and formation of convection of secondary rainbands in a simulated typhoon Jangmi (2008)

    Science.gov (United States)

    Xiao, Jing; Tan, Zhe-Min; Chow, Kim-Chiu

    2018-04-01

    Secondary rainbands in tropical cyclone are relatively transient compared with the quasi-stationary principle rainbands. To have a better understanding on their convective structure, a cloud-resolving scale numerical simulation of the super typhoon Jangmi (2008) was performed. The results suggest that the convections in secondary rainbands have some distinctive features that may not be seen in other types of rainbands in tropical cyclone. First, they have a front-like structure and are triggered to form above the boundary layer by the convergence of the above-boundary outflow from the inner side (warmer) and the descending inflow (colder) from the outer side. These elevated convections can be further confirmed by the three-dimensional backward trajectory calculations. Second, due to the release in baroclinic energy, the lower portion of the mid-level inflow from outside may penetrate into the bottom of the convection tower and may help accelerate the boundary layer inflow in the inner side. Third, the local maximum tangential wind is concentrated in the updraft region, with a lower portion which is dipping inward. Tangential wind budget analysis also suggests that the maxima are mainly contributed by the updraft advection, and can be advected cyclonically downstream by the tangential advection.

  10. Numerical analysis of air pollution in a combined field of land/sea breeze and mountain/valley wind

    International Nuclear Information System (INIS)

    Kitada, T.; Igarashi, K.; Owada, M.

    1986-01-01

    Air pollution in the presence of two types of local flows (i.e., land/sea breeze and mountain/valley wind) was studies by advection simulation of the cluster of hypothetical fluid particles, and transport/chemistry calculation employing a three-dimensional Eulerian model for 20 advected species and about 90 chemical reactions. Three-dimensional flow fields over the River Yahagi basin in Japan were estimated for 48 h using an objective method with routine wind observations. Those obtained showed characteristics of the combined local flows such that in the daytime sea breeze and valley wind tend to form one united flow with substantial wind velocity in the whole region and, in contrast, land breeze and mountain wind during the nighttime form two separated circulating flows with a clear weak-wind area between the two local flow regimes. The results of the advection simulation of fluid particles and the transport/chemistry calculation using those flows as inputs elucidated how the features found in the diurnally varying, complex local flows contribute to produce characteristic time-variations of the concentrations of both primary and secondary pollutants. Among others, dynamics of NO 2 , HNO 3 , PAN, O 3 , SO 2 , and SO 4 /sup =/ concentrations are discussed

  11. Fluid Flow and Mixing Induced by AC Continuous Electrowetting of Liquid Metal Droplet

    Directory of Open Access Journals (Sweden)

    Qingming Hu

    2017-04-01

    Full Text Available In this work, we proposed a novel design of a microfluidic mixer utilizing the amplified Marangoni chaotic advection induced by alternating current (AC continuous electrowetting of a metal droplet situated in electrolyte solution, due to the linear and quadratic voltage-dependence of flow velocity at small or large voltages, respectively. Unlike previous researchers exploiting the unidirectional surface stress with direct current (DC bias at droplet/medium interface for pumping of electrolytes where the resulting flow rate is linearly proportional to the field intensity, dominance of another kind of dipolar flow pattern caused by local Marangoni stress at the drop surface in a sufficiently intense AC electric field is demonstrated by both theoretical analysis and experimental observation, which exhibits a quadratic growth trend as a function of the applied voltage. The dipolar shear stress merely appears at larger voltages and greatly enhances the mixing performance by inducing chaotic advection between the neighboring laminar flow. The mixer design developed herein, on the basis of amplified Marangoni chaotic advection around a liquid metal droplet at larger AC voltages, has great potential for chemical reaction and microelectromechanical systems (MEMS actuator applications because of generating high-throughput and excellent mixing performance at the same time.

  12. CASCADER: An M-chain gas-phase radionuclide transport and fate model

    International Nuclear Information System (INIS)

    Lindstrom, F.T.; Cawlfield, D.E.; Emer, D.F.; Shott, G.J.; Donahue, M.E.

    1993-02-01

    Chemicals and radionuclides move either in the gas-phase, liquid-phase, or both phases in soils. They may be acted upon by either biological or abiotic processes through advection and diffusion. Furthermore, parent and daughter radionuclides may decay as they are transported in the soil. CASCADER is a gas-phase, one-space dimensional transport and fate model for M-chain radionuclides in very dry homogeneous or heterogeneous soil. This model contains barometric pressure-induced advection and diffusion together with linear irreversible and linear reversible sorption for each radionuclide. The advection velocity is derived from an embedded air-pumping submodel. The air-pumping submodel is based on an assumption of isothermal conditions, which is driven by barometric pressure. CASCADER allows the concentration of source radionuclides to decay via the classical Bateman chain of simple, first-order kinetic processes. The transported radionuclides also decay via first-order processes while in the soil. A mass conserving, flux-type inlet and exit set of boundary conditions are used. The user must supply the initial distribution for the parent radionuclide in the soil. The initial daughter distribution is found using equilibrium rules. The model is user friendly as it uses a prompt-driven, free-form input. The code is ANSI standard Fortran 77

  13. Turbulent mixing of a critical fluid: The non-perturbative renormalization

    Directory of Open Access Journals (Sweden)

    M. Hnatič

    2018-01-01

    Full Text Available Non-perturbative Renormalization Group (NPRG technique is applied to a stochastical model of a non-conserved scalar order parameter near its critical point, subject to turbulent advection. The compressible advecting flow is modeled by a random Gaussian velocity field with zero mean and correlation function 〈υjυi〉∼(Pji⊥+αPji∥/kd+ζ. Depending on the relations between the parameters ζ, α and the space dimensionality d, the model reveals several types of scaling regimes. Some of them are well known (model A of equilibrium critical dynamics and linear passive scalar field advected by a random turbulent flow, but there is a new nonequilibrium regime (universality class associated with new nontrivial fixed points of the renormalization group equations. We have obtained the phase diagram (d, ζ of possible scaling regimes in the system. The physical point d=3, ζ=4/3 corresponding to three-dimensional fully developed Kolmogorov's turbulence, where critical fluctuations are irrelevant, is stable for α≲2.26. Otherwise, in the case of “strong compressibility” α≳2.26, the critical fluctuations of the order parameter become relevant for three-dimensional turbulence. Estimations of critical exponents for each scaling regime are presented.

  14. Revisiting Gill's Circulation. Dynamic Response to Diabatic Heating of Different Horizontal Extents

    Science.gov (United States)

    Reboredo, B.; Bellon, G.

    2017-12-01

    The horizontal extent of diabatic heating associated with the MJO is thought to be crucial to its development, and the inability of GCMs to simulate the spatial, horizontal organization of clouds is considered a leading hypothesis to explain their limited capacity to simulate MJO events. This prevents the MJO large-circulation response from developing and feeding back on the development of clouds. We apply mid-tropospheric heating of different size in simple linear and non-linear models of the tropical atmosphere following Gill's seminal work on heat-induced tropical circulations. Results show that there is a scale for which the characteristic circulation {Γ c} for the vertical advection of moisture to produce the latent heat mean {Q} gives a rough estimate of the real world MJO scale. Overturning circulation flow rates above {Γ c} account for a circulation that transports more moisture than necessary to be maintained, and below {Γ c}, circulation would not transport enough moisture to maintain circulation. This dynamic scale might constrain the size of the spatially-organised convection necessary to the development of an MJO event. However, other effects are expected to modulate this scale, such as vertical advection of moisture anomalies, horizontal advection, evaporation, radiative heating, and sensible heat fluxes.

  15. Stabilization and discontinuity-capturing parameters for space-time flow computations with finite element and isogeometric discretizations

    Science.gov (United States)

    Takizawa, Kenji; Tezduyar, Tayfun E.; Otoguro, Yuto

    2018-04-01

    Stabilized methods, which have been very common in flow computations for many years, typically involve stabilization parameters, and discontinuity-capturing (DC) parameters if the method is supplemented with a DC term. Various well-performing stabilization and DC parameters have been introduced for stabilized space-time (ST) computational methods in the context of the advection-diffusion equation and the Navier-Stokes equations of incompressible and compressible flows. These parameters were all originally intended for finite element discretization but quite often used also for isogeometric discretization. The stabilization and DC parameters we present here for ST computations are in the context of the advection-diffusion equation and the Navier-Stokes equations of incompressible flows, target isogeometric discretization, and are also applicable to finite element discretization. The parameters are based on a direction-dependent element length expression. The expression is outcome of an easy to understand derivation. The key components of the derivation are mapping the direction vector from the physical ST element to the parent ST element, accounting for the discretization spacing along each of the parametric coordinates, and mapping what we have in the parent element back to the physical element. The test computations we present for pure-advection cases show that the parameters proposed result in good solution profiles.

  16. Convection due to an unstable density difference across a permeable membrane

    Science.gov (United States)

    Puthenveettil, Baburaj A.; Arakeri, Jaywant H.

    We study natural convection driven by unstable concentration differences of sodium chloride (NaCl) across a horizontal permeable membrane at Rayleigh numbers (Ra) of 1010 to 1011 and Schmidt number (Sc)=600. A layer of brine lies over a layer of distilled water, separated by the membrane, in square-cross-section tanks. The membrane is permeable enough to allow a small flow across it at higher driving potentials. Based on the predominant mode of transport across the membrane, three regimes of convection, namely an advection regime, a diffusion regime and a combined regime, are identified. The near-membrane flow in all the regimes consists of sheet plumes formed from the unstable layers of fluid near the membrane. In the advection regime observed at higher concentration differences (Bb) show a common log-normal probability density function at all Ra. We propose a phenomenology which predicts /line{lambda}_b sqrt{Z_w Z_{V_i}}, where Zw and Z_{V_i} are, respectively, the near-wall length scales in Rayleighnard convection (RBC) and due to the advection velocity. In the combined regime, which occurs at intermediate values of C/2)4/3. At lower driving potentials, in the diffusion regime, the flux scaling is similar to that in turbulent RBC.

  17. Line-averaging measurement methods to estimate the gap in the CO2 balance closure – possibilities, challenges, and uncertainties

    Directory of Open Access Journals (Sweden)

    A. Ziemann

    2017-11-01

    Full Text Available An imbalance of surface energy fluxes using the eddy covariance (EC method is observed in global measurement networks although all necessary corrections and conversions are applied to the raw data. Mainly during nighttime, advection can occur, resulting in a closing gap that consequently should also affect the CO2 balances. There is the crucial need for representative concentration and wind data to measure advective fluxes. Ground-based remote sensing techniques are an ideal tool as they provide the spatially representative CO2 concentration together with wind components within the same voxel structure. For this purpose, the presented SQuAd (Spatially resolved Quantification of the Advection influence on the balance closure of greenhouse gases approach applies an integrated method combination of acoustic and optical remote sensing. The innovative combination of acoustic travel-time tomography (A-TOM and open-path Fourier-transform infrared spectroscopy (OP-FTIR will enable an upscaling and enhancement of EC measurements. OP-FTIR instrumentation offers the significant advantage of real-time simultaneous measurements of line-averaged concentrations for CO2 and other greenhouse gases (GHGs. A-TOM is a scalable method to remotely resolve 3-D wind and temperature fields. The paper will give an overview about the proposed SQuAd approach and first results of experimental tests at the FLUXNET site Grillenburg in Germany. Preliminary results of the comprehensive experiments reveal a mean nighttime horizontal advection of CO2 of about 10 µmol m−2 s−1 estimated by the spatially integrating and representative SQuAd method. Additionally, uncertainties in determining CO2 concentrations using passive OP-FTIR and wind speed applying A-TOM are systematically quantified. The maximum uncertainty for CO2 concentration was estimated due to environmental parameters, instrumental characteristics, and retrieval procedure with a total amount of approximately

  18. Line-averaging measurement methods to estimate the gap in the CO2 balance closure - possibilities, challenges, and uncertainties

    Science.gov (United States)

    Ziemann, Astrid; Starke, Manuela; Schütze, Claudia

    2017-11-01

    An imbalance of surface energy fluxes using the eddy covariance (EC) method is observed in global measurement networks although all necessary corrections and conversions are applied to the raw data. Mainly during nighttime, advection can occur, resulting in a closing gap that consequently should also affect the CO2 balances. There is the crucial need for representative concentration and wind data to measure advective fluxes. Ground-based remote sensing techniques are an ideal tool as they provide the spatially representative CO2 concentration together with wind components within the same voxel structure. For this purpose, the presented SQuAd (Spatially resolved Quantification of the Advection influence on the balance closure of greenhouse gases) approach applies an integrated method combination of acoustic and optical remote sensing. The innovative combination of acoustic travel-time tomography (A-TOM) and open-path Fourier-transform infrared spectroscopy (OP-FTIR) will enable an upscaling and enhancement of EC measurements. OP-FTIR instrumentation offers the significant advantage of real-time simultaneous measurements of line-averaged concentrations for CO2 and other greenhouse gases (GHGs). A-TOM is a scalable method to remotely resolve 3-D wind and temperature fields. The paper will give an overview about the proposed SQuAd approach and first results of experimental tests at the FLUXNET site Grillenburg in Germany. Preliminary results of the comprehensive experiments reveal a mean nighttime horizontal advection of CO2 of about 10 µmol m-2 s-1 estimated by the spatially integrating and representative SQuAd method. Additionally, uncertainties in determining CO2 concentrations using passive OP-FTIR and wind speed applying A-TOM are systematically quantified. The maximum uncertainty for CO2 concentration was estimated due to environmental parameters, instrumental characteristics, and retrieval procedure with a total amount of approximately 30 % for a single

  19. Numerical Treatment of Two-phase Flow in Porous Media Including Specific Interfacial Area

    KAUST Repository

    El-Amin, Mohamed

    2015-06-01

    In this work, we present a numerical treatment for the model of two-phase flow in porous media including specific interfacial area. For numerical discretization we use the cell-centered finite difference (CCFD) method based on the shifting-matrices method which can reduce the time-consuming operations. A new iterative implicit algorithm has been developed to solve the problem under consideration. All advection and advection-like terms that appear in saturation equation and interfacial area equation are treated using upwind schemes. Selected simulation results such as pc–Sw–awn surface, capillary pressure, saturation and specific interfacial area with various values of model parameters have been introduced. The simulation results show a good agreement with those in the literature using either pore network modeling or Darcy scale modeling.

  20. A criterion of orthogonality on the assumption and restrictions in subgrid-scale modelling of turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Fang, L. [LMP, Ecole Centrale de Pékin, Beihang University, Beijing 100191 (China); Co-Innovation Center for Advanced Aero-Engine, Beihang University, Beijing 100191 (China); Sun, X.Y. [LMP, Ecole Centrale de Pékin, Beihang University, Beijing 100191 (China); Liu, Y.W., E-mail: liuyangwei@126.com [National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Co-Innovation Center for Advanced Aero-Engine, Beihang University, Beijing 100191 (China)

    2016-12-09

    In order to shed light on understanding the subgrid-scale (SGS) modelling methodology, we analyze and define the concepts of assumption and restriction in the modelling procedure, then show by a generalized derivation that if there are multiple stationary restrictions in a modelling, the corresponding assumption function must satisfy a criterion of orthogonality. Numerical tests using one-dimensional nonlinear advection equation are performed to validate this criterion. This study is expected to inspire future research on generally guiding the SGS modelling methodology. - Highlights: • The concepts of assumption and restriction in the SGS modelling procedure are defined. • A criterion of orthogonality on the assumption and restrictions is derived. • Numerical tests using one-dimensional nonlinear advection equation are performed to validate this criterion.